Do all leaf photosynthesis parameters of rice acclimate to elevated CO

Cai, C., Li, G., Yang, H., Yang, J., Liu, H., Struik, P. C., ... Zhu, J.

This article is made publically available in the institutional repository of Wageningen University and Research, under article 25fa of the Dutch Copyright Act, also known as the Amendment Taverne.

Article 25fa states that the author of a short scientific work funded either wholly or partially by Dutch public funds is entitled to make that work publicly available for no consideration following a reasonable period of time after the work was first published, provided that clear reference is made to the source of the first publication of the work.

For questions regarding the public availability of this article, please contact openscience.library@wur.nl.

Please cite this publication as follows:

Do all leaf photosynthesis parameters of rice acclimate to elevated CO₂, elevated temperature, and their combination, in FACE environments?

Chuang Cai¹ | Gang Li¹ | Hailong Yang¹ | Jiaheng Yang¹ | Hong Liu¹ | Paul C. Struik² | Weihong Luo¹ | Xinyou Yin² | Lijun Di¹ | Xuanhe Guo¹ | Wenyu Jiang¹ | Chuanfei Si¹ | Genxing Pan³ | Jianguo Zhu⁴

¹College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
²Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
³College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
⁴State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China

Correspondence
Weihong Luo, College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Email: lwh@njau.edu.cn
Xinyou Yin, Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands.
Email: xinyou.yin@wur.nl

Funding information
Ministry of Agriculture of the People’s Republic of China, Grant/Award Number: 200903003; National Natural Science Foundation of China, Grant/Award Number: 31261140364, 31400372; State Administration of Foreign Experts Affairs of the People’s Republic of China and Ministry of Education of the People’s Republic of China, Grant/Award Number: B16026; Netherlands Organisation for Scientific Research

Abstract
Leaf photosynthesis of crops acclimates to elevated CO₂ and temperature, but studies quantifying responses of leaf photosynthetic parameters to combined CO₂ and temperature increases under field conditions are scarce. We measured leaf photosynthesis of rice cultivars Changyou 5 and Nanjing 9108 grown in two free-air CO₂ enrichment (FACE) systems, respectively, installed in paddy fields. Each FACE system had four combinations of two levels of CO₂ (ambient and enriched) and two levels of canopy temperature (no warming and warmed by 1.0–2.0°C). Parameters of the C₃ photosynthesis model of Farquhar, von Caemmerer and Berry (the FvCB model), and of a stomatal conductance (gs) model were estimated for the four conditions. Most photosynthetic parameters acclimated to elevated CO₂, elevated temperature, and their combination. The combination of elevated CO₂ and temperature changed the functional relationships between biochemical parameters and leaf nitrogen content for Changyou 5. The gs model significantly underestimated gs under the combination of elevated CO₂ and temperature by 19% for Changyou 5 and by 10% for Nanjing 9108 if no acclimation was assumed. However, our further analysis applying the coupled gs–FvCB model to an independent, previously published FACE experiment showed that including such an acclimation response of gs hardly improved prediction of leaf photosynthesis under the four combinations of CO₂ and temperature. Therefore, the typical procedure that crop models using the FvCB and gs models are parameterized from plants grown under current ambient conditions may not result in critical errors in projecting productivity of paddy rice under future global change.

KEYWORDS
climate change, free-air CO₂ enrichment, leaf nitrogen content, mesophyll conductance, Oryza sativa L, photosynthesis model, stomatal conductance

1 | INTRODUCTION

The atmospheric CO₂ and global mean surface air temperature are rising. Crops are sensitive to these changes, but may adjust photosynthetic capacity in response to prolonged changes in air temperature and CO₂ concentration over the growing season (Adachi et al., 2014; Alonso, Pérez, & Martínez-Carrasco, 2009; Borjigidai et al., 2006; Pozo, Pérez, Morcuende, Alonso, & Martínez-Carrasco,
2005). However, many studies on predicting crop yield under future climate change using current crop models did not take these acclimation responses of photosynthetic capacity into account (Asseng et al., 2004; Kim, Ko, Kang, & Tenhunen, 2013; Li et al., 2014), partly because these responses are poorly understood and inadequately quantified.

Acclimation responses in photosynthesis and respiration to changes in atmospheric CO₂ concentration and temperature have been explored as major stimuli eliciting adjustments in plant photosynthetic capacity (Ainsworth & Long, 2005; Alonso et al., 2009). Under a prolonged increase in CO₂ concentration, photosynthesis is often down-regulated, in many instances quantified by the decrease in two biochemical parameters of the model of Farquhar, von Caemmerer, and Berry (1980, the FvCB model): the maximum rates of electron transport (Jmax) and of carboxylation by Rubisco (Vcmax) (Drake, González-Meler, & Long, 1997; Long, Ainsworth, Rogers, & Ort, 2004; Pérez, Morcuende, Martin del Molino, & Martínez-Carrasco, 2005). A prolonged increase in temperature also results in decreases in the temperature sensitivity of leaf respiration in the light or called day respiration (Rd) (Atkin, Scheurwater, & Pons, 2006; Chi et al., 2013; Crous et al., 2011).

These biochemical parameters Jmax, Vcmax and Rd are also influenced by the physiological status of a leaf, for example they are linearly correlated with the amount of nitrogen (N) per unit leaf area (e.g. Harley, Thomas, Reynolds, & Strain, 1992). The fact that photosynthesis is not strongly enhanced by long-term elevated CO₂ may be associated with the inability of plants to acquire more nitrogen, resulting in lower leaf nitrogen content in plants grown under CO₂ enrichment (Drake et al., 1997; Luo et al., 2004; Peterson et al., 1999). Yin (2013) found that elevated CO₂ did not change the linear relationship between Vcmax or Jmax and leaf nitrogen content.

The CO₂ diffusion from the atmosphere to the sub-stomatal cavity (reflected in stomatal conductance, gs) and the diffusion from intercellular airspace within a leaf to the sites of carboxylation within chloroplasts (reflected in mesophyll conductance, gms) may also limit leaf photosynthesis. Some studies explored acclimation responses of gs to elevated CO₂ and elevated temperature, but with inconsistent results (Bunce, 2000, 2004; Leakey, Bernacchi, et al., 2006; Pozo et al., 2005). Only a few studies showed that elevated temperature and the combination of elevated CO₂ and elevated temperature caused strong acclimation of gs in a controlled environment. Leakey, Bernacchi, et al. (2006) suggested the acclimation extent and nature of gs, like for photosynthesis rate, may differ between FACE (free-air CO₂ enrichment) and growth chamber studies. The responses of gms to short-term changes in CO₂ level are inconsistent (Flexas et al., 2012, 2014; Bernacchi, Portis, Nakano, von Caemmerer, and Long (2002) used a peaked Arrhenius function to parameterize short-term responses of gms to temperature, but such responses differ greatly among species (von Caemmerer & Evans, 2015). There are no general trends for gms in plants grown under elevated CO₂ and elevated temperature (Chi et al., 2013; Dillaway & Kruger, 2010; Flexas, Ribas-Carbó, Díaz-Espejo, Galmés, & Medrano, 2008; Flexas et al., 2012; Yamori, Noguchi, Hanba, & Terashima, 2006), and no studies have parameterized the temperature response of gms under combined elevated CO₂ and elevated temperature. Therefore, it is necessary to explore any acclimation responses of gs and gms to the combinations of elevated CO₂ and elevated temperature in FACE experiments.

Field-grown plants, exposed to natural diurnal, seasonal and year-to-year fluctuations in leaf temperature in a FACE system, would better suit for studies on plant responses to atmospheric CO₂ concentration and temperature with minimal artefacts (Long et al., 2004). Some studies found diurnal and seasonal variation in the magnitude of the decrease in gs for plants grown under elevated CO₂ in FACE (Bernacchi et al., 2006; Leakey, Bernacchi, Ort, & Long, 2006; Shimono et al., 2010). Seasonal changes in growth temperature also affect the temperature dependence of biochemical parameters (Kattge & Knorr, 2007; Yamaguchi, Nakaji, Hiura, & Hikosaka, 2016; Yamori, Noguchi, & Terashima, 2005; Zhu, Li, Su, Lu, & Huang, 2011). Kattge and Knorr (2007) analyzed data from 36 plant species to quantify the temperature dependence of Jmax and Vcmax with their prevailing growth temperature and found that the optimum temperature of Jmax and Vcmax increased with increasing growth temperature. Photosynthesis parameters estimated from gas exchange data obtained from in situ measurements that cover diurnal and seasonal changes will be able to assess the “actual” responses of leaves in the field (Kosugi, Shibata, & Kobashi, 2003; Zhu et al., 2011). However, so far, few studies investigated seasonal acclimation of photosynthetic parameters to combined elevated CO₂ and elevated temperature.

The primary objective of this study is to analyse seasonal acclimation of leaf photosynthesis and photosynthetic parameters to elevated CO₂ and elevated temperature and their combination under field conditions, and to quantify the relationships between the photosynthetic capacity and leaf nitrogen content. Photosynthesis was therefore measured on leaves of two rice cultivars, each grown under a specific FACE set-up. We also aim to quantify the error of prediction by the prevailing crop models where parameters are typically obtained from plants grown under ambient conditions, i.e. assuming no acclimation response to elevated CO₂ and temperature in the models.

2 MATERIALS AND METHODS

2.1 FACE systems

Field experiments were conducted in two FACE systems, identified here as FACE 1 and FACE 2.

FACE 1 was established in Kangbo village (31°30’N, 120°33’E), Guli Township, Changshu Municipality, Jiangsu, China, in 2010. Mean annual temperature and precipitation at this site in 2004–2013 were 16°C and 1,100–1,200 mm, respectively. Details of the rationale, design, operation, and performance of the FACE system are similar to those described by Cai et al. (2016). The FACE system had twelve octagonal plots located in different sites with similar soils and agronomic histories, each measuring ca. 50 m². The CO₂ exposure system was designed following the rationale as described by Okada, Lieffering, Nakamura, Kim, and Kobayashi (2001). Sixteen Li-
820 CO₂ sensors (Li-COR Inc., Lincoln, NE, USA) per plot were installed above the canopy, evenly distributed in two concentric circles, to automatically control the CO₂ pumping. The consistency of the CO₂ concentration within the ring was controlled by automatic adjustment to wind direction and velocity. The infrared heating facilities were designed based on the principles described by Kimball et al. (2008). The facility consisted of 12 infrared heaters (2,000 W, 240 V, 1.65 m long × 0.14 m wide; HS-2420; Kalglo Electronics Co., Inc., Bethlehem, PA, USA). The heaters were adjusted weekly at 1.2 m above the top of the canopy during the growth cycle. Canopy temperature was sensed using six infrared thermometers (Model SI-121; Apogee Instruments Inc, Logan, USA), arranged inside the experimental plot in a hexagonal array. There were four treatments in a block split-plot design: (1) in CT, ambient conditions were maintained (control); (2) in C+T, the target atmospheric CO₂ was up to 500 μmol/mol; (3) in C+T, the canopy temperature was warmed by 1.5–2.0°C, and (4) in C+T, CO₂ enrichment was combined with warming. The treatment levels for CO₂ enrichment and warming were defined for climate conditions of a target year around 2040.

