WORKING PAPER
MANSHOLT GRADUATE SCHOOL

On Blending with Lipschitzian requirements

Eligius M.T. Hendrix, L.G. Casado and I. Garcia

DISCUSSION PAPER No.16
2005

Mansholt Graduate School

Hollandseweg 1, 6706 KN Wageningen,
The Netherlands
Phone: +31 317 48 41 26
Fax: +31 317 48 47 63
Internet: http://www.mansholt.wur.nl/
e-mail: office.mansholt@wur.nl

http://www.mansholt.wur.nl/
mailto:office.mansholt@wur.nl

Working Papers are interim reports on work of Mansholt Graduate School (MGS) and have
received only limited reviews'. Each paper is refereed by one member of the Editorial Board
and one member outside the board. Views or opinions expressed in them do not necessarily
represent those of the Mansholt Graduate School.

The Mansholt Graduate School’s researchers are based in three departments: ‘Social
Sciences’, ‘Environmental Sciences' and 'Agrotechnology and Food sciences' and two
institutes: 'LEI, Agricultural Economics Research Institute' and 'Alterra, Research Institute for
the Green World'. In total Mansholt Graduate School comprises about 250 researchers.

Mansholt Graduate School is specialised in social scientific analyses of the rural areas
and the agri- and food chains. The Graduate School is known for its disciplinary and
interdisciplinary work on theoretical and empirical issues concerning the transformation of
agriculture, rural areas and chains towards multifunctionality and sustainability.

Comments on the Working Papers are welcome and should be addressed directly to the
author(s).

Eligius M.T. Hendrix"

*Operations Research en Logistics Group, Wageningen University, Hollandseweg 1, 6706 KN
Wageningen, The Netherlands.

Editorial Board:

Prof.dr. Wim Heijman (Regional Economics)

Dr. ir. Roel Jongeneel (Agricultural Economics and Rural Policy)
Prof.dr.ir. Joost Pennings (Marketing and Consumer Behaviour)

! Working papers may have been submitted to other journals and have entered a journal’s review process. Should
the journal decide to publish the article the paper no longer will have the status of a Mansholt Working Paper
and will be withdrawn from the Mansholt Graduate School’s website. From then on a link will be made to the
journal in question referring to the published work and its proper citation.

On Blending with Lipschitzian requirements*

Eligius M. T. Hendrix, L.G. Casado and I. Garcia

Operationele Research en Logistiek Groep, Wageningen Universiteit.

Dpt. de Arquitectura de Computadores y Electronica, Universidad de Almeria.

May 5, 2005

Abstract

The blending problem is studied as a problem of finding feasible solu-
tions on the unit simplex fulfilling Lipschitzian inequalities. It is sketched
how such problems can be solved by Branch-and-Bound type of algo-
rithms. A new infeasibility test is derived that can be used in Branch-
and-Bound approaches. Some properties of a regular grid over the unit
simplex are discussed. The whole is illustrated with some numerical ex-
amples.

keywords: Blending, Branch-and-Bound, Lipschitz continuity.

1 Introduction

The blending problem is usually posed as finding a mixture represented by a
point on the unit simplex S = {z € R"|3_; z; = 1.0; z; > 0} that is as cheap
as possible and also fulfills quality requirements. The variables z; represent
the fraction of the components in a product 2. Such problems are solved on a
daily base in fodder and petrochemical industry where often requirements are
modelled by linear inequalities, see e.g. [12]. The current article is a result
from a larger project on product design at Unilever Research. Products that
are produced in large quantities require extensive testing and careful design-
ing where many aspects such as robustness, cost, choice and availability of raw
materials etc. play a role. Here, we focus on that aspect of the design pro-
cess, where requirements have a nonlinear, Lipschitz continuous structure. This
means that the mathematical problem we are interested in is posed by finding
feasible solutions on the unit simplex of a set of inequalities

*This work has been partially supported by the Ministry of Education and Science of Spain
through grant CICYT-TIC2002-00228

where the functions g;(x) are Lipschitz continuous on S; i.e. for each function
g; there exists a Lipschitz constant L; such that

| gi(z) —gi(y) | < Lilz—yl|, Vz,ye S (2)

In the practical setting the problem originates from, the search for feasible solu-
tions was approached by running standard solvers on a penalty reformulation:

gleig{m?x gi(z)} (3)
or
gleig{z max[g;(z), 0]} (4)

The challenging aspect is that optimizing (3) or (4) is a global optimization
problem. This means that applying several starting points may result into
local optima that are all bigger than zero, i.e., no feasible solution of (1) is
attained. The question is: How to be certain that no feasible solution exists?
Seen from the viewpoint of mathematical programming, one can make use of the
Lipschitzian structure by for instance constructing a specific algorithm based on
Branch-and-Bound, see e.g. [5]. Early types of specific Lipschitzian algorithms
for optimization of functions in one dimension are due to [11] and [1]. Extension
for functions in more than one dimension followed some time after, e.g. [7], [9]
and [10]. Practical use of such ideas for industrial purposes can be found in
[4], where properties g; are quadratic functions, but handled from a Lipschitz
perspective.

