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Outline  

We selected the legume Indigofera argentea for our research. It was collected in the desert 

of Jizan in Saudi Arabia. We selected this species for two reasons. It is well adapted to heat 

and drought and therefore it has the potential to study, in the future, mechanisms that confer 

tolerance to these abiotic stresses. Further, Indigofera represents an early branching lineage 

within the indigoferoid/milletioid clade. Therefore, Indigofera is a key genus in studying the 

evolution of nodulation within the Papilionoideae subfamily. 

In Chapter 1, a general introduction is given on nitrogen fixing symbiosis of legumes and 

rhizobia. In this introduction, we focus on the process of nodule initiation and organogenesis. 

Two main nodule types, determinate and indeterminate nodule, are introduced based on the 

knowledge of the few well-studied legumes species. Further, terminal differentiation of 

rhizobia that is induced by NCR peptides of the host is introduced. 

In Chapter 2, we characterized the desert legume I. argentea and developed a platform by 

which future studies on mechanisms controlling abiotic stress become available. We 

developed an Agrobacterium rhizogenes-mediated root transformation procedure and did a 

de novo transcriptome assembly using RNA of various organs.  

In Chapter 3, about 60 rhizobium strains have been isolated from nodulated I. argentea plants 

that were collected in the desert. The strains were characterized by 16S sequencing and their 

nodulation abilities were studied. One of the efficient nodulating Bradyrhizobium strains was 

selected for further studies. 

In Chapter 4, nodule development of Indigofera and Tephrosia species was analyzed and 

described in detail. Species from both genera have an indeterminate growth. However, it was 

shown that this is not due to a meristem that is formed at the primordium stage, which is the 

basis of indeterminate growth of IRLC species like Medicago. The indeterminate growth was 

shown to be due to secondary clusters of dividing infected cells that were formed from nodule 

parenchyma cells. Therefore, it evolved independently from the indeterminate growth from 

IRLC species which is controlled by a persistent meristem composed of non-infected cells.  

In Chapter 5, it is shown that bacteroids from I. argentea nodules are markedly enlarged as 

described for IRLC (e.g. Medicago) and Aeschynomene species. This increase in size was 

correlated with endoreduplication and terminal differentiation. Further, it was shown that in 

nodules of I. argentea 4 NCR genes are expressed. Therefore it is probable that these terminal 

differentiation is controlled by the NCR peptides and this evolved independently in the IRLC 

clade, Aeschynomene and Indigofera. 

In Chapter 6, I discuss my results and put them in a broader perspective. I summarize and 

discuss the determinate and indeterminate nodule evolution in the Papilionoideae subfamily. 
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We have shown in Chapter 4 that Indigofera and Tephrosia species have a nodule 

development that is very similar to that of determinate nodules and their indeterminate 

growth is due to the formation of secondary clusters of dividing cells. Species from other 

clades of the Papilionoideae subfamily were analyzed. Based on these analyses, I conclude 

that the ancestor of the Papilionoideae subfamily formed determinate nodules that had the 

ability to form secondary clusters of dividing cells. Further, NCR-triggered bacteroid 

evolution in the Papilionoideae subfamily is discussed.  
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1. Biological nitrogen fixation 

Atmospheric dinitrogen gas (N2) can be reduced to ammonia (NH3) by several bacteria. This 

process is called biological nitrogen fixation. An efficient process of biological nitrogen 

fixation occurs in nodule symbiosis of bacteria and plants. Nitrogen-fixing symbiosis 

between bacteria and plants include for example, actinorhizal nodule formation by members 

of the actinobacterial genus Frankia, and legume nodule formation with rhizobia. Biological 

nitrogen fixation is catalyzed by an enzyme complex called nitrogenase. The subunits of this 

enzyme are encoded by nif genes which are conserved in nitrogen-fixing microorganisms 

(Normand and Bousquet, 1989). Biological nitrogen fixation is of importance in agriculture 

and can reduce the use of mineral nitrogen (e.g. NH4
+, NO3

−) (Fields, 2004; Novotny et al., 

2010). 

The rhizobium-legume interaction is the best studied and agronomically most important 

nitrogen-fixing symbiosis. Several α- and β-proteobacteria species, collectively named 

rhizobia, can establish a symbiosis with legumes. The rhizobia induce the formation of 

nodules on roots of the legume plants and in specialized nodule cells they fix nitrogen into 

NH4
+, which is assimilated by the host plant. In return, the plant provides the required carbon 

sources among others for the high energy demanding nitrogen-fixation process. 

2. Legume nodules 

The Leguminosae family is the third-largest land plant family containing more than 770 

genera and 19,500 species (Lewis et al., 2005, 2013; LPWG, 2017). The majority of them 

can be nodulated by rhizobia. The Leguminosae family is divided into six subfamilies: 

Caesalpinioideae, Cercidoideae, Detarioideae, Dialioideae, Duparquetioideae, and 

Papilionoideae (LPWG, 2017; Sprent et al., 2017). The Papilionoideae, the largest subfamily, 

is divided into distinct clades; the genistoids, dalbergioids, indigoferoids, milletioids, 

robinioids, and IRLC (Fig. 1). The genistoids consists of several genera, among which 

Lupinus has been widely studied for its nodulation characteristics. In the dalbergioids, 

Aeschynomene is the best studied genus. The indigoferoids, containing the genus Indigofera, 

represents an early branching lineage within the indigoferoid/milletioid clade 

(Wojciechowski et al., 2004; Lavin et al., 2005). The milletioids contains important crops 

like soybean and common bean. The robinioids contains for example Sesbania, Robinia, and 

the model legume Lotus. The IRLC clade contains the model legume Medicago and crops 

like pea. 

 Nodulation of legumes by rhizobia involves two main processes, namely, bacterial infection 

and nodule formation. Legume nodules are generally grouped into two main types, namely 

determinate and indeterminate, based on whether a persistent meristem is formed. These 
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different nodule types will be described in detail in paragraph 3. Here, I will first discuss the 

infection process and the early stages of nodule/primordium formation. 

 

Fig. 1 The Papilionoideae subfamily is divided into distinct groups. Species/genera belonging to the groups are 

indicated (between brackets). Whether indeterminate (∞ ) or determinate (x) nodules are formed by the 

species/genera in these groups is indicated next to the genus name. The schematic representation of the 

Papilionoideae subfamily is drawn based on a phylogenetic tree from Oono et al. (Oono et al., 2010).  

Rhizobial infection, for example of the model legumes (e.g. Medicago, Lotus, soybean), is 

initiated at the sites where a deformed root hair forms a curl (Callaham and Torrey, 1981). 

Subsequently, infection threads (ITs) are formed which are surrounded by a plant-derived 

membrane and cell wall material (Rae et al., 1992). The ITs are filled with dividing bacteria 

and they grow to the base of the root hair containing epidermal cell (Brewin, 2004; Gage, 

2004). In some legumes, rhizobia enter their host by other mechanisms, such as transcellular 

penetration (crack-entry) between cells. This is for example the case in some Sesbania, 

Aeschynomene and Lupinus species (Gonzalez-Sama et al., 2004; Bonaldi et al., 2010; 

Capoen et al., 2010). 

The ITs or penetrating bacteria traverse inwards to the root cortex where cortical cell division 

is initiated which results in a nodule primordium. The primordia can be induced in different 

cortical cell layers in different species. In soybean, the nodule primordia are formed in 

cortical cells directly adjacent to the infected root hair cells and subsequently differentiate 
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into a determinate nodule. In Lotus, nodule primordia are formed from the middle cortex and 

also develop into a determinate nodule. Sesbania nodules are formed from the middle cortex 

and they can be either determinate or indeterminate nodules depending on the growth 

condition (Ndoye et al., 1994; Fernandez-Lopez et al., 1998). In Medicago, inner cortical 

cells dedifferentiate, which results in the formation of nodule primordia that will 

subsequently differentiate into an indeterminate nodule (Xiao et al., 2014).  

Release of rhizobia from ITs into nodule primordium cells occurs by formation of unwalled 

infection droplets. These are regions at the ITs in primordium/nodule cells that still contain 

the host membrane, but lack cell wall. Creation of such a cell-wall free interface allows 

rhizobia to be released into the cytoplasm and to become surrounded by a host membrane 

(Brewin et al., 1994; Bolanos et al., 2004; Brewin, 2004). The released rhizobium surrounded 

by the host membrane, is a transient organelle and is named symbiosome (Roth, 1989; 

Emerich and Krishnan, 2014). After bacteria have been released, they divide, differentiate 

and fill the host cells. The differentiated rhizobia are named bacteroids. In determinate 

nodules, rhizobia divide after time within the plant membrane and form symbiosomes with 

multiple bacteroids (Brewin, 2004). In these cases, bacteroids are morphologically similar to 

free-living bacteria. In indeterminate nodules, the symbiosomes contain a single bacteroid 

that markedly enlarges. The enlargement of bacteroids is correlated with endoreduplication 

of the bacteroids and a loss of the ability to return to the free-living bacterial state. This 

terminal differentiation is triggered by NCR peptides (Chapter 5) (Mergaert et al., 2003; 

Mergaert et al., 2006; Wang et al., 2010). Based on their morphology three distinct bacteroid 

morphotypes have been described. These are elongated bacteroids (E-morphotype), spherical 

bacteroids (S-morphotype) and unmodified bacteroids (U-morphotype) (Oono et al., 2010; 

Czernic et al., 2015). 

The symbiotic interaction is set in motion by the exchange of signals between the two 

symbiotic partners. The host secretes among others flavonoids, which in many cases trigger 

the expression of rhizobial genes required for nodulation (nod genes). In the presence of 

flavonoids, NodD proteins activate the expression of the other nod genes (Djordjevic et al., 

1987; Oldroyd and Downie, 2004; Jones et al., 2007). The proteins encoded by the nod genes 

are involved in the synthesis and secretion of Nod factors. Nod factors are lipochito-

oligosaccharides (LCOs). Nod factors produced by different rhizobial species vary in their 

structure due to specific nod genes. For example, nodC determines the length of the chito-

oligosaccharide backbone, and certain nod genes specify the type of substitutions at both 

ends of the molecule (Denarie et al., 1996). Nod genes are absent in some rhizobium species, 

for example Bradyrhizobium sp. ORS278 that induces nodules on Aeschynomene (Giraud et 

al., 2007; Bonaldi et al., 2010; Bonaldi et al., 2011). In these cases it is unclear which signal 

molecules trigger the nodulation process. 
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Nod factors are involved in induction of the early steps of nodulation. They are recognized 

by the receptors MtLYK3/MtNFP of Medicago (Limpens et al., 2003; Arrighi et al., 2006; 

Smit et al., 2007) or the orthologous LjNFR1/LjNFR5 of Lotus (Radutoiu et al., 2003; 

Radutoiu et al., 2007). They belong to the LysM domain-containing receptor-like kinase 

(LYKs) family, and the LysM motifs are involved specifically in perception of Nod factors. 

After perception of Nod factors, the symbiotic signaling network is activated that comprises 

a conserved set of genes encoding, a plasma membrane localized LRR-type receptor kinase 

(MtDMI2/LjSYMRK) (Ane et al., 2002; Stracke et al., 2002; Demchenko et al., 2004); 

several components in the nuclear envelope including a cation channel (MtDMI1/ 

LjCASTOR/LjPOLLUX) (Ane et al., 2004; Charpentier et al., 2008) and subunits of the 

nuclear pore (LjNUP85/LjNUP133/LjNENA) (Kanamori et al., 2006; Saito et al., 2007; 

Groth et al., 2010), a nuclear localized complex of a calcium calmodulin-dependent protein 

kinase (CCaMK; MtDMI3/LjCCaMK) (Catoira et al., 2000; Levy et al., 2004; Gleason et al., 

2006; Tirichine et al., 2007) and the transcription factor (MtIPD3/LjCYCLOPS) that is 

activated by CCaMK (Yano et al., 2008; Capoen et al., 2011; Ovchinnikova et al., 2011). 

The Nod factor receptor activation leads to calcium oscillations in the nucleoplasm. Calcium 

oscillations are decoded by CCaMK and activated CCaMK phosphorylates CYCLOPS that 

is a transcription factor for NIN (Schauser et al., 1999; Marsh et al., 2007; Tirichine et al., 

2007; Yano et al., 2008; Heckmann et al., 2011). The induction of cortical cell division 

further requires the activation of the cytokinin-receptor (MtCRE1/LjLHK1) (Gonzalez-Rizzo 

et al., 2006; Tirichine et al., 2007). Further downstream in the signaling pathway, GRAS-

type proteins (NSP1/NSP2) act as a transcriptional regulators contributing to the induction 

of genes required for nodule initiation (Kalo et al., 2005; Smit et al., 2005; Heckmann et al., 

2006; Murakami et al., 2006).  

3. Characteristics of determinate and indeterminate nodules 

Mature nodules consist of a nitrogen-fixing central tissue and uninfected peripheral nodule 

tissues. These are the nodule endodermis, cortex, and parenchyma. In the latter the vascular 

bundles are located (Fig. 2) (Vandewiel et al., 1990; Brewin, 1991). The central tissue 

contains uninfected as well as enlarged infected plant cells. 

The nodules formed by legumes are classified as either determinate or indeterminate (Hirsch, 

1992; Sprent, 2001). A major difference between these two types is the life span of their 

meristem. Indeterminate nodules have a persistent meristem at their apex and obtain an 

elongated shape. In contrast, determinate nodules have a meristem at the periphery and this 

is only active at early stages of development, resulting in a spherical shape. The best 

characterized indeterminate nodules are those of for example Medicago and pea, and typical 

determinate nodules are formed by for example soybean, common bean, and Lotus (Hirsch, 

1992). 
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Due to the difference in meristem persistence there are some additional characteristics that 

distinguish these two nodule types. The meristem of indeterminate nodules adds cells to the 

different nodule tissues in proximal direction. As a consequence, the central tissue shows a 

differentiation gradient with the youngest cells adjacent to the apical meristem and the oldest 

cells near the root attachment point. This zonation is indicated in Fig. 2. The meristem is 

called zone I. The subsequent zone is the infection zone (zone II). In the distal part of this 

zone, rhizobia are released, after which they divide and differentiate. The switch from 

infection to fixation zone (zone III) is a developmental switch associated with many changes 

after that. For example the nif genes are switched on, and amyloplasts accumulate at the 

periphery of the infected cells by which the start of the fixation zone can be easily recognized. 

The oldest zone is the senescence zone (zone IV) where bacteria are degenerated (Vasse et 

al., 1990). Further, mature tissues are absent at the nodule apex (Fig. 2). This is for example 

the case for the peripheral tissues, like endodermis and nodule parenchyma. In contrast, in 

determinate nodules these tissues completely surround the nodule central tissue (Fig. 2).  

 

Fig. 2 Indeterminate and determinate nodules. The central tissue is surrounded by parenchyma, endodermis, and 

cortex. Indeterminate nodules originate from inner cortex and have a differential zonation: meristem (zone I), 

infection zone (zone II), nitrogen-fixing zone (zone III), and senescence zone (zone IV). Determinate nodules 

originate from the outermost or middle cortical cells and have no meristem at the apex. 

In addition to the determinate and indeterminate nodule types, two other nodule types have 

been described. These are the lupinoid nodule formed by Lupinus species of the genistoids 

clade and the aeschynomenoid nodule formed by Aeschynomene species of the dalbergioids 

clade (Lotocka et al., 2000; Lavin et al., 2001). Lupinoid nodules are described as a subtype 

of indeterminate nodule (Lotocka et al., 2000). This nodule type is characterized by the 

presence of two lateral meristems, by which nodules encircle the roots (Golinowski et al., 

1987). Another characteristic is that the infected cells remain mitotically active and the 

symbiosomes are equally distributed between the daughter cells (Gonzalez-Sama et al., 2004; 
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Fedorova et al., 2007). This mitotic activity might be facilitated by the absence of infection 

threads in these nodule cells (Lotocka et al., 2000; Gonzalez-Sama et al., 2004). 

Aeschynomenoid nodules are characterized by the fact that central infected tissue contains 

no uninfected interstitial cells. In some Aeschynomene species (e.g. A. afraspera), an out-

growth at the top of nodules leads to indeterminate growth of the nodule (Bonaldi et al., 2011). 

This out-growth is derived from outer cortical cells containing large tubular structures with 

bacteria enclosed (Bonaldi et al., 2011). Lupinoid and aeschynomenoid nodules are proposed 

to be derived from an indeterminate ancestor and are considered to be a synapomorphy for 

the genistoids and dalbergioids groups, respectively (Lavin et al., 2001; Ardley et al., 2013). 

4. Evolution of determinate and indeterminate nodules 

The general accepted idea is that the determinate nodule type evolved from the indeterminate 

nodule type (Sprent, 2007). Knowledge concerning the distribution of the indeterminate and 

determinate nodule types within the Papilionoideae subfamily, when I started my research 

described in this thesis, is indicated in Fig. 1. The studied species in genistoids all form 

indeterminate nodules. Within the robinioids and dalbergioids, both determinate and 

indeterminate nodule types have been described. Several milletioids species form 

determinate nodules, an exception is Tephrosia forming indeterminate nodules. Indigofera 

from the indigoferoids is described as indeterminate nodule. All the studied species in the 

IRLC clade form indeterminate nodule. Together, this led to the hypothesis that the youngest 

ancestor of the Papilionoideae subfamily formed indeterminate nodules and the determinate 

nodule type evolved independently two times in the robinioids and milletioids, and once in 

dalbergioids clade (Doyle and Luckow, 2003; Sprent, 2007). 

Nodules have been classified as indeterminate often based on the presence of dividing cells 

in mature nodules. In species of the IRLC (e.g. Medicago, pea), the meristem is formed at 

the primordium stage and is maintained throughout the life span of the nodule. This has not 

been studied in species of other clades. As some nodules that are classified as indeterminate 

nodules have characteristics of determinate nodules (Gehlot et al., 2012), I analyzed, in this 

thesis, the development of nodules of species belonging to the different clades of the 

Papilionoideae subfamily (Chapter 4 and Chapter 6). 

5. Legume model systems 

Although the Leguminosae family is the third-largest land plant family, only a few species 

are well studied at the molecular genetic level. This includes the model systems Lotus (Lotus 

japonicus) and Medicago (Medicago truncatula) (Barker et al., 1990; Handberg and 

Stougaard, 1992; Lohar et al., 2001; Pedrosa et al., 2002; Limpens et al., 2004; Sato et al., 

2008; Young et al., 2011). These two species have all the characteristics required for in depth 

analyses using the tools of for example molecular biology, cellular biology and genetics. 

These two model plants have a relatively small genome, and their genomes have been 
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sequenced, providing insight into the evolution of rhizobial symbioses (Sato et al., 2008; 

Young et al., 2011). This is now extended with genome sequences of several accessions by 

which natural variation can be exploited. Further, good mutant collections have been created. 

Together, this has provided a strong basis to unravel molecular mechanism underlying for 

example Nod factor signalling, as well as nodule development and functioning. However, 

these well studied model legumes are temperate species, no species have been well studied 

that can survive under harsh abiotic conditions. In this thesis, I. argentea, which grows as 

pioneer vegetation in the Jizan desert (Saudi Arabia), has been selected to explore 

mechanisms used by legumes to survive under abiotic stress conditions.  
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Abstract 

Legumes can establish a nitrogen fixing nodule symbiosis with rhizobia. Indigofera argentea 

establishes this nodule symbiosis under harsh desert conditions. Therefore this species is a 

good system to study the adaptations allowing nodulation under abiotic stress conditions. 

Here we did a series of observations and experiments to make I. argentea suitable for 

molecular studies. We show that I. argentea is diploid (2n=16) with a genome size of 690 

Mbp, and a relative short seed-to-seed generation time of three months. The de novo 

transcriptome assembly presented here is the first large-scale molecular resource for I. 

argentea. Further, we developed a protocol for efficient Agrobacterium rhizogenes-mediated 

root transformation by which the basis for functional analysis of symbiosis related genes is 

created. 
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Introduction 

Legumes belong to the Fabaceae. This is the third-largest land plant family containing more 

than 770 genera and 19,500 species (Lewis et al., 2005, 2013; LPWG, 2017). The majority 

of legume species are able to establish a very efficient nitrogen fixing nodule symbiosis with 

bacteria belonging to different genera, that are collectively named rhizobia (e.g. 

Allorhizobium, Azorhizobium, Bradyrhizobium, Devosia, Ensifer, Mesorhizobium, 

Methylobacterium, Microvirga, Ochrobactrum, Phyllobacterium, Rhizobium, Neorhizobium, 

Pararhizobium, Shinella (α-proteobacteria), and Burkholderia, Cupriavidus (β-

proteobacteria) (Moulin et al., 2001; Gyaneshwar et al., 2011; Sprent et al., 2017; Andrews 

and Andrews, 2017). A few legume species are well studied at the molecular genetic level. 

These are the model systems Lotus japonicus (Lotus) and Medicago truncatula (Medicago). 

Further, some legume crops have been studied in some detail, examples are soybean, pea, 

and clover (Schmutz et al., 2010; Smykal et al., 2014; Zhukov et al., 2015; Alves-Carvalho 

et al., 2015; Webb et al., 2014). However, none of these legume species is adapted to severe 

environmental stress conditions, whereas many other legumes have this ability, including for 

example Indigofera spp., Mimosa spp. and Tephrosia spp., that are adapted to severe abiotic 

stress in desert areas (Hou et al., 2009; Gehlot et al., 2012). 

To study mechanisms that control adaptation of for example nodule symbiosis to abiotic 

stress, we selected Indigofera argentea, which among others grows in desert areas of e.g. 

Jizan province of Saudi Arabia. Jizan is located in the south of Saudi Arabia at the border 

with Jemen. Jizan desert is subtropical and has an arid hot climate (Koppen-Geiger 

classification).  