FACE 2 was initially established in Xiaoji Township (32°35′N, 119°42′E), Jiangdu Municipality, Jiangsu, China, in 2004, for elevating CO₂ only. Mean annual temperature and precipitation at this site in 2004–2013 were 16°C and 1,000–1,100 mm, respectively. The FACE system had six octagonal plots located in different sites with similar soils and agronomic histories, each measuring ca. 80 m². The CO₂ exposure system was also designed according to Okada et al. (2001). The CO₂ exposure system and its performance have been described in detail by Liu et al. (2002) and Han, Liu, Zhu, Okada, and Yoshimoto (2002). The temperature control system was introduced in 2014; it is described in Jing, Lai, Wang, Yang, and Wang (2016), Jing, Wang, et al. (2016). In brief, the temperature control system contained seven subplots (2.7 m long × 0.76 m width each), which were heated by sixteen copper pipes installed at the top of the canopy (Figure 1a). Heat radiation emitted from the running hot water in the copper pipes increased the air temperature around nearby plants. Elevated canopy temperature by ca. 1°C was achieved by coordinated work of a temperature sensor and a computer feedback system that controlled the speed of the running hot water. The temperature of hot water was kept in the range of 60–70°C. The velocity of the hot water flow was changed, taking into account the wind speed over the canopy. The copper pipes were adjusted weekly so as to maintain their height at the top of the canopy during the growth cycle. Canopy temperature was sensed automatically using an infrared thermometer (Model SI-131; Apogee Instruments Inc) with a sensing area ca. 0.05 m² at the centre of the 4th subplot (Figure 1a). Canopy thermal image of the overall area in each heated subplot was manually scanned using FLIR Systems (Model T630sc, Stockholm, Sweden) before heading. The thermal image showed that the temperature control system created a quite uniform canopy temperature within the heated subplots (Figure 1b). Canopy temperature of the infrared thermometer target area (El1) was only 0.2°C lower than the average canopy temperature (derived from the thermal image) of the overall area (Ar1) in each heated subplot (Figure 1b). There were four treatments: (1) in CT, ambient conditions were maintained (control); (2) in C+T, the target atmospheric CO₂ was maintained at about 200 μmol/mol above the ambient level; (3) in C+T, the daytime canopy temperature was warmed by 1.0°C, and (4) in C+T, CO₂ enrichment was combined with warming (Table 1).

2.2 | FACE experiments

The experiment in FACE 1 was conducted in 2016 using local rice cultivar Changyou 5. Seedlings of japonica cv. Changyou 5 grown under ambient air were manually transplanted at a density of 3 seedlings per hill into all plots on 25 June. Spacing of hills was 15.3 cm × 25.4 cm (equivalent to 25.7 hills/m²; 77.1 plants/m²). The CO₂ and temperature treatments were carried out from 3 July through to harvest. We sprayed pure CO₂ during day time and increased canopy temperature both day and night. Detailed information on the increases in canopy temperature realized under CT− and C+T+ and the average daytime increase in CO₂ concentration realized under C+T and C+T+ is provided in Table 1.

FACE 2 experiment was implemented also in 2016. Seedlings of japonica cv. Nanjing 9108 grown under ambient air were manually transplanted at a density of 2 seedlings per hill into all plots on 21 June. Spacing of hills was 16.7 cm × 25.0 cm (equivalent to 24.0 hills/m²; 48.0 plants/m²). The CO₂ and temperature treatments

FIGURE 1 The FACE 2 experiment: (a) picture of the temperature control facility; (b) thermal image of the warming pattern produced by the heaters obtained around noon on 12 August 2016 with the heaters fully on (Ar1 stands for overall area; El1 stands for target area sensed by infrared thermometer) [Colour figure can be viewed at wileyonlinelibrary.com]
TABLE 1 Summary of the environmental conditions in FACE 1 experiment and FACE 2 experiment

<table>
<thead>
<tr>
<th></th>
<th>2016 FACE 1 experiment</th>
<th>2014a FACE 1 experiment</th>
<th>2014b FACE 2 experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2 concentration increment relative to CT (μmol/mol)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT+</td>
<td>110 (23)</td>
<td>199 (15)</td>
<td>109 (35)</td>
</tr>
<tr>
<td>CT−</td>
<td>104 (25)</td>
<td>195 (15)</td>
<td>82 (29)</td>
</tr>
<tr>
<td>Canopy temperatureb increment relative to CT (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CT+</td>
<td>1.7 (0.1); 2.1 (0.2)</td>
<td>1.0 (0.0); 2.0 (1.0);</td>
<td>2.3 (1.4)</td>
</tr>
<tr>
<td>CT−</td>
<td>1.7 (0.2); 2.0 (0.3)</td>
<td>1.4 (0.0); 0.0 (0.0)</td>
<td>1.7 (1.1)</td>
</tr>
<tr>
<td>Mean daily air temperature (°C)</td>
<td>26.3 (3.7)</td>
<td>25.0 (3.2)</td>
<td>24.2 (3.4)</td>
</tr>
<tr>
<td>Mean daily global radiation (MJ m−2 day−1)</td>
<td>12.7 (0.5)</td>
<td>12.2 (0.5)</td>
<td>8.3 (0.3)</td>
</tr>
<tr>
<td>Basal N applied (g/m2)c</td>
<td>6.9 (−3)</td>
<td>9.0 (−1)</td>
<td>6.9 (0)</td>
</tr>
<tr>
<td>Top-dressed N (g/m2)c</td>
<td>6.0 (12)</td>
<td>6.8 (7)</td>
<td>6.0 (29)</td>
</tr>
<tr>
<td></td>
<td>5.2 (34)</td>
<td>6.8 (35)</td>
<td>5.2 (46)</td>
</tr>
</tbody>
</table>

CT, CT+, CT−, and CT++ stand for ambient condition, elevated CO2, elevated temperature, and the combination of elevated CO2 and elevated temperature, respectively.

Data in the table represent seasonal average values (SD between the daily values in brackets) for the average daytime increase in CO2 concentration, average daily increase in daytime (the first pair of data), and night-time (the second pair of data) canopy temperature, daily mean air temperature, mean daily solar radiation during the whole cycle, and level of nitrogen (N) application for each FACE experiment (for meaning of values in brackets see below).

Data for 2014 in the FACE 1 experiment are from Cai et al. (2016) and merely used here for model validation (see the text).

Temperature at the top of rice canopies was sensed by infrared thermometers.

Values in brackets refer to the time of N application, expressed in days after transplanting. All nitrogen was applied before the stem-elongating stage for all experiments.

in the FACE system (Table 1) were carried out from 28 June through to harvest, and the treatment time each day for both CO2 and temperature was from sunrise to sunset.

In both FACE systems, all net plots were surrounded by at least three rows of border plants treated in the same way as the plants within the net plots. Standard cultivation practices for paddy rice were followed in all experimental plots. Daily weather data during the growing season for maximal and minimal air temperatures, global radiation, relative humidity (RH), wind speed and precipitation for both experiments are shown in Fig. S1.

2.3 Gas exchange and chlorophyll fluorescence measurement

We used the Li-Cor 6400XT Portable Photosynthesis System (Li-Cor BioScience, Lincoln, NE, USA) to simultaneously measure gas exchange and chlorophyll fluorescence. Measurements were conducted at three stages, i.e. at the onset of stem elongation, at heading, and during the grain-filling stage (27 and 33 days after heading for cvs Changyou 5 and Nanjing 9108, respectively), and were replicated using three youngest fully expanded leaves (which are flag leaves for measurements at heading and grain-filling stages) in each treatment and each stage.

Light and CO2 response curves were measured on the same leaves, primarily under 21% O2 conditions. For light response curves, prior to measurements, leaves were placed in the cuvette at incident irradiance (I0) of 2,000 μmol photons m−2 s−1. Ten minutes later, Iinc in the leaf cuvette was controlled in a decreasing series of 1,500, 1,000, 800, 500, 200, 100, 50, 20 and 0 μmol photons m−2 s−1 (6 min per Iinc step, according to pre-measurements for the time to reach a steady-state), while keeping ambient CO2 level (C0) at 380 μmol/mol for all treatments for the two rice cultivars. For each CO2 response curve, the C0 steps were: 380, 200, 100, 50, 380 (two times), 500 (for Changyou 5) or 580 (for Nanjing 9108), 1,000, 1,500 and 2,000 μmol/mol (5 min per step) under CT and CT++; 500 (for Changyou 5) or 580 (for Nanjing 9108), 380, 200, 100, 50, 500 (two times, for Changyou 5) or 580 (two times, for Nanjing 9108), 1,000, 1,500 and 2,000 μmol/mol (5 min per step) under C+T and C+T+; while keeping incident irradiance (Iinc) at 2,000 μmol m−2 s−1.

Light and CO2 responses curves of photosynthesis of two rice cultivars were made at four set-point leaf temperatures (29, 33, 36 and 39°C at stem-elongating stage; 25, 29, 33 and 39°C at heading stage; and 25, 29, 33 and 36°C at grain-filling stage). Flow rate for all measurements was 500 μmol/s. Leaf-to-air vapour pressure difference increased with leaf temperature, but was always within the range of 0.5–3.0 kPa to prevent stomatal closure (Bernacchi, Singsaas, Pimentel, Portis, & Long, 2001). As the leaf temperature control capacity was limited (with ±6°C) with the setup of the LI-6400XT system, response curves at low leaf temperature were measured in the morning and those at high leaf temperature were measured around noon, assuming that the observed responses in the biochemical parameters resulted mainly from changes in temperature rather than changes in time of day (Luo et al., 2011; Way & Sage, 2008).

