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PROPOSITIONS 

 

1. A ‘one-size fits all’ indicator for methane emission that can be measured in bovine milk 

is not achievable.  

(this thesis) 

 

2. Counterintuitively, combining indicators for methane emission that can be measured 

in bovine milk does not result in a better estimation of methane emission of dairy cows 

fed a wide range of roughage-based diets. 

(this thesis) 

 

3. The second challenge of interdisciplinary research is understanding each other’s jargon, 

concepts, and reasoning.  

 

4. Reviewers of scientific articles are sometimes like children – you should not want to 

win every battle. 

 

5. Introducing yourself as a biologist comes with unrealistic expectations. 

 

6. To derive more robust conclusions from animal research, stimulating their natural 

behavior is needed, which counteracts with the reduction in the number of animals 

used.  

 

7. Typical driving behavior is contrary to evolutionary beneficial behavior.  
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ENTERIC FERMENTATION 

 The rumen harbors a diverse microbial population comprising mainly bacteria, 

protozoa, fungi, and archaea. These microbes reside in the rumen symbiotically with the host 

and grow through the process of microbial fermentation of feed ingested by the host, also called 

enteric fermentation. With this process, ruminants are able to effectively turn human inedible 

biomass, such as coarse plant material, into high quality protein in the form of milk and meat 

for human consumption (Gerber et al., 2015).  

 Enteric fermentation occurs in the gastrointestinal tract of ruminants, predominantly 

within the rumen (~87%) and to a small extent in the large intestines (~13%) (Murray et al., 

1976). Microorganisms in the rumen hydrolyze protein and carbohydrates into amino acids and 

sugars, which in turn are fermented into amongst others volatile fatty acids (VFA), hydrogen 

(H2), and carbon dioxide (CO2). The VFA are partly absorbed through the rumen wall and are 

the main energy supply required for maintenance and productive functions of the ruminant 

(Boadi et al., 2004). As a final step, methanogenic archaea generate metabolic energy in the form 

of ATP for their maintenance and growth, by forming methane (CH4) using mainly CO2 and H2 

(Ellis et al., 2008; McAllister and Newbold, 2008). This process of methanogenesis is essential 

for a good performance of the rumen because it assures a low concentration of H2 in the rumen, 

allowing the ruminal microbial population to function under optimal conditions to support the 

continuation of substrate fermentation (McAllister and Newbold, 2008). Van Lingen et al. (2016) 

however demonstrated that not all main fermentation processes, viz. glucose fermentation 

pathways, are controlled by the ruminal concentrations of H2. The CH4 produced by the ruminal 

methanogens is predominately released into the environment through eructation and breath, and 

as a greenhouse gas (GHG) significantly contributes to global warming.  

 

THE ENVIRONMENTAL IMPACT OF ENTERIC FERMENTATION 

Methane is, together with CO2 and nitrous oxide, one of the three main GHG and has 

a global warming potential of 28 CO2 equivalents (Myhre et al., 2013). Methane originates from 

natural sources, such as wetlands, and from anthropogenic sources, such as natural gas 

production, landfills, and agriculture (Lassey, 2008). The livestock sector was estimated to be 

responsible for approximately 14.5% of total global anthropogenic GHG emissions (Gerber et 

al., 2013). Enteric fermentation is the main source of GHG emissions from dairy cattle, 

representing 46% of the total emissions in the dairy supply chain (Gerber et al., 2013). 

Furthermore, based on the expected farming and consumer lifestyle practices, global CH4 

emissions from enteric fermentation is expected to increase by 70% in 2055, compared with 

1995 (Popp et al., 2010). This makes enteric CH4 emission one of the main targets of the GHG 

mitigation objectives of the dairy cattle sector (Hristov et al., 2013a). At present, there are several 

strategies to mitigate CH4 emissions. For example, increased animal productivity, which can be 

achieved through improvements in animal genetics, feeding, reproduction, health, and overall 

management, may allow a reduction of the number of animals needed to maintain constant 

output with a reduced CH4 emission (Hristov et al., 2013a). Additionally, several altered feeding 

strategies as well as other farm management practices are available to mitigate CH4 emissions, 

which have been extensively reviewed by, for example, Hristov et al. (2013a,b), Montes et al. 
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(2013), and Knapp et al. (2014). The effect of a mitigation strategy may vary depending on the 

unit in which enteric CH4 production can be expressed. See Textbox 1 for a description of the 

different units to express enteric CH4 production.   

 

TECHNIQUES TO QUANTIFY AND MEASURE ENTERIC METHANE 

PRODUCTION 

Accurate and repeatable measurements of CH4 emission from individual dairy cows 

are required to assess the efficacy of possible mitigation strategies, to decrease uncertainties 

associated with national GHG inventories, and to develop protocols for genetic selection for 

cows with reduced CH4 emission (Hammond et al., 2016). There are several techniques to 

estimate or measure enteric CH4 production of dairy cows, including mathematical models, the 

in vitro gas production technique, and several in vivo measurement techniques.  

A wide range of mathematical models have been developed to estimate CH4 emission 

from ruminants using nutrient intake data as input. These include dynamic mechanistic models, 

which estimate CH4 emission based on a representation of microbial fermentation processes that 

occur in the rumen and hindgut, and empirical (or statistical) models, which relate nutrient intake 

to CH4 emission directly (Bannink et al., 2011). Dynamic mechanistic models may be more 

successful in predicting observed variation in CH4 emission than empirical models, but they 

require detailed dietary inputs which may not be commonly available at the national level or at 

the individual farm level (Alemu et al., 2011). Because mechanistic models have, in comparison 

with empirical models, a more detailed representation of the underlying mechanisms of microbial 

activity and methanogenesis, they have an advantage in terms of evaluating the effectiveness of 

CH4 mitigation options that may be implemented on farm. Empirical models are however very 

useful because of their simplicity and ease of use. The accuracy of empirical models to evaluate 

specific dietary mitigation measures is generally lower than that of mechanistic models because 

no diet specific information is included. Subsequently, use of empirical models may introduce 

errors into the accounting of mitigation measures in inventories of GHG emissions and lead to 

incorrect mitigation recommendations (Ellis et al., 2010). 

 Various techniques are available to measure CH4 emission. The in vitro gas production 

technique has been widely used to evaluate the nutritive value of feeds for ruminants, and in the 

last decade to assess the CH4 production potential of different feeds as well (Yáñez-Ruiz et al., 

2016). As recently reviewed by Yáñez-Ruiz et al. (2016), in vitro and in vivo results, however, are 

poorly related. Therefore, in vitro CH4 production results with well-buffered and standardized 

fermentation conditions should be interpreted with care and may not reflect the in vivo CH4 

production. According to Yáñez-Ruiz et al. (2016), for the in vitro gas production technique, one 

should only use rumen fluid from donor animals that were fed the same diet as incubated or 

should be of similar nutrient composition, because using rumen fluid from adapted versus non-

adapted animals significantly affects in vitro CH4 production. The importance of using rumen 

fluid of adapted animals has also been demonstrated by Klop et al. (2017). However, as 

demonstrated by Hatew et al. (2015), even inoculum obtained from specifically adapted animals 

may still lead to a large difference between CH4 production observed in vitro and in vivo.  
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Text box 1. Different units to express enteric methane production 

 

There is currently limited consensus on which unit of CH4 emission to use for 

evaluating the CH4 mitigation potential of altered feeding strategies or for lowering the 

carbon footprint of milk production through genetic selection (Negussie et al., 2017). It 

could be either of the three units CH4 production, CH4 yield, or CH4 intensity. When 

referring to CH4 production, the typical unit is mass (g) or volume (L) per unit of time (e.g., 

day), per animal. The obvious problem with this unit of CH4 emission is that it is highly 

correlated with the dry matter intake (DMI) of the animal (De Haas et al., 2017). Most of 

the CH4 production originates from enteric fermentation, hence more fermentation due to 

a higher DMI will increase the total CH4 production per day. Additionally, CH4 production 

is also highly correlated with the production trait of interest: in sheep or beef, meet 

production; in dairy, milk production (De Haas et al., 2017). A higher milk yield is often 

associated with a higher DMI (Garnsworthy et al., 2012), and, as already explained above, a 

higher DMI is often associated with a higher daily CH4 production (e.g., Hristov et al., 2013). 

Hence, a positive association between milk yield and CH4 production exists in dairy cows.  

For breeding purposes, CH4 production might be the best phenotype of CH4 

emission to breed for (Lassen and Løvendahl, 2016; De Haas et al., 2017; Negussie et al., 

2017). Not only does it represent the direct goal, namely the trait of interest which needs to 

be improved (Herd et al., 2013), but also the most correct way to breed for reduced CH4 

emission, because the relationship with feed intake or milk production could be accounted 

for by including these in the final selection index or scheme (De Haas et al., 2017; Negussie 

et al., 2017). It is however questionable whether it might be more effective or accurate to 

directly use feed intake-corrected CH4 emission or milk production-corrected CH4 emission 

(e.g., CH4 yield or CH4 intensity) as the breeding goal. 

When referring to CH4 yield, the typical unit is g or L of CH4 per kg DMI. To 

exclude the effect of feed intake in the expression of CH4 emission, Dijkstra et al. (2011) 

proposed that the evaluation of nutritional mitigation strategies should be based on CH4 

production relative to feed intake as this avoids the confounding effect of DMI. There are, 

however, uncertainties in measuring DMI at the farm level, making an accurate relation of 

CH4 to DMI difficult in practice (Bannink et al., 2011). In addition, the nutritional value of 

feed can affect animal productivity despite a similar DMI. Therefore, another unit of 

expression refers to CH4 intensity (g or L of CH4 per unit of product yield). The CH4 

intensity for dairy cattle is usually expressed as CH4 production per unit of fat- and protein-

corrected milk. As clearly demonstrated by Warner et al. (2015), CH4 intensity takes the value 

and characteristics (i.e., digestibility) of gross energy intake by dairy cows into account, 

illustrating that this unit of CH4 emission has great value. In the context of global food supply 

and efficient use of resources it is important to consider the latter two units, CH4 yield and 

CH4 intensity, in particular. 
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The need for high throughput measurements of enteric CH4 emission has led to the 

development of a variety of approaches for measuring this emission in vivo, many of which have 

been reviewed by Hammond et al. (2016). Enclosure techniques, tracer gas, and short-term 

measurements are among those techniques and are briefly described below. The open-circuit 

respiration chambers are a 'gold standard' in terms of accuracy and precision under the condition 

that they are routinely calibrated and gas recovery approximates 100% (Hammond et al., 2016). 

However, CH4 measurements are conducted under highly controlled conditions which do not 

exist under practical farming. Additionally, the costs of construction and operation are high and 

the throughput capacity of the system is limited, making this technique unsuitable for large scale 

measurements. Therefore, alternative high throughput measurement techniques have been 

developed. 

A commonly used CH4 measurement technique is the sulfur hexafluoride (SF6) tracer 

technique; a technique suitable for penned as well as free ranging and grazing animals 

(Hammond et al., 2016). Although the SF6 tracer technique allows for measurement of CH4 

emission from many individual animals whilst in their natural environment, the SF6 tracer 

technique provides a mean CH4 emission that can differ from that obtained for the same animals 

in respiration chambers (Hammond et al., 2016). Also, within- and between-animal variation is 

larger when using the SF6 tracer technique for dairy cattle compared to the respiration chamber 

technique (Grainger et al., 2007). More recently, however, Deighton et al. (2014) demonstrated 

that a modified SF6 tracer technique (e.g., a constant sample collection rate) reduced errors 

associated with SF6 release, sample collection, and analysis. Therefore, these authors concluded 

that their modified SF6 tracer technique can be an accurate and versatile research tool for 

measuring CH4 emission of ruminants. Relative to the climate respiration chambers, the SF6 

tracer technique has a higher throughput in terms of animal measurements obtained relative to 

time and cost, but this technique is labor intensive and dependent on implementation and 

technical skill to minimize experimental error (Hammond et al., 2016). 

Other techniques that have been developed involve the short-term measurement of 

CH4 emission with spot measurements of exhaled CH4 at certain time points (e.g., at milking or 

during feeding). These techniques are usually automated, non-invasive, and non-intrusive, 

allowing a high throughput of animals, such as the GreenFeed system, so-called ‘sniffer’ 

techniques, CH4:CO2 ratio techniques, and the handheld laser CH4 detector (Hammond et al., 

2016). Methane emission from an animal is, however, not constant throughout the day, with 

diurnal patterns affected by the diet, feed allowance and feeding pattern. The timing and duration 

of sampling of the short-term measurement techniques is therefore critical for accuracy as well 

as precision, and there is in principle a high potential of biased measurement (or estimates 

derived from those measurements) of CH4 emission. Hence, serious concerns regarding the 

accuracy, repeatability, and precision of the data obtained with such short-term measurement 

techniques exist (Hammond et al., 2016). 
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PROXIES 

 As described above, in the last few years efforts have been made to develop direct, 

reliable, and low-cost measurement techniques for CH4 emissions of individual animals. 

However, progress has not been as fast as desired, mainly because direct measurement of CH4 

on an individual-animal basis is still difficult and expensive (Pickering et al., 2015). This has 

stimulated researchers to look for proxies for CH4 emission of dairy cattle as alternatives for 

direct CH4 measurement techniques. 

Proxies for CH4 emission of dairy cows are indicators or indirect traits that are 

correlated with enteric CH4 production. There are several criteria that a proxy needs to adhere 

to, in order to actually be valuable. From a technical point of view, it is important that a proxy 

is both accurate and precise when estimating CH4 emission. Accuracy refers to how closely the 

model-predicted value(s) is (are) to the true observed value(s). If a proxy is not accurate, it could 

result in a biased prediction (over- or underprediction) of CH4 emission and thus systematically 

deviates from the reality (Tedeschi, 2006). Precision refers to the magnitude of the scatter around 

the average mean. If a proxy is not precise, the proxy is most likely not able to detect differences 

among model predictions (Tedeschi, 2006). Ideally, in terms of accuracy and precision, the proxy 

should be able to estimate CH4 emission of both individual cows and of dairy herds, with a 

certain level of robustnesst (also accurate and precise CH4 estimates under different dietary 

regimes, environmental condition, farming systems, and so on), to support farmers in their 

management to reduce CH4 emission. If the precision and accuracy of such proxies is 

satisfactory, they might serve as the much-needed alternative to expensive direct CH4 

measurements. To achieve this, a proxy should also be valuable from a practical points of view, 

such as easy to measure at relatively low costs on a large scale. These practical issues can be 

assigned to the attributes simplicity, costs, invasiveness, and throughput (Negussie et al., 2017). 

Simplicity refers to the ease with which proxies can be measured. Costs refer to all costs 

associated with the measurement of the proxy, including the costs of construction, operation, 

and analysis. Invasiveness is the intensity of animal handling that is required to measure the 

proxy, and throughput is the number of observations within in a given period per animal.  

Negussie et al. (2017) assessed existing potential proxies for CH4 emissions of dairy 

cows both in terms of statistical and practical aspect, including proxies related to (1) feed intake 

and feeding behavior, (2) rumen function, metabolites, and microbiome, (3) milk production and 

composition, (4) hindgut and feces, and (5) measurements at the level of the whole animal (e.g., 

body condition score, body weight, and lactation stage). To illustrate, results of Negussie et al. 

(2017) indicate that proxies based on samples from the rumen or related to rumen sources are 

poorly to moderately related to enteric CH4 production (i.e., statistical aspect). Moreover, these 

proxies were considered too costly and difficult for routine on-farm implementation (i.e., 

practical aspect). Proxies related to body weight, milk yield, and milk composition (e.g., milk 

fatty acids) appeared to be moderately to highly accurate predictors of enteric CH4 production 

(i.e., statistical aspect) and are relatively simple, inexpensive, and easy to implement in practice 

(i.e., practical aspect). Hence, one can imagine that latter type of proxies are more suitable proxies 

for CH4 emission than the rumen related proxies. In particular, milk mid-infrared spectroscopy 

is a promising proxy; accurate, cheap, and easily implemented in routine milk analysis at no extra 
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cost (Negussie et al., 2017). The latter authors emphasized that no single proxy may accurately 

predict enteric CH4 production, and that combining proxies may be the best way forward. 

Combining proxies for CH4 emission will allow improved description of independent sources 

of variations in CH4 emissions and result in the most accurate prediction of CH4 emissions in 

dairy cows (Negussie et al., 2017). Examples of combinations of proxies include prediction of 

CH4 emission based on diet-specific milk fatty acid composition or milk mid-infrared 

spectroscopy combined with lactation stage.  

It is important to note though that enteric CH4 production is influenced by many 

factors, including dietary factors (such as the type and the amount of feed), animal factors (such 

as milk yield, body weight, activity, lactation stage, and genetic traits), management factors (such 

as feeding frequency), and environmental factors (such as seasons and temperature) (e.g., Hristov 

et al., 2013a,b). These factors together result in large variation in CH4 emission of dairy cattle, 

making it a challenge to develop a universal CH4 proxy.    

 

RESEARCH OBJECTIVES 

 As outlined above, proxies might serve as a good alternative to quantify CH4 emission 

of dairy cattle. Therefore, the general objective of the PhD study described in this thesis was to 

develop a proxy for CH4 emission that can be measured in milk of dairy cows. To this end, a 

large range of chemical analyses was performed on milk samples obtained from cows fed a wide 

range of roughage-based diets while housed in climate respiration chambers. These data on milk 

composition were subsequently used to examine relationships between the chemical 

composition of milk and the CH4 emitted by the cows. This PhD study builds further on a CH4 

prediction model recently proposed by Dijkstra et al. (2011) which is exclusively based on the 

fatty acid composition of milk. It is hypothesized that the addition of other metabolites in this 

prediction model will enhance its predictive power and thus will lead to a better indicator in milk 

for enteric CH4 production of dairy cows. For the identification of these components (i.e., fatty 

acids, volatile metabolites, and non-volatiles metabolites) in milk, gas chromatography, gas 

chromatography-mass spectroscopy, and nuclear magnetic resonance equipment, respectively, 

were required. These techniques are, however, not suitable for large-scale measurements. 

Therefore, to apply the indicator in practice, a method based on Fourier-transform infrared 

spectroscopy has been used in this PhD study as well. Overall, the specific objectives of this 

PhD study were:  

1. to quantify the relation between enteric CH4 production and individual milk fatty acids, 

volatile metabolites, and non-volatile metabolites based on data of dairy cows fed diets 

with increasing amounts of corn silage at the expense of grass silage; 

2. to determine the CH4 prediction potential of milk fatty acids alone, volatile metabolites 

alone, non-volatile metabolites alone, and the combination of these three component 

groups; 

3. to determine the CH4 prediction potential of milk Fourier-transform infrared 

spectroscopy; 
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4. to evaluate the robustness of the established relationships between enteric CH4 

production and milk fatty acids, volatile metabolites, and non-volatile metabolites upon 

linseed oil supplementation in the diet of dairy cows with a different DGAT1 K232A 

polymorphism.   

The research presented in this thesis was part of the TI Food and Nutrition project entitled 

'Reduced methane emissions of dairy cows' (see Textbox 2 for a brief project description). 

   

 

 
 

  

Textbox 2. TI Food and Nutrition program Reduced methane emissions from dairy 

cows: towards sustainable dairy cattle production by increased understanding of 

genetic variation and rumen functioning 

 

This multi-disciplinary project aimed to increase our knowledge regarding CH4 

emission by dairy cows in order to decrease the ecological footprint of dairy production and 

to contribute to the goal of a 30% decrease in greenhouse gas emission from the Dutch dairy 

sector by 2020. For this purpose, a proxy for CH4 emission from individual cows based on 

milk metabolite composition was developed, with the use of data from climate respiration 

chamber experiments originating from the Dutch 'Low Emission Animal Feed' research 

program. Another proxy was developed based on gases expelled by cows, and was used to 

explore the genetic variation in CH4 emission between cows. These two proxies can be used 

as simple and inexpensive quantification tools for estimating enteric CH4 emissions from 

dairy cattle under field conditions. The understanding of processes related to CH4 

production has increased by characterization of the composition and functioning of micro-

organisms and the metabolites produced in the rumen of the cow in response to feed 

composition and diurnal patterns of feed intake. The interaction between diet, microbiome 

composition, and genotype of animals has been explored to obtain a more holistic 

understanding of factors affecting ruminal CH4 production. Various modeling approaches 

have been applied to improve the systematic understanding of rumen fermentation. These 

approaches and their results provided a profound basis for relating CH4 production to 

feeding regime and feed composition.  

The multidisciplinary project team was comprised of experts in Animal Breeding 

and Genetics, Animal Nutrition, Dairy Science and Technology, and Microbiology. The team 

was based at Wageningen University and collaborated with researchers from the industrial 

parties CRV, Lely Industries, and Qlip. Financial support was obtained from the Centraal 

Bureau Levensmiddelenhandel (CBL), Cooperative cattle improvement organization CRV, 

Federatie Nederlandse Levensmiddelen Industrie (FNLI), Lely Industries NV, Dutch 

Ministry of Economic Affairs, Qlip BV, Wageningen University & Research, and ZuivelNL. 



GENERAL INTRODUCTION 

 

15 

 

OUTLINE OF THE THESIS 

 The research in this thesis focuses on the development of a proxy for CH4 emission 

that can be measured in milk of dairy cows. Chapter 2 provides an overview of recent research 

that relates milk fatty acids with CH4 emission, and discusses the opportunities and limitations 

of using milk mid-infrared spectroscopy to estimate CH4 emissions of dairy cattle. Chapter 3 

describes the effects of replacing grass silage with corn silage on enteric CH4 production, rumen 

VFA concentrations, milk production, and milk composition including the fatty acid profile. 

Based on the data from the experiment described in Chapter 3, the relation between enteric CH4 

production and individual volatile metabolites and non-volatile metabolites is quantified and 

described in Chapter 4. Chapter 5 describes the CH4 prediction potential of milk fatty acids 

alone, volatile metabolites alone, non-volatile metabolites alone, and the combination of these 

three (also using data from the experiment described in Chapter 3). In Chapter 6, the relation 

between enteric CH4 production and the individual milk metabolites as well as the CH4 

prediction potential of the milk metabolites is described, using a larger dataset comprising 6 

experiments and a wide range of roughage-based diets. Chapter 7 describes the effect of dietary 

linseed oil, the DGAT1 K232A polymorphism, and their interaction, on enteric CH4 production, 

rumen VFA concentrations, milk production, and milk composition including fatty acid profile. 

In Chapter 8 the robustness is evaluated of the relationship between enteric CH4 production 

and the fatty acids, volatile metabolites, and non-volatile metabolites in milk, upon linseed oil 

supplementation in the diet of dairy cows with a different DGAT1 K232A polymorphism. In 

Chapter 9, the CH4 prediction potential of milk Fourier-transform infrared spectroscopy is 

determined and compared with the prediction potential milk fatty acids. Finally, Chapter 10 

comprises a general discussion of the results in this thesis, including suggestions for future 

research, and providing general conclusions on the applicability and development of milk proxies 

for enteric CH4 emission.   
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ABSTRACT 

Enteric methane (CH4) production is among the main targets of greenhouse gas 

mitigation practices for the dairy industry. A simple, robust and inexpensive measurement 

technique applicable on large scale to estimate CH4 emission from dairy cattle would therefore 

be valuable. Milk fatty acids (MFA) are related to CH4 production because of the common 

biochemical pathway between CH4 and fatty acids in the rumen. A summary of studies that 

investigated the predictive power of MFA composition for CH4 emission indicated good 

potential, with predictive power ranging between 47 and 95%. Until recently, gas 

chromatography (GC) was the principal method used to determine the MFA profile, but GC is 

unsuitable for routine analysis. This has led to the application of mid-infrared (MIR) 

spectroscopy. The major advantages of using MIR spectroscopy to predict CH4 emission include 

its simplicity and potential practical application at large scale. Disadvantages include the inability 

to predict important MFA for CH4 prediction, and the moderate predictive power for CH4 

emission. It may not be sufficient to predict CH4 emission based on MIR alone. Integration with 

other factors, like feed intake, nutrient composition of the feed, parity, and lactation stage may 

improve the prediction of CH4 emission using MIR spectra.   

Keywords: mid-infrared spectroscopy, milk fatty acids, methane emission, dairy cows 

 

INTRODUCTION 

Enteric methane (CH4) is produced in the gastrointestinal tract of ruminants, mainly 

the rumen, by methanogenic archaea. Enteric CH4 comprises 17% of global CH4, and is therefore 

the single largest source of anthropogenic CH4 (Knapp et al., 2014). In addition to its relevance 

of environmental impact, CH4 represents an energy loss, making CH4 emission one of the main 

targets of greenhouse gas (GHG) mitigation practices for the dairy industry (Hristov et al., 2013). 

The quantification of CH4 emission is important to understand factors that contribute to the 

variation and to identify effective CH4 mitigation strategies. Several techniques, such as the 

climate respiration chambers, the sulfur hexafluoride tracer (SF6) technique, and mathematical 

models, have been developed to estimate CH4 emission, many of which have been reviewed by 

Kebreab et al. (2006) and Storm et al. (2012). However, a simple, robust and inexpensive 

measurement technique applicable on large scale to estimate CH4 emission from dairy cattle in 

commercial practice is still missing and would be valuable for the dairy industry (Van Lingen et 

al., 2014). Therefore, the potential of various metabolites in milk as biomarkers of CH4 emission 

gained interest, including milk fatty acids (MFA; Fievez et al., 2012). The aim of this review is 

to provide an overview of the recent research that relates MFA with CH4 emission, and to discuss 

the opportunities and limitations of using mid-infrared (MIR) spectroscopy to estimate, direct 

and indirect, CH4 emission of dairy cattle.  

 

MILK FATTY ACIDS AND METHANE EMISSION 

Several studies have related individual MFA (g/100 g fatty acids; FA) to CH4 emission 

in dairy cows (Chilliard et al., 2009; Castro-Montoya et al., 2011; Dijkstra et al., 2011; Mohammed 

et al., 2011; Van Lingen et al., 2014; Williams et al., 2014; Dijkstra et al., 2016; Rico et al., 2016). 

Straight short- and medium-chain fatty acids (SMCFA) in milk arise almost exclusively from de 
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novo synthesis in the mammary gland from acetate and β-hydroxybutyrate produced in the rumen 

(Bernard et al., 2008). Ruminal acetate and butyrate are positively associated with enteric CH4 

emission (Boadi et al., 2004; Ellis et al., 2008). Hence, a positive relationship between CH4 

emission and SMCFA can be assumed due to the common biochemical pathway (Ellis et al., 

2008; Chilliard et al., 2009). Odd- and branched-chain fatty acids (OBCFA) in milk can also be 

used to predict CH4 emission (Fievez et al., 2012). Propionate is a substrate for de novo synthesis 

of C15:0 and C17:0 in the mammary gland, and given the negative relation between propionate 

and CH4 emission (Boadi et al., 2004; Ellis et al., 2008), a negative relation between CH4 emission 

and these linear odd-chain FA in the milk can be assumed. In addition, milk OBCFA are of 

microbial origin in the rumen, which in turn relate directly to CH4 emission. Fibrolytic bacteria 

are generally enriched in iso FA, whereas amylolytic bacteria contain high amounts of linear odd-

chain FA and anteiso FA (Vlaeminck et al., 2006). Hence, a positive relation between CH4 

emission and iso FA can be assumed, as well as a negative relation between CH4 emission and 

linear odd-chain FA and anteiso FA (Fievez et al., 2012).  

A higher content of dietary unsaturated fatty acids (UFA) is negatively associated with 

CH4 emission (Patra et al., 2013; Van Lingen et al., 2014). This CH4 suppressing effect may be 

related to the intermediary metabolic products resulting from biohydrogenation (BHG) of UFA 

in the rumen, such as C18:1 and C18:2 isomers (Mohammed et al., 2011). Because several long-

chain UFA in milk originate from dietary UFA and their BHG products formed in the rumen, a 

negative relation can be assumed between long-chain UFA in milk and CH4 emission (Van 

Lingen et al., 2014).  

A negative relation can also be expected between CH4 emission and BHG intermediates 

in milk, because certain dietary strategies, including low-fiber diets and high-concentrate diets, 

alter the rumen environment and lower ruminal pH (Boadi et al., 2004). This often results in 

microbial population shifts, which have been associated with modifications in the BHG 

pathways. With a lower ruminal pH, BHG becomes more incomplete (i.e., concentrations of 

BHG intermediates increase) and C18:1 trans-10 replaces C18:1 trans-11 as the predominant trans 

C18:1 isomer of milk fat (Bauman and Griinari, 2003). Furthermore, a lower ruminal pH reduces 

the activity of rumen methanogens, and inhibits fiber fermentation, whereas starch fermentation 

is not reduced. Hence, propionate production is favored, thereby reducing H2 availability for the 

production of CH4 (Bannink et al., 2008). 
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The relation between MFA and CH4 emission has resulted in the suggestion that MFA 

composition can be used to predict CH4 emission in lactating dairy cows. Table 2.1 summarizes 

the studies that have investigated the predictive power of MFA composition for CH4 emission 

and derived multivariate models to predict CH4 emission (Chilliard et al., 2009; Dijkstra et al., 

2011; Mohammed et al., 2011; Van Lingen et al., 2014; Rico et al., 2016). In all studies, MFA 

profile was elucidated using gas chromatography (GC), and detailed information regarding the 

GC method used to determine the MFA profile is provided in the respective studies. In general, 

the significant correlations found between individual MFA and CH4 emission are moderate 

(correlation coefficient ranging between 0.3 and 0.7), with the exception of the ones reported by 

Chilliard et al. (2009). Four studies (Chilliard et al., 2009; Dijkstra et al., 2011; Van Lingen et al., 

2014; Rico et al., 2016) associated OBCFA with CH4 emission, with varying results; C15:0 was 

negatively related with CH4 production (g/d) in one study (Rico et al., 2016), positively related 

with CH4 production (g/d) and intensity (g/kg fat- and protein-corrected milk; FPCM) in two 

studies (Chilliard et al., 2009; Van Lingen et al., 2014), and not related with CH4 yield (g/kg dry 

matter intake; DMI) in another study (Dijkstra et al., 2011). All studies have relative similar 

results for the C18:1 and C18:2 isomers, which were generally found to be negatively related to 

CH4 emission, and all studies have relative similar results for the SMCFA, which were generally 

found to be positively related to CH4 emission. However, the specific SMCFA positively 

associated with CH4 emission differ between studies, with C10:0 and C16:0 having a positive 

association with CH4 emission in four studies each, but C4:0 having a positive relation with CH4 

production (g/d; Chilliard et al., 2009) or a negative relation with CH4 intensity (g/kg FPCM; 

Van Lingen et al., 2014). Williams et al. (2014) (not included in the table) studied the relation 

between CH4 production (g/d) and both C8:0 and total C18 FA in milk and concluded that the 

concentrations of C8:0 and total C18 FA in milk do not enable accurate prediction of CH4 

production (g/d). The variation between the studies regarding the SMCFA and individual C18 

FA (Table 2.1), may explain why Williams et al. (2014) did not find a significant association 

between both C8:0 and total C18 FA in milk and CH4 production (g/d). It should be noted here 

that the studies used different units to express CH4 emission (CH4 production in g/d, CH4 yield 

in g/kg DMI, and CH4 intensity in g/kg FPCM; Table 2.1), which may affect the relationships 

as well. For example, Van Lingen et al. (2014) and Dijkstra et al. (2016) found strong negative 

relations between CH4 yield (g/kg DMI) and certain trans C18:1 FA (e.g., C18:1 trans-10 or C18:1 

trans-10+11), but these were not observed for CH4 intensity (g/kg FPCM). This can be explained 

by the various BHG intermediates in milk being associated with a reduction of CH4 yield (g/kg 

DMI), as well as with milk fat depression. This negatively affects the amount of FPCM, resulting 

in the absence of a significant relationship between these various MFA and CH4 intensity (g/kg 

FPCM) despite a strong negative relation with CH4 yield (g/kg DMI).  

Although these studies, with exception of Williams et al. (2014), show that MFA hold 

potential to reflect changes in rumen fermentation, due to discrepancies between studies, it 

remains unclear which MFA have the greatest potential as biomarker for CH4 emission. Similar 

reservations hold for the CH4 prediction equations given in several studies (Chilliard et al., 2009; 

Dijkstra et al., 2011; Mohammed et al., 2011; Van Lingen et al., 2014; Rico et al., 2016). The 

predictive power of the prediction equations range between 47% and 95% (Table 2.1), but the 

MFA included in these equations often differ between studies, with only C17:1 cis-9 (Mohammed 
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et al., 2011; Rico et al., 2016) and C18:1 cis-11 (Dijkstra et al., 2011; Mohammed et al., 2011; Rico 

et al., 2016) appearing in two or more equations. The discrepancies between the studies might 

be the result of the different CH4 measurement techniques and analytical methods used to 

determine the MFA profile, the unit in which CH4 is expressed, and the number of experiments 

used to determine the relation between MFA and CH4. Overall, the predictive power seems 

higher when CH4 is expressed as yield (g/kg DMI) or as production (g/d) with feed intake 

included as explanatory variable. This is because feed intake is a principal predictor of CH4 

production (g/d) (Moraes et al., 2014). However, in practice feed intake is usually unknown and 

therefore CH4 intensity (g/kg FPCM) is of interest. 

The most extensive dataset (i.e., number of studies and observations) was used by Van 

Lingen et al. (2014) with a wide variety of diets in order to assess the potential of MFA as an 

indicator for CH4 emission (Table 2.1). Despite using a similar CH4 measurement technique and 

a large number of experiments, Van Lingen et al. (2014) concluded that MFA have moderate 

potential to predict CH4 emission, because the predictive power of the best CH4 prediction 

equation was 0.47 for CH4 intensity (g/kg FPCM) and 0.54 for CH4 yield (g/kg DMI). Because 

these prediction equations were developed on a wide range of dietary treatments, the results of 

Van Lingen et al. (2014) suggest that one prediction equation for CH4 emission may not be 

realistic. This is in agreement with independent evaluations (Mohammed et al., 2011; Dijkstra et 

al., 2016). Mohammed et al. (2011) compared observed CH4 emission with CH4 emission 

predicted by the equations of Chilliard et al. (2009) and Dijkstra et al. (2011). Estimating CH4 

emission using the other equations resulted in overprediction of CH4 emission. Dijkstra et al. 

(2016) compared observed CH4 emission of dairy cattle fed grass- and grass silage-based diets 

with CH4 emission predicted by the equations of Van Lingen et al. (2014). It was concluded that 

these prediction equations could not accurately predict CH4 yield (g/kg DMI) and intensity (g/kg 

FPCM), indicating that the relation between MFA profile and CH4 emission in dairy cows fed 

grass- and grass silage-based diets differ from those determined for other types of diets. This 

suggests that diet specific prediction equations may have to be developed. 

Although the relation between MFA and CH4 emission seems moderate and diet 

specific, it might provide a simple method to predict CH4 emission from dairy cattle on large 

scale. Because enteric CH4 emission is among the main targets of GHG mitigation practices for 

the dairy industry (Hristov et al., 2013), it is worthwhile to further explore the application of this 

biomarker technique.  

 

MID-INFRARED TO MEASURE MILK FATTY ACIDS 

Until recently, GC was the principal method for MFA analysis as GC measures a large 

number of MFA precise and accurately, even those present at low concentrations in milk fat. 

However, the GC method is unsuitable for routine milk recording (Soyeurt et al., 2011). Infrared 

spectroscopy techniques are inexpensive, non-destructive, rapid, and multi-parametric (Coppa 

et al., 2014). Both near-infrared spectroscopy and MIR show good prediction performance for 

MFA concentrations (either in g/100 g FA or g/kg milk) allowing their use for routine MFA 

composition recording (Coppa et al., 2014). At present, MIR spectroscopy is routinely used in 

milk recording systems worldwide to predict fat, protein, lactose, and urea contents in dairy milk 
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(Coates, 2000) to assist in farm management decisions and for breeding purposes. Because MIR 

is already a major tool in dairy science and therefore easily implementable for estimating CH4 

emission, this review focuses only on MIR. 

Several studies have investigated the potential use of MIR spectroscopy to predict MFA 

composition in dairy cattle (Soyeurt et al., 2006, 2011; Rutten et al., 2009; De Marchi et al., 2011; 

Ferrand et al., 2011; Maurice-Van Eijndhoven et al., 2012), which have been extensively reviewed 

by De Marchi et al. (2014). In general, these studies find a clear relationship between MFA 

concentration (g/100 g FA) and the accuracy of the MIR spectroscopy prediction models; the 

accuracy of the MIR spectroscopy prediction models for major MFA is higher compared with 

minor MFA. The accuracy of MIR spectroscopy prediction models is also higher for individual 

saturated fatty acids (SFA) than individual UFA. When dividing UFA in two groups, namely 

mono unsaturated fatty acids (MUFA) and poly unsaturated fatty acids (PUFA), good accuracy 

is achieved for MIR spectroscopy prediction models for MUFA, whereas it is not for PUFA (De 

Marchi et al., 2014).  

The results from these studies (i.e., Soyeurt et al., 2006, 2011; Rutten et al., 2009; De 

Marchi et al., 2011; Ferrand et al., 2011; Maurice-Van Eijndhoven et al., 2012) confirm the 

potential of MIR spectroscopy for accurate prediction of several individual, in particular major, 

MFA and groups of MFA, but a considerable number of lower abundant MFA cannot be 

predicted by MIR. In addition, Eskildsen et al. (2014) investigated whether the predictions of 

individual MFA using MIR spectroscopy rely on direct association or indirect correlations, which 

are confined to covariance structures in the dataset. It was concluded that the prediction of MFA 

with MIR spectroscopy is indirect and based primarily on covariation between individual MFA 

and total fat content of the milk. This indicates that the implementation of MIR spectroscopy 

MFA predictions in milk recording systems must account for the universal validity of these 

indirect correlations, because the ratio between individual MFA and total fat content found in 

calibration milk samples may not be conserved in future milk samples resulting in incorrect and 

biased predictions for future milk samples (Eskilden et al., 2014). Therefore, MIR spectroscopy 

predicted MFA in calibration milk samples always need to be cross validated with the use of an 

external and independent dataset. Overall, MIR spectroscopy is an interesting alternative in the 

dairy sector for providing indications of the MFA profile of dairy cows (Soyeurt et al., 2006).  

 

MID-INFRARED TO ESTIMATE METHANE EMISSION 

In general, CH4 emission is linked to MFA profile. As MIR spectroscopy reflects the 

MFA profile, it is logical to assume that MIR spectroscopy could estimate CH4 emission from 

dairy cows. Van Lingen et al. (2014) evaluated, indirectly via MFA composition, the use of MIR 

spectroscopy to estimate CH4 emission of dairy cows and developed prediction models with 

restricted selection of MFA based on the MIR results of Soyeurt et al. (2011) and of Rutten et 

al. (2009). The prediction equations for CH4 yield (g/kg DMI) decreased in predictive power 

from R2 = 0.54 when using all MFA to R2 = 0.43 when using the accurately MIR determined 

MFA reported by Soyeurt et al. (2011) and to R2 = 0.29 when using the accurately MIR 

determined MFA reported by Rutten et al. (2009). Similarly, the predictive power for CH4 

emission intensity (g/kg FPCM) decreased from R2 = 0.47 when using all MFA to R2 = 0.36 
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when using the accurately MIR determined MFA reported by Soyeurt et al. (2011) and to R2 = 

0.28 when using the accurately MIR determined MFA reported by Rutten et al. (2009). These 

results indicate that the performance of MIR spectroscopy limits the potential for estimating 

CH4 emission based on MFA, compared with GC, because several lower abundant MFA that 

appear in various CH4 prediction equations published (Chilliard et al., 2009; Dijkstra et al., 2011; 

Mohammed et al., 2011; Van Lingen et al., 2014; Rico et al., 2016). are not available when MFA 

is determined using MIR spectroscopy (Van Lingen et al., 2014).  

Kandel et al. (2015) assessed indirectly whether MIR spectrometry can predict CH4 

production (g/d) from dairy cows by the use of four CH4 prediction equations, each developed 

by Chilliard et al. (2009). The predicted CH4 production (g/d) was within the expected range 

from 350 ± 40 to 449 ± 65 g CH4/d, and Kandel et al. (2015) concluded that it is feasible to use 

MIR spectroscopy to predict CH4 production (g/d). However, only the CH4 prediction 

equations developed by Chilliard et al. (2009) were considered, because these were developed 

from abundant MFA which have a high MIR prediction accuracy (Soyeurt et al., 2011). This 

highlights, similar to Van Lingen et al. (2014) that the performance of MIR spectroscopy is 

limited compared with GC, because lower abundant MFA important for the prediction of CH4 

emission are not available when MFA is determined using MIR spectroscopy.  

At present, there are two studies that investigated directly with no intermediate steps 

(i.e., MFA profile) if MIR spectroscopy can predict CH4 emission from individual cows. 

Dehareng et al. (2012) used two experiments involving 11 lactating Holstein cows and three 

dietary treatments, in which CH4 emission was measured using the SF6-tracer technique, and 

MIR spectroscopy prediction models were developed using average milk spectra from morning 

and evening milk samples. The accuracy of the different developed MIR spectroscopy prediction 

models for CH4 production (g/d) and CH4 intensity (g/kg milk) on this small dataset is rather 

high; the cross-validation coefficient of determination ranges from 0.68 to 0.79. However, 

according to Vanlierde et al. (2015), the predicted CH4 emission using the MIR spectroscopy 

prediction models from Dehareng et al. (2012) was lowest in early lactation to increase thereafter, 

which is biologically not meaningful (Vanlierde et al., 2015). Therefore, Vanlierde et al. (2015) 

developed lactation stage dependent predictions of CH4 emission from MIR spectra, using a 

total of 446 CH4 measurements of 142 Holstein, Jersey and Holstein-Jersey cows, measured with 

the SF6 tracer technique. Methane predictions using MIR spectra only were compared with CH4 

predictions using MIR spectra and days in milk (DIM). The average CH4 production (g/d) 

predicted by both models hardly differed (both models, standard error of calibration of 63 g 

CH4/d; observed mean of 416 g CH4/d). However, in contrast to the predictions based on MIR 

spectra only, the predictions that included DIM showed biologically meaningful behavior 

throughout lactation (an increase in CH4 production (g/d) after calving up to some 100 DIM, 

followed by gradual decline to end of lactation). Both studies (Dehareng et al., 2012; Vanlierde 

et al., 2015) show the potential to estimate CH4 emission directly using MIR spectroscopy, in 

particular in combination with other characteristics such as DIM.  

The inclusion of other milk constituents may also result in better CH4 emission 

prediction. Moraes et al. (2014) identified milk fat proportion as key explanatory variable for 

CH4 emission. This component can be swiftly and easily determined. In addition, there are new 
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developments to include other milk constituents. Van Gastelen et al. (2015) show the potential 

to use volatile and non-volatile metabolites in milk to quantify CH4 emission. However, the 

techniques for identifying volatile (i.e., gas chromatography-mass spectrometry) and non-volatile 

metabolites (i.e., nuclear magnetic resonance) are not suitable for large-scale measurements.  

 

IMPLICATIONS AND CONCLUSIONS 

The predicted power of MFA-based equations indicates good potential for CH4 

emission prediction, but the GC method used to determine the MFA profile is unsuitable for 

routine analysis. The use of MIR spectroscopy appears to be a promising approach to predict 

CH4 emission routinely at large scale. MIR spectroscopy is able to predict CH4 emission directly 

or indirectly by prediction of a number of MFA, which in turn can be used to estimate CH4 

emission. The major advantages of using MIR spectroscopy to predict CH4 emission include its 

simplicity and potential practical application at large scale. Disadvantages include the inability to 

predict important MFA for CH4 prediction, and the moderate predictive power for CH4 

emission, both direct and indirect. It may not be sufficient to predict CH4 emission based on 

MIR alone. Integration with other factors, like feed intake, nutrient composition of the feed, 

parity, and lactation stage may improve the prediction of CH4 emission using MIR spectra.   

More research is needed, including cross-validation with external and independent data 

to account for the universal validity of indirect correlations, more observations and a larger 

variation in dietary treatments, to establish the robustness, accuracy and repeatability of MIR 

spectroscopy to predict CH4 emission of dairy cows directly and indirectly, and to make MIR 

spectroscopy more reliable and potentially implementable.  
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ABSTRACT 

The objective of this study was to determine the effects of replacing grass silage 

(GS) with corn silage (CS) in dairy cow diets on enteric methane (CH4) production, rumen 

volatile fatty acid concentrations, and milk fatty acid (FA) composition. A completely 

randomized block design experiment was conducted with 32 multiparous lactating Holstein-

Friesian cows. Four dietary treatments were used, all having a roughage-to-concentrate ratio of 

80:20 based on dry matter (DM). The roughage consisted of either 100% GS, 67% GS and 

33% CS, 33% GS and 67% CS, or 100% CS (all DM basis). Feed intake was restricted (95% of 

ad libitum DM intake) to avoid confounding effects of DM intake on CH4 production. 

Nutrient intake, apparent digestibility, milk production and composition, nitrogen (N) and 

energy balance, and CH4 production were measured during a 5-d period in climate respiration 

chambers after adaptation to the diet for 12 d. Increasing CS proportion linearly decreased 

neutral detergent fiber and crude protein intake and linearly increased starch intake. Milk 

production and milk fat content (on average 23.4 kg/d and 4.68%, respectively) were not 

affected by increasing CS inclusion, whereas milk protein content increased quadratically. 

Rumen variables were unaffected by increasing CS inclusion, except the molar proportion of 

butyrate, which increased linearly. Methane production (g/d), yield (% gross energy intake), and 

intensity (g/kg fat- and protein-corrected milk; FPCM) decreased quadratically with increasing 

CS inclusion, and decreased linearly when expressed as yield ( g CH4 / kg DM intake; DMI). 

In comparison with 100% GS, CH4 yield (g/kg DM intake) and CH4 intensity (g/kg FPCM) 

were 11 and 8% reduced for the 100% CS diet, respectively. Nitrogen efficiency increased 

linearly with increased inclusion of CS. The concentration of trans C18:1 FA, C18:1 cis-12, 

and total CLA increased quadratically, and iso C16:0, C18:1 cis-13, and C18:2n-6 increased 

linearly, whereas the concentration of C15:0, iso C15:0, C17:0, and C18:3n-3 decreased linearly 

with increasing inclusion of CS. No differences were found in short- and medium-straight, 

even-chain FA concentrations, with the exception of C4:0 which increased linearly with 

increased inclusion of CS. Replacing GS with CS in a common forage-based diet for dairy 

cattle offers an effective strategy to decrease enteric CH4 production without negatively 

affecting dairy cow performance, although a critical level of starch in the diet seems to be 

needed. 

Keywords: dairy cow, enteric methane production, grass silage, corn silage 

 

INTRODUCTION 

Developing strategies to reduce enteric methane (CH4) emissions from ruminants has 

received increasing interest recently, as it reduces the ecological footprint of milk production 

and potentially improves feed efficiency. Dietary manipulation seems to be the most direct and 

effective approach for reducing CH4 production from ruminants (Beauchemin et al., 2009) 

because CH4 production depends greatly on the level of feed intake and dietary composition, 

in particular the type of carbohydrates (Beauchemin et al., 2008; Ellis et al., 2008). Including 

various inhibitors or electron receptors in ruminant diets can reduce CH4 production up to 

50%, but in view of effectiveness and safety issues (e.g., issues with nitrates include potential 
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toxicity from intermediate products), reductions of 10 to 30% are more likely in commercial 

practice (Hristov et al., 2013). Roughage represents the major component in dairy cow diets 

and, therefore, it is interesting to investigate the reduction of CH4 production using roughage-

based diets. 

Replacing fiber-rich roughage with starch-rich roughage has potential to reduce CH4 

emissions (Brask et al., 2013; Hassanat et al., 2013). Fermentation of starch favors the ruminal 

production of propionate at the expense of acetate and decreases rumen pH, which reduces 

hydrogen availability and activity of rumen methanogens (Van Kessel and Russell, 1996; 

Hook et al., 2011). The scientific evidence for this particular dietary replacement strategy is 

limited and does not always reflect diets used in practice. Staerfl et al. (2012) investigated 

this strategy, but the corn silage (CS) used had a net energy content some 10% lower than 

that of the grass silage (GS), which is uncommon in many countries. Brask et al. (2013) also 

investigated the effect of this dietary strategy, but the CS used had a starch content of only 

150 g/kg of DM, which is low and uncommon compared with the reported starch content 

of CS at comparable DM contents (Sutton et al., 2000; Mc Geough et al., 2010a); therefore, 

the difference in starch content between the CS- (141 g/kg of DM) and the GS-diet (43 

g/kg of DM) was not large. 

When manipulating dairy cow diet for CH4 reduction, one should be aware that the 

composition of milk can also change. Several studies observed that changes in dietary 

proportion of GS and CS can alter milk FA composition (Ferlay et al., 2006; Nielsen et al., 

2006; Kliem et al., 2008). These studies were mainly interested in altering milk FA from a 

human health perspective, because milk and dairy products are an important source of fat 

and specific FA in the human diet (Van Valenberg et al., 2013). In terms of dietary CH4 

mitigation strategies, differences in milk FA are interesting because they reflect the variations 

in the amount and composition of carbohydrate between GS and CS (Nielsen et al., 2006), 

which influences both rumen environment and biohydrogenation of unsaturated FA (Kliem et 

al., 2008). Consequently, milk FA composition has been suggested as a method to predict 

enteric CH4 output in lactating dairy cattle (Dijkstra et al., 2011). 

Roughages are nutritionally and economically important (Hassanat et al., 2013). 

Therefore, it is imperative to investigate dietary strategies using roughage-based diets to 

mitigate CH4 production and to determine its effect on milk FA composition. Although GS 

and CS represent the major conserved roughages and are commonly used in dairy production 

(Wilkinson et al., 1996), to the best of our knowledge no study has investigated the effect 

of replacing GS with CS on enteric CH4 production, rumen VFA concentrations, and milk 

production and composition, including milk FA composition together. Thus, the objectives 

of our study were (1) to gain more scientific evidence for the CH4 mitigation strategy of 

replacing fiber-rich GS with starch-rich CS, (2) to examine the changes in ruminal VFA 

concentration and pH when replacing GS with CS, and (3) to determine the effects of 

replacing GS with CS on milk production and milk FA composition. 
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MATERIALS AND METHODS 

Experimental design 

The experiment was conducted from October to December 2012 in accordance with 

Dutch law and approved by the Animal Care and Use Committee of Wageningen University & 

Research. The experiment followed a completely randomized block design with 4 dietary 

treatments and 32 multiparous lactating Holstein-Friesian cows with an average milk 

production of 34.0 ± 5.71 kg/d and 192 ± 87 DIM at the start of the experiment. Cows were 

blocked in groups of 4 according to lactation stage, parity, milk production, and presence of 

a rumen cannula (12 cows), and within each block cows were randomly assigned to 1 of 4 

dietary treatments; treatment periods, 8 in total, lasted 17 d. 

 
Table 3.1. Ingredient and chemical composition of experimental diets 

  Treatment1 

Item GS100 GS67 GS33 GS0 

Ingredient (g/kg DM)     

Grass silage2 800 533 267 - 

Corn silage3 - 267 533 800 

Concentrate4 200 200 200 200 

Chemical composition (g/kg DM)     

Organic matter 924 931 938 945 

Crude protein 192 182 172 163 

Crude fat 22 22 21 21 

Gross energy (MJ/kg DM) 18.8 18.7 18.6 18.5 

Neutral detergent fiber 431 396 360 325 

Acid detergent fiber 233 219 204 190 

Acid detergent lignin 14 14 15 15 

Starch 5 91 177 262 

Reducing sugars 130 98 66 34 

1 Treatments had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all treatments. 

Roughage consisted of (all DM basis) 100% grass silage for GS100; 67% grass silage and 33% corn silage for GS67; 

33% grass silage and 67% corn silage for GS33; 100% corn silage for GS0. 

2 Dry matter = 471 g/kg, chemical composition (g/kg DM): CP = 112, fat = 22, ash = 68, gross energy = 18.8 MJ/kg 

DM, net energy for lactation = 6.5 MJ/kg DM, NDF = 510, sugar = 133, ensiling characteristics (g/kg DM): acetic 

acid = 22, lactic acid = 47, ammonia = 2, and pH = 4.8. 

3 Dry matter = 320 g/kg, chemical composition (g/kg DM): CP = 76, fat = 20, ash = 42, gross energy = 18.5 MJ/kg 

DM, net energy for lactation = 6.7MJ/kg DM, NDF = 377, starch = 322, sugar = 14, ensiling characteristics (g/kg 

DM): ammonia = 1, and pH = 3.8.  

4 Contained (g/kg DM): solvent extracted soybean meal 502, formaldehyde treated soybean meal 300, citrus pulp 80, 

molasses 50, urea 30, CaCO3 15, NaCl 8, trace mineral and vitamin premix 8, and MgO 7; dry matter = 882 g/kg; 

chemical composition (g/kg DM): CP = 510, fat = 23, ash = 109, gross energy = 18.6 MJ/kg DM, net energy for 

lactation = 7.4 MJ/kg DM, NDF = 116, starch = 24, sugar = 116. 

 

Diets and feeding 

All dietary treatments had a roughage-to-concentrate ratio of 80:20 based on DM 

content. The composition of the compound feed was the same for all 4 treatments, whereas 

the roughage was GS, CS, or a mixture of both. The ingredient and chemical composition of 

the 4 diets are presented in Table 3.1. Dietary treatments were (ingredient as percentage of the 

total amount of roughage in the diet; DM basis): (1) 100% GS (GS100); (2) 67% GS and 
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33% CS (GS67); (3) 33% GS and 67% CS (GS33); and (4) 100% CS (GS0). 

Cows were fed individually and feed refusals collected to determine DMI throughout 

the experiment. The cows received their feed twice daily in equal portions before milking, 

with compound feed supplied on top of the roughage. The cows were fed ad libitum during 

the first 7 d of the adaptation period in the tiestalls. From d 8 to 17 [i.e., last 5 d of the 

adaptation period and the 5-d period in the climate respiration chambers (CRC)], feed intake 

was restricted to 95% of the ad libitum DMI of the cow within a block consuming the lowest 

amount of feed during d 5 to 8, as described previously by Van Zijderveld et al. (2011a). 

Samples of GS, CS, and compound feed were obtained when fresh feed was prepared 

(i.e., twice a week). These samples were subsequently pooled per period and subsampled for 

analyses. Orts, when present during the 5-d period in the CRC, were collected and pooled per 

cow and a representative sample was collected. The samples of GS, CS, compound feed, and 

orts were stored at −20°C until further analyses. 

 

Housing and climate respiration chambers 

In each treatment period, 4 cows of 1 block were individually housed in tiestalls for a 

12-d period to become accustomed to the diet and restriction in movement. After the 

adaptation period, the cows were housed in identical CRC for a 5-d period to determine 

gaseous exchange, energy and nitrogen (N) balance, and apparent digestibility. Clean drinking 

water was ad libitum provided and cows were milked and fed twice daily at 0600 and 1600 

h during the entire experiment. Cows were exposed to 16 h of light per day (from 0530 

to 2130 h). 

Two large CRC were used, each containing 2 individual airtight compartments. The 

CRC were equipped with thin walls with windows, to ensure cows could see and hear each 

other to minimize the effect of social isolation on cow behavior and performance. The principles 

of the CRC are described in detail by Verstegen et al. (1987). The ventilation rate within 

the CRC was 42 m3/h per compartment. Each compartment had an area of 11.8 m2 and a 

volume of 34.5 m3, and the relative humidity was maintained at 70% and temperature at 16°C 

by 2 computer-controlled air conditioning units. The relative humidity was monitored by 1 

relative humidity sensor (Novasina Hygrodat100, Novasina AG, Lachen, Switzerland), and the 

temperature was monitored by 5 PT100 temperature sensors (Sensor Data BV, Rijswijk, the 

Netherlands) evenly distributed over the chamber at animal height. 

Air from outside was pumped into each compartment via a gas volume meter (Itron 

Delta 2080 G100, Itron GmbH, Karlsruhe, Germany). Exhaust air exited through a duct with 

an iris valve controlling the pressure inside the compartment. Within each compartment, a 

positive pressure of 120 Pa was maintained. The inlet and exhaust air of each compartment was 

sampled for gas analysis (CH4, O 2 , and CO2). Gas analyzers (ABB Advance Optima 

AO2000 systems, ABB, Berlin, Germany) were setup in series with analysis of CO2 and CH4 

concentration using a nondispersive infrared method, and O2 concentration using a 

paramagnetic method. 

The volumes of inlet and exhaust air of the CRC were corrected for pressure, 

temperature, and humidity to arrive at standard temperature pressure dewpoint volumes. Inlet 
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and exhaust volumes of CH4, O2, and CO2 were calculated by multiplying the respective 

gasconcentrations with the standard temperature pressure dewpoint volumes of inlet and 

exhaust air. Production of CO2 and CH4 and consumption of O2 was calculated from the 

difference between inlet and exhaust gas volumes. This was measured with 10-min intervals 

because the 4 compartments share 1 gas analysis system. Computer-controlled valves direct 

the air sample from the 4 compartments in sequence (i.e., inlet air, exhaust air compartment 

A, B, C, and D) to the gas analysis system. Sampled air was flushed through the gas analysis 

system for 120 s and the average gas concentration of the last 30 s was stored in a computer 

database. After 120 s the air valves switched to the next compartment. 

Once a day, calibration gasses were sampled for gas analysis instead of the inlet air. 

The analyzed and actual values of these calibration gasses were used to correct the measured gas 

concentrations from the inlet air and exhaust air of the 4 compartments. In addition, before 

the experiment started, compartments were checked by releasing known amounts of CO2 in 

each compartment and comparing these values with the data from the gas analysis system to 

calculate the recovery. The recovered amounts of CO2 were between 98 and 100%. 

Staff entered each CRC compartment twice daily at 0600 and 1600 h for 

approximately 30 min for milking and feeding. The gas measurements during the opening 

of the CRC were not used for data analysis; CH4 and CO2 production and O2 consumption 

during these periods was assumed to be linear between the last data point before opening and 

the first data point after closing the CRC. 

For the CH4 and CO2 production and O2 consumption, 3 full 24-h periods were used 

(i.e., starting at 0800 h of d 14 until 0800 h of d 17). For N and energy balance, manure of 

each cow of the complete measuring period in the CRC (i.e., starting at 1500 h on d 13 until 

0900 h on d 17) was quantitatively collected in the CRC, weighed, mixed, sampled for 

analyses, and stored at −20°C until further analyses. Cows were weighed immediately after 

entering and before leaving the CRC. All data presented in the current paper refer to the 

period the cows were in the CRC. In contrast to other experiments previously performed in 

the CRC of Wageningen University & Research where 2 cows were housed in 1 large CRC 

(e.g., Van Zijderveld et al., 2011b), in the present experiment the experimental unit is the 

individual cow because cows were individually housed in the compartments of the CRC. 

 

Milk yield and composition 

Milk yield was recorded during each milking. In the CRC, a milk sample (10 mL) 

of each milking was collected in a tube containing sodium azide (5 μL) for preservation. These 

samples, 8 in total per cow, were analyzed for fat, protein, and lactose content by mid-

infrared spectroscopy, and for MUN using the pH difference technique (ISO 14637; ISO, 2004) 

at Qlip (Zutphen, the Netherlands). Milk composition was corrected for differences in milk 

yield between individual milkings and the average was used for data analysis. 

A representative sample (5 g/kg of milk production) was obtained at each milking 

from each cow, pooled per cow for the entire period in the CRC, and stored at −20°C 

pending analyses for gross energy (GE) and N. For milk FA composition, another 

representative sample was obtained (5 g/kg of milk production at each milking from each cow). 
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Sodium azide (0.05% wt/wt) was added afterwards to the pooled sample of the first 4 

milkings, followed by the same procedure for milking 5 to 8 in a separate bottle. Both bottles 

were stored at 5°C. After the last milking, these 2 subsamples (milkings 1–4 and 5–8) were 

pooled and stored at −40°C until FA composition analysis. 

 

Rumen fermentation parameters and VFA 

Samples of rumen fluid were taken from the rumen cannulated cows on d 10 and 

11 to determine VFA concentration and pH levels. Rumen fluid samples (approximately 200 

mL) were collected 1 h before, and 1, 2, 4, 6, and 8 h after morning feeding on both 

days. Rumen fluid samples were obtained as described by Van Zijderveld et al. (2011b), and 

collected in 3 equal amounts from the front and middle of the ventral sac and from the 

cranial sac of the rumen. After collection, the collected rumen fluid was thoroughly mixed, pH 

was measured using an electronic pH meter (HI9024C, Hanna Instruments, IJsselstein, the 

Netherlands), and 2 rumen fluid samples (600 μL each) were taken and acidified with an 

equal volume of 0.85% M ortho-phosphoric acid containing 19.68 mM isocaproic acid as 

internal standard. These 2 rumen fluid samples were directly frozen (−20°C) to stop microbial 

fermentation and stored at −20°C until VFA analysis. 

 

Analytical procedures 

Prior to analyses, GS, CS, and compound feed samples were thawed at room 

temperature, air-dried at 60°C, ground to pass a 1-mm screen using a Wiley mill (Peppink 

100AN, Olst, the Netherlands), and analyzed for DM, ash, crude fat, starch (except for GS 

samples), reducing sugars (all carbohydrates with reducing properties and soluble in 40% 

ethanol), NDF, ADF, ADL, GE, and N. Orts were analyzed for DM, ash, GE, and N. 

The manure samples (i.e., feces plus urine combined) were analyzed for DM, ash, 

N, NDF, GE, crude fat, and starch. Prior to analyses, these samples were thawed at room 

temperature, air-dried at 60°C, and ground to pass a 1-mm screen. In addition, to determine 

the N balance, the total amount of condensed water (i.e., collected from the heat exchanger) 

produced, and the increase in 25% sulfuric acid solution (wt/wt; i.e., through which the 

outflowing air was led to trap aerial ammonia) of each CRC compartment was measured (both 

in grams). Samples of both condensed water and 25% sulfuric acid solution were analyzed for 

N. 

Ash, DM, N, crude fat, starch, reducing sugars (all carbohydrates with reducing 

properties and soluble in 40% ethanol), NDF, ADF, and ADL of feed and manure 

samples were analyzed as described by Abrahamse et al. (2008a). Bomb calorimetry (ISO 9831; 

ISO, 1998) was used to determine GE. Crude protein was calculated as N × 6.25. Starch, 

NDF, and crude fat were assumed to be absent in urine, allowing for calculation of 

apparent digestibility of these components from analysis of starch, NDF, and crude fat in the 

combined mixture of feces and urine and in feed. 

Milk FA composition was analyzed through gas chromatograph analysis by Qlip. Milk 

fat was extracted from the milk samples and FAME were prepared from fat fractions (ISO 

15884; ISO, 2002a). Methyl esters were analyzed (ISO 15885; ISO, 2002b) on a TRACE 
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Ultra gas chromatograph (Thermo Electron Corporation, Waltham, MA) with a 

split/splitless injector operated in split mode (split ratio 1:100), at a temperature of 270°C, 

using a Varian WCOT fused silica column with CP-select CB for FAME as stationary 

phase (100 m × 0.25 mm i.d.; Varian Inc., Palo Alto, CA) and hydrogen as carrier gas, and 

fitted to a flame ionization detector (FID; 250°C). The initial temperature was held at 65°C 

for 1 min, increased to 225°C at 3°C/min, and held at 225°C for 5 min. A volume of 

1 μL was injected. Peaks were identified and quantified using pure methyl esters (Sigma-

Aldrich, Zwijndrecht, the Netherlands; Larodan, Malmö, Sweden; Lipidox). Results of FA 

were corrected for FID response and expressed as grams per 100 g of total FA. 

For determination of VFA, the rumen fluid samples were thawed and centrifuged 

for 5 min at 14,000 × g at room temperature. The clear supernatant (1 μL) was injected 

onto a gas chromatograph (Fisons HRGC Mega 2, CE Instruments, Milan, Italy) with a 

split/splitless injector operated in split mode (split ratio 1:10), at a temperature of 225°C, 

using a capillary column (EC-1000, Alltech, Deerfield, IL; 30 m, i.d. = 0.53mm, film 

thickness = 1 um) and helium as carrier gas, and fitted to an FID. The initial temperature 

of the column was held at 110°C for 2 min, increased to 200°C at 18°C/min, and held at 

200°C for 2 min. Identification and quantification was conducted with a chemical standard 

solution (0.85% M ortho-phosphoric acid), including an internal standard (19.681 mM 

isocaproic acid) for correction. 

 

Statistical analysis 

All parameters related to feed, milk production, and milk composition while cows 

were housed in the CRC were averaged over a 4-d period. The parameters related to energy 

and N balance were expressed per kilogram of metabolic body weight (BW0.75) per day. One 

cow (receiving diet GS0) was excluded from the experiment because large feed residuals while 

housed in the CRC resulted in much lower DMI compared with the last 4 d in the tiestall and 

the other cows in that block. Cow was considered the experimental unit for all parameters. 

Data were analyzed using the MIXED procedure in SAS (version 9.2, SAS Institute Inc., Cary, 

NC). 

The model included dietary treatment as a fixed effect and period (which is equal 

to block) as a random effect. For all analyses, the fixed effect of CRC was initially included 

in the model, but was removed because it was found not significant. Autoregressive 1, variance 

component, compound symmetry, and unstructured covariance structures were tested for each 

analysis, and the covariance structure with the lowest overall Akaike’s information criterion 

values (i.e., variance component) was selected. The rumen variables were averaged per time 

point per cow and subjected to repeated-measures ANOVA to take repeated samples within 

the same animal into account. This model included cow and period as random effects and 

diet, time of sampling, and the interaction of diet and time of sampling as fixed effects. To 

take the unbalanced sampling time intervals into account, the spatial covariance structure was 

selected. 

