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Abstract 

 

A robust LC-MS/MS method was developed to quantify a large number of phase I and phase 20 

II steroids in urine. The decision limit is for most compounds lower than 1 ng ml-1 with a 

measurement uncertainty smaller than 30%. The method is fully validated and was applied to 

assess the influence of administered synthetic steroids and beta-agonists on the 

steroidogenesis. From three animal experiments, clenbuterol, diethylstilbestrol and 

stanozolol, the steroid profiles in urine of bovine animals were compared before and after 25 

treatment. It was demonstrated that the steroid profiles were altered due to these treatments. 

A predictive multivariate model was built to identify deviations from normal population 

steroid profiles. The abuse of synthetic steroids can be detected in urine samples from bovine 

animals using this model. The samples from the animal experiments were randomly analysed 

using this method and predictive model. It was shown that these samples were predicted 30 

correctly in the exogenous steroids group. 
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1. Introduction 

Due to their anabolic activity, the use of steroids has a long history in enhancing both 

athlete performance (sports doping) [1, 2] and enhancing growth in cattle during the 35 

fattening process (meat production).  However, in both sports (fair competition [3]) and 

meat production (food safety) the use of steroids is prohibited (European Union legislation 

Directives 96/22/EC, 2003/74/EC and 2008/97/EC [4-6]). These bans [3, 4] on the use of 

steroids require intelligent control systems.  

 In case a known exogenous steroid is administered, a straightforward targeted approach 40 

can be applied to detect this illegal administration just by analyzing samples for the 

presence of the administrated compound and/or its major metabolite(s) [7]. This approach 

can be performed by MS/MS measurement, analyzing a set of predefined compounds by 

product scans, or analysing functional groups covering a broad range of compounds by use 

of precursor scans. Another approach is by high resolution accurate mass measurement 45 

which can analyse a large number of compounds [8]. Also, frequently phase II metabolism 

is taken into account by measuring metabolites (e.g. glucuronides and sulphates) of the 

administered compounds [9, 10]. In case of a new unknown (designer) steroid, it is 

impossible to apply this approach and an alternative untargeted approach is necessary. One 

possible approach is to use dedicated effect assays to detect the presence of bioactive 50 

compounds in samples [11]. After a positive response in such a bioassay, the bioactive 

compound has to be identified. This approach is known as “effect based screening” and 

should always be followed by confirmatory targeted analyses for all known candidates. In 

case such analyses do not result in the detection of the compound responsible for the 

screening result, a process of identification of the active compound [12] is necessary. 55 



Page 4 of 38 
 

 

More recently effect based screening techniques were developed on the basis of steroid 

profiling [13, 14]. Steroid profiling has proven to be a versatile technique to pinpoint 

disruptions in steroidogenesis [15]. These changes can have several causes: e.g. the 

presence of endocrine disruptors, illness (cancer) or administration of synthetic steroids. 

Synthetic steroids can be synthetic analogues of endogenous steroids such as testosterone 60 

and estradiol. To detect the administration of synthetic analogues of endogenous steroids 

screening can be performed by steroid profiling [13, 14]  followed by confirmatory analysis 

with GC-c-IRMS [16-19]. Exogenous synthetic steroids are compounds like stanozolol, 

methylboldenone and comparable compounds including designer steroids [20, 21] . The 

mechanism of action following administration of exogenous synthetic steroids lies in the 65 

fact that the body will balance its own production of hormones under influence of these 

administrated steroids. From body-builders it is known that the body will balance or even 

stops producing steroids [22] when exogenous growth promoters are administered [1]. To 

investigate whether disruption of steroid profiles also occurs in animals after administration 

of synthetic growth promoters, we developed a new method based on UHPLC-MS/MS for 70 

separating and detecting aglycones, glucuronide- and sulphate- conjugates of steroids in 

urine.  

The purpose was to develop a fast, sensitive and robust method to measure concentrations 

of all major steroids and metabolites in the steroidogenesis, inclusive of their corresponding 

glucuronide- and sulphate- conjugates. However, due to their aromatic ring structure and 75 

lack of keto groups, detection of estrogenic steroids by LC-MS/MS is hampered by low 

ionisation efficiency [23]. To overcome this low ionisation efficiency, estrogens can be 

modified by coupling them with an easily ionisable group [23, 24]. The use of these groups 
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enhances the ionisation efficiency [24] by a factor 10 to 100 compared to the original 

structure and is applied in this study to detect some of the estrogens. The aglycons, 80 

glucuronide and sulphate conjugates were effectively isolated and concentrated from 

samples of urine using a fast generic clean-up based on two different 96 well solid phase 

extractions (SPE).  

In order to further explore steroid profiling as a broad screening method for synthetic 

growth promoters in bovine animals, it is necessary to further study the influence of 85 

different types of compounds on the steroidogenesis. Steroid profiles of animals treated 

with growth promoters were determined to investigate any change in steroid profiles after 

treatment. Three treatment regimens were examined: clenbuterol, stanozolol and 

diethylstilbestrol (DES). Of these compounds, only stanozolol is a steroid hormone. DES 

was included in this study since it’s a hormonal active compound with strong estrogenic 90 

activity[25]. Clenbuterol, a β-agonist, though not a hormonal active compound, was 

included to test the hypothesis that the use of β-agonist influences steroidogenesis [26]. 

These three compounds were used on large scale from the 50s till the end of the  90s [25, 

27] and occasionally are still found nowadays in samples in Europe [12]. The outcome of 

this study is discussed and evaluated for its applicability in a control strategy to detect 95 

synthetic growth promoter abuse in animal husbandry.  
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2. Experimental 

2.1 Controlled animal treatment experiments 

The animal studies were performed following ethical approval at Technical University of 100 

Munich, Germany, Wageningen Research, the Netherlands, or the University of Ghent, 

Belgium. The treatment schemes used were in accordance with the knowledge we have 

currently on how illegal treatment is conducted. 

