
 
 

 

  

Abstract— As an alternative or addition to complex physical 
modeling, in this paper transfer function models of the 
disinfection process in annular photoreactors under different 
flow conditions are derived. These transfer function models 
allow an analytical evaluation of the system dynamics and the 
control strategies to gain further insight while preserving the 
physical process parameters. For diffusive flow conditions a 
dead-time/Padé approximation is proposed to find a low-order 
linear system description. Given the (approximate) transfer 
functions with their physical process parameters, an analytical 
feed-forward – feedback law is further worked out. 
 

I. INTRODUCTION 
VER the years chlorination has been the most 

preferred disinfection process for water treatment. 
However, several investigations have proved that chlorine 
residuals are toxic to the aquatic life [1], while at the same 
time some by-products of chlorination have proved to be 
mutagenic. Therefore, the use of other disinfection 
techniques which are friendlier to the environment and do 
not arise health concerns is increasing. 

It is known to scientists for nearly a century that 
ultraviolet (UV) light is an effective germicidal agent at 
certain wavelengths. However, the production cost of UV 
light was high. With the development of high intensity, long 
life lamps, interest in the use of UV as disinfection agent 
was renewed. 

Precise modeling of the disinfection process in a UV 
photoreactor requires complex analysis of the radiation field 
[2]. This analysis needs to be linked to the modeling of the 
flow dynamics and the reaction kinetics. The models 
obtained are composed of very complicated differential 
equations which require demanding numerical computations 
(see e.g. [3]). Consequently, modeling of the disinfection 
process in a photoreactor is a quite complicated task. 
Moreover, phenomena such as reactivation of disinfected 
microorganisms make the situation even less 
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straightforward. On the other hand, in practice simple 
models that preferably preserve prior knowledge are needed 
for fast online calculations. 

The methods that have been used so far for the design of 
water disinfection systems are based on either complex 
physical models or empirical models. In this study our 
approach is to build relatively simple mathematical models 
based on the prior knowledge of the system. After setting up 
basic equations for the irradiation field, the effect of the type 
of flow is examined. Models are obtained for ideal plug flow 
as well as for diffusive flow. The ultimate goal of this paper 
is to show how to develop these relatively simple 
mathematical models that are suitable for dynamical analysis 
and control. Consequently, transfer functions are derived 
that connect the output of the system (bacteria load after 
disinfection) with the disturbance of system (initial load of 
bacteria) and the control inputs (light intensity and/or flow 
velocity). 

In section 2 the UV disinfection process is described in 
some more detail. The modeling procedure of the 
disinfection process is presented in section 3. Section 4 
presents two model approximation techniques. The resulting 
approximate models are used in section 5 to further derive 
an analytical feed-forward – feedback control law that 
explicitly depends on the physical process parameters. 

 

II. UV DISINFECTION  
A UV disinfection system transfers electromagnetic 

energy from a UV lamp to the genetic material of 
microorganisms.  The absorption of light causes 
photochemical reactions that alter molecular components 
essential to cell function. There is scientific evidence to 
conclude that if sufficient dosages of UV energy reach the 
organisms, UV can disinfect water to whatever degree is 
required. In [4], the experimental data for UV inactivation of 
micro organisms have been extensively reviewed and 
furthermore they tabled the UV dose required to achieve the 
inactivation of bacteria, viruses and protozoa.  

Predominantly, there are two types of UV sources that are 
used for water treatment, low pressure (LP) and medium 
pressure (MP) mercury lamps. The UV dose is the product 
of UV intensity (mW/cm2) and the average exposure time 
(s) of the water to be disinfected. In theory using a low 
intensity lamp for a longer period of time should give the 
same microbial inactivation as when a high intensity lamp is 
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used for a shorter period. However, in [5] it is shown that 
preferably high intensity lamps should be used. 

Absorption, reflection, refraction and scattering all 
interfere with the transportation of UV light. Reflection, 
refraction and scattering only change the direction of the 
light which is still capable of inactivating microorganisms, 
while absorbed light is no longer available.  