Indigofera is the third largest genus in the legume family, and it has about 750 species 

(Schrire et al., 2009). I. argentea is a perennial subshrub, about 50 cm high, with numerous 

branches. Its imparipinnate leaves are composed of 7-11 small leaflets. The flowers occur in 

a racemose inflorescence. The seedpods are 9-13 mm long and about 3 mm wide, in general 

they contain 5-7 seeds. I. argentea has a scattered population in Saudi Arabia, in the 

southwestern region it especially occurs in desert areas relatively close to the coast, for 

example at deserts near Baysh, Sabea and Abu Arish in Jizan Province. This region has a hot 

(up to 50oC) and humid climate and receives some rainfall (~100 mm/year) during winter 

time, whereas in summer it almost does not rain. I. argentea prefers to grow in well drained, 

sandy soil, along the edges of deep sand and shares the habitats of Acacia ehrenbergiana-

Capparis decidua community or Panicum turgidum-Dipterygium glaucum community. In 

addition, we observed that it grows as a pioneer in former agricultural areas in Jizan desert 

and there we collected the plant material (Fig. 1). 

We selected I. argentea to be able to study in the future the mechanisms by which this legume 

adapts to drought and heat. As a first step, we determined its genome size and chromosome 

https://paperpile.com/c/2qc0TE/CHC7
https://paperpile.com/c/2qc0TE/CHC7
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number. We showed that the genome size is rather small and it is diploid. Further, we 

developed an A. rhizogenes-mediated hairy root transformation protocol and assembled a de 

novo transcriptome, which was used to identify genes that are differentially regulated during 

nodule formation. 

Results 

Growth conditions 

I. argentea was collected in Jizan desert at an area that had been used in the past for 

agriculture (Latitude 17.03.292; Longitude 042.38.139). In this area I. argentea is the most 

 

Fig. 1 I. argentea in Jizan desert. (a) I. argentea grows as a pioneer in former agricultural areas in Jizan desert; (b) 

I. argentea subshrub at vegetative stage; (c) Dry and brownish nodules formed on roots; (d) Nodules have an 

elongated shape.  
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abundant species (Fig. 1). The nutrient composition of the soil of this area was analysed 

(Table 1). Its pH is about 7. The content of Organic matter, total N (destructive), NH4, NO2, 

NO3, K and P is listed in Table 1 and shows that soil in Jizan desert is rather nutrient poor. 

Table 1 Analyses of the soil sample, in red the detection limits of the analysis. 

Method A B C D E F G 

Element Nt K N-NH4 

N-(NO3+ 

NO2) 

C-

elementary C P pH 

Unit [g/kg] [mg/kg] [mg/kg] [mg/kg] [mg/kg] [g/kg] [mg/kg] _ 

detection limit 0.30 3.0 1.00 0.50 3.0 3.00     

Sample: 13.4 0.0 33 1.1 0.7 11 2 2.1 

7.2

8 

Method: (A) SFA-Nt/Pt destruction with H2SO4-H2O2-Se; (B) ICP-AES extraction in 0.01M CaCl2; (C) SFA 

extraction with 0.01M CaCl2; (D) SFA-Total Organic Carbon (TOC); (E) Spectrophotometer-Kurmies; (F) P-Olsen; 

(G) pH-meter. 

 

Fig. 2 I. argentea grown in the greenhouse. (a) I. argentea plants at reproduction stage; (b) Flowers are first formed 

about 2 months after sowing; (c) Pods are first formed about 3 months after sowing.  

The growth conditions we established in the greenhouse are as follow: 28oC, >85% humidity, 

and 16 and 8 h of artificial light and darkness, respectively. It takes about 3 months from seed 

to seed under these growth conditions (see Materials and Methods; Fig. 2a). Flowering can 

be maintained after onset (Fig. 2b) at least for a year with continuous seed production and 

sufficient seeds can be harvested from a few plants. Maturated yellow seeds have > 90% 

germination efficiency after scarification with concentrated sulfuric acid. Seeds kept at room 

temperature for three years still germinate with a high efficiency (>65%). Young seedlings 

are small enough to be grown 3 to 4 weeks on 9 cm Petri dishes containing Färhaeus medium 

(Fig. 4). Single seed derived lines were created from four plants that were generated from 



Chapter 2 

28 

 

seeds collected in Jizan. This resulted in 4 pure third generation lines. These are named Jizan-

1, Jizan-2, Jizan-3, and Jizan-4. 

Chromosome number and genome size 

To determine the chromosome number of I. argentea, root tips were squashed and stained 

with acetic carmine (Belling, 1926; Fyad-Lameche et al., 2016). Cells at metaphase showed 

that I. argentea has 16 chromosomes (Fig. 3). Species of Indigofera are in general either 

diploid (2n=2x=16) such as I. hochstetteri, or tetraploid (2n=4x=32) such as I. spicata, or 

hexaploid (2n=6x=48) such as I. heteranthera (Frahm-Leliveld et al., 1962). Therefore I. 

argentea is most likely diploid (2n=2x=16). The 16 chromosomes are relatively large in size 

(total length 38.1 μm) and have a similar length. 

 

Fig. 3 Metaphase chromosomes of I. argentea after acetocarmine staining. Scale bar: 5 µm. 

To determine the genome size, nuclei were isolated from young leaves. The genome size was 

determined by flow cytometry using M. truncatula (A17, 466 Mb), Parasponia andersonii 

(WU1, 563Mb), and soybean (1,115Mb) (Arumuganathan and Earle, 1991) as references. 

This showed that the genome size of I. argentea is approximately 690 Mb. The relative small 

genome size of I. argentea can facilitate molecular studies. 

Hairy root transformation of I. argentea using Agrobacterium rhizogenes 

To study the function of genes in root nodule formation, often composite plants with 

transgenic roots and non-transformed shoots are used. In general, such composite plants are 

created by Agrobacterium rhizogenes-mediated hairy root transformation. This method is 

well developed in model legumes (e.g. Medicago, Lotus), using the binary vector pRedRoot 

for selection of co-transformed roots (Limpens et al., 2004). 
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The susceptibility of I. argentea to A. rhizogenes was tested using three A. rhizogenes strains: 

RBL 1334, Arqua 1, and MSU440. The binary vector pRedRoot was introduced into these 

three strains. I. argentea seedlings were grown for 5-6 days at 28°C. At this stage, the first 

leaves are present (Fig. 4a). Seedlings were transformed by inoculating freshly cut 

hypocotyls with one of the three A. rhizogenes strains and the infection sites were kept in an 

environment with high humidity. I. argentea is a sub-tropical legume. Therefore, two growth 

temperatures 21°C and 28°C were tested for hairy root emergence (Fig. 4b, c). I. argentea 

grew better at 28°C and after two weeks on emergence medium, roots had developed (Fig. 

4c-e). At 21°C only A. rhizogenes strain Arqua 1 induced a few hairy roots on 2 seedlings 

out of 30. Further, the seedlings were brownish and new leaves had not been formed (Fig. 

4b). At 28°C, all three A. rhizogenes strains induced hairy roots on I. argentea, 23 seedlings 

out of 30 for strain Arqua 1 (76.7%), 27 out of 28 for strain RBL 1334 (96.4%), 6 out of 25 

for stain MSU440 (24%). At least five homogeneously transformed roots (based on red 

fluorescence) were formed on each inoculated I. argentea seedling three weeks after 

transformation (Fig. 4d, e, arrow). The seedlings with transgenic roots induced by A. 

rhizogenes (Arqua 1 and RBL 1334) were inoculated with Bradyrhizobium elkanii (SA281) 

(Chapter 3) and grown on perlite at 28°C. One month after inoculation, nodules were formed 

on the transgenic roots (Fig. 4f, arrowhead). These results showed that A. rhizogenes (Arqua 

1 and RBL 1334)-mediated hairy root transformation works well on I. argentea. 

DR5::GUS auxin response pattern in I. argentea roots 

To test the transformation procedure, we used DR5::GUS as a proof of principle. The auxin 

reporter DR5::GUS has been used to show auxin accumulation during root development in 

Arabidopsis (Sabatini et al., 1999), as well as root and nodule development in Medicago and 

soybean (Franssen et al., 2015; Turner et al., 2013). DR5::GUS was introduced into I. 

argentea by hairy root transformation using A. rhizogenes (Arqua 1). Longitudinal sections 

of transgenic roots showed that the DR5 promoter is expressed in the root meristem and 

columella cells and in lateral root primordia (Fig. 5a, b). The expression pattern and auxin 

responsiveness are consistent with what has been reported in Arabidopsis, soybean, and 

Medicago, indicating that the construct is suitable for monitoring auxin responses in I. 

argentea roots. 

Identification of I. argentea genes with an enhanced expression in nodules and 

comparison with soybean and Medicago 

To create a basis for comparative studies on I. argentea nodule expressed genes we conducted 

a de novo transcriptome analysis (see Materials and Methods). Then we selected a subset of 

the genes that are highly up-regulated in nodules compared to roots (> 10-fold) and a subset 

that are nodule-specific. Statistical analyses were performed using CLC Genomics. The 
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expression pattern in different tissues was assessed by statistical EDGE analysis based on 

common dispersion (P-value < 0.05, FDR corrected P-value < 0.05). 50 highly up-regulated 

 

Fig. 4 I. argentea hairy root transformation. (a) 6-day-old seedlings grown at 28 °C, at this stage the first leaves are 

formed; (b) Seedlings inoculated with A. rhizogenes Arqua 1 growing at 21 °C for 7 days; (c) Seedlings inoculated 

with A. rhizogenes Arqua 1 growing at 28 °C for 7 days; (d, e) I. argentea root system with transgenic roots (arrow); 

(f) Nodule (arrowhead) on transgenic root three weeks after inoculation. Scale bars: 2mm.  

 

Fig. 5 DR5 promoter activity in I. argentea root. DR5::GUS transformed root show GUS activity especially in QC 

and part of the root cap (a), and lateral root primordia (b). Scale bars: 25 µm. 
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genes (> 10-fold) were selected and these genes were all highly expressed in nodules and 

roots (RPKM > 5 in nodule and root samples). Further, 145 nodule-specific genes were 

selected (RPKM = 0 in root, RPKM > 10 in nodule). These two subsets contain several well-

known symbiosis genes, such as Leghemoglobin, glutamine synthetase, asparagine 

synthetase, ENOD2 (Chapter 4), as well as NCRs (Chapter 5). Proteins encoded by these sets 

of genes were predicted based on their longest ORFs. 

To obtain first indications that I. argentea nodules might have unique properties compared 

with for example the model legume Medicago and soybean, we first identified the closest 

homologs of these 195 genes in Medicago, soybean, Phaseolus vulgaris, Cajanus cajan, and 

Lotus genome protein databases (see Materials and Methods) by Geneious Custom BLAST 

at the protein level (default settings in Geneious R8). The best hits (identities >60%) from 

each species database were extracted for phylogenetic analyses, which were performed using 

MUSCLE Alignment and Geneious Tree Builder (Neighbor-Joining) in Geneious R8 with 

the default settings. Examples are shown in Fig. S1-7. Fig. S1 shows for example that 

Ia_c114718|m.98260 is part of a cluster in which all 5 other legumes have at least one 

homolog. The genes in such cluster might be orthologs, but will be named close homolog in 

this chapter. Fig. S2 and S3 show examples in which case Medicago or soybean close 

homolog, respectively, is not found. Whereas in Fig. S4, S5, and S6 examples are shown with 

multiple homologs in soybean or Medicago, respectively. In Fig. S7, 

Ia_c22267_g1_i1|m.7347 has no close homologs in Medicago and soybean. For the 195 

Indigofera nodule genes we found 117 close homologs in at least Medicago or soybean. For 

these genes, it was studied whether they have a higher expression in nodules compared to 

roots in Medicago or soybean (Young et al., 2011; Roux et al., 2014; Schmutz et al., 2010). 

13 close homologs of both soybean and Medicago had a remarkable different expression 

pattern as in both Medicago and soybean they were higher expressed in roots than in nodules 

(Table 2). 8 of these 13 genes are similar to genes that in other plant species have been 

reported to be upregulated under abiotic stresses. These are the isoflavone reductase-like 

protein in grapefruit induced in response to UV irradiation, in coffee during a stress-response 

in leaves, and in rice induced by gibberellic acid (Lers et al., 1998; Brandalise et al., 2009; 

Wen et al., 2010); vacuolar processing enzyme in radish involved in floral bud abortion under 

heat stress, and in Malus hupehensis and Arabidopsis in response to high temperature stress 

(Zhang et al., 2013; Su et al., 2015); cytochrome P450 induced by salt and mannitol 

treatments in apple (An et al., 2017). Further, the sulphate transporter gene, which can be 

induced by both sulphur starvation and mycorrhiza formation in Lotus (Giovannetti et al., 

2014). These 13 nodule enhanced I. argentea genes (Table 2) might be an adaptation of the 

nodule to desert conditions and with the methods described in this chapter this can now be 

studied. 
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Discussion 

We describe a series of experiments and analysis to support that I. argentea has the potential 

to become a good model system to study nodule formation and functioning under abiotic 

stress conditions. We have shown that I. argentea is a diploid. Its genome size is rather small 

and about twice the size of Medicago. Another main criterion for the choice of this species 

is the short generation time, approximately three months, which makes it possible to finish 

several cycles within one year. Further, an efficient microsymbiont was isolated (Chapter 3). 

Efficient Agrobacterium rhizogenes-mediated hairy root transformation has been developed. 

This makes I. argentea now a system of which root/nodule properties can be studied at a 

molecular level. 

In the de novo assembled transcriptome dataset, 13 genes have been identified that are highly 

up-regulated in nodules or are nodule-specifically expressed in I. argentea, whereas their 

closest homologs do not share this property in soybean and Medicago. The I. argentea de 

novo transcriptome assembled after Illumina sequencing is a good resource for studying I. 

argentea transcripts related to nodule symbiosis. Of special interest could be the mechanism 

by which secondary clusters of dividing cells are formed in nodules (Chapter 4) and 

mechanisms underlying nodule functioning under abiotic stress.  

Materials and Methods 

Plant material, seed germination and root inoculation 

Seeds of I. argentea and sand were collected in Jizan desert, Saudi Arabia. Seeds were treated 

with 96% H2SO4 for 7 min and subsequently rinsed six times with distilled water, then seeds 

were sterilized with 4% commercial bleach for 10 min, rinsed seven times with sterilized 

distilled water followed by 3 h imbibition at room temperature in the dark. Sterilized seeds 

were transferred to 9 cm Petri dishes containing Färhaeus medium covered with filter paper 

at 4°C for 12 h in dark and 24 h in dark at 28°C. Subsequently, seeds were exposed to light 

and after 4-5 days, the seedlings were transferred to pots filled with river sand mixed with 

clay (Fig. 4a). After transfer of seedlings, nitrogen free Färhaeus medium was added. The 

seedlings were grown in the pots in the greenhouse for 3-4 days with no watering. Then the 

seedlings were inoculated with B. elkanii (SA281) (Chapter 3) and grown for another 2-3 

days without watering. Subsequently, watering the plants twice every week with 100-200 ml 

for each pot and providing nitrogen free Färhaeus medium every two weeks. 

Plasmids and vectors 

Three A. rhizogenes strains, RBL 1334, Arqua 1, and MSU440 containing the pRedRoot 

vector (Limpens et al., 2004) were used for hairy root transformation of I. argentea under 

kanamycin selection (50 ug/ml). The plasmid DR5::GUS (Franssen et al., 2015) was 
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introduced into A. rhizogenes strain Arqua 1 by electro transformation. The strains were 

grown for 2 d at 28°C under spectinomycin selection (50 μg/ml). 

Chromosome preparations and acetic carmine staining 

Somatic metaphase chromosome preparations were made from actively growing root tips of 

I. argentea plants by squashing (Fyad-Lameche et al., 2016). Slides with chromosomes were 

frozen in liquid nitrogen, then cover slips were removed immediately with a razor blade. The 

chromosomes were stained with 1% solution of carmine in 45% acetic acid (Belling et al., 

1926).  

Genome size estimation 

Young leaves were ground in liquid nitrogen, and the nuclei were collected as described (Van 

Velzen et al., 2017). Then the genome size was estimated by flow cytometry, using M. 

truncatula (A17, 466 Mb), P. andersonii (WU1, 563Mb), and soybean (1,115Mb) as 

references. 

Tissue culture and Agrobacterium rhizogenes-mediated transformation 

I. argentea hairy root transformation was done as described, with some modification 

(Limpens et al., 2004). Seeds were vernalized for 1 d at 4 °C and germinated at 28°C for 24 

h in darkness (plates upside down). Seedlings were transferred to Petri dishes and grown at 

28°C (16/8 h light/dark). After inoculated with one of the three Agrobacterium strains, the 

seedlings were co-cultivated for 5 d at 21°C (16/8 h light/dark) and subsequently transferred 

to Emergence medium. Indigofera plants were grown on Emergence medium at 21°C (16/8 

h light/dark) inoculated with RBL 1334, Arqua 1 or MSU 44 for 2 weeks. The same was 

done at 28°C (16/8 h light/dark). Plants grown at 28°C were transferred to new Emergence 

medium with new filter paper after one week to avoid too extensive growth of A. rhizogenes 

strains. In this period, new roots were formed that are potentially co-transformed with the 

plasmid of the binary vector. 

I. argentea was inoculated with A. rhizogenes strain Arqua 1 containing plasmid DR5::GUS 

following the same protocol. 

Nodulation of A. rhizogenes transformed roots 

Three weeks after transformation, composite I. argentea plants were transferred to sand-

perlite (Maasmond-Westland, The Netherlands) saturated with Färhaeus medium (without 

Ca(NO3)2). Plants were starved for nitrate for 3 d at 28 °C (16/8 h light/dark). Then plants 

were inoculated with 500 μl of cultured B. elkani (SA281, OD600=1.0) per plant and grown 

for 3-4 weeks at 28 °C (16/8 h light/dark). 
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Expression analysis and histochemical GUS staining 

Plant tissues containing promoter-GUS fusions were stained as described (Franssen et al., 

2015). Nodule and root sections of 5 μm thick were prepared with a RJ2035 microtome. 

Slides with sections were analysed with an AU5500B microscope equipped with a DFC425c 

camera (both Leica). 

RNA isolation for sequencing 

Uninfected roots, leaves, flowers, pods as well as nodules from I. argentea were frozen in 

liquid nitrogen and stored at -80°C until use. Total RNA, used for HiSeq 2000 sequence, was 

extracted as described (Van Velzen et al., 2017). After DNase I (Invitrogen) treatment, the 

integrity of total RNA was tested by gel electrophoresis. Isolated RNA samples were send to 

BGI for sequencing.  

De novo transcriptome assembly 

Total RNA was isolated from different plant tissues including one-month old nodules, 

uninfected roots, leafs, flowers, and pods, and cDNA libraries were prepared. cDNA libraries 

were sequenced on an Illumina HiSeq 2000 platform, generating over 32 Gb paired-end data 

from about 400 million raw reads after removal of adapter and index sequences. These high 

quality reads were used to generate a primary assembly in Trinity software (k=31) (Haas et 

al., 2013; Grabherr et al., 2011). Trinity generated 162,573 linear contigs longer than 200 

bases, grouped into 128,951 unique “transcripts”. The average length of the contigs was 996 

bp, and the longest 15,875 bp (N50 of 1,905 bp) (Table S1). 

Functional annotation 

Functional annotation was performed at transcript and protein level using the Trinotate 

pipeline (http://trinotate.github.io/). Open reading frames (ORFs) were predicted using 

Transdecoder (Haas et al., 2013) and 100,206 protein sequences (longest protein 4,344 amino 

acids) were produced based on the longest ORFs. The annotation included homology search 

to NCBI nucleotide sequences (BLAST); the manually annotated and curated protein 

sequence database (SwissProt); protein domain identification by searching Protein Family 

database (PFAM) based on the profile hidden Markov models (HMMER); protein signal 

peptide prediction (signalP) and transmembrane domain prediction based on hidden Markov 

models (tmHMM); and leveraging various annotation databases (eggNOG/GO/Kegg 

databases). A total of 27,067 transcript sequences were assigned GO terms, including 21,849 

with hits at the Biological Process level, 21,008 at the Cellular Component level and 23,245 

at the Molecular Function level. 

Phylogenetic analyses 

http://trinotate.github.io/
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Protein datasets of soybean, Medicago, and P. vulgaris were downloaded from 

https://phytozome.jgi.doe.gov/pz/portal.html;C. cajan from http://gigadb.org/dataset/100028; 

and Lotus from http://www.plantgdb.org/XGDB/phplib/download.php?GDB=Lj.BLASTP 

and phylogenetic analysis were performed on Geneious R8 software (Kearse et al., 2012). 

  

https://phytozome.jgi.doe.gov/pz/portal.html
http://gigadb.org/dataset/100028
http://www.plantgdb.org/XGDB/phplib/download.php?GDB=Lj
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Supplementary Figures 

Table S1 Transcriptome assembly metrics 

Counts of transcripts, etc.   