 

2.1.1 Clenbuterol treatment 105 

The clenbuterol animal experiment was performed by the chair of Physiology-

Weihenstephan of the Technical University of Munich. All animals used in this study were 

bull calves of 6 to 9 months old, seven animals were used as control group and did not 

receive any treatment. Seven other animals received orally 10 µg kg-1 body weight 

clenbuterol hydrochloride (clenbuterol) (Boehringer Ingelheim, Ingelheim am Rhein, 110 

Germany) each day for 34 days. Urine samples were collected from all animals at day 0, 9, 

23, and 34 and were stored at -20˚C until analysis. 

 

2.1.2 Diethylstilbestrol treatment 

The diethylstilbestrol animal experiment was performed at the University of Ghent. Six 115 

bull calves were randomly selected from a herd of calves. One of the animals was treated 

twice with 200 mg diethylstilbestrol (DES) orally with a one week interval. From all 

animals urine was collected five days prior to treatment. These samples are considered as 

control samples. Urine samples were collected every day during the trial until 8 days after 

the last dose of DES. Samples were stored at -20˚C until analysis. 120 
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2.1.3 Stanozolol  treatment 

The stanozolol animal experiment was performed by the University of Wageningen. Five 

bull calves were randomly selected. Three were treated with stanozolol. The other two 

animals served as control animals. The animals were injected four times, with an interval of 125 

one week, intramuscularly with 100 mg stanozolol in the neck. The injection site was 

alternated left and right in the neck. Urine samples were collected one each day for one 

week prior to the first injection, followed by collection on each day, during three days after 

each treatment. After the last injection samples were collected each day for one week after 

which samples were collected for seven weeks, one sample each week. After collection 130 

samples were stored at -20˚C until analysis. 

 

2.2 Determination of specific density and total solid content 

Refractometry is a relatively simple method to determine the total amount of solids in urine 

[28]. Using the specific density of the samples, inter-sample variability in the measured 135 

concentration caused by differences in density can be corrected. Correction was performed 

using the average value 1.020 for the specific gravity of all bovine urine samples used during 

this study. Concentration  =  (1.020- 1)/(Specific Density Sample-1)×Concentration Sample 

Samples with a specific density lower than 1.004 were rejected for data-processing, since the 

correction factors for these samples are too large and the measurement of the specific density 140 

is less reliable below 1.004. 

2.3 Standards 
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ß-estradiol,  17α-OH-progesterone, 11-deoxycortisol, 11-deoxycortisol-d5, cortisone, 

cortisol, cortisol-d4, corticosterone, dehydrocorticosterone, estradiol-3-sulphate, estrone-3-

glucuronide, progesterone, testosterone,  pregnenolone, estrone-3-sulphate, DHEA-sulphate-145 

d6 were all obtained from Sigma (the Netherlands). 17α -OH-pregnenolone, pregnenolone-

d4, 5α-androstandione, estrone, DHEA, 11-deoxycorticosterone, α-testosterone, (5ß,17α)-17-

hydroxyandrostane-3-one, (5α,17α)-17-hydroxyandrostane-3-one, androstandiol-α,ß,ß, 

androstandiol-ß,ß,α, androstandiol-α,ß,α, androstandiol-ß,ß,ß, androstandiol-ß,α,ß, 

androstandiol-α,α,ß, androstandiol-ß,α,α, DHEA-sulphate, estradiol-17-sulphate,  estrone-17-150 

sulphate were obtained from Steraloids (United States). Androsterone-d4, ß-testosterone-d3, 

11- (5α,17ß)-17-hydroxyandrostan-3-one (dihydrotestosterone), (5α,17ß)-17-

hydroxyandrostan-3-one-d3 (dihydrotestosterone-d3), 17ß-testosterone-glucuronide, 17α-

testosterone-glucuronide, 17ß-testosterone-sulphate-d3, 17α-testosterone-sulphate, 17ß-

testosterone-glucuronide-d3, 17ß-testosterone-sulphate, dihydrotestosterone-sulphate-d3, 155 

dihydrotestosterone-sulphate, dihydrotestosterone-glucuronide-d3, androsterone-sulphate-d4, 

17α-testosterone-sulphate-d3 were obtained from NMI (Australia). 11-Deoxycorticosterone-

d8, estrone-d4 and corticosterone-d8 were obtained from CDN Isotopes (Canada). ß-

estradiol-d3 was obtained from TLC (Canada).Progesterone-2C13  was obtained from EURL 

(Wageningen). Cortisone-d8 was obtained from LGC (the Netherlands). 160 

 

 

 

 

 165 
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2.4 Materials 

All chemicals and reagents used are of the highest purity grade available (99.9% pure or 

higher). Extraction plate manifold, 96-well collection plates (2 ml), Oasis WAX 96-well plate 

(60 mg sorbent per well, 30 µm particle size), Oasis HLB 96-well plate (60 mg sorbent per 

well, 60 µm particle size), 96-Well PTFE/Silicone seal with pre-slit, Acquity UPLC BEH 170 

C18 column (1.7 µm, 2.1x100 mm), Acquity UPLC CSH C18 column (1.7 µm, 2.1x100 mm) 

were purchased from Waters. UPLC-MS/MS system consisting of a Waters ACQUITY 

UPLC® I-Class System and a Waters triple quadrupole mass spectrometer Xevo TQS with 

ESI interface. Turbovap evaporator for 96-well plates was purchased from Caliper 

LifeSciences. 175 

 

2.5 Sample preparation method 

To 500 µl urine sample or standard, 2 µg l-1 of isotope labelled internal standard mixture (see 

table 1 for compounds included in the internal standard mixture) is added. A calibration 

curve is prepared by spiking water with standards (see table 1 for compounds included in the 180 

standardmixture) at a concentration of 0, 0.5, 1.0, 2.0, 3.0, 4.0 and 10 µg l-1.  Water is used 

instead of ‘blank urine’ because the latter contains endogenous natural hormones which will 

influence correct quantification. For sample clean-up two types of 96-wells plates were used. 

