

Agricultural intensification and policy interventions: Exploring plausible futures for smallholder farmers in Southern Mali

Falconnier, G. N., Descheemaeker, K., Traore, B., Bayoko, A., & Giller, K. E.

This is a "Post-Print" accepted manuscript, which has been published in "Land Use Policy"

This version is distributed under a non-commercial no derivatives Creative Commons (CC-BY-NC-ND) user license, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and not used for commercial purposes. Further, the restriction applies that if you remix, transform, or build upon the material, you may not distribute the modified material.

Please cite this publication as follows:

Falconnier, G. N., Descheemaeker, K., Traore, B., Bayoko, A., & Giller, K. E. (2017). Agricultural intensification and policy interventions: Exploring plausible futures for smallholder farmers in Southern Mali. Land Use Policy. DOI: 10.1016/j.landusepol.2017.10.044

You can download the published version at:

https://doi.org/10.1016/j.landusepol.2017.10.044

1	Agricultural intensification and policy interventions: exploring plausible futures for
2	smallholder farmers in Southern Mali
3	Gatien N. Falconnier ^{1*} , Katrien Descheemaeker ² , Bouba Traore ³ , Arouna Bayoko ⁴ , Ken E. Giller ²
4	
-	
5 6	¹ UMR AGIR, Université de Toulouse, INPT, INP-PURPAN, INRA, 31320 Castanet Tolosan, France
7	² Plant Production Systems, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
8	³ International Crops Research Institute for the Semi-Arid Tropics (ICRISAT-Mali), BP 320 Bamako, Mali
9	⁴ Association Malienne d'Eveil au Developpement Durable (AMEDD), Darsalam II, Route de Ségou, BP 212
10	Koutiala, Mali.
11	
12	*Corresponding author: Gatien N. Falconnier;
13 14	gatien.falconnier@inra.fr
15	Abstract:
16	Assessing how livelihoods in rural sub-Saharan Africa might change given future trends in socio-economic and
17	biophysical conditions helps to identify and direct effective efforts towards poverty reduction. Based on existing
18	literature, hypothetical changes in farmer practices and policy interventions were described and used to build five
19	contrasting scenarios towards the year 2027. A simulation framework was developed to assess food self-sufficiency
20	and income per capita now and in the future for a representative village of 99 households in Southern Mali. In the
21	current situation, 26 % of the farms were food self-sufficient and above the 1.9 US\$ day ⁻¹ poverty line. This percentage
22	would fall to 13% in the "Business as usual" scenario. In the "Dairy development" scenario, with intensification of
23	livestock production and support to the milk sector, 27% of farms would be food self-sufficient and non-poor.
24	Additional policy interventions targeting family planning and job creation outside agriculture would be needed to
25	improve both household food self-sufficiency and income per capita. In this optimistic scenario, 77% of the farms

would be non-poor and food self-sufficient in 2027. Additional programmes to promote Integrated Pest Management,
 small-scale mechanisation and mineral fertilizer on traditional cereals could allow a drastic increase in productivity
 and would lift 94% of the farm population out of poverty. Considering the entire heterogeneous farm population was
 crucial to accurately assess pathways out of poverty. Our study stresses the need for a strategic and multi-sectoral
 combination of interventions to improve livelihoods.

31

32 *Key words: farm typology, yield gap, rural-urban migration, net fertility*

33

34 1. Introduction

35 The human population in Africa is growing faster than in other continents and will account for more than half of the 36 growth in the world's population between now and 2050 (United Nations, 2015). In many regions across sub-Saharan 37 Africa there is no land suitable for further agricultural expansion, therefore farm size is decreasing (Harris and Orr, 38 2014). Faced with land shortage and the challenge to produce sufficient food, farmers can respond in three ways: 39 intensifying agricultural production, migrating out of agriculture and/or reducing human fertility rates (Headey and 40 Jayne, 2014). Policy interventions can favour these strategies, as examples from around Africa illustrate: large scale 41 agricultural input subsidy programmes improved land productivity in Malawi (Dorward and Chirwa, 2011). 42 Educational investment targeting rural areas and creation of non-agricultural wage jobs in the cities favoured rural-43 urban migration in Uganda (de Brauw et al., 2014; Fox and Sohnesen, 2012). In Rwanda and Kenya, subsidized 44 contraceptive services and education campaigns triggered the transition from high to low birth rates (Bongaarts, 2011). 45 Yet the pace and the magnitude of the effects of such policy interventions are difficult to foresee (Thompson and 46 Scoones, 2009). In Mali, achieving food self-sufficiency and poverty reduction are the key objectives of the latest 47 "Loi d'Orientation Agricole" (LOA) (http://www.pcda-mali.org/site/index.php/29-mediatheque/31-la-loi-d-48 orientation-agricole-du-mali-loa, last accessed 19/02/2016). Hence assessing how income and food production might 49 change under uncertain future socio-economic and biophysical conditions may generate useful information for 50 directing policy interventions towards poverty reduction.

51 Scenarios help to capture uncertainty by defining plausible futures covering a range of socioeconomic and biophysical 52 conditions (O'Neill et al., 2015). Many studies built scenarios based on hypothetical changes in population, policy 53 interventions and efficiency of institutions and assessed their effect on land use change, intensification and 54 diversification of agriculture (Enfors et al., 2008; Stephenne and Lambin, 2004). These studies illustrated how 55 scenarios inform decision-making and help to target agricultural development investments. Some of these studies 56 stressed the importance of considering farm heterogeneity to increase the assessment accuracy (García-Martínez et 57 al., 2011; Gibreel et al., 2014; Herrero et al., 2014). However, they focused on land use change and did not quantify 58 changes in food production and income for the different farm types. Scenario work is widespread for developed 59 countries (Bizikova et al., 2015) but remains rare in sub-Saharan Africa, with scarce quantitative information on likely 60 changes in income and food self-sufficiency. Furthermore, beyond future changes in representative farms or farm 61 types, only few studies assess changes in entire diverse farm populations (Descheemaeker et al., 2016; Paul et al., 62 2017; Ritzema et al., 2017).

63 The "old cotton basin" in Southern Mali experiences fast population growth and increasing land shortage (Soumaré 64 et al., 2008), common challenges in land constrained regions across sub-Saharan Africa. The region has shown a 65 promising agricultural intensification pathway (1960-2000) linked to cotton production (Benjaminsen et al., 2010), 66 but since the cotton crisis (2004), agricultural productivity has stagnated (Falconnier et al., 2015). Hence the Malian 67 government is committed to increasing agricultural productivity (Croix et al., 2011; Kelly et al., 2011) and increasing 68 off-farm opportunities for the youth (African Development Bank, 2012). Yet policy makers need locally grounded 69 information to take effective decisions. Adding to the uncertainty of future trajectories of change, the heterogeneous 70 farms of the region (Falconnier et al., 2015) are expected to respond differently to changes in socio-economic 71 conditions.

The objective of this study was to assess the effects of agricultural intensification, rural to urban migration and net fertility reduction on rural poverty and food self-sufficiency for contrasting plausible mid-term futures (fifteen years ahead) for the entire population of a case study village in the "old cotton basin" of Southern Mali. Specific objectives were to (i) build scenarios that span a wide range of uncertainty in socio-economic futures, (ii) develop a simulation framework that accounts for household demographic dynamics, sensitivity of crops to rainfall variability and change in farmer practices and (iii) assess trends in food self-sufficiency and income per capita for all farms in the village population in the different scenarios.

79

80 2. Methods

81 **2.1.** Study area

2

82 The "old cotton basin" is an area situated in the Sudanian agro-ecological zone of Southern Mali (Coulibaly, 2003). 83 The rainy season starts in May and ends in October and total rainfall fluctuates from 500 to 1200 mm. The area groups 84 three districts (Koutiala, Dioila and the northern part of Sikasso) and accommodates more than a million of rural 85 people (Traore et al., 2011). Households are extended families comprising the head of the household, his sons and 86 wives and their children (Jonckers and Colleyn, 1974). Farmers grow cotton, cereals and groundnut in rotation and 87 use manure, mineral fertilizer and oxen for draught power. The Compagnie Malienne pour le Developpement des 88 Textiles (CMDT) buys the cotton and provides credit for mineral fertilizer for cotton and maize (Falconnier et al., 89 2015).

90

91 **2.2.** Datasets

The "Suivi Evaluation Permanent" (SEP) dataset collected by the "Equipe Système de Production et Gestion des Resources Naturelles (ESPGRN)" of the Malian Institut d'Economie Rural (IER) contains information on household resource endowment, input use and cotton yields measured by CMDT for 30 farms from three villages of the "old cotton basin" from 1994 to 2010. Farms were classified in four farm types, namely High Resource Endowed with Large Herds (HRE-LH), High Resource Endowed (HRE), Medium Resource Endowed (MRE) and Low Resource Endowed (LRE) farms according to (1) total cropped land (ha), (2) number of workers, (3) herd size and (4) number of draught tools (Falconnier et al., 2015). LRE farmers usually don't have a full span of oxen and/or a plough.

Data on resource endowment and crop area in 2013 for the 99 households of the Nampossela village (12°15' N and 15° 20' W) was obtained from the CMDT. All households in Nampossela were classified in one of the four HRE-LH, HRE, MRE and LRE farm types. Nampossela is a typical village of the 'old cotton basin'. It is close (10km) to the three SEP villages where the farm typology was generated, with very similar agro-ecology, farm practises and marketing opportunities. The share of the four farm types in this village was 12%, 19%, 55% and 14% for HRE-LH, HRE, MRE, LRE farms respectively, which is close to the average share in the Koutiala region (Falconnier et al., 2015).

106

107 2.3. Scenario building

Starting from the baseline year 2013, we explored the effects of wide-ranging future agricultural and socio-economic
 changes within a 15-year time span (2013-2027). Hypothetical trends in agricultural intensification were conceived

110 based on promising agricultural technologies identified for the region. On the policy side, we took into account 111 expected changes in the cotton and milk context described in the literature and policies that would affect birth and 112 migration rates. Key variables were selected to describe these trends and quantified by extrapolating past trends 113 described in the literature. Eventually, combinations of hypothetical trends were bundled into five coherent and 114 contrasting scenarios. We did not consider technological change that would result in increased potential yield due to 115 breeding. Although the 15-year time span corresponds to the 'near term' where additional uncertainty due to climate 116 change is assumed to be negligible (Pachauri et al., 2015), climate change is considered an important threat to 117 agriculture in the region (Traoré et al., 2017). Hence, to inform decision making towards timely adaptation, we 118 included climate change effects in the sensitivity analysis (section 2.6).

- 119
- 120

2.4. Simulation framework

121

122 A model framework was built to simulate three major farm components (household, cropland and cattle herd) and 123 their interactions (Figure 1) for each of the 99 farms of the Nampossela village. The model was run for both a baseline 124 situation (2013) and a near-term future situation 15 years later (2027). The baseline and the future situation were each 125 simulated with the same series of 29 historical seasons (1965-1993), which is the only complete weather dataset for 126 which corresponding water-limited potential cotton yields were observed (see section 2.4.2). For the baseline and the 127 future situation, food self-sufficiency and income per capita were computed for each farm, averaged across the seasons 128 and for each farm type. Also the year-to-year variability was assessed. Furthermore, the percentage of farms above 129 the poverty line and food self-sufficient was computed for both the baseline and the future situation. Hence, the 130 scenario analysis was not based on a continuous temporal change, but on a comparison of separately modelled baseline 131 and future situations, which is common practice (Miguel Ayala et al., 2016; Rajib et al., 2016). The model was built 132 with the R programming language. Main model input comprised farm characteristics (farm type, area of the different 133 crops, household size, number of tools and animals) and crop/livestock performances (grain, fodder and milk yield) 134 (Figure 1). Further input to the model comprised net fertility and migration rates and farm and socio-economic 135 conditions derived from the scenarios. More details on parameters, input, output variables and calculations are 136 available in supplementary material as background and resource for readers who are interested to repeat this exercise. 137 In what follows we explain each model component and indicator separately.

