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Abstract 
 
Three modelling approaches were used to estimate cow individual feed intake 

(FI) using feeding trial data from a research farm, including weekly recordings 

of milk production and composition, live-weight, parity, and total FI. 

Additionally, weather data (temperature, humidity) were retrieved from the 

Dutch National Weather Service (KNMI). The 2014 data (245 cows; 277 

parities) were used for model development. The first model (M1) applied an 

existing formula to estimate energy requirement using parity, fat and protein 

corrected milk, and live-weight, and assumed this requirement to be equal to 

energy intake and thus FI. The second model used ‘traditional’ Mixed Linear 

Regression, first using the same variables as in M1 as fixed effects (MLR1), and 

then by adding weather data (MLR2). The third model applied Boosted 

Regression Tree, a ‘modern’ machine learning technique, again once with the 

same variables as M1 (BRT1), and once with weather information added 

(BRT2). All models were validated on 2015 data (155 cows; 165 parities) using 

correlation between estimated and actual FI to evaluate performance. Both 

MLRs had very high correlations (0.91) between actual and estimated FI on 2014 

data, much higher than 0.46 for M1, and 0.73 for both BRTs. When validated on 

2015 data, correlations dropped to 0.71 for MLR1 and 0.72 for MLR2, and 

increased to 0.71 for M1 and 0.76 for both BRTs. FI estimated by BRT1 was, on 

average, 0.35kg less (range: -7.61 – 13.32kg) than actual FI compared to 0.52kg 

less (range: -11.67 – 19.87kg) for M1. Adding weather data did not improve FI 

estimations.  

 

Keywords: precision feeding, dairy cows, Big Data, prediction, machine 

learning 

 

Introduction 
 
Feed efficiency in dairy cattle is gaining interest due to the limited availability of 

natural resources (De Mol et al., 2016) and the challenge to feed over 9 billion 

people by 2050 (FAO, 2016). Feed efficiency is a measure on the efficient 
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conversion of feed intake into milk production (Lu et al., 2015). Feed intake (FI) 

can be measured using dedicated feeding equipment, e.g., roughage intake 

control systems, but these systems are exclusively used under experimental 

conditions. Actual daily feed intake of dairy cows under commercial 

circumstances, thus, remains unknown.  

During the past decades farm sizes have increased, milk yields have risen and 

automation and sensor technologies for milking and other farm tasks (e.g., 

observing cows in oestrus) have become increasingly popular on dairy farms 

(Mottram, 2016). This increase in automation and sensor technology has also 

increased the availability of the amount and sources of data. A shift from 

traditional methods to analyse data to new modelling approaches is, therefore, 

expected to occur (Mottram, 2016). One of these new modelling approaches are 

Big Data analytics. The mainstream definition of Big Data involves three Vs 

(Sonka and Cheng, 2015): (1) Volume, or the amount of available data (2) 

Velocity, or the speed and frequency of data arrival and processing (Devlin, 

2012; Zaslavsky et al., 2012) and the capability to respond to events (near) real-

time, and (3) Variety, or the availability of different (un)structured formats of 

data, e.g., spreadsheets, drone images, and pictures. Over time, other Vs have 

been added like variability, veracity (trustworthiness of data), visualisation, and 

value (McNulty, 2014). The tools used in Big Data analytics include data-driven 

techniques like machine learning. 

To explore the usefulness of Big Data analytics for the estimation of cow 

individual FI, this study compared three different modelling approaches for 

estimating FI. The first model estimated energy requirements based on parity, 

live-weight, and milk production, using the assumption that energy requirement 

equals energy intake. The second model used traditional Mixed Linear 

Regression to predict feed intake, and the third model was a machine learning 

algorithm called Boosted Regression Tree. Since Variety is one of the three 

characteristics used in the mainstream definition of Big Data, the latter two 

modelling approaches were repeated with weather information as additional data 

source.  