First reversed phase to isolate aglycons (Oasis HLB sorbent) was followed by a second plate 

with a weak anion exchanger to isolate phase II conjugates (Oasis WAX sorbent). The Oasis 185 

HLB plate was preconditioned in succession with 500 µl of methanol and water and the 

sample was passed through. The Oasis HLB plate was then washed with 1 ml of water, 1 ml 

of 55% methanol/2% acetic acid and 1 ml of 30% methanol/2% ammonia and water, 
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respectively. After these washing steps, the relatively polar glucuronides and sulphates are 

eluted from the HLB plate with 35% acetonitrile in water and loaded directly to the Oasis 190 

WAX plate by stacking the HLB plate onto the WAX plate. The plates are separated and the 

remaining aglycons are eluted from the HLB plate with acetone and evaporated to complete 

dryness. A chemical derivatization procedure is carried out to improve measurement 

sensitivity (see paragraph “Chemical derivatization”). From the extracts 10 µl of the mixture 

is injected directly into the UPLC-MS/MS system. For separation of the aglycons a BEH C18 195 

analytical column is used. 

The Oasis WAX plate is washed with 1 ml of water and 1 ml of acetonitrile, respectively. 

The conjugates are eluted with methanol containing 2% of ammonia. The eluates are dried 

and reconstituted in 35 µl 10% methanol/water. 10 µl of this solution is injected directly onto 

the LC-MS/MS. To separate the phase II conjugates, a CSH C18 analytical column is used. 200 

 

2.5.1 Chemical derivatization (aglycon fraction only) 

Picolinic acid reagent is freshly prepared by mixing 50 mg 2-methyl-6-nitrobenzoic 

anhydride (Sigma-Aldrich), 10 mg 4-dimethylaminopyridin (Sigma-Aldrich), 30 mg 

picolinic acid (Sigma, P42800), 10 ml THF anhydrous (THF) (Sigma-Aldrich) and 100 µl 205 

triethylamine (TEA) (Sigma-Aldrich), respectively. To the dried extracts 35 µl of the 

picolinic acid reagent is added. The samples are incubated for 30 minutes at room 

temperature. THF is evaporated for a few seconds (approximately to half of the original 

amount) to prevent peak broadening on the UPLC BEH C18 column caused by the presence 

of organic solvent in the sample. The reaction is stopped by adding 50 µl 5% NH3 solution. 210 

The extract is vortexed and 10 µl is directly injected onto the LC-MS/MS system. 
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Table 1A. MS/MS conditions and retention time for A) aglycons B) conjugates. The 

Quantitative Trace gives the mass-to-charge ratio from the precursor ion and its fragment. 

CE (eV) describes the used collision energy. RT describes the retention time. The internal 

standards are denoted by (IS), PZ: picolinoyl, Na+ sodium adduct 215 

I
D Compound Quant. Trace 

(MRM) 
CE 
(eV) 

RT 
(min.) 

IS 
(ID) 

1 Cortisone-d8 (IS) 369.23>168.09 14 1.44 - 

2 Cortisone 361.23>163.09 20 1.45 1 

3 Cortisol-d4 (IS) 367.23>121.16 24 1.46 - 

4 Cortisol 363.17>121.13 25 1.47 3 

5 11-Dehydrocorticosterone 345.23>121.09 20 1.66 8 

6 Corticosterone-d8 (IS) 355.3>337.35 14 1.77 - 

7 Corticosterone 347.23>329.22 12 1.78 8 

8 11-Deoxycortisol-d4 (IS) 352.3>100.2 22 1.81 - 

9 11-Deoxycortisol 347.23>97.09 18 1.82 8 

10 11-Deoxycorticosterone-d8 (IS) 339.3>100.27 18 2.18 - 

11 11-Deoxycorticosterone 331.23>97.09 20 2.19 8 

12 β-Testosterone-d3 (IS) 292.23>109.09 24 2.22 - 

13 β-Testosterone 289.23>109.10 22 2.23 12 

14 Androstendione-d3 (IS) 290.20>100.07 20 2.26 - 

15 4-Androstene-3,17-dione 287.23>109.09 26 2.27 14 

16 α-Testosterone 289.23>97.10 22 2.34 12 

17 17α-OH-Progesterone 331.23>97.09 24 2.34 14 

18 5α-Androstanedione 289.20>213.18 18 2.59 14 

19 β-Estradiol-d3-PZ (IS) 381.2>159.1 10 2.70 - 

20 β-Estradiol-PZ 378.2>124.1 22 2.71 19 

21 Progesterone-2C13 (IS) 317.17>99.13 20 2.84 - 

22 Progesterone 315.23>109.18 24 2.85 21 

23 17α-OH-Pregnenolone (M-H2O) 315.3>297.21 12 3.10 21 

24 DHEA-PZ Na+ 416.17>146.07 16 3.13 14 

25 Etiocholanolone-PZ Androsterone-PZ 396.17>124.07 12 3.18 26 

26 Androsterone-d4-PZ (IS) 400.23>124.92 14 3.21 - 

27 (5α,17β)-17-hydroxyandrostane-3-one-d3-PZ (IS) 399.2>124.1 12 3.21 - 

28 (5α,17β)-17-hydroxyandrostane-3-one-PZ (=DHT-
PZ) 396.17>255.17 16 3.22 27 

29 (5α,17α)-17-hydroxyandrostane-3-one-PZ 396.17 > 255.17 16 3.29 27 

30 (5β,17α)-17-hydroxyandrostane-3-one-PZ 396.17>124.07 12 3.34 27 
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31 Pregnenolone-d4-PZ Na+ (IS) 448.3>146.13 16 3.59 - 

33 Pregnenolone-PZ Na+ 444.26>146.08 16 3.60 27 

 

Table 1B. MS/MS Conditions for analysis of conjugates (G=glucuronide, S=sulphate) 

ID Compound Quant. Trace (MRM) CE (V) RT (min.) IS  (ID) 

