
 

 

Multi-objective decision-making 

for 

dietary assessment and advice 

 

 

 

 

 

 

 

 

 

 

 
J.C. van Lemmen-Gerdessen 

  



 

Thesis committee 

Promotors 
Prof. Dr J.G.A.J. van der Vorst 
Professor of Operations Research and Logistics 
Wageningen University & Research 

Prof. Dr P. van ’t Veer 
Professor of Nutrition, Public Health and Sustainability 
Wageningen University & Research 

Co-promotor 
Dr G.D.H. Claassen 
Associate professor, Operations Research and Logistics Group 
Wageningen University & Research 

Other members 
Prof. Dr E.J.M. Feskens, Wageningen University & Research 
Dr M.C. Ocké, National Institute for Public Health and the Environment (RIVM), Bilthoven  
Dr E.L. Ferguson, London School of Hygiene and Tropical Medicine, United Kingdom 
Prof. Dr C. Romero, Technical University of Madrid, Spain 

This research was conducted under the auspices of  
Wageningen School of Social Sciences (WASS)  



 

 

Multi-objective decision-making 

for 

dietary assessment and advice 

 

 
J.C. van Lemmen-Gerdessen 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Thesis 

submitted in fulfilment of the requirements for the degree of doctor 
at Wageningen University 

by the authority of the Rector Magnificus, 
Prof. Dr A.P.J. Mol, 
in the presence of the 

Thesis Committee appointed by the Academic Board 
to be defended in public 

on Friday 15 December 2017 
at 4 p.m. in the Aula.  



 

J.C. van Lemmen-Gerdessen 
Multi-objective decision-making for dietary assessment and advice, 
138 pages. 

PhD thesis, Wageningen University, Wageningen, the Netherlands (2017) 
With references, with summary in English 

ISBN 978-94-6343-707-3 
DOI 10.18174/425370 



Contents 
 
1 Introduction 1 

1.1 Background 2 
1.2 Problem statement 5 
1.3 Research objective 7 
1.4 Research challenges and research questions 8 
1.5 Outline of the thesis 11 

 
2 Optimising the selection of food items for food frequency questionnaires 13 

Abstract  14 
2.1 Introduction 15 
2.2 Methods 16 

2.2.1 Data 16 
2.2.2 Aggregation level of food items; food tree 16 
2.2.3 Performance indicators for the quality of a food list 17 
2.2.4 Optimising the performance indicators of a food list 18 
2.2.5 Mixed Integer Linear Programming (MILP) model 19 
2.2.6 Experiments 20 
2.2.7 Comparison with ValNed 20 

2.3 Results 21 
2.3.1 Trade-off between length and Rn

2 21 
2.3.2 Comparison with ValNed 22 

2.4 Discussion 23 
Appendix 2A Calculation of R2, Cj', and Fij 26 
Appendix 2B Mixed Integer Linear Programming models 29 

 
3 General 0-1 fractional programming with conditional fractional terms for design 

of food frequency questionnaires 31 
Abstract  32 
3.1 Introduction 33 
3.2 Background 33 
3.3 FFQ model 36 
3.4 Reformulation of the FFQ problem 39 
3.5 Numerical analysis 41 

3.5.1 Data 41 
3.5.2 Experiments 42 

3.6 Discussion and concluding remarks 44 
  



4 Diet models with linear Goal Programming: impact of achievement functions 45 
Abstract  46 
4.1 Introduction 47 
4.2 Methods 49 
4.3 Diet model 56 
4.4 Results 60 
4.5 Discussion 62 
Appendix 4A Model Class 2b: Minimise the differences between the actual diet and 

the proposed diet 66 
Appendix 4B List of foods 70 

 
5 Combining equity and utilitarianism - Additional insights into a novel approach 73 

Abstract  74 
5.1 Introduction 75 
5.2 Combing Equity and Utilitarianism (CEU) 76 
5.3 Case study: an EGP-based diet model 80 
5.4 Experiment and observations 81 
5.5 Analysis and discussion 84 
5.6 Conclusions 90 
Appendix 5A Food intakes xj 91 
Appendix 5B Behaviour of CEU’s welfare function 92 

 
6 Conclusions and discussion 95 

6.1 Introduction 96 
6.2 Conclusions 96 

6.2.1 RQ1 – How can MODM support selection of items for FFQs? 97 
6.2.2 RQ2 – How to solve general 0-1 fractional programming problems with 

conditional fractional terms? 98 
6.2.3 RQ3 – What is the impact of achievement functions in diet models? 98 
6.2.4 RQ4 – What is the added value of a novel method for finding a compromise 

between total utility and lowest utility in diet models? 99 
6.3 Integrated findings 100 
6.4 Discussion and opportunities for future research 103 

6.4.1 Methodological choices 103 
6.4.2 Modelling choices 104 
6.4.3 Case-based choices 109 
6.4.4 Challenges for acceptance of the MODM approaches 110 
6.4.5 Opportunities for future research 112 

6.5 Concluding remark 115 
 
Summary   117 
References  123 
Acknowledgements 133 



 

 

Chapter 1 

 

Introduction 
 

  



Chapter 1 

2 

1.1 Background 

Importance of healthy diets 
Poor quality of diet is a major cause of mortality and disability worldwide (Lim et 
al., 2012, Imamura et al., 2015, WHO, 2013b). In international food programmes, 
most attention has been paid to food security and micronutrient deficiency, but the 
diet-related health burdens due to non-communicable chronic diseases are now 
surpassing those due to undernutrition in nearly every region of the world (Imamura 
et al., 2015).  
 
Non-communicable chronic diseases (NCDs), also known as chronic diseases, are of 
long duration and generally slow progression (WHO, 2017). WHO (2014) points out 
NCDs as the leading cause of death globally: of the world’s 56 million deaths in 
2012, 38 million (68%) were attributable to NCDs. The number of NCD deaths has 
increased from 31 million in 2000, to the 38 million in 2012, and is projected to reach 
52 million by 2030 (WHO, 2014, Mathers and Loncar, 2006). Worldwide, more than 
40% of the NCD deaths were premature deaths under age 70 years. These were 
distributed unequally: in low- and middle-income countries, NCDs accounted for 
82% of the premature deaths, which is regarded to act as key barrier to poverty 
reduction and sustainable development (WHO, 2014). The cumulative economic 
losses due to NCDs under a “business as usual” scenario in low- and middle-income 
countries during 2011-2025 have been estimated at US$ 7 trillion (WHO, 2014). So, 
NCDs have a negative impact on the quality of life and well-being of the individual 
and of society as a whole, and put a high burden on health systems and the economy 
(WHO, 2013b).  
 
Worldwide, in 2012, four main NCDs were responsible for 82% of NCD deaths: 
cardiovascular diseases (17.5 million), cancers (8.2 million), chronic respiratory 
diseases (4 million), and diabetes (1.5 million) (WHO, 2014). These four main 
NCDs share four behavioural risk factors: tobacco use, unhealthy diet, physical 
inactivity and harmful use of alcohol (WHO, 2013a). With respect to diets, Lim et 
al. (2012) point out the individual dietary risk factors with the largest attributable 
burden to NCDs in 2010, see Table 1.1. So, healthy diets can contribute to reducing 
NCDs. 
 
Due to their potential to reduce NCDs, healthy diets are a global priority, as 
addressed in e.g. the Global Nutrition Report (International Food Policy Research 
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Institute, 2016). In order to decrease the burden of NCDs, the WHO (2013a) 
presented a Global Action Plan, which includes a policy action to “Strengthen the 
scientific basis for decision-making through non-communicable disease-related 
research and its translation to enhance the knowledge base for ongoing national 
action”. In the context of healthy diets, two research fields are particularly relevant 
to study aetiology, monitor the status quo, and develop prevention strategies: dietary 
assessment and dietary advice.  
 
Table 1.1 Individual dietary risk factors with the largest attributable burden to NCDs in 2010, expressed 
in millions of deaths and in percentage of global DALYs  (Lim et al., 2012). 

Dietary risk factor  Disease burden1 
Diets that are  in 106 deaths in %DALY2 

low in fruits  4.9 (3.8 – 5.9) 4.2 (3.3 – 5.0) 
high in sodium  4.0 (3.4 – 4.6) 2.5 (1.7 – 3.3) 
low in nuts and seeds  2.5 (1.6 – 3.2) 2.1 (1.3 – 2.7) 
low in whole grains  1.7 (1.3 – 2.1) 1.6 (1.3 – 1.9) 
low in vegetables  1.8 (1.2 – 2.3) 1.5 (1.0 – 2.1) 
low in seafood omega-3 fatty acids  1.4 (1.0 – 1.8) 1.1 (0.8 – 1.5) 

1Note that the joint effect of multiple risk factors is not a simple addition of the individual effects and 
is often smaller than the sum of the individual effects. 
2Disability adjusted life years, that is: sum of years lived with disability and years of life lost. 

Dietary assessment and advice 
Dietary assessment contributes to NCD reduction by assessing the food and nutrient 
intake of target groups and individuals in order to investigate the relation between 
diet and disease. It helps to point out which foods and nutrients critically contribute 
to the health status of consumers, and to formulate food and nutrient 
recommendations. Dietary assessment, for instance, asks respondents to fill in a 
questionnaire on their use of certain foods products. Nowadays, supermarkets sell 
thousands of food products, which contribute in varying degrees to the intake of a 
wide range of nutrients that the dietary expert might want to assess. However, one 
cannot expect respondents to fill in a comprehensive questionnaire on all the foods 
in their consumption patterns. The challenge for dietary experts is to compose a 
questionnaire that is short enough to be acceptable for the respondent, and yet 
sufficiently long to cover all nutrients that the dietary expert wants to assess.  
 
Dietary advice contributes to NCD reduction by translating food and nutrient 
recommendations into realistic food choices. Here, dietary experts face another 
challenge: from the range of thousands of products that contain multiple nutrients, 
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how to compose a dietary pattern that complies with all nutritional constraints, and 
is acceptable for the consumer? 
 
So, both dietary assessment and dietary advice give rise to complex decision 
problems: which foods to include in dietary assessment or advice to pursue the 
multiple objectives of the researcher or fulfil the requirements of the consumer?  

Operations Research and Multi-Criteria Decision-Making  
Operations Research (OR) is a discipline that deals with the application of advanced 
analytical methods to help make better decisions (INFORMS, 2017). It employs 
techniques such as mathematical modelling and mathematical optimisation to arrive 
at optimal or near-optimal solutions to complex decision problems. It is often 
concerned with determining a maximum (such as nutritional adequacy of a diet) or 
minimum (such as the length of a food frequency questionnaire). Widely used 
techniques in OR are linear programming (LP) and mixed-integer linear 
programming (MILP). Within OR, multi-criteria decision-making (MCDM) 
approaches can be used to support the decision-maker in situations where one wants 
to pursue multiple maxima or minima at the same time (Romero and Rehman, 2003), 
for instance in situations where multiple nutrients are relevant. Commonly, there is 
a level of conflict between these maxima and minima.  
 
MCDM problems can be classified in many ways, depending on characteristics of 
the problem. Based on the number of a problem’s alternatives or solutions, a 
distinction is made between multi-attribute decision-making (MADM) and multi-
objective decision-making (MODM). MADM deals with situations in which a 
(commonly relatively small) set of explicitly listed solutions has to be considered. 
MADM approaches then aim to rank these alternatives based on their performance 
with respect to multiple criteria and the decision-maker’s preferences, or to point out 
a preferred alternative. MODM focusses on situations in which the set of solutions 
is implicitly described via a set of constraints, and often is very large. MODM 
approaches aim to find a ‘best possible’ solution, that is, they aim to find a feasible 
solution that has the best possible performance with respect to the decision-maker’s 
objectives and preferences. For a rational decision-maker, a solution to an MODM 
problem should be Pareto-optimal, that is, it should have the property that none of 
its objectives can be improved without deteriorating one of the others. Basic methods 
for finding Pareto-optimal solutions for MODM problems are the weighting method 
(in which a weighted sum of the individual objectives is optimised) and the ε-
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constraint method (which optimises one of the objectives, and converts the others 
into constraints). Other common methods are compromise programming (which 
aims to find a solution that is as close to ideal as possible) and goal programming 
(which aims to minimise deviations from aspirations levels for the objectives) 
(Miettinen, 2008). 
 
OR and MCDM have been used in many application areas, as is demonstrated in the 
variety of streams in recent conferences such as EURO2016 and MCDM2013: 
inventory management, production planning, vehicle routing, agricultural and 
forestry resources management, sustainable development, efficient use of energy, 
humanitarian logistics. So far, the number of applications in human nutrition is 
limited. This thesis demonstrates how MODM can contribute to two fields in human 
nutrition, viz. dietary assessment and dietary advice, and it shows how these 
applications contribute to model building and solving for OR. 

1.2 Problem statement  
People need nutrients but eat foods (Buttriss et al., 2014). The nutrient requirements 
vary between individuals, depending for instance on age, gender, activity and health 
status. Nutrients are not evenly distributed in foods. Moreover, there exists an ever-
increasing variety of foods, and these foods are used within a broad spectrum of 
consumption patterns. Dietary assessment aims to assess habitual food intake, and 
uses food composition to calculate the resulting (observed) nutrient intake. Dietary 
advice works the other way around: starting from food-based dietary guidelines 
(FBDG) and nutrient requirements, it uses food composition to come to (advised) 
food intakes. In short: dietary assessment requires conversion of foods to nutrients, 
whereas dietary advice converts nutrients to foods, see Figure 1.1.  
 

 
Figure 1.1 Dietary assessment uses food composition to convert food intake to nutrient intake, dietary 
advice uses food composition to convert nutrient intake to food intake. 

Food 
composition

Nutrient 
intake

Food 
intake
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Dietary assessment – food frequency questionnaires 
For assessing habitual nutrient intake of subjects in a population, often food 
frequency questionnaires (FFQs) are used (Willett, 1998). FFQs consist of a limited 
number of questions on consumption of the foods of interest during a predefined 
period of time, such as the past month or year (Cade et al., 2002). On the one hand, 
an FFQ should include enough (questions on) food items to capture sufficient 
information on all nutrients of interest. On the other hand, an FFQ should be as short 
as possible, because long FFQs may bore respondents, and make them less motivated 
to fill out an FFQ accurately (Willett, 1998). The challenge is to develop short FFQs 
that provide sufficient information for each of the nutrients. Selection of food items 
to be included in an FFQ is based on their contribution to the nutrient intake of a 
population and its variance. The common selection procedure, usually based on 
stepwise regression (Molag et al., 2010, Willett, 1998), is time-consuming. 
Moreover, it is hard to select items in such a way that all nutrients of interest are 
sufficiently covered. As a result, the selection of items for FFQs strongly depends 
on intuition and (different) personal experiences of domain experts. Therefore, there 
is a need for quantitative decision support for designing short, informative FFQs in 
a way that is transparent and reproducible. As FFQs commonly aim for multiple 
nutrients, MODM approaches may contribute to FFQ development.  

Dietary advice – Diet modelling 
Dietary advice aims to translate nutrient recommendations into realistic food 
choices. Such translation occurs in several contexts, for instance in composing diets 
for randomised controlled trials, in individual advice by dieticians, or in developing 
guidelines for policy makers. In the past, dietary advice strongly depended on 
intuition and personal experiences of domain experts. Nowadays, diet modelling is 
considered a useful tool to help identify solutions to complex nutrition problems, 
such as the access to nutritionally adequate and affordable diets, and the development 
of dietary recommendations (Buttriss et al., 2014).  
 
Diet modelling is defined as the use of mathematical techniques to formulate and 
optimise diets (Buttriss et al., 2014). Commonly, linear programming models are 
used. In such models, constraints ensure that the proposed diet meets requirements 
on nutrient content and consumer preference. If no diets exist that satisfy all 
constraints, the aim is to compose diets that violate the constraints as little as possible 
(Anderson and Earle, 1983, Ferguson et al., 2006, Fletcher et al., 1994). The resulting 
decision problem has multiple objectives. If diets do exist that satisfy all constraints, 
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then commonly the aim is to compose diets that are as close as possible to the 
consumer’s current diet. The objectives then are to minimise the differences between 
advised and current intakes of various foods (Darmon et al., 2002, Darmon et al., 
2006, Maillot et al., 2010, Masset et al., 2009, Thompson et al., 2013). MODM 
approaches may contribute to diet modelling, as they can integrate conflicting and 
incomparable objectives, such as intakes of various nutrients, and show trade-offs 
between them.  
 
For the quality of decision-making in MCDM problems, assumptions on the so-
called preference structure of the decision-maker are of major importance (Tamiz et 
al., 1998, Romero, 2001, Romero, 2004, Jones, 2011). In diet models, the preference 
structure can for instance represent the way in which performance indicators for a 
diet’s adequacy with respect to intake of multiple individual foods and nutrients are 
aggregated into a single performance indicator for the overall quality of the diet. All 
diet modelling references mentioned above use model formulations that require that 
the decision-maker has a preference structure in which the trade-offs between 
objectives are known and constant. This is a severe assumption. There is a need to 
investigate how other preference structures can be incorporated into diet models and 
how they affect the resulting solutions. 

1.3 Research objective 
As argued above, there is a need for MODM approaches to support decision-making 
for dietary assessment and advice. Therefore, the aim of this research is to investigate 
MODM approaches for dietary assessment and advice, thus contributing to 
formulating healthier diets. This is relevant not only to nutrition research as such, 
but also contributes to model building and solving in OR. This is summarised in 
Figure 1.2. 
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Figure 1.2 The aim of this thesis is to contribute to formulating healthier diets by investigating MODM 
approaches for dietary assessment and advice. For OR, this contributes to model building and solving. 

1.4 Research challenges and research questions 
Based on the previous sections, four MODM research challenges in nutrition 
research are identified. This section elaborates how each of these is translated into a 
research question for this thesis.  

Research challenge 1. Use MODM for FFQ development 
There is a need for quantitative decision support for designing short FFQs that 
provide sufficient information for each of the nutrients of interest, in a transparent 
and reproducible way. The various nutrients are incomparable entities (for instance, 
saturated fat and retinol). Therefore, the FFQ optimisation problem does not have 
one single objective, but one objective for each nutrient, which makes it a multi-
objective problem. Literature review did not reveal any use of MODM approaches 
for development of FFQs. This gives rise to  
 
Research question 1. How can MODM support selection of items for FFQs? 

Dietary 
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Operations 

Research
Model building and solving

Better decision making
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Research challenge 2. Solve fractional problems with conditional 
fractional terms 

The basis of every FFQ is a tree structure in which all potential food items are 
ordered (Molag et al., 2010). Figure 1.3 shows an illustrative and simplified part of 
the food tree that comprises citrus fruit. An FFQ can use single items such as 
ORANGE and GRAPEFRUIT (Figure 1.3a), and/or aggregated items such as CITRUS 
(Figure 1.3b). Each of these items comprises exactly one node in the food tree, so 
their composition follows directly from the dataset. CITRUS, as well as ORANGE, is 
therefore called a direct item. An FFQ can also contain indirect items. In an indirect 
item, several direct items are grouped into one question that is characterised by the 
word “other”, for instance OTHER CITRUS in Figures 1.3c and 1.3d. The composition 
of OTHER CITRUS depends on the preceding direct items: in Figure 1.3c, OTHER 
CITRUS comprises TANGERINE, GRAPEFRUIT and LEMON, whereas in Figure 1.3d it 
only comprises GRAPEFRUIT and LEMON. So, the composition of OTHER CITRUS will 
only be known after optimisation, that is, after it is known which direct items are 
selected.  
 

 
Figure 1.3 Food lists with direct and indirect items. Shaded items are selected for the food list.  
 
Molag et al. (2010) identifies the inability to cope with indirect items as a major 
limitation of linear programming for FFQ development. Although there is debate, 
nutritionists assume that the contribution of indirect items to the quality of an FFQ 
can be approximated by the average contribution of its constituent items. This can 
be modelled by extending the FFQ model with fractional terms for the indirect items: 
the contribution of an indirect item is calculated as the summed contributions of its 
constituent items divided by the number of constituent items. These fractional terms, 
however, pose a problem: as long as the direct items are not selected, the composition 
of the indirect items is unknown. Phrased differently: the contribution of an indirect 
item is calculated as the average contribution of a set of items that is only known 
after optimisation. In case the set is empty, both the summed contribution and the 
number of items are zero, which makes the resulting fractional term undefined (that 
is, “zero divided by zero”). We refer to this problem as a general 0-1 fractional 
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programming problem with conditional fractional terms, because the fractional terms 
are only defined on the condition that their denominator is non-zero. Of course, all 
undefined fractional terms should be excluded from the objective function. However, 
before optimisation it is not known which fractional terms will actually be undefined. 
Papers about fractional problems commonly start with the remark that only fractions 
with strictly positive or strictly negative denominators are considered (Stancu-
Minasian, 1999, Stancu-Minasian, 2006), so existing literature does not provide a 
solution method for the problem at hand. This gives rise to  
 
Research question 2. How to solve general 0-1 fractional programming 

problems with conditional fractional terms? 

Research challenge 3. Explore preference structures in diet models 
Existing diet models commonly use achievement functions that minimise a weighted 
sum of unwanted deviations from pre-set target levels on food and nutrient intakes. 
Implicitly, it is assumed that the decision-maker has a preference structure in which 
trade-offs between objectives are known and constant. In a diet model, this would 
mean that trade-offs between nutrients are constant and do not depend on intake 
level, for instance 10% extra deviation from a vitamin C target is considered equally 
serious as 5% extra deviation from a calcium target, no matter whether the vitamin 
C intake is almost adequate or dangerously low. A well-known drawback of 
achievement functions with weighted sums is that they may generate solutions in 
which some criteria completely meet their targets, whereas others are (very) far off 
(Romero, 2001). Moreover, they can be sensitive to changes in the used weights. 
Literature proposes several other achievement functions, representing other 
preference structures, that can generate solutions in which the unwanted deviations 
from targets are much more evenly spread, and that are less sensitive to weight 
changes. This leads to 
 
Research question 3. What is the impact of achievement functions in diet 

models? 

Research challenge 4. Find a compromise between total utility and lowest 
utility 

The diet model addressed in research question 3 combines an achievement function 
in which a (weighted) sum of utilities is maximised and an achievement function in 
which the lowest value within a set of utilities is maximised. Combining these 
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requires weighting again. The problem is how to justify and interpret weights 
(Korhonen et al., 2013, Hooker and Williams, 2012). Considering the key 
importance of preference structure (as implemented via achievement functions and 
weights) for the quality of decision-making in MCDM, it is crucial to keep an open 
mind for novel approaches. Hooker and Williams (2012) introduce an approach for 
balancing between total (sum of utilities) and lowest utility that does not require 
specification of a set of weights, but uses only one parameter. So far, the approach 
has not been evaluated and used in a practical context besides that of Hooker and 
Williams (2012). In order to assess its added value for diet modelling, it is important 
to gain insights into its properties and (dis)advantages. This leads to  
 
Research question 4. What is the added value of a novel method for finding a 

compromise between total utility and lowest utility in the 
context of diet models? 

1.5 Outline of the thesis 
This thesis includes a collection of five papers. The first two papers focus on research 
question 1. The other three papers focus on one research question each. Two research 
questions focus on dietary assessment, and two focus on dietary advice. From OR 
perspective, each dietary topic provides one application-oriented question and one 
methodological question (Table 1.2).  
 
Table 1.2 Outline of the thesis.  

Research challenge Research 
question 

Thesis 
chapter 

Nutrition 
research 

Operations 
Research 

1. Use MODM for FFQ development 1 2 Assessment Application 
2. Solve fractional programming problem 2 3 Assessment Method 
3. Explore preference structures in diet models 3 4 Advice Application 
4. Combine total and lowest utility 4 5 Advice Method 

 

Chapter 2 
Chapter 2, focusing on research question 1, describes how Operations Research can 
support the selection of food items for food frequency questionnaires by modelling 
the decision problem as a mixed integer linear programming problem. It is based on 
the following papers: 
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• Gerdessen, JC, Slegers, PM, Souverein, OW and De Vries, JHM (2012). Use of 
OR to design food frequency questionnaires in nutritional epidemiology. 
Operations Research for Health Care, 1: 30-33. 

• Gerdessen, JC, Souverein, OW, Van 't Veer, P and De Vries, JHM (2015). 
Optimising the selection of food items for FFQs using Mixed Integer Linear 
Programming. Public Health Nutrition, 18: 68-74. 

Chapter 3 
Chapter 3, focusing on research question 2, describes how general 0-1 fractional 
programming problems with conditional fractional terms can be solved via a 
reformulation approach. It is based on the following paper: 
• Gerdessen, JC, Claassen, GDH and Banasik, A (2013). General 0–1 fractional 

programming with conditional fractional terms for design of food frequency 
questionnaires. Operations Research Letters, 41: 7-11. 

Chapter 4 
Chapter 4, focusing on research question 3, describes how various achievement 
functions, representing various preference structures, can be incorporated into diet 
models. It is based on the following paper: 
• Gerdessen, JC and De Vries, JHM (2015). Diet models with linear goal 

programming: impact of achievement functions. European Journal of Clinical 
Nutrition, 69: 1272-1278. 

Chapter 5 
Chapter 5, focusing on research question 4, studies the behaviour of a novel method 
for finding a compromise between the lowest and the total utility in the context of 
the diet model that was presented in Chapter 4. It is based on the following paper: 
• Gerdessen, JC, Kanellopoulos, A, Claassen, GDH, ‘Combining equity and 

utilitarianism’ – Additional insights in a novel approach, International 
Transactions in Operational Research (DOI: 10.1111/itor.12415) 

  



 

 

Chapter 2 

 

Optimising the selection of food items 

for food frequency questionnaires 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on: 
 

Gerdessen, JC, Slegers, PM, Souverein, OW and de Vries, JHM (2012)  
Use of OR to design food frequency questionnaires in nutritional epidemiology  

Operations Research for Health Care, 1: 30-33 
 

Gerdessen, JC, Souverein, OW, van 't Veer, P and de Vries, JHM (2015)  
Optimising the selection of food items for FFQs using Mixed Integer Linear Programming 

Public Health Nutrition, 18: 68-74 
 2 Optimising the selection of food items for food frequency questionnaires



Chapter 2 

14 

Abstract 
In order to support dietary assessment, this chapter focusses on RQ1 “How can 
MCDM support selection of food items for FFQs?”. The challenge of selecting 
food items for FFQs in such a way that the amount of information on all relevant 
nutrients is maximised while the food list is as short as possible is modelled as a 
Mixed Integer Linear Programming (MILP) model. The model is demonstrated for 
an FFQ with interest in energy, total protein, total fat, saturated fat, 
monounsaturated fat, polyunsaturated fat, total carbohydrates, mono- and 
disaccharides, dietary fibre, and potassium. The food lists generated by the MILP 
model have good performance in terms of length, coverage, and R2 of all nutrients. 
MILP-generated food lists were 32-40% shorter than a benchmark food list, 
whereas their quality in terms of R2 was similar to that of the benchmark. These 
results suggest that the MILP model makes the selection process faster, more 
standardised and transparent, and is especially helpful in coping with multiple 
nutrients. The complexity of the method does not increase with increasing number 
of nutrients. The generated food lists appear either shorter or provide more 
information than a food list generated without the MILP model.  
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2.1 Introduction 
FFQs are often used to assess usual long-term dietary intake of subjects in 
nutritional epidemiological studies, because they are easy to administer with 
relatively low costs (Thompson and Byers, 1994). However, it is widely 
acknowledged that they cannot estimate true usual intake of individuals without 
errors, and that these errors affect the estimated diet-disease relation. Nevertheless, 
FFQs may provide a more realistic instrument to assess long-term intake because 
they also capture infrequently consumed foods, whereas short-term instruments 
like 24-hour recalls have presumably less bias, but require many repeats. Indeed, a 
combination of FFQ with 24 hour recalls was shown to provide a superior 
assessment compared to either method alone for some foods and nutrients (Carroll 
et al., 2012). However, practical and financial constraints still often favour the use 
of FFQs.   
 