In this article, a new theoretical result is presented on how to determine
that a polytope cannot contain a feasible point of (1). This result is useful
in the context of a Branch-and-Bound algorithm. Therefore in Section 2 an
algorithm is sketched to determine whether a solution of (1) exists. In Section
3, theoretical results are presented. Moreover, the efficiency of the method of
grid search is analysed. Numerical experiments with cases derived from industry
are shown in Section 4. Finally conclusions are drawn in Section 5.

2 Algorithms for finding a solution

One approach, as sketched before, is to run nonlinear optimization routines
on penalty formulation (3) or (4). However, if the final answer is greater than
zero, the statement ”no solution exists” cannot be given with absolute certainty.
Guarantee with a certain accuracy can be given, if one would generate a regular
grid over the unit simplex, evaluating all the points as sketched in Figure 1.
Consider a regular grid with M equal distant values for each axis, resulting
in a mesh size of @« = 1/(M — 1). A strategy to evaluate all grid points is not
appealing, as it is not very efficient. When performed on a unit box, the number
of function evaluations grows exponentially with the dimension: M™. This is
not that bad on the unit simplex, as we are dealing with the mixture equality

Figure 1: 2-dim projection of regular grid over the unit simplex, M=5.

>_;j = 1.0. This is illustrated in Figure 1. It can be verified that the total
number of points on the grid is given by

£ (4)(x00)
k k-1

k=1

as sketched in the appendix. This means that the number of points, although
very high, is not exponential in the dimension. For the example in Figure 1,
n =3 and M = 5, we have 15 grid points and an ”accuracy” of a = 0.25.

The concept of Branch-and-Bound is not to generate all the points, but to
partition the area and avoid visiting those regions (partition sets) which are
known not to contain a solution. B&B methods can be characterized by four
rules: Branching, Selection, Bounding, and Elimination [6], [8]. In the Branch-
and-Bound method, the set is subsequently partitioned in more and more refined
parts (branching) over which bounds of an objective function value, or in our
case, bounds on the constraint functions can be determined (bounding). Parts
with lower bounds exceeding zero are deleted (pruning), since these parts of the
domain can not contain solutions. Specifically for the problem of finding feasible
solutions of (1), a possible algorithm based on bisection will be outlined. The
method starts with a set C; = S. At every iteration the Branch-and-Bound
method has a list A of subsets (partition sets) Cy of Ci. The method starts
with C; as the first element and stops when the list is empty. For every set C},
in A, lower bounds g% of the constraint function values on C}, are determined.
Generated subsets are not stored on A, if for one of the constraint functions g} >
0. In Section 3, a way of generating lower bounds is shown and a theoretical
result is given that may improve the deletion by infeasibility. Moreover, to
force theoretical convergence and due to some practical reasons one would like
to discard partition sets that become too small. The branching concerns the
further refinement of the partition. This means that one of the subsets is selected
to be split into new subsets. A selection rule determines the subset to be split
next.

Figure 2 sketches the idea of the bisection algorithm. It can be observed that

Algorithm 1 : Branch-and-Bound algorithm.

Inputs: — g;: constraint functions
— € accuracy
Outputs: solution set Q2 or ”no solution”
Funct B & B Algorithm

.A=0;r:=n r = eval. vertices.