At each light or CO2 step during the measurements, the steady-state fluorescence (F0) was measured. The maximum fluorescence (Fm) was obtained from multiphase flashes: the flash intensity was ~8,000 μmol m−2 s−1 during phase 1 for a duration of 300 ms, was attenuated by 35% during phase 2 of ~300 ms, and was back to ~8,000 μmol m−2 s−1 for phase 3 of 300 ms. The intercept of the linear regression of fluorescence yields against the inverse of the flash intensity during phase 2 gives the estimate of Fm (Loriaux et al., 2013). The operating photochemical efficiency of photosystem II (ΦPS2) was calculated as: ΦPS2 = 1 − Fv/Fm’ (Genty, Briantais, & Baker, 1989).

To properly estimate photosynthetic parameters, we also conducted gas exchange and chlorophyll fluorescence measurements at low oxygen using a gas blend of 2% O2, 98% N2 and pure CO2 in the leaf chamber at each stage for Changyou 5 and Nanjing 9108. With 2% O2, only the first half of the light response curves was measured: Iinc was increased in the order of 20, 50, 100, 150 and...
200 μmol m⁻² s⁻¹, while keeping Cₐ at 1,000 μmol/mol, to ensure that data used for calibration (see later) were collected within the electron transport limited range of non-photorespiratory conditions.

All CO₂ exchange rates were corrected for CO₂ leakage into and out of the leaf cuvette, based on measurements at specific temperatures using the same flow rate on boiled leaves across a range of CO₂ levels, and intercellular CO₂ levels (Cᵢ) were then re-calculated.

2.4 | SPAD value, leaf mass and nitrogen content per unit area

SPAD value was measured using a chlorophyll meter (SPAD-502, Minolta Camera Co., Japan) on leaves of cv. Changyou 5 and Nanjing 9108, before they were used for photosynthesis measurements, at each stage. For cv. Changyou 5, the leaves were then cut, used to measure leaf area with an area meter (Li-3100; Li-Cor Inc., Lincoln, NE, USA), and then oven-dried at 105°C for 30 min, and subsequently at 80°C to constant weight and weighed. Leaf mass per area (LMA, g/m²) was calculated thereof. The leaf nitrogen concentration was measured using the Kjeldahl digestion method. From these data, nitrogen content per leaf area (N₀, g/m²) was calculated.

2.5 | Estimation of parameters of a biochemical model of photosynthesis

The FvCB model predicts Aᵣ (μmol CO₂ m⁻² s⁻¹) as the minimum of two rates, the Rubisco carboxylation-limited rate (Aᵥ), and the RuBP regeneration- or electron transport-limited rate (Aₑ):

\[
Aᵥ = \min (Aᵥ, Aₑ)
\]

\[
Aₑ = \frac{C_c - \Gamma}{K_M + C_c(1 + O/K_M)} - R_d
\]

\[
Aᵥ = \frac{(C_c - \Gamma, d)J}{4(C_c + 2I)} - R_d
\]

where Cₖ (μbar) and O (mbar) are the chloroplast partial pressures of CO₂ and O₂ respectively, K_M (μbar) and K_M (mbar) are the Michaelis-Menten coefficients of Rubisco for CO₂ and O₂ respectively, \(\Gamma\) (μbar) is the CO₂ compensation point in the absence of Rd (day respiration, μmol CO₂ m⁻² s⁻¹), and J (μmol e⁻ m⁻² s⁻¹) is the photosystem II electron transport rate used for CO₂ fixation and photorespiration.

The calculation of Aₑ or Aᵥ in the FvCB model requires Cₖ, which is generally unknown beforehand. We, therefore, first used our chlorophyll fluorescence data to estimate \(\Phi₂\)-related model parameters, as described by Yin et al. (2009). To convert fluorescence-based data on \(\Phi₂\) into electron transport rate J, a calibration needs to be made. This was done by linear regression plot of \(Aₑ\) against \(I_{inc}/\Phi₂/4\), using data of the electron-transport-limited range of the \(Aᵥ - I_{inc}\) curve under non-photorespiratory conditions (i.e. 2% O₂ combined with 1,000 μmol/mol Cₖ see above). The slope s of this linear regression was used as a calibration factor to calculate values of electron transport rate under all conditions: \(J = s\Phi₂\) (Yin et al., 2009). The obtained J was then fitted to the equation:

\[
J = k_{2LL}I_{inc} + J_{max} - \sqrt{(k_{2LL}I_{inc} + J_{max})^2 - 4\theta J_{max}k_{2LL}I_{inc}}
\]

where \(J_{max}\) (μmol e⁻ m⁻² s⁻¹) is the asymptotic maximum value of J when \(I_{inc}\) approaches to saturating light levels, \(\theta\) is a dimensionless convexity factor for the response of J to \(I_{inc}\), and \(k_{2LL}\) (mol e⁻ mol⁻¹ photons) is the efficiency of converting \(I_{inc}\) into J at limiting light levels (Yin & Struik, 2009a; Yin et al., 2009). \(k_{2LL}\) was calculated as:

\[
k_{2LL} = s\Phi₂
\]

where \(\Phi₂\) (mol e⁻ mol⁻¹ photons) is \(\Phi₂\) at the strictly limiting light level and could be estimated as the linear intercept of \(\Phi₂\) against \(I_{inc}\) (see earlier) using data of \(I_{inc} < 200 \mu\text{mol m}^{-2} \text{s}^{-1}\) under photorespiratory conditions. We assumed \(\theta\) to be constant (0.8), according to Yin and Struik (2015), and this value of \(\theta\) also allows Equation (4) to have a similar curvature to the quadratic hyperbolic equation as used by Harley et al. (1992). We then used estimated \(k_{2LL}\) and constant \(\theta\) as an input to estimate \(J_{max}\) for each light response curve by fitting the data on J to Equation (4).

In principle, the parameter Rd could be estimated as the intercept of the above-mentioned linear regression of \(Aₑ\) against \(I_{inc}/\Phi₂/4\) under non-photorespiratory conditions (Yin, Sun, Struik, & Gu, 2011; Yin et al., 2009). With J and Rd calculated, we estimated the value of gₘ assuming that gₘ was constant across the entire light and CO₂ response curves. Whether or not gₘ is constant across light or CO₂ levels is a matter of debate; but our assumption allows to identify whether there is any difference among the four treatments in the actual average gₘ. Therefore, we used the NRH-A method (Yin & Struik, 2009b) to estimate the value of gₘ as constant, by fitting the following non-rectangular hyperbolic (NRH) equation for the Aᵣ part of the Cₗ-based FvCB model:

\[
Aᵣ = 0.5\left\{x₁ - Rd + gₘ(C₁ + x₂) - \sqrt{[x₁ - Rd + gₘ(C₁ + x₂)]² - 4gₘ([C₁ - \Gamma]x₁ - Rd(C₁ + x₂))}\right\}
\]

where \(x₁ = J/4\) and \(x₂ = 2I\). We used data obtained from high C₁ of CO₂ response curves and low \(I_{inc}\) levels of light response curves at 21% O₂. The comparative advantages of this method over the conventional variable-J method, and the choice of data for estimating gₘ were discussed by Yin and Struik (2009b).

Equation (6) can also be applied to calculate \(Aᵥ\) by replacing:

\[
x₁ = V_{max} \text{ and } x₂ = K_{mic}(1 + O/K_M)
\]

We then estimated \(V_{max}\) by fitting the combined Equations 1, 6 and 7 to full light-response and CO₂ response curves using the already estimated \(J_{max}, k_{2LL}, R_d\) and \(gₘ\) as input.

2.6 | The temperature responses of photosynthetic parameters

Based on literature, the temperature responses of Rd, and of Rubisco kinetic properties (Γ, K_M, K_M and V_{max}) were described using an
Arrhenius function (Equation 8), and the temperature responses of J_{max} and of mesophyll conductance (g_m) were explored using a peaked Arrhenius function (Equation 9), normalized with respect to their values at 25°C:

$$X = X_{25} \exp \left[\frac{E_s(T - 25)}{298R(T + 273)} \right]$$

where T is the leaf temperature (°C), X_{25} is the value of each parameter at 25°C (R_{25}, $J_{\text{max}25}$, $V_{\text{cma}x25}$ and g_{n25}), E_s is the activation energy of each parameter ($E_{\text{Ro}}, E_{\text{f}}, E_{\text{Knc}}, E_{\text{KncO}}, E_{\text{Vcma}}, E_{\text{Jmax}}$, and E_{gm} in J/mol), D_s is the deactivation energy for J_{max} and g_m (D_{max} and D_{gm} in J/mol), S_s is the entropy term for J_{max} and g_m (S_{max} and S_{gm} in J K$^{-1}$ mol$^{-1}$), R is the universal gas constant (=8.314 J K$^{-1}$ mol$^{-1}$).

Rubisco kinetic properties are generally assumed constant among C3 species (von Caemmerer, Farquhar, & Berry, 1980; Medlyn, Dreyer, et al., 2002): Equation (9) is given by the following equation (Farquhar et al., 1980; Yin et al., 2009).

The optimum temperature ($T_{\text{opt}, \max}$) for J_{max} or g_m as predicted by Equation (9) is given by the following equation (Farquhar et al., 1980; Medlyn, Dreyer, et al., 2002):

$$T_{\text{opt}, \max} = \frac{D_s}{S_s - R \ln \left(\frac{E_s}{E_s - E_0} \right) + 273}$$

We found that k_{2LL} also depended on temperature, and fitted its temperature response using the normal distribution-alike equation (June, Evans, & Farquhar, 2004):

$$k_{2LL} = k_{2LL\max} \exp \left[- \left(\frac{T - T_{\text{opt}, \max}}{\Omega} \right)^2 \right]$$

where $k_{2LL\max}$ is the maximal value of k_{2LL}, $T_{\text{opt}, \max}$ is the optimum leaf temperature at which $k_{2LL\max}$ is obtained, and Ω describes the width of the response curve, defined as the difference between $T_{\text{opt}, \max}$ and the temperature at which k_{2LL} falls to e$^{-1}$ of $k_{2LL\max}$.

