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Abstract

There is an increasing demand for high-resolution meteorological observations for urban areas,
which are generally quite scarce. A potentially fruitful source of such data could be obtained
through crowdsourcing. As smartphones have become ubiquitous and are equipped with many
sensors, readings from these sensors can be a valuable ’opportunistic’ source of meteorological data.
Battery temperature readings from smartphones can be used to estimate the urban temperature.
In this study two large datasets from October 2016 and June 2017 are analyzed; containing more
than hundred thousand smartphone readings per day. Readings from battery temperature sensors,
separate ambient temperature sensors and light sensors are considered. Battery temperature read-
ings are used in a straightforward heat transfer model to record the city-wide air temperature of
Amsterdam. These are compared to temperatures measured by a network of more than 20 meteo-
rological stations installed throughout the city.
Good results were obtained for June 2017 for the daily averaged temperature (coefficient of de-
termination ρ2 = 0.84), and reasonable results were obtained for hourly temperature estimations
(ρ2 = 0.53). For October, the results were less good (ρ2 = 0.50), as readings from smartphones be-
ing charged could not be excluded. Readings from separate ambient temperature sensors installed
in some smartphone models proved to be fruitless for estimating the urban air temperature in June
(ρ2 = 0.33). Light sensor readings show a distinct diurnal pattern. However, attempts to use these
readings for improving the temperature estimations were ineffective.
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1 Introduction

1.1 The Urban Weather & Climate

The world is rapidly urbanizing; in 2014, 54% of the world’s population resided in urban areas,
with an expected increase in all regions to 66% in 2050 (United Nations Department of Economic
and Social Affairs, 2014). This poses a myriad of problems related to the (environmental) living
conditions of urban dwellers, including resource use, sanitation, pollution and the urban climate.
Meteorology and air quality form important aspects of life in the city and the urban metabolism.
Inhabitants can suffer from heat in the city; during hot periods such as heat waves, the human ther-
mal comfort can be even more drastically reduced in cities compared to rural areas, which can result
in decreased labor productivity and increased mortality in cities. This is due to the phenomenon
known as the Urban Heat Island (UHI). During the evening the city cools down at a slower rate
than the surrounding countryside due to the high heat capacity of the materials of buildings and
roads, the relative scarcity of vegetation, which all cause heat to be trapped. The nights therefore
give no respite from the daytime heat (Steeneveld et al., 2016; Oke, 1982; Molenaar et al., 2016).
The severe heat wave of August 2003 was for example associated with a five fold increase in the
daily mortality risk in Paris (Steeneveld et al., 2016; Le Tertre et al., 2006) As the IPCC scenarios
on climate change indicate an increase in heat wave frequency and severity in the future, there is
urgency to adapt cities in order to cope with these changing conditions (Stocker et al., 2013; KNMI,
2014; Steeneveld et al., 2016).

To combat these environmental issues and to plan urban interventions effectively, meteorological
measurements are needed on site. For urban planning, such in-situ measurements are needed at a
high resolution as the urban landscape is highly heterogeneous. However, official measurements are
scarce; for most cities there is often one official weather station, frequently at the airport outside
the city center (Chapman et al., 2016).

Dedicated urban meteorological networks (sets of small weather stations spread out over an ur-
ban area) have been set up to in order to capture the capricious urban climate, like the Birmingham
Urban Climate Laboratory (Chapman et al., 2016). In Muller et al. (2013) a review of the current
state of such networks is provided. Apart from such point measurements, trajectory measurement
campaigns have been held to quantify the (nocturnal) UHI in different zones of a city, like in
Heusinkveld et al. (2014). Such intensive networks and campaigns provide more detail of the urban
weather and climate, but are too resource-intensive to be applied broadly. Additionally, for large
parts of the world, in-situ meteorological measurements are lacking altogether, while having such
in-situ measurements is relevant for all areas. So, other sources of meteorological data should be
explored, like data obtained by crowdsourcing.

1.2 Crowdsourcing in Atmospheric Sciences

Crowdsourcing is defined by Muller et al. (2015) as "obtaining data or information by enlisting the
services of a potentially large number of people". In recent years, this concept has gathered momentum
within different disciplines of the scientific community. This is due to the increased willingness of
the general public to participate in scientific practices and, notably, due to technological advances
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(Snik et al., 2014).
Generally a distinction is made between, on the one hand, participatory crowdsourcing (or citizen

science, active sensors, participatory sensing), in which citizens actively collect and submit data them-
selves, and on the other hand opportunistic crowdsourcing (passive sensors), in which data generated
for a different purpose are put to use for scientific research (Niforatos et al., 2017).

Muller et al. (2015) provide a comprehensive overview of current efforts in crowdsourcing for
climate and atmospheric sciences. Compared to other scientific fields, the application of crowd-
sourced data in atmospheric sciences has been relatively limited, due to the discipline’s strong focus
on obtaining precise and representative observations. This measurement paradigm leads to a lim-
ited measurement coverage of formal weather stations because of the high costs of precise weather-
monitoring equipment. This paradigm is also at odds with the concept of crowdsourcing, as with
the latter, accuracy is traded-off for greater coverage; quantity over quality (Muller et al., 2015;
Chapman et al., 2016).

Using data from weather stations maintained by weather enthusiasts is one way of applying
crowdsourcing and thereby increasing the coverage of meteorological measurements in cities. Hob-
byists install small weather stations at their homes and communicate their measurements through
dedicatedwebsites likeWeatherUnderground (wunderground.com) and theWOW-project (wow.metoffice.gov.uk)
This data source has proven its worth in urban research (Steeneveld et al., 2011; Bell et al., 2013;
Muller et al., 2015; Vos et al., 2017; Niforatos et al., 2017;Meier et al., 2017). These personal weather
stations can be costly and the number of avid weather enthusiasts is relatively limited. Fortunately,
there are also more low-cost options available, for example using devices which have become ubiqui-
tous in daily life: smartphones. The abundance and popularity of smartphone weather applications
(’apps’) indicate a large potential for crowdsourcing in the weather domain (Niforatos et al., 2017).