C7 = S, unit simplex

for the vertices v € Cy Evaluate g;(v) i=1,...,m

evaluateSimplex(in: Ci, global: A)

if A = 0 STOP ; return "no solution”

Take one subset C from list A according to a selection rule. Subdivide

C into two new subsets Cnew; and Cnew, by splitting over the longest

edge, generating new point v,eq -

Evaluate ¢;(Vnew) 1=1,...,m

if gi(Vnew) < 0; 1 =1,...,m, Store Vyeq in O

9. EvaluateSimplex(in: Cnew;, global: A) and EvaluateSimplex(in:Cnew,,
global: A)

10. r:=r+1, go to step 5

S Gtk W=

% N

Algorithm 2 :Evaluate subset and decide to put on list based on lower bound.
Funct EvaluateSimplex (C}); global A

1. if size(Cy) > €

2. fori=1,...,n determine lower bounds g’ (Cy)
3. ifgl(Cy) <OV

4 store Cj, in A

Figure 2: BB1: Bisection process 2-dim projection.

not only points on the regular grid are generated, but that the bisection also
generates edges (the dotted lines) in at least one additional direction than the
edges of the original simplex. A side effect was noticed where an implementation
was applied in an industrial environment: the values of all generated feasible
designs are a multiple of (1/2)%, where K is an integer representing the depth
of the search tree. An advantage of the bisection splitting is due to the shape
of the partition sets. The length of the longest edge is at most twice the size of
the shortest edge. Therefore the sets never get a needle shape. The Size of a
simplex can be the euclidean length of the largest edge, but also other norms
can be applied.

The number of simplices that is generated (and stored) in the worst case,
depends on many aspects. We could derive an upper bound and a lower bound
on the worst case performance. In the worst case, rules lead to splitting and
storing simplices that have a size slightly larger than e. After going n(n —1)/2
deeper in the search tree, at least all edges have been halved and the size of
the simplex is less than half its original size. Suppose Size(C1) = 1 (infinity
norm distance). The maximum number K of halving the simplices is given
by 1/2K < e, such that K = [(—Ine/In(2))], where [z] is the lowest integer
greater than or equal to z. Given the number of edges per simplex n(n — 1)/2,
the maximum depth of the search tree is K x n(n — 1)/2. The final level is not
stored, as the simplices don’t pass the size test. An overestimate for the worst
case number of simplices on the list is:

2K><n(n—1)/2—1 (6)

where K = [(—Ine/In(2))]. This analysis provides a guarantee that the algo-
rithm is finite given an accuracy. For € = 1%, it gives a bound of the order of
108 for n = 3 and 10** for n = 7. This does not sound very encouraging nor
realistic.

Let us now consider a lower bound on the worst case behaviour. Consider
again the regular grid in Figure 1. Suppose an algorithm would generate with
an accuracy of @ = =7 < € all corresponding simplices of the regular mesh.
We know that bisection has to generate more in the worst case. How many
simplices would the algorithm generate? The number of simplices in the regular
grid is

(M — 1)~ (7)
Formula (7) can be derived from volume considerations. The unit simplex rep-
resents a volume in n — 1 dimensional space proportional to (v/2)"~!. As the
largest edge of a simplex within the regular grid has a size of 3~ times the

M—1
simplex. Also the number (7) turns out big; for € = 1%, it gives 10* for n = 3
and 10'2 for n = 7. We will observe in the experiments that practically the
number is much lower. The real success of Branch-and-Bound depends on how
early branches of the tree can be pruned.

n—1
unit simplex size, its volume is (L) times smaller than that of the unit

3 Infeasibility check

A useful theorem is elaborated for the problem of finding feasible points of (1).
Ways to find an underestimation gF of g; for a multidimensional set has been
investigated by several researchers. Mladineo [9] showed that equating over z
the cones

9(@) > g(vy) - Lilz - v (8)
for the n+1 vertices v; of a simplicial region C' in R", leads to a set of equalities
that is not easy to solve. In [7] and [10] approximations of (8) are introduced
over rectangular regions. Actually, a very precise lower bound is not needed,
because we just have to answer the question whether g(z) can reach a value
lower than zero on C' if all of its vertices are infeasible with respect to g, i.e.
g(v;) > 0 for all vertices v;. If for one of the vertices g(v;) < 0, the lower
bounding question will not help to discard the simplex. In [4] the following
lower bound was used on a simplicial set.

gt = mjaxg(vj) — L x Size(C) 9)

where Size(C) is the maximum edge length of C. A few remarks can be made.
First of all, notice again that it is not necessary to determine (9) if one of the
vertices appears to be feasible with respect to function g. Moreover, [2] showed
that the value of L can be refined, as one is moving in the lower dimensional
simplex. This means that if L is determined by max,cs [|[Vg(z)||, one can reduce
the size of the gradient by projecting it in the unit simplex plane.