Total trinity 'genes': 128,951 

Total trinity transcripts: 162,573 

GC content (%): 39.09 

Statistics based on ALL transcript contigs: 

Contig N50: 1,905 

Median contig length: 502 

Average contig length: 996.47 

Total assembled bases: 161,998,401 

Statistics based on ONLY LONGEST ISOFORM per 'GENE': 

Contig N50: 1,434 

Median contig length: 406 

Average contig length: 786.6 

Total assembled bases: 101,432,503 
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Fig. S1 Phylogenetic trees which shows the close homologs of Ia_c114718|m.98260 in Medicago 

(Medtr7g007010.1.p) and soybean (Glyma.08G365100.1.p, Glyma.18G297100.1.p) (in blue). 
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Fig. S2 Phylogenetic trees which showed the close homolog of Ia_c15723_g1_i1|m.5328 in soybean 

(Glyma.06G123800.1.p, Glyma.06G123700.1.p) (in blue), while no close homolog present in Medicago. 
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Fig. S3 Phylogenetic trees which shows the close homolog of Ia_c44626_g1_i2|m.21678 (in blue) in Medicago 

(Medtr8g089800.1), while no close homolog is present in soybean. 
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Fig. S4 Phylogenetic trees which shows the close homolog of Ia_c104402_g1_i1|m.96275 in Medicago 

(Medtr2g026040.1) and multiple close homologs in soybean (Glyma.15G115300.1.p, Glyma.09G010900.1.p, 

Glyma.11G064200.1.p, Glyma.09G110600.1.p, Glyma.19G206500.1.p, Glyma.04G096400.1.p) (in blue).. 
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Fig. S5 Phylogenetic trees which shows the close homolog of Ia_c32410_g1_i1|m.11572 in soybean 

(Glyma.20G128100.1.p) and multiple close homologs in Medicago (Medtr8g064870.1, Medtr8g064880.1, 

Medtr3g049970.1, Medtr1g032490.1, Medtr1g107315.1, Medtr1g107350.1, Medtr1g107360.1, Medtr1g107285.1, 

Medtr1g107365.1, Medtr1g107375.1) (in blue). 
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Fig. S6 Phylogenetic trees which shows the multiple close homologs of Ia_c57707_g10_i1|m.56066 in soybean and 

Medicago (in blue). 
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Fig. S7 Phylogenetic trees which shows that Ia_c22267_g1_i1|m.7347 has no close homologs in Medicago and 

soybean (in blue). 
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Abstract 

Legumes can establish a nitrogen fixing symbiosis with a diverse range of α-, β-, and γ-

proteobacteria that are collectively named rhizobium. The host range of a particular legume 

species can vary from broad to very narrow. We investigated the diversity and infectiveness 

of rhizobia associated with the legume Indigofera argentea, a pioneer species in the coastal 

Jizan desert of Saudi Arabia. This showed that I. argentea is promiscuous and can form 

nodules with a diverse range of rhizobia, including different Bradyrhizobium, Ensifer and 

Microvirga species. For the latter this is the first report that a species of this genus can 

nodulate Indigofera spp.. Competition studies revealed that a single Bradyrhizobium species, 

represented by strain SA340, is most infective, as it occupies >50% of all nodules formed in 

mixed inoculum experiments. Nodules formed by Bradyrhizobium sp. SA340 display a 

cytoarchitecture that is in line with a compatible interaction. Further, this strain has profound 

growth promoting effects. Taken-together, we conclude that despite the promiscuous nature 

of I. argentea, it is predominantly nodulated by strains with a high infectiveness. 
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Introduction 

The Fabaceae (legume family) encompasses over 19,500 species, of which the vast majority 

is able to establish a nitrogen fixing nodule symbiosis with a taxonomically diverse group of 

α- and β-proteobacterial species. These microbial symbionts are collectively known as 

rhizobium and include species of at least 16 genera; namely Allorhizobium, Azorhizobium, 

Bradyrhizobium, Devosia, Ensifer (Sinorhizobium), Mesorhizobium, Methylobacterium, 

Microvirga, Ochrobactrum, Phyllobacterium, Rhizobium, Neorhizobium, Pararhizobium, 

Shinella (α-proteobacteria), and Burkholderia and Cupriavidus (β-proteobacteria) (Moulin et 

al., 2001; Gyaneshwar et al., 2011; Sprent et al., 2017; Andrews and Andrews, 2017). 

Although there have been a few reports of rhizobial γ-proteobacteria (e.g. Pseudomonas), 

these have not been confirmed (Gyaneshwar et al., 2011; Moulin et al., 2015). The molecular 

nature of the specificity of this symbiosis has been studied mainly in two legume models, 

Medicago truncatula and Lotus japonicus, and a few crop species; e.g. soybean (Glycine max) 

and pea (Pisum sativum). However, all these cases represent species with a narrow microbial 

host range. In contrast, many legume species have a much broader host range, and can be 

nodulated with a diverse range of rhizobial species belonging to different taxonomic families. 

Here we studied Indigofera argentea to obtain insight in its host range, and the infectivity of 

compatible rhizobial species. 

Indigofera is the third largest legume genus, comprising ~750 species divided over 4 main 

subclasses named according to their distribution centres; Palaeotropical (occurring in tropical 

Africa and Asia), Pantropical, Cape, and Tethyan clades (Schrire, 2005; Schrire et al., 2009). 

Indigofera is the largest genus within the tribe Indigofereae (Schrire et al., 2009). Many 

Indigofera species are adapted to drought and desert conditions, among which is I. argentea. 

I. argentea represents an early-divergent succulent biome species in the Palaeotropical 

subclade, which can be found in the Saharo-Sindian region (Schrire et al., 2009). It is a 

perennial subshrub that grows as pioneer vegetation in scattered populations in well drained, 

sandy soils, either alone, or together with other pioneer plant species like Acacia 

ehrenbergiana, Capparis decidua, Panicum turgidum and/or Dipterygium glaucum 

community. Also, I. argentea has a certain resilience to salt stress, and can grow as weed on 

salinized agricultural fields. 

Studies in M. truncatula, L. japnonicus and pea have revealed that their rhizobial host range 

is, at least in part, constrained by specificity in symbiotic signalling. Rhizobial-synthesized 

lipo-chitoligosaccharides (LCOs, also named Nodulation (Nod) factors) are perceived by a 

plant encoded heterodimer complex of LysM domain containing receptor like kinases 

(LysM-RKs). Upon perception a signalling cascade is induced that is essential for nodule 

organogenesis and bacterial infection. Nod factors carry various species-specific 

substitutions, and this structural variation is thought to play an important role in the 

specificity of the interaction (Lerouge et al., 1990; Perret et al., 2000; Radutoiu et al., 2007). 

https://paperpile.com/c/2qc0TE/CHC7
https://paperpile.com/c/2qc0TE/CHC7
https://paperpile.com/c/2qc0TE/8BO8+Ss53
https://paperpile.com/c/2qc0TE/AD8W+Ss53
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For example, by comparing L. japonicus to L. filicaulis it was shown that a differently 

positioned acetyl group on the Nod factor glucosamine backbone is discriminated by a single 

amino acid difference in a LysM domain of the NFR5 Nod factor receptor (Radutoiu et al., 

2007). Similarly, it was found in pea, that ecotypes differ in host range that can be correlated 

to specificity in Nod factor perception (Geurts et al., 1997). Taken-together, this suggests that 

coevolution of plant LysM-RK receptors and rhizobium Nod factor structure may be an 

important driver in host specificity. 

In addition to Nod factor specificity, other factors can affect the legume host range; e.g. 

perception of rhizobial surface polysaccharides, such as lipopolysaccharides, 

exopolysaccharides and cyclic glucans, and/or effector proteins secreted by the 

microsymbiont. Genetic studies in legumes start to uncover the mode of action of these 

inhibitory mechanisms. For example, in L. japonicus, a LysM-type RK has been found, 

named EPR3, that restricts entry of a Mesorhizobium loti strain with mutated 

exopolysaccharides (Kawaharada et al., 2015; Kawaharada et al., 2017), whereas in soybean 

cloning of Rj genes revealed that pathogenesis-related responses can cause host-range 

restriction (Hayashi et al., 2014; Yang et al., 2010). 

As most molecular genetic studies have been performed on legume species with a restricted 

rhizobial host range, there is a lack of knowledge on the mechanisms that underlie symbiotic 

promiscuity. A wide range of legumes are defined as promiscuous, including Indigofera spp.. 

(Perret et al., 2000; Lira et al., 2015). For example, the microsymbionts of Indigofera 

tinctoria includes rhizobial species of the genera Rhizobium, Ensifer, Bradyrhizobium, 

Cupriavidus and Pseudoalteromonas, which represent three classes of the proteobacteria 

phylum (Leelahawonge et al., 2010). We investigated the diversity and infectiveness of 

rhizobia associated with I. argentea. This confirmed that I. argentea is highly promiscuous 

and can form nodules with a diverse range of rhizobia, including different Bradyrhizobium, 

Ensifer and Microvirga species. Competition studies however, demonstrated strain 

specificity. Taken-together, we conclude that despite the promiscuous nature of I. argentea, 

it is predominantly nodulated by Bradyrhizobium sp. strain SA340 that has a high symbiotic 

infectiveness. 

Results 

Isolation and characterization of Jizan desert rhizobia that nodulate I. argentea 

To get insight in the diversity of rhizobia that nodulate I. argentea, plants were grown in the 

greenhouse and “inoculated” with Jizan desert sand (see Material and Methods). After four 

weeks, roots were covered with pink nodules (Fig. 1a-c). Sectioning revealed a nodule 

cytoarchitecture similar as reported for legume nodules, including a large central tissue 

consisting of cells filled with symbiosomes (Fig. 1). 

https://paperpile.com/c/2qc0TE/TSih
https://paperpile.com/c/2qc0TE/TSih
https://paperpile.com/c/2qc0TE/ITrT
https://paperpile.com/c/2qc0TE/7eDd+E28E
https://paperpile.com/c/2qc0TE/ok7g+FhaI
https://paperpile.com/c/2qc0TE/kMMG+CHC7
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Fig. 1: Nodule morphology and longitudinal section of nodules induced by B. genosp SA340 (a, d, g), E. kostiense 

SA331 (b, e, h), and Microverga sp. SA342 (c, f, i). (g-i) Zoom in of nodule sections in d-f to show the vacuole in 

the infected cells. C: cluster of secondary dividing infected cells; S: symbiosome; N: nucleus; V: vacuole; ic: infected 

cells; uc: uninfected cells; Bars: a-c, 150 μm; d-f, 15 μm. 

From 55 surface sterilized nodules rhizobia were isolated. Morphologically the isolated 

strains had a different appearance, varying from globose to rod-shaped. Sequencing the 16S 

rDNA locus and subsequent BLAST analysis revealed that the strains represent three distinct 

genera: Bradyrhizobium (38 strains), Ensifer (9 strains), and Microvirga (8 strains). As 

Microvirga spp. was not reported as a microsymbiont of Indigofera species, it was 

determined whether the isolated strains contain the nifH gene encoding a subunit of the 

nitrogenase enzyme complex. This showed to be the case (Fig. 2). BLAST analysis of the 

Microvirga nifH sequence showed that the gene is most similar to the nifH gene from 



Chapter 3 

52 

 

Mesorhizobium temperatum (Fig. 2), suggesting an event of horizontal gene transfer between 

Mesorhizbium and Microvirga. 

 

 

 

 

Fig. 2 Amplification of nifH gene from Bradyrhizobium, Ensifer, or 

Microverga strains. (1-3), Bradyrhizobium strains SA328, SA314, 

SA333, (4-5), Ensifer strains SA331, SA222, (6-7), Microverga 

strains SA342, SA348, (8), MQ negative control. SA222 was 

identified earlier as the positive control (unpublished data). 

Phylogenetic analyses based on 16S rDNA including defined type strains of different 

Bradyrhizobium, Ensifer and Microvirga spp. showed that in all three genera the isolated 

strains from Jizan soil represent undefined species (Fig. 3). Microvirga was only recently 

discovered as a nitrogen-fixing symbiotic genus, and Microvirga sp. SA342 is 

phylogenetically related to the symbiotic species M. subterranea (Kanso and Patel, 2003; 

Radl et al., 2014) (Fig. 3a). Ensifer sp. SA331 showed to be most closely related to E. 

kostiensis (also known as Ensifer/Sinorhizobium kostiense), a species known to nodulate 

several legume species in Asia and Africa (Nick et al., 1999; Räsänen et al., 2001; Merabet 

et al., 2010; Sankhla et al., 2017) (Fig. 3b). In case of Bradyrhizobium, the newly isolated 

strains from Jizan soil classify in two groups. One group, represented by a single strain, 

SA281, is closely related to B. elkanii and B. pachyrhizi, whereas the other 11 strains form a 

separate branch that is remotely related to B. neotropicale (Fig. 3c). This latter species was 

only recently identified in root nodules of Centrolobium paraense originating from the 

Brazilian amazon (Zilli et al., 2014). To classify the isolated rhizobium strains, BOX PCR-

based genetic fingerprinting was conducted. This identified 29 groups with a unique DNA 

fingerprint; 12 Bradyrhizobium groups, 8 Microvirga groups, and 9 groups representing 

Ensifer spp.. For the 12 Bradyrhizobium groups, a representative strain was randomly 

selected from each group, and for Microvirga and Ensifer, 1 strain was randomly selected as 

a representative from each genus (Table 1). 

Taken together, this experiment revealed that I. argentea grown in Jizan soil can be nodulated 

by rhizobium species of the genera Microvirga, Ensifer, and Bradyrhizobium, of which the 

latter is most genetically diverse. This led us to conclude that I. argentea is promiscuous for 

rhizobia from at least three unrelated genera. 

https://paperpile.com/c/2qc0TE/q3Vy+8oXG
https://paperpile.com/c/2qc0TE/q3Vy+8oXG
https://paperpile.com/c/2qc0TE/espo+EUlS+I3Js+IuMi
https://paperpile.com/c/2qc0TE/espo+EUlS+I3Js+IuMi
https://paperpile.com/c/2qc0TE/bRaH
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Fig. 3: Phylogenetic analysis based on 16S rDNA 

of Bradyrhizobium, Ensifer, and Microverga 

isolates obtained from I. argentea nodules 

inoculated with Jizan desert sand. (a) Microvirga 

species, (b) Ensifer species, and (c) 

Bradyrhizobium species. Branch labels indicate 

bootstrap support values; scale bars indicate 

substitutions per site. 

Bradyrhizobium sp. strain SA340 is a highly infective microsymbiont for I. argentea 

Nodulation studies using Bradyrhizobium sp. strain SA383 as inoculum showed to be very 

efficient. Here we aimed to determine the infectiveness of the different strains isolated from 

soil. To do so, we first developed a protocol that will allow BOX-PCR based fingerprinting 

of rhizobia inside nodules. The fingerprint pattern of cultured rhizobia and infected root 

nodules was compared (unpublished data). This revealed that the fingerprint patterns of 

rhizobia and I. argentea are very distinct. This allows identification of the most dominant 

rhizobium strain inside a root nodule. 



Chapter 3 

54 

 

 

Fig. 4: BOX-PCR based DNA fingerprinting pattern of isolated bacteria by BOX-PCR. Green, SA340 

(Bradyrhizobium); Orange, SA333 (Bradyrhizobium); Red, SA314 (Bradyrhizobium); Purple, SA331 (Ensifer); 

Blue, SA342 (Microvirga); White, SA328 (Bradyrhizobium); 8 Black stripes, too weak for identification. The codes 

above the gel indicate from which plant (replicate plants 1, 3, 4, 5, 6, 7 & 8) and the numbers after the dot indicate 

which nodule arranged from smallest to largest. 

I. argentea plants were inoculated with a synthetic community of 17 rhizobial strains; the 14 

different fingerprint groups identified in this study (Table 1), supplemented with 3 strains 

representing distinct groups identified earlier (2 Rhizobium and 1 Microvirga, unpublished 

data). In total 55 nodules from 7 plants were analyzed 4 weeks post inoculation. BOX PCR-

based fingerprinting of nodules was identified. For 47 nodules (out of 55) the DNA 
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fingerprint could be matched with a BOX-PCR pattern of one of 17 the bacteria used as 

inoculum, whereas in 8 cases the signal was too weak for identification (Fig. 4). Interestingly, 

the 47 nodules that could be genotyped were infected with rhizobia of only 6 groups; 4x 

Bradyrhizobium spp., 1x Ensifer spp., and 1x Microvirga spp.. Of these Bradyrhizobium sp. 

strain SA340 showed to be most infective, as it colonized 28 (out of 55) nodules (Table 2). 

This suggests that despite its promiscuous nature, I. argentea nodulation efficiency varies 

between compatible strains. 

To determine whether Bradyrhizobium sp. strain SA340 not only is a very infective strain on 

I. argentea, but also symbiotically effective, we compared its plant growth promoting effect 

with representative Ensifer and Micorvirga strains SA331 and SA342. Four weeks post 

inoculation with single strains, the root and shoot dry weights of the I. argentea plantlets was 

determined (Fig. 5). This showed that all 3 strains improved plant growth, with 

Bradyrhizobium sp. strain SA340 as most effective strain. This led us to conclude that this 

strain not only is highly infective, but also effective with respect of plant growth stimulation. 

 

 

 

Fig. 5: Dry mass of root and shoot 

of I. argentea inoculated with B. 

genosp SA340, E. kostiense 

SA331, and Microverga sp. 

SA342, compared to uninoculated 

control plants. Dry mass of root 

and shoot were mean dry weight 

of 6 plants, 4 weeks post 

inoculation. 

Discussion 

We demonstrated that I. argentea is highly promiscuous and can form nodules with a diverse 

range of rhizobia, including different Bradyrhizobium, Ensifer, and Microvirga species. For 

the latter this is the first report that a bacterial species of this genus can nodulate Indigofera 

spp.. By using BOX PCR fingerprinting on root nodules, we demonstrated that a single 

Bradyrhizobium spp. represented by strain SA340, is most infective in competition studies. 

Additionally, we demonstrate that this strain has profound growth promoting effects on I. 

argentea when grown under low nitrogen regime. Taken together, we concluded that despite 

the promiscuous nature of I. argentea, it is predominantly nodulated by specific strains which 

can have a high symbiotic effectiveness. 
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Material and Methods 

Plant material, seeds germination and root inoculation 

Nodules and seeds of the pioneer legume I. argentea and sand were collected from Jizan 

desert, Saudi Arabia. Seeds germination was conducted as described in Chapter 2. Sands 

collected from Jizan desert was used as “inoculant” on the seedlings of the second I. argentea 

generation in the greenhouse. The nodules that were harvested 4 weeks after inoculation in 

the greenhouse and collected from Jizan desert were used for rhizobial strains isolation. 

Rhizobial strains isolation 

The nodules were collected from plants collected in the desert as well as grown in sand and 

clay mixed with 10 g sand from desert in the greenhouse. Nodules were surface sterilized 

with 96% ethanol for 30 sec, followed by 4% sodium hypochlorite (commercial bleach) for 

60 sec. Surface sterilized nodules were squashed in 200μl 0.9% NaCl solution. Diluted 

suspension was plated on yeast mannitol agar plates (YEM). Plates were incubated at 28°C 

for 1-7 days. Isolated rhizobia were characterized by sequencing 16S rDNA using the primer 

set: 63F-5'-CAGGCCTAACACATGCAAGTC-3' and 1389R-5'-ACGGGCGGTGTGTACA 

AG-3' (Muresu et al., 2008). The isolated rhizobia were listed in Table 1. 

Phylogenetic Analysis 

Phylogenetic analyses were performed based on trimmed suspicious nucleotides from the 

relatively short 16S sequences of isolated strains in Table 1, in combination with 16S 

sequences of type strains retrieved from the RDP database (see Fig. 4). Alignment was done 

with MAFFT 7.017 and unrooted phylogenetic trees were produced with FastTree 2.1.5. 

Genetic variety analysis of rhizobia strains by using BOX-PCR fingerprints 

Rhizobia strains were selected based on genetic variation of all isolates. PCR amplification 

of repetitive regions of the genomic DNA (rep-PCR) was performed with BOX-A1R primer 

(5’-CTACGGCAAGGCGACGCTGACG-3’), which can result in high resolution 

fingerprints (Lanoot et al., 2004; Rademaker et al., 2004). And the PCR program used was: 

95℃ for 2 min followed by 35 cycles each of 94℃ for 3s, 92℃ for 30s, 50℃ for 1 min and 

72℃ for 8 min, followed by 72℃ for 8 min and then cooling to 8℃. PCR products were 

visualized at 80 voltage for 2.5 hours on 2% agarose gel. Rhizobia strains with the same 

fingerprint were grouped in one box. One representative strain was selected per BOX group. 

Identification of the most competitive rhizobia strain in consortium from nodules 

Nodulation assay was performed by growing I. argentea plants on sterilized river sands 

supplemented with rhizobia consortium. Selected rhizobia strains were cultivated in 10 ml 
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YEM liquid medium at 28 °C and shaken at 220 rpm. Each of bacterial cultures was washed 

three times with 0.9% NaCl and set to OD600 = 0.001 with Färhaues solution. The rhizobia 

consortium was made by mixing all 17 selected rhizobia strains identically. Sterilized river 

sand was inoculated with rhizobia consortium and homogenized prior to transplanting I. 

argentea seedlings. After transplanting two I. argentea seedlings per pot, another 1 ml 

consortium culture was added to root of each seedlings. Then plants were cultivated in 

WEISS KAST (35°C/25°C day/night temperatures; 250 µmol light m–2 s–1 at plant level 

during 12 h/d; 70% relative humidity). 

Nodules were collected 6 weeks after transplanting. These nodules were surface sterilized by 

soaking in 96% ethanol for 20 seconds, washing with sterilized MQ water for 3 times and 

then putting in 4% bleach for maximum 3 minutes, wash off bleach by sterilized MQ water 

for 6 times. Nodules were crushed with a metal bead. Put each nodule in a 2 ml tube with a 

sterile metal bead. Put tubes in liquid nitrogen and then and crush the nodules two times with 

a tissue lyser (50 times/second for 30 seconds). Suspending crushed nodules in 200 µl sterile 

MQ water, this suspension was further diluted for 10 times of which 1 µl was used as BOX-

PCR DNA template. PCR products were visualized on 2% agarose gel and fingerprint 

obtained from each nodules were compared to each of 17 rhizobia strains. 

Tissue embedding, sectioning, section staining and microscopy 

The longitudinal section and microscopy were conducted as described in Chapter 4. 
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Table 1: I. argentea micorsymbionts isolated from Jizan dessert soil catogerized according to BOX-PCR 

fingerprinting. Representative strain of each group used for the competition studies marked in bold. 