The basis of any FFQ is a food list enumerating all food items on which 
respondents are questioned. The aim in developing FFQs is to select items for the 
food list such that as much information as possible is obtained for all nutrients of 
interest. However, the food list should not be too long in order to minimise the 
burden for respondents and the research costs. In the selection process decisions 
have to be taken on the level of aggregation of food items. Highly aggregated food 
items (such as ‘fresh fruit’) can capture a high coverage (i.e. the fraction of 
population intake that is covered by the items in the food list) in relatively few 
items, but they often are not suitable to capture the between-person variance in 
intake (Willett, 1998). Non-aggregated food items (single foods such as ‘apples’ or 
‘oranges’) perform better with respect to capturing the between-person variance in 
intake. However, it takes many of these items to obtain sufficient coverage on all 
nutrients of interest. 
 
To develop an FFQ, experts use standardised procedures. However, the process is 
time-consuming and the selection of food items strongly depends on the personal 
expertise of the expert. Molag et al. (2010) describe an automated procedure for 
selecting food items. In their selection procedure one nutrient at a time is taken into 
account. For that nutrient, all food items are ranked based on their contribution to 
the variance in the population. Then the highest ranked food items are added to the 
food list. Selection stops as soon as the selected items suffice to obtain a predefined 
level of R2 (explained variance), for example 80%. Then the same procedure is 
followed for the next nutrient, until all nutrients have been taken into account. 
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Drawback of this procedure is that it only adds food items to the food list, and 
never removes items. As most food items contribute to R2 of several nutrients it can 
be expected that food items added for one nutrient will also contribute to R2 of 
another nutrient. Thus, the final food list will be unnecessarily long, and the 
selection of food items will depend on the order in which nutrients are taken into 
account. Therefore, this procedure does not suffice to minimise the number of 
questions in case the food list is targeted for multiple nutrients. Furthermore, the 
issue of choosing aggregation levels is not addressed. These drawbacks expose the 
need for a selection procedure that optimises the food list for multiple nutrients 
simultaneously, by taking into account the contribution of food items to both the 
level of intake and variance of multiple nutrients. The procedure should also 
include the selection of food items at the best aggregation level. Selecting the 
subset of food items that maximises R2 resembles the variable selection problem in 
statistics. However, the FFQ problem distinguishes itself from the common 
variable selection problem by the large number of available food items, the issue of 
selecting aggregation levels, and the aim to optimise the food list for multiple 
nutrients simultaneously. This paper describes how selection of food items for the 
food list of an FFQ can be modelled and supported by Mixed Integer Linear 
Programming (MILP) models. It also compares MILP-generated food lists to a 
food list developed with the procedure described in Molag et al. (2010) in terms of 
length, coverage and R2. 

2.2 Methods 

2.2.1 Data 
To select food items to be included in the FFQ, food consumption data of the 
Dutch National Food Consumption Survey of 1997/1998 of the 3524 individuals in 
the age group of 25 up to 64 years of age (The Dutch Nutrition Centre, 1998) were 
used. The food consumption was assessed using a 2d food record, and converted 
into energy (n = 1), total protein (n = 2), total fat (n = 3), saturated fat (n = 4), 
monounsaturated fat (n = 5), polyunsaturated fat (n = 6), total carbohydrates 
(n = 7), mono- and disaccharides (n = 8), dietary fibre (n = 9), and potassium 
(n = 10) with the Dutch food composition database of 1996 (NEVO, 1996). 

2.2.2 Aggregation level of food items; food tree 
The food items are organised in a food tree with 5 levels, see Figure 2.1. Level 5 
contains all items that can be found as “food codes” (single foods) in the NEVO 
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food composition table (NEVO, 1996). Based on similarities in eating occasions, 
portion sizes and nutrient content these detailed food items are aggregated into 
more aggregated food items and food groups (Molag, 2010). The food groups at 
the highest aggregation level are the food groups as specified by NEVO (NEVO, 
1996). The food tree contains 1697 items. 
 

 
Figure 2.1 Simplified and illustrative part of the tree structure that comprises FRESH FRUIT. Item 
FRESH FRUIT (level 2) can be further aggregated into item FRUIT (level 1), which also contains items 
such as canned fruits and dried fruits. 

2.2.3 Performance indicators for the quality of a food list 
In this paper, we use three quantitative performance indicators to measure the 
quality of a food list: length of the food list, coverage of the level of nutrient 
intake, and explained variance (R2). Performance indicator length counts the 
number of food items in the food list (i.e. the number of selected “boxes” in the 
tree of Figure 2.1). Coverage describes the fraction of population intake covered by 
the items in the food list. The R2 of a nutrient is obtained from linear regression of 
total nutrient intake on nutrient intakes of all food items in the food list, see 
Appendix 2A. 

Soft fruit

Fresh fruit                

Citrus
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FFQs that are targeted for multiple nutrients have a coverage and an R2 for each 
nutrient n (n = 1, …, N), to be denoted as coveragen and Rn

2.  

2.2.4 Optimising the performance indicators of a food list  
There is a crucial difference between length and coveragen of a food list on the one 
hand, and Rn

2 on the other hand: the contribution of each individual food item to 
length and coveragen of a food list can be uniquely quantified, whereas the 
contribution of an item to Rn

2 depends on the set of other items in the list. This 
makes it impossible to calculate in a straightforward way which combination of 
items provides maximal Rn

2 on all nutrients. Therefore, a three-step procedure was 
employed to select a set of items (i.e. a food list) with high Rn

2: 

1. A parameter pj,n is defined, which is a proxy for the contribution of item j to 
Rn

2 of a food list. Pn is defined as the sum of the pj,n of all selected items. It is 
therefore a proxy of the Rn

2 of the whole food list. 

2. An MILP-model is used to select the optimal set of items with respect to 
length, coveragen, and Pn. 

3. Of the resulting set of items (i.e. food list) all Rn
2 are calculated. 

The challenge is to find an effective proxy pj,n, i.e. a proxy pj,n that demonstrates to 
be able to generate food lists with high Rn

2. As it is expected that items with high 
intake and high variance in a population might be good candidates for a food list 
(Willett, 1998), the following two implementations for proxy pj,n were tested: 

• based on intake: MOM1j,n is the percentage that food item j contributes to 
the coverage of nutrient n intake of the population (Mark et al., 1996). For 
items in level 5 we define pj,n as MOM1j,n. For the aggregated items in the 
other levels we define pj,n as 90% of the sum of the pj,n  in their constituent 
items. We refer to the intake-based proxy as MOM1*

j,n. The 90% was chosen 
after experiments with several values (and calculating the Rn

2 of the resulting 
food lists) which showed that in general the value of 90% led to good results. 

• based on variance: MOM2j,n is defined as the percentage that food item j 
contributes to sum of the variances of nutrient n within a specific level of the 
food tree (Mark et al., 1996):  
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where j = 1, …, J refers to all food items at a specific level in the food tree 
and Fij individual i’s intake of the nutrient from food list item j. We define 
pj,n as MOM2j,n. 

2.2.5 Mixed Integer Linear Programming (MILP) model 
The basis for the MILP-model is the tree structure presented in Figure 2.1. For 
every food item j in the tree we define binary decision variable Xj:  
 

Xj = 1 denotes that we decide to include item j in the food list, and 
Xj = 0 denotes that we decide not to include item j in the food list. 

  

We can express performance indicators length, coveragen, and proxy Pn as linear 
functions of Xj: 
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Now we can formulate an MILP-model that optimises one of these performance 
indicators while keeping the others at user-specified levels and ensuring that only 
feasible food lists are generated. For instance, if we want to optimise Pn while the 
length of the food list is no more than a predefined level (here: 50 items) and the 
coveragen of each nutrient is at least 75% then an appropriate MILP-model is: 
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(4) The food list should not contain overlapping items. 
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Restriction (4) is added in order to assure the model will only generate feasible 
food lists. For example, if item ORANGE is selected then CITRUS and FRESH FRUIT 
cannot be included, and if NON-CITRUS is included then FRESH FRUIT cannot be 
included, and neither can all items on the right-hand side of NON-CITRUS. This can 
be modelled by adding one restriction for every item in level 5 of the food tree (see 
Figure 2.1). For example, for ORANGE and CHERRY we add: 
 

XFRESHFRUIT + XCITRUS + XORANGE ≤ 1 
XFRESHFRUIT + XNONCITRUS + XSOFTFRUIT + XCHERRY ≤ 1 
 

Solving model (1)-(4) generates a feasible food list that has maximal value for 
average(Pn) among all food lists with at most 50 items and coveragen ≥ 0.75, 
provided that restrictions (2) and (3) are not conflicting. For example, if the user 
specifies that length ≤ 10 and coveragen ≥ 0.95 then no food list is generated, 
because no such list exists. 
An MILP-generated solution for the part of the food tree shown in Figure 2.1 might 
be XCITRUS = XAPPLE = XCHERRY = 1, and Xj = 0 for all other food items. This should be 
interpreted as follows: three food items are included in the food list: CITRUS, 
APPLE, CHERRY. This implies that the model has chosen to aggregate ORANGE, 
GRAPEFRUIT, TANGERINE, and LEMON into one aggregated item at level 3. 
By interchanging the performance indicators in (1), (2), and (3) various models can 
be obtained. Several examples are provided in Appendix 2B. 

2.2.6 Experiments 
With the MILP-model food lists have been generated of various lengths: 10, 20, …, 
150 items. Two different proxies pj,n were tested: MOM1*

j,n and MOM2j,n. Quality 
of the resulting food lists was measured in terms of their performance indicators 
length, coveragen, and Rn

2. Standard MILP-software (Xpress-Mosel 7.0.1) was used 
to solve the models (i.e. generate the food lists). Runtime of the MILP-model was 
very small: for all instances a global optimal solution was found in less than 5s. 

2.2.7 Comparison with ValNed 
We compared length, coveragen, and Rn

2 of MILP-generated food lists with those of 
an actual FFQ, the so-called ValNed questionnaire (Molag, 2010). This 
questionnaire was developed for the same nutrient set, and with use of the same 
data source as the MILP-generated food lists. For constructing the food list of 
ValNed, the procedure of Molag et al. (2010) was used. The ValNed food list 
consisted of 117 items. 
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2.3 Results 

2.3.1 Trade-off between length and Rn
2 

For food lists of length = 10, 20, …, 150 items all Rn
2 (n = 1, …, N) were 

calculated. Figure 2.2 shows the trade-off between length and Rn
2. Figure 2.2 helps 

to weigh the amount of added information against the number of questions needed. 
For example, it took 40 items to obtain a food list in which all nutrients have 
Rn

2 ≥ 70%, 50 items to have all Rn
2 ≥ 80%, and 80 items to have all Rn

2 ≥ 85%.  

 
Figure 2.2 Trade-off between number of items in the food list (length) and Rn2  for a coverage-based 
implementation and a variance-based implementation of proxy pj,n (food item j = 1, ..., J; nutrient 
n = 1, ..., N). For each food list the Rn2  for all nutrients were calculated. The range of these Rn2   is 
represented with a bar. The lowest among the Rn2  of a food list is represented with a circle () for 
pj,n = MOM1*j,n and a square () for pj,n = MOM2j,n. As point of reference also the length and Rn2  of 
ValNed () are shown. 
 
The choice for proxy pj,n (i.e. MOM1*

j,n or MOM2j,n) had impact on the Rn
2 of the 

resulting food list. For food lists of up to 70 items pj,n = MOM2j,n was the best 
proxy. For food lists of more than 90 items pj,n = MOM1*

j,n was the best proxy.  
Figure 2.3 shows the impact of length on the number of single food items selected 
for the FFQ. (All other selected items are aggregated items.) Both absolute and 
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relative number of single food items grows with growing length, because a longer 
food list allows selection of more detailed food items, and thus selection of 
relatively many single foods. ValNed uses fewer single foods than the MILP-
generated food lists.  
 

Figure 2.3 The impact of the length of the food list on the absolute and relative number of single 
foods selected for the food list with solid diamond () for number of single foods in MILP food lists, 
open diamond () for percentage of single foods in MILP food lists, solid triangle () for number of 
single foods in ValNed food list, and open triangle () for percentage of single foods in the ValNed 
food list. For example, the MILP-generated food list of length 20 items contained 3 single foods 
(15%). The ValNed food list of length 117 items contained 19 single foods (16%). 

2.3.2 Comparison with ValNed 
Length, coveragen, and Rn

2 of the MILP food lists were compared to those of the 
food list of ValNed. Figure 2.2 shows that the MILP-model obtained the same 
Rn

2 as ValNed in substantially fewer items, or vice versa obtained higher values for 
Rn

2 with the same number of items. This is further illustrated in Table 2.1, which 
shows the performance indicators of ValNed and of three food lists generated with 
the MILP-model (with proxy pj,n = MOM1*

j,n and iterative improvement procedure 
as described in Appendix 2B).  
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100 120 140

Pe
rc

en
ta

ge
 o

f s
in

gl
e 

fo
od

s  
in

 th
e 

fo
od

 li
st

N
um

be
r o

f s
in

gl
e 

fo
od

s  
in

 th
e 

fo
od

 li
st

length of the food list



Optimising the selection of food items for food frequency questionnaires 

23 

Table 2.1 Performance indicators of the food list of ValNed and three MILP-generated lists. 
Food list length coveragen (range, in %) Rn

2 (range, in %) 
ValNed 117 79.2; 89.1 85.7; 91.3 
MILP117 117 96.0; 97.3 90.5; 95.2 
MILP80  80 93.9; 97.3 86.4; 94.4 
MILP70  70 91.4; 97.2 84.3; 93.4 

 
Food list MILP117 was generated with an MILP-model that maximises Pn while 
putting an upper bound of 117 on the length of the generated food list. MILP117 
has substantially higher values for coveragen and Rn

2 than ValNed, while length is 
the same. For generating MILP80 and MILP70 an upper bound of 80 resp 70 was 
put on the length of the food list. MILP80 has slightly higher values for Rn

2 than 
ValNed, and MILP70 has slightly lower values for Rn

2 than ValNed. Both lists have 
substantially higher coveragen. In other words: the MILP-model generated lists that 
obtained the same Rn

2 as ValNed in substantially fewer (i.e. 32-40% less) items.  

2.4 Discussion 
This paper presents a methodology for optimising food lists when developing 
FFQs. The decision problem of selecting food items for food lists was formulated 
as a Mixed Integer Linear Programming (MILP) model with three performance 
indicators: length, coverage, and R2. The MILP-model generated food lists with 
good performance in terms of length, coverage, and R2 for all nutrients of interest. 
It supported the selection of the most informative aggregation level for food items, 
and optimised multiple nutrients at the same time. The generated food lists were 
either shorter or provided more information than a food list generated without the 
MILP-model.  
 
The MILP-model chooses the most informative combination of food items from 
different aggregation levels fast and objectively. Also, food lists of various lengths 
may be generated and the increase of coverage and R2 obtained by adding more or 
other items to the food list may be investigated. The model provides objective 
information that can help to judge whether the extra information obtained by 
adding more food items justifies the additional burden for respondents and the 
additional research cost. With the MILP-model multiple nutrients can be optimised 
simultaneously. In contrast with a manual selection procedure the number of 
nutrients has no impact on the complexity of the model. The results of the MILP-
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based selection procedure are highly reproducible. In addition, the MILP-model 
can be included in a computer system.  
 
In a typical MILP-supported selection procedure the MILP-model is used to 
generate an initial food list, which is scrutinised by the nutritionist. The nutritionist 
indicates which constraints must be added to the model, for example by specifying 
that some items should or should not be included in the food list to improve face 
validity. Then the MILP-model is re-run in order to generate a food list that takes 
into account this expert knowledge. This loop is repeated until the nutritionist is 
satisfied. The nutritionist then decides how the items are ordered in the actual FFQ. 
In this iterative procedure, the nutritionist is supported by the MILP-model. It 
combines the strong points of human insight and experience on the one hand and 
the efficiency and accuracy of quantitative optimisation techniques on the other 
hand (Claassen et al., 2007). It is complementary to the current practice of post-hoc 
validation studies and it can help to guide efficient design of future web-based and 
personal monitoring tools.   
 
Some considerations have to be taken into account. 
 
It is important to realise that the food tree used here is constructed based on expert 
knowledge, and that different choices in the structure of the food tree would have 
led to different food lists.  
 
Figure 2.2 shows the trade-off between length of the food list and Rn

2 for lists of 10 
to 150 items. The shortest of these lists were included for illustrative purposes; in 
practice, they would not be used for covering the set of nutrients. 
 
The data used to calculate the MOM1 and MOM2 values that are used as input are 
based on intake data of a Dutch adult population. Other populations will require 
other intake data, resulting in different food lists. Major advantage of the MILP-
model is that it generates new food lists fast and objectively when the user changes 
the input data, which facilitates easy adaptation to the characteristics and dietary 
habits of a population.  
 
A limitation of the current dataset is that only two subsequent food record days 
were available for each subject. As a result, the between-person variance was 
artificially high since it contains part of day-to-day variation within persons 
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(Lambe et al., 2000). Also, the dataset included multiple persons from the same 
household, lowering between-person variance in food intake and increasing 
correlations between foods. In general, the data used to generate the food list will 
have to be able to estimate the intake and variance of the foods and food groups 
adequately for the target population. Therefore, especially for foods that are not 
consumed by many persons in the population, the sample size of the used survey 
will have to be large enough. 
 
Table 2.1 indicates that for the used set of nutrients there is relatively little gain in 
either coverage or R2 for food lists longer than 70 items. This might have been 
different for a different set of nutrients. If more (disperse) nutrients, such as 
vitamin C and carotenoids, would be added the food list would probably need to be 
longer. The optimal length of the food list in general depends on the (number of) 
nutrients, and on the dispersion of the nutrients through the available foods.   
 
Even though these aspects may affect the resulting food lists, they have no effect 
on the methodology described in this paper in terms of speed, transparency and 
reproducibility. This makes the MILP-methodology useful for a large number of 
nutritionists worldwide who develop FFQs for a large variety of studies and 
different target populations (Bharathi et al., 2008, Cade et al., 2002, Wakai, 2009). 
It may help them to devise shorter questionnaires of which the performance is as 
good as that of FFQs with more food items, which generally provide the better 
results (Molag et al., 2007). Validation with for instance biomarkers will have to 
answer the question on how well FFQs generated with this methodology perform in 
different populations. 
 
In conclusion, MILP-models can support development of food lists for FFQs. The 
results suggest that the MILP-model makes the selection process faster, more 
standardised and transparent, and is especially helpful in coping with multiple 
nutrients. The generated food lists appear either shorter or provide more 
information than a food list generated without the MILP-model.  
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Appendix 2A Calculation of R2, Cj', and Fij 
The R2 of a nutrient is obtained from the linear regression of total nutrient intake on 
the nutrient intakes of all food items in the food list: 
 

iijjiii FFFZ ε+β++β+β+β= 22110 , 
 

where Zi is the total nutrient intake of individual i (i = 1, …, I) and Fij is individual 
i’s intake of the nutrient from food list item j (j = 1, …, J). Fij is calculated as the 
multiplication of the amount of the item that is reported with the nutrient content of 
that item. However, since a food list will contain single foods at level 5 and 
aggregated items at the other levels, Fij may be either the nutrient intake of 
individual i from a single food or the nutrient intake from an aggregated item. 
For single foods, the Fij is calculated as the multiplication of the reported amount 
of the food (Aij) and Cj, which is the nutrient content (gram per gram) as reported in 
the food composition table: Fij = Aij × Cj.  
The nutrient content of an aggregated item is not reported in the food composition 
table, but has to be calculated via the single foods that are taken into account by 
this aggregated item j. Therefore, for aggregated food items the weighted 
composition Cj' is used, with weights derived from the observed consumption: 
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where Kj is the set of single foods that are taken into account by aggregated item j, 

and ∑ ∑∑ ∈κ = κ= jK
I
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I
i ik AA 11 / is the fraction of the amount of aggregated item j 

attributable to single food k in the whole population. Then for an aggregated item j 
the Fij is calculated as 
 

 Fij = Aij × Cj' 
 

The R2 is then defined in the usual way: 
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with iẐ the predicted nutrient intake of individual i, Z  the mean observed nutrient 
intake in the population and Zi the observed nutrient intake of individual i. 
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Example of calculation of Cj' and Fij of an aggregated food item 
Suppose we have a food tree that contains an aggregated food item NON-CITRUS 
(referred to as j), constructed by aggregation of four single food items APPLE, 
PEAR, BANANA, KIWI (referred to as k = 1,...,4), see Figure 2A.1.  
 

 
Figure 2A.1 Example of a food tree that contains one aggregated item NON-CITRUS, constructed by 
aggregation of four single foods APPLE, PEAR, BANANA, KIWI. 
 
Suppose that we have a population of 3 individuals i. Table 2A.1 shows how much 
individual i has consumed of (single) food item k (Aik), and it shows how much the 
food items k contain of the nutrient of interest (Ck). For example, individual i=1 
consumed 300g of pear, and pear contains 30% of the nutrient of interest. 
 
Table 2A.1 Example of calculation of the nutrient content of aggregated food item NON-CITRUS, 
where Aik denotes how much individual i has consumed of (single) food item k, and Ck is the nutrient 
content of food item k. 

  
Aik i=1 i=2 i=3 ∑=

I
i ikA1  Ck 

NON-CITRUS: k=1 APPLE 150 250 0  400 0.40 

 
k=2 PEAR 300 200 100  600 0.30 

 
k=3 BANANA 350 250 400 1000 0.25 

 
k=4 KIWI  200 100 200  500 0.20 

Consumption of NON-CITRUS: 1000 800 700 2500  
 
Total consumption of APPLE in the population can be calculated as  

 

40002501501 1 =++=∑ =

I
i iA . 

 

Total consumption of NON-CITRUS in the population can be calculated as  
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and in this population the fraction of NON-CITRUS consumption attributable to 
APPLE is  

Non-citrus

Apple

Pear

Banana

Kiwi
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So in this population the nutrient content of aggregated food item NON-CITRUS is 
 

Cj' = 276.020.025.030.040.0 2500
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and the nutrient intake of individual i via NON-CITRUS has to be calculated as 
 

 Fij = Aij × Cj'. 
 

For example, for individual 1 this is Fij = (150+300+350+200)×0.276 = 276g. 
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Appendix 2B Mixed Integer Linear Programming models 
This appendix shows how various types of optimisations can be performed by 
interchanging the performance indicators in (1), (2), (3). For example, the model 
 

(2) minimise length  
subject to restrictions 

(1) Pn ≥ 0.80 for all nutrients n 
(3) coveragen ≥ 0.80 for all nutrients n 
(4) The food list should not contain overlapping items. 
 

generates the shortest food list with coveragen ≥ 0.80 and Pn ≥ 0.80 for all 
nutrients. 
 
In case the objective is to generate a list of at most 60 items of which the lowest 
among the N values of Pn is as high as possible the following model applies: 
 

maximise min_Pn + ε⋅∑n Pn 
subject to restrictions 

(1a) Pn ≥ min_Pn for all nutrients n 
(2) length ≤ 60 for all nutrients n 
(4) The food list should not contain overlapping items 

 
in which min_Pn is the lowest among the N values of Pn and ε a very small, 
positive number. This is a so-called maxmin model (Claassen et al., 2007). 
 
In case the objective is to generate lists of which the minimumn(Rn

2) is as high as 
possible it can be useful to apply an iterative improvement procedure on the 
generated lists. This improvement procedure aims to improve the minimumn(Rn

2) by 
adding lower bound constraints with respect to the Pn of the nutrient that has lowest 
Rn

2.We will demonstrate this with an example in which food lists of length 20 are 
generated with the following model and pj,n = *

,MOM nj : 

 

            (1)  maximise
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(4)    The food list should not contain overlapping items. 
 
The Rn

2 of the resulting food list ranges from 60.5%-78.7%, so minimumn(Rn
2) = 

60.5%. The nutrient with lowest Rn
2 is polyunsaturated fat. In the food list the 

Ppolyunsaturatedfat is 0.586. Therefore, we add nutrient specific constraint (5a) 
 
(5a) Ppolyunsaturatedfat ≥ 1.01∙0.586 = 0.592 

 
to the model, generate a second food list, and calculate its values of Rn

2. It turns out 
that the Rn

2 of this second food list ranges from 61.0%-76.6%, so minimumn(Rn
2) = 

61.0%, which is higher than that of the initial food list. Again, the nutrient with 
lowest Rn

2 is polyunsaturated fat. In the second food list the Ppolyunsaturatedfat is 0.597. 
Therefore, we add nutrient specific constraint (5b) 

 
(5b) Ppolyunsaturatedfat ≥ 1.01∙0.597 = 0.603 

 
to the model, generate a third food list, and calculate its values of Rn

2. It turns out 
that the Rn

2 of this third food list ranges from 63.6%-78.0%, so minimumn(Rn
2) = 

63.6%, which is higher than that of the second food list. Now mono- and 
disaccharides has lowest Rn

2. In the third food list the Pmono-anddisaccharides = 0.548. 
Therefore, we add nutrient specific constraint (5c) 
 

(5c) Pmono-anddisaccharides ≥ 1.01∙0.548 = 0.553 
 
to the model, generate a fourth food list, and calculate its values of Rn

2. It turns out 
that the minimumn(Rn

2) of this fourth food list does not exceed 63.6%, and therefore 
we stop the iterative improvement procedure. 
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Abstract 
Chapter 2 models selection of the most informative items to be included in the food 
list of FFQs as an MILP model. The MILP models choose the most informative 
combination of food items for different aggregation levels fast and objectively. The 
resulting food lists can contain single items such as APPLES and ORANGES and 
aggregated items such as CITRUS or FRUITS. The interpretation of these items 
follows directly from their names and (in case of aggregated items) the structure of 
the food tree. Therefore, we refer to them as direct items. In FFQs, also indirect 
items like OTHER CITRUS are used. The interpretation of such an indirect item 
depends on the direct items that are included in the food list. For instance, the 
interpretation of OTHER CITRUS depends on the citrus fruits that are added to the 
FFQ as direct items. Note the conceptual difference between CITRUS and OTHER 
CITRUS, which both are aggregated items: CITRUS is a direct item, because its 
interpretation follows directly from the food tree and thus is known before 
optimisation. OTHER CITRUS is an indirect item, because its interpretation depends 
on direct items that are included in the food list, and thus is known after 
optimisation. 
Chapter 3 shows that the problem of selecting both direct and indirect food items to 
be included in an FFQ can be modelled as a general 0-1 fractional programming 
problem with more than 200 fractional terms. All fractional terms are conditional, 
that is, in every feasible solution only a subset of the fractional terms is actually 
defined. Existing literature does not provide a solution method. Chapter 3 therefore 
focusses on RQ3 “How to solve general 0-1 fractional programming problems with 
conditional fractional terms?”. We show how classical transformation principles 
can be combined and extended in order to eliminate the undefined fractional terms 
from the objective function. The resulting MILP model can be solved with standard 
software.  



