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ABSTRACT 
Sugarcane is one of the most important crops in Rwanda. Demand on the national market is claimed to 

rise, while domestic production only covers 30% of the demand. Precision agriculture can help increase 

sugarcane yields. Monitoring of crop status could lead to a more realistic prediction of the yield than 

current yield predictions. In this research, remotely sensed imagery aimed to provide information about 

crop status. This information was used in a yield prediction model. Multiple models were evaluated and 

the most suitable model was chosen based on the requirements and available data. Green chlorophyll 

index data were calculated from the green and near-infrared light reflectance band and used as an 

indicator of crop status. The bulk harvest of sugarcane stalks was deemed linearly related to the green 

chlorophyll index times the incident photosynthetically active radiation. Historic data about yield per 

hectare per zone were used to calibrate the regression model. As a result of poorly calibrated remotely 

sensed imagery and lack of data covering the full growth cycle, the predicted yields are not accurate 

enough for Kabuye Sugar Work to be useful. In future endeavours, crop status over the whole growth 

cycle and correctly calibrated remotely sensed imagery are necessary to predict sugarcane yield more 

accurately.  

KEYWORDS 
Yield prediction, Rwanda, sugarcane, remote sensing, vegetation index, green chlorophyll index, , 

Kabuye sugar works  
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1. INTRODUCTION 

1.1. CONTEXT AND BACKGROUND 
In Rwanda, agriculture accounted for a third of the GDP in 2012 (RDB, 2016). For 84% of the population, 

agricultural activities are the main source of income (Ansoms, 2008). One of the crops that is important 

in Rwanda is sugarcane. From sugarcane, multiple products are made, of which sugar is the most 

important. The Rwanda development board predicted a rise in demand of sugar in Rwanda, while 

production currently seems to cover only 30% of the national demand (RDB, 2016). Rwanda has one 

factory that processes sugarcane into sugar. Sugarcane cultivation provides both employment in the 

factory and on agricultural lands. Currently 10000 jobs exist as the result of the sugarcane industry 

(Veldman and Lankhorst, 2011). Opportunities lie within increasing production of sugarcane. Increased 

production could lead to the creation of jobs, more food security. Furthermore, with an increased 

production of sugarcane, Rwanda has to import less sugar from other countries. This means less money 

will leave the country (Ansoms, 2008).  

Rwanda has a suitable climate for the cultivation of sugarcane. For sugarcane to reach optimum yield, 

it needs between 2000 mm and 2300 mm of precipitation, together with a well-drained, fertile soil 

(Yamane, 2016). The cultivation of sugarcane in Rwanda is done with ratoon cycles. A ratoon cycle is 

when the sugarcane is harvested, leaving the lowest part of the stem in the field. From the old stem, a 

new sugarcane crop will grow, that will give a slightly lower yield next harvest (Henry and Ellis, 1995). 

The maximum sucrose level of sugarcane is reached after 18 months in Rwanda (Veldman and 

Lankhorst, 2011). During these 18 months, improved capacity to monitor crops can help farmers 

respond to diseases such as smut, cope with floods and identify potential other plant stress (de Bruin, 

2015). Furthermore, monitoring crop maturity could improve the estimation of the right harvesting 

time. Together with optimizing water use and fertiliser, this will eventually lead to an improved yield 

(N.L. Ministry of Foreign Affairs, 2012).  

Crop monitoring techniques can be a valuable data source for precision agriculture. Yield prediction can 

benefit from monitoring negative environmental impacts and crop status which can be acted upon. The 

sugarcane crop can be monitored using remotely sensed imagery to know when maturity is reached.  

Additionally, monitoring of crop status could lead to a more realistic prediction of the yield than 

traditional yield predictions. In that sense, crop monitoring is a useful tool to help improve sugarcane 

yield prediction.  

In the eight months the factory is crushing cane, it requires a minimum input of sugarcane to keep it 

running, but also has a limit to the amount of sugarcane that can be processed. Harvesting of sugarcane 

is done by hand and thus requires a lot of labourers. Therefore,  distribution of harvesting the sugarcane 

plots is an important facet of the sugarcane processing,  The prediction of the yield plays an important 

role in harvesting the sugarcane and keeping the only sugar factory in Rwanda, Kabuye Sugar Works 

(KSW), running. After sugarcane has been harvested, deterioration of sugarcane stalks happens. In many 

sugar mills, time-lag between harvest and milling of cane ranges between three to seven days, resulting 

in  deterioration of sugarcane stalks and consequently in a loss of sugar production (Solomon et al., 
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2001). Knowing when and how much sugarcane per zone is harvested, could potentially lead to an 

optimal input-flow of sugarcane, improving the sugarcane value chain. 

The “Sugar: make it work” project in Rwanda aims to improve the sugarcane value chain. By investing 

in water management infrastructure, KSW hopes floods will be reduced and the available marshland 

will be optimally used. With the introduction of remote sensing technology and a yield prediction model, 

farmers are supported in making decisions about crop management and harvest timing. This will 

eventually result in higher yields for farmers. 

1.2. PROBLEM DEFINITION 

1.2.1. CROP MODELS 

Yield losses due to negative environmental factors (e.g. flooding, diseases) and poor management skills 

(such as early harvest) are a limiting factor in optimizing yield. Crop monitoring can be a viable tool to 

counter this constraint. With yield prediction models, it would be possible to predict at which moment 

in time a certain amount of sugarcane can be harvested. Crop growth monitoring systems (CGMS) have 

been developed to monitor crop state and make yield forecasts (van Ittersum et al., 2003).  

The development of relations between crop characteristics and remote sensing observations has played 

an important role in many agricultural studies (Baret and Guyot, 1991). By making measurements of the 

reflectance of sugarcane canopy, information about the plant can be obtained. Indicators of the 

biophysical and biochemical parameters of a crop derived from spectral data are also known as 

vegetation indices (VIs). Numerous VIs have been formed from multispectral reflectance data and have 

been linked to vegetation variables such as above ground biomass.  

Using remote sensing, crop production has been estimated with a simple or multiple regression 

(Delécolle et al., 1992). Moulin et al. (1998) identified the use of empirical methods, semi-empirical 

methods and mechanistic methods to vegetation indices with crop characteristics. In chapter 2.3. these 

methods will be further elaborated.  