We now reconsider the lower bounding from the point of view of the feasi-
bility test. If g(v;) > 0, combining (8) and g(v;) — L||z — v;|| > 0 gives that the
spheres

o € B, llo — oyl < 222 (10)

cannot contain a feasible point with respect to function g. Consider again the
set of inequalities (1) 4 = 1,...,m, when all vertices are infeasible, i.e. at least
for one of the functions, g;(v;) > 0. Around each vertex a sphere B; is defined
that cannot contain a feasible point
9i(v;)
Bj = {.CL' € Rna ”"E - Uj||2 < Q?}a 0; = mzax zL—.Jaj =1...,n (]-]-)
K3

The test of g > 0 as defined in (9) becomes

max;{g} = max; g;(v;) — L;Size(C)} > 0=
max; max;{g;(v;) — L;Size(C)} > 0 = (12)
max;{0; = max; —g"g]’)} > Size(C)

which means that the largest infeasibility sphere should cover simplicial set C.

Consider again the grid search benchmark. One of the ideas to generate a
grid over the simplex is, that in some cases one can say with certainty that a
feasible solution does not exist. A sufficient but not necessary condition is given
in the following theorem.

Figure 3: Polytope covered by raspberry set.

Theorem 1 Given unit simplex S, a regular grid defined by grid points v; with
M points per axzis and the problem of finding feasible solutions of (1) and (2).

If
9i(vj) > V2

then S does not contain any feasible solution of (1) and (2).

\Z (13)

Proof: Given the grid over S,

V2
3 |z — ;]| € —— 14
VeeS Jj [z U:II_M_I (14)

Combining (13) and (14) gives

Ve €S 3§ gi(z) 2 gi(vj) — Lille — vjll > gi(v;) — Li;

Thus far we made the translation from considering Lipschitz cones (8) to in-
feasibility spheres that handle well the concept of considering several constraint
functions at the same time. For the Branch-and-Bound algorithm, the question
has been shifted from lower bounding into covering by what we call the rasp-
berry set R(C') = UB; (see [3]). In the algorithm, the bounding part can be
substituted by a (in)feasibility check: does R(C) cover set C, i.e. is C C R(C)?
It is not straightforward to answer that test. To check this, one could look for
apoint in C'\ R(C). The following theorem, illustrated by Figure 3, shows that
it is useful to look for a point that is covered by all infeasibility spheres.

Theorem 2 Given vertices vi,...,vq of set S =conv{vi,...,v4}, i.e. the ver-
tices are extreme points of S. Let each vertez v; be infeasible, i.e.

max; g;(vj) > 0 with corresponding infeasibility sphere B; defined by (11).

If 3z € NB; N S then S C UB; and consequently no feasible point exists in S.

Proof: The line of the proof follows that of a contradiction. Assume that Jy € S
such that y ¢ UB;. We will show that this assumption leads to a contradiction.
Define the vector r = y — z as the direction of stepping from point z to the
point y that is assumed not to be covered. Moreover, we will consider point
z =2 = g+ L that is in the middle of z and y. From z € NB; and y ¢ UB;
follows that Vj |ly —v;]|* > 0% and ||z —v;||* < ¢ . Walking from one point to
the other gives a mean-value result:

ly =5l = (@ + 7 —v) (@ +r—v;) =
(x —v))T (@ —v;) +2rT(xz —v;) +rTr = (16)
lz —vl|* + 2rT (z + 37 — v;) < 0F + 2rT (2 — ;)

Combining ||y — v;||* > ¢ with (16) leads to the conclusion that
2rT (2 —v;) >0, j=1,....,q (17)

Equation (17) tells us that the assumption of the existence of y leads to the
appearance of a point z € S and a direction r such that the directional derivative
with respect to the squared distance function is positive with respect to all
vertices v1,...,v,. This means that walking from z in direction r makes us go
further away from all vertices simultaneously. This is in contradiction with z
being in S.

More exactly, function f(a) = r'a is linear in a and therefore attains
its maximum over polytope S in one of the vertices v,. For that vertex,
max,es2r’ (@ — vp) = 0 such that Equation (17) cannot be true for at least
one vertex v;. This means that a point y with y ¢ B;Vj cannot exist in set S.

