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Abstract 

Nondestructive methods are of utmost importance for honey characterization. This study 

investigates the potential application of VIS-NIR hyperspectral imaging for detection of 

honey flower origin detection using machine learning techniques. Hyperspectral images of 52 

honey samples were taken in transmittance mode in the visible/near infrared (VIS-NIR) range 

(400-1000 nm). Three different machine learning algorithms were implemented to predict 

honey floral origin using honey spectral images. These methods, included radial basis 

function (RBF) network, support vector machine (SVM), and random forest (RF). Principal 

component analysis (PCA) was also exploited for dimensionality reduction. According to the 

obtained results, the best classifier (RBF) achieved a precision of 94% in a five-fold cross 

validation experiment using only the first two PCs. Mapping of the classifier results to the 

test set images showed 90% accuracy for honey images. Three types of honey including 

buckwheat, rapeseed and heather were classified with 100% accuracy. The proposed 

approach has great potential for honey floral origin detection. As some other honey properties 

can also be predicted using image features, in addition to floral origin detection, this method 

may be applied to predict other honey characteristics. 

Keywords: Honey Floral origin, NIR Hyperspectral imaging, Random forest, Radial basis 

function network, Support vector machine. 

1. Introduction 

With globalization of the honey market, which involves approximately 150 countries, 

identification of honey origin as well as the proof of its authenticity has become an important 

issue [1]. Demand for verification of honey floral origin has increased in the past few years, 

because of the high consumer preference for specific types of honey due to their differently 

sensory perceived and medicinal properties. Determination of the floral origin of honey is 

important from an economic point of view since monofloral honeys have higher commercial 
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value than polyfloral ones [2]. Therefore, the search for reliable methods indicating honey 

floral origin has been the focus of many studies [1]. 

Traditionally, analysis of honey pollen content or “melissopalynology” has been the most 

prevalent technique to classify different honey types. Some disadvantages of this method 

such as alteration of pollen content in honey by the action of bees or adulteration by the 

action of fraudsters have been reported [3]. Other shortcomings include: removal of pollen in 

the filtration process [4], inability to identify the source of some special honeys such as 

cotton, castor-oil plants, and rubber tree [3], as well as the difficulty in differentiating 

between various types of honey having similar pollen grains [5]. Furthermore, this method is 

not suitable for rapid routine analysis [6-7].  

The honey industry needs simple and fast methods (for routine analysis of numerous samples 

in a short period) for determination of honey flower origin. Thus, many studies have focused 

on the utilization of instrumental techniques allowing such analyses. Evaluation of some 

physical or chemical properties and sensory characteristics of honey have been utilized to 

determine floral origin [8-9]. Researchers have attempted to characterize various honey 

samples by phytochemical floral markers such as volatile compounds, phenolic compounds, 

carbohydrates and nitrogen containing compounds [1]. Some methods require sample 

preparation and are destructive, for example instrumental methods such as: atomic absorption 

spectroscopy (AAS) [10], high-performance liquid chromatography [11], gas 

chromatography coupled with mass spectrometry (GC-MS) [12-13], electro-spray mass 

spectrometry (ES-MS) [14], inductively-coupled plasma optical emission spectrometry (ICP-

OES) [7], thin-layer chromatography (TLC) [15], and high-performance anion-exchange 

chromatography with pulsed amperometric detection (HPAED-PAD) [16]. Different 

spectroscopy techniques such as, nuclear magnetic resonance (NMR) [17-18], Fourier 

transform–Raman (FT-Raman) [19], Fourier- transform infrared (FTIR) [20], mid-infrared 
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spectroscopy [21], and near-infrared (NIR) spectroscopy [21-24] have been utilized by 

various researchers. NIR spectroscopy is considered as a fast and non-destructive method for 

determination of honey floral origin among different spectroscopic techniques [24].  

Machine vision has been widely used as a non-destructive and fast method for food 

characterization. In the case of honey, this method was proposed as an effective approach for 

honey characterization by Shafiee et al (2013) [25]. In addition, prediction of some nutrients 

in honey was studied using RGB images [26]. To establish relationships between honey color 

and its nutrient content, authors have proposed the use of RGB images for honey 

characterization. However, this method would not be effective in differentiating honey 

samples having the same color [27]. Since, the intensity values of RGB images are measured 

in three channels, increasing the number of imaging bands can lead to an extension of the 

extracted information from an image. Hyperspectral images normally contain information in 

different bands with different resolutions [28]. Recently, authors applied hyperspectral 