Many models using VIs as an input have been used in applied- agricultural studies. Many relationship 

were established between VIs and the leaf area index (LAI) (Baret and Guyot, 1991). VIs have been 

considered as a measure of crop chlorophyll content, plant height, a measure of crop density and 

photosynthetically active biomass of a crop (Wiegand et al., 1991). Peng and Gitelson (2011) related VIs 

to the gross primary production of crops .  

Models that are not necessarily dependent on VIs also exist. Since the 1960s crop models have been 

developed for multiple applications and a variety of vegetation types. For example, SUCROS was 

developed to get insight into the potential production situation (Van Keulen, 1982). The SUCROS model 

formed the basis for other models such as WOFOST (Diepen et al., 1989), MACROS (Penning de Vries, 

1989) and ORYZA (Bouman, 2001). Spitters and Schapendonk (1990) developed a model called LINTUL, 

which is based on the light use efficiency (LUE) of crops. 

For the prediction of sugarcane yield, currently two main models are in use: the APSIM-sugarcane model 

and the Canegro model (Lisson et al., 2005). These models can describe the entire crop cycle, but require 
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much data regarding soil, fertilization, weather, management and parameters of plant growth (Dorigo 

et al., 2007). Many model components can be added  to make the models  deal with different conditions, 

such as water and nitrogen limitation, weeds, pests, diseases and air  pollution (van Ittersum et al., 

2003).  

The crop models are also known as soil-vegetation-atmosphere models (SVAT). Within these models, 

vegetation variables are linked to atmospheric variables (e.g. weather condition), soil variables (e.g. 

nutrient availability) and management variables. The output SVAT models commonly is the accumulated 

biomass(Delécolle et al., 1992).  

1.2.2. LINKING REMOTE SENSING TO CROP MODELS 

Remotely sensed data can provide information about crop state variables at times when observations 

are made, making the model more independent on the times of these observations (Delécolle et al., 

1992). Remotely sensed data can be obtained by satellite sensors, aerial sensors or terrestrial sensors. 

The spectral response of sugarcane canopies can provide insight into biophysical properties of 

sugarcane such as canopy chlorophyll content, nutrient deficiency, water stress,  leaf area index (LAI) 

and absorbed Photosynthetically Active Radiation (APAR) (Abdel‐Rahman and Ahmed, 2008). Although 

VIs are not a direct measurement of the biophysical properties of a plant, they are strongly related. This 

suggests that biophysical properties of a plant – such as chlorophyll content – might  be replaced by 

indices.  

Gitelson et al. (2006) found that the gross primary product (GPP) of a crop can be a function of LAI- and 

chlorophyll related VIs and incident photosynthetically active radiation. Chlorophylls are essential 

pigments that turn light energy into stored chemical energy. The amount of solar radiation that is 

absorbed by a leaf is related to the amount of pigment that leaf contains, hence the photosynthetic 

potential and primary production of a crop are determined by the chlorophyll content of that crop 

(Curran et al., 1990). Gitelson et al. (2005) found a linear relation between the total chlorophyll content 

and the red-edge chlorophyll index with a R2 of 0.95. 

Dorigo et al. (2007) explored several ways to use remote sensing in crop models.  

● The first method is by forcing a remotely sensed observation into a crop model, replacing the 

state variable of the crop model. At each model time step (week or day) in the simulation, an 

observation derived from remote sensing is needed and implemented into the crop growth 

model. To derive values at intermediate time-steps, interpolation techniques such as linear 

interpolation can be used. With the forcing method, the model forgets its own data and follows 

the observed state variables. The duration of a time-steps can be chosen according to 

convenience but has to be consistent. A disadvantage of this method is that the observation 

errors are also included. These errors are propagated into the model when forcing is used to 

assimilate the remotely sensed data. 

● The second method is by recalibrating. With recalibration of a crop model, selected parameters 

are adjusted to attain an optimal fit between the remotely sensed observation and the 

simulated variable. By running the model with various combinations of parameters, the 
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sensitive and uncertain model parameter values are obtained within realistic ranges.  This 

method is more flexible with assimilating remotely sensed data into the model than the forcing 

method. A disadvantage is that the model requires a lot of computation time.  

● The last method is updating the state variable continuously whenever an remote sensed 

observation is available. It assumes that an observed state variable at a certain time will improve 

the accuracy of a state variable on succeeding days. This method is also more flexible in 

assimilating remotely sensed data into the model and is more flexible in terms of data 

availability. However, errors in both the state variables and the observed variables can 

propagate to the final output of a model.  

 

When the methods of either forcing or updating (which is a form of forcing) are applied, substitution of 

a simulated state variable (e.g. LAI)  with an observed one suggests the simulation is flawed in a way 

that biophysical processes are not described correctly by the model (Moulin et al., 1998). From this 

point of view, calibration is more suitable when dealing with a mechanistic crop growth model. 

In all cases, the usability of remote sensing in crop models is conditioned by spatial resolution, frequency 

of observation and the observed wavelengths. Many methods have multiple components to simulate 

the time profile of crop state variables. These components all require input data.  For example, SVAT-

models require input on soil, vegetation and atmosphere conditions combined with information about 

management, irrigation, fertilization and plant date (van Ittersum et al., 2003). These data are not 

available in Rwanda, which imposes a challenge on finding a method that is able to solve the problem 

of when to harvest and predict the sugarcane yield. Depending on the VIs that have been or will be 

obtained in Rwanda through the use of remote sensing, a method must be chosen which can implement 

these VIs to provide a prediction of the optimum harvest time and sugarcane yield.    

1.3. RESEARCH OBJECTIVES AND QUESTIONS 
The main objective is to develop an approach for predicting sugarcane yields by adapting a model that 

assimilates remote sensing data.   

The research questions are:  

1) What are existing methods for predicting sugarcane harvest yield using remotely sensed data?  

2) What inputs and parameters are needed for implementing these methods? 

3) Given data availability within the “Sugar: make it work” project, which is a viable model for 

predicting sugarcane yields? 

4) Are the available data suitable for obtaining accurate yield predictions using the selected 

model? 
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1.4. REPORT OUTLINE 
In the following chapter, the different methods for predicting yield using remote sensing are examined. 