 

Materials and Methods 
 

Experimental data 

Data were retrieved from 10 feeding trials conducted in 2014 and/or 2015 at the 

Wageningen University & Research farm in Lelystad. During each trial, FI (kg 

dry matter /day) was recorded on a daily basis as the sum of roughage intake (kg 

dry matter /day) and concentrate (kg /day) intake, where the latter was converted 

into kg dry matter by multiplying the intake with 0.89. This value was 

considered the Gold Standard and further referred to as ‘actual FI’. For each 
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calendar week, daily cow individual FI recordings were converted into an 

average FI. The same approach was used to calculate an average daily live-

weight per calendar week. Data on milk yield and composition were recorded 

once a week. From these data fat and protein corrected milk (FPCM) was 

calculated using (CVB, 2008; Klop et al., 2016): 

 

𝐹𝑃𝐶𝑀 (𝑘𝑔/𝑑𝑎𝑦) = 𝑀𝑖𝑙𝑘 𝑦𝑖𝑒𝑙𝑑 ∗ (0.337 + 𝑓𝑎𝑡% ∗ 0.116 + 𝑝𝑟𝑜𝑡𝑒𝑖𝑛% ∗ 0.06),   
(1) 

 

where milk yield is the recorded milk yield expressed in kg per day, fat% and 

protein% are the percentages of fat and protein, respectively. Averages of actual 

FI and live-weight of the same week that milk yield and composition were 

recorded were added. Lastly, for each cow, parity and the week in milk were 

added for each calendar week. 

In addition to FI and cow information, weather data from Lelystad Airport 

(~10km distance from the research farm) were retrieved from the Royal Dutch 

Meteorological Institute (KNMI). This institute records freely accessible weather 

variables on a daily basis. From all available variables, the minimum, maximum, 

and average temperature and relative humidity per day were selected. Based on 

these recorded variables, the daily temperature (and relative humidity) range, and 

the difference between todays average temperature (and relative humidity) with 

the average temperature (and relative humidity) over the past seven days were 

derived. Weather information was then coupled with FI and cow information 

based on date, and thus, all cows had once-a-week data recordings of FPCM, 

live-weight, parity, DIM, and weather information available.  

Cows with less than four records (that is, less than one month of data) were 

excluded from further analysis. Live-weight recordings and FCPM values that 

were outside the mean ± four times the standard deviation were considered 

outliers and set at missing. Cow-weeks that had missing values for any of the 

recorded or derived parameters were excluded (28.3%). These exclusion criteria 

resulted in 407 cows and 3,787 cow-weeks from seven feeding trials available 

for further analysis. Table 1 summarizes the number of cows, cow-weeks, and 

treatments per trial, as well as the range in parity per trial, the range in DIM per 

trial, and the year in which the trial was conducted. Cows could be included in 

multiple trials, and in trials crossing years. Therefore, the number of unique cows 

in this study (n = 300) was lower than the 407 cows reported in Table 1. The 

number of unique cows in 2014 was 245; in 2015 there were 155 unique cows. 
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Table 1: Characteristics of trials used for training and testing including the 

number of cows, cow-days, and treatments (Treatm.) per trial (Trial), the range 

of parity and days in milk (DIM) per trial, and the year(s) in which the trial was 

conducted.  
Trial 

 

Treatm.  

(n) 

Cows  

(n) 

Cow-days  

(n) 

Parity  

range 

DIM  

range 

Year 

 

1 4 136 399 1 – 7 70 – 160 2014 

2 3 52 75 1 – 6 42 – 207 2014–2015 

3 3 96 2,594 1 – 7 7 – 364 2014–2015 

4 1 10 65 3 – 5 6 – 56 2014 

5 1 15 39 1 – 5 21 – 56 2014 

6 3 39 177 2 – 9 14 – 140 2015 

7 5 59 438 1 – 5 7 – 63 2014–2015 

Total 20 407 3,787    

 

Statistical analysis 

Several models (Table 2) were developed using data from 2014. Each of these 

models was tested on the same data used for training, as well as on new, 

independent, data from 2015. The first model (M1; Table 2) used an existing 

model to estimate energy requirement, and assumed this requirement to be equal 

to energy intake. Energy requirement was calculated using the Dutch net energy 

evaluation for dairy cows (Van Es, 1975; CVB, 2008): 

