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Summary 

Background: The success rate for vitrification of immature equine oocytes is low. Although 

vitrified-warmed oocytes are able to mature, further embryonic development appears to be 

compromised.  

Objectives: The aim of this study was to compare two vitrification protocols, and to examine 

the effect of the number of layers of cumulus cells surrounding the oocyte during vitrification 

of immature equine oocytes. 

Study design: Experimental in vitro and in vivo trials. 
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Methods: Immature equine oocytes were vitrified after a short exposure to high 

concentrations of cryoprotective agents (CPAs), or a long exposure to lower concentrations of 

CPAs. In Experiment 1, the maturation of oocytes surrounded by multiple layers of cumulus 

cells (CC oocytes) and oocytes surrounded by only corona radiata (CR oocytes) was 

investigated. In Experiment 2, spindle configuration was determined for CR oocytes vitrified 

using the two vitrification protocols. In Experiment 3, further embryonic development was 

studied after fertilization and culture. Embryo transfer was performed in a standard manner.  

Results: Similar nuclear maturation rates were observed for CR oocytes vitrified using the 

long exposure and non-vitrified controls. Furthermore, a lower maturation rate was obtained 

for CC oocytes vitrified with the short exposure compared to control CR oocytes (p = 0.001). 

Both vitrification protocols resulted in significantly higher rates of aberrant spindle 

configuration than the control groups (p<0.05). Blastocyst development only occurred in CR 

oocytes vitrified using the short vitrification protocol, and even though blastocyst rates were 

significantly lower than in the control group (p<0.001), transfer of 5 embryos resulted in one 

healthy foal.  

Main limitations: The relatively low number of equine oocytes and embryo transfer 

procedures performed. 

Conclusions: For vitrification of immature equine oocytes, the use of (1) CR oocytes, (2) a 

high concentration of CPAs and (3) a short exposure time may be key factors for maintaining 

developmental competence. 
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Introduction 

Equine assisted reproductive technologies have evolved rapidly during the last decade and the 

relatively new techniques of cryopreserving immature oocytes may offer further advancement. For 

clinical application, it would allow postponement of the decision on the choice of stallion for 

intracytoplasmic sperm injection (ICSI). For research, it could provide a reliable source of immature 

equine oocytes in countries without access to equine slaughterhouses, such as the United States, 

assuming that such cells could be transported legally. Moreover, oocyte cryopreservation allows the 

preservation of genetics from valuable horses and endangered breeds [1]. However, the overall 

success rate of this technique in the horse is low. So far, there are only two studies reporting the birth 

of foals using vitrified oocytes that were partially matured in vivo [2; 3] while pregnancies obtained 

after fertilization of in vitro matured oocytes following vitrification-warming at the immature stage have 

not been reported yet. In a first study, Maclellan et al. [2] recovered oocytes by ovum pick-up 24-26 h 

after initiation of maturation in vivo, cultured in maturation medium for 2–4 h, vitrified-warmed, and 

then cultured for 10–12 h before subsequent transfer to inseminated mares for in vivo fertilization; this 

resulted in two live born foals. The same group also reported four pregnancies obtained from oocytes 

that were vitrified after initiation of maturation in vivo, fertilized by ICSI, in vitro cultured and transferred 

to recipient mares [3].  

Vitrification is the most commonly used cryopreservation technique for oocytes. It is characterized by 

the use of high concentrations of cryoprotective agents (CPAs) and the fast cooling rate [4]. Oocytes 

from large domestic species are rich in cytoplasmic lipid droplets causing them to be highly sensitive 

to chilling [5], thus requiring species specific optimization of the exposure time and concentration of 

CPAs.  

Successful vitrification is influenced by different factors that affect oocyte cryotolerance, including the 

presence of cumulus cells surrounding the oocyte at the time of vitrification. While a protective effect of 

cumulus cells during vitrification of immature oocytes has been reported [6-8], other studies show that 

cumulus cells constitute a tight multilayer barrier that reduces the entry of CPAs into the oocyte, 

thereby influencing the exchange of water and CPAs [9]. Removing all cumulus cells before 

vitrification of immature oocytes might result in a lower maturation rate and impaired embryo 

development [10]. Therefore, vitrification of oocytes that are surrounded only by corona radiata (CR) 
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cells has been proposed as a sound alternative in cattle [9], as the CR cells allow an appropriate 

exchange of water and CPAs, while the developmental capacity of the oocyte is maintained [9; 11]. 