First, the relationship between remote sensing and the crop status is explained. An explanation will be 

given about how crop status is derived from remotely sensed images. Then, the different methods are 

disclosed and explained. In chapter 3, the study area and the chosen method are elaborated on. Data 

availability and the underlying methods to predict yield are described. Furthermore, how to examine 

the accuracy of the data and the prediction are described in this chapter. In chapter 4, the results of the 

prediction are presented, as well as the accuracy that is achieved with the chosen model. The results of 

the data influencing the model and data quality are presented. In chapter 5, the results are discussed 

and the constraints of the chosen model are evaluated, followed by the discussion of the prediction 

results. In chapter 6, conclusions are drawn from the results and the discussion. In chapter 7, some 

recommendations are given for future endeavours to predict sugarcane yields in Rwanda.  
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2. PREDICTION OF CROP PRODUCTION USING REMOTELY SENSED DATA 

2.1. CANOPY STATE VARIABLES 
The modelling of agroecosystems started in the 1960s when computational power no longer was an 

obstacle (Passioura, 1996). The main aim of these models was to acquire information about the  

underlying  processes of crop development and functioning (van Ittersum et al., 2003). Since then, 

agroecosystem models have been developed with a wide variety of applications, for numerous types of 

vegetation and at different scale levels. The main applications of crop models are research, as a crop 

management tool or to make a policy analysis (Boote et al., 1996).  

At the same time that crop models were developing, remote sensing techniques were being developed. 

In 1972, the first civil satellite that made earth observation possible was launched. It demonstrated that 

remote sensing is a suitable tool to monitor bio- and geophysical processes at global and regional scales 

(Goward and Williams, 1997). Since then, scientists have retrieved canopy state variables and 

assimilated remote sensing data into crop models.  

To derive canopy state variables, spectral bands are measured in the wavelength range between 400 

nanometres (nm) and 2500 nanometres. The spectral reflectance of canopy is governed by three 

principal factors (Dorigo et al., 2007):  

 The optical properties of the vegetation elements. 

 The arrangement of the canopy elements (canopy structure). 

 The optical properties of the soil beneath the canopy. 

Furthermore, atmospheric conditions affect the quantity of the solar radiance incident on the canopy 

and the radiance reaching the sensor (Richter and Schläpfer, 2002). Another factor that influences the 

measured spectral reflectance, is the view and illumination geometrical configuration (Baret et al., 

2007). 

The vegetation elements such as leaves, stems and possibly fruits determine the canopy reflectance 

(Jacquemoud and Baret, 1990). The chemical constituents such as chlorophyll absorb the solar radiation 

while structural elements such as cell walls scatter the radiation. Other absorbers of solar radiation are 

other pigments, water, proteins and cellulose (Faurtyot and Baret, 1997, Jacquemoud and Baret, 1990). 

The amount of organic matter, minerals, surface roughness and soil water content are factors that 

determine the soil reflectance (Baumgardner et al., 1986). However, soil reflectance can be neglected 

when the LAI of a canopy is greater than three (Atzberger et al., 2003).  

The arrangement of canopy elements accounts for the directional variation and the magnitude of the 

reflectance from the canopy. The distribution of the vegetated and non-vegetated areas, the LAI and 

the leaf angle distribution all contribute to the magnitude and directional distribution of the reflectance 

of solar radiation by the land surface (Kuusk, 1995). 

These are the main factors that determine what the magnitude of these wavelengths is.  The reflective 

remote sensing data can then be used to retrieve biophysical and biochemical variables from the 
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measured crop. Establishing a relation between reflected radiation and crop state variables is crucial to 

a quantitative interpretation of the data (Verhoef, 1984).  

2.2. RELATING REMOTE SENSING DATA TO CANOPY STATE VARIABLES  
Methods for retrieving biophysical and biochemical variables of a crop from remotely sensed 

measurements can be divided in two main categories: statistical methods and physical methods. 

2.2.1. STATISTICAL METHODS 

With a statistical method, a relationship is described between the spectral signature of a crop canopy 

reflectance and a certain biophysical or biochemical variable of that crop. 

The measurements made through the means of remote sensing are related to the biophysical or 

biochemical data that are acquired by measurements in the field or in a laboratory. The relationship can 

differ per crop and  the phenological development stages of a crop. Simple or multiple regressions are 

the most used – but not exclusive – techniques to link spectral signatures to variables of interest 

(Clevers, 1989). To filter out background effects and undesired variation effects of reflectance caused 

by the factors that were discussed in chapter 2.1., VIs are used. Huete et al. (2002) defined VIs as a 

combination of two or more spectral bands to enhance the contribution of vegetation properties that 

allow for spatial and temporal comparisons of photosynthetic activity and canopy structure of 

vegetation.  

2.2.2. PHYSICAL METHODS 

To estimate the canopy properties through a physical approach, a canopy reflectance model is inverted. 

A canopy reflectance model calculates the directional reflection as a function of canopy properties. 

These properties describe measurement and soil conditions (Verhoef, 1984). An example of a canopy 

reflectance model is the SAIL model. When inverting a canopy reflectance model, a set of properties is 

sought that leads to the closest match between the bi-directional reflectance simulated by the canopy 

reflectance model and the measured reflectance at the sensor (Dorigo et al., 2007).  

By establishing a relation between the measured reflection of a crop and the biophysical and 

biochemical variables of a crop, the measured reflection can indirectly be used in crop models to 

substitute for plant properties.  
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2.3. YIELD PREDICTION MODELS  
Different methods exist for making a yield prediction. Remotely sensed data can be related to canopy 

state variables measured for that moment in time. The next three subchapters will cover the empirical, 

semi-empirical and mechanistic methods that were used to predict crop yield in previous researches. 

2.3.1. EMPIRICAL MODELS 

Empirical methods are based on direct observations, measurements and historic data. Muchow et al. 

(1998) used historical block productivity data of sugarcane plots, collected over six years. These blocks 

were classified by district, farm, block, paddock, variety, crop class (planted or ratoon), harvest date and 

yield to optimize the harvest date and yield of sugarcane. They made a prediction of total sugar yield by 

averaging the sugar yield per hectare based on the area of farm paddocks within a geographical zone 

by crop class by harvest month by harvest age. They found the ideal age when the sugarcane should be 

harvested in that region and the ideal number of ratoons. The authors argue that by applying their 

method to other countries and regions offers potential in optimizing productivity and profitability in 

sugarcane production. A drawback of empirical methods to predict yield is that they require extensive 

historic records and cannot deal with a non-stationary process..  