1 Estriol-17-G 463.17>287.51 28 1.20 7 

2 β-Estradiol-3-G 447.23>271.11 30 1.55 7 

3 β-Estradiol-17-G 447.23>271.11 30 1.74 7 

4 Estrone-3-G 445.17>113.05 18 1.78 7 

5 11β-OH-Androsterone-G 481.23>85.05 30 1.86 7 

6 Hydroxyprogesterone-11G 505.23>113.01 28 1.99 7 

7 17β-Testosterone-G-d3 (IS) 468.3>97.12 28 2.00 - 

8 17β-Testosterone-G  465.23>97.12 28 2.01 7 

9 5α-Androstanediol-3β,17β-3G 467.23>113.01 30 2.03 7 

10 Dihydroxyprogesterone-G 507.23>113.01 30 2.03 7 

11 DHEA-3-G 463.23>75.04 28 2.22 7 

12 Estradiol-3-S 351.1>80.09 26 2.49 7 

13 Estrone-3-S 349.1>269.07 30 2.49 7 

14 Dihydrotestosterone-G-d3 (IS) 468.23>112.98 26 2.53 - 

15 Dihydrotestosterone-G 465.2>113 26 2.54 14 

16 17β-Testosterone-S-d3 (IS) 370.1>97.96 30 2.97 - 

17 17β-Testosterone-S 367.1>96.99 30 3.01 16 

18 Etiocholanolone-G 465.2>113 30 3.07 20 

19 Estrone-17-S 349.1>269.07 30 3.07 16 

20 Androsterone-G-d4 (IS) 469.23>85.05 30 3.17 - 

21 17α-Testosterone-S-d3 (IS) 370.1>97.96 30 3.20 - 

22 17α-Testosterone-S 367.1>96.99 30 3.25 21 

23 Pregnenolone-G 491.23>113.01 28 3.34 31 

24 DHEA-S-d6 373.17>97.93 30 3.44 - 

25 DHEA-S 367.1>96.99 30 3.48 24 

26 DHT-17-S-d3 (IS) 372.17>97.96 30 3.50 - 

27 DHT-S 369.17>96.99 30 3.55 26 

28 Androsterone-S-d4 (IS) 373.17>97.9 30 3.66 - 

29 5α-Androstane-3b-ol-17-one-S-d2 (IS) 371.17>96.99 30 3.66 28 

30 5α-Androstane-3b-ol-16-one-S + Epi-Androsterone-S 369.1>96.99 30 3.70 28 

31 Pregnenolone-S-d4 (IS) 399.17>96.99 30 3.81 - 

32 Androsterone-S + Etiocholanolone-S 369.17>96.99 30 3.93 28 

33 Pregnenolone-S 395.17>96.99 28 4.29 31 
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2.6 LC-MS/MS analysis 

2.6.1 Conditions for UPLC-MS/MS analysis of aglycons 220 

Chromatographic separation of aglycons is performed on a Waters Acquity UPLC BEH C18, 

1.7 µm, 2.1x100mm. The flow rate is 0.6 ml min-1 at a column temperature of 80ºC. The LC 

mobile phase consists of solution A (10% acetonitrile/0.1% formic acid in water) and 

solution B (90% acetonitrile/0.1% formic acid in water). Aglycon compounds were eluted 

according to the following gradient: 0-0.2 min. 5%B; 0.2-0.5 min. 20%B; 0.5-3.5 min. 225 

80%B; 3.5-3.6 min. 95%B; 3.6-4.05 min. 95%B; 4.05-4.1 min. 5%B. The gradient was 

linear. From the aglycon sample 10 µl is injected (partial loop with needle overfill and load 

ahead).  

 

2.6.2 Conditions for UPLC-MS/MS analysis of conjugates 230 

Chromatographic separation of conjugates is performed on a Waters Acquity UPLC CSH 

C18, 1.7 µm, 2.1x100 mm. Flow rate 0.6 ml/min with a column temperature of 80ºC. The 

LC mobile phase consists of solution A (10% acetonitrile/0.1% formic acid in water) and 

solution B (90% acetonitrile/0.1% formic acid in water). Conjugated compounds are eluted 

according to the following gradient: 0-0.3 min. 5%B; 0.3-0.4 min. 20%B; 0.4-3.0 min. 235 

35%B; 3.0-3.1 min. 99%B; 3.1-6.0 min. 99%B; 6-6.1 min. 5%B. From the conjugate sample 

10 µl is injected (partial loop with needle overfill and load ahead).  

 

2.6.3 Settings and conditions for MS/MS analysis of aglycons and conjugates 

The MS system switches between positive and negative ion ionisation during analysis. The 240 

capillary voltage was set to 3.0 kV, the cone voltage was adjusted to 40 V, cone gas 150 litres 
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per hour. The source temperature was 150˚C and the desolvation temperature was 590˚C. 

The flow of the desolvation gas is 1000 litres per hour. The LM 1 Resolution is 2.8 and the 

HM Resolution is 14.5. The Ion Energy 1 is set to 0.6 and the Ion Energy 2 to 0.8. In table 1 

an overview is given of the transitions measured for each compound included. 245 

 

2.7 Data processing 

LC-MS/MS data was automatically processed using MassLynx V4.1 software from Waters. 

All peak integrations were manually checked and baseline corrected if necessary. To correct 

for recovery losses during sample clean-up the internal standards as denoted in table 1 were 250 

used. Concentrations below CCα were rejected and not used for further statistical evaluation 

of the results. 

 

2.7.1 Multivariate analysis 

Quantitative concentrations of steroids and their conjugates were measured, followed by a 255 

standardized multi-variate analysis. Part of the workflow is identification of the compounds 

that are influenced by administration of exogenous growth promoters. 

The quantitative measurement results are exported from QuanLynx software and imported to 

MS Excel. This excel sheet is imported into Simca13 (Umetrics). Outliers in the Principal 

component analysis (PCA) plots are detected by using the Hotelling's T2 and DModX 260 

function. The SIMCA (Soft Independent Modelling of Class Analogy) software requires that 

the size of the blank observations group is reduced to about the same size as the treatment 

group. If the groups are not balanced in number the model is ‘warped’[29]. This reduction 



Page 15 of 38 
 

 

takes place through random selection. The data is log10 transformed and Pareto scaled. The 

probability of all the statistics used is 0.95.   265 

For determination of the compounds responsible for the separation of the treated and not 

treated animals is orthogonal partial least square discriminant analysis (OPLS-DA) used. 