2.7 The relationships between photosynthetic biochemical parameters and leaf nitrogen content

The values of R_{25}, $J_{\text{max}25}$, and $V_{\text{cma}x25}$ are known to linearly relate to leaf nitrogen content (N_l), with a clear base leaf nitrogen, N_{b0} at or below which values of these parameters become zero (Braune, Müller, & Diepenbrock, 2009; Harley et al., 1992; Hirose, Ackerly, Traw, Ramseire, & Bazz, 1997; Müller, Wernecke, & Diepenbrock, 2005; Yin et al., 2009). g_{n25} is known to linearly scale with the photosynthetic capacity of leaves (Flexas et al., 2008). So, these parameters can be quantified by similar relationships:

$$R_{25} = X_{25}(N_l - N_{b0})$$

$$J_{\text{max}25} = X_{\text{max}25}(N_l - N_{b0})$$

$$V_{\text{cma}x25} = X_{\text{cma}x25}(N_l - N_{b0})$$

$$g_{n25} = X_{g_{n25}}(N_l - N_{b0})$$

where X_{25} (mol CO$_2$ g$^{-1}$ N s$^{-1}$), $X_{\text{max}25}$ (mol e$^-$ g$^{-1}$ N s$^{-1}$), $X_{\text{cma}x25}$ (mol CO$_2$ g$^{-1}$ N s$^{-1}$), and $X_{g_{n25}}$ (mol g$^{-1}$ N s$^{-1}$) are the slopes for R_{25}, $J_{\text{max}25}$, $V_{\text{cma}x25}$, and g_{n25}, respectively. Parameter k_{2LL} also depends on N_l, but without a clear N_{b0} (Yin et al., 2009), and it is described here empirically as:

$$k_{2LL\max} = X_{2LL\max}N_l + k$$

where $X_{2LL\max}$ and k are the slope and the intercept, respectively, of the linear regression.

2.8 The BWB-Leuning-Yin model for stomatal conductance and its parameterization

A widely used model for g_s was initially developed by Ball, Wodrow, and Berry (1987), then extended by Leuning (1995) and Yin and Struik (2009a)—which Li et al. (2012) called the BWB-Leuning-Yin model. To explore any acclimation responses of g_s in rice to elevated CO$_2$ and temperature, we used the version of the BWB-Leuning-Yin model (Yin & Struik, 2009a):

$$g_s = g_{s0} + \frac{A + R_d}{C_i - C_i(VP)} f_{VP}$$

where g_{s0} is the residual stomatal conductance if f_{VP} approaches zero, C_i is the intercellular CO$_2$ concentration, C_i is the intrinsic CO$_2$ compensation point in the absence of R_d, which can be estimated as $C_i = \Gamma - R_d/g_m$, and the effect of leaf-to-air vapour pressure difference (VPD) on g_s. f_{VP} is calculated according to Yin and Struik (2009a):

$$f_{VP} = \frac{1}{1/(a_1 - b_1 VPD) - 1}$$

where a_1 and b_1 are empirical coefficients, approximately reflecting the ratio of C_l to C_s for vapour saturated air and the decreasing slope of this ratio with increasing VPD, respectively, if g_s approaches zero. Combining Equations 17 and 18, we used the measured g_s, A, C_i, and VPD at each stage to estimate g_{s0}, a_1, and b_1. For that, measured stomatal conductance for water vapour transfer was divided by a factor 1.6 to convert it to g_s for CO$_2$ transfer that is required for Equation (17).

2.9 Statistical and model analyses

Data from two rice cultivars tested were analyzed by Equations 2–9 and 11–18 with the GAUSS method in PROC NLIN of SAS (SAS Institute Inc., Cary, NC, USA). Estimated parameter values for C1+T, CT+ and C1+T+ treatments were compared with the value of the same parameter obtained for the control treatment CT, using a statistical F test.

Estimated parameters were then used to predict A_i (using the C1-based FvCB model incorporating nitrogen-based functional relationships Equations 12–16) or g_s (using the BWB-Leuning-Yin model).
Two sets of prediction were compared, i.e. predictions using the treatment-specific parameters (namely assuming acclimation to growth environmental variables) vs predictions using the CT-treatment parameters (namely assuming no acclimation as by the current models where the model parameters are typically estimated from measurements on plants grown under present atmospheric conditions). Any significance in the difference between the two sets of predictions would determine the necessity to take into account acclimations in the prediction models for assessing the impact of climate change on crop growth.

We were particularly interested in assessing model predictability of \(A_n \) for an independent data set. To that end, we used the data from our previous experiment (Cai et al., 2016), which was conducted in 2014 using the FACE 1 system described here for the same cv. Changyou 5 (Table 1). Only light responses for the ambient \(O_2 \) levels were measured in that study, using uncontrolled in-situ temperature (Cai et al., 2016). To assess the impact of altered \(g_s \) parameters on predicted net photosynthesis rates \(A_n \) of Changyou 5 in 2014, we used the coupled FvCB and BWB-Leuning-Yin model using \(C_a \) and parameter values estimated here for this cultivar as input (Yin & Struik, 2009a). The coupled model is complex and has the form of a cubic polynomial, and the solution to this cubic polynomial model can be found in Yin and Struik (2009a).

Goodness of all the above predictions was assessed using the \(r^2 \) of linear regression, as well as the relative root mean squared error \(\text{rRMSE} (=\text{RMSE/mean of the measured values}) \), between predicted and measured values.

3 | RESULTS

3.1 | Photosynthesis and stomatal conductance in response to elevated \(CO_2 \) and temperature in FACE

Light and \(CO_2 \) response curves of photosynthesis of cv. Changyou 5 in the FACE 1 experiment and of cv. Nanjing 9108 in the FACE 2 experiment were assessed at four different leaf temperatures (Figures 2, 3 and S2–S5) at stem-elongating stage, heading stage and grain-filling stage of crops grown under all combinations of normal or elevated \(CO_2 \) and normal or elevated temperature. Examples of \(A_n - I_{inc} \) curves (Figure 2), \(A_n - C_i \) curves (Figure 3) and \(g_s - I_{inc} \) curves (Figure 4) at a leaf temperature of 33°C for crops grown under the four treatments at the three stages for cv. Changyou 5 in the FACE 1 experiment and cv. Nanjing 9108 in the FACE 2 experiment are shown.

For Changyou 5 in the FACE 1 experiment, measurements at a leaf temperature of 33°C showed that compared with CT, C+T...
notably decreased A_n at high I_{inc} during the stem-elongating stage and grain-filling stage (Figure 2a,c and e), A_n at high C_i during the grain-filling stage (Figure 3a,c and e), and g_s at each I_{inc} during the stem-elongating stage and heading stage (Figure 4a,c and e), but notably increased g_s at low I_{inc} during the stem-elongating stage. C^{+T^+} notably decreased A_n at high I_{inc} during the stem-elongating and heading stages, A_n at each I_{inc} and C_i during the grain-filling stage and g_s at high I_{inc} during the heading stage, but notably increased g_s at low I_{inc} during the stem-elongating stage and g_s at each I_{inc} during the grain-filling stage.

For Nanjing 9108 in the FACE 2 experiment, measurements at a leaf temperature of 33°C showed that compared with CT, C^{+T^+} notably decreased A_n at high I_{inc} during the stem-elongating stage and heading stages, A_n at each I_{inc} and C_i during the grain-filling stage and heading stages, A_n at each I_{inc} and C_i and g_s at each I_{inc} during the grain-filling stage, compared with CT. C^{+T^+} notably decreased A_n at high I_{inc} during the stem-elongating stage and heading stages, A_n at low C_i during the stem-elongating stage, A_n at each I_{inc} and C_i and g_s at each I_{inc} during the grain-filling stage, compared with CT.

3.2 Temperature response of light-saturated photosynthesis under four CO2 and temperature treatments in FACE

For cv. Changyou 5 in the FACE 1 experiment, there were significant interaction effects between CO2 and temperature on light-saturated photosynthesis ($A_{n,\text{max}}$) at 29°C during the stem-elongating stage (Figure 5a) and at 33°C during the heading stage (Figure 5c). Elevated CO2 significantly decreased $A_{n,\text{max}}$ at all temperatures except at 29°C during the heading stage and at 33°C during the grain-filling stage (Figure 5a,c and e). Elevated temperature significantly decreased $A_{n,\text{max}}$ except $A_{n,\text{max}}$ at 36°C during the stem-elongating stage and at 39°C during the heading stage.

For cv. Nanjing 9108 in the FACE 2 experiment, interaction effects between CO2 and temperature on $A_{n,\text{max}}$ were significant at 29°C during the stem-elongating stage and at 25, 29 and 39°C.
Elevated CO2 significantly decreased $A_{n,max}$ at all temperatures except at 39°C during the heading stage (Figure 5b and d). Elevated temperature significantly increased $A_{n,max}$ at 39°C during the stem-elongating stage and at 25°C during the heading stage, but significantly decreased $A_{n,max}$ at 39°C during the heading stage and at 36°C during the grain-filling stage.

3.3 Model parameterization

As an example of the results, the responses of estimated R_d, J_{max}, V_{cmax}, and g_m to temperature for the CT treatment for the two rice cultivars grown in the two FACE systems are shown in Figure 6. All parameters were reliably estimated, as standard error values of the mean were relatively small (Tables 2–5).

3.4 Estimated biochemical parameters in response to elevated CO2 and temperature

For cv. Changyou 5 in the FACE 1 experiment, there were significant interaction effects between CO2 and temperature on J_{max} during the stem-elongating stage and on V_{cmax} during the grain-filling stage (Table 2). Elevated CO2 significantly increased R_{d25}, J_{max25}, V_{cmax} and R_{d25}/V_{cmax25} before heading. Elevated temperature significantly increased E_{max} and T_{opt} for J_{max} during the heading stage, but significantly decreased J_{max25}, k_{2LLmax}, V_{cmax25} and J_{max25}/V_{cmax25} after heading.

For cv. Nanjing 9108 in the FACE 2 experiment, there were significant interaction effects between CO2 and temperature on J_{max} during the heading stage (Table 3). Elevated CO2 significantly increased R_{d25}, J_{max25} and V_{cmax} after heading (Table 3). Elevated CO2 significantly decreased J_{max25} and k_{2LLmax} after heading and V_{cmax25}. Elevated temperature significantly increased R_{d25}, J_{max25} and k_{2LLmax} before heading.

3.5 Estimated conductance parameters in response to elevated CO2 and temperature

For cv. Changyou 5 in the FACE 1 experiment, there were significant interaction effects between CO2 and temperature on g_m during the grain-filling stage (Table 4). Elevated CO2 significantly decreased g_m during the stem-elongating and grain-filling stages and g_o during...
3.6 | The relationship between leaf nitrogen content and photosynthetic parameters

For cv. Changyou 5 in the FACE 1 experiment, R_{225}, I_{max25}, V_{cmax25}, g_{n25} and $K_{2L_{\text{max}}}$ increased with an increase in leaf nitrogen content (Figure 7). Values of N_b (see Equations 12–15) did not differ significantly among treatments, nor among parameters R_{225}, I_{max25}, V_{cmax25}, and g_{n25}; so, a common N_b of 0.25 g N m$^{-2}$ was estimated (Table 6). C+T significantly increased X_{rad}, but significantly decreased X_{cmax} and X_{gm}, compared with CT (Table 6). CT+ significantly decreased X_{cmax} compared with CT (Table 6). C+T+ significantly increased X_{rad} and X_{c2L}, but significantly decreased X_{cmax} and X_{gm}, compared with CT (Table 6).