2.3.2. SEMI-EMPIRICAL MODELS 

Semi-empirical methods are relying to some extend on observations. Statistical techniques are used to 

obtain a correlation between the target and the measured spectral signature. Peng and Gitelson (2012) 

related gross primary production of a crop to VIs especially focusing on chlorophyll content and 

photosynthetically active radiation (PAR). Crop gross primary production (GPP) is defined as the rate at 

which a crop captures and stores carbon as biomass (Peng and Gitelson, 2012). The model they used 

successfully estimated the GPP of maize and wheat. They tested different VIs to estimate the GPP of 

soybean and found that the red-edge chlorophyll index and green chlorophyll index were the best 

indices to do this. Gitelson et al. (2006) found a non-species-specific relation between the crop GPP and 

the product of total crop chlorophyll content (Chl) and the incident photosynthetically active radiation 

(PARin). The total crop chlorophyll content can be used to estimate the GPP at that moment. The GPP is 

proportional to the chlorophyll content multiplied with the incident PAR, therefor the proportional sign 

∝ is used. They suggested a simple model to remotely assess the instantaneous GPP (Gitelson et al., 

2006): 

𝐺𝑃𝑃 ∝ 𝐶ℎ𝑙 ∙  𝑃𝐴𝑅𝑖𝑛  

Furthermore, they found that several VIs were related to the chlorophyll content of a crop. NDVI, TVI, 

MTVI and WDRVI (Table 1) were used to estimate the LAI which relates to the chlorophyll content 

(Ciganda et al., 2008). Also, Gitelson et al. (2005) found a significant relationship between the VI green 

chlorophyll index (CIgreen) or Red-edge chlorophyll index (CIred edge) and the crop chlorophyll content of 

maize and soybean. Both VIs performed well on both crops. In Table 1, the formulation of the VIs are 

shown. 
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TABLE 1. VEGETATION INDICES STRONGLY RELATED TO CROP CHLOROPHYLL CONTENT 

Index Formulation Source 

Normalized 
Difference 
Vegetation Index 
(NDVI) 

(ρNIR − ρred) / (ρNIR + ρred) (Rouse Jr et al., 
1974)  

Triangular Vegetation 
Index (TVI) 

0.5 × [120 × (ρ750 − ρ550) − 200 × (ρ670 − ρ550)] (Broge and 
Leblanc, 2001) 

Modified TVI  
(MTVI) 

1.2 × [1.2 × (ρ800 − ρ550) − 2.5 × (ρ670 − ρ550)] (Haboudane et 
al., 2004) 

Wide Dynamic Range 
Vegetation Index 
(WDRVI) 

(α × ρNIR − ρred) / (α × ρNIR + ρred), 
0 < α < 1 (α × ρNIR − ρred) / (α × ρNIR + ρred) + (1 − α) / (1 + α)
, α = 0.2 

(Gitelson, 
2004) 

Green Chlorophyll 
Index (CI green) 

ρNIR / ρgreen − 1 (Gitelson et al., 
2005) 

Red edge chlorophyll 
index (CI red edge) 

ρNIR / ρred edge − 1 (Gitelson et al., 
2005) 

 

This indicates that chlorophyll- and LAI-related VIs can be used as a proxy for the chlorophyll content in 

a crop.  The model for estimating the GPP at one instant can then be defined as (Gitelson et al., 2006): 

𝐺𝑃𝑃 ∝ 𝑉𝐼 ∙  𝑃𝐴𝑅𝑖𝑛 

Another research by Bastiaanssen and Ali (2003) combined the photosynthetically active radiation 

model of Monteith and Moss (1977) with the light use efficiency model of Field et al. (1995)) and the 

model of surface energy balance by Bastiaanssen et al. (1998) to estimate crop growth and forecast 

crop yield.  They suggested a model to calculate the accumulated above ground biomass for a whole 

growth cycle of a crop: 

𝐵𝑎𝑐𝑡
𝑡𝑜𝑡 ≈  𝜀 ∑(𝐴𝑃𝐴𝑅(𝑡)  ∙  𝑡) (𝑘𝑔 𝑚−2) 

Where 𝐵𝑎𝑐𝑡
𝑡𝑜𝑡 (kg m−2) is the accumulated biomass above ground in a period t and 𝜀 (g MJ−1) is the light 

use efficiency of the crop and t is the period over which the accumulation takes place. They used the 

NDVI to derive the fraction of PAR that was absorbed by the crop. This fraction of the PAR is called APAR 

(W m−2). To get the light use efficiency (𝜀) they used two environmental conditions, namely soil moisture 

and heat. They were calculated using multiple functions with a number of variables. These variables 

include daily actual hours of sunshine, monthly mean air temperature, surface albedo, surface 

temperature and NDVI. 

The model of the accumulated biomass above ground by Bastiaanssen and Ali (2003) assumes the light 

use efficiency is constant during the whole growth cycle. van Heerden et al. (2010) found that the LUE 

is not constant during the growth period. Hence, the accumulation of biomass is not a linear function. 

The phenomena that reduced growth in sugarcane are defined as reduced growth phenomena (van 

Heerden et al., 2010). When only a part of the growth cycle is measured, one has to keep in mind that 



10 

 

the measured crop is in a certain phenological stage. Crops in different phenological stages have 

different light use efficiency, resulting in a different accumulated biomass for that measured period.  

2.3.3. MECHANISTIC MODELS 

Mechanistic methods are based on understanding the behaviour of system components. Mechanistic 

models are made to simulate the time profile of the most important crop state variables such as LAI, 

biomass and development stage, together with water and nutrient fluxes, energy and carbon (Moulin 

et al., 1998). To simulate the time-lapse of these variables, information on soil and climate conditions is 

needed. The SUCROS model designed by Spitters et al. (1989) is an example of a mechanistic model.  

This model calculates the daily rate of CO2 assimilation from the incoming radiation, temperature and 

LAI. Other kinds of models are the LINTUL (light interception and utilisation) models. These kind of 

models use a linear relation between the biomass produced and the radiation that is intercepted by a 

crop (Monteith and Moss, 1977). Spitters and Schapendonk (1990) developed a module for the LINTUL 

model that calculates the crop growth based on the light use efficiency (LUE) concept.  