O

Theorem 2 shows that it is sufficient to find a point € S that for each
vertex v; is closer than g;. One can write an algorithm for determining such a
point. One can make a good guess by taking a weighted average

f=2—1121 : 1)

—v
ie 5 Y

T

and test whether [|¢€ — v;]|? < g?- for each vertex v;. Alternatively, in the ex-
periments we used a point just within the interior of the smallest sphere. Let
p =argmin;p;. If £ is not covered by the smallest sphere, [|€ — v,||> > 02, we
generate a trial point € just in the smallest sphere defined by

- % _ _
H_Up+(||€_vp|| 5)(6 UP) (19)

where ¢ is a tiny accuracy number. In Section 4, experiments will be done with
the two ways of checking the feasibility; either based on (12) (one Single sphere
Cover (SC) test) or based on generating and checking the guess points £ or 6
(N spheres Cover (NC) test).

4 Cases

The algorithm was used in a larger context of the practical product design
project, where application to larger instances saved hours of calculation time (see
[2]). For the illustration, two three dimensional cases are taken from [4]. The
advantage of three-dimensional cases is that we obtain graphical information on
the feasible set, the regular grid and the rejected subsets. The first case, called
RumCoke, is an illustrative example for outlining mixing with two quadratic
constraints. The second case, Case-2, was taken from an industrial example
having 5 quadratic constraints. The quadratic constraints are translated into
Lipschitzian requirements via:

19:(2) = 9:(w)| = (o =) Vi Z)| < Lillz -y (20)

where in [2] was shown that, because = — y is only moving within the plane of
the simplex, one can get a sharp bound on L; by taking

1
L; = max|[Vg;(z) - EITVQi(m)ln (21)

where 1 is the all ones vector. As the function in (21) is convex being the norm
of a linear function in z, one simply obtains L; by evaluating the gradient in
the vertices of S, i.e. the unit vectors.

Figure 4 shows one of the iterations of the algorithm for Case-2. Each
requirement is given a different colour. Each sphere (11) gets the colour of
the corresponding requirement. The simplices currently on list A are given in
grey. The areas that are deleted already, are given in dark blue when one of the
spheres covered the complete simplex (SC test) and light blue when Theorem 2
was used generating either point £ or moreover point § (NC test). Focusing on
the white simplex that is currently evaluated, one can observe that none of the
spheres covers the simplex completely. Weighted average ¢ is not covered by all
spheres, but modified point 8, close to the boundary of the smallest sphere, is
covered.

To illustrate the progress by applying Theorem 2 via the NC test, two ver-
sions of the algorithm are run. In the first version only the SC test is applied.
The second version applies the NC test in case the SC test is not successful.

The next step is to have the B&B results comparable with evaluating the
points on a regular grid. For the illustration, we will use the bisection process
until every axis is bisected K = 7 times, such that the mesh size is (3)7, corre-
sponding to M = 129 points per axis. This means that the corresponding grid
contains 8385 points according to (7). To obtain the depth of K = 7, one should
- working in Euclidean norm - apply in the algorithm an accuracy e somewhere
in between % and g. We will use € = %.

To measure the performance, we should keep in mind that a grid search
would generate and evaluate 8385 points. The Branch-and-Bound algorithm
does not only evaluate points, but also stores vertices (points) and simplices
that need to be explored further. The algorithm finally generates 80 feasible

Figure 4: Tteration of the B&B algorithm for Case-2.

points for the RumCoke case and 281 for Case-2. An important performance
indicator in Table 1 is the number of evaluated points to reach the result, that
should be smaller than evaluating the complete grid. To reach this performance,
the algorithm generates many simplices. For these smaller cases, the maximum
storage needed does not grow out of hand. A generated and possibly stored
simplex is either split or not explored further. It can be rejected, because it
has been proven it does not contain feasible points with either SC or NC tests.
Finally around the feasible area, the algorithm reaches the final accuracy at the
bottom of the search tree and generates simplices of size smaller than e.

The success of applying Theorem 2 can be read from savings on the number
of points to be evaluated, the generated and tested simplices and from the
required storage. The latter is of specific importance for practical cases in
higher dimensions, as one has to store millions of subsets and corresponding
vertices. The number of stored vertices only refer to those related to the stored
simplices in A. The final feasible points are stored in 2 (see Algorithm 1) and do
not require working memory. Moreover, consider the simplices that are not split
further because their size is too small. The algorithm is much more successful in
not to have to reach the bottom of the search tree applying the new infeasibility
test. This means that bigger areas are thrown out. This can also be derived
from the total number of generated simplices. The final result of the algorithm

10

Figure 5: Final partitioning for Case-2 (left). Zoom on the feasible area for
Case-2 and the generated feasible points (right).