The effectiveness of a system is related to the initial load 
of microorganisms in the water. In general, most of the 
disinfection models are based on the following expression: 

 
 0 exp( )c c Kt= −                 (1) 
 
where c is the microbial load after disinfection (micro-
organisms/100 mL), c0 the initial microbial load, K the local 
inactivation rate constant (1/s) and t the time of exposure (s). 
As can be seen from (1), inactivation of microorganism by 
UV irradiation is usually expressed in terms of first-order 
kinetics, which holds at low UV doses for e.g. vegetative 
bacteria as E. coli (see [5]). 
 

III.  MODELING OF DISINFECTION PROCESS 

A. Irradiation Field in Annular Reactor 
Analysis of light energy distribution in the annulus is 

important in order to determine the local inactivation rate 
constant. It becomes apparent that, since the amount of 
energy varies with space in the photoreactor, the same holds 
for the inactivation rate for the microorganisms.  

For the development of a light distribution model for the 
annulus it is obvious that working in three dimensions leads 
to unnecessarily complex mathematical expressions. 
Therefore, it is assumed that both variations in light intensity 
in the longitudinal direction of the photoreactor and end 
effects of the lamp do not play a role. The developed model 
is also based upon the following assumptions: 

• The UV lamp emits rays radially from the entire 
surface 

• The attenuation of light depends on the concentration 
of solids in the medium and the length of the light path 

• Solids are homogenously suspended in the medium, 
thus all the properties of the medium are assumed constant 
throughout the reactor 

• There is monochromatic UV-light at 253.7nm at which 
the DNA of all microorganisms is altered causing the 
inactivation of viruses and bacteria (see [6]) 

• The irradiation of the field is not time varying, it is only 
a function of the space coordinates of each point 

• The effects of reflection and/or refraction are negligible 
• There is only one species of microorganisms which 

follow first-order kinetics in the process of inactivation (see 
[7]) 

• Water has been pre-filtered, thus the concentration of 
suspended solids is small and irradiation field is only 

affected by the attenuation in water. 
Under these assumptions and using Lambert’s law, the 

light intensity at any point in the reactor is related to the 
surface flux (see [8]): 

 

 1 ( )d rI EI
r dr

= −                 (2) 

 
where r is the radial distance in the reactor, I  is the light 
intensity of the irradiation field at a distance r from the lamp 
(mW/cm2) and E is the monochromatic absorbance of water 
(cm-1). Integration of (2), using the boundary condition 

0I I= when 0r r= , gives: 
 

 0( )0
0

E r rr
I I e

r
− −=                (3) 

 
where 0I  is the light intensity of the irradiation field on the 

surface of the UV-lamp (mW/cm2) and 0r  is the outer radius 
of the UV lamp (cm). The reaction constant (K) is the 
product of the available energy from the field multiplied by 
the susceptibility factor of the microorganism. Under the 
assumption that disinfection of a specific microorganism 
follows first-order kinetics we obtain: 
 

 0( )0
0( ) E r rr

K r I e
r

ε − −=               (4) 

 
where ( )K r is the spatially dependent reaction constant (s-1) 
and ε  is the susceptibility factor of the microorganism (cm2/ 
mW s). The average light intensity related reaction constant 
across a cross-section of the tube will then be: 
 

 

0

0

( )0

0 0
0

R
E r r

r

r e dr
r

K I I
R r

ε

β

− −

= =
−

∫
          (5) 

 
 Hence, the reaction constant K depends on the light 
intensity on the surface of the lamp multiplied by the 
parameter β. 
 It is also possible to take into account the effects of 
reflection and refraction, see e.g. [6], [9] and [10], but then 
the reflection and refraction coefficient has to be identified 
in situ for each specific reactor.  
 