Both models had unequal variances, therefore, the Kenward-Roger option was used 

to estimate the denominator degrees of freedom. Orthogonal polynomial contrasts (linear and 
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quadratic) were used to examine treatment effect on response variables. A significant effect 

of treatment on least squares means was declared when P ≤ 0.05. 

 

RESULTS 

Feed intake and digestibility 

Increasing the proportion of CS in the diet resulted in a linear increase of DMI 

(Table 3.2). No difference was found when comparing the DMI of the cows housed in the CRC 

with the DMI of the cows housed in the tiestall during the 4 d before entering the CRC (P 

= 0.153, data not shown). Intakes of CP, NDF, ADF, and reducing sugars declined linearly 

(P < 0.002), whereas intake of starch increased linearly (P < 0.001) as the dietary proportion 

of CS increased. Apparent total-tract digestibility of NDF decreased quadratically (P < 

0.001), whereas apparent total-tract digestibility of fat increased quadratically (P < 0.001) 

and of starch linearly (P < 0.001) as the CS proportion in the diet increased. 

 

Milk production and composition 

Milk production, fat- and protein-corrected milk production (FPCM), milk fat 

content, and fat yield were unaffected by increasing proportion of CS in the diet (Table 3.3). A 

quadratic increase was observed for milk protein and milk lactose content (P < 0.001) when 

CS proportion of diet increased. Protein yield increased linearly (P < 0.019), whereas MUN 

decreased linearly (P < 0.001) with an increasing proportion of CS in the diet. 

 

Table 3.2. Intake and apparent total tract digestibility of nutrients in lactating dairy cows fed different proportions 

of grass silage in the diet 

  Treatment1  P-value 

Item GS100 GS67 GS33 GS0 SEM Linear Quadratic 

Intake (kg/d)        

Dry matter 16.2 16.7 16.6 17.5 0.41 0.001 0.858 

Organic 

matter 

14.8 15.4 15.4 16.4 0.47 0.020 0.776 

Crude protein 3.11 3.05 2.90 2.86 0.101 0.002 0.790 

Crude fat 0.36 0.36 0.35 0.36 0.013 0.324 0.915 

Gross energy 

(MJ/d) 

303.7 311.2 308.7 322.5 9.34 0.222 0.863 

NDF 6.97 6.58 5.97 5.68 0.202 < 0.001 0.926 

ADF 3.78 3.64 3.39 3.32 0.114 < 0.001 0.873 

ADL 0.23 0.24 0.24 0.26 0.013 0.159 0.831 

Starch 0.08 1.51 2.92 4.59 0.070 < 0.001 0.105 

Reducing 

sugars 

2.11 1.65 1.10 0.61 0.130 < 0.001 0.776 

Apparent digestibility (% of intake) 

Fat 48.9 56.4 61.8 68.4 1.43 < 0.001 < 0.001 

NDF 73.1 71.4 62.6 48.4 1.42 < 0.001 < 0.001 

Starch 13.8 94.4 97.5 98.6 1.52 < 0.001 0.716 

1 Treatments had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all treatments. 

Roughage consisted of (all DM basis) 100% grass silage for GS100; 67% grass silage and 33% corn silage for GS67; 

33% grass silage and 67% corn silage for GS33; 100% corn silage for GS0 (n = 8 for GS100, GS67, and GS33; n = 

7 for GS0). 
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Table 3.3. Milk production and milk composition of lactating dairy cows fed different proportions of grass silage 

in the diet 

  Treatment1  P-value 

Item GS100 GS67 GS33 GS0 SEM Linear Quadratic 

Milk production (kg/d) 22.6 23.2 24.2 23.6 1.19 0.457 0.185 

FPCM2 (kg/d) 24.0 24.9 25.7 25.6 0.93 0.125 0.297 

Milk fat content (%) 4.61 4.77 4.72 4.62 0.148 0.885 0.317 

Milk protein content (%) 3.44 3.49 3.34 3.67 0.104 0.003 < 0.001 

Milk lactose content (%) 4.39 4.55 4.60 4.61 0.041 < 0.001 < 0.001 

Fat yield (g/d) 1,019 1,069 1,106 1,080 40.0 0.165 0.190 

Protein yield (g/d) 771 782 781 833 19.0 0.019 0.245 

MUN (mg/dL) 14.6 11.9 11.5 10.3 0.80 < 0.001 0.288 

1 Treatments had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all treatments. 

Roughage consisted of (all DM basis) 100% grass silage for GS100; 67% grass silage and 33% corn silage for GS67; 

33% grass silage and 67% corn silage for GS33; 100% corn silage for GS0 (n = 8 for GS100, GS67, and GS33; n = 

7 for GS0). 
2 Fat- and protein-corrected milk = (0.337 + 0.116 × fat% + 0.06 × protein%) × milk yield (kg/d). 

 

Methane emission 

Methane yield (g/kg of DMI) decreased linearly (P = 0.010) with increasing 

dietary CS proportion (Table 3.4). A quadratic decrease (P < 0.001) was observed for CH4 

production (g/d), intensity (g/kg FPCM), and yield as a percent of GE intake (GEI). The 

total decrease in CH4 emission observed when the dietary GS proportion was replaced 

with CS was 11, 8, and 7% for CH4 yield (g/kg DMI), intensity (g/kg FPCM), and yield as a 

percent of GEI, respectively. 

 

Rumen VFA concentrations and pH 

All rumen variables were affected by time of rumen sampling (P ≤ 0.002) and the 

interaction between diet and time of rumen sampling (P < 0.001; data not shown). In general, 

rumen pH initially decreased after morning feeding and increased again several hours later, 

whereas VFA concentration showed the opposite pattern. Butyrate molar proportions 

increased linearly (P = 0.006) when the dietary proportion of CS increased (Table 3.5). No 

other rumen variables responded linearly or quadratically upon increasing the dietary CS 

proportion. 

 

Energy and nitrogen balance 

All parameters related to the energy balance and expressed per kilograms of BW0.75 

per day [i.e., GEI, CH4 production, metabolizable energy intake (MEI), heat production, 

energy retention (ER) total, ER protein, ER fat, and energy output in milk] were unaffected 

by increasing the proportion of CS in the diet (Table 3 . 6). Nitrogen intake and N output 

in manure decreased linearly (P < 0.001) with increasing dietary CS proportion (Table 

3 . 6), whereas N output in milk and the N balance were unaffected by dietary CS 

proportion. A linear increase was observed for N efficiency (P < 0.001). 
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Table 3.4. Methane production of lactating dairy cows fed different proportions of grass silage in the diet 

  Treatment1  P-value 

Item GS100 GS67 GS33 GS0 SEM Linear Quadratic 

CH4 (g/d) 399 414 411 387 12.8 0.028 < 0.001 

CH4 (g/kg DMI) 24.6 25.0 24.5 22.0 0.38 0.010 0.107 

CH4 (g/kg 

FPCM2) 

16.6 17.0 16.2 15.3 0.50 < 0.001 < 0.001 

CH4 (% of GEI3) 6.96 7.17 7.11 6.45 0.107 < 0.001 < 0.001 

1 Treatments had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all diets. Roughage 

consisted of (all DM basis) 100% grass silage for GS100; 67% grass silage and 33% corn silage for GS67; 33% grass 

silage and 67% corn silage for GS33; 100% corn silage for GS0 (n = 8 for GS100, GS67, and GS33; n = 7 for GS0). 

2 Fat- and protein-corrected milk. 

3 Gross energy intake. 

 

Table 3.5. Rumen pH, total VFA concentration, and VFA molar proportions of fistulated lactating dairy cows fed 

different proportions of grass silage in the diet1 

  

Item 

Treatment2  P-value 

GS100 GS67 GS33 GS0 SEM Linear Quadratic 

pH 6.77 6.74 6.73 6.72 0.100 0.671 0.917 

Total VFA (mM) 103 100 98 98 6.6 0.580 0.804 

VFA (% of total VFA) 

Acetate 65.6 66.0 65.8 63.6 1.23 0.126 0.127 

Propionate 18.9 17.8 17.7 17.1 1.10 0.141 0.590 

Butyrate 11.7 12.5 13.0 15.2 0.41 0.006 0.577 

Isobutyrate 1.06 1.05 0.96 1.05 0.033 0.756 0.138 

Valerate 1.54 1.33 1.28 1.37 0.138 0.338 0.227 

Isovalerate 1.20 1.32 1.30 1.73 0.069 0.061 0.313 

Acetate : 

Propionate 

3.55 3.83 3.97 3.78 0.318 0.426 0.241 

1 Data shown are the mean of values on d 10 and d 11.  
2 Treatments had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all diets. Roughage 

consisted of (all DM basis) 100% grass silage for GS100; 67% grass silage and 33% corn silage for GS67; 33% grass 

silage and 67% corn silage for GS33; 100% corn silage for GS0 (n = 8 for GS100, GS67, and GS33; n = 7 for GS0). 

 

Milk fatty acid composition 

The total SFA, total MUFA, and total PUFA concentrations in milk fat were 

unaffected by dietary CS proportion (Table 3.7). Concentrations of C18:3n-3 decreased linearly 

(P < 0.001), whereas C18:2n-6 concentration increased linearly (P = 0.003) and the n-6-to-

n-3 ratio increased quadratically (P = 0.005) with an increasing proportion of CS in the diet. 

Concentration of C18:1 cis-13 increased linearly (P = 0.01), and the concentrations of C18:1 

cis-12, C18:1 trans-9, C18:1 trans-10, C18:1 trans-11, and total CLA increased quadratically 

(P < 0.026) with increasing proportion of dietary CS. A quadratic response was observed for 

C18:0 (P = 0.022). Most of the short- and medium-chain milk FA were unaffected, whereas 

some odd- and branched-chain FA were affected by dietary treatment (Table 3.7). 

Concentration of iso C15:0 decreased linearly (P < 0.001), whereas iso C16:0 

concentrations increased linearly (P < 0.001) with increasing dietary CS proportion. A 

quadratic response was observed for iso C14:0 concentrations (P = 0.011). Concentrations 

of C15:0 and C17:0 decreased linearly (P < 0.001) and anteiso C15:0 concentration decreased 

quadratically (P = 0.027) with increasing dietary CS proportion. 
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Table 3.6. Energy balance and nitrogen balance of lactating dairy cows fed different proportions of grass silage in 

the diet 

  

Item 

Treatment1  P-value 

GS100 GS67 GS33 GS0 SEM Linear Quadratic 

Metabolic BW2 (kg0.75) 123 128 126 126 1.1 0.124 0.035 

Energy balance (kJ/kg of BW0.75/d) 

GEI3 2,587 2,515 2,551 2,644 79.2 0.671 0.297 

CH4 production 180 179 181 171 6.5 0.110 0.172 

MEI4 1,647 1,638 1,634 1,651 45.8 0.923 0.834 

MEI:GEI ratio 

(%) 

63.8 65.1 64.1 62.5 0.74 0.154 0.057 

Heat production 896 876 893 922 21.0 0.265 0.113 

Energy in milk 590 622 629 620 30.8 0.507 0.435 

ER total5 161 138 113 110 39.7 0.261 0.738 

ER protein6 52 60 67 51 10.5 0.989 0.175 

ER fat7 109 78 45 59 39.0 0.217 0.415 

Nitrogen balance (mg/kg of BW0.75/d) 

N intake8 4,155 3,942 3,827 3,694 141.0 < 0.001 0.971 

N manure 2,748 2,487 2,330 2,251 108.0 < 0.001 0.410 

N milk 993 1,000 987 1,059 44.6 0.370 0.479 

N condense + acid 59 45 53 38 8.2 0.044 0.857 

N balance 355 409 457 347 71.1 0.989 0.175 

N efficiency9 0.24 0.25 0.26 0.29 0.008 < 0.001 0.380 

1 Treatments had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all diets. Roughage 

consisted of (all DM basis) 100% grass silage for GS100; 67% grass silage and 33% corn silage for GS67; 33% grass 

silage and 67% corn silage for GS33; 100% corn silage for GS0 (n = 8 for GS100, GS67, and GS33; n = 7 for GS0). 

2 The mean BW per cow per balance period was used to calculate metabolic BW. 

3 GEI = Gross energy intake. 

4 MEI (Metabolizable energy intake) = GEI – methane production – energy in feces + urine. 

5 Energy retention total = MEI – heat production – energy in milk. 

6 Energy retention protein = protein gain (N x 6.25) x 23.6 kJ/g (energetic value of body protein). 

7 Energy retention fat = energy retention total – energy retention protein. 

8 N = nitrogen. 

9 N efficiency = N milk/N feed. 
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Table 3.7. Milk fatty acid composition of lactating dairy cows fed different proportions of grass silage in the diet 

  

Fatty acid, g/100 g FA  

Treatment1  P-value 

GS100 GS67 GS33 GS0 SEM Linear Quadratic 

C4:0 3.22 3.30 3.44 3.53 0.108 0.033 0.967 

C6:0 2.18 2.19 2.20 2.27 0.050 0.247 0.619 

C8:0 1.21 1.18 1.18 1.22 0.040 0.967 0.408 

C10:0 2.80 2.68 2.62 2.69 0.136 0.498 0.478 

C12:0 3.37 3.17 3.07 3.19 0.193 0.404 0.426 

C14:0 11.57 10.89 11.13 11.22 0.335 0.594 0.256 

iso  C14:0  0.09 0.08 0.08 0.09 0.005 0.260 0.011 

C14:1 cis-9 1.23 1.18 1.11 1.27 0.107 0.965 0.297 

C15:0 1.23 1.05 0.93 0.91 0.061 < 0.001 0.221 

iso  C15:0  0.30 0.24 0.24 0.21 0.009 < 0.001 0.183 

anteiso C15:0  0.45 0.39 0.39 0.41 0.017 0.255 0.027 

C16:0 35.73 35.50 34.40 34.86 1.107 0.398 0.755 

iso C16:0  0.16 0.15 0.18 0.19 0.006 < 0.001 0.057 

C16:1 cis-9 2.11 1.98 1.87 1.97 0.112 0.246 0.205 

C16:1 trans-9 0.19 0.20 0.22 0.23 0.012 0.012 0.825 

C17:0 0.70 0.66 0.59 0.52 0.021 < 0.001 0.396 

iso C17:0  0.38 0.37 0.37 0.37 0.012 0.499 0.530 

anteiso C17:0  0.41 0.40 0.40 0.42 0.018 0.776 0.292 

C17:1 cis-9 0.29 0.30 0.28 0.26 0.014 0.036 0.378 

C18:0 7.10 8.04 8.16 7.16 0.438 0.781 0.022 

C18:1 cis-92 17.38 18.49 19.06 17.66 1.178 0.740 0.272 

C18:1 cis-12 0.12 0.13 0.20 0.34 0.050 < 0.001 < 0.001 

C18:1 cis-13 0.10 0.11 0.11 0.13 0.007 0.010 0.155 

C18:1 trans-9 0.11 0.12 0.14 0.19 0.009 < 0.001 0.026 

C18:1 trans-10 0.12 0.13 0.20 0.45 0.021 < 0.001 < 0.001 

C18:1 trans-11 0.72 0.74 0.77 1.18 0.098 0.001 0.025 

C18:1 trans-15 +  

C18:1 cis-11 

0.52 0.56 0.64 0.69 0.040 0.001 0.870 

Total CLA3 0.38 0.35 0.37 0.64 0.059 0.004 0.012 

C18:2n-6 1.35 1.37 1.55 1.65 0.085 0.003 0.553 

C18:3n-3 0.54 0.44 0.38 0.23 0.073 < 0.001 0.210 

C18:3n-6 0.07 0.07 0.08 0.09 0.003 0.001 0.115 

C20:0 0.13 0.13 0.13 0.10 0.004 < 0.001 0.006 

C20:1 cis-11 0.04 0.05 0.05 0.04 0.003 0.242 0.008 

C20:2n-6 0.05 0.05 0.05 0.04 0.002 0.140 0.462 

C20:3n-6 0.09 0.08 0.09 0.10 0.006 0.269 0.028 

C20:4n-3 0.08 0.06 0.07 0.07 0.014 0.484 0.529 

C20:4n-6 0.13 0.12 0.13 0.15 0.009 0.063 0.069 

C20:5n-3 0.08 0.06 0.06 0.05 0.004 < 0.001 0.533 

C22:0 0.09 0.07 0.06 0.04 0.004 < 0.001 0.104 

C22:5n-3 0.09 0.09 0.09 0.09 0.006 0.685 0.536 

C24:0 0.06 0.05 0.05 0.03 0.004 < 0.001 0.117 

SFA4 71.20 70.59 69.62 69.43 1.232 0.238 0.876 

MUFA5 22.70 23.65 24.22 23.94 1.096 0.370 0.580 

PUFA6 2.86 2.68 2.86 3.10 0.139 0.126 0.107 

n-6 to n-3 ratio7 2.16 2.58 3.22 4.83 0.210 < 0.001 0.005 

        



CHAPTER 3 

 

46 
 

Table 3.7. Continued        

1 Treatment had a roughage:concentrate ratio of 80:20 (DM basis). Concentrate was similar for all diets. Roughage 

consisted of (all DM basis) 100% grass silage for GS100; 67% grass silage and 33% corn silage for GS67; 33% grass 

silage and 67% corn silage for GS33; 100% corn silage for GS0 (n = 8 for GS100, GS67, and GS33; n = 7 for GS0). 
2 C18:1 cis-9 represents the sum of C18:1 cis-9 and C18:1 trans-12, since these two FA could not be separated in the 

analysis. The portion of C18:1 trans-12 is considered to be negligible, since this FA is always present in small 

contents.  

3 Total CLA consists mainly of C18:2 cis-9, trans-11. 

4 SFA = saturated fatty acids, sum of all SFA reported in this table. 

5 MUFA = mono unsaturated fatty acids, sum of all MUFA reported in this table. 

6 PUFA = poly unsaturated fatty acids, sum of all PUFA reported in this table. 
7 Ratio between the sum of C18:2n-6, C18:3n-6, C20:2n-6, C20:3n-6, and C20:4n-6 and the sum of C18:3n-3, 

C20:4n-3, C20:5n-3, and C22:5n-3.  

 

 

DISCUSSION 

Milk production and composition 

Replacing GS with CS resulted in a lower CP content in the diets and a lower CP 

intake, but did not affect milk production. Law et al. (2009) observed that increasing dietary 

protein content from 14.4 to 17.3% has beneficial effects on milk production for cows in 

early lactation, but not for cows in late lactation. The cows in the current experiment were in 

mid lactation (average 192 DIM); the effect of replacing GS with CS on milk production 

in the present study (CP content of 19.2 and 16.3%, respectively) may have been different (i.e., 

lower milk production) for cows in early lactation. For the current experiment, protein intake 

was sufficient because MUN decreased linearly with increasing CS inclusion but remained 

within the range of MUN values commonly observed in practice (5.0–15.0 mg/dL) and above 

a minimum value (10.0 mg/dL) considered to indicate possible shortage of protein (Spek et al., 

2013). Milk fat content and milk fat yield did not change when GS was replaced by CS, which is 

in agreement with Brask et al. (2013). A decrease in milk fat content was expected, because 

an increase in starch intake coupled with a decrease in NDF intake is, in general, associated 

with a decrease in milk fat content (Nielsen et al., 2006; Abrahamse et al., 2008b). However, 

feeding CS- compared with GS-based diets is not always associated with a significant reduction 

of milk fat content (e.g., Fitzgerald and Murphy, 1999; Kliem et al., 2008). The differences 

in results can probably be ascribed to variations in chemical composition of the CS, especially 

NDF and starch content; physical characteristics of the silages (i.e., particle size) may also be 

important (Griinari and Bauman, 2006). 

Both milk protein content and milk protein yield increased with increasing CS 

proportion at the expense of GS. Other studies have also reported increases in milk protein 

content when GS was replaced by CS (Abrahamse et al., 2008b; Kliem et al., 2008). An 

increase in milk protein concentration may be attributed to microbial protein synthesis being 

energetically more efficient on CS- rather than GS-based diets (Givens and Rulquin, 2004). In 

addition, in contrast to GS, CS supplies rumen-resistant starch that is digested postruminally; this 

results in glucose absorption, which is associated with an increase in milk protein concentration 

likely mediated through changes in arterial insulin concentrations (Rius et al., 2010). 
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Energy and nitrogen balance 

Replacing GS with CS did not affect any of the energy balance parameters. The 

ratio of MEI to GEI varied between 62.5 and 65.1%, which reflects the high quality of the 

silages used. Replacing GS with CS resulted in a higher DMI, whereas GEI and MEI 

were unaffected. This explains why milk production did not increase with the increasing 

DMI. Total ER was positive, which was expected given that cows were, on average, in 

midlactation. The mean N balance was 49 g/d and unaffected by dietary treatment. This 

positive N balance is in line with the average N balance (39 g of N/d) reported by Spanghero 

and Kowalski (1997) in a review on dairy cattle N balance trials. Replacing GS with CS 

decreased N intake; this, in combination with an unaffected milk N secretion, resulted in 

a greater efficiency of dietary N utilization for milk N production. This increased N 

efficiency with increased starch content and decreased protein content in the diet is in 

agreement with Hassanat et al. (2013) and Benchaar et al. (2014). 

 

Milk fatty acid composition 

In the present study, replacing GS with CS did not affect total concentration of 

SFA, MUFA, and PUFA contents in milk fat. This is in agreement with Chilliard et al. 

(2001), who indicated that PUFA content in milk of cows fed either GS or MS does not 

differ to a large extent; this is also in agreement with Kliem et al. (2008), who did not find 

an a difference in SFA content in the milk when replacing GS with CS. 

Replacing GS with CS in the present study resulted in an increase of C18:1 trans-

9, C18:1 trans-10, C18:1 trans-11, and total CLA, suggesting that rumen biohydrogenation 

was less complete. During biohydrogenation in the rumen, unsaturated FA are converted to 

C18:0, with an array of trans C18:1 isomers and CLA as major intermediates. The isomer 

profile formed during biohydrogenation can influence milk FA profile. Previous studies (Ferlay 

et al., 2006; Nielsen et al., 2006; Chilliard et al., 2007) have reported that CS-based diets 

increase milk fat CLA content compared with GS-based diets. Nielsen et al. (2006) also found 

increased C18:1 trans-10 and C18:1 trans-11 and Kliem et al. (2008) reported an increase in C18:1 

trans-10 and total trans C18:1 FA when replacing GS with CS. 

Replacing GS with CS did not affect short- and medium-chain FA contents (defined 

here as straight, even-chain FA up to 16 carbon chain length) in milk fat, suggesting that de novo 

synthesis of milk FA in the mammary gland was unaffected, which is in line with the results 

found for acetate. Acetate is the major carbon source for de novo synthesized FA (Bauman 

and Griinari, 2003) and was unaffected in the present study by replacing GS with CS. Only 

C4:0 in milk fat increased linearly when CS dietary proportions increased. The presence of odd- 

and branched-chain FA in milk can be used to identify shifts in the rumen microbial 

population, as most of them are of bacterial origin (Kliem et al., 2008). In the present study, iso 

C15:0 concentration decreased linearly, whereas iso C14:0 and iso C16:0 concentrations 

increased (quadratically and linearly, respectively) when GS was replaced by CS. The results for 

iso C14:0 and iso C16:0 were unexpected, because Vlaeminck et al. (2006) reported that diets 

rich in starch decrease iso C14:0, iso C15:0, and iso C16:0 in milk fat. Shingfield et al. (2005) 

observed similar shifts as Vlaeminck et al. (2006) when replacing GS with CS, except for iso 
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C16:0, suggesting iso C14:0 and iso C15:0 originate from rumen fibrolytic bacteria. However, 

Kliem et al. (2008) reported that replacing GS with CS did not affect the proportion of iso 

C14:0 and iso C16:0 and showed a quadratic relationship for iso C15:0, with the lowest iso 

C15:0 content in the diet with GS only. 

In the present study, C15:0, anteiso C15:0, and C17:0 decreased when GS was replaced 

by CS. These results are in contrast with Vlaeminck et al. (2006), who suggested that 

amylolytic bacteria contain high amounts of linear odd-chain FA and anteiso FA. Higher starch 

content in the diet enhances the growth of amylolytic bacteria, potentially leading to an 

increase in linear odd-chain FA and anteiso FA leaving the rumen. Thus, one might expect 

that with increasing CS inclusion, milk C15:0, anteiso C15:0, C17:0, and anteiso C17:0 would 

increase. The results of C15:0 and C17:0 in the present study are, however, in agreement with 

Kliem et al. (2008), who found a linear decrease in milk C15:0 and C17:0 content when 

replacing GS with CS, and with Dijkstra et al. (2011), who found an decrease in these linear 

odd-chain FA when CH4 decreased. 

 

Methane production and ruminal VFA concentrations 

Dry matter intake is a major determinant for CH4 production (Ellis et al., 2008). 

Despite restricted feeding with the aim of similar DMI for all treatments, DMI increased 

linearly when GS was replaced by CS, which was caused by 2 reasons. First, there was a 

difference in the DM content of silages measured in a sample of both silages before the 

start of the experiment (used to calculate the amounts of silage to be mixed in the total 

diet fed to the cows) and the DM content of silages actually fed during the experiment 

(determined after the trial was finished). Second, there was a difference in the amount of 

feed refusals between the treatments (data not shown). Feed refusals were not expected, as 

the cows were fed a restricted diet. Despite the linear increase in DMI in the present study, 

CH4 production (g/d) decreased quadratically when GS was replaced by CS. This decline in 

CH4 production might be partially explained by passage rate of digesta in the gastrointestinal 

tract. The rumen residence time decreases with increased feed intake, thereby reducing the 

extent of the rumen fermentation and shifting digestion from the rumen to the small intestine 

(Aluwong et al., 2011). If the cows in the current study were fed ad libitum, results may 

have differed. According to Abrahamse et al. (2008b), DMI is higher for CS- compared 

with GS- based diets, and higher DMI has been associated with a higher absolute CH4 

production (Ellis et al., 2008). When fed ad libitum, increasing the inclusion of CS in the 

diet would result in a higher DMI and, therefore, may not have reduced CH4 production 

(g/d). However, CH4 yield (g/kg DMI or as a percent of GEI) would again be lower for the 

CS- compared with the GS-based diet. 

Replacing GS with CS resulted in decreased CH4 emission (in g/d, g/kg of DMI, 

g/kg of FPCM, and % of GEI), which is in agreement with Staerfl et al. (2012) and Brask 

et al. (2013). In general, decreased CH4 emission is associated with decreased rumen acetate 

proportion and increased propionate proportion (Johnson and Johnson, 1995). In the present 

study, however, acetate and propionate proportions in the rumen were unaffected when 

replacing GS by CS. A decrease in acetate proportion when replacing GS with CS was 
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expected because NDF intake and apparent total-tract digestibility of NDF decreased and 

because acetate is a major end product of NDF fermentation (Bannink et al., 2008). In 

addition, an increase in propionate proportion when replacing GS with CS was expected 

because starch intake and apparent total-tract digestibility of starch increased and diets with 

high starch content are often associated with increased propionate in the rumen (Ellis et al., 

2008). Overall, total VFA concentration was unaffected when replacing GS with CS, which 

is consistent with the absence of difference in rumen pH. However, ruminal pH 

measurements in the current study seemed high. According to Dijkstra et al. (2012), pH is 

expected be around 6.2 with a VFA concentration of 100 mM. In the present study the pH 

ranged between 6.72 and 6.77 with a VFA concentration of approximately 100 mM. Although 

pH seems high, in combination with the roughage-based diets used, it helps explain the 

absence of an effect when replacing GS with CS on ruminal propionate proportion. According 

to Bannink et al. (2008), with roughage-based diets and high rumen pH, the proportion of 

starch fermented to propionic acid per unit glucose fermented is only marginally higher than 

the proportion of fiber fermented to propionic acid per unit glucose fermented. Hence, with 

the present high-roughage diets, no or small differences in molar proportion of propionic acid 

may be expected. The increased butyrate proportion when replacing GS with CS was 

unexpected. In general, fermentation of fiber favors the production of acetate and butyrate 

(Johnson et al., 1996). However, Benchaar et al. (2014) also found an increase in butyrate 

proportions and a decline in CH4 production when barley silage was replaced with CS. This 

increase in butyrate proportion was accompanied by a linear increase in protozoa numbers in 

the rumen, which is consistent with protozoa being associated with butyrate production 

(Morgavi et al., 2012).  

The quadratic decrease in CH4 emission observed suggests that a critical dietary 

concentration of starch is required to decrease CH4 emission. A similar response in daily 

CH4 output (g/d) was observed by Mc Geough et al. (2010b) in beef cattle fed whole-crop 

wheat silages with increasing grain content (P = 0.004, quadratic response), by Hassanat et al. 

(2013) in dairy cattle fed diets in which alfalfa silage was replaced with CS (P < 0.01, quadratic 

response), and by Benchaar et al. (2014) in dairy cattle fed diets where barley silage was 

replaced with CS (P = 0.07, quadratic response). 

It appears that CH4 mitigation with roughage-based diets is more difficult than grain-

based diets. Mc Geough et al. (2010a) showed that increasing the starch content of roughage 

can decrease CH4 production, but CH4 production of roughage-fed cattle is still considerably 

higher than for concentrate-fed cattle. Opportunities to use compound feed to lower CH4 

emission from the dairy sector is limited, as milk quality is negatively affected once compound 

feed exceeds approximately 50% of the diet (Beauchemin et al., 2008), and it ignores the 

importance of ruminants in converting fibrous feeds, unsuitable for direct human consumption, 

to the high-quality protein source milk (Gill et al., 2010). Roughages represent a major source 

of ingredients in dairy cow diets and are nutritionally and economically important (Hassanat 

et al., 2013). Therefore, it is important to investigate dietary strategies to mitigate CH4 

emission using roughage-based diets. 

CONCLUSIONS 
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Our results showed that replacing GS with CS in a common roughage-based diet for 

dairy cattle can be an effective strategy to decrease enteric CH4 emission, without negative 

consequences for milk production and milk composition, and improve N efficiency. A critical 

dietary concentration of starch seems to be required to decrease CH4 emission. 
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ABSTRACT 

Methane (CH4) emission of dairy cows contributes significantly to the carbon 

footprint of the dairy chain; therefore, a better understanding of CH4 formation is urgently 

needed. The present study explored the milk metabolome by gas chromatography-mass 

spectrometry (milk volatile metabolites) and nuclear magnetic resonance (milk non-volatile 

metabolites) to better understand the biological pathways involved in CH4 emission in dairy 

cattle. Data were used from a randomized block design experiment with 32 multiparous 

Holstein-Friesian cows and 4 diets. All diets had a roughage:concentrate ratio of 80:20 (DM 

basis) and the roughage was grass silage (GS), corn silage (CS), or a mixture of both (67% 

GS, 33% CS; 33% GS, 67% CS). Methane emission was measured in climate respiration 

chambers and expressed as CH4 yield (per unit of dry matter intake) and CH4 intensity (per 

unit of fat- and protein-corrected milk; FPCM). No volatile or non-volatile metabolite was 

positively related to CH4 yield and acetone (measured as a volatile and as a non-volatile 

metabolite) was negatively related to CH4 yield. The volatile metabolites 1-heptanol-decanol, 

3-nonanone, ethanol, and tetrahydrofuran were positively related to CH4 intensity. None of 

the volatile metabolites was negatively related to CH4 intensity. The non-volatile metabolites 

acetoacetate, creatinine, ethanol, formate, methylmalonate, and N-acetylsugar A were positively 

related to CH4 intensity, and uridine diphosphate (UDP)-hexose B and citrate were negatively 

related to CH4 intensity. Several volatile and non-volatile metabolites that were correlated 

with CH4 intensity also were correlated with FPCM and not significantly related to CH4 

intensity anymore when FPCM was included as covariate. This suggests that changes in these 

milk metabolites may be related to changes in milk yield or metabolic processes involved in milk 

synthesis. The UDP-hexose B was correlated with FPCM, whereas citrate was not. Both 

metabolites were still related to CH4 intensity when FPCM was included as covariate. The 

UDP-hexose B is an intermediate of lactose metabolism, and citrate is an important 

intermediate of Krebs cycle–related energy processes. Therefore, the negative correlation of 

UDP-hexose B and citrate with CH4 intensity may reflect a decrease in metabolic activity in 

the mammary gland. Our results suggest that an integrative approach including milk yield 

and composition, and dietary and animal traits will help to explain the biological metabolism 

of dairy cows in relation to CH4 emission. 

Keywords: dairy cow, milk metabolome, enteric methane emission, energy metabolism 

 

INTRODUCTION 

Enteric methane (CH4) production in ruminants mainly occurs in the rumen and is 

a natural byproduct of microbial feed fermentation and degradation, an essential process to 

provide nutrients to the animal. An increase of DMI results in a higher CH4 production 

because more substrate is available for rumen microbiota to degrade, but diet characteristics, 

including the type of carbohydrates and fat content, can also have a large effect on CH4 

production (Kirchgebner et al., 1995). Due to the large contribution (approximately 52%) of 

CH4 emission to the total greenhouse gas (GHG) emissions of the dairy sector (Gerber et 

al., 2013), mitigation strategies have been widely investigated (Hristov et al., 2013). Dietary 

changes to influence CH4 emission are among the most direct CH4 mitigation strategies (Knapp 



MILK METABOLOME AND METHANE EMISSION 

 

55 

 

et al., 2014). Their importance increases because they are also candidates for implementation 

at dairy farms. According to Dijkstra et al. (2011), evaluating dietary mitigation strategies 

should be based on CH4 production relative to feed intake because it avoids confounding 

effects of DMI on total CH4 production (CH4 produced per animal). However, uncertainties 

in measuring DMI at farm level makes an accurate relation of CH4 to DMI difficult in 

practice (Bannink et al., 2011). Others have related CH4 mitigation strategies to their effect on 

the product (milk) of a dairy farm (Knapp et al., 2014). 

To assess GHG emissions by the dairy chain, it is also possible to relate CH4 

production per unit of milk [usually expressed per unit of ECM or per unit of fat- and 

protein-corrected milk (FPCM)]. Higher production levels related to nutritional and 

nonnutritional management strategies may reduce CH4 emissions per unit of milk (FAO, 

2010). Emissions per unit of animal product reflect the accuracy of management practices 

on the composite of feed intake, GHG emission, and animal productivity (FAO, 2010). 

Therefore, evaluating CH4 production in relation to feed intake and in relation to milk 

production are complementary. 

Many studies have focused on the effect of CH4 mitigation strategies on milk 

composition, but mainly on the macro constituents level (Mohammed et al., 2011; Hart et al., 

2015). Less attention has been paid to individual metabolites of milk, with the exception of 

milk fatty acids (MFA; Odongo et al., 2007; Chilliard et al., 2009). This focus on MFA is 

because of the relation between MFA and ruminal activity with respect to microbial 

metabolism and type of VFA formed (Vlaeminck and Fievez, 2005). Changes in feeding can 

result in clear changes in MFA, which are partly related to how feed is degraded in the 

rumen (Halmemies-Beauchet-Filleau et al., 2014). Although MFA may predict CH4 emission 

accurately within a limited range of dietary variation (e.g., variation in lipid source only; 

Chilliard et al., 2009), MFA cannot accurately predict the differences in CH4 emission on a 

wider range of diets (Van Lingen et al., 2014; Williams et al., 2014). 

Milk volatile metabolite and non-volatile metabolite profiles can be used to monitor 

animal health, feeding regimens, and metabolism in dairy cows. Based on different feeding 

regimens, indole and skatole present in the volatile fraction of milk were pointed out as 

indicative of the feeding regimen of dairy cows (Toso et al., 2002; Croissant et al., 2007). 

Further, Hettinga et al. (2008) used the milk volatile metabolite profile to detect and 

differentiate mastitis caused by different pathogens. Also, Klein et al. (2012) indicated the 

ratio of the non-volatiles glycerophosphocholine and choline as possible predictor for 

developing ketosis in dairy cows and Lu et al. (2013), showed that phosphate sugars can be 

related to energy balance of the cow, due to a different organization of the epithelial membrane 

in relation to energy balance. These authors also showed that determining milk components 

using different techniques simultaneously can be useful for a more integrated understanding of 

the metabolism of cows (Klein et al., 2010; Lu et al., 2013). 

Many fields of research analyze the same bio-matrix with different methods and 

integrate the resulting information to better monitor, predict, and interpret biological 

processes. Although milk volatile metabolite and non-volatile metabolite profiles have been 

used to monitor digestion and metabolism in dairy cows, to the best of our knowledge these 
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profiles have not been related to CH4 emission. The present study explores the milk 

metabolome by gas chromatography – mass spectroscopy (GC-MS metabolomics; milk 

volatile metabolites) and proton nuclear magnetic resonance (1H-NMR metabolomics; milk 

non-volatile metabolites) to better understand the biological pathways involved in CH4 

emission. 

 

MATERIALS AND METHODS 

Experimental design 

Data from a completely randomized block design experiment were used with a 

total of 32 multiparous lactating Holstein-Friesian cows fed 4 diets that differed in grass silage 

(GS) and corn silage (CS) content. The experiment was fully described by Van Gastelen et 

al. (2015). The experiment was conducted in 2012 in accordance with Dutch law and 

approved by the Animal Care and Use Committee of Wageningen University & Research 

(Wageningen, the Netherlands). 

The 4 diets had a roughage:concentrate ratio of 80:20 based on DM content. The 

composition of the concentrate was similar for all diets, whereas the roughage consisted of 

100% GS, 67% GS and 33% CS, 33% GS and 67% CS, and 100% CS (ingredient as 

percentage of the total amount of roughage in the diet, all DM basis). Feed intake was 

restricted (95% of ad libitum DMI) to avoid confounding effects of DMI on CH4 production. 

After an adaptation period of 12 d, on d 13, cows were housed in climate respiration chambers 

(CRC) for a 5-d period. Cows were milked and fed twice daily. Production of CH4 was 

determined in 10 min intervals during 3 full 24-h periods in the CRC. The details of the 

CRC used in this experiment are extensively described by Van Gastelen et al. (2015). 

 

Milk yield and composition 

Milk yield was recorded during each milking, and a milk sample (10 mL) was collected 

for analyses of fat, protein, and lactose content by mid-infrared spectroscopy by Qlip 

(Zutphen, the Netherlands). In addition, a representative milk sample (5 g/kg of milk 

production) was obtained at each milking from each cow. The first milk sample was collected 

on d 13 in the afternoon and the last milk sample was collected on d 17 in the morning, 

when cows were housed in the CRC. Sodium azide (0.05% wt/wt) was added to the 

pooled samples of the first 4 milkings, followed by the same procedure for milking 5 to 8 in 

a separate bottle. Both bottles were stored at 5°C. After the last milking, these 2 sub-samples 

(milkings 1 to 4 and 5 to 8) were pooled, and stored in 10-mL aliquots at −40°C for milk 

composition analyses. 

 

Analytical procedures 

Volatile metabolites. To determine the volatile metabolite profile, GC-MS 

metabolomics was performed based on the method described by Hettinga et al. (2008) and 

Settachaimongkon et al. (2014). Milk samples were thawed overnight in a refrigerator (7°C). 

A 5-mL milk sample was preheated in 10-mL vials sealed with silicon/Teflon septa and 

magnetic caps for 1 min at 60°C. Volatile metabolites were extracted from the headspace for 
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5 min with a 75-μm PDMS-carboxen SPME fiber (Supelco, Bellefonte, PA) using the Triplus 

autosampler (CTC Analytics Ag, Zwingen, Switzerland). The volatile metabolites were 

thermally desorbed from the fiber by heating it in a Best PTV injector (Thermo-Finnigan, 

San Jose, CA) with an empty liner for 5 min at 250°C. The fiber was subsequently cleaned 

for 10 min at 290°C. Vials without milk (only air) were used as blank samples. 

Gas chromatography separation of volatile metabolites was performed on a Trace 

GC/MS (Thermo-Fisher Scientific, Waltham, MA). Volatiles were separated on a polar Stabilwax 

column of 30 m length, 0.32 mm, and 1-μm film thickness (Restek, Breda, the Netherlands). 

Oven temperature was kept at 40°C for 3 min, after which it was increased to 220°C at 

15°C/min, with 1 min holding at 220°C. Helium at a flow rate of 1.5 mL/min was used as 

a carrier gas. Mass spectrometry analysis was performed in electron impact mode (70 eV) 

in the range of 33 to 250 m/z, with 2 scans/s; the mass range of m/z 33 to 250 was used. 

The ion source was kept at 225°C. 

The resulting chromatograms were analyzed using the AMDIS software (NIST, 

Gaithersburg, MD); data were deconvoluted to obtain pure mass spectra for improved peak 

identification. Identification of volatile metabolites was based on AMDIS software referred 

to NIST/EPA/NIH database (http://www.nist.gov/srd/nist1a.cfm) and matching mass spectra 

and retention time with an in-house library based on previous milk analyses (Hettinga et 

al., 2009). Fragment patterns were not specific enough to identify the chain length of 3 alkanes 

and these were labeled as alkane A, B, and C. Peak integration was subsequently performed 

using the XCalibur software package (Thermo-Scientific, Austin, TX). Peak area of the milk 

samples was corrected for the peak area of the blank samples, resulting in a peak area in 

arbitrary units that was used for statistical analyses. 

Non-volatile metabolites. To determine the non-volatile metabolite profile of 

the milk samples, 1H-NMR metabolomics was performed. The procedure is described in 

detail by Lu et al. (2013). In short, milk samples were ultra-centrifuged to isolate milk 

serum. One-dimensional nuclear Overhauser enhancement spectroscopy  (1-D-NOESY)  

spectra  were obtained for all milk serum samples, using a nuclear magnetic resonance 

Bruker spectrometer Avance III with a 600 MHz/54 mm UltraShielded Plus magnet equipped 

with a CryoPlatform cryogenic cooling system, a BCU-05 cooling unit, an ATM automatic 

tuning and matching unit (Bruker, Rheinstetten, Germany). To assign milk serum 

nonoverlapping metabolite resonances, comparisons were made with published literature 

(Klein et al., 2010, 2012), the Human Metabolome Database version 2.0 online library 

(http://www.hmdb.ca), as well as internal standards. The peak area of each assignment is 

relative to the calibration standard 3-trimethylsilyl-2,2,3,3-tetradeuteropropionate, resulting in 

a relative peak area in arbitrary units that was used for statistical analyses. 

 

Statistical analysis 

One cow was excluded from the experiment, because of large feed residuals while 

housed in the CRC, which resulted in much lower DMI compared with the last 4 d in the tie-

stall and the other cows in that block (Van Gastelen et al., 2015). In addition, the results of 

GC-MS metabolomics of another cow could not be used because these results were 

http://www.nist.gov/srd/
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considered outliers (i.e., 9 from 25 volatile metabolites were not found in the milk of this 

cow, and acetone was 10 times more present in the milk of this cow compared with the 

milk of other cows). Last, the results of 1H-NMR metabolomics of a third cow could not 

be used because the sample showed repeatedly a high background interference, which impaired 

peak integration. Therefore, relations between metabolites measured with both techniques were 

based on 29 samples, whereas all remaining data analyses of volatile and non-volatile 

metabolites, CH4 emission, and production traits were based on 30 samples. 

Data on DMI, milk production, milk composition, and MFA are described by Van 

Gastelen et al. (2015). The summary statistics of the volatile metabolites and non-volatile 

metabolites are presented in Supplemental Tables S4.1 and S4.2, respectively. All statistical 

analyses were done using SPSS version 21 (SPSS Inc., Chicago, IL). The relations between 

individual volatile metabolites or non-volatile metabolites, and CH4 intensity (g/kg of FPCM) 

or CH4 yield (g/kg of DMI) were established by linear regression with CH4 intensity and CH4 

yield as dependent variables and milk volatile or non-volatile metabolites as independent 

variables. All coefficients were calculated over all diets. To evaluate the influence of FPCM on 

the established relations between individual volatile metabolites or non-volatile metabolites 

and CH4 intensity, FPCM was included as a covariate in the linear regressions. To evaluate the 

influence of diet on the established relations between individual volatile metabolites or non-

volatile metabolites, and CH4 yield and intensity, dietary treatment was included as a covariate 

in the linear regressions. Pearson correlation coefficients between milk (non)volatile metabolites 

and milk and animal traits were determined, with a 2-tailed test for significance (P < 0.05). 

Multivariate analysis of the data was done by principal component analysis in R version 3.2.3. 

(R Core Team, 2013). 

 

RESULTS AND DISCUSSION 

Relation between individual metabolites and methane intensity or yield 

Volatile metabolites. In the  present  study,  a  total of 25 volatile metabolites were 

identified. These included ketones, aldehydes, alcohols, hydrocarbons, sulfur compounds, 

esters, and terpenes. The relations between each volatile metabolite and CH4 intensity (g/kg 

of FPCM) and CH4 yield (g/kg of DMI) are shown in Tables 4 . 1 and 4 . 2, respectively. 

The volatile metabolites 1-heptanol-decanol, 3-nonanone, ethanol, and tetrahydrofuran were 

positively related (P < 0.044) to CH4 intensity, and none of the volatile metabolites were 

negatively related to CH4 intensity. None of the volatile metabolites were positively related to 

CH4 yield, whereas acetone was negatively related (P = 0.043) to CH4 yield. 

The relations between each volatile metabolite and CH4 intensity including FPCM 

as a covariate are shown in Table 4.1. Including FPCM as a covariate in the regression model 

resulted in no relationship between the volatile metabolites and CH4 intensity (Table 4 . 1). 

This suggests that the previous relations were due to a relation between the volatile metabolites 

and FPCM. 

Non-volatile metabolites. In the present study, 30 resonances could be assigned 

either to a compound or to a member of a class of compounds (Supplemental Table S4.3). 

The relations between each non-volatile metabolite and CH4 intensity or CH4 yield are shown 
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in Tables 4.3 and 4.4, respectively. The non-volatile metabolites, acetoacetate, creatinine, 

ethanol, formate, methylmalonate, and N-acetylsugar A were positively related (P < 

0.030) to CH4 intensity. Citrate and uridine diphosphate (UDP)-hexose B were negatively 

related (P < 0.026) to CH4 intensity. None of the non-volatile metabolites were positively 

related to CH4 yield, whereas acetone was the only non-volatile metabolite negatively related 

(P = 0.046) to CH4 yield. 

The relations between each non-volatile metabolite and CH4 intensity, including 

FPCM as a covariate, are shown in Table 4 .3. When including FPCM as a covariate in the 

regression model, none of the non-volatile metabolites were positively related to CH4 intensity 

(Table 4.3). This suggests that the relation between CH4  intensity and acetoacetate, 

creatinine, ethanol, formate, methyl-malonate, and N-acetylsugar A were due to the relation 

between  these  non-volatiles  metabolites  and  FPCM. Citrate and UDP-hexose B remained 

negatively related (P < 0.026) to CH4  intensity upon including FPCM as a covariate in the 

regression model. The significant relationship with CH4 intensity in the presence of FPCM 

as a covariate suggests that the metabolic pathways in which these metabolites are involved 

relate to CH4 production in dairy cows, independent of FPCM yield. Our results suggest 

that relating milk metabolites to CH4 intensity without including FPCM as a covariate may 

identify milk metabolites that are also or exclusively related to FPCM rather than CH4 emission. 

This dependency seems to be true for both volatile and non-volatile metabolites, and indicates 

that an increase in milk yield may reduce the concentration of some milk constituents. 

Bovenhuis et al. (2015) reported similar findings showing the genetic polymorphism in the 

DGAT1 gene related to a higher milk yield and reduced milk protein content. However, changes 

in milk yield do not account for all the variation in milk composition. Hristov et al. (2015) 

reported that without changes in milk yield, milk of cows with a lower CH4 production 

(g/d) due to feeding of 3-nitrooxypropanol had a higher content of de novo synthesized fatty 

acids. Due to the relation between rumen VFA and de novo synthesized fatty acids, the 

results of Hristov et al. (2015) suggest that milk composition also depends on blood-derived 

compounds and mammary gland metabolic activity (Bauman and Griinari, 2003; Jenkins and 

McGuire, 2006). Taken together, these 2 processes contribute to changes in milk composition, 

and in our data set it was difficult to distinguish between a dilution effect due to higher milk 

yield or a higher metabolic activity related to higher milk yield. Therefore, throughout the 

discussion we will consider them both. 

Comparison of both techniques. Milk metabolites can be present in solution 

and be measured by 1H-NMR. Upon heating, some milk metabolites can be volatized 

and measured by GC-MS. Ethanol and acetone were the only compounds detected both 

by 1 H-NMR and GC-MS. A positive correlation was found between the (relative) areas of 

ethanol (P = 0.031, R2= 0.401; n = 29) and acetone (P < 0.001, R2 = 0.684; n = 29) 

measured by both methods. This is an important prerequisite for the combined analysis of 

milk metabolome. In our data set, both volatile and non-volatile metabolites are generally better 

correlated with CH4 intensity than with CH4 yield. Further, non-volatile metabolites are also 

better related to CH4 intensity than volatile metabolites, and the relationship of 2 non-volatile 

metabolites (UDP-hexose B and citrate) remained significant after including FPCM as a 
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covariate in the regression model. The weaker relation between volatile metabolites and CH4 

intensity might be due to the direct transfer of volatile compounds from diet to milk or the 

interaction between volatile metabolites and rumen metabolism (Urbach, 1990; Désage et al., 

1996; Toso et al., 2002) that are not related to the ruminal pathways leading to CH4 

production. 

Multivariate analysis. Principal component analysis was conducted to identify 

general differences in volatile and non-volatile metabolite profiles. The extraction of 2 

components explained only 46.2% of the variation of volatile metabolites and 45.0% of the 

variation of non-volatile metabolites (Supplementary Figures S4.1A and S4.1B, respectively). 

Further, no clear correlation was found between the groups of variables and the factors. 

 

Changes in methane intensity may be related to the 1-carbon metabolism and energy 

metabolism pathways 

Formate is positively related to CH4 intensity; however, when FPCM is included in 

the regression model the relation is no longer significant. This may be explained by the 

negative correlation between formate and FPCM (P = 0.024, data not shown). The relation 

between formate and CH4 intensity may therefore be explained by the milk synthesis 

processes, more specifically the 1-C metabolism in postabsorption pathways. One-carbon 

donors, including formate, are important in eukaryotic 1-C metabolism as they connect 

parallel mitochondrial and cytosolic pathways. Activated 1-C compounds, such as formate, are 

produced by the mitochondria, after which an enzymatic cascade in the cytoplasm will allow 

formate to be further incorporated in 1-C metabolism (Appling, 1991; Christensen and 

MacKenzie, 2006). The 1-C metabolism is a housekeeping process involving diverse 

mechanisms such as biosynthesis of lipids and proteins as well as methylation reactions 

(Christensen and MacKenzie, 2006). These processes are entwined with milk synthesis (Bian 

et al., 2015) as in healthy cows, milk metabolites may be secreted into milk via transcellular 

routes (McManaman and Neville, 2003). Therefore, a negative relation between formate and 

FPCM might reflect a change in postabsorption 1-C metabolism, possibly in the mammary 

gland. 



 

 
 

61 

MILK METABOLOME AND METHANE EMISSION 

T
a
b

le
 4

.1
. 

L
in

ea
r 

re
gr

es
si

o
n

 b
et

w
ee

n
 m

et
h

an
e 

in
te

n
si

ty
 (

g/
k
g 

o
f 

fa
t-

 a
n

d
 p

ro
te

in
-c

o
rr

ec
te

d
 m

ilk
; 
F

P
C

M
1
) 

an
d
 m

ilk
 v

o
la

ti
le

 m
et

ab
o

lit
es

 (
p
ea

k
 a

re
a2

) 
an

d
 b

et
w

ee
n

 m
et

h
an

e 
 

in
te

n
si

ty
 (

g/
k
g 

o
f 

F
P

C
M

) 
an

d
 m

ilk
 v

o
la

ti
le

 m
et

ab
o

lit
es

, 
in

cl
u
d

in
g 

F
P

C
M

 a
s 

a 
co

v
ar

ia
te

3  

V
o

la
ti

le
 m

et
ab

o
lit

e 

(p
ea

k
 a

re
a)

 

L
in

ea
r 

re
gr

es
si

o
n

 b
et

w
ee

n
 m

et
h

an
e 

in
te

n
si

ty
 a

n
d
 m

ilk
 

v
o

la
ti

le
 m

et
ab

o
lit

es
4 

L
in

ea
r 

re
gr

es
si

o
n

 b
et

w
ee

n
 m

et
h

an
e 

in
te

n
si

ty
 a

n
d
 m

ilk
 v

o
la

ti
le

 m
et

ab
o

lit
es

, 
in

cl
u
d

in
g 

F
P

C
M

 a
s 

a 
co

v
ar

ia
te

5 

S
lo

p
e 

S
E

 
S
lo

p
e 

P
 

R
2  

S
lo

p
e 

(v
o

la
ti

le
) 

S
E

 
S
lo

p
e 

P
 

(v
o

la
ti

le
) 

S
lo

p
e 

(F
P

C
M

) 

S
E

 
S
lo

p
e 

P
 

(F
P

C
M

) 

R
2  

1
-h

ep
ta

n
o

l 
-2

.4
7
×

1
0

-7
 

1
.0

0
0
×

1
0

-6
 

0
.8

5
5
 

0
.0

0
1
 

1
.7

9
×

1
0

-7
 

1
.0

7
×

1
0

-6
 

0
.8

6
8
 

-0
.3

6
6
 

0
.0

8
9
 

<
0
.0

0
1
 

0
.3

8
8
 

1
-h

ep
ta

n
o

l-
d

ec
an

o
l 

3
.3

5
×

1
0

-6
 

2
.0

0
0
×

1
0

-6
 

0
.0

4
4
 

0
.1

3
7
 

1
.2

2
×

1
0

-6
 

1
.4

8
×

1
0

-6
 

0
.4

1
7
 

-0
.3

3
4
 

0
.0

9
6
 

-0
.0

0
2
 

0
.4

0
3
 

1
-p

en
ta

n
o

l 
4
.4

2
×

1
0

-7
 

3
.7

5
5
×

1
0

-7
 

0
.2

4
9
 

0
.0

4
7
 

2
.1

6
×

1
0

-7
 

3
.0

9
×

1
0

-7
 

0
.4

9
0
 

-0
.3

5
5
 

0
.0

8
9
 

<
0
.0

0
1
 

0
.3

9
8
 

2
-b

u
ta

n
o

n
e 

4
.4

9
×

1
0

-8
 

5
.5

2
7
×

1
0

-8
 

0
.4

2
4
 

0
.0

2
3
 

3
.0

2
×

1
0

-8
 

4
.4

3
×

1
0

-8
 

0
.5

0
1
 

-0
.3

6
2
 

0
.0

8
8
 

<
0
.0

0
1
 

0
.3

9
8
 

2
-h

ep
ta

n
o

n
e 

1
.6

0
×

1
0

-7
 

1
.2

7
1
×

1
0

-7
 

0
.2

1
8
 

0
.0

5
4
 

2
.5

1
×

1
0

-8
 

1
.0

4
×

1
0

-7
 

0
.3

8
4
 

-0
.3

5
4
 

0
.0

8
9
 

<
0
.0

0
1
 

0
.4

0
5
 

3
-n

o
n

an
o

n
e 

2
.4

7
×

1
0

-6
 

6
.5

6
1
×

1
0

-7
 

0
.0

0
1
 

0
.3

3
6
 

1
.2

8
×

1
0

-6
 

8
.1

6
×

1
0

-7
 

0
.1

2
9
 

-0
.2

5
0
 

0
.1

1
3
 

0
.0

3
5
 

0
.4

3
9
 

A
ce

to
n

e 
4
.5

5
×

1
0

-1
0  

3
.9

2
8
×

1
0

-9
 

0
.9

0
9
 

0
.0

0
1
 

2
.0

3
×

1
0

-9
 

3
.1

6
×

1
0

-6
 

0
.5

2
7
 

-0
.3

7
7
 

0
.0

9
0
 

<
0
.0

0
1
 

0
.3

9
7
 

A
lk

an
e 

A
 

9
.7

6
×

1
0

-7
 

1
.0

0
0
×

1
0

-6
 

0
.4

9
3
 

0
.0

1
7
 

1
.1

2
×

1
0

-6
 

1
.1

0
×

1
0

-6
 

0
.3

2
1
 

-0
.3

6
9
 

0
.0

8
7
 

<
0
.0

0
1
 

0
.4

1
0
 

A
lk

an
e 

B
 

2
.1

1
×

1
0

-6
 

2
.0

0
0
×

1
0

-6
 

0
.3

0
9
 

0
.0

3
7
 

1
.2

5
×

1
0

-7
 

1
.7

3
×

1
0

-6
 

0
.9

4
3
 

-0
.3

6
5
 

0
.0

9
3
 

0
.0

0
1
 

0
.3

8
8
 

A
lk

an
e 

C
  

-1
.9

5
×

1
0

-7
 

3
.8

3
1
×

1
0

-7
 

0
.6

1
4
 

0
.0

0
9
 

5
.3

8
×

1
0

-8
 

3
.1

0
×

1
0

-7
 

0
.9

8
6
 

-0
.3

6
6
 

0
.0

9
0
 

<
0
.0

0
1
 

0
.3

8
8
 

B
en

ze
n

e 
al

k
an

e 
2
.4

7
×

1
0

-6
 

2
.0

0
0
×

1
0

-6
 

0
.1

8
4
 

0
.0

6
2
 

-5
.4

0
×

1
0

-

7
 

1
.6

8
×

1
0

-6
 

0
.7

5
1
 

-0
.3

8
2
 

0
.1

0
0
 

0
.0

0
1
 

0
.3

9
0
 

B
en

ze
n

e 
co

m
p

o
u
n

d
 

6
.1

6
×

1
0

-7
 

6
.4

5
4
×

1
0

-7
 

0
.3

4
8
 

0
.0

3
1
 

7
.3

4
×

1
0

-7
 

5
.0

4
×

1
0

-7
 

0
.1

5
7
 

-0
.3

7
3
 

0
.0

8
6
 

<
0
.0

0
1
 

0
.4

3
2
 

B
u
ta

n
o

ic
 a

ci
d
 

6
.2

8
×

1
0

-9
 

8
.2

6
3
×

1
0

-9
 

0
.4

5
4
 

0
.0

2
0
 

4
.9

4
×

1
0

-9
 

6
.5

9
×

1
0

-9
 

0
.4

6
0
 

-0
.3

6
3
 

0
.0

8
8
 

<
0
.0

0
1
 

0
.4

0
0
 

C
yc

lo
h

ex
an

e 
1
.1

0
×

1
0

-5
 

7
.0

0
0
×

1
0

-6
 

0
.1

3
9
 

0
.0

7
6
 

-7
.5

3
×

1
0

-

7
 

6
.7

7
×

1
0

-6
 

0
.9

1
2
 

-0
.3

7
2
 

0
.1

0
0
 

0
.0

0
1
 

0
.3

8
8
 

D
im

et
h

yl
 s

u
lf

o
n

e 
-3

.2
6
×

1
0

-7
 

3
.1

9
0
×

1
0

-7
 

0
.3

1
6
 

0
.0

3
6
 

-1
.6

9
×

1
0

-

7
 

2
.6

0
×

1
0

-7
 

0
.5

2
0
 

-0
.3

5
8
 

0
.0

8
9
 

<
0
.0

0
1
 

0
.3

9
7
 

E
th

an
o

l 
5
.7

1
×

1
0

-7
 

2
.1

6
6
×

1
0

-7
 

0
.0

1
3
 

0
.1

9
9
 

3
.2

0
×

1
0

-7
 

1
.9

8
×

1
0

-7
 

0
.1

1
8
 

-0
.3

1
2
 

0
.0

9
1
 

0
.0

0
2
 

0
.4

4
2
 

E
th

yl
 a

ce
ta

te
 

1
.9

5
×

1
0

-7
 

2
.2

6
9
×

1
0

-7
 

0
.3

9
8
 

0
.0

2
6
 

6
.7

5
×

1
0

-8
 

1
.8

6
×

1
0

-6
 

0
.7

1
9
 

-0
.3

6
1
 

0
.0

9
0
 

<
0
.0

0
1
 

0
.3

9
1
 

H
ex

an
al

 
-2

.1
3
×

1
0

-9
 

2
.7

6
3
×

1
0

-8
 

0
.9

3
9
 

<
0
.0

0
1
 

1
.2

1
×

1
0

-8
 

2
.2

2
×

1
0

-8
 

0
.5

8
9
 

-0
.3

7
4
 

0
.0

8
9
 

<
0
.0

0
1
 

0
.3

9
4
 

H
ex

an
o

ic
 a

ci
d
 

6
.9

6
×

1
0

-9
 

5
.1

0
9
×

1
0

-9
 

0
.1

8
4
 

0
.0

6
2
 

5
.3

4
×

1
0

-9
 

4
.1

0
×

1
0

-9
 

0
.2

0
4
 

-0
.3

5
6
 

0
.0

8
6
 

<
0
.0

0
1
 

0
.4

2
4
 

H
yd

ro
ge

n
 a

zi
d
e 

5
.2

2
×

1
0

-8
 

2
.1

8
0
×

1
0

-8
 

0
.1

7
0
 

0
.1

7
0
 

2
.5

1
×

1
0

-8
 

2
.0

1
×

1
0

-8
 

0
.2

2
2
 

-0
.3

2
1
 

0
.0

9
4
 

0
.0

0
2
 

0
.4

2
1
 

K
et

o
n
e 

A
 

1
.3

6
×

1
0

-6
 

8
.5

7
1
×

1
0

-7
 

0
.1

2
4
 

0
.0

8
2
 

9
.4

2
×

1
0

-7
 

6
.9

8
×

1
0

-7
 

0
.1

8
7
 

-0
.3

4
9
 

0
.0

8
7
 

<
0
.0

0
1
 

0
.4

2
7
 

L
im

o
n

en
e 

-6
.0

9
×

1
0

-7
 

1
.4

0
0
×

1
0

-5
 

0
.9

6
6
 

<
0
.0

0
1
 

8
.6

0
×

1
0

-6
 

1
.1

3
×

1
0

-5
 

0
.4

5
4
 

-0
.3

8
0
 

0
.0

8
9
 

<
0
.0

0
1
 

0
.4

0
0
 

O
ct

an
o

ic
 a

ci
d
 

1
.0

9
×

1
0

-8
 

6
.6

8
1
×

1
0

-9
 

0
.1

1
3
 

0
.0

8
7
 

7
.8

4
×

1
0

-9
 

5
.4

2
×

1
0

-9
 

0
.1

6
0
 

-0
.3

4
9
 

0
.0

8
6
 

<
0
.0

0
1
 

0
.4

3
1
 

T
et

ra
h

yd
ro

fu
ra

n
 

3
.2

2
×

1
0

-8
 

1
.2

8
3
×

1
0

-8
 

0
.0

1
8
 

0
.1

8
4
 

9
.1

4
×

1
0

-9
 

1
.3

5
×

1
0

-8
 

0
.5

0
3
 

-0
.3

2
7
 

0
.1

0
6
 

0
.0

0
5
 

0
.3

9
8
 

1
 F

at
- 

an
d

 p
ro

te
in

-c
o

rr
ec

te
d
 m

ilk
 (

F
P

C
M

; 
k
g/

d
) 

=
 [

0
.3

3
7
 +

 0
.1

1
6
 ×

 f
at

 (
g/

1
00

 g
 m

ilk
) 

+
 0

.0
6
 ×

 p
ro

te
in

 (
g/

1
0
0
 g

 m
ilk

)]
 ×

 m
ilk

 y
ie

ld
 (

k
g/

d
).

 
2
 N

u
m

b
er

s 
ar

e 
ar

ea
 v

al
u
es

 (
ar

b
it

ra
ry

 u
n

it
s)

. 

 



 

 
 

62 

CHAPTER 4 

T
a
b

le
 4

.1
. 

C
o

n
ti

n
u
ed

 

3
 M

ilk
 v

o
la

ti
le

s 
ar

e 
o

rd
er

ed
 a

lp
h

ab
et

ic
al

ly
, 
n

 =
 3

0
. 

4
 P

ar
am

et
er

s 
in

 t
h

es
e 

ta
b

le
 w

er
e 

ex
tr

ac
te

d
 f

ro
m

 t
h

e 
eq

u
at

io
n

: 
C

H
4
 i
n

te
n

si
ty

 =
 a

 +
 b

 ×
 v

o
la

ti
le

 m
et

ab
o

lit
e 

+
 e

, 
w

h
er

e 
a 

is
 t

h
e 

in
te

rc
ep

t 
o

f 
th

e 
re

gr
es

si
o

n
 l
in

e,
 b

 i
s 

th
e 

sl
o

p
e 

o
f 

 

th
e 

re
gr

es
si

o
n

 l
in

e 
as

so
ci

at
ed

 w
it

h
 t

h
e 

vo
la

ti
le

 m
et

ab
o

lit
e 

an
d

 e
 i
s 

th
e 

er
ro

r.
 

5
 P

ar
am

et
er

s 
in

 t
h

es
e 

ta
b

le
 w

er
e 

ex
tr

ac
te

d
 f

ro
m

 t
h

e 
eq

u
at

io
n

: 
C

H
4
 i
n

te
n

si
ty

 =
 a

 +
 b

 ×
 v

o
la

ti
le

 m
et

ab
o

lit
e 

+
 c

 ×
 F

P
C

M
 +

 e
, 
w

h
er

e 
a 

is
 t

h
e 

in
te

rc
ep

t 
o
f 

th
e 

re
gr

es
si

o
n

 l
in

e,
  

b
 i
s 

th
e 

sl
o

p
e 

o
f 

th
e 

re
gr

es
si

o
n

 l
in

e 
as

so
ci

at
ed

 w
it

h
 t

h
e 

v
o

la
ti

le
 m

et
ab

o
lit

e,
 c

 i
s 

th
e 

sl
o

p
e 

o
f 

th
e 

re
gr

es
si

o
n

 l
in

e 
as

so
ci

at
ed

 w
it

h
 F

P
C

M
 a

n
d
 e

 i
s 

th
e 

er
ro

r.
 