The aim of the current study was to improve the vitrification protocol for immature equine oocytes. To 

this end, the effect of the number of cumulus cell layers (multiple layers of cumulus cells vs. corona 

radiata only) surrounding immature equine oocytes at the time of vitrification was evaluated, and two 

vitrification protocols were compared: one with a short exposure to a high CPA concentration, and one 

with a longer exposure to a lower CPA concentration. 

 

Materials and methods 

Media and reagents  

Dulbecco´s Modified Eagle Medium Nutrient Mixture F-12 (DMEM/F12), Tissue Culture Medium-199 

with Hanks’ salts (TCM-199) and Hoechst 33342 were purchased from Life Technologies Europe. 

Unless otherwise stated, all other components were obtained from Sigma (Bornem, Belgium). 

Maturation medium was composed of DMEM/F12 supplemented with serum replacement (9.4%), 

epidermal growth factor (0.05 µg/ml), follicle stimulating hormone (9.4 µg/ml), luteinizing hormone 

(1.88 µg/ml), glutamine (90 µg/ml), ascorbic acid (68 µg/ml), polyvinyl alcohol (23 µg/ml), myoinositol 

(4.5 µg/ml), Na pyruvate (99.5 µg/ml), insulin (9.5 µg/ml), transferrin (8.6 µg/ml), selenium (10 ng/ml), 

cysteine (0.094 mg/ml), cysteamine (0.046 mg/ml) and lactic acid (9.4 µl/ml).  

Experimental design  

In three consecutive experiments, immature equine oocytes were either vitrified with a short exposure 

to a high CPA concentration (further referred to as short vitrification protocol), or vitrified with a longer 

exposure to a lower CPA concentration (further referred to as long vitrification protocol), or not vitrified 

(control). In experiment 1, oocytes surrounded by multiple layers of cumulus cells (further referred to 

as CC oocytes, Figure 1A) or by corona radiata only (further referred to as CR oocytes, Figure 1B) 

were used. Fresh and vitrified-warmed CC and CR oocytes were matured in vitro and the nuclear 

maturation was evaluated. In Experiment 2, fresh and vitrified-warmed CR oocytes were matured in 

vitro, and meiotic spindle configuration was assessed. In Experiment 3, fresh and vitrified-warmed CR 
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oocytes were matured in vitro, and the developmental competence to the blastocyst stage was studied 

after fertilization by ICSI. Blastocysts obtained after vitrification with the short vitrification protocol were 

transferred on day 9 after ICSI to recipient mares. 

Collection of equine immature oocytes 

Equine ovaries were obtained from a local slaughterhouse, and transported in an insulated box to the 

laboratory at room temperature within 1 h. All follicles between 5 and 20 mm were aspirated using a 

16-gauge needle attached to a vacuum pump (-100 mm Hg), scraped with the aspirating needle and 

flushed with TCM199 (Hanks).  

Recovered oocytes were classified either as CC oocytes, which were surrounded by multiple layers of 

cumulus cells (Figure 1A) or as CR oocytes, which were surrounded by the corona radiata only (Figure 

1B). Most of the recovered oocytes (more than 2/3) were classified as CC oocytes. To increase the 

number of CR oocytes, the excess cumulus cells in cumulus compact CC oocytes were removed by 

repeated pipetting of the oocyte inTCM199 (Hanks). As such, the CR oocytes used in this study were 

either directly collected from the slaughterhouse ovaries (less than 1/3) or obtained after repeated 

pipetting of cumulus compact CC oocytes. Due to our collection aspiration technique, we were unable 

to identify the directly collected CR oocytes as being either expanded or cumulus compact CC 

oocytes. Therefore, all the collected expanded oocytes were assigned to the CC oocytes in order to 

ensure that expanded CC oocytes were not over-represented in the CR group. Denuded and partially 

denuded oocytes were excluded from all experiments.  