B. Flow in Annular Reactor 
 In addition to the assumptions made in the previous 
section for the irradiation field, in order to develop the 
model for the case of ideal plug flow, the following 
assumptions have been made: 

• The liquid is ideally mixed in the radial direction 
• Every volume of the liquid has exactly the same 
retention time in the reactor 



 
 

 

• Every volume is receiving the same amount of 
radiation 
• The only mechanism of mass transfer is convection 
(as yet, diffusion is neglected) 

 The equation that describes the disinfection process under 
the above assumptions is:  
 

 ( , ) ( , ) ( , ) 0z
c z t c z tu Kc z t

t z
∂ ∂

+ + =
∂ ∂

         (6) 

 
After applying Laplace transformation with boundary 
condition at 00 (0, ) ( )z C s C s= ⇒ =  the solution of the 
partial differential equation at z = L is given by: 
 

 
( )

0( , ) ( ) e z

K s L
uC L s C s

− +

=             (7) 
 
Consequently, the concentration at the end of the reactor is 
the output of the system, whereas the concentration at the 
entrance is the input. Therefore the above equation can be 
written in input-output form with transfer function G(L,s): 
 

 
( )

( )( , ) e
( )

z

K s L
uY sG L s

U s

− +

= =            (8) 

 
Furthermore, we define: tR = L/uz (residence time).  
 If, however, to be more realistic, we also assume diffusion 
in the z-direction with diffusion coefficient D the partial 
differential equation that describes this phenomenon is: 
 

 
2

2
( , ) ( , ) ( , ) ( , ) 0z

c z t c z t c z tu Kc z t
t z z

∂ ∂ ∂
+ − + =

∂ ∂ ∂
D    (9) 

 
The solution of this differential equation, in terms of the 
Laplace variable s, is: 
 

 

2
4

21( , )

z zu u K s

z
C z s C e

+   − +   
   

=
D D D

         (10) 

If we introduce the Peclet number, i.e. zLuPe =
D

, and 

substitute the following boundary conditions: ( ,0) 0C z = , 

0(0, ) ( )C s C s=  and lim ( , ) 0z C z s→∞ = , the transfer 
function G(s) is given by: 
 

 

2 4 ( )
2( , )

Pe Pe Pe K s

G L s e
− + +

=           (11) 
 
with dimensionless reaction constant = RK Kt . 
 

IV. MODEL APPROXIMATIONS 

A. Padé approximation 
 In the previous section transfer functions have been 
derived from partial differential equations. However, as it 
can be seen from (8) and (11) these transfer functions 
contain an exponential term in s. For further dynamical 
analysis or for controller design, preferably rational transfer 
functions (polynomial quotients in s) are required. Pure 
dead-time terms (of the form e sτ− ) are also allowed, because 
nowadays a vast amount of literature on so-called dead-time 
systems is available (see e.g. [11], [12] and the references 
therein). Consequently, (8) is a pure dead-time system with τ 
= tR and with a constant gain e RKt− . However, for (11) with 
its square root of s there is a need for a model approximation 
step. Instead of the commonly used Padé approximations, as 
in e.g. [13], we now derive a dead-time/Padé[0,1] 
approximation of (11), that is 
 

 ( ) s bG s e
s a

τ−=
+

               (12) 

 
(See Appendix A for details of this approximation). For Pe 
= 1000 and K  = 1 Bode plots of the original and the 
approximate system with a = 22.43, b = 8.36 and τ = 0.95 
are obtained (see Fig. 1), where the approximation is 
appropriate for a frequency smaller than 20 rad/s. 

10
-2

10
-1

10
0

10
1

10
210

-5

10
0

A
m

pl
itu

de

10
-2

10
-1

10
0

10
1

10
2

-10
2

-10
0

-10
-2

ω (rad/s)

P
ha

se

 
 

Figure 1. Comparison between original convection-
diffusion-reaction transfer function (blue line) and its dead-
time/Padé[0,1] approximation (dashed red line). 
 