Control and cross-validation of the OPLS-DA models is performed by means of the so called 

‘Summary of Fit plot’, whereby the R2 (descriptive factor) and the Q2 value (predictive 

factor) are determined. 270 

Validation of the OPLS-DA model is implemented through a permutation test of the OPLS-

DA model. A permutation test randomly swaps the identity of samples and remodels the data. 

Permutation test on a good model gives less good R2 and Q2 values on random permutation. 

These values should always be lower than the original values.  

To determine the difference between steroid profiles of treated and non-treated animals a list 275 

of compounds that affect the separation of the groups in the OPLS-DA model mostly was 

determined by means of an S-plot. The variables were identified by selection of the 

compounds that were projected in the upper right and lower left of the S-plot. 

 

2.8 Validation of the method for urine 280 

Validation of the analytical method was performed for all compounds in Table 1. For these 

compounds the CCα, CCß and measurement uncertainty were determined. The decision 

limit (CCα) and detection capability (CCß) [30] were determined using a three point 

standard calibration curve in different blank urine samples. Each sample spiked at the same 

concentration was fully processed in six-fold on each day as if it was an unknown sample. 285 

This set of samples was analysed on three different days. From this calibration curve the y-
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intercept and slope were calculated (y=ax+b). The CCα and CCß were calculated according 

to ISO11843 [31] .4  The (within day) repeatability and within laboratory reproducibility 

(between days) were determined from the obtained dataset using the approach as described 

in ISO 5725 [32]. The measurement uncertainty was calculated by the square root of the 290 

summation of the squares of the relative standard deviations of each validation level 

divided by three. 
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3. Results and Discussion 

3.1 Method development 295 

Not all steroids can be ionized using electrospray [23]. For example, all estrogenic 

compounds have to be derivatized with easily ionisable groups to enable ionization by 

electrospray [23]. To enhance the ionisation picolinic acid derivatization [23, 24] was 

implemented. The estradiol picolinoyl derivative has a very intense signal (figure 1B) in 

comparison with the aglycon. The coupling reaction of 17ß-estradiol is depicted in Figure 300 

1A. Figure 1B shows the extracted trace of a standard of 10 pg of estradiol coupled to 

picolinic acid and its corresponding MS/MS spectra (figure 1C).  

 

Figure 1. A) Coupling reaction of picolinic acid with 17ß-estradiol on the 3-position. 

B) Extracted ion chromatogram of transition 378.2>124.1 of a standard of 10 pg estradiol picolinoyl. 305 
C) corresponding product spectra of m/z 378.2 by a collision energy of 20eV.  

 

To investigate the stability of estradiol-picolinic acid, a batch of standards containing 0.1 ng 

ml-1 estradiol picolinoyl derivative was prepared and injected at fixed time intervals for 24 

hours on the MS. The stability of the MS during this experiment was checked with non-310 
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coupled standards. After 24 hours, the signal was 86 percent of the original signal, and 

therefore considered as stable. 

 

3.2 Pre-validation: ruggedness of developed method 

Due to the presence of endogenous steroids, it is difficult to evaluate the performance of 315 

the method by means of spiking these steroids. Therefore, a pre-validation was performed 

to assess the ruggedness of the method prior to a full method validation. As the isotope 

labelled internal standard mixture are not endogenous, a clear first indication of 

ruggedness, recovery and possible signal suppression of the method is obtained. For this, in 

a 96 well-plate, 96 different bovine urines were spiked with the internal standard mixture, 320 

and recovery for this internal standard mixture was calculated. In figure 2 the recovery of 

isotope labelled testosterone; the free compound and the phase II metabolites are plotted, 

also the average recoveries and the relative standard deviations are shown. 

 

 325 

 

 

 

 

 330 
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Figure 2. Recovery of 96 different bovine urine samples spiked at 2 ng ml-1 isotope labelled internal 

standard mix for; A) 17ß-testosterone-D3.  B) 17ß-testosterone-glucuronide-D3. C) 17α-

testosterone-sulphate-D3. 

 335 

For 17ß-testosterone-D3 an average recovery of 96 %, with a relative standard deviation of 

19% was obtained. However, for 17ß-testosterone-glucuronide-D3 a lower recovery of 

72% with a slightly higher relative standard deviation of 21 %, was found. This can be 

explained by the fact the glucuronides are not strongly bound to the weak anion exchange 
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material and partly elute with the washing solvents. The opposite happens for 17α-340 

testosterone-sulphate-D3 where the sulphate groups bind much stronger than a glucuronide 

group to a weak anion exchange material. This is reflected in the higher recovery of 94 % 

and lower relative standard deviation of 14%. Nevertheless, for all three compounds , 

recovery and relative standard deviation were considered adequate for residue analysis at 

low ng ml-1 levels, especially when it is considered that these are not recovery corrected 345 

concentrations. Although the recovery is considered as adequate the concentrations of 

steroids determined in this study were corrected using the internal standards to obtain a 

more precise quantification since e.g. sample specific ion-suppression is taken into account.  

 

3.3 Method validation 350 

In a previous study [14] the 95 % confidence interval of the concentration of natural 

hormones were determined for all natural hormones, the determined concentration was 

between 0.2-2 ng ml-1 for the free and the phase II conjugates. The validation concentration 

levels were chosen to cover this concentration range. To validate a method for natural 

hormones in urine the urine has to be pre-treated to remove endogenous natural hormones 355 

since the concentration levels of natural hormones will fluctuate from sample to sample. 