138

139 **2.4.1.** Ho

2.4.1. Household component

140 Number of people in each household (Figure 1) in 2013 (HH_size_{2013}) was obtained from the village survey data. For 141 each farm, household size in 2027 (HH_size_{2027}) was calculated as follow:

142 (1) $HH_{size_{2027}} = HH_{size_{2013}} [1 + (fertility_rate - migration_rate)]^{2027-2013}$

where *fertility_rate* is the net (birth-death) fertility rate and *migration_rate* is the rural to urban migration rate. Fertility rates were specific for each scenario, while migration rates were specific for each scenario and farm type. For each of the four farm types, past average annual growth rate of the household size was calculated using 1994 and 2010 SEP data. Rural-urban migration rate over the 1994-2010 period was estimated as the difference between the observed annual growth rate of household size and the Malian average net fertility (birth-death) rate (3.4%) (World Bank,

- 148 <u>http://data.worldbank.org/indicator/SP.DYN.CBRT.IN, last accessed 30/09/2016).</u>
- 149

150 Traditionally, the eldest son inherits the land and becomes the head of the household (comprising the younger 151 brothers), which prevents land subdivision (Jonckers and Colleyn, 1974) except if brothers disagree. The SEP data 152 showed that only one out of 30 households was subdivided during the whole 1994-2010 period (Falconnier et al., 153 2015). In line with this finding, a comprehensive survey carried out in 2006 showed that 71% of the 146 farms of 154 another village in the Koutiala district originated from a traditional inheritance process without land holding 155 subdivision and only 29% originated from a household subdivision, with 86% of these subdivisions having occurred 156 before 1996 (Poccard-Chapuis et al., 2007). Hence, as population increase results in a decrease in land per capita 157 rather than a decrease in farm size, landholding subdivision was not considered for the simulations. As there is no 158 arable land available for expansion (Falconnier et al., 2015), total cropped land per household (Figure 1) was kept 159 constant over the 15 years of the simulation.

- 160
- 161

2.4.2. Cropped land component

162 Information on cropland allocation and area (Figure 1) in the baseline was obtained from the village survey data. To 163 estimate crop yields with farmer practice as a function of variable rainfall and assess year-to-year variability, we used 164 an empirical approach based on experimental results from the region. Correlations between annual rainfall and yield 165 of cotton, maize, sorghum, millet and groundnut were analysed using published studies reporting measured yield with 166 farmer practices in on-station and on-farm trials in the "old cotton basin". Additionally, cotton yield measured by 167 CMDT in the SEP dataset were analysed. For the crops for which our literature study indicated a significant effect of 168 rainfall on the yield with farmer practice, this yield was simulated using the APSIM model (Keating et al., 2003) and 169 used as an input to the cropland component (Figure 1). APSIM was calibrated for a typical Lixisol (FAO, 2006), the 170 cultivars used by farmers in the "old cotton basin" (Traore, 2014; Akinseye, personnal communication; Nenkam, 171 personnal communication) and run with N application rates used by farmers (derived from SEP data). The yields were 172 simulated using the 1965-1993 weather records from N'Tarla station (Traore et al., 2013). For crops without a 173 significant effect of rainfall on yield, the average measured yield in farmer conditions was used and kept constant for 174 all seasons.

With respect to water-limited potential yields (van Ittersum et al., 2013), cotton yields measured from 1965 to 1993 in the N'Tarla experimental station in plots receiving 90 kg N ha⁻¹ mineral fertilizer and 12.8 t dry matter manure ha⁻¹ were used (Ripoche et al., 2015). For maize, sorghum and millet, yields were simulated with APSIM using the same settings as above and increasing amount of nitrogen. A nitrogen input of 200 kg N ha⁻¹, spread over two applications, was found to release N constraints in all years of the simulation and was therefore used for the determination of the water-limited potential yield. Finally, 85% of the water-limited potential yield and the required N input were determined, corresponding to the exploitable yield gap (van Ittersum et al., 2013).

- 182
- 183

2.4.3. Cattle herd component

A 10% net fertility rate for cattle (Figure 1) was assumed (Ba et al., 2011). Annual animal off-take was assumed to be equal to this net fertility rate to ensure a stable cattle herd size (Ba et al., 2011). Current cattle herd size for each household was obtained from the village survey data. The proportion of lactating cows in the cattle herd was assumed to be 22 and 34% for cattle herds below and above 23 animals respectively (Ba et al., 2011). Year-round milk production of cows with open-grazing (current farmer practice) and stall feeding (2.5 kg cowpea hay cow⁻¹ day⁻¹ and 2 kg cotton seed cake cow⁻¹ day⁻¹ during the dry hot period of 90 days) was obtained from De Ridder et al. (2015).

190

191

1 2.5. Food self-sufficiency and income per capita

Income per capita (Figure 1) was calculated as an aggregate of (i) farm income, i.e. monetary gross margins fromcotton, groundnut, cereals, milk, live-animal sales, and (ii) non-farm income, i.e. remittances sent by migrants and

194 self-employment (sale on the local rural market of local natural products like wood and charcoal, manufactured goods 195 like baskets and jewellery and services like hair-dressing and repairs of farm equipment). Depreciation of animal 196 drawn equipment (plough, weeder, sowing machines, carts and oxen) was deducted from the income. Transfers related 197 to the remuneration of land (renting), labour (working on anothers' farm) and capital (interest paid for borrowing 198 money), corresponding to 0, 2% and 0.1% of average income respectively (Samake et al., 2008), were considered 199 negligible.

200 For cereal gross margin, both self-consumption and surpluses were valued at the market price. Income was expressed 201 in 2011 US dollar Purchasing Power Parity (\$PPP), to allow comparison with the international 1.9 \$PPP/day/person 202 poverty line (Jolliffe and Prydz, 2016; Ravallion et al., 2009). The Average Conversion rate between the Malian 203 \$PPP currency (FCFA) obtained World and was from the Bank estimates 204 (http://databank.worldbank.org/data/reports.aspx?Id=edef810f&Report Name=ICP 2011 V3, last accessed 205 18/10/2017). Input and output prices (Figure 1) at the start of the simulation (2013) were obtained from a market 206 survey carried out in 2013 in Nampossela. For the end of the simulation period (2027), input and output prices for 207 milk, cotton and cereals depended on the scenarios, while other prices were kept constant.

Food self-sufficiency was calculated as the percent fulfilment of household calorific need by on-farm production of calories. An average calorific need of 2406 kcal/person/day was considered (average across all SEP households using age-sex specific daily needs, following Britten et al. 2006). The calorie supply was computed based on household cereal production, considering an average supply of 3500 kcal kg⁻¹ maize, sorghum and millet grain (FAO: http://www.fao.org/docrep/t0818e/T0818E0b.htm, last accessed 02/10/2015).

213

214 2.6. Sensitivity analysis

Variation (from -50% to 50%) was applied to the default trend in the key variables describing the scenarios. For example, the default trend in cotton price was a 27% decrease (see Table 2), so that -50% variation and +50% variation in this default trend corresponded to a 14% and 41% decrease in cotton price respectively. Trends in variables were changed one at a time, while keeping others constant (i.e. at their "no change" or "current rate" value, see Table 2).

219 To factor in the potential (longer-term) effects of climate change, the effect of a decrease in maize, sorghum and millet

220 yield due to an increase in temperature was assessed. We evaluated the future situation (2027) for the different

scenarios using APSIM simulated yields for a hypothetical 2040-2069 period. Daily rainfall and temperature data

222 were obtained from five contrasting Global Circulation Models (GCM) and the high-emission 8.5 Wm⁻² radiative 223 forcing scenario (Traore et al., 2017). APSIM yields were averaged across the five GCMs. The effect of these 224 variations on the key output of the model framework (i.e. percent farms food self-sufficient and non-poor in 2027) 225 was assessed. 226 227 3. Results 228 In what follows, we start by giving the results of the literature and data analysis that formed the basis of the 229 hypothetical trends. Then hypothetical trends and scenarios are explained and finally the results of the simulations and 230 sensitivity analysis are presented. 231 232 3.1. Past observed population growth and migration rate 233 In the 1994-2010 period, the average observed annual growth rate of household size was $3.4 (\pm 0.13)$, $1.7 (\pm 0.78)$, 2.2234 (±0.6) and 0.6% (±1.74) for HRE-LH, HRE, MRE and LRE farms respectively. Based on the average net fertility rate 235 of 3.4% for Mali, estimated rural to urban migration rates were 0, 1.7, 1.2 and 2.8% for HRE-LH, HRE, MRE and 236 LRE farms respectively. 237 238 3.2. Crop yields 239 Maize cultivated with farmer practice was sensitive to seasonal rainfall amount in on-station experiments and in on-240 farm trials (Falconnier et al., 2016; Traore et al., 2013, 2015). Therefore maize yield under current farmer practice 241 was simulated with APSIM and varied with seasonal rainfall conditions and farm type (Table 1). For the diversification 242 trends, maize yield and cowpea fodder production obtained in maize/cowpea intercropping experiments on-farm were 243 considered (Table 1). 244 On-station experiments showed the sensitivity of cotton yields to seasonal rainfall (Traore et al. 2013). However, 245 cotton yields less in farmers' fields than on station and tends not to be impacted by seasonal rainfall because of pests 246 and weeds (Traore et al., 2013). Analysis of measured yields in the SEP database showed that farmers' cotton yields 247 were not significantly impacted by total rainfall and rainfall distribution, but by manure input (P=0.02) and oxen per 248 worker (which indicates the ability to weed in a timely fashion) (P<0.001), factors that varied per farm type. Therefore, 249 for the current farmer practice the average cotton yield was considered per farm type and kept constant for all the rainfall seasons (Table 1). For sorghum, millet and groundnut no significant correlations were found between yield
and seasonal rainfall in on-station and on-farm experiments with farmer practice (Falconnier et al., 2016; Traore et
al., 2013, 2015). Also, no effect of farm type was diagnosed. Therefore, for the scenarios with current farmer practices,
average yields obtained in on-farm trials with farmer practice were considered (Table 1) and kept constant for all the
rainfall seasons.
The simulated water-limited potential yield for the cereals were obtained with increased nitrogen inputs and resulted
in an increased sensitivity to rainfall (illustrated by the larger standard deviation in Table 1).

258 **3.3.** Policy interventions

Five policy interventions were conceived, from negative (P0) to 'business as usual' (P1) to incrementally progressive(P2-P4).