Recovered oocytes allocated to the control groups were immediately placed in maturation medium, 

while oocytes in the vitrified groups were first vitrified, and after one week of storage, they were 

warmed and incubated in maturation medium.  

Vitrification and warming 

The composition of the vitrification and warming solutions used in the two different protocols is given in 

Table 1. For both protocols, vitrification and warming steps were performed on a heated plate at 37°C. 

A custom-adapted device was used to store the oocytes in liquid nitrogen (LN2). This device consisted 

of a 0.25 ml straw (IVM technologies, France) with a cut in one end to allow loading of the oocytes in a 

minimal volume (<1 μL). At the opposite end, a wire (obtained from a paper clip) was added to prevent 



 6 

floating in LN2 (Fig.1C–D). Oocytes were loaded using a 150 µm pipette in order to minimize the 

volume surrounding the oocytes. Moreover, extra medium surrounding the oocytes was removed with 

the pipette by capillarity. 

Protocol with long exposure to low concentration of CPAs  

This vitrification protocol was based on the one described by Kuwayama et al. [12] with some 

modifications, and will be referred to as ‘long vitrification protocol’. Briefly, four oocytes at a time were 

placed into one single 75 µL droplet of handling solution (HSL; long vitrification protocol), consisting of 

TCM199 (Hanks) supplemented with 20% (v/v) fetal bovine serum (FBS, Greiner Bio-one, Belgium). In 

order to allow a gradual equilibration of the oocytes, the HSL droplet, containing the oocytes, was 

merged with a first 75 µL droplet of equilibration solution (ES) containing HSL, with 7.5% (v/v) ethylene 

glycol (EG) and 7.5% (v/v) dimethyl sulfoxide (DMSO). After 2 min, oocytes were transferred to the 

first ES droplet, which was merged with a second droplet of 75 µL containing ES, and oocytes were 

left there for 2 min. Next, oocytes were transferred to another droplet of 75 µL containing ES, and 

incubated for 6 min. Subsequently, oocytes were transferred into four consecutive 50 µl droplets of 

vitrification solution (VS), consisting of HSL with 15% (v/v) EG, 15% (v/v) DMSO and 0.5 M sucrose for 

60 s in total, and then loaded on a custom-adapted device (Figure 1C–D) and plunged into LN2 within 

10–20 s (Table 1).  

After one week in LN2, the custom-adapted device containing the four oocytes was introduced into 4 

mL of warming solution (W1) containing HSL supplemented with 1 M sucrose for 1 min. Next, oocytes 

were moved to 4 mL of W2 containing HSL supplemented with 0.5 M sucrose for 3 min, and finally to 4 

mL of W3 containing HSL supplemented with 0.25 M sucrose for 5 min. Finally, oocytes were placed in 

4 mL of HSL, where they were stored until all oocytes were warmed (Table 1).  

Protocol with short exposure to high concentration of CPAs  

The second method of vitrification was based on the protocol described by Tharasanit et al. [13], with 

some modifications, and will be referred to as the ‘short vitrification protocol’. Four oocytes at a time 

were placed in one single 100 µL droplet of handling solution (HSS; short vitrification protocol) containing 

TCM199 (Hanks) supplemented with 0.014% (w/v) bovine serum albumin (BSA) for 1 min. The oocytes 

were then transferred to a 100 µL droplet of ES, consisting of HSs supplemented with 10% (v/v) EG and 
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10% (v/v) DMSO. After 25 seconds, the oocytes were transferred to a 100 µL droplet of VS containing 

HSs supplemented with 20% (v/v) EG, 20% (v/v) DMSO and 0.5 M sucrose. After 15 s, the oocytes were 

transferred to a custom-adapted device and plunged into LN2 within 10–20 s.  

After one week in LN2, the custom-adapted device was transferred into 4 mL of W1 containing HSs 

supplemented with 0.5 M sucrose, where oocytes were cultured for 5 min. Next, oocytes were stored in 

HSs until warming of all oocytes was completed (Table 1). 