 



MILK METABOLOME AND METHANE EMISSION 

 

63 
 

Acetoacetate, together with volatile 3-nonane, are ketone bodies that are positively 

correlated with CH4 intensity (Tables 4.3 and 4.1, respectively). The presence of ketones bodies 

in milk is often used to monitor changes in energy metabolism of dairy cows (Enjalbert et al., 

2001). A higher amount of ketone bodies in blood plasma and subsequently in milk occurs when 

there is a surplus of acetyl-CoA for the tricarboxylic acid (TCA) cycle (Enjalbert et al., 2001; 

Wellen and Thompson, 2012). In general, diets relatively rich in fiber that promote production 

of the ketogenic VFA, acetic acid, and butyric acid in the rumen may give rise to higher levels of 

ketone bodies in blood than glucogenic diets (diets relatively rich in rumen bypass starch 

delivering glucose in the small intestine or rich in rapidly fermentable carbohydrates that 

promote production of propionic acid in the rumen; Van Knegsel et al., 2007). Diet composition 

is known to be related to CH4 production in the rumen, with fiber generally resulting in higher 

CH4 production per unit substrate degraded in comparison with starch (Ellis et al., 2008; Hristov 

et al., 2013). Hence, a positive relationship between ketone bodies in milk and CH4 intensity 

might be explained from the ketogenic or glucogenic nutrient supply to the rumen and its 

effect on rumen fermentation. However, higher concentrations of these ketone bodies in milk 

were not significantly related to CH4 yield, indicating that such differences in ketogenic or 

lipogenic supply to the rumen and effects on rumen fermentation do not have a role in the 

observed relationships with CH4 intensity. The correlation between acetoacetate, 3-nonanone, 

and CH4 intensity disappears when FPCM is included as a covariate in the regression model. 

In fact, acetoacetate and 3-nonanone are negatively related (P = 0.022, P < 0.001, respectively, 

data not shown) to FPCM. This may indicate a dilution effect of certain milk metabolites 

due to a higher milk yield. 

The TCA cycle in the mitochondria is of paramount significance to the metabolic 

efficiency of the cell and therefore the metabolism of the cow. In the mitochondria, ATP is 

produced from acetyl-CoA originating from glucose, fatty acids, lactate, pyruvate, and AA 

(Hardie and Carling, 1997). The production and utilization of ATP is therefore a flexible 

situation in which molecules are interconverted depending on the needs of the cell. In this 

situation, molecules with a high-energy phosphate, such as phosphocreatine, have been widely 

studied. Together with its precursor creatine, they form an important pool of energy in the 

cell, which can be used by the mitochondria. A consequence of this metabolism is the formation 

of creatinine, which is often monitored for energy status of tissues (Wyss and Kaddurah-

Daouk, 2000). In our data set, a positive correlation is present between creatinine and CH4 

intensity (P = 0.007, Table 4.4) and a negative correlation between creatinine and milk yield 

expressed as FPCM (P = 0.026, data not shown). Further, the positive correlation between 

creatinine and CH4 intensity disappears when FPCM is included as a covariate in the regression 

model. Therefore, in our data set, changes in creatinine concentration in milk seem related to 

changes in milk yield and, therefore, milk synthesis. This may indicate a change in the 

metabolic activity fueled by the mitochondria. As discussed in this section, a negative relation 

was found between milk formate, acetoacetate, 3-nonanone, creatinine, and milk yield, 

expressed as FPCM. This supports the idea of a possible dilution effect on milk metabolites. 

Further, when FPCM is included as a covariate in the regression models, the above 

mentioned metabolites are no longer related to CH4 intensity. An increase in CH4 intensity 
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resulting from a lower milk yield may therefore be associated with a lower metabolic rate, 

explaining the changes in milk metabolites related to milk synthesis and energy metabolism. 

 

Table 4.2. Linear regression between methane yield (g/kg DMI) and milk volatile metabolites (peak area1)2 

Volatile metabolite3 (peak area) Intercept SE Slope SE Slope P R2 

1-heptanol 24.8 0.59 -1.72×10-6 1.000×10-6 0.184 0.062 

1-heptanol-decanol 23.4 1.33 9.52×10-7 2.000×10-6 0.569 0.012 

1-pentanol 23.8 0.98 1.18×10-7 3.734×10-7 0.755 0.004 

2-butanone 23.9 0.57 2.33×10-8 5.418×10-8 0.671 0.007 

2-heptanone 24.1 0.49 5.11×10-9 1.270×10-7 0.968 <0.001 

3-nonanone 24.3 1.43 -8.54×10-8 7.828×10-7 0.914 <0.001 

Acetone 25.1 0.54 -7.53×10-9 3.545×10-9 0.043 0.139 

Alkane A 23.9 0.93 3.54×10-7 1.000×10-6 0.799 0.002 

Alkane B 24.4 1.32 -4.64×10-7 2.000×10-6 0.819 0.002 

Alkane C 24.6 0.61 -3.53×10-7 3.682×10-7 0.346 0.032 

Benzene alkane 24.4 1.31 -4.02×10-7 2.000×10-6 0.827 0.002 

Benzene compound 23.9 0.43 5.53×10-7 6.290×10-7 0.387 0.027 

Butanoic acid 24.0 0.47 3.61×10-9 8.088×10-9 0.659 0.007 

Cyclohexane 24.7 1.16 -4.00×10-6 7.000×10-6 0.587 0.011 

Dimethyl sulfone 23.3 0.71 3.98×10-7 3.067×10-7 0.205 0.057 

Ethanol 23.2 1.04 2.13×10-7 2.318×10-7 0.366 0.029 

Ethyl acetate 25.3 1.12 -2.44×10-7 2.187×10-7 0.273 0.043 

Hexanal 24.6 0.50 -3.53×10-8 2.602×10-8 0.186 0.062 

Hexanoic acid 23.9 0.42 4.08×10-9 5.071×10-9 0.428 0.023 

Hydrogen azide 23.4 1.18 1.41×10-8 2.310×10-8 0.548 0.013 

Ketone A 23.9 0.48 6.62×10-7 8.608×10-7 0.449 0.021 

Limonene 23.5 1.23 6.85×10-6 1.400×10-5 0.620 0.009 

Octanoic acid 23.9 0.43 5.25×10-9 6.727×10-9 0.442 0.021 

Tetrahydrofuran 23.8 0.70 6.98×10-9 1.374×10-8 0.615 0.009 

1 Numbers are peak area values (arbitrary units).  

2 Milk volatile metabolites are ordered alphabetically, n = 30. 
3 Parameters were extracted from the equation: CH4 yield = a + b × volatile metabolite + e, where a is the intercept 

of the regression line, b is the slope of the regression line associated with the metabolite, and e is the error. 
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Table 4.4. Linear regression between methane yield (g/kg of DMI) and milk non-volatile metabolites (relative 

area1)2 

Non-volatile metabolite3  

(relative peak area) 
Intercept SE Slope SE Slope P R2 

Acetate 25.6 1.75 -32.91 36.288 0.372 0.029 

Acetoacetate 25.5 2.07 -50.55 71.864 0.488 0.017 

Acetone 25.6 0.79 -43.20 20.664 0.046 0.135 

Acetylcarnitine 25.1 1.99 -12.38 23.388 0.601 0.010 

Betaine 27.0 1.70 -9.32 5.358 0.093 0.098 

Butyrate 24.0 0.56 0.35 1.931 0.858 0.001 

β-hydroxybutyrate 26.2 1.85 -37.62 32.213 0.253 0.046 

Carnitine 29.2 2.67 -26.95 13.806 0.061 0.120 

Choline 23.1 1.15 1.11 1.290 0.397 0.026 

Citrate 25.9 2.28 -0.70 0.838 0.412 0.024 

Creatine 25.7 2.28 -4.10 5.691 0.477 0.018 

Creatinine 23.1 2.97 15.41 45.908 0.740 0.004 

Ethanol 25.4 2.17 -59.55 96.318 0.541 0.013 

Formate 25.9 1.77 -99.20 94.431 0.302 0.038 

Galactose-1-phosphate 24.7 0.95 -83.17 115.441 0.477 0.018 

Glycerophosphocholine 23.8 1.07 0.32 1.277 0.804 0.002 

Hippurate 22.3 1.57 34.50 30.141 0.262 0.045 

Lactate 25.1 0.99 -13.12 11.546 0.265 0.044 

Lactose 30.2 7.66 -0.29 0.363 0.430 0.022 

Malonate 25.8 1.81 -33.90 34.543 0.335 0.033 

Methylmalonate 24.3 1.34 -6.30 34.512 0.856 0.001 

N-acetylsugar A 28.7 2.54 -27.76 15.241 0.079 0.106 

N-acetylsugar B 27.0 1.51 -4.75 2.411 0.059 0.122 

N-acetylsugar C 23.7 0.92 1.33 3.326 0.693 0.006 

N-acetylsugar D 23.9 0.99 2.00 9.239 0.830 0.002 

N-acetylsugar E 24.1 1.24 -0.79 25.834 0.976 <0.001 

Orotate 23.8 1.29 5.15 22.903 0.824 0.002 

Oxaloacetate 25.0 1.95 -41.34 85.567 0.633 0.008 

Oxoglutarate 24.5 1.61 -8.39 29.458 0.778 0.003 

Phosphocreatine 23.0 1.15 27.73 28.309 0.336 0.033 

Phosphorylcholine 23.5 0.66 3.83 3.539 0.288 0.04 

Proline 25.0 1.64 -10.39 18.745 0.584 0.011 

Pyruvate 25.7 2.27 -18.05 25.387 0.483 0.018 

Succinate 24.0 1.92 3.18 35.144 0.929 <0.001 

Sugar A (derivative phosphate)  25.6 1.33 -56.85 48.672 0.253 0.046 

Sugar B (derivative phosphate) 23.5 1.08 15.27 27.805 0.587 0.011 

Sugar C (derivative phosphate) 23.6 0.67 17.01 20.251 0.408 0.025 

Uridine diphosphate (UDP)-hexose A 24.5 0.88 -150.60 274.370 0.587 0.011 

UDP-hexose B 25.2 1.31 -88.20 97.360 0.373 0.028 

UDP-hexose C 25.3 2.21 -39.70 71.965 0.586 0.011 

UDP-hexose D 24.4 1.15 -54.77 190.607 0.776 0.003 

1 Numbers are relative peak area values in relation to the peak area of internal standard (arbitrary units). 

2 Milk non-volatile metabolites are ordered alphabetically, n = 30. 
3 Parameters were extracted from the equation: CH4 yield = a + b × non-volatile metabolite + e, where a is the 

intercept of the regression line, b is the slope of the regression line associated with the non-volatile metabolite, and 

e is the error. 
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Changes in methane intensity are related to lactose synthesis 

In our data set, CH4 intensity is negatively related to UDP-hexose B (P = 0.001, Table 

4.3). This negative relation may be due to the fact that UDP-sugars, including UDP-hexoses, 

are intermediates in lactose synthesis (Cant et al., 2002). For the production of lactose, glucose 

is transported from the bloodstream into the cytosol of epithelial cells, where part of it is 

converted into UDP-sugars. These are precursors of galactose that together with glucose will 

form lactose (Cant et al., 2002). This may explain the positive correlation between UDP-hexose 

B and lactose yield (g/d; Figure 4 . 1A). Milk yield is mainly controlled by the synthesis of 

lactose due to the contribution of this disaccharide to the osmolality of milk (Linzell and 

Peaker, 1971), and as discussed previously, an increase in milk yield (as FPCM) per animal 

reduces CH4 intensity. Although in our data set UDP-hexose B is positively related (P = 0.008, 

data not shown) to FPCM, even when including FPCM in the regression model the UDP-

hexose B is still significantly related to CH4 intensity. This suggests that the lower amount of 

UDP-hexose B in milk might be related to the involvement of glucose in different metabolic 

pathways in the mammary gland. The large majority of glucose that is taken up by the 

epithelial cells is used in the biosynthesis of lactose (Cant et al., 2002). Glucose is also 

involved in NADPH production, which is paramount in the de novo MFA synthesis, and is 

required to synthesize glycerol, forming the backbone of triglycerides (Dijkstra et al., 1996). 

Thus, the negative relation between UDP-hexose B and CH4 intensity may be explained by 

a decrease in metabolic rate in the mammary gland due to a lower milk yield. 

 

 
Figure 4.1 Scatter plots of (A) uridine diphosphate (UDP)-hexose B and lactose yield (g/d), and (B) CH4 intensity 

(g/kg of fat- and protein-corrected milk; FPCM) and BW (kg). The Pearson correlation coefficient is indicated by r (n 

= 30). 

 

In our data set, milk citrate is negatively related to CH4 intensity (P = 0.026, Table 

4 .3) and is not related to FPCM (P = 0.347, data not shown). Therefore, when including 

FPCM in the regression model, citrate is still negatively related to CH4 intensity (P = 0.025, 

Table 4 . 3). Milk citrate is regarded as a marker for the energy metabolism in the mammary 

gland because the mammary epithelium is impermeable to citrate (Linzell et al., 1976; 

Faulkner and Peaker, 1982). In our study, a decrease in milk citrate and associated increase in 

CH4 intensity (Table 4 . 3) could indicate a disruption in the TCA cycle in the mammary 

gland because citrate is a regulatory compound of the acetyl-CoA metabolism in the 



MILK METABOLOME AND METHANE EMISSION 

 

69 
 

mitochondria (Bremer and Davis, 1974). Further, by providing NADPH, the citrate 

metabolism and the TCA cycle may be indirectly involved in de novo synthesis of MFA in 

the mammary gland, inducing a negative correlation between citrate and de novo synthesized 

MFA (Faulkner and Peaker, 1982). In our data set, C12:0 and C14:0 were the only de novo 

synthesized MFA negatively related to milk citrate (data not shown). This may be due to the 

contribution of NADPH to the elongation step during the de novo MFA synthesis. In each 

elongation step, rumen-derived acetate and NADPH are needed and longer de novo MFA 

require more elongation steps and therefore more NADPH; C6:0 requires 2 elongation steps 

in contrast to the 5 elongation steps needed for C12:0 (Garnsworthy et al., 2006). 

Together with NADPH, each elongation step  in the de novo synthesis of MFA 

requires rumen-derived acetate, which mainly originates from fermentation of complex 

carbohydrates in the rumen. Decreased rates of MFA synthesis in the mammary gland induced 

by dietary changes have been shown to increase citrate levels of milk (Garnsworthy et al., 2006). 

Increasing the level of rapidly fermentable carbohydrates by increasing concentrate proportion 

of the diet, or increasing dietary lipid content, are generally associated with reduced de novo 

MFA synthesis, and such diets in general are also associated with reduced CH4 production 

(Ellis et al., 2008). This may further explain the observed negative relationship between citrate 

and CH4 intensity in the present study. 

 

Milk acetone relates to methane yield 

Expressing CH4 emission relative to feed intake avoids confounding effects of DMI 

on total CH4 production (Dijkstra et al. (2011). In our data set, acetone measured both by 1H-

NMR and GC-MS was the only metabolite negatively related to CH4 yield. Acetone is a 

ketone body that may be positively or negatively related to milk production. In general, milk 

acetone levels of energy deficient cows increase rapidly and may indicate subclinical ketosis 

(Miettinen, 1994), and subclinical ketosis may negatively affect milk production. Milk acetone 

is also influenced by parity and lactation stage, and a rise in milk production was accompanied 

by a rise in milk acetone levels (Heuer et al., 2001). In our study, CH4 yield and acetone were 

not related to milk production (expressed as FPCM; P < 0.675, data not shown), and 

therefore the mechanisms explaining the relation between CH4 yield and acetone are not 

totally clear. In general, levels of ketone bodies including acetone are not just related to energy 

balance of the cow, but also to glucose levels (Andersson, 1988). As discussed in a previous 

section, glucogenic diets are generally associated with reduced CH4 production. Therefore, 

we assessed the effect of diet on the established relations between individual volatile 

metabolites or non-volatile metabolites, and CH4 emission, by including dietary treatment as 

a covariate in the linear regressions. The majority of relations were not significantly changed 

(data not shown). Only hydrogen-azide became significantly related to CH4 intensity (P = 

0.043) and sugar A (derivative phosphate) became significantly related to CH4 yield (P = 

0.031). More specifically, including treatment as a covariate in the regression model did not 

significantly change the relation between acetone (non-volatile) and CH4 yield (P = 0.044), 

but acetone (volatile) was no longer significantly related to CH4 yield (P = 0.229). Our results 

suggest that although acetone may help to understand changes in the physiology of the dairy 
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cow associated with CH4 yield, it may also be influenced by the diet. 

 

Body weight relates to methane intensity, but not to methane yield 

In the present study, body weight (BW) of cows was positively related to CH4 

intensity (P = 0.012, r = 0.444; Figure 4 . 1B), but was not related to CH4 yield (P = 

0.671, r = 0.079). The importance of BW in relation to CH4 production has been 

previously acknowledge by other authors who have included BW in regression equations to 

predict CH4 production (Kirchgebner et al., 1995; Moraes et al., 2014). In a meta-analysis using 

a Bayesian model selection procedure, Moraes et al. (2014) identified BW as a key explanatory 

variable in predicting CH4 emissions, in addition to the key dietary variables energy intake, 

dietary fiber, and lipid proportions. The association between BW and CH4 emission might 

be explained by the relation between BW and rumen capacity (Demment and Van Soest, 1985). 

A higher BW is proportional to a larger rumen capacity. When feed intake is kept constant, a 

higher rumen capacity results in a lower passage rate (Demment and Van Soest, 1985), 

resulting in a higher CH4 production (Moraes et al., 2014). 

Because feed intake, either as DMI or gross energy intake, are confounding factors 

of BW and enteric CH4 production (Ellis et al., 2008), cows in the present experiment 

had a restricted feed intake, and no correlation between BW and CH4 yield (P = 0.671, 

r = 0.079) or BW and FPCM (P = 0.232, r = −0.221) was observed. A higher BW requires 

more feed to be used for maintenance purposes, thus having less feed available for milk 

production, which is expected to increase CH4 intensity. However, the absence of relation 

between BW and FPCM supports the idea that rumen size and passage rate may explain the 

positive relation between BW and CH4  intensity. 

 

CONCLUSIONS 

The results of the present study suggest that milk is a suitable matrix to better 

understand the biological pathways involved in CH4 emission. In general, milk non-volatile 

metabolites have a more pronounced relationship with CH4 emission compared with milk 

volatile metabolites, especially when referring to CH4 intensity (g/kg of FPCM) rather than 

CH4 yield (g/ kg of DMI). However, relationships between several metabolites and CH4 

intensity are partly dependent on milk production (as FPCM). The relations between milk 

UDP-hexose B and citrate with CH4 intensity (g/ kg of FPCM) remained significant when 

FPCM was included as a covariate in the regression models. The UDP-hexose B is an 

intermediate metabolite of lactose metabolism, whereas citrate is an important intermediate of 

Krebs cycle–related energy metabolic processes. This suggests that CH4 intensity may be 

related to lactose synthesis and energy metabolism in the mammary gland. The negative 

relation between milk acetone and CH4 yield may be related to glucogenic nutrient supply, 

and implies that acetone is important to monitor CH4 emission related to feed intake. We 

observed a positive relationship between BW and CH4 intensity, which may be related to 

differences in rumen capacity and rumen passage rate. Our results suggest that an integrative 

approach including milk production and composition, dietary and animal traits will help 

to explain the biological metabolism of dairy cows in relation to CH4 emission. 
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SUPPORTING INFORMATION 

Supplementary Table S4.1. Summary statistics of milk volatile metabolites measured (peak area1) 

Volatile metabolite Mean SD Minimum Maximum 

1-heptanol 3.88×105 2.657×105 1.22×105 1.53×106 

1-heptanol-decanol 7.75×105 2.085×105 0.00 1.11×106 

1-pentanol 2.46×106 9.270×105 9.19×105 4.27×106 

2-butanone 8.37×106 6.378×106 2.00×106 3.13×107 

2-heptanone 2.76×106 2.729×106 3.02×105 1.30×107 

3-nonanone 1.78×106 4.428×105 0.00 2.41×106 

Acetone 1.24×108 9.076×107 5.46×107 5.31×108 

Alkane A 6.27×105 2.515×105 0.00 1.20×106 

Alkane B 6.34×105 1.720×105 0.00 9.16×105 

Alkane C 1.38×106 9.267×105 5.73×105 4.73×106 

Benzene alkane 6.96×105 1.905×105 0.00 1.01×106 

Benzene compound 4.30×105 5.438×105 5.95×104 3.14×106 

Butanoic acid 3.93×107 4.272×107 6.46×106 2.32×108 

Cyclohexane 1.52×105 4.747×104 0.00 2.32×105 

Dimethyl sulfone 2.01×106 1.098×106 7.48×105 5.52×106 

Ethanol 4.25×106 1.474×106 2.62×106 8.27×106 

Ethyl acetate 4.90×106 1.551×106 2.29×106 8.44×106 

Hexanal 1.46×107 1.291×107 2.53×106 6.13×107 

Hexanoic acid 5.19×107 6.760×107 8.46×106 3.82×108 

Hydrogen azide 4.89×107 1.491×107 0.00 7.47×107 

Ketone A 3.89×105 3.986×105 8.69×104 2.21×106 

Limonene 8.68×104 2.531×104 4.46×104 1.53×105 

Octanoic acid 3.86×107 5.099×107 7.70×106 2.88×108 

Tetrahydrofuran 4.48×107 2.511×107 6.72×106 1.21×108 

1 Numbers are peak area values (arbitrary units).  
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Supplementary Table S4.2. Summary statistics of milk non-volatile metabolites measured (relative area1) 

Non-volatile metabolite Mean SD Minimum Maximum 

Acetate 0.047 0.0096 0.030 0.068 

Acetoacetate 0.028 0.0049 0.020 0.039 

Acetone 0.035 0.0159 0.023 0.102 

Acetylcarnitine 0.084 0.0150 0.057 0.125 

Betaine 0.311 0.0624 0.188 0.422 

Butyrate 0.225 0.1823 0.084 1.018 

β-hydroxybutyrate 0.056 0.0107 0.039 0.088 

Carnitine 0.192 0.0239 0.149 0.246 

Choline 0.849 0.2694 0.376 10.658 

Citrate 20.690 0.4151 10.931 30.378 

Creatine 0.396 0.0613 0.299 0.564 

Creatinine 0.064 0.0077 0.048 0.081 

Ethanol 0.022 0.0036 0.015 0.030 

Formate 0.018 0.0037 0.011 0.027 

Galactose-1-phosphate 0.008 0.0030 0.002 0.015 

Glycerophosphocholine 0.789 0.2756 0.449 1.396 

Hippurate 0.051 0.0114 0.038 0.084 

Lactate 0.081 0.0298 0.051 0.170 

Lactose 21.063 0.9583 18.065 22.765 

Malonate 0.052 0.0100 0.030 0.073 

Methylmalonate 0.023 0.0097 0.013 0.064 

N-acetylsugar A 0.165 0.0219 0.124 0.224 

N-acetylsugar B 0.611 0.1369 0.334 0.890 

N-acetylsugar C 0.257 0.1056 0.089 0.516 

N-acetylsugar D 0.101 0.0381 0.039 0.197 

N-acetylsugar E 0.046 0.0136 0.022 0.087 

Orotate 0.054 0.0154 0.028 0.100 

Oxaloacetate 0.023 0.0041 0.016 0.034 

Oxoglutarate 0.053 0.0119 0.032 0.082 

Phosphocreatine 0.039 0.0122 0.023 0.071 

Phosphorylcholine 0.161 0.0975 0.062 0.444 

Proline 0.086 0.0187 0.059 0.142 

Pyruvate 0.089 0.0138 0.066 0.122 

Succinate 0.054 0.0100 0.040 0.092 

Sugar A (derivative phosphate) 0.027 0.0071 0.012 0.039 

Sugar B (derivative phosphate) 0.037 0.0126 0.016 0.061 

Sugar C (derivative phosphate) 0.029 0.0172 0.006 0.072 

Uridine disphosphate (UDP)-hexose A 0.003 0.0013 0.001 0.005 

UDP-hexose B 0.013 0.0036 0.003 0.019 

UDP-hexose C 0.030 0.0049 0.020 0.046 

UDP-hexose D 0.006 0.0019 0.003 0.010 

1 Numbers are relative peak area values in relation to the peak area of internal standard (arbitrary units).  
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Supplementary Table S4.3. List of chemical shift values1, proton assignments2, and multiplicity3 for metabolites 

identified by 1H-NMR in milk samples of cows 

Metabolite Chemical shift (ppm) Assignment Multiplicity 

Acetate  1.930 CH3 Singlet  

Acetoacetate  2.264 CH3 Singlet  

Acetone  2.230 CH3 Singlet  

Acetylcarnitine  3.193 3×CH3 Singlet  

Betaine  3.266 3×CH3 Singlet  

Butyrate 2.172 CH2 Triplet  

β-hydroxybutyrate  2.330 CH2 Multiplet  

Carnitine  3.496 CH2 Multiplet  

Choline 3.203 3×CH3 Singlet  

Citrate  2.702 CH2 Doublet 

Creatine 3.041 CH3 Singlet  

Creatinine 3.060 CH3 Singlet  

Ethanol 1.175 CH3 Triplet 

Formate 8.457 CH Singlet  

Galactose-1-phosphate  5.477 CH Doublet  

Glycerophosphoholine  3.231 3×CH3 Singlet  

Hippurate  7.557 CH2 Multiplet  

Lactate  1.333 CH3 Doublet 

Lactose  4.459 CH Doublet 

Malonate 3.114 CH2 Singlet 

Methylmalonate 1.256 CH Doublet 

N-acetylsugar A 2.043 CH3 Singlet 

N-acetylsugar B 2.059 CH3 Singlet 

N-acetylsugar C 2.069 CH3 Singlet 

N-acetylsugar D 5.404 CH2 Multiplet  

N-acetylsugar E 8.144 CH2 Doublet 

Orotate  6.198 CH Singlet  

Oxaloacetate  2.396 CH2 Singlet  

Oxoglutarate  2.452 CH2 Triplet  

Phosphocreatine  3.047 CH3 Singlet  

Phosphorylcholine 3.222 3×CH3 Singlet  

Proline  2.360 CH2 Multiplet  

Pyruvate 2.377 CH3 Singlet  

Succinate  2.426 2×CH2 Singlet  

Sugar A (derivative phosphate) 5.192 CH Doublet 

Sugar B (derivative phosphate) 5.434 CH Doublet 

Sugar C (derivative phosphate) 5.517 CH Doublet 

Uridine disphosphate (UDP)-hexose A 5.903 CH Doublet 

UDP-hexose B  5.951 CH Doublet 

UDP-hexose C  8.072 CH Doublet 

1 Position of the signals. 

2 Type of proton(s). 

3  Number of peaks corresponding to detected proton(s). 

 

  



CHAPTER 4 

 

74 
 

 

 

Supplementary Figure S4.1A. PCA score plot derived from volatile metabolite profiles according to the different 

treatments used. 
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Supplementary Figure S4.1B. PCA score plot derived from non-volatile metabolite profiles according to the 

different treatments used. 
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ABSTRACT 

This study investigated the relationships between methane (CH4) emission and fatty 

acids, volatile metabolites (V) and non-volatile metabolites (NV) in milk of dairy cows. Data 

from an experiment with 32 multiparous dairy cows and 4 diets were used. All diets had a 

roughage:concentrate ratio of 80:20 based on dry matter (DM). Roughage consisted of either 

1000 g/kg DM grass silage (GS), 1000 g/kg DM maize silage (MS), or a mixture of both silages 

(667 g/kg DM GS and 333 g/kg DM MS; 333 g/kg DM GS and 677 g/kg DM MS). Methane 

emission was measured in climate respiration chambers and expressed as production (gram per 

day), yield (gram per kg dry matter intake; DMI) and intensity (gram per kg fat- and protein-

corrected milk; FPCM). Milk was sampled during the same days and analysed for fatty acids by 

gas chromatography, for V by gas chromatography-mass spectrometry, and for NV by nuclear 

magnetic resonance. Several models were obtained using a stepwise selection of (1) milk fatty 

acids (MFA), V, or NV alone, and (2) the combination of MFA, V and NV, based on the 

minimum Akaike’s information criterion statistic. Dry matter intake was 16.8 ± 1.23 kg/d, 

FPCM yield was 25.0 ± 3.14 kg/d, CH4 production was 406 ± 37.0 g/d, CH4 yield was 24.1 ± 

1.87 g/kg DMI, and CH4 intensity was 16.4 ± 1.91 g/kg FPCM. The observed CH4 emissions 

were compared with the CH4 emissions predicted by the obtained models, based on concordance 

correlation coefficient (CCC) analysis. The best models with MFA alone predicted CH4 

production, yield, and intensity with a CCC of 0.80, 0.71, and 0.69, respectively. The best models 

combining the three types of metabolites included MFA and NV for CH4 production and CH4 

yield, whereas for CH4 intensity MFA, NV, and V were all included. These models predicted 

CH4 production, yield, and intensity better with a higher CCC of 0.92, 0.78, and 0.93, 

respectively, and with increased accuracy (Cb) and precision (r). The results indicate that MFA 

alone have moderate to good potential to estimate CH4 emission, and furthermore that including 

V (CH4 intensity only) and NV increases the CH4 emission prediction potential. This holds 

particularly for the prediction model for CH4 intensity.  

Keywords: methane emission, dairy cow, milk fatty acid, milk volatile metabolite, milk non-

volatile metabolite 

 

IMPLICATIONS 

There is a need to quantify methane (CH4) emission of dairy cows, given the 

importance of methane as a greenhouse gas. This study investigated the relationship between 

CH4 emission and potential biomarkers in milk, viz. fatty acids (FA), volatile metabolites (V) and 

non-volatile metabolites (NV) of dairy cows. Results indicate that milk fatty acids (MFA) alone 

have moderate to good potential to predict methane emission, and furthermore that the 

prediction models become more accurate and precise when including V and, in particular, NV. 

These models can aid in the effort to understand and mitigate CH4 emissions of dairy cows.  

 

INTRODUCTION 

Quantification of CH4 emission of dairy cows is important to understand factors that 

contribute to the variation in CH4 emission, and to identify effective mitigation strategies. Several 

CH4 measurement techniques have been developed, but are not suitable for precise and accurate 
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large scale measurements (Hammond et al., 2016). Proxies (i.e., indirect traits related to CH4 

emission), such as milk composition, may be good alternatives. Milk contains a large number of 

metabolites, including MFA, that may give information on rumen metabolism (Fievez et al., 

2012). Milk FA arise from two sources, viz. de novo synthesis within the mammary gland mainly 

from rumen acetate and β-hydroxybutyrate, and mammary uptake of FA that originate from 

intestinal absorption of dietary and microbial FA and FA from body fat mobilization (Chilliard 

et al., 2009). Common biochemical pathways between CH4, acetate and butyrate in the rumen, 

and CH4 reducing effects of dietary long chain FA (Chilliard et al., 2009), suggest a relationship 

between CH4 emission and MFA profile, and several studies have predicted CH4 emission of 

dairy cows from MFA concentrations (reviewed by Van Gastelen and Dijkstra, 2016). Milk also 

contains V and NV from different chemical families. Milk V have been used for tracing animal 

feeding systems (e.g., Villeneuve et al., 2013), because diet composition can influence V 

composition in milk, either by transferring odour-active molecules (Buchin et al., 1999) or by 

interacting with rumen metabolism (Urbach, 1990). Milk NV may be related to the health status 

of cows, and these metabolites are potential biomarkers for mastitis and subclinical ketosis 

(Enjalbert et al., 2001; Sundekilde et al., 2013). More recently, Antunes-Fernandes et al. (2016) 

investigated the relation between both milk V and NV and CH4 emission of dairy cows. They 

showed that milk NV have a more pronounced relationship with CH4 emission compared with 

milk V. Based on the relations found between NV and CH4 emission, Antunes-Fernandes et al. 

(2016) concluded that CH4 intensity (g/kg fat- and protein-corrected milk; FPCM) may be 

related to lactose synthesis and energy metabolism in the mammary gland, as reflected by the 

milk NV uridine diphosphate (UDP)-hexose B and citrate. Methane yield (g/kg dry matter 

intake; DMI) on the other hand, may be related to glucogenic nutrient supply, as reflected by 

the milk NV acetone. Acetone is a ketone body, related to blood glucose levels, which in turn 

relate to the supply of glucogenic nutrients, and glucogenic diets are generally associated with 

reduced CH4 emissions (Antunes-Fernandes et al., 2016).   

To the best of our knowledge, prediction models for CH4 emission of dairy cows 

combining MFA and other milk metabolites have not been developed. Therefore, the objectives 

of this study were (i) to develop prediction models for CH4 emission based on MFA, V or NV 

alone; (ii) to develop prediction models for CH4 emission combining MFA with V and NV; (iii) 

to evaluate the improvement in prediction potential upon inclusion of V and NV in the 

prediction models, compared with the prediction models based on MFA alone. 

 

MATERIALS AND METHODS 

Experimental design and analyses 

Data from a randomized block design experiment with 32 multiparous Holstein 

Friesian cows and 4 diets were used. The experiment has been described by Van Gastelen et al. 

(2015) and was conducted in accordance with Dutch law and approved by the Animal Care and 

Use Committee of Wageningen University & Research (Wageningen, The Netherlands). Briefly, 

diets had a roughage:concentrate ratio of 80:20 based on dry matter (DM). Roughage consisted 

of either 1000 g/kg DM grass silage (GS), 1000 g/kg DM maize silage (MS), or mixtures of both 

silages (667 g/kg DM GS and 333 g/kg DM MS; 333 g/kg DM GS and 333 g/kg DM MS). 
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Methane emission was measured in climate respiration chambers for a 5-d period and expressed 

as production (g/d), yield (g/kg DMI) and intensity (g/kg FPCM). Milk yield was recorded and 

milk samples collected according to Antunes-Fernandes et al. (2016). These milk samples were 

subsequently analysed for MFA composition (g/100 g FA) using gas chromatography according 

to Van Gastelen et al. (2015), for V (peak area in arbitrary units) using gas chromatography-mass 

spectrometry according to Antunes-Fernandes et al. (2016), and for NV (relative area in arbitrary 

units) using nuclear magnetic resonance according to Antunes-Fernandes et al. (2016). 

 

Statistical analysis 

As described by Antunes-Fernandes et al. (2016), one cow was excluded because of 

large feed residuals, the gas chromatography-mass spectrometry results of another cow were 

considered outliers and could not be used, and the nuclear magnetic resonance results of a third 

cow could not be used because of repeatedly high background interference. Therefore, a total of 

29 observations were used to determine the relation between CH4 emission and milk metabolites. 

Data on DMI, CH4 emission, milk production, milk composition, and MFA are 

described in Table 5.1. The PROC REG procedure (SAS Institute Inc., Cary, NC, USA, version 

9.2) was used to determine the relationship between individual MFA and CH4 production, CH4 

yield, and CH4 intensity. The summary statistics of the V and NV and the relation between the 

individual V and NV and CH4 emission are presented by Antunes-Fernandes et al. (2016). 

The PROC GLMSELECT procedure (SAS Institute Inc., Cary, NC, USA, version 9.2) 

was used to develop prediction models, with CH4 emission (i.e., production, yield, and intensity) 

as dependent variable, the milk metabolites (i.e., MFA, V, and NV) as independent variables, and 

stepwise selection as selection procedure. Milk fat and protein content, and milk production 

were also included as selection variables when developing overall prediction models (i.e., all types 

of metabolites combined) for CH4 production and CH4 yield, but not for CH4 intensity because 

these parameters are part of the FPCM calculation. The significance level for a variable to enter 

or stay in the model was 0.05 and 0.10, respectively. The best models were selected based on the 

minimum Akaike’s information criterion statistic. Selected models were evaluated with PROC 

REG procedure in terms of multicollinearity (variation inflation factor > 10), but no 

multicollinearity was observed in any of the prediction models (i.e., for all prediction models, the 

variation inflation factors of the variables was < 10).  

The developed prediction models were evaluated with the coefficient of determination 

(adjusted R2) and the concordance correlation coefficient analysis (CCC; Lin, 1989). A detailed 

calculation of CCC is described by Dijkstra et al. (2016). Briefly, CCC is calculated by multiplying 

r (i.e., a measure of precision) with Cb (i.e., a measure of accuracy). The calculation of the Cb 

variable involves v (i.e., a measure of scale shift, which indicates the change in standard deviation, 

if any, between predicted and observed values) and 𝜇 (i.e., a measure of location shift).  
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Table 5.1. Summary statistics of experimental data used for modelling (n = 29)  

Item Mean SD Minimum Maximum 

Dry matter intake (kg/d) 16.8 1.23 13.7 19.5 

Milk production (kg/d) 23.1 3.52 17.8 30.5 

FPCMA (kg/d) 25.0 3.14 19.8 31.7 

Milk fat content (g/100 g milk) 4.72 0.527 3.94 6.20 

Milk protein content (g/100 g milk) 3.52 0.418 2.61 4.53 

Milk lactose content (g/100 g milk) 4.53 0.181 3.80 4.84 

Methane production (g/d) 406 37.0 307 465 

Methane yield (g/kg DMIB) 24.1 1.87 18.8 28.0 

Methane intensity (g/kg FPCM) 16.4 1.91 13.0 20.7 

Fatty acid (g/100g fatty acids)     

C4:0 3.4 0.30 2.9 4.3 

C6:0 2.2 0.13 2.0 2.5 

C8:0 1.2 0.10 1.0 1.4 

C10:0 2.7 0.34 2.0 3.4 

C12:0 3.3 0.48 2.4 4.4 

C14:0 11.3 0.78 9.6 12.6 

iso C14:0  0.09 0.014 0.06 0.12 

C14:1 cis-9 1.22 0.272 0.84 1.95 

C15:0 1.04 0.205 0.77 1.47 

iso C15:0  0.25 0.037 0.19 0.33 

anteiso C15:0  0.41 0.049 0.31 0.51 

C16:0 35.4 2.72 32.0 42.3 

iso C16:0  0.17 0.023 0.13 0.21 

C16:1 trans-9 0.21 0.034 0.14 0.27 

C16:1 cis-9 2.0 0.30 1.5 3.0 

C17:0 0.62 0.084 0.47 0.79 

iso C17:0  0.37 0.032 0.32 0.46 

anteiso C17:0  0.41 0.051 0.34 0.54 

C17:1 cis-9 2.0 0.30 1.5 3.0 

C18:0 7.5 1.03 5.0 9.3 

C18:1 cis-9C 17.8 2.76 12.3 22.0 

C18:1 cis-12 0.20 0.097 0.07 0.47 

C18:1 cis-13 0.11 0.022 0.07 0.17 

C18:1 trans-6 0.22 0.079 0.12 0.42 

C18:1 trans-9 0.14 0.038 0.08 0.25 

C18:1 trans-10 0.22 0.144 0.10 0.65 

C18:1 trans-11 0.84 0.332 0.49 2.18 

C18:1 trans-15 + C18:1 cis-11 0.59 0.127 0.33 0.78 

C18:2 cis-9, trans-11 0.44 0.199 0.25 1.29 

C18:2n-6 1.46 0.251 0.89 1.92 

C18:3n-3 0.39 0.125 0.14 0.66 

C18:3n-6 0.08 0.012 0.06 0.11 

C20:0 0.12 0.017 0.08 0.15 

C20:1 cis-11 0.05 0.009 0.03 0.07 

C20:2n-6 0.05 0.007 0.03 0.06 

C20:3n-6 0.09 0.018 0.05 0.12 

C20:4n-3 0.07 0.04 0.00 0.13 
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Table 5.1. Continued     

Item Mean SD Minimum Maximum 

C20:4n-6 0.13 0.025 0.08 0.18 

C20:5n-3 0.06 0.013 0.03 0.09 

C22:0 0.06 0.02 0.00 0.10 

C22:5n-6 0.09 0.015 0.07 0.12 

C24:0 0.05 0.02 0.00 0.08 

Data from Van Gastelen et al. (2015). 
A Fat- and protein-corrected milk(kg/d) = [0.337 + 0.116 × fat (g/100 g milk) + 0.06 × protein (g/100 g milk)] × 

milk yield (kg/d) (CVB, 2012). 
B Dry matter intake (kg/d). 
C C18:1 cis-9 represents the sum of C18:1 cis-9 and C18:1 trans-12, as these 2 FA could not be separated in the analysis. 

The portion of C18:1 trans-12 is considered to be negligible, as this FA is always present in small amounts. 

 

 

RESULTS 

Relation between individual milk fatty acids and methane emission   

The relationships between individual MFA and CH4 production, CH4 yield, and CH4 

intensity are shown in Table 5.2 and Supplementary Tables S5.1, S5.2, and S5.3. Short- and 

medium-chain MFA (defined here as straight, even chain MFA up to 16 carbon chain length; 

SMCFA) were not related to CH4 emission, except for C14:1 cis-9 which was positively related 

to CH4 production (P = 0.03) and to CH4 intensity (P = 0.04). Of the odd- and branched-chain 

FA (OBCFA), anteiso FA were not related to CH4 emission. No relation was found between the 

iso FA and CH4 production, but iso C15:0 tended to be positively related (P = 0.06) whereas iso 

C14:0 was negatively related (P = 0.03) to CH4 yield, and iso C15:0 was positively related (P < 

0.01) to CH4 intensity. Additionally, C15:0 and C17:0 were not related to CH4 production, but 

C17:0 was positively related (P = 0.01) to CH4 yield, and C15:0 was positively related (P = 0.03) 

to CH4 intensity. Negative relations were found between CH4 emission and several C18:1, C18:2, 

and C18:3 isomers in milk, with the exception of C18:3n-3 which was positively related (P = 

0.05) to CH4 yield. The long-chain saturated FA (SFA) C20:0, C22:0, and C24:0 were not related 

to CH4 production, but positively related to CH4 yield and CH4 intensity (P < 0.05).  

 

Regression analyses for methane emission 

Four sets of test variables were used to develop CH4 prediction models; (1) only MFA, 

(2) only V, (3) only NV, and (4) all three types of metabolites combined. In total, 11 prediction 

models were obtained; three for CH4 production (no model was obtained with V only), and four 

for both CH4 yield and CH4 intensity (Table 5.3). The observed and residuals (observed minus 

predicted) versus predicted CH4 production, CH4 yield, and CH4 intensity plots are shown in 

Figures 5.1, 5.2, and 5.3, respectively. The results of the CCC analysis of the 11 obtained CH4 

prediction models are shown in Table 5.4.  
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Table 5.2. Correlations between methane production (g/d), yield (g/kg dry matter intake; DMI), and intensity 

(g/kg fat- and protein-corrected milk; FPCM), and milk fatty acid concentrations 

Fatty acid (g/100 g fatty acids) 
CH4 (g/d) CH4 (g/kg  DMI) CH4 (g/kg FPCMA) 

r P - value r P - value r P - value 

C4:0 -0.05 0.80 -0.09 0.65 -0.28 0.15 

C6:0 0.20 0.30 0.03 0.87 -0.07 0.72 

C8:0 0.30 0.11 0.08 0.70 0.10 0.60 

C10:0 0.21 0.27 0.04 0.82 0.18 0.36 

C12:0 0.25 0.19 0.02 0.91 0.25 0.19 

C14:0 0.13 0.50 -0.06 0.74 0.20 0.30 

iso C14:0  -0.10 0.60 -0.40 0.03 0.13 0.49 

C14:1 cis-9 0.40 0.03 -0.09 0.63 0.39 0.04 

C15:0 0.29 0.13 0.22 0.24 0.40 0.03 

iso C15:0  0.26 0.17 0.35 0.06 0.56 < 0.01 

anteiso C15:0  0.05 0.78 -0.12 0.53 0.30 0.12 

C16:0 0.31 0.10 0.15 0.44 0.23 0.23 

iso C16:0  -0.19 0.33 -0.29 0.12 -0.23 0.23 

C16:1 trans-9 -0.16 0.41 -0.21 0.27 -0.37 0.05 

C16:1 cis-9 0.07 0.73 -0.08 0.67 0.22 0.26 

C17:0 0.10 0.62 0.46 0.01 0.10 0.61 

iso C17:0  -0.13 0.49 0.08 0.69 0.01 0.94 

anteiso C17:0  -0.07 0.71 -0.02 0.93 -0.22 0.24 

C17:1 cis-9 -0.12 0.53 0.19 0.32 -0.16 0.41 

C18:0 -0.11 0.57 0.27 0.15 -0.21 0.26 

C18:1 cis-9B -0.25 0.18 0.04 0.85 -0.27 0.15 

C18:1 cis-12 -0.47 < 0.01 -0.70 < 0.01 -0.33 0.08 

C18:1 cis-13 -0.27 0.16 -0.31 0.11 -0.30 0.11 

C18:1 trans-6 -0.34 0.07 -0.64 < 0.01 -0.32 0.09 

C18:1 trans-9 -0.47 0.01 -0.65 < 0.01 -0.22 0.25 

C18:1 trans-10 -0.48 < 0.01 -0.71 < 0.01 -0.33 0.08 

C18:1 trans-11 -0.63 < 0.01 -0.72 < 0.01 -0.16 0.41 

C18:1 trans-15 + C18:1 cis-11 -0.44 0.02 -0.32 0.09 -0.40 0.03 

C18:2 cis-9, trans-11 -0.58 < 0.01 -0.74 < 0.01 -0.08 0.67 

C18:2n-6 -0.48 < 0.01 -0.53 < 0.01 -0.31 0.11 

C18:3n-3 0.09 0.62 0.36 0.05 0.28 0.15 

C18:3n-6 -0.51 < 0.01 -0.63 < 0.01 -0.25 0.18 

C20:0 0.15 0.45 0.58 < 0.01 0.37 0.05 

C20:1 cis-11 -0.22 0.25 0.13 0.52 -0.26 0.18 

C20:2n-6 -0.27 0.15 0.16 0.42 0.19 0.32 

C20:3n-6 -0.41 0.03 -0.28 0.15 -0.02 0.90 

C20:4n-3 0.45 0.01 0.19 0.32 0.01 0.94 

C20:4n-6 -0.46 0.01 -0.52 < 0.01 0.16 0.41 

C20:5n-3 0.06 0.76 0.18 0.36 0.33 0.08 

C22:0 0.21 0.27 0.48 < 0.01 0.52 < 0.01 

C22:5n-3 -0.16 0.42 -0.15 0.43 0.42 0.02 

C24:0 0.24 0.20 0.43 0.02 0.53 < 0.01 

A Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 × fat (g/100 g milk) + 0.06 × protein (g/100 g milk)] × 

milk yield (kg/d) (CVB, 2012). 
B C18:1 cis-9 represents the sum of C18:1 cis-9 and C18:1 trans-12, as these 2 FA could not be separated in the analysis. 

The portion of C18:1 trans-12 is considered to be negligible, as this FA is always present in small amounts. 
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Table 5.4. The coefficient of determination (R2) and concordance correlation coefficient (CCC) of the prediction 

models  

Model Adjusted R2 CCCA rB Cb
C 𝑣D µE 

Methane production (g/d)       

MFAF 0.63 0.80 0.82 0.98 1.22 0.00 

VG n.a. n.a. n.a. n.a. n.a. n.a. 

NVH 0.17 0.33 0.45 0.74 2.24 0.00 

ALLI 0.81 0.92 0.92 1.00 1.09 0.00 

Methane yield (g/kg DMIJ)       

MFA 0.54 0.71 0.74 0.96 1.34 -0.02 

V 0.11 0.24 0.37 0.65 2.69 -0.02 

NV 0.41 0.64 0.69 0.93 1.45 0.00 

ALL 0.62 0.78 0.80 0.98 1.25 0.00 

Methane intensity (g/kg FPCMK)       

MFA 0.47 0.69 0.73 0.95 1.37 0.00 

V 0.41 0.62 0.67 0.93 1.48 -0.02 

NV 0.59 0.77 0.79 0.97 1.26 0.00 

ALL 0.83 0.93 0.93 1.00 1.08 0.02 

A Concordance correlation coefficient, where CCC = r × Cb.. 

B Pearson correlation coefficient; a measure of precision. 

C Bias correction factor; a measure of accuracy. 

D Scale shift; change in standard deviation between predicted and observed methane emission. 

E Location shift; if positive underprediction, if negative overprediction. 

F Only milk fatty acids as selection variables; in g/100 g fatty acids. 

G Only volatile metabolites as selection variables; peak area value (arbitrary unit of quantity). 
H Only non-volatile metabolites as selection variable; peak area relative to calibration standard 3-trimethylsilyl-2,2,3,3-

tetradeuteropropionate. 
I All metabolites combined as selection variables.  

J Dry matter intake (kg/d). 
K Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 × fat (g/100 g milk) + 0.06 × protein (g/100 g milk)] × 

milk yield (kg/d) (CVB, 2012). 

 

The adjusted R2 and the CCC varied between 0.47 and 0.63, and between 0.69 and 0.80, 

respectively, for the prediction models obtained using only MFA, with the prediction model for 

CH4 production performing the best. No model was obtained for CH4 production with V only. 

The significance level for a variable to enter the model was 0.05, whereas the significance level 

of the strongest correlation between a volatile metabolite (i.e., acetone) and CH4 production was 

0.08 (results not shown). The prediction models for CH4 yield and intensity with only V 

performed worse than MFA alone, with an adjusted R2 and CCC ranging from 0.11 to 0.41, and 

from 0.24 to 0.62, respectively, and the prediction model for CH4 intensity performed the best.  

The adjusted R2 and the CCC varied between 0.17 and 0.59, and between 0.33 and 0.77, 

respectively, for the prediction models obtained with NV only, with the prediction model for 

CH4 intensity performing the best. The prediction models for CH4 yield and for CH4 production 

with only NV performed worse than the prediction models with only MFA, whereas the opposite 

was observed for CH4 intensity. Relative to the prediction models with only V, the prediction 

models with only NV performed considerably better for CH4 production, yield, and intensity. 

The adjusted R2 and the CCC varied between 0.62 and 0.83, and between 0.78 and 0.93, 
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respectively, for the prediction models obtained combining the three types of metabolites, with 

the prediction model for CH4 intensity performing the best. Milk production, milk fat and milk 

protein content were not selected in the prediction models for CH4 production and yield. The 

three prediction models using the combination of all milk metabolites performed better than the 

prediction models using the three types of metabolites separately, in particular for CH4 intensity. 

Milk FA and NV were selected in all three models, whereas milk V were selected only in the CH4 

intensity prediction model. 

 

DISCUSSION 

Relation between individual milk fatty acids and methane emission   

The lack of relation between SMCFA and CH4 emission differs from most other 

studies (e.g., Chilliard et al. (2009) for CH4 production; Dijkstra et al. (2011) for CH4 yield; Van 

Lingen et al. (2014) for CH4 intensity). The absence of a relation between SMCFA and CH4 

emission in this study is in line with the absence of a positive relation between CH4 emission 

and both ruminal acetate and butyrate. Van Gastelen et al. (2015) observed a decrease in CH4 

emission upon replacement of GS with MS, whereas the molar proportion of acetate was 

unaffected and the molar proportions of butyrate increased; both are substrates for de novo 

synthesized SMCFA (Bauman and Griinari, 2003).  

The negative relation of iso C14:0 with CH4 yield was unexpected, because iso FA are 

generally more abundant in fibrolytic bacteria (Vlaeminck et al., 2006) and thus hypothesized to 

be positively associated with CH4 emission (Castro-Montoya et al., 2011). The positive relation 

between iso C15:0 and CH4 yield and intensity is in agreement with this hypothesis and with 

findings of Castro-Montoya et al. (2011) and Dijkstra et al. (2011). Both C15:0 and C17:0 are 

hypothesized to be negatively related to CH4 emission (Vlaeminck and Fievez, 2005), which was 

also found by Castro-Montoya et al. (2011) and Rico et al. (2016). In the present study, however, 

a positive association was found. Similarly, Chilliard et al. (2009) reported a positive relation 

between these linear odd-chain FA and CH4 production, Van Lingen et al. (2014) found a 

positive relation between C15:0 and CH4 intensity, and Dijkstra et al. (2011) found a tendency 

for a positive relation between C17:0 and CH4 yield.  

The generally negative relations between C18:1, C18:2, and C18:3 isomers in milk and 

CH4 emission, is in agreement with the findings of Chilliard et al. (2009), Dijkstra et al. (2011), 

Van Lingen et al. (2014), and Rico et al. (2016). Possible explanations for these relations, such 

as dietary unsaturated FA, and their biohydrogenation products, have been described by Van 

Gastelen and Dijkstra (2016). The positive relation between the long-chain SFA and CH4 

emission (both yield and intensity) has not been reported in any other study investigating the 

relation between MFA and CH4 emission (Van Gastelen and Dijkstra, 2016). The individual 

relationships found in the present study, in combination with the inclusion of a long-chain SFA 

in the prediction model for CH4 intensity, suggest that these MFA are important in terms of CH4 

prediction. 

Overall, the relation between individual MFA and CH4 emission depends on the unit 

in which CH4 emission is expressed (i.e., production, yield, or intensity). For example, similar to 

Van Lingen et al. (2014), a reduced correlation strength for C18:1 trans-10 and C18:1 trans-11 
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with CH4 intensity compared with CH4 production and yield was observed. These MFA are 

associated with milk fat depression, causing a decline in FPCM yield and, therefore, a reduction 

in correlation strength (Van Lingen et al., 2014). In general, the differences found for the various 

CH4 emission units were expected when considering the discrepancies between other studies. 

For example, several studies (Chilliard et al., 2009; Dijkstra et al., 2011; Mohammed et al., 2011) 

found a positive relation between C8:0 and both CH4 production and yield, whereas Van Lingen 

et al. (2014), Williams et al. (2014), Rico et al. (2016), and Dijkstra et al. (2016) did not find a 

relation between C8:0 and both CH4 production and intensity. These discrepancies have been 

reviewed in more detail by Van Gastelen and Dijkstra (2016).  

 

Regression analyses for methane emission 

The prediction model with only MFA for CH4 production performed better than the 

prediction models with only MFA for CH4 yield and CH4 intensity. This is evident by the higher 

adjusted R2 and CCC values. The higher CCC value is mainly caused by the considerably 

improvement in precision (r) and only to a minor extent by the improvement in accuracy (Cb). 

In general, the prediction potential of the CH4 prediction models with MFA only appears to be 

moderate, and the adjusted R2 reported in this study are lower compared to Chilliard et al. (2009), 

Dijkstra et al. (2011), Mohammed et al. (2011), and Rico et al. (2016), but of similar magnitude 

as Van Lingen et al. (2014). This could be the result of the dietary treatments used in the present 

experiment, namely replacing GS with MS, and its moderate effect on CH4 emission and MFA 

composition. Van Gastelen et al. (2015) reported a reduction of 7% in CH4 production upon 

completely replacing GS with MS (800 g/kg silage diets on DM basis), and Kliem et al. (2008) 

reported minor changes in MFA composition upon replacing GS with MS (500 g/kg silage diets 

on DM basis). This decline is, for example, much smaller than the decline reported by Chilliard 

et al. (2009) who observed a reduction of 64% in CH4 production and large effects on the MFA 

composition for linseed oil supplementation compared to a control diet.  

The prediction potential of V appears low and considerably less promising compared 

with MFA, especially for CH4 production (no prediction model could be derived) and CH4 yield 

(low adjusted R2 and CCC values). Additionally, the variation in predicted CH4 yield was 

considerably smaller than that in observed CH4 yield, and also smaller than that in predicted CH4 

yield based on only MFA, as evidenced by the large scale shift (v = 2.69). This indicates the 

inability of only V to predict the range of observed CH4 yield. The potential of V to predict CH4 

intensity is greater than their potential to predict CH4 production and CH4 yield, which is evident 

by the higher adjusted R2 and CCC values and lower scale shift, and of almost the same 

magnitude as the prediction potential of MFA only.  

These results suggest that V have low potential to predict CH4 emission, except when 

CH4 emission is expressed as intensity. Antunes-Fernandes et al. (2016) already reported weak 

correlations between individual V and CH4 emissions and demonstrated that 3-nonanone (i.e., 

the volatile metabolite in the prediction model for CH4 intensity) is no longer associated with 

CH4 intensity when including FPCM as a covariate. This suggests that V hold potential to predict 

CH4 intensity only, which can be explained by the relationship between the V in milk and FPCM 

yield. In other words, V in the milk which originate from odour-active molecules from the diet, 
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have no clear relations with the ruminal CH4 emission metabolism, but rather are suggested to 

be related to milk synthesis. 

The prediction potential of NV is also low and less promising than MFA alone for CH4 

production (low adjusted R2 and CCC values), and the scale shift is large (v = 2.24), indicating 

inability of only NV to predict the range of observed CH4 production. Although the prediction 

potential of NV for CH4 yield is lower than that of MFA alone, the differences in CCC and v 

were rather small. The prediction model for CH4 intensity with only NV, however, performed 

better than the prediction model with only MFA, which is evident by the higher adjusted R2 and 

CCC values, and the smaller scale shift. The higher CCC value is caused by the considerable 

improvement in precision (r) and to a lesser extent by the improvement in accuracy (Cb). These 

results suggest that NV have a good potential for predicting CH4 intensity, which can be 

explained to a significant extent by the relation between the NV in milk and FPCM yield 

(Antunes-Fernandes et al., 2016).  

To the best of our knowledge, the present study is the first to combine MFA with other 

milk metabolites to predict CH4 emissions. The prediction potential improved when combining 

all three types of metabolites. This is evident by the increased adjusted R2 and CCC values, 

including r and Cb, and the smaller scale shift relative to the prediction models using only MFA, 

only V, and only NV. For all CH4 emission units, the prediction model combining the three 

types of metabolites performed the best. Additionally, the scale shift (v < 1.25) was minor, 

indicating the ability of these models to describe most of the observed variation. The improved 

prediction potential when combining the three types of metabolites relative to only MFA for 

both CH4 production and CH4 yield, is relatively small (i.e., the increase in adjusted R2 and CCC 

is smaller than 0.18 and 0.12, respectively) and caused only by NV as no V were included in both 

prediction models. For CH4 intensity, however, combining the three types of metabolites 

resulted in significant improvement of the prediction potential; the adjusted R2 and CCC increase 

with 0.36 and 0.24, respectively, relative to the prediction model with MFA only. This 

improvement can be equally assigned to V and NV. 

As illustrated, combining MFA with V (CH4 intensity only) and NV helps to improve 

the prediction potential. Unfortunately, the techniques used for identifying V and NV are not 

suitable for large-scale measurements. Analyses of these metabolites, however, contribute to our 

understanding of factors that influence the variation in CH4 emission, and thereby give a better 

understanding of the relation between milk composition and CH4 emission. Although the 

present study focussed largely on the statistical relationship between the milk metabolites and 

CH4 emissions of dairy cattle, the physiological interpretations of relationships between NV or 

V and CH4 emissions are described by Antunes-Fernandes et al. (2016). It should be noted that 

the area of validity of the relations that have been established in this study, is limited to roughage-

based diets varying in GS and MS content, and the robustness of the reported relationships have 

not yet been evaluated within this area of validity. As shown by Dijkstra et al. (2016), quantitative 

relationships between MFA and CH4 yield in cattle fed grass- or grass silage-based diets differ 

from those determined for other types of diets. This might also be valid for the relation between 

CH4 emission and both V and NV. Therefore, the promising results of this study, need to be 

validated in further work. 
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CONCLUSIONS 

This study demonstrated for the first time that the potential to predict CH4 production, 

CH4 yield, and CH4 intensity in dairy cattle increased, both in terms of precision and accuracy, 

when combining MFA with V and, in particular, with NV in milk. The combination of the three 

metabolites also has the ability to describe more of the observed variation in CH4 emission 

relative to MFA alone. The improved prediction potential was relatively small for CH4 

production and CH4 yield, suggesting that it may not be worthwhile to perform complex analyses 

to determine the V and NV in milk in order to estimate CH4 production or CH4 yield of dairy 

cows. For CH4 intensity, the prediction potential increased considerably when combining the 

three types of metabolites compared with MFA alone. Therefore, analysing milk for these types 

of metabolites may be worthwhile to estimate CH4 intensity of dairy cattle.  
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SUPPORTING INFORMATION 

Supplementary Table S5.1. Linear regressions between methane production (g/d) and milk fatty acid 

concentrations 

Fatty acid (g/100 g fatty 

acids) 
Intercept SE Slope SE Slope P R2 

C4:0 427 79.5 -6.2 23.57 0.80 < 0.01 

C6:0 280 118.7 56.8 53.40 0.30 0.04 

C8:0 271 82.4 111.7 67.97 0.11 0.09 

C10:0 343 56.6 23.3 20.55 0.27 0.05 

C12:0 344 47.0 19.1 14.30 0.19 0.06 

C14:0 337 102.5 6.2 9.05 0.50 0.02 

iso C14:0  430 45.0 -274.2 516.17 0.60 0.01 

C14:1 cis-9 341 30.1 53.8 24.08 0.03 0.16 

C15:0 351 35.4 52.7 33.26 0.13 0.09 

iso C15:0  341 46.9 258.1 184.36 0.17 0.07 

anteiso C15:0  390 60.0 40.5 144.18 0.78 < 0.01 

C16:0 255 88.3 4.3 2.48 0.10 0.10 

iso C16:0  459 53.1 -305.1 306.38 0.33 0.04 

C16:1 trans-9 442 43.2 -172.1 205.65 0.41 0.03 

C16:1 cis-9 390 47.1 8.2 23.41 0.73 < 0.01 

C17:0 380 52.4 42.7 84.50 0.62 < 0.01 

iso C17:0  464 82.5 -156.4 221.47 0.49 0.02 

anteiso C17:0  428 57.2 -52.4 139.28 0.71 < 0.01 

C17:1 cis-9 438 50.1 -114.0 178.58 0.53 0.01 

C18:0 436 51.5 -4.0 6.85 0.57 0.01 

C18:1 cis-9A 467 45.0 -3.4 2.50 0.18 0.06 

C18:1 cis-12 442 14.2 -181.2 65.05 < 0.01 0.22 

C18:1 cis-13 458 35.7 -455.4 312.13 0.16 0.07 

C18:1 trans-6 442 19.9 -160.6 84.48 0.07 0.12 

C18:1 trans-9 469 23.8 -449.4 163.93 0.01 0.22 

C18:1 trans-10 434 11.4 -122.9 43.35 < 0.01 0.23 

C18:1 trans-11 466 15.1 -70.5 16.65 < 0.01 0.40 

C18:1 trans-15 + C18:1 cis-11 482 30.4 -128.5 50.36 0.02 0.19 

C18:2 cis-9, trans-11 454 13.9 -108.9 29.13 < 0.01 0.34 

C18:2n-6 511 36.8 -71.4 24.84 < 0.01 0.23 

C18:3n-3 395 23.4 28.1 56.75 0.62 < 0.01 

C18:3n-6 529 39.7 -1611.9 517.80 < 0.01 0.26 

C20:0 367 51.8 325.1 420.31 0.45 0.02 

C20:1 cis-11 445 34.1 -854.3 733.46 0.25 0.05 

C20:2n-6 478 49.2 -1535.2 1038.17 0.15 0.07 

C20:3n-6 482 33.3 -843.9 362.83 0.03 0.17 

C20:4n-3 376 13.0 426.9 162.50 0.01 0.20 

C20:4n-6 496 34.2 -683.4 265.95 0.01 0.21 

C20:5n-3 397 32.2 165.8 527.29 0.76 < 0.01 

C22:0 385 20.0 343.0 302.07 0.27 0.05 

C22:5n-3 443 44.7 -398.6 483.07 0.42 0.02 

C24:0 385 18.0 471.2 360.68 0.20 0.06 

A C18:1 cis-9 represents the sum of C18:1 cis-9 and C18:1 trans-12, as these 2 FA could not be separated in the analysis. 