 

𝑉𝐸𝑀/𝑑𝑎𝑦 = (42.4 ∗ 𝐿𝑊0.75) + (442 ∗ 𝐹𝑃𝐶𝑀)) ∗ (1 + (𝐹𝑃𝐶𝑀 − 15) ∗ 0.00165) (2) 

 

Where LW represents a cow’s live-weight (in kg), and FPCM refers to the fat 

and protein corrected milk (in kg; formula 1). Since further details on used 

feeding and treatments within these trials were unknown, we assumed that 

provided feed had 975 VEM/kg dry matter. Therefore, required VEM/day (from 

formula 2) was divided by 975 to compute FI / day. 

The second model used the Mixed Linear Regression approach (Table 2). The 

first variant of this model (MLR1) used FI as dependent variable, and the same 

variables used as M1 as fixed effects, where parity was included as a three-level 

factor (parity 1, 2, and ≥3). Trial, treatment within trial, cow, week in milk, and 

month of the year were included as random effects. The second variant of the 

Mixed Linear Regression model (MLR2) extended the MLR1 with weather 

information by adding temperature and relative humidity data as fixed effects. 

The third model used machine learning to estimate FI (Table 2), using a 

nonlinear predictive method called Regression Tree (James et al., 2015). It 

involves segmenting the predictor space using binary splits into smaller regions 

that contain training observations that are similar. Typically, the mean of all 
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training observations falling into such a small region is used as predicted 

outcome for a new observation (not used for training) that belongs to that same 

region. The power of trees lies in the simple method, and visualising the tree 

makes the model itself easy to interpret. However, single trees are often large 

and over-fitted, and consequently lack predicting accuracy on new, unseen 

observations. Improving the predictive performance of trees is possible, e.g., by 

aggregating many trees (James et al., 2015). Boosting is such an approach to 

generate many trees and aggregate them into one single outcome. Boosting 

creates multiple small trees sequentially, where each new tree uses the residuals 

from the previous tree as response (James et al., 2015). The first variant of this 

third model applied Boosted Regression Tree (BRT1) using FI as independent 

variable, and the same variables as M1, where parity was included as a three-

level factor (1,2, and ≥3) variable, and with week in milk and month of the year 

added to the model. The second variant of this third model (BRT2) extended 

BRT1 with weather information by adding temperature and relative humidity 

data. Both ensemble trees consisted of 1,000 sub-trees with each sub-tree having 

a maximum number of four splits.  

 

Table 2: short description and variables included per model.  

Model Description Variables 

M1 

 

 

Energy requirement according to 

formula 1 and feed intake 

according to formula 2 

parity, live-weight,  

fat and protein corrected milk 

 

   MLR

1 

 

Mixed Linear Regression without  

weather info 

 

 

Fixed effects: *  

Random effects: trial, treatment within 

trial, cowid, week in milk, month of the 

year 

   MLR

2 

 

 

Mixed Linear Regression with  

weather info 

  

Fixed effects: *, temperature
1
, humidity

2
  

Random effects: trial, treatment within 

trial, cowid, week in milk, month of the 

year 

   BRT1 

 

Boosted Regression Tree without  

weather info 

*, week in milk, month of the year 

 

   BRT2 

 

Boosted Regression Tree with  

weather info 

*, temperature
1
, humidity

2
, week in milk, 

month of the year 
* same variables as listed for model M1; 1 includes average temperature of the past week, and the absolute difference 

between today’s temperature and the average temperature of the past week; 2 includes average humidity of the past week, 

and the absolute difference between today’s humidity and the average humidity of the past week 
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To evaluate performance of each model in predicting FI, the Pearson’s 

correlation between predicted FI and actual FI was calculated for each model for 

both the training set (2014 data), and the test set (2015 data). For both MLR1 and 

MLR2 (Table 2) only coefficients of the fixed effects were used to predict FI. 