Strain Genus nifH gene 

SA281 Bradyrhizobium elkanii  

SA302 Bradyrhizobium elkanii  

SA308 Bradyrhizobium elkanii  

SA314 Bradyrhizobium genosp  

SA315 Bradyrhizobium genosp.  

SA324 Bradyrhizobium genosp.  

SA337 Bradyrhizobium genosp.  

SA338 Bradyrhizobium genosp.  

SA339 Bradyrhizobium genosp.  

SA361 Bradyrhizobium genosp.  

SA317 Bradyrhizobium genosp.  

SA318 Bradyrhizobium genosp.  

SA320 Bradyrhizobium genosp.  

SA323 Bradyrhizobium genosp.  

SA321 Bradyrhizobium genosp.  

SA335 Bradyrhizobium genosp.  

SA343 Bradyrhizobium genosp.  

SA345 Bradyrhizobium genosp.  

SA322 Bradyrhizobium genosp.  

SA326 Bradyrhizobium genosp.  

SA330 Bradyrhizobium genosp.  

SA325 Bradyrhizobium genosp  

SA319 Bradyrhizobium genosp.  

SA328 Bradyrhizobium genosp.  

SA334 Bradyrhizobium genosp.  

SA327 Bradyrhizobium genosp.  

SA329 Bradyrhizobium genosp.  

SA333 Bradyrhizobium genosp.  

SA365 Bradyrhizobium genosp.  

SA369 Bradyrhizobium genosp.  

SA367 Bradyrhizobium genosp.  

SA368 Bradyrhizobium genosp.  

SA379 Bradyrhizobium genosp  

SA383 Bradyrhizobium genosp  

SA316 Bradyrhizobium genosp.  

SA373 Bradyrhizobium genosp.  

SA340 Bradyrhizobium genosp.  

SA355 Bradyrhizobium genosp.  

SA360 Ensifer sp. NFY8  

SA331 Ensifer kostiense  

SA332 Ensifer kostiense  

SA346 Ensifer kostiense  
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SA356 Ensifer kostiense  

SA357 Ensifer kostiense  

SA359 Ensifer kostiense  

SA374 Ensifer sp. NFY8  

SA378 Ensifer sp. Mh9  

SA336 Microvirga sp. S-MI1b Mesorhizobium temperatum, 

nifH 
SA341 Microvirga sp. S-MI1b Mesorhizobium temperatum, 

nifH 
SA342 Microvirga sp. S-MI1b Mesorhizobium temperatum, 

nifH 
SA347 Microvirga vignae Mesorhizobium temperatum, 

nifH 
SA348 Microvirga vignae Mesorhizobium temperatum, 

nifH 
SA350 Microvirga vignae Mesorhizobium temperatum, 

nifH 
SA352 Microvirga vignae Mesorhizobium temperatum, 

nifH 
SA375 Microvirga sp. S-MI1b Mesorhizobium temperatum, 

nifH 
Table 2: List of strains were identified from 55 nodules of I. argentea. 

Strains # of nodules BOX PCR pattern Ratio (%) 

SA340 28 Green 50.9 

SA333 6 Orange 10.9 

SA314 5 Red 9.1 

SA331 3 Purple 5.5 

SA342 3 Blue 5.5 

SA328 2 White 3.6 

Others* 8 Black 14.5 

* There were 8 strains identified from 8 nodules. The BOX-PCR patterns of these strains are hardly grouped. 
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Abstract 

● The infection and morphogenesis process of nodules of Indigofera and Tephrosia species 

were described in detail in this chapter.  

● In both Indigofera and Tephrosia species, primordia are formed from the outermost cortical 

cells and the meristematic region disappears at an early stage of development. These 

characteristics resemble the determinate nodule type. Strikingly, at later stages clusters of 

dividing infected cells are present at the apex. Using ENOD2 as a molecular marker we 

showed that fully differentiated nodule parenchyma can form such clusters of dividing cells.  

● We propose that the common ancestor of the Papilionoideae subfamily made determinate 

nodules and indeterminate nodule type first evolved in the IRLC and robinioids clade. 

● The evolution of determinate and indeterminate nodule types was discussed. 

Key words: determinate nodule, indeterminate nodule, nodule evolution, cluster of dividing 

cells, Indigofera, Tephrosia.  
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Introduction 

Legumes can establish a nitrogen-fixing nodulation symbiosis with phylogenetically diverse 

bacteria (Remigi et al., 2016) that are collectively named rhizobia. The developmentally and 

biochemically diverse nodules formed by legumes are typically classified as being either 

determinate or indeterminate (Hirsch, 1992; Sprent, 2001). A major difference between these 

two types is the life span of their meristem. Indeterminate nodules have a persistent meristem 

at their apex and attain an elongated shape. In contrast, determinate nodules have a meristem 

at the periphery and this is only active at early stages of development (Bergersen, 1958). 

Typical determinate nodules have a spherical shape. The best characterised indeterminate 

nodules are those of the IRLC (Inverted Repeat Lacking Clade: e.g. Medicago, clover, pea, 

Fig. 1) and typical determinate nodules are formed by genera in a branch of the milletioids 

clade (e.g. Glycine, Vigna and Phaseolus), although distinctive determinate nodules occur 

elsewhere in the family (Lavin et al., 2001). When we describe (in)determinate nodule types 

in this chapter, we refer to these two clades.  

The milletioids, Indigofera, robinioids, and IRLC groups (hereafter named ‘selected groups’) 

belong to the Papilionoideae subfamily and contain most legume crops, as well as the model 

legumes Lotus japonicus (Lotus) and Medicago truncatula (Medicago). The evolutionary 

relationships of 24 genera belonging to these 4 groups as well as our current knowledge 

concerning the nodule type that they form is shown in Fig.1 (modified from Oono et al., 

2010). As genera comprising mirbelioids and genistoids have been reported to form 

indeterminate nodules, the current published data suggest that the common ancestor of the 4 

selected groups formed indeterminate nodules (Fig. 1, node 15). This is further supported by 

the fact that the first split in the dalbergioids clade (Fig. 1, node 1) divides the group into 

genera reported to form indeterminate nodules (tribe Amorpheae: e.g. Amorpha and Dalea) 

and a group with a unique type of nodule (‘aeschynomenoid’; Lavin et al., 2001) that is likely 

to have originated from determinate nodule (Doyle, 2011).  

If the common ancestor of the 4 selected groups indeed formed indeterminate nodules, the 

determinate nodule type seems to have evolved twice in the milletioids clade (nodes 24 and 

25) and once in the robinioids clade (node 26). 

Indigofera is sister to the milletioids clade (Fig. 1), and so Indigofera, by far the largest genus 

within the tribe Indigofereae (Schrire et al., 2009), is a key genus in understanding the 

evolution of determinate and indeterminate nodule types. Indigofera nodules have been 

shown to have a cluster of dividing cells at their apex and therefore were classified as 

indeterminate nodules (Oono et al., 2010; Lemaire et al., 2015). However, although 

Indigofera nodules have this apical cluster of dividing cells, they also have some 

characteristics, for example lenticels (Gehlot et al., 2012), that are common in determinate 
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nodules (Pankhurst and Sprent, 1975; Sprent, 2001). As Indigofera has a crucial phylogenetic 

position (Fig. 1), we reinvestigated whether it indeed forms genuine indeterminate nodules. 

 

Fig.1 Distribution of indeterminate and determinate nodule types within the Papilionioideae subfamily according to 

Oono et al. (2010). Thickened branches indicate support of posterior probability ≥ 0.95. Character for indeterminate 

(infinity) and determinate nodule type (crosses) is indicated next to the genus name. 

Due to the difference in meristem persistence there are some additional characteristics that 

distinguish the two nodule types. Indeterminate nodules have a meristem at the apex and this 

meristem adds cells in proximal direction to the different nodule tissues. As a consequence, 

mature tissues are absent at the nodule apex. This is for example the case for the peripheral 

tissues like endodermis and nodule parenchyma. In contrast, in determinate nodules these 

tissues completely surround the determinate nodule and the vascular bundles, located in the 

nodule parenchyma, even fuse. Mature nodule endodermis cells form Casparian strips which 

can be used to detect them (Brundrett et al., 1988). The ENOD2 gene is specifically expressed 

in the nodule parenchyma in legumes belonging to the IRLC (pea, Medicago, Vicia) (Van de 

Wiel et al., 1990a; Van de Wiel et al., 1990b; Vijn et al., 1995), robinioids clade (Sesbania, 

Lotus) (Lauridsen et al., 1993; Goormachtig et al., 1998) and milletioids clade (Glycine) (Van 
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de Wiel et al., 1990a). Therefore, it is probable that Indigofera species have an orthologue 

with a similar expression pattern, which then could be used to study the development of the 

nodule parenchyma. Although the histological studies have only been done on a few species 

(e.g. pea, Medicago, clover, soybean), it is probably that the characteristics of the peripheral 

tissues are generic for nodules lacking an apical meristem that adds cells to the different 

nodule tissues.  

Based on the best studied nodule developmental processes the two nodule types seem to be 

formed from different root cell layers. Indeterminate nodules of the IRLC tribe (e.g. 

Medicago) are formed form inner cortical layers (Xiao et al., 2014). In contrast, determinate 

nodules of the milletioids clade (e.g. Glycine) are formed from outer cortical layers (Turgeon 

and Bauer, 1982) and those from the robinioids tribe (e.g. Lotus, Sesbania) from the middle 

cortical layers (Ndoye et al., 1994; Madsen et al., 2010). Further, determinate nodules almost 

completely lack vacuoles in their infected cells, whereas infected cells of indeterminate 

nodules have a clear vacuole (Sprent, 2001). 

We reanalysed Indigofera nodule development and this showed that it has no persistent apical 

meristem. The central tissue of rather young nodules becomes completely surrounded by 

endodermis and nodule parenchyma and at this stage an apical meristem is lacking. Therefore, 

we consider it to be a determinate nodule. The cluster of dividing cells often present at the 

apex of older nodule is formed secondarily from fully differentiated cells. The finding that 

Indigofera forms determinate nodules prompted us to reinvestigate Tephrosia nodule 

development as it remained the only genus within the milletioids tribe known to form 

indeterminate nodules (Fig. 1) (Oono et al., 2010). Tephrosia was proposed to form 

indeterminate nodules based on the presence of dividing cells (Gehlot et al., 2012). We 

showed that its development is very similar to that of Indigofera in that it forms determinate 

nodules and clusters of dividing cells can be formed secondarily. Our findings strongly 

suggest that the common ancestor of the milletioids and Indigofera formed determinate 

nodules. We discuss the implication of this hypothesis for the evolution of the two nodule 

types. 

Results 

Cluster of dividing cells at the apex of I. argentea nodules 

To characterize the cytology of elongated I. argentea nodules, seedlings (8-days-old) were 

inoculated with Bradyrhizobium elkani SA281. Nodules were harvested 4 weeks after 

inoculation and elongated nodules were sectioned (Fig. 2a). This showed that a cluster of 

small dividing cells is present at the apex (Fig. 2a, b), as was reported previously (Gehlot et 

al., 2012). Further, these nodules contain characteristic tissues, including the central tissue, 

which is surrounded by the nodule parenchyma, endodermis and nodule cortex. I. argentea  
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Fig. 2 Longitudinal sections of I. argentea stained with toluidine blue O. (a) Section of an elongated nodule, cluster 

of dividing cells is present at the apex; (b) Infection threads are present in the vast majority of these cells even in the 

most distal ones (arrow), bacteria are released in some cells (arrowhead); (c) Dividing cells can contain infection 

threads (arrow). C, cluster of dividing cells; VB, vascular bundle; NP, nodule parenchyma; S: symbiosome; Scale 

bars: a, 150 µm; b, 25 µm; c, 5 µm. 

nodules have been classified as indeterminate, based on the presence of this cluster of small 

dividing cells at their apex (Gehlot et al., 2012). Within the vast majority of these cells 

infection threads are present (Fig. 2b; arrow). Cells that contain infection threads can still 

divide (Fig. 2c; arrow). Further, the most distal cells in this cluster (Fig. 2b; arrow) contain 

infection threads. Both properties distinguish this cluster of cells from the meristem in 

indeterminate nodules of the IRLC group, for example in Medicago nodules. In addition, I. 

argentea nodules have some properties that have only been reported for determinate nodules. 

These are lenticels at their surface (Pankhurst and Sprent, 1975; Gehlot et al., 2012) (Fig. 

S1a), the absence of vacuoles in infected cells (Fig. 2a, b), a layer of uninfected cells between 
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the central tissue and nodule parenchyma, which is named boundary layer (Roussis et al., 

1997) and the width of the infection threads is rather thin in comparison with indeterminate 

nodules (e.g. Medicago) (Fig. 2b, c; arrow). Taken together this questions whether I. argentea 

nodules are genuine indeterminate nodules. 

I. argentea early nodule development is similar to that of determinate nodules 

The key characteristic of indeterminate nodules, as known from members of the IRLC clade, 

is the presence of a meristem at their apex that is formed at the primordium stage and is 

maintained during development. This meristem is formed from a cortical layer that is located 

closer to the root surface than the cortical cells that become infected in the primordium and 

will form several layers of infected cells in the proximal region of the nodule (Xiao et al., 

2014). To study nodule development of I. argentea, root segments were collected at 10 and 

11 days after inoculation (see Material and Methods). At these time points primordia/nodules 

at different stages of development are present and longitudinal sections were analysed. The 

youngest primordia show that anticlinal cell divisions were induced in the outermost cortical 

cell layer (Fig. 3a). The infected root hair associated with these primordia often has multiple 

infection threads. In slightly further developed primordia, several anticlinal and periclinal 

divisions have occurred in the outermost cortical cells and a small primordium has been 

formed (Fig. 3b). The infection threads have penetrated the primordium cells derived from 

the outer cortex (Fig. 3b). Anticlinal cell divisions have been induced in the pericycle and 

inner cortex and from these a vasculature will develop that connects the root and the 

primordium (Fig. 3c). Then the primordia developed into a young nodule, at which stage 

most of the cells in the central tissue were penetrated by infection threads and bacteria were 

released into cytoplasm of a few cells (Fig. 3c, arrowhead; Fig. 3e). Dividing infected cells 

at various stages of mitosis with infection threads were present (Fig. 3c, arrow; Fig. 3d). After 

release of bacteria, host cells stopped dividing (Fig. 3e). We tested whether mitotic activity 

correlated with the presence of relatively high auxin levels by using the auxin reporter DR5. 

Transgenic I. argentea nodules showed that DR5 was expressed in vascular bundles as well 

as in dividing cells with infection threads in the central tissue (Fig. 4a), and expression was 

absent after bacteria were released and cells no longer divided (Fig.4b, c, d). 

To determine whether I. argentea can form determinate nodules, 33 nodules were harvested 

3 and 6 weeks after inoculation and nodules were completely sectioned. These nodules are 

heterogeneous with respect to their stage of development as in some cases primordia are still 

present. 6 nodules, of which all sections were analysed, had no meristem (or cluster of 

dividing cells) (Fig. 5b), which is similar to the cytology of determinate nodules. 

The absence of a persistent meristem in determinate nodules results in peripheral tissues fully 

surrounding the central tissue. Therefore, we tested whether this is the case in I. argentea 

nodules. To visualise fully differentiated nodule parenchyma, we determined whether I. 
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argentea has an ENOD2 gene. A putative I. argentea ENOD2 gene (IaENOD2) was 

identified that is ~23 times upregulated in nodules in comparison to roots (Fig. S2c). The 

transcript contains a 930bp long open reading frame (ORF), encoding 309 amino acids (Fig. 

S2a, b) that is 50% identical to both GmENOD2A and GmENOD2B (Franssen et al., 1990; 

 

Fig. 3 Longitudinal section of I. argentea primordia and nodules formed at subsequent stages of development. (a) 

Anticlinal cell divisions are induced in the outer most cortical cells (arrow); (b) Anticlinal and periclinal cell 

divisions (arrow) have occurred in the outer most cortical cells and these form the nodule primordium; (c) A young 

nodule contains cells penetrated by infection threads (arrow) or with released bacteria in the cytoplasm (arrowhead); 

(d) Zoom in of the dividing infected cells with infection threads in (c) (arrow); (e) Zoom in of cells with released 

bacteria in the cytoplasm; VB, vascular bundle; IT: infection threads;  S: symbiosome; Scale bars: a-b, 25 µm; c, 50 

µm; d-e, 5 µm. 

 

Fig. 4 DR5 promoter activity in I. argentea nodules. (a) GUS activity in central zone cells with infection thread and 

vascular bundles in young nodule; (b) GUS activity at the periphery of central zone in relatively old nodule; (c) 

Zoom in of relatively old nodule shows GUS activity only in cells with infection threads; (d) GUS activity is absent 

after bacteria are released. VB, vascular bundle; CZ: central zone; IT: infection thread; S: symbiosome; Scale bars: 

a-b, 25 µm; c-d, 5 µm. 
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Fig. 5 Fully differentiated parenchyma and endodermis tissues in I. argentea nodules. (a) IaENOD2 transcript is 

expressed in the nodule parenchyma that completely surrounds the central tissue in the nodule; (b) I. argentea nodule 

with no meristem at the apex; (c) Mature endodermis cells with Casparian strips completely surround the central 

tissue of the nodule. VB, vascular bundle; CZ: central zone; Scale bars: 75 µm. 
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Schmutz et al., 2010), and 44% identical to MtENOD2 from the more distantly related 

Medicago (Dickstein et al., 1988; Young et al., 2011). Phylogenetic analysis showed 

IaENOD2 protein grouped together with GmENOD2A and GmENOD2B, SrENOD2 and 

MtENOD2 proteins are in another group (Fig. S2d), indicating that I. argentea is evolutionary 

more close to the determinate nodule forming soybean. 

In situ hybridization shows that IaENOD2 is specifically expressed in the nodule parenchyma 

(Fig. 5a, Fig. 7), consistent with being orthologous to ENOD2 in other legume species. In 

situ hybridization in young nodules shows that IaENOD2 is expressed in the nodule 

parenchyma that completely surrounds the central tissue (Fig. 5a). Mature nodule endodermis 

cells show auto-fluorescence under UV light due to the presence of Casparian strips. 

Visualisation of Casparian strips shows that in the nodules lacking a cluster of dividing cells, 

the mature endodermis also completely surrounds the central tissue (Fig. 5b, c). Further 

vascular bundles are present at the most distal part of the nodule (Fig. 5a-c), which is also a 

characteristic of determinate nodules (Sprent, 1980). 

Thus, the early stages of I. argentea nodule development are very similar to those of 

determinate nodules and not of those of indeterminate nodules. This also raises the question 

how the cluster of dividing cells that is present in the older nodules is formed (Fig. 2a, b). 

Identification of cells that form a cluster of dividing cells in mature I. argentea nodules 

In longitudinal sections of the 33 3- and 6-week nodules, no dividing cells were observed in 

6 of them (see above), whereas in 27 nodules, a cluster of dividing cells with infection threads 

was identified at their apex. The size of these clusters varied markedly. The smallest clusters 

were a single cell that just had divided into two daughter cells, and both cells could contain 

an infection thread (Fig. 6a, arrow). In bigger clusters, bacteria were released into the 

cytoplasm in some cells (Fig. S1b). Cells containing infection threads can still divide. 

However, we never observed dividing cells containing released bacteria. Some clusters were 

separated from the central tissue by one or two layers of non-dividing highly vacuolated cells 

(Fig. 6a), while others were directly adjacent to the infected cells of the central tissue (Fig. 

S1c). This suggests that the clusters can be formed from the boundary layer and the nodule 

parenchyma. 

It therefore appears that I. argentea nodules elongate by creating secondary clusters of 

dividing cells that subsequently differentiate into nodule central tissues. This implies that the 

peripheral tissues also have to grow. To determine whether during elongation fully 

differentiated peripheral tissues surround the central tissue, we visualized the nodule 

parenchyma and endodermis. In situ hybridization on 4-week old nodules shows that 

IaENOD2 is not expressed at the apex where the cluster of dividing cells is present (Fig. 7). 

Also Casparian strips are absent in this region (Fig. 6b, c). These observations indicate that 
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fully differentiated nodule parenchyma and endodermis cells dedifferentiate at the site where 

a cluster of dividing cells is formed. 

 

Fig. 6 Sections showing clusters of dividing cells at the apex of I. argentea nodules. (a) The smallest cluster of a 

single cell that just has divided into two daughter cells (arrow), infection thread is present in both cells; (b, c) 

Casparian strips (arrow) are absent at the apex of nodule where a cluster of dividing cells has been formed. C, cluster 

of dividing cells; VB, vascular bundle; Scale bars: 75 µm. 

Indigofera is one of the largest genera of flowering plants, with around 770 species, divided 

into four major clades on the basis of phylogenetic analyses (Schrire et al., 2009). I. argentea 

belongs to the Paleotropical clade. To determine whether the ability to form secondary 

clusters is common in Indigofera species, we investigated four additional species: I. spinosa, 

I. linnaei, I. hochstetteri from the Tethyan clade, and I. tinctoria from the Pantropical clade, 

respectively. In all these Indigofera species, the primordia were formed from the outermost 

cortical layer and these primordia did not form an apical meristem (Fig. S3-6). In all these 

species, a subset of nodules had no meristem at their apex nor clusters of dividing cells 

(sections of the complete nodule were analysed) (Fig. S3-6). In these nodules, the vascular 
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bundles were present in the most distal part of the nodule (Fig. S3-6). All these Indigofera 

species also form elongated nodules with clusters of dividing cells at their apex and also 

nodules with smaller clusters of dividing cells were found (Fig. S3-6). In I. tinctoria from 

the Pantropical clade, infection threads are present in the most distal cells in cluster of 

dividing cells (Fig. S3), which is similar to I. argentea nodules. In the three Indigofera 

species from the Tethyan clade, infection threads only exist for a very short period. In the 

clusters of dividing cells, released bacteria were detectable and these cells were still 

mitotically active (Fig. S4-6). This is similar to Lupinus nodules in which it has previously 

been reported that cells remain mitotically active after release of rhizobia into the cytoplasm 

(Gonzalez-Sama et al., 2004; Fedorova et al., 2007). 