261 **3.3.1.** Input and output prices

262 Policy interventions related to agricultural input and output prices were considered in three domains. Firstly, a 263 continued decline in cotton prices and a structural removal of fertilizer subsidies is not unlikely in the near future 264 (Coulibaly et al., 2015). Based on these projections, a pessimistic hypothetical policy trend (P0) included a steady 265 decline in the cotton price and a steady increase in mineral fertilizer prices (Table 2). In more optimistic projections 266 (P1 to P4), the cotton price and fertilizer subsidy would be maintained at the 2011-2015 level (Falconnier et al., 2015). 267 Secondly, in 2008 the high price of milk powder on the world market decreased milk powder importations, obliging 268 dairy industries in Bamako to use more local milk (Aparisi et al., 2012). In combination with the increased popularity 269 of products from local milk (Corniaux et al., 2012), this led to a 10 Fcfa/L/year increase in the price paid to farmers 270 by dairies from 2005 to 2010. Together with the official food sovereignty objective of the LOA and the lobbying by 271 the West African farmer organization "Réseau des Organisations Paysannes et Professionnelles Agricoles" to raise 272 the Common External Tariff of agricultural commodities in the Economic Community of West African States 273 (Laroche Dupraz and Postolle, 2013), this formed the basis of a progressive policy intervention with tariffs on milk 274 powder (P2 to P4). Thirdly, the market for cotton by-products is poorly understood (Kelly et al., 2010). However, we 275 hypothesised that in the favourable policy trends (P2 to P4), the cotton seed cake price would decrease to its lowest 276 level observed in 2003 (Kelly et al., 2010). In the other trends, the current low price for milk and high price for cotton 277 seed cake would be continued (P0 and P1).

278

3.3.2. Socio-economic development

279 Policy interventions related to socio-economic development were considered in two domains. Firstly the Malian 280 government committed to family planning with a plan aiming at "increasing the rate of contraceptive use in Mali, 281 moving from 9.9% in 2012 to at least 15% by 2018, through the reduction of unmet need for family planning and by 282 targeting teens and young adults (aged 15 to 24)" (Ministère de la santé et de l'hygiène publique, 2014). Family 283 planning can decrease net fertility rates (Bongaarts, 2011) but the effect of such a program has not been quantified for 284 Mali. Hence, we hypothesized that family planning would lead to a 35% decrease in fertility rates down to the Côte 285 d'Ivoire level of 2.2% (P3 and P4, Table 2). Furthermore creation of jobs outside of agriculture and educational 286 programs to empower rural people can favour rural to urban migration (de Brauw et al., 2014; Fox and Sohnesen, 287 2012). The Malian government promoted youth employment with the establishment of several programs aimed at 288 training young people and young entrepreneurs in promising sectors (e.g. industry, mining, information and 289 communication technologies) (African Development Bank, 2012). We assumed that the continuation and 290 strengthening of such policy intervention would lead to rural to urban migration rates of 2.8% for all farm types during 291 the 2013-2027 period (i.e. the highest observed rate in the 1994-2010 period) (P3 and P4, Table 2).

292

3.3.3. Narrowing yield gap

293 The comparison of water-limited potential yield and actual yield indicated a large yield gap for cotton despite the use 294 of mineral and organic fertilizer by farmers (with 43 kg N ha¹ and 4.9 t ha¹ dry matter manure on average, cotton with 295 farmer practice yielded only 47% of the water-limited potential yield), pointing to important pest and weed pressure. 296 In Mali, various interventions have promoted Integrated Pest Management, and the cotton area with Integrated Pest 297 Management rose from 104 ha in 1994 to 92500 ha in 2010 (Silvie et al., 2013), representing still only 33% of the 298 total cotton area. To narrow the cotton yield gap, we conceived a policy intervention (P4) geared towards (i) relieving 299 pest and weed constraints, through further Integrated Pest Management programs, i.e. training of farmers to improve 300 spray scheduling (Hillocks, 2014) and (ii) timely land preparation, sowing and weeding of cotton through subsidies 301 for the development of private small-scale mechanization services to alleviate the shortage in land cultivation 302 equipment (Baudron et al., 2015; Croix et al., 2011) (Table 2). In addition to that, P4 included the extension of the 303 fertilizer subsidy to sorghum and millet (currently only on cotton and maize) to incentivize farmers to apply more 304 nitrogen on cereals, allowing to reach 85% of water-limited potential yield for maize, sorghum and millet (Table 2). 305 This policy would be similar to the expansion of the "Initiative Riz" undertaken by the Malian government in 2009 to

306 extend fertiliser subsidies to sorghum and millet (Kelly et al., 2011).

307 3.4. Agricultural intensification

308 Falconnier et al. (2015) showed that in the unfavourable cotton context of the past decades, the cotton area of HRE-309 LH, HRE, MRE and LRE farmers decreased by 30, 66, 75 and 66% and was replaced by sorghum. This cotton area 310 shrinkage, alongside a decrease of mineral fertilizer use down to the level of LRE farms was assumed for the less 311 optimistic agricultural change (A0) (Table 2). In the second hypothetical change (A1), no change in farmer practices 312 was assumed (Table 2). A third trend of agricultural intensification (A2) assumed the adoption of maize/cowpea 313 intercropping (i.e. diversification with legumes) and stall feeding of lactating cows (i.e. intensification of livestock 314 production) using the cowpea fodder produced on-farm (Table 2). This change was based on findings of a series of 315 co-learning cycles involving farmers of the four farm types (HRE-LH, HRE, MRE and LRE) during three years of 316 research in the study area. The co-learning cycles were composed of (i) on-farm testing of intercropping and stall-317 feeding options by about hundred farmers in nine villages of the Koutiala region, (ii) appraisal of options by farmers, 318 and (iii) farm system re-designs and ex-ante analysis assessed by farmers (Falconnier et al., 2016, 2017). The co-319 learning process indicated that maize-cowpea intercropping is a low-risk, profitable option, which can be combined 320 with stall feeding of lactating cows for increased milk production without compromising food self-sufficiency of the 321 household.

A final trend towards agricultural intensification (A3) entailed an increase in the use of mineral fertilizer on maize,
 sorghum and millet up to the level required to reach 85% of potential yields, and adoption by cotton producers of
 small-scale mechanisation and Integrated Pest Management (Table 2).

Figure 1 gives a comprehensive picture of how the agricultural and policy variables constituting the trends listed inTable 2 impacted the components of the model framework.

327 3.5. Scenarios

Five scenarios resulted from the logical combinations of the trends in policy and agricultural intensification (Figure 2). In the "Marginalisation" (S0) scenario, enabling policies disappear and cotton cultivation and fertilizer use decrease. In the "Business as usual" (S1) scenario, current policies supporting cotton are maintained and farmer practices do not change. The other scenarios rely on incremental policy interventions triggering a change in farmer practices toward agricultural intensification. In the "Dairy development" (S2) scenario, policy interventions extend to the milk sector, triggering cropping diversification with legumes and intensification of livestock production. The 'Socio-economic development'' (S3) scenario builds on S2, with additional family planning to reduce human fertility rates and job creation outside agriculture to favour rural to urban migration. The 'Narrowing yield gap'' (S4) scenario is the most optimistic scenario with all the previous policy interventions put in place, and additional interventions to narrow the yield gaps.

338

339 3.6. Change in food self-sufficiency and income per capita for different scenarios

All farm types were food self-sufficient on average in 2013, with some variation due to the sensitivity of maize to rainfall (Figure 3). In S0, average food self-sufficiency decreased for HRE-LH and MRE farms but increased slightly for LRE farms. In S1 and S2, average food self-sufficiency in 2027 decreased compared with the baseline 2013 for all farm types. In S3, food self-sufficiency was maintained at around its 2013 level for all farm types. In S4, food selfsufficiency and its variability increased for all farm types.

In 2013, only HRE-LH farms were above the poverty line in all seasons (Figure 3). In S0 and S1, income per capita decreased (all farm types except LRE farms) and was below the poverty line, regardless of rainfall. In S2, income per capita was maintained at around its 2013 level, except for LRE (increase) and HRE-LH (decrease). S3 allowed all farm types to increase their income compared with 2013 and move above the poverty line in all seasons. In S4, all farm types increased their income per capita compared with the baseline (2013) and stayed non-poor. The variability in income per capita also increased in S4.

In the baseline year (2013), 26% ($\pm 0.5\%$ depending on the rainfall season considered) of farms of the village were non-poor and food self-sufficient (Figure 4). In S0, S1 and S2 this percentage fell to 6% ($\pm 0.1\%$), 13% ($\pm 0.3\%$) and 27% ($\pm 0.2\%$) respectively. With S3, 77% ($\pm 0.2\%$) of the farms were non-poor and food self-sufficient, and this percentage further rose to 94% ($\pm 1.4\%$) in S4.

355

356 3.7. Sensitivity analysis

Variations in the default trends in rural-urban migration, net fertility rate and cotton price led to large changes in the simulated percentage of farms that were food self-sufficient and non-poor in 2027 (Figure 5). For example, the default decrease in net fertility was 35% in the policy interventions with family planning (P3 and P4, from 3.4% to 2.2%, see Table 2). For a +50% deviation from this default trend (from 3.4% to 1.6%) and all other variables kept to their "no

- 361 change" value (see Table 2), the simulated percentage of farms food self-sufficient and non-poor in 2027 increased
- 362 from 26% to 33% (i.e. a 7% percentage point increase). Variation to the default trend of the other variables impacted
- 363 only marginally the final output of the model framework (Figure 5).
- A decrease in cereal yield due to temperature increase would lead to a 2% percentage point decrease in the percentage
- 365 of farms food self-sufficient and non-poor in 2027 in S0, and 8% in S1, S2 and S3 scenarios (Table S3).
- 366

367 4. Discussion

368 4.1. Change in food self-sufficiency and income differed per farm type

369 Differing migration rates between farm types led to different changes in food self-sufficiency and income per capita
370 (Figure 3). This factor was overriding differences in farm livestock holdings, practices and yields.

371 Out-migration in search of remunerative activities is a major element of survival strategies in West Africa (Painter et 372 al., 1994). Our estimate of rural to urban migration rates during the 1994-2010 period for farms in the old cotton basin 373 (from 0 to 2.8% depending on farm type) is in line with the 2% rate reported by de Brauw et al. (2014) for Mali. In an 374 additional survey carried out in 2012, SEP farmers explained that household members migrated to Malian, African, 375 or European cities (73, 27 and 3% of the farms respectively). This low percentage of people migrating to Europe from 376 the Koutiala region explains why remittances are fairly low (180 \$PPP per migrant per year) in the Koutiala region, 377 compared with the Diema region for example which is known for having a high emigration to European countries 378 (remittance of 1233 \$PPP per year per migrant) (Losh et al., 2011). Usually, migration is a result of the difference 379 between the expected return to labour in the home and the potential destination area (Harris and Todaro, 1970; Jayne 380 et al., 2014). Logically, the farms with the lowest labour productivity, *i.e.* the HRE and LRE farms (Falconnier et al., 381 2015), experienced the highest migration rate in the 1994-2010 period (see section 3.1.). In the "Business as usual" 382 (S1) scenario, higher out-migration relieved some of the pressure on land and provided more remittances for HRE and 383 LRE farms who therefore suffered from a smaller decrease in food self-sufficiency and income per capita compared 384 with HRE-LH and MRE farms (Figure 3). Similarly in the "Dairy development" (S2) scenario, HRE farms 385 experienced an increase in income per capita while it decreased for HRE-LH farms although the latter farm type had 386 more cattle and therefore more potential to benefit from improvements in the milk sector. In HRE-LH farms without 387 out-migration, population growth outpaced the benefits associated with diversification with legume and intensification 388 of livestock production. It was only when out-migration was stimulated by job creation in the cities and rural towns (S3), that the benefits of dairy development could be seen for HRE-LH farms (Figure 3a,b). Interestingly, though they owned less livestock than HRE and HRE-LH farms, MRE farms also benefited from dairy development because they were able to sell surplus cowpea fodder (Figure 3f). LRE farms had low income per capita in the baseline, due to their small cotton area and yield. Population growth had very little impact on these small farms given their high rate of out-migration. They owned a very small number of cattle (Falconnier et al., 2015) and therefore didn't benefit from interventions in the milk sector. As a consequence, they remained "hanging in" with low income per capita in the scenarios S0 to S2 (Figure 3h).