3.7 | Comparisons of model predictions between using acclimation photosynthesis parameters and non-acclimation photosynthesis parameters

The FvCB model parameterized for cv. Changyou 5 from the 2016 experiment not only described well A_{n} of this cultivar in 2016 but also predicted its A_{n} in 2014, with a similarly high coefficient of determination (r^2) and a low rRMSE between the two years (Figure 8). As expected, the model using treatment-specific parameters (i.e. assuming acclimation to growth CO2 and temperature conditions) gave satisfactory estimations of A_{n} (Figure 8). The simulated A_{n} for C+T, CT+ and C-T+ using the CT-treatment parameters (including parameters $X_{\text{rad}}, X_{\text{cmax}}, X_{\text{c2L}}, g_{\text{m25}}$ and the linear relationship between $K_{2L_{\text{max}}}$ and leaf nitrogen content), were almost equally satisfactory as predictions using parameter values of own treatments (Figure 8). Compared with the predictions using treatment-specific photosynthesis parameters, those using parameters of own treatments (i.e. assuming acclimation to growth CO2 and temperature, respectively, in FACE. Statistically significant differences ($p < .05$) and non-statistical significance are shown in the figure.

The temperature response of light-saturated photosynthesis ($A_{n_{\text{max}}}$) at I_{inc} of 2,000 μmol m$^{-2}$ s$^{-1}$ and C_{6} of 380 μmol/mol for cv. Changyou 5 (a, c, e) in the FACE 1 experiment and cv. Nanjing 9108 (b, d, f) in the FACE 2 experiment during the stem-elongating stage (a, b), heading stage (c, d), and grain-filling stage (e, f) under ambient condition (circles), elevated CO2 (squares), elevated temperature (triangles), and the combination of elevated CO2 and elevated temperature (diamonds). Each data point represents the mean value of three replications (with bars for ± standard errors of the mean). C and T stand for CO2 and temperature, respectively, in FACE.
results we showed earlier (Tables 2, 3 and 6) that some parameters did acclimate to growth conditions concerning CO2 and temperature.

Predictions of \(g_s \) by the BWB-Leuning-Yin model assuming acclimation to growth conditions also gave satisfactory estimations with a relatively high coefficient of determination and a low rRMSE under elevated CO2 and elevated temperature for two rice cultivars in 2016 (Fig. S6). Compared with the predictions using acclimation photosynthesis parameters (Fig. S6), those using non-acclimation photosynthesis parameters, i.e. using the CT-treatment parameters (Fig. S7) underestimated \(g_s \) values for \(C+T \) by 3% and 1%, for \(CT+ \) by 25% and 12%, and for \(C+T+ \) by 19% and 10% for cv. Changyou 5 and cv. Nanjing 9108 in 2016, respectively. Meanwhile, \(r^2 \) values for the relationship between measured and simulated \(g_s \), using estimated \(a_s \), \(b_t \) and \(g_0 \) under CT for \(C+T \), \(CT+ \) and \(C+T+ \) were generally decreased and rRMSE values were notably increased (Figs S6 and S7).

Despite the above significant impact on the prediction of \(g_s \) if no acclimation was assumed, it did not have a significant carry-over effect on the predictions of \(A_s \), as revealed by the analysis using the coupled FvCB and BWB-Leuning-Yin model in 2016 for Changyou 5 (Fig. S8a,c,e) and for Nanjing 9108 (Fig. S9). The same can be found when using the 2016 parameters for predicting \(A_s \) observed in the independent FACE experiment for Changyou 6 in 2014 (Figure 9a,c,e). Compared with simulations using treatment-specific \(g_s \)-parameters at each stage, simulations by the coupled model using the CT-treatment \(g_s \) parameters underestimated \(A_s \) only by 1%, 2% and 2% under \(C+T \), \(CT+ \) and \(C+T+ \), respectively (Figure 9a,c,e).

Next we assessed the impact of assuming no acclimation of both FvCB and \(g_s \) parameters. Compared with simulations using treatment-specific FvCB and \(g_s \) parameters, simulations by the coupled FvCB and BWB-Leuning-Yin model using the CT-treatment FvCB and \(g_s \) parameters underestimated \(A_s \) only by 5%, 5% and 4% under \(C+T \), \(CT+ \) and \(C+T+ \), respectively, of the 2016 experiment (Fig. S8b,d,f), and by 0%, 3% and 2% under the three treatments of the 2014 experiment (Figure 9b,d,f).

4 | DISCUSSION

4.1 | Needs to study the effects of both elevated CO2 and temperature on photosynthesis and photosynthetic parameters

Climate change is strongly impacting crop productivity, and crop models have been used to quantitatively assess this impact. Of climate change variables, the impact of elevated atmospheric CO2 has been most studied. Elevated CO2 partly suppresses photorespiration and thus, at least, in a short-term, enhances leaf photosynthesis of C3 species, which leads to enhanced growth and increased crop yields (Kim, Lieffering, Kobayashi, Okada, & Miura, 2003; Kimball, 1983; Sakai, Hasegawa, & Kobayashi, 2006). Most existing crop models that take this CO2-enhancing effect into account, however, generally over-estimate the effect of elevated CO2 on crop growth and yield under field conditions (Ainsworth, Leakey, Ort, & Long, 2008). Yin (2013) inferred that this overestimation could stem from the lack of mechanisms in the models that can predict the gradual decline of leaf N content of crops exposed to long-term elevated CO2, relative to ambient conditions, with advancing crop growth, and this decline of leaf N partly reflects the acclimation of photosynthesis parameters to the whole-season elevated CO2.

Climate change variables also involve increased temperature, and temperature is known to have a multiple effect on photosynthesis. For example, increasing temperature increases photorespiration, and therefore, may negate the effect of elevated CO2 in suppressing photorespiration. Like that of elevated CO2, the effect of temperature may differ between short- and long-terms. So, the impact of increased temperature should be quantified in combination with the effect of CO2 under field conditions. In this study we measured leaf photosynthesis of rice plants grown at each of the factorial combinations of two levels of CO2 and two levels of temperature under two FACE systems. The obtained light-, CO2- and temperature-response curves of leaf photosynthesis (Figures 2, 3, 5 and S2–S4) were altered significantly by FACE CO2 and temperature conditions. The associated stomatal conductance was even more strongly affected (Figure 4). In order to identify which parameters contributed to these effects and also in view of application to quantitative model assessment of the impact of climate change...
variables, we applied the widely used FvCB leaf photosynthesis model and a stomatal conductance model to analyse these measurements. Such analyses enable to gain better insights into whether biochemical parameters in the FvCB model and CO2-diffusion parameters related to mesophyll conductance \(g_m \) and stomatal conductance \(g_s \) acclimate to elevated CO2 and temperature under FACE environments.

4.2 Acclimation responses in photosynthetic biochemical parameters to elevated CO2 and temperature

Most research focused on photosynthesis acclimation responses in the biochemical processes to elevated CO2 and elevated temperature (Alonso et al., 2009; Borjigida et al., 2006; Rosenthal, Ruiz-

TABLE 2 Parameter estimates (their standard errors in brackets) of the temperature response function for \(R_d \), \(J_{\text{max}} \), \(\kappa_{2\text{LL}} \), and \(V_{\text{cmax}} \) under ambient CO2 (CT), elevated CO2 (C+T), elevated temperature (CT+), and the combination of elevated CO2 and elevated temperature (C+T+) for stem-elongating, heading, and grain-filling stages of cv. Changyou 5 in the FACE 1 experiment in 2016

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stage</th>
<th>CT</th>
<th>C+T</th>
<th>CT+</th>
<th>C+T+</th>
<th>Probability of significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_d)</td>
<td>Elongating</td>
<td>0.94 (0.09)</td>
<td>1.25 (0.05)</td>
<td>1.06 (0.09)</td>
<td>1.33 (0.11)</td>
<td>* ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>0.88 (0.04)</td>
<td>1.04 (0.17)</td>
<td>0.87 (0.14)</td>
<td>1.20 (0.08)</td>
<td>ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>0.55 (0.09)</td>
<td>0.71 (0.09)</td>
<td>0.67 (0.04)</td>
<td>0.67 (0.09)</td>
<td>ns ns</td>
</tr>
<tr>
<td>(E_{\text{mol}})</td>
<td>Elongating</td>
<td>60,879 (5,995)</td>
<td>47,295 (4,372)</td>
<td>40,869 (4,662)</td>
<td>48,884 (2,714)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>60,943 (3,235)</td>
<td>45,714 (9,983)</td>
<td>40,361 (10,295)</td>
<td>46,411 (4,318)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>(J_{\text{max}})</td>
<td>Elongating</td>
<td>200.2 (4.6)</td>
<td>199.8 (10.8)</td>
<td>188.7 (9.3)</td>
<td>181.9 (12.3)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>209.6 (0.3)</td>
<td>204.2 (4.6)</td>
<td>193.7 (9.3)</td>
<td>178.1 (3.9)</td>
<td>* ns ns</td>
</tr>
<tr>
<td>(D_{\text{max}})</td>
<td>Elongating</td>
<td>42,769 (2,559)</td>
<td>41,927 (3,805)</td>
<td>48,335 (4,299)</td>
<td>46,858 (2,714)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>20,039 (33)</td>
<td>25,647 (1,763)</td>
<td>30,908 (3,563)</td>
<td>30,658 (2,649)</td>
<td>* ns ns</td>
</tr>
<tr>
<td>(\Omega)</td>
<td>Elongating</td>
<td>138.8 (3.2)</td>
<td>129.1 (2.5)</td>
<td>128.9 (5.4)</td>
<td>122.3 (5.4)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>126.0 (1.1)</td>
<td>114.1 (3.4)</td>
<td>108.5 (13.4)</td>
<td>92.7 (1.0)</td>
<td>* ns ns</td>
</tr>
<tr>
<td>(V_{\text{cmax}})</td>
<td>Elongating</td>
<td>60,974 (1,160)</td>
<td>55,947 (3,218)</td>
<td>53,611 (2,967)</td>
<td>56,632 (2,920)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>58,842 (1,356)</td>
<td>61,170 (2,363)</td>
<td>60,055 (8,950)</td>
<td>60,137 (2,394)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>(R_{d25}/V_{\text{cmax25}})</td>
<td>Elongating</td>
<td>1.45 (0.06)</td>
<td>1.55 (0.10)</td>
<td>1.46 (0.01)</td>
<td>1.49 (0.06)</td>
<td>* ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>1.66 (0.01)</td>
<td>1.79 (0.04)</td>
<td>1.82 (0.17)</td>
<td>1.92 (0.05)</td>
<td>ns ns ns</td>
</tr>
</tbody>
</table>

C and T stand for CO2 and temperature, respectively, in FACE. ANOVA p-values are indicated in the table (*p < .05; ns, not significant).