imaging system successfully to honey adulteration detection [29]. The common definition for 

hyperspectral imaging is the acquisition of spatial images in many spectrally continuous 

bands measured from a remotely operated platform [30]. The basic principle of hyperspectral 

imaging is founded on the fact that all materials, due to the differences in their chemical 

composition and inherent physical structure, reflect, scatter, absorb, and emit electromagnetic 

energy in distinctive patterns at specific wavelengths. This characteristic is called spectral 

signature or spectral fingerprint, or simply the spectrum [31]. Spectral imaging allows the 

measurement of spatial and spectral information simultaneously that would not be measured 

with regular spectroscopic measurements or common imaging methods. Thus, it integrates 

the main advantages of spectroscopy and imaging for the quality prediction of food and 

agricultural products [28]. In essence, the spectral signature can be used to uniquely 

characterize, identify, and discriminate classes in each pixel of the image [32]. Various 
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studies have been performed to show the ability and use of spectral imaging for food 

characterization including: meat and fish (beef tenderness prediction [33], pork quality and 

marbling level assessment [34], fat, color and moisture distribution in salmon fillets [35-37]); 

fruits and vegetables (citrus canker detection [38], internal quality of blueberries [39], tomato 

ripeness measurement [40], and discrimination of biological contaminants in fresh-cut lettuce 

[41]); as well as milk and dairy products [42]). An advantage of this technique is that in most 

cases no sample preparation is required prior to measurement. The fact that no chemical 

solvents are used is an advantage over chemical methods from an environmental point of 

view. In addition to the generation of a mean spectrum (the same as spectroscopy), spectral 

imaging is also able to store a volume spectrum for each point of the tested sample. 

The purpose of this study is to develop a methodology to discriminate different types of 

unifloral honey (including: acacia, rapeseed, lime, buckwheat, and heather honey) using VIS-

NIR hyperspectral imaging system in using machine learning techniques as a fast and non-

destructive assessment tool. 

2. Materials and methods 

2.1. Honey samples 

A total of 52 honey samples were used in this study including: 8 black locust (acacia) 

(Robinia pseudoacacia L.), 10 buckwheat (Fagopyrum esculentum Moench), 9 heather 

(Calluna vulgaris (L.) Hull), 15 lime (Tilia spp.), and 10 rapeseed (Brassica napus L.) 

samples. All the honey samples were collected in Poland and their floral origin was 

confirmed using pollen analysis. After receipt, the samples were stored at 4°C in dark 

environment. Qualitative and quantitative melissopalynological analyses were carried out in 

conformance with the method of the International Commission of Bee Botany and the 

International Honey Commission [43-44]. Honey samples were transferred onto microtiter 

plates having 12 sample wells which allow for simultaneous measurement of 12 samples in 
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one image acquisition. They were placed in warm water bath overnight at 40°C to dissolve 

any crystalized sugars. A total of 20 samples (including 4 samples from each group) were 

kept out as the test set. 

2.2. VIS-NIR Image acquisition and processing 

Configuration of the VIS-NIR hyperspectral image acquisition set up is given in Fig.1. The 

system was calibrated prior to initial use [45]. Images were taken using a push-broom type 

line-scan camera consisting of a line scan spectrograph (Specim V10e) and a CMOS camera 

(PhotonFocus MV1, Finland). Due to the reflective nature of honey, image acquisition in 

reflectance mode produces considerable reflection from the surface of the samples. Thus, 

among different modes of hyperspectral imaging (namely: reflectance, transmittance, and 

translucence), transmittance mode was used as the sensing method for VIS-NIR imaging of 

honey samples. This mode involves minimum reflection from the honey surface. The light 

source and light tent are located underneath the sample.  

The detector on the opposite side captures the light transmitted through the sample. In order 

to prevent specular reflection directly entering the detector, black sheets were utilized to 

cover the surface of the light diffuser surrounding the honey sample. A halogen-tungsten 

lamp was used as a broadband illumination source for visible and near-infrared spectral 

regions. A diffuser chamber was placed on top of the lamp to diffuse and scatter the light in 

different directions. Honey samples were placed on the top center of the diffuser and the 

camera on the opposite side. A stepper motor with a user-defined speed was utilized to move 

the camera on top of the honey sample. The camera and other parts of the VIS-NIR imaging 

system were placed on or attached to an aluminum frame (700 × 800×900 mm) as shown in 

Fig.1.  