1.3 Smartphone Measurements

There is now a wealth of possibilities to participate in crowdsourcing projects with one’s smart-
phone. In the mPING project for example, citizens file reports on the precipitation type they see
in an app, this data is used to validate radar derived precipitation estimation (Elmore et al., 2014).
Another example is described by Schweizer et al. (2011) who developed an app which automatically
collects noise levels from smartphones for mapping urban noise pollution. Thompson (2016) pro-
vides a review of the recent efforts of monitoring air quality by means of crowdsourcing. Many of
the mentioned projects require separate sensors, smartphone sensor add-ons or mobile applications
which the user installs on his/her phone. For instance, Snik et al. (2014) describe the iSPEX Smart-
phone add-on to attach to a smartphone camera to measure aerosol optical thickness. Thompson
(2016) conclude that as of yet, there is no perfect sensing platform meeting the requirements of
being portable, sensitive, selective and low-cost (Thompson, 2016).

Instead of connecting separate sensors to a smartphone, one could make use of the large num-
ber of sensors which are installed inside smartphones. For instance, the Samsung Galaxy S4 was
advertised to have amongst others; a barometer, a separate ambient temperature & humidity sen-
sor, geomagnetic sensor, accelerometer, gyro sensor, proximity sensor and a RGB Light Sensor.
These sensors are installed for health and lifestyle applications and convenience (Samsung,2013). In
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research, these sensors have been applied to determine what type of activity the smartphone user is
employing (Vanini et al., 2016; Niforatos et al., 2017). Or for instance in geosciences for collecting
ground level magnetic data from the geomagnetic sensor (Saltus and Nair, 2017). Explored oppor-
tunities for using these sensors for atmospheric applications include using smartphones on a hot
air balloon flight to track the wind, and sensing the atmospheric pressure (Madaus and Mass, 2017;
Niforatos et al., 2017; De Bruijn et al., tted). One interesting sensoring application is to use the
thermometers installed in smartphone batteries to record the ambient air temperature.

Using battery temperature readings

Overeem et al. (2013) have used a dataset of smartphone battery temperature readings to model the
urban ambient temperature on a daily basis for eight cities in different climate zones. These read-
ings were collected by the smartphone app OpenSignal. The dataset contained 1.3 million records
for the eight cities, with at least 400 readings available on 80% of the days. On a daily basis, good
results were obtained when compared to official WMO station data from nearby airports, with
fractions of explained variance up to ρ2 = 0.86 (for the city of Rome) (Overeem et al., 2013). The
analysis was repeated for two Dutch cities; Rotterdam and Amsterdam for the warm summer of
2013, with again good results: ρ2 = 0.77 and 0.67 respectively. To do so, apart from measurements
at the WMO stations at the nearby airports, additional in-situ temperature measurements from the
local health authority were used as a reference for Amsterdam (Overeem et al., 2014).

The temperature of a smartphone battery is of course not only influenced by the ambient tem-
perature and battery usage, as it is generally carried around in a clothing pocket. So it is assumed
that the phone also receives body heat of the owner; the rate of which is dependent on the isolation
between the phone and the outside air and the body. To take this into account, and convert the
battery temperature readings a straightforward steady-state heat transfer model was used.

Droste et al. (2017) built upon the work of Overeem et al. (2013) by zooming in to one city: São
Paulo. The authors do not only estimate daily mean temperature, but also estimate the ambient air
temperature on an hourly basis. The modeled temperatures were calibrated and validated on the
measurements of seven amateur weather stations in the city, and two authoritative weather stations;
a micro-meteorological tower station, and the official measurements at the São Paulo airport.

So for ten cities it has been shown that smartphone battery temperatures can be used to estimate
the city-wide daily averaged temperature. Additionally, for one city estimations of hourly temper-
atures proved fruitful (Overeem et al., 2013, 2014; Droste et al., 2017). A similar study for hourly
temperature estimations for a different city can assess the robustness of these findings.

People generally spend most of their time inside buildings, whether working or resting. This is
clearly a challenge when applying smartphone crowdsourcing for sampling environmental condi-
tions. Researchers can thus choose to focus on sensors which remain mostly unaffected by the pre-
cise context of the user, like the atmospheric pressure sensor (as done in Madaus and Mass (2017)).
Or alternatively, efforts can be taken to use information from additional sources to infer the context
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of the user, and thereby filter for outdoors readings (Niforatos et al., 2017). One such method to
infer whether a smartphone is indoors or outdoors is applied by Broyde et al. (2013); the authors
used statistical analysis of path attenuation of the wireless transmission between mobile phones
and telecommunication masts to distinguish between inside and outside phone usage. For this the
signal strength at both the sending and receiving part is needed, so not only information from the
smartphones themselves, but also information from the cellular network is necessary. Therefore,
this approach cannot be applied when only collecting smartphone data via an app.
Additional smartphone sensors might therefore be used to disambiguate if the smartphone is out-
doors. Many smartphones have a light intensity sensor, installed in smartphones to adjust the
screen brightness. The readings from this sensor are influenced by the users context (e.g. under
office lighting) and the weather conditions (e.g. sunny or overcast).

The work of Niforatos et al. (2017) is the first in which smartphone light sensor and ambient
temperature sensor readings are collected for meteorological applications. Niforatos et al. (2017)
launched an app, Atmos, to passively collect data from a limited number of smartphone sensors for
weather data collection, combined with asking the volunteers to manually fill in their estimations
on the weather. The authors applied supervised machine learning to predict the current and future
ambient temperature from manually submitted weather data and mobile sensor data both collected
through a mobile app. For the sensor data, the global ambient temperature estimations had an
average error of about 10 °C compared to the reference measurements at Weather Underground
stations. When combining data from both data sources, the minimal average error they found was
7.82 °C using four input variables in a regression tree analysis. However, in their research the col-
lected data are quite spread out; just over 2×105 useful measurements stemming from 26 countries
over a period of 32 months (Niforatos et al., 2017).

Compared to battery temperature sensors, the separate ambient temperature sensors, which are
installed in some smartphone types, would be less affected by the smartphone usage. This is due
to their placement within the phone (Niforatos et al., 2017). These sensors might therefore be a
fruitful data source to estimate the ambient temperature.

Hence, it is interesting to further explore not only readings from battery temperature sensors,
but also from the separate temperature and light intensity sensors from smartphones. Having a
dense set of smartphone readings from an urban area combined with a robust reference of air tem-
perature observations provides a useful extension to previous endeavors as it overcomes issues on
representativeness and data quality for the reference data.