The development of a crop and the portion of assimilates to the leaves are described using empirical 

relationships. Using inaccurate coefficients to calculate daily crop development may lead to errors in 

estimating the total biomass (Porter, 1984). Because of the mechanistic nature, these models require 

data on many of variables that influence the crop growth.  

Clevers (1997) used optical remote sensing in combination with the SUCROS model to estimate the yield 

of sugar beets. Measuring the WDVI (Weighted Difference Vegetation Index) of the crop is done by 

finding the weighted difference between the NIR and red reflectance. The assumption is made that the 

ratio of NIR and red reflectance of bare soil is constant. This gives the formula to calculate the WDVI: 

𝑊𝐷𝑉𝐼 = 𝑁𝐼𝑅 − (𝑐 ∙  𝑟𝑒𝑑) 

Where NIR is the total measured NIR reflectance, red is the measured red reflectance and c is the slope 

of soil line, i.e. the ratio between NIR and red reflectance of the soil. Then, the WDVI was used to 

estimate the LAI. The following formula was applied:  

𝐿𝐴𝐼 =  −
1

𝛼
 ∙  ln(1 −

𝑊𝐷𝑉𝐼

𝑊𝐷𝑉𝐼∞
) 

Where α is a parameter that describes at which rate the function runs to its asymptotic value. WDVI∞ is 

the asymptotic value of the WDVI. The simulated LAI was used as an input in the SUCROS model to 

initialize and calibrate the model within plausible ranges of parameters. Crop reflectance was measured 

approximately every 10 days with a ground-based crop scan radiometer 

Different methods to predict yields of various crops exist. Choosing the most suitable model to predict 

sugarcane yield depends on the required model input data and the available data. In the next chapter, 

the project requirements and the available data are discussed to select the model that fits the given 

data availability and model requirements.  



11 

 

3. METHODS AND DATA 
To develop an approach to predict the sugarcane yield in Rwanda, an inquiry was made into the available 

data and the requirements of the model.  

3.1. THE PROJECT AND DATA 

3.1.1. THE PROJECT 

The project “Sugar: make it work” has been focusing on improving the sugar sector in Rwanda (N.L. 

Ministry of Foreign Affairs, 2012). The goal is to make Rwanda self-proficient in covering domestic sugar 

need through a combination of water management and precision agriculture, which will help advance 

the sugarcane agriculture significantly. KSW has access to 3100 hectares of land situated around 

Rwanda’s capital Kigali. Out of these 3100 hectares, only 1750 ha are being cultivated. Outgrowers 

cultivate 60% of that land. Outgrowers are independent farmers that convey their produced sugarcane 

to the sugar factory (N.L. Ministry of Foreign Affairs, 2012). In Figure 1, the locations of the sugarcane 

plots are shown in grey.  

 

FIGURE 1. LOCATION OF SUGARCANE FIELDS OWNED BY KSW.  

The remote sensing data do not cover all the areas shown in the map above, but several zones were 

flown with a drone. Zones consist of several individual plots where sugarcane is grown. The zones 24, 

25, 26, Rugalika and Ruyenzi were flown at least one time during the data collection period. These zones 

belong to the estate fields.  
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3.1.2. DATA 

In table 1, the data that was available for this research is presented. 

TABLE 2. AVAILABLE DATA 

Data Details 
Yield at zone level Yields at zone level for the seasons 2014-2015 

and 2015-2016 provided by KSW. For the season 
2015-2016 the yields for zone Ruyenzi were 
missing. 

Sugarcane varieties at plot level The sugarcane variety that each plot had for a 
specific growing season. 

Planted or ratoon at plot level Information of the crop at a plot is a newly 
planted crop or a crop that is a ratoon. 

Sugarcane planting data at plot level The date, month and year at which the crop was 
planted or at which the ratoon started 

Indirect measurements of crop state variables 
through remote sensing 

Aerial photographs of plots within zones 24, 25, 
26, Rugalika and Ruyenzi. These aerial 
photographs were acquired at June 2016, august 
2016 and September 2016. The company Milan 
Innovincy provided the Aerial photographs. 
Information about which reflectance bands were 
measured is given in table 2. 

Meteorological data on solar radiation Solar radiation data from starting date 1 October 
2014 till 31 December 2016. The data was 
provided by awhere and NASA power. 
Historical meteorological data on solar energy 
fluxes were provided by aWhere 
(https://developer.awhere.com/api/about-our-
data/weather-data) and NASA power 
(https://power.larc.nasa.gov/).  

Flood data The dates at which a flood started and ended. In 
between these dates, some areas in the study 
area were fully flooded are partly flooded. 

 

In June, August and September a drone was flown above individual plots in the zones 24, 25, 26, Rugalika 

and Ruyenzi. These zones are located in the area shown in figure 1. In the months the drone was flown, 

a couple of days were spent flying a drone above the plots to measure the spectral reflectance of the 

sugarcane crops on a plot. These days in which the remote sensing data was acquired are called a 

measurement campaign. In table 2, the measured reflectance bands are shown per measurement 

campaign. 

 

 

https://developer.awhere.com/api/about-our-data/weather-data
https://developer.awhere.com/api/about-our-data/weather-data
https://power.larc.nasa.gov/
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TABLE 3. MEASURED REFLECTANCE BANDS PER MEASUREMENT CAMPAIGN 

Measurement campaign Measured reflectance bands 
June 442 nm, 560 nm, 670 nm, 700 nm, 710 nm, 740 

nm, 750 nm, 780 nm and 830 nm 
August 560 nm, 670 nm, 700 nm, 710 nm, 740 nm, 750 

nm, 780 nm and 830 nm 
September 560 nm, 670 nm, 700 nm, 710 nm, 740 nm, 750 

nm, 780 nm and 830 nm 
  

3.2. PREDICTING YIELD 
3.2.1. MODEL CHOICE 

Various methods that implement remote sensing techniques exist that give an estimation of yield. From 

these methods, the most suitable had to be chosen for this research. This was done considering the 

data availability and the requirements of the model.  