396 Out-migration could have a detrimental effect on yield due to labour loss. However, in the S3 and S4 scenarios, where 397 the increase in population density is counteracted by family planning and out-migration measures, the latter just offset 398 rather than outpaced population growth. As a result, the number of people in the household in 2027 was similar to the 399 number of people in the baseline year (see Figure S1) so that no labour shortage had to be expected. Falconnier et al. 400 (2017) showed that with actual household size and cropland area, there is no human labour shortage for cropping 401 activities; the shortage is rather in the availability of oxen. If higher out-migration rates had to be considered in other 402 studies, leading to lower number of people compared with the baseline, an effect of labour loss on vield could be 403 introduced in the modelling framework. The ratio "available labour/required labour" (for crop operations) could be 404 applied to decrease crop yields in the case of insufficient labour.

- 405
- 406 4.2.

4.2. Pathways out of poverty?

The marginalisation scenario (S0) strongly resembled the experience of farmers during the period of instability in the cotton sector (2004-2010) (Nubukpo, 2011). The partial replacement of cotton by sorghum, allowed LRE farms to improve their food self-sufficiency status (Figure 3c,g), but also increased poverty rates in the case of HRE farms (Figure 4b). The sensitivity analysis indicated that the increase in poverty rates could be amplified if cotton prices paid to farmers would decrease more strongly. Overall, this stresses the crucial role of a well-functioning cotton sector for poverty alleviation in the region (Djouara et al., 2005).

Dairy development is usually considered unlikely in land-constrained environments, due to the strong competition of forage production with existing cash or food crops (De Ridder et al., 2015; Herrero et al., 2014). However, in the "Dairy development" (S2) scenario, the decrease in food self-sufficiency was due to demographic growth, and not to trade-offs between food and fodder production. This was achieved by intercropping cowpea with maize after cotton 417 in the rotation, a niche that guarantees no penalty to maize production (Falconnier et al., 2016). To achieve this type 418 of scenario in reality, an integrative "innovation system" is required where farmers have more political control over 419 the agricultural sector and the policies affecting it (Röling, 2009). Diversification with legume and intensification of 420 livestock production need to be supported by a more favourable milk input/output price ratio, the envisaged outcome 421 of lobbying activities against tariffs for milk imports (Laroche Dupraz and Postolle, 2013). Farmers' policy influence 422 in southern Mali is still weak compared with farmers in France, The Netherlands or the United States for example 423 (Röling, 2009). However, the example of the Agricultural Producers' Organisations of West Africa (ROPPA) 424 regrouping 50 millions farmers across West Africa and defending the right for African states to develop agricultural 425 policies against dumping from Europe (Laroche Dupraz and Postolle, 2013) provides hope that this is not unrealistic. 426 When dairy development is coupled with socio-economic development and price interventions in the milk sector (S3), 427 a significant proportion of the village is lifted out of poverty (Figure 4e). Our study adds to the body of literature 428 showing that out-migration can relieve land pressure and improve livelihoods by pulling rural labour out of agriculture 429 and providing remittances (Beegle et al., 2010; de Brauw et al., 2014). The sensitivity analysis indicated that the 430 livelihood improvement could be strengthened with higher out-migration rates. Rural to urban migration however 431 encompasses a diversity of realities and can be the expression of either "unskilled rural labour being pushed out of 432 agriculture" or educated people "pulled into productive non-farm jobs" (Jayne et al., 2014). There is evidence across 433 sub-Saharan Africa that rural to urban migration can be a "pull" into productive non-farm jobs: in Ethiopia, successful 434 industrial development led to the substitution of shoes imported from China by locally manufactured leather shoes 435 (Sonobe et al., 2009). With a more favourable industrial environment, Mali could develop its textile industry and 436 become a competitive exporter (Cockburn et al., 1999). More generally, Fine et al. (2012) estimated that 122 million 437 young people will get into the labour market in Africa between 2010 and 2020. In an optimistic scenario, they projected 438 that Africa could create only 70 million wage-paying jobs, mainly in manufacturing, government and service sectors. 439 The size of the labour force therefore appears to be growing faster than economies can create job opportunities (Fox 440 and Sohnesen, 2012) and agriculture will still have an important role to play in poverty reduction.

Family planning exerted the same influence as out-migration and allowed improving farmers' livelihood. In Mali, demographic surveys indicated that 28% of the women expressed an unmet demand for contraception (Population Council and ICF International, 2015), showing the scope for a change in reproductive behaviour and the need for stronger political commitment to family planning. Husband's disapproval may however discourage women from taking control of their fertility (Barnett et al., 1999) and a broader change in social and gender norms would therefore be needed. Raising the female education level would allow increasing women potential earnings and bargaining power in the household, which can contribute to reduce fertility rates (Canning et al., 2015). In Kenya, a 30% reduction in net fertility rate (from 3.7 to 2.8%) was achieved within a 15 years timespan (1980-1995) (World Bank, <u>http://data.worldbank.org/indicator/SP.DYN.CBRT.IN, last accessed 29/09/2016)</u>, indicating that the decrease in net fertility rates considered in our simulation (-35%) would be achievable if appropriate measures were taken. A stronger reduction in net fertility rates could further improve poverty reduction (Figure 5).

452

453 When added to the previous interventions and change in practices, narrowing the yield gap allowed a massive increase 454 in food self-sufficiency (Figure 3) and lifted almost the totality of the village out of poverty (Figure 4f). However, at 455 the same time, it increased the variability of food self-sufficiency and income, because of increased crop sensitivity 456 to rainfall when nutrient limitation is alleviated (Affholder, 1995; Ripoche et al., 2015). In 'bad' seasons, small yields 457 would push some HRE farms close to the poverty line (Figure 4h). This risk of unfavourable cost:benefit ratios is 458 common in the context of sub-Saharan Africa (Bielders and Gérard, 2015; Ronner et al., 2016) and could impede the 459 adoption of higher fertilizer application rates. As yields have been stagnant in the past 20 years (Falconnier et al., 460 2015), this scenario of narrowing the yield gap in only 15 years is very ambitious. Moreover, it is questionable from 461 a sustainability point of view, because extensive subsidy programs put a heavy load on public agricultural investments 462 and potentially remove finances from other areas of agricultural development (Marenya et al., 2012).

463 Due to increased temperatures, climate change is expected to have adverse effects on crop yields (Sultan et al., 2013). 464 Our analysis showed that this would negatively affect income per capita and significantly reduce the percentage of 465 farms non-poor and self-sufficient, hence highlighting the vulnerability of the smallholder population. Adaptation to 466 climate change is thus a key aspect of policy making that should start today in order to be ready for a warmer future. 467 Effective policy making should support the co-design of adaptation options with all stakeholders including farmers 468 and researchers (e.g. adoption of improved/adapted varieties and adjustment of planting times and fertilization) (Guan 469 et al., 2017; Traore et al., 2017). Furthermore, progressive institutional arrangements such as the development of 470 insurance schemes, weather forecasting, and early warning systems will be key to encourage the adoption of these 471 adaptation strategies. Other transformative measures, e.g. building the capacity of farmers to diversify cropping

472 systems, improve market functioning and value chains development should also be a priority (Descheemaeker et al.,473 2016).

474 The case study village is representative for other sites with similar agro-ecological and socio-institutional factors 475 (cotton/cereal rotations and variable rainfall, high population pressure, credit for inputs and guaranteed purchase of 476 cotton). The pathways out of poverty identified here therefore hold for the broad "old cotton basin" that accommodates 477 more than a million of rural people. Finally, our analysis indicates that none of the tested policy interventions and 478 agriculture intensification strategies alone can lift an entire heterogeneous farm population out of poverty (Figure 4). 479 It is rather the strategic combination of different multi-sectoral interventions that may offer a solution for poverty 480 alleviation. This key finding adds to the increasing recognition that understanding the future of agriculture requires to 481 move from a singular focus on agricultural interventions to a more holistic and multisectoral analysis (Frelat et al., 482 2016; Thompson and Scoones, 2009).

483

484

485 Conclusion

486 Five scenarios combining incremental policy interventions and agricultural intensification were explored for a village 487 of 99 households in the 'old cotton basin' in Southern Mali. For land-constrained areas like the study region, 488 differential rural-urban migration rates appeared to be a key factor in understanding the different responses of the 489 farms types. To guarantee food self-sufficiency and poverty reduction in the case of a variable climate, the creation of 490 wage jobs to allow people to move out of agriculture and family planning to reduce human fertility rates should 491 complement agricultural intensification interventions. Our study showed that, along with changes in farmer practices 492 towards intensification, several incremental policy interventions in different sectors are needed to lift the entire farm 493 population above the poverty line. This calls for a holistic and multisectoral assessment of plausible futures when 494 trying to reduce rural poverty in land constrained Africa.

495

496 Acknowledgement:

Funding for this research was provided by the McKnight Foundation. We thank the Institut d'Economie Rurale (IER)
and Cirad for making available the SEP panel dataset and the N'Tarla long-term experiment dataset. We are grateful
to the CMDT who made available the Nampossela household survey. We thank Andrée Nenkam and Folorunso

- Akinseye for making available APSIM calibrations for maize, sorghum and millet. We thank the AgMIP research
 community for their contributions to the crop modelling activities and the United Kingdom Department for
- 502 International Development for their support of AgMIP.