General 0-1 fractional programming with conditional fractional terms  

  33 

3.1  Introduction 
Fractional programming problems can be classified as a separate entity within the 
area of non-linear programming. Several extensive reviews on fractional 
programming problems have been published, e.g. by Schaible (1995) and Stancu-
Minasian (1999, 2006). Although there is a vast amount of literature on Fractional 
Programming, Schaible and Shi (2004) state that especially integer fractional 
programming is a somewhat neglected field. The bibliographies of Stancu-
Minasian (1999, 2006) confirm the latter statement as only 5, respectively 7 
percent of all manuscripts are devoted to integer Fractional Programming. A 
common assumption in fractional programming is that fractional terms are always 
defined (i.e. denominators can never become zero). 
 
In development of tools for dietary assessment, a fractional programming problem 
with the following characteristics was encountered: 

i. all decision variables are binary, 
ii. there are more than 200 fractional terms in the objective function, 

iii. all the fractional terms are conditional, i.e. in every feasible solution only a 
subset of the fractional terms is actually defined.  

 
To the best of our knowledge, no method has been described that solves this 
problem. We exploit the special structure of the problem with conditional fractions 
to reformulate the 0-1 fractional programming problem such that it can be solved 
by standard MILP software to obtain an optimal solution.  
 
In Section 3.2 we give a brief description of the background in nutritional 
epidemiology. Section 3.3 describes the resulting general 0-1 fractional 
programming problem. In Section 3.4 we present the reformulation approach that 
transforms the general 0-1 fractional programming problem into an equivalent 
MILP problem. With our reformulated model, we analysed a case with 219 
conditional fractional terms (Section 3.5). Concluding remarks follow in Section 
3.6. 

3.2 Background 
Epidemiological studies investigate the relationship between diet and disease. Their 
relevance can hardly be overestimated, e.g. in designing effective and efficient 



Chapter 3 

34 

intervention studies related to obesity, diabetes or cancer (Willett, 1998). For 
example, the hypotheses that consumption of red and processed meat increases 
colorectal cancer risk while intake of fish decreases risk is strongly supported by 
the results of the European Prospective Investigation into Cancer and Nutrition 
study (Gonzalez and Riboli, 2010). This large epidemiological study investigates 
the relationships between diet and the incidence of cancer and other chronic 
diseases in European countries. For dietary assessment, large epidemiological 
studies commonly use food frequency questionnaires (FFQs). FFQs assess a 
population’s habitual (nutrient) intake (Willett, 1998) by asking respondents about 
their consumption of several food items during a predefined time period. On the 
one hand an FFQ should include enough questions on food items to capture 
sufficient information on all nutrients of interest. On the other hand an FFQ should 
be as short as possible, because long FFQs are less cost and time efficient, may 
bore respondents and make them less motivated to fill out an FFQ accurately 
(Willett, 1998).  
 
Selection of questions on food items to be included in an FFQ – from this point 
onwards simply referred to as “items” – is based on their contribution to the 
nutrient intake of a population. Aim of the selection procedure is to compose a set 
of items that captures as much information as possible. An upper bound is specified 
for the size of this set. Although the selection procedure is done by skilled 
nutritionists, it is neither standardised nor transparent. The common selection 
procedure, usually based on stepwise regression (Molag et al., 2010, Willett, 1998), 
is time-consuming. Moreover, it is hard to select items in such a way that all 
nutrients of interest are sufficiently covered. As a result, the selection of items 
strongly depends on intuition and (different) personal experiences of nutritionists. 
The aim of this study is to support, standardise and improve the selection procedure 
to obtain as much information as possible within a limited number of items. 
The basis of every FFQ is a tree structure in which all potential items are ordered 
(Molag et al., 2010). Figure 3.1 shows an illustrative and simplified part of the tree 
structure that comprises fresh fruit. Level 5 contains the items that can be found as 
“food codes” in a food composition table. Based on similarities in eating occasions, 
portion sizes and nutrient content these detailed food items are aggregated into 
increasingly broad items in levels 4, 3, and 2. Items of level 2 can be further 
aggregated into items at level 1, but these are not suitable for being used as items in 
an FFQ (Molag et al., 2010). The process of aggregation causes a loss of 
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information, e.g. an FFQ that asks for FRESH FRUIT will provide less detailed 
information than an FFQ that asks for CITRUS and NON-CITRUS. 

Soft fruit

Fresh fruit                

Citrus

Non-citrus

Orange

Tangerine

Grapefruit

Apple

Pear

Banana

Strawberry

Cherry

Raspberry

Blueberry

Kiwi

Lemon

Level 2 Level 5Level 3 Level 4  
Figure 3.1 Simplified and illustrative part of the tree structure that comprises FRESH FRUIT. 
 
In the tree structure, several paths can be seen, all starting at level 2, e.g. the path 
FRESH FRUIT – CITRUS – ORANGE and the path FRESH FRUIT – NON-CITRUS – SOFT 
FRUIT – CHERRY. The right-most item in a path is called a leaf. The leaves of the 
aforementioned paths are ORANGE respectively CHERRY. Items on the same path as 
leaf i are called predecessors of leaf i. The predecessors of CHERRY are SOFT 
FRUIT, NON-CITRUS, FRESH FRUIT. ORANGE has two predecessors: CITRUS and 
FRESH FRUIT. The item at the left-hand side of item i is called the parent of item i. 
All nodes that have item j as parent are called children of item j. E.g. SOFT FRUIT 
has parent NON-CITRUS and children {STRAWBERRY, CHERRY, RASPBERRY, 
BLUEBERRY}. To prevent overlap of information no more than one item of every 
path can be included in the FFQ.  
 
Items that comprise exactly one node in the tree of Figure 3.1 are called direct 
items, e.g. FRESH FRUIT, CITRUS, CHERRY. It’s also possible to use indirect items. 
In an indirect item several items are grouped into one question, e.g. item 2 in FFQ 



Chapter 3 

36 

“Do you eat 1. ORANGES, 2. OTHER CITRUS?” An indirect item is characterised by 
use of the word “other”. Nutritionists assume that the information content of an 
indirect item is proportional to the average information content of its constituent 
items. However, there is no consensus on the latter assumption. The problem of 
weighing the information content of direct versus indirect items is still a topic of 
research in nutritional epidemiology (Molag et al., 2010). 
For modelling purposes, we assume that respondents understand which items are 
implied in an indirect item in the FFQ. For example, respondents will interpret item 
2 in FFQ “Do you eat 1. ORANGES, 2. OTHER CITRUS?” as “Do you eat LEMON, 
TANGERINE, GRAPEFRUIT?” 

3.3 FFQ model 
For modelling the FFQ problem we define the following index sets, decision 
variables and parameters: 
 
Index sets 
 N set of all nutrients 
 I set of all items, i.e. all potential questions in the FFQ 
 L set of all leaves  
 Pi set of all predecessors of item i (i ∈ L) 
 pi parent of item i (i ∈ I| i  in level 3, 4, 5) 
 Ki set of all children of item i (i ∈ I| i in level 2, 3, 4) 
 F set of all items that have at least 3 children 
 
Decision variables 

xdi = 1 if item i is included in the FFQ as a direct item, and  
xdi = 0 otherwise (i ∈ I) 
 

yf  = 1 if item f is included in the FFQ as an indirect item, and  
yf  = 0 otherwise (f ∈ F) 
 

xgi = 1 if item i is grouped, and 
xgi = 0 otherwise )( FpIi i ∈∧∈  

 
Parameters 
 qi,n information content of item i regarding nutrient n (i ∈ I, n ∈ N) 
 ub upper bound on the number of items in the FFQ 
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Using an indirect item like e.g. “OTHER CITRUS” only makes sense if (at least) one 
direct item among the children of CITRUS is used, e.g. ORANGE. This implies that 
indirect items can only be considered for items that have at least three children, i.e. 
for the items in F. In the tree of Figure 3.1 the set F consists of three items: F := 
{CITRUS, NON-CITRUS, SOFT FRUIT}. For every child of the items in F the variable 
xgi is defined, so for SOFT FRUIT three variables are defined: SOFT FRUIT can be 
used as direct item (xdsoftfruit = 1), as indirect item OTHER SOFT FRUIT (ysoftfruit = 1), 
or it can be grouped (xgsoftfruit = 1). 
 
An example of an FFQ of length 4 with only direct items may be: CITRUS, APPLE, 
PEAR, CHERRY. For this FFQ we have xdcitrus = xdapple = xdpear = xdcherry = 1, all other 
xdi = 0, all yi = 0, and all xgi = 0. The total information content of this list with 
respect to nutrient n is calculated as qcitrus,n + qapple,n + qpear,n + qcherry,n. 
 
Another example of a FFQ of length 4, now including 3 direct items and 1 indirect 
item, may be: ORANGE, OTHER CITRUS, APPLE, CHERRY. For this FFQ we have 
xdorange = xdapple = xdcherry = 1, ycitrus = 1,  xgtangerine = xggrapefruit = xglemon = 1, all other 
xdi and yi and xgi are 0. The information content of this list of items for nutrient n is 
calculated as the sum of all information contributed by direct items and the average 
information content of indirect items: 
  

 nn
nnn

n qq
qqq

q ,cherry,apple
,lemon,grapefruit,tangerine

,orange 3
++

++
+  

 
The problem of weighing the information contributed by direct items on the one 
hand and indirect items on the other hand, can be supported by the introduction of a 
weighing coefficient w. Now, the total weighted information on all nutrients n∈N, 
contributed by direct and indirect items, can be formulated as: 
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The first term sums the information contributed by all direct items. The second 
term adds up all information derived from indirect items. Each of the fractional 
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terms is conditional, i.e. fractional term f is only defined if indirect item f is chosen 
(yf = 1). In case indirect item f is not chosen (yf = 0), fraction f must be excluded 
from the objective function as both the numerator and the denominator of fraction f 
will be zero. In such cases the resulting problem is obviously not defined. 
Now the FFQ model can be formulated as follows: 
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subject to 
 

ubyxd
Ff

f
Ii

i ≤+ ∑∑
∈∈

 (2) 

1)( ≤+++ ∑
∈ iPj

jjii xgxdxgxd  i ∈ L (3) 

xgi ≤ yf f ∈ F, i ∈ Kf (4) 
yf  ≤  xdi + xgi f ∈ F, i ∈ Kf (5) 

( )∑∑
∈∈

−≤
ff Ki

if
Ki

i xdKxg 1  f ∈ F, i ∈ Kf (6) 

xdi (i ∈ I),  xgi )( FpIi i ∈∧∈ ,  yf (f ∈ F) all binary  (7) 
 
Objective function (1) maximises the total amount of information derived from 
both direct (first term) and indirect items (second term). Constraint (2) ensures that 
the total number of items in the FFQ does not exceed the upper bound on the 
number of questions. 
 
Constraints (3) ensure that for every path in the tree at most one item is included in 
the FFQ. Note that the actual number of terms in constraints (3) depends on the 
level of the leaf i. 
 
Constraints (4) are classical feasibility constraints for connecting two types of 
variables (i.e. xgi and yf). They state that if an item i is grouped (xgi = 1) then the 
related indirect item must exist (yf = 1). 
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Constraints (5) denote that if indirect item f is chosen (yf = 1) then each of its 
children should either be asked directly (xdi = 1) or be grouped (xgi = 1). 
Constraints (6) ensure that items i ∈ Kf can be grouped if and only if one of the 
children of f is used as a direct item. 
 
The food tree that is used for designing FFQs contains 219 items for which an 
indirect question can be formulated, so the objective function of the FFQ problem 
contains 219 conditional fractional terms.  
 
In the next section we elaborate a reformulation approach that transforms problem 
(1)-(7) into an MILP problem that can be solved with a branch-and-bound 
procedure, commonly available in standard mathematical programming software. 
As the reformulation approach is not affected by weighing coefficient w, we will 
omit it (i.e. choose w = 1) in Section 3.4. 

3.4  Reformulation of the FFQ problem 
Model (1)-(7) can be regarded as an extended version of the general 0-1 fractional 
programming problem (G-FP), described by Li (1994) and Wu (1997). The crucial 
difference between model (1)-(7) and the (G-FP) of Li (1994) and Wu (1997) 
refers to the conditional summation of fractional terms in (1). 
 
If a G-FP problem contains only one fractional term in the objective function, the 
problem becomes a linear 0-1 fractional programming problem. For these 
problems, if it exists, at least one optimal solution is a vertex of the convex hull for 
the set of discrete solutions (Barros, 1998). The latter also holds for mixed integer 
linear programming (MILP) problems. Now the basic idea is to build on and extend 
known reformulation approaches in order to reformulate model (1)-(7) into an 
MILP model such that an optimal solution can be found using standard available 
MILP software.  
 
The objective function (1) with conditional summation of the fractional terms can 
be reformulated into: 
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In order to eliminate the fractional terms, parts of a classical transformation 
principle, initially suggested by Charnes and Cooper (1962), can be extended and 
applied to (1b). Suppose we define: 
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Then objective function (1b) can be transformed into: 
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Because of (4), all fractions with yf = 0 have 0=⋅∑

∈ fKi
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written as 
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To eliminate the product terms of variables tf xgi in (1d) and (8), a classical 
transformation principle can be applied (Glover, 1975) which is comparably used 
by Li (1994) and Wu (1997). According to  Glover (1975) this transformation 
principle was initially suggested by Petersen and Clifford (1971). The 
transformation principle is suitable for linearising the product of a nonnegative 
continuous variable and a binary variable. It replaces the product terms tf xgi by 
new continuous variables zi,f ≥ 0 (f ∈ F, i ∈ Kf) which are forced to satisfy the 
linear constraints (9)-(11) below.  
 
Now, model (1)-(7) can be transformed to the following mixed integer linear 
programming model: 
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1

, −+≥ iffi xgtz  f ∈ F, i ∈ Kf (10) 

 ffi tz ≤,  f ∈ F, i ∈ Kf (11) 

 xdi (i ∈ I),  xgi )( FpIi i ∈∧∈ , yf (f ∈ F) all binary  (12) 

 tf (f ∈ F), fiz , ( f ∈ F, i ∈ Kf) ≥ 0  (13) 

 
The factor ‘1/2’ in (9) and (10) is the ceiling value of tf, which is derived as follows: 
any indirect item contains two or more grouped items, so for any item with yf = 1 
the corresponding 2≥∑∈ fKi ixg . Therefore, ≤= ∑ ∈ fKi iff xgyt / 1/2. 

Model (1e) – (13) can be solved by standard MILP software to obtain an optimal 
solution. 

3.5  Numerical analysis  

3.5.1 Data 
As basis for the experiments a food tree is used that contains 1697 items, of which 
1340 are leaves. The tree contains 219 items with more than three children (set F). 
A dataset was obtained from food consumption data of the Dutch National Food 
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Consumption Survey of 1997/1998 (The Dutch Nutrition Centre, 1998) of the 3524 
individuals in the age group of 25 up to 64 years of age. The food consumption was 
assessed using a 2-day food record. With the food composition database of 1996 
(NEVO, 1996) the dataset was converted into the parameter values qi,n as relative 
variance in intake of nutrient n through item i. This type of data is used in studies 
that aim to rank respondents according to their intake of nutrients (Molag et al., 
2010). 

3.5.2 Experiments 
The reformulated FFQ model (1e) – (13) is used to generate food lists for an FFQ 
with interest in 10 nutrients: energy, protein, total fat, saturated fat, 
monounsaturated fat, polyunsaturated fat, total carbohydrates, mono and 
disaccharides, dietary fibre, and potassium. 
 
After reintroduction of the non-negative weight factor w in (1) for all indirect 
items, objective function (1e) can be replaced by: 
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(1f) 

 
Now, the impact of indirect items in an FFQ can be analysed numerically.  
 
In Figure 3.2 the number of indirect items in the optimal solution is plotted against 
the weight w of the indirect items. It shows how the number of selected indirect 
items increases for increasing w. 
 
Figure 3.3 shows for w = 1 how the normalised objective function increases with 
an increasing upper bound ub = 1, 2, …, 200 to the number of items in the food list. 
The 100% value of the normalised objective function is calculated by setting ub to 
the maximum number of items (1697). E.g. it takes 11 items to capture 50% of the 
maximum amount of information. 
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Figure 3.2 Number of indirect items in the optimal solution as function of the weight w of the 
fractional term in the objective function. 
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Figure 3.3 Normalised objective function value for increasing upper bound ub for the number of 
items in the food list. 
 
Standard optimisation software was used (Xpress-Mosel 7.0.1). The calculation 
times for the 300 runs that were used to generate Figure 3.2 and Figure 3.3 ranged 
from 0.5 to 8 seconds (average 2 seconds).  
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3.6 Discussion and concluding remarks 
The developed model helps to optimise the selection of items in any FFQ for 
dietary assessment in epidemiological studies. It provides an objective and fast 
starting point for developing an FFQ, but it can never replace nutritional expertise, 
because no MILP model can capture the many intangible factors that are critical in 
the cognitive interface between the respondent and the FFQ. For example, our 
assumption that respondents understand which items are implied by an indirect 
item might not always be valid. For example, it might not be apparent to everyone 
that “Soft fruit” means “Strawberry, Cherry, Raspberry, Blueberry”, thus making 
the answer to the question “Do you eat other soft fruit” hard to interpret. And when 
too many items are grouped into one indirect item the respondent might not think 
of all these items, unless a full enumeration is provided. In some cases, the 
nutritionist might decide to insert a question that clarifies another question. For 
example, asking a question about lettuce will help clarify to the respondent that a 
question about “greens” does not include lettuce, which would otherwise be 
interpreted variably. Thus, detailed knowledge of food use and culturally-related 
culinary practices will be essential in designing an FFQ. This knowledge is also 
crucial in designing the food tree. The way in which items are ordered in level 5, 
and the way in which they are aggregated into levels 4, 3, and 2, should reflect the 
food use and culinary practice of the respondents. For example, in the Netherlands 
potatoes are considered a starchy food, whereas in France they are considered a 
vegetable. In a typical MILP-supported selection procedure the MILP model 
generates a food list that is used as a starting point for developing an FFQ. Based 
on experience the nutritionist will indicate where problems might arise with respect 
to interpretation of the questions by respondents, and give suggestions for adding 
or removing items. These suggestions are formulated as extra constraints, and the 
model is re-run to generate an FFQ that takes into account the recently added 
expert knowledge. This iterative procedure, in which the expert is supported by the 
MILP model, is repeated until the nutritionist is satisfied. Such an iterative 
procedure combines the strong points of human insight and experience on the one 
hand and the efficiency and accuracy of quantitative optimisation techniques on the 
other hand (Claassen et al., 2007). It helps nutritionists to choose the most 
informative combination of direct and indirect items. Also, the FFQ model gives 
nutritionists a fast way to generate food lists of various lengths and to see how 
much extra information can be obtained by adding more or other items to the 
questionnaire. This helps nutritionists to weigh the amount of obtained information 
against the burden for respondents.  
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Abstract 
Supporting decision-making related to dietary advice requires translating food and 
nutrient recommendations into realistic food choices. For this, linear programming-
based diet models are a robust and flexible tool. Existing diet models commonly 
use achievement functions that minimise a weighted sum of unwanted deviations 
from pre-set target levels on food and nutrient intakes. Implicitly, it is assumed that 
the decision-maker has a preference structure in which trade-offs between 
objectives are known and constant. A well-known drawback of achievement 
functions with weighted sums is that they may generate solutions in which some 
criteria completely meet their targets, whereas other criteria are (very) far off. 
Moreover, they can be sensitive to changes in the used weights. MCDM literature, 
however, also proposes achievement functions that can generate solutions in which 
the differences among the deviations are much smaller, and that are less sensitive 
to weight changes.  
In order to provide methodological insight into achievement functions, we 
formulated RQ3 “What is the impact of achievement functions in diet models?”, 
which is investigated in Chapter 4. The chapter provides small numerical examples 
that illustrate the “mechanics” of achievement functions, and then uses them for a 
diet problem with 144 foods, 19 nutrients, and several types of palatability 
constraints, in which the nutritional constraints are modelled via nutrient adequacy 
curves. In this problem, no solution exists that satisfies all nutritional constraints. 
In order to find ‘best possible’ solutions, achievement functions are used that aim 
to minimise the (unwanted) deviations from the nutritional targets. It is 
demonstrated that using an achievement function that minimises a weighted sum of 
deviations generates a solution in which the total deviation is as small as possible. 
However, the solution is unbalanced: most nutrients are at their target level, but 
one is very far off. Using an achievement function that minimises the largest 
among the unwanted deviations generates a much more balanced solution: the 
largest deviation is as small as possible, so the differences between the individual 
deviations are much smaller. However, the total deviation is much larger than in 
the solution of the weighted sum achievement function. The extended goal 
programming achievement function minimises a convex combination of both 
previously mentioned achievement functions and therefore generates solutions of 
which the sum of deviations and the largest deviation are between the extremes 
provided by the other two achievement functions.  
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4.1 Introduction 
Mathematical modelling of diets can be defined as the use of mathematical 
techniques to formulate and optimise diets (Buttriss et al., 2014). We refer to 
Buttriss et al. (2014) for a description of relevance, history and applications of diet 
(planning) models based on linear programming (LP). 
 
LP-based diet models contain decision variables, an objective function, and a set of 
constraints. Commonly, the decision variables are defined as Xi  = (proposed) daily 
intake of food i (i = 1, ..., I), Xi ≥ 0. The objective function minimises (or 
maximises) a linear function of the decision variables, for example total cost or 
total energy content of the diet. The (linear) constraints ensure that the proposed 
diet meets requirements on e.g. nutrient content and consumer preference1. If the 
model contains integer variables it is called a Mixed Integer Linear Programming 
(MILP) model. 

Classification of diet models 
We distinguish two classes: 
 
1. Single-objective problems 
 Minimise (or maximise) one linear function of Xi : Minimise{ }ii

I
i Xc1=∑ . If ci 

represents the cost of food i then the objective function minimises total diet 
cost, etc. (Darmon et al., 2002a, Briend et al., 2003, Thompson et al., 2013). 
Commonly, single objective problems are formulated as straightforward (MI)LP 
models. 
 

2. Multi-objective problems 
Two types are observed in literature:  
2a. With the set of available foods no diet can be planned that complies with 

all constraints (Anderson and Earle, 1983, Ferguson et al., 2006, Fletcher 
et al., 1994). A common approach is to search for a “best possible” 
diet, which violates the constraints as little as possible. This is a problem 
with multiple objectives: Minimise{Violation of constraint 1}, 
Minimise{Violation of constraint 2}, …, Minimise{Violation of the last 
constraint}. 

                                                 
1 In Chapters 4 and 5, constraints that model consumer preferences will be referred to as ‘palatability 
constraints’. 
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2b. The decision-maker aims to plan a diet that complies with all constraints, 
and that differs as little as possible from the actual diet (which does not 
comply with all constraints) (Darmon et al., 2002b, Darmon et al., 2006b, 
Maillot et al., 2010, Masset et al., 2009, Thompson et al., 2013). In other 
words, (s)he wants to minimise the differences between the proposed 
(optimised) diet XP and the actual diet XA: 

 minimise{| X1
A – X1

P |}, minimise{| X2
A – X2

P |}, …, minimise{| XI
A – XI

P |}. 
 

This paper focuses on multi-objective diet models in Class 2a. For completeness, 
Class 2b is discussed in Appendix 4A. 

Multi-objective problems – searching Pareto-optimal solutions  
The objectives of a multi-objective problem are usually conflicting; commonly no 
solution exists that optimises all objectives at the same time. For instance, the diet 
with lowest violation of a constraint on iron intake might have a considerable 
violation of a constraint on intake of saturated fat, and vice versa. Methods for 
generating solutions to multi-objective problems therefore commonly focus on 
finding so-called Pareto-optimal solutions (also denoted as efficient solutions). 
Solution X is called Pareto-optimal if no other solution X# exists that performs at 
least as good as X with respect to all objectives, and better with respect to at least 
one objective (Jones and Tamiz, 2010). In other words: the achieved value for one 
objective cannot be improved without worsening the level of another objective 
(Tamiz et al., 1998). The concept of Pareto-optimality is illustrated in Table 4.1, 
which shows four fictitious diets, and their violations vFe and vSF of intake 
constraints on iron and saturated fat, respectively. No diet exists that has both 
lowest vFe and lowest vSF. We therefore aim to identify the Pareto-optimal diets.  
 
Table 4.1 Example of Pareto-optimality 

 Violation of intake constraint on  
 Iron: vFe Saturated fat: vSF Pareto-optimal or not? 

Diet A 
Diet B 
Diet C 
Diet D 

0 
4 
6 
3 

 11 
 3 
 4 
 8 

Yes 
Yes 

No: B has lower vFe and vSF 
Yes 

 
All references mentioned in Class 2 use linear Goal Programming (GP). GP uses 
the following steps (Jones and Tamiz, 2010) to find “best possible” (i.e. Pareto-
optimal) diets for problems in Class 2a: 
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(GP1) quantify the extent to which a diet violates the constraints, and then 
(GP2) minimise a function of these violations in order to obtain a diet that 

violates the constraints as little as possible. This function is called the 
achievement function.  

 
Multi-criteria decision-making (MCDM) literature, in which GP is positioned, 
recognises achievement function selection, weight selection and weight space 
analysis as topics of major importance for the quality of decision-making  (Tamiz 
et al., 1998, Romero, 2001, Romero, 2004, Jones, 2011), because any choice made 
in formulating the achievement function uses judgment of the modeller and implies 
assumptions on the preference structure of the decision-maker. If the election of the 
achievement function is wrong, then the decision-maker will probably not accept 
the solution (Romero, 2004). Results derived from GP-models usually are very 
sensitive to the type of achievement function that is chosen (Romero, 2004). All 
references mentioned in Class 2 use a weighted additive achievement function. GP 
literature offers other achievement functions as well (Romero, 2004). 
 