Image acquisition software (Isaac 2, custom-made software for hyperspectral data acquisition 

and visualization, Wageningen University & Research, 2014) was utilized to control the 
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different parts of the system to acquire images. The camera was moved over the honey 

samples scanning them line-by-line. Spectral images were collected in the spectral 

wavelength range of 400-1000nm with a resolution of 3.13 nm resulting in 192 spectral 

bands. The final dimension of each hyperspectral image is 100×656 pixels × 192 spectral 

bands, where the first two numbers designate spatial dimensions (x, y) and the third 

dimension stands for the number of spectral bands. This 3D data cube was saved as a folder 

with "tiff" images for each individual band along with meta information in xml format for 

further processing. In order to render the images independently of the spectral power 

distribution of the light source and the spectral sensitivity of the sensor, raw images were 

corrected using the following equation: 

R =
I- B

W- B
                                                                               (1) 

Where R is the corrected spectral image, I is the raw spectral image, W and B are white and 

black reference images, respectively. Because of utilizing the transmittance mode, the image 

of the background sheet was used as the white reference while the dark reference was 

acquired with the light source off and the camera lens completely covered with its opaque 

cap. The software implemented this correction before capturing each image. 

2.3. Pixel selection and spectral information pre-processing 

An image of the micro-titer plate containing honey samples was cropped from the 

background and extracted from each data cube. The images of 32 honey samples were 

implemented for pixel-base classification and 50 pixels were randomly chosen from a dataset 

collection of each honey group. Thus, for 5 different honey groups, 250 pixels were taken 

into consideration. Image background was expressed as a separate class such that 50 pixels 

were selected randomly for the background class. A total of 300 randomly selected pixels 

from six different classes were collected for spectral pixel-based classification. In the 
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classification stage, the total set of 300 pixels, was divided into 5 bins and 70% of each bin 

was applied for training the classifiers and the remainder was used as the test set. This 

procedure was repeated 5 times (five-fold cross-validation) and the average performance is 

reported.  The performance of the classifiers was assessed in terms of accuracy (ACC), 

precision (PRE), and recalls that are commonly stated as: 

TP+ TN
ACC =

TP+ FP+ TN+ FN
                                                            (2) 

TP
PRE =

TP+ FP
                                                                          (3) 

TP
Recall =

TP+ FN
                                                                         (4)                                  

Where TP is the number of true positives, FP is the number of false positives, TN is the 

number of true negatives and FN is the number of false negatives [46]. In addition, the area 

under the receiver operating characteristic (ROC) curve was measured. In the ROC curve, a 

two-dimensional space is formulated using sensitivity as the vertical axis and specificity as 

the horizontal one. An area of 1 represents a perfect test; while, an area of 0.5 represents a 

worthless test. This means that we can select a robust model through maximizing the area 

under the ROC curve [47]. 

2.4. Classification models 

Three classification methods including radial basis function (RBF) network, Support Vector 

Machine (SVM) and Random Forest (RF) were utilized to classify the spectral images. 

Artificial neural network (ANN) is one of the most important pattern recognition methods 

which has well-established performance in hyperspectral image processing [48]. The RBF 

network is a special type of Artificial Neural Networks (ANN) with several distinctive 

features. A RBF network consists of three layers, including: the input layer, the hidden layer, 

and the output layer. The input layer broadcasts the coordinates of the input vector to each of 
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the units in the hidden layer. Each unit in the hidden layer then produces an activation based 

on the associated radial basis function. Finally, each unit in the output layer computes a linear 

combination of the activations of the hidden units. How a RBF network reacts to a given 

input stimulus is completely determined by the activation functions associated with the 

hidden units and the weights associated with the links between the hidden layer and the 

output layer [49]. 

The support vector machine is a kernel-based machine learning algorithm. The basic idea of 

SVM is to find the optimal hyper plane as a decision surface that correctly separates the 

largest fraction of data points while maximizing the margins from the hyper plane to each 

class. As a kernel-based method, SVM appears to be especially advantageous in the analysis 

of hyperspectral data. SVM implements a maximum margin-based geological classification 

strategy, which shows the robustness of high dimensionality of the hyperspectral data and 

low sensitivity of the number of training data [48]. Different types of kernels such as 

polynomial, neural networks, and radial basis function (RBF) networks are used in SVM. 

This study uses the polynomial kernel for classifying different honey types. 

Another classifier in this study is the Random Forest. This algorithm is a classification 

method consisting of many decision trees. In the training phase, each tree is constructed 

based on a subset of independent features. To classify a new object, put the input vector down 

each of the trees in the forest, and finally one class is assigned to the object based on majority 

voting [50]. Analyses were performed using a program written in Matlab 7 (The MathWorks 

Inc, MA, 2012a, USA). 