These fluctuating concentrations will influence the outcome of the validation study. To 

diminish these influences the urine was stripped of its natural hormones by treating the 

urine with activated charcoal. Analyses of stripped urine confirmed that all natural 

hormones were removed. Spiking the stripped urine with natural hormones and phase II 360 

metabolites followed by the full validation gives a true reflection of the performance of the 

method in combination with the results of the pre-validation. The method was validated 
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according to the guidelines set in Commission Decision 2002/657 [30].  All compounds of 

interest were analysed within 5 minutes and are mostly separated. In the supplementary 

data an example chromatogram is shown for urine spiked at 0.1 ng ml-1. 365 

In table 2 an overview is given of the validation results. The results of the validation 

confirm that LC-MS/MS measurement of a large group of (pro)hormones is possible with 

acceptable performance charateristics. For all natural steroids measured the CCα for most 

aglycons in the range of 0.1-0.79 ng ml-1 which is in the expected concentration range of 

natural hormones. The CCα values for pregnenolone-picolinoyl as sodium adduct and the 370 

5α-androstanedione and DHEA-picolinoyl sodium adduct are in the range 1.2-2.9 ng ml-1 

which is not in the 95% confidence concentration level of a normal population, this will 

limit the use of this method for these compounds.  The measurement uncertainty for most 

compounds is lower than 30%. This higher variability can be due to the fact that sodium 

adducts are measured which is not the preferred choice for a protonated molecule. In this 375 

case no other options were available. The accuracy for all compounds is within the range of 

92-133% which is considered as acceptable for the intended use of this method. 

The performance of the method for the glucuronide- and the sulphate- conjugates is 

comparable with the performance for aglycons. The CCα values are between 0.1 – 1.9 ng 

ml-1 and the measurement uncertainties between 4-71%. These values are a bit higher than 380 

for the aglycons. This is probably due to the two SPE steps involved in the extraction. 

Although higher, they are considered acceptable as they fall in the 95% confidence limit of 

natural compounds. The accuracy is between 80-120%. So overall the performance is 

adequate and suitable for the intended use and can quantify natural hormones at 

endogenous levels. When the performance of the method is compared to recently published  385 
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Table 2A. Performance characteristics for the aglycons, the CCα and CCβ are in ng ml-1, 

the measurement uncertainty (MU) in % and the accuracy (acc) in % 

Aglycons CCα CCβ MU Acc 
Cortisone 0.91 1.82 25.1 100.7 

Cortisol 0.53 1.06 16.9 99.5 

11-Deoxycorticosterone 0.42 0.84 14.6 104.3 

Corticosterone 0.54 1.09 16.7 104 

11-Deoxycortisol 0.33 0.65 11.2 99.9 

11-Dehydrocorticosterone 0.72 1.45 36.4 108.9 

β-Testosterone 0.43 0.86 16.9 108.1 

4-Androsten-3,17-dione 0.7 1.41 22.3 96.9 

α-Testosterone 0.85 1.71 22.6 104 

17α-OH-Progesterone 0.54 1.08 19.6 93.5 

5α-Androstanedione 1.22 2.43 54.7 101.9 

β-Estradiol 0.41 0.82 15.6 105.3 

Progesterone 0.33 0.66 20.6 101.7 

Pregnenolone 2.99 5.97 116.2 98.7 

DHEA 1.69 3.37 73.2 132.9 

Etiocholanolone and Androsterone 0.71 1.41 26.8 103.7 

(5α,17β)-17-hydroxyandrostan-3-one 0.54 1.09 29.8 114.3 

(5α,17α)-17-hydroxyandrostan-3-one 0.52 1.04 55.7 118.9 

(5β,17α)-17-hydroxyandrostan-3-one 0.53 1.07 27.8 113.1 

17α-OH-Pregnenolone 2.72 3.45 48.7 107.1 
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Table 2B. Performance characteristics for the glucuronide and the sulphate conjugates, the 390 

CCα and CCβ are in ng ml-1, the measurement uncertainty (MU) in % and the accuracy 

(acc) in %, G=glucuronide, S=sulphate 

Conjugates CCα CCβ MU Acc 
Estriol-17-G 0.88 1.75 33.5 95.4 

β-Estradiol-3-G 0.38 0.76 14.1 100.3 

β-Estradiol-17-G 0.5 1 29 100.9 

Estrone-3-G 0.31 0.62 16.3 101.2 

11β -OH-Androsterone-G 1.72 3.44 58.2 79.4 

Hydroxyprogesterone-11G 0.95 1.9 60.8 99.7 

Estradiol-3-S 0.15 0.3 10.2 98.7 

17β -Testosterone-G  0.38 0.77 27.8 108.1 

5α-Androstanediol-3β,17β-3G 0.61 1.22 51 118.2 

Dihydroxyprogesterone-G 1.49 2.98 49.4 102.2 

17β -Testosterone-S 0.35 0.71 30.5 104.1 

Etiocholanolone-G 0.49 0.97 19.7 102.2 

Estrone-17-S 0.19 0.39 11.6 98.4 

17α-Testosterone-S 0.2 0.4 6.9 103 

Pregnenolone-G 1.82 3.65 71.3 80.9 

DHEA-S 0.1 0.21 4.3 100.3 

DHT-S 0.65 1.3 23.8 100.5 
5α-Androstane-3β-ol-16-one-S and Epi-
Androsterone-S 0.21 0.43 13.1 103.5 

Androsterone-S + Etiocholanolone-S 0.16 0.31 7.4 102.7 

Pregnenolone-S 0.12 0.25 5.8 101.9 

 

 

 395 
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methods, this method is the only fully validated method described which simultaneously 400 

measure aglycons and conjugates in urine. Some of the published methods are not validated 

and are published as proof of principle [13, 33] or are applied to different matrices [34-36].  

  

3.4 Effect of exogenous compounds on steroid profiles 

For each treatment type (see experimental sections), the steroid profiles were analysed of 405 

all animals involved. The steroid profiles of the control population (samples from the non-

treated animals or taken before treatment) were compared with the treated population.  To 

identify the steroids that are up or down regulated between the two populations an OPSL-DA 

analysis was performed for all three treatments, e.g clenbuterol, diethylstilbestrol and 

stanozolol. The graphical representation of the OPLS-DA analysis is shown in figure 3. 410 

 

 

 

 

 415 
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Figure 3. A) OPLS-DA plots for the three different types of treatments, A) Clenbuterol - non-treated 420 

(green) vs the treated (red) population. B) DES -  non-treated (green) vs the treated (red) population 

C) stanozolol - non-treated (green) vs the treated (red) population. 