503

- 504 **References**:
- Affholder, F., 1995. Effect of organic matter input on the water balance and yield of millet under
 tropical dryland condition. Field Crops Research 41, 109–121. doi:10.1016/0378 4290(94)00115-S
- African Development Bank, 2012. African Economic Outlook 2012. Special theme: Promoting
 Youth Employment. OECD Publishing, http://www.oecd-
- 510 ilibrary.org/fr/development/african-economic-outlook-2012_aeo-2012-en.
- Ba, A., Lesnoff, M., Poccard-Chapuis, R., Moulin, C.-H., 2011. Demographic dynamics and offtake of cattle herds in southern Mali. Tropical Animal Health and Production 43, 1101–
 1109. doi:10.1007/s11250-011-9808-2
- Barnett, B., Konaté, M., Mhloyi, M., Mutambirwa, J., Francis-Chizororo, M., Taruberekera, N.,
 Ulin, P., Konate, M., 1999. The impact of family planning on women's lives: Findings
 from the women's studies project in Mali and Zimbabwe. African Journal of
 Reproductive Health 3, 27. doi:10.2307/3583226
- Baudron, F., Sims, B., Justice, S., Kahan, D.G., Rose, R., Mkomwa, S., Kaumbutho, P., Sariah,
 J., Nazare, R., Moges, G., Gérard, B., 2015. Re-examining appropriate mechanization in
 Eastern and Southern Africa: two-wheel tractors, conservation agriculture, and private
 sector involvement. Food Security 7, 889–904. doi:10.1007/s12571-015-0476-3
- Beegle, K., De Weerdt, J., Dercon, S., 2010. Migration and economic mobility in Tanzania:
 Evidence from a tracking survey. Review of Economics and Statistics 93, 1010–1033.
 doi:10.1162/REST_a_00105
- Benjaminsen, T.A., Aune, J.B., Sidibé, D., 2010. A critical political ecology of cotton and soil
 fertility in Mali. Geoforum 41, 647–656. doi:10.1016/j.geoforum.2010.03.003
- Bielders, C.L., Gérard, B., 2015. Millet response to microdose fertilization in south-western
 Niger: Effect of antecedent fertility management and environmental factors. Field Crops
 Research 171, 165–175. doi:10.1016/j.fcr.2014.10.008
- Bizikova, L., Pintér, L., Tubiello, N., 2015. Normative scenario approach: a vehicle to connect
 adaptation planning and development needs in developing countries. Reg Environ
 Change 15, 1433–1446. doi:10.1007/s10113-014-0705-x
- Bongaarts, J., 2011. Can family planning programs reduce high desired family size in Sub Saharan Africa? International Perspectives on Sexual and Reproductive Health 37, 209–
 216. doi:10.1363/3720911
- Britten, P., Marcoe, K., Yamini, S., Davis, C., 2006. Development of food intake patterns for the
 MyPyramid Food Guidance System. Journal of Nutrition Education and Behavior 38,
 S78–S92.
- Canning, D., Raja, S., Yazbeck, A.S. (Eds.), 2015. Africa's Demographic Transition: Dividend
 or Disaster? The World Bank. doi:10.1596/978-1-4648-0489-2
- 541 Cockburn, J., Siggel, E., Coulibaly, M., Vézina, S., 1999. Measuring competitiveness and its
 542 sources: The case of Mali's manufacturing sector. Canadian Journal of Development
 543 Studies 20, 491–519. doi:10.1080/02255189.1999.9669852
- 544 Corniaux, C., Vatin, F., Ancey, V., 2012. Lait en poudre importé *versus* production locale en
 545 Afrique de l'Ouest : vers un nouveau modèle industriel ? Cahiers Agricultures 21, 18–24.
 546 doi:10.1684/agr.2012.0536
- 547 Coulibaly, A., 2003. Country Pasture and Forage Resources Profiles. FAO, Rome.
- 548 http://www.fao.org/ag/agp/agpc/doc/counprof/PDF%20files/Mali-English.pdf.

- Coulibaly, J.Y., Sanders, J.H., Preckel, P.V., Baker, T.G., 2015. Will cotton make a comeback in Mali? Agricultural Economics 46, 53–67. doi:10.1111/agec.12140
- 551 Croix, K. de la, Marie, J., Ferry, L., Landy, F., 2011. New dynamics of farming mechanization :
 552 trade, uses and spatialization in the Ségou region (Mali). Annales de géographie 174–
 553 192.
- de Brauw, A., Mueller, V., Lee, H.L., 2014. The role of rural–urban migration in the structural
 transformation of Sub-Saharan Africa. World Development, Economic Transformation in
 Africa 63, 33–42. doi:10.1016/j.worlddev.2013.10.013
- De Ridder, N., Sanogo, O.M., Rufino, M.C., van Keulen, H., Giller, K.E., 2015. Milk: the new white gold? Milk production options for smallholder farmers in Southern Mali. Animal 1–9. doi:10.1017/S1751731115000178
- Descheemaeker, K., Oosting, S.J., Homann-Kee Tui, S., Masikati, P., Falconnier, G.N., Giller,
 K.E., 2016. Climate change adaptation and mitigation in smallholder crop–livestock
 systems in sub-Saharan Africa: a call for integrated impact assessments. Regional
 Environmental Change 16, 2331–2343. doi:10.1007/s10113-016-0957-8
- 564 Djouara, H., Belières, J.F., Kébé, D., 2005. Les exploitations agricoles familiales de la zone
 565 cotonnière du mali face à la baisse des prix du coton graine. Cahiers Agricultures 15, 64–
 566 71.
- 567 Dorward, A., Chirwa, E., 2011. The Malawi agricultural input subsidy programme: 2005/06 to
 568 2008/09. International Journal of Agricultural Sustainability 9, 232–247.
 569 doi:10.3763/ijas.2010.0567
- Enfors, E.I., Gordon, L.J., Peterson, G.D., Bossio, D., 2008. Making investments in dryland
 development work: participatory scenario planning in the Makanya catchment, Tanzania.
 Ecology and Society 13, 42.
- Falconnier, G.N., Descheemaeker, K., Van Mourik, T.A., Adam, M., Sogoba, B., Giller, K.E.,
 2017. Co-learning cycles to support the design of innovative farm systems in southern
 Mali. European Journal of Agronomy 89, 61–74. doi:10.1016/j.eja.2017.06.008
- Falconnier, G.N., Descheemaeker, K., Van Mourik, T.A., Giller, K.E., 2016. Unravelling the
 causes of variability in crop yields and treatment responses for better tailoring of options
 for sustainable intensification in southern Mali. Field Crops Research 187, 113–126.
 doi:10.1016/j.fcr.2015.12.015
- Falconnier, G.N., Descheemaeker, K., Van Mourik, T.A., Sanogo, O.M., Giller, K.E., 2015.
 Understanding farm trajectories and development pathways: Two decades of change in southern Mali. Agricultural Systems 139, 210–222. doi:10.1016/j.agsy.2015.07.005
- FAO, 2006. Guidelines for Soil Description. Food & Agriculture Organization of the United
 Nations, Rome.
- Fine, D., van Wamelen, A., Lund, S., Cabral, A., Taoufiki, M., Dörr, N., Leke, A., Roxburgh, C.,
 Schubert, J., Cook, P., 2012. Africa at Work: Job Creation and Inclusive Growth.
 McKinsey Global Institute, Boston.
- Fox, L., Sohnesen, T.P., 2012. Household Enterprises in Sub-Saharan Africa: Why they Matter
 for Growth, Jobs, and Livelihoods. World Bank, Washington, D.C.
 http://www.afdb.org/fileadmin/uploads/afdb/Documents/Knowledge/Household%20Ente
 rprise%20in%20Sub-Saharan%20Africa%20-
- 592 %20Why%20they%20Matter%20for%20Growth%20Jobs%20and%20Livelihoods.pdf.
- 593 Frelat, R., Lopez-Ridaura, S., Giller, K.E., Herrero, M., Douxchamps, S., Djurfeldt, A.A.,
- 594 Erenstein, O., Henderson, B., Kassie, M., Paul, B.K., Rigolot, C., Ritzema, R.S.,

595 Rodriguez, D., van Asten, P.J.A., van Wijk, M.T., 2016. Drivers of household food 596 availability in sub-Saharan Africa based on big data from small farms. Proceedings of the 597 National Academy of Sciences of the United States of America 113, 458–463. 598 doi:10.1073/pnas.1518384112 599 García-Martínez, A., Bernués, A., Olaizola, A.M., 2011. Simulation of mountain cattle farming 600 system changes under diverse agricultural policies and off-farm labour scenarios. 601 Livestock Science 137, 73-86. doi:10.1016/j.livsci.2010.10.002 602 Gibreel, T.M., Herrmann, S., Berkhoff, K., Nuppenau, E.-A., Rinn, A., 2014. Farm types as an 603 interface between an agroeconomical model and CLUE-Naban land change model: 604 Application for scenario modelling. Ecological Indicators 36, 766–778. 605 doi:10.1016/j.ecolind.2013.09.009 606 Guan, K., Sultan, B., Biasutti, M., Baron, C., Lobell, D.B., 2017. Assessing climate adaptation 607 options and uncertainties for cereal systems in West Africa. Agricultural and Forest 608 Meteorology 232, 291-305. doi:10.1016/j.agrformet.2016.07.021 609 Harris, D., Orr, A., 2014. Is rainfed agriculture really a pathway from poverty? Agricultural Systems 123, 84-96. doi:10.1016/j.agsv.2013.09.005 610 611 Harris, J.R., Todaro, M.P., 1970. Migration, unemployment and development: a two-sector 612 analysis. The American economic review 60, 126–142. 613 Headey, D.D., Jayne, T.S., 2014. Adaptation to land constraints: Is Africa different? Food Policy 614 48, 18-33. doi:10.1016/j.foodpol.2014.05.005 Herrero, M., Thornton, P.K., Bernués, A., Baltenweck, I., Vervoort, J., van de Steeg, J., 615 616 Makokha, S., van Wijk, M.T., Karanja, S., Rufino, M.C., Staal, S.J., 2014. Exploring 617 future changes in smallholder farming systems by linking socio-economic scenarios with regional and household models. Global Environmental Change 24, 165-182. 618 619 doi:10.1016/j.gloenvcha.2013.12.008 620 Hillocks, R.J., 2014. Addressing the yield gap in Sub-Saharan Africa. Outlook on Agriculture 43, 621 85-90. doi:10.5367/oa.2014.0163 622 Jayne, T.S., Chamberlin, J., Headey, D.D., 2014. Land pressures, the evolution of farming 623 systems, and development strategies in Africa: A synthesis. Food Policy 48, 1–17. 624 doi:10.1016/j.foodpol.2014.05.014 625 Jolliffe, D., Prydz, E.B., 2016. Estimating international poverty lines from comparable national 626 thresholds. J Econ Inequal 14, 185-198. doi:10.1007/s10888-016-9327-5 627 Jonckers, D., Colleyn, J.-P., 1974. La communauté familiale chez les Minyanka du Mali. Journal 628 de la Société des Africanistes 44, 43-52. doi:10.3406/jafr.1974.1748 629 Keating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., 630 Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., 631 Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., Asseng, S., 632 Chapman, S., McCown, R.L., Freebairn, D.M., Smith, C.J., 2003. An overview of 633 APSIM, a model designed for farming systems simulation. European Journal of 634 Agronomy 18, 267-288. doi:10.1016/S1161-0301(02)00108-9 635 Kelly, V., Boughton, D., Magen, B., 2011. Cereal Market Dynamics: The Malian Experience 636 from the 1990s to Present. MSU International Development Working paper. 637 Kelly, V., Perakis, S., Diallo, B., Dembéle, N.N., 2010. Cottonseed, Oil, and Cake: Co-Products or Bv-Products in the C-4 Cotton Sectors? Michigan State University, East Lansing. 638 639 http://www.fsg.afre.msu.edu/cotton/English Cottonseed April2011.pdf.