Table 1: Results Branch-and-Bound algorithm for two different infeasibility

tests, € = %
Gener. Eval. Maximum Storage Infeas. Test Size
Simplex Vertex Simplex Vertex SC NC <e
RumCoke-SC 5246 2420 115 148 1792 - 832
RumCoke-NC 3036 1371 68 124 192 831 498
Case2-SC 3286 1304 52 329 941 - 703
Case2-NC 2432 910 33 312 296 306 615

is depicted in Figure 5.

The final simplices that are not split further, but that contain at least one
of the 281 feasible vertices, are coloured green here. In such a way, one can see
the feasible area. To zoom in on the cover of the feasible area by the generated
points, one can have a look at the right picture in Figure 5. Here one can
better observe all simplices that are not split further and do not contain feasible
vertices, given by a purple colour.

5 Conclusions

A Branch-and-Bound algorithm has been described that generates feasible points
on the unit simplex of a system of Lipschitz continuous inequalities. Among that
points are feasible points on a regular grid over the simplex. It has been derived
how many points have to be evaluated, if one would try all points on the regular
grid.

11

A theorem has been derived that can help to check whether a polytope
contains feasible points of a system of Lipschitz continuous inequalities. The
theorem and suggestions for guess points have been used to improve the al-
gorithm. The number of points evaluated by the algorithm and the storage
requirements for generating the same result have been reduced considerably.

References

[1] Yu. Danilin and S. A. Piyavskii. An algorithm for finding the absolute
minimum. Theory of Optimal Decisions, 2:25-37, 1967. (in Russian).

[2] Eligius M. T. Hendrix, L. G. Casado, and I. Garcfa. Branch-
and-bound for the semi-continous quadratic mixture design prob-
lem SCQMDP. Technical Report 17, Mansholt Graduate School,
http://www.sls.wau.nl/mi/mgs/publications, 2005. submitted to Journal
of Global Optimization.

[3] Eligius M. T. Hendrix and Olivier Klepper. On uniform covering, adaptive
random search and raspberries. Journal of Global Optimization, 18(2):143—
163, 2000.

[4] Eligius M. T. Hendrix and Janos D. Pintér. An application of Lipschitzian
global optimization to product design. Journal of Global Optimization,
1:389-401, 1991.

[5] R. Horst, P.M. Pardalos, and N.V. Thoai, editors. Introduction to Global
Optimization, volume 3 of Noncovex Optimization and its Applications.
Kluwer Academic Publishers, Dordrecht, Holland, 1995.

[6] T. Ibaraki. Theoretical comparisons of search strategies in branch and
bound algorithms. Int. J. Comput. Inform. Sci., 5:315-344, 1976.

[7] C. C. Meewella and D. Q. Mayne. An algorithm for global optimization
of Lipschitz continuous functions. Journal of Optimization Theory and
Applications, 57:307-322, 1988.

[8] L. G. Mitten. Branch and bound methods: general formulation and prop-
erties. Operations Research, 18:24-34, 1970.

[9] R. H. Mladineo. An algorithm for finding the global maximum of a mul-
timodal, multivariate function. Mathematical Programming, 34:188-200,
1986.

[10] Janos D. Pintér. Branch-and-bound algorithms for solving global optimiza-
tion problems with Lipschitzian structure. Optimization, 19:101-110, 1988.

[11] B. O. Shubert. A sequential method seeking the global maximum of a
function. SIAM Journal of Numerical Analysis, 9:379-388, 1972.

12

[12] H. P. Williams. Model Building in Mathematical Programming. Wiley &
Sons, Chichester, 1993.

Appendix

A regular grid with accuracy a = ﬁ can be generated by the recursive pro-

cedure GiveValue(M,n) over the unit simplex, where M is the number of grid
points per axis. The resulting number of points is very high for a reasonable

Algorithm 3 :Grid on a simplex.
Funct GiveValue (P,m)

1. for k=0to (P —-1)

2. T, =ak

3. ifm>3

4. GiveValue(P — k,m — 1)
5 x=1-— 2?22 z;

6. return z;,...,z,

accuracy. To illustrate the non-exponential character the number of points on
the regular grid is given for M = 11 and M = 101 in Table 2. The number of
points results as well from the algorithm as from Equation (5)

Table 2: Number of regular grid points on the unit simplex

n=2 n=3 n=4 n=»5 n=>6 n="7

M=11 11 66 286 1001 3003 8008
M=101 101 5151 176851 4.610° 9.7107 1.7 10°

13

	On Blending with Lipschitzian requirements
	Eligius M.T. Hendrix, L.G. Casado and I. García

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