 

As is depicted in figure, there is a clear separation for all three treatments between the treated 

and non-treated animals. The R2 (measurement of fit) and Q2 (prediction of the model 425 

according to cross validation) were higher for all three treatments than >0.7 and >0.5, 

respectively. These values are greater than 0.5 which is considered as a good indication of a 

robust model [37]. The OPLS-DA permutation test furthermore shows that the model is 
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robust. The corresponding S-Plot from the OPLS-DA shows the compounds that contribute 

most to the separation of the groups. These compounds were further evaluated for their 430 

contribution to the separation.Clenbuterol administration 

The concentrations of clenbuterol remained stable during the treatment period, see for the 

excretion curves in supplementary data. Estradiol-17β-glucuronide and estrone-3-glucuronide 

are down regulated after treatment with clenbuterol. For other compounds no up- and or 

down-regulation was observed, the concentrations remained constant during the trail and 435 

between the groups. The distribution of the measured concentrations of each compound 

related to treatment time are plotted in a Box-Whisker plot (figure 4).  

It was not expected to see such a decrease in the production of estradiol-17β-glucuronide and 

estrone-3-glucuronide. To the best of our knowledge these effects are not described in 

literature before. However, there are some indications in literature that there is an effect of 440 

clenbuterol treatment on the estrogenic receptors. In one study the up-regulation of estrogen 

and progesterone receptors in the reproductive system of female veal calves were induced by 

clenbuterol administration (13). The mechanism causing up-regulation of receptors is not 

known, but it is known that there is a direct correlation between the concentration of estradiol 

and the number of receptors. Maybe these effects are correlated and caused by the 445 

clenbuterol treatment. Unfortunately, not enough data is available in literature to verify this.  

Another study indicates that clenbuterol affects the synthesis of estrogens (14). In this study 

steroid profiles of 22 postmenopausal asthmatic women using beta-agonists and 22 age-

matched, postmenopausal, nonasthmatic women were compared. A significant decrease of 

the concentrations of the following steroids was observed  DHEA-S (p < 0.002), DHEA (p < 450 

0.03), estradiol (p < 0.02), and estrone (p < 0.02). Although our study measures 
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concentrations of steroids in cattle and this study measured steroid in humans, it confirms 

that there is down regulation of estradiol-17β-glucuronide and estrone-3-glucuronide after 

treatment with clenbuterol. Until now, there is no conclusive explanation for the down 

regulating effects of beta-agonist on estradiol-17β-glucuronide and estrone-3-glucuronide 455 

concentrations. 

 

3.4.1 Diethylstilbestrol administration 

In the past DES has been used on a large scale in animal fattening. It was found to be very 

effective. In view of its potential impact on food safety, it remains a compound to be 460 

monitored. In this study an animal was treated with DES. The concentration of DES 

increases rapidly after injection and drops also very fast but remains detectable during the 

whole treatment period and at least one weak afterwards ( see supplementary data for the 

excretion curve of DES).  After evaluating the S-plot it was determined that only estradiol-

17β-glucuronide differs before and after treatment. In the Box-Whisker plot (figure 4C) an 465 

increase of estradiol-17β-glucuronide can be observed after the second treatment when 

compared to non-treated animals from the same animal experiment. After treatment the 

average concentration of Estradiol-glucuronide increases slowly with the highest 

concentrations after 2 weeks. The increase in average concentration is almost a factor 2 

compared to the concentrations before treatment.  470 

DES is classified as a nonsteroidal estrogen. In literature the effect of DES is described as 

feminization of males linking this to its estrogenic properties. It is known that DES has 

extreme strong estrogenic properties. It is therefore expected that the concentrations of 

natural estrogenic compounds would decrease during treatment, as can be seen from figure 4 
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there is no decrease in estradiol-glucuronide. However, after the animal was injected for the 475 

last time with DES there is strong increase in the concentration of estradiol-glucuronide. This 

is probably caused by a balancing reaction of the body to the declined concentrations of DES 

after the last ingestion of DES. An explanation of this observation could be that the animal 

compensates for the decrease in estrogens by increasing the natural production of estrogens 

(overshoot) as clearly can be seen in figure 4 after 2 weeks of treatment.  480 

 

 

 

 

 485 
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Figure 4: Box-Whisker plots shows concentration levels (t=0 is before treatment, other days 
treatment period); the box limits are in the 25th and 75th percentiles, and the band in the middle of 490 
the box is the median; the whiskers are the absolute maximum and minimum concentrations 
measured. A) Concentration of estradiol-17β-glucuronide before and after clenbuterol treatment. B) 
Concentration of Estrone-3-glucuronide before and after clenbuterol treatment. C) Estradiol-17β-
glucuronide before and during DES treatment. D) 17α-testosterone before and during stanozolol 
treatment. E) DHEA before and during stanozolol treatment. 495 
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No effect of the DES treatment was observed on the levels of the androgens. This  was 

contrary to a study in which there was a very small increase in the concentration of 

testosterone [38].  Since the observations are derived from only one animal treated with DES, 

more animal studies must be performed to confirm the observed results. 

 500 

3.4.2 Stanozolol  treatment 

This compound has strong anabolic effects and is found to be very effective in animals. In 

this study several animals were treated with stanozolol. The major metabolite after treatment 

of stanozolol in cattle is 16ß-hydroxystanozolol, the concentration of both compounds 

remained stable during treatment (see supplementary data). 505 

After examination of the S-plot it was found that several compounds were up-regulated after 

treatment. The compounds which were affected were 17α-testosterone and DHEA. Both 

these compounds are closely connected in the androgen pathway. To assess the up regulation 

a Box-Whisker plot was made for both compounds (figure 4 D and E). 