To choose the model a two main limiting factors are taken into account: 

1. The number of time steps for remote sensing data was very limited. Imagery was only available 

for 3 moments in time covering a period of 18 months (one growth cycle). What’s more is that 

these 3 moments in time were 3 consecutive months. This meant the model had to deal with a 

lack of time-consistent input of data and still had to be able to perform. Between the 3 months, 

simple linear interpolation has been carried out. The measured VI values are representing the 

whole growth cycle. 

2. The historic data of the yield per zone was only available for the seasons 2014-2015 and 2015-

2016. 

 

The  extent to which an empirical model is representative for the system to represent is depended on 

the recorded data. The empirical model used by Muchow et al. (1998) requires extensive records of 

historic data. They used block data acquired over six years. In this research, the recorded data has a 

limited time span. Because of this limited time span of the historic yield and crop data for the sugarcane 

production in Rwanda, the empirical model is deemed unsuitable for the prediction of sugarcane yield.  

 

No day to day remote sensing imagery was available for the calibration of a mechanistic model. 

Furthermore, no in-field measurements were made of the sugarcane crop during the different 

phenological stages.  Due to the unavailability of the a large time-series of remote sensing imagery and 

in-field measurements, parameter calibration could not be carried. Parameter calibration is needed for 

a mechanistic model to properly make a prediction for sugarcane yield in Rwanda. Therefore, it is not 

possible to utilize a mechanistic model in this research  

 

The remaining option is to use a semi-empirical model. The semi-empirical model was chosen because 

of the minimum requirements of data input. The lack of available historic data can be mitigated with 

addition of the remote sensing imagery.  
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3.2.2. THE MODEL 

With the input of a VI and the PAR, the model 𝐺𝑃𝑃 ∝ 𝑉𝐼 × 𝑃𝐴𝑅𝑖𝑛 has been adopted by this project. 

The median VI over a plot was extracted out of the remote sensing imagery. The median was calculated 

per plot because the zones did not have remote sensing imagery available for all plots in that zone. This 

way, the mean production per hectare could be calculated per zone with the available plots. The median 

was chosen because of its robustness to outliers. The plot name and date of planting was added to the 

datasets of the plots for later visualisation. A temporal interpolation was made between the VI values 

to get the daily values of the median VI. These were then multiplied with the PAR to get the daily GPP 

values per plot. A summation was made of the daily GPP to get the total GPP per plot over the measured 

period (in this case 3 months). Next, a summation was made of the GPP in the plots and then divided by 

the number of plots to get the mean GPP in a zone. 

 

It is assumed the fields in a zone are all of a similar size, which in reality is not the case. This decision 

was made because the plots do not differ in size much. Weighing the plots according to size complicates 

the model, while it has minimal effect on the outcome of the model. This is because the plot sizes 

balance each other out. Using the historic yield data as an input, a linear model was fitted with linear 

regression.  

 

A distinction is made between sugarcane crops of certain age categories in a zone. Crops that have 

approximately the same age and are in the same phenological stage are put together into the same age 

category. This is done, because sugarcane growth is not constant during the different growth stages 

(chapter 2.3.2.). The first age category only has three months starting at 1 October 2014 and ending at 

31 December 2014. The second to the sixth age categories all have four months starting at 1 January 

2015. 

The flowchart in figure 2 shows the steps that were taken to come to the prediction of the production 

per age category per zone. All of these steps were carried out in the integrated development 

environment Rstudio for the programming language R. 
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Yield prediction per age category per zone 

 

FIGURE 2. FLOWCHART OF THE INDIVIDUAL STEPS TO PREDICT PRODUCTION PER AGE CATEGORY PER ZONE. DATA IS SHOWN IN DARK BLUE, 

WHILE PROCESSES ARE SHOWN IN LIGHT BLUE. 

Hence, the model to make a prediction of the production per age category per zone is as follows: 

𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑧𝑜𝑛𝑒 =  𝑎 + 𝑏 ∑ ∑ 𝑃𝐴𝑅𝑖𝑗  ∙  𝑉𝐼𝑖𝑗 

𝑛

𝑖=1

𝑚

𝑗=1

+  𝜀  

 

Productionzone represents the production in a zone in tonnes per hectare 

a represents the intercept 

b is the slope coefficient  

m represents the number of plots in a zone 

n represents the number of days between first and last measurement 

PARij represents the incident photosynthetically active radiation for field j, on day i  

VIij represents the vegetation index for field j, on day i 

Ɛ represents the stochastic remainder, which is deemed normally distributed with mean zero 

and standard deviation σ 
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3.2.3. VEGETATION INDEX 

This research used the green chlorophyll index (CIgreen) as a vegetation index. This VI has been chosen 

because CI green has a linear relation with total chlorophyll content and remains sensitive within a wide 

range of this chlorophyll content as can been seen in Figure 3 (Peng et al., 2011). The green chlorophyll 

index is calculated using the green band (560 nm) and the NIR band (830 nm) with the equation: 

𝐶𝐼𝑔𝑟𝑒𝑒𝑛 =  
𝜌𝑁𝐼𝑅

𝜌𝑔𝑟𝑒𝑒𝑛
− 1.  

 

FIGURE 3. RELATION CI GREEN WITH TOTAL CHLOROPHYLL CONTENT (PENG ET AL., 2011). 

3.2.4. METEOROLOGICAL DATA 

Photosynthetically active radiation (PAR) is the radiation between 0.4 and 0.7 µm that can be used by 

plants for photosynthesis. PAR is a fraction of all the incoming sunlight K↓. The PAR to K↓ ration can 

depend on factors such as visibility, optical depth and ozone amount (Frouin and Pinker, 1995). 

However, a value between 45% and 50% is commonly accepted to represent the amount of PAR the 

earth receives in 24 hours (Moran et al., 1995). For this research, a value of 48% was chosen similar to 

the research as Moran et al. (1995). This value has no influence on the predictive power of the linear 

model. The following function was used: 

𝑃𝐴𝑅 = 0.48 ∙ 𝐾↓24 

PAR represents the photosynthetically active radiation in Watt per square meter (Wm-2) 
K↓24 represents the amount of incoming sunlight in 24 hours in Watt per square meter (Wm-2) 
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First, to derive the PAR, we need data on incoming solar radiation. Second, the formula above was 

applied to the solar radiation to get the PAR on a specific day. Data used on incoming solar radiation 

was provided by aWhere and NASA power. To determine if the amount of solar radiation had influence 

on the outcome of the model both sources were used as an input.  