2 Research objectives

This project aims to build upon the work of Overeem et al. (2013); Droste et al. (2017) and Nifo-
ratos et al. (2017) by analyzing an extensive dataset with smartphone readings from OpenSignal to
estimate the air temperature in the city of Amsterdam. The urban temperature will be estimated
per hour and per day by using battery temperature readings. It aims to assess how many readings
are needed for accurate hourly temperature estimations. Additionally, it aims to assess if the urban
temperature can be estimated from ambient temperature sensors in smartphones. Furthermore,
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this project explores the suitability of using readings from the light sensor to reduce the number of
indoor readings incorporated in the analysis in an attempt to improve the temperature estimations.
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3 Materials and Methods

3.1 Case study description

The metropolitan area of Amsterdam is chosen as it is the most populated city of the Netherlands
and because there are multiple urban weather stations installed throughout the city, providing a
robust reference (Section 3.2.2, Figure 2). Two datasets of crowdsourced smartphone readings are
available for this study; one for autumn 2016, for which the data of October are used, and for the
month of June 2017. The June dataset will be analyzed more extensively (Section 3.2.1).

Weather during the case study periods

The month of June 2017 was exceptionally warm in the Netherlands; with an average temperature
of 18.0 °C.

High pressure systems provided stable summer weather from June 10th, with especially warm
days from June 18th to 22nd. This ended the 22nd with thunder. The following days were overcast
with rain from low pressure systems brought in from the sea (see Figure 1) (Homan, 2017).

In October 2016 it was relatively sunny, cold and dry in the Netherlands with an average tem-
perature of 9.9 °C. The month started with some rain on October 1st and 2nd. It was relatively
warm on October 3 & 4, 7 and especially on October 16. This was followed by rainy days from the
17th to the 21st, after which it was dry for the rest of the month (Homan, 2016).

3.2 Data Collection

3.2.1 Smartphone data

The company OpenSignal provides a smartphone app under the same name aimed to find the best
network signal strength. App users have granted OpenSignal the permission to collect information
on the specifics of their phone as well as on the readings from the sensors in the devices. The app
logs information from a large number of network details, processes and sensors in the smartphones.
Apart from those used to provide the actual service of the app, readings from sensors like the battery
thermometer are also retrieved as collateral. OpenSignal has provided two datasets with smartphone
readings; from September to November 2016 and a dataset for the Amsterdam area for the month of
June 2017. The readings are logged every 15 seconds when the app is activated and the smartphone
screen is active.

3.2.2 Weather station data

Currently, an urban meteorological network is being set up in Amsterdam, the Amsterdam At-
mospheric Monitoring Supersite (from now on referred to as "AMS stations"). This is part of a
research project of the Amsterdam Institute for Advanced Metropolitan Solutions, the Meteorology
and Air Quality chairgroup of the Wageningen University and the Summer in the City research
project (Ronda et al., 2014; Wageningen University, 2016). When fully installed, the network will
consist of 30 meteorological stations measuring wind velocity, humidity and temperature across
the city. For the case study period, data from a maximum of 25 stations are available (Figure 2).
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Figure 1: Daily mean temperature (orange line) and daily precipitation sums (blue bars) atWMO station
Schiphol, June 2017.

The measurement data from these stations will be used to assess how much of the temperature sig-
nal is captured in the signal of the smartphone readings and to assess the performance of the heat
transfer model. The average of all available meteorological stations is used, excluding one station
located on an island in the IJ lake, as the footprint of this station is far from representative for the
typical urban conditions of Amsterdam. Additionally, the nearby official WMO weather station
at Schiphol airport (KNMI station 240, WMO code 6240, Figure 2, pink circle) will be used as a
reference for the smartphone light sensor readings as this station is equipped with a pyranometer
measuring global radiation.
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Figure 2: Locations of the AMS stations (red
circles) and the WMO station Schiphol (pink
circle).

Figure 3: Conceptual representation of the heat
transfer model (Overeem et al., 2013)

3.3 Modeling Method

3.3.1 Data filtering

As the OpenSignal app is also used by tablets, there are also tablet readings in the datasets. For the
sake of clarity, these are left out for the analyses. For the available datasets, Open Signal applied
a sampling strategy of collecting readings every 15 seconds while the screen is on (and the app is
running). This contrasts with the sampling strategy of the previous work of Droste et al. (2017)
and Overeem et al. (2013).

In these studies smartphone readings were only logged only when the smartphone was switched
on or off and when it was plugged or unplugged from a charger. The readings for which the smart-
phone was just unplugged and discharging were filtered out as the battery temperature would be
higher due to the charging. So only readings where the phone was switched on or off and was
discharging and for readings when the smartphone was just plugged into the charger were selected
(Overeem et al., 2013), (Droste et al., 2017).

Battery Temperature

The filtering applied in previous studies is thus not possible. So other filtering steps need to be
applied to remove readings which are unlikely to be of value for the analyses. Or alternatively, to
capture the readings which are assumed to be most representative for the environmental conditions:
measurements taken outside. As charging the battery typically warms the phone, readings from
phones being charged are filtered out (variable BT_PLUGGED). Furthermore, smartphones are
typically charged whilst inside. Analogous to the studies of Overeem et al. (2013) and Droste et al.
(2017), battery temperature readings assumed erroneous are also filtered out; the range assumed to
be plausible is 10 to 47 °C.
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Readings from the smartphone light intensity sensors are explored to examine the viability of
using this sensor to filter out smartphone readings taken inside on an hourly basis (section 3.4).

Separate Temperature Sensor

For the same reasons as stated above and to keep the results comparable between the two types
of temperature sensors, batteries being charged are also filtered out for the analysis of the separate
ambient temperature sensor. A smartphone is most likely charged inside and the additional heat
from charging will also influence this sensor. The range of values assumed plausible is taken to be
slightly different than that of the battery temperature sensors; 5 to 40 °C, as it is assumed that the
placing of the thermometer would make the measurement more direct, rendering lower readings
possible and higher readings as outliers. Only readings with the highest reported temperature sensor
accuracy are considered.