In vitro maturation  

A maximum of 40 oocytes at a time were transferred to 500 μL of DMEM/F12 based maturation 

medium [14] at 38.5°C in a humidified atmosphere of 5% CO2 in air for 28 h. For the exact composition 

of the maturation medium, we refer to the ‘Reagents and Media’ section. After maturation, oocytes 

were completely denuded by gentle pipetting in 0.05% (w/v) bovine hyaluronidase diluted in TCM199 

(Hanks).  

Evaluation of nuclear maturation (experiment 1) 

For all six groups (CC and CR oocytes vitrified according to the long vitrification protocol, CC and CR 

oocytes vitrified according to the short vitrification protocol and fresh control CC and CR oocytes), 

maturation rates (see above) were determined by nuclear staining with 10 μg/ml Hoechst 33342. 

Oocytes were visualized and classified as metaphase I (MI, characterized by the presence of highly 

condensed chromosomes and the absence of the first polar body), metaphase II (MII, characterized by 

the presence of well-organized chromosomes and the presence of the first polar body) or degenerated 

(characterized by the absence of chromosomes) by epifluorescence microscopy using a Nikon TE300 

inverted microscope with a 20× objective and equipped with a Nikon DS-Ri1 camera (Nikon Benelux, 

Zaventem, Belgium). 

 

Spindle status assay (experiment 2) 

Oocytes with a visible polar body after in vitro maturation (see above) were fixed in 4% (v/v) 

paraformaldehyde for 25 min, permeabilized with 0.5% (w/v) Triton X-100 for 1 h and blocked with 

PBS containing 10% (v/v) goat serum and 0.5% (w/v) BSA at 4ºC overnight. Subsequently, oocytes 

were incubated with anti-α-tubulin monoclonal antibody (Molecular Probes, Paisley, UK; 1:200 dilution) 
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overnight at 4°C followed by incubation with anti-mouse IgG antibody Alexa Fluor 488 (Molecular 

Probes; 1:500) for 1 h at 25°C. Oocytes were counterstained with 10 μg/ml Hoechst 33342 for 10 min 

and analysed using a Leica TCS-SP8 X confocal microscope (Leica Microsystems, Wetzlar, 

Germany). Chromosome and microtubule distributions were classified according to Tremoleda et al. 

[15]. Briefly, the meiotic spindle was defined as normal when it was symmetrically barrel-shaped with 

the two poles and two equal sets of chromosomes aligned at its centre (Figure 2A). On the other hand, 

abnormal spindles showed disorganized, clumped, dispersed or unidentifiable spindle elements 

(Figure 2B) with chromosome alignment defects (Figure 2C).  

ICSI and embryo culture (experiment 3) 

Oocytes showing an extruded polar body after in vitro maturation (see above) were fertilized by ICSI 

as described by Smits et al. [16]. Frozen-thawed semen from a single stallion of proven fertility was 

used, and spermatozoa were selected using 45%–90% Percoll (GE Healthcare, Belgium) density 

gradient centrifugation for 40 min at 750 x g at 26°C. After removal of the supernatant, the sperm 

pellet was washed in 5 ml of Ca2+-free Sperm-TALP (tyrode´s albumin-lactate-pyruvate) using 

centrifugation for 10 min at 400 x g at 26°C. The supernatant was removed again and the sperm pellet 

was re-suspended in 300 µl of Ca2+-free Sperm-TALP and kept at room temperature until used for 

ICSI. Immediately before ICSI, a small volume of sperm suspension was added to the left side of a 5 

µl droplet of 9% polyvinylpyrrolidone in PBS and the spermatozoa were allowed to swim out to the 

right side of the droplet where they were picked up for ICSI.  