In general it is assumed that the natural androgen production declines after administration of 510 

a synthetic androgen [1, 22] . The results in this study suggest otherwise. An explanation for 

the observed increase of testosterone and DHEA in urine could lie in the fact that stanozolol  

treatment decreases the natural circulating amount of  sex hormone binding globuline 

(SHBG) after treatment. In humans the percentage of SHBG decreases by 50 percent after 

one week of treatment [39, 40]. As a result of this the amount of circulating free testosterone 515 

(there is no data on DHEA available) increases in blood. A higher circulating amount of free 

testosterone can result in higher excretion of testosterone in urine. As can be observed from 

figure 4 the amount of free 17α-testosterone and DHEA starts to increase after the second 
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treatment which would be in line with decreasing levels of circulating SHBG after one week 

of treatment.  520 

 

3.5 Predictive model 

From the animal experiments with exogenous compounds it was observed that there is an 

effect on the amount of steroids circulating during or after treatment. In other words, the 

treated animal tries to balance the steroid levels under influence of exogenous steroids. The 525 

type of balancing is probably typical for a specific treatment with exogenous growth 

promoters and related compounds and might be used to determine whether a treatment has 

occurred before sample collection. To detect these treatments, these changes in the steroid 

profile can be detected using a predictive multivariate model. This model is built using the 

steroid profile of the different groups of treated animals. In this study a predictive model was 530 

build based on the clenbuterol, diethylstilbestrol and stanozolol. A blank population was 

included. Only a part of the blank population was used. The other blank samples were used to 

evaluate the model. To build the model the same approach was used as in previous sections. 

In figure 5 the visual representation of the OPLS-DA analysis of the three treated groups and 

the blank group is shown.  535 

 

 

 

 

 540 
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Figure 5. Visualisation of the OPLS-DA separation based on the steroid profiles measurements of the 

diethylstilbestrol (dark blue), stanozolol  (red) and clenbuterol (light blue) and the blank (green) 

population. 545 

 

The three treated groups are clearly separated. The stanozolol treated group is separated in 

the horizontal direction from the diethylstilbestrol and clenbuterol groups. The clenbuterol 

and diethylstilbestrol groups are separated from each other in the vertical direction indicating 

that there is a difference but not as large as the one compared with stanozolol. This separation 550 
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makes sense since the underlying effect on the steroidogenesis is different for each treatment. 

Stanozolol is mainly affecting the androgen synthesis and diethylstilbestrol and clenbuterol 

affect the estrogen synthesis.  The blank population fits almost in the middle of the three 

treatments. Some of the blanks are projected in one of the treatments groups, this can be 

expected since the effects of exogenous treatments are subtle. Also, a few weeks after 555 

treatment urine samples will have a normal steroid profile and will be classified in the blank 

population, 

The samples used to build the predictive models originated from controlled animal 

experiments and therefore  are from a homogenous group for which all factors are controlled. 

Due to the fact that it is a homogenous group the variability between the animals will be 560 

relatively low. In real life samples will originate from different animals and have a higher 

variability . It is known that age and gender have an influence on steroid levels in urine 

samples and also race might influence the steroid profile. For example, Belgium Blues have 

low steroid levels compared to other races (unpublished data obtained at the author’s 

laboratory). Additionally, in adult females, progesterone and estrogen levels will vary 565 

throughout the oestrus cycle [41], adding even more variability. All of these factors imply 

that making a similar predictive model for other animals than (bull) calves, will be 

significantly more difficult. To evaluate the effect of a non-homogenous group on the model 

a large number (n=76) of samples of guaranteed non-treated animals was projected into the 

model. These samples originated from different animal experiments conducted over the years 570 

by our laboratory and included animals of different age and sex. 

It was found that from the projected blank samples 78% was classified as being a blank and 

the others were classified in one of the treated animals groups. In general a score of 95% is 
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considered as acceptable for classification analysis to detect treatment. This results in a 

screening result of maximum 5% false positive results.  The lower score of 78% can be 575 

explained by the increased heterogeneity when compared to the reference set of mainly 

male animals. This means that the composition of the reference group should match that of 

the test group (routine samples in practice).  This will ask careful study in the future, 

because broadening the composition of the reference group will inevitably decrease the 

sensitivity of the model to detect deviations. Despite this score the model can be used as a 580 

first indication (screening), whether a sample has a steroids profile deviating from the profile 

that belongs to a reference population of untreated animals. In routine analyses, this 

evaluation can only be performed when a large number of samples is collected during routine 

control programs. By evaluating this large data set a reliable “normal” steroid profile of 

animals can be defined. 585 

 

4. Conclusion 

A robust method was developed to quantify a large number of steroids and corresponding 

phase I and phase II metabolites in urine. The CCα for most compounds is lower than 1 ng 

ml-1 with a measurement uncertainty lower than 30%. The method was fully validated and 590 

was applied to assess the influence of exogenous growth promoters on the steroidogenesis. 

From the analysis of the treatment with clenbuterol it was concluded estradiol-17β-

glucuronide and estrone-3-glucuronide were down regulated. The mode of action of this 

effect is not known. Treatment with diethylstilbestrol, a strong estrogenic compound, 

increases the excretion of natural estrogenic compounds in urine. The treatment with a strong 595 
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androgenic compound, stanozolol, shows a similar effect on the upregulation of the 

androgenic excretion in urine. 

This study has shown that the steroid profiling analysis of urine is a useful tool to identify 

and quantify changes in the steroidogenesis after treatment with growth promoters. The effect 

of an estrogenic or androgenic treatment is visible after treatment and can be used in a 600 

generic control (effect based screening) strategy to determine if an animal belongs to a 

normal population or a treated population. A classification model where the steroid profiles 

before and after treatments are modelled using OPLS-DA, demonstrates that it is possible to 

identify animals that have been treated. Due to the limited number of animals and treatments 

assessed in this study, more animals obtained from farms and from different treatment 605 

regimens have to be added in the future.  

These results show that steroid profiling can be used as an additional approach to effect based 

screening.  To further decrease the number of false positive results, the reference sets will 

need to be improved in order to, as precise as possible, match the test populations. As such, it 

forms an important new approach for the untargeted analyses for hormonal active 610 

compounds. It opens the door to another type of detection of abuse of androgenic, estrogenic 

and beta-agonists compounds.  
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