3.3.2 Heat transfer model

The ambient temperature of Amsterdam will be estimated on a daily and on a hourly basis. To take
into account that a smartphone is far from a straightforward standalone sensor, the heat transfer
model taken fromOvereem et al. (2013) is used to estimate the ambient temperature via the battery
temperatures. Smartphone owners typically carry their device around in a pocket of their clothing.
The phone will thus often be close to the user’s body and receive body heat. The processes in the
phone also generate heat. Therefore the temperature of the smartphone battery Tb (oC ) is assumed
to be influenced by the environmental ambient temperature Te (oC ), the thermal energy generated
by the phone Pp (W), and the human body temperature Tb (oC ). For the statistical model, other
potential heat sources are not taken into account. The heat flow between two neighboring sys-
tems is proportional to the temperature difference between the systems and the resistance between
them. The thermal insulation between the phone and the environment is captured in the model as
coefficient ke (W °C−1) and between the phone and the body, kb (W °C−1) (Figure 3).

Thus the following equation is defined (Overeem et al., 2013);

Te =
�

1+
kb

ke

�

×Tp −
�kb

ke

×Tb +
Pp

ke

�

. (1)

For steady-state heat flow between Pp and the heat flow to the environment and the body, and
if the values of Tp, Tb,Pp, ke, and kb can be assumed independent over a set of readings. Averaging
over a city and over a day or an hour, this leads to the following simplification;

Te(t ) = m× [Tp(t )−T0]+T0+ ε, (2)

in whichm ( -) is the average of (1 + kb/ke) from all individual observations within a given period for
a certain location. The previously found values ofm for different cities range from 2 to 3 (-), which
implies that the battery temperatures fluctuate less than the ambient temperature. The ε (°C) is a
random error. T0 can be interpreted as the normal human body temperature plus a constant factor
(Overeem et al., 2013; Droste et al., 2017). See the supplementary information of Overeem et al.
(2013) for a more elaborate derivation of the heat model.
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3.3.3 Calibration and validation

For the base run, initial values ofm=2.1 and T0=39.0°C will be taken from Overeem et al. (2014).
This is the value found for when calibrating the urban air temperature in Amsterdam for the sum-
mer months of June, July and August 2013 with five meteorological stations from the public health
service as a reference.

Subsequently, the month of June is divided into a calibration period ( June 1 to 14) and a val-
idation period ( June 15 to 30). The model will only be calibrated on m, T0 is assumed constant
at 39.0 °C. The adjacency of these periods does infer unavoidable temporal auto-correlation. The
non-linear least squares method is applied to calibrate for the value of m. The modeled tempera-
ture is compared to the averaged temperature of the AMS stations: the coefficient of determination
or fraction of explained variance (ρ2 ( -)); root mean square error (RMSE (°C)); the bias or mean
error (ME (°C)); and mean absolute error (MAE (°C)) will be calculated. As m is the ratio of the
k coefficients of thermal insulation, it can be expected that this coefficient varies throughout the
year and throughout the day. Therefore, for hourly averaged air temperatures values for m will be
calibrated for each hour of the day.

To assess the dependency of the model performance on the amount of available readings for
the hourly temperature estimation, the effect of setting a minimum threshold is researched; any
hours for which the number of available readings is less than the threshold, are excluded from the
analysis. The threshold is increased from 500 to 6000 in steps of 250 readings per hour, the resulting
coefficient of determination and RMSE between the modeled temperature and the reference are
calculated.

3.4 Light Intensity

Readings from the smartphone light sensors are explored, these are reported in lux ( l u menm−1).
Only readings with the highest accuracy ( light_acc=3) are taken into consideration. Readings
from smartphones being charged are also left out of this analysis. The mean hourly light inten-
sity from smartphones is calculated and compared to the official measurements of global radiation
(J c m−2hou r−1) at the WMO station Schiphol. A conversion from the one unit for light in the
other is not straightforward as every wavelength of light has a different energy level, and the wave-
lengthswhich aremeasured by the smartphone sensorsmay differ amongstmodels. An approximate
conversion, which would be valid for the Sun, is applied; 0.0079 Wm-2 per lux (Cumulus forum
contributors, 2010).

The possibility of using these light sensor readings to make a distinction between inside and
outside conditions is explored. This is done by defining thresholds; readings where the light sen-
sor indicates a lower value than either (a) the median, (b) mean light intensity for that hour are
excluded. Alternatively, a fixed threshold is applied, representative for inside office conditions (first
a conservative 100, then 500 Lux, (Warwick University)). For this analysis, only daytime hours
are taken into account. After filtering, the remaining readings are averaged to daily values for the
daytime hours.
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4 Results

The results from the October 2016 dataset are presented first, followed by the results from the
June 2017 dataset. Hourly averaged ambient temperatures from battery temperature readings are
discussed, after which the hourly averaged estimations are shown. The effect of the number of
readings is subsequently discussed, followed by an analysis of readings from ambient temperature
sensors. Finally the analysis of light sensor readings is presented.

4.1 October 2016

For October 2016 there are 3.9 million battery temperature readings within the Amsterdam area;
an average of nearly 126 thousand a day. At nighttime there are substantially fewer readings than
during the day; two versus six thousand per hour. The peak at 15 UTC coincides with the end of a
regular workday (Figure 5a). Filtering out smartphones being charged is not possible, as readings
about this variable are not included in the dataset. 4% of readings were made with the screen off and
locked. There is a diurnal pattern in the battery temperature readings; the mean hourly temperature
reaches a minimum of 29.7 at 4 UTC, rising to 30.9 at 22 UTC, with a distinct drop around 16 UTC
(Figure 5b). These lower temperatures are most probably due to the evening commute; smartphone
users being outside after work. The average battery temperature is 30.1 °C(Figure 4).

Daily temperature estimation

With the base run m=2.1, the modeled temperature ranges from 18.8 °C on October 10th to 22.5
°C on October 28th, with an average of 20.3 °C; more than 9 °C higher than observed (ME=9.2
°C). The pattern in themodeled temperature only partially follows the pattern of the observed daily
temperatures at the AMS stations; there are three distinct spikes in the temperature, by which the
model misses the relatively warm days the 3rd and 4th of October. The coefficient of determination
ρ2 is 0.5 (Figure 6).

As the heat transfer model is a linear model, the correspondence in signal between the modelled
and measured temperature does not improve with calibration of m.
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Figure 4: Pre-processed hourly battery temperature from smartphones, and the average hourly tempera-
ture from the AMS stations, October 2016.
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Figure 5: Mean number of battery temperature readings (a) and mean battery temperature (b) per hour
of day, October 2016
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Figure 6: Base run estimated daily temperature compared to the average temperature of the AMS stations,
October 2016.