*Values of parameters were estimated from our data and did not vary with CO2, temperature and stage.
Some studies suggested that the down-regulation of photosynthesis under elevated CO2 is caused by a decrease in R_{d} and V_{cmax} (Ainsworth & Long, 2005) and an increase in R_{d} (Alonso et al., 2009). Our results for cv. Nanjing 9108 in the FACE 2 experiment (Figures 2, 3, 5, S2 and S4, Table 2) confirmed these findings from literature, while the down-regulation of photosynthesis under elevated CO2 is caused by a decrease in R_{d} (Alonso et al., 2009). Our results for cv. Changyou 5 in the FACE 1 experiment was associated with a notable decrease in J_{max} during the grain-filling stage and V_{cmax} during all stages, and a notable increase in R_{d} (Figures 2, 3, 5, S2 and S4, Table 2). However, there were no consistent results for the effects of elevated temperature on photosynthesis (Adachi et al., 2014; Chi et al., 2013; Niu et al., 2008). Our results showed that elevated temperature significantly decreased both J_{max25} and V_{cmax25} after heading for cv. Changyou 5.

Table 3: Parameter estimates (their standard errors in brackets) of the temperature response function for R_{d}, J_{max}, k_{2LL} and V_{cmax} under ambient CO2 (CT), elevated CO2 (C+T), elevated temperature (CT+), and the combination of elevated CO2 and elevated temperature (C+T+) for stem-elongating, heading, and grain-filling stages of cv. Nanjing 9108 in the FACE 2 experiment in 2016

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stage</th>
<th>CT</th>
<th>C+T</th>
<th>C+T+</th>
<th>Probability of significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{d} (μmol m⁻² s⁻¹)</td>
<td>Elongating</td>
<td>0.89 (0.12)</td>
<td>1.07 (0.07)</td>
<td>1.12 (0.23)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>0.84 (0.10)</td>
<td>0.86 (0.09)</td>
<td>0.97 (0.05)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>0.56 (0.07)</td>
<td>0.33 (0.09)</td>
<td>0.54 (0.01)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>E_{fl} (J/mol)</td>
<td>Elongating</td>
<td>64.567 (6.493)</td>
<td>58.480 (1.563)</td>
<td>52.321 (14.674)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>74.796 (10.729)</td>
<td>57.357 (5.292)</td>
<td>54.862 (11.601)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>85.386 (6.178)</td>
<td>73.948 (13.969)</td>
<td>66.947 (5.139)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>J_{max} (μmol m⁻² s⁻¹)</td>
<td>Elongating</td>
<td>262.1 (7.5)</td>
<td>231.6 (4.2)</td>
<td>259.8 (25.1)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>246.6 (7.1)</td>
<td>195.7 (3.7)</td>
<td>248.7 (2.9)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>105.0 (1.4)</td>
<td>74.5 (1.9)</td>
<td>99.7 (0.9)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>E_{max} (J/mol)</td>
<td>Elongating</td>
<td>42.394 (1.620)</td>
<td>44.806 (2.380)</td>
<td>44.152 (6.842)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>24.825 (2.233)</td>
<td>27.223 (2.420)</td>
<td>28.488 (6.300)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>16.112 (3.080)</td>
<td>17.868 (5.866)</td>
<td>20.650 (3.223)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>D_{max} (J/mol)</td>
<td>Elongating</td>
<td>203.540</td>
<td>203.540</td>
<td>203.540</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>$T_{\text{opt, max}}$ (°C)</td>
<td>Elongating</td>
<td>34.9 (0.2)</td>
<td>35.1 (0.3)</td>
<td>35.0 (0.8)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>32.4 (0.4)</td>
<td>32.8 (0.4)</td>
<td>32.8 (1.1)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>30.5 (0.8)</td>
<td>30.5 (1.6)</td>
<td>31.6 (0.6)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>k_{2LL} (mol/mol)</td>
<td>Elongating</td>
<td>0.314 (0.001)</td>
<td>0.310 (0.001)</td>
<td>0.319 (0.000)</td>
<td>ns * ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>0.278 (0.003)</td>
<td>0.275 (0.001)</td>
<td>0.285 (0.003)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>0.218 (0.002)</td>
<td>0.200 (0.001)</td>
<td>0.206 (0.003)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>$T_{\text{opt, 2LL}}$ (°C)</td>
<td>Elongating</td>
<td>34.8 (0.7)</td>
<td>35.1 (0.1)</td>
<td>35.1 (0.2)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>31.7 (0.0)</td>
<td>32.2 (0.0)</td>
<td>31.8 (0.2)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>28.4 (0.5)</td>
<td>28.6 (0.3)</td>
<td>29.0 (0.4)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>Ω (°C)</td>
<td></td>
<td>18°</td>
<td></td>
<td></td>
<td>ns ns ns</td>
</tr>
<tr>
<td>V_{cmax} (μmol m⁻² s⁻¹)</td>
<td>Elongating</td>
<td>155.6 (9.2)</td>
<td>115.7 (15.5)</td>
<td>145.9 (7.9)</td>
<td>ns * ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>118.8 (1.5)</td>
<td>89.4 (4.2)</td>
<td>110.1 (4.4)</td>
<td>ns * ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>60.5 (1.7)</td>
<td>40.4 (1.6)</td>
<td>53.0 (0.9)</td>
<td>ns * ns</td>
</tr>
<tr>
<td>E_{cmax} (J/mol)</td>
<td>Elongating</td>
<td>56.623 (4.194)</td>
<td>57.280 (9.126)</td>
<td>54.832 (2.463)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>63.714 (1.263)</td>
<td>67.177 (2.932)</td>
<td>60.195 (5.115)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>46.438 (3.531)</td>
<td>50.103 (1.076)</td>
<td>52.143 (2.244)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>$J_{\text{max25}}/V_{\text{cmax25}}$</td>
<td>Elongating</td>
<td>1.69 (0.05)</td>
<td>2.06 (0.22)</td>
<td>1.77 (0.09)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>2.06 (0.08)</td>
<td>2.20 (0.12)</td>
<td>2.27 (0.11)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>1.74 (0.04)</td>
<td>1.85 (0.12)</td>
<td>1.88 (0.04)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>$R_{d25}/V_{\text{cmax25}}$</td>
<td>Elongating</td>
<td>0.006 (0.001)</td>
<td>0.010 (0.002)</td>
<td>0.008 (0.001)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>0.007 (0.001)</td>
<td>0.010 (0.001)</td>
<td>0.009 (0.001)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>0.009 (0.001)</td>
<td>0.013 (0.003)</td>
<td>0.010 (0.000)</td>
<td>ns ns ns</td>
</tr>
</tbody>
</table>

C and T stand for CO2 and temperature, respectively, in FACE. ANOVA p-values are indicated in the table (*p < .05; ns, not significant).

Values of parameters were estimated from our data and did not vary with CO2, temperature and stage.
Table 4

Parameter estimates (their standard errors in brackets) of the temperature response function for \(g_m \), \(a_1 \), \(b_1 \) and \(g_0 \) under ambient CO\(_2\) (CT), elevated CO\(_2\) (C+T), elevated temperature (CT+) and the combination of elevated CO\(_2\) and elevated temperature (C+T+) for stem-elongating, heading, and grain-filling stages of cv. Changyou 5 in the FACE 1 experiment in 2016, respectively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stage</th>
<th>CT</th>
<th>C+T</th>
<th>CT+</th>
<th>C+T+</th>
<th>Probability of significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_m)</td>
<td>Elongating</td>
<td>0.245 (0.025)</td>
<td>0.213 (0.011)</td>
<td>0.249 (0.028)</td>
<td>0.181 (0.006)</td>
<td>* ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>0.218 (0.011)</td>
<td>0.184 (0.012)</td>
<td>0.200 (0.015)</td>
<td>0.176 (0.004)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>0.128 (0.013)</td>
<td>0.078 (0.009)</td>
<td>0.088 (0.001)</td>
<td>0.093 (0.010)</td>
<td>* ns *</td>
</tr>
<tr>
<td>(E_m) (J/mol)</td>
<td>Elongating</td>
<td>44,533 (6,970)</td>
<td>40,131 (6,406)</td>
<td>41,720 (10,648)</td>
<td>48,993 (3,447)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>39,591 (5,307)</td>
<td>45,502 (12,243)</td>
<td>38,281 (7,231)</td>
<td>42,608 (10,069)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>37,787 (4,304)</td>
<td>33,569 (5,374)</td>
<td>35,506 (9,814)</td>
<td>44,636 (6,145)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>(T_{opt,g_m}) (°C)</td>
<td>Elongating</td>
<td>35.4 (0.3)</td>
<td>35.2 (0.3)</td>
<td>35.2 (0.5)</td>
<td>35.6 (0.1)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>35.2 (0.3)</td>
<td>35.3 (0.7)</td>
<td>35.1 (0.4)</td>
<td>35.3 (0.5)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>35.1 (0.2)</td>
<td>34.8 (0.3)</td>
<td>34.8 (0.7)</td>
<td>35.4 (0.3)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>(a_1)</td>
<td>Elongating</td>
<td>0.76 (0.04)</td>
<td>0.82 (0.07)</td>
<td>0.65 (0.11)</td>
<td>0.72 (0.03)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>0.67 (0.03)</td>
<td>0.75 (0.03)</td>
<td>0.70 (0.01)</td>
<td>0.71 (0.01)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>0.75 (0.01)</td>
<td>0.73 (0.03)</td>
<td>0.80 (0.02)</td>
<td>0.76 (0.06)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>(b_1) (kPa(^{-1}))</td>
<td>Elongating</td>
<td>0.035 (0.026)</td>
<td>0.058 (0.034)</td>
<td>0.005 (0.047)</td>
<td>0.025 (0.027)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>0.030 (0.019)</td>
<td>0.060 (0.014)</td>
<td>0.024 (0.008)</td>
<td>0.027 (0.008)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>0.046 (0.007)</td>
<td>0.032 (0.002)</td>
<td>0.049 (0.018)</td>
<td>0.018 (0.029)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>(g_0) (mol m(^{-2}) s(^{-1}))</td>
<td>Elongating</td>
<td>0.122 (0.021)</td>
<td>0.080 (0.006)</td>
<td>0.095 (0.004)</td>
<td>0.085 (0.004)</td>
<td>* ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>0.040 (0.005)</td>
<td>0.025 (0.006)</td>
<td>0.044 (0.001)</td>
<td>0.060 (0.008)</td>
<td>* ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>0.031 (0.001)</td>
<td>0.031 (0.000)</td>
<td>0.039 (0.003)</td>
<td>0.021 (0.007)</td>
<td>ns ns ns</td>
</tr>
</tbody>
</table>

C and T stand for CO\(_2\) and temperature, respectively, in FACE. ANOVA p-values are indicated in the table (*p < .05; ns, not significant).