All manipulations were performed on the heated stage (37°C) of an inverted microscope. A 

progressively motile spermatozoon was aspirated with its tail first into a blunt piezo pipet of 6 µm 

(Origio, Vreeland, The Netherlands) and immobilized by applying a few pulses of a piezo drill (Prime 

Tech, Ibaraki, Japan, speed: 4, intensity: 3) to its tail. Oocytes were held in separate 5 µL droplets of 

TCM199 (Hanks) containing 10% (v/v) FBS under mineral oil. The oocyte was fixed by aspiration with 

a holding pipet with an inner diameter of 15–20 µm (Origio, Vreeland, The Netherlands) keeping the 

polar body at 12 o’clock or 6 o’clock. The zona pellucida was drilled using the piezo (speed: 4, 

intensity: 3), a piece of zona was removed and after penetration of the oolemma with the piezo (speed: 

3, intensity: 2), the spermatozoon was injected into the cytoplasm of the oocyte. Injected oocytes were 

cultured in groups of 10 to 20 in 20 μL droplets of DMEM/F12 with 10% (v/v) FBS at 38.2°C in a 
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humidified atmosphere of 5% CO2, 5% O2 and 90% N2. Cleavage rate was determined on day 2.5 

after fertilization and blastocyst development on day 9 post-fertilization. 

Embryo transfer 

The five blastocysts produced from vitrified-warmed oocytes were washed twice in preheated Emcare 

Holding Medium (ICPbio Reproduction, USA) and placed in a 2 mL tube filled with preheated Emcare 

Holding Medium. During transport to the embryo transfer centre (2 h), the tube was kept in 50 mL of 

preheated PBS in an insulated box. Upon arrival, the five blastocysts were washed again in Emcare 

Holding Medium and transferred transvaginally either singly (n = 3) or as a pair (n = 1) to the uterus of 

a recipient mare at day 4 or 5 post ovulation. 

Data analysis 

Statistical analyses were conducted using the Statistical Package for the Social Sciences (IBM® 

SPSS® Statistics 23.0, Chicago, IL). Two-way analysis of variance (ANOVA) was performed in order to 

evaluate the maturation rate outcome (MI and MII) and the proportion of degenerated oocytes 

(dependent variables). Fixed effects (independent variables) were classified according to the number 

of layers of cumulus cells (CC and CR), and the vitrification treatment (control, long vitrification 

protocol or short vitrification protocol), and their respective first degree interactions. Variables obtained 

from embryo development analysis, and spindle and chromosome alignment were evaluated using 

one-way ANOVA. The models included the likelihood of maturation, cleavage, blastocyst rate, and 

spindle and chromosome configuration as dependent variables. The treatment (control, long 

vitrification protocol and short vitrification protocol) was set as the categorical independent variable. 

For all outcome variables, the replicates were forced into the model to account for clustering of 

observations within a replicate. Results are expressed as mean ± standard deviation (s.d.)  For all the 

models, statistical significance level was set at p<0.05.  

 

Results 

Experiment 1: Effect of the number of layers of cumulus cells and vitrification protocol on the 

maturation rate of vitrified equine oocytes 
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Equine immature oocytes were used to evaluate the effect of the number of cumulus cell layers (CC 

vs. CR, Figure 1A–B) and the two vitrification protocols (long protocol vs. short protocol, Table 1) on 

the maturation rate of vitrified-warmed equine oocytes (Table 2). A clear association was observed 

between the number of cumulus cell layers and the vitrification treatment on maturation and 

degeneration rates.  

The maturation rate of CR oocytes vitrified with the long vitrification protocol did not differ significantly 

from control oocytes. However, the maturation rate of CC oocytes vitrified with the short vitrification 

protocol (25.3%) was lower (p = 0.01) compared with control CC oocytes (53.4%), and with control CR 

oocytes (58.1%, p = 0.001). Also the maturation rate of CR oocytes vitrified with the short vitrification 

protocol (34.4%) was lower (p = 0.03) compared with control CR oocytes (58.1%).  

Experiment 2: Effect of vitrification on spindle morphology of equine immature oocytes 

We observed fewer oocytes with a normal spindle in vitrified oocytes compared with control oocytes 

(53.3%–68.4% vs. 81.3%, p<0.05; Figure 3). Furthermore, a lower percentage of a correct alignment 

of chromosomes was observed in vitrified oocytes compared with control oocytes (66.7%–68.4% vs. 