4.2 June 2017

For the month of June 28% of readings came from smartphones being charged, and were thus fil-
tered out. 4.2 103 readings remain after filtering; around 1.4 105 readings a day. The readings come
from a total of 3199 unique smartphones. The average battery temperature reading is 31.3 °C. The
battery temperatures vary less than the measured ambient air temperatures (Figure 7). There is,
however, a daily cycle in both the battery temperature and the number of readings; with lower
temperatures and less readings during the night (Figure 8). The minimum hourly battery tempera-
tures is 26.7 °C on June 14th 02:00 UTC, the maximum hourly battery temperatures are however
also found during nighttime; 36.3 °C on June 27th 01:00 UTC, and 35.0 °C on June 6th 3:00 UTC.
These outliers are based on a lower number of readings than average for that time of day. The mini-
mum number of readings in one hour is 146, the mean 5771, and the maximum 12041 (Figures 7 &
8). During weekends, there are slightly less readings and the number of readings starts to increase
an hour later compared to weekdays (not shown).

Both the temperature measurements at WMO station Schiphol and the averaged temperature
from the AMS stations are shown in Figure 7. As can be seen, during most night the temperature
in the city is higher than that at Schiphol; an urban heat island. The AAMS stations give a better
representation of the environmental context of the smartphone users, thus from here onwards, only
the temperature from the AMS stations will be depicted.

4.2.1 Daily temperature estimation

For the base run (m=2.1; T0=39.0 °C, whole month), the pattern of warm and cold days is cap-
tured quite well (ρ2=0.84), although the modeled temperature peaks one day earlier than measured
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Figure 7: Pre-processed hourly battery temperature from smartphones, hourly temperature at WMO sta-
tion Schiphol and the average hourly temperature from the AMS stations, June 2017.
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Figure 8: Average number of readings per hour of day (a) and average temperature per hour of day
(b) from battery temperature sensors (blue), ambient temperature sensors (green), and the AMS station
average (red), June 2017.
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Figure 9: Base run estimated daily temperature compared to the average temperature of the AMS stations,
June 2017.

( June 17 versus 18), resulting in a high bias for that day. There is a positive bias (ME) of 4.7 °C
(Figure 9). Taking the median temperature rather than the mean for calculating hourly battery
temperatures does not improve the results (Table 1). Inclusion of battery readings where the phone
is being charged leads to poorer estimations, as expected (Table 1). The daily temperature is on
average 0.3°C higher when the readings are not filtered for batteries being plugged in.

As can be seen in Table 1, the model performance improves if the AMS stations are used as
a reference, compared to using the WMO station Schiphol, Overeem et al. (2014) found similar
results.

Calibration and Validation

As it is not possible to apply the same filtering steps to the datasets of October 2016 and June
2017, m is only calibrated for the month of June 2017. The month is divided into two parts to
use for calibration and validation. The calibrated m is higher than the base run; 2.91 (-). As m =
(1+ kb/ke) = 2.91, kb is nearly twice as large as ke , implying that the conductivity between the
body and the phone is larger than between the phone and the environment.

The bias is reduced by calibratingm; for the validation period, themodel underestimates the high
temperatures from June 18 to 22, while it overestimates the temperatures of consecutive colder days,
resulting in a low mean error (ME=0.19 °C). The RMSE is reduced to 1.07 °C and the MAE is
0.93 °C (Table 1, Figure 10).

As can be seen in Table 1, the choice of assigning calibration and validation periods influences
the results; in the first weeks of June the battery temperatures resemble the measured temperatures
more closely.
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Figure 10: Calibration period and validation period and results for daily temperatures estimations.

Table 1: Statistics for the modeled daily temperature compared to the AMS station average, for the whole
month of June 2017 unless indicated otherwise.

type m [-] ρ2 [-] ME [°C] RMSE [°C]

base run 2.1 0.84 4.70 4.79
base run reference Schiphol 2.1 0.78 6.35 6.44
median battery temperature 2.1 0.81 5.7 5.78
base run incl. charging batteries 2.1 0.80 6.47 6.57
calibration June 1-15 2.910 0.80 0.19 1.07
calibration June 16-30 2.897 0.91 0.18 0.88

4.2.2 Hourly temperature estimation

For the base run (m=2.1; T0=39.0 °C, whole month), the model performance is worse than that
for daily averaged temperatures, with ρ2=0.53 (Table 2). Especially for the overcast days of June 23
to 26, the estimated temperature is a lot higher than the reference (Figure 11). There seems to be a
delay in the evening cooling, not in the morning heating; the battery temperatures cool later than
measured by the reference stations. There appears to be no systematic delay between the measured
temperatures at the AMS stations and the battery temperatures (Figure 11).

Calibration and validation

Several methods of calibration are applied; first with a fixed value for m; the coefficient is kept the
same for all hours of the day. Subsequently, a separate value for m is calibrated per hour of day. In
both cases this is done for the same calibration period as applied for the daily averaged analysis. As
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Figure 11: Base run hourly temperature estimation compared to the average of the AMS stations, June
2017.

Table 2: Statistics for the modeled hourly temperature compared to reference (AMS stations), June 2017.
Unless stated otherwise, the validation period is June 15 to 30.

type m [-] ρ2 [-] MAE [°C] RMSE [°C]

base run 2.1 0.53 5.45 5.92
only daytime hours 5-19 UTC 2.1 0.75 4.9 5.23
with value m from daily analysis 2.910 0.53 -0.34 2.64
calibrated one m value 2.804 0.42 0.59 2.73
calibrated hourly m values varying 0.45 0.38 2.44
calibrated hourly m cal period 15-30 June varying 0.62 -0.29 2.45

m is the ratio of heat conductivity coefficients, one can expect that these may vary throughout the
day. In the work of Droste et al. (2017), this improved the model estimations.
Coefficient m varies between 2.5 and 3.2 throughout the day. Between 22 and 2 UTC (0 to 4
AM local time) the values are higher than the rest of the day (Figure A.17 in the appendix). The
calibration reduces the bias between the reference and the model, the MAE decreases to less than
2 °C(Table 2, Figure 12). As the calibration period is quite short however, the assignment of the
calibration and validation period has a large influence on the resultingmodel performance; changing
the validation period to June 1 to 14, improves the model performance (Table 2). In the latter part
of June there is sequence of hot days and subsequent period of overcast, rainy days. The modeled
temperature estimation during this period is worse than during the first half of the month.
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Figure 12: Modeled hourly temperature and reference for hourly calibrated m values, validation period
(June 15 to 30 2017)