Table 5

Parameter estimates (their standard errors in brackets) of the temperature response function for \(g_m \), \(a_1 \), \(b_1 \) and \(g_0 \) under ambient CO\(_2\) (CT), elevated CO\(_2\) (C+T), elevated temperature (CT+) and the combination of elevated CO\(_2\) and elevated temperature (C+T+) for stem-elongating, heading, and grain-filling stages of cv. Nanjing 9108 in the FACE 2 experiment in 2016, respectively.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Stage</th>
<th>CT</th>
<th>C+T</th>
<th>CT+</th>
<th>C+T+</th>
<th>Probability of significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g_m)</td>
<td>Elongating</td>
<td>0.204 (0.023)</td>
<td>0.159 (0.011)</td>
<td>0.182 (0.016)</td>
<td>0.157 (0.009)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>0.205 (0.026)</td>
<td>0.146 (0.014)</td>
<td>0.174 (0.004)</td>
<td>0.162 (0.007)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>0.122 (0.021)</td>
<td>0.080 (0.006)</td>
<td>0.095 (0.004)</td>
<td>0.085 (0.004)</td>
<td>* ns ns</td>
</tr>
<tr>
<td>(E_m) (J/mol)</td>
<td>Elongating</td>
<td>46,164 (8,768)</td>
<td>46,356 (6,087)</td>
<td>46,589 (6,196)</td>
<td>38,992 (1,077)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>46,685 (6,390)</td>
<td>44,436 (10,891)</td>
<td>38,211 (6,968)</td>
<td>42,608 (6,310)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>42,618 (13,137)</td>
<td>38,590 (8,249)</td>
<td>33,786 (8,977)</td>
<td>42,616 (10,391)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>(T_{opt,g_m}) (°C)</td>
<td>Elongating</td>
<td>35.5 (0.4)</td>
<td>35.5 (0.3)</td>
<td>35.5 (0.3)</td>
<td>35.2 (0.1)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>35.5 (0.3)</td>
<td>35.3 (0.5)</td>
<td>35.1 (0.4)</td>
<td>35.6 (0.3)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>35.2 (0.6)</td>
<td>35.1 (0.5)</td>
<td>34.7 (0.6)</td>
<td>35.2 (0.5)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>(a_1)</td>
<td>Elongating</td>
<td>0.74 (0.03)</td>
<td>0.72 (0.00)</td>
<td>0.72 (0.02)</td>
<td>0.75 (0.01)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>0.68 (0.05)</td>
<td>0.69 (0.07)</td>
<td>0.74 (0.05)</td>
<td>0.67 (0.06)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>0.83 (0.03)</td>
<td>0.82 (0.00)</td>
<td>0.84 (0.03)</td>
<td>0.86 (0.02)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>(b_1) (kPa(^{-1}))</td>
<td>Elongating</td>
<td>0.064 (0.017)</td>
<td>0.042 (0.008)</td>
<td>0.032 (0.008)</td>
<td>0.052 (0.010)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>0.033 (0.028)</td>
<td>0.046 (0.032)</td>
<td>0.056 (0.022)</td>
<td>0.022 (0.029)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>0.074 (0.034)</td>
<td>0.056 (0.004)</td>
<td>0.064 (0.021)</td>
<td>0.078 (0.020)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td>(g_0) (mol m(^{-2}) s(^{-1}))</td>
<td>Elongating</td>
<td>0.082 (0.006)</td>
<td>0.070 (0.011)</td>
<td>0.065 (0.019)</td>
<td>0.077 (0.004)</td>
<td>ns ns ns</td>
</tr>
<tr>
<td></td>
<td>Heading</td>
<td>0.026 (0.002)</td>
<td>0.027 (0.003)</td>
<td>0.037 (0.001)</td>
<td>0.060 (0.008)</td>
<td>* ns</td>
</tr>
<tr>
<td></td>
<td>Grain-filling</td>
<td>0.033 (0.003)</td>
<td>0.034 (0.000)</td>
<td>0.059 (0.008)</td>
<td>0.046 (0.004)</td>
<td>ns * ns</td>
</tr>
</tbody>
</table>

C and T stand for CO\(_2\) and temperature, respectively, in FACE. ANOVA p-values are indicated in the table (*p < .05; ns, not significant).
but significantly increased $A_{n,max}$ at 25°C during the heading stage for cv. Nanjing 9108 in the FACE 2 experiment (Figure 5). This difference in photosynthesis response to elevated temperature may be related to higher mean daily air temperature during the whole cycle and warming magnitude for cv. Changyou 5 in the FACE 1 experiment than for cv. Nanjing 9108 in the FACE 2 experiment (Table 1). Liang, Xia, Liu, and Wan (2013) found that the enhancement of photosynthesis by elevated temperature decreased linearly with increasing growth temperature under ambient condition. In particular, our results showed that there were significant interaction effects between CO2 and temperature on V_{cmax25} during the grain-filling stage for cv. Changyou 5 (Table 2) and on J_{max25}, V_{cmax25} and $A_{n,max}$ at 25°C after heading for cv. Nanjing 9108 (Figure 5d, Table 3).

Some studies fixed the J_{max25}/V_{cmax25} ratio and R_{d25}/V_{cmax25} ratio at 25°C at a constant value to parameterize the FvCB model (Borjigidai et al., 2006; Müller et al., 2005; von Caemmerer, 2000), an approach that was criticized by Archontoulis, Yin, Vos, Danalatos, and Struik (2011). Elevated CO2 increased J_{max25}/V_{cmax25} (Ainsworth & Long, 2005), which was consistent with our results (Tables 2 and 3). Moreover, our results showed that elevated CO2 significantly increased R_{d25}/V_{cmax25} before heading for both rice cultivars (Tables 2 and 3). Some studies found that J_{max}/V_{cmax} ratio at 25°C decreased with increasing growth temperature (Kattge & Knorr, 2007; Lin, Medlyn, De Kaue, & Ellsworth, 2013). The increase in J_{max25}/V_{cmax25} ratio during crop development for cv. Changyou 5 (Table 2) may be related to the decrease in growth temperature during crop development (Fig. S1a). In addition, our results showed that elevated temperature significantly decreased J_{max25}/V_{cmax25} during the grain-filling stage for cv. Changyou 5 in 2016 (Table 2). Thus approaches that fix the J_{max25}/V_{cmax25} and R_{d25}/V_{cmax25} at a constant value to parameterize the FvCB model should receive critical reservation for the effect of elevated CO2 and elevated temperature.

The temperature dependence of carboxylation by Rubisco is stable among C3 plants (Badger, Bjorkman, & Armond, 1982; Brooks & Farquhar, 1985). Our $E_{V_{cmax}}$ estimates were indeed unaffected by elevated CO2 and elevated temperature treatments (Tables 2 and 3), consistent with Alonso et al. (2009) and Chi et al. (2013). However, E_{max} was significantly increased by elevated temperature for cv.

TABLE 6 Model estimates (SE) for photosynthetic parameters in relation to leaf N content, Equations (12-16), under ambient CO2 (CT), elevated CO2 (C-T), elevated temperature (CT+), and the combination of elevated CO2 and elevated temperature (C-T+) for cv. Changyou 5 in the FACE 1 experiment in 2016.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>CT</th>
<th>C+T</th>
<th>CT+</th>
<th>C+T+</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{d25}</td>
<td>X_{Rd} (μmol CO2 g $^{-1}$ N s $^{-1}$)</td>
<td>0.69 (0.06) 0.89* (0.06) 0.79 (0.06) 1.08* (0.07)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{max25}</td>
<td>$X_{I_{max}}$ (μmol e$^{-1}$ g$^{-1}$ N s$^{-1}$)</td>
<td>152.4 (6.2) 151.2 (6.3) 145.9 (6.5) 148.9 (7.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{cmax25}</td>
<td>$X_{V_{cmax}}$ (μmol CO2 g$^{-1}$ N s$^{-1}$)</td>
<td>97.9 (3.1) 90.1* (3.1) 91.5* (3.3) 90.8* (3.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g_{m25}</td>
<td>X_{gm} (mol g $^{-1}$ N s$^{-1}$)</td>
<td>0.18 (0.01) 0.15* (0.01) 0.17 (0.01) 0.15* (0.01)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$k_{2LL_{max}}$</td>
<td>X_{2LL} (mol $^{-1}$ m$^{-2}$ g$^{-1}$ N)</td>
<td>0.080 (0.002) 0.081 (0.002) 0.083 (0.002) 0.086* (0.002)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>k (mol/mol)</td>
<td></td>
<td>0.158* (0.006)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The common N_{p}, 0.25 (0.04) g N m$^{-2}$, for R_{d25}, I_{max25}, V_{cmax25}, and g_{m25} were estimated for all treatments (see the text).

*The overall k for $k_{2LL_{max}}$ was estimated for all treatments and was not significantly different from the values for each treatment ($p > 0.05$).

*Significantly different from the value for the CT treatment ($p < 0.05$).
Changyou 5 during the heading stage (Table 2). Some studies found that the activation energy of \(J_{\text{max}} \) and \(V_{c\text{max}} \) is positively related to plant growth temperature for single cases (Kattge & Knorr, 2007; Medlyn, Loustau, & Delzon, 2002; Onoda, Hikosaka, & Hirose, 2005). Our results showed that \(E_{J_{\text{max}}} \), \(E_{V_{c\text{max}}} \) and \(T_{\text{opt}} \) for \(j_{2\text{LL}} \) decreased during crop development, while \(E_{R_{d}} \) increased during crop development for both rice cultivars (Tables 2 and 3), which may be related to the decrease in growth temperature during crop development (Fig. S1a,b). \(j_{2\text{LL}} \) was calculated by multiplying calibration factor \(\Phi_{2\text{LL}} \) (see Equation 5), and the calibration factor \(\Phi \) varied with temperature for cvs Changyou 5 and Nanjing 9108 (Table S1).