- Laroche Dupraz, C., Postolle, A., 2013. Food sovereignty and agricultural trade policy
 commitments: How much leeway do West African nations have? Food Policy 38, 115–
 125. doi:10.1016/j.foodpol.2012.11.005
- Losh, B., Fréguin-Gresh, S., White, E., 2011. Rural Transformation and Late Developing
 Countries in a Globalizing World. A Comparative Analysis of Rural Change. Final report
 of the RuralStruc Program, revised version. Washington, DC. World Bank,
 http://siteresources.worldbank.org/AFRICAEXT/Resources/258643-
- 647 1323805221801/RuralStruc_final_report_v2_hd.pdf.
- Marenya, P., Nkonya, E., Xiong, W., Deustua, J., Kato, E., 2012. Which policy would work
 better for improved soil fertility management in sub-Saharan Africa, fertilizer subsidies
 or carbon credits? Agricultural Systems 110, 162–172. doi:10.1016/j.agsy.2012.04.004
- Miguel Ayala, L., van Eupen, M., Zhang, G., Pérez-Soba, M., Martorano, L.G., Lisboa, L.S.,
 Beltrao, N.E., 2016. Impact of agricultural expansion on water footprint in the Amazon
 under climate change scenarios. Science of The Total Environment 569, 1159–1173.
 doi:10.1016/j.scitotenv.2016.06.191
- Ministère de la santé et de l'hygiène publique, 2014. PLan d'action national de planification
 familiale du mali 2014-2018. République du Mali, http://ec2-54-210-230-186.compute1.amazonaws.com/wp-content/uploads/2016/05/Plan-PF-Mali.pdf.
- Nubukpo, K., 2011. L'économie politique de la réforme des filières cotonnières d'Afrique de
 l'Ouest et du centre : vers la convergence des modes d'organisation ? Mondes en
 développement 155, 93–109. doi:10.3917/med.155.0093
- O'Neill, B.C., Kriegler, E., Ebi, K.L., Kemp-Benedict, E., Riahi, K., Rothman, D.S., van
 Ruijven, B.J., van Vuuren, D.P., Birkmann, J., Kok, K., Levy, M., Solecki, W., 2015. The
 roads ahead: Narratives for shared socioeconomic pathways describing world futures in
 the 21st century. Global Environmental Change. doi:10.1016/j.gloenvcha.2015.01.004
- Pachauri, R.K., Mayer, L., Intergovernmental Panel on Climate Change (Eds.), 2015. Climate
 Change 2014: synthesis report. Intergovernmental Panel on Climate Change, Geneva,
 Switzerland.
- Painter, T., Sumberg, J., Price, T., 1994. Your "terroir" and my 'action space': Implications of
 differentiation, mobility and diversification for the "approche terroir" in Sahelian West
 Africa. Africa 64, 447. doi:10.2307/1161368
- Paul, B.K., Frelat, R., Birnholz, C., Ebong, C., Gahigi, A., Groot, J.C.J., Herrero, M., Kagabo,
 D.M., Notenbaert, A., Vanlauwe, B., van Wijk, M.T., 2017. Agricultural intensification
 scenarios, household food availability and greenhouse gas emissions in Rwanda: Ex-ante
 impacts and trade-offs. Agricultural Systems. doi:10.1016/j.agsy.2017.02.007
- Poccard-Chapuis, R., Coulibaly, D., BA, A., Sissoko, S., Bengaly, M., Coulibaly, J., 2007.
 Analyse Affinée des Pratiques et des Stratégies Paysannes, Rapport technique, Activité 3, PASE-1. Sikasso, Mali.
- Population Council, ICF International, 2015. Mali 2012–13 DHS. Studies in Family Planning 46,
 227–236. doi:10.1111/j.1728-4465.2015.00026.x
- Rajib, M.A., Ahiablame, L., Paul, M., 2016. Modeling the effects of future land use change on
 water quality under multiple scenarios: A case study of low-input agriculture with
 hay/pasture production. Sustainability of Water Quality and Ecology 8, 50–66.
 doi:10.1016/j.swaqe.2016.09.001
- Ravallion, M., Chen, S., Sangraula, P., 2009. Dollar a day revisited. The World Bank Economic
 Review 23, 163–184. doi:10.1093/wber/lhp007

- Ripoche, A., Crétenet, M., Corbeels, M., Affholder, F., Naudin, K., Sissoko, F., Douzet, J.-M.,
 Tittonell, P., 2015. Cotton as an entry point for soil fertility maintenance and food crop
 productivity in savannah agroecosystems: Evidence from a long-term experiment in
 southern Mali. Field Crops Research 177, 37–48. doi:10.1016/j.fcr.2015.02.013
- Ritzema, R.S., Frelat, R., Douxchamps, S., Silvestri, S., Rufino, M.C., Herrero, M., Giller, K.E.,
 López-Ridaura, S., Teufel, N., Paul, B.K., Wijk, M.T. van, 2017. Is production
 intensification likely to make farm households food-adequate? A simple food availability
 analysis across smallholder farming systems from East and West Africa. Food Sec. 9,
 115–131. doi:10.1007/s12571-016-0638-v
- Röling, N., 2009. Pathways for impact: scientists' different perspectives on agricultural innovation. International Journal of Agricultural Sustainability 7, 83–94. doi:10.3763/ijas.2009.0043
- Ronner, E., Franke, A.C., Vanlauwe, B., Dianda, M., Edeh, E., Ukem, B., Bala, A., van
 Heerwaarden, J., Giller, K.E., 2016. Understanding variability in soybean yield and
 response to P-fertilizer and rhizobium inoculants on farmers' fields in northern Nigeria.
 Field Crops Research 186, 133–145. doi:10.1016/j.fcr.2015.10.023
- Samake, A., Belières, J.F., Corniaux, C., Dembele, N., Kelly, V., Marzin, J., Sanogo, O., Staatz,
 J., 2008. Changements structurels des économies rurales dans la mondialisation.
 Programme RuralStruc Mali Phase II. Washigton, DC. World Bank.
- http://siteresources.worldbank.org/AFRICAEXT/Resources/RURALSTRUC MALI_Phase2.pdf.
- Silvie, P.J., Renou, A., Vodounnon, S., Bonni, G., Adegnika, M.O., Héma, O., Prudent, P.,
 Sorèze, J., Ochou, G.O., Togola, M., Badiane, D., Ndour, A., Akantetou, P.K., Ayeva, B.,
 Brévault, T., 2013. Threshold-based interventions for cotton pest control in West Africa:
 What's up 10 years later? Crop Protection 43, 157–165.
- 711 doi:10.1016/j.cropro.2012.09.006
- Sonobe, T., Akoten, J.E., Otsuka, K., 2009. An exploration into the successful development of
 the leather-shoe industry in Ethiopia. Review of Development Economics 13, 719–736.
 doi:10.1111/j.1467-9361.2009.00526.x
- Soumaré, M., Bazile, D., Kouressy, M., Diallo, K., Diakité, C.H., 2008. Diversité
 agroécosystémique et devenir des céréales traditionnelles au sud du Mali. Cahiers
 Agricultures 17, 79–85.
- Stephenne, N., Lambin, E.F., 2004. Scenarios of land-use change in Sudano-sahelian countries of
 Africa to better understand driving forces. GeoJournal 61, 365–379.
- Sultan, B., Roudier, P., Quirion, P., Alhassane, A., Muller, B., Dingkuhn, M., Ciais, P.,
 Guimberteau, M., Traore, S., Baron, C., 2013. Assessing climate change impacts on
 sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa.
 Environ. Res. Lett. 8, 014040. doi:10.1088/1748-9326/8/1/014040
- Thompson, J., Scoones, I., 2009. Addressing the dynamics of agri-food systems: an emerging
 agenda for social science research. Environmental Science & Policy 12, 386–397.
 doi:10.1016/j.envsci.2009.03.001
- Traore, B., 2014. Climate Change, Climate Variability and Adaptation Options in Smallholder
 Cropping Systems of the Sudano Sahel Region in West Africa. Phd thesis. Wageningen,
 Wageningen University.

- Traore, B., Corbeels, M., van Wijk, M.T., Rufino, M.C., Giller, K.E., 2013. Effects of climate
 variability and climate change on crop production in southern Mali. European Journal of
 Agronomy 49, 115–125. doi:10.1016/j.eja.2013.04.004
- Traore, B., Descheemaeker, K., van Wijk, M.T., Corbeels, M., Supit, I., Giller, K.E., 2017.
 Modelling cereal crops to assess future climate risk for family food self-sufficiency in southern Mali. Field Crops Research 201, 133–145. doi:10.1016/j.fcr.2016.11.002
- Traore, B., Van Wijk, M.T., Descheemaeker, K., Corbeels, M., Rufino, M.C., Giller, K.E., 2015.
 Climate variability and change in southern mali: learning from farmer perceptions and on-farm trials. Experimental Agriculture 51, 615–634. doi:10.1017/S0014479714000507
- Traore, S., Doumbia, A., Traore, V., Tolno, D., 2011. 4ème Recensement General de la
 Population et de l'habitat du Mali (Rgph-2009). Bamako, Mali. http://www.unfpamali.org/sites/default/files/Rapport Etat Structure Version%2022%20Dec%202011.pdf.
- 742 United Nations, 2015. World Population Prospects. Volume I: Comprehensive Tables. New
 743 York. United Nations. http://esa.un.org/unpd/wpp/Publications/Files/WPP2015_Volume744 I Comprehensive-Tables.pdf.
- van Ittersum, M.K., Cassman, K.G., Grassini, P., Wolf, J., Tittonell, P., Hochman, Z., 2013.
 Yield gap analysis with local to global relevance—A review. Field Crops Research 143,
 4–17. doi:10.1016/j.fcr.2012.09.009
- 748

Table 1: Effect of annual rainfall variability on crop yield (according to seven studies of on-farm and on-station measured yields with farmer practice in southern Mali), average yield with current farmer practice and 85% of water limited yield retained for this study. HRE-LH: High Resource Endowed farms with Large Herds, HRE: High Resource Endowed farms, MRE: Medium Resource Endowed farms (standard deviation in brackets).

	Effect of ra on-station		Effect of rainfa on-farm yie		Avera		kg/ha) with r practice	current	85% of	water limit (kg/	1	al yie
Crop	Р	R^2	Р	R^2	HRE- LH	HRE	MRE	LRE	HRE-LH	HRE	MRE	Ll
Cotton	< 0.05 ^{1, 2, 4}	$0.56^{1};$ 0.62^{2}	>0.05 ^{1,7}	-	1050 ⁶	940 ⁶	910 ⁶	750 ⁶	2220 ⁴ (±599)	2220 ⁴ (±599)	2220 ⁴ (±599)	22 (±5
Maize	< 0.05 ²	0.37 ²	<0.05 ³ ;<0.01 ⁵	-	3480 ^a (±190)	3480 ^a (±190)	3480 ^a (±190)	2700 ^b (±125)	4630° (±680)	4630 ^c (±680)	4630 ^c (±680)	46 (±6
Maize in maize/cowpea intercropping	-	-	>0.05 ⁵	-	3654 ^e (±190)	3654 ^e (±190)	3654 ^e (±190)	2835 ^e (±125)	4860 ^e (±680)	4860 ^e (±680)	4860 ^e (±680)	48 (±6
Cowpea fodder in maize/cowpea intercropping					1380 ⁵	1380 ⁵	1380 ⁵	1380 ⁵	-	-	-	
Sorghum	>0.05 ^{1, 2, 4}	-	>0.05 ⁵	-	1030 ⁵	1030 ⁵	1030 ⁵	1030 ⁵	2060 ^d (±320)	2060 ^d (±320)	2060 ^d (±320)	20 (±3
Millet	>0.05 ²	-	>0.05 ³	-	850 ³	850 ³	850 ³	850 ³	1730 ^d (±510)	1730 ^d (±510)	1730 ^d (±510)	17 (± 5
Groundnut	>0.051	-	-	-	530 ⁵	530 ⁵	530 ⁵	530 ⁵	-	-	-	

¹ Traore et al. (2013)

² Traore et al. (2014)

³ Traore et al. (2015)

⁴ Ripoche et al. (2015)

⁵ Falconnier et al. (2016)

⁶ Falconnier et al. (2015)

⁷ This study

^a APSIM simulation with a fertilizer application of 60 kg N ha⁻¹

^b APSIM simulation with a fertilizer application of 40 kg N ha⁻¹

^c APSIM simulation with a fertilizer application of 110 kg N ha⁻¹

^d APSIM simulation with a fertilizer application of 150 kg N ha⁻¹

^e APSIM simulated maize yield multiplied by 1.08, i.e. the maize partial Land Equivalent Ratio for intercropping when grown after cotton (Falconnier et al., 2016)

Table 2: Key variables and their quantification in the current (2013) and future (2027) situation for hypothetical policy interventions (P0 to P4) and hypothetical changes in agricultural practices (A0 to A3). "*" indicates the variables included in the sensitivity analysis.