87.5%, p<0.05, Figure 3). However, no significant differences were observed in the spindle 

morphology and chromosome alignment between vitrified groups (Figure 3). 

Experiment 3: Effect of vitrification protocol on embryo development of vitrified equine 

immature oocytes 

In a pilot experiment (n = 583), control and vitrified oocytes used in Experiment 1 were fertilized by 

ICSI and cultured for 9 d. Preliminary results showed that only CR oocytes vitrified with the short 

vitrification protocol had the potential to develop into a blastocyst (data not shown). According to the 

results from Experiment 1 and the pilot study, we decided to use only CR oocytes to investigate the 

effect of both vitrification protocols on embryo development (Table 3). Vitrification significantly 

decreased the number of cleaved oocytes in both methods (p<0.05). Furthermore, embryo 

development was significantly impaired after vitrification in both protocols (p<0.05), but only the 

oocytes vitrified with the short vitrification protocol showed potential to develop into a blastocyst (6.9%, 

p = 0.001).  
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All blastocysts obtained after vitrification of immature oocytes based on the short vitrification protocol 

were transferred on day 9 after ICSI to recipient mares at day 4 or 5 after ovulation. Initially, two 

blastocysts were transferred individually to two mares, but no pregnancies were observed. Next, two 

blastocysts were transferred to a single mare, and ultrasound revealed one embryonic vesicle, though 

no embryonic heartbeat could be detected at day 21 after transfer, so the pregnancy was lost. After 

transferring another blastocyst to a recipient mare, an embryonic vesicle was detected 9 days after 

transfer and a heartbeat was confirmed at 21 days after transfer. The pregnancy resulted in a healthy 

male foal, born on May 12th 2017 (Figure 4). 

 

Discussion 

In this study, we have demonstrated that immature CR equine oocytes can be vitrified successfully 

using a high concentration of CPAs and a short time of exposure to the equilibration and vitrification 

solutions. Vitrified oocytes generally showed lower maturation rates compared with controls, and the 

cleavage and blastocyst formation rates were significantly compromised. Nevertheless, we obtained 

an improved blastocyst development, and to the best of our knowledge, for the first time, a foal after 

transferring an in vitro produced (IVP) blastocyst, which was derived from an equine oocyte vitrified at 

the immature stage.  

In the first experiment, we observed that the maturation of vitrified immature equine oocytes was 

strongly influenced by the number of cumulus cell layers surrounding the oocyte. In horses, a 

protective effect of cumulus cells during vitrification of immature oocytes has been suggested [6], but 

in that study, vitrification of cumulus-intact oocytes was compared with that of denuded oocytes, from 

which the cumulus cells had been removed completely. As the presence of cumulus cells is 

indispensable for maturation [10], the low maturation rate observed after vitrification of denuded 

oocytes might be a consequence of the total absence of cumulus cells, rather than the effect of the 

vitrification process. Therefore, CR oocytes were used in this study to evaluate the effect of the 

number of cumulus cell layers, as described previously in cattle [11]. We observed no significant 

difference in maturation rate between control fresh CC and CR oocytes, indicating that corona radiata 

cells have the capacity to support the oocyte reaching MII as adequately as intact CC oocytes. In our 

study, the presence of multiple layers of cumulus cells surrounding the oocyte combined with the use 
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of a short vitrification protocol, i.e. less than one min., negatively affected survival and further 

maturation. We presumed that this effect was related to the layers of cumulus cells surrounding the 

oocyte, and not to the potential difference between CC and CR oocytes, because we took steps to 

ensure that cumulus oocytes were not over-represented in the CR oocyte group. Cumulus cells may 

impair the movement of CPAs into the oocyte leading potentially to an inappropriate intracellular CPA 

concentration, as the efflux of water from oocytes occurs quickly, within 20 s, whereas the influx of 

CPAs takes longer [17].  