The portion of C18:1 trans-12 is considered to be negligible, as this FA is always present in small amounts. 
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Supplementary Table S5.2. Linear regressions between methane yield (g/kg DMIA) and milk fatty acid 

concentrations 

Fatty acid (g/100 g fatty acids) Intercept SE Slope SE Slope P R2 

C4:0 25.9 4.00 -0.54 1.185 0.65 < 0.01 

C6:0 23.1 6.10 0.45 2.746 0.87 < 0.01 

C8:0 22.4 4.34 1.41 3.583 0.70 < 0.01 

C10:0 23.4 2.92 0.24 1.059 0.82 < 0.01 

C12:0 23.8 2.45 0.08 0.744 0.91 < 0.01 

C14:0 25.9 5.20 -0.15 0.459 0.74 < 0.01 

iso C14:0  28.8 2.09 -54.64 23.944 0.03 0.16 

C14:1 cis-9 24.9 1.65 -0.65 1.315 0.63 < 0.01 

C15:0 22.0 1.82 2.04 1.708 0.24 0.05 

iso C15:0  19.7 2.29 17.68 9.001 0.06 0.13 

anteiso C15:0  26.0 3.00 -4.57 7.224 0.53 0.01 

C16:0 20.5 4.64 0.10 0.130 0.44 0.02 

iso C16:0  28.2 2.60 -24.05 15.027 0.12 0.09 

C16:1 trans-9 26.5 2.15 -11.50 10.262 0.27 0.04 

C16:1 cis-9 25.1 2.37 -0.51 1.179 0.67 < 0.01 

C17:0 17.8 2.35 10.31 3.791 0.01 0.22 

iso C17:0  22.4 4.18 4.60 11.230 0.69 < 0.01 

anteiso C17:0  24.4 2.89 -0.64 7.037 0.93 < 0.01 

C17:1 cis-9 21.6 2.49 9.04 8.900 0.32 0.04 

C18:0 20.4 2.51 0.50 0.340 0.15 0.08 

C18:1 cis-9B 23.7 2.34 0.02 0.130 0.85 < 0.01 

C18:1 cis-12 26.8 0.58 -13.62 2.640 < 0.01 0.50 

C18:1 cis-13 27.0 1.78 -26.00 15.555 0.11 0.09 

C18:1 trans-6 27.5 0.82 -15.19 3.466 < 0.01 0.42 

C18:1 trans-9 28.6 1.02 -31.77 7.064 < 0.01 0.43 

C18:1 trans-10 26.1 0.46 -9.16 1.757 < 0.01 0.50 

C18:1 trans-11 27.5 0.68 -4.05 0.751 < 0.01 0.52 

C18:1 trans-15 + C18:1 cis-11 26.9 1.62 -4.68 2.681 0.09 0.10 

C18:2 cis-9, trans-11 27.2 0.58 -6.99 1.208 < 0.01 0.55 

C18:2n-6 29.8 1.80 -3.91 1.217 < 0.01 0.28 

C18:3n-3 22.0 1.10 5.38 2.680 0.05 0.13 

C18:3n-6 31.6 1.82 -98.92 23.731 < 0.01 0.39 

C20:0 16.2 2.15 64.77 17.417 < 0.01 0.34 

C20:1 cis-11 23.0 1.75 24.64 37.587 0.52 0.02 

C20:2n-6 22.1 2.54 43.86 53.744 0.42 0.02 

C20:3n-6 26.7 1.77 -28.64 19.262 0.15 0.08 

C20:4n-3 23.5 0.72 9.08 9.010 0.32 0.04 

C20:4n-6 29.3 1.66 -39.30 14.429 < 0.01 0.27 

C20:5n-3 22.7 1.60 24.30 26.211 0.36 0.03 

C22:0 21.7 0.90 39.23 13.633 0.01 0.23 

C22:5n-3 25.9 2.25 -19.60 24.362 0.43 0.02 

C24:0 22.2 0.85 41.43 16.964 0.02 0.18 

A Dry matter intake (kg/d). 
B C18:1 cis-9 represents the sum of C18:1 cis-9 and C18:1 trans-12, as these 2 FA could not be separated in the analysis. 

The portion of C18:1 trans-12 is considered to be negligible, as this FA is always present in small amounts. 
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Supplementary Table S5.3. Linear regressions between methane intensity (g/kg FPCMA) and milk fatty acid 

concentrations 

Fatty acid (g/100 g fatty 

acids) 
Intercept SE Slope SE Slope P R2 

C4:0 22.3 3.95 -1.75 1.171 0.15 0.08 

C6:0 18.7 6.24 -1.03 2.809 0.72 < 0.01 

C8:0 14.1 4.44 1.93 3.664 0.60 0.01 

C10:0 13.7 2.95 0.99 1.069 0.36 0.03 

C12:0 13.2 2.43 1.00 0.738 0.19 0.06 

C14:0 10.9 5.23 0.49 0.462 0.30 0.04 

iso C14:0  14.8 2.32 18.78 26.558 0.49 0.02 

C14:1 cis-9 13.1 1.56 2.74 1.247 0.04 0.15 

C15:0 12.5 1.75 3.74 1.646 0.03 0.16 

iso C15:0  9.2 2.08 28.75 8.165 < 0.01 0.31 

anteiso C15:0  11.6 2.96 11.56 7.119 0.12 0.09 

C16:0 10.6 4.67 0.16 0.132 0.23 0.05 

iso C16:0  19.7 2.72 -19.38 15.677 0.23 0.05 

C16:1 trans-9 20.7 2.10 -20.77 9.990 0.05 0.14 

C16:1 cis-9 13.7 2.38 1.37 1.183 0.26 0.05 

C17:0 15.0 2.71 2.24 4.364 0.61 < 0.01 

iso C17:0  16.1 4.30 0.82 11.545 0.94 < 0.01 

anteiso C17:0  19.8 2.89 -8.37 7.032 0.24 0.05 

C17:1 cis-9 18.5 2.57 -7.67 9.176 0.41 0.03 

C18:0 19.4 2.62 -0.40 0.348 0.26 0.05 

C18:1 cis-9B 19.8 2.31 -0.19 0.128 0.15 0.08 

C18:1 cis-12 17.7 0.79 -6.57 3.597 0.08 0.11 

C18:1 cis-13 19.4 1.83 -26.28 15.965 0.11 0.09 

C18:1 trans-6 18.1 1.04 -7.69 4.405 0.09 0.10 

C18:1 trans-9 17.9 1.35 -10.92 9.341 0.25 0.05 

C18:1 trans-10 17.4 0.63 -4.34 2.411 0.08 0.11 

C18:1 trans-11 17.2 0.99 -0.91 1.096 0.41 0.03 

C18:1 trans-15 + C18:1 cis-11 20.0 1.61 -6.03 2.656 0.03 0.16 

C18:2 cis-9, trans-11 16.8 0.88 -0.79 1.847 0.67 < 0.01 

C18:2n-6 19.8 2.07 -2.33 1.396 0.11 0.09 

C18:3n-3 14.7 1.17 4.24 2.829 0.15 0.08 

C18:3n-6 19.5 2.31 -41.23 30.154 0.18 0.06 

C20:0 11.3 2.51 42.16 20.397 0.05 0.14 

C20:1 cis-11 18.8 1.74 -51.95 37.519 0.18 0.07 

C20:2n-6 13.8 2.59 55.87 54.712 0.32 0.04 

C20:3n-6 16.6 1.88 -2.60 20.529 0.90 < 0.01 

C20:4n-3 16.4 0.75 0.76 9.405 0.94 < 0.01 

C20:4n-6 14.8 1.96 12.36 14.720 0.41 0.03 

C20:5n-3 13.6 1.59 46.71 25.765 0.08 0.11 

C22:0 13.7 0.90 43.02 13.659 < 0.01 0.27 

C22:5n-3 11.4 2.12 55.20 22.924 0.02 0.18 

C24:0 14.0 0.81 53.23 16.253 < 0.01 0.28 

A Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 × fat (g/100 g milk) + 0.06 × protein (g/100 g milk)] × 

milk yield (kg/d) (CVB, 2012).  
B C18:1 cis-9 represents the sum of C18:1 cis-9 and C18:1 trans-12, as these 2 FA could not be separated in the analysis. 

The portion of C18:1 trans-12 is considered to be negligible, as this FA is always present in small amounts. 
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ABSTRACT 

This study aimed to quantify the relationship between methane (CH4) emission and 

fatty acids, volatile metabolites, and non-volatile metabolites in milk of  dairy cows fed forage-

based diets. Data from six studies was used, including 27 dietary treatments and 123 individual 

observations from lactating Holstein-Friesian cows. These dietary treatments covered a large 

range of forage-based diets, with different qualities and proportions of grass silage and corn 

silage. Methane emission was measured in climate respiration chambers and expressed as 

production (g per day), yield (g per unit dry matter intake; DMI), and intensity (g per unit fat- 

and protein-corrected milk; FPCM). Milk samples were analyzed for fatty acids by gas 

chromatography, for volatile metabolites by gas chromatography-mass spectrometry, and for 

non-volatile metabolites by nuclear magnetic resonance. Dry matter intake was 15.9 ± 1.90 kg/d, 

FPCM yield was 25.2 ± 4.57 kg/d, CH4 production was 359 ± 51.1 g/d, CH4 yield was 22.6 ± 

2.31 g/kg DMI, and CH4 intensity was 14.5 ± 2.59 g/kg FPCM. The results show that changes 

in individual milk metabolite concentrations can be related to the ruminal CH4 production 

pathways. Several of these relationships were diet driven, whereas some were partly dependent 

on FPCM yield. Next, prediction models were developed and subsequently evaluated based on 

root mean square error of prediction (RMSEP), concordance correlation coefficient (CCC) 

analysis, and on random 10-fold cross validation. The best models with milk fatty acids (in g/100 

g fatty acids; MFA) alone predicted CH4 production, yield, and intensity with a RMSEP of 34 

g/d, 2.0 g/kg DMI, and 1.7 g/kg FPCM, and with a CCC of 0.67, 0.44, and 0.75, respectively. 

The CH4 prediction potential of  both volatile metabolites alone and non-volatile metabolites 

alone was low, regardless of  the unit of  CH4 emission, as evidenced by the low CCC values (< 

0.35). The best models combining the three types of  metabolites as selection variables, resulted 

in the inclusion of  only MFA for CH4 production and CH4 yield. For CH4 intensity, MFA, volatile 

metabolites, and non-volatile metabolites were included in the prediction model. This resulted 

in a small improvement in prediction potential (CCC of  0.80; RMSEP of  1.5 g/kg FPCM) 

relative to MFA alone. These results indicate that volatile and non-volatile metabolites in milk 

contain some information to increase our understanding of  enteric CH4 production of  dairy 

cows, but that it is not worthwhile to determine the volatile and non-volatile metabolites in milk 

in order to estimate CH4 emission of  dairy cows. We conclude that MFA have moderate potential 

to predict CH4 emission of  dairy cattle fed forage-based diets, and the models can aid in the 

effort to understand and mitigate CH4 emissions of  dairy cows.   

Keywords: dairy cow, enteric methane production, milk metabolome  

 

INTRODUCTION 

Enteric methane (CH4) production is one of the main targets of greenhouse gas 

mitigation practices for the dairy industry (Hristov et al., 2013). Quantification of enteric CH4 

production is therefore important. Several CH4 measuring techniques have been developed, but 

these are not yet suitable for large scale measurements (Hammond et al., 2016). Proxies (i.e., 

indirect traits or indicators correlated to CH4 emission) might, therefore, serve as a good 

alternative.  
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Milk fatty acid (MFA) concentrations have been suggested as proxy to estimate CH4 

emission in dairy cattle, and many studies have evaluated this proposed relationship between 

MFA concentrations and CH4 emission (Chilliard et al., 2009; Mohammed et al., 2011; Rico et 

al., 2016). However, the results of these studies are inconsistent, with some studies finding a 

clear and strong relationship between MFA and CH4 emission (Chilliard et al., 2009, Rico et al., 

2016), whereas other studies conclude that MFA alone might not be suitable to develop universal 

CH4 prediction models (Mohammed et al., 2011). Recently, Castro-Montoya et al. (2017) 

concluded that MFA are no reliable predictors for specific amounts of CH4 emitted by a cow. 

Furthermore, individual MFA selected in optimal models to predict CH4 emission largely differ 

between studies, further hampering the applicability of MFA to predict CH4 emission in various 

circumstances. Some of these inconsistencies can be explained by dietary composition and 

lactation stage, both being factors that can influence the relationship between MFA and CH4 

emission (Mohammed et al., 2011; Dijkstra et al., 2016; Vanrobays et al., 2016). 

These findings warrant further investigation of other proxies in milk to estimate CH4 

emission of dairy cattle, including volatile metabolites and non-volatile metabolites. Antunes-

Fernandes et al. (2016) and Van Gastelen et al. (2017) evaluated the relationship between CH4 

emission and both volatile and non-volatile metabolites in milk to better understand the 

biological pathways involved in CH4 emission in dairy cattle as well as to determine the 

prediction potential of these milk metabolites. Antunes-Fernandes et al. (2016) concluded that 

CH4 intensity (g/kg fat- and protein-corrected milk; FPCM) may be related to lactose synthesis 

and energy metabolism in the mammary gland, as reflected by the significant relationship 

between both milk non-volatile metabolites citrate and uridine diphosphate (UDP)-hexose B 

and CH4 intensity. Methane yield (g/kg DMI), on the other hand, may be related to glucogenic 

nutrient supply, as reflected by the milk non-volatile metabolite acetone. In a recent review of 

CH4 proxies, Negussie et al. (2017) concluded that no single proxy accurately predicts CH4 

emission, and that combining two or more proxies is the best way forward for the prediction of 

CH4 emission. Van Gastelen et al. (2017) concluded that volatile metabolites and, in particular, 

non-volatile metabolites in combination with MFA hold potential to predict CH4 emission of 

dairy cows more precisely and accurately compared with MFA alone. The improved prediction 

potential was relatively small (i.e., the increase in adjusted R2 and CCC is <0.18 and <0.12, 

respectively) for CH4 production (g/d) and CH4 yield (g/kg DMI), whereas the prediction 

potential for CH4 intensity (g/kg FPCM) increased considerably (i.e., the adjusted R2 and CCC 

increased with 0.36 and 0.24, respectively).  

The analysis of  both Antunes-Fernandes et al. (2016) and Van Gastelen et al. (2017) 

was based upon a small range of  diets (i.e., four forage-based diets in which grass silage was 

replaced partly or fully by corn silage) in one experiment. Therefore, the present study aims to 

quantify the relationship between CH4 emission and the milk metabolome in dairy cattle fed a 

range of  forage-based diets with different qualities and proportions of  grass silage and corn 

silage.  
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MATERIALS AND METHODS 

Experiments and data 

Data on individual cows from six experiments, all designed as randomized block 

experiments, from Wageningen University & Research (Wageningen, the Netherlands) were 

used. These experiments were conducted in accordance with Dutch law, and approved by the 

Animal Care and Use Committee of Wageningen University & Research. Experiment 1 (Warner 

et al., 2015) involved 25 Holstein-Friesian dairy cows and four grass herbage diets (forage to 

concentrate ratio of 85:15 based on DM basis. The grass herbage was cut after 3 or 5 weeks of 

regrowth, after receiving either a low (20 kg of nitrogen (N)/ha) or a high (90 kg of N/ha) 

fertilization rate after initial cut. Experiment 2 (Van Gastelen et al., 2015) involved 29 Holstein-

Friesian dairy cows and four diets (forage to concentrate ratio of 80:20 on DM basis). The forage 

consisted of 1000 g/kg DM grass silage, 1000 g/kg DM corn silage, or a mixture of both silages 

(667 g/kg DM grass silage and 333 g/kg DM corn silage; 333 g/kg DM grass silage and 667 

g/kg DM corn silage). Experiment 3 (Warner et al., 2016) involved 52 Holstein-Friesian dairy 

cows and six grass silage-based diets (forage to concentrate ratio of 80:20 on DM basis). The 

grass silage received low (65 kg of N/ha) or high (150 kg of N/ha) N fertilization level preceding 

its growth period, and there were three regrowth periods (28 days, 41 days, and 62 days of 

regrowth). Experiment 4 (Warner et al., 2017) involved 55 Holstein-Friesian dairy cows and eight 

grass silage based diets (grass silage, corn silage and concentrate at a ratio of 70:10:20 on DM 

basis). The grass silage was cut at four growth stages (leafy, boot, early heading, and late heading) 

and fed at two levels of DMI (15.5 and 16.6 kg DM/d). Experiment 5 (Hatew et al., 2016) 

involved 25 Holstein-Friesian dairy cows and four corn silage based diets with whole-plant corn 

harvested at a very early (25% DM), early (28% DM), medium (32% DM), and late (40% DM) 

stage of maturity, and with corn silage, concentrate and wheat straw at a ratio of 75:20:5 (DM 

basis). Experiment 6 (Klop et al., 2017) involved eight Holstein-Friesian dairy cows and three 

diets containing corn silage, grass silage, and concentrate at a ratio of 40:30:30 (DM basis). The 

concentrate was either a basal concentrate or contained a blend of essential oils or lauric acid. 

Repeated measures resulted in 32 observations.  

The experimental setup of these experiments was similar. After an adaptation period 

of 12 d, cows were housed individually in open circuit, indirect climate respiration chambers for 

a 5 d period to determine CH4 emission (expressed as production in g/d, as yield in g/kg DMI, 

and as intensity in g/kg FPCM). The climate respiration chambers are described by van Gastelen 

et al. (2015) and Heetkamp et al. (2015). Cows were milked twice daily and water was freely 

available, both during the adaptation period and in the climate respiration chambers. Diets were 

fed as a total mixed ration twice daily and intake was restricted to 95% of the voluntarily DMI 

of the cow consuming the least within a block.  
 

Sample collection and analysis 

Milk yield was recorded and 10 mL milk samples were collected at each milking in the 

climate respiration chambers. These milk samples were analyzed for fat, protein, and lactose 

content, and for milk urea nitrogen as described by the respective studies. In addition, a 

representative milk sample (i.e., 5 g/kg of milk production at each milking from each cow) was 
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collected according to Antunes-Fernandes et al. (2016). We selected all observations from 

experiment 2 (n = 29), and we randomly selected another 94 observations from the other 

experiments based on complete blocks (i.e., all cows within the same block were selected; 

incomplete blocks, due to observations being removed from the experiment or statistical 

analysis, were excluded from the selection). The selected observations, a total of 123 

observations, represented all dietary treatments without feed additives (i.e., 27 in total), and 

resulted in no repeated measurements from the same cows. The representative milk samples 

matching the selected observations were subsequently analyzed for MFA composition (g/100 g 

total fatty acids) using gas chromatography (GC) according to Van Gastelen et al. (2015), for 

volatile metabolites (peak area in arbitrary units) using gas chromatography-mass spectrometry 

(GC-MS) according to Antunes-Fernandes et al. (2016), and for non-volatile metabolites 

(relative area in arbitrary units) using proton nuclear magnetic resonance (1H-NMR) according 

to Antunes-Fernandes et al. (2016).  

 

Statistical analysis 

Linear regression. The descriptive statistics of the feed intake, dietary composition, animal 

performance, and CH4 emission are presented in Table 6.1. Descriptive statistics of the MFA, 

volatile metabolites, and non-volatile metabolites used for modelling are presented in 

Supplementary Table S6.1. To determine the relationship between CH4 emission (i.e., 

production, yield and intensity) and individual MFA, volatile metabolites, and non-volatile 

metabolites, mixed model univariate regression procedures (PROC MIXED of SAS; SAS 

Institute Inc., Cary, NC, USA, version 9.2) were applied. These included a random experiment 

effect and individual MFA, volatile metabolites, and non-volatile metabolites as fixed effects. 

Having the experiment effect as a random effect resulted in the equation parameter estimates to 

be estimated first within study, and then averaged to obtain overall estimates. To evaluate the 

influence of FPCM on the established relationships between individual MFA, volatile 

metabolites or non-volatile metabolites and CH4 intensity, FPCM was included as a covariate in 

the linear regressions. 

Model development. The PROC GLMSELECT procedure of SAS was used to develop 

multivariate models retaining the experiment effect in every step, with CH4 emission (i.e., 

production, yield, and intensity) as the dependent variable, the milk metabolites (i.e., MFA, 

volatile metabolites and non-volatiles metabolites) as independent variables, and stepwise 

selection as selection procedure. The significance level for milk metabolites to enter or stay in 

the model was 0.01 and 0.05, respectively. The best models were selected based on the minimum 

Akaike’s information criterion statistic. Adjusted independent variable values were calculated 

based on regression parameters of the final model to determine the adjusted R2 corrected for 

experiment effect, as described by St-Pierre (2001). The selected models were evaluated with the 

PROC REG procedure in terms of multicollinearity (variation inflation factor > 10), but no 

multicollinearity was observed for any of the CH4 prediction models.  
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Table 6.1. Descriptive statistics of dry matter intake, dietary composition, animal characteristics, and methane 

emissions (n=123) [data from Van Gastelen et al. (2015), Warner et al. (2015, 2016, 2017), Hatew et al. (2016), Klop 

et al. (2017)] 

Item Mean Median SD Minimum Maximum 

Dry matter intake (kg/d) 15.9 15.9 1.90 10.8 19.8 

Forage content diet (g/100 g DM) 80 80 3.0 70 85 

Dietary characteristics (in g/kg DM, unless stated otherwise) 

Dry matter (g/kg) 507 519 113.4 306 797 

Ash 76 76 14.7 53 103 

Crude protein 170 158 43.2 82 251 

NDF   386 386 53.4 242 501 

ADF  225 219 26.9 183 291 

ADL  14 15 4.7 6 26 

Crude fat 31 28 7.2 21 46 

Starch 111 79 92.6 5 326 

Sugar 95 76 66.4 21 265 

GE (MJ/kg DM) 18.6 18.7 0.41 17.6 19.3 

NDF to starch ratio 8.8 5.0 16.03 1.0 86.2 

Lactation characteristics 
     

Milk production (kg/d) 22.6 22.5 3.87 14.6 33.7 

FPCM(1) (kg/d) 25.2 24.7 4.57 15.0 38.4 

Milk fat content (g/100 g milk) 4.64 4.65 0.635 2.94 6.44 

Milk protein content (g/100 g milk) 3.37 3.33 0.359 2.62 4.53 

Milk lactose content g/100 g milk) 4.58 4.59 0.219 3.80 5.03 

Urea (mg/dl) 19.6 18.8 6.79 8.4 41.4 

Days in milk 176 191 70.9 70 403 

Parity 2.6 2.0 1.29 1.0 7.0 

Methane emission 
     

Methane production (g/d) 359 358 51.1 234 469 

Methane yield (g/kg DMI(2)) 22.6 22.9 2.31 17.2 28.0 

Methane intensity (g/kg FPCM) 14.5 14.6 2.59 8.5 24.0 

(1) Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 × fat (g/100 g milk) + 0.06 × protein (g/100 g milk)] × 

milk yield (kg/d) (CVB, 2012). 

(2) Dry matter intake (kg/d). 
     

 

Model evaluation. The CH4 prediction models were evaluated using two methods. Firstly, 

the mean square prediction error (MSEP), calculated as 

MSEP = ∑(𝑂𝑖 − 𝑃𝑖)2/𝑛

𝑛

𝑖=1

, 

where 𝑛 is the total number of observations, 𝑂𝑖  is the observed value and 𝑃𝑖  is the predicted 

value. The square root of the MSEP (RMSEP), expressed in the same unit as the observed mean 

or as percentage of the observed mean, gives an estimate of the overall prediction error. 

Secondly, concordance correlation coefficient analysis (CCC; Lin, 1989) was performed, where 

CCC is calculated as 

CCC = 𝑟 ×  𝐶𝑏 , 
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where 𝑟 is the correlation coefficient providing a measure of precision, and Cb is a bias correction 

factor providing a measure of accuracy. The Cb variable is calculated as 

𝐶𝑏 =  
2

[𝑣 + 1 / 𝑣 +  𝜇2]
, 

where 

𝑣 =  
𝑆𝑜

𝑆𝑝

, 

𝜇 =  
�̅�  − �̅�

(𝑆𝑜 × 𝑆𝑝)0.5
, 

where 𝑣 provides a measure of scale shift, while 𝜇 provides a measure of location shift, 𝑆𝑜 and 

𝑆𝑝 are the observed and predicted standard deviations, and �̅� and �̅� are the observed and 

predicted means.  

Cross validation. We performed a random cross validation with 10 splits and 10 iterations 

as recommended by Rodriguez et al. (2010) for all prediction models in order to calculate the 

performance parameters of the models (i.e., root mean square error of cross validation; 

RMSECV, and the coefficient of determination of cross validation; R2CV). For each iteration, 

a model was developed as described above using nine splits of the dataset, and the selected model 

was subsequently evaluated as described above on the remaining part of the dataset (i.e., one 

split). The cross validation performance values represent the average of the 10-fold cross 

validation.  

 

RESULTS 

The relationship between individual milk metabolites and methane emission 

Milk fatty acids. In the present study, 43 milk fatty acids were identified. The 

relationships between each individual MFA and CH4 production, CH4 yield, and CH4 intensity 

are shown in Supplementary Tables S6.2, S6.3, and S6.4, respectively. Several short- and 

medium-straight even-chain MFA (SMCFA; ≤ 16 carbon fatty acids), some odd- and branched-

chain fatty acids (OBCFA; C13:0, C15:0, iso C15:0, and iso C17:0), and C20:4n-3 were positively 

related with CH4 production, whereas another OBCFA (i.e., C17:0), all C18:1 and C18:2 isomers, 

and other long-chain fatty acids (> 16 carbon fatty acids) were negatively related to CH4 

production. The SMCFA C16:0 was positively related with CH4 yield, similar to some OBCFA 

and several long-chain fatty acids, whereas the SMCFA C4:0, and all C18:1, C18:2, and C18:3 

isomers were negatively related to CH4 yield. Furthermore, many SMCFA, OBCFA, and long-

chain fatty acids were positively related to CH4 intensity, whereas mostly C18:1, C18:2, and C18:3 

isomers were negatively related to CH4 intensity. The relationships between each MFA and CH4 

intensity including FPCM as a covariate are shown in Supplementary Table S6.4. Including 

FPCM as a covariate in the regression model resulted in several changes. Many MFA remained 

significantly related to CH4 intensity, whereas the relationship between CH4 intensity and two 

MFA (i.e., C4:0 and C22:5n-3) disappeared. In total, 8 relationships appeared or strengthened, 

including C6:0, C8:0, C17:1 cis-9, several C18:1 isomers, and C18:2 cis-9, trans-11, that became 

significantly related upon including FPCM as covariate. 
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Volatile metabolites. In the present study, a total of 14 volatile metabolites were 

identified, including ketones, aldehydes, organic acids, alcohols, esters, and sulfur compounds. 

The relationships between each individual volatile metabolite and CH4 production, CH4 yield, 

and CH4 intensity are shown in Supplementary Tables S6.5, S6.6, and S6.7, respectively. The 

volatile metabolites 1-pentanol, acetone, and hexanal were negatively related to CH4 production, 

whereas no positive relationship between volatile metabolites and CH4 production were 

observed. Ethyl butanoate and two free fatty acids (butanoic and hexanoic acid) were positively 

related, whereas hexanal was negatively related to CH4 yield. Many volatile metabolites were 

related to CH4 intensity, with 2-heptanone, ethyl butanoate, and all free fatty acids being 

positively related to CH4 intensity, and 1-pentanol, acetone, and dimethyl sulfone being 

negatively related to CH4 intensity. The relationships between each volatile metabolite and CH4 

intensity including FPCM as a covariate are shown in Supplementary Table S6.7. Including 

FPCM as a covariate in the regression model resulted in most volatile metabolites remaining to 

be related to CH4 intensity, with a few exceptions. Some relationships disappeared or weakened, 

such as acetic acid ethyl ester which no longer showed a tendency to be positively related with 

CH4 intensity, and the significant positive relationship of ethyl butanoate that became a tendency 

upon including FPCM as covariate. Another relationship strengthened; the tendency for a 

negative relationship of hexanal became significant upon including FPCM as covariate.  

Non-volatile metabolites. In the present study, 41 1H-NMR resonances could be 

assigned either to a non-volatile compound or to a member of a class of non-volatile compounds. 

The relationships between each individual non-volatile metabolite and CH4 production, CH4 

yield, and CH4 intensity are shown in Supplementary Tables S6.8, S6.9, and S6.10, respectively. 

The non-volatile metabolites acetylcarnitine and UDP-hexose D were negatively related, whereas 

11 non-volatile metabolites, including acetate, three N-acetylsugars, and succinate, were 

positively related to CH4 production. Only one non-volatile metabolite, UDP-hexose C, was 

negatively related, and no single non-volatile metabolite was positively related to CH4 yield. 

Similarly, with respect to CH4 intensity, only citrate was negative related. In contrast, 14 non-

volatile metabolites, including acetate, methylmalonate, and succinate were positively related to 

CH4 intensity. The relationships between each non-volatile metabolite and CH4 intensity 

including FPCM as a covariate are shown in Supplementary Table S6.10. Including FPCM as a 

covariate in the regression model resulted in several changes. Many non-volatile metabolites 

remained significantly related to CH4 intensity, whereas the relationship between CH4 intensity 

and five non-volatile metabolites (including citrate and ethanol) disappeared. Other 

relationships, however, appeared or strengthened, including acetylcarnitine and the three N-

acetylsugars C, D, and E that became significantly positively related upon including FPCM as 

covariate. 



 

 
 

MILK METABOLOME AND METHANE – METABOLIC INTERPRETATION AND PREDICTION 

 

109 

T
a
b

le
 6

.2
. 

T
h

e 
p

re
d

ic
ti

o
n

 e
q
u
at

io
n

s 
d

ev
el

o
p

ed
 f

o
r 

m
et

h
an

e 
p

ro
d

u
ct

io
n

 (
g/

d
),

 y
ie

ld
 (

g/
k
g 

D
M

I(
1
) )
, 
an

d
 i
n
te

n
si

ty
 (

g/
k
g 

F
P

C
M

(2
) )
 b

as
ed

 o
n
 m

ilk
 f

at
ty

 a
ci

d
s,

 v
o

la
ti

le
 o

r 
n

o
n

-v
o

la
ti

le
 

m
et

ab
o

lit
es

 a
lo

n
e,

 o
r 

al
l 
m

et
ab

o
lit

es
 c

o
m

b
in

ed
  

  
M

et
h

an
e 

p
ro

d
u
ct

io
n

 (
g/

d
) 

  
M

et
h

an
e 

yi
el

d
 (

g/
k
g 

D
M

I)
 

  
M

et
h

an
e 

in
te

n
si

ty
 (

g/
k
g 

F
P

C
M

) 

M
et

ab
o

lit
es

 

in
cl

u
d

ed
 

It
em

 

E
st

i-

m
at

e 
S
E

 
P

-v
al

u
e 

  
It

em
 

E
st

i-

m
at

e 
S
E

 
P

-v
al

u
e 

  
It

em
 

E
st

i-

m
at

e 
S
E

 
P

-v
al

u
e 

M
F

A
(3

)  
In

te
rc

ep
t 

5
2
2
 

1
9
.2

 
<

 0
.0

0
1
 

 
In

te
rc

ep
t 

2
8
.4

 
0
.9

9
 

<
 0

.0
0
1
 

 
In

te
rc

ep
t 

1
3
.7

 
2
.4

6
 

0
.0

0
3
 

 

C
1
8
:1

 t
ra

ns
-1

5
 +

 

C
1
8
:1

 c
is

-1
1 

-9
8
.0

 
1
8
.9

1
 

<
 0

.0
0
1
 

 

C
1
8
:1

 c
is

-1
2 

-1
8
.7

9
 

2
.5

8
6
 

<
 0

.0
0
1
 

 

C
4
:0

 
-1

.3
3
 

0
.4

6
5
 

0
.0

0
5
 

 

C
1
8
:2

 c
is

-9
,  

tr
an

s-
1
1 

-1
1
6
.7

 
2
1
.3

1
 

<
 0

.0
0
1
 

 

C
1
8
:3

n
-3

 
-5

.4
4
 

1
.2

9
6
 

<
 0

.0
0
1
 

 

is
o 

C
1
5
:0

 
3
2
.0

0
 

4
.1

8
3
 

<
 0

.0
0
1
 

 
C

1
8
:3

n
-3

 
-8

0
.9

 
2
3
.5

9
 

0
.0

0
8
 

 
 

 
 

 
 

C
1
8
:3

n
-3

 
-4

.1
2
 

1
.1

0
8
 

<
 0

.0
0
1
 

 
 

 
 

 
 

 
 

 
 

 
C

2
0
:1

 c
is

-1
1 

-3
5
.4

4
 

9
.5

7
9
 

<
 0

.0
0
1
 

 
 

 
 

 
 

 
 

 
 

 
C

2
2
:5

n
-3

 
2
7
.6

2
 

9
.2

9
2
 

0
.0

0
4
 

V
(4

)  
In

te
rc

ep
t 

3
7
2
 

1
5
.0

 
<

 0
.0

0
1
 

 
In

te
rc

ep
t 

2
2
.2

 
0
.5

3
 

<
 0

.0
0
1
 

 
In

te
rc

ep
t 

1
4
.4

 
0
.7

2
6
 

<
 0

.0
0
1
 

 

H
ex

an
al

 
-5

.4
 

×
 1

0
-7
 

1
.7

6
 

×
 1

0
-7
 

0
.0

0
3
 

 

E
th

yl
 b

u
ta

-

n
o

at
e 

1
.5

6
 

×
 1

0
-7
 

5
.2

5
0
 

×
 1

0
-8
 

0
.0

0
4
 

 

2
-H

ep
ta

n
o

n
e 

1
.0

8
 

×
 1

0
-7
 

2
.0

7
0
  

×
 1

0
-8
 

<
 0

.0
0
1
 

 

 
 

 
 

 

 

 
 

 
 

1
-P

en
ta

n
o

l 
-1

.3
8
 

×
 1

0
-7
 

3
.3

2
0
  

×
 1

0
-8
 

<
 0

.0
0
1
 

N
V

(5
)  

In
te

rc
ep

t 
4
2
0
 

2
6
.6

 
<

 0
.0

0
1
 

 
N

o
 m

o
d

el
 o

b
ta

in
ed

 
 

In
te

rc
ep

t 
1
2
.9

 
0
.7

6
 

<
 0

.0
0
1
 

 
U

D
P

-h
ex

o
se

 D
 

-1
4
3
8
.8

 
4
9
5
.0

1
 

0
.0

0
5
 

 
 

 
 

 
 

B
u
ty

ra
te

 
3
.5

2
 

0
.7

0
8
 

<
 0

.0
0
1
 

 
A

ce
ty

l-
ca

rn
it

in
e 

-4
4
2
.4

 
9
9
.9

4
 

0
.0

0
2
 

 
 

 
 

 
 

 
 

 
 

 
O

x
al

o
-a

ce
ta

te
 

5
3
5
.7

 
1
5
8
.1

4
 

<
 0

.0
0
1
 

 
 

 
 

 
 

 
 

 
 

A
L

L
(6

)  
In

te
rc

ep
t 

5
2
2
 

1
9
.2

 
<

 0
.0

0
1
 

 
In

te
rc

ep
t 

2
8
.4

 
0
.9

9
 

<
 0

.0
0
1
 

 
In

te
rc

ep
t 

7
.7

 
1
.3

8
 

<
 0

.0
0
1
 

 

C
1
8
:1

 t
ra

ns
-1

5
 +

 

C
1
8
:1

 c
is

-1
1 

-9
8
.0

 
1
8
.9

1
 

<
 0

.0
0
1
 

 

C
1
8
:1

 c
is

-1
2 

-1
8
.7

9
 

2
.5

8
6
 

<
 0

.0
0
1
 

 

A
ce

ty
l-

ca
rn

it
in

e 

9
.9

3
 

3
.7

8
8
 

0
.0

0
8
 

 

C
1
8
:2

 c
is

-9
,  

tr
an

s-
1
1 

-1
1
6
.7

 
2
1
.3

1
 

<
 0

.0
0
1
 

 

C
1
8
:3

n
-3

 
-5

.4
4
 

1
.2

9
6
 

<
 0

.0
0
1
 

 

is
o 

C
1
5
:0

 
2
3
.6

3
 

4
.9

4
6
 

<
 0

.0
0
1
 

 
C

1
8
:3

n
-3

 
-8

0
.9

 
2
3
.5

9
 

0
.0

0
8
 

 
 

 
 

 
 

C
1
8
:3

n
-3

 
-4

.9
5
 

1
.0

9
3
 

<
 0

.0
0
1
 

 

 

 
 

 
 

 
 

 
 

 
C

2
0
:1

 c
is

-1
1 

-3
4
.1

1
 

8
.9

9
9
 

0
.0

0
4
 

 

 

 
 

 
 

 
 

 
 

 
C

2
2
:5

n
-3

 
3
1
.9

3
 

8
.7

6
8
 

0
.0

0
3
 

 

 

 
 

 
 

 
 

 
 

 
C

2
4
:0

 
3
7
.2

7
 

1
2
.4

2
5
 

0
.0

0
8
 



 

 
 

CHAPTER 6 

 

110 

 

T
a
b

le
 6

.2
. 

C
o

n
ti

n
u
ed

 

M
et

ab
o

lit
es

 

in
cl

u
d

ed
 

It
em

 

E
st

i-

m
at

e 
S
E

 
P

-v
al

u
e 

  
It

em
 

E
st

i-

m
at

e 
S
E

 
P

-v
al

u
e 

  
It

em
 

E
st

i-

m
at

e 
S
E

 
P

-v
al

u
e 

  

  

  
  

  
  

  
  

  
  

  

2
-H

ep
ta

n
o

n
e 

5
.1

4
  

×
 1

0
-8
 

1
.5

0
0
  

×
 1

0
-8
 

0
.0

0
4
 

(1
)  D

ry
 m

at
te

r 
in

ta
k
e 

(k
g/

d
).
 

(2
)  F

at
- 

an
d

 p
ro

te
in

-c
o

rr
ec

te
d

 m
ilk

 (
k
g/

d
) 

=
 [

0.
3
3
7
 +

 0
.1

1
6
 ×

 f
at

 (
g/

1
0
0
 g

 m
ilk

) 
+

 0
.0

6
 ×

 p
ro

te
in

 (
g/

1
0
0
 g

 m
ilk

)]
 ×

 m
ilk

 y
ie

ld
 (

k
g/

d
) 

(C
V

B
, 
2
0
1
2
).

 

(3
)  M

ilk
 f

at
ty

 a
ci

d
s 

al
o

n
e 

as
 s

el
ec

ti
o

n
 v

ar
ia

b
le

s;
 i
n

 g
/

1
0
0
 g

 F
A

. 

(4
)  V

o
la

ti
le

 m
et

ab
o

lit
es

 a
lo

n
e 

as
 s

el
ec

ti
o
n

 v
ar

ia
b

le
s;

 p
ea

k
 a

re
a 

v
al

u
e 

(a
rb

it
ra

ry
 u

n
it

 o
f 

q
u
an

ti
ty

).
 

(5
)  N

o
n

-v
o

la
ti

le
 m

et
ab

o
lit

es
 a

lo
n

e 
as

 s
el

ec
ti

o
n

 v
ar

ia
b

le
s;

 p
ea

k
 a

re
a 

re
la

ti
v
e 

to
 c

al
ib

ra
ti

o
n

 s
ta

n
d

ar
d

 3
-t

ri
m

et
h

yl
si

ly
l-

2
,2

,3
,3

-t
et

ra
d

eu
te

ro
p

ro
p

io
n

at
e 

(T
S
P

).
 

(6
)  A

ll 
m

et
ab

o
lit

es
 c

o
m

b
in

ed
 a

s 
se

le
ct

io
n

 v
ar

ia
b

le
s.

 

   
 



 

 
 

MILK METABOLOME AND METHANE – METABOLIC INTERPRETATION AND PREDICTION 

 

111 

T
a
b

le
 6

.3
. 

T
h

e 
co

ef
fi

ci
en

t 
o

f 
d
et

er
m

in
at

io
n

 (
R

2
) 

an
d
 c

o
n

co
rd

an
ce

 c
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
t 

(C
C

C
) 

an
al

ys
is

 o
f 

th
e 

p
re

d
ic

ti
o

n
 e

q
u
at

io
n

s 
an

d
 t

h
e 

1
0
-f

o
ld

 c
ro

ss
 v

al
id

at
io

n
 r

es
u
lt

s 

  
O

v
er

al
l 
p

re
d

ic
ti

o
n

 e
q
u
at

io
n

s 
C

ro
ss

 v
al

id
at

io
n

  

M
o

d
el

 
A

d
ju

st
ed

 R
2  

R
M

S
E

P
(1

)  
R

M
S
E

P
 %

(2
)  

C
C

C
(3

)  
r(

4
)  

C
b(5

)  
v(

6
)  

µ
(7

)  
R

2
C

V
 

R
M

S
E

C
V

(8
)  

R
M

S
E

C
V

 (
%

)(
9
)  

M
et

h
an

e 
p

ro
d

u
ct

io
n

 (
g/

d
) 

 
 

 
 

 
 

 
 

 
 

 
M

F
A

(1
0
)  

0
.5

1
 

3
4
 

9
.6

 
0
.6

7
 

0
.7

6
 

0
.8

8
 

1
.6

7
 

-0
.0

1
9
 

0
.4

7
 

4
1
.0

 
1
1
.5

 

V
(1

1
)  

0
.0

8
 

4
9
 

1
3
.6

 
0
.1

3
 

0
.3

0
 

0
.4

2
 

4
.5

6
 

-0
.1

4
8
 

0
.0

9
 

5
1
.5

 
1
4
.3

 

N
V

(1
2
)  

0
.3

0
 

4
5
 

1
2
.7

 
0
.3

5
 

0
.4

8
 

0
.7

3
 

2
.2

6
 

-0
.2

0
6
 

0
.3

2
 

5
2
.6

 
1
4
.7

 

A
L

L
(1

3
)  

0
.5

1
 

3
4
 

9
.6

 
0
.6

7
 

0
.7

6
 

0
.8

8
 

1
.6

7
 

-0
.0

1
9
 

0
.4

8
 

4
0
.6

 
1
1
.4

 

M
et

h
an

e 
yi

el
d
 (

g/
k
g 

D
M

I(
1
4
) ) 

 
 

 
 

 
 

 
 

 
 

 
M

F
A

 
0
.3

8
 

2
.0

 
8
.7

 
0
.4

4
 

0
.5

3
 

0
.8

4
 

1
.8

3
 

0
.0

0
0
 

0
.3

8
 

2
.1

 
9
.2

 

V
 

0
.0

7
 

2
.3

 
1
0
.1

 
0
.0

7
 

0
.1

6
 

0
.4

6
 

4
.0

8
 

0
.0

3
8
 

0
.0

8
 

2
.3

 
1
0
.3

 

N
V

 
n

.a
.(1

5
)  

n
.a

. 
n

.a
. 

n
.a

. 
n

.a
. 

n
.a

. 
n

.a
. 

n
.a

. 
n

.a
. 

n
.a

. 
n

.a
. 

A
L

L
 

0
.3

8
 

2
.0

 
8
.7

 
0
.4

4
 

0
.5

3
 

0
.8

4
 

1
.8

3
 

0
.0

0
0
 

0
.3

9
 

2
.1

 
9
.2

 

M
et

h
an

e 
in

te
n

si
ty

 (
g/

k
g 

F
P

C
M

(1
6
) ) 

 
 

 
 

 
 

 
 

 
 

 
M

F
A

 
0
.7

5
 

1
.7

 
1
1
.7

 
0
.7

5
 

0
.7

6
 

0
.9

9
 

1
.1

4
 

0
.0

5
2
 

0
.7

0
 

2
.0

 
1
3
.7

 

V
 

0
.2

7
 

2
.4

 
1
6
.3

 
0
.2

9
 

0
.3

9
 

0
.7

3
 

2
.2

8
 

0
.0

4
3
 

0
.2

9
 

2
.4

 
1
6
.8

 

N
V

 
0
.2

0
 

2
.6

 
1
7
.7

 
0
.1

4
 

0
.2

1
 

0
.6

6
 

2
.6

5
 

0
.0

5
4
 

0
.3

2
 

2
.8

 
1
9
.3

 

A
L

L
 

0
.7

4
 

1
.5

 
1
0
.4

 
0
.8

0
 

0
.8

2
 

0
.9

7
 

1
.2

4
 

0
.0

9
4
 

0
.6

9
 

2
.0

 
1
3
.8

 

(1
)  R

o
o

t 
m

ea
n

 s
q
u
ar

ed
 e

rr
o

r 
o

f 
p

re
d

ic
ti

o
n

 e
x
p

re
ss

ed
 i
n

 t
h

e 
sa

m
e 

u
n

it
 a

s 
th

e 
o

b
se

rv
ed

 m
ea

n
. 

(2
)  R

o
o

t 
m

ea
n

 s
q
u
ar

ed
 e

rr
o

r 
o

f 
p

re
d

ic
ti

o
n

 e
x
p

re
ss

ed
 a

s 
a 

p
er

ce
n
ta

ge
 o

f 
th

e 
o

b
se

rv
ed

 m
ea

n
. 

(3
)  C

o
n

co
rd

an
ce

 c
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
t,

 w
h

er
e 

C
C

C
 =

 r
 ×

 C
b.
 

(4
)  P

ea
rs

o
n

 c
o

rr
el

at
io

n
 c

o
ef

fi
ci

en
t;

 a
 m

ea
su

re
 o

f 
p

re
ci

si
o

n
. 

(5
)  B

ia
s 

co
rr

ec
ti

o
n

 f
ac

to
r;

 a
 m

ea
su

re
 o

f 
ac

cu
ra

cy
. 

(6
)  S

ca
le

 s
h

if
t;

 c
h

an
ge

 i
n

 s
ta

n
d

ar
d
 d

ev
ia

ti
o

n
 b

et
w

ee
n

 p
re

d
ic

te
d
 a

n
d
 o

b
se

rv
ed

 m
et

h
an

e 
em

is
si

o
n

. 

(7
)  L

o
ca

ti
o

n
 s

h
if

t;
 i
f 

p
o

si
ti

v
e 

u
n
d

er
 p

re
d
ic

ti
o

n
, 
if

 n
eg

at
iv

e 
o

v
er

 p
re

d
ic

ti
o

n
. 

(8
)  R

o
o

t 
m

ea
n

 s
q
u
ar

ed
 e

rr
o

r 
o

f 
cr

o
ss

 v
al

id
at

io
n

 e
x
p

re
ss

ed
 i
n

 t
h

e 
sa

m
e 

u
n

it
 a

s 
th

e 
o

b
se

rv
ed

 m
ea

n
. 

(9
)  R

o
o

t 
m

ea
n

 s
q
u
ar

ed
 e

rr
o

r 
o

f 
cr

o
ss

 v
al

id
at

io
n

 e
x
p

re
ss

ed
 a

s 
a 

p
er

ce
n

ta
ge

 o
f 

th
e 

o
b

se
rv

ed
 m

ea
n

. 

(1
0
)  M

ilk
 f

at
ty

 a
ci

d
s 

al
o

n
e 

as
 s

el
ec

ti
o

n
 v

ar
ia

b
le

s;
 i
n

 g
/

1
0
0
 g

 F
A

. 

(1
1
)  V

o
la

ti
le

 m
et

ab
o

lit
es

 a
lo

n
e 

as
 s

el
ec

ti
o
n

 v
ar

ia
b

le
s;

 p
ea

k
 a

re
a 

v
al

u
e 

(a
rb

it
ra

ry
 u

n
it

 o
f 

q
u
an

ti
ty

).
 

(1
2
)  N

o
n

-v
o

la
ti

le
 m

et
ab

o
lit

es
 a

lo
n

e 
as

 s
el

ec
ti

o
n

 v
ar

ia
b

le
s;

 p
ea

k
 a

re
a 

re
la

ti
v
e 

to
 c

al
ib

ra
ti

o
n

 s
ta

n
d

ar
d

 3
-t

ri
m

et
h
yl

si
ly

l-
2
,2

,3
,3

-t
et

ra
d

eu
te

ro
p

ro
p

io
n

at
e 

(T
S
P

).
 

(1
3
)  A

ll 
m

et
ab

o
lit

es
 c

o
m

b
in

ed
 a

s 
se

le
ct

io
n

 v
ar

ia
b

le
s.

 

(1
4
)  D

ry
 m

at
te

r 
in

ta
k
e 

(k
g/

d
).

 



 

 
 

CHAPTER 6 

 

112 

T
a
b

le
 6

.3
. 

C
o

n
ti

n
u
ed

 

(1
5
)  N

o
t 

ap
p

lic
ab

le
, 
b

ec
au

se
 n

o
 m

o
d

el
 w

as
 o

b
ta

in
ed

. 

(1
6
)  F

at
- 

an
d

 p
ro

te
in

-c
o

rr
ec

te
d
 m

ilk
 (

k
g/

d
) 

=
 [

0.
3
3
7
 +

 0
.1

1
6
 ×

 f
at

 (
g/

1
0
0
 g

 m
ilk

) 
+

 0
.0

6
 ×

 p
ro

te
in

 (
g/

1
0
0
 g

 m
ilk

)]
 ×

 m
ilk

 y
ie

ld
 (

k
g/

d
) 

(C
V

B
, 
2
0
1
2
).

 

 
 



MILK METABOLOME AND METHANE – METABOLIC INTERPRETATION AND PREDICTION 

 

113 
 

Prediction models for methane emission 

Four sets of test variables were used to develop CH4 prediction models; (1) MFA alone, 

(2) volatile metabolites alone, (3) non-volatile metabolites alone, and (4) all three types of 

metabolites combined. In total, 11 prediction models were obtained; four for CH4 production, 

three for CH4 yield (no model was obtained with non-volatile metabolites only), and four for 

CH4 intensity (Table 6.2). The observed and residual (observed minus predicted) versus 

predicted CH4 production, CH4 yield, and CH4 intensity plots are shown in Figures 6.1, 6.2, and 

6.3, respectively. The evaluation results (i.e., adjusted R2, RMSEP, and CCC analysis) of the 11 

obtained CH4 prediction models are shown in Table 6.3. 

Milk fatty acids alone. The RMSEP of the MFA-based CH4 prediction models was 

34 g CH4/d, 2.0 g CH4/kg DMI, and 1.7 g CH4/kg FPCM, respectively. Additionally, the 

adjusted R2 and CCC of the MFA-based CH4 prediction models ranged from 0.38 to 0.75, and 

from 0.44 to 0.75, respectively, with the prediction model for CH4 yield performing the worst 

and the prediction model for CH4 intensity performing the best. This is also evident by the lower 

r and Cb values for the MFA-based prediction model for CH4 yield relatively to the MFA-based 

prediction model for CH4 intensity. Although the MFA-based prediction models for CH4 

production and CH4 intensity were equally precise (i.e., both having a r value of 0.76), the MFA-

based prediction model for CH4 intensity was more accurate (Cb of 0.99 for CH4 intensity and 

Cb of 0.88 for CH4 production). The MFA-based prediction model for CH4 intensity had the 

ability to describe more of the observed variation in CH4 emissions compared with MFA-based 

prediction models for CH4 production and CH4 yield. This is evident by the scale shift values, 

with the MFA-based prediction models for CH4 production and CH4 yield having a scale shift 

which was clearly higher than 1 (v > 1.67), whereas the scale shift of the MFA-based prediction 

for CH4 intensity was close to 1 (v = 1.14).   

Volatile metabolites alone. The RMSEP of the volatile metabolite-based CH4 

prediction models was 49 g CH4/d, 2.3 g CH4/kg DMI, and 2.4 g CH4/kg FPCM. Additionally, 

the adjusted R2 and CCC of the volatile metabolite-based CH4 prediction models ranged from 

0.07 to 0.27, and from 0.07 to 0.29, respectively, with the prediction model for CH4 yield 

performing the worst and the prediction model for CH4 intensity performing the best. The 

precision of these models (i.e., r) followed the same pattern, which was not the case for the 

accuracy of these models (i.e., Cb). The Cb value was lowest for the volatile metabolite-based 

prediction model for CH4 production (0.42) and highest for the volatile metabolite-based 

prediction model for CH4 intensity (0.73). Further, all volatile metabolite-based CH4 prediction 

models had a scale shift which was clearly higher than 1 (v > 2.28), indicating the inability of 

volatile metabolites alone to predict the range of observed CH4 emissions. 

Non-volatile metabolites alone. No model was obtained for CH4 yield with non-

volatiles metabolites alone. The significance level for a variable to enter the model was 0.01, 

whereas the significance level of the strongest correlation between a non-volatile metabolite (i.e., 

UDP-hexose C) and CH4 yield was 0.035. The RMSEP of the non-volatile metabolite-based CH4 

prediction models was 45 g CH4/d and 2.6 g CH4/kg FPCM. Additionally, the adjusted R2 was 

0.30 and 0.20, and the CCC was 0.35 and 0.14 for the non-volatile metabolite-based prediction 

models for CH4 production and CH4 intensity, respectively. Contrary to what was observed for 
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MFA and volatile metabolites alone, the non-volatile metabolite-based prediction model for CH4 

production performed better than the non-volatile metabolite-based prediction model for CH4 

intensity. Both non-volatile metabolite-based CH4 prediction models had a scale shift which was 

clearly higher than 1 (v > 2.26), indicating the inability of non-volatile metabolites alone to predict 

the range of observed CH4 emissions. 

All metabolites combined. When combining the three types of milk metabolites, the 

RMSEP of the CH4 prediction models was 34 g CH4/d, 2.0 g CH4/kg DMI, and 1.5 g CH4/kg 

FPCM. Additionally, the adjusted R2 and CCC of the CH4 prediction models including all three 

types of metabolites ranged from 0.38 to 0.74, and from 0.44 to 0.80, respectively, with the 

prediction model for CH4 yield performing the worst and the prediction model for CH4 intensity 

performing the best. A similar pattern was observed for the precision (r), accuracy (Cb), and the 

scale shift (v) of the CH4 prediction models combining the three types of metabolites. The 

prediction models using the combination of all three types of milk metabolites performed better 

than the prediction models with volatile metabolites alone and non-volatile metabolites alone. 

For both CH4 production and CH4 yield, only MFA were selected in the prediction models, 

resulting in CH4 prediction models identical to the MFA-based CH4 prediction models. For CH4 

intensity all three types of milk metabolites were selected in the prediction model; five MFA, one 

volatile metabolite, and one non-volatile metabolite.  

Cross validation. The results of the internal cross validation of all CH4 prediction 

models are also shown in Table 6.3. Additionally, Supplementary Table S6.11 shows the MFA, 

volatile metabolites, and non-volatile metabolites that were included in the prediction models in 

the cross validation, and whether or not these milk metabolites were also part of the best overall 

prediction models (Table 6.2). The R2CV and the RMSECV (%) of the MFA-based CH4 

prediction models ranged from 0.38 to 0.70 and from 9.2 to 13.7, respectively. Further, the R2CV 

and the RMSECV (%) of the volatile metabolite-based CH4 prediction models ranged from 0.08 

to 0.29 and from 10.3 to 16.8, respectively. The R2CV was 0.32 and 0.32, and the RMSECV (%) 

was 14.7 and 19.3 for the non-volatile metabolite-based prediction models for CH4 production 

and CH4 intensity, respectively. For the CH4 prediction models combining all three types of milk 

metabolites, the R2CV and the RMSECV (%) ranged from 0.39 to 0.69 and from 9.2 to 13.8, 

respectively.  

 

DISCUSSION 

The relationship between individual milk metabolites and methane emission 

Milk fatty acids. Van Gastelen and Dijkstra (2016) reviewed studies that investigated 

the predictive power of MFA composition for CH4 emission. In line with this review, in the 

present study several SMCFA were positively associated with CH4 emission. In general these 

SMCFA remained related to CH4 intensity, or the relationship appeared or strengthened, upon 

including FPCM as covariate. These positive relationships are the result of the de novo synthesis 

of these MFA in the mammary gland mainly from acetate and butyrate produced in the rumen 

(Bauman and Griinari, 2003), which are both positively associated with CH4 emission (Ellis et 

al., 2008). The main exception is C4:0. The observed negative relationship between C4:0 and 

CH4 emission in the present study was also observed by Dijkstra et al. (2011) and Van Lingen et 
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al. (2014). The significant negative relationship between C4:0 and CH4 intensity disappeared (P 

> 0.10) upon including FPCM as covariate, which may indicate a dilution effect with C4:0 

increasing with decreasing FPCM. 

The iso OBCFA were often positively associated with CH4 emission in the present study 

and remained positively related with CH4 intensity upon including FPCM as covariate, which is 

in agreement with iso OBCFA being generally more abundant in fibrolytic bacteria (Vlaeminck 

et al., 2006). The anteiso OBCFA are generally more abundant in amylolytic bacteria and thus 

expected to be negatively associated with CH4 emission (Vlaeminck et al., 2006). This was 

observed for anteiso C17:0 and CH4 production, but anteiso C15:0 was positively associated with 

CH4 intensity. The latter MFA remained positively related to CH4 intensity upon including 

FPCM as covariate. A high level of ruminal propionate is associated with low CH4 production, 

and propionate is a substrate for de novo synthesis of C15:0 and C17:0. Hence, both C15:0 and 

C17:0 are hypothesized to be negatively associated with CH4 emissions (Vlaeminck and Fievez, 

2005). In the present study, only C17:0 was negatively associated with CH4 production, whereas 

C15:0 was positively associated with all units of CH4 emission and C17:0 was positively 

associated with CH4 yield. The reason behind the positive associations is not completely clear to 

us, but they are in agreement with other studies, such as Chilliard et al. (2009), Dijkstra et al. 

(2011), and Van Lingen et al. (2014), although inconsistent with the findings of Rico et al. (2016). 

Additionally, it is unclear why C15:0 and C17:0 are differently related to CH4 emission, despite 

their similar synthesis pathways.  

The negative relationships found in the present study between C18:1, C18:2, and C18:3 

isomers in milk and CH4 emissions are in general agreement with others (Van Lingen et al., 2014; 

Rico et al., 2016), and can be explained by dietary unsaturated fatty acids and their 

biohydrogenation products (Van Gastelen and Dijkstra, 2016). The relationship between CH4 

intensity and several C18:1 isomers as well as C18:2 cis-9, trans-11 strengthened or appeared after 

correcting for FPCM yield. This suggests that the relationship between these MFA and FPCM 

can hamper the direct association between MFA and CH4 intensity. The associations found in 

the present study between CH4 emissions and long-chain fatty acids, which derive from 

absorption from the digestive tract and body fat mobilization (Bauman and Griinari, 2003), have 

been reported before (i.e., Chilliard et al., 2009; Rico et al., 2016; Van Gastelen et al., 2017). The 

individual relationships found in the present study between CH4 emission and the long-chain 

fatty acids with more than 20 carbons were generally unaffected when including FPCM as a 

covariate. Additionally, these long-chain fatty acids were also included in the CH4 prediction 

models. This together suggests that these MFA are important in terms of CH4 prediction. 

Volatile metabolites. In contrast to Antunes-Fernandes et al. (2016), in the present 

study, many volatile metabolites in milk were related to CH4 emission and the relationships 

found between the volatile metabolites and CH4 intensity were not only the result of the 

relationship between the volatile metabolites in milk and FPCM. The lack of relationships found 

by Antunes-Fernandes might be the result of the limited variation in dietary treatments used, 

which was the exchange of fiber-rich grass silage with starch-rich corn silage. As shown by 

Hettinga et al. (2008), the volatile composition of milk was affected by supplementing diets with 

specific byproducts (including onions and cabbage) but was not affected by variation in the 
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starch to fiber content of the diet, even though the latter manipulation has an influence on 

ruminal fermentation and CH4 emission (Hassanat et al., 2013; Van Gastelen et al., 2015). The 

present study involved a wide variety of dietary treatments, including different qualities of  

forage, which are known to effect the volatile composition of milk (Thomson et al., 2005), 

ruminal fermentation, and CH4 emission (Warner et al., 2016).  

In the present study, acetone was negatively related with both CH4 production and CH4 

intensity. Acetone is a ketone body which can be used to identify cows with negative energy 

balance and subclinical ketosis (Andersson and Emanuelson, 1985). Gravert et al. (1991) 

reported that the quality of grass or maize silage was negatively related to milk acetone, and it 

has been suggested that, in general, silage feeding or the content of butyric acid in silage may 

affect milk acetone (Andersson and Emanuelson, 1985; Andersson and Lundström, 1985). This 

suggests that milk acetone can be affected by the same dietary factors that can impact CH4 

emissions, explaining the negative relationship found in the present study.  

Kalač (2011) reported that the occurrence of both acids and alcohols in silage result in 

the formation of various ethyl esters.  There is limited information available on the transfer 

efficiency of both acids and esters from silage to milk, but the dietary treatments could have 

affected the relationships found. However, esters can also be formed within the mammary gland, 

from esterification of short-chain alcohols and free fatty acids (Toso et al., 2002), and they can 

indicate bacterial action (Hettinga et al., 2009). In the present study, both volatile esters (ethyl 

acetate and ethyl butanoate) tended to be or were positively related with CH4 intensity, but 

including FPCM as a covariate resulted in the disappearance or weakening of these relationships. 

This suggests that the positive relationships with CH4 intensity were due to a relationship 

between FPCM and both volatile esters.  

In the present study, 1-pentanol was negatively associated with CH4 production and 

CH4 intensity. According to Moio et al. (1993), primary alcohols are formed by reduction of their 

respective aldehyde. Consequently, 1-pentanol is formed by the reduction of pentanal, which 

was not identified in the present study. Based on Villeneuve et al. (2013), it seems likely that the 

content of 1-pentanol in milk reflects the content of its respective aldehyde, pentanal. Straight-

chain aldehydes, such as pentanal and hexanal, can derive from lipid degradation (Moio et al., 

1993). Dietary lipids are negatively associated with CH4 emissions (Grainger and Beauchemin, 

2011), potentially explaining the negative relationships found between CH4 emission and both 

1-pentanol and hexanal in the present study. Further, dimethyl sulfone was negatively associated 

with CH4 intensity. In the rumen, dimethyl sulfide is derived from the catabolism of sulfur amino 

acids, particularly methionine (Taylor and Kiene, 1989). Dimethyl sulfide is subsequently 

oxidized to dimethyl sulfone, which can be transferred to milk (Villeneuve et al., 2013). This 

suggests that the relationship between CH4 intensity and dimethyl sulfone could be the result of 

the dietary protein content, although the effect of dietary protein content on CH4 emissions is 

variable in the literature (Ellis et al., 2009, Reynolds et al., 2010).  

We also identified four volatile free fatty acids (FFA) in the present study, all positively 

associated with CH4 yield and CH4 intensity, but not with CH4 production. The concentration 

of FFA in milk is generally low and can be the result of incomplete esterification in the mammary 

gland before lipid secretion (Marsili et al., 2003) or spontaneous lipolysis (Chazal et al., 1987). 
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The latter study also reported higher FFA concentrations in milk from cows fully fed on good 

quality grass silage compared with cows fully fed on good quality hay. Additionally, Chazal and 

Chilliard (1986) observed that milk from cows fed poor quality grass silage had higher FFA levels 

than milk from cows supplemented with corn silage. Moreover, Thomson et al. (2005) reported 

that FFA concentrations in milk were highest in summer when the quality of the pasture declines. 

This together suggests that the positive association between volatile FFA in milk and both CH4 

yield and CH4 intensity might be the results of dietary composition and quality, which affect 

both the composition of volatile metabolites in milk and enteric CH4 production. 

Non-volatile metabolites. Similar to Antunes-Fernandes et al. (2016), non-volatile 

metabolites were generally better correlated with CH4 intensity than with CH4 yield. Antunes-

Fernandes et al. (2016) reported that the positive relationship between CH4 intensity and the 

non-volatile metabolites acetoacetate, creatinine, ethanol, formate, methylmalonate, and N-

acetylsugar A were due to the relationship between these non-volatile metabolites and FPCM. 

This was also observed for creatinine and ethanol in the present study, as well as for the 

metabolites betaine, citrate, N-acetylsugar B, and sugar A. This suggest that these metabolites 

have no clear relationships with the ruminal CH4 emission metabolism, but rather are related to 

changes in milk yield or metabolic processes involved in milk synthesis. In contrast to Antunes-

Fernandes et al. (2016), the three non-volatile metabolites acetoacetate, methylmalonate, and N-

acetylsugar A remained related to CH4 intensity upon including FPCM as a covariate. 

Acetoacetate is a ketone body and, as described above, can be positively associated with fiber-

rich diets and subsequently ketogenic VFA (Van Knegsel et al., 2007), explaining the positive 

relationship found between acetoacetate and CH4 intensity. The concentration of 

methylmalonate in milk has been associated with dietary composition (Bauman and Griinari, 

2001). When high grain or low forage diets are fed, the ruminal production of vitamin B12 

decreases, whereas the production of propionate increases. This results in the accumulation of 

methylmalonate in the liver and subsequently, by transport via the circulatory system, in elevated 

methylmalonate supply to the mammary gland and increased concentration in milk (Bauman and 

Griinari, 2001). High grain or low forage diets are also associated with decreased CH4 emissions, 

and hence a negative relationship between methylmalonate and CH4 emission would be 

expected. In the present study, however, methylmalonate was positively related with CH4 

intensity. The latter may be explained by the absence of a negative relationship between ruminal 

propionate and CH4 emissions in some of the studies of which the data was used for the present 

analysis (e.g., Hatew et al., 2016, Van Gastelen et al., 2015).  

N-acetylsugars are intermediates of biological pathways that occur in cell cytosol (Lu 

et al., 2013). N-acetylsugars C, D and E were significantly and positively related with CH4 

intensity only when including FPCM as a covariate. The results of the present study suggest that 

N-acetylsugars are related to the ruminal CH4 production pathway. According to Lu et al. (2015), 

a higher concentration of N-acetylsugars could indicate leakage of cellular components to milk 

or higher permeability of the cell membrane in the epithelial cells in the mammary gland. Both 

can subsequently be associated with the differences in the epithelial cell membrane stability. Tian 

et al. (2016) found lower concentrations of N-acetylsugars in milk of cows experiencing heat 

stress, and Antunes-Fernandes et al. (2016) found some N-acetylsugars tending to be negatively 
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associated with CH4 yield. However, it is unclear how differences in dietary composition could 

have changed the epithelial cell membrane stability in the mammary gland and how this relates 

to CH4 emissions, warranting more research.  

Antunes-Fernandes et al. (2016) showed that citrate and UDP-hexose B were both 

negatively related to CH4 intensity, potentially reflecting decreased metabolic activity in the 

mammary gland with increased CH4 intensity as citrate is an intermediate of the Kreb-cycle 

(Bremer and Davis, 1974) and UDP-hexose B is an intermediate of lactose metabolism (Cant et 

al., 2002). In the present study, citrate was also negatively associated with CH4 intensity. 