  

Fig. 7 Localization of IaENOD2 transcripts by in situ hybridization. IaENOD2 transcripts are absent in the tissue 

adjacent to the cluster of dividing cells. C, cluster of dividing cells; VB, vascular bundle; CZ: central zone; Scale 

bar: 75 µm. 

Thus, all studied Indigofera species form determinate nodules and have the ability to form 

secondary clusters of dividing cells. This implies that within the millettiods clade Tephrosia 
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remains the only known genus that has been reported to form indeterminate nodules (Fig. 1). 

This prompted us to re-study Tephrosia. 

Tephrosia forms determinate nodules 

Three Tephrosia species (T. villosa, T. wallichii, T. purpurea) were studied. In these species 

nodule primordia were induced in the outermost cortical layer (Fig. 8a; Fig. S7-8), and an 

apical meristem was never observed in these primordia. Further, a subset of the nodules lacks 

dividing cells at their apex (all sections of complete nodules analysed) (Fig. 8b; Fig. S7-8). 

In these nodules, vascular bundles are present in the most distal region of the nodule. 

Infection threads in these three Tephrosia species only exist for a very short period. Clusters 

of small dividing cells with released bacteria were detectable (Fig. 8c, d; Fig. S7-8), even 

though they are not located in boundary/parenchyma tissue like in I. argentea, I. tinctoria, or 

soybean nodules, but more similar to nodules of the three Indigofera species from the 

Tethyan clade (Fig. 8d; Fig. S4-6).  

Based on these observations we conclude that Tephrosia species form determinate nodules 

in a similar way as Indigofera species. 

 
Fig. 8 Longitudinal sections of primordia and nodules formed on T. villosa. (a) Primordia were induced in the outer 

most cortical cell layers (arrow); (b) Determinate nodules with no meristem at the apex formed on T. villosa; (c) 

Cluster of dividing cells at the apex of nodule; (d) Zoom in of dividing cells (arrow) with intracellular bacteria in 

nodule showed in (c). VB, vascular bundle; C, cluster of dividing cells; S: symbiosome; Scale bars: a, 25 µm; b, 50 

µm; c, 75 µm; d, 5 µm.  

Discussion 

We showed that Indigofera species make nodules that do not have a persistent meristem and 

they are formed from the outermost root cortical cell layer (Fig. 3; Fig. S3-6). Therefore, we 

classify them as determinate nodules. They were previously considered to be indeterminate, 

because mature nodules can have a cluster of dividing cells at their apex (Oono et al., 2010; 

Gehlot et al., 2012). However, this cluster of dividing cells is the result of mitotic reactivation 
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of nodule parenchyma and boundary cells by which a secondary nodule meristem is formed 

(Fig. 2a, b; Fig. 6a, b; Fig. S3-6). Also, Tephrosia nodules, that previously also were 

classified as indeterminate (Oono, et al., 2010), were shown to be determinate (Fig. 8a, b). 

This implies that all analysed species belonging to the tribe Indigofereae and to the milletioids 

clade form determinate nodules. We hypothesise that the common ancestor of IRLC, 

robinioids clade, Indigofera, and milletioids clade (Fig. 1) formed determinate nodules and 

the indeterminate nodule type evolved in an ancestor of the IRLC and robinioids clade. 

The cluster of dividing cells that can occur at the apex of mature I. argentea nodules is formed 

by mitotic reactivation of fully differentiated nodule cells. We reach this conclusion based 

on the observation that most young nodules have no apical meristem. Further, the cluster of 

dividing cells varies in size, with the smallest cluster being formed by a single cell that has 

divided once (Fig. 6a). These clusters of dividing cells can easily be recognized as they 

contain numerous infection threads (Fig. 2b; Fig. 6a, b). These occur even in the most distal 

cells within these clusters and cells containing infection threads are still able to divide (Fig. 

2c; Fig. 3d). The occurrence of infection threads as well as their ontogeny make these 

dividing cells markedly different from the meristem cells in indeterminate nodules (Xiao et 

al., 2014). Also, the 4 other Indigofera species, that we studied, form determinate nodules 

and can form secondary clusters of dividing cells. 

Indigofera nodules lose their primary meristematic cells at a relatively early stage and this 

results in peripheral tissues that completely surround the central tissue. This was shown to be 

the case for endodermis and nodule parenchyma (Fig. 5a-c). Also during Tephrosia nodule 

development an apical meristem is not formed in primordia and mitotic activity is not 

maintained. Therefore, Tephrosia also forms determinate nodules. 

At the site where a secondary cluster of dividing cells is formed the nodule parenchyma and 

endodermis are dedifferentiated, as ENOD2 expression and Casparian strips, respectively, 

are lost (Fig. 6b, c; Fig. 7). This is probably required for growth into an elongated nodule 

(Fig. 2a; Fig. S1a). It seems probable that cells derived from dedifferentiated nodule 

parenchyma and boundary layer form the secondary cluster of dividing cells. 

We showed that Indigofera and Tephrosia species form secondary clusters of dividing cells. 

This ability to form secondary clusters of dividing cells could be a trait that is more 

widespread among legumes that form determinate nodules. Soybean nodules are iconic 

determinate nodules. However, it has been shown that during recovery after salt stress, 

clusters of dividing cells are formed from fully differentiated nodule parenchyma cells. These 

cells become infected by rhizobia (James et al., 1993). It has been shown that in Sesbania 

nodules mitotically active cells can be present in peripheral tissues. This was demonstrated 

by in situ hybridization with a mitotic cyclin probe (Fernández-lópez et al., 1998). Whether 

such mitotically activated cells can become infected is not known. We hypothesise that under 
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specific conditions, formation of secondary clusters of dividing cells can be induced in 

determinate nodules. In some species of genera such as Indigofera, the “normal” growth 

conditions in the lab are sufficient to trigger this. However, in other species stress or other 

environmental factors, that in most cases are still unknown, are probably needed. The 

soybean experiments indicate that this can involve very specific conditions as in this species 

the formation of a secondary cluster of dividing cells, after transient salt stress, even 

depended on the light quality (James et al., 1993). 

Determinate nodules of species of Indigofera and the milletioids clade (e.g. Tephrosia, 

soybean) are formed from the outermost cortical cell layer (Fig. 3a-c; Fig. 8a; Fig. S3-8). In 

contrast, indeterminate nodules of IRLC species like Medicago, are formed from inner 

cortical cell layers. Detailed characterization of early steps of Medicago nodule (primordium) 

development (Xiao et al., 2014) shows that the meristem is formed from the middle cortical 

cell layer (3th layer). This cell layer divides later than the inner cortical cell layers (4th and 5th 

layer). The infection threads enter cells derived from the inner cortical cells, but it can only 

pass the meristem-forming middle cortical layers before it is mitotically activated or when 

only a few anticlinal divisions have occurred. The cells of the meristem of these 

indeterminate nodules are not penetrated by an infection threads, whereas the daughter cells 

are. So the formation of a non-infected apical meristem seems to require a cortical cell layer 

that is located more outward than the cortex-derived cells that become infected (and form the 

proximal part of the nodule). This strongly suggests that in cases where cells derived from 

the outermost cortical cell layer become infected, a non-infected apical meristem cannot be 

formed in the nodule primordium. To our knowledge it also has never been shown that an 

apical meristem is formed in a nodule primordium that is formed from the outermost cortical 

cell layer. This idea underlines the conclusion that Indigofera and Tephrosia species form 

determinate nodules as in both genera nodule primordia are formed from cells derived from 

the outermost cortical cell layer. 

The formation of a secondary cluster of dividing nodule cells is a fundamentally different 

developmental process than the formation of a non-infected persistent apical meristem that 

is formed at the primordium stage. The indeterminate growth that drives nodule elongation 

in genuine indeterminate nodules (e.g. Medicago) or determinate nodules (e.g. Indigofera) is 

the result of convergent evolution. To understand legume nodule evolution, it will be 

important to distinguish “indeterminate nodule growth” driven by a primary persistent 

meristem from that controlled by a secondary cluster of dividing cells. The latter occurs in 

determinate nodules. The wrong qualification of Indigofera and Tephrosia nodules indicates 

that this might have happened in (many) other legume species. This is almost certainly the 

case for species that form nodule primordia from outer cortical cells. This is for example the 

case in Lupinus where primordia originate from the outer cortex (Tang et al., 1992; James et 

al., 1997; Gonzalez-Sama et al., 2004; Lotocka, 2008), but nodules are classified as 

indeterminate. Lupinus has clusters of dividing cells and these cells remain mitotically active 
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after release of rhizobia (Gonzalez-Sama et al., 2004; Fedorova et al., 2007). This seems very 

similar to Tephrosia (Fig. 8c). Therefore, to understand nodule evolution it will be important 

to reanalyse nodule development in other tribes. 

Our studies show that all studied genera within the milletioids clade and Indigofereae form 

determinate nodules. Further, Lupinus nodule development might be very similar to 

Tephrosia and Indigofera nodule development. Therefore, we assume that the common 

ancestor of the 4 selected groups (node 15) formed determinate nodules. This suggests that 

the genuine indeterminate nodule type first evolved within the IRLC clade. The robinioids 

clade is rather puzzling as it contains genera (e.g. Robinia) that are reported to make 

indeterminate nodules as well as genera (e.g. Lotus) that form determinate nodules. It is likely 

that the development of determinate nodules (Lotus, Sesbania) within this tribe differs from 

that of the other determinate nodules within the 4 selected groups. The determinate nodules 

of Sesbania as well Lotus are formed from cells derived from the middle cortical cell layers, 

whereas all other determinate nodules are formed from the outermost cortical cell layers. 

Further, Sesbania can even develop indeterminate as well as determinate nodules 

(Fernández-lópez et al., 1998; Goormachtig et al., 1998). Taken together it seems equally 

well possible that within the robinioid clade an evolution from indeterminate back to 

determinate nodule type occurred or that indeterminate nodules evolved independently. 

Materials and Methods 

Plant material, rhizobial strain isolation, and root inoculation 

This study included 5 Indigofera species and 3 Tephrosia species (Table 1), of which I. 

argentea and I. spinosa were collected from Jizan desert, Saudi Arabia. I. linnaei, I. 

hochstetteri, I. tinctoria, T. wallichii, T. villosa, and T. purpurea were provided by Hukam S. 

Gehlot from Jai Narain Vyas University, Jodhpur, India (Gehlot et al., 2012). All Indigofera 

species and Tephrosia species were grown in sand from Jizan desert. Rhizobia were isolated 

as described in Chapter 2 and were used to inoculate plants (Table 1). Seeds germination and 

root inoculation were performed as described in Chapter 2. 

Tissue embedding, sectioning and section staining  

Root segments were stained with 0.01% methylene blue (w/v) to detect primordia with a 

binocular. Primordia and nodules were fixed with 5% glutaraldehyde (v/v) in 0.05M sodium 

phosphate buffer (pH 7.0) for 15 hours at 4°C, after vacuum infiltration for 30 min. 

Subsequently, the material was dehydrated in an ethanol series and then embedded in 

Technovit 7100 (Heraeus Kulzer) according to the manufacture’s protocol. Longitudinal 

sections (7 µm thick) were made by using a RJ2035 microtome (Leica Microsystems, 

Rijswijk, the Netherlands) and stained for 3 min in 0.05% Toluidine Blue O (w/v). Sections 



Evolution of determinate and indeterminate nodules 

79 

 

were examined with a DM5500B microscope equipped with a DFC425C camera (Leica 

Microsystems, Wetzlar, Germany). 

Table 1 Indigofera and Tephrosia species, as well as rhizobia isolates used for inoculation 

Species Rhizobial strains 

Indigofera  

I. argentea Bradyrhizobium elkani, SA281 

I. spinosa Bradyrhizobium elkani, IS003 

I. hochstetteri Bradyrhizobium elkani, IH010 

I. linnaei  Bradyrhizobium elkani, IL001 

I. tinctoria  Ensifer kostiense, IT001 

Tephrosia  

T. wallichii Ensifer saheli, TW010 

T. villosa  Ensifer sp., TV001 

T. purpurea  Bradyrhizobium elkanii, TP005 

RNA isolation and transcriptome analysis 

RNA isolation and de novo transcriptome analysis was performed by as described (Chapter 

2). A putative Indigofera ENOD2 orthologue (IaENOD2, Fig. S2a) was identified using 

GmENOD2A (X16875.1), GmENOD2B (X16876.1) and MtENOD2 (XM_013613246) as 

query sequences.  

RNA in situ hybridization 

Nodules were fixed with 5% glutaraldehyde in 0.05M sodium phosphate buffer (pH 7.0) 

(RNase free) and embedded in paraffin (Paraplast X-tra, McCormick Scientific). Nodule 

sections of 5 µm thick were prepared with a RJ2035 microtome. IaENOD2 probe set 

containing 20 oligonucleotide pairs was designed and produced by Affymetrix based on the 

IaENOD2 sequence and covered the region 30-905 nt. In situ hybridization was conducted 

according to the user manual for ViewRNA ISH Tissue 2-plex Assay 

(http://www.panomics.com/UserDocs). Slides were analysed with an AU5500B microscope 

equipped with a DFC425c camera (both Leica). 

Expression analysis and histochemical GUS staining 

Expression analysis of nodules containing promoter-GUS fusions were performed as 

described in Chapter 2.   

http://www.panomics.com/UserDocs
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Supplementary Figures 

 

Fig. S1 I. argentea nodules. (a) Elongated nodule with lenticels (arrow) in I. argentea; (b) Bacteria are released in 

some cells of bigger cluster of dividing cells; (c) Cluster of dividing cells just adjacent to the central tissue, dividing 

infected cell is present (arrow). VB, vascular bundle; C, cluster of dividing cells; S: symbiosome; Scale bars: b-c, 

25 µm. 
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  CGCCGGGATCACAAAGCCAGATATGTCTTCTTCTATACACTCCTCAATAG 

  CTTTGCTCCTACTTGGAGTAATGGTGACTCAAGTCACCACTCCAGTCTTG 

  GGGAACTTTTACAACCCACCCACTTACGAGCCTCCACCCTCCTATGTCTA 

  TGAGCCACCACCACCGGTGTATAAGCCACCATTCTACCCACCACCAATTT 

  ACCACCCTCCACATGAGAAGCCACCTCCCGAGAAACCACCGTACGAGAAA 

  CCGCCTCACGAGAAGCCTCCGTATCAAAAACCACCCTACGAGAAGCCTCC 

  GTATGAGAAGCCGCCTCACGAGAAACCACCTCATGAAAAGCCTCCATACG 

  AGAAGCCACCTCATGAGAAACCCCCATATGAGAAGCCACCTCATGAAAAA 

  CCCCCATACGAGAAACCACCACATGAGAAGCCACCACATGAGAAACCACC 

  TTATGAGAAGCCACCATATGAAAAGTCACCCCCAGAATACCAACCACCTC 

  CAGAATACCAGCCTCCTCACGAGAAGCCACCACCGGAATACGAGCCACCA 

  CCAAAGTATGAGCCACCACATGAAAAGCCCCCGCCAGAGTATGAGCCTCC 

  TCACGAGAAGCCACCCCCAGAGTACGAACCACCACCCACATATGAACCAC 

  CTTATGAGAAGCCACCACCAGTGTATGAACCGCCATATGAGAAGCCACCA 

  CCAGTGTACGAACCGCCATATGAGAAGCCACCACCAGTGTACGAACCGCC 

  ATATGAGAAGCCACCACCAGTGTACGAACCGCCATATGAGAAGCCACCAC 

  CAGTGTACGAACCGCCATATGAGAAGCCACCACCAATGTACGAACCGCCT 

  TATGAGAAGCCACCACCAGTTTATGAACCACCACCTCATGAGAAGCCACC 

  CTTTTACAAACCTCCTTATCAGAAGCCACCATCCAAAGGCAAAAAGAAGT 

  AGAAACCAGTCATGCATGTGACATATTTTAATTTCTTTTACTAGTCTAAA 

  GTAATAAAGCAGTCCTTTATCTCCTATAAATTAAAGTTCTGTTTTGTTCG 

  TTCAGGAAGCAAGAAGCAGTTTTTACTATATGTCAATTACAATGTTGTCT 

  TTTGGGTCCTGTCATTGTTCTAAAAAATAAAGGCTCTCTATACGCCTGTG 

  TGTAATATCTTTCCATTTCCGTTTCAGCAACCCCATAATTGTAATAATAT 

  TGTTCCCTTTTCTATGGCTAATTAAATACGATACTACTTTTTC 

(b)1        10        20        30        40        50 
  |        |         |         |         |         | 

  MSSSIHSSIALLLLGVMVTQVTTPVLGNFYNPPTYEPPPSYVYEPPPPVY 

  KPPFYPPPIYHPPHEKPPPEKPPYEKPPHEKPPYQKPPYEKPPYEKPPHE 

  KPPHEKPPYEKPPHEKPPYEKPPHEKPPYEKPPHEKPPHEKPPYEKPPYE 

  KSPPEYQPPPEYQPPHEKPPPEYEPPPKYEPPHEKPPPEYEPPHEKPPPE 

  YEPPPTYEPPYEKPPPVYEPPYEKPPPVYEPPYEKPPPVYEPPYEKPPPV 

  YEPPYEKPPPVYEPPYEKPPPMYEPPYEKPPPVYEPPPHEKPPFYKPPYQ 

  KPPSKGKKK 
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(c)  

 

(d) 

 

Fig. S2 (a) Nucleotide sequence of IaENOD2 transcript, a length of 930bp open reading frame (ORF) from site 23 

to 952 was underlined; (b) Translated amino acid sequence of IaENOD2 ORF, including eleven PPHEK repeats and 

one PPPHEK, fifteen PPYEK repeats, six PPPVYE repeats and six variants with one amino acid replacement 

(E/K/T/M); (c) IaENOD2 transcript expression level in nodule is about 23-fold comparing to root (RPKM); (d) 

Phylogenetic tree of ENOD2 orthologues from four species indicating IaENOD2 is more related to two soybean 

ENOD2. 
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Fig. S3 Longitudinal sections of primordia and nodules formed on I. tinctoria. (a) Primordia were induced in the 

outer most cortical cell layers (arrow); (b) Determinate nodules with no meristem at the apex formed on T. villosa; 

(c) Cluster of dividing cells at the apex of nodule; (d) Zoom in of dividing cells (arrow) with intracellular bacteria 

in nodule showed in (c). VB, vascular bundle; C, cluster of dividing cells; IT: infection thread; Scale bars: a-b, 25 

µm; c, 75 µm; d, 7.5 µm. 

 

Fig. S4 Longitudinal sections of primordia and nodules formed on I. spinosa. (a) Primordia were induced in the 

outer most cortical cell layers (arrow); (b) Determinate nodules with no meristem at the apex formed on T. villosa; 

(c) Cluster of dividing cells at the apex of nodule; (d) Zoom in of dividing cells (arrow) with intracellular bacteria 

in nodule showed in (c). VB, vascular bundle; C, cluster of dividing cells; IT: infection thread; Scale bars: a-b, 25 

µm; c, 75 µm; d, 7.5 µm. 
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Fig. S5 Longitudinal sections of primordia and nodules formed on I. linnaei. (a) Primordia were induced in the outer 

most cortical cell layers (arrow); (b) Determinate nodules with no meristem at the apex formed on T. villosa; (c) 

Cluster of dividing cells at the apex of nodule; (d) Zoom in of dividing cells (arrow) with intracellular bacteria in 

nodule showed in (c). VB, vascular bundle; C, cluster of dividing cells; S: symbiosome; Scale bars: a-b, 25 µm; c, 

75 µm; d, 7.5 µm. 

 

Fig. S6 Longitudinal sections of primordia and nodules formed on I. hochstetteri. (a) Primordia were induced in the 

outer most cortical cell layers (arrow); (b) Determinate nodules with no meristem at the apex formed on T. villosa; 

(c) Cluster of dividing cells at the apex of nodule; (d) Zoom in of dividing cells (arrow) with intracellular bacteria 

in nodule showed in (c). VB, vascular bundle; C, cluster of dividing cells; S: symbiosome; Scale bars: a-b, 25 µm; 

c, 75 µm; d, 7.5 µm. 
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Fig. S7 Longitudinal sections of primordia and nodules formed on T. wallichii. (a) Primordia were induced in the 

outer most cortical cell layers (arrow); (b) Determinate nodules with no meristem at the apex formed on T. villosa; 

(c) Cluster of dividing cells at the apex of nodule; (d) Zoom in of dividing cells (arrow) with intracellular bacteria 

in nodule showed in (c). VB, vascular bundle; C, cluster of dividing cells; S: symbiosome; Scale bars: a-b, 25 µm; 

c, 75 µm; d, 7.5 µm. 

 

Fig. S8 Longitudinal sections of primordia and nodules formed on T. purpurea. (a) Primordia were induced in the 

outer most cortical cell layers (arrow); (b) Determinate nodules with no meristem at the apex formed on T. villosa; 

(c) Cluster of dividing cells at the apex of nodule; (d) Zoom in of dividing cells (arrow) with intracellular bacteria 

in nodule showed in (c). VB, vascular bundle; C, cluster of dividing cells; S: symbiosome; Scale bars: a, 25 µm; b-

c, 75 µm; d, 5 µm. 
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Abstract 

Rhizobia induce nodules on legume roots in which rhizobia differentiate into an 

endosymbiotic form named bacteroid. In legume species of the IRLC clade (e.g. pea, 

Medicago), bacteroids undergo a physiological and morphological transformation, which is 

induced by Nodule-specific Cysteine Rich peptides (NCRs). This involves terminal bacteroid 

differentiation and an increase in bacteroid size and ploidy. The role of NCRs in inducing 

bacteroid differentiation was considered to be unique for IRLC legumes. However recently 

it was shown that in legumes of the dalbergioids clade (e.g. Aeschynomene), bacteroid 

undergo a similar transformation, which is also controlled by NCR-like peptides. Here, we 

show that bacteroids in Indigofera argentea nodules, from the indigoferoids clade, are also 

elongated or branched and polyploid, similar to bacteroids in nodules of IRLC and 

dalbergioid legumes. Analysis of I. argentea transcriptomes, identified a group of NCR 

peptides. A possible role of NCRs in bacteroid differentiation in I. argentea nodules and the 

independent evolution of NCRs in the IRLC, dalbergioids and indigoferoids clades is 

discussed.  
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Introduction 

Rhizobia can establish a N2-fixing nodule symbiosis with legumes. This symbiosis occurs in 

all three legume sub-families, but is especially prominent in the Papilionoideae subfamily. 