B. Linearization 
 Notice that so far the transfer function between the 
disturbance input C0(s) and the concentration at the end of 
the reactor C(L,s) for constant flow velocity and light 
intensity has been considered. For control of the disinfection 
process, in addition to possible shaping of the disturbance 
input by buffering, light intensity (I0), or in what follows K 
(= βI0 with β constant), and flow velocity (uz) can be 



 
 

 

considered as control inputs or manipulated variables. For 
simplicity of the expressions only, in what follows we will 
focus on the ideal plug flow case; extension to diffusive 
flow in the z-direction is more or less straightforward. From 
(6) it follows that both control inputs appear in a bilinear 
form together with the concentration c(z,t). 
 For small perturbations from the steady state (denoted by 
an overbar, e.g. c ) a linearized system description of the 
disinfection process can be obtained (see Appendix B for 
details). After some algebraic manipulations the following 
input-output relationship, relating the perturbed disturbance 
input ∆C0, the perturbed reaction constant ∆K = β ∆I0 and 
the perturbed flow velocity ∆uz to the perturbed system 
output ∆C(L,s), can be found: 
 

1 0 2 3( , ) ( , ) ( ) ( , ) ( ) ( , ) ( )zC L s G L s C s G L s K s G L s u s∆ = ∆ + ∆ + ∆
                      (13) 
Herein: 

1

1( , ) e z

LC
u sG L s e τ

−
−=  with 1 0C K I β= =  and 

z

L
u

τ =  (14a) 

2 2
2 ( , ) e sC CG L s

s s
τ−= − +  with 2 0 e

−

= z

LK
uC c      (14b) 

3 3
3( , ) e sC C

G L s
s s

τ−= − +  with 0
3 e

−

= − z

LK
u

z

c K
C

u
  (14c) 

 
Consequently, the MISO system has three inputs and thus 
three transfer functions. Notice that G1(L,s) is a pure dead-
time system with gain /e zLK u−  and both G2(L,s) and 
G3(L,s) are parallel integrators with some time shift. In case 
of diffusive flow terms like in (13) will appear. 
 For 0c =0.75 kg/m3, K =0.24 s-1, L=5 m and zu =1 m/s the 
following step responses for the disturbance input and the 
light intensity related control input under ideal plug flow are 
presented in Fig. 2. From Fig. 2a it is immediately clear that 
after a dead time of 5 s, the unit change in bacteria 
concentration at the entrance of the reactor (dotted line) is 
reduced to 30% of its initial value. Fig. 2b shows that an 
increase of the light intensity initially reduces the bacteria 
concentration linearly with time and after 5 s a constant 
reduction is obtained. For use in a feed-forward controller 
design procedure (described in the next section), a step 
response of an approximate system of the form of (12), with 

τ = 0, znua
L

=  (n = 2) and /
0

−= − zKL ub c e , is also shown 

in Fig. 2b (thin line). 
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Figure 2. (a) Unit step (∆c0 = 1 kg/m3) response and (b) step 
(∆K = 0.01 s-1 ) response (solid thin line: approximate 
system). 
 
 In the next section some suggestions for control of the 
disinfection process in the annular photoreactor are given 
and further analysed. 
 

V. PROCESS CONTROL DESIGN 

A. Feed-forward control 
 When the disturbance of a system is known or measured 
on-line, the use of a feed-forward controller can prove to be 
beneficial. The design of a feed-forward controller is rather 
simple but requires good models.  
 

 
 
Figure 3. Feed-forward controller scheme for constant 
velocity uz. 
 
 In Fig. 3 a feed-forward controller scheme for light 
intensity as control input is shown. Given the objective that 
the output should be close to zero, the design of the feed-
forward transfer function GF simply follows from the 
algebraic equation: 
 
 1 0 2 0( , ) ( , ) ( ) ( , ) 0FC L s G L s C G s G L s C= + =     (15) 
 

so that 1

2

( , )( )
( , )F

G L sG s
G L s

= − , where G1 and G2 follow from 

e.g. (14). 
   Let us evaluate the scheme in Fig. 3 for the ideal plug flow 
case with light intensity as control input in some more detail. 