The calibration factor \(\Phi \) depends on absorptance by leaf photosynthetic pigments, proportion of absorbed photon flux density partitioned to photosystem II, and the fraction of alternative \(e^-/C_0 \) transport pathways. Yin, van der Putten, Driever, and Struik (2016) suggested that the extent of any alternative \(e^-/C_0 \) transport may depend on temperature. In addition, the temperature sensitivity of \(R_{d} \) was decreased by elevated CO2 and elevated temperature (Alonso et al., 2009; Atkin et al., 2006; Chi et al., 2013; Crous et al., 2011), consistent with our results (Tables 2 and 3). The decrease in \(E_{J_{\text{max}}} \) and \(E_{V_{c\text{max}}} \) during crop development (Tables 2 and 3) resulted in a decrease in optimal temperature for \(A_{n\text{max}} \) during crop development.
for cvs Changyou 5 and Nanjing 9108 (Figure 5). Our results showed that elevated temperature significantly decreased A_{max} at 25, 29 and 33\(^\circ\)C, but not at 39\(^\circ\)C for cv. Changyou 5 during the heading stage in the FACE 1 experiment (Figure 5c). These temperature-response curves of A_{max} were altered significantly by elevated temperature for cv. Changyou 5 during the heading stage in the FACE 1 experiment (Figure 5c), which may be related to the significant increase in E_{max} under elevated temperature (Table 2).

Photosynthesis acclimation is frequently reported to be associated with a decrease in nitrogen concentration in the leaf and the entire plant (Drake et al., 1997; Stitt & Krapp, 1999). Photosynthesis is not strongly enhanced by long-term elevated CO\(_2\) which may be associated with the inability of plants to acquire more nitrogen, resulting in lower leaf nitrogen content in plants grown under CO\(_2\) enrichment (Drake et al., 1997; Luo et al., 2004; Peterson et al., 1999), which is consistent with our results for cv. Nanjing 9108 (Table S2). Elevated temperature significantly decreased leaf nitrogen content after heading for cv. Changyou 5, but significantly increased leaf nitrogen content at panicle initiation stage for cv. Nanjing 9108 (Table S2), which could be used to explain that elevated temperature significantly decreased both $J_{\text{max}25}$ and $V_{\text{cmax}25}$ after heading for cv. Changyou 5, but significantly increased $J_{\text{max}25}$ before heading (Tables 2 and 3). Both $J_{\text{max}25}$ and $V_{\text{cmax}25}$ also showed high variation among rice genotypes and were linearly correlated with leaf nitrogen content (Gu, Yin, Stomph, Wang, & Struik, 2012). Higher $J_{\text{max}25}$ and J_{max} in cv. Nanjing 9108 than in cv. Changyou 5 before heading (Figure 6, Tables 2 and 3) resulted in higher A_{v} at high C_{v} in cv. Nanjing 9108 than in cv. Changyou 5 (Figures 3, S4 and S5). $J_{\text{max}25}$ and $V_{\text{cmax}25}$ were much higher in cv. Nanjing 9108 than in cv. Changyou 5 before heading, which may be related to a higher SPAD value, an indicator of plant's nitrogen status on a leaf area basis (Peng, Laza, Garcia, & Cassman, 1995), in cv. Nanjing 9108 than in cv. Changyou 5 (Table S2). Yin (2013) found that elevated CO\(_2\) did not change the relationships between $J_{\text{max}25}$ or $V_{\text{cmax}25}$ and leaf nitrogen content.
Our results showed that C+T changed the relationships between V_{max25} or R_{25} and leaf nitrogen content, CT+ changed the relationships between V_{max25} and leaf nitrogen content, and C-T+ changed the relationships between V_{max25}, R_{425} or $s_{2L\text{max}}$ and leaf nitrogen content for cv. Changyou 5 (Figure 7, Table 6). Elevated CO2 decreased X_{tmax}, which was related to the decrease in the investment of leaf nitrogen in Rubisco under elevated CO2 (Leakey et al., 2009; Sage, Sharkey, & Seemann, 1989). An increase in day respiration under elevated CO2 may be because of the higher soluble carbohydrate content in the leaf (Alonso et al., 2009).

4.3 Acclimation responses in diffusional conductances to elevated CO2 and temperature

We used a peaked Arrhenius function to explore responses of mesophyll conductance g_m to temperature and the BWB-Leuning-Yin model to quantify stomatal conductance g_s in response to elevated CO2 and elevated temperature. Our analysis showed that elevated CO2 and elevated temperature caused strong acclimation of g_m and g_s for the two rice cultivars (Tables 4 and 5). These results were consistent with the finding that elevated CO2 decreased g_m in rice (Zhu et al., 2012) and g_s showed strong acclimation to elevated CO2 (Bunce, 2000, 2004) and elevated temperature (Pozo et al., 2005).

g_m acclimates and responds both in the long and short terms to many environmental variables, including temperature and CO2, while the mechanistic basis of these acclimation responses remains unclear (Flexas et al., 2008). Our results showed that elevated CO2 and elevated temperature significantly affected g_{m25}, but did not affect E_{m25} for the two rice cultivars (Tables 4 and 5). These results were consistent with the finding that elevated CO2 decreased g_m in rice (Zhu et al., 2012) and g_s showed strong acclimation to elevated CO2 (Bunce, 2000, 2004) and elevated temperature (Pozo et al., 2005).

4.4 Do we need to consider the acclimation effect of photosynthesis parameters when projecting the effect of future climate change?

A coupled FvCB-stomatal conductance model, with incorporation of mesophyll conductance, is becoming a standard procedure in predicting photosynthesis in response to climate change variables (e.g. Leakey, Bernacchi, et al., 2006; Leakey, Urbielarra et al., 2006; Medlyn et al., 2001). Many modelling studies fixed the value of g_0 at a constant value or at zero (De Kauwe et al., 2013). However, g_0 increased linearly with an increase in leaf nitrogen content (Zhang et al., 2017), which could be used to explain that g_0 decreased during crop development (Tables 4 and 5). Elevated temperature often increased g_0 (Tables 4 and 5), and physiological mechanisms for any effects of elevated CO2 and temperature on g_0 merit further investigation.
Our analysis of the first step showed that if the FvCB model incorporating nitrogen-based functional relationships between photosynthetic biochemical parameters and leaf nitrogen content (Figure 7, Table 6), did not take the acclimation responses of FvCB parameters into consideration, the simulated A_n was overestimated only by 3% and 5% for cv. Changyou 5 in 2014 and 2016, respectively, for the treatment with the combined elevated CO$_2$ and elevated temperature that best represents conditions of future global change (Figure 8).

Our analysis in the second step showed the importance of acclimation on the prediction of g_s per se: the simulations using the CT-treatment parameters at each stage overestimated values of g_s under C+T by −3% and 1%, and underestimated g_s under CT+ by 25% and 12% and under C+T+ by 19% and 10%, for cvs Changyou 5 and Nanjing 9108 in 2016, respectively (Figs S6 and S7). This indicated that g_s acclimated more to elevated temperature than to elevated CO$_2$. However, this impact of strong acclimation responses of g_s parameters became less important for predicting net photosynthesis rates A_n. The coupled FvCB and BWB-Leuning-Yin model using the CT-treatment g_s parameters at each stage underestimated A_n for C+T+ only by 2% in 2014 and by 3% in 2016 for cv. Changyou 5 (Figures 9e, S8f) and by 2% in 2016 for cv. Nanjing 9108 (Fig. S9c). This is because g_s directly influences C_t whereas C_t increases A_n only in a manner of diminishing return. The third step, indicated that the simulations by the coupled FvCB and BWB-Leuning-Yin model using the CT-treatment g_s and g_{tr} parameters at each stage underestimated A_n for C+T+ only by 2% in 2014 (Figure 9f) and by 4% in 2016 (Fig. S8f) for cv. Changyou 5. Therefore, a typical parameterization procedure that crop models using the FvCB and g_s models are estimated from data of plants grown under current ambient conditions will not result in critical errors when predicting leaf photosynthesis under conditions of elevated CO$_2$ and temperature of future climate.

Our measurements used Li-Cor to obtain g_s, whereas g_s measured at steady-states may not reflect real-time g_s at measurement times, as g_s is highly variable (Vlaet-Chabrand, Dreyer, & Brendel, 2013). This implies that more sophisticated g_s models than the BWB-type models might be needed for more accurate prediction of stomatal behaviour. Furthermore, our experiments were conducted under conditions without water stress. Under climate change conditions where severe drought is expected, crop transpiration, which depends strongly on g_s, is a crucial variable to predict. Therefore, any acclimation responses of g_s parameters to elevated CO$_2$ and elevated temperature in combination with drought are essential for current crop models to accurately predict plant water use and crop microclimate under future global change (Shimono et al., 2010; Yoshimoto et al., 2005). How the FvCB parameters and parameters of more robust g_s models respond to elevated CO$_2$ and temperature in the presence of drought stress merits further quantification.

ACKNOWLEDGEMENTS

This research was funded by the Ministry of Agriculture of the People’s Republic of China (200903003), the National Natural Science Foundation of China (31261140364) and (31400372), State Administration of Foreign Experts Affairs of the People’s Republic of China and Ministry of Education of the People’s Republic of China (the 111 project, B16026) and was conducted in the framework of collaboration between the College of Agriculture, Nanjing Agricultural University and the Centre for Crop Systems Analysis, Wageningen University. The senior author thanks the China Scholarship Council and the Netherlands Organisation for International Cooperation in Higher Education (Nuffic) for awarding him a joint Sino-Dutch fellowship to conduct this work. PCS and XY contributed to the work via the ModCarboStress project of the ERA-NET Plus on Climate Smart Agriculture, funded by the Netherlands Organisation for Scientific Research (NWO). Many thanks go to Dr Xuhui Zhang and Dr Xiaoyu Liu of the College of Resources and Environmental Sciences, Nanjing Agricultural University, and Dr Gang Liu of State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences for their technical supports during the FACE experimentation, Weilu Wang and Manman Yuan of State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences for sharing data of leaf nitrogen concentration and leaf mass per area in cv. Nanjing 9108 in Table S2.

REFERENCES

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.