4.2.3 Number of measurements and model performance

As can be seen in Figure 15, themodel performance starts to improve considerably when hours with
more than 1000 readings are included. The RMSE drops from 2.64 to 2.43 °C. Setting the threshold
to 1000 readings per hour excludes the two largest outliers in the dataset. After the threshold of
3250 readings, the model performance increases in smaller steps, however, increasing the threshold
does not lead to convergence to a constant performance quality, as was found in Droste et al. (2017).
It rather keeps improving the correlation, as less and less hours are included in the model (figure
15). The thresholds initially remove (mostly) the nighttime hours, at the highest thresholds also
parts of the days are removed, with more than 40% of hours being left out (Figure 13c). Note that
during the night, it is likely that more smartphones are being charged and more phones will be
inside than during the day. There is no distinct optimum, but a threshold of 2000 readings per hour
would seem a reasonable trade-off between model performance and temporal coverage.

An alternative, similar approach is to not use a threshold but simply use only daytime hours;
if only hours between 5 and 19 UTC are included, this also increases the model performance to
ρ2=0.75 (-) (Table 2). The same holds for generating daily averaged temperatures from daytime
hours; only using the hours from 5 to 19 UTC increases the coefficient of determination from ρ2=
0.84 to ρ2= 0.85 (-) (Table 3).
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Figure 13: RMSE (a), ρ2 (b), and percentage of total hours used in the analysis (c) for thresholds on the
number of readings per hour

4.2.4 Temperature Sensor

A total of 76 thousand readings reported temperatures from a separate thermometer; about 2.5
thousand a day. For 148 hours (21 % of the time ) there are no readings and the median number of
readings is only 74 per hour. In the nighttime, there are relatively few readings available (Figure ??,
Figure 8a). This limited number of readings per hour discourages analysis on an hourly timescale.
The minimal hourly temperature is found at 4 UTC (6 AM local time). The readings from the
temperature sensor are lower than the battery temperature (Figure 8b).

Averaged to daily mean temperatures, the correspondence with the AMS stations reference is
low; ρ2=0.33 (Figure 14). With an mean temperature of 27.6 °C, the daily averaged temperatures
from temperature sensors are substantially higher than those measured at the AMS reference sta-
tions: the mean bias (ME) is 9.1 °C. The values are however 4.4 °C lower than the daily averaged
battery temperature readings. As applying a linear model to the data will not improve the corre-
spondence with the AMS station reference, no further attempts are made to model the ambient
temperature from these readings. It can be concluded that there is some air temperature signal in
the ambient temperature readings, but that this signal is much weaker compared to the battery
temperature readings.
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Figure 14: Daily mean temperature from ambient temperature sensors and measured temperature at the
AMS stations in June 2017

4.3 Light Intensity

For June 2017, there are 3.0 million readings with the highest reported sensor accuracy. There is a
distinct diurnal cycle in the readings from the light sensor: For the month of October, the average
intensity peaks at 705 Lux at 11 UTC, while it is only 18 Lux at 0 UTC, this peak is 1860 Lux at
11 UTC for June (Figure 16 ). In October, the mean light intensity increases later, decreases earlier
and is lower than in June. This is what one expects of an autumn month compared to summer.

The Global Radiation measured at WMO station Schiphol is two orders of magnitude larger
than the mean light intensity captured by the smartphones. The correlation between the smart-
phone light intensity and the official measurements at WMO station Schiphol is considerable; the
coefficient of determination is ρ2=0.68 & ρ2=0.75 for October and June respectively. To illus-
trate this, in Figure 16 the mean light intensity from smartphones and global radiation measured
at WMO station Schiphol are shown for a couple of days in June. When converting the measured
global radiation to lux, the mean light intensity from the smartphones is two orders of magnitude
lower than measured at WMO station Schiphol.

The light intensity readings are not normally distributed; it is a strongly right skewed distribu-
tion (skewness 17.9 (-)), so the mean is very much shifted by a small number of very high readings.

This can be explained by the behavior of the smartphone users, as many people will be indoors
most of the time, the majority of light intensity readings will not represent outside conditions.
Therefore it is interesting to look at the extreme values found in the readings; in Figure 15b the
99th percentile of light intensity readings is shown per hour of day. For these readings, the smart-
phone user could have the phone in hands while being in broad daylight. At midday on some
of the sunny clear days in June 2017, the measured global radiation surpassed 900 Wm-2, which
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Figure 15: Mean (a) and 99th percentile (b) of light intensity readings per hour of day in June 2017 (blue)
and October 2016 (green).

Table 3: Statistics for different light sensor thresholds applied to calculate the daily temperature, June
2017 compared to AMS station average

type ρ2 [-] MAE [°C] RMSE [°C]

base run 0.84 4.70 4.79
all below median lux removed 0.84 4.88 4.96
all below mean lux removed 0.79 4.82 4.96
base run 5-19 UTC 0.85 4.33 4.19
all below 100 lux removed 5-19 UTC 0.84 4.10 4.24
all below 500 lux removed 5-19 UTC 0.82 4.44 4.61

would correspond to about 1.14× 105 Lux. The readings are still a factor four lower than found
from the calculation from global radiation. This can partially be explained by the wavelengths of
light which are captured by the different sensoring techniques; smartphone sensors are sensitive to
a smaller range of light wavelengths. Again, the user context will also have an influence; the angle
at which the smartphone is held, the orientation of the user to the Sun will also contribute to the
differences between the maximal light intensity from WMO station Schiphol and the values found
in the smartphone readings.