Typically, with a weighted additive achievement function each set of data and 
weights results in a single solution. It would be useful to offer the decision-maker 
more than just this single solution and present a range of Pareto-optimal solutions. 
Offering multiple solutions allows choice of a solution that is most suitable for a 
specific decision problem, and that best meets non-quantifiable goals and 
preferences (Brill Jr, 1979, Makowski et al., 2000, Makowski et al., 2001). 
 
This paper aims to provide methodological insight into several GP achievement 
functions: MinSum, MinMax, and Extended GP (EGP). It shows that the EGP 
achievement function is able to generate a solution that minimises the sum of all 
violations, as well as a solution that minimises the largest violation, and 
compromises between them. The EGP achievement function thus provides a way to 
obtain a range of solutions from one set of data and weights. 

4.2 Methods 

Goal Programming – Numerical example 
In order to reveal the ‘mechanics’ of achievement functions we use a simplified 
diet model with two foods: 1 ~ bread and 2 ~ meat, with associated decision 
variables X1 (X2) = amount of bread (meat) in the diet. Three nutritional constraints 
are formulated: (1) an upper bound on salt intake restricts bread consumption to 3 



Chapter 4 

50 

units or less, (2) An upper bound on saturated fat intake restricts meat consumption 
to 2 units or less, (3) for sufficient iron intake the diet should contain at least 6 
units of bread and/or meat: 
 
 X1   ≤ 3     (1) 
   X2 ≤ 2     (2) 
 X1 + X2 ≥ 6     (3) 
 X1, X2 ≥ 0 
 
Figure 4.1a shows that constraints (1-3) are conflicting: no diet (X1, X2) exists that 
complies with all constraints. The resulting model belongs to Class 2a.  
 

 
Figure 4.1a     b 
a. A diet model in Class 2a: no diet exists that complies with all constraints. 
b. A GP-model uses deviational variables to quantify the deviations from the targets. Deviations d1–, 
d2–, d3+ (dashed line arrows) are allowed by the original constraints. The d1+, d2+, d3– (full line arrows) 
are unwanted deviations. A MinSum GP-model will propose a corner-point (•) of the shaded area, no 
matter which set of weights is used. A MinMax GP-model is able to propose solutions inside the 
shaded area, e.g. if all weights are equal then (X1,X2) = (3 1/3, 2 1/3) () is proposed. 
 
Step (GP1) quantifies the violation of the nutritional constraints by adding 
deviational variables dj

–, dj
+ ≥ 0, which represent the negative and positive 

deviation from the right-hand side value of nutritional constraint j: 
 

(1)  X1   ≤ 3 →  X1   + d1
– – d1

+ = 3 
(2)    X2 ≤ 2 →    X2 + d2

– – d2
+  = 2 

(3)  X1 + X2 ≥ 6 →  X1 + X2 + d3
– – d3

+  = 6 
 

0 1 2 3 4 5 6
0

4

1

3

2
X2 ≤ 2

X1 ≤ 3

X1  →

X 2
  →

d2
+

d2
–

0 1 2 3 4 5 6
0

4

1

3

2
X2 + d2

– – d2
+ = 2

X1 + d1
– – d1

+ = 3

d1
– d1

+

X1  →

X 2
  →

(1,1) (6,1)
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For instance, (X1, X2) = (1,1) implies d1
– = 2, d2

– = 1, d3
– = 4, and (X1, X2) = (6,1) 

implies d1
+ = 3, d2

– = 1, d3
+ = 1.2 As initial constraint (3) provides a lower bound for 

X1 + X2 it is allowed to have a positive deviation d3
+. Any shortage d3

–, however, 
violates nutritional constraint (3) and is therefore considered an unwanted 
deviation. Likewise, d1

+ and d2
+ are unwanted deviations, see Figure 4.1b.  

Next, step (GP2) searches the “best possible” diet by formulating and minimising 
the achievement function.  

MinSum achievement function 
A weighted additive achievement function – which we refer to as MinSum 
achievement function – minimises a weighted sum of the unwanted deviations. For 
model (1-3) the unwanted deviations are d1

+, d2
+, d3

–, which results in the following 
MinSum GP model: 
 
 Minimise{Dsum = w1

+d1
+ + w2

+d2
+ + w3

–d3
–} (4) 

 X1   + d1
– – d1

+  = 3 (5) 
   X2 + d2

– – d2
+  = 2 (6) 

 X1 + X2 + d3
– – d3

+   = 6 (7) 
 X1, X2, Dsum, d1

–, d1
+, d2

–, d2
+, d3

–, d3
+ ≥ 0 (8) 

 

in which w1
+, w2

+, w3
– are user-defined, non-negative weights. The optimal solution 

of problem (4-8) depends on the weights. Independent of the weights, it is always 
located in the shaded area of Figure 4.1b. For w1

+ = w2
+ = w3

– solutions in the 
shaded area have the same value of Dsum. As in LP-problems the optimal solution is 
always a corner-point (Jones and Tamiz, 2010), an LP-solver will generate a 
corner-point of the shaded area: (3,2) or (4,2) or (3,3). However, if the user 
specifies w1

+ = w2
+ = w3

– (s)he expresses that (s)he does not want to prioritise one 
nutrient, i.e. (s)he cannot justify assigning one deviation more importance than 
another. Hence, it would be natural to obtain a balanced solution that spreads the 
total unwanted deviation over all three deviational variables are (d1

+, d2
+, d3

–) 
instead of an unbalanced solution that piles the unwanted deviation on only one of 
them. Table 4.2 shows that the MinSum model is sensitive to weight changes: 
slight weight changes make the optimal diet ‘jump’ from one corner-point to 
another. However, if the weights expressed by the user are similar, one would 
expect similar solutions. 

                                                 
2 Note that in any optimal solution either one of the deviational variables (dj–  or dj+) equals zero, or 
both (Jones and Tamiz, 2010). 
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These imbalance and sensitivity are typical for an additive achievement function 
(Romero, 2001, Jones and Tamiz, 2010). Using an additive achievement function 
implies the assumption that all weighted unwanted deviations are additive and that 
nutritional adequacy of a diet is determined by the sum of its weighted unwanted 
deviations. This presupposes – implicitly – that 
 

• deviations can compensate each other, e.g. an increase in the deviation from a 
vitamin C target can be compensated by a decrease in the deviation from a 
calcium target, 
 

• trade-offs between the deviations are precisely known, e.g. 10% deviation from 
a vitamin C target is considered equally serious as 5% deviation from a calcium 
target, 
 

• trade-offs are constant and do not depend on intake level, e.g. 10% extra 
deviation from a vitamin C target is considered equally serious as 5% extra 
deviation from a calcium target, no matter whether the vitamin C intake is 
almost adequate or dangerously low. 

MinMax achievement function 
A MinMax achievement function (also called Chebyshev achievement function) 
aims to minimise the largest among the weighted unwanted deviations (Romero, 
2001, Romero, 2004, Romero et al., 1998): 
 

 Minimise{Dmax = max(w1
+d1

+; w2
+d2

+; w3
–d3

–)} (9) 
 
In order to obtain a linear model that minimises this non-linear achievement 
function a constraint Dmax ≥ wj

–dj
– (Dmax ≥ wj

+dj
+) is added for every unwanted 

deviation dj
– (dj

+) (Claassen et al., 2007): 
 
 Minimise{Dmax}  (10) 
 X1   + d1

– – d1
+  = 3 (11) 

   X2 + d2
– – d2

+  = 2 (12) 
 X1 + X2 + d3

– – d3
+  = 6 (13) 

      Dmax  ≥ w1
+d1

+ (14) 
      Dmax  ≥ w2

+d2
+ (15) 

      Dmax  ≥ w3
–d3

– (16) 
 X1, X2, Dmax, d1

–, d1
+, d2

–, d2
+, d3

–, d3
+ ≥ 0 (17) 
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Achievement function (10) and constraints (14-16) together ensure that Dmax will 
take the value Dmax = max(w1

+d1
+; w2

+d2
+; w3

–d3
–), and that Dmax is as low as possible. 

Table 4.2 shows that using the MinMax achievement function for w1
+

 = w2
+

 = w3
–

 = 1 
results in a balanced solution: all unwanted deviations are equal. Moreover, the 
model is less sensitive to weight changes: slight weight changes cause minor shifts 
in (X1, X2). The MinMax achievement function attempts to spread the unwanted 
deviations as evenly as possible and it enables to identify non-cornerpoint solutions 
in the shaded area. However, possibly many unwanted deviations are found 
(Romero, 2001). With a MinMax achievement function the nutritional adequacy of 
a diet is mainly determined by its poorest nutrient. 

Extended GP achievement function 
The MinSum and MinMax achievement functions can be combined into the so-
called Extended GP achievement function Dext (Romero, 2001, Romero, 2004): 
 
 { }maxsumext )1(  Minimize DDD ⋅λ+⋅λ−=  (18) 
 
where parameter λ ∈ [0;1] weighs the importance attached to minimisation of Dsum 
and Dmax.  
Dext comprises both Dsum and Dmax: using λ = 0 implies Dext = Dsum, so the model 
minimises the weighted sum of the unwanted deviations. Using λ = 1 implies 
Dext = Dmax, so the model spreads the deviations and keeps the largest unwanted 
deviation as low as possible. For intermediate values of λ solutions are found that 
are compromises between the MinSum and MinMax solution. Thus, by varying λ 
the decision-maker can obtain a set of dietary suggestions ‘between’ the MinSum 
and MinMax diets, see also Table 4.2. 

Normalisation to [0;1]-interval; interpretation as fuzzy sets 
In order to deal with issues of scaling and incommensurability it is useful to 
formulate a GP-model in such a way that unwanted deviational variables are 
automatically normalised to a [0;1] interval (Tamiz et al., 1998). For instance, 
consider a diet model with two foods and two nutrients, see Table 4.3. 
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Table 4.3 Data for diet model 
  Nutrient content  Nutritional constraints 

  (mg in 100g 
of food 1) 

(mg in 100g 
of food 2)  Lower bound 

on intake (mg) 
Target intake 

(mg) 

Upper bound 
on intake 

(mg) 
Nutrient 1  500 800  1000 [1500; 3000] 7000 
Nutrient 2  0.3 0.1  0.6 [0.9; 2.4] 5 

 
Define 
 dlj

–, dlj
+ ~ deviations from the left bound of target intake for nutrient j 

 drj
–, drj

+ ~ deviations from the right bound of target intake for nutrient j 
 

The dlj
– and drj

+ are the unwanted deviations. The nutritional constraints can be 
formulated as: 
 

)26(1
)25(4.26.26.21.03.0
)24(1
)23(9.03.03.01.03.0
)22(1
)21(300040004000800500
)20(1
)19(1500500500800500

2

2221

2

2221

1

1121

1

1121

≤
=−++
≤
=−++
≤
=−++
≤
=−++

+

+−

−

+−

+

+−

−

+−

dr
drdrXX

dl
dldlXX
dr
drdrXX

dl
dldlXX

 
Thus, all unwanted deviational variables are normalised to [0;1], which facilitates 
judgment of trade-offs. Moreover, the normalised deviational variables can be used 
to incorporate fuzzy sets for nutrient intake. 
 
Figure 4.2 shows a graph of intake I1 of nutrient 1 versus µ1 = 1 – dl1

– – dr1
+.3 For 

1500 ≤ I1 ≤ 3000 the intake of nutrient 1 is considered fully adequate: both 
unwanted deviational variables dl1

– and dr1
+ are zero and µ1 = 1. Intake I1 = 1000 is 

considered fully inadequate: dl1
– = 1 and µ1 = 0. Likewise, I1 = 7000 has dl1

+ = 1 
and µ1 = 0. So, an adequate intake has µ1 = 1 and an inadequate intake has µ1 = 0. 
If we assume the adequacy of intake I1 increases linearly from 0 to 1 on interval 

                                                 
3 In an optimal solution dlj– and drj+ can never be both nonzero at the same time, so 

+−+− −−=−−=µ 111111 1)1;1min()( drdldrdlI . 
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[1000; 1500] we can use μ1 as proxy for the adequacy of the diet with respect to 
nutrient 1. In case overall nutritional quality Μ of the diet is determined by the 
adequacy of its poorest nutrient we can calculate it as  

 
M = Minimum{µ1; µ2} = 1 – Maximum{dl1

–; dr1
+; dl2

–; dr2
+} = 1 – Dmax (27) 

 
which implies the MinMax achievement function yields diets with maximal M.  
 

 
Figure 4.2 Adequacy curve for nutrient 1 
 
The adequacy curve in Figure 4.2 can be interpreted as fuzzy set for the adequacy 
of intake I1 with membership function µ1(I1) = 1 – dl1

– – dr1
+. For more information 

on use of fuzzy sets for modelling intake adequacy we refer to Gedrich et al. 
(1999), Wirsam et al. (1997), Wirsam and Uthus (1996). More information on LP-
formulations for fuzzy sets is found in Yaghoobi and Tamiz (2007). MILP-
formulations of Dantzig (1960) can be used to construct curves with more than 
three intervals. 

4.3 Diet model 
This section specifies the diet model with which the results, described in Section 
4.4, were obtained. The list of all used foods is provided in Appendix 4B. 

Notation 
The model uses the following indices, decision variables and data: 

0 1000 2000 3000 4000 5000 6000
0

1

I1  →
7000

+− −−=µ 111 1 drdl

a b c d
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Indices 
 i ~ index for foods, i = 1, …, I  
 j ~ index for nutrients, j = 1, …, J 
 
Decision variables 
 Xi ~ consumption of food i in grams per day 
 intakej ~ intake of nutrient j (in nutrient-specific unit: g, mg, μg, en%, or g/MJ) 
 dlj

–, dlj
+ ~ normalised deviation from left bound of target intake for nutrient j 

 drj
–, drj

+ ~ normalised deviation from right bound of target intake for nutrient j 
 μj ~ adequacy for intake of nutrient j 
 
For sake of readability, many additional decision variables were defined, such as: 
bread  ~ consumption of bread 
 
These variables are specified in Table 4.4. Moreover, Table 4.4 shows which 
additional decision variables were defined to indicate how the proposed amount of 
a certain food (group) is subdivided, for instance:  
 

bread_cheese  ~ amount of bread that is filled with cheese 
bread_meat  ~ amount of bread that is filled with meat 
bread_sweetsav  ~ amount of bread that is filled with sweet or savory filling 
 

which indicate how the amount of bread is subdivided over the types of filling: 
 

bread = bread_cheese + bread_meat + bread_sweetsav 
  
Parameters 
nci,j ~ nutrient content of food i for nutrient j (in g or mg per g food i) 
total_energy ~ total energy in the diet: 11100 kJ 
aj, bj, cj, dj ~ parameters for adequacy curves 

Palatability constraints 
Palatability constraints are used to assure that a diet is generated that is acceptable 
for the consumer. Some provide lower bounds (for instance allow 25g of snacks), 
others provide upper bounds (for instance no more than 300g of starch component). 
Moreover, several linking constraints are defined, such as a link between salad and 
dressing, a link between bread and spread. Table 4.4 presents each palatability 
constraint both verbally and as a formula. 
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Table 4.4 Palatability constraints 
Bread ∑=

=
= 15

11
i
i iXbread  

3-7 slices of 35g of bread. 3∙35 ≤ bread ≤ 7∙35 
Bread can have cheese, meat, sweet/savory filling. bread = bread_cheese + bread_meat + bread_swsav 
Use at least two types of filling. bread_cheese ≤ bread/2; bread_meat ≤ bread/2 

bread_sweetsav ≤ bread/2 

Spread spreadbutterspreadbuttersaltXspread i
i i __57

47 ++=∑ =
=

 

Per slice use 3-7g spread. 3∙bread_total/35 ≤ spread ≤ 7∙ bread_total/35 
Butter can be used as spread and as cooking fat. X24 = buttersalt_spread + buttersalt_cooking  

X25 = butter_spread + butter_cooking 
Cheese cheese = X20 + X21 + X22  
Cheese can be used as filling or at dinner. cheese = cheese_filling + cheese_dinner 
On bread one cheese filling is 15-30g. 15∙bread_cheese/35 ≤ cheese_filling ≤ 30∙bread_cheese/35 

Meat product ∑ =
=

= 77
71_ i

i iXfillingmeat  

One meat filling is 10-25g. 10∙bread_meat/35 ≤ meat_filling ≤ 25∙bread_meat/35 

Sweet and savory filling ∑ =
=

= 135
123_ i

i iXfillingsweetsav  

One sweet/savory filling is 10-20g. 10∙bread_swsav/35 ≤ swsav_filling ≤ 20∙bread_swsav/35 

Starch component ∑∑∑ =
=

=
=

=
=

++= 122
121

65
63

19
16

i
i i

i
i i

i
i i XXXstarchcomp  

No more than 300g. starchcomp ≤ 300 
Pulses no more than twice a week. 
Potatoes, rice, pasta no more than 3 times/wk. 

X63 + X64 + X65 ≤ starchcomp∙2/7 
X16 + X17 ≤ starchcomp∙3/7; X18 + X19 ≤ starchcomp∙3/7;  
X121 + X122 ≤ starchcomp∙3/7 

Protein component (fish, meat, cheese, nuts, 
eggs) dinnereggsdinnernutsdinercheese

XXpproteincom i
i i

i
i i

___

60
58

70
66

++

++= ∑∑ =
=

=
=  

50-300g. 
Nuts as snack or as protein component. 
Eggs with bread or as protein component. 

50 ≤ proteincomp ≤ 300 
X92 = nuts_snack + nuts_dinner 
X23 = eggs_bread + eggs_dinner 

Fat component 
cookingbuttersaltcookingbutter

Xfatcomp i
i i

__

32
26

+

+= ∑ =
=  

5-30g. 5 ≤ fatcomp ≤ 30 
Vegetables1 
No more than 400g of cooked vegetables. 

 
X143 ≤ 400 

No more than 250g of salad. X144 ≤ 250 

Dressing ∑ =
=

= 43
33

i
i iXdressing  

10-30g per 100g salad 0.1∙X144 ≤ dressing ≤ 0.3∙X144 

Dessert ∑ =
=

= 91
84

i
i iXdessert  

150-300g 150 ≤ dessert ≤ 300 
Fruit1 
No more than 300g 

 
X61 + X62 ≤ 300 

Snacks snacknutsXsnack i
i i _107

93 +=∑ =
=

 

25-100g 25 ≤ snacks ≤ 100 

Drinks ∑∑ =
=

=
=

+= 83
78

10
1

i
i i

i
i i XXdrinks  

1500-3000g 
Spread over categories 

1500 ≤ drinks ≤ 3000 
X1 + X2 ≤ drinks∙0.4; X3 + X4 + X5 + X6 + X7 ≤ drinks∙0.4 
X8 + X9  ≤ drinks∙0.4; X10 ≤ drinks∙0.4 
X78 + X79 + X80 + X81 + X82 + X83 ≤ drinks∙0.4 

1Note that lower bounds on intake of vegetables and fruits are provided via the nutritional constraints. 
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Administrative constraints 
Administrative constraints are used to convert food intakes to nutrient intakes, 
expressed in units that match the norm to which they must comply. For instance, 
protein intake is expressed in energy%, Ca-intake is expressed in mg, and fibre 
intake is expressed in g/MJ. 
 
For j = protein, carbohydrates, mono-di-saccharides: 

,_/17
}..1{

, energytotalXncintake
Ii

ijij 









⋅= ∑

∈

  

 For j = total fat, SFA, MUFA, PUFA, linoleic acid: 

,_/37
}..1{

, energytotalXncintake
Ii

ijij 









⋅= ∑

∈

  

For j = EPA+DHA, cholesterol, Ca, Fe, K, Vit B1, Vit B2, Vit B6, Vit B12, Vit C, 
folate: 
 ,

}..1{
,∑

∈

=
Ii

ijij Xncintake    

For j = dietary fibre: 

,_/1000
}..1{

, energytotalXncintake
Ii

ijij 









⋅= ∑

∈
   

Nutritional constraints 
Nutritional constraints are used to calculate the adequacy of the intake of nutrients. 
In a similar way, the adequacy of the intake of vegetables and fruit is calculated. 
They are coded as nutrients j = 20 (vegetables) and j = 21 (fruits). 
 

jjjjjj bdldlabintake =+⋅−+ +−)(  ∀j 

jjjjjj cdrcddrintake =⋅−++ +− )(  ∀j 

1=++µ +−
jjj drdl  ∀j 

 
The intake of nutrient 0 (= energy) is fixed to total_energy: 
 

energytotalXnc
Ii

ii _
}..1{

0, =∑
∈
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MCDM-related constraints 
These constraints are used to calculate µj, µmin, Dsum, Dmax, Dext. The ε-terms are 
used to ensure efficiency, with ε very small (e.g. 0.001). 
 

( ) minsum µ⋅ε−+=∑ +−

j
jj drdlD   

jµ≤µmin  ∀j 

∑µ⋅ε−µ−=
j

jD minmin 1  

maxsumext )1( DDD ⋅λ+⋅λ−=  with 0 ≤ λ ≤ 1 

Objective function 
minimise { Dext } 

4.4 Results 
The Extended GP achievement function is used to obtain “best possible” solutions 
for a diet model for planning of diets for dietary controlled trials for men aged 
19-30y as presented in Section 4.3. Palatability constraints define lower and upper 
bounds on intake of various foods (“at most 245g of bread”), and they link intakes 
of foods (“3-7g spread per slice”). Nutritional constraints are formulated via 
adequacy curves for 19 nutrients and for vegetables and fruits. The four 
characteristic points of each adequacy curve are defined in the following way: a is 
the Lower Intake Level below which an intake could lead to risk in most 
individuals; b is the average requirement, sufficient for virtually 50% of healthy 
people in a group, c is the Recommended Daily Intake which is sufficient for 
nearly all people; d is the Upper Intake Level that is unlikely to pose a risk of 
adverse health effects (Nordic council of Ministers, 2014). If no information was 
available a nutrition expert (JdV) made an estimate (Health Council of the 
Netherlands, 2006, Nordic council of Ministers, 2014). Energy intake was fixed to 
100% of the estimated average requirements (EAR). Food compositions were 
obtained from RIVM (2012). The model was programmed in Fico Xpress 7.0.1 and 
calculations were done on an HP desktop with Intel I7 processor. The model 
generates the 11 diets in one second. 
Table 4.5 provides reference values for the adequacy curves and summarises 
results for λ ∈ {0; 0.1; …; 1}. Using λ = 0 implies Dext = Dsum, so the model finds 
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the diet with minimal sum of unwanted deviations. In this MinSum diet all nutrient 
intakes except mono- and disaccharides (MDSacch) are in their optimal range (at 
plateau [b,c] of the adequacy curve). However, this diet has dr+

MDSacch = (7.30 – 
5)/(10 – 5) = 0.460, which means that MDSacch intake is far too high and has a 
suboptimal adequacy µMDSacch = 1 – 0.460 = 0.540. As MDSacch is the only 
nutrient with suboptimal intake the MinSum diet has Dmax = 0.460. Increasing λ 
implies that the model lowers Dmax at the cost of increasing Dsum, thus spreading the 
unwanted deviations in order to find a more balanced solution: for λ = 0.1 the 
unwanted deviation of MDSacch decreases to dr+

MDSacch = 0.309 (so µMDSacch = 1 – 
0.309 = 0.691) whereas vitamin C intake becomes suboptimal (µVitC = 0.846). For 
λ = 0.9 the largest deviation has decreased to 0.180. However, seven intakes are 
then suboptimal. For 1=λ  the model strictly minimises the largest unwanted 
deviation, which results in the diet with lowest Dmax. This MinMax diet has 14 
suboptimal intakes and the highest Dsum. It is entirely up to the nutritionist to judge 
whether a decrease in Dmax is worth an increase in Dsum, and/or an increase in the 
number of violated constraints and to express a preference for any of the generated 
diets, based on the specific situation on hand. Table 4.6 shows which foods were 
chosen. 

4.5 Discussion 
This paper aims to provide methodological insight into several GP achievement 
functions: MinSum, MinMax, and Extended GP. A MinSum achievement function 
minimises the sum of the unwanted deviations from nutritional targets and is thus 
appropriate in situations where diet quality is determined by the sum of these 
unwanted deviations. It can, however, lead to solutions that are unbalanced and that 
are sensitive to changes in preferential weights. A MinMax achievement function 
minimises the largest among the unwanted deviations, and is thus appropriate when 
diet quality is mainly determined by the nutrient with the largest unwanted 
deviation. MinMax GP provides solutions that are as balanced as possible with 
respect to the unwanted deviational variables. However, possibly many unwanted 
deviations occur. An EGP achievement function is a compromise between MinSum 
and MinMax. It can – from one set of data and weights – obtain the MinSum 
solution, the MinMax solution, and a set of solutions ‘between’ the MinSum and 
MinMax solutions. Offering multiple solutions allows choice of a solution that is 
most suitable for a specific decision problem, and that best meets non-quantifiable 
goals and preferences (Brill Jr, 1979, Makowski et al., 2000, Makowski et al., 
2001).  
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Table 4.6 Food intake for λ = 0, 0.1, …, 1 (in grams). 
i Food            λ           

     0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
2  Tea prepared   600 600 600 600 600 600 600 600 600 600 600 
6  Tomato juice   0 0 0 0 0 0 0 0 0 0 53 
8  Beer alcohol free <0,1 vol%   151 172 171 193 199 205 208 300 300 300 247 

10  Water 50-100 mg calcium per liter   600 600 600 600 600 600 600 600 600 600 600 
15  Bread wholemeal average   197 205 205 201 200 198 198 203 208 145 142 
16  Pasta wholemeal boiled   86 86 86 86 86 86 86 86 86 86 86 
18  Rice brown boiled   72 40 38 46 45 45 45 0 0 0 0 
19  Rice white boiled   56 88 91 83 83 84 84 129 129 129 129 
21  Cheese 48+ less salt average   0 0 0 0 0 0 0 0 20 0 0 
22  Cheese 30+ average   0 0 0 9 9 10 10 17 3 22 35 
23  Eggs chicken boiled average   0 0 0 0 0 0 0 24 20 0 0 
35  Salad dressing vinaigrette   33 31 30 25 22 20 19 9 5 24 13 
44  Oil olive   27 26 26 29 30 29 28 25 25 30 22 
46  Oil sunflower seed   3 4 4 1 0 1 2 5 5 0 8 
48  Low fat margarine 40% fat <17 g sat   3 6 7 0 0 0 0 0 0 0 0 
53  Margarine 80% fat > 24g sat unsalted   0 0 0 32 40 36 35 19 0 0 0 
54  Margarine 80% fat >24 g saturates   36 35 34 8 0 0 0 0 0 0 0 
55  Margarine 80% fat 17-24 g saturates   0 0 0 0 0 4 5 22 42 29 28 
60  Fish fat > 10 g fat raw   14 14 14 14 14 14 14 14 14 14 13 
61  Fruit fresh average excluding citrus   144 0 0 0 0 0 0 0 0 0 0 
62  Fruit fresh citrus average   56 200 200 200 200 200 200 200 178 182 184 
65  Lentils boiled   86 86 86 86 86 86 86 86 86 86 86 
68  Pork <10% fat prepared   55 57 57 60 63 65 66 63 64 148 147 
69  Pork >19% fat prepared   0 0 0 0 0 0 0 0 0 51 64 
71  Processed meat prd <10g fat excl liver   17 17 0 0 0 0 0 0 0 0 0 
73  Processed meat prd >30g fat excl liver   0 0 0 0 10 18 22 29 30 0 0 
75  Processed meat products 10-20 g fat   11 13 29 23 13 3 0 0 0 21 20 
83  Buttermilk   149 128 129 107 101 95 92 0 0 0 0 
90  Yoghurt full fat   150 150 150 150 150 150 150 150 150 150 150 
98  Crisps potato average   0 0 0 0 0 0 0 21 22 7 30 
99  Japanese rice cracker mix wo peanuts   100 100 100 100 100 100 100 79 78 93 70 

123  Peanut butter   28 29 29 29 29 28 28 17 14 6 0 
143  Vegetables average boiled   89 98 102 117 125 133 135 170 185 120 148 
144  Vegetables mixture raw   111 102 98 83 75 67 65 30 15 80 43 
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Extending a MinSum GP model to a MinMax GP model takes one additional 
variable (Dmax) plus one constraint for every unwanted deviation. In terms of model 
size this can be considered as very small. 
The Extended GP achievement function requires one extra model parameter (λ), 
which weighs the importance attached to minimising the total unwanted deviation 
versus the importance of minimising the largest unwanted deviation. No general 
rule can be given for setting the most useful value of λ. It seems most practical to 
let the model run for e.g. λ ∈ {0; 0.1; …; 1} and then judge the resulting diets and 
their nutritional adequacy. If desired, the model can be re-run with smaller step-
sizes for λ in relevant sub-intervals, e.g. λ ∈ {0.71; 0.72; …; 0.89}. In this way, the 
decision-maker is supported in finding his/her own trade-offs.  
 