	Key variables	Trend	Variable value	es	Reference used to build the t	
			2013	2027		
Hypothetical policy interventions	*	_				
No input/output subsidy for cotton production (P0)	Price paid to farmer for cotton (fcfa/kg)*	Decrease	250	183	Coulibaly et al. (2015)	
	Cost of fertilizer bag for cotton (fcfa/kg)*	Increase	12500	17500	Coulibaly et al. (2015)	
Input/output subsidy for cotton production (P1 to P4)	Price paid to farmer for cotton (fcfa/kg)*	No change	250	250	Village survey data	
	Cost of fertilizer for cotton (fcfa/kg)***	No change	12500	12500	Village survey data	
No Input/output subsidy for milk production (P0 and P1)	Price paid to farmer for milk (fcfa/kg)*	No change	250	250	Village survey data	
	Cost of cotton seed cake (fcfa/kg)*	No change	170	170	Village survey data	
Input/output subsidy for milk production (P2 to P4)	Price paid to farmer for milk (fcfa/kg)*	Increase	250	400	Aparisi et al. (2012)	
	Cost of concentrates (fcfa/kg)*	Decrease	170	50	Kelly et al.(2010)	
No family planning programs (P0 to P2)	Net fertility rate (%) [*]	Current rate	3.4 (over the p	period)	World Bank	
Family planning programs (P3 and P4)	Net fertility rate (%)*	Lower rate	2.2 (over the p	veriod)	Ministère de la sante et de	
r anny planning programs (r 5 and r 4)	Net fertility face (70)	Lower fate	2.2 (over the p	jerioù)	l'hygiène publique (2014)	
Limited job creation outside agriculture (P0 to P2)	Rural urban migration (HRE-LH, HRE, MRE, LRE) ¹ (%) [*]	Current rates	0;1.7;1.2;2.8 (over the period)	SEP data	
Important job creation outside agriculture (P3 and P4)	Rural urban migration (HRE-LH, HRE, MRE, LRE) 1 (%) *	Higher rates	2.8;2.8;2.8; 2.8 (over the period)		African Development Bank	
Integrated Pest Management programs for cotton	Existence of the programs	-	No programs	Programs in place	Silvie et al. (2013)	
production (P4)						
Incentive subsidy for the development of private small- scale mechanization services (P4)	Existence of the subsidy	-	No subsidy	Subsidy	Baudron et al. (2015); Croix (2011)	
Fertilizer subsidy for sorghum and millet (P4)	Cost of fertilizer for sorghum and millet (fcfa/kg)	Decrease	17500	12500	Coulibaly et al. (2015)	
Hypothetical change in agricultural practices						
Decreasing cotton cultivation (A0)	Cotton share of cropland (HRE-LH, HRE, MRE, LRE) ¹ (%) [*]	Decrease ²	31;32;21;24	22;11;5;8	Falconnier et al.(2015)	
	N input on cotton, maize, sorghum, millet (kg)	Decrease	$43;60;0;0^3$	43;40;0;0	Falconnier et al. (2015)	
No change in farmer practices (A1)	Cotton share of cropland (HRE-LH, HRE, MRE, LRE) ¹ (%) [*]	No change	31;32;21;24	31;32;21;24	SEP data	
	N input on cotton, maize, sorghum, millet (kg/ha)	No change	43;60;0;0 ¹	43;60;0;0 ¹	SEP data	
	Percent maize intercropped with cowpea (%)	No change	0	0	SEP data-	
	Small-scale mechanization for cotton operations	No change	0	0	SEP data-	
	Percent cows in stall feeding	No change	0	0	SEP data	
	Integrated Pest Management on cotton	No change	0	0	SEP data	
Diversification with legumes (A2 and A3)	Percent maize intercropped with cowpea (%)	Increase	0	100^{4}	Falconnier et al. (2016)	
Intensification of livestock production (A2 and A3)	Percent cows in stall feeding (%)	Increase	0	0-100 ⁵	De Ridder et al. (2015)	
Narrowing yield gap (A3)	N input on cotton, maize, sorghum and millet (kg/ha)	Increase	43;60;0;0	90;110;150;150	This Study	
• • • • •	Integrated Pest Management on cotton	Increase	No	Yes	Silvie et al. (2013)	
	Small-scale mechanization for cotton operations	Increase	No	Yes	Baudron et al. (2015); Croix (2011)	

¹HRE-LH: High Resource Endowed farms with Large Herds; HRE: High Resource Endowed farms, MRE: Medium Resource Endowed farms, LRE: Low Resource Endowed farms.

² cotton is replaced by sorghum

³ for LRE farms: 43;40;0;0

⁴except LRE farms: 0%

⁵ depending on cowpea fodder production

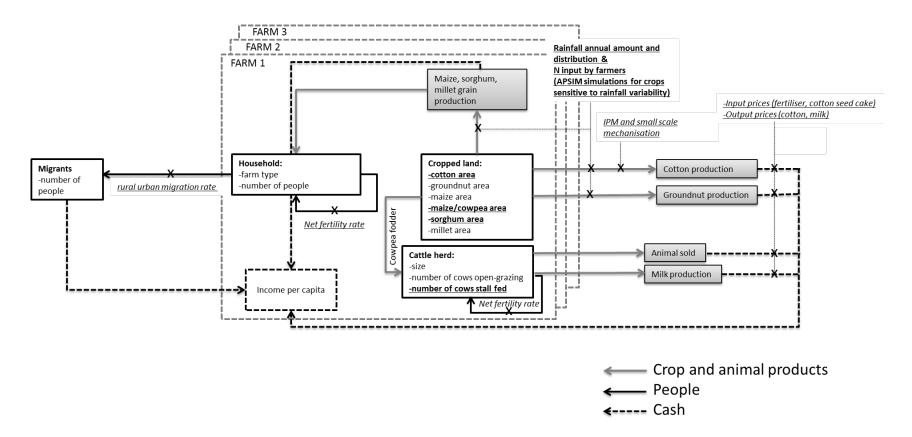


Fig. 1. Conceptual framework for simulations of farms with three components: household, cropped land and cattle herd. Arrows symbolize flows of crop and animal products, people and cash. Underlined, the key agricultural (bold) and policy (italics) variables identified and quantified for five scenarios of agricultural intensification and policy intervention (Fig. 2 and Table 1 give a detailed description of the scenarios). Only three farms are depicted but in reality 99 farms are simulated.

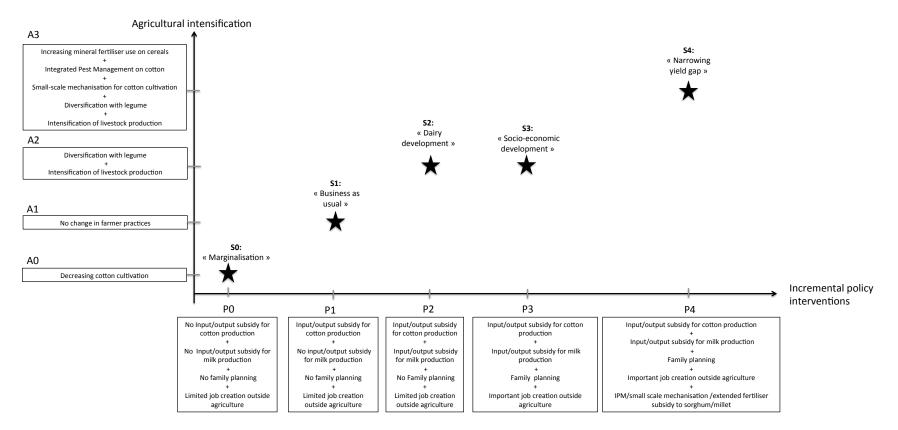


Fig. 2. Illustrative mapping of five scenarios according to hypothetical changes in agricultural practice and policy interventions. Key variables quantifying the hypothetical changes are described in Table 1.

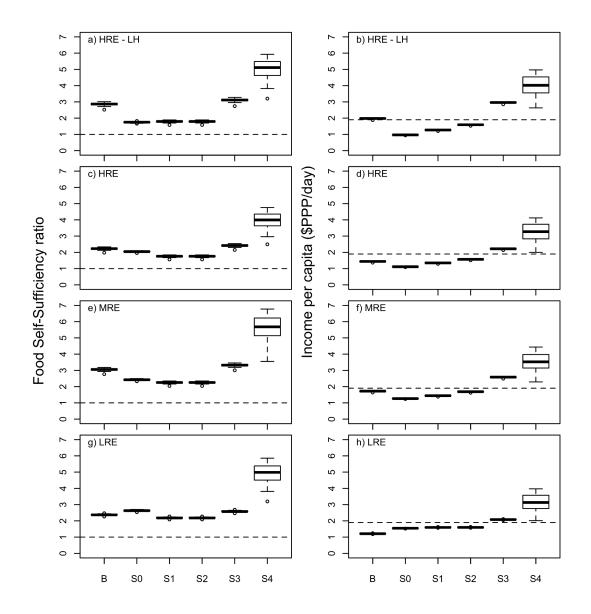
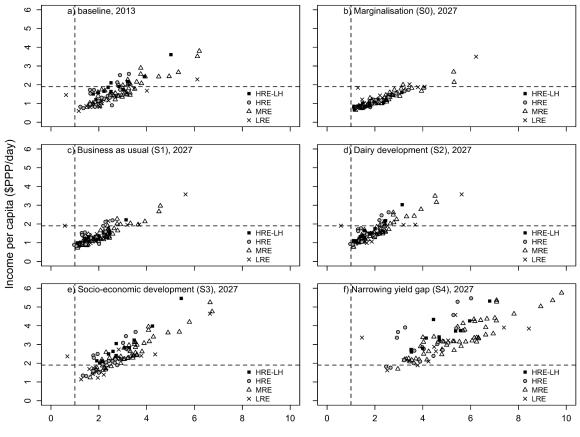



Fig. 3. Boxplots showing food self-sufficiency and farm income per capita averaged for High Resource Endowed with Large Herds (a,b), High Resource Endowed (c,d), Medium Resource Endowed (e,f), and Low Resource Endowed (g,h) farms in 2013 for the baseline (B) and in 2027 for five scenarios of agricultural intensification and policy intervention (S0-S4). The horizontal dotted line is the food self-sufficiency threshold (a,c,e,g) and the poverty line threshold of 1.25 \$PPP/day (b,d,f,h). A detailed description of the scenarios (S0-S4) can be found in Fig. 2 and Table 1. The horizontal line in the box indicates the median for 29 rainfall seasons. The height of the box represents the interquartile range. The whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the edge of the box.

Food Self-Sufficiency

Fig. 4. Food self-sufficiency ratio and income per capita of the 99 households of Nampossela village in 2013 (a) and 2027 for different scenarios of agricultural intensification and policy intervention (b, c, d, e, f) for an average rainfall year (734 mm). The horizontal and vertical dotted lines represent the 1.25 $PPP \, day^{-1}$ poverty line and the food self-sufficiency threshold respectively.