+

G1 

GF G2 

C0 

u1 

C 



 
 

 

In this case, in (15) G1 is found from (14a) and G2 from 
(14b). Consequently, 

 
/

1
/2 0

( , )( )
( , ) (1 )

−

−
= − =

−

z

z

Ls u

F Ls u
G L s seG s
G L s c e

      (16) 

 
which is a non-rational transfer function. Let us therefore 
use the approximation of G2 presented in Fig. 2b. Then, 
 

 
/

1

02

( , ) ( / )( )
( / )( , )

− +
= − =

+

zLs u
z

F
z

G L s s nu LeG s
c s mu LG L s

    (17) 

 
where the factor ( / )zs mu L+  with m large is added to make 
this controller physically realizable. A similar filter term is 
usually added in the D-action of a PID controller. The 
overall transfer function H(s) from C0 to C is then given by 
 

( )/ / /( / )( ) 1 1
( / )

z z zKL u Ls u Ls uz

z

s nu LH s e e e
s s mu L

− − − +
= − − + 

  

                      (18) 
 
 Fig. 4 presents the simulation results of the linearized 
system with the physically realizable feed-forward controller 
for m =1000 and as before for 0c =0.75 kg/m3, K =0.24 s-1, 
L=5 m and zu =1 m/s. Since  
 

 
( )/

0

1
lim

zLs u

s
z

e L
s u

−

→

−
=           (19) 

⇒ /
0lim ( ) 1 .zKL u

s
z

n LH s e
m u

−
→

 
= − 

 
       (20) 

 
Consequently, for the parameter values given above and as a 
result from the approximations, the deviation in the output at 
z = L is equal to 0.03 kg/m3 for ∆c0 = 0.1 kg/m3 and t → ∞. 
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Figure 4. Simulation results for feed-forward control 
strategy. 
 

B. Combined feed-forward and feedback control 
 Although feed-forward can theoretically result in perfect 
control of a process and perfect attenuation of known 
disturbances, in practice it is not always the case. That is 
mainly because it requires, as quoted before, very precise 
models. In practice, there are always deviations between the 
model and the real process and furthermore the measured or 
predicted disturbance input contains errors. Therefore the 
combination of feed-forward and feedback control can result 
in more precise control of the process (see e.g. [14]). For our 
application with constant flow velocity, Fig. 5 shows an 
appropriate feed-forward – feedback controller scheme. 
 

 
 
Figure 5. Feed-forward - feedback controller scheme. 
 
 The closed loop transfer function for the changes of the 
disturbance is: 
 

 1 2
0

2
( , ) ( )

1
F

B

G G GC L s C s
G G

+
=

−
          (21) 

 

so that again 1

2

( , )( )
( , )F

G L sG s
G L s

= −  or for implementation in 

practice 1

2

( , )
( , )

G L s
G L s

− . From (21), however, it can be seen that 

the stability of the system and thus the denominator of the 
fraction, only depends on the process G2 and the feedback 
controller GB. This gives the opportunity to tune both 
controllers separately and deal with the stability of the 
system. The feedback controller GB can, for instance, take a 
PI-controller structure with controller parameters that 
directly depend on the dead-time first-order properties of G2. 
Consequently,  
 

 1( ) 1B p
r

G s K
T s

 
= + 

 
            (22) 

 
 From the Cohen-Coon reaction curve method and after 
substituting from (12), for the ideal plug flow case, the time 

constant and gain, that is znua
L

= , /
0

−= − zKL ub c e  and 

after choosing τ = τ0, we obtain 
 

+

G1 

GF G2 

C0 

C +

GB 



 
 

 

 
/

0

10.9
12

 = − + 
 

zKL u

p
TeK

c T
         (23) 

and 

 0
(30 3)
(9 20)r

TT
T

+
=

+
τ               (24) 

where 
0z

LT
nu

=
τ

. Hence, the controller parameters are 

fully expressed in terms of the process parameters. Again, 
from (21) the overall transfer function can be found. Fig. 6 
presents the simulation results of the feed-forward – 
feedback scheme (Fig. 5) for n = 2, m =1000, 0c =0.75 
kg/m3, K =0.24 s-1, L=5 m and zu =1 m/s. 

0 5 10 15
0

0.05

0.1

∆
 C

0

0 5 10 15
-0.05

0

0.05

∆
 C

(L
)

0 5 10 15
-5

0

5

Time (s)

∆
 K

 
Figure 6. Simulation results for feed-forward – feedback 
control strategy. 
 