This subfamily contains the model legumes Lotus and Medicago, as well as most legume 

crops like pea, cowpea, clover and soybean. In legume nodules, the rhizobia are hosted 

intracellularly in specialized infected nodule cells, where they differentiate into N2-fixing 

bacteroids. In species of the IRLC clade (Fig. 1), e.g. Medicago and pea, bacteroids markedly 

enlarge, which is correlated with endoreduplication of the bacteroids and a loss of the ability 

to return to the free-living bacterial state. This bacteroid enlargement is triggered by Nodule-

specific Cysteine Rich (NCR) peptides in species of the IRLC clade. However, more recently 

it was shown that NCR induced bacteroid enlargement also occurs in nodules of some 

Aeschynomene species that belong to the dalbergioids clade (Fig.1) (Guefrachi et al., 2015; 

Czernic et al., 2015). As increased bacteroid size occurs rather frequently within the 

Papilionoideae (e.g. Tephrosia virginianum of the milletioids and Cytisus scoparius of the 

genistoids clade (Fig. 1)) (Oono et al., 2010a), it seems possible that NCR triggered bacteroid 

enlargement evolved multiple times within the Papilionoideae subfamily, or represents an 

ancestral form which has been lost several times. To obtain more insight in this, we decided 

to study bacteroid differentiation in the indigoferoids clade. This clade has a crucial 

phylogenetic position (Fig. 1), as it represents an early branching lineage of the 

“indigoferoids/milletioids” clade (Lavin et al., 2005; Wojciechowski et al., 2004). 

 

Fig. 1 Clades of the Papilionioideae subfamily. Between brackets names of genera are mentioned and it is indicated 

which bacteroid morphotype they make. E-/S-morphotype (○) and U-morphotype (●).  
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In legumes, intracellular bacteroids are in general hosted in a membrane compartment of the 

host and this transient organelle is named symbiosomes (Roth and Stacey, 1989). Based on 

their morphology, three distinct bacteroid/symbiosome morphotypes have been described 

(Oono et al., 2010a; Bonaldi et al., 2011; Czernic et al., 2015). These are elongated bacteroids 

(E-morphotype), spherical bacteroids (S-morphotype) and unmodified bacteroids (U-

morphotype). The latter have a morphology similar to that of free-living bacteria. They occur 

for example in Lotus, soybean, and Phaseolus, and their bacteroids have a DNA content of 

1C (Mergaert et al., 2006). 

The E-morphotype is very common in the IRLC clade and is correlated with 

endoreduplication and terminal differentiation. This was first described for bacteroids of, 

among others, pea nodules (Bisseling et al., 1977), and is now studied in most detail in 

Medicago (M. truncatula) (Mergaert et al., 2003; Mergaert et al., 2006; Wang et al., 2010).  

E-morphotype formation has been shown to be correlated with NCR triggered 

endoreduplication in all studied species. In Medicago, bacteroids increase 5 to 10-fold in size 

and their DNA content can be as high as 24C (Mergaert et al., 2006). Also the S-morphotype 

formed in Aeschynomene nodules correlates with endoreduplication and on average the 

bacteroid DNA content is 7C (Guefrachi et al., 2015; Czernic et al., 2015).  

Medicago has the best studied NCR family, containing more than 600 genes (Mergaert et al., 

2003; Young et al., 2011). It has been shown that these genes are expressed in different 

regions of the nodule and so are involved in different stages of bacteroid development. 

Although Medicago has numerous NCR genes, individual NCRs (e.g. MtNCR169, 

MtNCR211) are essential for full bacteroid development, as mutations in these NCR genes 

results in incomplete bacteroid development (Horvath et al., 2015; Kim et al., 2015). Further, 

the introduction of the MtNCR035 gene into Lotus is sufficient to induce the formation of 

enlarged bacteroids (Van de Velde et al., 2010). 

MtNCR247 peptide has been reported to penetrate free living S. meliloti. It interacts with 

FtsZ which is required for septum formation and this might contribute to the arrest of cell 

division (Farkas et al., 2014; Penterman et al., 2014). In free-living S. meliloti cells, 

MtNCR035 initially localizes at the cell envelope and later intracellularly at the bacterial 

division plane, which is in agreement with a role of MtNCR035 in inhibition of cytokinesis 

(Van de Velde et al., 2010). 

The overall amino acid composition of NCRs is highly diverse, however, they have some 

common characteristics (Mergaert et al., 2003; Czernicet al., 2015). The mature peptides are 

relatively short, in general 30-55 amino acids long, and contain 4 or 6 conserved cysteines. 

Further, all NCR genes are specifically expressed in nodules. 
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NCRs are related to antimicrobial peptides that are named defensins. Plant defensins are 

found ubiquitously throughout the plant kingdom and can have for example antibacterial or 

antifungal activity. In general, mature defensins are 45-70 amino acids long. Their overall 

amino acid composition also is highly diverse, but they have 8 cysteines. In Medicago, most 

defensin genes have a tissue or organ specific expression, some are, like NCRs, specifically 

expressed in nodules (Maroti et al., 2015). 

Other IRLC clade species (e.g. Glycyrrhiza uralensis, Oxytropis lamberti, Astragalus 

canadensis, Onobrychis viciifolia, Galega orientalis, Ononis spinosa, Cicer arietinum, 

Pisum sativum, and Medicago sativa) also have NCR families, but in general they are smaller 

than the Medicago NCR family. For example, 353 NCR transcripts were identified in pea 

and C. arietinum has 63 putative NCR genes (Alves-Carvalhoet al., 2015; Montiel et al., 

2016; Montiel et al., 2017). NCRs in all the studied IRLC clade species share conserved 

cysteine spacing pattern, containing 4 or 6 cysteines (Fig. 3).    

Also outside the IRLC clade bacteroid endoreduplication is correlated with NCR peptides 

made by the host. For example, Lotus and soybean that have U-morphotype bacteroids (1C), 

do not have NCR genes (Mergaert et al., 2003). In contrast, Aeschynomene species have 

NCR-like families with about 40-80 members (Czernic et al., 2015; Guefrachi et al., 2015). 

Aeschynomene NCR-like peptides are short and the overall amino acid composition also is 

highly diverse. They are classified into two groups. One group has 8 conserved cysteines 

giving rise to a typical defensin signature, the other group has 6 cysteines (Czernic et al., 

2015). However, the lengths of the loops in between cysteines are highly diverse. 

The processing of NCR peptides includes removal of the signal peptide by the signal 

peptidase complex, of which DNF1 is a subunit (Wang et al., 2010). Medicago has a nodule 

specific MtDNF1 and a non-symbiotic MtDNF1-like gene. A loss of function of MtDNF1 

leads to non-fixing nodules in which bacteria have a U-morphotype. In these nodules, the 

unprocessed NCRs are not targeted to the symbiosomes. Aeschynomene only has a single 

DNF1(-like) gene. Knock down of Aeschynomene DNF1 resulted in defects in bacteroid 

differentiation (Czernic et al., 2015). However, as Aeschynomene has a single DNF1(-like) 

gene, this knock down may have also affected the non-symbiotic functions of DNF1-like, 

which could have resulted in secondary effects on bacteroid development. 

In this study, we show that I. argentea forms elongated and branched bacteroids. Bacteroid 

size and genomic amplification were studied by flow cytometry. This showed that the average 

increase in size is 7 fold, whereas their average genome size is 3C. Nodule-specific NCR-

like peptides were identified from the I. argentea de novo transcriptome assembly. Further, 

in general, >95% of bacteroids are terminally differentiation. It is discussed whether the 

NCRs are involved in the induction of this terminal differentiation. 
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Results 

Elongated and branched bacteroids in I. argentea nodules 

We studied the morphology of bacteroids in I. argentea nodules. Three months after 

inoculation with Bradyrhizobium elkanii (SA281), bacteroid morphology was studied by 

light microscopy. This showed that most bacteroids from I. argentea nodules are 

substantially enlarged and several have a branched Y-shape (E-morphotype) (Fig. 2b), 

whereas free-living B. elkanii bacteria are short rods (U-morphotype) (Fig. 2a).   

To quantify the increase in size and DNA content, bacteroids were analysed by flow 

cytometry. This showed that bacteroids have on average a 7-fold enlarged size and their DNA 

content peaks at 3C (Fig. 2c, d). 

 

 

Fig 2. Properties of free-living B. elkanii (SA281) bacteria and bacteroids isolated from I. argentea nodules. 

Morphology of free-living bacteria (a) and bacteroids isolated from nodules (b) stained with 0.1% Safranin O; (c) 

Size of bacteria and bacteroids measured by flow cytometry; (d) DNA content of DAPI-stained bacteria and 
bacteroids measured by flow cytometry. Green, free-living bacteria; red, bacteroids isolated from nodules. Bars: 

5µm. 
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The viability of bacteroids from five I. argentea nodules was measured independently as 

described in methods. In four of these nodules, > 95% of the bacteroids lost the ability to 

divide. In one nodule, about 25% cells were able to form colonies.  

As I. argentea bacteroids have an increased size and DNA content and appear to be terminally 

differentiated, we studied whether I. argentea has NCR genes. 

I. argentea NCR peptides 

To identify I. argentea NCR peptides, a de novo transcriptome was constructed using RNA-

seq data from nodules, roots, leafs, flowers and pods (chapter 2). Putative NCR-like peptides 

a           1       10        20        30        40        50        60  

            |--------|---------|---------|---------|---------|---------| 

IaNCR1      MEGRKVIGMLMVLITIKSLVMLVVADTASTKVTSPSITKTFQS--IEKSS-VPSTGTSDQ 

IaNCR2      MKGKEVIGILMVIAIIESLVMLVVAD---TKVTSPPITKTSQS--MEKSSVVPSIVTSDQ 

IaNCR3      MEGK-VIGMLTFMLIVAAY-KITAGDLAPKGIFSTQISPSTKSQLIEDST----IKFGAE 

 

IaNCR1      AHKLGGG-PHCPKVCQQQCSGSVIG----FCFDACMNRCMFMPPGFNIRFRNIFHDIGSD 

IaNCR2      AHKLGKSVPQCLRACEQQCRGSVDP----FCFETCMSRCIMMSGSFNMPFGSIFHHIG-D 

IaNCR3      LRDFG----ECTGLCQMHCMDANNPADFPVCFNNCLGHCIINSPK------------GT- 

 

IaNCR1      GATNSISMKPNSQDEAVFEWPRNAVPWPPTFERKG 

IaNCR2      -A-NEVEGKNN------------------------ 

IaNCR3      --MDNIH---------------------------- 

 

MsDef2.1    MEKKSIAGL-CFLFLILFVAQEIVVTEARTCEHLADTYRGPCF---TDASCDDHCKNKAH  

MsDef3.2    MEKKSLAAL-CFLFLVLFVAQEIVVTEAKTCENLADTFRGPCF---TNGACDDHCKNKEH 

MtDef2.1    MEKKSIAGL-CLLFLVLFVAQEIAVTEARTCEHLADTYRGPCFTEG---SCDDHCKNKAH  

PeaDRR39    MEKKSLAALSFLLLLVLFVAQEIVVTEANTCEHLADTYRGVCFTNA---SCDDHCKNKAH  

IaNCR4      MERKSLAGL-CFFLIVFLAPQEILV-KAEKCEKPSILFPEGCIGEVGKGNCEYVCKIGEG  

 

MsDef2.1    LISGTCHR-LQCFCTQNC 
MsDef3.2    LVSGRCRDDFRCWCTRNC 

MtDef2.1    LISGTCHN-FQCFCTQNC 

PeaDRR39    LISGTCHD-WKCFCTQNC 
IaNCR4      LLGGICKEHQKCFCA--C 

b 

 
Fig. 3 Alignment and cysteine signatures of I. argentea NCR peptides. (a) The alignments were made using MEGA5 

and adjusted manually; (b) Comparison of the cysteine pattern of IaNCR peptides with those of IRLC clade species, 

Aeschynomene species, and defensin-like peptides. 
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were selected in the following way. The transcripts are nodule specific (with more than 20 

reads mapped to the nodule transcriptome and with less than 5 reads mapped to the other 

samples). Further, encoded proteins are less than 120 amino acids long, contain 4 or more 

cysteines in their mature peptide and they have a signal peptide 

(http://www.cbs.dtu.dk/services/SignalP/) (Cut-off threshold = 0.5). This in silico analysis 

identified 3 putative I. argentea NCR peptides. By performing BLASTp searches against the 

same transcriptome data, using these 3 candidate peptides, 1 more putative NCR peptide was 

identified. These peptides were named IaNCR1, IaNCR2, IaNCR3, and IaNCR4 (Fig. 3a). 

The lengths of the 4 peptides were between 48 and 122 amino acids long (Fig. 3a). IaNCR1, 

IaNCR2, and IaNCR3 peptides contain 6 cysteine residues, which form two C-X3-C-X3-C 

domains (shown in boxes in Fig. 3a, b). The signal peptides (underlined) are located at the 

N-terminus. Further, IaNCR1 and IaNCR2 are 63% identical. The two C-X3-C-X3-C 

domains are unique in IaNCR peptides, and absent in all known IRLC clade NCRs and 

Aeschynomene NCR peptides. One C-X3-C-X3-C domain is present in some Medicago 

defensins (e.g. MtDef1.1, MsDef1.2) (Hanks et al., 2005).  

IaNCR4 peptide has 8 cysteine residues. This cysteine pattern is very similar to that of 

defensins in for example Medicago and pea (MsDef2.1, MsDef3.2, MtDef2.1, and PsDRR39), 

and is conserved in all studied plant defensins (Van der Weerden, 2013). Their overall 

homology, however, is low (~ 30%) (Fig. 3a).  

The IaNCR4 cysteine pattern is named Indigofera NCR-motif a, and the IaNCR1/2/3 pattern 

Indigofera NCR-motif b (Fig. 3b). 

To study the biological function of IaNCR peptides, we firstly checked the occurrence of the 

IaNCR transcripts in our RNA-seq data and used RT-qPCR to determine expression levels 

during nodule development.  

Expression of IaNCR genes during nodule development 

Based on the transcriptome analysis, these 4 putative IaNCR genes are expressed in nodules, 

and transcripts are not detectable in uninfected root, leaf, flower, and pod (Fig. 4a). IaNCR1 

is more than 60-fold higher expressed than the other 3 IaNCR genes in 4 weeks old nodule. 

To confirm the nodule specific expression and to determine the expression level during 

nodule development of these 4 putative IaNCR genes, we performed RT-qPCR analyses. 

http://www.cbs.dtu.dk/services/SignalP/
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Fig. 4 (a) Expression levels of IaNCR-like genes in nodules and non-symbiotic organs based on RNAseq analysis, 

(b) The relative expression at different nodule stages by RT-qPCR analyses, IaLb as a control of nodule development. 

Error bar: Standard error of the mean, +/- 2 SEMs.  

RNA was isolated from uninfected roots (time 0) and inoculated roots/nodules at different 

time points (1, 2, 3, and 4 weeks post inoculation). Four replicates for each time point were 

collected. Leghemoglobin (IaLb) mRNA was used as control. IaLb transcript started to 

accumulate at 1 week post inoculation after which it gradually increased. The 4 IaNCR 

transcripts were undetectable in uninfected roots. They started to accumulate at 1 week albeit 

at a rather low level (Fig. 4b). IaNCR1, IaNCR3 and IaNCR4 expression increased gradually 

0

50

100

150

200

250

9000

10000

Leaf Pod Flower Root Nodule

E
ex

p
re

ss
io

n
 l

ev
el

 (
R

P
K

M
)

IaNCR2

IaNCR3

IaNCR4

IaNCR1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

IaLb IaNCR1 IaNCR2 IaNCR3 IaNCR4

N
o
rm

al
iz

ed
 e

x
p

re
ss

io
n

 b
y
 R

T
-q

P
C

R

0

1 w

2 w

3 w

4 w



Chapter 5 

96 

 

at 2, 3, and 4 weeks (Fig. 4b). IaNCR2 had reached the highest level at 2w after which it 

remained more or less constant (Fig. 4b). 

To further study the role of the IaNCR peptides in bacterial differentiation, we studied first 

whether I. argentea has a nodule specific DNF1 gene (Van de Veld et al., 2010; Wang et al., 

2010). 

Identification of IaDNF1-like genes 

A BLASTp search against the I. argentea transcriptome using MtDNF1, identified two 

highly homologous proteins. These two proteins are both 167 amino acids long with 5 amino 

acids differences indicated in bold (Fig. 5a). They are 85.1% identical to MtDNF1, 89.9% to 

MtDNF1-like and 92.9% to AeDNF1, respectively (Fig. 5a) (Czernic et al., 2015). 

Subsequently, we addressed the question whether one of the isoforms is nodule specifically 

expressed.  

To answer this question, we compared their expression levels in different organs using the 

RNA-seq data. This showed that the two I. argentea DNF1(-like) transcripts have a similar 

expression level in the different organs (Fig. 5b). Both transcripts occur in nodules at a similar 

level. Based on this expression pattern, we named the two genes IaDNF1-like1 and IaDNF1-

like2.  

Discussion 

Here we show that B. elkanii differentiates into E-morphotype bacteroids in I. argentea 

nodules and this is correlated with endoreduplication. Most of the bacteroids lost their 

viability. This terminal differentiation of bacteroids is accompanied with the expression of 

several IaNCR genes. The encoded IaNCR peptides have a different cysteine signature 

compared to their counterparts in the IRLC clade or in Aeschynomene species. This suggests 

that NCRs evoluved independently in 3 clades of the Papilionoideae subfamily. 

B. elkanii forms E-morphotype bacteroids in I. argentea, resulting in an about 7-fold increase 

in size. This increase in size correlates with bacteroid DNA content of an average 3C (Fig. 

2). E-morphotype bacteroids in Medicago increase 5 to 10-fold in size and their DNA content 

can be as high as 24C (Mergaert et al., 2006). DNA content of Aeschynomene E- and S-

morphotype bacteroids peaks at 7C and 16C, however their size enlargement has not been 

described (Guefrachi et al., 2015; Czernic et al., 2015). The enlargement of Bradyrhizobium 

bacteroids in I. argentea and Sinorhizobium bacteroids in Medicago are rather similar. 

However, the polyploidy level in Sinorhizobium bacteroids is much higher than in 

Bradyrhizobium bacteroids in nodules of I.  argentea and Aeschynomene. Therefore, growth 

of the Bradyrhizobium bacteroids in I. argentea nodules seems stimulated by lower 

endoreduplication levels. 
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a             1       10        20        30        40        50        60 

              |--------|---------|---------|---------|---------|---------| 

 IaDNF1-like2  MHSFGYRANALLTFAVTILALMCAMASLSDNFNSPSPSSQVQVLNINWFQKQPNGNDEVS 

 IaDNF1-like1  MHSFGYRANALLTFAVTILAFMCAMASLSDNFNSPSPSAQVQVLNINWFQKQPNANDEVS 

       AeDNF1  MHSFGYRANALLTFAITILALMCAIASYSDNLNSPSPSAQVQVLNINWFKKQPNGNDEVS 

  MtDNF1-like  MHSFGYRANALLTFSLTILALMCAIASLTDSFNSPSPSAQVQVLNINWFQKQPNGNDEVS 

       MtDNF1  MHSFGYRLNALFTFAVTILGFICAIASFTDTLNSPSPSVQVQVLNVNWFQKQPNGNDEVY 

 

 IaDNF1-like2  LTLNISADLQSLFTWNTKQVFVFLAAEYQTPKNSLNQISLWDGIIPSKEHAKFWIHTSNK 

 IaDNF1-like1  LTLNISADLQSLFTWNTKQVFVFLAAEYETPKYSLNQISLWDGIIPSKEHAKFWIHTSNK 

       AeDNF1  MTLNISADLQSLFTWNTKQVFVFLAAEYETPKNSLNQISLWDGIIPSKEHAKFWIHISNK 

  MtDNF1-like  MTLNISGDLQSLFTWNTKQVFVFLAAEYETRKKPLNQISLWDGIIPSKEHAKFLIHTSNK 

       MtDNF1  LTLNISADLQTLFTWNTKQVFAFLAAEYETPKHPLNQISLWDAIIPTKEHAKFTIHTSNK 

 

 IaDNF1-like2  YRFIDQGSNLRGKEFNLTLHWHVMPKTGKMFADKIVMPGYRLPEEYR* 

 IaDNF1-like1  YRFIDQGSNLRGKEFNLTLHWHVMPKTGKMFADKIVMPGYRLPEEYR* 

       AeDNF1  YRLIDQGSNLRGKEFNLTMHWHVMPKTGKMFADKIVMPGYQLPEEYR* 

  MtDNF1-like  YRFIDQGTNLRGREFNLTLHWHVMPKTGKMLADKIVMPGYRLPKEYR* 

       MtDNF1  YRFVDQGSNLRGKEFNLTLHWHVMPKTGKMFADKLVLPGYRLPAQYR* 

b 

 

Fig. 5 Identification of IaDNF1-like1 and IaDNF1-like2 genes. (a) Alignment of IaDNF1-like1, IaDNF1-like2, 

AeDNF1-like, MtDNF1, and MtDNF1-like, the 5 different amino acids of IaDNF1-like1 and IaDNF1-like2 are 

highlight in bold. (b) The expression level of IaDNF1-like1 and IaDNF1-like2. Both are expressed in nodules and 

non-symbiotic organs. 