The data aWhere provides is collected all over the world from multiple meteorological data sources. 

Sources include satellite, Doppler radar, ground stations, private weather stations and global forecast 

models. The meteorological data was delivered without gaps in the time period. For more information 

about aWhere, the reader is referred to http://www.awhere.com/ 

The NASA power project is part of the applied sciences program set up by NASA to provide society the 

benefits of earth science, information and technology. A satellite measures solar energy fluxes which 

are used to study the climate and its processes. For more information about the NASA power project, 

the reader is referred to https://power.larc.nasa.gov/ 

3.2.5. CALIBRATION OF THE MODEL 

The historic yields per hectare at zone level are used to fit the model for different age categories. Fitting 

was done by performing linear regression using the ordinary least squares method. This was done using 

the function “lm”in R. The function takes a data frame as an input.  

With the gathered historic data about yield in tonnes per hectare at zone level and the date of planting 

for sugarcane at field level, the yield could be calculated for sugarcane that belonged one of the 6 age 

categories. There was no distinction made between ratooning crops and planted crops. Due to the small 

number of remote sensing observations of the plots, planted and ratooning crops had to be merged 

together to make the fitting of the model possible. For the same reason, a distinction between crop 

varieties was also neglected.  

The model was calibrated by first making the data frame in which the mean GPP for the plots in a zone 

and the historic yields were stored. The historic yields that were used were of the 2014 – 2015 season 

as a consequence of lacking historic yields in the season 2015 – 2016. The structure of the data frame 

for age category x resemble the structure specified below: 

Age category x: 

Zone Historic yield2014-2015  𝐺𝑃𝑃 (𝑉𝐼 ∙  𝑃𝐴𝑅)

𝑚𝑝𝑙𝑜𝑡𝑠
 

 

 

 

 

 

http://www.awhere.com/
https://power.larc.nasa.gov/
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3.3. DATA QUALITY INDICATORS 

3.3.1. MEASURED CI VALUES COMPARED TO SIMULATED PROFILE 

Viña et al. (2011) found a strong linear relation between green LAI and canopy chlorophyll content. They 

found the linear relation of  𝐶𝐼𝑔𝑟 = 1.677 ∙ 𝐿𝐴𝐼 +  0.994 between LAI and the green chlorophyll index. 

This relation was used to transform the LAI to the green chlorophyll index. This temporal profile of the 

green chlorophyll index of sugarcane was then calibrated to actual observations and used to be 

compared with the measured plots. 

In Figure 4, a LAI profile for the sugarcane in Rwanda computed with the WOFOST crop growth model 

(de Bruin, 2014) is shown. The LAI curve represents the potential growth, meaning the growth was not 

limited by draught, flooding, nutrient deficiency and diseases (de Bruin, 2014). The growth profile was 

not calibrated to the sugarcane varieties used in Rwanda; however, it was calibrated to achieve a 

growing period of approximately 18 months. This is when the maturity of the sugarcane crop is reached. 

The maximum LAI was reached between the 5th and 6th month after planting.  

 

FIGURE 4. TEMPORAL LAI PROFILE OF SUGARCANE SIMULATED BY THE WOFOST MODEL. THE PROFILE REPRESENTS POTENTIAL GROWTH. 

Using the relation found by Viña et al. (2011), the potential green chlorophyll index curve for sugarcane 

in Rwanda was constructed, which can be seen in Figure 5. The potential green chlorophyll index is the 

green chlorophyll index that can be reached under optimal growing conditions. The CI green was 

calibrated to observations of sugarcane plots in Rwanda acquired with a hyperspectral mapping system 

(HYMSY) that had been done by de Bruin (2015). The CI green was calibrated to 75% of the optimum 

LAI profile. This  simulated 75% profile was used as a means to compare measured CI green values of 

the plots in the remaining part of this research and was labelled as the simulated growth profile. The 
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transformation from the LAI from Figure 4 to the temporal green chlorophyll index produced the 

following graph presented in Figure 5 

 

FIGURE 5. TEMPORAL GREEN CHLOROPHYLL INDEX PROFILE DERIVED FROM THE SIMULATED LAI PROFILE. THE PROFILE REPRESENTS THE 

POTENTIAL GROWTH. 

The simulated growth profile of sugarcane was then compared with the measured CI green values of 

the plots of which the data was available for three consecutive months. A visual assessment was made 

between the measured growth profiles and the simulated growth profiles. The shape was evaluated of 

the individual growth curves and compared with the simulated growth curve. For example, a young crop 

can have exponential growth in the first five months. After that the VI is expected to decline gradually 

until 18 months. After that, fast deterioration was expected.  

 

 

 

 

 

 

 



20 

 

The measured CI green values were also compared with flood data shown in Figure 6, to see if the floods 

affected the CI green values. Data about the floods were recorded for the season 2015-2016. The figure 

shows when the river overflowed and affected plots in the vicinity of the river. Floods occurred in May 

of 2015 after which no floods occur for a couple of months. Regular floods occurred at the end of 2015 

and the beginning of 2016 until June.  

 

FIGURE 6. REGISTERED FLOODS IN THE PERIOD BETWEEN 1 OCTOBER 2014 AND 31 DECEMBER 2016. 

3.3.2. SPACE-TIME SUBSTITUTION 

In a space-time substitution, spatial phenomena are used to comprehend and model temporal 

processes (Blois et al., 2013) . In a space-time substitution it is assumed that temporal and spatial 

variation are equal. In this research, the lacking VI measurements over time for a plot, are compensated 

with the VI values of another plot in with sugarcane in another growth stage. 

This space-time substitution was done with all the plots were remote sensing imagery had been 

available for (also the plots that were not measured multiple times). The space-time substitution 

incorporates more plots and in that way differs from the combined plots (fig 6). The space-time 

substitution represents all individual plots measured. Not only the ones that had multiple measuring 

moments in time. The space-time substitution used more samples and gives a better overview of how 

the plots performed compared to the ideal growth situation. 
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A growth curve based on the space-time substitution was made by calculating the conditional mean 

using the LOESS method. This technique fits a smooth curve through points in a scatter plot using local 

weighted regression. To make a fit at point x, points are taken from the neighbourhood of x and 

weighted by their distance from x. The size of the neighbourhood was set at 0.75 (the default setting). 