Exposing oocytes to CPAs during vitrification induces osmotic volume changes due to the migration of 

water and CPAs. In mature oocytes, these volume changes might cause a disruption of the spindle 

while in immature oocytes, microfilament organization might be disturbed [18; 19]. In our study, 

vitrification resulted in significantly higher percentages of oocytes with abnormal spindle structures 

associated with disorganized microtubules when compared to control oocytes. No significant 

differences were observed amongst the vitrified groups, even though oocytes vitrified with the short 

vitrification protocol were exposed to more extreme osmotic changes as a consequence of the higher 

concentration of CPAs used.  

Vitrification of immature oocytes is generally associated with a significant decrease in blastocyst 

development in mammalian species [7; 13; 20], because cryopreservation can induce a rupture of the 

oolemma [21; 22] and cytoskeletal disorganization [23]. In our study, cleavage and blastocyst rates 

were indeed severely reduced in vitrified oocytes when compared to control oocytes. Although oocytes 

vitrified with both protocols did not show a significantly different cleavage rate, blastocyst development 

was only observed in oocytes vitrified with the short vitrification protocol. Almost 7% of the injected 

oocytes developed into a blastocyst, i.e. 16% of the cleaved embryos.  

The short vitrification protocol used in this study, was previously described by Tharasanit et al. [13]. 

These authors reported 1% blastocyst formation after vitrification of immature equine oocytes. The 

higher blastocysts rate obtained in this study (7%) may be the result of the two modifications included. 

Besides the fact that we used CR oocytes, a custom adapted device similar to the cryotop was used 

as an alternative to the open pulled straw (OPS) that was used by Tharasanit et al. [13]. Using this 

device, oocytes are loaded in a minimum volume of vitrification solution (<1 μl), resulting in faster 
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cooling-warming rates than with the OPS, a modification that was demonstrated to lead to higher 

cleavage and blastocyst rates in other species [24-26]. 

Surprisingly, we observed that maturation rates in CR oocytes vitrified with the long vitrification 

protocol did not appear to be strongly reduced (no significant difference with control fresh oocytes), but 

they were not able to develop into blastocysts. Canesin et al. [27] have recently published 

development of one blastocyst out of nine oocytes using this long protocol for vitrification of equine 

oocytes. However, these authors used a different device to load the oocytes and different 

concentrations of sucrose during warming, which may explain in part, the disparate results. 

More interestingly, Canesin et al. [27] reported that the concentration and time of exposure (more than 

10 min) to CPAs used in the long vitrification protocol were detrimental for the developmental 

competence of immature equine oocytes. Indeed, CPA toxicity is considered as the most limiting factor 

when developing a successful vitrification protocol. The toxicity of penetrating CPAs consistently 

increases with higher CPA concentrations, higher exposure temperature, and/or longer exposure time 

[28]. Although higher concentrations of CPAs were used in the equilibration and vitrification solutions 

of the short vitrification protocol, the very strongly reduced time of exposure could have resulted in the 

successful cryopreservation, as previously reported in bovine oocytes [29]. 

The ultimate goal of oocyte vitrification is to preserve developmental capacity to the blastocyst stage, 

resulting in a successful pregnancy and a live foal. Live births have been reported after vitrifying 

immature bovine [30] and porcine [20] oocytes; however, as far as we know, no pregnancies or foals 

born from vitrified immature oocytes after complete IVP have been reported. In the current study, we 

report a successful equine pregnancy resulting in a healthy foal (Figure 4), which is a major 

achievement in the field of equine assisted reproduction, and equine oocyte cryopreservation in 

particular.  

In conclusion, we developed an improved method for the vitrification of immature equine oocytes. 

Although the blastocyst rate was compromised, blastocyst development using our vitrification protocol 

was enhanced and did result in a healthy foal. Nevertheless, further research is needed to reduce the 

ultrastructural spindle alterations observed in vitrified oocytes and, concurrently, to improve normal 

resumption of meiosis and subsequent blastocyst development.  
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Table1. Composition of vitrification-warming solutions and time of exposure used in the different 

protocols.  