GP offers several other achievement functions that are worth exploring in diet 
modelling context. For instance, Lexicographic GP (Tamiz et al., 1998, Romero, 
2004), in which the deviational variables are assigned to a number of priority levels 
that are minimised sequentially. In minimisation runs for lower-level deviational 
variables the higher-level deviational variables are fixed to their (previously 
obtained) optimal values. Lexicographic GP requires the decision-maker to provide 
a strict hierarchy of the unwanted deviations. Also, in GP it is possible to minimise 
the number of unmet nutritional constraints (Jones and Jimenez, 2013). This 
requires introducing binary variables indicating whether nutritional constraints 
have been met. It is useful in situations where unmet nutritional constraints incur 
costs, e.g. due to necessary fortification programs.  
 
A key consideration in achievement function selection is the preference structure of 
the decision-maker (Romero, 2004). If the deviational variables can be classified 
into strict priority classes between which no finite trade-offs exist then 
Lexicographic GP should be considered. If finite trade-offs do exist between 
deviational variables then the decision-maker should consider Extended GP, which 
offers the opportunity either to minimise the total deviation or the largest deviation 
or a compromise between both. A decision-maker who wants to minimise the 
number of unmet nutritional constraints needs to introduce binary variables. It will 
depend on the type of nutrition question, for example whether it is aimed at the 
individual or population level, what the best modelling approach is. Further 
research is necessary to build a comprehensive framework that helps nutritionists 
to select the most suitable modelling approach for a wide range of diet problems. 
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This paper focuses on linear achievement functions. In literature also models are 
described with quadratic achievement functions (Carlson et al., 2007, Gao et al., 
2006, Gedrich et al., 1999, Cleveland et al., 1993). In a quadratic achievement 
function the (weighted) sum of squared unwanted deviations is minimised, which 
means that large deviations are penalised more than small deviations (Cleveland et 
al., 1993). Quadratic achievement functions can find non-cornerpoint solutions. 
However, possibly local optima are generated (Bazaraa et al., 1993). 
 
The quality of the solutions of a diet model depends on the quality and choice of 
data (Buttriss et al., 2014). For our experiment, we chose a limited number of foods 
and nutrients, and had to base adequacy curves partly on expert opinion, because 
not all needed information was available in literature. Also, we did our experiment 
only for a specific diet of one energy level. Other foods could have been used, as 
well as other bounds and other nutrients. However, it was not our intention to 
present a comprehensive diet model, but to demonstrate the impact of different 
achievement functions. 
 
The presented diet model uses a continuous decision variable Xi to denote intake of 
food i. The model could therefore propose a diet with e.g. 2g apple (unrealistically 
low) or 17g margarine and 13g low-fat margarine (whereas a consumer would 
probably want to use either margarine or low-fat margarine but not both). Such 
issues can be overcome by extending the model with semi-continuous variables 
and binary variables. 
 
This paper provides methodological insight into several GP achievement functions: 
MinSum, MinMax, and Extended GP. It shows that the EGP achievement function 
is able to generate a solution that minimises the sum of all violations, as well as a 
solution that minimises the largest violation, and compromises between them. The 
EGP achievement function thus provides a way to obtain a range of solutions from 
one set of data and weights. 
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Appendix 4A Model Class 2b: Minimise the differences 
between the actual diet and the proposed diet 

Models in Class 2b search for diets that conform as closely as possible to an actual 
diet, while meeting constraints on e.g. nutrient recommendations, palatability and 
total cost. 
The composition of the actual and proposed diet can be expressed in amounts 
consumed per food group (Maillot et al., 2010, Masset et al., 2009) or in energy 
provided per food group (Darmon et al., 2006b). These result in models of similar 
structure, and therefore we only elaborate models that express diets in amounts 
consumed per food group. 

Notation, GP constraint 
In this appendix, we use the following notation: 

Qi ~ Data: Intake of food group i in actual diet (i = 1…I) 
Xi ~ Decision variable: Intake of food group i in proposed diet (i = 1…I) 

with I the number of food groups. The deviation between the actual diet and the 
proposed diet can be calculated via a GP constraint: 

iiiiii QdQdQX =−+ +− for all food groups i 

0, ≥+−
ii dd

Now di = di
– + di

+ is the absolute value of the relative deviation between the 
actual and the proposed diet4. The negative and positive deviations di

–, di
+ are 

normalised: di
– = 1 means that the consumption in food group i of the proposed 

diet is 100% lower than in the actual diet, and di
+ = 1 means that the consumption 

in food group i of the proposed diet is 100% higher than in the actual diet. 

MinSum achievement function 
As an example we consider a diet problem with two foods. Actual food intakes are 
Q1 = 3 and Q2 = 2, and a nutritional constraint 2X1 + 3X2 ≥ 15 applies. The 

4 Note that it is also possible to model absolute deviations: Xi + di– – di+ = Qi for all i. One should keep 
in mind that any choice made in modelling the deviation uses judgment from the decision-maker and 
implies assumptions on the underlying preference structure. 
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proposed diet should resemble the actual diet as much as possible. Therefore, all 
deviations di

–, di
+ from the actual diet are regarded as unwanted. A MinSum GP 

model could look as follows: 

Minimise{Dsum = w1
–d1

– + w1
+d1

+ + w2
–d2

– + w2
+d2

+ } (A1) 
X1   + 3d1

– – 3d1
+  =  3 (A2) 

X2 + 2d2
– – 2d2

+  =  2 (A3) 
2X1 + 3X2  ≥ 15 (A4) 
X1, X2, Dsum, d1

–, d1
+, d2

–, d2
+ ≥ 0 

with w1
–, w1

+, w2
–, w2

+ the non-negative weights assigned by the user. 

The shaded area in Figure 4A.1 contains all diets that comply with nutritional 
constraint (A4). Of these, we want to find the one that has minimal deviation from 
the actual diet. The set of Pareto-optimal solutions is indicated with a bold line 
segment connecting (3,3) and (4.5,2). 

Figure 4A.1 Class 2b: The shaded area contains all diets that comply with nutritional constraint (A4). 
Of these we aim to find the diet with minimal deviation from the actual diet ( ). A MinSum GP 
model will yield diet (4.5, 2) or diet (3,3) ( ). Diet (3.75, 2.5) ( ) is reachable via a MinMax GP 
model. 

The optimal solution of model (A1)-(A4) depends upon the weights that are 
chosen. However, independent of the weights, it is always located within the Pareto 
set (i.e. the set of Pareto-optimal solutions). Note that all Pareto-optimal solutions 
have d1

– = d2
– = 0. For w1

+ = w2
+ = 1 all Pareto-optimal solutions have total 

0 1 2 3 4 5 6

X2 + 2d2
– – 2d2

+ = 2

X1 + 3d1
– – 3d1

+ = 3

d1
– d1

+

d2
+
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X1  →
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X 2
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weighted deviation Dsum = 1. That means that – according to the MinSum GP 
model with w1

+ = w2
+ = 1 – all Pareto-optimal diets are equally preferable. Due to 

the fact that in LP-problems the optimal solution is always found in a corner-point, 
an LP-solver will generate one of the corner-points of the efficient set: (4.5,2) or 
(3,3). However, if the user specifies that w1

+ = w2
+, (s)he expresses that (s)he cannot 

justify assigning one deviation more importance than another, and therefore it 
would be natural to obtain a balanced solution that spreads the deviations over both 
deviational variables (d1

+, d2
+) instead of an unbalanced solution that piles the 

unwanted deviation on only one of them. 

Table 4A.1 Optimal solution of MinSum GP model (A1)-(A4) for various choices of the weights. 
Optimal solution 

Weights 
),( 21

++ ww  
Diet 

),( 21 XX  
Deviations 

),( 21
++ dd

Weighted deviations 
),( 2211

++++ dwdw  
Achievement function 
Dsum = ++++ + 2211 dwdw  

(0.9, 1) (4.5, 2) (0.5,  0) (0.45,  0) 0.45 
(1, 1) (4.5, 2) or 

(3, 3)† 
(0.5, 0) or 

(0, 0.5) 
(0.5, 0) or 

(0, 0.5) 
0.50 

(1, 0.9) (3, 3) (0, 0.5) (0, 0.45) 0.45 
† According to the MinSum achievement function all diets on line segment (4.5, 2)-(3, 3) are equally 
preferable, because they all have the same achievement function value: 0.50. However, an LP-solver 
will only generate a corner-point: (4.5, 2) or (3, 3). 

Table 4A.1 shows the optimal solution of model (A1)-(A4) for various choices of 
the weights w1

+, w2
+. It shows that the MinSum model is sensitive to weight 

changes: slight changes in the weights make the optimal diet ‘jump’ from one 
corner-point to another.  

MinMax achievement function 
The MinMax GP version of model (A1)-(A4) is 

Minimise{Dmax} (A5) 
X1   + 3d1

– – 3d1
+  =  3 (A2) 

  X2 + 2d2
– – 2d2

+  =  2 (A3) 
2X1 + 3X2 ≥ 15 (A4) 

Dmax  ≥ w1
–d1

– (A6) 
Dmax  ≥ w1

+d1
+ (A7) 

Dmax  ≥ w2
–d2

– (A8) 
Dmax  ≥ w2

+d2
+ (A9) 

X1, X2, Dmax, d1
–, d1

+, d2
–, d2

+ ≥ 0 
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Table A2 shows the optimal solution of model (A2)-(A9) for various choices of the 
weights w1

+, w2
+. Now, for w1

+ = w2
+ = 1, a balanced solution is obtained, in which 

all unwanted deviations are equal. Moreover, the model is less sensitive to weight 
changes: slight changes in the weights cause minor shifts in the optimal solution. 
The MinMax GP model represents a situation in which the resemblance between 
two diets is determined by the food that differs the most. 

Table 4A.2 Optimal solution of MinMax GP model (A2)-(A9) for various choices of the weights. 
Optimal solution 

Weights 
),( 21

++ ww  
Diet 

),( 21 XX
Deviations 

),( 21
++ dd

Weighted deviations 
),( 2211

++++ dwdw  
Achievement function 

Dmax 

(0.9, 1) (3.79, 2.47) (0.263, 0.237) (0.237, 0.237) 0.237 

(1, 1) (3.75, 2.50) (0.250, 0.250) (0.250, 0.250) 0.250 

(1, 0.9) (3.71, 2.53) (0.237, 0.263) (0.237, 0.237) 0.237 

Extended GP achievement function 
The achievement functions of the MinSum and MinMax GP model can be 
combined into the achievement function Dext of a so-called Extended GP model 
(Romero, 2004, Romero et al., 1998): 

{ }maxsumext )1(  Minimize DDD ⋅λ+⋅λ−=  (A10) 

where parameter λ ∈ [0;1] weighs the importance attached to the minimisation of 
the MinSum and MinMax achievement function. An Extended GP model can find 
solutions that are compromises between the MinSum and MinMax solutions. It can 
thus provide valuable dietary suggestions that are located ‘between’ the MinSum 
and MinMax diets. However, the numerical example is too small to contain any of 
these intermediate solutions. 
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Appendix 4B List of foods 
Alc. and non‐alc. drinks Index i Nevo code 

Coffee prepared 1 644 
Tea prepared 2 645 
Juice grapefruit 3 664 
Juice apple 4 383 
Juice grape 5 396 
Tomato juice 6 413 
Juice orange pasteurised 7 410 
Beer alcohol free <0,1 vol% 8 1519 
Soft drink wo caffeine 9 400 
Water 50-100 mg calcium per liter 10 599 

Bread 
Bread brown wheat 11 236 
Bread white water based 12 248 
Bread white milk based 13 241 
Bread rye average 14 1395 
Bread wholemeal average 15 246 

Cereal products 
Pasta wholemeal boiled 16 2157 
Pasta white average boiled 17 659 
Rice brown boiled 18 1014 
Rice white boiled 19 658 

Cheese 
Cheese Gouda 48+ average 20 513 
Cheese 48+ less salt average 21 881 
Cheese 30+ average 22 1382 

Eggs 
Eggs chicken boiled average 23 84 

Fats, oils and savoury sauces 
Butter salted 24 879 
Butter unsalted 25 310 
Cooking fat liq 97%fat <17g sat unsalted 26 2562 
Cooking fat liquid 97% fat <17 g sat 27 2066 
Cooking fat sol 97% fat>17g sat unsalted 28 2563 
Cooking fat solid 80% fat >17 g sat 29 2073 
Cooking fat solid 97% fat >17 g sat 30 2067 
Margarine liq 80% fat < 17g sat unsalted 31 2558 
Margarine liq 80% fat <17 g saturates 32 2077 
Salad cream 25% oil 33 458 
Salad dressing naturel without oil 34 844 
Salad dressing vinaigrette 35 2466 
Salad dressing./sauce approx 13% oil 36 2467 
Mayonnaise 37 451 
Mayonnaise low fat 40% oil 38 729 
Mayonnaise product approx 35% oil 39 2471 
Mayonnaise product w olive oil 40 2083 
Sauce for chips 25% oil 41 465 
Sauce for chips 35% oil 42 466 
Sauce for chips 5% oil 43 2470 
Oil olive 44 601 
Oil peanut 45 308 
Oil sunflower seed 46 317 
Low fat marg prod 20-25% fat <10 g sat 47 2061 
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Low fat margarine 40% fat <17 g sat 48 2059 
Low fat margarine prod 35% fat <10 g sat 49 2060 
Low fat margarine prod Becel Omega3 Plus 50 2422 
Low fat margarine prod Blue Band Idee 51 2423 
Low fat spread Becel pro-activ 52 1956 
Margarine 80% fat > 24 g sat unsalted 53 2557 
Margarine 80% fat >24 g saturates 54 2063 
Margarine 80% fat 17-24 g saturates 55 2062 
Margarine product 60% fat <17 g sat 56 2072 
Margarine product 70% fat >17 g sat 57 2065 

Fish     
Fish lean 0-2 g fat raw 58 114 
Fish medium fat > 2-10 g fat raw 59 115 
Fish fat > 10 g fat raw 60 116 

Fruit     
Fruit fresh average excluding citrus 61 173 
Fruit fresh citrus average 62 172 

Legumes     
Peas marrowfat legumes boiled 63 969 
Beans white/brown boiled 64 968 
Lentils boiled 65 970 

Meat, meat products and poultry     
Beef <10% fat prepared 66 1665 
Beef >10% fat prepared 67 1666 
Pork <10% fat prepared 68 1670 
Pork >19% fat prepared 69 1672 
Pork 10-19% fat prepared 70 1671 
Processed meat prod <10 g fat excl liver 71 1908 
Processed meat prod 20-30 g fat ex liver 72 1910 
Processed meat prod >30 g fat excl liver 73 1911 
Processed meat products <10 g fat 74 1211 
Processed meat products 10-20 g fat 75 1172 
Processed meat products 20-30 g fat 76 1171 
Processed meat products >30 g fat 77 1151 

Milk en milkproducts     
Milk chocolate-flavoured low fat 78 273 
Milk chocolate-flavoured full fat 79 272 
Milk skimmed 80 294 
Milk semi-skimmed 81 286 
Milk whole 82 279 
Buttermilk 83 289 
Custard vanilla low fat 84 477 
Custard half fat all flavours 85 2519 
Custard several flavours full fat 86 1720 
Yoghurt low fat with fruit 87 284 
Yoghurt low fat 88 301 
Yoghurt half fat 89 1502 
Yoghurt full fat 90 278 
Ice cream dairy cream based 91 303 

Nuts, seeds and snacks     
Nuts mixed unsalted 92 207 
Nuts mixed salted 93 1935 
Mixed nuts and raisins 94 205 
Peanuts salted 95 876 
Peanuts unsalted 96 204 
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Peanuts coated 97 546 
Crisps potato average 98 122 
Japanese rice cracker mix wo peanuts 99 2147 
Snack sausage roll puff pastry 100 266 
Biscuit salted average 101 264 
Salad egg 102 1499 
Salad cucumber 103 1876 
Salad meat 104 1877 
Salad chicken curry 105 1498 
Salad ham and leek 106 1497 
Salad fish 107 1496 

Pastry, cake and biscuits     
Biscuit brown/wholemeal 108 263 
Biscuit muesli 109 636 
Biscuit sweet 110 252 
Biscuits averaged 111 258 
Cake Dutch spiced Ontbijtkoek 112 240 
Cake Dutch spiced Ontbijtkoek wholemeal 113 925 
Cake sponge Dutch Eierkoek 114 254 
Muesli bar 115 2239 
Apple pie Dutch w shortbread w marg 116 251 
Cake made with butter 117 1969 
Flan with fruit filling 118 486 
Gateau with butter-cream filling 119 256 
Gateau with whipped cream 120 255 

Potatoes     
Potatoes wo skins boiled average 121 982 
Potatoes fried 122 1457 

Savoury sandwich filling     
Peanut butter 123 455 
Sandwich spread original 124 575 

Sugar, confectionary, sweet prod.     
Chocolate flakes average 125 2531 
Chocolate confetti averaged 126 1311 
Coloured confetti fruit-flavoured 127 442 
Coconut bread sweetened sliced 128 449 
Honey 129 443 
Jam without sugar 130 807 
Jam reduced sugar 131 484 
Jam 132 445 
Spread chocolate hazelnut 133 436 
Syrup Keukenstroop 134 378 
Syrup apple 135 427 
M&M's chocolate with peanuts 136 621 
Candybar Mars 137 487 
Chocolate bar milk with nuts 138 717 
Chocolate plain 139 432 
Chocolate milk 140 431 
Sugar granulated 141 377 
Boiled sweets 142 450 

Vegetables     
Vegetables average boiled 143 1904 
Vegetables mixture raw 144 127 
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Abstract 
The diet model addressed Chapter 4 uses an extended goal programming (EGP) 
achievement function, which combines an achievement function in which a 
(weighted) sum of utilities is maximised and an achievement function in which the 
lowest value within a set of utilities is maximised. The combination requires 
weighting. The problem is how to justify and interpret weights. Considering the 
key importance of preference structure (as implemented via achievement functions 
and weights) for the quality of decision-making in MCDM, it is crucial to keep an 
open mind for novel approaches, investigate their behaviour, and assess their added 
value for practice. Chapter 5 explores such a novel approach (referred to as CEU) 
proposed by Hooker and Williams (2012) for combining equity (comparable with 
the MaxMin achievement function in Chapter 4) and utilitarianism (comparable 
with the MaxSum achievement function in Chapter 4) in a single model that does 
not require specification of a set of weights, but uses a single parameter. So far, 
CEU has not been evaluated and used in a practical context besides that of Hooker 
and Williams (2012). In order to assess its added value for diet modelling, it is 
important to gain insights into its properties and (dis)advantages.  
Chapter 5 addresses research question 4 “What is the added value of a novel 
method for finding a compromise between total utility and lowest utility in the 
context of diet models?”. It provides new insights into CEU and assesses its added 
value for practice by comparing it with EGP. Chapter 5 shows that CEU balances 
between equity and utilitarianism in a way that is basically different from using a 
convex combination of these two criteria, as is done in EGP. Moreover, CEU’s 
parameter has an intuitive interpretation. The set of solutions generated by CEU is 
smaller and wider spaced than EGP’s set of solutions, which can be an advantage 
for the decision-maker. CEU generates solutions on the Pareto front of the 
decision-maker’s n-criteria problem. However, CEU’s way of balancing equity and 
utilitarianism causes a (small) distance to the Pareto front of the associated bi-
criteria problem on the aggregate criteria of lowest utility (representing equity) and 
total utility (representing utilitarianism). Reporting this distance will support the 
decision-maker to assess whether the achieved balance is worth its price.  
Chapter 5 concludes that for applying CEU the investigated decision problem 
should have the following two characteristics: (i) summing individual utility values 
is meaningful, (ii) small increments of utilities within a predefined (commonly 
small) range from the lowest utility do not affect the decision-maker’s perceived 
quality of a solution. The diet problems addressed in this thesis will often not have 
these characteristics, which limits the applicability of CEU for diet modelling.   
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5.1 Introduction 
Hooker and Williams (2012) introduce a novel approach to combine the often 
conflicting criteria of equity and utilitarianism in a single mathematical model 
(from here on referred to as CEU). To the best of our knowledge, no follow-up 
research has been reported that compares CEU with a commonly used approach for 
combining equity and utilitarianism. Neither have any additional insights been 
generated regarding the properties and (dis)advantages of CEU. This paper 
provides additional insights into CEU by comparing it with a commonly used goal 
programming approach in a practical context. 
 
Goal programming can be regarded as one of the most widely used multi-criteria 
decision-making techniques (Caballero et al., 2009), and is often cited as the “work 
horse” of multi objective optimisation (Romero, 2004, Charnes and Cooper, 1977). 
Romero (2001) introduces extended goal programming (EGP) to combine the often 
conflicting criteria of equity and utilitarianism. The achievement function of EGP 
balances between equity and utilitarianism by minimising a convex combination of 
the maximum deviation from a goal (equity) and the weighted sum of deviations 
from all goals (utilitarianism). A dimensionless parameter λ is used to control the 
importance of equity and utilitarianism in the achievement function. Romero 
(2004) states that the right choice of the achievement function is a key element for 
the success of a goal programming model; if the chosen achievement function is 
wrong then it is very likely that the decision-maker will not accept the solution. 
Romero (2004) also points out that determination of the precise value of parameter 
λ is a key question that is still open. The problem is how to justify and interpret any 
particular value of λ (Hooker and Williams, 2012). Jones and Jimenez (2013) 
recommend to carry out sensitivity or parametric analysis on λ. However, the 
problem of determining the appropriate value of λ remains unsolved. 
 
Hooker and Williams (2012) introduce a novel approach to combine equity and 
utilitarianism (CEU) in a single mathematical model. For formulating equity, CEU 
uses the maximin principle of Rawls (1971), that is “one seeks to allocate goods so 
as to maximise the welfare of the worst off”. Hooker and Williams (2012) argue 
that most people regard it as unreasonable to take a Rawlsian policy to its extreme. 
Hence, the authors propose to switch from a Rawlsian to a utilitarian criterion 
when inequality exceeds a threshold value ∆. This has the effect of adhering to a 
Rawlsian criterion unless the decrease in total utility is too great (Hooker and 
Williams, 2012). Hooker and Williams (2012) describe CEU’s parameter ∆ as the 
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level of inequality at which efficiency considerations take over. So, both EGP and 
CEU are single-parameter approaches for combining the conflicting criteria of 
equity and utilitarianism. Therefore, we investigate CEU by comparing it with 
EGP. 
 
This paper aims to contribute to the insight into the properties and (dis) advantages 
of CEU and to assess its added value for practice by comparing it with EGP. The 
comparison comprises the way of balancing equity and utilitarianism, method-
specific parameters and their interpretation, location of the solutions, number of 
solutions, differences between neighbouring solutions, discrete versus continuous 
nature of the methods, distance to the Pareto front, and computational effort. As a 
practical case, we use a diet modelling problem. In order to provide a self-
contained paper, Section 2 summarises CEU and Section 3 outlines the core of the 
diet modelling case. 

5.2 Combing Equity and Utilitarianism (CEU)  
Hooker and Williams (2012) suppose that a population consists of individuals (or 
classes of individuals), and that the decisions result in an allocation of utilities u1, 
u2, …, un to these individuals. The authors present a model that maximises the 
utility of the worst off – i.e. maximise(mini{ui}) – unless this takes too many 
resources from the others. For the two-person case the switch from a Rawlsian1 to a 
utilitarian criterion takes place when inequality between u1 and u2 exceeds a 
threshold ∆: that is, when |u1 – u2| ≥ ∆. The contours of the aggregated welfare 
function are shown in Figure 5.1. When |u1 – u2| ≤ ∆, the contours reflect the 
Rawlsian criterion min{u1, u2}. Otherwise, the contours reflect the utilitarian 
criterion u1 + u2.  
 
The Rawlsian solution R (denoted with  in Figure 5.1) allocates equal utility to 
each person. From there, shifting resources from person 1 to person 2 would 
considerably improve u2 at the expense of a slight decrease in u1. Thus, switching 
to the utilitarian solution Q (denoted with  in Figure 5.1), would improve total 
utility. Parameter ∆ is the maximum sacrifice of total utility one is willing to make 
in order to maximise the utility of the worst off. It is the level of inequality at 
which efficiency considerations take over (Hooker and Williams, 2012). Figure 5.2 

                                                           
1 Here, we follow the terminology of Hooker and Williams (2012), who denote mini{ui} as 
the Rawlsian criterion. 



Combining equity and utilitarianism – Additional insights in a novel approach 

77 

illustrates that for small values of ∆ (∆1) the model will tend to select the utilitarian 
solution Q, whereas for large ∆ (∆2) the Rawlsian solution R will be preferred. 

  
Figure 5.1 Contours of the aggregated welfare 
function. The diagonal part of the contours 
corresponds to a utilitarian criterion, and the 
L-shaped part corresponds to a Rawlsian 
criterion. The curve reflects resource limits 
(Hooker and Williams, 2012). 

Figure 5.2 For small values of ∆ (∆1) the 
utilitarian solution Q () is preferred, and for 
large values of ∆ (∆2) the Rawlsian solution R 
() is preferred. 