Additionally, the mean difference between predicted  and actual FI was 

calculated for the test set only. This was done for all observations combined, per 

parity category (1, 2, and ≥3), and per lactation stage (<100, 100-200, and >200 

days in milk).  

All analyses were conducted using RStudio (using R version 3.1.1; R Core Team 

2016; James et al., 2015) extended with the following packages: RODBC 

(Ripley and Lapsley, 2016), plyr (Wickham, 2011), lme4 (Bates et al., 2015), 

Hmisc (Harrell, 2016), data.table (Dowle et al., 2015), and gbm (Ridgeway, 

2015). 
 
Results 
 
The average actual FI of cows was 21.2kg for both the training (2014) and test 

data (2015). Table 3 summarizes the correlations between actual and estimated 

FI by the different models, for both the training (2014) and the test (2015) data. 

Both MLR models have high correlations between actual and estimated FI for 

the training set, indicating a good fit. Correlations for M1 and both BRT models 

on the training data were lower. When models were applied to observations not 

used for training, correlations between actual and estimated FI dropped for both 

MLR models. In contrast, correlations for M1 and both BRT models increased. 

Correlations were similar between models with and without weather information, 

regardless whether training or test data were used. All models had comparable 

correlations when applied on the test set, and all models estimated, on average, 

FI to be lower than actual FI. Estimated FI from MLR2 deviated most, on 

average, from the actual FI. Although M1 had a low mean difference (-0.52, 

Table 3), it did have the highest range in difference between actual and estimated 

FI; estimated FI ranged to be almost 12kg less than actual FI to almost 20kg too 

much. The range in difference between actual and estimated FI was lowest with 

~20kg for both MLR models.  
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Table 3. Per model the correlation between estimated feed intake (FI) and actual 

FI on the training (2014) and on the test (2015) data, and the mean and range of 

the difference (both in kg) between the estimated and actual FI on the test data 

(2015). 

Model Training set Test set 

 Correlation Correlation Mean 

difference (kg) 

Range difference 

(kg) 

M1 0.46 0.71 -0.52 -11.67 – 19.87 

MLR1 0.91 0.71 -1.23 -7.70 – 12.32 

MLR2 0.91 0.72 -1.73 -8.24 – 11.76 

BRT1 0.73 0.76 -0.35 -7.61 – 13.32 

BRT2 0.73 0.76 -0.35 -7.61 – 13.32 
 

Table 4 summarizes correlations for different parity categories and lactation 

stages. Both BRT models have high correlations between actual and estimated FI 

for first parity cows, in contrast to the MLR models. Also, BRT models had the 

highest correlations for cows earlier in lactation, whereas correlation dropped for 

both BRT models for cows later in lactation. The M1 and both MLR models 

have the highest correlation for cows that are 100 to 200 days in lactation. Again, 

there is no difference in correlation between models that do not include weather 

information (MLR1, BRT1) versus those that had this information included 

(MRL2, BRT2).  
 

Table 4. Per model the correlation between estimated feed intake (FI) and actual 

FI using the test data (2015) per parity group, and per category of days in milk 

(DIM). The number of records per category of parity or DIM is listed between 

brackets 

Model Parity DIM 

 1 

(98) 

2 

(461) 

≥3 

(831) 

<100 

(544) 

100-200 

(299) 

>200 

(547) 

M1 0.67 0.77 0.71 0.60 0.77 0.63 

MLR1 0.67 0.76 0.71 0.58 0.75 0.64 

MLR2 0.66 0.76 0.71 0.58 0.75 0.65 

BRT1 0.82 0.79 0.72 0.78 0.69 0.38 

BRT2 0.82 0.79 0.72 0.78 0.69 0.38 

 
Discussion 
 
The current study is not the first one estimating cow individual FI using machine 

learning. Van der Waaij et al. (2016) analysed a dataset very similar to the one 

we used, with the exception that they had additional sensor information 
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(rumination) and a differentiation between roughage and concentrate intake. But 

there are three more differences with that study worthy to discuss: firstly, they 

included cow identification as proxy for the influence of genotype on FI and 

reported a positive influence of this variable in predicting FI. In contrast, we left 

cow identification out of the equation, since BRT will likely use that variable as 

root node which will likely result in improved cow individual FI prediction. 