In four I. argentea nodules, >95% of the bacteroids were unable to form colonies on agar 

plates suggesting that they are terminally differentiated. This was similar to that observed for 

S. meliloti bacteroids from Medicago nodules (99%; Mergaert et. al, 2006) and B. sp. strain 

ORS285 bacteroids from A. indica nodules (98%; Czernic et. al, 2015). In one nodule, a 

relatively high percentage of viable cells (25%) was observed we assume that this is can be 

the result from a secondary cluster of dividing cells that still contain U-morphotype 
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bacteroids (Chapter 4). This higher number of viable bacteroids is similar to that observed in 

A. afraspera with 22% viable cells. It was speculated that this was caused by the presence of 

a cluster of cells near the surface of the root in which the bacteria remained unmodified 

(Bonaldi et al., 2011; Czernic et al., 2015). 

The four IaNCR genes might be involved in different stages of bacteroid differentiation. 

IaNCR2 mRNA has reached a maximal level before Lb mRNA, whereas the other 3 have a 

similar expression pattern as LB. Therefore, we expect that IaNCR2 is involved in earlier 

stages of development than the other 3 IaNCRs.  

To study whether the IaNCR peptides induce bacteroid elongation, the following strategies 

could be followed. It can be studied whether transformation of IaNCR genes into Lotus 

affects the bacteroid phenotype as in the case of MtNCR035 (Van de Velde et al., 2010). 

Further, RNA interference of IaDNF1-like genes can be done in I. argentea as a hairy root 

transformation protocol has been developed (Chapter 3). However, The resulting bacteroid 

phenotype might not be due to unprocessed IaNCR peptides but a secondary effect as also 

non-symbiotic processes will be affected (Czernic et al., 2015). 

I. argentea NCR peptides have a low level of homology but the cysteine spacing pattern is 

conserved. However, this pattern is different from that of NCR peptides identified in IRLC 

clade and Aeschynomene spp. The cysteine spacing pattern of NCR peptides in all studied 

IRLC clade species (e.g. G. uralensis, O. lamberti, A. canadensis, O. viciifolia, G. orientalis, 

O. spinosa, C. arietinum, P. sativum, M. sativa, and M. truncatula) is similar (Fig. 3b). This 

indicates that NCRs with this cysteine pattern were already present in their oldest common 

ancestor (Mergaert et al., 2003). Aeschynomene NCR peptides contain cysteine domains with 

a different spacing pattern (Fig. 3b), and therefore it has been postulated that they evolved 

independently from those of the IRLC clade (Czernic et al., 2015). The indigoferoids clade 

has a crucial phylogenetic position (Fig. 1), as it represents an early branching lineage of the 

“indigoferoids/milletioids” clade (Lavin et al., 2005; Wojciechowski et al., 2004). Most of 

the studied species in milletioids contain unmodified bacteroids and their genomes do not 

contain NCRs. In I. argentea, IaNCR1, IaNCR2, and IaNCR3 peptides contain two C-X3-C-

X3-C domains, which are not present in the IRLC clade and Aeschynomene species (Fig. 3b). 

It seems that NCRs driven E- and S-morphotype bacteroid differentiation evolved three times 

independently in these three clades. The distinct cysteine patterns of NCRs in these three 

clade indicates that they evolved from defensins, but from different ones. This explains the 

rapid NCRs evolutionary amplification and diversification in Medicago or IRLC clade. The 

convergent evolution of NCRs in Papilionoideae subfamily suggest that this is beneficial for 

host plant. For example enlarged bacteroids have higher nitrogen fixation efficiency and so 

host plants grow better (Oono et al., 2010b). 
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Further the cysteine rich peptides might be part of  a strategy to control large populations of 

intracellular bacteria. NCRs most likely evolved from defensins. These occur wide spread in 

the plant kingdom. Therefore, it is of interest to determine whether NCRs also evolved in 

non-legume nodulating plant species, for example in actinorhizal species. In the nodule 

transcriptome of the actinorhizal plant Datisca glomerata, DgCRP1 encodes a basic cysteine-

rich peptide containing C-X3-C-X4-C-X10-C-X3-C-X3-C (Demina et al., 2013; Carro et al., 

2014). This cysteine pattern is similar to that in I. argentea. The occurrence of this NCR like 

peptide in Datisca nodule supports the conclusion that the NCR system is an advantage and 

therefore it evolved several times most likely even outside the legume family. 

Materials and methods 

Plant material and bacterial strains 

I. argentea plants were grown under controlled conditions as follow: 11h/13h (day/night), 35 
oC/25 oC (day/night), and 60% humidity. Bradyrhizobium elkanii (SA281) was grown at 28 
oC in yeast mannitol medium (YEM) for 4-5 days. Seed germination and root inoculation 

were performed as described (Chapter 2). Nodules were harvest 10 day, 2 weeks, 3 weeks, 4 

weeks, 5 weeks, and 3 months after inoculation. 

Bacteroid characterization and viability determination 

Bacteroid extraction was performed as described (Mergaert et al., 2006). Bacteroids and free-

living bacteria were stained with 0.1% Safranin O and analysed with an AU5500B 

microscope equipped with a DFC425c camera (both Leica). Bacteroid size and DNA content 

were measured by ASTRIOS Beckman Coulter machine as described (McRae et al., 1989; 

Mergaert et al., 2006). 

Bacteroids were extracted from five nodules independently following the methods. Together 

with free-living B. elkanii (SA281), series dilutions were prepared and plated on the YEM 

medium. After growing at 28 oC for five days, colonies formed were counted. 

IaNCR transcripts identification 

RNA isolation, sequencing, and de novo transcriptome analysis were performed as described 

(Chapter 2). The proteins were predicted based on the longest ORFs using Transdecoder 

(Haas et al., 2013) with a minimum length of 30 amino acids.  

IaDNF1-like peptide sequence and phylogenetic analyses 

The IaDNF1-like proteins were identified from the transcriptome database using MtDNF1 

protein (XP_003599103) as query sequence. This BLASTp search allowed the identification 
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of two candidate proteins, Ia_c55598_g1_i1 and Ia_c55598_g2_i1, both were of 167 amino 

acids. 

Real Time quantitative PCR expression analysis 

Total RNA was extracted, using phenol-chloroform extraction, from uninfected roots or roots 

with nodules at different time points after inoculation (Yang et al., 2008). Four biological 

replicates were taken for each time point. After DNase I (Invitrogen) treatment, the integrity 

of total RNA was tested by gel electrophoresis. cDNA was synthesized from 400ng total 

RNA per sample using iScript cDNA synthesis kit (Bio-Rad, Hercules, USA). Real-time 

quantitative PCR reactions were set up in a 20μl system with 2×iQ SYBR Green Super-mix 

(Bio-Rad, Hercules, USA) and the CFX96 Manager Real-time PCR detecting system 

according to the manufacturer’s manuals. The primers used for quantitative PCR were 

designed using the qPCR settings of Primer3Plus (Untergasser et al., 2007) and listed in 

Supplemental Table S1. Reactions were performed in triplicate. Relative expression values 

were normalized to IaPTB, IaSAND, and IaUNK1 reference genes (Kakar et al., 2008; Zhu, 

2013), which are stable expressed in different organs (Fig. S1).  
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Supplemental data: 

Table S1. List of primers used for qPCR. 

Gene Name Forward primer Reverse primer 

IaNCR1 CCCGGCTTCAACATACGTTTTC TCAAATGTTGGTGGCCATGG 

IaNCR2 GAGTCGTTGCATCATGATGTCC TTCCTTCCACTTCGTTTGCG 

IaNCR3 GGAGAATGCACTGGTTTGTGTC GGCTGTTGATGATACAGTGACC 

IaNCR4 GGATGCATTGGAGAAGTTGGC TGCCACCAAGTAAACCTTCTCC 

IaLb TGCTTTCAGTGAGCAGCAAG AGCGGAGAAGAACAAAGCAC 

IaSAND TGCTGGCCAACTTTGTGATG TCTTGGCAAGCAAACAGGAG 

IaUNK1 AAAATCATCAGCGCCCTCAG TGATTGGGCTGCACTTTGTG 

IaPTB AAGTACGCGGGAAAACTGTG ATGCTTACAAGGCGTGCATC 

 

Fig. S1 Expression pattern of reference genes IaPTB, IaSAND, and IaUNK1 in different plant tissues. 
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I initiated research on Indigofera argentea as this species and its micro-symbiont are heat 

and drought resistant. Such properties are not very prominent in the model legumes Medicago 

and Lotus, and so cannot really be studied in these species. The nodule material that was 

harvested in the Jizan desert showed that these nodules could be rather large and most likely 

were the result of several waves of growth. To determine whether this was an adaptation to 

the desert habitat, I analysed nodule development. This revealed that this “wavy” 

indeterminate growth is the result from newly formed (secondary) clusters of dividing cells. 

This finding showed that the classification of Indigofera nodules as classical indeterminate 

nodules was wrong. Therefore, I studied the evolution of determinate and indeterminate 

nodules within the Papilionoideae subfamily and this is described and discussed in the second 

part of this Discussion. In the first part of the Discussion, the characterization and genetic 

diversity of micro-symbiont (rhizobia) from Indigofera, as well as the development of a 

technology platform for Indigofera are discussed. 

1. Indigofera argentea, a future system to study drought tolerance 

I. argentea grows as a pioneer in former agricultural areas in Jizan desert of Saudi Arabia. 

This region is subtropical and has an arid hot climate. To study mechanisms that control 

adaptation of abiotic desert condition, I selected I. argentea as a system for future molecular 

genetic studies. 

In Chapter 2 I showed I. argentea has characteristics that will facilitate molecular genetic 

approaches. I. argentea is a diploid self-pollinating legume. It has a relatively small genome 

(690 Mb) and short generation time. A procedure for Agrobacterium rhizogenes-mediated 

hairy root transformation was developed and this can facilitate functional analyses of genes 

involved in the nodule symbiosis. For example, genes involved in the formation of secondary 

clusters of dividing cells in nodules or adaptation to drought. The I. argentea de novo 

transcriptome dataset could be used for such functional analyses. 

In chapter 3 Rhizobia were isolated from I. argentea “inoculated” with Jizan desert sand. 

Isolated rhizobia strains were shown to belong to three genera, Bradyrhizobiun, 

Sinorhizobium, and Microvirga. Efficient nodules induced by rhizobia from these three 

genera and the Burkholderia (β-rhizobia) suggest I. argentea is a promiscuous legume. The 

molecular basis for this promiscuity is not known. I hypothesize it is related to the structure 

of the Nod factor receptors. Bradyrhizobium elkanii strain SA281 induces a high number of 

efficient nodules (Chapter 3) and was selected for further studies. 

2. Evolution of legume nodulation 

The Leguminosae family is divided into six subfamilies: Caesalpinioideae, Cercidoideae, 

Detarioideae, Dialioideae, Duparquetioideae, and Papilionoideae (LPWG, 2017; Sprent et al., 

2017).  Nodulation is uncommon in the Caesalpinioideae, more common in Mimosoideae 
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and very common in Papilionoideae (Allen & Allen, 1981; Lewis et al., 2005; Sprent, 2007). 

The Papilionoideae subfamily includes well studied model species (e.g. Medicago, Lotus) 

and important crops (e.g. pea, soybean, Phaseolus). Nodule forming species that are studied 

and discussed in this thesis, belong to this Papilionoideae subfamily. In addition, nodule 

formation of Chamaecrista of the Caesalpinioideae subfamily is analysed (in this chapter), 

as it is a basal legume. Legume nodules are in general composed of a central tissue that 

harbours (infected) cells where the rhizobia are hosted intracellularly. These intracellular 

rhizobia are surrounded by a host membrane and are named symbiosomes (Roth and Stacey, 

1989). The central tissue is surrounded by peripheral tissues and in one of these, the nodule 

parenchyma, the nodule vascular bundles are located. This peripheral position of the 

vasculature is a major difference with nitrogen fixing root nodules that are made by non-

legumes as Parasponia and actinorhizal plants (e.g Alnus, Casuarina), as all these non-

legume nodules have a central vascular bundle (Price et al., 1984; Van Ghelue et al., 1996; 

Pawlowski and Bisseling, 1996). 

Some legumes make nodule-like structures that are less complex. An example is Gleditsia 

triacanthos, belonging to Umtiza clade in the Caesalpinioideae subfamily, that makes 

“swellings” (Fig. 1a) (Fehér and Bokor, 1926; Friesner, 1926; Bryan et al., 1996). These are 

formed by mitotic activation of root cortical cells (Fig. 1b, c). Whether these swellings are 

ancestral to the more complex root nodules is not known. 

  

Fig. 1 “Swellings” on Gleditsia triacanthos roots according to Friesner (1926), Fehér and Bokor (1926). (a) 

“Swellings” on the root (arrow); (b) Cross section of a root containing a “swellings” (arrow); (c) Cells harbouring 

intracellular bacteria (arrow) in the “swellings”. 

In this Discussion, I will not discuss the origin of nodulation in legume family, but focus on 

the evolutionary relationship of the 2 major nodule types formed in the Papilionoideae 

subfamily; the determinate and indeterminate nodules. 

2.1 Determinate and indeterminate nodules 

A major difference between determinate and indeterminate nodules is the absence/presence 

of a persistent meristem. This classification was first used to distinguish the nodules from the 
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milletioids (e.g. soybean, Vigna, Phaseolus) and IRLC clade (e.g. pea, Medicago, Vicia, 

Trifolium). Later it was also used to classify legume nodules from other groups (see for 

example Fig. 2).  

 

Fig.2 Distribution of indeterminate and determinate nodule type as well as different bacteroid morphotypes of 

studied species within the Papilionioideae subfamily according to Oono et al. (2010). Indeterminate (∞) and 

determinate (x) nodule type, E- and S-morphotype (open circle) as well as U-morphotype (closed circle) bacteroid 

type are indicated next to the genus name. 

Indeterminate nodules of the IRLC clade have an apical meristem. This is formed during the 

primordium stage and it remains active till the nodule senesces. A characteristic of this 

meristem is that it adds cells to all nodule tissues and further its cells are not infected, i.e. 

neither infection threads nor intracellular rhizobia occur in these cells. The formation of this 

meristem is best studied in Medicago (Xiao et al., 2014), but it is most likely similar in all 

IRLC clade species. During primordium formation the inner root cortical cell layers (in 

Medicago layer 4 and 5) and the middle cortical cell layer (layer 3) are mitotically activated. 

The cells derived from the inner cortex become infected and will ultimately form ~8 proximal 

cell layers in the (Medicago) nodule central tissue. The middle cortical cells are first 
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mitotically activated when the infection threads (coming from epidermis) has passed/reached 

this layer. At this stage, the inner cortical layers have already divided several times and have 

formed multiple cell layers that will be infected. This sequence of events seems important to 

create a bacterial free meristem at the apex of the primordium/nodule. 

The early stages of determinate nodule formation of milletioids species have been best 

studied in soybean. This was first described in 1958 by Bergersen and Briggs. They studied 

1-5 week old nodules and showed that in 1 week old primordia, infection threads are present 

in the majority of the host cells of the central tissue. They further describe: “These threads 

traversed dividing cells whose nuclei were in various stages of mitosis and free bacteria were 

also seen in dividing host cells. Infection threads were difficult to find in cells of 2 weeks or 

older nodules, although many dividing cells containing bacteria were seen. It seemed 

therefore, that initially the bacteria were distributed through the dividing cells of the young 

developing nodule by ramification of infection threads from which the bacteria were released 

into the cytoplasm of the cells, the bacteria being continuously re-distributed by division of 

the host cells containing them. Host cell division became less frequent and finally ceased 

after about 2 weeks......” This process of primordium/nodule development is most likely very 

similar in other milletioids species. 

So a major difference of the IRLC indeterminate nodule and milletioids determinate nodule 

type is the absence of a non-infected meristem in the determinate nodules. Further, the 

primordium cells that are penetrated by infection threads and contain released bacteria in 

their cytoplasm remain mitotically active during determinate nodule formation. However, 

they stop dividing at an early stage of development and therefore these nodules have a 

determinate growth type and obtain a spherical shape. In contrast, in IRLC species the nodule 

primordium cells that are penetrated by an infection threads cease dividing. The meristem is 

first formed from a middle cortical cell layer when the infection threads have traversed this 

layer. This meristem remains active throughout the lifespan of the nodule, by which they 

have an indeterminate growth and obtain an elongated shape. This apical meristem adds cells 

to all nodule tissues, including the peripheral tissues. In soybean it is shown that the infected 

cells are transiently mitotically active and in this way support growth of the central tissue. 

However, how the peripheral tissues grow when the central tissue becomes larger has to my 

knowledge not been studied in milletioids species. 

Interestingly, in the milletioids species the outermost root cortical cells are the first cells that 

become mitotically activated. These cells are penetrated by infection threads from which 

bacteria are released. Therefore a more outward cortical cell layer from which a non-infected 

apical meristem could be formed is not available. I hypothesize that in case the primordium 

is formed from the outermost cortical layer, an apical meristem composed of non-infected 

cells cannot be formed. 
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In Chapter 4 of this thesis I studied the development of Indigofera and Tephrosia nodules 

and compared this with the indeterminate and determinate nodule development of the IRLC 

clade and other milletioids species, respectively. 

2.2 Indigofera nodule development 

Indigofera nodules have previously been classified as indeterminate nodules (Fig. 2). 

However, we showed that their development differed from that of the indeterminate nodules 

of the IRLC clade (Chapter 4). A major difference is that, like milletioids nodules, the 

Indigofera primordia are formed from the outermost cortical cell layer and infected 

primordium cells maintain mitotically active during early stages of nodule development. A 

meristem composed of non-infected cells is not formed in the primordia. So the early stages 

of Indigofera nodule development are similar to that of the milletioids species. In older 

Indigofera nodules often a cluster of infected dividing cells is present and they are often 

separated from the rest of the central tissue by layers of uninfected cells, which indicates they 

originate from mitotically activated nodule boundary or parenchyma cells (Fig. 2 in General 

Introduction). This is most obvious in two species, I. argentea and I. tinctoria. In the other 

three analysed Indigofera species from the Tethyan clade, the cluster of dividing cells is 

located adjacent to infected cells of the central tissue. These secondary clusters of dividing 

cells are responsible for the indeterminate growth of these nodules. However, the 

developmental origin of this cluster is different from that of the non-infected meristem of the 

IRLC species. An additional difference is that it is composed of cells that are infected as they 

contain infection threads or released bacteria. These cells are most likely in part differentiated 

and their fate to become the infected cell type is determined. In contrast, the IRLC nodule 

meristem cells seem undifferentiated and can develop into all nodule cell types. 

The difference between milletioids and Indigofera nodules seems the ability to form 

secondary clusters of dividing cells. However, this is not a black and white difference. Iconic 

determinate soybean nodules can also form secondary clusters of dividing cells that are 

formed from boundary/parenchyma tissue. However, these have so far only been observed 

after a stress treatment and their formation seems to depend on the light quality (James et al., 

1993). So milletioids and Indigofera nodule development are similar and only some 

gradual/subtle differences distinguish them. These differences concern for example the ease 

by which secondary clusters of dividing cells can be created, after salt stress or just under lab 

condition. 

2.3 Tephrosia nodule development 

As the early development of Indigofera nodules showed to be very similar to that of the 

milletioids species, I decided to analyse nodule development of Tephrosia, the only 

milletioids genus that has been reported to make indeterminate nodules (Fig. 2). In the three 

Tephrosia species that have been studied (Chapter 4), primordia are induced in the outermost 
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cortical cell layers. In line with this, an apical meristem composed of non-infected cells is 

not formed. Infected primordium cells containing released bacteria remain mitotically active 

during early stages of development. In general, young nodules are very similar to that of other 

milletioids and Indigofera species. In older nodules, clusters of dividing cells can be present. 

They are located adjacent to infected cells of the central tissue, which is similar to that in the 

nodules of three studied Indigofera species from the Tethyan clade. 

So Tephrosia makes nodules that are very similar to that of the other milletioids species. A 

subtle difference is that clusters of dividing cells are more easily formed like in the Indigofera 

species.  

2.4 Indeterminate nodule growth in different clades is the result of convergent evolution  

To understand the evolution of nodule formation it is essential to use the underlying 

developmental processes. As these processes controlling indeterminate growth of Indigofera 

and Tephrosia, and IRLC nodules are different, this indeterminate growth behavior appears 

to be the result of convergent evolution. Indigofera and Tephrosia nodule development share 

with determinate nodules of the milletioids species that they lose their primary mitotic 

activity at an early stage of development. Further, both Indigofera and milletioids nodules 

are derived from the outermost cortical cell layer. In relation to how meristems are formed 

during IRLC nodule development, this seems a very relevant criterion that distinguishes these 

nodule types. As discussed above it seems more or less impossible to form an apical meristem 

composed of cells that are not infected when the primordium is derived from the outermost 

cortical cell layer. To my knowledge this has also never been described. However, when 

primordia are formed from more inner located cortical cells, it does not mean that always a 

non-infected meristem is formed. An example is Lotus in which primordia are formed from 

middle cortical cell layers, but it has a typical determinate nodule development 

(Szczyglowski et al., 1998).  

The meristem of IRLC nodules adds new cells to all nodule tissues: the central tissue as well 

as the peripheral tissues. In contrast, the clusters of dividing cells in Indigofera and Tephrosia 

only seem to add cells to the central tissue, whereas the peripheral tissues grow by divisions 

in cells of these tissues (Chapter 4). Therefore, I propose that the cells of the IRLC nodule 

meristem are stem cell-like as they can develop into different cell types, whereas the 

developmental program that the dividing cells in Indigofera and Tephrosia will follow is 

already determined.  