Two-person problem 
The two-person problem aims to allocate utilities u1 and u2 (u1, u2 ≥ 0) such that for 
|u1 – u2| ≤ ∆ the Rawlsian criterion min{u1, u2} is maximised, and for |u1 – u2| ≥ ∆  
the utilitarian criterion u1 + u2. To ensure continuity of the welfare function, in the 
Rawlsian case 2min{u1, u2} + ∆ is used. The optimisation problem is to maximise z 
subject to 
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≤
otherwise

,  if},min{2

21

2121

uu
uuuu

z  (1) 

Uuu ∈),( 21  
 
in which U defines the feasible set. Welfare function (1) switches from a Rawlsian 
to a utilitarian criterion when the inequality between u1 and u2 exceeds the 
threshold ∆. Hooker and Williams (2012) present the following MILP formulation 
for problem (1):  
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 maximise { z } (2) 
 s.t. 
 δ∆−+∆+≤ )(2 Muz i  (3) 

 )1(21 δ−∆++≤ uuz  (4) 

 Muu ≤− 21  (5) 

 Muu ≤− 21  (6) 

 }1,0{,0, 21 ∈δ≥uu  (7) 
 
If |u1 – u2| ≤ ∆ then δ = 0 and if |u1 – u2| ≥ ∆ then δ = 1.  
 
In Figure 5.3, the Rawlsian solution R and the utilitarian solution Q are on the same 
contour, which implies that welfare function (1) is indifferent between R and Q: 
 

QQRR uuuu 2121 };min{2 +=∆+  (8) 
 

As RR uu 21 = , this can be written as 
 

QQRR uuuu 2121 +=∆++  (9) 
 

 
Figure 5.3 The Rawlsian solution R () and the utilitarian solution Q () are on the same contour of 
the welfare function. 
 

u2

u1
Ru1

Ru2
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So, switching from the utilitarian solution Q to the Rawlsian solution R incurs a 
loss of ∆ in total utility. A decision-maker who is willing to make this sacrifice or 
more (that is, who uses a large value of ∆) will prefer the Rawlsian solution R, and 
a decision-maker who is not willing to make this sacrifice (that is, who uses a 
smaller value of  ∆) will prefer the utilitarian solution Q, see Figure 5.2. 

Many-person problem 
In the many-person problem, utilities u1, u2, …, un ≥ 0 have to be allocated to n 
persons. For formulating the welfare function of the many-person problem, the 
two-person welfare function (1) is rewritten as 
 

},0max{},0max{2 min2min1min ∆−−+∆−−++∆≤ uuuuuz  (10) 
 
and then generalised for the many-person problem: 

∑
=

∆−−++∆−≤
n

i
i uununz

1
minmin },0max{)1(  (11) 

with umin = mini{ui}. Thus, person i makes a utilitarian contribution to the welfare 
function if ui – umin > ∆, and is otherwise represented by umin. We will refer to 
utilities that make a utilitarian contribution as utilitarian contributors, and to the 
others as Rawlsian contributors. Hooker and Williams (2012) present the following 
MILP model for the many-person problem:  
 

maximise { z } (12) 
s.t. 
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In the optimal solution, w will take the value umin and 
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5.3 Case study: an EGP-based diet model 
Mathematical modelling of diets can be defined as the use of mathematical 
techniques to formulate and optimise diets (Buttriss et al., 2014). Commonly, the 
decision variables are defined as: xj = (proposed) daily intake of food j (j = 1...J), 
xj ≥ 0. Acceptability for the consumer is assured by palatability constraints, which 
define upper and lower bounds on intake of various foods (e.g. “no more than 5 
slices of bread”, “at least one sweet snack”), and link intakes of foods (e.g. “3-7g 
spread per slice of bread”). In order to be nutritious, the generated diets should 
meet restrictions on the amounts of nutrients (for example carbohydrates, iron). 
Gerdessen and De Vries (2015) present a EGP-based diet model in which the 
nutritional constraints are formulated via nutrient utility curves2, see Figure 5.4. 
 

 
Figure 5.4 Utility curve for intake yi of nutrient i. Intakes between bi and ci are considered as fully 
adequate: ui = 1. Intake ai and intake di are considered as fully inadequate: ui = 0. Intakes lower than 
ai or higher than di are not allowed. 
 
In the utility curve of Figure 5.4, intakes between bi and ci are considered as fully 
adequate: the utility for nutrient i is ui = 1. Intakes ai and di are considered as fully 
inadequate: ui = 0. The model does not allow intakes lower than ai or higher than 
di. Then, diets are searched that maximise 
 

(i) a Rawlsian criterion: max(umin) with umin = mini{ui}, 
(ii) a utilitarian criterion: max{Σiui},  
(iii) a convex combination of (i) and (ii): ( )min)1(max uui i ⋅λ+⋅λ− ∑ , 0 ≤ λ ≤ 1, 

thus balancing between equity and utilitarianism. 
 
The decisions xj (j = 1, …, J) result in an allocation of utilities u1, u2, …, un to 
nutrients i (i = 1, …, n). So, the nutrients in the diet model equal the persons of the 
CEU models. In order to apply CEU, the diet model is extended with the MILP 
                                                           
2 Note that in Chapter 4 these are called ‘nutrient adequacy curves’.  

0 ai bi ci
0

1

yi →
di

↑
ui
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formulation of the many-person problem, i.e. (12) – (17). From here onward, it will 
be referred to as the many-nutrient problem. 

5.4 Experiment and observations 
EGP and CEU are applied on a diet model for a case of women aged 19-30 yrs 
(Gerdessen and De Vries, 2015). The model contains 144 foods and optimises 21 
utilities. Figure 5.5 shows the Pareto front of the total utility (horizontal axis) and 
the lowest utility (vertical axis) plus all solutions that are found by: 
 
• EGP with achievement function: ( )min21min)1(max uuuu i ii i ε+ε+λ+λ− ∑∑ , 

denoted by (). The tie-breaking terms ∑ε i iu1  and min2uε  (with ε1, ε2 very 

small positive numbers) are added to prevent that non-efficient solutions are 
generated. 

 
• the many-nutrient CEU model, with a tie-breaking term ∑ε i iu3  (with ε3 a 

very small positive number) added to the right-hand side of inequality (13), 
denoted with (). 

Tables 5.1 and 5.2 list the utilities of the 31 solutions generated by EGP and the 7 
solutions generated by CEU. Associated food intakes xj are given in Appendix 5A. 
 

 
Figure 5.5 Total utility and lowest utility of all solutions found with EGP and CEU. 
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Table 5.2 Nutrient utilities ui (i = 1..21) of all diets found with CEU. Rawlsian contributors are shown 
in bold font. For example, for ∆ = 0.28 we have umin = 0.651, so all utilities with ui < 0.651 + 0.280 = 
0.931 are Rawlsian contributors.  

 
Utilitarian 

solution   ∆   
Rawlsian 
solution 

Nutrients i 0-0.24 0.25-0.26 0.27-0.29 0.30 0.31 0.32 0.33-1 
1. Protein 1 1 1 1 0.691 0.675 0.676 
2. Total fat 1 1 1 1 0.675 0.675 0.676 
3. SFA1 1 1 1 1 1 1 0.967 
4. MUFA2 1 1 1 1 1 1 1 
5. PUFA3 1 1 1 1 1 1 0.915 
6. Linol 1 1 1 1 1 1 0.676 
7. EPA+DHA4 1 1 1 1 1 0.675 0.676 
8. Cholesterol 1 1 1 1 1 1 0.676 
9. Mono-/disacch.  0.395 0.613 0.651 0.660 0.675 0.675 0.676 
10. Dietary fiber 1 1 1 1 1 1 1 
11. Calcium 1 1 1 1 1 1 0.992 
12. Iron 1 1 0.651 0.660 0.675 0.675 0.676 
13. Potassium 1 0.999 1 1 0.929 0.929 0.931 
14. Vitamin B1 1 1 1 1 1 1 0.998 
15. Vitamin B2 1 1 1 1 1 1 1 
16. Vitamin B6 1 0.997 0.991 0.992 0.975 0.975 0.975 
17. Vitamin B12 0.951 0.613 0.651 0.660 0.675 0.675 0.676 
18. Vitamin C 0.909 0.934 0.851 0.852 0.842 0.842 0.842 
19. Folate 1 1 1 1 1 1 1 
20. Vegetables  1 1 1 0.660 0.675 0.675 0.676 
21. Fruits  1 0.613 0.651 0.660 0.675 0.675 0.676 

umin 0.395 0.613 0.651 0.660 0.675 0.675 0.676 
Σiui 20.255 19.769 19.446 19.144 18.487 18.146 17.380 

1Saturated fatty acids; 1Mono-unsaturated fatty acids; 2Poly-unsaturated fatty acids;  
3EPA, eicosapentaenoic acid; DHA, docosahexaenoic acid. 
 
Figure 5.5 and Tables 5.1 and 5.2 show that EGP and CEU differ with respect to: 
 

• Location of the solutions 
For λ = ∆ = 0, both EGP and CEU find the utilitarian solution. For λ = ∆ = 1, 
both approaches find the Rawlsian solution. Apart from these extremes, EGP 
and CEU find different solutions, which are located rather differently. 

 

• Differences between neighbouring solutions 
Neighbouring CEU solutions are more different than neighbouring EGP 
solutions. 

 



Chapter 5 

84 

• Distance to the Pareto front of the bi-criteria problem max{∑iui ; umin} 
All EGP solutions are on the Pareto front of the bi-criteria problem max{∑iui ; 
umin}. The CEU solutions are located at a small distance from this front. 

 
The following section provides explanations for these observed differences. Also, it 
discusses other differences between CEU and EGP. 

5.5 Analysis and discussion  
This section analyses and discusses differences between EGP and CEU. First, the 
observations from the results are discussed. Next, several other aspects will be 
discussed. Differences are summarised in Table 5.4. 

Location of the solutions 
Figure 5.5 shows that in the neighbourhood of the utilitarian solution the EGP 
solutions are very close together. The first CEU solution, however, is located at a 
relatively large distance from the utilitarian solution. 
 
The utilitarian solution has umin = u9 = 0.395. The difference between umin and the 
next lowest utility (u18 = 0.909) is relatively large. Eighteen nutrient intakes yi are 
within their optimal range (that is, bi ≤ yi ≤ ci) (see Figure 5.4), and thus have 
ui = 1. For nutrients with bi < yi < ci (such as protein in Table 5.2), a small change 
in yi will not change the utility ui; the nutrient intake yi may move towards bi or ci, 
but the resulting utility ui remains equal to 1. Therefore, moving to vertices with 
higher umin will have a minor impact on Σiui. As a result, the EGP solutions at the 
right-hand side of the graph in Figure 5.5 are relatively close together. When 
moving towards the Rawlsian solution, more and more nutrients get an intake 
outside [bi; ci], which implies they have ui < 1 (see for instance vitamin B6 in Table 
5.2). For those nutrients, any change in yi will have an immediate impact on ui. As 
a result, for this diet model the EGP solutions near the Rawlsian solution are wider 
spaced than those near the utilitarian solution. We performed a test in which bi = ci 
(for i in 1, …, n). The outcome confirms the analysis, that is, the vertices near the 
utilitarian solution are no longer close together, see Figure 5.6.  
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Figure 5.6 Total utility and lowest utility of all solutions found with EGP and CEU for a (fictitious) 
diet model with triangular utility curves. For mono-di-saccharides: bi = ci = 5%. For dietary fibre: bi = 
ci = 3 gr/MJ. For all other nutrients, the average of bi and ci (see Table 4.5) was used. The curves do 
not reflect a realistic diet model, but are used to investigate the impact of the shape of the utility 
curves on the number of EGP solutions near the utilitarian solution. 
 
The CEU is an MILP model: binary variables δi indicate whether nutrient i makes a 
utilitarian contribution to the objective function value (δi = 1 if ui – umin > ∆) or not 
(δi = 0 if ui – umin ≤ ∆). In the utilitarian solution (∆ = 0), all nutrients except the 
worst off )( 9min uu =  make a utilitarian contribution. Moving into the direction of 
the Rawlsian solution (i.e. putting more emphasis on maximising umin by increasing 
∆) implies that at least one nutrient will change from utilitarian contributor (δi = 1) 
into Rawlsian contributor (δi = 0). Nutrient i can only become a Rawlsian 
contributor if ui – umin ≤ ∆. Because in the utilitarian solution the lowest utility (umin 
= u9 = 0.395) is substantially lower than all other utilities, it takes a relatively large 
increase in umin (which implies a relatively large decrease in Σiui) and a substantial 
value of ∆ to achieve ui – umin ≤ ∆ and move away from the utilitarian solution. As 
a result, for this dataset no CEU solutions are found at the right-hand side of the 
graph. For the Rawlsian solution, the lowest utility is umin = 0.676, so the largest 
possible difference between any ui and umin is 1 – 0.676 = 0.324. Therefore, for all 
∆ ≥ 0.324 the Rawlsian solution is found. 
 

0

0.1

0.2

0.3

0.4

0.5

14 14.5 15 15.5 16 16.5 17 17.5 18

lo
w

es
tu

til
ity

(u
m

in
= 

m
in

i(u
i) 

)

sum of utilities (Σiui)

EGP

CEU

Pareto front Utilitarian
solution

Rawlsian solution



Chapter 5 

86 

We conclude that the difference between EGP and CEU in the location of the 
solutions can be explained by the shape of the utility curves and by the discrete 
nature of CEU. 

Differences between neighbouring solutions 
Tables 5.1 and 5.2 show that in any pair of neighbouring CEU solutions one or 
more utilities are very different. Neighbouring EGP solutions, however, commonly 
hardly differ. 
 
CEU is a discrete approach: every utility value is either a utilitarian (δi = 1) or a 
Rawlsian contributor (δi = 0). When moving to the next solution (by increasing ∆), 
one or more uis will change from utilitarian contributor into Rawlsian contributor. 
As soon as a nutrient becomes a Rawlsian contributor (ui – umin ≤ ∆), the value of 
maximise{0, ui – umin – ∆} in expression (11) becomes zero, irrespective of the 
actual value of ui. As a result, the model tends to give many Rawlsian contributors 
an utility value that is equal to the utility of the worst off (ui = umin), which means 
that one or more nutrients has a utility that is very different from the utility of its 
neighbour. This can be observed when ∆ increases to ∆ = 0.25. For ∆ = 0.25, 
utilities u17 and u21 become Rawlsian contributors and both utility values decrease 
to u17 = u21 = umin = 0.613. For ∆ = 0.30, utility u20 becomes a Rawlsian contributor 
and its value decreases to u20 = 0.660. For ∆ = 0.32, utility u7 becomes a Rawlsian 
contributor and its value decreases to u7 = 0.675. 
EGP is a continuous approach. Moving from one solution to the next (by increasing 
λ) implies moving from one vertex to a neighbouring vertex, which often causes 
only minor changes in ui. Three exceptions are λ = 0.83, λ = 0.97, λ = 0.99, where 
u21 resp u20 resp u1 decrease substantially. In the large set of EGP solutions, these 
could be among the most interesting alternatives for the decision-maker, because at 
least one of their utilities truly differs from the neighbouring solution. 
 
In conclusion, CEU shows larger differences between neighbouring solutions than 
EGP because CEU is a discrete approach and EGP is a continuous approach.  

Distance to the Pareto front  
EGP searches efficient solutions to the n-criteria problem maximise{u1; u2; … ; un} 
by maximising a weighted sum of the aggregate criteria ∑iui and umin. Therefore, all 
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solutions found with EGP are on the Pareto front of the bi-criteria problem 
maximise{∑iui ; umin}. 
 
For 0 < ∆ < 1, the solutions found with CEU are not on the Pareto front of the bi-
criteria problem maximise{∑iui ; umin}. This is caused by the fact that CEU’s 
welfare function can be maximised by a solution that is dominated in terms of ∑iui 
and umin. This is elaborated in Appendix 5B. From the point of view of the 
decision-maker, it might not be strictly necessary that every generated solution is 
on the Pareto front of the bi-criteria problem. After all, the decision-maker faces 
the n-criteria problem from which the aggregate criteria ∑iui and umin are derived, 
and every CEU solution is on the Pareto front of this n-criteria problem. Moreover, 
it is balanced. In order to support the decision-maker in judging whether or not the 
achieved balance outweighs the distance to the Pareto front of the bi-criteria 
problem, we calculate the relative distance of each CEU solution to its radial 
projection on the Pareto front, see Table 5.3. No CEU solution has a relative 
distance of more than 2%.  
 
In conclusion, solutions generated by CEU are on the Pareto front of the decision-
maker’s n-criteria problem, but not necessarily on the Pareto front of the associated 
bi-criteria problem. The decision-maker might not perceive a small distance as 
problematic. 
 
Table 5.3 Relative distance of CEU solutions to their radial projection on the Pareto front of the 
bi-criteria problem maximise{∑iui ; umin}.  

 

Solutions found 
with CEU 

Radial projection* on  
Pareto front 

Relative 
distance 

∆ Σiui umin Σiui umin  
0.25 - 0.26 19.770 0.613 19.820 0.618 2.0% 
0.27 - 0.29 19.445 0.651 19.476 0.655 1.5% 

0.30 19.144 0.660 19.172 0.664 1.6% 
0.31 18.484 0.675 18.484 0.675 0.0% 
0.32 18.149 0.675 18.149 0.675 0.1% 

*from point (17.380; 0.395), which combines the lowest values for the Rawlsian and utilitarian 
criterion.  

Number of solutions 
In the investigated diet model, CEU finds substantially fewer solutions than EGP, 
and the solutions are commonly wider spaced. This is explained by the discrete 
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nature of CEU. In practice, a decision-maker might prefer a relatively small set of 
reasonably different solutions to a large set of rather similar solutions.  

Parameters of EGP and CEU 
A basic difference between EGP and CEU is in the associated parameters. EGP’s 
parameter λ is a dimensionless control parameter expressing the relative 
importance of the Rawlsian criterion and the utilitarian criterion. The convex 
combination in the achievement function of EGP expresses that one unit decrease 
in umin can be compensated by (1–λ)/λ units of increase in Σiui, irrespective of the 
current level of umin or Σiui. Determination of the right value of λ is not easy. Jones 
and Jimenez (2013) advise to carry out a sensitivity or parametric analysis on λ.  
 
CEU’s parameter ∆ is measured in the same units as the Rawlsian and the 
utilitarian criterion. In a two-person problem, it does have an intuitive meaning for 
the decision-maker in practice, that is, it quantifies maximum sacrifice of total 
utility one is willing to make in order to maximise the utility of the worst off, see 
(10). Expression (11) generalises the two-person problem to a many-person 
problem. In the many-person problem, parameter ∆ still quantifies the maximum 
acceptable sacrifice for maximising the utility of the worst off for a two-person 
comparison, namely the comparison (ui, umin), for all persons i. The decision-maker 
may perceive this two-person problem as hypothetical, because he does not know a 
priori which person will have the lowest utility, and because the actual decision 
problem may concern (many) more than two persons. However, the decision-maker 
does not need to provide a justified value for ∆ a priori. Running the many-person 
model for a range of ∆ will contribute to the decision process: the observed 
breakpoints in ∆ will help the decision-maker to become aware of his trade-offs 
and preferences. The value of ∆ that results in the solution that the decision-maker 
prefers, can be selected for further use, thus ensuring that the same policy is 
applied consistently (Hooker and Williams, 2012). 
 
We conclude that both for EGP and CEU it seems advisable to run the model for a 
range of values of λ and ∆, respectively. This gives the decision-maker insight into 
the trade-offs between the nutrient utilities and the trade-offs between the 
utilitarian and the Rawlsian criterion, and in the impact of parameter choice on the 
solutions that are found. Moreover, it will provide him with a set of promising 
solutions. 
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Computational effort 
Using the many-nutrient CEU model requires adding a set of binary variables. 
Hooker and Williams (2012) prove that their basic model (12) – (17) is sharp. By 
adding additional constraints, the sharpness may easily be lost. As a result, CEU 
will generally require a larger computational effort than the continuous EGP. In the 
diet modelling case, the computation times for the CEU model were still very 
small. However, in other application areas the computational complexity of the 
CEU model might become prohibitive. 
 
Table 5.4 Summary of differences between EGP and CEU. 

Aspect EGP CEU 
Parameter Dimensionless Same dimension as criteria 
Solutions on Pareto front of n-criteria problem Yes Yes 
Solutions on Pareto front of bi-criteria problem Yes At a small distance 
Nature of the method Continuous Discrete 
Number of proposed solutions Large Small 
Differences between solutions Commonly small Larger differences 
Computational effort Small Could become large 

 

Applicability for diet modelling 
With respect to the applicability of CEU’s welfare function for diet modelling, two 
issues have to be taken into account: additivity of utility values, and impact of 
increasing low utilities on diet quality. 
 
Additivity of utility values 
CEU’s welfare function requires, for a 2-person case, that the decision-maker can 
quantify how much total utility he is willing to sacrifice in order to maximise the 
utility of the worst-off. This implies that summing utilities is meaningful for the 
decision-maker. In the context of Hooker and Williams (2012)’s case, where 
medical treatments are assigned to groups of patients, this additivity is imaginable: 
the decision-maker could decide that QALYs gained in one group are – from his 
position – indistinguishable from QALYs gained in another group, and can 
therefore be summed. In the context of a diet model, however, the utilities for 
various nutrients may not be additive, see also Section 6.4.2. 
 
Impact of increasing low utilities on diet quality 
CEU’s welfare function assigns the value of the lowest utility to each Rawlsian 
contributor, that is, each person that has a utility within a prespecified bound (∆) 
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from this lowest utility, see expressions (10) and (11). In the context of a diet 
model, this might not be appropriate: small increments of low nutrient utilities are 
likely to have a positive impact on overall quality of a diet. For instance, in column 
∆ = 0.27 of Table 5.2, vitamin C is a Rawlsian contributor, because its utility 
(u18 = 0.851) differs less than ∆ from the lowest utility (umin = 0.651). As a result, 
vitamin C’s contribution to the welfare function equals umin = 0.651. So, the 
welfare function does not reflect that a diet with u18 = 0.851 may have a larger 
overall quality than a diet with u18 = 0.651 (all other ui’s being unchanged). 
 
These two issues limit the applicability of CEU’s welfare function for diet 
modelling. The insights gained in this study, however, are valuable, because they 
are not limited to a diet modelling case. They may be particularly useful for any 
researcher who considers using CEU, or who struggles with the explanation and 
interpretation of its results. With respect to the applicability of CEU, we conclude 
that the investigated decision problem should have the following two 
characteristics: (i) summing individual utility values is meaningful, (ii) small 
increments of utilities within a predefined (commonly small) range from the lowest 
utility do not affect the overall quality of a solution. 

5.6 Conclusions 
CEU’s way of combining the conflicting criteria of equity and utilitarianism in a 
single model is basically different from the widely used convex combination of a 
Rawlsian and a utilitarian criterion in EGP. Moreover, Hooker and Williams 
(2012) provide an intuitive interpretation for the associated parameter ∆. Because 
of its discrete nature, CEU generates a set of solutions that is smaller and more 
widely spaced than that of EGP. This is an advantage for any decision-maker who 
prefers a relatively small set of reasonably different solutions to a large set of rather 
similar solutions. CEU generates balanced solutions that are not found with EGP. 
Achieving the balance may incur a (small) distance to the Pareto front of the bi-
criteria problem maximise{∑iui ; umin}. However, all CEU solutions are on the 
Pareto front of the n-criteria problem maximise{u1; u2; … ; un}. We suggest that 
for use in practical cases this distance is reported. This supports the decision-maker 
to assess whether the achieved balance is worth its price. Because of the presence 
of binary variables, CEU may require a larger computational effort than EGP. 
Future research will show whether current observations hold to the same extent for 
other cases. 
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Appendix 5A  Food intakes xj 
Food intakes xj in several solutions generated with EGP and CEU, expressed in 
grams per day (j in 1, …, J) in diets generated with EGP (λ) and CEU (∆). 

Rawls. 
sol. CEU EGP CEU CEU EGP EGP CEU EGP 

Util. 
sol. 

λ 1 – 0.99 – – 0.97 0.83 – 0.55 0 
∆ 1 0.32 – 0.30 0.27 – – 0.25 – 0 

Coffee prepared   0  0  0  0  0  0  0 600 600 600 
Tea prepared  600 600 600 600 600 600 600  0  0  0 
Tomato juice  300 300 300 300 300 300 300  0 118  0 
Beer alcohol free <0,1 vol%   0  0  0  0  0  0  0 300 182 300 
Water 50-100 mg calcium per litre  600 600 600 600 600 600 600 600 600 600 
Bread wholemeal average  105 105 105 105 105 105 105 118 200 210 
Pasta wholemeal boiled  78 81 72 107 100 71 107 107 107 107 
Rice brown boiled   0  0  0  0  0  0  0 71 71 71 
Rice white boiled  101 98 107 71 79 107 71  0  0  0 
Cheese 48+ less salt average   0  3  0  2  3  3  8 25  0  0 
Cheese 30+ average  23 20 23 21 20 19 15  0 19  0 
Eggs chicken boiled average  28 18 19 20 21 20 23 21 32 37 
Margarine liq 80% fat <17g sat   0  0  0  0  0 10  0 19  0  0 
Salad dressing vinaigrette   0  0  0  5  9  0  0 14  0  0 
Oil olive  19 20 17 22 23  8 16 11 17  0 
Oil sunflower seed  11 10 13  8  7 13 14  0  9  7 
Low fat margarine 40% fat <17g sat   8  3 21  0  0  0 19  0 40  1 
Low fat margarine 35% fat <10g sat   0  0  0  0  0 12  0 24  0 17 
Margarine product 60% fat <17g sat   0 13  0 21 21  0  0  0  0  0 
Margarine product 70% fat >17g sat  13  5  0  0  0  0  0  0  0  0 
Fish fat > 10 g fat raw  13 13 14 14 14 14 14 14 14 14 
Fruit fresh citrus average  134 134 134 133 133 133 134 131 150 150 
Lentils boiled  71 71 71 71 71 71 71 71 71 71 
Beef <10% fat prepared  102 109 107 110 116 105 128 128 51  0 
Pork <10% fat prepared  60 57 57  1 12 24  0  0  0 32 
Pork 10-19% fat prepared   0  0  0 18  0  0  0  0  0  0 
Processed meat products 10-20g fat  15 15 15 15 15 15 15 19 29 30 
Yoghurt full fat  150 150 150 150 150 150 150 150 150 150 
Nuts mixed unsalted   0  0  0  0  0  0  0  0  0 32 
Crisps potato average  62 63 70 28 24 67 68 35 25 26 
Japanese rice cracker wo peanuts   0  0  0 38 38  5 16 25  0  0 
Snack sausage roll puff pastry   0  0  0 14 18 28  0  2  0  0 
Peanut butter   0  0  0  0  0  0  0  0 16 30 
Vegetables average boiled  184 184 184 166 171 183 200 155 200 200 
Vegetables mixture raw   0  0  0 17 29  0  0 45  0  0 
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Appendix 5B  Behaviour of CEU’s welfare function 
This appendix presents a small-scale numerical example that demonstrates that 
CEU’s welfare function can be maximised by a solution that is not on the Pareto 
front of the bi-criteria problem maximise{∑iui ; umin}. 

