Genomic selection using information from multiple populations

Yvonne Wientjes

WIAS Lunch Lecture

27 June 2017

Who am I?

PhD GenomXL (ABG, WLR)

- 'Multi-population genomic prediction'
- Mario Calus & Roel Veerkamp

Postdoc GenoMiX project (ABG, WU)

- Genomic prediction for crossbred performance
- Mario Calus, Piter Bijma & Pascal Duenk

Aim of animal breeding

Identify the GENETICALLY BEST animals to produce the next generation

Genomic selection

Select individuals based on DNA markers

'Genomic breeding values'

Can double genetic improvement per year in dairy cattle

Genomic selection

Genomic selection

Reference population

Size of reference population

Use information across breeds?

- Link between markers and causal variants (genes)
 - Linkage disequilibrium

- Link between markers and causal variants (genes)
 - Linkage disequilibrium
- Allele frequencies of causal variants
- Effects of causal variants
 - Environment different
 - Genetic correlation between breeds

- Link between markers and causal variants (genes)
 - Linkage disequilibrium (LD)
- Allele frequencies of causal variants
- Effects of causal variants
 - Environment different
 - Genetic correlation between breeds
- Close family relationships are absent

Meuse-Rhine-Yssel (MRY)

800k chip

300 causal variants

~ 25 000 markers

- Accuracy of across-breed genomic prediction is much lower than withinbreed genomic prediction
 - Differences in effects of causal variants reduce accuracy

Multi-breed genomic prediction

Accuracy of across-breed genomic prediction is low...

, but what if we combine breeds in one reference population?

Multi-breed genomic prediction

Prediction equation with marker effects

Genomic breeding values

Accuracy of multi-breed genomic prediction

Accuracy of multi-breed genomic prediction

Can we predict accuracy?

Important when designing breeding programs

• Who to genotype?

Prediction equation:

$$r_{GEBV_{A+B,C}} = \sqrt{\begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} & r_{G_{B,C}} \sqrt{\frac{h_B^2}{M_{e_{B,C}}}} \end{bmatrix} \begin{bmatrix} \frac{h_A^2}{M_{e_{A,C}}} + \frac{1}{n_{p,A}} & r_{G_{A,B}} \frac{\sqrt{h_A^2 h_B^2}}{\sqrt{M_{e_{A,C}} M_{e_{B,C}}}} \\ r_{G_{A,B}} \frac{\sqrt{h_A^2 h_B^2}}{\sqrt{M_{e_{A,C}} M_{e_{B,C}}}} & \frac{h_B^2}{M_{e_{B,C}}} + \frac{1}{n_{p,B}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{B,C}} \sqrt{\frac{h_A^2}{M_{e_{B,C}}}} \end{bmatrix}^{-1} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}}} \end{bmatrix}^{-1} \begin{bmatrix} r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^2}{M_{e_{A,C}}}}} \\ r_{G_{A,C}} \sqrt{\frac{h_A^$$

Input parameter:

Heritability

 (h^2)

Genetic correlation

 (r_G)

Relatedness between populations

 (M_e)

• Number of animals (n_p)

Predicted vs Empirical accuracy

Predicted vs Empirical accuracy

Combining populations?

Beneficial, when:

- Closely related populations
- Population itself is small
- A large number of individuals is added

What about chickens and pigs?

Potential of genomic selection

Dairy cattle

- Benefit mostly due to reduction generation interval
- Dominated by one breed: Holstein Friesian
- Mostly purebreds

Chicken/pig

- Generation interval already small!!
- Lots of different lines/breeds
- Crossbreeding

Chicken breeding design (4-way crossbred)

Pig breeding design (3-way crossbred)

Challenge of crossbreeding

AIM: Select purebred animals to optimize crossbred performance

Differences purebred versus crossbred

- Environment
- Genetic background

Purebred-crossbred correlation (r_{pc}) < 1

Best purebred animals don't necessarily produce the best crossbred offspring

r_{pc} for different trait groups in pigs

Current research

Optimizing breeding program designs and breeding value estimation to improve crossbred performance

Conclusion

Populations differ

Combining information from populations, beneficial when:

- Closely related populations
- Population itself is small
- A large number of individuals is added

Current challenge:

 Use genomic prediction to improve crossbred performance

Thank you!