However, this relationship disappeared upon inclusion of FPCM as a covariate. This suggests 

that changes in milk citrate may be related to the energy metabolism of the mammary gland, as 

previously suggested by Faulkner and Peaker (1982), which is not necessarily related to changes 

in CH4 intensity. Furthermore, UDP-hexose B was not related to CH4 intensity in the present 

study, which is in disagreement with Antunes-Fernandes et al. (2016). The other UDP-hexoses 

were negatively related to CH4 production (i.e., UDP-hexose D), CH4 yield (i.e., UDP-hexose C) 

and CH4 intensity (i.e., UDP-hexose D upon including FPCM as a covariate). The negative 

relationship with CH4 production is surprising, because UDP-hexoses are intermediates of 

lactose synthesis (Cant et al., 2002), and milk yield is controlled by the synthesis of lactose. 

Increased milk yield is often associated with increased feed intake and it is consistently reported 

in literature that increased feed intake is positively associated with CH4 production (Hristov et 

al., 2013). Subsequently, a positive association between UDP-hexoses and CH4 production 

would be expected. The negative association between UDP-hexoses and CH4 yield can probably 

be explained by increased feed intake and the associated decreased ruminal retention time of 

starch, which may result in increased post-ruminal digestion and subsequently glucose 

absorption (Rius et al., 2010) and conversion to UDP-hexoses in the mammary gland.  

Acetate was positively associated with CH4 emission, and remained related to CH4 

intensity upon including FPCM as a covariate. This is in agreement with ruminal acetate 

production being positively associated with CH4 emission (Ellis et al., 2008). Furthermore, 

Krause and Oetzel (2005) demonstrated that ruminal succinate is usually only found at very low 

levels in the rumen, but that the concentration increased during a subacute ruminal acidosis. In 

general, diets with a high starch content and a low fiber content are associated with decreased 

ruminal pH and CH4 emission (Beauchemin et al., 2008). Hence, a negative relationship between 

ruminal succinate and CH4 emission would be expected. However, we found a positive 

relationship between succinate in milk and CH4 emission. This suggests that succinate in milk 

does probably not directly reflect ruminal succinate levels.  

The decrease of acetylcarnitine in milk with increasing CH4 production and CH4 

intensity (acetylcarnitine became negative related to CH4 intensity upon including FPCM as a 

covariate) is in agreement with the results of the SMCFA in milk. It has been shown that 

acetylcarnitine reflects the inhibition of de novo fatty acid synthesis from acetate in the mammary 

gland (Erfle et al., 1970). De novo fatty acid synthesis in the mammary gland is inhibited by specific 

trans unsaturated fatty acids, which are formed during ruminal biohydrogenation of dietary 

unsaturated fatty acids (Bauman and Griinari, 2003). Certain dietary strategies (including low-

fiber diets and high-concentrate diets) alter the rumen environment, lowering the ruminal pH 
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and subsequently increasing the trans unsaturated fatty acids being formed from ruminal 

biohydrogenation. Both dietary unsaturated fatty acids and lower ruminal pH are also associated 

with reduction in CH4 emission, explaining the negative relationship between acetylcarnitine and 

CH4 emission.  

Hippurate was positively associated with CH4 production and intensity in the present 

study. Boudonck et al. (2009) showed that the concentration of hippurate was lower in milk of 

cows receiving organic diets (mainly forage-based) than in milk of cows receiving conventional 

diets (mainly concentrate-based). This suggest that increased forage content in the diet, which is 

accompanied by increased dietary fiber, increases hippurate content in milk. This might explain 

the relationship found in the present study, because dietary forage content, as well as dietary 

fiber content, is positively associated with CH4 emission (Beauchemin et al., 2008). 

Overall, these results indicate that, next to MFA, both volatile and non-volatile 

metabolites in milk are often associated with CH4 emissions. These relationships are most likely 

the result of changes in dietary composition that affect not only enteric CH4 production, but 

also the profile of volatile and non-volatile metabolites in milk. This illustrates that these milk 

metabolites might provide useful information increasing our understanding of CH4 emission of 

dairy cows.  

   

Prediction models for methane emission 

Milk fatty acids. The prediction potential of MFA varies between studies. The 

adjusted R2 values for the MFA-based prediction models for both CH4 production and CH4 

yield from the present study are lower than the ones reported by other studies (Chilliard et al. 

2009; Dijkstra et al., 2011; Rico et al. 2016). In contrast, the adjusted R2 values for the MFA-

based prediction models for CH4 intensity of the present study are higher than those reported 

in literature (i.e., Van Lingen et al. 2014). The scale shift results of the present study indicate that 

MFA are able to describe more of the observed variation in CH4 intensity than of the observed 

variation in CH4 production and CH4 yield. It is known that MFA are related to ruminal CH4 

production pathways (Chilliard et al., 2009; Ellis et al., 2008). The MFA can predict CH4 intensity 

better than CH4 production and CH4 yield. According to Dehareng et al. (2012), this might be 

due to CH4 intensity taking milk yield into account, which is directly associated with enteric CH4 

production by cows and reflected by the MFA profile because of possible dilution effects. The 

results of the present study indeed show that some of the MFA are associated with CH4 intensity 

due to their relationship with FPCM (e.g., C4:0). However, this is not the case for all MFA that 

are important for the prediction of CH4 intensity (such as iso C15:0).  

Volatile metabolites. The CH4 prediction potential of volatile metabolites alone 

appears low and is considerably less promising compared with MFA. Although the prediction 

potential of the volatile metabolites for CH4 production in this study is higher than Van Gastelen 

et al. (2017) in which no model could be obtained for CH4 production, the adjusted R2 and CCC 

values of the volatile metabolite-based prediction models for CH4 yield and CH4 intensity are 

lower than the ones reported by Van Gastelen et al. (2017).
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Similar to Van Gastelen et al. (2017), the potential of volatile metabolites to predict 

CH4 intensity in the present study was greater than their potential to predict CH4 production 

and CH4 yield, which is evidenced by the higher adjusted R2 and CCC values and lower scale 

shift. However, even for CH4 intensity, the large scale shift (> 2.28) shows that the variation in 

predicted CH4 emissions was considerably smaller than that in observed CH4 emission. This is 

illustrated in Figures 6.1, 6.2, and 6.3, and indicates the inability of volatile metabolites alone to 

predict the range of observed CH4 emissions.  

Based on 1 experiment with 4 dietary treatments, Van Gastelen et al. (2107) concluded 

that volatile metabolites alone hold potential to predict CH4 intensity, which might be the result 

of the relationship between volatile metabolites in milk and FPCM yield (Antunes-Fernandes et 

al., 2016). This is not supported by the results of the present study. First, the prediction potential 

of volatile metabolites for CH4 intensity is low. Second, most volatile metabolites remained 

significantly related to CH4 intensity upon including FPCM as a covariate. We therefore propose 

that, with a wide range of forage-based diets with a variety of quantity and quality of grass, grass 

silage, and corn silage, volatile metabolites in milk hold little potential to predict CH4 emissions, 

despite the relationships found between individual volatile metabolites and CH4 emissions.  

Non-volatiles metabolites. The adjusted R2 and CCC values reported in this study 

for non-volatile metabolite-based CH4 prediction models were considerably lower than those 

reported by Van Gastelen et al. (2017). Our results suggest that non-volatile metabolites in milk 

have low CH4 prediction potential. For CH4 yield no model could be derived at all, which was 

to be expected given the low number of relationships (i.e., significant and tendency) between 

individual non-volatile metabolites and CH4 yield. The variation in the predicted CH4 emissions 

was considerably smaller than that in observed CH4 emissions, as evidenced by the large scale 

shift (> 2.26). This is visualized in Figures 6.1 and 6.3, and suggests that non-volatile metabolites 

lack the ability to predict the range of CH4 emissions observed. 

Van Gastelen et al. (2017) concluded, based on 1 experiment with 4 dietary treatments, 

that non-volatile metabolites hold potential to predict CH4 intensity, which could largely be 

explained by the relationship between the non-volatile metabolites in milk and FPCM yield as 

observed by Antunes-Fernandes et al. (2016). This is not supported by the results of the present 

study. We therefore propose that, with a wide range of forage-based diets with a variety of 

quantity and quality of grass, grass silage, and corn silage, non-volatile metabolites in milk hold 

little potential to predict CH4 emissions despite the significant relationships found between 

individual non-volatile metabolites and CH4 emissions.  

All metabolites combined. No single proxy accurately predicts CH4 emission, and 

combinations of  two or more proxies are likely to be a better solution to predict CH4 emission 

(reviewed by Negussie et al., 2017). In comparison with MFA alone, combining the three types 

of  milk metabolites did not improve the potential to predict CH4 production and CH4 yield. The 

prediction models were actually identical to the ones obtained when selecting MFA alone. Also 

in the 10-fold cross-validation, volatile and non-volatile metabolites were rarely included in the 

prediction models (Supplementary Table S6.11). These results clearly show that combining MFA 

with both volatile and non-volatile metabolites has no added value in terms of  CH4 production 

and CH4 yield prediction potential relative to MFA alone.  
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Similarly, for CH4 intensity, combining MFA with volatile and non-volatile metabolites 

hardly improved prediction potential. Five MFA were included in the CH4 intensity prediction 

model, of  which four were identical to the MFA included in the MFA-based prediction model 

for CH4 intensity. Despite the inclusion of  one volatile metabolite (2-heptanone) and one non-

volatile metabolite (acetylcarnitine) in the combined model, the adjusted R2 was marginally lower 

(0.74) than that of  the MFA-based prediction model for CH4 intensity (0.75). The CCC value of  

the prediction model for CH4 intensity combining the three metabolites was slightly higher than 

the one reported for the MFA-based CH4 intensity prediction model (0.80 and 0.75, respectively), 

which was mainly the result of  increased precision (r).  

In terms of  the 10-fold cross validation, MFA alone and the combination of  the three 

types of  milk metabolites performed equally well, having similar R2CV and RMSECV values. 

When considering the metabolites that were included in the prediction models of  the 10-fold 

cross validation (Supplementary Table S6.11), it appears that the CH4 prediction models 

combining the three types of  milk metabolites are less robust than the MFA-based CH4 

prediction models, especially for CH4 intensity. Variation in the metabolites that were included 

in the cross validation was smaller for the MFA alone model (12 metabolites) than for the three 

types of  metabolites combined (22 metabolites). Moreover, the MFA included in the best overall 

MFA-based prediction model for CH4 intensity were included at least two times in the 10-fold 

cross validation. Contrary, two of  the metabolites in the best overall prediction model for CH4 

intensity combining the three types of  milk metabolites were included only once (i.e., 

acetylcarnitine) or not at all (i.e., C24:0) in the cross validation. The cross-validation results 

motivated us to develop a second best overall prediction model for CH4 intensity, but without 

acetylcarnitine and C24:0. This resulted in a CH4 intensity prediction model with an adjusted R2 

of  0.72, a RMSEP of  1.6 g CH4/kg FPCM, a CCC of  0.78, and a scale shift of  1.23. This 

illustrates that the prediction potential for CH4 intensity hardly differed when excluding 

acetylcarnitine and C24:0, which suggests that the prediction model for CH4 intensity combining 

the three types of  metabolites is not robust. 

Overall, our results indicate that combining MFA with milk volatile metabolites and 

non-volatile metabolites does not improve the CH4 prediction potential relative to MFA alone. 

This is in agreement with Van Gastelen et al. (2017) for CH4 production and CH4 yield. However, 

Van Gastelen et al. (2017) reported a considerable improvement in the prediction potential when 

combining MFA with volatile and non-volatile metabolites. The difference between this study 

and Van Gastelen et al. (2017) for CH4 intensity might be explained by the differences in the 

dataset used by both studies. Although both studies only involved forage-based diets, the present 

study involved more observations (123 vs 29, respectively) and a larger variation in dietary 

treatments, CH4 emissions, DMI, and FPCM.  

Our analyses suggest that the relationship between CH4 emission and both volatile and 

non-volatile metabolites is largely driven by dietary composition and rumen fermentation. When 

investigating this relationship within a single experiment, with a small range of  dietary 

treatments, these individual relationships assure sufficient prediction potential, as evidenced by 

Van Gastelen et al. (2017) for CH4 intensity. However, as illustrated in the present study, upon 

combining data of  multiple experiments that represent a wide range of  dietary treatments, the 
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diet driven individual relationships between CH4 emission and both volatile and non-volatile 

metabolites are still present, but the prediction potential decreases considerably. This suggests 

that the wider range of  dietary treatments hampers the CH4 prediction potential of  volatile and 

non-volatile metabolites. In contrast to volatile and non-volatile metabolites, MFA are more 

directly related to the ruminal CH4 pathways (rumen microbial origin) and retain their prediction 

potential despite a wider range of  dietary treatments, suggesting that MFA profile represents a 

more robust indicator for CH4 emission of  dairy cows.  

It is important to note though, that this study was based upon 6 experiments with 

forage-based diets only (forage varied between 70 and 85 g/100 g diet DM). Hence, the diets 

represent only a relative narrow range of  forage to concentrate ratios. Additionally, milk 

production of  the cows did not exceed 35 kg/d, and all cows were restricted in their feed intake 

to ensure similar feed intake between treatments, thus avoiding confounding effects of  DMI on 

CH4 production. The results of  the relationships between CH4 emission and the three types of  

milk metabolites might be different, when more experiments would be included, involving more 

individual observations, and with more variety in dietary composition, feed intake, and milk yield. 

Potential limitations aside, based on the results of  the present study, it can be concluded 

that MFA have the greatest potential to predict CH4 emission of  dairy cows compared to milk 

volatile and non-volatile metabolites. Negussie et al. (2017) assessed several existing potential 

proxies for CH4 emissions of  dairy cows, including proxies related to (1) feed intake and feeding 

behavior, (2) rumen function, metabolites, and microbiome, (3) milk production and 

composition, (4) hindgut and feces, and (5) measurements at the level of  the whole animal (e.g., 

body condition score, body weight, and lactation stage). The authors of  that review indicated 

that the accuracy of  MFA to estimate CH4 emission was moderate to high, which is considerably 

higher than that of  rumen-related variables, major milk components such as fat, lactose, and 

protein, and most variables of  the whole animal, but similarly accurate as body weight, 

digestibility, and milk yield (Negussie et al., 2017). Only feed intake (both alone and in 

combination with dietary composition) and milk infrared spectroscopy scored higher in terms 

of  accuracy to estimate CH4 emission (Negussie et al., 2017). Because it is still a major challenge 

to measure feed intake in practice and because the current number of  studies relating milk 

infrared spectroscopy with CH4 emission is limited, MFA remain an interesting proxy for CH4 

emission of  dairy cows.  

 

CONCLUSIONS 

Changes in concentrations of  individual milk metabolites (i.e., MFA, volatile 

metabolites, and non-volatile metabolites) can be related to the ruminal CH4 production pathway. 

These relationships are largely diet-driven, i.e., diet composition, intake, and passage affect both 

ruminal CH4 production and the milk metabolites. Some of  the relationships between individual 

milk metabolites and CH4 intensity, however, were partly dependent on milk production 

(FPCM). Furthermore, the CH4 prediction potential of  both volatile metabolites alone and non-

volatile metabolites alone is low, independent of  the unit of  CH4 emission. The CH4 prediction 

potential of  MFA alone depended greatly on the unit in which CH4 emissions was expressed. 

The potential was lowest for CH4 yield, intermediate for CH4 production, and highest for CH4 
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intensity. This study also demonstrates that, relative to MFA alone, CH4 prediction potential 

does not increase when combining MFA with volatile and non-volatile metabolites, in particular 

for CH4 production and CH4 yield. Volatile and non-volatile metabolites in milk contain 

information that may increase our understanding of  enteric CH4 production of  dairy cows, but 

it is not worthwhile to determine the volatile and non-volatile metabolites in milk in order to 

estimate CH4 emission of  dairy cows. Milk fatty acids have moderate potential to predict CH4 

emission of  dairy cattle fed forage-based diets, and the models can aid in the effort to understand 

and mitigate CH4 emissions of  dairy cows.   
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  SUPPORTING INFORMATION 

Supplementary Table S6.1. Descriptive statistics of milk fatty acids, volatile metabolites, and non-volatile 

metabolites (n=123)  

Item Mean Median SD Minimum Maximum 

Fatty acid (g/100 g FA) 
     

C4:0 3.5 3.5 0.30 2.5 4.3 

C6:0 2.1 2.1 0.20 1.5 2.5 

C8:0 1.1 1.1 0.16 0.6 1.4 

C10:0 2.4 2.4 0.48 1.1 3.4 

C12:0 2.8 2.7 0.62 1.3 4.4 

C13:0 0.07 0.06 0.001 0.00 0.16 

C14:0 10.3 10.4 1.29 6.7 13.2 

iso C14:0  0.08 0.08 0.015 0.05 0.13 

C14:1 cis-9 1.00 0.96 0.249 0.54 1.95 

C15:0 0.97 0.97 0.159 0.53 1.47 

iso C15:0  0.23 0.22 0.038 0.13 0.37 

anteiso C15:0  0.41 0.40 0.062 0.28 0.62 

C16:0 31.9 31.8 3.38 24.6 42.3 

iso C16:0  0.18 0.18 0.032 0.13 0.34 

C16:1 trans-9 0.22 0.21 0.037 0.14 0.35 

C16:1 cis-9 1.9 1.9 0.36 1.0 3.0 

C17:0 0.66 0.66 0.100 0.47 0.95 

iso C17:0  0.40 0.39 0.063 0.25 0.63 

anteiso C17:0  0.43 0.42 0.059 0.32 0.61 

C17:1 cis-9 0.32 0.31 0.091 0.15 0.69 

C18:0 9.6 9.8 1.63 5.0 13.1 

C18:1 cis-9(1) 21.1 20.7 3.77 12.3 29.9 

C18:1 cis-12 0.18 0.14 0.080 0.07 0.47 

C18:1 cis-13 0.13 0.13 0.033 0.07 0.25 

C18:1 trans-6 0.20 0.19 0.057 0.08 0.42 

C18:1 trans-9 0.15 0.14 0.030 0.08 0.25 

C18:1 trans-10 0.19 0.15 0.102 0.10 0.65 

C18:1 trans-11 0.91 0.88 0.253 0.30 2.18 

C18:1 trans-15 +  

C18:1 cis-11 

0.76 0.76 0.181 0.33 1.23 

C18:2 cis-9, trans-11 0.43 0.40 0.132 0.22 1.29 

C18:2n-6 1.4 1.4 0.20 0.9 2.0 

C18:3n-3 0.47 0.48 0.164 0.14 0.98 

C18:3n-6 0.07 0.07 0.014 0.05 0.12 

C20:0 0.13 0.12 0.019 0.08 0.17 

C20:1 cis-11 0.06 0.06 0.019 0.03 0.12 

C20:2n-6 0.04 0.04 0.007 0.03 0.06 

C20:3n-6 0.07 0.07 0.019 0.04 0.13 

C20:4n-3 0.04 0.03 0.028 0.00 0.13 

C20:4n-6 0.12 0.11 0.024 0.06 0.18 

C20:5n-3 0.06 0.06 0.013 0.03 0.09 

C22:0 0.06 0.06 0.014 0.00 0.10 

C22:5n-3 0.08 0.08 0.017 0.05 0.14 
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Supplementary Table S6.1. Continued 

Item Mean Median SD Minimum Maximum 

C24:0 0.04 0.04 0.014 0.00 0.08 

Volatile metabolite (peak area(2)) 

1-Pentanol 6.16 × 106 4.14 × 106 6.139 × 106 1.92 × 105 3.35 × 107 

2-Butanone 8.87 × 106 5.95 × 106 9.939 × 106 1.80 × 106 8.15 × 107 

2-Heptanone 8.54 × 106 5.19 × 106 9.196 × 106 3.02 × 105 5.77 × 107 

2-Pentanone 8.49 × 106 6.73 × 106 7.188 × 106 9.71 × 105 4.02 × 107 

Acetone 1.34 × 108 8.39 × 107 2.207 × 108 2.13 × 107 2.25 × 109 

Benzaldehyde 4.48 × 105 3.85 × 105 4.376 × 105 0.00 2.73 × 106 

Butanoic acid 1.04 × 108 5.24 × 107 1.621 × 108 6.46 × 106 1.13 × 109 

Dimethyl sulfone 5.43 × 106 3.17 × 106 5.602 × 106 7.48 × 105 2.81 × 107 

Ethyl acetate 2.19 × 106 1.55 × 106 1.904 × 106 0.00 8.44 × 106 

Ethyl butanoate 1.84 × 106 6.43 × 105 3.623 × 106 0.00 2.30 × 107 

Hexanal 1.84 × 107 1.06 × 107 2.084 × 107 7.59 × 105 1.13 × 108 

Hexanoic acid 1.19 × 108 5.94 × 107 1.948 × 109 8.46 × 106 1.21 × 109 

Octanoic acid 9.96 × 107 4.64 × 107 1.626 × 108 7.71 × 106 1.05 × 109 

Pentanoic acid 9.54 × 105 5.13 × 105 1.316 × 106 5.43 × 104 8.00 × 106 

Non-volatile metabolite (relative peak area(3)) 

Acetate 0.18 0.18 0.087 0.03 0.40 

Acetoacetate  0.09 0.09 0.045 0.02 0.25 

Acetone  0.06 0.06 0.039 0.02 0.43 

Acetylcarnitine  0.14 0.13 0.044 0.06 0.30 

Betaine  0.28 0.27 0.076 0.11 0.54 

β-hydroxybutyrate  0.12 0.12 0.048 0.04 0.32 

Butyrate 0.43 0.36 0.279 0.08 2.07 

Carnitine 0.20 0.20 0.033 0.12 0.29 

Choline 0.80 0.77 0.254 0.30 1.66 

Citrate 2.6 2.6 0.51 1.7 4.8 

Creatine 0.36 0.36 0.065 0.24 0.56 

Creatinine 0.08 0.08 0.016 0.05 0.13 

Ethanol 0.07 0.08 0.003 0.02 0.15 

Formate 0.02 0.02 0.011 0.01 0.08 

Galactose-1-phosphate  0.01 0.01 0.007 0.00 0.04 

Glycerophosphocholine  0.82 0.77 0.256 0.43 1.55 

Hippurate 0.07 0.06 0.025 0.03 0.17 

Lactate 0.18 0.18 0.084 0.05 0.60 

Lactose 16.0 14.6 3.28 11.4 22.8 

Malonate 0.09 0.10 0.032 0.03 0.21 

Methylmalonate 0.12 0.13 0.066 0.01 0.27 

N-acetylsugar A  0.28 0.27 0.091 0.12 0.61 

N-acetylsugar B  0.63 0.61 0.145 0.33 1.02 

N-acetylsugar C  0.39 0.39 0.142 0.09 0.81 

N-acetylsugar D  0.05 0.04 0.035 0.02 0.20 

N-acetylsugar E  0.10 0.11 0.046 0.02 0.23 

Orotate 0.06 0.05 0.017 0.02 0.14 

Oxaloacetate  0.07 0.07 0.033 0.02 0.18 

Oxoglutarate  0.06 0.06 0.017 0.04 0.12 

Phosphocreatine  0.05 0.05 0.016 0.02 0.14 
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Supplementary Table S6.1. Continued 

Item Mean Median SD Minimum Maximum 

Phosphorylcholine 0.15 0.13 0.091 0.06 0.62 

Proline  0.12 0.12 0.036 0.06 0.31 

Pyruvate 0.14 0.13 0.045 0.07 0.35 

Succinate  0.07 0.06 0.021 0.04 0.16 

Sugar A  0.02 0.02 0.005 0.01 0.04 

Sugar B  0.03 0.03 0.012 0.01 0.06 

Sugar C  0.02 0.02 0.017 0.00 0.09 

UDP(4)-hexose A 0.00 0.00 0.001 0.00 0.01 

UDP-hexose B 0.01 0.00 0.004 0.00 0.02 

UDP-hexose C  0.07 0.07 0.032 0.02 0.18 

UDP-hexose D 0.02 0.02 0.011 0.00 0.05 

(1) C18:1 cis-9 represents the sum of C18:1 cis-9 and C18:1 trans-12, as these 2 FA could not be separated in the 

analysis. The portion of C18:1 trans-12 is considered to be negligible, as this FA is always present in small amounts. 
(2) Peak area values (arbitrary unit of quantity). 

(3) Peak area relative to calibration standard 3-trimethylsilyl-2,2,3,3-tetraduteropropionate (TSP). 

(4) Uridine diphosphate.  
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Supplementary Table S6.2. Linear regression between methane production (g/d) and milk fatty acid concentration 

(g/100 g total fatty acids) 

Fatty acid (g/100 g fatty acids) Intercept SE Slope SE Slope P R2 

C4:0 335 47.1 7.5 12.73 0.557 < 0.01 

C6:0 175 46.9 86.4 20.92 < 0.001 0.19 

C8:0 245 32.4 103.7 26.84 < 0.001 0.17 

C10:0 272 25.1 36.2 9.10 < 0.001 0.18 

C12:0 273 24.0 30.7 7.37 < 0.001 0.21 

C13:0 331 16.2 423.4 171.40 0.014 0.04 

C14:0 209 37.9 14.5 3.46 < 0.001 0.21 

iso C14:0  339 24.5 276.7 241.27 0.254 0.01 

C14:1 cis-9 314 20.9 48.3 15.89 0.003 0.09 

C15:0 303 26.7 61.7 23.70 0.011 0.06 

iso C15:0  309 26.9 233.8 101.74 0.023 0.05 

anteiso C15:0  346 29.1 36.4 60.82 0.551 < 0.01 

C16:0 167 39.8 6.1 1.21 < 0.001 0.25 

iso C16:0  376 28.5 -79.1 129.12 0.542 < 0.01 

C16:1 trans-9 427 25.6 -304.5 103.58 0.004 0.08 

C16:1 cis-9 401 24.5 -21.9 11.03 0.050 0.04 

C17:0 433 31.3 -110.8 44.16 0.014 0.08 

iso C17:0  463 28.4 -254.5 65.37 < 0.001 0.15 

anteiso C17:0  409 30.3 -109.7 62.14 0.080 0.03 

C17:1 cis-9 438 17.7 -245.3 43.50 < 0.001 0.28 

C18:0 399 33.7 -3.8 3.13 0.224 0.03 

C18:1 cis-9(1) 483 25.4 -5.9 1.12 < 0.001 0.28 

C18:1 cis-12 402 22.8 -218.8 59.27 < 0.001 0.18 

C18:1 cis-13 414 20.3 -400.7 117.94 < 0.001 0.11 

C18:1 trans-6 394 22.5 -158.0 75.48 0.039 0.05 

C18:1 trans-9 452 25.8 -607.4 131.89 < 0.001 0.20 

C18:1 trans-10 388 19.5 -131.5 43.56 0.003 0.11 

C18:1 trans-11 425 17.7 -70.4 13.44 < 0.001 0.20 

C18:1 trans-15 + C18:1 cis-11 462 20.3 -132.5 20.89 < 0.001 0.18 

C18:2 cis-9, trans-11 417 16.9 -133.6 24.89 < 0.001 0.20 

C18:2n-6 501 27.0 -96.9 15.47 < 0.001 0.26 

C18:3n-3 415 17.2 -116.4 28.80 < 0.001 0.21 

C18:3n-6 382 28.7 -278.9 321.33 0.387 < 0.01 

C20:0 329 30.7 249.1 210.51 0.239 0.01 

C20:1 cis-11 419 18.7 -927.9 238.69 < 0.001 0.18 

C20:2n-6 395 27.9 -792.0 556.74 0.158 0.02 

C20:3n-6 353 22.0 110.4 223.66 0.623 < 0.01 

C20:4n-3 348 15.7 388.9 164.08 0.019 0.08 

C20:4n-6 367 24.1 -51.2 166.26 0.759 < 0.01 

C20:5n-3 376 23.6 -255.9 327.36 0.436 < 0.01 

C22:0 345 20.9 299.3 261.91 0.255 0.01 

C22:5n-3 407 26.2 -547.6 250.16 0.031 0.06 

C24:0 346 18.5 403.6 286.62 0.162 0.02 

(1) C18:1 cis-9 represents the sum of C18:1 cis-9 and C18:1 trans-12, as these 2 FA could not be separated in the 

analysis. The portion of C18:1 trans-12 is considered to be negligible, as this FA is always present in small amounts. 
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Supplementary Table S6.3. Linear regression between methane yield (g/kg DMI(1)) and milk fatty acid 

concentration (g/100 g total fatty acids) 

Fatty acid (g/100 g fatty acids) Intercept SE Slope SE Slope P R2 

C4:0 28.4 2.24 -1.69 0.627 0.008 0.07 

C6:0 23.1 2.44 -0.28 1.111 0.800 < 0.01 

C8:0 21.8 1.66 0.59 1.414 0.678 < 0.01 

C10:0 21.4 1.27 0.46 0.479 0.344 0.01 

C12:0 21.2 1.21 0.44 0.388 0.259 0.02 

C13:0 22.0 0.78 1.17 8.144 0.886 < 0.01 

C14:0 18.9 1.96 0.34 0.181 0.062 0.05 

iso C14:0  20.1 1.10 29.15 12.057 0.017 0.05 

C14:1 cis-9 21.2 0.93 1.33 0.822 0.107 0.03 

C15:0 19.0 1.22 3.66 1.188 0.003 0.08 

iso C15:0  17.5 1.17 21.94 4.885 < 0.001 0.17 

anteiso C15:0  21.0 1.36 3.72 3.069 0.228 0.01 

C16:0 14.2 2.01 0.26 0.062 < 0.001 0.18 

iso C16:0  20.6 1.30 9.90 6.418 0.126 0.03 

C16:1 trans-9 26.2 1.22 -17.14 5.147 0.001 0.10 

C16:1 cis-9 22.3 1.14 0.09 0.562 0.877 < 0.01 

C17:0 19.3 1.52 4.85 2.210 0.030 0.06 

iso C17:0  24.2 1.45 -4.28 3.422 0.214 0.02 

anteiso C17:0  22.2 1.46 0.57 3.195 0.858 < 0.01 

C17:1 cis-9 23.0 0.91 -1.61 2.428 0.509 < 0.01 

C18:0 25.0 1.53 -0.26 0.151 0.089 0.04 

C18:1 cis-9(2) 25.5 1.35 -0.15 0.060 0.018 0.07 

C18:1 cis-12 25.7 0.87 -17.41 2.719 < 0.001 0.40 

C18:1 cis-13 25.1 0.90 -19.57 5.960 0.001 0.10 

C18:1 trans-6 25.1 0.91 -12.80 3.662 < 0.001 0.13 

C18:1 trans-9 27.5 1.10 -34.05 6.494 < 0.001 0.24 

C18:1 trans-10 24.3 0.70 -8.81 2.111 < 0.001 0.19 

C18:1 trans-11 24.5 0.79 -2.22 0.728 0.003 0.08 

C18:1 trans-15 + C18:1 cis-11 26.6 0.95 -5.35 1.108 < 0.001 0.22 

C18:2 cis-9, trans-11 24.2 0.75 -4.16 1.353 0.003 0.08 

C18:2n-6 28.8 1.29 -4.38 0.813 < 0.001 0.20 

C18:3n-3 24.3 0.86 -3.94 1.480 0.009 0.10 

C18:3n-6 25.4 1.29 -38.93 15.713 0.015 0.07 

C20:0 18.7 1.43 29.07 10.303 0.006 0.07 

C20:1 cis-11 24.9 0.88 -38.93 12.058 0.002 0.13 

C20:2n-6 20.1 1.26 57.44 27.957 0.042 0.04 

C20:3n-6 23.2 0.99 -8.99 11.238 0.425 < 0.01 

C20:4n-3 22.3 0.56 6.24 8.282 0.453 < 0.01 

C20:4n-6 22.7 1.09 -1.97 8.398 0.815 < 0.01 

C20:5n-3 23.3 1.07 -14.16 16.289 0.387 < 0.01 

C22:0 19.8 0.84 47.28 12.681 < 0.001 0.12 

C22:5n-3 23.7 1.17 -15.35 12.728 0.230 0.02 

C24:0 20.4 0.69 54.65 13.771 < 0.001 0.13 

(1) Dry matter intake (kg/d). 

(2) C18:1 cis-9 represents the sum of C18:1 cis-9 and C18:1 trans-12, as these 2 FA could not be separated in the 

analysis. The portion of C18:1 trans-12 is considered to be negligible, as this FA is always present in small amounts. 
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Supplementary Table S6.5. Linear regression between methane production (g/d) and volatile metabolites (peak 

area(1)) 

Volatile metabolite (peak area) Intercept SE Slope SE Slope P R2 

1-Pentanol 371 14.0 -1.5 × 10-6 6.92 × 10-7 0.035 0.05 

2-Butanone 368 15.7 -6.7 × 10-7 3.70 × 10-7 0.075 0.03 

2-Heptanone 356 16.5 6.5 × 10-7 4.33 × 10-7 0.136 0.02 

2-Pentanone 372 14.9 -1.1 × 10-6 6.21 × 10-7 0.077 0.04 

Acetone 367 14.8 -3.5 × 10-8 1.67 × 10-8 0.038 0.04 

Benzaldehyde 361 15.6 2.2 × 10-6 8.40 × 10-6 0.791 < 0.01 

Butanoic acid 360 15.5 2.5 × 10-8 2.30 × 10-8 0.281 0.01 

Dimethyl sulfone 369 16.3 -1.2 × 10-6 9.18 × 10-7 0.188 0.03 

Ethyl acetate 362 16.4 2.7 × 10-7 3.19 × 10-6 0.933 < 0.01 

Ethyl butanoate 361 15.5 8.1 × 10-7 1.05 × 10-6 0.445 < 0.01 

Hexanal 372 15.0 -5.4 × 10-7 1.76 × 10-7 0.003 0.08 

Hexanoic acid 359 15.5 2.6 × 10-8 1.89 × 10-8 0.179 0.02 

Octanoic acid 358 15.4 3.6 × 10-8 2.29 × 10-8 0.116 0.02 

Pentanoic acid 359 15.5 3.6 × 10-6 2.99 × 10-6 0.237 0.02 

(1) Peak area values (arbitrary unit of quantity). 

 

 

Supplementary Table S6.6. Linear regression between methane yield (g/kg DMI(1))  and volatile metabolites (peak 

area(2)) 

Volatile metabolite (peak area) Intercept SE Slope SE Slope P R2 

1-Pentanol 22.8 0.53 -5.54 × 10-8 3.540 × 10-8 0.120 0.03 

2-Butanone 22.5 0.54 -4.91 × 10-9 1.940 × 10-8 0.800 < 0.01 

2-Heptanone 22.2 0.58 3.16 × 10-8 2.230 × 10-8 0.160 0.02 

2-Pentanone 22.7 0.56 -2.40 × 10-8 3.170 × 10-8 0.451 < 0.01 

Acetone 22.7 0.50 -1.10 × 10-9 8.747 × 10-10 0.210 0.02 

Benzaldehyde 22.8 0.55 -6.19 × 10-7 4.310 × 10-7 0.154 0.02 

Butanoic acid 22.2 0.52 2.41 × 10-9 1.200 × 10-9 0.043 0.04 

Dimethyl sulfone 22.8 0.55 -6.15 × 10-8 4.540 × 10-8 0.178 0.03 

Ethyl acetate 22.1 0.52 2.16 × 10-7 1.496 × 10-7 0.152 0.04 

Ethyl butanoate 22.2 0.53 1.56 × 10-7 5.250 × 10-8 0.004 0.08 

Hexanal 22.8 0.52 -1.85 × 10-8 9.300 × 10-9 0.049 0.04 

Hexanoic acid 22.2 0.52 2.12 × 10-9 9.664 × 10-10 0.030 0.04 

Octanoic acid 22.3 0.52 2.32 × 10-9 1.200 × 10-9 0.051 0.04 

Pentanoic acid 22.2 0.53 2.61 × 10-7 1.528 × 10-7 0.091 0.03 

(1) Dry matter intake (kg/d). 

(2) Peak area values (arbitrary unit of quantity). 
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Supplementary Table S6.8. Linear regression between methane production (g/d) and non-volatile metabolites 

(relative peak area(1)) 

Non-volatile metabolite (relative 

peak area) 

Intercept SE Slope SE Slope P R2 

Acetate 332 24.3 161.2 75.97 0.036 0.13 

Acetoacetate  333 22.7 304.2 124.15 0.016 0.12 

Acetone  366 16.5 -63.9 104.16 0.541 < 0.01 

Acetylcarnitine  414 18.8 -381.4 104.96 < 0.001 0.17 

Betaine  356 21.0 20.3 50.76 0.691 < 0.01 

β-hydroxybutyrate  340 22.4 176.3 110.16 0.112 0.05 

Butyrate 353 17.4 20.0 13.78 0.149 0.02 

Carnitine 364 28.0 -14.5 116.78 0.901 < 0.01 

Choline 367 19.3 -6.8 15.04 0.652 < 0.01 

Citrate 371 25.8 -3.7 7.53 0.628 < 0.01 

Creatine 376 25.9 -39.7 58.23 0.497 < 0.01 

Creatinine 358 28.0 47.3 285.35 0.869 < 0.01 

Ethanol 353 23.3 111.0 212.12 0.602 < 0.01 

Formate 352 19.6 388.9 402.13 0.336 0.01 

Galactose-1-phosphate  368 17.8 -494.4 656.71 0.453 < 0.01 

Glycerophosphocholine  352 19.5 10.9 14.59 0.458 < 0.01 

Hippurate 334 21.9 410.9 179.56 0.024 0.07 

Lactate 349 20.4 65.6 59.83 0.275 0.02 

Lactose 375 38.6 -0.8 2.21 0.702 < 0.01 

Malonate 342 22.6 207.7 157.19 0.189 0.03 

Methylmalonate 341 22.8 157.8 101.46 0.123 0.07 

N-acetylsugar A  335 23.6 93.9 55.10 0.091 0.05 

N-acetylsugar B  382 22.5 -32.4 26.57 0.226 0.02 

N-acetylsugar C  326 20.1 86.5 28.74 0.003 0.10 

N-acetylsugar D  339 14.5 419.4 145.58 0.005 0.13 

N-acetylsugar E  332 21.3 268.7 103.47 0.011 0.10 

Orotate 378 20.3 -269.1 209.38 0.201 0.02 

Oxaloacetate  331 23.1 447.4 170.71 0.010 0.14 

Oxoglutarate  342 22.5 296.8 233.54 0.206 0.02 

Phosphocreatine  339 19.6 440.1 232.71 0.061 0.04 

Phosphorylcholine 347 15.8 91.7 39.66 0.023 0.05 

Proline  344 22.2 114.4 119.75 0.230 0.02 

Pyruvate 332 22.5 214.6 99.31 0.033 0.06 

Succinate  334 22.3 388.7 193.22 0.047 0.05 

Sugar A  355 24.0 287.5 827.68 0.729 < 0.01 

Sugar B  345 16.6 610.9 325.67 0.063 0.04 

Sugar C  352 14.9 466.3 214.55 0.032 0.05 

UDP(2)-hexose A 377 20.1 -3550.8 3042.40 0.246 0.02 

UDP-hexose B 374 19.9 -2000.2 1491.90 0.183 0.05 

UDP-hexose C  345 21.6 224.4 169.76 0.189 0.04 

UDP-hexose D 393 20.1 -1293.9 536.31 0.017 0.14 

(1) Peak area relative to calibration standard 3-trimethylsilyl-2,2,3,3-tetraduteropropionate (TSP). 

(2) Uridine diphosphate. 
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Supplementary Table S6.9. Linear regression between methane yield (g/kg DMI(1)) and non-volatile metabolites 

(relative peak  area(2)) 

Non-volatile metabolite (relative 

peak area) 

Intercept SE Slope SE Slope P R2 

Acetate 23.2 0.80 -4.10 3.563 0.253 0.03 

Acetoacetate  23.0 0.75 -5.95 6.171 0.337 0.02 

Acetone  22.9 0.59 -6.96 5.319 0.194 0.02 

Acetylcarnitine  23.5 0.90 -7.20 5.535 0.196 0.03 

Betaine  22.3 0.89 0.55 2.618 0.833 < 0.01 

β-hydroxybutyrate  23.2 0.83 -5.61 5.494 0.309 0.02 

Butyrate 22.2 0.63 0.66 0.717 0.357 < 0.01 

Carnitine 23.4 1.31 -4.74 6.002 0.431 < 0.01 

Choline 22.3 0.80 0.28 0.777 0.720 < 0.01 

Citrate 24.5 1.16 -0.74 0.383 0.057 0.04 

Creatine 21.1 1.17 3.85 3.005 0.203 0.02 

Creatinine 22.8 1.29 -3.59 14.574 0.806 < 0.01 

Ethanol 23.5 0.87 -13.62 9.684 0.162 0.05 

Formate 23.1 0.71 -25.24 20.103 0.212 0.02 

Galactose-1-phosphate  22.8 0.67 -25.30 33.078 0.446 < 0.01 

Glycerophosphocholine  22.3 0.82 0.22 0.754 0.766 < 0.01 

Hippurate 22.8 0.80 -4.64 9.231 0.616 < 0.01 

Lactate 23.0 0.74 -2.99 2.996 0.320 0.02 

Lactose 21.9 1.74 0.03 0.105 0.744 < 0.01 

Malonate 23.9 0.87 -14.92 7.777 0.058 0.05 

Methylmalonate 22.5 0.83 -0.59 4.893 0.904 < 0.01 

N-acetylsugar A  23.1 0.93 -2.26 2.787 0.419 0.01 

N-acetylsugar B  22.7 1.01 -0.42 1.379 0.760 < 0.01 

N-acetylsugar C  22.7 0.81 -0.64 1.527 0.678 < 0.01 

N-acetylsugar D  22.3 0.65 2.98 7.559 0.694 < 0.01 

N-acetylsugar E  23.2 0.74 -6.88 5.291 0.196 < 0.01 

Orotate 22.2 0.84 4.57 10.923 0.676 < 0.01 

Oxaloacetate  23.0 0.76 -7.90 8.514 0.356 0.02 

Oxoglutarate  22.2 0.96 4.26 12.129 0.726 < 0.01 

Phosphocreatine  22.8 0.81 -6.50 12.189 0.595 < 0.01 

Phosphorylcholine 22.7 0.62 -1.72 2.088 0.413 < 0.01 

Proline  22.9 0.92 -3.54 6.167 0.567 < 0.01 

Pyruvate 23.1 0.87 -4.25 5.146 0.411 < 0.01 

Succinate  22.9 0.88 -6.42 10.065 0.525 < 0.01 

Sugar A  23.0 1.10 -24.84 42.686 0.562 < 0.01 

Sugar B  22.6 0.70 -4.23 16.960 0.804 < 0.01 

Sugar C  22.5 0.57 -1.67 11.284 0.883 < 0.01 

UDP(3)-hexose A 21.8 0.88 148.02 156.250 0.345 0.01 

UDP-hexose B 22.2 0.67 39.76 72.504 0.585 < 0.01 

UDP-hexose C  23.7 0.72 -17.15 8.050 0.035 0.07 

UDP-hexose D 22.9 0.79 -17.81 26.177 0.498 0.01 

(1) Dry matter intake (kg/d). 

(2) Peak area relative to calibration standard 3-trimethylsilyl-2,2,3,3-tetraduteropropionate (TSP). 

(3) Uridine diphosphate. 
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ABSTRACT 

Complex interactions between rumen microbiota, cow genetics, and diet composition 

may exist. Therefore, the effect of linseed oil, DGAT1 K232A polymorphism (DGAT1), and 

the interaction between linseed oil and DGAT1 on CH4 and H2 emission, energy and N 

metabolism, lactation performance, ruminal fermentation, and rumen bacterial and archaeal 

composition was investigated. Twenty-four lactating Holstein-Friesian cows (i.e., 12 with 

DGAT1 KK genotype and 12 with DGAT1 AA genotype) were fed, in a cross-over design, 2 

diets: a control diet (CON) and a linseed oil diet (LSO) with a difference of 22 g/kg of dry 

matter (DM) in fat content between the 2 diets. Both diets consisted of 40% corn silage, 30% 

grass silage, and 30% concentrates (DM basis). Apparent digestibility, lactation performance, N 

and energy balance, and CH4 emission were measured in climate respiration chambers, and 

rumen fluid samples were collected using the oral stomach tube technique. No linseed oil by 

DGAT1 interactions were observed for digestibility, milk production and composition, energy 

and N balance, CH4 and H2 emissions, and rumen volatile fatty acid (VFA) concentrations. The 

DGAT1 KK genotype was associated with a lower proportion of poly-unsaturated fatty acids 

(FA) in milk fat, and with a higher milk fat and protein content, and proportion of saturated FA 

in milk fat compared with the DGAT1 AA genotype, whereas the fat- and protein-corrected 

milk yield was unaffected by DGAT1. Also, DGAT1 did not affect nutrient digestibility, CH4 or 

H2 emission, ruminal fermentation or ruminal archaeal and bacterial concentrations. Rumen 

bacterial and archaeal composition was also unaffected in terms of the whole community, 

whereas at the genus level the relative abundances of some bacterial genera were found to be 

affected by DGAT1. The DGAT1 KK genotype was associated with a lower metabolizability 

(i.e., ratio of metabolizable to gross energy intake), and with a tendency for a lower milk N 

efficiency compared with the DGAT1 AA genotype. The LSO diet tended to decrease CH4 

production (g/d) by 8%, and significantly decreased CH4 yield (g/kg of DM intake) by 6% and 

CH4 intensity (g/kg of fat- and protein-corrected milk) by 11%, but did not affect H2 emission. 

The LSO diet also decreased ruminal acetate molar proportion, the acetate to propionate ratio, 

and the archaea to bacteria ratio, whereas ruminal propionate molar proportion and milk N 

efficiency increased. Ruminal bacterial and archaeal composition tended to be affected by diet 

in terms of the whole community, with several bacterial genera found to be significantly affected 

by diet. These results indicate that DGAT1 does not affect enteric CH4 emission and production 

pathways, but that it does affect traits other than lactation characteristics, including 

metabolizability, N efficiency, and the relative abundance of Bifidobacterium. Additionally, linseed 

oil reduces CH4 emission independent of DGAT1 and affects the rumen microbiota and its 

fermentative activity.  

Keywords: dairy cow, enteric methane production, linseed oil, DGAT1 K232A polymorphism  
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INTRODUCTION 

Several dietary strategies have been proposed to mitigate enteric CH4 production, 

including the use of feed additives and improving forage quality (Beauchemin et al., 2009; Martin 

et al., 2010). Numerous studies have shown the potential of dietary lipid supplementation to 

reduce CH4 emission, many of which have been reviewed by Grainger and Beauchemin (2011) 

and Hristov et al. (2013). To date, linseed is considered to be one of the most effective dietary 

lipid sources to reduce enteric CH4 production from dairy cows (Beauchemin et al., 2009; Martin 

et al., 2010). Relatively few studies have considered the wider consequences of dietary linseed oil 

on the functioning of the rumen microbial ecosystem. Veneman et al. (2015) reported no effect 

of linseed oil supplementation on CH4 emission or the rumen microbiota as a whole. Martin et 

al. (2016) reported significant decreases in CH4 emissions upon extruded linseed 

supplementation for both corn silage-based and hay-based diets, whereas the abundance of 

rumen methanogens was not affected by linseed supply in the corn silage-based or hay-based 

diets.  

Little is known whether host genetics can also influence the responses to dietary linseed 

oil. The acyl CoA:diacylglycerol acyltransferase 1 gene, located on chromosome 14, mediates the 

final step in triglyceride synthesis (Schennink et al., 2008). Many studies have investigated 

associations between the K232A polymorphism of this gene (i.e., a lysine to alanine substitution 

on the 232nd amino acid; DGAT1) and milk production traits of dairy cows. Although DGAT1 

has no effect on fat- and protein-corrected milk (FPCM) yield, the DGAT1 K allele is associated 

with a higher fat content, protein content, and fat yield, but lower milk production and protein 

and lactose yield (e.g., Banos et al., 2008; Näslund et al., 2008; Bovenhuis et al., 2015). 

Additionally, DGAT1 has a marked effect on milk fatty acid (MFA) composition. The DGAT1 

K allele is associated with a larger fraction of C16:0, and smaller fractions of C18 UFA in milk 

fat (e.g., Schennink et al., 2007; Duchemin et al., 2013). Several of the MFA which have been 

associated with CH4 emission (Van Gastelen and Dijkstra, 2016) are also affected by DGAT1, 

in particular C18 UFA in both the cis and trans isomers.  

The DGAT1 gene is expressed in the small intestine, liver, adipose tissue, and the 

mammary gland (DeVita and Pinto, 2013; Muise et al., 2014). Thus, effects of DGAT1 on traits 

other than milk production might be expected. Van Engelen, S. (Wageningen University & 

Research, Wageningen, The Netherlands; unpublished data) performed a genome-wide 

association study (GWAS) to determine regions of the bovine genome that are associated with 

predicted CH4 yield (g/kg of DMI) using the CH4 prediction equations based on MFA profile 

published by Dijkstra et al. (2011) and Van Engelen et al. (2015). The association with DGAT1 

was significant in the GWAS for predicted CH4 yield, suggesting that the DGAT1 K allele is 

associated with higher predicted CH4 yield. The association between DGAT1 and CH4 yield has 

not been studied before and could be of statistical and biological significance. To the best of our 

knowledge, no study has investigated if the genetic variation of dairy cows, namely DGAT1, 

affects the rumen bacterial and archaeal composition, one of the potential biological explanations 

for the relation between DGAT1 and CH4 yield. In addition, there is little information on the 

association of DGAT1 with nutrient digestion or energy and N balance of dairy cattle.  
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Therefore, the objectives of the present study were to investigate the effects of dietary 

linseed oil, DGAT1, and the interaction between dietary linseed oil and DGAT1 on CH4 and H2 

emission, energy and N metabolism, lactation performance, ruminal fermentation, and rumen 

bacterial and archaeal composition of dairy cows. 

 

MATERIALS AND METHODS 

Experimental design 

The experiment was conducted from January to April 2015, in accordance with Dutch 

law and approved by the Animal Care and Use Committee of Wageningen University & Research 

(Wageningen, The Netherlands). The experiment followed a cross-over design with 2 dietary 

treatments and 24 lactating Holstein-Friesian cows (i.e., 12 cows with DGAT1 KK genotype and 

12 cows with DGAT1 AA genotype; each group had 6 primiparous and 6 multiparous cows). 

The 12 cows with DGAT1 KK genotype were sired by 10 bulls, and the 12 cows with DGAT1 

AA genotype were sired by 9 bulls. Additionally, 1 bull sired 2 cows with DGAT1 KK genotype 

and 1 cow with DGAT1 AA genotype. At the start of the experiment, the cows with the DGAT1 

KK genotype and DGAT1 AA genotype were, on average, 215 ± 65 (mean ± SD) and 216 ± 68 

DIM and produced 23.9 ± 5.66 kg/d and 26.9 ± 5.87 kg milk/d, respectively. The cows were 

blocked in pairs according their DGAT1 genotype, parity, DIM, and milk production. Within 

each block, cows were randomly allocated to a dietary treatment sequence in a cross-over design 

with 2 periods: a control diet (CON) and linseed oil diet (LSO). Treatment periods lasted 17 d 

and were composed of a 12 d adaptation period followed by a 5 d measurement period. There 

was a 14 d wash-out period between the treatment periods of the same block of cows.  

 

Diets, feeding, and housing  

Both the CON and LSO diet consisted of 40% corn silage, 30% grass silage, and 30% 

concentrates, on a DM basis. The ingredient and chemical composition of both diets are 

presented in Table 7.1. Linseed oil (Linagro NV, Lichtervelde, Belgium) was added to the 

concentrate of the LSO diet, substituting a part of the CON concentrate ingredients, to achieve 

a difference of 22 g/kg DM in fat content between the 2 diets. To determine apparent total-tract 

feed digestibility, Cr2O3 (1.5 g/kg of concentrate DM) was included in the concentrates of both 

diets as an external marker. Concentrates were produced by Research Diet Services (RDS BV, 

Wijk bij Duurstede, the Netherlands) in 1 batch and hence were assumed to be of uniform 

composition throughout the experiment. Diets were formulated to meet the requirements for 

maintenance and milk production of the lactating dairy cows. The NEL was calculated with the 

VEM (feed unit lactation) system according to Van Es (1978), and intestinal digestible protein 

and rumen degradable protein balance were calculated according to Van Duinkerken et al. 

(2011).  
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Table 7.1. Chemical composition (g/kg of DM, unless otherwise stated) of the TMR ingredients (grass silage, corn 

silage, concentrates; analyzed) and of the complete TMR (calculated) for the control diet (CON) and the linseed oil 

(LSO) diet  

 
 Silages Concentrates TMR 

Item Grass1 Corn2 CON3 LSO4 CON5 LSO6 

DM (g/kg of product) 558 318 878 890 468 469 

OM 911 959 880 889 921 924 

CP 140 83 394 361 194 184 

Crude fat 33 34 33 108 34 56 

Gross energy (MJ/ kg of DM) 18.3 18.4 18.0 19.7 18.2 18.7 

NDF 546 330 203 178 357 349 

ADF 303 185 101 91 195 192 

ADL 15 9 17 16 13 13 

Starch _7 373 18 14 154 153 

Reducing sugars 88 _7 137 124 67 63 

Fatty acids 
      

C16:0 2.7 2.7 2.4 7.1 2.6 4.0 

C18:0 0.26 0.44 0.48 2.9 0.40 1.1 

C18:1 cis-9 0.30 3.2 3.8 17.9 2.5 6.8 

C18:2n-6 2.3 8.3 6.8 19.7 6.1 9.9 

C18:3n-3 8.5 1.0 1.0 35.4 3.2 13.5 

Total fatty acids 16.2 16.1 14.4 86.8 15.6 37.3 

1 NEL = 6.2 MJ/kg DM; intestinal digestible protein (DVE) = 64 g/kg of DM; rumen degraded protein balance 

(OEB) = 11 g/kg of DM; ensiling characteristics: acetic acid = 9 g/kg of DM, lactic acid = 13 g/kg of DM, 

ammonia-N = 6% of total N, and pH = 5.9. 
2 NEL = 7.0 MJ/kg of DM; DVE = 56 g/kg of DM; OEB = -8 g/kg of DM; ensiling characteristics: acetic acid = 

11 g/kg of DM, lactic acid = 55 g/kg of DM, ammonia-N = 8% of total N, and pH = 3.7. 
3 Concentrate added to the CON diet contained (g/kg of DM): soybean meal = 400, soybean meal, formaldehyde 

treated = 200, rapeseed meal = 100, rapeseed meal, formaldehyde treated = 100, sugar beet pulp = 119, sugarcane 

molasses = 40, CaCO3 = 15, NaCl = 8.0, NaHCO3 = 2.0, trace mineral and vitamin mix = 8.0, MgO = 7.0, and 

Cr2O3 = 1.5. 
4 Concentrate added to the LSO diet contained (g/kg of DM): soybean meal = 369, soybean meal, formaldehyde 

treated = 184, rapeseed meal = 92, rapeseed meal, formaldehyde treated = 92, sugar beet pulp = 109, sugarcane 

molasses = 37, CaCO3 = 15, NaCl = 8.0, NaHCO3 = 2.0, trace mineral and vitamin mix = 8.0, MgO = 7.0, Cr2O3 

= 1.5, and linseed oil (Linagro NV, Lichtervelde Belgium) = 76. 
5 TMR contained grass silage, 300 g/kg of DM; corn silage, 400 g/kg of DM; CON concentrate, 300 g/kg of DM. 

6 TMR contained grass silage, 300 g/kg of DM; corn silage, 400 g/kg of DM; LSO concentrate, 300 g/kg of DM. 

7 Not determined. 

 

Cows were fed and milked at 0600 and 1600 h. Just before milking, the feed refusals 

were weighed and a new portion of the diet provided. The diets were fed as a TMR in 2 equal 

daily portions. The concentrate was provided in meal form and manually mixed into the 

roughage mixture at the time of feeding. Cows had free access to clean drinking water 

throughout the experiment. Cows were fed individually and feed refusals were collected to 

determine DMI throughout the experiment. Cows were fed ad libitum during the first 8 d of the 

adaptation period. From d 9 onwards, feed intake was restricted per block to 95% of the ad 

libitum DMI of the cow within a block consuming the lowest amount of feed during d 5 to d 8 

as described previously by Van Zijderveld et al. (2011a). The cows were fed restricted amounts 
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of feed to avoid confounding effects of DMI on enteric CH4 production, similar to Van 

Zijderveld et al. (2011a). At all times, a minimum DMI of at least 82% of the ad libitum intake 

of the cow with the greatest DMI within each block was ensured.  

During the 12-d adaptation period, the cows were individually housed in tie-stalls in 

order to become accustomed to the diet and restriction in movement. On d 13 (1400 h), after 

the adaptation period, 4 cows (2 blocks) were individually transported to 1 of 4 identical climate 

respiration chambers (CRC), located approximately 200m from the tie-stalls, for a 5-d period to 

determine gaseous exchange, energy and N balance, and apparent total-tract nutrient digestibility. 

A detailed description of the CRC design and gas measurements is reported by Heetkamp et al. 

(2015) and Van Gastelen et al. (2015). Briefly, in each CRC (i.e., an area of 11.8 m2 and a volume 

of 34.5 m3) relative humidity was maintained at 65% and temperature at 16°C. The CRC were 

equipped with thin walls with windows, to allow audio-visual contact in order to minimize the 

effect of social isolation on cow behavior and performance. Cows were exposed to 16 h of light 

per day (from 0530 to 2130 h) and housed in the CRC until d 17 (0900 h).  

In addition to Van Gastelen et al. (2015), a H2 analyzer (type MGA 3000 multi gas 

analyzer, ADC Gas Analysis Ltd, Hoddesdon, UK) was installed in series with the O2, CO2, and 

CH4 gas analyzers. The H2 concentrations were measured using an electrochemical cell technique 

which has a relatively slow response time compared to the nondispersive infrared method of the 

CO2 and CH4 gas analyzers and the paramagnetic method of the O2 gas analyzer. Therefore, 

sampled air from the CRC was flushed through the gas analysis system for 180s before the 

analyzer readout was logged. To have as many measurements as possible, inlet air was not 

sampled in every sequence, but once per hour. Therefore, inlet and exhaust air of each CRC was 

sampled with an average interval of 12.5 min (i.e., 4 times 12-min intervals for each CRC and 1 

interval of 15 min for inlet air) instead of the 10-min interval reported by Van Gastelen et al. 

(2015). Production of CO2, H2, and CH4 and consumption of O2 was calculated from the 

difference between inlet and exhaust gas volumes. 

The ventilation rate within the CRC was 58 m3/h to ensure that the H2 peak after 

feeding was within the detection limit of the H2 analyzer (i.e., 0-100 ppm). Staff entered the CRC 

twice daily at 0600 and 1600 h for approximately 30 min for feeding and milking. Van Gastelen 

et al. (2015) did not use the gas concentration data during these feeding and milking times. The 

H2 concentration peak occurred directly after feeding when staff was still inside the CRC. 

Therefore, we calculated the daily CH4 and H2 production on 2 datasets: (1) without the gas 

concentration data during feeding/milking (as was done by Van Gastelen et al. (2015), partially 

missing the H2 concentration peak after feeding), and (2) with the gas concentration data during 

feeding/milking (to capture the H2 concentration peak directly after feeding). Excluding the gas 

concentration measurements during feeding/milking would have underestimated daily H2 

production by 15.2 ± 6.89%. Daily productions of CH4 were unaffected when excluding these 

gas measurements compared with including these gas measurements (data not shown). Thus, for 

the present study it was decided to not discard the gas measurements during feeding and milking.  

Gas concentrations and ventilation rates were corrected for pressure, temperature and 

relative humidity to arrive at standard temperature pressure dew point volumes of inlet and 

exhaust air. Once a day, calibration gasses were sampled for gas analysis instead of the inlet air, 
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and the analyzed and actual values of these calibration gasses were used to correct the measured 

gas concentrations from the inlet air and exhaust air of all compartments. Before the present 

experiment started, CRC were checked by releasing known amounts of CO2 in each 

compartment and comparing these values with the data from the gas analysis system to calculate 

the recovery. The recovered amounts of CO2 were between 99 and 101%. 

 

Sample collection and measurements 

Samples of grass silage, corn silage, and both concentrates were obtained when fresh 

feed was prepared (i.e., twice weekly). These samples were subsequently pooled per treatment 

period, subsampled and stored at -20°C pending analyses. During the 5-d period in the CRC, 

feed residues were collected twice daily (0600 and 1600h), weighed, and stored at 4°C. At the 

end of the 5-d period in the CRC, daily orts were pooled per cow, mixed, subsampled, and stored 

at −20°C pending analyses.  

Rumen fluid samples (~1 L) were collected 1 h before and 4 h after morning feeding 

on d 12 and 4 h after morning feeding on d 17 using the oral stomach tube (OST) technique, 

similar to Shen et al. (2012). Rumen fluid samples could not be collected 1 h before morning 

feeding on d 17, because the cows were still housed in the CRC and the gas measurements were 

priority. To collect rumen fluid with the OST method, a probe was inserted in the ventral cranial 

part of the rumen via the esophagus. The probe was 190 cm long and the head of the probe 

consisted of small holes allowing only rumen fluid (i.e., no fibrous content) to be collected. 

Rumen fluid was collected by using a 500 mL suction pump, which was attached to the probe. 

The first 500 mL of rumen fluid was discarded to limit saliva contamination of the rumen fluid 

samples. Rumen pH was measured immediately after sampling using a calibrated portable 

electronic pH meter (pH electrode HI99141, Hanna Instruments, IJsselstein, The Netherlands) 

and 2 rumen fluid subsamples of 600 µL each were acidified with an equal volume of ortho-

phosphoric acid, and directly stored at -20°C to stop microbial fermentation pending VFA 

analysis. On d 17, 4 h after morning feeding, 100 mL of rumen fluid was sampled, directly stored 

on dry ice and transferred to a -80°C freezer pending microbiota analysis.  

Milk yield was recorded for each milking, both during the adaptation period in the tie-

stalls and the measurement period in the CRC. Milk from cows in the CRC was collected twice 

daily at 0600 and 1600h. A milk sample (10 mL) of each milking event was collected in a tube 

containing sodium azide (5 µL) for preservation, stored no longer than 4 d at 4°C, and analyzed 

for fat, protein, lactose, and urea content. Milk composition was corrected for differences in 

milk yield between milking events on the same day, and the average milk composition on a daily 

basis was used for data analysis. An additional milk sample (5 g/kg milk) was collected at each 

milking event, pooled per cow for the entire period in the CRC, and stored at -20°C pending 

milk energy and N analyses. For MFA composition, milk samples were collected according to 

Van Gastelen et al. (2015), pooled per cow per period and stored at -20°C until analyses. 

Measurements of CH4, H2, and CO2 production, and O2 consumption were based on 

data recorded from d 14 (0800 h) through d 17 (0800 h), whereas energy and N balance, and 

apparent total-tract feed digestibility were based on manure (mixture of feces and urine) and 

feces collections from d 13 (1400 h) through to d 17 (0900 h). Cows were weighed when entering 
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and leaving of the CRC. The feces and urine produced during the 5-d period in the CRC were 

quantitatively collected, weighed, mixed, subsampled and stored at -20°C pending analyses. In 

addition, samples of condensed water (i.e., collected from the heat exchanger) and 25% sulfuric 

acid solution w/w (i.e., through which the outflowing air was led to trap aerial ammonia) of each 

CRC were collected, because of N volatilization in the form of ammonia due to the mixing of 

feces and urine. During the 5 d in the CRC rectal grab samples (~300 g) were collected twice 

daily at 0600 and 1600h and stored at −20°C. Prior to analysis, the grab samples were thawed, 

pooled per cow and period, mixed, and subsampled.  

 

Chemical analyses  

Samples of feed, feed residues, manure, and rectal grab samples were thawed at room 

temperature, oven-dried at 60°C, ground to pass a 1-mm screen using a Wiley mill (Peppink 

100AN, Olst, The Netherlands), and analyzed by wet chemistry [i.e., ash, DM, N, starch, 

reducing sugars (i.e., all carbohydrates with reducing properties and soluble in 40% ethanol), 

NDF, ADF, and ADL] as described by Abrahamse et al. (2008). Bomb calorimetry (ISO 9831; 

International Organization for Standardization, 1998) was used to determine gross energy (GE). 

Crude protein was calculated as N × 6.25, where N was determined using the Kjeldahl method 

with CuSO4 as catalyst (ISO 5983; International Organization for Standardization, 2005). The N 

concentrations in manure and of roughages were determined in fresh material according to Klop 

et al. (2016). The FAME of the feed samples were determined as described by Khan et al. (2009) 

using GC (Carlo Erba 8560 HRGC, Rodano, Italy) with a fused silica capillary column (100 m 

× 0.250 mm and 0.2 μm film thickness; Supelco; SP2560, St. Louis, MO) and helium as the 

carrier gas. Crude fat content was analyzed according the gravimetric method NEN-ISO 1735 

(ISO 1735; International Organization for Standardization, 2004) with modifications as 

described by Klop et al. (2017).  

Grass silage, corn silage, and concentrates were analyzed for DM, ash, N, crude fat, 

starch (except for grass silage), sugars (except for corn silage), NDF, ADF, ADL, GE, and 

FAME. Feed residues were analyzed for DM, ash, and crude fat. Manure samples were analyzed 

for DM, N, and GE. The rectal grab samples were analyzed for DM, ash, N, crude fat, starch, 

NDF, and GE. Chromium oxide was determined in the concentrates and rectal grab samples 

using an atomic absorption spectrophotometer (AA240FS; Varian, Palo Alto, CA, USA) after 

oxidation by wet destruction as described in detail by Pellikaan et al. (2013).  