However, generalization to new data (that is, unseen cow identification numbers) 

will not work since the model will not recognize this new ‘value’. Secondly, 

adding weather information did not contribute to a better FI prediction in our 

study, whereas Van der Waaij et al. (2016) reported temperature having a 

‘positive influence’. Unfortunately, they did not specify the magnitude of that 

positive contribution nor provided results of a model without weather 

information, leaving the question unanswered whether temperature adds 

significantly to FI prediction. Thirdly, Van der Waaij et al. (2016) used a Neural 

Network, and reported this network to be unable to predict FI in case of missing 

data. Given that sensor data are incomplete by definition, Neural Networks may 

not be the appropriate analytical tool to be used in practice.  

The majority of the data used in the current study (68.5%) originated from a 

single feeding trial crossing years (Experiment 3, Table 1). Thus, data used for 

training (2014) were not independent from data used for testing (2015) which 

may have overestimated results. Still, both MLRs and BRTs were trained and 

tested on same data, and thus, results are relative to each other. The MLR models 

performed well on the training set, but correlations dropped substantially when 

applied on the test set, indicating a possible overfit of these regression models. In 

contrast, BRT appeared to be more robust and less prone to overfitting, since 

correlations on the test set were similar to those of the training set. All models 

underestimated actual FI, with the M1 having the widest range in differences 

between actual and estimated FI (Table 3). Also large differences in correlations 

between parity groups and lactation stages were seen, for all three modelling 

approaches. BRT models appear to estimate FI for first parity cows and those 

early in lactation much better than M1 and MLR models, whereas MLR and M1 

seem to outperform BRT for cows later in lactation (Table 4). Future research 

should investigate whether the differences between model performance on the 

test set are significant, why all models consistently underestimate actual FI, and 

what is causing the differences between modelling approaches for different 

parity groups or lactation stages.  

The data used in the current study were pre-processed such that all three 

modelling approaches could handle the data (e.g., records with missing values 

for any of the recorded or derived variables were excluded to allow mixed linear 

regression analysis). By doing so, we ensured training and testing of different 

models to be conducted on the same data, but we may have limited the potential 
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of the BRT models in two ways: firstly, we excluded almost 30% the records 

with missing data for one or more predictor variables, whereas these incomplete 

records may still hold potentially valuable information. Machine learning 

approaches like BRT are known for their capability to deal with these incomplete 

data. Secondly, by excluding almost 30% of the data we reduced the volume 

considerably, whereas machine learning works requires large amounts of data. 

Saying this, even if we would have included all data, critics could argue that 

even then we would not have enough data for machine learning and that we have 

linked this study to Big Data incorrectly. On the other side, the volume 

characteristic is highly subjective, depending on the industry and application, 

and a specific threshold on this characteristic is lacking (Sonka and Cheng, 

2015). In the near future, data of the current study will be extended with 15 years 

of feeding trials, conducted at several different research farms, and including 

additional data sources, like breeding values for FI, roughage and concentrate 

percentages fed, and other sensor data. This will certainly increase volume, but 

will also add complexity due to increased variety and velocity of the available 

data.  

 

Conclusion 
 
Three modelling approaches were used to estimate cow individual FI. The 

‘traditional’ MLR models had high correlations on the training data, but these 

dropped substantially when the models were applied to the test data. In contrast, 

the ‘modern’ BRT models had lower correlations on the training data, but 

appeared to be more robust since correlations remained similar on the test set. 

Moreover, FI estimated by BRT1 was, on average 0.35kg less than actual FI, 

compared with the commonly applied M1 model that had an average predicted 

FI more than 0.5kg less than actual FI. Adding weather information did not 

improve FI estimations. To better meet the three Vs of Big Data, and potentially 

improve performance of machine learning algorithms that thrive on large 

volumes of data, future research will focus on including more farms, more feed 

experiments conducted during more years, and adding data from more sources. 
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