 3. Results and discussion 

3.1. Hyperspectral image classification 



  

10 
 

A sample of the selected pixels and their related raw spectra are given in Fig.2, which shows 

the differences between the background and the honey samples. The blue spectrum belong to 

the honey samples whereas the red one is associated with the background.  

Due to the use of the transmittance mode for spectral image acquisition, there are some 

shadows around each well of the microtiter plate. In these areas the whole spectrum has a low 

intensity. As mentioned in the previous section, a Savitzky-Golay smoothing filter algorithm 

was used for noise removal. 

Transmittance spectra were converted into absorption (log 1/T) spectra. Fig 2 (B) shows 

average absorption spectra of the honey samples (50 pixels of each sample). The spectra 

illustrate typical spectral features and absorption bands similar to those reported for honey 

[51]. A clear absorption peak in the visible range at 400-425 nm is observed, which can be 

attributed to color variation of honey samples. Obviously, rapeseed honey despite its color 

similarity with lime and acacia honeys (white) shows a fairly different spectral pattern. 

Lighter honeys (except for rapeseed) have lower absorption in the visible range while in the 

NIR region the behavior is difficult to explain. It is especially the NIR range that is very 

important for discrimination between different floral origins.  

3.2. Dimensionality reduction by PCA  

High dimensional data in hyperspectral imaging should be reduced to remove the redundant 

data and represent the data distribution efficiently. Feature reduction can be achieved by 

selecting the more relevant subset of features or by transforming the data into a new set of 

axes in which differentiability is higher than in any subset of the original data [48]. 

Principal components analysis (PCA) is an eminent method for feature reduction which 

transforms the original independent variables into new axes [52]. In this study, PCA was 

carried out on all spectra. Loading plots of the first two components are given in Fig3 (A). 

The PC-1 loading plot does not emphasize specific wavelengths as all wavelengths have 
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approximately equal weights in the NIR region. PC-2 shows that the highest loadings 

(eigenvectors) are found around 425 nm in the VIS region. This indicates that color, as the 

leading factor in honey, contributes to the discrimination of the floral origin. However, it 

would not be effective in differentiating honey samples having the same color which is 

confirmed by the literature [27]. The score plot of the first two PCs is depicted in Figure 3 

(B). As it can be seen, the accumulative reliabilities of the first two PCs explain 99% of the 

total variance of spectra. It shows good separation of honey groups including acacia, 

buckwheat, rapeseed, and heather. Separation along PC1 appears to be more pronounced, as 

compared to separation along PC2 which concentrates on sample color as a differentiation 

factor. However, there is overlap between background-acacia and heather honey pixels. Some 

researchers indicated that in many cases PCA has minimal impact on detecting the statistical 

value for a target that is spectrally similar to the background against which it is sought [52]. 

Therefore, to achieve good separation, classification methods were applied as discussed 

below. The classification methods used in this study included SVM, RBF network and RF. It 

must be noted that the background of each spectral image was considered as a separate class.  

3.3. Prediction results 

Fig 4 illustrates the prediction performance of the three mentioned classifiers. This figure 

compares the precision of classifiers for feature vectors of the total spectrum as well as the 

reduced spectra of honey samples using PCA. Evidently, classification using the first two 

PCs or total spectrum as input features provides good classifier performance as precision is 

higher than 90% for all the three classifiers. The, RBF network provides the best 

discrimination between different types of honey as it achieved the highest precision value of 

94% while it took 0.54s to build the model. Performance evaluation of classifiers using total 

wavelengths as input feature vector did not show a significant change in the classifier 
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performance and even led to higher computational time (0.69s). Without dimensionality 

reduction, the SVM classifier shows the highest precision value (93%).  

Other classifiers including SVM and RBF network also have acceptable performance with 

negligible difference between them. Other performance parameters are presented in Table 1. 

Results show that RF and RBF classifiers achieved ROC values of 99% and 98%, 

respectively for total spectrum and 2Pcs as classifier inputs. The other parameters including 

accuracy and recall ingeminate the near perfect performance for both mentioned classifiers. 