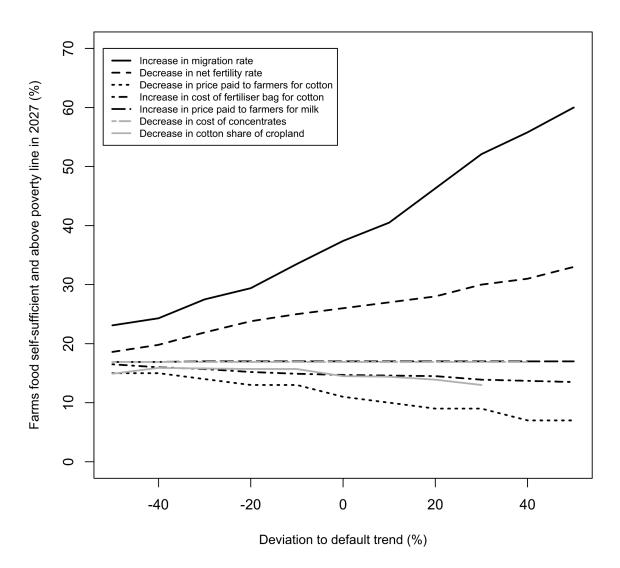


Fig. 5. Percent farms food self-sufficient and above poverty line in 2027 for \pm 50% variation in the default trend in the key variables constituting five scenarios of agricultural intensification and policy interventions.

Supplementary materials Table S1: Input variables, parameters and source of the data used to calculate farm income and food self-sufficiency for a baseline year (2013) and the end of the assessment period (2027) for a series of 29 historical seasons.

Input variables and parameters	Unit	Description/ Calculation	Source		
Farm characteristics					
Area _i	ha	Area of the crop <i>i</i> . <i>i</i> =1-8:maize, sorghum, millet, maize/cowpea, cotton, groundnut, soyabean, cowpea	Baseline: Village survey data; 2027: varied according to the different scenarios		
HH_size	number	Total number of persons in the household.	Baseline: Village survey data; 2027: computed using scenario specific fertility rate and scenario/farm type specific migration rates.		
Nb_tools _i	number	Number of animal drawn equipment. i=1:4: plough, sowing machine, weeder, ox	Village survey data		
Nb_Animal ₁	number	Number of animals in the herd. <i>l</i> =1:3: donkey, ox, lactating cow	Village survey data		
<i>Nb_migrants</i> number number Number of persons who migrated out of the farm and send remittances			Baseline: SEP data; 2027: number of persons in the baseline + total number of persons who migrated from 2013 to 2027.		
Nb_workers	number	Number of workers in the household (aged 15-64)	Baseline: SEP data; 2027: computed using the average number of workers/ total number of persons in the household ratio obtained in the baseline		
Crop/livestock performances					
Y_{ij}	t ha ⁻¹ Grain yield of crop <i>i</i> .for the historical season j		APSIM simulations for crop sensitive to seasonal rainfall amount (for each historical season); published on-farm trial yield for crops not sensitive to seasonal rainfall amount (kept constant).		
Y_Fodderi	t ha ⁻¹	Fodder yield of crop i. Only fodder yield of cowpea was considered. In intercropping, the fodder yield was corrected using the pLER computed from the trial results.	On farm trials (Falconnier et al., 2016)		
Milk_Prod _m	t year-1	Total milk production per year per lactating cow under feeding management m . $m=1-2$:free grazing year round, stall feeding during dry hot period	de Ridder et al. (2015)		

Output prices and costs					
Pricei	\$PPP	Farm gate price of grain of crop i	Market analysis for the baseline (2013)/ For the end of the simulation period (2027), input and output prices for milk, cotton and cereals depended on the		
Fodder_price	\$PPP	Farm gate price of cowpea fodder	scenarios, while other prices were kept constant.		
Cost_Cropi	\$PPP ha ⁻¹	Variable cost for crop i (seed, fertiliser, inoculum, pesticide input, renting of animal drawn equipement*)	Market analysis for the baseline (2013)/ For the end of the simulation period (2027), input and output prices for milk, cotton and cereals depended on the scenarios, while other prices were kept constant.		
Cost_Animal _{lm}	\$PPP year ⁻¹	Variable cost for animal <i>l</i> with feeding management <i>m</i> (veterinary care and concentrates). $m=1:2$: open-grazing, stall feeding	de Ridder et al. (2015); Andrieu et al. (2015)		
Depreciationi	\$PPP year ⁻¹ Depreciation of animal drawn equipment. i=1:3: plough sowing machine, weeder, ox		Market analysis in 2017		
Non-farm income					
Remittance	\$PPP year ⁻¹	Amount of money sent by people who migrated out of the farm	Losh et al. (2011)		
Self-Employment \$PPP year ⁻¹		Amount of money earned by a worker for sales of local natural products, manufactured goods and services for the local rural market	Losh et al. (2011)		
Food/Feed requirements					
Fodder_R _{im}	t year ⁻¹	Cowpea hay requirement for stall fed animal l under feeding management m	de Ridder et al. (2015); Andrieu et al. (2015)		
Cer_R	t year ⁻¹	Human cereal requirement per year.	Britten et al. (2006)		

*for LRE farms only

Table S2: Farm income and food self-sufficiency calculation for a baseline year (2013) and the end of the assessment period (2027). Table S1 gives a detailed description of the parameters and input variables used in the calculations

Performance variable	Unit	Description	Calculation
Nb_Animal _{im}	Number	Number of animal of type <i>l</i> under feeding management <i>m</i> . Donkeys and oxen are complemented with cowpea fodder. The number of lactating cows fed in the stall is computed as the maximum allowed by the available cowpea fodder on-farm produced beyond the needs of donkeys and oxen.	$ \begin{split} & \text{if } \sum_{i} \sum_{j} \sum_{k} Area_{ijk} \times Y_Fodder_{ijk} - \sum_{l=1}^{2} Nb_Animal_{l2} \times Fodder_R_{l2} > 0; \\ & Nb_Animal_{32} = \min \left(Nb_Animal_{3}, \frac{\sum_{i} Area_{i} \times Y_Fodder_{i} - \sum_{l=1}^{2} Nb_Animal_{l2} \times Fodder_R_{l2}}{Fodder_R_{32}} \\ & \text{if } \sum_{i} \sum_{j} \sum_{k} Area_{ijk} \times Y_Fodder_{ijk} - \sum_{l=1}^{2} Nb_Animal_{l2} \times Fodder_R_{l2} < 0; \\ & Nb_Animal_{32} = 0 \end{split} $
Fodder_Surplus	t year ⁻¹	Cowpea fodder production beyond donkey, oxen and lactating cow needs	$Fodder_Surplus = \sum_{i} Area_{i} \times Y_Fodder_{i} - \sum_{l} \sum_{m} Nb_Animal_{lm} \times Fodder_R_{lm}$
Gross_Margin_Cash_Crops	\$PPP year ⁻¹	Gross margin from cash crops (cotton, groundnut and soyabean)	$Gross_Margin_Cash_crops = \sum_{i=5}^{7} (Y_i \times Area_i \times Price_i - Cost_crop_i \times Area_i)$
Gross_Margin_Cereals	\$PPP year ⁻¹	Gross margin from cereal	$Gross_Margin_Cereals = \sum_{i=1}^{4} (Y_i \times Area_i \times Price_i - Cost_crop_i \times Area_i)$
Gross_Margin_Fodder	\$PPP year ⁻¹	Gross margin from cowpea fodder surplus	$Gros_Margin_Fodder = Fodder_Surlus \times Fodder_Price - Cost_crop_8 \times Area_8$
Gross_Margin_Milk	\$PPP year ⁻¹	Gross margin from milk	$Gross_Margin_Milk = \sum_{m=1}^{2} Nb_Animal_{3m} \times Milk_Prod_m \times Milk_Price - \sum_{l} \sum_{m} Cost_Animal_{lm} \times Nb_Animal_{lm}$
Total_Income	\$PPP year ⁻¹	Total income (farm and non-farm)	$\sum_{i} Gross_Margins - \sum_{i} Depreciation_i \times Nb_tools_i + Nb_migrants \times Remittance + Nb_workers \times Self_employment$
HH_FSS	-	Household Food Self-sufficiency	$HH_FSS = \frac{\sum_{i=1}^{i=4} Area_i \times Y_i}{HH_size \times Cer_R}$

	Percent farms non-poor and food self-sufficient						
	No changes in	Decrease in yield due to temperature					
Scenario	yield	increase					
S 0	6	4					
S 1	13	5					
S2	27	19					
S3	77	69					

Table S3: Percentage of farm non-poor and food self-sufficient in S0, S1, S2 and S3 scenarios assuming no changes in yield or a decrease in yield due to temperature increase. A detailed description of the scenarios can be found in Figure 2.

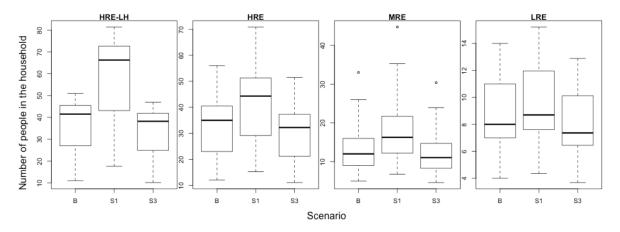


Figure S1: Boxplot of average number of people in the household for four farm types in the baseline year (B) (2013), and for S1 and S3 scenarios (2027). HRE-LH: High Resource Endowed farms with Large Herds, HRE: High Resource Endowed farms, MRE: Medium Resource Endowed farms, LRE: Low Resource Endowed farms. A detailed description of the scenarios can be found in Figure 2.

References:

- Andrieu, N., Descheemaeker, K., Sanou, T., Chia, E., 2015. Effects of technical interventions on flexibility of farming systems in Burkina Faso: Lessons for the design of innovations in West Africa. Agricultural Systems 136, 125–137. doi:10.1016/j.agsy.2015.02.010
- Britten, P., Marcoe, K., Yamini, S., Davis, C., 2006. Development of food intake patterns for the MyPyramid Food Guidance System. Journal of nutrition education and behavior 38, S78–S92.
- De Ridder, N., Sanogo, O.M., Rufino, M.C., van Keulen, H., Giller, K.E., 2015. Milk: the new white gold? Milk production options for smallholder farmers in Southern Mali. Animal 1–9. doi:10.1017/S1751731115000178
- Falconnier, G.N., Descheemaeker, K., Van Mourik, T.A., Giller, K.E., 2016. Unravelling the causes of variability in crop yields and treatment responses for better tailoring of options for sustainable intensification in southern Mali. Field Crops Research 187, 113–126. doi:10.1016/j.fcr.2015.12.015
- Fare, Y.C., 2005. Diagnostic Agraire dans le vieux bassin cotonier du Mali. Cas des villages de Mpelogosso (cercle de Koutiala), Koumarela (cercle de Dioïla) et Tyenabougou (cercle de Bla). Msc thesis, Montpellier Supagro, Montpellier.
- Losh, B., Fréguin-Gresh, S., White, E., 2011. Rural Transformation and Late Developing Countries in a Globalizing World. A Comparative Analysis of Rural Change. Final report of the RuralStruc Program, revised version. Washington, DC. World Bank, http://siteresources.worldbank.org/AFRICAEXT/Resources/258643-1323805221801/RuralStruc_final_report_v2_hd.pdf.