Filtering on light sensor readings

Now the ability of light sensor readings to remove indoor battery temperature readings is investi-
gated. As only using the top percentiles of light intensity readings, would obviously vastly reduce
the number of available readings, the thresholds are set lower. Per hour the mean and median light
intensity are calculated. These threshold therefore vary throughout the day and throughout the
month. Readings with a smaller light intensity are filtered out and with the remaining readings the
daily averaged battery temperature is calculated. As seen in Table 3, none of the tested light inten-
sity filters improved the model performance. The light sensor readings may be more susceptible to
differences in cloudiness and the time of day rather than if the phone is inside or outside.
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1 to 13 June 2017
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5 Discussion

5.1 Relation with other studies

The results for Amsterdam in June are comparable to those found by Droste et al. (2017) for São
Paulo; ρ2=0.84 versus 0.86 (for the whole year of 2014). The bias is slightly smaller, ME = 0.19
versus -0.53 °C, as this study optimized the value for m for one summer month rather than for a
whole year. The number of available readings per day is about ten times as high in this study com-
pared to Droste et al. (2017). However, in this study only the city-wide temperature is considered,
while for São Paulo distinctions are made for different neighborhood types ("local climate zones"
(Stewart and Oke, 2012)) (Droste et al., 2017).
Compared to the previous study for Amsterdam, the temperature estimations presented here per-
form better; the fraction of explained variance is higher ρ2=0.84 versus 0.67 (-). This can mostly
be attributed to the vast increase in the density of battery temperature readings; in Overeem et al.
(2014) about 1×102 measurements were available per day, compared to over 1×105 for this study.
The bias however diminishes only slightly; ME= 0.19 versus 0.39 °C. These results are in agree-
ment with the findings of Overeem et al. (2014): the quality of temperature estimations (expressed
in terms of fraction of explained variance) increases for increasing reading density, but with di-
minishing returns. For daily temperature estimations a ’plateau’ seems to be reached in terms of
number of readings, as the fraction of explained variance is not larger than in Droste et al. (2017).
Although, the differences in sampling techniques probably also play role in this (Section 5.5).

Droste et al. (2017) found a delay of up to 4 hours for the response of the battery temperature
readings to the station-measured temperature. This observed effect was explained as a combination
of factors. Firstly, with a simplified differential equation it was reasoned that a typical smartphone
would arrive at a steady heating or cooling rate after about 1 to 2 hours due to its heat capacity. Sec-
ondly, as a part of the readings are taken indoors this would create additional time delays; the inside
temperature reacts to the temperature outdoors with a delay and a dampening of the temperature
amplitude. However, such delays are observed at some points in the June dataset at the cooling, but
not consistently. This is a remarkable result, as the physical explanation why one would expect a
time delay would seem sound. Droste et al. (2017) found similar improvements in modeled hourly
temperature results from installing a four hour time delay and from calibrating separate values for
m per hour of day. Only the latter analysis was repeated here.It should furthermore be noted that
the applied heat transfer model assumes stationarity, which is violated when applied on hourly
timescales.

This study uses a very robust reference; a network of authoritative urban meteorological sta-
tions. By using 23 stations throughout the city, the employed reference is more representative of
the environmental context where the smartphone readings were collected, compared to using a me-
teorological station at the city’s airport. It is also more robust method than comparing two sources
of crowdsourced data as done in Niforatos et al. (2017) which used smartphones and hobby weather
stations data.

Like in Niforatos et al. (2017), this study could use more than just readings from the battery tem-
perature sensors. Here, only one city is considered, the study period is shorter, less smartphone
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sensors are explored, but the density and sheer number of readings is much higher. Due to the
popularity of the OpenSignal app, the datasets used in this study contained the roughly the same
amount of useful readings for just two days as the study of Niforatos et al. (2017) had available for
a period of 32 months worldwide. Niforatos et al. (2017) also found a diurnal cycle in the light sen-
sor readings. However, in their research two distinct peaks were observed; at 10:00 and 15:00 local
time. The reason behind this is not known. The researchers also found a high standard deviation in
the light intensity values. In their case this was attributed to the large study domain encompassing
different latitudes and timezones. A significant effect between the collected average light intensity
readings and the actual weather conditions was found for two distinct weather conditions; "Clear"
and "Overcast" (Niforatos et al., 2017). This statistical analysis was not repeated in this research, a
limitation of this work and a recommended potential extension. These findings pinpoint another
use for the light intensity readings; instead of using them as filter for the battery temperature read-
ings, one could use these readings for detecting cloudiness.

Niforatos et al. (2017) applied supervised machine learning to predict the current and future am-
bient temperature frommanually submitted weather data and mobile sensor data collected through
their mobile app. Multiple input variables were used to estimate the air temperature, rather than
just one variable in a heat transfer model, as done in this research. The variables under considera-
tion in Niforatos et al. (2017) are not all present in the datasets available for this research; readings
from the proximity sensor, accelerometer and magnetometer are not included. This is a limitation
of the research presented in this report; no repetition of the analysis of Niforatos et al. (2017) could
be performed. Applying machine learning techniques on the all variables which are included in
the dataset would not be a fruitful strategy, especially for the October 2016 dataset, which included
readings from 135 different variables. These variables were nearly all related to specific network
properties of the smartphones. These variables do not have a purpose which could make them
interesting for meteorological applications. Nonetheless, performing additional statistical analyses
between the available readings might elucidate relationships between for example the battery tem-
perature and light sensor readings which are not uncovered in this research. This is recommended
for future work.

5.2 Differences in results between October 2016 and June 2017

As 28% of smartphone readings in the June 2017 dataset were from plugged phones being charged,
it is reasonable to assume a similar percentage of readings stem from smartphones being charged for
October 2016. This is presumed a factor for the poorer model results in October, as demonstrated
by including batteries being charged in the June dataset (Table 1). One likely supplementary expla-
nation for the relatively poor model performance in October would be the behavior of smartphone
users; people tend to stay indoors more when it is colder outside, and the indoor air temperature
is more stable than the ambient temperature (as also argued in Overeem et al. (2013)) and subject
to indoor heating systems. The finding that average hourly battery temperatures drop around the
time of the evening commute, when more people are outside, adds weight to this interpretation
(Figure 5b), such a temperature drop was also found in Niforatos et al. (2017). Also in the work of
Overeem et al. (2013), for five out of eight cities model results in spring – summer outperformed
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those in autumn – winter months (although for the cities of Moscow and Paris this is likely to be
due the used calibration method for the value of m in a period with a large temperature gradient).