 
Long vitrification protocol  Short vitrification protocol 

 Solution Time              Solution Time 

Handling solution (HS) TCM199Hanks + 20%FBS 1’  TCM199Hanks + 0.014%BSA 1’ 

Equilibration solution (ES) HS+ 7.5%EG + 7.5%DMSO 10’  HS + 10%EG + 10%DMSO 25´´ 

Vitrification solution (VS) HS+15%EG +15%DMSO + 0.5M sucrose 1’  HS+20%EG+20%DMSO+0.5M sucrose 15’’ 

Warming (W1) HS + 1M sucrose 1’  HS + 0.5 M sucrose 5’ 

Warming (W2) HS + 0.5M sucrose 3’  - 
 

Warming (W3) HS + 0.25M sucrose 5’  - 
 

FBS: Fetal Bovine serum, EG: Ethylene Glycol, DMSO: Dimethyl sulfoxide 

 

Table 2. Overview of the in vitro maturation rates of control and vitrified immature equine oocytes 

surrounded by multiple layers of cumulus cells (CC) and by corona radiata cells only (CR) using two 

different vitrification protocols.   

Treatment Group n Undefined MI (%) MII (%) Degenerated (%) 

Control CC 88 13 12(13.6±7.1) 47(53.4±19.4)ab 16(18.2±6.8)ab 

 CR 86 16 9(10.5±3.7) 50(58.1±7.8)a 11(12.8±4.3)a 

Long vitrification CC 93 9 20(21±6.8) 32(34.4±9.5)bc 32(34.4±15)ab 

 CR 122 13 16(13.1±5.2) 59(48.4±12.6)ab 34(27.9±17)ab 

Short vitrification CC 99 12 21(21.2±6.5)     * 25(25.3±8.3)c 41(41.4±12.5)b 

 CR 122 20 25(20.5±12.4) 42(34.4±5)bc 35(28.7±11.4)ab 

For MI, main effects were analyzed, and differences were only observed between the treatments. * The control 

group was significantly different from the group vitrified with the short vitrification protocol (p<0.05).a,b,c Groups 

with different superscripts within the same column are significantly different (p<0.05). Data are given as mean 

percentages ± s.d. (five replicates, n = 610).  

 

 

Table 3. Overview of the maturation rate and embryo development of control and vitrified-warmed 

equine immature oocytes surrounded only by corona radiata cells, using two vitrification protocols 

(long vitrification protocol vs. short vitrification protocol). 

Group n MII oocytes (%) Cleavage (%) Blastocyst (% of  

injected oocytes)  

Blastocyst (% of 

cleaved zygotes) 

Control 146 80 ( 54.8±7.3)a 61 (76.3±8.4)a 16 (20±2)a 16 (26.2±1.7)a 

Long vitrification protocol 141 56 (39.7±9.9)b 17 (30.3±7)b 0b 0b 

Short vitrification protocol 179 72 (40.2±3.9)b 30 (41.6±19.9)b 5 (6.9±5.9)c 5 (16.7±17.3)a 

 a,b,c Groups with different superscripts within the same column are significantly different (p<0.05). Data are given 

as mean percentages ± s.d. (four replicates, n = 465).  
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Figure 1. (A–B) Representative images of oocytes surrounded by multiple layers of cumulus cells (A) 

and oocytes surrounded by corona radiata cells only (B). (C–D) Drawing and representative images of 

the custom-adapted device used in the present study. The arrows denote where the oocytes are 

loaded and the asterisks denote the wire added. 

 

 

 

 

 
Figure 2. (A–C) Confocal images illustrating cytoskeleton morphology in vitrified-warmed oocytes. 

Microtubules are stained in red and chromatin in blue. (A) shows a normal MII oocyte with its 

typical barrel-shaped metaphase II spindle configuration and the chromosomes perfectly aligned 

in blue. (B) shows an oocyte with a extruded polar body (PB), smaller spindle and aligned 

chromosomes.(C) shows oocyte with a disrupted spindle and dispersed chromosomes.  
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Figure 3. Percentage of normal microtubule and chromosome alignment of control and vitrified 

oocytes. a,b, Groups with different superscripts are significantly different (p<0.05). Three replicates, 

n = 50. 

 

 

 

 

 

 

 
Figure 4. A healthy male foal was born at term, here depicted at 3 days of age. 
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