 Hence, these analyses show how prior non-rational 
process knowledge, which frequently appears in processes 
with flow components, can be directly implemented in a 
controller design procedure that conserve the knowledge of 
physical process parameters. Clearly, given the dynamical 
models of the previous sections, even a multivariable 
(optimal) controller could have been designed (see e.g. [11], 
[12]). 
 

VI. CONCLUSIONS 
 For dynamical analysis and model-based controller design 
of a water disinfection process in annular reactors, described 
by convection-diffusion-reaction type of differential 
equations, a transfer function modelling approach, using 
analytical expressions in terms of the Laplace variable s and 
the original physical process parameters, is possible and 
provides further insight into the process (see also [13]). 
 

APPENDIX 

A. Padé approximation 
 A dead-time-Padé[0,1] approximation of G(s) in s = 0 is 
of the form 
 

 ( ) s bG s e
s a

τ−=
+

              (A.1) 

where the coefficients a, b and τ  are determined by setting 

(0) (0)G G= , (0) (0)dG dG
ds ds

=  and
2 2

2 2
(0) (0)d G d G

ds ds
= . 

Given the convection-diffusion transfer function G(s) as in 
(11), we obtain (rather complicated) expressions for a, b and 
τ  in terms of Pe, K  and s. However, the following 
relationships hold: 
 

2 4
2

2

1 and    
4

Pe Pe PeK
b Pee
a a Pe PeK

τ
− +

= + =
+

   (A.2) 

 
where b/a is the steady-state gain of the system. This 
procedure can be repeated for different orders m and n, but 
then most often we must rely on numerical schemes for the 
estimation of the coefficients. In general, an appropriate 
choice of the orders n and m in a Padé[n,m] approximation is 
made by observation of the Bode plot of the original transfer 
function. 

B. Linearization 
 Let us as an example of the linearization procedure write 
(6) in terms of the steady states (denoted by an overbar) and 
small perturbations, indicated by ∆: 
 

( ) ( )( ) ( )( ) 0∂ + ∆ ∂ + ∆
+ + ∆ + + ∆ + ∆ =

∂ ∂z
c c c cu u K K c c

t z
  

                     (B.1) 
 

⇒ 
0

∂ ∂∆ ∂ ∂∆ ∂ ∂∆
+ + + + ∆ + ∆

∂ ∂ ∂ ∂ ∂ ∂
+ + ∆ + ∆ + ∆ ∆ =

z z z z
c c c c c cu u u u
t t z z z z
Kc K c Kc K c

  (B.2) 

 
Subtracting from (B.2) the steady state terms that obey (6) 

and neglecting the second-order terms ∂∆
∆

∂z
cu

z
 and ∆K∆c 

the following equation in the so-called deviation variables is 
obtained: 
 

 0∂∆ ∂∆ ∂
+ + ∆ + ∆ + ∆ =

∂ ∂ ∂z z
c c cu u K c Kc
t z z

     (B.3) 

 
For both zu  and K  the constant steady state values can be 
substituted, but for the concentration c  the steady state 
solution must be found from: 
 



 
 

 

 0+ =z
dcu Kc
dz

               (B.4) 

 
which is given by /

0
−= zKz uc c e , so that in (B.3) 

/0 −∂
= −

∂
zKz u

z

Kcc e
z u

. Hence, after substitution of the steady 

state solutions and after defining u1 := ∆K and u2 := ∆uz, 
(B.3) becomes 
 

/ /0
2 0 1

 
0− −∂∆ ∂∆

+ − + ∆ + =
∂ ∂

z zKz u Kz u
z

z

K cc cu e u K c c e u
t z u

 (B.5) 

 
After Laplace transformation and re-ordering the equation 
we obtain: 
 

/ /0 0
2 12

 ( ) 0− −∂∆ +
+ ∆ − + =

∂
z zKz u Kz u

z zz

K c cC s K C e U e U
z u uu

 (B.6) 

 
which is a linear first-order equation with the initial 
condition: ∆C(0)=∆C0, the disturbance input of the reactor 
system and U1=∆K(s), U2=∆uz(s) the control inputs. After 
solving (B.6) for z = L, the transfer functions G1(L,s) to 
G3(L,s) in (14) are obtained. 
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