Results show the PCA analysis efficiency in reducing computational cost; so the RBF 

classifier with 2 PCs as input vector is the best performing classifier in both aspects of 

performance and computational time. In conclusion, results show the capability of 

hyperspectral imaging in achieving good discrimination between different types of honey 

based on floral origin. Although acacia and lime samples cannot be visually differentiated 

due to having the same color the current samples can be discriminated perfectly using 

hyperspectral imaging. The same holds for rapeseed and heather honeys. Minimal spectral 

information in the NIR region is responsible for these good results and the inclusion of 

spectral information from the NIR region was essential to obtain the most accurate honey 

classification. It is noted that all the information from the VIS-NIR radiation is involved in 

determining the model ability for honey floral origin detection, not just a specific region of 

the spectrum. The spectrum contains information about the entire composition of honey not 

just a particular compound.  

Therefore, hyperspectral imaging proved to be beneficial in accomplishing an imaging 

discrimination system for honey floral origin detection. Since honey color changes over time, 

further studies are needed to determine the efficiency of NIR imaging during storage time. 

3.2. Hyperspectral mapping and misclassification investigation 
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The result of classification can be transferred to the image to recognize its class (classifier 

mapping). Because of the good performance of the RBF network classifier for pixel-based 

classification of hyperspectral images, the trained RBF network classifier was applied to the 

PC-images (the first two PCs resulting from PCA analysis were applied for generating PC 

score images) of the 20 honey samples that were kept out for classifier testing. The resulting 

images were presented in colors where each color corresponds to a different type of honey, 

while the white color is used for the background. Pixels of each class (encountered in each 

sample) were counted to determine a majority “voting number” considered as the class of 

honey sample. The classifier was mapped into the images and the resulting images are shown 

in Fig 5. Vividly, from the image, the outer sides of microtiter for all types of honey are 

misclassified as rapeseed honey pixels in the image. Because of the curved surface of the 

samples at the outer edge, light transmittance through the samples was reduced. The resulting 

images also showed that one acacia sample has been classified incorrectly as rapeseed honey. 

In addition to this, one lime sample was classified as acacia honey. However, all other 

samples of heather, buckwheat, and rapeseed honeys were classified correctly.  

4. Conclusions 

This study was carried out to investigate the capabilities of advanced classifiers in 

conjunction with hyperspectral imaging for classification of various types of honey based on 

floral origin. Since hyperspectral imaging is a combination of machine vision and 

spectroscopy, it combines the advantages of both methods. Classification results showed that 

hyperspectral imaging could provide a robust method for discriminating different types of 

honey. Although, commercial honey is rather a homogenous product but in some cases 

crystallization will occur during the storage time and in the case of using NIR spectroscopy, 

sample preparation will be needed. The main advantage of hyperspectral imaging is that it 

can be operated on pixels anywhere in the sample. Classification results can be mapped on 
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the acquired images, showing detailed spatial characteristics of the samples. Use of this 

spatial information, makes it possible to cope with impurities such as bubbles, sugar crystals 

and any contaminants. By using a simple “majority voting” mechanism, classification 

accuracy can be improved significantly. This method is fast and non-destructive in 

comparison with the traditional methods. Moreover, it provides the capability of accurate 

visualization of different classes of honey which is not possible with traditional methods. It 

alleviates the difficulties involved in other methods requiring sample preparation to remove 

bubbles, sugar crystals, and impurities found in natural honey. Since the efficiency of using 

visible imaging for measuring honey color and nutrient content has been indicated in the 

literature, the possibility of applying hyperspectral imaging for characterization of different 

aspects of honey (other than floral origin) in the future is promising.  
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Figure 1. Hyperspectral imaging system overview (A), Sample placement (B), Black sheets 

for light covering (C) 
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Figure 2. Sample of the selected image pixels and their related raw spectra for honey (blue) 

and background (red) (A), Average absorbance for the five honey floral origin(B) 
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Figure 3. The loadings plot of PC1 and PC2 (A), Score plot of PC1 and PC2 (B). 
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Figure 4. Comparison of classifiers precision 
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Figure 5- Honey class images as grouped by the RBF network 
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Table 1. Performance measure details for three classifiers (mean± standard deviation) 

Classifier input  RBF SVM RF 

 ROC 0.97±0.012 0.98±0.001 0.99±0.004 

Total spectrum Recall 0.90±0.008 0.90±0.014 0. 92±0.015 

 ACC (%) 90.97±0.006 90.52±1.5 0.92±1.57 

 ROC 0.98±0.039 0.961±0.093 0.965±0.032 

2PC Recall 0.92±0.006 0.844±0.069 0.889±0.099 

 ACC (%) 92.22±0.55 84.4±1.28 88.89±1.26 

 

 

 