The processes underlying indeterminate growth in the IRLC clade, and that of Indigofera and 

milletioids appear to be very different. This implies that they evolved independently. This 

indicates that there is pressure to evolve nodules with indeterminate growth. The reason for 

this could for example be, to create new infected cells when the older cells start to senesce 
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(Chapter 4); to adapt to varying environmental conditions; or to support growth during 

different growth seasons of a perennial. 

To position the development of Indigofera and Tephrosia nodules in a broader evolutionary 

perspective, I first provide nodule developmental analyses of some other legume species in 

the Papilionoideae subfamily. 

2.5 Nodule development in the genistoids 

Lupin is a rather well studied genus within the Papilionoideae subfamily and is part of the 

genistoids clade. This clade has a common ancestor (node 23 in Fig. 2) with the dalbergioids, 

mirbelioids, IRLC, robinioids, Indigofera and milletioids clades. Lupin (e.g. white lupin) 

nodules have been classified as lupinoid nodule, which is considered to be a subtype 

indeterminate nodule. White lupin nodule primordia are formed by mitotic activation of the 

outermost cortical cells (Fig. 3a) (Tang et al., 1992; James et al., 1997), and consistent with 

this, a nodule meristem composed of non-infected cells is not formed at the primordium stage, 

the infected primordium cells maintain mitotically active for some time (Fig. 3d). This is 

similar to Indigofera and milletioids nodule development. Infection threads are initiated in 

root hairs and these penetrate the primordium cells and bacteria are released. These dividing 

cells contain a relatively high number of symbiosomes (Fig. 3d). The infected cells remain 

mitotically active and the symbiosomes are equally distributed between the daughter cells 

(Fig. 3d) (González-Sama et al., 2004; Fedorova et al., 2007). This is similar to soybean, 

Tephrosia, and Indigofera in which primordium cells are mitotically active with infection 

threads and in several cases also after release of rhizobia from infection threads (Chapter 4) 

(Bergersen and Briggs, 1958). However, the number of symbiosomes in the dividing infected 

cells of Lupin nodules is higher than in Indigofera and milletioids species. This is probably 

the reason that this was considered a specific property of lupinoid nodules. However, the 

property that dividing cells can be infected cells is wide spread and probably only lacking in 

IRLC nodule meristem cells. 

Mitotic activity in Lupin nodules stops at an early stage, no dividing cells are present in the 

central tissue of nodules 4 weeks after inoculation (Fig. 3b). In nodules harvested at 5 weeks, 

clusters of dividing infected cells (Fig. 3c) are present, these are most likely secondary 

formed clusters like in for example Indigofera. However, these dividing cells are located at 

the basal-lateral side of lupinoid nodules (Fig. 3c, 3d). So the position of dividing cells in 

Lupin nodules differs from that of Indigofera and Tephrosia. The basal-lateral dividing 

infected cells result in broadening of the connection of the nodule to the root, resulting in a 

characteristic lupinoid nodule morphology (Gonzalez-Sama et al., 2004). In for example 

Medicago nodules (primordia), it has been shown that cell division correlates with a high 

auxin response level (Franssen et al., 2015). This is also the case for the clusters of dividing 

infected cells in Indigofera (Chapter 4). So the early stages of Lupin nodule development are 
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very similar to that of the milletioids and Indigofera, and different from the indeterminate 

nodules of the IRLC clade as a non-infected persistent meristem is lacking. Lupin shares with 

Indigofera and milletioids that secondary clusters of dividing cells can be formed. However, 

the position of these cells is different, basal lateral versus nodule apex. 

 

Fig. 3 Longitudinal section of primordia and nodules formed on white lupin. (a) Primordia are induced in the outer 

most cortical cells layers; (b) Determinate nodules formed; (c) Cluster of dividing cells located at the basal-lateral 

bottom of nodule; (d) Dividing cell at metaphase with bacteria inside. VB, vascular bundle; C, cluster of dividing 

cells; CN, central zone; S: symbiosome; Scale bars: a, 25µm; b-c, 75µm; d, 5µm. 

To study whether this Lupin nodule developmental process is common in the genistoids, I 
analysed three more species, Sophora flavescens, Ulex europaeus, and Cytisus scoparius. 
Sophora represents an early branching lineage within the genistoids clade. Genista and 
Cytisus are the two genera most closely related to Lupin (Fig. 2). Nodule development 
analyses showed that primordia were also formed from the outermost cortical cell layer in 
Sophora (Fig. 4a), Ulex (Fig. 5a), as well as Cytisus (Fig. 6a). Infected primordium cells 
maintain mitotically active and a non-infected meristem is not formed at primordium 
stage(Fig. 4b; 5b; 6b). At later stages, dividing infected cells with bacteria are present at the 

 

Fig. 4 Longitudinal section of primordia and nodules formed on S. flavescens. (a) Primordia were induced in the 

outer most cortical cell layers; (b) Determinate nodules formed; (c) Cluster of dividing cells at the apex of nodule; 

(d) High magnification of dividing cells at metaphase with intracellular bacteria inside. VB, vascular bundle; C, 

cluster of dividing cells; CN, central zone; S: symbiosome; Scale bars: a, 25µm; b-c, 75µm; d, 7.5µm. 
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Fig. 5 Longitudinal section of primordia and nodules formed on U. europaeus. (a) Primordia were induced in the 

outer most cortical cell layers; (b) Determinate nodules formed; (c) Cluster of dividing cells at the apex of nodule; 

(d) High magnification of dividing cells at anaphase with intracellular bacteria inside. VB, vascular bundle; C, 

cluster of dividing cells; CN, central zone; S: symbiosome; Scale bars: a, 25µm; b-c, 75µm; d, 5µm. 

 

Fig. 6 Longitudinal section of primordia and nodules formed on C. scoparius. (a) Primordia were induced in the 

outer most cortical cell layers; (b) Determinate nodules formed; (c) Cluster of dividing cells at the apex of nodule; 

(d) High magnification of dividing cells at anaphase with intracellular bacteria inside. VB, vascular bundle; C, 

cluster of dividing cells; CN, central zone; S: symbiosome; Scale bars: a, 25µm; b-c, 75µm; d, 7.5µm. 

apex of Sophora (Fig. 4d), Ulex (Fig. 5d), and Cytisus (Fig. 6d) nodules leading to an 

elongated nodule shape, which was similar to Tephrosia and Indigofera (Chapter 2). So the 

position of dividing cells can vary within this genistoids clade and the clusters of dividing 

cells at the basal-lateral side of nodules seems specific for Lupin (Fig. 3c). 

This suggests that the most recent common ancestor of the genistoids (node 22 in Fig. 2) as 

well as the most recent common ancestor of Lupinus, Cytisus, and Ulex (node 18 in Fig. 2) 

had a nodule developmental program that at early stages is similar to that of Indigofera and 

milletioids. Further, at later stages, secondary clusters of dividing infected cells at their apex 

and the aberrant basal-lateral position evolved within Lupinus. The lupinoid nodule is 

synapomorhic in genistoids and derived from the determinate nodule developmental program. 

So the development of genistoids nodules is different from the typical indeterminate nodule 



General Discussion 

115 

 

development of the IRLC species but it is similar to that of the Indigofera and milletioids 

species. As the genistoids and dalbergioids have a common ancestor (node 23 in Fig. 2), it is 

interesting to compare nodule development of species within these 2 clades.  

2.6 Nodule development in the dalbergioids 

Within the dalbergioids nodule development has been best studied in Aeschynomene species 

(Bonaldi et al., 2011). The primordia are induced in the outermost cortical cell layer (e.g. A. 

indica) or in more inner located cortical cell layers (e.g. A. afraspera). Nodule development 

of Aeschynomene species (e.g. A. indica), in which the primordium is formed in the outermost 

cortical cell is very similar to that of Indigofera, milletioids, and genistoids clades. However, 

in general secondary clusters of dividing infected cells are not formed in these species 

(Bonaldi et al., 2011), like in milletioids species (e.g. soybean, cowpea). In Aeschynomene 

species (e.g. A. afraspera), in which the primordia are formed in more inner layers, primordia 

are formed with a typical determinate growth pattern and a non-infected apical meristem is 

not formed. However, in these species a new mechanism has evolved by which indeterminate 

growth can be established. In these species (e.g. A. afraspera) outer cortical cells are 

traversed by infection threads which grow towards the primordia that are formed in more 

inner located layers. An outgrowth tissue with giant cells containing infection threads 

develops in the outer cortical layers, but bacteria are not released from the infection threads 

(Bonaldi et al., 2011). From these dividing outer cortical cells new nodule lobes are formed. 

Whether these outgrowths are formed at the primordium stage or later stage and how long 

the infected cells remain mitotically active in these Aeschynomene nodules are unclear. 

To study whether these two nodule developmental processes are common in the dalbergioids, 

I analysed one more species, Stylosanthes guyanensis, which represents a relative late 

branching lineage within the dalbergioids clade (Fig. 2). My analyses showed that primordia 

were induced in the outermost cortical cell layer at the basis of a lateral root, like in A. indica 

(Fig. 7a). A non-infected meristem is not formed at primordium stage (Fig. 7b). Infected 

primordium cells keep dividing (Fig. 7d) and the nodule primordium develops into a 

determinate nodule (Fig. 7c). This determinate nodule developmental process is similar to 

that of determinate nodule (Bergersen and Briggs, 1958). 

The determinate aeschynomenoid nodule is considered to be synapomorphic for the 

dalbergioids.  However, my studies showed that S. guyanensis form determinate nodule 

similar as in Indigofera, milletioids, and genistoids. Therefore, the aeschynomenoid nodule 

formed by Aeschynomene species is not synapomorphic for the dalbergioids. The nodule type 

with lobes formed in some Aeschynomene species (e.g. A. afraspera) is derived from the 

determinate nodule developmental program. The studied dalbergioids species form 

determinate nodule in a similar way as Indigofera, milletioids and genistoids species, and 

share a common ancestor (node 23 in Fig. 2). 
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Fig. 7 Longitudinal section of primordia and nodules formed on S. guyanensis. (a) Primordia were induced in the 

outer most cortical cell layers at the basal of lateral root; (b) Non-infected meristem is not formed at primordium 

stage; (c) Determinate nodules formed; (d) High magnification of dividing cells at anaphase with intracellular 

bacteria inside. VB, vascular bundle; C, cluster of dividing cells; CN, central zone; S: symbiosome; Scale bars: a-c, 

25µm; d, 7.5µm. 

2.7 Chamaecrista nodule development 

Based on the above described studies I conclude that the most recent common ancestor (node 

23 in Fig. 2) of Papilionoideae had a “determinate” nodule development and most likely the 

ability to form secondary clusters of dividing infected cells, it formed most likely primordia 

by mitotic activation of the outermost cortical root cell layer. To support this conclusion, 

Tingting Xiao (unpublished) analysed the nodule developmental process of an ancient 

legume species Chamaecrista fasciculata from the Caesalpinioideae subfamily (Fig. 2). 

 

Fig. 8 Longitudinal section of primordia and nodules formed on C. fasciculata. (a) Primordia were induced in the 

outer most cortical cell layers; (b) Determinate nodules formed; (c) Cluster of dividing cells at the apex of nodule; 

(d) High magnification of dividing cells at metaphase with infection threads inside. VB, vascular bundle; C, cluster 

of dividing cells; CN, central zone; IT: infection thread; Scale bars: a, 25µm; b, 75µm; c, 50µm d, 7.5µm. (Figures 

are from Tingting Xiao).  
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Nodule primordia of Chamaecrista (e.g. C. fasciculata) originate from the outermost cortical 

cells (Fig. 8a). Similarly, a meristem composed of non-infected cells is not formed at 

primordium stages and infected primordium cells maintain mitotically active to develop into 

a determinate nodule (Fig. 8b). At later stages, a group of small infected dividing cells is 

present at the apex (Fig. 8c, d). So Chamaecrista nodule development is very similar to that 

of species of the genistoids, Indigofera, milletioids and dalbergioids clades of the 

Papilionoideae subfamily. Therefore, I hypothesize that the common ancestor of the 

Papilionoideae forms determinate nodules that most likely have the ability to form secondary 

clusters of dividing cells. The persistent non-infected apical meristem formed in the IRLC 

clade might be unique for this clade. The sister clade of the IRLC is the robinioids. Therefore, 

it is of interest to determine whether some species within this clade can form nodules with 

such a persistent meristem. 

2.8 Nodule development in the robinioids 

Lotus is among the best studied robinoids species. In Lotus, nodule primordia are formed 

from the middle (third layer) cortex (Szczyglowski et al., 1998). However, cell division 

ceases at an early stage of development. Whether these primordium cells remain mitotically 

active when they become infected is unclear. The infection threads grow through the first and 

second cortical cell layer that do not divide. Therefore a non-infected apical meristem is not 

formed at the primordium stage. Lotus forms determinate nodules, but in contrast to most 

other species these are not formed from the outer most cortical cell layer. They are formed 

from the middle cortex like in some Aeschynomene species. 

Sesbania shares with Lotus that nodule primordia are formed from the middle cortex. In 

contrast to Lotus, it can form nodules with either determinate or indeterminate growth 

behaviour (Ndoye et al., 1994; Fernández-lópez et al, 1998). The development of the 

determinate nodules is very similar to that of Lotus (and other species forming determinate 

nodules). Nodules with an indeterminate growth behaviour are formed when ethylene 

signalling is suppressed by a treatment with Ag2SO4. This is a striking difference with 

Medicago that requires ethylene signaling for the formation of the meristem. The Medicago 

Sickle gene is an ortholog of Arabidopsis Ein2. A sickle mutant forms many small round 

nodules and these do not form an apical meristem (Penmetsa et al., 2008; Xiao et al., 2014). 

The indeterminate growing Sesbania nodules have a cluster of dividing cells at their apex 

(Ndoye et al., 1994; Fernández-lópez et al, 1998). However, whether it is a meristem as in 

the IRLC clade remains to be studied. 

Another robinioids species which makes nodules with indeterminate growth behavior is 

Robinia pseudoacacia. I studied their development. The nodule primordia are induced in the 

outermost cortical cell layer and a non-infected meristem is not formed at the primordium 

stage (Fig. 9a, b). At a later stage of development, clusters of dividing infected cells with 
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infection threads are present at the apex leading to the indeterminate nodule growth (Fig. 9c, 

d). 

 

Fig. 9 Longitudinal section of primordia and nodules formed on R. pseudoacacia. (a) Primordia were induced in the 

outer most cortical cell layers; (b) Determinate nodules formed; (c) Cluster of dividing cells at the apex of nodule; 

(d) High magnification of dividing cells at metaphase with infection threads inside. VB, vascular bundle; C, cluster 

of dividing cells; CN, central zone; IT: infection thread; Scale bars: a, 25µm; b-c 75µm; d, 7.5µm. 

A non-infected meristem is not formed in Lotus at the primordium stage nor in Robinia. 

Whether Sesbania forms an apical meristem during the primordium stage remains to be 

studied. If this is the case it most likely evolved independently from IRLC nodule meristem. 

So far a non-infected apical meristem has only been shown on IRLC species. I hypothesize 

that it is composed of stem cell like cells that can differentiate into different cell types. This 

property is shared with cells in other meristems, but cells in the secondary clusters of dividing 

cells do not share this property. 

3. Evolution of NCR induced bacteroid development 

NCR induced terminal differentiation has first been discovered in IRLC species like 

Medicago and pea. For a long time it was assumed that this trait was specific for this clade. 

However, the more recent discovery that Aeschynomene species also have NCR induced 

terminal differentiation showed that this was not correct. In both cases this is accompanied 

by increased bacteroid size and endoreduplication (Mergaert et al., 2003; Mergaert et al., 

2006; Czernic et al., 2015). In Chapter 5, I showed that in I. argentea nodules, B. elkanii 

differentiates into enlarged bacteroids with a polyploid genome. This correlated with the 

expression of NCR genes. As the Indigofera bacteroids are also terminally differentiated, it 

is probable that this is induced by the NCR peptides. The I. argentea NCR peptides have 

different cysteine motifs as IRLC clade species or Aeschynomene species. This suggests they 

evolved independently from different defensin (Demina et al., 2013).  

Enlarged bacteroids also occur in other clades within the Papilionoideae subfamily. For 

example, Tephrosia from milletioids and Cytisus from genistoids both contain enlarged and 
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polyploid bacteroids (Oono et al., 2010a), It is of interest to study whether these enlarged 

bacteroids are also triggered by NCR peptides. If this is the case the NCR induced bacteroid 

development evolved numerous times within the Papilionoideae subfamily and strongly 

suggest that this property is beneficial. It has been proposed that larger bacteroids improve 

the efficiency of N fixation (Oono et al., 2010b). Symbiosomes in general contain a single 

enlarged bacteroid whereas several bacteroids are present in a symbiosome when they do not 

enlarge. For this reason, enlarged bacteroids might be in better contact with the symbiosome 

membrane. This might increase nitrogen fixation efficiency. Another reason why the 

formation of enlarged bacteroids is beneficial is because it involves a terminal differentiation 

step by which the host can control the microsymbiont.  

4. Evolution of indeterminate nodule and enlarged bacteroids in the Papilionoideae 

subfamily 

Comparison of nodule development across the different clades of the Papilionoideae 

subfamily shows that the ancestral form is most likely the type we first observed in Indigofera 

and which also occurs in species of the genistoids and milletioids clades (Fig. 10). Its 

ancestral nature is underlined as the basal Chamaecrista from the Caesalpinioideae subfamily 

(Fig. 10) has a similar nodule development. 

  

Fig.10 Species/genera belonging to the clades in the Papilionoideae subfamily are indicated (between brackets). 

Indeterminate (∞) or determinate (x) nodules formed by the species/genera in these clades is indicated next to the 

genus name. 
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The IRLC nodules are so far the only nodules with a genuine meristem. All other nodule 

types that occur within the Papilionoideae subfamily seem to be derived from the ancestral 

“determinate” nodule type. The determinate nodule type was first described for milletioids 

species (e.g. soybean). The determinate nodules that are formed by robinioids species have a 

very similar development as the determinate nodules of the milletioids. However, it remains 

to be studied whether Sesbania and Robinia species with nodules originate from the middle 

cortex nodules have a genuine meristem. 

The formation of a secondary cluster of dividing cells provides the “determinate” nodules an 

indeterminate growth behavior. Within the Papilionoideae subfamily 2 additional 

mechanisms conferring indeterminate growth evolved. These are the mitotic activation of 

outer root cortical cells that were traversed by an infection thread in some Aeschynomene 

species (Fig. 11d) and the formation of an apical meristem in the IRLC species (Fig. 12b). 

 

Fig. 11 Nodule development of ancestral nodule type. (a) Primordia are induced from outermost cortical layer; (b) 

The mitotic activity ceases at an early stage of development; (c) A secondary cluster of dividing infected cells is 

formed; (d) Ancestral nodule type II. Colors: red, outermost and middle cortical layers at primordium stage that 

differentiate into parts of central tissue; dark red, secondary cluster of dividing infected cells formed at later stage. 

 

Fig. 12 Nodule development of indeterminate nodule type. (a) Primordia are induced from inner cortical layer; (b) 

non-infected meristem derived from the 3rd cortical layer. Color: yellow, 3rd cortical layer and future meristem; pink, 

infected central tissue derived from cell division of meristem; red, inner cortical layers and differentiate into a part 

of the central tissue. 

The distribution of the different nodule types based on the results described in this thesis in 

the Papilionoideae subfamily is shown in Fig. 10. The IRLC clade that forms meristem 

containing (indeterminate) nodules evolved from an ancestor that forms “determinate” 

nodules that have the ability to establish secondary growth (node 28 in Fig. 10). So three 

mechanisms evolved within the Papilionoideae subfamily by which nodules can have 

indeterminate growth. The secondary cluster of dividing cells formed from differentiated 
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nodule cells, a genuine persistent meristem and the formation of a cluster of dividing cells 

containing an infection thread (Fig. 11c, d; Fig. 12b). 

The independent evolution of indeterminate growth strategies suggests that this is beneficial 

for the symbiotic interaction. For example, to adapt to varying environmental conditions after 

drought, salt, or water stress; to create new infected cells when the older cells are senescent; 

or to support plant growth during different growth seasons of a perennial.  

Our findings also imply that the general well accepted (textbook) names, indeterminate and 

determinate nodule types, have to be replaced by new ones. However, which names would 

be best will first require a discussion within the legume nodule community. 

Materials and Methods: 

Plant material and rhizobial strain isolation 

This study included white lupin, Sophora flavescens, Ulex europaeus, Cytisus scoparius, 

Stylosanthes guyanensis, Chamaecrista fasciculata, and Robinia pseudoacacia (Table 1). Of 

which U. europaeus, C. scoparius, and R. pseudoacacia from Vreeken seeds, S. flavescens 

from Yinshan Jiao (China Agricultural University, China), S. guyanensis from Shu Chen 

(South China Agricultural University, China), C. fasciculata from Jeff J. Doyle (Cornell 

University, USA). All these species were grown in river sand and rhizobia were isolated and 

used as inoculants to induce nodule formation on the host plant as described in Chapter 3. 

 Table 1. Plant species and inoculated rhizobia strain. 

Species Bacteria strains 

white lupin  Bradyrhizobium japonicum, L6;  

Sophora flavescens Bradyrhizobium elkanii, SA281 

Ulex europaeus Bradyrhizobium elkanii, SA281 

Cytisus scoparius Bradyrhizobium elkanii, SA281 

Stylosanthes guyanensis Bradyrhizobium liaoningense, Sg014 

Chamaecrista fasciculata Unpublished data 

Robinia pseudoacacia Mesorhizobium sp., Rob3 

Root inoculation 

Seed germination and plant inoculation were conducted as described in Chapter 2. 

Tissue embedding, sectioning and section staining 

Root segments and nodule sectioning were conducted as described in Chapter 4. 
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