The concentration of individual VFA in the rumen fluid samples of d 12 (i.e., 1 h before 

and 4 h after morning feeding) was determined using GC (Fisons HRGC Mega 2, CE 

Instruments, Milan, Italy) with a split/splitless injector and helium as carrier gas as described by 

Van Gastelen et al. (2015). Milk samples from individual milking events were analyzed for 

proximate composition (fat, protein and lactose content) by mid-infrared spectroscopy (ISO 

9622; International Organization for Standardization, 1999), and for MUN using the pH 

difference technique (ISO 14637; International Organization for Standardization, 2004) at Qlip 

(Zutphen, The Netherlands). The MFA composition of the pooled milk samples was determined 

using GC (Thermo Electron Corporation, Waltham, MA) by Qlip with a split/splitless injector 
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and H2 as carrier gas as described by Van Gastelen et al. (2015). The GE and N content of the 

pooled milk samples were analyzed as described above.  

 

Microbiota analysis 

Rumen fluid samples taken 4 h after morning feeding on d 17 were analyzed for 

bacterial and archaeal concentrations and community composition, using quatitative PCR 

(qPCR) and Illumina MiSeq sequencing of PCR-amplified 16S ribosomal RNA (rRNA) gene 

fragments. Total DNA was extracted from the rumen fluid samples using a protocol involving 

a combination of bead beating, stool transport and recovery buffer (Roche Diagnostics 

Nederland B.V, Almere, The Netherlands) and the Maxwell 16 Instrument (Promega, Leiden, 

The Netherlands) as described in detail by Van Lingen et al. (2017). For absolute quantification 

of bacteria and archaea, SYBR green qPCR assays were performed with sample DNA extracts 

using an iCycler iQ real-time detection system (Bio-Rad Laboratories B.V., Veenendaal, The 

Netherlands). The qPCR procedure, primers, cycling conditions, and standards used are 

described by Van Lingen et al. (2017). For combined bacterial and archaeal composition 

profiling, barcoded amplicons from the V4 region of 16S rRNA genes were generated from 

sample DNA extracts using a 2-step PCR strategy (Caporaso et al., 2012; Tian et al., 2016; Van 

Lingen et al., 2017). As described by Ramiro-Garcia et al. (2016), the 16S rRNA gene sequencing 

data were analyzed using NG-Tax, an in-house bioinformatics pipeline. Operational taxonomic 

units (OTU) were defined using an open reference approach, and taxonomy was assigned to 

those OTU using a SILVA 16S rRNA gene reference database (Quast et al., 2013). Preliminary 

analysis of the samples confirmed the necessity of excluding 3 of the rumen fluid samples from 

further microbial data analysis (i.e., both sequence and qPCR based analysis) due to issues 

associated with salivary contamination of the samples during collection. 

 

Statistical analysis 

All parameters related to feed intake, milk production, and milk composition while 

cows were housed in the CRC were averaged per cow over a 4-d period. The parameters related 

to energy and N balance were expressed per kg of metabolic bodyweight (BW0.75) per d. All 

univariate data were subjected to ANOVA in a cross-over with a 2 period × 2 treatment design 

using the MIXED procedure in SAS (edition 9.2, SAS Institute Inc., Cary, NC). Treatments (i.e., 

diet and DGAT1), their interaction, diet sequence, and period were considered fixed effects. The 

model included block as random factor, and cow within diet × DGAT1 was considered as 

subject. For all analyses, the fixed effect of CRC was initially included in the model, but was 

removed because it was found to be not significant. The fixed effect of diet sequence was found 

to be significant twice (i.e., MUN and C22:0) and a tendency was found once (i.e., C22:4n-6), 

but diet sequence was always kept in the model. The covariance structure compound symmetry 

provided best fit with the lowest overall Akaike’s information criterion values. Ruminal VFA 

data were subjected to repeated measures ANOVA in order to take repeated sampling within 

the same cow per treatment period into account. Similar to the above described model, this 

model included treatments, their interactions, sequence, and period as fixed effects, and block 

as random effects. Again, the fixed effect of diet sequence was found to be significant once (i.e., 
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total VFA concentration) and a tendency was found twice (i.e., molar proportions of acetate and 

butyrate), but diet sequence was always kept in the model. For both models, pairwise 

comparisons of means were tested with the Tukey-Kramer method. The Kenward-Roger option 

was used to estimate the denominator degrees of freedom. All results are reported as least square 

means with significance of effects declared at P ≤ 0.05 and trends at 0.05 < P ≤ 0.10. No multiple 

testing correction was applied. 

Permutational Multivariate Analysis of Variance (PERMANOVA; Anderson, 2001) 

was used to assess the significance of changes in the rumen bacterial and archaeal composition 

in terms of the microbiota as a whole community (with the OTU summarized to the genus level) 

with respect to different factors [i.e., diet (LSO and CON), DGAT1 (DGAT1 KK and AA 

genotype), and diet × DGAT1]. The PERMANOVA was applied on the Bray-Curtis distance 

matrices, and Bonferroni correction for multiple testing was applied on a nominal significance 

of 0.05. The Matlab Fathom toolbox (Jones, 2015) was used for calculations. The 

aforementioned ANOVA analysis was also used to determine the effect of diet, DGAT1, and 

diet × DGAT1 interaction on the relative abundance of individual bacterial and archaeal genera 

that were (1) consistent in all animals and (2) were > 0.05% in terms of relative abundance. 
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RESULTS AND DISCUSSION 

Intake and digestibility of nutrients 

Nutrient intake, DMI, fatty acid (FA) intake, and apparent total-tract digestibility of 

nutrients were not affected by DGAT1 polymorphism and diet × DGAT1 interaction. Feeding 

the LSO diet resulted in an increased crude fat intake (P < 0.001), intake of individual FA (P < 

0.001), and intake of total FA (P < 0.001) compared to the CON diet (Table 7.2). These results 

are in line with the difference in chemical composition between the LSO diet and CON diet; 

linseed oil increased the dietary fat content from 34 g/kg DM to 56 g/kg DM (Table 7.1). The 

LSO diet (2.3% linseed oil on DM basis) increased apparent total-tract digestibility of crude fat 

compared to the CON diet (P < 0.001), but the apparent total-tract digestibility of the other 

nutrients was unaffected (Table 7.2). The increased crude fat digestibility of the LSO diet may 

have been the result of UFA from linseed having a higher total-tract digestibility than SFA (Van 

Zijderveld et al., 2011b). Several studies also reported the effect of linseed oil on apparent total-

tract digestibility of nutrients, but the results reported are variable. Similar to this study, Benchaar 

et al. (2012) did not find an effect of adding increasing amounts of linseed oil to the diet [i.e., 

grass silage and corn silage; 50:50 forage:concentrate (F:C); DM basis] on apparent total-tract 

digestibility of DM, OM, CP, NDF, starch and GE. Martin et al. (2008), however, observed a 

decreased DM, OM, and NDF digestibility when supplementing 5.7% linseed oil to a forage rich 

diet (i.e., corn silage and grass hay; 65:35 F:C; DM basis). Ueda et al. (2003) reported an increase 

in OM and NDF digestibility when 3% linseed oil was added to a forage rich diet (i.e., grass hay; 

65:35 F:C; DM basis), whereas the digestibility of these nutrients decreased when 3% linseed oil 

was added to a concentrate rich diet (35:65 F:C; DM basis). Benchaar et al. (2015) observed a 

decreased DM, OM, NDF, and GE digestibility when 4% linseed oil was added to a corn silage-

based diet (60:40 F:C; DM basis), whereas DM, OM, and GE digestibility increased and NDF 

digestibility was unaffected when linseed oil was supplemented to a red clover silage-based diet 

(60:40 F:C; DM basis). Taken together, these results suggest that the effect of linseed oil on 

nutrient digestibility may vary with the source of forage in the basal diet, the forage to 

concentrate ratio, as well as the amount of linseed oil added.  

 

Lactation performance and milk fatty acid profile 

No diet × DGAT1 interaction effect on milk production and milk composition was 

observed. Compared with the DGAT1 AA genotype, the DGAT1 KK genotype was associated 

with a higher milk fat and protein content (P < 0.001 and P = 0.005, respectively; Table 7.3), and 

tended to have a lower milk yield and lactose yield. The FPCM yield did not differ between the 

DGAT1 KK and DGAT1 AA genotype, which is consistent with a similar DMI, nutrient intake, 

and gross energy intake (GEI) between the 2 DGAT1 genotypes. The major effect of DGAT1 

on milk production traits has been often observed, with the K allele associated with a higher 

milk fat and protein content, but lower milk production than the A allele (e.g., Schennink et al., 

2007; Bovenhuis et al., 2015) which is in line with the present study. Many studies also reported 

the K allele to be associated with a higher fat yield and lower protein yield, although the reduced 

protein yield is not consistently reported (e.g., Näslund et al., 2008). This is not confirmed by 

the results of the present study (Table 7.3). In the present study, compared with the DGAT1 AA 
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genotype, fat yield of the DGAT1 KK genotype was only numerically higher (1,180 versus 1,102 

g/d) and protein yield numerically lower (874 versus 900 g/d).  

The LSO diet resulted in a decreased milk fat content, milk protein content, and MUN 

(P < 0.045; Table 7.3). The decrease in milk protein content was also observed by Benchaar et 

al. (2012, 2015) and may be the result of a dilution effect rather than a direct negative effect of 

the increased dietary fat content (Schroeder et al., 2004), as the milk yield numerically increased 

and protein yield was unaffected by the linseed oil. The decreased MUN content may have been 

a consequence of the lower CP content of the LSO diet. In general, a decreased MUN content 

is associated with an improved milk N efficiency (Spek et al., 2013), and the significantly higher 

milk N efficiency with the LSO diet (27.5%) compared with the CON diet (24.6%; discussed in 

section energy and nitrogen retention) diet is in line with the decrease in MUN. The decrease in milk 

fat content in the present study is in agreement with Martin et al. (2008), Ferlay et al. (2013), and 

Benchaar et al. (2015), but in contrast to others (e.g., Benchaar et al., 2012; Livingstone et al., 

2015). The response of milk fat content to linseed oil is the result of the balance between a 

decrease in de novo FA synthesis and an increase in exogenous FA uptake and secretion by the 

mammary gland (Schroeder et al., 2004). The UFA from linseed oil have been reported to inhibit 

ruminal fibrolytic activity and subsequently decrease production of acetate and butyrate, which 

are precursors of de novo synthesized short- and medium-chain MFA (Bauman and Griinari, 

2003). Also, these dietary UFA and several trans FA, the latter are formed from ruminal 

biohydrogenation of the UFA, are potent inhibitors of de novo milk fat synthesis in the 

mammary gland (Bauman et al., 2011). In turn, dietary UFA increase the content of long-chain 

UFA in milk (Schroeder et al., 2004; Benchaar et al., 2012). In the present study, the inhibitory 

effects of linseed oil on de novo synthesized FA is greater than the increase in long-chain FA in 

milk (Table 7.4).  

A diet × DGAT1 interaction for the individual MFA C14:0 and C15:0 was observed 

(Table 7.4). Previously, Van Vuuren et al. (2013) also observed an interaction between DGAT1 

and linseed oil supplementation for certain MFA, although these were different from the ones 

reported in the present study, namely C18:0 and C20:1n-11. In addition, compared with the 

DGAT1 AA genotype, the DGAT1 KK genotype was associated with a higher C14:1 cis-9, 

C16:0, C16:1 cis-9, C22:0, C24:0, and total SFA content (P < 0.034), and a lower iso C17:0, C18:1 

cis-9, C18:1 cis-12, C18:2n-6, C18:3n-3, and total PUFA content (P < 0.030) in the milk (Table 

7.4). These results are largely in agreement with data in the literature. According to Schennink et 

al. (2007), Van Arendonk et al. (2009), Duchemin et al. (2013), and Bovenhuis et al. (2016) the 

DGAT1 K allele is associated with a larger fraction of C16:0, and smaller fractions of C14:0 (also 

reported by Lu et al., 2015), and C18 UFA in milk. In addition, Duchemin et al. (2013) reported 

an increase in milk C14:1 cis-9, C16:1 cis-9, and total SFA, and a decrease in total milk UFA for 

the DGAT1 K allele. Furthermore, according to Van Arendonk et al. (2009), Lu et al. (2015), 

and Bovenhuis et al. (2016), the DGAT1 K allele is associated with increased contents of C15:0 

and C17:0 in milk.  

The LSO diet of the present study resulted in a lower content of short- and medium-

chain fatty acids (SMCFA) in the milk, with the exceptions of C4:0 and C16:1 trans-9 (Table 7.4). 

These results are generally in line with Chilliard et al. (2009), Benchaar et al. (2012), and Saliba 
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et al. (2014). As previously stated, dietary UFA and several trans FA are potent inhibitors of de 

novo milk fat synthesis in the mammary gland, and the UFA from the linseed oil potentially 

inhibit ruminal fibrolytic activity, thereby decreasing the precursors for SMCFA synthesis 

(Bauman and Griinari, 2003). Milk SMCFA are synthesized de novo in the mammary gland 

primarily from acetate, and ruminal acetate proportion was decreased upon feeding linseed oil 

(discussed in section ruminal fermentation). Only MFA C4:0 does not require acetate for its 

production as it can be produced directly from β-hydroxybutyrate derived from the blood 

(Bernard et al., 2008). 

The LSO diet resulted in lower contents of all odd- and branched-chain fatty acids 

(OBCFA) in milk compared the CON diet (P < 0.004; Table 7.4). This is in line with Chilliard 

et al. (2009) and, in regard to C15:0 and C17:0, also with Benchaar et al. (2012). The odd-chain 

FA C15:0 and C17:0 are mainly synthesized de novo by ruminal bacteria from propionate. 

However, despite the increase in propionate proportions (Table 7.7), this ruminal synthesis of 

C15:0 and C17:0 may decrease when cows are fed dietary fat. This is because rumen bacteria 

preferably use preformed FA available in the ruminal environment (Byers and Schelling, 1988).  

The intake of C18:3n-3 increased with the LSO diet (P < 0.001; Table 7.2). This 

increase is associated with an increase of C18:3n-3, as well as the biohydrogenation intermediates 

(e.g., C18:1 trans-11) and end-products (i.e., C18:0) in milk upon feeding linseed oil (P < 0.001; 

Table 7.4), suggesting high levels of biohydrogenation, and is in line with Benchaar et al. (2012), 

Ferlay et al. (2013), and Livingstone et al. (2015). Despite the increased intake of C18:2n-6 with 

the LSO diet (P < 0.001; Table 7.2), C18:2n-6 does not increase in milk upon feeding linseed oil, 

which is in agreement with Ferlay et al. (2013) and Saliba et al. (2014). Milk C18:2 cis-9, trans-11 

did increase with the LSO diet (P < 0.001; Table 7.4), suggesting high levels of biohydrogenation 

of C18:2n-6 in the rumen as well as increased endogenous production of C18:2 cis-9, trans-11 in 

the mammary gland using C18:1 trans-11 produced in the rumen as substrate (Griinari et al., 

2000).  

In the present study, both C18:1 trans-10 and C18:1 trans-11 increased with the LSO 

diet (P < 0.001; Table 7.4), which is consistent with Benchaar et al. (2012) and Saliba et al. (2014). 

The increase in C18:1 trans-11 content in milk may be the result of its production during the 

biohydrogenation of dietary C18:2n-6 and C18:3n-3. An increase in C18:1 trans-10 in milk is 

generally associated with milk fat depression, and occurs when low fiber diets or diets 

supplemented with PUFA rich plant oils are fed, resulting in a shift in rumen microbial 

composition and a changed biohydrogenation pathway (Griinari and Bauman, 1999). In the 

present study, milk fat content (%) decreased, but intake of NDF and starch, ruminal pH, and 

milk fat yield (g/d) were unaffected with the LSO diet (Tables 7.2, 7.3, and 7.7). The increase of 

C18:1 trans-11 was greater compared with C18:1 trans-10 as the C18:1 trans-11 to C18:1 trans-10 

ratio increased with the LSO diet (i.e., 4.6 ± 0.19 for the CON diet and 6.0 ± 0.46 for the LSO 

diet; P = 0.009). This indicates that there was a change in the rumen biohydrogenation pathway, 

potentially the result of the increased rumen UFA load (Lock, 2010) causing changes in 

microbiota composition or activity, and thus changes in ruminal fermentation characteristics. 
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Energy and nitrogen retention 

No diet × DGAT1 interaction was observed for the energy balance characteristics of 

the cows (Table 7.5). The ME intake (MEI) to GEI ratio was lower for the DGAT1 KK 

genotype (66.8%) compared with the DGAT1 AA genotype (67.9%; P = 0.023). To the best of 

our knowledge, the effects of DGAT1 on energy balance measured in CRC have not been 

quantified previously. The energy output in milk was unaffected by DGAT1 in the present study, 

which is in agreement with Bovenhuis et al. (2015) who only observed a difference in milk energy 

output for the DGAT1 AK genotype compared with DGAT1 AA and KK genotypes in parity 

1. Bovenhuis et al. (2015) suggested that, in view of the absence of differences in energy output 

in milk, no large differences in energy balance between cows with different DGAT1 alleles would 

be expected. In the present study, total energy retention was unaffected by DGAT1 (Table 7.5), 

supporting the hypothesis of Bovenhuis et al. (2015). This is in agreement with Banos et al. 

(2008), who reported only a small positive effect of the DGAT1 K allele on cumulative effective 

energy balance estimated based on live weight and BCS. 

The LSO diet resulted in a decreased energy loss in the form of CH4 (P = 0.022; Table 

7.5) and an increased MEI to GEI ratio (P = 0.006; Table 7.5). The decreasing effect of linseed 

oil on energy loss in the form of CH4, together with the tendency of reduced GE digestibility, 

may explain the difference in MEI to GEI ratio, because the GEI was unaffected by feeding 

linseed oil (Table 7.5).  

The mean N balance was not affected by diet, DGAT1, and diet × DGAT1 interaction 

(Table 7.5). Milk N efficiency tended (P = 0.076) to be higher for the DGAT1 AA genotype 

(26.6%) compared with the DGAT1 KK genotype (25.5%). A few studies have reported the 

effect of dietary linseed oil on N balance, which have been reviewed by Hristov and Jouany 

(2005). These authors indicated that the effects of fat supplementation on the N balance of cattle 

are inconsistent in the literature. In the present study, the LSO diet reduced N excretion in 

manure (P = 0.010; Table 7.5), which is similar to Benchaar et al. (2015) and might be the result 

of the tendency observed for a lower N intake of cows fed the LSO diet. The LSO diet resulted 

in a greater efficiency of dietary N utilization for milk N production (P < 0.001). This is in 

contrast with Benchaar et al. (2015), who observed no effect of linseed oil supplementation on 

N efficiency.  
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Gas exchange 

No diet × DGAT1 interaction was found for O2 consumption and CO2, CH4, and H2 

production, and gaseous ratios (Table 7.6). None of the gas exchange characteristics were 

affected by DGAT1. The results indicate that DGAT1 does not affect CH4 emission of dairy 

cows nor the response in CH4 emission of dairy cows to dietary linseed oil. As mentioned before, 

Van Engelen, S. (Wageningen University & Research, Wageningen, The Netherlands; 

unpublished data) performed a GWAS to determine regions of the bovine genome that are 

associated with predicted CH4 yield (g/kg DMI) using the equations published by Dijkstra et al. 

(2011) and Van Engelen et al. (2015). The association with DGAT1 was significant in the GWAS 

for predicted CH4 yield, suggesting that the K allele is associated with higher predicted CH4 yield. 

The results of the present study suggest that the proposed relation between DGAT1 and CH4 

based on predicted CH4 yield using MFA is not in line with actual observations on CH4 emission. 

Presumably, the relationship observed by Van Engelen, S. (Wageningen University & Research, 

Wageningen, The Netherlands; unpublished data) is due to the association between DGAT1 and 

the MFA that were used to predict CH4 yield. The CH4 prediction equations, used in the GWAS 

by Van Engelen, S. (Wageningen University & Research, Wageningen, The Netherlands; 

unpublished data), included several C18 UFA (both cis and trans isomers), which were affected 

by DGAT1 in the present study (Table 7.4) as well as in other studies (e.g., Schennink et al., 

2007; Duchemin et al., 2013).  

The LSO diet did not affect H2 production (g/d), yield (g/kg DMI), and intensity (g/kg 

FPCM), which is consistent with Veneman et al. (2015). Similarly, the unaffected O2 

consumption and CO2 production upon the LSO diet in the present study is consistent with 

Livingstone et al. (2015). The LSO diet did not affect the H2 to CH4 ratio, but decreased the 

respiration quotient (RQ; P < 0.001), CH4 emissions (i.e., g/kg DMI, g/kg FPCM, and % of 

GEI; P < 0.006), and CH4 to CO2 ratio (P = 0.001; Table 7.6). The RQ is lower or equal to 1.0 

when only substrate oxidation occurs (Gerrits et al., 2015). However, de novo fatty acid synthesis 

and ruminal anaerobic fermentation of dietary carbohydrates can result in a RQ larger than 1.0 

(Gerrits et al., 2015). The decreased RQ found for the LSO diet may result from the higher 

dietary fat intake and fat digestibility (Table 7.2), because fat is not fermented in the rumen 

(Beauchemin et al., 2008) and an increased absorption of FA reduces the need to synthesize FA 

from carbohydrates in the intermediary metabolism.  

The decrease in CH4 emissions with the LSO diet in the present study is in line with 

previous studies (e.g., Martin et al., 2008; Benchaar et al., 2015). According to Grainger and 

Beauchemin (2011), a 10 g/kg of DM increase in dietary fat should result in a decreased CH4 

yield by 1 g/kg of DMI in cattle. In the present study, the average increase in dietary fat content 

(22 g/kg DM) was associated with a significant decrease of 1.4 g/kg DMI in CH4 yield. This is 

lower than that reported by Grainger and Beauchemin (2011) in their meta-analysis, but higher 

than some other studies (e.g., Veneman et al., 2015). Fat analyses of the feed residuals suggest 

that the cows in the present experiment were not selecting against the concentrate supplemented 

with linseed oil included in the TMR (results not shown; fat content in residual feed was not 

different from the fat content in TMR offered). Benchaar et al. (2015) suggested that the forage 

of the basal diets affected the extent of CH4 mitigation of linseed oil supplementation. For the 
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red-clover-based diet, an increase in dietary fat content of 27 g/kg of DM decreased CH4 yield 

with 1.7 g/kg of DMI, whereas for the corn-silage-based diet, an increase in dietary fat content 

of 36 g/kg of DM decreased CH4 yield with 4.0 g/kg of DMI (Benchaar et al., 2015). The forages 

used in the present experiment (i.e., a mixture of grass silage and corn silage) may have influenced 

the extent of CH4 mitigation of dietary linseed oil. In addition, the 2 diets differed in CP content 

(194 and 184 g/kg of DM for CON and LSO, respectively; Table 7.1), but the effect of dietary 

CP on CH4 emission is reported variable in literature. Ellis et al. (2009) found a positive 

relationship between dietary CP content and CH4 emission of beef cattle, whereas Reynolds et 

al. (2010) did not observe differences in CH4 yield with different dietary CP contents. The 10 

g/kg of DM difference in dietary CP content between the 2 diets in the present study may not 

be expected to significantly affect CH4 emission, especially because the dietary CP content (i.e., 

higher than 180 g/kg of DM; Table 7.1) was above calculated requirements for the dairy cows 

involved. Overall, it seems likely that the basal diet may have played an important role in the 

CH4 mitigation effect of dietary linseed oil in the present study.  

 

Ruminal fermentation 

Three rumen fluid samples per cow within diet were collected: 1 h before and 4 h after 

morning feeding on d 12, and 4 h after morning feeding on d 17. None of the ruminal 

fermentation parameters significantly differed between d 12 and 17 at 4 h after morning feeding, 

with the exception of ruminal pH (P < 0.001, 6.56 and 6.68, respectively). To have a balanced 

design as well as the ability to distinguish between time and day effects, it was decided to use 

only the samples of 1 h before and 4 h after morning feeding of d 12 for ruminal fermentation 

data analysis.  

Time of sampling (i.e., 1 h before feeding or 4 h after feeding) affected pH, total VFA 

concentration, and VFA molar proportions (P < 0.001; Table 7.7), except for isovalerate. As 

expected, ruminal pH declined after feeding and total VFA concentration was higher 4 h after 

feeding compared to 1 h before feeding (data not shown). Total VFA concentration was 

unaffected by diet, DGAT1, and diet × DGAT1 interaction. The lack of an effect of the LSO 

diet is in agreement with Ueda et al. (2003), Doreau et al. (2009), and Benchaar et al. (2012), and 

all these results are consistent with the lack of effect of diet, DGAT1, and diet × DGAT1 

interaction on ruminal pH in the present study.  

In general, ruminal pH in the present study seems relatively high compared to the total 

VFA concentration (Table 7.7). According to the prediction equation derived by Dijkstra et al. 

(2012), pH should be around 6.2 with a VFA concentration of 100 mM. In the present study, 

however, pH was around 6.76 with a VFA concentration of approximately 93 mM, probably as 

a result of collecting rumen fluid with the OST sampling technique. Duffield et al. (2004) and 

Wang et al. (2016) reported a higher ruminal pH when sampling rumen fluid using OST 

compared with rumen cannulation. Using the OST technique in the present study resulted in 

collection of rumen fluid from the ventral cranial part of the rumen or the reticulum. The pH 

within these regions of the reticulo-rumen is generally higher compared with other sites (e.g., 

Duffield et al., 2004; Li et al., 2009) as a result of rumination and the consequent entry of saliva.  
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The proportions of the individual VFA were unaffected by DGAT1 and diet × DGAT1 

interaction (Table 7.7). Feeding the LSO diet resulted in an increased proportion of propionate 

(P = 0.010), whereas the proportion of acetate and the acetate to propionate ratio decreased 

compared with the CON diet (P = 0.004 and P < 0.001, respectively). Several other studies have 

also reported a shift in VFA pattern towards proportionally more propionate and less acetate 

when a linseed oil containing diet was fed (e.g., Benchaar et al., 2012, 2015; Ivan et al., 2013; 

Martin et al., 2016), which is also consistent with the reduction of CH4 emission observed for 

the LSO diet (Table 7.6). This shift in fermentation toward propionate at the expense of acetate 

supports the key role of the redox state of NAD in rumen fermentation and CH4 production 

(Van Lingen et al., 2017). As discussed before, dietary linseed oil may reduce fiber degradation 

in the rumen, whereas degradation of other carbohydrates (e.g., starch) remains unaffected 

(Doreau and Chilliard, 1997). This results in proportionally more propionate and less acetate. 

The apparent total-tract digestibility of NDF in the present study was unaffected by the LSO 

diet, but a decrease in rumen fiber digestion can be partially compensated for by digestion in the 

large intestine (Martin et al., 2008).  

 

Rumen microbiota 

Bacterial and archaeal concentrations. The concentration of archaea and bacterial 

16S rRNA genes in the rumen were unaffected by diet, DGAT1, and diet × DGAT1 interaction 

(Table 7.8). An absence of effect of linseed oil on archaeal concentrations is in agreement with 

Veneman et al. (2015) and Martin et al. (2016). Similar to Martin et al. (2016), despite the 

unaffected archaeal concentration, CH4 emission decreased with the LSO diet. The archaea to 

bacteria ratio decreased (P = 0.029, Table 7.8) with the LSO diet. This reduced ratio suggests 

that per unit substrate fermented by bacteria, a smaller archaeal concentration is present to form 

CH4, helping to explain the observed reduction in CH4 emission when feeding the LSO diet. 

Numerous studies have repeatedly failed to find a correlation between CH4 emission 

and archaeal concentration (e.g., Morgavi et al., 2010). In the present study, archaeal 

concentration (log10 16S copies / mL rumen fluid) was not related to CH4 production, but was 

related to CH4 yield (r = 0.34, P = 0.019), and tended to be related with CH4 intensity (r = 0.28, 

P = 0.055) without considering effects of linseed oil and DGAT1. Additionally, the archaea to 

bacteria ratio was not related to CH4 production, but was related to CH4 yield (r = 0.43, P = 

0.002) and CH4 intensity (r = 0.48, P = 0.001) without considering effects of linseed oil and 

DGAT1. For both CH4 yield and CH4 intensity, the archaea to bacteria ratio provided the 

strongest correlation, which is for CH4 yield in agreement with Wallace et al. (2014). 

Bacterial and archaeal composition. Bacteria (91.8 ± 2.1% of the obtained 16S 

rRNA gene sequences) were represented by 1,077 different OTU whereas the archaea (7.9 ± 

2.0% of the 16S rRNA sequences) were represented by 16 different OTU. In agreement with 

previous studies, the total number of bacterial OTU was much higher than archaeal ones (e.g., 

Kittelman et al., 2013; Veneman et al., 2015). The 1,093 OTU could be summarized to 89 

different genus-level phylogenetic groupings (87 for bacteria and 2 for archaea). The rumen 

bacterial and archaeal community as a whole (i.e., PERMANOVA results) tended to be affected 

by diet (P = 0.081), but was not affected by DGAT1 (P = 0.326) and diet × DGAT1 interaction 
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(P = 0.365). We also individually analyzed the relative abundances of bacterial and archaeal 

genera to examine if these were affected by diet, DGAT1, and diet × DGAT1 interaction (Table 

7.8). This was done because changes in taxa of low relative abundance can be masked when the 

total rumen microbiota is analyzed as a whole.  

Methanobrevibacter was the most abundant archaeal genus, which is in line with other 

studies (e.g., Janssen and Kirs, 2008; Veneman et al., 2015). Both of the detected archaeal genera 

in this study were unaffected by diet, DGAT1, and diet × DGAT1 interaction, with the exception 

of Methanobrevibacter for which a tendency for a diet × DGAT1 interaction was observed. The 

lack of an effect of DGAT1 and of the interaction between DGAT1 and dietary linseed oil on 

archaeal genera is in line with lack of an effect of these factors on CH4 emissions in the present 

study (Table 7.6). The lack of an effect of linseed oil on both archaeal genera is in agreement 

with Veneman et al. (2015) and consistent with the unaffected archaeal concentrations in the 

present study. These results are also in agreement with Monosi et al. (2008), who demonstrated 

that the long-chain FA of dietary linseed oil (such as linolenic acid) do not affect archaeal 

concentrations and relative abundances.  

Prevotella was the most abundant bacterial genus in the present study, which was 

reported by others as well (e.g., Henderson et al., 2013; Veneman et al., 2015). The relative 

abundance of Bifidobacterium (P = 0.039) was lower for the DGAT1 KK genotype compared with 

the DGAT1 AA genotype (Table 7.8). Bifidobacterium is a sugar fermenting bacteria (Trovatelli 

and Matteuzzi, 1997) producing acetate. However, intake of reducing sugars (Table 7.2) as well 

as the molar proportions of acetate (Table 7.7) was not affected by DGAT1.  

With the LSO diet, Rikenellaceae RC9 gut group and a non-assigned genus (g-NA) 

within the RF16 decreased (P < 0.001 for both), whereas Saccharofermentans increased (P = 0.016; 

Table 7.8). There is no cultured representative of RF16, g-NA, and hence the lack of knowledge 

with respect to the physiology of this group makes it unclear why their relative abundance 

decreased with the LSO diet. The metabolic function and role of the Rikenellaceae RC9 gut group 

in the rumen microbiome remains to be defined, but Zened et al. (2013) already demonstrated 

that supplementation of sunflower oil decreased its relative abundance. Saccharofermentans is a 

sugar fermenting bacteria (Chen et al., 2010). The reducing sugar content and intake of the LSO 

diet was lower compared with the CON diet (Tables 7.1 and 7.2), which is not consistent with 

the increased relative abundance of sugar fermenting bacteria.  

The PUFA present in linseed oil are believed to have a toxic effect on cellulolytic 

bacteria (Nagaraja et al., 1997; Martin et al., 2010). This negative effect of linseed 

supplementation on cellulolytic bacteria has not been confirmed in vivo in dairy cows by 

Veneman et al (2015). Additionally, in the present study, no effect was observed on cellulolytic 

genera (such as Fibrobacter, Butyrivibrio, and Ruminococcus, P > 0.150, Table 7.8). This indicates that 

dietary linseed oil at the level used in the present study does not have a toxic effect on cellulolytic 

bacteria, and thus does not affect their relative abundance, and that this is therefore not the 

mode of action of dietary linseed oil to decrease CH4 production. The results of the present, 

however, do not reject the potential toxic effect of dietary linseed oil on the metabolic activity 

of cellulolytic bacteria.  
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Overall, the results indicate that several rumen bacterial genera were affected by dietary 

linseed oil, which could be linked to changes in dietary composition, differences in ruminal 

fermentation characteristics, and gaseous exchange. Further, several rumen bacterial genera were 

affected by DGAT1, but could not be linked with ruminal fermentation characteristics and 

gaseous exchange because the latter 2 were not affected by DGAT1. As a consequence, the 

biological implications of their change appear to be limited. Despite some bacterial genera being 

affected by diet, DGAT1, and diet × DGAT1 interaction (i.e., the latter only tendencies), the 

bacterial and archaeal community as a whole was not significantly affected. This is perhaps 

because more than 75% of the bacterial genera analyzed were unaffected by diet, DGAT1, and 

diet × DGAT1 interaction, and because the quantities of the affected bacterial genera were 

relatively small, therefore representing only a minor part of the rumen microbiota.  

 

Implications 

We acknowledge that the results of this study could have been different if the cows 

would have been fed ad libitum. We restricted feed intake to ensure similar feed intake between 

treatments, thus avoiding confounding effects of DMI on CH4 production. Feed intake 

restriction ranged from 82 to 95% with an average of 92 ± 0.7%, with all cows being in positive 

energy balance and no difference in milk yield (25.5 ± 1.08 when fed ad libitum and 25.3 ± 1.16 

when feed intake was restricted). We, therefore, consider the overall effect of restricted feeding 

to be minimal. However, when considering the individual treatments, this may be different. The 

LSO receiving cow was in 67% of the cases the one with the lowest ad libitum feed intake within 

a block, and thus the CON receiving cow was in 67% of the cases relatively more restricted in 

her feed intake. In other words, when fed ad libitum, the LSO diet could have resulted in a lower 

feed intake relatively to the CON diet. For DGAT1, we did not find an association between ad 

libitum feed intake and the DGAT1 KK or AA genotype. 

Additionally, we acknowledge that the absence of effects of DGAT1 might be related 

to the number of animals used in the present study. Many genetic studies used hundreds to 

thousands of animals (e.g., Bovenhuis et al., 2016), whereas only 24 animals were used in the 

present study. It is known that DGAT1 has major effects on milk yield and composition (such 

as milk fat content and milk protein content). The present study was able to confirm the 

difference in milk composition between the DGAT1 KK and AA genotype, but for milk yield 

only a tendency was found. This shows that the number of animals in the present study might 

have been insufficient to find all known major effects of DGAT1. For marginal effects, such as 

CH4 production which differed 8 g/d between the DGAT1 AA and KK genotypes (2% relative 

difference), this study did not have sufficient power because of the relative small number of 

animals. Furthermore, no dairy cows with the heterozygous DGAT1 AK genotype were included 

in the present study. We assumed the AK genotype would be in between the homozygous 

DGAT1 AA and KK genotypes, because there is little evidence for dominance effects of 

DGAT1 (Bovenhuis et al., 2015). Whether this is also the case for other parameters, as measured 

in the current study, remains to be investigated.  

Overall, the results of the present study suggest that DGAT1 does not affect enteric 

CH4 emission and production pathways, but that it does affect traits other than lactation 
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characteristics, including metabolizability, N efficiency, and the relative abundance of 

Bifidobacterium. Additionally, linseed oil reduces CH4 emission independent of DGAT1 and 

affects the rumen microbiota and its fermentative activity. 

 

CONCLUSIONS 

Nutrient digestibility, CH4 and H2 emission, ruminal fermentation, rumen archaeal and 

bacterial concentrations, and the ruminal bacterial and archaeal community as a whole were not 

affected by DGAT1. The major effects of DGAT1 on milk fat and protein content were 

independent of dietary linseed oil. Also, DGAT1 affected other traits, including metabolizability, 

N efficiency, and the relative abundance of Bifidobacterium. Upon feeding linseed oil, H2 emissions 

did not change, whereas CH4 production (g/d) decreased with 8% (tendency only), CH4 yield 

(g/kg of DMI) decreased with 6%, and CH4 intensity (g/kg of FPCM) decreased with 11%, 

independent of DGAT1. In line with this, an increase in ruminal propionate proportion and a 

decrease in acetate proportion as well as acetate to propionate ratio was observed, and the 

archaea to bacteria ratio also decreased for the LSO diet. Linseed oil tended to affect the ruminal 

bacterial composition and affected the relative abundance of several bacterial genera.  
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ABSTRACT 

Several in vivo methane (CH4) measurement techniques have been developed, but are 

not suitable for precise and accurate large scale measurements. Hence, proxies for CH4 emissions 

in dairy cattle have been proposed, including the milk fatty acid (MFA) profile. The aim of the 

present study was to determine whether recently developed MFA-based prediction equations for 

CH4 emission are applicable to dairy cows with different diacylglycerol o-acyltransferase 1 

(DGAT1) K232A polymorphism and fed diets with and without linseed oil. Data from a cross-

over design experiment were used, encompassing two dietary treatments (i.e., a control diet and 

a linseed oil diet, with a difference in dietary fat content of 22 g/kg dry matter) and 24 lactating 

Holstein-Friesian cows (i.e., 12 cows with DGAT1 KK genotype and 12 cows with DGAT1 AA 

genotype). Enteric CH4 production was measured in climate respiration chambers and MFA 

analysed using gas chromatography. Observed CH4 emissions were compared with CH4 

emissions predicted by previously developed MFA-based CH4 prediction equations. The results 

indicate that different types of diets (i.e., with or without linseed oil), but not the DGAT1 K232A 

polymorphism, affect the ability of previously derived prediction equations to predict CH4 

emission. The concordance correlation coefficient was however smaller than or equal to 0.30 for 

both dietary treatments separately, both DGAT1 genotypes separately, and the complete dataset. 

It is therefore concluded that previously derived CH4 prediction equations can neither accurately 

nor precisely predict CH4 emissions of dairy cows housed under different conditions from those 

under which the prediction equations were developed. 

Keywords: enteric methane production, milk fatty acid, linseed oil, DGAT1 K232 

polymorphism 

 

SHORT COMMUNICATION 

Enteric methane (CH4) emission is one of the main targets of greenhouse gas 

mitigation strategies for the dairy cattle sector (Knapp et al., 2014). Accurate and repeatable 

measurements of CH4 emission from individual dairy cows are required to evaluate emission 

factors used in national inventories of greenhouse gas emissions in agriculture, to assess efficacy 

of mitigation strategies, and to develop protocols for genetic selection for cows with reduced 

CH4 emission (Hammond et al., 2016). The in vivo CH4 measurement techniques available today 

are not suitable for precise and accurate large scale measurements (Hammond et al., 2016). 

Hence, proxies (i.e., indirect traits related to enteric CH4 production) have been suggested, 

including the milk fatty acid (MFA) profile. Recently, it has been shown that the relationship 

between the MFA profile and CH4 emission can be affected by dietary composition. The 

prediction equation developed on diets with a wide range of additives (Dijkstra et al., 2011) 

overpredicted CH4 emission of cows fed sunflower, flax, and canola seeds (Mohammed et al., 

2011), and the prediction equations developed on a wide range of diets including a wide variety 

of additives (Van Lingen et al., 2014) could not accurately predict CH4 emission of dairy cows 

fed grass- or grass silage-based diets (Dijkstra et al., 2016). Castro-Montoya et al. (2017) analyzed 

data from 9 experiments and concluded that MFA did not reliably predict specific amounts of 

CH4 emitted by dairy cows, whereas MFA hold a modest potential to differentiate individual 

dairy cows with high or low CH4 emissions. The relationship between MFA profiles and CH4 
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emission is not only affected by dietary composition, but also by lactation stage as demonstrated 

by Vanrobays et al. (2016). However, little is known whether host genetics can also influence 

this relationship.  

The MFA profile can be affected by host genetics and dietary composition. The 

diacylglycerol o-acyltransferase 1 (DGAT1) K232A polymorphism affects not only major milk 

components, such as protein and fat content, but also their composition, including the MFA 

profile (e.g., Bovenhuis et al., 2016). Also feeding linseed oil, a dietary strategy to reduce enteric 

CH4 production, affects the MFA profile (e.g., Kliem et al., 2017). Therefore, the aim of the 

present study was to determine whether recent MFA-based prediction equations for CH4 

emission are applicable to dairy cows with different DGAT1 genotypes fed diets with and 

without linseed oil.  

Individual cow data from a cross-over design experiment with two dietary treatments 

(i.e., a control diet and a linseed oil diet, with a difference in dietary fat content of 22 g/kg dry 

matter; DM) and 24 lactating Holstein-Friesian cows (i.e., 12 cows with DGAT1 KK genotype 

and 12 cows with DGAT1 AA genotype; each group had 6 primiparous and 6 multiparous cows) 

were used. The experiment has been described by Van Gastelen et al. (2017a) and was in 

accordance with Dutch law and approved by the Animal Care and Use Committee of 

Wageningen University & Research (Wageningen, The Netherlands). Dry matter intake (DMI), 

milk production and enteric CH4 production of cows were measured climate respiration 

chambers described in detail by Van Gastelen et al. (2015). Daily CH4 production was expressed 

in g/d, CH4 yield was expressed in g/kg of DMI, and CH4 intensity was expressed in g/kg of 

fat- and protein-corrected milk (FPCM), where FPCM (kg/day) = [0.337 + 0.116 × milk fat 

(g/100 g milk) + 0.06 × milk protein (g/100 g milk)] × milk production (kg/day). CH4 

production was 392 ± 76.4 g/d, CH4 yield was 22.2 ± 1.73 g/kg DMI, and CH4 intensity was 

14.6 ± 1.93 g/kg FPCM. The MFA profile was elucidated using gas chromatography, as 

described by Van Gastelen et al. (2015), and expressed in g/100 g of total fatty acids. 

The best MFA-based CH4 prediction equations obtained by Dijkstra et al. (2011; CH4 

yield only), Van Lingen et al. (2014; CH4 yield and CH4 intensity only), Van Gastelen et al. 

(2017b), and Van Gastelen et al. (accepted) were used to predict CH4 production, yield, and 

intensity of each individual cow. Other prediction equations were also considered for evaluation, 

but could not be used as these equations included specific MFA not measured in the current 

milk samples. The ability of these equations to predict CH4 emission of dairy cows with different 

DGAT1 genotypes, fed diets with and without linseed oil, was evaluated using the root mean 

square prediction error (RMSPE) and the concordance correlation coefficient (CCC), both 

described in detail by Ellis et al. (2010). The results of these analyses are shown in Table 8.1 for 

all data combined, in Table 8.2 for the control and linseed oil diet separately, and in Table 8.3 

for the DGAT1 KK genotype and DGAT1 AA genotype separately.  
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Table 8.1. The root mean square prediction error (RMSPE) and concordance correlation coefficient (CCC) results 

of the MFA-based methane prediction models (complete dataset, n = 48) 

  RMSPE (unit)1 CCC2 r3 Cb
4 v5 μ6 

Methane production (g/d) 
      

Van Gastelen et al. (2017b) 122 0.20 0.32 0.65 0.75 1.003 

Van Gastelen et al. (accepted) 132 0.17 0.33 0.52 0.82 1.355 

Methane yield (g/kg DMI7) 
      

Dijkstra et al. (2011) 7.8 0.11 0.47 0.24 0.36 2.308 

Van Lingen et al. (2014) 2.6 0.30 0.55 0.56 1.10 1.260 

Van Gastelen et al. (2017b) 2.6 0.29 0.32 0.92 0.67 0.011 

Van Gastelen et al. (accepted) 6.0 0.15 0.41 0.37 0.39 1.576 

Methane intensity (g/kg FPCM8) 
      

Van Lingen et al. (2014) 3.1 0.23 0.46 0.51 1.14 1.378 

Van Gastelen et al. (2017b) 2.4 0.12 0.18 0.65 1.65 -0.892 

Van Gastelen et al. (accepted) 3.5 0.29 0.38 0.78 0.53 0.389 

1 Root mean square prediction error expressed in g/d, g/kg DMI, and g/kg FPCM for methane production, yield, 

and intensity, respectively. 
2 Concordance correlation coefficient, where CCC = r × Cb. 

3 Pearson correlation coefficient; a measure of precision. 

4 Bias correction factor; a measure of accuracy. 

5 Scale shift; change in standard deviation between predicted and observed methane emission. 

6 Location shift; if positive underprediction, if negative overprediction. 

7 Dry matter intake in kg/d. 
8 Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 × fat (g/100 g milk) + 0.06 × protein (g/100 g milk)] × 

milk yield (kg/d) (CVB, 2012). 

 

With respect to the complete dataset (n = 48), the prediction equations did not predict 

CH4 emissions satisfactorily. The RMSPE of CH4 production was 122 to 132 g/d, the RMSPE 

of CH4 yield was 2.6 to 7.8 g/kg DMI, and the RMSPE of CH4 intensity was 2.4 to 3.5 g/kg 

FPCM. The CCC ranged from 0.17 to 0.20 for CH4 production, from 0.11 to 0.30 for CH4 yield, 

and from 0.12 to 0.29 for CH4 intensity. These low CCC values were composed of consistently 

low values for precision (r < 0.55), whilst values for accuracy (Cb) ranged from low (0.24) to high 

(0.92). Most of the CH4 prediction equations had a positive µ value (i.e., location shift), indicating 

a general underprediction of CH4 emission, with the exception of the prediction equations of 

Van Gastelen et al. (2017b) for CH4 yield (small bias only; consistent with high Cb value) and 

CH4 intensity (overprediction of CH4 emission).  

As discussed by Ellis et al. (2010), the variable v (i.e., scale shift) measures the relative 

difference in standard deviation between predicted and observed values. The prediction equation 

of Van Lingen et al. (2014) for CH4 yield and CH4 intensity had a scale shift close to 1.0, whereas 

the scale shift of the prediction equation of Van Gastelen et al. (2017b) for CH4 intensity was 

1.65. The latter suggests that the variation in the predicted CH4 emissions was smaller than the 

variation in the observed CH4 emissions. Most of the CH4 prediction equations, however, had a 

scale shift smaller than 1.0, suggesting that the variation in the predicted CH4 emissions was 

larger than the variation in the observed CH4 emissions. 
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Table 8.2. The root mean square prediction error (RMSPE) and concordance correlation coefficient (CCC) results of 

the MFA-based methane prediction models (control diet and linseed oil diet, both n = 24) 

 
RMSPE (unit)1 CCC2 r3 Cb

4 v5 μ6 

Control diet 
      

Methane production (g/d) 
      

Van Gastelen et al. (2017b) 65 0.20 0.40 0.50 3.47 0.506 

Van Gastelen et al. (accepted) 74 0.26 0.54 0.49 2.53 1.072 

Methane yield (g/kg DMI7) 
      

Dijkstra et al. (2011) 3.4 0.05 0.17 0.33 1.18 2.018 

Van Lingen et al. (2014) 2.1 0.16 0.35 0.46 1.98 1.363 

Van Gastelen et al. (2017b) 2.0 0.11 0.24 0.45 2.24 -1.331 

Van Gastelen et al. (accepted) 1.8 0.16 0.23 0.70 1.64 0.773 

Methane intensity (g/kg FPCM8) 
      

Van Lingen et al. (2014) 2.8 0.07 0.17 0.42 2.49 1.381 

Van Gastelen et al. (2017b) 2.4 0.04 0.05 0.74 1.99 -0.453 

Van Gastelen et al. (accepted) 2.8 0.04 0.05 0.82 1.28 -0.615 

Linseed oil diet 
      

Methane production (g/d) 
      

Van Gastelen et al. (2017b) 159 0.05 0.17 0.29 0.98 2.189 

Van Gastelen et al. (accepted) 172 0.01 0.07 0.20 1.29 2.808 

Methane yield (g/kg DMI) 
      

Dijkstra et al. (2011) 10.5 0.02 0.43 0.06 0.84 5.696 

Van Lingen et al. (2014) 3.0 0.16 0.49 0.33 1.53 1.954 

Van Gastelen et al. (2017b) 3.0 -0.04 -0.05 0.76 0.80 0.760 

Van Gastelen et al. (accepted) 8.2 0.01 0.14 0.11 0.77 4.100 

Methane intensity (g/kg FPCM) 
      

Van Lingen et al. (2014) 3.4 0.02 0.13 0.15 1.86 3.307 

Van Gastelen et al. (2017b) 2.5 0.11 0.25 0.45 1.03 -1.565 

Van Gastelen et al. (accepted) 4.1 -0.01 -0.04 0.34 0.57 1.873 

1 Root mean square prediction error expressed in g/d, g/kg DMI, and g/kg FPCM for methane production, yield, and 

intensity, respectively. 
2 Concordance correlation coefficient, where CCC = r × Cb. 

3 Pearson correlation coefficient; a measure of precision. 

4 Bias correction factor; a measure of accuracy. 

5 Scale shift; change in standard deviation between predicted and observed methane emission. 

6 Location shift; if positive underprediction, if negative overprediction. 

7 Dry matter intake in kg/d. 
8 Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 × fat (g/100 g milk) + 0.06 × protein (g/100 g milk)] × milk 

yield (kg/d) (CVB, 2012). 
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Table 8.3. The root mean square prediction error (RMSPE) and concordance correlation coefficient (CCC) results of 

the MFA-based methane prediction models (DGAT1 AA genotype and DGAT1 KK genotype, both n = 24) 

  RMSPE (unit)1 CCC2 r3 Cb
4 v5 μ6 

DGAT1 KK genotype 
      

Methane production (g/d) 
      

Van Gastelen et al. (2017b) 114 0.20 0.30 0.68 0.70 0.897 

Van Gastelen et al. (accepted) 118 0.18 0.32 0.56 0.83 1.244 

Methane yield (g/kg DMI7) 
      

Dijkstra et al. (2011) 7.6 0.10 0.38 0.25 0.37 2.229 

Van Lingen et al. (2014) 2.4 0.33 0.54 0.62 1.09 1.101 

Van Gastelen et al. (2017b) 2.4 0.29 0.30 0.94 0.73 -0.167 

Van Gastelen et al. (accepted) 5.2 0.15 0.35 0.43 0.42 1.378 

Methane intensity (g/kg FPCM8) 
      

Van Lingen et al. (2014) 2.9 0.33 0.56 0.58 1.31 1.160 

Van Gastelen et al. (2017b) 2.7 0.09 0.17 0.54 2.15 -1.047 

Van Gastelen et al. (accepted) 3.5 0.38 0.45 0.84 0.57 0.252 

DGAT1 AA genotype 
      

Methane production (g/d) 
      

Van Gastelen et al. (2017b) 129 0.21 0.34 0.62 0.78 1.088 

Van Gastelen et al. (accepted) 145 0.18 0.36 0.49 0.83 1.443 

Methane yield (g/kg DMI) 
      

Dijkstra et al. (2011) 8.1 0.13 0.55 0.23 0.36 2.343 

Van Lingen et al. (2014) 2.8 0.29 0.58 0.50 1.13 1.400 

Van Gastelen et al. (2017b) 2.7 0.31 0.35 0.89 0.63 0.173 

Van Gastelen et al. (accepted) 6.6 0.16 0.49 0.32 0.36 1.749 

Methane intensity (g/kg FPCM) 
      

Van Lingen et al. (2014) 3.3 0.15 0.36 0.43 0.97 1.634 

Van Gastelen et al. (2017b) 2.1 0.17 0.22 0.76 1.29 -0.758 

Van Gastelen et al. (accepted) 3.6 0.19 0.27 0.70 0.48 0.555 

1 Root mean square prediction error expressed in g/d, g/kg DMI, and g/kg FPCM for methane production, yield, and 

intensity, respectively. 
2 Concordance correlation coefficient, where CCC = r × Cb. 

3 Pearson correlation coefficient; a measure of precision. 

4 Bias correction factor; a measure of accuracy. 

5 Scale shift; change in standard deviation between predicted and observed methane emission. 

6 Location shift; if positive underprediction, if negative overprediction. 

7 Dry matter intake in kg/d. 
8 Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 × fat (g/100 g milk) + 0.06 × protein (g/100 g milk)] × milk 

yield (kg/d) (CVB, 2012). 

 

Interestingly, one would most likely interpret the RMSPE results differently than the 

CCC results for the control diet. As discussed in more detail below, both RMSPE and CCC 

decrease for the control diet relative to the complete dataset. This is contradictive, because a 

decrease in RMSPE implies an improvement of the CH4 prediction (Bibby and Toutenburg, 

1977), whereas a decrease in CCC implies a poorer CH4 prediction (Lin, 1989). However, as 

demonstrated by Ellis et al. (2010) upon evaluating in vivo farm model for CH4 prediction, when 

prediction equations are unable to describe adequate amounts of the observed variation, CCC 

analysis is likely the better evaluation tool. This also applies to the CH4 prediction equations for 
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the control diet, with relatively high v values (ranging from 1.18 to 3.47; Table 8.2) indicating the 

inability of the CH4 prediction equations to predict the range of observed CH4 emissions. 

Therefore, we will focus mainly on the CCC results.  

Upon dividing the dataset into a dataset representing the control diet (n = 24) and a 

dataset representing the linseed oil supplemented diet (n = 24), the equations predicting CH4 

emissions performed even less satisfactorily. This is evident by the lower, and sometimes 

negative, CCC values for both control and linseed oil dataset relative to the complete dataset. 

For the control diet, the scale shift (v) increased considerably (i.e., ranging from 1.18 to 3.47) 

relative to the complete dataset, indicating the inability of the CH4 prediction equations to predict 

the range of observed CH4 emissions. For the linseed oil supplemented diet, the scale shift varied 

between 0.57 and 1.87, which is of similar magnitude as for the complete dataset. The larger 

location shift (µ) values for the linseed oil supplemented diet relative to the complete dataset, 

indicates a biased (in general underpredicted) CH4 prediction. Overall, these results suggest that 

the dietary composition affects the capability to predict CH4 emissions of dairy cows of 

previously developed MFA-based CH4 prediction equations.  

Dividing the dataset into a dataset representing the DGAT1 KK genotype (n = 24) and 

into a dataset representing the DGAT1 AA genotype (n = 24), hardly affected the RMSPE and 

CCC results relative to the complete dataset. This indicates that the ability to predict CH4 

emissions of dairy cows of previously developed MFA-based CH4 prediction equations was not 

affected by the DGAT1 K232A polymorphism.  

The results suggests that dietary composition (i.e., with or without supplementation of 

linseed oil) affects the prediction potential of previously derived MFA-based CH4 prediction 

equations, whereas the effect of DGAT1 K232A polymorphism seems small. This may be related 

to the effect of linseed oil and DGAT1 K232A polymorphism on the MFA profile. For example, 

the prediction equation of Van Lingen et al. (2014) for CH4 yield included iso C16:0 (positive), 

C18:1 trans-10+11 (negative) and C18:2n-6 (negative) as explanatory variables. Van Gastelen et 

al. (2017a) demonstrated that the first of these 2 MFA were substantially affected by linseed oil 

supplementation. Contrary, according to Van Gastelen et al. (2017a) DGAT1 K232A 

polymorphism only affected C18:2n-6, whereas the other two MFA were not affected. The same 

patterns was observed for the prediction equation of Van Gastelen et al. (accepted), which 

included C18:1 trans-15 + C18:1 cis-11, C18:2 cis-9, trans-11, and C18:3n-3 (all negatively related) 

as explanatory variables for CH4 production in g/d. Van Gastelen et al. (2017a) demonstrated 

that these three MFA substantially increased upon linseed oil supplementation. Contrary to the 

effect of dietary composition, only C18:3n-3 was significantly affected by the DGAT1 K232A 

polymorphism, whereas the other two MFA were unaffected (Van Gastelen et al., 2017a). The 

effect of linseed oil supplementation on these specific MFA might explain why the CH4 

prediction potential of the MFA-based prediction equation of Van Lingen et al. (2014) and Van 

Gastelen et al. (accepted) is affected by dietary composition. The minor and no effect of DGAT1 

K232A polymorphism on these specific MFA might explain why the MFA-based prediction 

equation of Van Lingen et al. (2014) and Van Gastelen et al. (accepted) predicted CH4 emission 

equally well for the complete dataset and the datasets for the DGAT1 KK and DGAT1 AA 

genotype separately.  
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Overall, the results of this short communication indicate that dietary composition (i.e., 

with or without linseed oil), but not the DGAT1 K232A polymorphism, affect the ability of 

previously derived MFA-based CH4 prediction equations to predict CH4 emission of dairy cows. 

This dietary effect on the ability to predict CH4 emissions seems to be the result of diet-induced 

changes in the relationship between MFA profiles and enteric CH4 production. Hence, we 

conclude that CH4 prediction equations may not be universal and might be valid only when 

applied to dairy cows housed under similar conditions as to those under which the prediction 

equations were developed. 
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ABSTRACT 

The objective of the present study was to compare the prediction potential of milk 

Fourier-transform infrared spectroscopy (FTIR) for methane (CH4) emissions of dairy cows 

with that of gas chromatography (GC)-based milk fatty acid (MFA). Data from 9 experiments 

with lactating Holstein-Friesian cows with a total of 30 dietary treatments and 218 observations 

were used. Methane emissions were measured for 3 consecutive days in climate respiration 

chambers and expressed as production (g/d), yield (g/kg dry matter intake; DMI), and intensity 

(g/kg fat- and protein-corrected milk; FPCM). Dry matter intake was 16.3 ± 2.18 kg/d, FPCM 

yield was 25.9 ± 5.06 kg/d, CH4 production was 366 ± 53.9 g/d, CH4 yield was 22.5 ± 2.10 g/kg 

DMI, and CH4 intensity was 14.4 ± 2.58 g/kg FPCM. Milk was sampled during the same days 

and analyzed by GC and by FTIR. Multivariate GC-determined MFA-based and FTIR-based 

CH4 prediction models were developed and, subsequently, the final CH4 prediction models were 

evaluated with root mean square error of prediction (RMSEP) and concordance correlation 

coefficient (CCC) analysis. Further, we performed a random 10-fold cross validation to calculate 

the models performance parameters (e.g., the coefficient of determination of cross validation; 

R2CV). The final GC-determined MFA-based CH4 prediction models estimate CH4 production, 

yield, and intensity with a RMSEP of 35.7 g/d, 1.6 g/kg DMI, and 1.6 g/kg FPCM, and with a 

CCC of 0.72, 0.59, and 0.77, respectively. The final FTIR-based CH4 prediction models estimate 

CH4 production, yield, and intensity with a RMSEP of 43.2 g/d, 1.9 g/kg DMI, and 1.7 g/kg 

FPCM, and with a CCC of 0.52, 0.40, and 0.72, respectively. The GC-determined MFA-based 

prediction models described a greater part of the observed variation in CH4 emission than FTIR-

based models. The cross validation results indicate that all CH4 prediction models (both GC-

determined MFA-based and FTIR-based) are robust, as the difference between R2 and R2CV 

ranged from 0.01 to 0.07. These results indicate that GC-determined MFA have a greater 

potential than FTIR spectra to estimate CH4 production, yield, and intensity. Both techniques 

hold potential, but may not yet be ready to predict CH4 emission of dairy cows in practice. 

Additional CH4 measurements are therefore needed to improve the accuracy and robustness of 

both GC-determined MFA and FTIR spectra for CH4 prediction. 

Keywords: dairy cow, enteric methane production, milk fatty acid concentration, milk Fourier-

transform infrared spectroscopy 

 

INTRODUCTION 

Enteric methane (CH4) is produced in the gastrointestinal tract of livestock, mainly 

ruminants, and comprises ~40% of global CH4 emissions (Gerber et al., 2013). Enteric CH4 is 

one of the main targets of mitigation strategies in the dairy cattle sector (Knapp et al., 2014). 

Quantification of CH4 emission is thus important. Several in vivo CH4 measurement techniques 

have been developed, but are not suitable for precise and accurate large scale measurements 

(Hammond et al., 2016). Cost-effective, efficient, robust, and fast CH4 measurement techniques 

applicable on a large scale to estimate CH4 emission of individual dairy cows are required. 

Therefore, identifying proxies (i.e., indicators or indirect traits related to CH4 emission), might 

serve as a good alternative (Negussie et al., 2017).  
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Milk fatty acid (MFA) profiles have been suggested as proxy to estimate CH4 emission 

in dairy cattle, and many studies have evaluated this proposed relationship between MFA 

concentrations and CH4 emission (e.g., Chilliard et al., 2009; Mohammed et al., 2011; Rico et al., 

2016). However, the gas chromatography (GC) procedure required to obtain the MFA profiles 

is time consuming, labor intensive, and requires expensive instruments and trained personnel 

(Capuano et al., 2014), and is, therefore, unsuitable for large scale measurements. Fourier-

transform infrared spectroscopy (FTIR), on the other hand, is a rapid, cost-effective, and high-

throughput technique. Currently, major milk components such as fat, protein, lactose, and urea 

contents are routinely measured with FTIR by milk recording organizations. Diverse milk 

phenotypes can be estimated by FTIR, as illustrated by De Marchi et al. (2014), including MFA 

composition (e.g., Rutten et al., 2009; Soyeurt et al., 2011), milk protein composition (Bonfatti 

et al., 2011), technological properties of milk (DeMarchi et al., 2009), and cow health and energy 

status (Van Knegsel et al., 2010; McParland et al., 2011).  

Dehareng et al. (2012) and Vanlierde et al. (2015) used FTIR to predict CH4 emission 

of dairy cattle. However, the CH4 predictions of Dehareng et al. (2012) at different stages of 

lactation were not biologically meaningful, and Vanlierde et al. (2015) demonstrated that a 

lactation stage dependent CH4 prediction model was more robust and biologically more 

meaningful. The CH4 prediction potential of FTIR spectra seems moderate (reviewed by Van 

Gastelen and Dijkstra, 2016), which is based on experiments only using the SF6-tracer technique 

to measure CH4 emission. To date, no research has assessed the CH4 prediction potential of milk 

FTIR spectra for CH4 data obtained in climate respiration chambers and for all 3 units of CH4 

emission, viz. CH4 production (in g/d), CH4 yield (in g/kg dry matter intake; DMI), and CH4 

intensity (in g/kg fat- and protein-corrected milk; FPCM). The objective of the present study 

was to compare the prediction potential for CH4 production, yield, and intensity of milk FTIR 

spectra with that of the GC-determined MFA profile, using CH4 data obtained in climate 

respiration chambers.  

 

MATERIALS AND METHODS 

Data collection 

Data from 9 studies, designed as randomized block experiments, from Wageningen 

University & Research (Wageningen, The Netherlands) were used (Table 9.1). The experiments 

were conducted in accordance with Dutch law and approved by the Animal Care and Use 

Committee of Wageningen University & Research. The 9 studies represented 30 dietary 

treatments and 218 individual observations from lactating Holstein-Friesian cows. The dataset 

included multiple observations from a small number of dairy cows (218 individual observations 

from 189 unique dairy cows). We consider these particular observations as unique and not as 

repeated measurements, because of the large differences in conditions between the observations 

of the same dairy cows (i.e., different experiment, different dietary treatment, different parity, 

and different lactation stage). The experimental setup was similar for all experiments. After an 

adaptation period of 12 d, cows were housed individually in open circuit, indirect climate 

respiration chambers (described by Van Gastelen et al., 2015) for a 5 d period to determine CH4 
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emission (expressed as production, yield, and intensity). Diets were fed twice daily and intake 

was restricted to 95% of the voluntarily DMI of the cow consuming the least within a block.  

Cows were milked twice daily and water was freely available during the entire 

experiment. While housed in the climate respiration chambers, milk yield was recorded and 

representative milk samples (i.e., 5 g/kg of milk production from each cow) were collected at 

each milking according to Van Gastelen et al. (2015). These milk samples were pooled per period 

and cow and subsequently analyzed for MFA composition (g/100 g FA) using GC as described 

by Van Gastelen et al. (2015). The same pooled milk samples were also analyzed in the laboratory 

of Qlip B.V. (Zutphen, the Netherlands) to determine the content of fat, protein, and lactose 

according to regular test-day procedures using MilkoScan FT 6000 equipment with diamond 

cuvettes (Foss Analytical A/S, Hillerød, Denmark) using the manufacturer supplied basic 

calibration models in conformity with ISO 9622 (International Organization for Standardization, 

2013). The applied reference methods were ISO 1211 (International Organization for 

Standardization, 2010) for fat, ISO 8968-1 (International Organization for Standardization, 

2014) for total protein, and an HPLC method based on ISO 22662 (International Organization 

for Standardization, 2007) for lactose. The FTIR absorption spectra were collected, consisting 

of 1060 infrared frequencies (wavenumbers) representing infrared light absorption through the 

milk samples ranging from 925 to 5008 cm−1. 

 

Statistical analysis 

Model development GC-determined MFA. Multivariate models were developed 

using a stepwise procedure (PROC GLMSELECT of SAS; SAS Institute Inc., Cary, NC, USA, 

version 9.2) with CH4 emission (i.e., production, yield, and intensity) as the independent variable 

and stepwise selection of only GC-determined MFA (g/100 g total fatty acids). The significance 

level for a GC-determined MFA to enter or stay in the model was 0.01 and 0.05, respectively. 

The final models were selected based on the minimum Akaike’s information criterion statistic. 

The selected models were evaluated in PROC REG in terms of multicollinearity (variation 

inflation factor > 10), but no multicollinearity was observed.  