1. Numerical example – analysis without using the welfare function 
Consider the feasible set U defined by
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Without using CEU’s welfare function, the following can be observed: 
• Maximising total utility (u1 + u2 + u3) over U provides the utilitarian solution

uU = (0,5,5) with total utility Σiui = 10.

• For the Rawlsian objective max{umin}, alternative optimal solutions exist:
umin = 1 for any solution with u1 = 1. This is a well-known weakness of the
maximin criterion. Using a hierarchical method or adding a tie-breaking term
ε⋅Σiui helps to steer away from non-efficient solutions and select the (only)
efficient solution within the set of alternative optimal solutions:

{ }∑⋅ε+
i iuuminmax   with ε > 0 and small (e.g. ε = 0.001) 

provides the Rawlsian solution: uR = (1,4,4), umin = 1 and total utility Σiui = 9. 

• Solution (1,1,6) has umin = 1 and Σiui = 8. It is therefore dominated by the
Rawlsian solution. We will refer to it as the dominated solution uD = (1,1,6).

2. Behaviour of CEU’s welfare function
For analysing the behaviour of CEU’s welfare function z, we take inequality (11) 
as a starting point. Welfare function z has to be maximised subject to: 

∑
=

∆−−++∆−≤
n

i
i uununz

1
minmin },0max{)1(  (11) 

There are no other restrictions to z. In the right-hand side of (11), the term (n–1)∆ 
is constant. Via the second term, each ‘person’ i contributes umin to z. Via the third 
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term, person i makes a utilitarian contribution if ui differs from umin more than ∆, 
that is if ui – umin > ∆. This utilitarian contribution equals the amount ϕi by which ui 
exceeds (umin + ∆): 
 

{ }∆−−=ϕ min,0max uuii  (19) 
so 

∑
=

ϕ++∆−=
n

i
inunz

1
min)1(  (20) 

Table 5B.1 shows the behaviour of welfare function z for ∆ = 1, 2, …, 5. 
 
Table 5B.1  Behaviour of welfare function z for ∆ = 1, 2, …, 5. 

  
u1 u2 u3 umin Σiui (n-1)∆ numin ϕ1 ϕ2 ϕ3 Σiϕi z 

∆ = 1 uU 0 5 5 0 10 2 0 0 4 4 8 10 
1 uR 1 4 4 1  9 2 3 0 2 2 4  9 
1 uD 1 1 6 1  8 2 3 0 0 4 4  9 

∆ = 2 uU 0 5 5 0 10 4 0 0 3 3 6 10 
2 uR 1 4 4 1  9 4 3 0 1 1 2  9 
2 uD 1 1 6 1  8 4 3 0 0 3 3 10 

∆ = 3 uU 0 5 5 0 10 6 0 0 2 2 4 10 
3 uR 1 4 4 1  9 6 3 0 0 0 0  9 
3 uD 1 1 6 1  8 6 3 0 0 2 2 11 

∆ = 4 uU 0 5 5 0 10 8 0 0 1 1 2 10 
4 uR 1 4 4 1  9 8 3 0 0 0 0 11 
4 uD 1 1 6 1  8 8 3 0 0 1 1 12 

∆ = 5 uU 0 5 5 0 10 10 0 0 0 0 0 10 
5 uR 1 4 4 1  9 10 3 0 0 0 0 13 
5 uD 1 1 6 1  8 10 3 0 0 0 0 13 

 
Examples of entries in Table 5B.1 
• Utilitarian solution uU = (0, 5, 5) has umin = 0.  

For ∆ = 1, every person that differs from umin more than ∆ makes a utilitarian 
contribution ϕi = ui – umin – ∆ = ui – 0 – 1. This holds for persons 2 and 3, so 
ϕ2 = ϕ3 = 5 – 1 = 4 and z = 2∙1 + 3∙0 + (0+4+4) = 10. 

• Dominated solution uD = (1, 1, 6) has umin = 1. 
For ∆ = 3, only person 3 differs more from umin than ∆, so ϕ3 = 6 – 1 – 3 = 2. 
Now z = 2∙3 + 3∙1 + (0+0+2) = 11.  
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Observations in Table 5D.1 
• For ∆ = 1, the utilitarian solution uU is the welfare maximising solution. 
• For ∆ = 2, alternative optimal solutions exist: utilitarian solution uU and 

dominated solution uD both have z = 10. Adding a tie-breaking term ε⋅Σiui to 
the right-hand side of inequality (20) will make uU the unique welfare 
maximising solution. However, adding a tie-breaking term ε⋅umin will make uD 
the unique welfare maximising solution. 

• For ∆ = 3, 4, the dominated solution uD is the welfare maximising solution. 
• For ∆ = 5, alternative optimal solutions exist: both Rawlsian solution uR and 

dominated solution uD have z = 13. Adding a tie-breaking term ε⋅Σiui to the 
right-hand side of inequality (20) makes uR the unique welfare maximising 
solution. 

 
Conclusion: CEU’s welfare function can be maximised by a solution that is not on 
the Pareto front of the bi-criteria problem maximise{∑iui ; umin}. The issue is not 
caused by the existence of alternative optimal solutions. 
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6.1 Introduction 
As stated in Chapter 1, unhealthy diets contribute substantially to the worldwide 
burden of non-communicable diseases (NCDs). Globally, NCDs are the leading 
cause of death, and numbers are still rising. NCDs have a negative impact on the 
quality of life and well-being of the individual and of society as a whole, and put a 
high burden on health systems and economy. They are regarded as an important 
barrier to poverty reduction and sustainable development in low- and middle-
income countries. In order to fight NCDs, the WHO (2013a) formulated a 
voluntary global target of “25% relative reduction in risk of premature mortality 
from cardiovascular diseases, cancer, diabetes, or chronic respiratory diseases” for 
prevention and control of NCDs to be attained by 2025. As unhealthy diets are an 
important risk factor for NCDs, healthy diets can contribute to achieving this 
overall target. Formulating healthy diets requires target group-specific dietary 
assessment and advice. Both comprise complex decision problems that commonly 
have multiple objectives. Therefore, there is a need for multi-objective decision-
making (MODM) approaches for dietary assessment and advice. 
 
As stated in Section 1.3 (Figure 1.2), the scientific contribution of this thesis is 
two-fold: it provides opportunities for better decision-making in dietary assessment 
and advice and it contributes to model building and solving in OR. 
 
This chapter is organised as follows. First, in Section 6.2 the conclusions with 
respect to the four individual research questions are considered. Section 6.3 gives 
the integrated findings. Section 6.4 discusses methodological choices, modelling 
choices, case-based choices, and challenges for implementation, and points out 
directions for future research. Section 6.5 provides a concluding remark. 

6.2 Conclusions 
Based on the research challenges defined in Table 1.2, Table 6.1 summarises the 
key results of this thesis for nutrition research and for OR. Then, the individual 
research questions are considered in more detail. 
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Table 6.1 Key results for Nutrition Research and Operations Research. 
Research challenge  Nutrition Research Operations Research 

1. MODM for FFQ 
    development 

RQ1/Ch2 MILP-generated food lists 
can either be shorter or 
provide more information 

New application area 

2. Solve fractional 
    programming problem 

RQ2/Ch3 Indirect items can be 
modelled 

Solution approach for a 
general 0-1 fractional 
programming problem 

3. Explore preference 
    structures in diet 
    models 

RQ3/Ch4 Awareness among 
nutritionists of impact of 
modelling choices on 
generated solutions 

Nutritionists become aware of 
added value of MODM for 
diet modelling 

4. Combine total and 
    lowest utility 

RQ4/Ch5 Approach not suitable for 
diet modelling 

Methodological insights 

 

6.2.1 RQ1 – How can MODM support selection of items for FFQs? 
Nutritionists face a challenge to develop short FFQs that provide sufficient 
information for each of a potentially large set of nutrients of interest. The common 
procedure for selecting food items for the food list of FFQs, usually based on 
stepwise regression (Molag et al., 2010, Willett, 1998), is time-consuming. 
Moreover, it is hard to select items in such a way that all nutrients of interest are 
sufficiently covered. As a result, the selection of items strongly depends on 
intuition and (different) personal experiences of domain experts.  
 
Chapter 2 of this thesis models selection of the most informative items to be 
included in the food list of FFQs as a mixed-integer linear programming (MILP) 
model. The MILP model chooses the most informative combination of food items 
for different aggregation levels fast and objectively. Also, food lists of various 
lengths may be generated and the increase of coverage and variation explained by 
adding more or other items to the food list may be investigated. The model 
provides objective information that can help to judge whether the extra information 
obtained by adding more food items justifies the additional burden for respondents 
and the additional research cost. With the MILP model, multiple nutrients can be 
optimised simultaneously. In contrast with a manual selection procedure, the 
number of nutrients has no impact on the complexity of the model. The results of 
the MILP-based selection procedure are highly reproducible. In addition, the MILP 
model can be included in a computer system. 
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The generated food lists have good performance in terms of length, coverage and 
variation explained of all nutrients of interest. The results suggest that the MILP 
model makes the selection process faster, more standardised and transparent, and is 
especially helpful in coping with multiple nutrients. The generated food lists appear 
either shorter or provide more information than a food list generated without the 
MILP model. 

6.2.2 RQ2 – How to solve general 0-1 fractional programming 
problems with conditional fractional terms? 

Food lists generated with the FFQ model of Chapter 2 can contain single items 
such as APPLES and ORANGES and aggregated items such as CITRUS or FRUITS. 
The composition of such items follows directly from the dataset, so it is known 
before optimisation. Therefore, we refer to them as direct items. In FFQs, also 
indirect items like OTHER CITRUS are used. The interpretation of an indirect item 
depends on the direct items that are included in the food list, and is therefore only 
known after optimisation, see Figure 1.3. Chapter 3 shows that this extension to the 
FFQ problem can be modelled as a general 0-1 fractional programming problem 
with more than 200 fractional terms. All fractional terms are conditional, that is, in 
every feasible solution only a subset of the fractional terms is actually defined. 
Existing literature does not provide a solution method for such problems. Chapter 3 
describes how classical transformation principles can be combined and extended in 
order to eliminate the undefined fractional terms from the objective function. The 
resulting MILP model can be solved with standard software. Practical instances 
were solved fast. 

6.2.3 RQ3 – What is the impact of achievement functions in diet 
models? 

Existing diet models commonly use weighted sum achievement functions, which 
presume that the decision-maker has a preference structure in which the trade-offs 
between objectives are known and constant. Weighted sum achievement functions 
may generate solutions in which some objectives completely meet their targets, 
whereas others are (very) far off. Moreover, these achievement functions can be 
very sensitive to preferential weights. Chapter 4 of this thesis investigates the 
weighted sum achievement function and two other achievement functions, which 
generate more balanced solutions that tend to be less sensitive to preferential 
weights: MaxMin and Extended Goal Programming (EGP). These achievement 
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functions are demonstrated on a diet model in which no solution exists that satisfies 
all nutritional constraints.  
 
In order to find a ‘best possible’ diet, the preferences of the nutritionist with respect 
to food and nutrient intakes are modelled via utility curves1. The various 
achievement functions represent ways of aggregating single food and nutrient 
utilities into one indicator for overall diet quality. For a further discussion of 
nutrient utility curves and diet adequacy we refer to Section 6.4.2 and Figure 6.2. 
 
Chapter 4 demonstrates that a weighted sum achievement function generates a 
solution in which the difference between the lowest and the highest utility is 
relatively large: the lowest utility is much lower than the other utilities. The 
MaxMin achievement function generates a solution in which the utilities are as 
‘equal’ as possible: the lowest utility is high, and the differences with the other 
utilities are small. This, however, incurs a substantial decrease of total utility. The 
EGP achievement function is a convex combination of the weighted sum and 
MaxMin achievement functions, and generates compromises: it provides solutions 
with higher total utility than the MaxMin achievement function, and smaller 
differences between lowest and highest utility than the weighted sum achievement 
function. Offering multiple solutions allows the decision-maker choice of a 
solution that is most suitable for a specific decision problem, and that best meets 
non-quantifiable goals and preferences. 

6.2.4 RQ4 – What is the added value of a novel method for finding a 
compromise between total utility and lowest utility in the context 
of diet models?  

As discussed in Chapter 4, the preference structure incorporated in an MCDM 
model is of crucial importance for the quality of decision-making. It is therefore 
worthwhile to keep an open mind for novel approaches, investigate their behaviour, 
and assess their added value for practice. Chapter 5 explores such a novel 
approach, proposed by Hooker and Williams (2012), which we refer to as CEU. It 
provides new insights into CEU and assesses its added value for practice by 
comparing it with the extended goal programming (EGP) approach of Chapter 4. 
Chapter 5 shows that, because of its discrete nature, CEU generates a set of 
solutions that is smaller and more widely spaced than that of EGP. This is an 

                                                 
1 Note that in Chapter 4 these are called ‘adequacy curves’.  
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advantage for any decision-maker who prefers a relatively small set of reasonably 
different solutions to a large set of rather similar solutions. CEU generates 
solutions that are not found with EGP. The preference structure modelled in CEU 
may incur a (small) distance to the Pareto front of the bi-objective problem on the 
aggregated objectives (viz. total utility and lowest utility). However, all CEU 
solutions are on the Pareto front of the decision-maker’s original n-objective 
problem, which aims to maximise n individual utilities at the same time. We 
suggest that for use in practical cases this distance is reported. This supports the 
decision-maker to assess whether the achieved balance is worth its price. Because 
of the presence of binary variables, CEU may require a larger computational effort 
than EGP.  
 
Chapter 5 concludes that for applying CEU the investigated decision problem 
should have the following two characteristics: (i) summing individual utility values 
is meaningful, (ii) small increments of utilities within a predefined (commonly 
small) range from the lowest utility do not affect the quality of a solution. In diet 
models this would translate to: (i) diet quality can be calculated as a sum of 
individual food and nutrient utilities, (ii) small increments of low utilities (except 
the lowest utility) do not improve the overall diet quality. The diet problems 
addressed in this thesis will often not have these characteristics, which limits the 
applicability of CEU for diet modelling. The insights gained in this study, however, 
are valuable, because they extend beyond diet modelling. They may be particularly 
useful for any researcher who considers using CEU, or who struggles with the 
explanation and interpretation of its results.  

6.3 Integrated findings 
This thesis connects the disciplines of nutrition and OR in order to contribute to 
formulating healthier diets. Its scientific contribution is two-fold: it provides 
opportunities for better decision-making in research on dietary assessment and 
advice, and it contributes to model building and solving in OR, see Figure 6.1. This 
section elaborates the added value that extends beyond merely answering the 
research questions that were formulated in Section 1.4. It first reflects on the added 
value for nutrition research and then on the added value for OR. Throughout this 
section, the expert on dietary assessment and advice will be referred to as ‘the 
decision-maker’ or ‘the nutritionist’. The developer of the OR model will be 
referred to as ‘the analyst’. 
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Figure 6.1 This thesis contributes to formulating healthier diets by proposing MILP models for FFQ 
development (Chapters 2 and 3) and achievement functions for diet models (Chapters 4 and 5). 
Furthermore, for OR this not only provides models and a (stronger) foothold in nutrition (Chapters 2, 
3, 4), but also a solution approach for a 0-1 fractional programming problem (Chapter 3) and new 
insights into a novel approach for combining equity and utilitarianism in a single model (Chapter 5).  

Added value for Nutrition  
For the nutritionist, developing MODM approaches contributes to structuring the 
problem and becoming aware of implicit and explicit assumptions that are made 
along the way. In this thesis research, developing MODM approaches challenged 
the nutritionists to explicitly articulate the expertise, assumptions, priorities, and 
procedures they use for dietary assessment and advice. Many of these procedures 
strongly depend on the acquired scientific evidence base in nutrition and health 
research. Developing quantitative models forced the nutritionists to specify their 
own assumptions and procedures. In FFQ development, it encouraged debate on 
issues like ‘why and/or how much do we prefer CITRUS to ORANGES in a food list 
targeted for diabetes?’. In diet modelling, the need to specify preference structures 
encourages debate on quantifying the contribution of a diet to individual and public 
health. 
 
Being introduced to the basics of quantitative decision-making contributed to the 
nutritionists’ awareness of the possibilities and limitations of currently used tools 
for dietary assessment and advice. For instance, it was known that the current 
sequential way of adding items to food lists of FFQs might lead to lists that are 
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unnecessarily long, especially when many nutrients are involved. Also, it was 
experienced that aiming for multiple nutrients increased complexity of composing 
a compact and informative food list substantially. In MILP-supported decision-
making, however, all direct and indirect items are selected at the same time, and 
the complexity is hardly influenced by the number of nutrients. This was an eye-
opener for nutritionists with respect to the potential added value of MILP models 
compared to usual methods such as those based on stepwise regression. Concerning 
diet modelling, the research increased awareness of the implicit assumptions of 
additive linear achievement functions, and their consequences. This helps to 
critically assess the outcomes of existing models, and indicates opportunities for 
improvement. 
 
The developed MODM approaches generate, in a transparent and reproducible 
way, suggestions that either confirm or challenge the intuition, and foster out-of-
the-box thinking (Claassen, 2014). Moreover, they facilitate exploring various 
what-if scenarios, such as “What is the maximal covered intake of vitamin C in an 
FFQ with 30 items?” and “What are feasible lower bounds on intake of total mono- 
and disaccharides if we impose a food-based dietary guideline of eating at least 
200g of fruit per day?”. 
 
Developing MODM approaches for dietary assessment and advice increased 
awareness of methodologies that are complementary to currently used approaches. 
This encourages searching for MODM approaches for other nutritional issues such 
as nutrient profiling and prioritising intervention strategies. 

Added value for Operations Research 
This thesis contributes to model building and solving in OR. As such, it 
demonstrates the usefulness of venturing out into new application areas, even when 
the models developed for the initial problem may – from OR perspective – seem 
straight-forward at first. For the FFQ model of Chapter 2, for instance, the initial 
challenge was not to build the FFQ model itself, but to define sensible (nutritional) 
data. Next, there was room for developing the more complicated, fractional model 
as presented in Chapter 3. Although a vast body of literature exists on fractional 
programming (e.g. reviews of Stancu-Minasian (1999, 2006)), no solution 
approach was found for this specific fractional problem. Therefore, a new approach 
was designed. This demonstrates that real-life problems can in a natural way 
evolve to OR challenges that lead to extensions of the OR methodology.  
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Section 5.5 concludes that the added value of CEU for diet modelling is limited. 
The study itself, however, is valuable, because it provides methodological insights 
in a novel method that has not yet been investigated further. The MILP models 
presented by Hooker and Williams (2012) for CEU are elegant and succinct. Only 
upon further inspection, it becomes clear that the interaction between CEU’s 
welfare function and the problem data can be very subtle and complex. The 
insights gained with respect to the number, spacing and location of the generated 
solutions may thus be particularly useful for any researcher who considers using 
CEU, or who struggles with the explanation of its results. 
 
These contributions to model building and solving in OR are examples of what is 
referred to as ‘applications-driven theory’, which means that “the research is 
initiated in an actual application, which is first successfully solved and then 
generalised for publication in the literature where it can serve as a basis for both 
further use and research” (Cooper and McAlister, 1999, Cooper, 2005). As such, 
they demonstrate the added value of applications-driven research. 
 
Furthermore, this thesis has created awareness among nutritionists of the added 
value of OR for nutrition research, and it has increased nutritionists’ sensitivity for 
recognising nutritional decision problems that could benefit from an OR approach, 
thus strengthening the foothold of OR within nutrition research and creating 
opportunities for development of applications-driven theory. 

6.4 Discussion and opportunities for future research 
This thesis demonstrates how MODM approaches can make decision-making for 
dietary assessment and advice more objective, transparent, and reproducible, and 
how this can contribute to model building and solving in OR. This section 
discusses methodological choices, modelling choices, case-based choices, and 
challenges for implementation, followed by opportunities for future research. 

6.4.1 Methodological choices 
As mentioned in Section 1.1, OR employs techniques such as mathematical 
modelling to arrive at optimal or near-optimal solutions to complex decision 
problems. Considering that the FFQ problem and the diet modelling problem aim 
to optimise multiple conflicting objectives, for instance referring to multiple 
nutrients, both are classified as MCDM problems. In the FFQ problem as well as in 
the diet modelling problem, the set of solutions is implicitly described via a set of 
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constraints, so within MCDM both are classified as MODM problems. The aim is 
therefore to generate Pareto-optimal solutions. 
 
The FFQ problem aims to optimise one objective for every nutrient of interest, 
while minimising the length of the food list. The model presented in Section 2.2.5 
is based on the ε-constraint method: it maximises a weighted sum of objectives, 
while putting constraints on all objectives. Appendix 2B provides more examples 
of such models. Moreover, it demonstrates the use of an augmented Chebyshev 
criterion, which maximises the worst among the set of nutrient-based objectives, 
while putting an upper bound on the length of the food list. Both the ε-constraint 
method and the use of the augmented Chebyshev criterion will generate Pareto-
optimal solutions. 
 
The diet model has aspiration levels for every nutrient, and aims to minimise the 
deviations from these levels. Goal programming is a common approach for 
generating Pareto-optimal solution for such a problem. Chapter 4 investigates 
several achievement functions, representing various preference structures, for the 
diet model. Pareto-optimality of the generated solutions is ensured by using 
sufficiently high target levels, and by using an augmented Chebyshev criterion for 
the MaxMin optimisation. Chapter 5 explores CEU, a novel approach for balancing 
between aggregated criteria on total utility and lowest utility. It concludes that 
CEU’s solutions are not necessarily Pareto-optimal in terms of the aggregated 
objectives (viz. total utility and lowest utility). They are, however, Pareto-optimal 
with respect to the original set of individual objective functions. 

6.4.2 Modelling choices 
The modelling choices encountered when using MODM for optimising diet quality 
are related to open issues in nutritional sciences, which we will refer to as 
‘nutritional assumptions’. The main nutritional assumptions faced in the context of 
this thesis are related to the aggregation of individual nutrient adequacies and 
compliance with food-based dietary guidelines (FBDGs) into one indicator for 
overall diet quality, see Figure 6.2. 
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Figure 6.2 Aggregating individual nutrient adequacies and compliance with FBDGs into overall diet 
quality. The diversity of arrows symbolises that various nutrients and foods contribute to diet quality 
in different ways. 

Nutrient adequacy – Utility curves 
The diet models in this thesis aim to generate diets with a high overall nutritional 
quality. The context is that of a nutritionist who designs a diet for a participant in 
an intervention study. Based on characteristics such as age, sex, physical activity, it 
is known to which target group the participant belongs. The probability distribution 
of nutrient requirements of persons in this target group can be expressed via dietary 
reference values (DRVs). The personal requirements of the specific participant, 
however, are not known. Therefore, the nutritionist aims to compose the diet in 
such a way that for all nutrients it is highly likely that the intake level is sufficient 
for the participant. This is modelled via nutrient utility curves, which aim to model 
the preferences of the nutritionist, guided by the question “What intake would the 
nutritionist aim for?”.  
 
In designing the nutrient utility curves, it is postulated that for ‘beneficial’ 
nutrients, such as vitamins and minerals, the nutritionist would aim for an intake 
between the EAR (estimated average requirement) and the RNI (recommended 
nutrient intake), that is, an intake that would be sufficient for 50% to 97.5% of the 
target group that the participant belongs to. Therefore, these intakes are assigned a 
utility value of 1. Intakes lower than the EAR incur a substantial risk of being 
insufficient, which is expressed via a utility value lower than 1. Intakes lower than 
the lower intake level (below which an intake could lead to risk in most 
individuals) are considered insufficient, which is represented by utility value 0. 
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Intakes exceeding the RNI probably hardly contribute to the nutritional value of the 
diet, and – for much higher intakes – might even induce adverse effects. In order to 
express that increasing intake to a higher level than the RNI is not considered to be 
very useful, such intakes are assigned utility values lower than 1, decreasing to 0 
for intakes equal to the upper intake level that is unlikely to pose risk of adverse 
health effects. For ‘non-beneficial’ nutrients such as SFA, cholesterol, mono- and 
disaccharides, the nutritionist would aim for an intake that would for 97.5% of the 
population not be harmful, so all intakes lower than that are assigned a utility value 
of 1. As a result, the calculated nutrient utility values should not be interpreted as 
the percentage of the target group (to which the participant belongs) for which the 
intake would be sufficient, or as the probability that the intake will be sufficient for 
the specific participant, but as the extent to which the intake complies with the 
nutritionist’s preferences. The thus defined nutrient utility curves model that 
increasing intakes that are adequate for only a few people in the participant’s target 
group is more likely to increase the overall nutritional quality of the diet (for the 
participant) than increasing intakes that are already sufficient for the large majority 
of the target group to which the participant belongs. A drawback of this modelling 
choice, however, is that a utility value lower than 1 can either be caused by an 
intake that is too low or an intake that is unnecessarily high. So, the achievement 
function of the optimisation model cannot distinguish between inadequacies that 
are caused by intakes that are potentially too low and potentially too high. 
 
The use of utility curves is not limited to nutrients; also for foods, such as 
vegetables and fruits, utility curves can be defined, see Table 4.5. The actual shape 
of such food utility curves will have to reflect scientific evidence on, for instance, 
sensory and satiety aspects of foods, and on the relationship between FBDG 
compliance and health outcomes. 
 
Utility curves are not limited to designing diets for intervention studies, but can be 
tailored to the context of the dietary problem at hand. In developing guidelines for 
policy makers, for instance, one might use curves that approximate the distribution 
of nutrient requirements over the population as a whole. 

Diet quality – Preference structure in MODM model 
It remains unknown how a diet’s adequacy with respect to a set of individual 
nutrients and compliance with FBDGs can be aggregated into an indicator for 
overall diet quality, see Figure 6.2. Nutritionists deal with this in various ways, 
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depending on the problem context. For supporting consumer decision-making, for 
instance, nutrient profiling models such as the NRF (Fulgoni Iii et al., 2009) 
express overall quality of a food via a weighted sum of nutrient-specific indicators. 
Alternatively, nutritional scoring system NuVal calculates a quality index by 
dividing a weighted sum of indicators for ‘beneficial’ nutrients by a weighted sum 
of indicators for ‘non-beneficial’ nutrients. On the level of both foods and diets, the 
Nutrient Balance Concept (Fern et al., 2015) quantifies quality via two indicators 
that are weighted sums of nutrient-specific indicators, and a third indicator that 
takes into account that it’s not useful to increase nutrient intake further than to a 
sufficient level. For supporting nutritionists’ decision-making, a diet’s probability 
of being adequate for a set of micronutrients can be evaluated via its probabilities 
of being inadequate for the individual nutrients in the set: P(diet is adequate) = 1 – 
Πj P(intake for nutrient j is inadequate), provided that the nutrient set covers all 
relevant nutrients, and that all probabilities are independent. For supporting health 
policy makers, nutritionists aim to express health impacts of food or nutrient intake 
in terms of DALYs or QALYs lost or gained, thus trying to make effects 
comparable.  
 