5.3 Temperature sensor

It is highly likely that readings from the separate ambient temperature sensor are not ’raw’ mea-
sured temperatures from the sensors, but rather internally processed readings to compensate for
heat sources within the smartphone. This is certainly the case for the smartphone model Sam-
sung Galaxy S4, but similar compensation algorithms may also be in place in other smartphone
models (Robinson, 2013). Such a compensation algorithm may influence the results. Readings
from the temperature sensor and battery temperature sensor are not independent from each other.
The applied algorithm used for this is not known, but applying statistical methods like principle
component analysis might shed light on this. So this may be useful to apply in future research on
this sensor. However, smartphones with a separate ambient temperature sensor have not ’caught
on’; not many smartphone models contain this sensor (as seen in this research; only 51 of 3199
smartphones had this sensor).

5.4 Heat transfer model

The applied heat transfer model assumes that smartphones are typically kept in pockets of clothing
of the user. However, as the sampling strategy of OpenSignal collects readings when the screen is
on, the phone is most likely held in hand when a reading is collected. In this situation, the smart-
phone is still influenced by both the ambient temperature and the body temperature through the
hand. It can be assumed that the smartphone is kept in a pocket, taken out, used and stored in a
pocket again. Therefore the assumptions underlying the heat transfer model are still valid under
this sampling strategy.

5.5 Sampling Strategy

The sampling strategy applied byOpenSignal is to collect readings every 15 seconds when the screen
is on, which is undoubtedly useful for the service the app provides. On the other hand, for weather
applications, this is not necessarily the optimal sampling strategy, as this generates a dataset with sets
of many readings from one location and time. The readings are not independent of each other, this
bloats the dataset without adding to the representativeness of the readings for the city as a whole.
Resampling the dataset to only contain, for instance, one (averaged) reading per smartphone per
hour, might compensate for this dataset bloating.

In this study, attention is given to the number of readings, rather than to the number of unique
smartphones per unit of time, another limitation of this study. The unique identification codes of
the smartphones are included in the datasets available for this research. Analyzing the number of
unique smartphones providing readings per unit of time would be a step forward. From this, the
number of active smartphone app users needed to attain good temperature estimations could be in-
ferred. Now only the relation between the absolute number of readings and the model performance
is researched. Additionally, time-series analysis of separate unique smartphones could be performed
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to show the possible patterns of heating and cooling of the battery, or to, for instance, see patterns
in the light sensor readings. Information from which unique smartphone a reading stemmed, was
not available in the work of Overeem et al. (2013) and Droste et al. (2017). This type of analyses
does raise privacy issues as following the ’behavior’ of individual smartphone users without their
explicit consent can be a privacy infringement.

An app like OpenSignal does not necessarily collect information from all smartphone sensors
and variables which could be of interest formeteorological applications or for determining the user’s
context. With the dedicated app, Niforatos et al. (2017) could for example collect readings from the
proximity sensor (measured in cm);installed to detect if the user is holding the smartphone to the
ear and thereby prevent false touchscreen activity. The proximity is influenced by the smartphone
usage and could help detect when a smartphone is exposed to outside conditions (Niforatos et al.,
2017).

To have more control over the sampling strategy, one could thus use dedicated apps such as
the Atmos app of Niforatos et al. (2017). Here there is a trade-off between quantity and quality;
the OpenSignal apps have up to 10 million downloads, whilst the dedicated Atmos app has about
one thousand downloads (Google Play Store, 2017). The number of ardent weather enthusiasts is
apparently much more limited. This pinpoints an omnipresent challenge in crowdsourcing; ’op-
portunistic sensing’ has a large potential as the potential number of users and therefore the number
of measurements is largest, but the applicability is less than for more dedicated forms of crowd-
sourcing and citizen science. An additional limitation when crowdsourcing data, is that the use of
apps is subject to the whims of the public; people install an app, use it shortly and, over time, lose
interest, ignore it or even uninstall it, as found in Niforatos et al. (2017). This capriciousness can
limit the application of this datasource to serving as a supplementary datasource. Or to use in cam-
paigns with a limited duration for specific goals (like the mPING app). For continuous operational
monitoring, using smartphone apps may thus not be the most realistic option; certain apps may
only be popular for a limited period of time.

6 Conclusions and perspective

In this study a much larger and denser dataset of smartphone readings was available than in previous
work. Also, for this study a good reference was available in the form of an urban meteorological
network. Readings from the smartphone battery temperature sensors contain a signal reflecting the
ambient temperature. For Amsterdam the city-wide daily temperature can thus be estimated from
smartphone battery temperature readings using a straightforward heat-transfer model. This model
needs to be calibrated; using the value for model coefficient m calibrated for the same city during a
similar, but longer time of year, resulted in a large warm bias. The necessity of calibration prevents
this method to be immediately applicable to locations without a good reference network.

The signal in the battery readings shows larger correspondence with the measured temperature
for June 2017 than for October 2016, largely because for the latter the dataset contains readings
from smartphones being charged and due to the season causing more readings to come from in-
doors. Nonetheless the fraction of explained variance is ρ2 = 0.5.
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This is the second study in which the city-wide temperature is estimated per hour from battery
temperature readings, and the first in which the relation between the number of smartphone read-
ings and the model performance of temperature estimations has been analyzed. This showed that it
is mostly during the nighttime hours, when less readings are available, that the model performance
is poorer. However, it remains a question howmany unique smartphoneswould be needed to obtain
good temperature estimations. Such an analysis is recommended for future research.

In the readings from the separate ambient temperature sensors the signal correspondence is lim-
ited. These readings are therefore not a good information source for estimating the urban temper-
ature. This is in part due to the limited number of smartphones models which have this sensor,
which leads to substantially less available readings; only 51 unique phones occurred in the June 2017
dataset.

Readings from the light sensor show a distinct diurnal pattern. The signal in the mean hourly
light intensity corresponds well with the measured global radiation at WMO station Schiphol.
However, the attempt to use these readings to filter the battery temperature readings to include
mostly outside readings and to exclude more inside readings did not improve the temperature esti-
mations. In future research, these readings could be used for detecting clouds or cloudiness.

It is likely that many smartphone readings are collected inside of buildings, this remains an
important drawback of the applied method. Building on the work of Niforatos et al. (2017), it
may be useful to develop a system to automatically log readings from sensors when sensed that
smartphone is outside. Or to monitor the change in readings over time and only log when for
instance the temperature is stable or when there is a large change in the temperature.
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Appendix

A1



Figure A.17: Calibrated values of m per hour of day, calibrated for 1 to 14 June 2017
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