Model development FTIR. Prediction models for CH4 production, yield, and 

intensity were developed only on pre-processed data of selected wavenumbers as linear 

regression models using Partial Least Squares (PLS) calculated with the SIMPLS algorithm of 

the PLS toolbox (Eigenvector Research Inc., Manson, WA, USA). In the PLS method, 

spectroscopic data were reduced to a set of orthogonal, uncorrelated components (viz. latent 

variables; LV). Selected wavenumbers (n = 218) were in the ranges 964 - 1581 cm-1, 1715 – 1773 

cm-1, and 2814 - 2968 cm-1. These wavenumbers were selected because these contain valuable 

information on milk composition and are thus most relevant for milk analysis (Capuano et al., 

2014). Additionally, parts of the infrared spectrum that are disturbed by high water absorption 

were omitted, because these can interfere with the quantification of other major milk 

components (Capuano et al., 2014). The selected wavenumbers were pre-processed by applying 

the Savitzky-Golay (Savitzky and Golay,1964), first derivative with polynomial order 2 and 

window width 7, and subsequently mean centered.  
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Table 9.2. Descriptive statistics of animal performance, dietary characteristics, methane emission, and the milk fatty 

acid profile determined with gas chromatography  (n = 218) 

Variable Mean Median SD Minimum Maximum 

Animal performance 

Body weight 617 617 59.7 462 817 

Parity 2.7 3.0 1.38 1.0 7.0 

Days in milk 179 185 85.2 59 567 

Milk yield (kg/d) 24.3 23.9 5.42 11.3 36.8 

FPCM1 (kg/d) 25.9 25.3 5.06 12.3 39.9 

Milk fat content (g/100 g milk) 4.67 4.67 0.659 2.94 6.70 

Milk crude protein content (g/100 g milk) 3.37 3.30 0.406 2.62 5.00 

Milk anhydrous lactose content (g/100 g milk) 4.57 4.59 0.221 3.80 5.03 

DMI2 (kg/d) 16.3 16.1 2.18 10.8 24.5 

Dietary characteristics (in g/kg DM, unless stated otherwise) 

Dry matter (g/kg) 502 502 101.5 306 797 

Ash 77 79 13.5 53 103 

Crude protein 176 172 40.1 82 251 

NDF   380 372 49.9 242 501 

ADF  221 218 25.7 183 291 

ADL  14 14 4.2 6 26 

Crude fat 31 33 6.7 21 46 

Starch 118 79 85.5 5 326 

Sugar 89 70 59.0 21 265 

GE (MJ/kg DM) 18.6 18.6 0.41 17.6 19.3 

NDF to starch ratio 8.2 4.8 15.76 1.0 86.2 

Methane emission 

Production (g/d) 366 365 53.9 234 535 

Yield (g/kg DMI) 22.5 22.6 2.10 17.2 28.0 

Intensity (g/kg FPCM) 14.4 14.4 2.58 8.5 24.8 

Milk fatty acids (g/100 g fatty acids) determined with gas chromatography 

C4:0 3.5 3.5 0.35 1.8 4.4 

C6:0 2.1 2.2 0.21 1.5 2.6 

C8:0 1.1 1.1 0.17 0.6 1.6 

C10:0 2.5 2.4 0.53 1.1 4.1 

C12:0 2.8 2.8 0.69 1.3 4.9 

C14:0 10.4 10.5 1.39 6.7 14.1 

iso C14:0  0.08 0.08 0.017 0.04 0.13 

C14:1 cis-9 0.99 0.97 0.238 0.47 1.95 

C15:0 0.97 0.97 0.168 0.53 1.56 

iso C15:0  0.23 0.23 0.041 0.13 0.37 

anteiso C15:0  0.40 0.40 0.068 0.24 0.62 

C16:0 31.7 31.7 3.35 24.6 42.3 

iso C16:0  0.18 0.18 0.035 0.12 0.34 

C16:1 trans-9 0.21 0.21 0.037 0.13 0.35 

C16:1 cis-9 1.9 1.8 0.38 1.0 3.0 

C17:0 0.65 0.64 0.099 0.44 0.96 

iso C17:0  0.40 0.39 0.060 0.25 0.63 

anteiso C17:0  0.42 0.41 0.056 0.32 0.61 

C17:1 cis-9 0.31 0.30 0.087 0.15 0.69 

      



METHANE PREDICTION – FTIR SPECTRA AND MILK FATTY ACIDS 

 

197 

 

Table 9.2. Continued      

Variable Mean Median SD Minimum Maximum 

C18:0 9.6 9.7 1.61 5.0 15.2 

C18:1 cis-93 21.0 20.7 3.83 12.3 30.5 

C18:1 cis-12 0.18 0.15 0.075 0.07 0.47 

C18:1 cis-13 0.13 0.13 0.037 0.05 0.27 

C18:1 trans-6 0.20 0.19 0.051 0.06 0.42 

C18:1 trans-9 0.15 0.14 0.026 0.08 0.25 

C18:1 trans-10 0.19 0.16 0.091 0.00 0.65 

C18:1 trans-11 0.89 0.88 0.221 0.17 2.18 

C18:1 trans-15 + C18:1 cis-11 0.77 0.75 0.171 0.33 1.23 

C18:2 cis-9, trans-11 0.42 0.40 0.116 0.20 1.29 

C18:2n-6 1.5 1.5 0.24 0.9 2.4 

C18:3n-3 0.47 0.48 0.154 0.14 0.98 

C18:3n-6 0.07 0.07 0.014 0.04 0.13 

C20:0 0.13 0.13 0.019 0.08 0.19 

C20:1 cis-11 0.06 0.06 0.022 0.00 0.12 

C20:2n-6 0.04 0.04 0.007 0.02 0.07 

C20:3n-6 0.07 0.07 0.019 0.03 0.13 

C20:4n-3 0.03 0.03 0.026 0.00 0.13 

C20:4n-6 0.11 0.11 0.024 0.05 0.18 

C20:5n-3 0.06 0.06 0.013 0.03 0.09 

C22:0 0.06 0.06 0.014 0.00 0.11 

C22:5n-3 0.08 0.08 0.019 0.04 0.14 

C24:0 0.04 0.04 0.013 0.00 0.08 

1 Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 × fat (g/100 g milk) + 0.06 × protein (g/100 g milk)] × 

milk yield (kg/d) (CVB, 2012). 

2 Dry matter intake (kg/d). 
     

3 C18:1 cis-9 represents the sum of C18:1 cis-9 and C18:1 trans-12, as these 2 FA could not be separated in the analysis. 

The portion of C18:1 trans-12 is considered to be negligible, as this FA is always present in small amounts. 

 

Model evaluation. All CH4 prediction models, GC-determined MFA-based and 

FTIR-based, were evaluated using 2 methods. Firstly, the mean square error of prediction 

(MSEP), calculated as 

MSEP = ∑(𝑂𝑖 − 𝑃𝑖)2/𝑛

𝑛

𝑖=1

, 

where 𝑛 is the total number of observations, 𝑂𝑖  is the observed value and 𝑃𝑖  is the predicted 

value. The square root of the MSEP (RMSEP) gives an estimate of the overall error of 

prediction and is expressed as percentage of the observed mean or expressed in g/d, g/kg DMI, 

and g/kg FPCM for CH4 production, yield, and intensity, respectively. Secondly, concordance 

correlation coefficient analysis (CCC; Lin, 1989) was performed, where CCC is calculated as 

CCC = 𝑟 ×  𝐶𝑏 , 

where 𝑟 is the correlation coefficient providing a measure of precision, and Cb is a bias correction 

factor providing a measure of accuracy. The Cb variable is calculated as 
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𝐶𝑏 =  
2

[𝑣 + 1 / 𝑣 +  𝜇2]
, 

where 

𝑣 =  
𝑆𝑜

𝑆𝑝

, 

𝜇 =  
�̅�  − �̅�

(𝑆𝑜 × 𝑆𝑝)0.5
, 

where 𝑣 provides a measure of scale shift, while 𝜇 provides a measure of location shift, 𝑆𝑜 and 

𝑆𝑝 are the observed and predicted standard deviations, and �̅� and �̅� are the observed and 

predicted means. A CCC of 0.20 or lower indicates poor predictive ability, between 0.21 and 

0.40 indicates fair predictive ability, between 0.41 and 0.60 indicates moderate predictive ability, 

between 0.61 and 0.80 indicates substantial predictive ability, and between 0.81 and 1.00 indicates 

accurate predictive ability (Altman, 1997). Furthermore, the predictive power of the calibration 

was evaluated through the ratio of performance to deviation (RPD) statistic, which is the ratio 

of the standard deviation of the original data to the standard error of cross validation (Dehareng 

et al., 2012). The RPD values are preferably as high as possible; RPD values between 5 and 10 

are adequate for quality control, process control, and potentially suitable for application 

(Williams et al., 2014). Additionally, PROC CORR in SAS was used to determine the Pearson 

correlation between the MFA predicted CH4 emissions and the FTIR predicted CH4 emissions.  

Cross validation MFA and FTIR. In order to calculate the models performance 

parameters [i.e., root mean square error of cross validation (RMSECV) and the coefficient of 

determination of cross validation (R2CV)], we performed a random cross validation with 10 

splits and 10 iterations as recommended by Rodriguez et al. (2010) for all MFA and FTIR-based 

CH4 prediction models. For each iteration, a model was developed as described above using 9 

splits of the dataset, and the selected model was subsequently evaluated as described above on 

the remaining part of the dataset (i.e., 1 split). With this approach, all observations were used for 

both calibration and validation, and each observation was used for validation exactly once. The 

cross validation performance values represent the average of the 10-fold cross validation.  

This random 10-fold cross validation was also used for selection of the number of LV 

for the FTIR-based CH4 prediction models. The selected number of LV for the final models 

was based on the suggestion by PLS toolbox and visual assessment of the graphs of the root 

means square error of calculation (RMSEC) and RMSECV against the number of LV. The 

number of LV before the RMSECV starts increasing or the RMSECV starts deviating 

considerably from the RMSEC was the number selected.  

 

RESULTS 

The descriptive statistics of animal performance, dietary characteristics, CH4 emission, 

and GC-determined MFA concentrations are presented in Table 9.2. The GC-determined MFA-

based CH4 production, yield, and intensity prediction models are shown in Table 9.3. In the final 

models, considering the odd- and branched-chain fatty acids (OBCFA), CH4 production was 

positively associated with C15:0 (P = 0.002), CH4 yield was positively associated with iso C15:0 
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and C17:0 (P < 0.003), but negatively associated with anteiso C15:0 (P < 0.001), and CH4 intensity 

was positively associated with both iso C15:0 and iso C17:0 (P < 0.001). The relation between 

CH4 emissions and the C18:1, C18:2, C18:3 isomers was generally negative (P < 0.010), with the 

exception of the positive association between CH4 production and C18:2n-6 (P = 0.005). 

Additionally, CH4 production was negatively associated with C24:0 (P = 0.007) and positively 

associated with C20:4n-3 (P = 0.002), and CH4 intensity was positively associated with C22:5n-

3 (P < 0.001). The FTIR-based CH4 prediction models are based on the regression between the 

wavenumbers and CH4 production, yield, or intensity, as illustrated in Figure 9.1. Certain 

wavenumbers were not related with CH4 emissions (i.e., regression vector close to 0), whereas 

other wavenumbers were clearly positively or negatively related with CH4 emissions. Both the 

strength and the direction (positive or negative) of the correlations as well as the correlated 

wavenumbers differed between the different units of CH4 emission (i.e., production, yield, and 

intensity; Figure 9.1).  

The evaluation results (i.e., R2, RMSEP, and CCC analysis) of the GC-determined 

MFA-based and FTIR-based CH4 prediction models are shown in Table 9.4. The observed 

versus predicted CH4 production, yield, and intensity plots of the GC-determined MFA-based 

and FTIR-based CH4 prediction models are shown in Figures 9.2A and 9.3A, respectively. The 

residual (i.e., observed - predicted) versus predicted CH4 production, yield, and intensity plots 

of the GC-determined MFA-based and FTIR-based CH4 prediction models are shown in Figures 

9.2B and 9.3B, respectively. The R2, RMSEP (%), and CCC of the GC-determined MFA-based 

CH4 prediction models ranged from 0.40 to 0.62, from 7.1% to 10.9%, and from 0.59 to 0.77, 

respectively (Table 9.4). The R2, RMSEP (%), and CCC of the FTIR-based CH4 prediction 

models ranged from 0.25 to 0.56, from 8.2% to 11.8%, and from 0.40 to 0.72, respectively. Based 

on the CCC, for both GC-determined MFA and FTIR, the prediction model for CH4 yield had 

the lowest prediction potential (moderate predicting ability for both MFA and FTIR based 

models) and the prediction model for CH4 intensity had the highest prediction potential 

(substantial predicting ability for both MFA and FTIR based models, respectively). The MFA 

and FTIR based prediction models for CH4 production had substantial and moderate predicting 

ability, respectively. The variation in predicted CH4 emission was smaller than that in the 

observed CH4 emission, in particular for CH4 yield, as indicated by the variable v (scale shift; the 

relative difference in standard deviation between predicted and observed values). The scale shift 

was greater for FTIR-based prediction models (v ranged from 1.33 to 2.00) than for GC-

determined MFA-based prediction models (v ranged from 1.26 to 1.55).  

The RPD statistic, that relates the standard error of prediction to the standard deviation 

of the original reference data, was smaller than 1.58 for the GC-determined MFA-based CH4 

prediction models and smaller than 1.39 for the FTIR-based CH4 prediction models (Table 9.4), 

suggesting unsatisfactory prediction ability. The Pearson correlations between GC-determined 

MFA predicted and FTIR predicted CH4 production, CH4 yield, and CH4 intensity were 0.62 (P 

< 0.001), 0.51 (P < 0.001), and 0.69 (P < 0.001), respectively (Figure 9.4). 

The results of the internal cross validation of all GC-determined MFA-based and 

FTIR-based CH4 prediction models are also shown in Table 9.4. The average number of GC-

determined MFA included in the GC-determined MFA internal cross validation models varied 



CHAPTER 9 

200 

 

between 4 and 5, and the average number of LV in the FTIR internal cross validation models 

varied between 4 and 6. The R2CV and the RMSECV of the GC-determined MFA-based CH4 

prediction models ranged from 0.38 to 0.63 and from 8.1% to 11.6%, respectively. The R2CV 

and the RMSECV of the FTIR-based CH4 prediction models ranged from 0.19 to 0.49 and from 

8.6% to 12.8%, respectively.  

 

 

Table 9.3. The prediction model developed for methane production (g/d), yield (g/kg DMI1), and intensity (g/kg 

FPCM2) based on milk fatty acids determined with gas chromatography 

Methane emission Milk fatty acids Estimate SE P-value 

Methane production (g/d) Intercept 507.9 28.66 < 0.001 

 
C15:0 62.9 17.22 0.002 

 
C17:1 cis-9 -240.6 32.29 0.007 

 
C18:1 trans-10 -202.8 47.75 0.010 

 
C18:1 trans-11 -59.3 12.70 < 0.001 

 
C18:2n-6 48.1 14.08 0.005 

 
C18:3n-3 -187.1 24.40 < 0.001 

 
C20:4n-3 326.4 104.30 0.002 

 
C24:0 -816.8 230.89 0.007 

Methane yield (g/kg DMI) Intercept 22.9 1.3 < 0.001 

 
iso C15:0 20.9 4.2 0.003 

 
anteiso C15:0 -9.6 2.3 < 0.001 

 
C17:0 7.6 1.26 < 0.001 

 
C18:1 trans-11 -2.4 0.52 < 0.001 

 
C18:1 trans-15 + C18:1 cis-11 -2.7 0.84 < 0.001 

 
C18:3n-3 -4.4 0.81 < 0.001 

Methane intensity(g/kg FPCM) Intercept 8.0 1.13 < 0.001 

 
iso C15:0 24.8 3.66 < 0.001 

 
iso C17:0 10.3 2.30 < 0.001 

 
C18:1 trans-15 + C18:1 cis-11 -6.6 0.95 < 0.001 

  C22:5n-3 22.7 6.61 < 0.001 

1 Dry matter intake (kg/d) 
    

2 Fat- and protein-corrected milk (kg/d) = [0.337 + 0.116 × fat (g/100 g milk) + 0.06 × protein (g/100 g milk)] × 

milk yield (kg/d) (CVB, 2012). 
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DISCUSSION 

This is the first study evaluating and comparing the CH4 prediction potential of GC-

determined MFA and milk FTIR spectra for CH4 data obtained in climate respiration chambers. 

Data were obtained from dairy cattle experiments where type of forage, forage quality, and forage 

to concentrate ratio were varied, without use of CH4 mitigating additives. Our results indicate 

that both GC-determined MFA-based and FTIR-based CH4 prediction models are robust, and 

that both techniques can potentially be used to evaluate dietary CH4 mitigation strategies and to 

breed for dairy cows with lower CH4 emissions. The GC-determined MFA-based prediction 

models had a higher prediction potential than the FTIR-based models and described a larger 

amount of the observed variation in CH4 emission. 

 

GC-determined MFA-based methane prediction models 

All CH4 prediction models were based on OBCFA and long chain fatty acids (> 16 

carbons). No short- and medium-straight, even-chain fatty acids (≤ 16 carbons) were included 

in any of the GC-determined MFA-based CH4 prediction models, despite the fact that these are 

synthesized de novo in the mammary gland from acetate and β-hydroxybutyrate produced in the 

rumen, which are both reported to be positively associated with CH4 emission (Ellis et al., 2008). 

As reviewed by Van Gastelen and Dijkstra et al. (2016), these short- and medium-straight, even-

chain fatty acids were usually not included in the GC-determined MFA-based CH4 prediction 

equations (n = 6) previously developed, except for C4:0 and C16:0 that were included in 1 

equation each. The association of CH4 emissions with both iso and anteiso OBCFA is in 

agreement with iso OBCFA being more abundant in fibrolytic bacteria and anteiso OBCFA being 

more abundant in amylolytic bacteria (Vlaeminck et al., 2006). Both C15:0 and C17:0 were found 

to be positively associated with CH4 emissions, which is in disagreement with Vlaeminck et al. 

(2006) and Rico et al. (2016), but in agreement with Chilliard et al. (2009), Dijkstra et al. (2011) 

and Van Lingen et al. (2014). The negative relations between C18:1, C18:2, and C18:3 isomers 

in milk and CH4 emission are in agreement with several other studies (e.g., Van Lingen et al., 

2014 and Rico et al., 2016). The associations between CH4 emissions and long-chain fatty acids 

have been reported before (i.e., Chilliard et al., 2009; Rico et al., 2016; Van Gastelen et al., 2017b), 

suggesting that these GC-determined MFA are important in terms of CH4 prediction.  

In general, the prediction potential of the GC-determined MFA-based CH4 prediction 

models appears to be moderate to substantial, with the CCC ranging from 0.40 to 0.77.  The 

observed R2 values ranged from 0.40 to 0.62 and are lower than the ones reported by Dijkstra et 

al. (2011) for CH4 yield, and by Chilliard et al. (2009), Mohammed et al. (2011), and Rico et al. 

(2016) for CH4 production, but of similar magnitude as Van Lingen et al. (2014) and Van 

Gastelen et al. (2017b). The recent research, including the present study, on the relationship 

between GC-determined MFA and CH4 emission gives inconsistent results. Where some studies 

found a clear and strong relation between GC-determined MFA and CH4 emission (e.g., Chilliard 

et al., 2009, Dijkstra et al., 2011), other studies concluded that GC-determined MFA alone might 

not be suitable to develop universal CH4 prediction models (e.g., Mohammed et al., 2011), and 

more recently, Castro-Montoya et al. (2017) concluded that GC-determined MFA are not reliable 

predictors for specific amounts of CH4 emitted by a cow based on the coefficient of 
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determination of validation ranging from 0.18 to 0.41. Even the studies that do find a clear 

relation between GC-determined MFA and CH4 emissions, do not describe similar prediction 

models using the same GC-determined MFA. The discrepancies between these studies have 

been reviewed by Van Gastelen and Dijkstra (2016). There are many factors that can influence 

GC-determined MFA concentrations and therefore the relation between GC-determined MFA 

and CH4 emissions (Gengler et al., 2016), such as dietary composition (e.g., Mohammed et al., 

2011 and Dijkstra et al., 2016) and lactation stage (Vanrobays et al., 2016). Moreover, it should 

be noted that previous analyses were often based on data of cattle fed lipid supplements or feed 

additives, whereas in the present study dietary contrasts included variation in forage to 

concentrate ratio, type of forage, and forage quality only. 

The difference between R2 and R2CV for the GC-determined MFA-based CH4 

prediction models was small (0.07 for CH4 production, 0.02 for CH4 yield, and 0.01 for CH4 

intensity; Table 9.4). These small differences indicate that all GC-determined MFA-based CH4 

prediction models are robust in terms of CH4 prediction. The GC-determined MFA-based CH4 

prediction models were also assessed for robustness in terms of composition of the prediction 

models. All 4 GC-determined MFA that were part of the overall prediction model for CH4 

intensity (Table 9.3) were also selected in the prediction models developed in the 10-fold cross 

validation (results not shown). Three of the 4 GC-determined MFA were included in all 10 

models (i.e., iso C15:0, iso C17:0, and C18:1 trans-15 + C18:1 cis-11), which shows the robustness 

of the GC-determined MFA-based prediction model for CH4 intensity in terms of composition. 

In comparison, all 6 GC-determined MFA of the MFA-based prediction model for CH4 yield 

were selected in the 10-fold cross validation. Although only 1 GC-determined MFA of the GC-

determined MFA-based model (i.e., C18:3n-3) was included in all 10 models of the cross 

validation, the other 5 GC-determined MFA were included in 6 to 8 of the 10 models. However, 

of the 8 GC-determined MFA in MFA-based prediction model for CH4 production, only 5 were 

also selected in the 10-fold cross validation of which 1 GC-determined MFA (i.e., C18:3n-3) was 

included in all 10 models. Moreover, 3 of the GC-determined MFA in the GC-determined MFA-

based CH4 production prediction model were not selected in any of the 10 models of the cross 

validation (i.e., C18:1 trans-10, C18:2n-6, and C20:4n-3). This illustrates that the GC-determined 

MFA-based prediction model for CH4 production in particular is less robust in comparison to 

the GC-determined MFA-based prediction model for CH4 intensity and CH4 yield.   

 

FTIR-based methane prediction models 

In general, the prediction potential of the FTIR-based CH4 prediction models appears 

to be moderate to substantial, with the CCC ranging from 0.40 to 0.72 and the R2 ranging from 

0.25 to 0.56. From the regression vector (Figure 9.1) it appears that bands around 975 cm-1, 

1,075 – 1,150 cm-1, 1,450 cm-1, 1,500 – 1,575 cm-1, 1,750 cm-1, and 2,850 – 3,000 cm-1 are 

important for the prediction of CH4 emissions. The latter region, and the bands around 1,175 

cm-1 and 1,750 cm-1 are commonly used to quantify milk fat content (Safar et al., 1994; Dupuy 

et al., 1996; Yang and Irudayaraj, 2000). Protein is expected to have absorption peaks around 

wavenumbers 1,500 to 1,700 cm-1 (Osborn and Fearn, 1986; McQueen et al., 1995; Dufour et 

al., 1998), with the bands around 1,500 – 1,575 cm-1 coinciding with the amide II band (Etzion 
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et al., 2004). Additionally, the infrared region between 1,000 – 1,100 cm-1 provides information 

on sugar molecules (Hashimoto and Kameoka, 2008). This suggests that the bands of the FTIR 

spectra which are important to determine the milk composition, such as fat and protein content, 

are also important for the prediction of CH4 emission. However, as illustrated by Negussie et al. 

(2017), milk fat and milk protein content have low CH4 prediction potential. This is also 

observed in the present study, in which milk protein and milk fat content were relatively weakly 

associated with CH4 emissions measured in the climate respiration chambers, except for CH4 

intensity which is calculated using milk fat and protein content. Methane yield was correlated 

with fat content (r = 0.17, P = 0.010) and tended to be related to protein content (r = 0.12, P = 

0.066), whereas no significant correlations were observed for CH4 production. However, as 

expected from the similarity in FTIR spectra bands, FTIR predicted CH4 emissions were more 

strongly related to milk protein content (r = 0.11, P = 0.096 for CH4 production; r = 0.32, P < 

0.001 for CH4 yield; r = 0.64, P < 0.001 for CH4 intensity) and to milk fat content (r = -0.11, P 

= 0.094 for CH4 production; r = 0.37, P < 0.001 for CH4 yield; r = 0.13, P = 0.053 for CH4 

intensity).  

The differences between R2 and R2CV for the milk FTIR-based CH4 prediction models 

were 0.06 for CH4 production, 0.06 for CH4 yield, and 0.07 for CH4 intensity (Table 9.4). For 

CH4 yield and intensity, these differences between R2 and R2CV of FTIR-based models are 

somewhat larger than for GC-determined MFA-based models, indicating that GC-determined 

MFA-based models are slightly more robust. The number of studies on FTIR-based CH4 

prediction models is limited. Dehareng et al. (2012) reported FTIR-based prediction models for 

both CH4 production and CH4 intensity (g/kg milk) using the SF6-tracer technique, involving 11 

lactating dairy cows and 3 dietary treatments. The prediction potentials of the FTIR-based 

prediction models reported by Dehareng et al. (2012) were higher than the ones reported in the 

present study, with the R2 ranging from 0.77 to 0.93 and the R2CV ranging from 0.68 to 0.79. 

Additionally, Vanlierde et al. (2015) developed both lactation stage independent (i.e., including 

only FTIR spectra) and lactation stage dependent (i.e., including FTIR spectra and days in milk) 

CH4 prediction models using the SF6-tracer technique involving 142 lactating dairy cows fed a 

wide range of diets. Vanlierde et al. (2015) reported, for the lactation stage independent CH4 

prediction model (i.e., comparable to present study), a strong correlation (R2 = 0.77) between 

observed and predicted CH4 production, which is also higher than that in the present study. 

However, it is important to note that the previous studies developed the FTIR-based CH4 

prediction models using repeated measurements on the same cow. The study of Dehareng et al. 

(2012) involved 11 dairy cows, whereas the prediction models were developed using 77 

observations, and the study of Vanlierde et al. (2015) involved 142 dairy cows, while the 

prediction models were developed using 446 observations. In contrast, the present study 

involved 218 dairy cows and the CH4 prediction models were developed using 1 observation per 

cow only. The repeated measurements of Dehareng et al. (2012) and Vanlierde et al. (2015) could 

have positively influenced the performance parameters of the CH4 prediction models, as 

repeated observations are more closely related than independent observations. This is also 

evident from the evaluation of the lactation stage independent model by Vanlierde et al. (2015) 

on an independent dataset, which showed a substantially decreased correlation (i.e., r = 0.09). 
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Additionally, the large range of CH4 emissions measured using the SF6-tracer technique might 

have contributed to the high prediction potentials found in both studies. In Dehareng et al. 

(2012) CH4 production ranged from 218 to 653 g/d and CH4 intensity ranged from 10.2 to 47.1 

g/kg milk, and in Vanlierde et al. (2015) CH4 production ranged from approximately 180 to 950 

g/d, which are not within the range of CH4 measurements reported in literature (Appuhamy et 

al., 2016).  

 

Comparison of GC-determined MFA-based and FTIR-based methane prediction 

models 

For all CH4 emission units, but particularly for CH4 production and CH4 yield, GC-

determined MFA-based prediction models had a higher prediction potential than the FTIR-

based models. This is evident by the lower RMSEP values and higher R2 and CCC values. The 

higher CCC values are caused by the higher accuracy (Cb) and, in particular, higher precision (r) 

of the GC-determined MFA-based CH4 prediction models (Table 9.4). The relatively larger 

differences between the GC-determined MFA-based and FTIR-based prediction models for 

CH4 production and CH4 yield might be explained by GC-determined MFA being more closely 

linked to the ruminal CH4 production pathways than FTIR spectra. It is known that GC-

determined MFA are related to CH4 production because of the common biochemical pathway 

between CH4 and fatty acids in the rumen (Chilliard et al., 2009; Ellis et al., 2008). As discussed 

above, the FTIR spectra represent the absorbed light by vibrations at several wavelengths of 

many milk components, including GC-determined MFA, urea, citrate, free fatty acids, and fat, 

protein, and lactose content. The latter 3 solid major milk components have a low CH4 

prediction potential (Negussie et al., 2017) and do not seem to be directly linked with ruminal 

CH4 pathways. The relatively small difference between the GC-determined MFA-based and 

FTIR based prediction models for CH4 intensity might be explained by the fact that CH4 

intensity takes milk yield into account, which is directly associated with enteric CH4 production 

by cows and reflected by both the FTIR spectral data and the GC-determined MFA profile, due 

to dilution effects (Dehareng et al., 2012). This is also illustrated by the somewhat stronger 

correlation between GC-determined MFA predicted CH4 intensity and FTIR predicted CH4 

intensity (r = 0.69), compared with the correlation between both methods for CH4 production 

(r = 0.62) and CH4 yield (r = 0.51).  

All CH4 prediction models, both GC-determined MFA-based and FTIR-based, had a 

scale shift which was different from 1 (v). This indicates that there is a change in standard 

deviation between predicted and observed CH4 values for all CH4 prediction models, which is 

also visualized in Figures 9.2 and 9.3 for GC-determined MFA-based and FTIR-based models, 

respectively. The variation in predicted CH4 values was clearly smaller than that in observed CH4 

values for all CH4 prediction models. However, the scale shift was greater for all the FTIR-based 

CH4 prediction models (v ranges from 1.33 to 2.00) than for the GC-determined MFA-based 

CH4 prediction models (v ranges from 1.26 to 1.55), which indicates that GC-determined MFA-

based CH4 prediction models have the ability to describe more of the observed variation in CH4 

emissions compared with FTIR-based prediction models.    
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The RPD values from the present study are lower than the RPD values reported by 

Dehareng et al. (2012). The low RPD values from the present study (i.e., < 1.58 for the GC-

determined MFA based CH4 prediction models and < 1.39 for the FTIR-based CH4 prediction 

models), suggest that the prediction ability of these models can be regarded as poor (Williams et 

al., 2014). According to Williams and Sobering (1993) a RPD value of 2.5 and above would 

suggest that the model is satisfactory for screening. A narrow range in the variability of the 

observations is known to negatively affect predictability of methods of interest (Manley, 2014). 

Indeed, the coefficient of variation (SD relative to mean) is highest for CH4 intensity (17.9%) 

and the models for CH4 intensity had relatively the best RPD. The lowest coefficient of variation 

is for CH4 yield (9.3%) and the models for CH4 yield had the smallest RPD values. Moreover, 

although the respiration chamber method is generally considered to be the golden standard for 

CH4 measurements (Hammond et al., 2016), its reproducibility as compared with many chemical 

analyses for which the RPD statistic was originally developed, is much lower, hence reducing 

prediction accuracy of the prediction methods. The RPD values would suggest that the CH4 

prediction models presented in the current study, both GC-determined MFA-based and FTIR-

based, would not be able to classify dairy cows from populations with low variation in CH4 

emission into low and high CH4 producers. More variation in the dairy population under 

evaluation, such as greater variation in animal genetics, in dietary composition, and in production 

management, could potentially improve the ability of the models to predict CH4 emission 

(Dehareng et al., 2012).  

It is important to note though, that the present study did not take lactation stage into 

account. Although lactation stage is a poor CH4 proxy when considered alone (Negussie et al., 

2017), Vanlierde et al. (2015) demonstrated that lactation stage in combination with FTIR 

improved the CH4 prediction model. Vanlierde et al. (2015) developed both lactation stage-

independent and lactation stage-dependent CH4 prediction models. The average CH4 production 

(g/d) predicted by both models was similar (416 ± 63 g/d). However, in contrast to the lactation 

stage-independent prediction model, the lactation stage-dependent prediction model showed 

biologically meaningful behavior throughout lactation: an increase in CH4 production (g/d) after 

calving up to approximately 100 DIM, followed by a gradual decline towards the end of lactation 

(Vanlierde et al., 2015). This effect of lactation stage could also be important for the MFA-based 

CH4 prediction models, because Vanrobays et al. (2016) clearly demonstrated that the 

correlations between GC-determined MFA and CH4 production in dairy cows vary according to 

lactation stage. We therefore acknowledge that the CH4 prediction models of the present study 

may be improved in terms of predictive power and robustness, when combining GC-determined 

MFA or FTIR with lactation stage. We were, however, not able to confirm this, because 

differences in lactation stage were confounded by differences in dietary composition in the 

dataset used in the present study.  

 

Application of methane prediction models in practice 

In the present study, we show that GC-determined MFA have a higher prediction 

potential for CH4 emissions than FTIR spectra. However, the gas chromatography procedure 

required to obtain the GC-determined MFA profile is unsuitable for routine milk recording, 
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whereas the prediction of CH4 emission using FTIR has the potential for practical high 

throughput application.  

Although the RPD results suggest that  the GC-determined MFA-based and FTIR-

based CH4 prediction models currently have limited applicability, the CCC results demonstrated 

that the models had at least moderate predictive ability. Potential practical applications for these 

models include: (1) as a farm management tool, (2) to evaluate CH4 mitigation strategies, and (3) 

as a tool to breed for dairy cows with lower CH4 emissions (Cottle et al., 2011). When a dietary 

strategy is applied in practice, the proxy for CH4 emission should be able to evaluate whether 

CH4 emission is affected by the new dietary strategy. Therefore, within each study that had at 

least 2 dietary treatments, we evaluated whether the GC-determined MFA-based and FTIR-

based CH4 prediction models were able to estimate the same difference in CH4 emission as 

measured in the climate respiration chambers, by comparing CH4 emission at 2 extreme diets 

(i.e., furthest apart from one another in terms of dietary composition). The results of this 

evaluation are shown in Table 9.5. In general, all CH4 prediction models predicted a difference 

in CH4 emission similar to the climate respiration chambers in terms of trend (i.e., increase or 

decrease). There were only a few exceptions, viz. two for the GC-determined MFA-based and 

six for the FTIR-based CH4 prediction models. Furthermore, the differences in CH4 emission 

between the two diets as estimated by the GC-determined MFA-based CH4 prediction models 

were generally more in line with the observed differences as measured in the climate respiration 

chambers, than that of the FTIR-based CH4 prediction models compared with the difference 

measured in climate respiration chambers. This suggests that the FTIR-based CH4 prediction 

models might have less accuracy relative to the GC-determined MFA-based CH4 prediction 

models, both based on a single FTIR or a single GC measurement to determine the MFA profile 

of a 4-day combined milk sample, to evaluate the effect of forage level and quality on CH4 

emission of dairy cattle. 

Breeding for reduced CH4 emission can be achieved with, for example, improved 

productivity, increased longevity, or shorter calving interval (Bell et al., 2011), but also by 

breeding for actual lower enteric CH4 production (Wall et al., 2010). Several studies have shown 

that CH4 emissions of dairy cows have a genetic component, with heritability ranging from 0.20 

to 0.30 (e.g., De Haas et al., 2011 for predicted CH4 emission based on feed intake; Lassen and 

Løvendahl, 2016 for CH4 emission measured with a portable air-sampler), indicating that 

breeding for dairy cows with lower CH4 emission may be possible. Recently, Vanlierde et al. 

(2016) reported that FTIR can distinguish cows with low or high daily CH4 emissions. Direct 

breeding for lower enteric CH4 production requires CH4 production measurements of a large 

number of individual dairy cows to determine the genetic component of the CH4 phenotype as 

well as to determine the genetic correlations of CH4 emissions with other traits. This can be 

facilitated by the FTIR technique as it can be used routinely to estimate CH4 on commercial 

dairy farms.  

 

CONCLUSIONS 

This study is the first to assess and compare the CH4 emission prediction potential of 

both GC-determined MFA profiles and FTIR spectra based on CH4 emission data obtained in 
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climate respiration chambers and for three different units of CH4 emission, viz. CH4 production, 

yield, and intensity. For both GC-determined MFA and FTIR, the prediction model for CH4 

yield had the lowest prediction potential and the prediction model for CH4 intensity had the 

highest prediction potential. For all CH4 emission units, but particularly for CH4 production and 

yield, GC-determined MFA-based prediction models had a higher prediction potential than the 

FTIR-based models, and GC-determined MFA-based prediction models described a greater part 

of the observed variation in CH4 emission than FTIR-based models. Results indicate that the 

current GC-determined MFA-based and FTIR-based CH4 prediction models have potential, but  

have limited current applicability. Additional CH4 measurements are needed to improve 

prediction models in terms of accuracy and robustness of both GC-determined MFA and FTIR 

spectra for CH4 prediction.  
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INTRODUCTION 

The dairy supply chain is associated with environmental costs (Baskaran et al., 2009), 

with methane (CH4) emission from microbial fermentation of feed in the rumen and, to a smaller 

extent, the large intestines, being both an important contributor to global greenhouse gas (GHG) 

emissions and a potential loss of energy. This makes enteric CH4 emission one of the main 

targets of the GHG mitigation objectives of the dairy cattle sector (Hristov et al., 2013). Diet 

changes and feed additives can be effective strategies to mitigate CH4 emission (e.g., Beauchemin 

et al., 2009; Martin et al., 2010; Hristov et al., 2013), although their effects depend on continuous 

use of the diet or additive as well as an inability of the rumen microbiome to adapt to these 

strategies. Breeding for reduced CH4 emission is another CH4 mitigation strategy with a more 

permanent and cumulative effect (Wall et al., 2010), as several studies have shown that CH4 

emissions of dairy cows have a genetic component, with heritability ranging from 0.20 to 0.30 

(e.g., De Haas et al., 2011; Lassen and Løvendahl, 2016). Dietary mitigation strategies together 

with breeding for reduced CH4 emissions could therefore be effective in reducing the 

environmental impact of the dairy supply chain. 

Accurate and repeatable measurements of CH4 emission from individual dairy cows 

are required to assess the efficacy of possible mitigation strategies as well as to develop protocols 

for genetic selection for cows with reduced CH4 emission (Hammond et al., 2016). Several 

techniques have been developed to measure CH4 emissions from dairy cattle, with varying 

degrees of accuracy and repeatability [see Chapter 1 and Hammond et al. (2016)], but routine 

individual-animal measurements on a large scale are difficult to obtain (Pickering et al., 2015). 

Therefore, identifying proxies that are correlated with CH4 emission but that are easy and 

relatively low cost to record on a large scale, is a much-needed alternative (Negussie et al., 2017). 

The research described in the present PhD thesis aimed to explore the possibility to develop a 

proxy, or combine a number of potential proxies, for CH4 emission that can be measured in milk 

of dairy cows.  

 

PROXIES FOR METHANE EMISSION IN MILK 

As described in Chapter 1, a proxy for CH4 emission of dairy cows is an indicator or 

indirect trait that is correlated with enteric CH4 production. There are several criteria that a proxy 

needs to adhere to, in order to actually be valuable, as described in Chapter 1. From a practical 

point of view, a proxy should score satisfactory on the attributes simplicity, costs, invasiveness, 

and throughput. Additionally, from a technical point of view, it is important that a proxy is both 

accurate and precise when estimating CH4 emission. It should however be noted that, despite 

the importance of precision, studies in general only focus the accuracy of the proxies for CH4 

emission without considering precision (e.g., Negussie et al., 2017). Additionally, the definition 

of a weak, moderate, and strong relation varies considerably in literature and some studies do 

not even define the R2 values to differentiate between weak, moderate, and strong relation (e.g., 

Negussie et al., 2017). Therefore, to avoid confusion, in the current chapter, a relationship is 

considered to be weak when the R2 is smaller than 0.30, moderate when the R2 is between 0.30 

and 0.70, and strong when the R2 is larger than 0.70.  
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In this thesis, four potential proxies in milk for CH4 emissions of dairy cows were 

investigated: (1) milk fatty acids (MFA), (2) volatile metabolites, (3) non-volatile metabolites, and 

(4) Fourier-transform infrared (FTIR) spectra. The MFA were considered to be the basis of the 

PhD work described in this thesis, because previous studies (e.g., Chilliard et al., 2009; Dijkstra 

et al., 2011) demonstrated that MFA hold potential to predict CH4 emission of dairy cows. 

Besides MFA, milk also contains water, carbohydrates, proteins, vitamins, and minerals 

(Sundekilde et al., 2011). Stage of lactation, seasonal changes, genetic variability, health status of 

the cow, and nutrition have been shown to cause changes in major milk components (Walker et 

al., 2004; Heck et al., 2009), non-volatile metabolites (Klein et al., 2010), and volatile metabolites 

(Hettinga et al., 2008). It was therefore hypothesized that the addition of such other metabolites 

in a MFA-based CH4 prediction equation would enhance its predictive power and thus would 

lead to a better proxy in milk for CH4 emission of dairy cows. The CH4 prediction potential of 

volatile and non-volatile metabolites in milk, both alone and in combination with MFA was 

therefore investigated. However, the principal method to determine the MFA profile (i.e., gas 

chromatography), the volatile metabolites (i.e., gas chromatography-mass spectroscopy), and 

non-volatile metabolites (i.e., nuclear magnetic resonance) are unsuitable for routine analysis. 

For MFA, this has led to the application of FTIR. Therefore, also the CH4 prediction potential 

of FTIR was investigated.  

Negussie et al. (2017) reviewed MFA in terms of their attributes with respect to their 

use as proxy for CH4 emission of dairy cows. According to these authors, MFA have a medium 

score for simplicity because it involves gas-chromatography measurements, involves a medium 

level of costs, and represents a non-invasive proxy with a medium throughput. Additionally, 

Negussie et al. (2017) concluded that the level of accuracy (e.g., R2) of MFA-based proxies for 

CH4 emissions varied between medium and high. This is what was also found in Chapter 2, in 

which the recent research that related CH4 emission with the MFA profile was reviewed. The 

predictive power of MFA-based CH4 proxies ranged from 0.47 (Van Lingen et al., 2014) to 0.95 

(Chilliard et al., 2009). In Chapter 5, in which MFA-based CH4 proxies were developed for dairy 

cows fed roughage-based diets with varying levels of corn silage and grass silage, the adjusted R2 

of the MFA-based CH4 proxies ranged from 0.47 for CH4 intensity to 0.63 for CH4 production. 

Additionally, the adjusted R2 of the MFA-based CH4 proxies for dairy cows fed a wide range of 

roughage-based diets, as described in Chapter 6, varied from 0.38 for CH4 yield to 0.75 for CH4 

intensity. This pattern was also observed in Chapter 9 involving more observations and an even 

wider range of roughage-based diets. The adjusted R2 in the latter chapter ranged from 0.40 for 

CH4 yield to 0.62 for CH4 intensity. The variation in accuracy with which the MFA can predict 

CH4 emission, partially results from the different units in which CH4 emission is expressed, as 

discussed in Chapter 2. Furthermore, there are many factors that can influence the relationship 

between MFA and CH4 emissions (Gengler et al., 2016), such as dietary composition (e.g., 

Mohammed et al., 2011; Dijkstra et al., 2016) and lactation stage (Vanrobays et al., 2016), causing 

variable results. 

Negussie et al. (2017) also reviewed FTIR in terms of its attributes and according to 

these authors, FTIR is simple to measure, involves a low level of costs, and represents a non-

invasive proxy with a high throughput. Additionally, Negussie et al. (2017) concluded the level 
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of accuracy (e.g., R2) of FTIR to directly predict CH4 emissions (i.e., not via MFA) is high. The 

results presented in this thesis do, however, not support these findings. As stated in the review 

(Chapter 2), the major advantages of FTIR to predict CH4 emission indeed include its simplicity 

and potential practical application on a large scale. However, disadvantages include the inability 

to predict important MFA for CH4 prediction (as illustrated by Van Lingen et al., 2014), and the 

moderate predictive power for directly estimating CH4 emission (based on Dehareng et al., 2012 

and Vanlierde et al., 2015). Also in Chapter 9, describing FTIR-based CH4 proxies, the adjusted 

R2 ranged from 0.25 for CH4 yield to 0.56 for CH4 intensity. Thus, based on the work described 

in this thesis, FTIR is a good proxy from a practical point of view, but still lacks accuracy to be 

a good proxy from a technical point of view.  

Negussie et al. (2017) did not review the attributes of the volatile metabolites and non-

volatile metabolites in milk. The techniques required to determine the volatile metabolites (i.e., 

gas chromatography-mass spectroscopy) and non-volatile metabolites (i.e., nuclear magnetic 

resonance) in milk are not suitable for large-scale measurements and would score low in terms 

of simplicity and throughput. Additionally, the costs involved are medium to high, whereas both 

proxies can be considered non-invasive. It should be noted though, that rapid developments in 

metabolomics may offer tests and assay methodologies on milk samples that will provide a more 

practical tool for developing proxies for CH4 emissions in dairy cattle in the future. However, at 

present, both volatile and non-volatile metabolites would not be interesting CH4 proxies from a 

practical point of view. The results of Chapters 5 indicate that including volatile metabolites 

(CH4 intensity only) and non-volatile metabolites increases the CH4 emission prediction 

potential, whereas the results of Chapter 6 indicate that it is not worthwhile to further pursue 

research on the ability of both volatile and non-volatile metabolites in milk to estimate CH4 

emission of dairy cows, because of low adjusted R2 values relative to the MFA profile.  

Overall, the results presented in this thesis indicate that, of all the 4 potential CH4 

proxies in milk investigated (i.e., MFA, volatile metabolites, non-volatile metabolites, and FTIR), 

the MFA profile provides, thus far, the most accurate and precise proxy for CH4 emission of 

dairy cows, irrespectively of the unit in which CH4 emission is expressed. Also the FTIR spectra, 

although less accurate and precise than MFA, can serve as a proxy for CH4 emission of dairy 

cows, especially because of its great practical application potential and, hence, repeated 

measurements. Thus both techniques, MFA and FTIR, hold potential to estimate CH4 emissions 

of dairy cows.  

 

 



GENERAL DISCUSSION 

 

221 

 

Textbox 3. The statistical approach used 

Multivariate models were developed using a stepwise procedure (PROC 

GLMSELECT of SAS) with CH4 emission [i.e., production in g/d, yield in g/kg dry matter 

intake (DMI), and intensity in g/kg fat- and protein-corrected milk (FPCM)] as the 

independent variable and stepwise selection of lactation characteristics. The significance 

level for a variable to enter or stay in the model was 0.01 and 0.05, respectively. The final 

models were selected based on the minimum Akaike’s information criterion statistic, and 

subsequently evaluated in PROC REG in terms of multicollinearity (variation inflation 

factor > 10), but no multicollinearity was observed. The final models were then evaluated 

with the concordance correlation coefficient (CCC; Lin, 1989) analysis. The new CH4 

prediction models developed in the general discussion are described in Table 10.1. The 

evaluation results (i.e., R2 and CCC analysis) of these new developed CH4 prediction models, 

as well as of the MFA- and FTIR-based prediction models from Chapter 9, are shown in 

Table 10.2. 

The statistics described above, follow an empirical approach. When developing a 

CH4 prediction model using a mechanistic approach, one would first determine which 

specific parameters would be of interest and subsequently start modelling the processes that 

occur to link the parameters of interest to CH4 emission. However, in this research, the 

empirical approach was used, in which all parameters were related to CH4 emission. This 

approach was chosen for two reasons: (1) for most MFA (e.g., short- and medium-straight 

even-chain MFA, odd- and branched-chain MFA, and long chain MFA) one can 

theoretically describe the processes that link these MFA to CH4 emission, but it does not 

necessarily mean that these MFA are related with CH4 emission, and (2) the main interest 

was to develop CH4 prediction models with the highest prediction potential, describing as 

much of the variation in CH4 emission as possible. This could only be achieved using an 

empirical approach.  

As reported above, the significance level for a variable to enter or stay in the model 

was 0.01 and 0.05 and reflect an arbitrary decision. Initially, in Chapter 5, the significance 

levels of 0.05 and 0.10 were used, which represent the levels often used by others to indicate 

significant relationships and tendencies. However, it was decided to adjust these levels for 

two reasons: (1) developing models with more selection variables than observations 

increases the chance of overfitting in the CH4 prediction model, and (2) lower significance 

levels would result in more robust CH4 prediction models. To illustrate, combining MFA 

with lactation characteristics for CH4 production resulted in a model with 7 variables (Table 

10.1) and an R2 of 0.72 (Table 10.2). However, when applying the significance levels of 0.05 

and 0.10, it resulted in a model with 10 variables and an R2 of 0.73. Additionally, when using 

no predetermined significance level for a variable to enter or stay in the model (i.e., default 

of SAS is 0.15 for a variable to enter and stay in the model), it resulted in a model with 15 

variables and an R2 of 0.76. Thus, less strict significance levels results in more variables to 

be included in the model with explaining only a limited amount of extra variation in CH4 

emission.  
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Table 10.2. The coefficient of determination (R2) and concordance correlation coefficient (CCC) analysis of the 

prediction equations for methane emission 

 Item Adjusted R2 CCC(1) r(2) Cb
(3) v(4) µ(5) 

MFA(6) (Chapter 9) 

Methane production(7) 0.54 0.72 0.75 0.96 1.34 0.00 

Methane yield(8) 0.40 0.59 0.64 0.91 1.55 0.00 

Methane intensity(9) 0.62 0.77 0.79 0.97 1.26 0.00 

FTIR(10) spectra (Chapter 9) 

Methane production 0.36 0.52 0.60 0.88 1.68 0.00 

Methane yield 0.25 0.40 0.50 0.80 2.00 0.00 

Methane intensity 0.56 0.72 0.75 0.96 1.33 0.00 

Lactation characteristics 

Methane production 0.43 0.61 0.66 0.92 1.50 -0.01 

Methane yield 0.09 0.18 0.30 0.60 3.01 0.03 

Methane intensity 0.33 0.50 0.58 0.87 1.73 -0.01 

Milk composition 

Methane production n.a.(11) n.a. n.a. n.a. n.a. n.a. 

Methane yield 0.05 0.12 0.23 0.49 3.78 0.02 

Methane intensity 0.09 0.17 0.30 0.56 3.23 -0.04 

MFA selected according to Soyeurt et al. (2011) 

Methane production 0.35 0.52 0.59 0.88 1.68 0.00 

Methane yield 0.20 0.35 0.46 0.76 2.16 0.00 

Methane intensity 0.39 0.57 0.63 0.90 1.58 0.00 

MFA selected according to Rutten et al. (2009) 

Methane production 0.28 0.44 0.53 0.83 1.87 0.00 

Methane yield 0.12 0.23 0.36 0.64 2.79 0.00 

Methane intensity 0.24 0.39 0.49 0.79 2.03 0.00 

Dietary composition 

Methane production 0.18 0.30 0.42 0.72 2.37 0.00 

Methane yield 0.24 0.39 0.50 0.80 2.02 0.00 

Methane intensity 0.29 0.46 0.55 0.84 1.82 0.00 

Lactation characteristics combined with MFA 

Methane production 0.72 0.84 0.85 0.99 1.17 -0.02 

Methane yield 0.44 0.62 0.67 0.93 1.47 -0.01 

Methane intensity 0.71 0.84 0.85 0.99 1.17 0.00 

Dietary composition combined with MFA 

Methane production(12) 0.54 0.72 0.75 0.96 1.34 0.00 

Methane yield 0.39 0.58 0.64 0.91 1.56 0.00 

Methane intensity 0.66 0.81 0.82 0.98 1.22 0.00 

Lactation characteristics combined with dietary composition and MFA 

Methane production(13) 0.72 0.84 0.85 0.99 1.17 -0.02 

Methane yield 0.48 0.66 0.70 0.94 1.42 -0.01 

Methane intensity 0.70 0.83 0.84 0.99 1.19 -0.01 

(1) Concordance correlation coefficient, where CCC = r × Cb. 

(2) Pearson correlation coefficient; a measure of precision. 

(3) Bias correction factor; a measure of accuracy. 

(4) Scale shift; change in standard deviation between predicted and observed methane emission.  

(5) Location shift; if positive under prediction, if negative over prediction. 

(6) Milk fatty acids in g/100 g FA. 
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Table 10.2. Continued 

(7) Production in g methane per day. 

(8) Yield in g methane per kg dry matter intake. 

(9) Intensity in g methane per kg fat- and protein-corrected milk (FPCM (kg/d) = [0.337 + 0.116 × fat (g/100 g milk) 

+ 0.06 × protein (g/100 g milk)] × milk yield (kg/d); CVB, 2012). 
(10) Fourier transform infrared spectra. 

(11) Not applicable, because no model was obtained.  

(12) Prediction model and evaluation results similar to model for methane production using only MFA (Chapter 9). 

(13) Prediction model and evaluation results similar to model for methane production combing lactation characteristics 

and MFA.  

  

LACTATION CHARACTERISTICS AS PROXY FOR METHANE EMISSION 

Although information on lactation characteristics of individual cows is generally easily 

available because of the milk recording system, not much research is available investigating the 

CH4 prediction potential of these lactation characteristics (i.e., milk yield and milk composition, 

including fat, protein, and lactose content). Moraes et al. (2014) identified milk fat content as a 

key explanatory variable for prediction of CH4 emissions of dairy cattle. In contrast, Van Lingen 

et al. (2014) developed prediction equations for both CH4 yield and CH4 intensity of dairy cattle, 

and milk fat content and milk protein content were not selected in any of the prediction models. 

More recently, Negussie et al. (2017) reviewed the suitability of lactation parameters as CH4 

proxy of dairy cows and concluded that both milk yield and composition are simple to measure, 

involve low costs, are non-invasive, and have a high throughput. Milk yield was considered to 

have a medium to high accuracy in terms of CH4 prediction, whereas that of major milk 

components was, however, considered to be low to medium (Negussie et al., 2017). To 

investigate the CH4 prediction potential of only lactation characteristics and whether both MFA 

and FTIR have an added value in terms of CH4 prediction potential relative to lactation 

characteristics, the same dataset as in Chapter 9 was used. The lactation characteristics include 

parity, days in milk (DIM), milk yield (kg/d), milk protein content (g/100 g milk), milk fat 

content (g/100 g milk), milk lactose content (g/100 g milk), milk urea content (mg/dL), and 

somatic cell count [natural logarithm; LN(SCC)]. All lactation characteristics were considered 

as continuous variables, with the exception of parity. Parity was considered as a class variable, 

with primiparous cows as one class, cows in second lactation as a second class, and cows in third 

or higher lactation as a third class. All of these lactation characteristics were used as independent 

variables for CH4 production and CH4 yield, but only parity, DIM, milk lactose content, milk 

urea content, and LN(SCC) for CH4 intensity (other parameters were excluded because they are 

part of the FPCM calculation; CVB, 2012). The statistical method applied was similar to that of 

Chapter 9 and is shortly described in Textbox 3. 

The CH4 prediction models obtained when using only lactation characteristics as 

selection parameters had an adjusted R2 ranging from 0.09 to 0.43 and a CCC ranging from 0.18 

to 0.61 (Table 10.2). The model for CH4 yield (g/kg DMI) performed the poorest and the model 

for CH4 production (g/d) performed the best, as evident by the lowest and highest adjusted R2 

and CCC values, respectively. For both CH4 yield and CH4 intensity, the lactation characteristics-

based prediction models performed clearly less satisfactory (i.e., lower adjusted R2 and CCC 
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values) than the MFA- and FTIR-based prediction models. This indicates that both MFA and 

FTIR have a greater prediction potential for CH4 yield and CH4 intensity than lactation 

characteristics. This also holds for the MFA-based prediction model for CH4 production, which 

performed better than the lactation characteristics. The only exception was the lactation 

characteristics-based model for CH4 production which performed better than the FTIR-based 

model for CH4 production, as evident by the higher adjusted R2 and CCC values. Additionally, 

in comparison with the FTIR based model for CH4 production, the r and Cb values of the 

lactation based model are higher, indicating a more precise and accurate prediction of CH4 

production. Moreover, the scale shift (v) is smaller, indicating that the lactation characteristics-

based model can describe more of the observed variation in CH4 production than the FTIR-

based prediction model.   

Three lactation characteristics were included in the model for CH4 production, namely 

DIM, milk yield, and protein content, all with a positive slope (Table 10.2). Also in the prediction 

models for CH4 yield and CH4 intensity, DIM was included as explanatory variable. The positive 

association between CH4 production and milk yield was expected. A higher milk yield is often 

associated with a higher DMI (Garnsworthy et al., 2012), and a higher DMI is often associated 

with a higher daily CH4 production (e.g., Hristov et al., 2013; Bell et al., 2016; Charmley et al., 

2016). Lactation stage (i.e., DIM) can also be related to CH4 emissions from dairy cattle, based 

on a rough approximation of milk yield during lactation (Garnsworthy et al., 2012). However, 

milk yield increases after calving up to approximately 100 DIM, followed by a gradual decline 

toward the end of lactation, whereas the positive relationship found between DIM and CH4 

emission suggests that CH4 emission is constantly increasing during lactation. Therefore, it seems 

that the relationship between DIM and CH4 emission is a statistical rather than a biological 

relationship. Additionally, milk urea content was included in the prediction models for CH4 yield 

with a positive slope. No biological explanation can be given for this association, and no other 

study reported a relation between CH4 emission and milk urea content before.   

The comparison made above is actually biased, because MFA and FTIR represent only 

milk composition and no other lactation parameters (parity, DIM and milk production). To 

examine whether MFA and FTIR have an added value relative to milk composition only, the 

same analysis was performed again, but only using milk composition [i.e., fat, protein, lactose, 

and urea content, and LN(SCC)]. Especially for FTIR this comparison is of interest, because it 

will show whether the complete FTIR spectra hold more information than only the major milk 

components estimated by FTIR. As illustrated in Table 10.1, no model could be obtained for 

CH4 production. The significance level for a variable to enter the model was 0.01, whereas the 

significance level of the strongest correlation between a milk composition parameter [i.e., 

LN(SCC)] and CH4 production was 0.072. The milk composition-based prediction models for 

CH4 yield and CH4 intensity performed worse than the MFA- and FTIR-based prediction 

models, as evident by the lower adjusted R2 and CCC values. The results with respect to the CH4 

prediction potential of lactation characteristics, indicate (1) that MFA have a greater CH4 

prediction potential than milk composition, (2) that milk composition has a smaller CH4 

prediction potential than milk composition together with parity, DIM, and milk yield, and (3) 

that the complete FTIR spectrum holds more information and subsequently has a greater CH4 
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prediction potential than only milk composition estimated by FTIR. The latter might be due to 

the fact that the FTIR spectrum combines the information of milk composition (i.e., major milk 

components), a selection of certain MFA, and other milk composition characteristics.  

 

MILK FATTY ACIDS – INFRARED MEASUREMENTS AND UNITS 

As indicated in Chapter 2, gas chromatography was until recently the principal method 

for MFA analysis. However, as gas chromatography is unsuitable for routine milk recording 

(Soyeurt et al., 2011), FTIR is also often applied to quantify MFA concentrations. Several studies 

investigated the potential use of FTIR to predict MFA composition of dairy cattle [e.g., Rutten 

et al. (2009) and Soyeurt et al. (2011)] and confirmed that FTIR can accurately predict several 

individual, particular higher abundant, MFA and groups of MFA, whereas a number of lower 

abundant MFA cannot be predicted by FTIR. In line with this, Fleming et al. (2017) reported 

recently that MFA appearing in negligible amounts did not predict well enough with FTIR to be 

useful. According to Rutten et al. (2009), individual MFA should have an average concentration 

of ≥ 2.45 g/100 g of FA in order to be predictable with reasonable accuracy by FTIR (i.e., C4:0, 

C10:0, C12:0, C14:0, C16:0, C18:0, and C18:1 cis-9). More recently, Soyeurt et al. (2011) reported 

that C4:0, C6:0, C8:0, C10:0, C12:0, C14:0, C16:0, C18:0, ∑trans-C18:1, C18:1 cis-9, ∑cis-C18:1, 

and some groups of MFA can be sufficiently accurately determined by FTIR. Similar to Van 

Lingen et al. (2014), the use of FTIR to estimate CH4 emission of dairy cows by developing 

prediction models with a restricted selection of MFA based on the results of Rutten et al. (2009) 

and Soyeurt et al. (2011) was investigated, using the same statistical approach as described in 

Textbox 3.  

The prediction model for CH4 production (g/d) decreased in predictive power with a 

adjusted R2 = 0.54 and CCC = 0.72 when all MFA were used (Chapter 9) to an adjusted R2 = 

0.35 and CCC = 0.52 when the MFA accurately determined by FTIR according to Soyeurt et al. 

(2011) were used, and to an adjusted R2 = 0.28 and CCC = 0.44 when the MFA accurately 

determined by FTIR according to Rutten et al. (2009) were used. Similar patterns (i.e., decrease 

in adjusted R2 and CCC values when using a more restricted number of MFA) were observed 

for CH4 yield and CH4 intensity (Table 10.2). These results are in agreement the results of Van 

Lingen et al. (2014), who also observed a decrease in predictive power when developing models 

with a restricted selection of MFA. The results thus indicate that, compared with gas 

chromatography, the performance of FTIR limits the potential for predicting CH4 emission of 

dairy cows based on the MFA profile, because several MFA with lower concentration that appear 

in various CH4 prediction models published previously (e.g., Chilliard et al., 2009; Dijkstra et al., 

2011; Rico et al., 2016) are not available when the MFA profile is determined using FTIR. 

An important note should also be made with respect the unit of the MFA. The work 

presented in this PhD thesis focussed on the MFA profile, also called MFA proportions, which 

refers to g/100 g of FA. One can imagine that when the proportion of a specific MFA increases, 

the proportion of another MFA (or multiple MFA) will decrease. This is an inherent 

characteristic of working with proportions. Therefore, in the previous chapters (i.e., 5, 6, and 9), 

the CH4 prediction models were checked for multicollinearity. Multicollinearity refers to a 

phenomenon in which two or more of the variables in the CH4 prediction models are correlated, 



GENERAL DISCUSSION 

 

229 

 

and can result in substantial changes in the predicted CH4 emission in response to only small 

changes in the variables themselves. When working with proportions, there is an increased risk 

for multicollinearity. Multicollinearity was not observed in any of the developed MFA-based 

CH4 prediction models in Chapters 5, 6, and 9. However, to investigate if the unit in which MFA 

are expressed affects the CH4 prediction potential of MFA, MFA production (g MFA produced 

per day) and MFA portrait (g MFA per kg milk) were also considered. MFA production was 

calculated by dividing fat yield (g/d) with 100 and subsequently multiplying this with the MFA 

proportion, assuming that 100% of milk fat content consists of fatty acids. The MFA portrait 

was calculated by multiplying the milk fat content in g/kg milk with the MFA proportion and 

subsequently dividing this with 100. These calculations and subsequent development of CH4 

prediction models, provides an indication whether it might be better to work with a different 

unit than MFA profile. The adjusted R2 of the MFA production-based prediction models were 

0.18 for CH4 production, 0.04 for CH4 yield, and 0.16 for CH4 intensity (CCC results not shown). 

These low adjusted R2 values, relative to those of the MFA proportion-based CH4 prediction 

models from Chapter 9 (see also Table 10.1), indicate that the production of MFA is less suitable 

for predicting CH4 emission from dairy cows than MFA proportions. The adjusted R2 of the 

MFA portrait-based prediction models were 0.53 for CH4 production, 0.39 for CH4 yield, and 

0.61 for CH4 intensity (CCC results not shown). These adjusted R2 values are close the R2 values 

reported for the MFA proportions (Table 10.2). These results indicate that both MFA 

proportions and portrait can better reflect the ratio between different processes occurring in the 

rumen, such as biohydrogenation and VFA production, than daily MFA production. 

Additionally, MFA production depends on milk yield, which has moderate potential as a proxy 

for CH4 emission (Negussie et al., 2017). Thus, when developing MFA-based CH4 prediction 

models, it is recommended to use MFA profile (i.e., proportions in g/100 g of FA) or MFA 

portrait (i.e., in g/kg milk), but always in combination with a multicollinearity test.   

 

COMBINATION OF PROXIES 

Although the results of this thesis show that both MFA and FTIR have the ability as a 

single proxy for CH4 emission of dairy cows, there may be advantages in using two or more 

proxies in combination. According to Negussie et al. (2017), combining proxies might be more 

appropriate because (1) the proxies may describe independent sources of variation in CH4 

emissions, and (2) one proxy may allow correction for shortcomings in the way the other proxy 

describes CH4 emissions. A clear example of the improvement when combining proxies is the 

study of Mohammed et al. (2011), who used measurements from the rumen (i.e., VFA, pH, and 

protozoa counts), feed intake (i.e., total DMI, forage DMI, and FA intake), and production 

parameters (i.e., milk yield and composition) in combination with MFA to develop CH4 

prediction models. The results of that study indicate that MFA predict CH4 emission better (R2 

= 0.74) compared with only rumen variables, only feed intake, and only production parameters 

(R2 < 0.58). However, combining MFA with feed intake and production parameters resulted in 

a model R2 of 0.83, and combining MFA with feed intake, production, and rumen-related 

parameters resulted in a model R2 of 0.90.  
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Similarly, although with different selection parameters, Vanlierde et al. (2015) took 

lactation stage into account when developing prediction equations, because of changing CH4 

emission prediction coefficients during lactation. Vanlierde et al. (2015) developed lactation 

stage-independent (i.e., including only FTIR spectra) and lactation stage-dependent (i.e., 

including FTIR and DIM to describe lactation stage) CH4 prediction equations. The average 

CH4 production (g/d) predicted by both models was similar (416 ± 63 g/d). However, in 

contrast to the lactation stage-independent prediction equation, the lactation stage-dependent 

prediction equation showed biologically meaningful CH4 predictions throughout lactation, 

namely an increase in CH4 production (g/d) after calving up to approximately 100 DIM, 

followed by a gradual decline toward the end of lactation (Vanlierde et al., 2015). These results 

indicate the importance of combining FTIR with lactation stage to improve the prediction of 

CH4 emission in dairy cows. As shown in Table 10.1, DIM was an important explanatory variable 

in this thesis and perhaps also for Vanlierde et al. (2015). Hence, it would have been of great 

value if Vanlierde et al. (2015) also developed a CH4 prediction model with only DIM to describe 

lactation stage as explanatory variable, because that would give an indication whether FTIR 

spectra have an added value relative to a simple measurable variable, such as DIM.     