In the presented diet models, the aggregation of individual nutrient adequacies and 
FBDG compliance is modelled via the preference structure (achievement function) 
in the MODM model. This preference structure is a key consideration in MCDM 
(Romero, 2004). Weighted sum achievement functions reflect the assumption that 
diet quality is a weighted sum of nutrient adequacies and FBDG compliance, 
whereas MaxMin achievement functions reflect the assumption that diet quality is 
mainly determined by the nutrient or food with lowest adequacy or FBDG 
compliance, respectively. EGP’s convex combination of weighted sum and 
MaxMin provides a compromise between both. Literature offers several other 
achievement functions that are worth exploring.  
 
A so-called lexicographic achievement function can be considered when the 
decision-maker can classify the nutrients into strict priority classes between which 
no finite trade-offs exist (Tamiz et al., 1998, Romero, 2004). This can be relevant 
in the context of individual dietary advice, with priority classes for instance: 
1. energy, 2. energy-yielding nutrients, 3. micro-nutrients and trace elements for 
which EARs and RNIs exist, 4. micro-nutrients and trace elements for which no 
EARs and RNIs exist. In that case, the model would first be run with an equality 
constraint on energy intake (indicating that energy requirements should be exactly 
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fulfilled) and upper and lower bounds on energy-yielding nutrients. The next 
iteration then aims to search a diet that fulfils the requirements for the nutrients in 
class 3 as well as possible, without deteriorating the performance with respect to 
the nutrients in class 2, and so on. 
 
Another option would be to minimise the number of unmet targets (Jones and 
Jimenez, 2013). Such an achievement function might be useful in the context of 
public health policy making, where unmet nutritional constraints incur costs, for 
instance due to necessary fortification programs. 
 
No diet model can solve nutritional dilemmas on aggregation of food and nutrient 
utilities into a single indicator for diet quality. However, they can contribute to the 
debate by providing a fast and transparent way of investigating the impact on 
advised food intakes and their associated nutrient intakes of various DRVs and 
various ways of aggregating food and nutrient adequacies. Furthermore, diet 
models are very useful for identifying ‘problematic’ nutrients, recommendations 
and consumer preference constraints. For instance, in all our diet modelling results, 
mono- and disaccharides had lowest utility, irrespective of the achievement 
function and target group. This demonstrates the consequences of applying very 
strict DRVs for mono- and disaccharides, combined with lower bounds on fruit 
intake, and on intake of snacks.  
 
Also in FFQ development, the problem context should be taken into consideration 
when defining an MODM model. For instance, in aetiologic studies, all nutrients of 
interest might be of equal importance, because the study needs to assess health 
effects for all of them. In public health applications, however, some nutrient 
intakes might be considered more important than others, because they are 
associated with a larger effect on public health. Experimenting with various 
weights will provide the nutritionist with a set of solutions with various properties, 
thus allowing him/her to select the solution that is most suitable for the specific 
decision problem, and that best meets non-quantifiable goals and preferences. 
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6.4.3 Case-based choices 
In constructing cases for experimenting with the proposed decision support models, 
several choices are made, for instance on food composition, nutrient sets, dietary 
reference values, and target groups. 

Food composition 
Food composition is crucial for nutritional studies: dietary assessment uses it to 
translate foods into nutrients, and dietary advice uses it to translate nutrients into 
foods, see Figure 1.1. All studies in this thesis use the NEVO food composition 
database (RIVM, 2012). With the proposed MILP models, the impact of other data 
sets or changes in food composition (for instance by fortification or food 
reformulation) or food use (for instance by using new foods such as meat replacers) 
can be investigated in a transparent and reproducible way. 

Nutrient sets 
The proposed models are demonstrated on cases for specific sets of nutrients. The 
choice of the nutrient set reflects the nutritionist’s priorities; nutrients that (s)he 
does not consider important (enough) will not be included. Besides relevance for 
the target group, the choice of nutrient sets can be based on data availability. In 
FFQ development, the selected nutrient set affects the generated food list. For 
instance, the number of food items in FFQs depends on the dispersion of the 
selected nutrients through the available foods. For instance, for assessing calcium 
intake probably a shorter food list would suffice than for assessing protein or 
energy. Also in diet models, the selected nutrient set affects the generated 
solutions. For instance, diet models that include calcium are more likely to propose 
dairy products than diet models that do not take calcium into consideration. Of 
course, the selected nutrient sets affect the generated solutions. They do, however, 
not affect the methodologies described in this thesis in terms of speed, 
transparency, and reproducibility. 

Dietary reference values 
Nutritionists use dietary reference values (DRVs) for formulating 
recommendations and goals regarding food and nutrient intake. The adequacy 
associated with a certain nutrient intake is commonly expressed as percentage of 
the population for which the intake is sufficient. DRVs are defined for specific 
populations, depending on age, sex, energy requirements, body size, and physical 
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activity. The exact values of DRVs are an issue of much debate among 
nutritionists. It is not uncommon that, based on the same information and on sound 
assumptions, researchers formulate different DRVs, see for instance the study of 
Brouwer-Brolsma et al. (2016) on DRVs for vitamin D intake. Diet models cannot 
solve the nutritional dilemmas associated with setting DRVs, but they can 
contribute to the debate by providing a fast and transparent way of investigating the 
impact of various DRVs on advised food intakes. The used values of DRVs affect 
the generated solutions. They do, however, not affect the methodologies described 
in this thesis in terms of speed, transparency, and reproducibility. 

Target group 
The proposed models for supporting decision-making in dietary assessment and 
advice are demonstrated on cases for specific subgroups of the Dutch population. 
Other subgroups and – especially – other populations may have different foods, 
which requires different food lists and results in different diets. For instance, when 
assessing sugar intake or designing a diet for a Dutch target group, including apple 
sauce might be very useful, whereas for a Mediterranean target group, apple sauce 
is hardly relevant. With the proposed models, food lists and diets can be generated 
in a transparent and reproducible way when the user changes the input data or 
constraints that represent the characteristics of the target group. Nevertheless, the 
need for independent validation with well-accepted reference methods remains 
relevant. 

6.4.4 Challenges for acceptance of the MODM approaches  
The MODM approaches described in this thesis face two important challenges for 
acceptance by nutritionists: they are presented as pilot versions, and their outputs 
are starting solutions that need post-processing by interaction between nutritionist 
and analyst. 

Pilot versions 
The decision support models described in this thesis were presented to the 
nutritionist in the form of pilot models; they are not built as user-friendly, user-
proof systems that the nutritionist can freely experiment with. Instead, they have to 
be operated by the analyst. This limits the nutritionist’s opportunities to acquire 
confidence on the models’ outcomes and possibilities, to familiarise with the 
models’ properties, and to aim for fast implementation. This is an obstacle for 
acceptance and adoption of the new approaches. 
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Post-processing 
Solutions proposed by decision support models can often not be used immediately 
by the decision-maker, but require post-processing. For instance, commonly the 
food lists generated by the MILP model do not comply with the nutritionist’s 
standards on face validity, because they may contain ‘stand-alone’ items. For 
example, the solution contains BLACKBERRY but no similar (soft fruit) items, 
which might tempt a respondent who has consumed blueberries to report his 
blueberry consumption under BLACKBERRY (which is unwanted from the 
perspective of dietary assessment). This may be an obstacle for acceptance of 
MILP-supported development of FFQs. The need for post-processing should, 
however, not be a reason for discarding the methodology. In typical OR-supported 
decision-making, the decision support model is used to propose an initial solution, 
such as a food list for an FFQ. This solution will commonly first be scrutinised by 
the nutritionist. Based on expert knowledge, (s)he will point out strengths and 
weaknesses of the proposed solution to the analyst. For instance, (s)he will point 
out that stand-alone use of food item BLACKBERRY will confuse the respondent if 
no reference is made to similar soft fruits like BLUEBERRY. Based on this feedback, 
the analyst will modify the objectives and/or constraints of the model, for instance 
exclude BLACKBERRY or include OTHER SOFT FRUITS as well. The model is then 
re-run in order to generate a solution that takes into account the expert knowledge. 
This loop is repeated until the nutritionist is satisfied. In this iterative procedure, 
the decision-maker is supported by the MILP model. It combines the strong points 
of human insight and experience on the one hand and the efficiency and accuracy 
of quantitative optimisation techniques on the other hand (Claassen et al., 2007). In 
the case of the FFQ model, the observed difference in length between the ValNed 
food list and its MILP alternative is so large that there is ample opportunity for 
adding (or exchanging) items to the MILP list and still ending up with a shorter list 
than ValNed. 

New technology 
In this context, it is worth mentioning the new opportunities offered by 
development of apps for smartphones. One could, for instance, design an app that 
asks the respondent a very limited set of questions per day. In such a setting, being 
asked for BLACKBERRY consumption will not confuse the respondent, because he 
is used that every day only a very limited part of his consumption pattern is 
explored. 
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6.4.5 Opportunities for future research 
Several opportunities for further research arise as direct leads resulting from this 
thesis. Also, opportunities are indicated for extensions to sustainable diets and food 
supply chains, and for communication to the consumer. Furthermore, opportunities 
with respect to MCDM are identified. 

Direct leads 
Based upon the issues discussed in Sections 6.4.2 and 6.4.3, several opportunities 
for further research arise as direct leads resulting from this thesis, especially in the 
context of nutrient adequacy and compliance with FBDGs, diet quality, and CEU, 
as summarised below. 
 
Nutrient adequacy and compliance with FBDGs – Utility curves 
• Investigate the impact of other types of utility curves on the proposed food and 

nutrient intake of the diet. For instance, what is the impact of using utility 
curves that reflect the percentage probability that a nutrient intake is adequate 
for the target group. 

• Investigate for various diet modelling contexts which type of utility curve is 
most suitable. For instance, which type of utility curve is suitable for modelling 
diets on the level of a whole population. 
 

Diet quality – Preference structure in MODM model 
• Investigate how sensible weights can be set in achievement functions for diet 

models. For instance, how to select weights such that actually the most critical 
nutrients are sufficiently prioritised without paying too little attention to the 
other nutrients. 

• Investigate for various diet modelling contexts which type of preference 
structure is most suitable. For instance, what is suitable for individual dietary 
advice, and what is suitable on the level of health policy making. 

 
Challenges for acceptance of the MODM approaches 
• Implement the FFQ models of Chapters 2 and 3 in order to assess their added 

value in a real-life setting by developing FFQs targeted for many nutrients. 
Develop a procedure for interaction between the nutritionist and the analyst. 
Investigate how much current lists can be shortened without loss of 
information and/or how much extra information can be obtained without 
increasing the length.  
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CEU 
• Investigate for which context CEU is a suitable approach. 
• Investigate if CEU can be extended in order to differentiate between Rawlsian 

contributors. 
• Investigate if it is possible to include a lexicographic criterion for the Rawlsian 

contributors. 

Extensions to sustainable diets and supply chains 
The global food system faces the challenge to feed a population which may rise to 
nearly 10.5 billion in 2100 (Fresco and Poppe, 2016). Part of the solution may 
come from increasing sustainability of diets and food supply chains. 
 
Environmental sustainability 
There is an increasing awareness of the environmental impact of our food 
consumption pattern. For instance, consuming meat has a much larger ecological 
footprint than consuming legumes and grains (Notarnicola et al., 2017). As a 
consequence, it might be much more sustainable to satisfy protein requirements via 
legumes and grains than via meat. Nevertheless, a certain amount of meat might be 
very useful to satisfy requirements for protein or micronutrients (like iron or 
vitamin B12). The Health Council of The Netherlands (2011) states that regarding 
food “there are hardly any guidelines that combine health and ecological 
perspectives”, and that “more research is needed into the further development of 
guidelines for a healthy and eco-friendly diet”. In order to support policy makers, 
there is a need for diet models that integrate aspects of health and sustainability in a 
transparent and reproducible way. This thesis research has contributed to the 
formulation of the so-called SHARP model in EU project SUSFANS (H2020, 
2017) and the parallel research project SHARP-BASIC (TIFN, 2017). These 
projects aim to provide a scientifically underpinned knowledge and data platform 
that can be used to build models for deriving SHARP diets for European citizens, 
i.e. diets that are environmentally Sustainable (S), Healthy (H), Affordable (A), 
Reliable (R) and Preferred from the consumer’s perspective (P) (Mertens et al., 
2017). 
 
Food supply chains 
Not only diet composition affects costs and sustainability of our food pattern, but 
also the design of food supply chains. For the Netherlands, for instance, tomatoes 
can be supplied via Dutch greenhouses or be imported from Spain. The trade-off 
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between production and transportation costs (expressed in monetary values and in 
environmental impact factors such as energy use) may vary with the season, and 
with choices made in the food supply chain. In order to support policy makers and 
food industry, there is a need for models that integrate diet and supply chain 
considerations. This thesis research has contributed to the formulation of NWO 
research project GREENDISH, which aims to (i) define affordable diets for Dutch 
citizens that are both healthy and sustainable, as well as (ii) indicate the 
consequences of alternative healthy and sustainable diets for the design of food 
supply chains (NWO, 2017). The project addresses issues such as multi-objective 
network design for the food system under consideration of nutritional demands, 
with a focus on studying a shift from a meat-based to a plant-based diet on the 
configuration of food supply chains and the resulting environmental impact. 

Communication to the consumer – Nutrient Profiling 
This thesis demonstrates how MODM can be used to support decision-making in 
dietary assessment and advice. As a next step, the findings arising from dietary 
assessment and advice have to be communicated to the consumer such that (s)he is 
guided towards a healthy dietary pattern.  
Lobstein and Davies (2009) provide a review on the use of systematic methods for 
categorising foods according to their nutritional quality (nutrient profiling) as a 
strategy for promoting public health through better dietary choices. The authors 
state that a nutrient profiling approach should be able to summarise and synthesise 
key nutritional characteristics (such as sugar, fat and salt content, energy density 
and portion size) in a way that is easily applied across a variety of products, is 
understandable to users, and can be strictly defined for regulatory purposes. In 
short, nutrient profiling should answer the question “how healthy is this food?”, 
based on multiple attributes, viz. its contents of multiple nutrients. Multi-attribute 
decision-making (MADM) may contribute to the development of adequate 
methods for profiling foods and diets. 

Multi-criteria decision-making 
Identifying a representative subset of Pareto-optimal solutions 
The MODM approaches in this thesis aim to provide the decision-maker with a set 
of Pareto-optimal solutions. Ideally, this set is representative for the whole set of 
Pareto-optimal solutions. Shao and Ehrgott (2016) propose a new method for 
obtaining such a set, which is tested for problems with up to eight objectives. The 
problems in diet modelling, however, typically have many more objectives, which 
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poses substantial computational challenges. So, there is a need to investigate how a 
representative subset of the Pareto-set can be obtained for problems with many 
objectives within an acceptable computational effort. 
 
Weight selection in MODM 
As mentioned in Section 1.4, a problem in MODM is how to justify and interpret 
weights, for instance in formulating weighted sum achievement functions and in 
combining achievement functions. Further research is needed to find out how to set 
sensible weights in MODM models for dietary assessment and advice. 
 
Looping back: MADM and nutritional assumptions 
After finding a representative subset of the Pareto-front, it is up to the decision-
maker to rank these alternatives based on their performance with respect to 
multiple criteria and his/her preferences, or to point out a preferred alternative. This 
is a typical MADM problem, so it is worth investigating whether the decision-
maker can be supported via MADM approaches such as Analytic Hierarchy 
Process and Electre (Belton and Stewart, 2002). Within context of diet modelling, 
however, expressing preferences based on diet properties coincides with the 
aforementioned nutritional assumptions on aggregating FBDG compliance and 
nutrient adequacy into one indicator for overall diet quality.  

6.5 Concluding remark 
This thesis explores the use of MODM approaches to improve decision-making for 
dietary assessment and advice. Considering the added value for nutrition research 
and the new models and solutions generated, we conclude that the combination of 
both fields has resulted in synergy between nutrition research and OR. As issues 
related to diet and to food supply tend to become more and more global and 
complex, we foresee a lasting need for OR-supported decision-making on levels 
ranging from consumer decision-making to designing food supply chains and 
effective and efficient governmental policies, thus contributing to improving global 
health via healthier diets. 
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Unhealthy diets contribute substantially to the worldwide burden of non-
communicable diseases (NCDs), such as cardiovascular diseases, cancers, and 
diabetes. Globally, NCDs are the leading cause of death, and numbers are still 
rising. NCDs have a negative impact on the quality of life and well-being of the 
individual and of society as a whole, and put a high burden on health systems and 
economy. They are regarded as an important barrier to poverty reduction and 
sustainable development in low- and middle-income countries.  
 
As unhealthy diets are an important risk factor for NCDs, healthy diets are a global 
priority to reduce NCDs. In the context of healthy diets, two nutritional research 
fields are particularly relevant: dietary assessment and dietary advice. Dietary 
assessment can contribute to NCD reduction by assessing the food and nutrient 
intake of target groups and individuals in order to investigate the relation between 
diet and disease. It helps to point out which foods and nutrients critically contribute 
to the health status of consumers, and to formulate food and nutrient 
recommendations. Studies in nutritional epidemiology, for instance, ask 
respondents to fill in a questionnaire on their use of certain foods products. The 
challenge for dietary experts is to compose a questionnaire that is short enough to 
be acceptable for the respondent, and yet sufficiently covers all nutrients that the 
dietary expert wants to assess. Dietary advice contributes to NCD reduction by 
translating food and nutrient recommendations into realistic food choices. Here, 
dietary experts face another challenge: from the range of thousands of products that 
contain multiple nutrients, how to compose a dietary pattern that complies with all 
nutritional constraints, and is acceptable for the consumer? So, both dietary 
assessment and dietary advice give rise to complex decision problems that 
commonly have multiple objectives: which foods to include in dietary assessment 
or advice to pursue the multiple objectives of the researcher or fulfil the 
requirements of the consumer?  
 
A discipline that can help to solve these complex decision problems is Operations 
Research (OR), which deals with the application of advanced analytical methods to 
help make better decisions. It employs techniques such as mathematical modelling 
and mathematical optimisation to arrive at optimal or near-optimal solutions to 
complex decision problems. It is often concerned with determining a minimum (for 
example, in this thesis, the length of a questionnaire) or a maximum (for example, 
nutritional adequacy of a diet). Widely-used techniques in OR are linear 
programming and mixed-integer linear programming (MILP). Within OR, multi-
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criteria decision-making (MCDM) approaches can be used to support the decision-
maker in situations where one wants to pursue multiple maxima or minima at the 
same time, for instance in situations where multiple nutrients are relevant. 
Commonly, there is a level of conflict between these maxima and minima. Within 
MCDM, multi-objective decision-making (MODM) focusses on situations in 
which the set of solutions is implicitly described via a set of constraints, and often 
is very large. MODM approaches aim to find a ‘best possible’ solution, that is, they 
aim to find a feasible solution that has the best possible performance with respect 
to the decision-maker’s objectives and preferences. Therefore, MODM approaches 
may contribute to decision-making in dietary assessment and advice. 
 
The aim of this thesis is to investigate MODM approaches for dietary assessment 
and advice, thus contributing to formulating healthier diets. This is relevant not 
only to nutrition research as such, but also contributes to model building and 
solving in OR. 
 
For assessing habitual nutrient intake of subjects in a population, often food 
frequency questionnaires (FFQs) are used. Nutritionists face the challenge to 
develop short FFQs that provide sufficient information for each nutrient of interest. 
In Chapter 2 of this thesis, the selection of the most informative items to be 
included in the food list of FFQs is modelled as a multi-objective MILP model. 
With this model, the most informative combination of food items for different 
aggregation levels can be determined in a standardised and reproducible way. Also, 
food lists of various lengths may be generated in order to investigate if adding 
more items justifies the additional burden for respondents and the additional 
research cost. With the MILP model, the food list can be optimised for multiple 
nutrients simultaneously. In contrast with a manual selection procedure, the 
number of nutrients has no impact on the complexity of the model. The generated 
food lists have good performance in terms of length, coverage and variation 
explained of all nutrients of interest. The results suggest that the MILP model 
speeds up the process and increases standardisation, transparency, and 
reproducibility. Moreover, it is especially helpful in coping with multiple nutrients. 
The generated food lists appear either shorter or provide more information than a 
food list generated without the MILP model. 
 
Food lists generated with the MILP models of Chapter 2 can contain single items 
such as APPLES and ORANGES and aggregated items such as CITRUS or FRUITS. 
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For all these items, their interpretation follows directly from their names and thus is 
known before optimisation. Therefore, we refer to them as direct items. In FFQs, 
also indirect items like OTHER CITRUS are used. The interpretation of such an 
indirect item depends on the direct items that are included in the food list, for 
instance, if only ORANGE and LEMON are included in the FFQ as direct items, then 
OTHER CITRUS comprises all citrus in the dataset (such as tangerine, grapefruit), 
except ORANGE and LEMON. The composition of OTHER CITRUS will therefore 
only be known after optimisation. Although there is debate, nutritionists assume 
that the contribution of indirect items to the quality of an FFQ can be approximated 
by the average contribution of its constituent items. Chapter 3 shows that this can 
be modelled by extending the FFQ model of Chapter 2 with fractional terms for the 
indirect items: the contribution of an indirect item is calculated as the summed 
contributions of its constituent items divided by the number of constituent items. In 
case an indirect item is not used, both the summed contribution and the number of 
items are zero, which makes the resulting fractional term “zero divided by zero”, 
and thus undefined. Chapter 3 shows how classical transformation principles can 
be combined and extended in order to eliminate these undefined fractional terms 
from the objective function. The resulting MILP model can be solved with standard 
software, thus supporting nutritionists to select both direct and indirect items for 
FFQs with one model. This demonstrates that real-life problems can in a natural 
way evolve to OR challenges that lead to extensions of the OR methodology. 
 
Supporting decision-making related to dietary advice requires translating nutrient 
recommendations into realistic food choices. For this, linear programming-based 
diet models are a robust and flexible tool. Existing diet models commonly use 
weighted sum achievement functions, which presume that the decision-maker has a 
preference structure in which the trade-offs between objectives are known and 
constant. Weighted sum achievement functions may generate solutions in which 
some objectives completely meet their targets, whereas others are (very) far off. 
Moreover, they can be very sensitive to preferential weights. Chapter 4 investigates 
the weighted sum achievement function and two other achievement functions, 
which generate more balanced solutions that tend to be less sensitive to preferential 
weights: MaxMin and Extended Goal Programming (EGP). These achievement 
functions are demonstrated on a diet model in which no solution exists that satisfies 
all nutritional constraints. In order to find a ‘best possible’ diet, the preferences of 
the nutritionist with respect to food and nutrient intakes are modelled via utility 
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curves. The various achievement functions represent ways of aggregating single 
food and nutrient utilities into one indicator for overall diet quality.  
 
Chapter 4 demonstrates that a weighted sum achievement function generates a 
solution in which the difference between the lowest and the highest utility is 
relatively large: the lowest utility is much lower than the other utilities. The 
MaxMin achievement function generates a solution in which the utilities are as 
‘equal’ as possible: the lowest utility is high, and the differences with the other 
utilities are small. This, however, incurs a substantial decrease of total utility. The 
EGP achievement function is a convex combination of weighted sum and MaxMin, 
and generates compromises: it provides solutions with higher total utility than 
MaxMin, and smaller differences between lowest and highest utility than MaxSum. 
This allows the decision-maker the choice of a solution that is most suitable for a 
specific decision problem, and that best meets non-quantifiable goals and 
preferences. 
 
As the preference structure incorporated in an MODM model is of crucial 
importance for the quality of decision-making, it is worthwhile to keep an open 
mind for novel approaches, investigate their behaviour, and assess their added 
value for practice. Chapter 5 explores such a novel approach from literature, which 
we refer to as CEU (Combining Equity and Utilitarianism). It provides new 
insights into CEU and assesses its added value for practice by comparing it with 
EGP for the case of the diet model of Chapter 4. 
Chapter 5 shows that, because of its discrete nature, CEU generates a set of 
solutions that is smaller and more widely spaced than that of EGP. This is an 
advantage for any decision-maker who prefers a relatively small set of reasonably 
different solutions to a large set of rather similar solutions. CEU generates 
solutions that are not found with EGP. The preference structure modelled in CEU 
may incur a (small) distance to the Pareto front of the bi-objective problem on the 
aggregated objectives (viz. total utility and lowest utility). However, all CEU 
solutions are on the Pareto front of the decision-maker’s original n-objective 
problem, which aims to maximise n individual utilities. We suggest that for use in 
practical cases this distance is reported, because it supports the decision-maker to 
assess whether the balance achieved by CEU is worth its price. 
Chapter 5 concludes that for applying CEU the investigated decision problem 
should have the following two characteristics: (i) summing individual utility values 
is meaningful, (ii) increments of utilities within a predefined (commonly small) 
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range from the lowest utility do not affect the decision-maker’s perceived quality 
of a solution. The diet problems addressed in this thesis will often not have these 
characteristics, which limits the applicability of CEU for diet modelling. The 
insights gained in this study, however, are valuable, because they extend beyond 
diet modelling. They may be particularly useful for any researcher who considers 
using CEU, or who struggles with the explanation and interpretation of its results.  
 
Chapter 6 presents the conclusions of the research and a general discussion. This 
thesis connects the disciplines of nutrition and OR in order to contribute to 
formulating healthier diets, and its scientific contribution is two-fold: (i) it provides 
opportunities for better decision-making in research on dietary assessment and 
advice by proposing MILP models for FFQ development and achievement 
functions for diet models, and (ii) it contributes to model building and solving in 
OR by providing a solution approach for a specific 0-1 fractional programming 
problem and new insights into a novel approach for combining equity and 
utilitarianism in a single model. Moreover, this thesis has created awareness among 
nutritionists of the added value of OR for nutrition research, thus strengthening the 
foothold of OR within nutrition research and creating opportunities for 
development of applications-driven OR theory. Amongst others, the chapter 
discusses the main modelling choices encountered when using MODM for 
optimising diet quality. These are related to nutritional assumptions on nutrient 
adequacy and compliance with food-based dietary guidelines (modelled via utility 
curves), and on aggregating individual nutrient adequacies and compliance with 
food-based dietary guidelines into one indicator for overall diet quality (modelled 
via various preference structures in the MODM models).  
 
This thesis explores the use of MODM approaches to improve decision-making for 
dietary assessment and advice. Considering the added value for nutrition research 
and the new models and solutions generated, we conclude that the combination of 
both fields has resulted in synergy between nutrition research and OR. As issues 
related to diet and to food supply tend to become more and more global and 
complex, we foresee a lasting need for OR-supported decision-making on levels 
ranging from consumer decision-making to designing sustainable food supply 
chains and effective and efficient governmental policies, thus contributing to 
improving global health via healthier diets. 
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