The importance of combining FTIR with lactation stage, as illustrated van Vanlierde et 

al. (2015), might also be important for further development of MFA-based CH4 prediction 

models. Vanrobays et al. (2016) showed that correlations between CH4 production (g/d) and 

MFA vary according to the lactation stage of the cow, a fact that is still often ignored when trying 

to predict CH4 emission from dairy cows from the MFA profile. Based on the results of 

Mohammed et al. (2011) and Vanrobays et al. (2016), as well as the finding of Negussie et al. 

(2017), it was investigated whether the combination of MFA with lactation characteristics or 

dietary composition would improve the CH4 prediction potential relative to only MFA. Because 

of the extreme complexity of combining FTIR spectra with other parameters, the principle of 

combining proxies was only investigated in combination with MFA to see whether this concept 

can improve CH4 prediction.  

The same statistical approach as before was applied, which is shortly described in 

Textbox 3. Three different sets of parameters were used: (1) MFA in g/100 g FA, (2) lactation 

characteristics including parity, DIM, milk yield (kg/d), fat, protein, and lactose content (all in 

g/100 g milk), urea-content (mg/dL), and LN(SCC), (3) dietary composition including DM 

(g/kg), ash, NDF, ADL, ADF, fat, starch (all in g/kg DM), gross energy (MJ/kg DM), and the 

NDF-to-starch ratio (dimensionless). Please note that DMI was not included as variable in 

combination with dietary composition, because the relation between DMI and CH4 emissions 

has been described many times before (e.g., Hristov et al., 2013; Charmley et al., 2016; Rico et 

al., 2016).  Methane prediction models were developed using the three datasets alone, combining 

the MFA dataset with either dataset 2 (lactation characteristics) or dataset 3 (dietary 

composition), and combining the MFA dataset with both datasets (lactation characteristics and 

dietary composition).  

The CH4 prediction models using only MFA or only lactation characteristics will not 

be discussed in detail, as these have already been discussed in Chapter 9 (i.e., MFA) and in an 

earlier section of the general discussion (i.e., lactation characteristics). When considering only 



GENERAL DISCUSSION 

 

231 

 

the dietary composition as selection parameters, dietary fat content is included in all three CH4 

prediction models (Table 10.1). The negative association between dietary fat content and CH4 

emission is as expected, because fat is known to reduce CH4 emissions via multiple mechanisms 

as described in Chapter 7. A positive association is found between crude protein content and 

CH4 yield. This is in agreement with Ellis et al. (2009), who observed a positive relationship 

between dietary crude protein content and CH4 emission of beef cattle, but contrary to Dijkstra 

et al. (2011). The latter authors concluded that mitigation options aiming to reduce urinary 

nitrogen excretion, such as decreased nitrogen intake (i.e., based on CP intake), may result in 

elevated CH4 emission levels, suggesting a negative association. Additionally, the positive 

association between ADF content and CH4 yield is according to expectation that fermentation 

of fiber favors the ruminal production of acetate, which increases H2 availability. Furthermore, 

the negative association between gross energy content and CH4 intensity is most likely related to 

the positive association between gross energy and milk yield. Also the negative association 

between dietary starch content and CH4 intensity was as expected, because the fermentation of 

starch favors the ruminal production of propionate at the expense of acetate and decreases 

rumen pH, which reduces H2 availability and activity of rumen methanogens (Van Kessel and 

Russell, 1996; Hook et al., 2011). 

Interestingly, despite the expected associations found between the dietary composition 

and CH4 emissions, the CH4 prediction potential of the dietary composition is rather limited.  

Both the adjusted R2 values and the CCC values of the dietary composition-based CH4 prediction 

models are lower than the ones from the MFA-based CH4 prediction models (Table 10.2). Also, 

dietary composition seems to have a lower CH4 prediction potential than lactation 

characteristics, with the exception of CH4 yield. This was unexpected, because enteric CH4 

production is a natural by-product arising from microbial fermentation of feed within the rumen 

(Beauchemin et al., 2009). Possible reasons for not finding the expected CH4 prediction potential 

might be the variation in the dietary composition, which was rather limited. All diets were 

roughage-based (> 700 g/kg DM) and the dietary treatments were limited to the roughage part 

of the diet (e.g., different qualities of grass herbage, grass silage, and corn silage). To illustrate, 

NDF content of the diets ranged from 242 to 501 g/kg DM and the starch content of the diets 

ranged from 5 to 326 g/kg DM (see also Table 9.2 of Chapter 9). Perhaps the CH4 prediction 

potential of dietary composition would have been greater if the dataset would contain more 

dietary variation, for example different levels of concentrates, facilitating a larger range in dietary 

NDF and starch content. Furthermore, although the CH4 prediction models may include dietary 

NDF and starch content, it does not take all characteristics of feed into account. The impact of 

feed on CH4 emission, namely, is not only based on the dietary composition. According to 

Beauchemin et al. (2009), the quantity of CH4 produced by an animal depends on many 

interacting factors that include: carbohydrate intake, chemical composition of the carbohydrate 

sources, retention time in the rumen, rate of ruminal fermentation, and rate of methanogenesis. 

Another reason for the low CH4 prediction potential of dietary composition, might be related to 

other sources of variation. Cows receiving the exact same dietary treatment and thus dietary 

composition, showed considerable variation in CH4 emissions. For example, the control diet of 

the experiment described in Chapter 7 has a NDF content of 357 g/kg DM, whereas the CH4 
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emission of the dairy cows receiving this diet ranged from 270 to 535 g/d, from 19.5 to 25.3 

g/kg DMI, and from 12.9 to 22.9 g/kg FPCM. This variation can be the results of many factors, 

including differences in DMI and lactation stage, hampering perhaps to find a clear relationship 

between dietary composition and CH4 emission. The results demonstrate that dietary 

composition as such is not a satisfactory proxy for CH4 emission. Perhaps the combination of 

dietary composition and the absolute intake of the different dietary components might increase 

the CH4 prediction potential, because Ellis et al., (2010) already demonstrated that the more 

generalized CH4 prediction models (i.e., based only on feed intake) performed worse than those 

that attempted to take important aspects of diet composition into account. 

Similarly, when combining dietary composition with MFA, the prediction potential is 

almost similar or slightly higher than that of only MFA. For CH4 production, there was no 

improvement observed at all, as no dietary composition parameters were selected resulting in a 

model identical to only MFA. For CH4 yield, the adjusted R2 value decreased from 0.40 to 0.39 

upon combining MFA with dietary composition, similar as for the CCC value (i.e., decreased 

from 0.59 to 0.58). Only for CH4 intensity a slight improvement in terms of prediction potential 

was observed, with the adjusted R2 value increasing from 0.62 to 0.66 and the CCC value 

increasing from 0.77 to 0.81. Overall, these results indicate that, relative to MFA alone, CH4 

prediction potential does not increase when combining MFA with dietary composition  

In contrast though, the CH4 prediction potential increases considerably when 

combining lactation characteristics with MFA, relative to MFA alone. For CH4 production, yield, 

and intensity, adjusted R2 values increase from 0.54 to 0.72, from 0.40 to 0.44, and from 0.62 to 

0.71, respectively. Additionally, the CCC values increase from 0.72 to 0.84, from 0.59 to 0.61, 

and from 0.77 to 0.84 for CH4 production, yield, and intensity, respectively. This shows that the 

combination of lactation characteristics with MFA results in a more accurate and precise 

prediction of CH4 emission of dairy cows. As expected, based on the previous results with 

respect to dietary composition, the CH4 prediction potential does not improve when combining 

MFA with both lactation characteristics and dietary composition relative to the CH4 prediction 

potential of the combination of lactation characteristics and MFA for CH4 production and CH4 

intensity. For CH4 yield, however, the adjusted R2 and CCC increase, indicating a better 

prediction of CH4 yield when combining dietary composition with both lactation characteristics 

and MFA. This makes sense, because, as indicated before, DMI is one of the most important 

determining factor for CH4 production (Hristov et al., 2013), whereas both DIM and milk yield 

are the most important determining factors for CH4 intensity (Garnsworthy et al., 2012). The 

factors (i.e., DMI, DIM, and milk yield) are not as important for CH4 yield, perhaps explaining 

why the inclusion of dietary composition results in improved prediction potential only for CH4 

yield.   

Overall, the results of the latter analysis indicate that, as proposed by Negussie et al. 

(2017), combining two proxies might have an advantage over a single proxy for CH4 emissions 

of dairy cows. However, the correct combination of proxies is critical. As demonstrated, 

combining dietary composition with MFA does not always create synergy. A possible 

explanation for this is that MFA and dietary composition describe the same part of the variation 

in CH4 emission. To illustrate, dietary composition is strongly related to the MFA profile (e.g., 
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the relationship C18:1 trans-10 and crude protein content, NDF content, fat content, and starch 

content is significant; P < 0.005; data not shown) and it could, therefore, be that the variation in 

the dietary composition and the variation in the MFA profile describe the same variation in CH4 

emission. This is most likely the result of the common biochemical pathway between ruminal 

feed fermentation, CH4 production, and MFA composition. Combining lactation characteristics 

and MFA composition did create synergy for all CH4 units and thus resulted in a more accurate 

and precise prediction of CH4 emission as well as a better description of the observed variation 

in CH4 emissions relative to MFA alone and lactation characteristics alone. The results for CH4 

intensity, in which DIM was included in the prediction model, are in agreement with the findings 

of Vanrobays et al. (2016), who observed that the relationship between CH4 emission and MFA 

is lactation stage dependent. It is therefore concluded that it is important to combine MFA 

composition with lactation characteristics to improve the prediction of CH4 emission in dairy 

cows, although the magnitude of improvement depends on the unit of CH4 emission. Similar 

holds for the combination of MFA composition, lactation characteristics, and dietary 

composition, which resulted in synergy for CH4 yield only. This principle of synergy, although 

not investigated, would most likely also apply when combining the FTIR spectra with lactation 

characteristics. It should be noted though that some of the lactation parameters are actually 

determined by FTIR (e.g., protein and fat content) and, as described above, FTIR spectra contain 

more information of CH4 emission than milk composition. Hence, the improvement of CH4 

emission prediction upon combination with lactation characteristics might be less for FTIR than 

for MFA, but overall also the combination of lactation characteristics and FTIR may result in a 

better proxy for CH4 emission in dairy cows.  

 

ROBUSTNESS OF PROXIES FOR METHANE EMISSION 

In general, previously developed CH4 prediction models have a great CH4 prediction 

potential in the study in which they were developed. This, however, does not necessarily mean 

that one can extrapolate previously developed MFA-based CH4 prediction equations to another 

situation. This was already demonstrated in Chapter 8, in which previously developed MFA-

based prediction equations [e.g., Dijkstra et al. (2011) and Van Lingen et al. (2014)] did predict 

CH4 emission of dairy cows with different DGAT1 genotypes or fed diets with or without linseed 

oil neither accurately nor precisely. Furthermore, Mohammed et al. (2011) observed an over-

prediction in CH4 emission when comparing measured CH4 emission with CH4 emission 

predicted by the MFA-based equations of Chilliard et al. (2009) and Dijkstra et al. (2011). 

Dijkstra et al. (2016) compared observed CH4 emission of dairy cattle fed grass- and grass silage-

based diets with CH4 emission predicted with the MFA-based equations developed by Van 

Lingen et al. (2014). The CH4 prediction equations of Van Lingen et al. (2014) did not accurately 

predict CH4 emission, indicating that the relationship between MFA and CH4 emission in dairy 

cows fed grass- and grass silage-based diets differs from that of other types of diets.  

To provide another, perhaps more extreme example, the observed CH4 emissions from 

cows receiving nitrate, docosahexaenoic acid (DHA), or a combination of nitrate and DHA was 

compared with CH4 emission predicted with the MFA-based prediction models from Chapter 

9. As demonstrated by Klop et al. (2016), nitrate decreased CH4 emission irrespective of the unit 
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in which it was expressed, whereas DHA did not affect CH4 yield (g/kg DMI), but actually 

resulted in a higher CH4 production (g/d; likely related to a significantly higher DMI compared 

with diets without DHA) and CH4 intensity (g/kg FPCM; likely related to a trend of decreased 

FPCM production with DHA). Additionally, nitrate and, especially, DHA affected the MFA 

composition relative to the control diet, whereas the interaction between nitrate and DHA did 

not affect the MFA composition considerably.  

Table 10.3 shows the observed and predicted mean CH4 emissions and the 

corresponding CCC values. The MFA-based CH4 prediction equations are not able to estimate 

CH4 emission of dairy cows fed nitrate, DHA, or a combination of both. For nitrate 

supplemented cows, the CCC is highest for CH4 production (0.26) and close to zero for CH4 

yield and intensity. The MFA-based prediction models are neither accurate (i.e., Cb) nor precise 

(i.e., r), and over-predict CH4 emission as evident by the negative location shift (i.e., µ) values. 

For the DHA supplemented cows, the CCC is highest for CH4 intensity (0.24) and close to zero 

for CH4 production and yield. The MFA-based prediction models under-predicted CH4 emission 

from cows receiving DHA, as evident by the relatively large positive µ values. The reason for  

predicted CH4 production being negative for cows fed DHA can be explained by the effects of 

DHA on CH4 emission and the MFA profile. As mentioned earlier, Klop et al. (2016) observed 

an increase in CH4 production for DHA relative to the control diet. Additionally, the MFA C18:1 

trans-10 and C18:1 trans-11 increased 19-fold and 4-fold, respectively, for DHA relative to the 

control diet. These two MFA were included in the MFA-based prediction model for CH4 

production with a negative slope. The pronounced increase in these MFA in combination with 

the negative slope resulted in negative values for CH4 production. For the cows receiving a 

combination of nitrate and DHA, the results show a similar trend as for the DHA supplemented 

cows. The CCC is close to zero for CH4 production and yield, and highest for CH4 intensity 

(0.56), which is also the highest CCC value found in general for this dataset. The latter is 

accompanied by moderate to high values for precision and accuracy. For CH4 intensity there is 

a small over-prediction, whereas for CH4 production and yield there is a relatively large under-

prediction. Overall, these results clearly indicate that the MFA-based CH4 prediction models 

from Chapter 9, which were developed from data obtained of dairy cows fed a wide range of 

roughage-based diets without additives, are not able to predict CH4 emissions from dairy cows 

fed nitrate, DHA, a combination of nitrate and DHA, and probably even feed additives in 

general.  

The latter example, in combination with the findings of Chapter 8, Mohammed et al. 

(2011), and Dijkstra et al. (2016), shows clearly that the robustness of MFA-based CH4 emissions 

is a problem. At present, several different MFA-based CH4 prediction models have been 

developed for dairy cattle (e.g., Chilliard et al. 2009; Van Lingen et al., 2014; Rico et al., 2016). 

However, most of these models tend to be accurate only for the production system and the 

environmental conditions under which they were developed. Therefore, the greatest 

shortcoming today is the lack of robustness in the applicability of MFA-based CH4 prediction 

models and, subsequently, attention should not only be directed to the accuracy of proxies but 

also to their robustness.  
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Table 10.3. The concordance correlation coefficient (CCC) results of the MFA(1)-based methane prediction models 

from Chapter 9 applied to dairy cows supplemented with nitrate, DHA(2), or a combination of nitrate and DHA 

  

Observed CH4 

emission 

Predicted  

CH4 emission CCC(3) r(4) Cb
(5) v(6) µ(7) 

Nitrate 
       

Methane production(8) 263 318 0.26 0.75 0.34 0.88 -1.96 

Methane yield(9) 16.9 21.7 -0.02 -0.30 0.08 3.06 -4.63 

Methane intensity(10) 10.8 14.4 0.07 0.30 0.25 0.46 -2.33 

DHA 
       

Methane production 369 -798 -0.01 -0.56 0.01 0.16 11.52 

Methane yield 22.4 15.0 -0.02 -0.74 0.03 0.32 7.86 

Methane intensity 15.4 13.6 0.24 0.48 0.49 1.88 1.30 

Nitrate + DHA 
       

Methane production 298 -120 0.00 0.08 0.06 0.13 5.26 

Methane yield 18.2 12.0 -0.02 -0.20 0.12 0.16 3.16 

Methane intensity 12.6 12.9 0.56 0.60 0.93 1.25 -0.31 

(1) Milk fatty acids in g/100 g FA. 

(2) Docosahexaenoic acid. 

(3) Concordance correlation coefficient, where CCC = r × Cb. 

(4) Pearson correlation coefficient; a measure of precision. 

(5) Bias correction factor; a measure of accuracy. 

(6) Scale shift; change in standard deviation between predicted and observed methane emission.  

(7) Location shift; if positive under prediction, if negative over prediction. 

(8) Production in g methane per day. 

(9) Yield in g methane per kg dry matter intake. 

(10) Intensity in g methane per kg fat- and protein-corrected milk (FPCM = [0.337 + 0.116 × fat (g/100 g milk) + 

0.06 × protein (g/100 g milk)] × milk yield (kg/d); CVB, 2012). 

 

 

THE BEST WAY FORWARD 

Finding a proxy for enteric CH4 production of dairy cattle is not as straightforward as 

expected from theory. There are indeed indicators and animal traits highly correlated with CH4 

emission (e.g., feed intake with CH4 production; Negussie et al., 2017), as well as indicators and 

animal traits which are easy and relatively low cost to record on a large scale (e.g., milk yield; 

Negussie et al., 2017). But finding a proxy that performs well on both statistical and practical 

aspects, is a challenge. As already explained in the general introduction (Chapter 1), enteric CH4 

production is influenced by many factors, including dietary factors (such as the type and the 

amount of feed), animal factors (such as milk yield and genetic traits), management factors (such 

as feeding frequency), and environmental factors (such as seasons and temperature) (e.g., Hristov 

et al., 2013). These factors result in large variation in CH4 emission of dairy cattle, making it a 

challenge to develop a universal and robust proxy for CH4 emission.    

Proxies for CH4 emission can have great implications in the dairy chain, including dairy 

management (e.g., evaluating CH4 mitigating potential of feeding strategies) and dairy breeding 

(e.g., identifying low and high CH4 emitting dairy cows). The best way forward, in my opinion, 

would be to focus on CH4 proxies that perform at least moderately well both in terms of the 

practical aspect and the statistical aspect. Of course, a proxy must be accurate and precise to 
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ensure unbiased estimates of CH4 emission close to the truth. But, if one would only focus on 

the statistical aspect, not taking the complexity of certain techniques into account, one would 

most likely be better off measuring CH4 emission rather than estimating CH4 emission. For 

example, although interesting in terms of understanding CH4 production, why would there be a 

focus on the rumen microbiome as CH4 proxy if it cannot be measured easily, at low cost, and 

at large scale? Similarly the other way around, a CH4 proxy that can easily be measured on a large 

scale, but cannot predict CH4 emission with a certain accuracy and precision, would lead to 

incorrect mitigation recommendations and strategies.  

The results show that MFA are the most accurate and precise CH4 proxy investigated 

in this PhD work. However, its lack of robustness as demonstrated in Chapters 8 in this thesis, 

as well as by Mohammed et al. (2011) and Dijkstra et al. (2016), remains a concern. Additionally, 

MFA have restricted practical application, meaning that most MFA retained in the current CH4 

prediction models cannot be determined routinely because of the use of gas chromatography. 

The MFA that can be determined with the use of infrared spectroscopy are however no 

promising predictors for CH4 emission. Furthermore, it should be noted that MFA have only a 

moderate CH4 prediction potential with the R2 ranging from 0.40 to 0.62, and Castro-Montoya 

et al. (2017) recently demonstrated that MFA are not yet reliable predictors of specific amounts 

of CH4 emitted by a cow, while holding a modest potential to differentiate cases of high or low 

emissions. This together suggests that it might not be the best option to focus in the future on 

MFA alone as a proxy for CH4 emission of dairy cows.    

It is however questionable whether the FTIR spectra can serve as a more valuable CH4 

proxy. The CH4 prediction potential of FTIR spectra in the research described in this thesis is 

low to moderate with the R2 ranging from 0.25 to 0.56. This is considerably less accurate and 

precise than MFA. However, FTIR has a great potential for practical high throughput 

application, facilitating repeated measurements of the same cow. As illustrated by Negussie et al. 

(2017), certain proxies might be less accurate but random noise can be reduced when measuring 

repeatedly. This is visualized when comparing the CH4 prediction potential of FTIR as described 

in Chapter 9 with the CH4 prediction potential of FTIR by Dehareng et al. (2012) and Vanlierde 

et al. (2015). The latter two studies report higher R2 values (> 0.77) than reported in Chapter 9 

of this thesis, but developed their FTIR-based CH4 prediction models on repeated 

measurements of the same cow. The study of Dehareng et al. (2012) involved 11 dairy cows, 

whereas the prediction models were developed using 77 observations, and the study of Vanlierde 

et al. (2015) involved 142 dairy cows, while the prediction models were developed using 446 

observations. In contrast, the study described in Chapter 9 involved 218 dairy cows and the CH4 

prediction models were developed using 1 observation per cow only. It is important to note 

though, that not only the repeated measurements in the studies of Dehareng et al. (2012) and 

Vanlierde et al. (2015), but also a much larger variation in CH4 emission in the dataset compared 

to that of Chapter 9, may have resulted in the higher R2 values reported by those authors (see 

Chapter 9 for a more elaborate explanation). It remains therefore unclear how much more 

accurate and precise the CH4 estimations of FTIR spectra can become upon repeated 

measurements of the same cows.  
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Furthermore, as demonstrated in Chapter 9, FTIR spectra evaluate the effect of forage 

level and quality on CH4 emission of dairy cattle considerably less satisfactory than MFA. In 6 

out of 18 situations (i.e., 6 studies each with 3 units of CH4 emission), FTIR spectra were not 

able to predict the same trend (i.e., increase or decrease) in CH4 emission between two diets as 

measured by the climate respiration chambers. This was only 2 out of 18 situations for MFA. 

This demonstrates that FTIR spectra do not have the power to detect differences in CH4 

emission between diets which are, in terms of forage level and quality, commonly fed in practice. 

Moreover, the robustness of FTIR spectra is currently unknown. Hence, it remains to be 

investigated whether FTIR spectra can predict CH4 emissions of dairy cows fed additives (e.g., 

nitrate and DHA) or from dairy cows housed under different conditions from those under which 

the FTIR-based prediction equations were developed. 

According to Negussie et al. (2017), milk FTIR in particular, along with covariates such 

as lactation stage, are a promising option for the prediction of CH4 emission in dairy cows. The 

increase in CH4 prediction potential upon combining lactation characteristics with MFA in the 

current Chapter, would most likely also apply when combining FTIR spectra with lactation 

characteristics, such as DIM. I therefore believe that FTIR spectra, along with lactation 

characteristics, is the best way forward when developing a proxy for CH4 emission of dairy cows. 

The FTIR technique can be routinely measured in milk production registration for dairy herd 

improvement and farm management, and can thus potentially be incorporated with regular FTIR 

analysis or perhaps even at the farm level in the farm tank milk. However, more research is 

required to support these conclusions, including more observations, on farm measurements of 

CH4 emission (with for example the GreenFeed system; Chapter 1), FTIR spectra, and lactation 

characteristics, and independent experiments and data to test the robustness of the FTIR spectra 

to predict CH4 emission of dairy cows. 

 

GENERAL CONCLUSIONS 

Although both volatile and non-volatile metabolites can be related to ruminal feed 

fermentation and enteric CH4 production, these milk metabolites hold no potential to predict 

CH4 emission of dairy cows. This is both in terms of the statistical aspect, because of the low 

adjusted R2 and CCC values, and the practical aspect, because gas chromatography-mass 

spectroscopy and nuclear magnetic resonance are complex techniques which require specialized 

personnel and which are not applicable at large scale. Additionally, combining these milk 

metabolites with MFA does not always improve the CH4 prediction potential relative to MFA 

alone, because an improvement was observed when using a small dataset (n = 29) with a small 

range of forage-based diets but no improvement was observed when using a larger dataset (n = 

123) with a larger range of forage-based diets. The MFA profile can predict enteric CH4 

production more accurately and precisely than volatile and non-volatile metabolites as well as 

FTIR spectra, but its lack of robustness remains a concern. The FTIR spectra have a greater 

potential for practical implementation than MFA, because FTIR is currently already routinely 

used in milk recording systems to predict fat, protein, lactose, and urea contents in milk, and 

hence can be potentially incorporated with regular FTIR analysis or perhaps even at the farm 

level in farm tank milk. However, the accuracy and precision to predict CH4 emission using 
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FTIR spectra needs to increase, and the capacity of the FTIR spectra to evaluate the differences 

in CH4 emission between dairy cows and different types of diets needs to improve, in order to 

actually be a valuable proxy for CH4 emission of dairy cows. 
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ENGLISH SUMMARY 

Enteric methane (CH4) is produced as a result of microbial fermentation of feed 

components in the gastrointestinal tract of ruminant livestock. Methane has no nutritional value 

for the animal and is predominately released into the environment through eructation and breath. 

Therefore, CH4 not only represents a greenhouse gas contributing to global warming, but also 

an energy loss, making enteric CH4 production one of the main targets of greenhouse gas 

mitigation practices for the dairy industry. Obviously, reduction of CH4 emission could be 

achieved by simply reducing livestock numbers. However, the global demand for dairy products 

has been growing rapidly and is expected to further grow in the future. Therefore, it is critical to 

minimize environmental impact to produce high-quality dairy products. The overall aim of this 

PhD research was, therefore, to develop a proxy for CH4 emission that can be measured in milk 

of dairy cows. 

There are currently a number of potentially effective dietary CH4 mitigation practices 

available for the livestock sector. The results of Chapter 3 show that replacing fiber-rich grass 

silage with starch-rich corn silage in a common forage-based diet for dairy cattle offers an 

effective strategy to decrease enteric CH4 production without negatively affecting dairy cow 

performance, although a critical level of starch in the diet seems to be needed. Little is known 

whether host genetics may influence the CH4 emission response to changes in diet. Therefore, 

the interaction between host DGAT1 K232A polymorphism with dietary linseed oil 

supplementation was evaluated in Chapter 7. The results of Chapter 7 indicate that DGAT1 

K232A polymorphism is associated with changes in milk composition, milk N efficiency, and 

diet metabolizability, but does not affect digestibility and enteric CH4 emission, whereas linseed 

oil reduces CH4 emission independent of the DGAT1 K232A polymorphism. 

Accurate and repeatable measurements of CH4 emission from individual dairy cows are 

required to assess the efficacy of possible mitigation strategies. There are several techniques to 

estimate or measure enteric CH4 production of dairy cows, including climate respiration 

chambers, but none of these techniques are suitable for large scale precise and accurate 

measurements. Therefore, the potential of various metabolites in milk, including milk fatty acids 

(MFA), as a proxy (i.e., indicators or animal traits that are correlated with enteric CH4 

production) for CH4 emission of dairy cows gained interest. Until recently, gas chromatography 

was the principal method used to determine the MFA profile, but this technique is unsuitable 

for routine analysis. This has led to the application of Fourier-transform infrared spectroscopy 

(FTIR) for determination of the MFA profile. Chapter 2 provides an overview of the recent 

research that relates MFA with CH4 emission, and discusses the opportunities and limitations of 

using FTIR to estimate, indirectly via MFA or directly, CH4 emission of dairy cattle. The recent 

literature on the relationship between MFA and CH4 emission gives inconsistent results. Where 

some studies found a clear and strong relation, other studies consider MFA to be unreliable 

predictors for CH4 emitted by dairy cows. Even the studies that do find a clear relation between 

MFA and CH4 emissions do not describe similar prediction models using the same MFA. These 

discrepancies can be the result of many factors, including dietary composition and lactation stage. 

Additionally, literature showed that the major advantages of using FTIR to predict CH4 emission 

include its simplicity and potential practical application on a large scale. Disadvantages include 
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the inability to predict important MFA for the prediction of CH4 emission, and the moderate 

power of FTIR to directly predict CH4 emission. The latter was also demonstrated in Chapter 9, 

in which the CH4 prediction potential of MFA was compared with that of FTIR using data from 

9 experiments (n = 218 individual cow observations) covering a broad range of roughage-based 

diets. The results indicate that MFA have a greater potential than FTIR spectra to estimate CH4 

emissions, and that both techniques have potential to predict CH4 emission of dairy cows, but 

also limited current applicability in practice. Much focus has been placed on the relationship 

between MFA and CH4 emission, but milk also contains other metabolites;, such as volatile and 

non-volatile metabolites. Currently, milk volatile metabolites have been used for tracing animal 

feeding systems and milk non-volatile metabolites were shown to be related to the health status 

of cows. In Chapter 4, the relationship between CH4 emission and both volatile and non-volatile 

metabolites was investigated, using data and milk samples obtained in the study described in 

Chapter 3. In general, the non-volatile metabolites were more closely related to CH4 emissions 

than the volatile metabolites. More specifically, the results indicate that CH4 intensity (g/kg fat- 

and protein-corrected milk; FPCM) may be related to lactose synthesis and energy metabolism 

in the mammary gland, as reflected by the milk non-volatile metabolites uridine diphosphate-

hexose B and citrate. Methane yield (g/kg dry matter intake) on the other hand, may be related 

to glucogenic nutrient supply, as reflected by the milk non-volatile acetone. Based on the 

metabolic interpretations of these relationships, it was hypothesized that the addition of both 

volatile and non-volatile metabolites in a prediction model with only MFA would enhance its 

predictive power and, thus, leads to a better proxy in milk for enteric CH4 production of dairy 

cows. This was investigated in Chapter 5, again using data and milk samples described in Chapter 

3. The results indicate that MFA alone have moderate to good potential to estimate CH4 

emission. Furthermore, including volatile metabolites (CH4 intensity only) and non-volatile 

metabolites increases the CH4 emission prediction potential. 

The work presented in Chapters 3, 4 and 5, was based upon a small range of  diets (i.e., 

four roughage-based diets in which grass silage was replaced partly or fully by corn silage) of  

one experiment. Therefore, in Chapter 6, the relationship between CH4 emission and the milk 

metabolome in dairy cattle was further quantified. Data (n = 123 individual cow observations) 

were used encompassing a large of roughage-based diets, with different qualities and proportions 

of grass, grass silage and corn silage. The results show that changes in individual milk metabolite 

concentrations can be related to the ruminal CH4 production pathways. These relationships are 

most likely the result from changes in dietary composition that affect not only enteric CH4 

production, but also the profile of volatile and non-volatile metabolites in milk. Overall, the 

results indicate that both volatile and non-volatile metabolites in milk might provide useful 

information and increase our understanding of CH4 emission of dairy cows. However, the 

development of CH4 prediction models revealed that both volatile and non-volatile metabolites 

in milk hold little potential to predict CH4 emissions despite the significant relationships found 

between individual non-volatile metabolites and CH4 emissions. Additionally, combining MFA 

with milk volatile metabolites and non-volatile metabolites does not improve the CH4 prediction 

potential relative to MFA alone. Hence, it is concluded that it is not worthwhile to determine the 

volatile and non-volatile metabolites in milk in order to estimate CH4 emission of  dairy cows. 
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Overall, in comparison with FTIR, volatile and non-volatile metabolites, the MFA are 

the most accurate and precise proxy in milk for CH4 emission of  dairy cows. However, most of  

MFA-based models to predict CH4 emission tend to be accurate only for the production system 

and the environmental conditions under which they were developed. In Chapter 8 it was 

demonstrated that previously developed MFA-based prediction equations did not predict CH4 

emission satisfactory of  dairy cows with different DGAT1 genotypes or fed diets with or without 

linseed oil. Therefore, the greatest shortcoming today of  MFA-based CH4 prediction models is 

their lack of  robustness. Additionally, MFA have restricted practical application, meaning that 

most MFA retained in the current CH4 prediction models cannot be determined routinely 

because of the use of gas chromatography. The MFA that can be determined with the use of 

infrared spectroscopy are however no promising predictors for CH4 emission. Furthermore, 

MFA have only a moderate CH4 prediction potential. This together suggests that it might not be 

the best option to focus in the future on MFA alone as a proxy for CH4 emission of dairy cows.    

The FTIR technique has a low to moderate CH4 prediction potential. However, FTIR 

has a great potential for practical high throughput application, facilitating repeated measurements 

of the same cow potentially reducing random noise. Results of this thesis also demonstrated that 

FTIR spectra do not have the potential to detect differences in CH4 emission between diets 

which are, in terms of forage level and quality, commonly fed in practice. Moreover, the 

robustness of FTIR spectra is currently unknown. Hence, it remains to be investigated whether 

FTIR spectra can predict CH4 emissions from dairy cows housed under different conditions 

from those under which the FTIR-based prediction equations were developed. It is therefore 

concluded that the accuracy and precision to predict CH4 emission using FTIR needs to increase, 

and the capacity of FTIR to evaluate the differences in CH4 emission between dairy cows and 

different types of diets needs to improve, in order to actually be a valuable proxy for CH4 

emission of dairy cows. 
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NEDERLANDSE SAMENVATTING 

Enterisch methaan (CH4) wordt in de pens van herkauwers gevormd als gevolg van 

microbiële fermentatie van het geconsumeerde voer. Dit CH4 heeft geen voedingswaarde voor 

de melkkoe en wordt hoofdzakelijk uitgestoten via oprispingen en de adem. Hierdoor is 

enterische CH4 emissie niet alleen de grootste bron van broeikasgassen in de melkveehouderij, 

maar vertegenwoordigt het ook een verlies van de opgenomen energie door de melkkoe. 

Vanwege deze grote gevolgen is onderzoek naar strategieën om enterische CH4 emissie van 

melkkoeien te verlagen noodzakelijk. Verlaging van enterische CH4 emissie zou eenvoudig 

bereikt kunnen worden door het aantal melkkoeien te verminderen. Echter, de vraag naar 

voedingsproducten van dierlijke oorsprong, waaronder melk, zal naar verwachting toenemen als 

gevolg van een toename van de wereldbevolking en inkomstenniveau van consumenten. Het is 

daarom van belang om zuivelproducten te produceren en gelijktijdig de impact op het klimaat te 

verminderen. Het overkoepelende doel van dit promotieonderzoek was daarom het ontwikkelen 

van een indicator voor CH4 emissie die gemeten kan worden in de melk van melkkoeien.  

Er zijn momenteel verschillende voederstrategieën beschikbaar om enterische CH4 

emissie van melkkoeien te verminderen. De resultaten in Hoofdstuk 3 geven aan dat het 

vervangen van vezelrijk kuilgras met zetmeelrijk snijmais in een ruwvoerrijk rantsoen een 

effectieve strategie is om enterische CH4 emissie te verlagen zonder dat dit negatieve gevolgen 

heeft voor de productie van de koe. Echter, een minimum niveau van zetmeel in het rantsoen 

blijkt noodzakelijk. Er is weinig bekend of de genetische achtergrond van een koe het CH4 

verlagende effect van voederstrategieën kan beïnvloeden. Daarom is in Hoofdstuk 7 de interactie 

tussen het DGAT1 K232A polymorfisme van de koe en de toevoeging van lijnzaadolie aan het 

rantsoen onderzocht. De resultaten van Hoofdstuk 7 geven aan dat het DGAT1 K232A 

polymorfisme geassocieerd is met veranderingen in de melksamenstelling, stikstof efficiëntie en 

de metaboliseerbaarheid van het rantsoen, maar geen effect heeft op vertering en enterische CH4 

emissie, terwijl lijnzaadolie enterische CH4 emissie effectief wel verlaagt ongeacht het DGAT1 

K232A polymorfisme van de koe. 

Om mogelijke enterisch CH4 verlagende strategieën te evalueren, zijn nauwkeurige 

methoden nodig om enterische CH4 emissie van individuele melkkoeien te meten. Er zijn 

verschillende technieken beschikbaar waarmee deze emissie van melkkoeien geschat, dan wel, 

gemeten kan worden. Echter, geen van deze technieken is toepasbaar voor grootschalige en 

nauwkeurige CH4 metingen in de praktijk. Vandaar dat onderzoekers zijn gaan kijken naar 

verschillende metabolieten in de melk die kunnen fungeren als indicatoren voor enterische CH4 

emissie van melkkoeien, zoals melkvetzuren. Een voorwaarde hiervoor is dat deze indicatoren 

gerelateerd zijn aan de enterische CH4 emissie. Melkvetzuren werden tot voor kort standaard 

geanalyseerd door middel van gas chromatografie. Echter, deze techniek is niet geschikt voor 

routinematige analyses, wat resulteerde in de toepassing van Fourier Transform infrarood 

spectroscopie (FTIR). In Hoofdstuk 2 wordt een overzicht gegeven van de literatuur waarin 

melkvetzuren gerelateerd worden aan enterische CH4 emissie van melkkoeien, waarnaast ook de 

voor- en nadelen van de FTIR techniek worden besproken. Het blijkt dat de resultaten in de 

literatuur over de relatie tussen melkvetzuren en enterische CH4 emissie variabel zijn. Sommige 

studies rapporteren een sterke relatie, waar andere studies juist aangeven dat melkvetzuren geen 
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betrouwbare indicator zijn voor enterische CH4 emissie. Zelfs de studies die wel een sterke relatie 

vinden tussen melkvetzuren en enterische CH4 emissie, beschrijven enterische CH4 

voorspelformules die bestaan uit een andere set van melkvetzuren. Deze verschillen kunnen het 

gevolg zijn van een aantal factoren, waaronder rantsoensamenstelling en lactatiestadium van de 

koeien. Daarnaast komt in dit hoofdstuk naar voren dat de eenvoud van FTIR het grootste 

voordeel van deze methode is en daarbij de mogelijke toepasbaarheid in de praktijk. 

Daartegenover staat wel dat FTIR zelf een laag tot gemiddelde voorspelkracht heeft voor 

enterische CH4 emissie en dat FTIR niet in staat is om melkvetzuren te voorspellen die belangrijk 

zijn voor de voorspelling van enterische CH4 emissie. Dat eerste wordt ook duidelijk in 

Hoofdstuk 9, waarin de voorspelkracht van melkvetzuren vergeleken wordt met de 

voorspelkracht van FTIR. Hiervoor zijn data van 9 experimenten (n = 218 individuele koe 

observaties) gebruikt waarin een brede range van ruwvoer-rijke rantsoenen werd gevoerd. De 

resultaten geven aan dat melkvetzuren een grotere voorspelkracht voor enterische CH4 emissie 

hebben dan FTIR en hoewel beide technieken (d.w.z. melkvetzuren en FTIR) potentieel 

enterische CH4 emissie van melkkoeien kunnen voorspellen, geen van beide is momenteel 

geschikt om toegepast te worden in de praktijk. 

Ondanks dat er veel focus is geweest op de relatie tussen melkvetzuren en enterische 

CH4 emissie, is het belangrijk te realiseren dat melk nog meer metabolieten bevat zoals o.a. 

vluchtige en niet-vluchtige metabolieten. Momenteel worden vluchtige metabolieten in de melk 

bijvoorbeeld gebruikt om de voederstrategieën van de koe te achterhalen en niet-vluchtige 

metabolieten in de melk zijn bijvoorbeeld gerelateerd aan de gezondheid van de melkkoe. In 

Hoofdstuk 4 is onderzocht of vluchtige en niet-vluchtige metabolieten in de melk ook 

gerelateerd zijn aan enterische CH4 emissie, waarbij gebruik is gemaakt van de data en 

melkmonsters van de studie beschreven in Hoofdstuk 3. In het algemeen blijken de niet-

vluchtige metabolieten in de melk sterker gerelateerd te zijn aan enterische CH4 emissie dan de 

vluchtige metabolieten in de melk. Daarnaast bleek dat CH4 intensiteit (g CH4 per kg vet- en 

eiwit-gecorrigeerde melkproductie) gerelateerd is aan lactose synthese en energiemetabolisme in 

het uier, wat naar voren kwam door de relatie tussen CH4 intensiteit en de niet-vluchtige 

metabolieten uridinedifosfaat hexose B en citroenzuur. Methaan opbrengst (g CH4 per kg voer 

opname) daarentegen is gerelateerd aan de toevoer van glycogene (d.w.z. energierijke) nutriënten, 

wat naar voren kwam door de relatie tussen CH4 opbrengst en de niet-vluchtige metaboliet 

aceton. 

Aan de hand van de hierboven beschreven relaties tussen enterische CH4 emissie en 

zowel vluchtige als niet-vluchtige metabolieten in melk, werd verondersteld dat het meenemen 

van zowel vluchtige als niet-vluchtige metabolieten aan CH4 voorspelformules met alleen 

melkvetzuren zou leiden tot een verbetering van de voorspelkracht met dus een betere indicator 

voor enterische CH4 emissie van melkkoeien tot gevolg. Dit werd onderzocht in Hoofdstuk 5, 

waarbij wederom data en melkmonsters van de studie beschreven in Hoofdstuk 3 werden 

gebruikt. De resultaten geven aan dat melkvetzuren alleen een gemiddelde tot goede 

voorspelkracht voor enterische CH4 emissie hebben. Deze voorspelkracht werd groter wanneer 

vluchtige en niet-vluchtige metabolieten toegevoegd werden, in het bijzonder bij de 

voorspelformule voor CH4 intensiteit.   
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Het werk dat gepresenteerd is in Hoofdstukken 3, 4 en 5 is gebaseerd op een relatief 

kleine diversiteit aan rantsoenen, namelijk 4 ruwvoerrijke rantsoenen waarin kuilgras gedeeltelijk 

of volledig vervangen is door snijmais. Daarom is in Hoofdstuk 6 de relatie tussen enterische 

CH4 emissie en zowel vluchtige als niet-vluchtige metabolieten in de melk verder uitgezocht, 

waarbij de data van 6 studies (n = 123 individuele koe observaties) zijn gebruikt die een brede 

range van ruwvoer-rijke rantsoenen omvatten met verschillende kwaliteiten en hoeveelheden 

gras, kuilgras en snijmais. De resultaten van dit hoofdstuk laten duidelijk zien dat zowel vluchtige 

als niet-vluchtige metabolieten in melk nuttige informatie bevatten die mogelijk onze kennis 

rondom enterische CH4 emissie van melkkoeien kan vergroten. Echter, bij de ontwikkeling van 

voorspelformules voor enterische CH4 emissie kwam naar voren dat zowel vluchtige als niet-

vluchtige metabolieten in de melk, geen tot weinig voorspelkracht hebben. Ook wordt de 

voorspelkracht niet groter wanneer de vluchtige en niet-vluchtige metabolieten gecombineerd 

worden met melkvetzuren ten opzichte van melkvetzuren alleen. Aan de hand van deze 

bevindingen is de conclusie van Hoofdstuk 6 dat het niet de moeite waard is om vluchtige en 

niet-vluchtige metabolieten in melk te analyseren voor het voorspellen van enterische CH4 

emissie. 

Alle resultaten die in dit proefschrift gepresenteerd zijn, laten zien dat ten opzichte van 

vluchtige metabolieten, niet vluchtige metabolieten en FTIR, melkvetzuren de meest 

nauwkeurige indicator in melk is voor enterische CH4 emissie van melkkoeien. Echter, veel van 

de melkvetzuur-gebaseerde voorspelformules voor enterische CH4 emissie zijn alleen in staat 

enterische CH4 emissie nauwkeurig te voorspellen in het productiesysteem met dezelfde 

omgevingsfactoren waaronder ze ontwikkeld zijn. In Hoofdstuk 8 wordt het duidelijk dat reeds 

ontwikkelde melkvetzuur-gebaseerde voorspelformules voor enterische CH4 emissie niet in staat 

zijn enterische CH4 emissie goed te voorspellen voor melkkoeien met verschillende DGAT1 

genotypen of voor ruwvoerrijke rantsoenen met of zonder lijnzaadolie. Dit, in combinatie met 

andere bevindingen in de literatuur, geeft aan dat robuustheid op dit moment de grootste 

tekortkoming is van melkvetzuur-gebaseerde voorspelformules voor enterische CH4 emissie. 

Daarnaast hebben melkvetzuren een beperkte praktische toepasbaarheid, aangezien veel van de 

melkvetzuren in de melkvetzuur-gebaseerde voorspelformules niet routinematig bepaald kunnen 

worden vanwege het gebruik van gas chromatografie. De melkvetzuren die eventueel wel met 

infrarood bepaald kunnen worden, zijn echter niet van belang voor de voorspelling van 

enterische CH4 emissie. Verder is de voorspelkracht van de melkvetzuren voor enterische CH4 

emissie van melkkoeien slechts gemiddeld. Dit gezamenlijk geeft aan dat het wellicht niet het 

beste is om toekomstig onderzoek te richten op alleen melkvetzuren als indicator voor enterische 

CH4 emissie van melkkoeien.  

De voorspelkracht van FTIR voor enterische CH4 emissie is laag tot gemiddeld. Echter, 

FTIR zou relatief eenvoudig toegepast kunnen worden in de praktijk waardoor herhaalde 

waarnemingen van dezelfde melkkoe mogelijk gemaakt worden met potentieel minder ruis in de 

voorspelde enterische CH4 emissie. Er is ook gebleken dat FTIR niet in staat is om verschillen 

in enterische CH4 emissie tussen rantsoenen die verschillen in ruwvoerkwaliteit en ruwvoer 

hoeveelheid, in kaart te brengen. Daarnaast is de robuustheid van FTIR momenteel onbekend, 

wat vraagt naar onderzoek waarin bekeken wordt of FTIR in staat is enterische CH4 emissie van 
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melkkoeien te voorspellen die onder andere omstandigheden gehuisvest worden dan de 

omstandigheden waaronder de FTIR-gebaseerde CH4 voorspelformules ontwikkeld zijn. 

Uiteindelijk wordt geconcludeerd dat FTIR veel potentie heeft voor het voorspellen van 

enterische CH4 emissie van melkkoeien, in het bijzonder omdat het een snelle goedkope 

methode is. Echter, de CH4 voorspelkracht van FTIR moet beter zijn dan nu en de capaciteit 

om verschillen in CH4 emissie tussen dieren en rantsoenen goed te voorspellen moet beter zijn 

dan nu. Pas dan kan FTIR een waardevolle proxy zijn voor enterische CH4 emissie van 

melkkoeien. 
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List of abbreviations 
 
1H-NMR Proton nuclear magnetic resonance 

ADF  Acid detergent fibre 

ADL  Acid detergent lignin 

ALL  All metabolites combined as selection variables 

BCS  Body condition score 

BHG  Biohydrogenation 

BW  Body weight 

BW0.75  Metabolic body weight 

CCC  Concordance correlation coefficient 

Cb  Bias correction factor 

CH4  Methane 

CON  Control diet 

CO2  Carbon dioxide 

CRC  Climate respiration chamber 

Cr2O3  Chromium oxide 

CP  Crude protein 

CS  Corn silage 

DHA  Docosahexaenoic acid 

DGAT1  K232A polymorphism of the acyl CoA:diacylglycerol acyltransferase 1 gene 

DM  Dry matter 

DIM  Days in milk 

DMI  Dry matter intake 

DVE  Intestinal digestible protein 

ER  Energy retention 

FA   Fatty acid 

FAME  Fatty acid methyl ester 

FFA  Free fatty acid 

FID  Flame ionization detector 

FPCM  Fat- and protein-corrected milk 

FTIR  Fourier-transform infrared spectroscopy 

F:C  Forage to concentrate ratio 

GC  Gas chromatography 

GC-MS  Gas chromatography - mass spectroscopy 

GE  Gross energy 

GEI   Gross energy intake 

GHG  Greenhouse gas 

g-NA  Non-assigned genus 

GS  Grass silage 

GS0  0% of the roughage consisting of grass silage 
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GS100  100% of the roughage consisting of grass silage 

GS33  33% of the roughage consisting of grass silage 

GS67  67% of the roughage consisting of grass silage 

GWAS  Genome wide association study 

H2  Hydrogen 

LN(SCC) Natural logarithm of somatic cell count 

LSO  Linseed oil diet 

LV  Latent variable 

MEI  Metabolizable energy intake 

MFA  Milk fatty acid 

MIR  Mid-infrared spectroscopy 

MS  Maize silage 

MSEP  Mean square error of prediction 

MUFA  Mono unsaturated fatty acid 

MUN  Milk urea nitrogen 

N  Nitrogen 

NAD  Nicotinamide adenine dinucleotide 

NADPH Nicotinamide adenine dinucleotide phosphate 

NDF  Neutral detergent fibre 

NEL  Net energy for lactation 

NV  Non-volatile metabolites 

OBCFA  Odd- and branched-chain fatty acid 

OEB  Rumen degradable protein balance 

OM  Organic matter 

OST  Oral stomach tube technique 

OTU  Operational taxonomic units 

O2  Oxygen 

PERMANOVA Permutational multivariate analysis of variance 

PUFA  Poly unsaturated fatty acid 

qPCR  Quatitative polymerase chain reaction 

r  Pearson correlation coefficient 

RMSEC  Root mean square error of calculation 

RMSEP  Root mean square error of prediction 

RMSECV Root mean square error of cross validation 

RMSPE  Root mean square prediction error 

RPD  Ratio of performance to deviation 

RQ  Respiration quotient 

rRNA  Ribosomal ribonucleic acid 

R2  Coefficient of determination 

R2CV  Coefficient of determination of cross validation 

SFA  Saturated fatty acid 

SF6  Sulfur hexafluoride tracer 
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SMCFA  Straight short- and medium-chain fatty acid 

TCA  Tricarboxylic acid cycle 

µ  Location shift measure 

UFA  Unsaturated fatty acid 

UDP  Uridine diphosphate 

V  Volatile metabolites 

v  Scale shift measure 

VFA  Volatile fatty acids

 

  



 

 

 

  



 

253 
 

 
 

Acknowledgements 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

254 

 

Eindelijk is het zover! Na ruim 5 jaar mag ik eindelijk het dankwoord gaan schrijven. 

Ik wil dan ook beginnen met twee echte dooddoeners. Naast de stellingen en het dankwoord, is 

ook de rest van dit proefschrift de moeite waard om te lezen. Ja, echt! Al is het maar om te tellen 

hoe vaak de afkorting CH4 in dit proefschrift voorkomt...1791 keer. En nee, die 4 krijg je niet in 

subscript met de replace functie van Word; echte ambacht dus. Daarnaast was dit proefschrift 

nooit tot stand gekomen zonder hulp van anderen. Vanzelfsprekend lijkt mij, maar ik wil de 

komende pagina’s dan ook gebruiken om iedereen te bedanken die heeft bijgedragen. Om het 

gras voor de voeten van mijn collega PhD-kandidaten weg te maaien, wil ik één van mijn quotes 

uit het beruchte blauwe quotenboekje aanhalen: “I want to acknowledge Jan and alleman”. En 

klaar. Dat zou toch eens een kort en bondig (short en sexy) dankwoord zijn. Zoals sommige wel 

weten, niet mijn stijl ;-). Dus laat ik nu serieus gaan schrijven.   

Allereerst wil ik graag mijn promotor Wouter bedanken voor een werkomgeving waar 

je het vertrouwen krijgt om zelfstandig te werken, te denken, te leren en te verkennen. Maar in 

het bijzonder wil ik je bedanken voor de informele sfeer op de werkvloer. Tijdens onze eerste 

kennismaking werd mij direct duidelijk gemaakt dat de aanspreekvorm ‘u’ echt niet kon binnen 

ANU. Dit heeft mij gedurende de afgelopen jaren een fijn ’thuis’ gevoel gegeven.  

Kasper en Jan, jullie bedankt voor alles de afgelopen jaren. Ik weet nog goed dat ik op 

sollicitatiegesprek kwam. Kasper strak in het pak en Jan met warrig haar, oorbel en sandalen. 

Dat zat dus wel snor met mijn kledingkeuze; netjes er tussenin. Haha! Ondanks dat ik een bioloog 

ben (...), niet het vak Nutrient Dynamics heb gevolgd, geen enkele achtergrond had in 

diervoeding of zuivel, mocht ik van jullie aan het avontuur beginnen (was ik de enige 

sollicitant???). Bedankt dat jullie mij die kans en het vertrouwen hebben gegeven! Ik heb van 

jullie beiden heel erg veel geleerd! Kasper, jij hebt mij veel geleerd over zuivel in het algemeen, 

de GC-MS methode en omdenken. Dat laatste was soms echt welkom; jij kon dingen positief 

brengen terwijl ik het even niet meer zag. Jan, de man van de houtje-touwtje methode, van jou 

heb ik veel geleerd waaronder kritisch zijn tot aan de 4de decimaal. Hoewel 3 decimalen wellicht 

beter is in verband met schijn-nauwkeurigheid ;-). Jan, wij hebben fijn samengewerkt en ik heb 

inmiddels het vertrouwen ontwikkeld dat ik je ook wel eens tegen durf te spreken als je “dat-

kan-niet” of “ik-heb-altijd-gelijk” zegt. Toch 1 weddenschap van je gewonnen. Haha! Girl power! 

Elsa, jij hebt absoluut een belangrijke rol tijdens mijn PhD gespeeld. En waarom schrijf 

ik dit dan in het Nederlands? Omdat ik weet dat jij dit prima kan lezen en mijn Portugees 

belabberd is. Samen hebben we bijna 4 jaar gewerkt aan hetzelfde workpackage binnen het TIFN 

project. Samen melk verzamelen, samen stickers plakken, samen plakband over de stickers 

plakken, samen melk op het lab verwerken, samen melkmonsters in de vriezer zoeken. We waren 

een geoliede machine! Ondanks dat wij van twee verschillende vakgebieden komen, waren we 

uiteindelijk altijd in staat gezamenlijk de neuzen in dezelfde richting te krijgen. Hoewel, ik blijf 

toch echt van mening dat koeien NIET stinken :-p.  

My PhD project was part of a large Top Institute Food Nutrition (TIFN) project 

consisting of different disciplines: Animal Breeding and Genetics, Animal Nutrition, Dairy 

Science and Technology, and Microbiology. In October 2012 our project started with a meeting 

in Hof van Wageningen. During that meeting we really got to know each other, did not survive 

the airplane crash (none of us...), and started with the first deliverables. Johan, Henk, Marleen, 
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Noelle, Sabine, Hauke, Caroline, Tom, Joan, Jueeli, Kasper, Elsa, Jan and (our) Henk, I enjoyed 

working with you during the last couple of years. I learned a lot from all of you and appreciated 

our monthly discussions, social interactions, and our collaboration.  

Ik wil graag de dierverzorgers van Carus bedanken en dan in het bijzonder Willem, 

Teus (het draait allemaal om bandenspanning ;-p), Ries en Bert. Het was erg fijn, gezellig en 

leerzaam om met jullie samen te werken. Jullie zorgden altijd goed voor de koeien, dachten mee 

met de uitvoering van de experimenten en hebben veel (héél véél) melkmonsters voor mij 

verzameld. Bedankt! Over melkmonsters gesproken; ik wil graag de personen bij Qlip bedanken 

voor de samenwerking. Jan, Harrie, Gerbrand en Erwin, jullie hebben heel veel melkmonsters 

voor mij geanalyseerd. Daarnaast hebben we gezamenlijk een link kunnen leggen tussen 

infraroodspectra en methaanemissie. Bedankt hiervoor!  

Sven en Tamme, jullie waren altijd mijn vertrouwde toeverlaat bij de klimaatrespiratie 

kamers. We hebben veel balansdagen gehad samen en ik kon bij jullie altijd terecht voor hulp en 

een luisterend oor. Maar gelukkig was er bij jullie ook altijd de mogelijkheid voor lol en pret. 

Sven de Hulk, Tamme Presley, toetsenbordknopjes, omgedraaide beeldschermen, dolfijnen op 

auto’s, rebus met raadsels om weer in jullie kast te komen...zal ik verder gaan? Bedankt heren! 

En Sven, echt heel fijn dat je mijn paranimf wilt zijn! We hebben wat methaan, waterstof en 

balansdata doorgespit met elkaar. En dat target field shooting was ook een succes (ondanks mijn 

dikke buik en het niet kunnen liggen op dat comfortabele matje...).  

Alle personen van het ANU lab wil ik bedanken; Leon, Saskia, Jane-Martine, Michel, 

Erika, Xuan en Adriaan. Ondanks dat ik heel veel monsters heb verzameld en alles 

weggeschreven heb in papers, heb ik eigenlijk helemaal geen tijd doorgebracht op het ANU lab. 

Dank jullie wel voor alle analyses en de hulp! Daarnaast hebben nog een flink aantal studenten 

mij geholpen bij de experimenten of het labwerk op Axis. Roel van Bree, Pussamon 

Vongtongsalee (Ploy), Bao-Anh Hguyen, Frank Schumacher, Sudeb Saha, Priscilla Gerritsen en 

Lydia Kroon; dank jullie wel.  

Subsequently, I would like to thank my colleagues, both PhDs and staff members, from 

ANU for the nice coffee and lunch breaks, the social interactions (such as drinks, playback 

shows, team building events, potluck diners), the ‘low level’ chats and laughs, and (of course) the 

work-related discussions. ANU is a great place to work and you are a great group of people to 

work with! There are a few people I would like to thank specially. André (also for your input on 

my general introduction), Sabrina, Daniel, Bayissa, and Geronda, you were from the low 

emission animal feed project. My dairy cow – methane colleagues. It was great to work with you 

guys in a team. We helped each other during practical work at Carus, ate cake/cookies during 

balance days, shared data, discussed findings, and had fun. Geronda, you were a major 

contributor to the latter: mijn eilandgenootje vanaf het begin, George Koeney (what else?), Jack 

Angus, practical jokes bij collega’s. Met jou heb ik toch wel wat traantjes gelaten...van het lachen 

wel te verstaan! 

Marijke, Tetske, Myrthe, Sonja, Yvonne, Kasper, Sandra; ik vond het fijn om een groot 

deel van mijn PhD gelijktijdig met jullie te doen! Van samen lachen tot samen de frustraties van 

SAS delen. Ook is het altijd gezellig met jullie buiten de werkuren om (laser gamen, escape room, 

shoppen, lekker eten, spelletjes avond, high teaen). Henk, wij waren samen de twee PhD’s vanuit 
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ANU binnen het TIFN projectteam. Jij als modelleer-man, ik als koeienknuffelaar op Carus. 

Haha. Ik vond het leuk om met je samen te werken! Hoewel ik soms een ondertiteling nodig had 

om je te begrijpen ;-) heb ik ook veel van je geleerd. Last, but definitely not least, Kelly! You are 

my paranymph and I am so happy you were able to change your Christmas holidays plans for 

this. It was nice to be neighbours, share knowledge, and to help each other out during our 

practical work at the climate respiration chambers. Also thanks for your occasionally native 

English advise. One last thing...we share the same supervisor and our love for pink. So Kelly, 

please keep up the pink GIRL power! 

I would also like to thank the COST action Methagene. This programme has given me 

the opportunity to build a network within the methane emission research field.  I have met a lot 

of people, visited many places in Europe, and learned a lot of the different aspects of methane 

emission, including genetics, different measuring equipment, and proxies.  

Gelukkig is er meer in het leven dan een PhD doen. Hoewel je op sommige momenten 

(tijdens experimenten) daar heel anders tegen aan kan kijken... Lieve familie, vrienden, en mijn 

gezin; dank jullie dat jullie aan mijn zijde staan. Het schrijven van dit boek is mijn werk, maar 

wat echt belangrijk is in het leven zijn jullie! Pa en Ma, jullie hebben mij altijd door dik en dun 

gesteund. Van turnwedstrijden tot mijn keuze de 5de klas opnieuw te doen tot de open dag van 

biologie in Utrecht tot de hospiteeravond (bedankt pa...). Jullie hebben mij altijd verteld “waar 

een wil is, is een weg”. Dank jullie voor de steun, het vertrouwen, de vrijheid en vooral jullie 

liefde. Ik vind jullie een fantastische opa en oma Schattepatat!   

Johri, jij bent mijn grote broer, mijn buddie, mijn beste maatje. Ik denk dat menig ander 

jaloers mag zijn op onze broer-zus relatie. Nooit ruzie en fantastisch, ik herhaal FANTASTISCH 

zangtalent. Dus, om je in stijl te bedanken: “Joh, Bro, Sanne rijdt nog steeds niet in een Escalade. 

Maar die bak is wel ongelofelijk vreed. Nu je zusje als Dr. door het leven gaat, behoort die veel 

beloofde Audi echt bij haar in de straat....”.   

En dan wil ik natuurlijk nog de familie Derksen bedanken. Ondanks dat ik van de 

koude kant ben, hebben jullie mij altijd met open armen ontvangen. Een warme en liefdevolle 

familie. Jan, Els, Katja en Iwan, bedankt voor alles! Vooral ook tijdens de laatste loodjes.  

Naast mijn familie, zorgen mijn vrienden ervoor dat ik met beide benen op de grond 

bleef staan. Chantal, mijn dropvreter ex-buurmeisje, heerlijk om nog steeds samen met je thee te 

leuten. Janneke en Babs, mijn oudbestuur ladies, heerlijk die meidenavonden. Niet meer ‘wild’ 

stappen, maar thuis lekker eten, wijntjes drinken en chickflicks kijken op de bank. Love it! Laten 

we dit vooral blijven doen! Marlouke, Leon, Jonne en Erik: mijn biologiemaatjes. We kennen 

elkaar inmiddels 11 jaar en ik vind het erg fijn dat we nog steeds met elkaar omgaan. Binnenkort 

een weer een keertje naar de (Duitse) dierentuin? En dan hebben we nog de Warande-gang. 

Hoewel we inmiddels niet meer bij elkaar in 1 huis wonen, elkaar minder vaak zien en het aantal 

kinderen in de groep bijna groter is dan het aantal volwassenen, is het altijd gezellig als we weer 

samenkomen. Laat de kerstklazen maar komen! 

I have been called many names, but mama is by far the best! Lieve Sofie en lieve Floris, 

jullie zijn mijn twee ‘Nature’  publicaties waar ik het meest trots op ben. Jullie zijn, samen met 

papa, mijn gezin, mijn thuis, mijn alles. Ik hou ontzettend veel van jullie en ik ben ongelofelijk 
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gelukkig om jullie mama te zijn. Hopelijk vonden jullie het af en toe ook leuk om op sleeptouw 

genomen te worden naar de koeien.  

Lieve Jeroen, lieverd. Jij verdient toch eigenlijk de grootste plek in dit dankwoord. Jij 

bent absoluut mijn steun en toeverlaat geweest. Bij jou kon ik altijd een luisterend oor vinden 

om mijn stoom af te blazen om vervolgens een rustig ‘down-to-earth’ oplossing/antwoord te 

krijgen. Heerlijk! Daarnaast was het niet altijd makkelijk; terwijl ik weer in het buitenland zat 

voor congres, cursus or workshop, zat jij thuis met de kinderen. Dank je wel dat je mij de vrijheid 

heb gegeven om dit te kunnen doen! De laatste maanden, bij die laatste zware loodjes, was jij 

absoluut mijn houvast. Ik hou heel veel van je en nu gaan we samen eindelijk het getrouwde 

leven zonder PhD in. Haha! Op naar Parijs (het wordt echt tijd!) en meer burgerlijkheid, hoewel 

dezelfde jassen toch nog een stap te ver is ;-). 
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1st International Animal Nutrition Congress, Antalya, Turkey 2016 

  

Seminars and Workshops  

Nutritional Management in Early Lactation, Wageningen, the Netherlands 2012 

Annual WIAS Science Day, Wageningen, the Netherlands 2013, 2014 

Annual Animal Nutrition Research (ANR) Forum, Utrecht, the Netherlands 2014 

Symposium Solutions for Climate Change and Animal Production 2014 

  

Presentations  

Annual WIAS science day (poster) 2013 

Annual ANR Forum (oral presentation) 2014 

JAM ADSA-ASAS (oral presentation) 2015 

GGAA (2x oral presentation, 1x poster) 2016 

1st International Animal Nutrition Congress (oral presentation) 2016 

  

In-depth Studies (7 ECTS)  

Disciplinary and Interdisciplinary courses  

Fatty acids in dairy cattle in relation to product quality and health, Ghent, Belgium 2012 

SummerSchool Ruminomics, Piacenza, Italy 2014 

Methagene workshop (Granada, Spain; Catania, Italy; Jokioinen, Finland) 2014, 2015, 2016 

Preconference workshops: SF6 and climate respiration chambers (Melbourne, 

Australia) 

2016 

Methagene training school on Rumen Microbiol Ecosystem (Porto, Portugal) 2016 

  

Advanced Statistic courses  

Advanced statistics of Experimental Design, WIAS 2012 

  

Professional Skills Support Courses (6 ECTS)  

Scientific Publishing 2013 

Basic IP for TIFN researchers 2013 

1 One ECTS credit equals a study load of approximately 28 hours.  
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  Professional Skills Support Courses (continued)  

Techniques for Writing and Presenting a Scientific Paper 2014 

Presentation Skills 2014 

Efficient Writing Techniques 2014 

Writing Grant Proposals 2016 

  

Research Skills Training (3 ECTS)  

Preparing PhD Research Proposal 2012 

  

Didactic Skills (12 ECTS)  

Supervising Practicals and Excursions  

Animal Nutrition and Physiology 2015, 2017 

  

Supervising theses  

MSc Thesis, 4x 2015 

BSc Thesis, 2x 2013, 2015 

  

Tutorship  

Inleiding in de Dierwetenschappen 2014, 2016 

  

Management Skills Training (3 ECTS)  

Membership of Boards and Committees   

WAPS Council Member - Education Committee 2015 

  

TOTAL 48 ECTS  
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Colophon 

 

The studies presented in this thesis were performed within the framework of Top Institute Food 

and Nutrition. 
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