This means that a proportion of 0.75 of the points are used. Weighting is done using the tricubic 

weighting: 1 −  ((
𝑑𝑖𝑠𝑡

𝑚𝑎𝑥𝑑𝑖𝑠𝑡
)3 )3 . 

Through visual assessment, the simulated growth profile (Fig. 5) was compared with the CIgr profiles of 

the space-time substitutions. The overall shape of the conditional means was evaluated, together with 

the extent of the VI values.  

3.3.3. MODEL ACCURACY 

The fitting function “lm” in R gives a prediction of the yield in tonnes per hectare. At the same time, the 

fitting function gives the R2. The R2  expresses how much variation in the yield can be predicted by the 

independent variables (GPP and solar radiation). The R2 has been used as in indicator for the model 

accuracy in this research. 

A prediction with the historic yield data and the mean GPP per zone per age category as an input, was 

made using the predict function in R. The prediction interval was set 95% and 75%. The output of the 

predict function is a mean prediction, a lower limit and an upper limit in which the yield can be predicted 

with 95% certainty or 75% certainty. 

3.3.4. REMOTE SENSING IMAGERY 

The outcome of the model is dependent on the quality of the input imagery. The imagery was delivered 

by the company Milan Innovincy. The remotely sensed imagery was visually inspected. Irregularities 

were looked for within plots and between plots. Irregularities could be large differences between plots, 

sharp lines between two plots and spots with outliers. Furthermore, the median green chlorophyll index 

values at plot level were compared with the index values of a green chlorophyll index growth curve at 

the specific age of that plot. This way, the state of the sugarcane crop can be examined.  

Remote sensing imagery acquired on  the campaign of August 2016 was checked on the calibration of 

the remote sensing imagery. This already had been done in research by the de Bruin (2016).  
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4. RESULTS 
In this chapter, first the VI values of fields that have been measured three times are given and compared 

with the simulated VI values of sugarcane during the growth cycle. Additionally, a space-time 

substitution is shown of the VI values of all measured plots. These are also compared with the optimum 

growth cycle. Then a prediction is made of the sugarcane yield for several age categories and zones. 

Theses prediction are shown along with the accuracy of the prediction. Lastly, the remote sensing and 

meteorological data are assessed. 

4.1. GROWTH PROFILES 
The combination of all the VI profiles of the individual plots are shown in Figure 7. It shows temporal 

profiles of the median CIgreen at plot level for plots having three measurement moments in time. The 

green line represents the simulated CIgreen profile.  

 

FIGURE 7. TEMPORAL GREEN CHLOROPHYLL INDEX PROFILES OF ALL THE INCLUDED SINGLE PLOTS ( INDICATED WITH THE RED COLOUR) MEDIANS 

AT PLOT LEVEL. ALSO SHOWN IS THE SIMULATED GROWTH PROFILE (INDICATED WITH THE GREEN COLOUR). 

In Figure 7, the combined plots departed greatly from the simulated CI green growth curve. In the first 

two campaigns measured CIgr medians at plot level were typically far below the simulated curve while 

the third campaign produced several unrealistically high values. Furthermore, from the age of 6 months, 

a 39 out of the 83 plots showed an increased green chlorophyll index compared with a decrease in the 

simulated growth profile.  
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In Figure 7, plot 6 in zone Ruyenzi-2 is indicated in the colour cyan. In this plot, the green chlorophyll 

index rose from 3 to 15. Transforming the CI green back to the LAI using the relation Viña et al. (2011) 

found, this would imply an increase in the LAI from 0.8 to 8.0 in a period of two months at the end of 

the growing cycle. In contrast, the simulated growth profile declined from a green chlorophyll index of 

8 to 3 (LAI from 3.8 to 0.8 ). In figure 7, plot 6 is not the only plot that showed an increase where the 

simulated growth profile showed a decline. Plots in other zones show similar patterns, meaning it is not 

bound to only one zone. 

The purple line in Figure 6 shows plot 23 in zone 24, where the green chlorophyll index declined after 

which it increased again. Comparing it with the simulated growth profile, the decline of the single plot 

was very steep. The increase from month 13 to month 14 does not coincide with the simulated growth 

profile.  

4.2. SPACE-TIME SUBSTITUTION 
In the following figures the green chlorophyll index is shown over time for all the plots that were 

measured. The plots are categorized by their zones. 

 

FIGURE 8. CI GREEN VALUES OF ALL THE PLOTS MEASURED IN JUNE. THE BLUE LINE RESPRESENTS THE CONDITIONAL MEAN. 

Figure 8 shows the measurements made of the plots in June. He blue line represents the growth curve. 

The line starts at a green chlorophyll index of 1, which is the same as the simulated growth curve. 

However, after the first month there is no rapid incline of the growth curve. Also, the green chlorophyll 

index values only go as high as four, which is low when compared with the simulated growth curve. The 

oldest age of an individual plot is around 21 months. 



24 

 

 

 

 

FIGURE 9. CI GREEN VALUES OF ALL THE PLOTS MEASURED IN AUGUST. THE BLUE LINE REPRESENTS THE CONIDTIONAL MEAN 

 

Figure 9 shows the measurements of the plots made in August. The plots still show a low green 

chlorophyll index. The growth curve shows an upwards movement from week 90 caused by an outlying 

field in zone Ruyenzi-1 around month 25.  
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FIGURE 10. CI GREEN VALUES OF ALL THE PLOTS MEASURED IN SEPTEMBER. THE BLUE LINE REPRESENTS THE CONDITIONAL MEAN. 

Figure 10 shows the measured plots in September. Around week 40, week 72 and week 90 a lot of high 

green chlorophyll index values are visible. When comparing the plots of zone 24, zone 26 and zone 

Ruyenzi-2 with the same plots measured in August, a sharp increase in the CI green values are visible.   

The conditional mean of the green chlorophyll index in September still does not reach much higher than 

four. Even with the high values of zone 24, 26 and Ruyenzi-2.  
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FIGURE 11. CONDITIONAL MEAN OF THE CI GREEN OF EACH MEASUREMENT CAMPAIGN. 

In Figure 11 the conditional means of all measurement campaigns are plotted against each other. What 

is noticeable is that all the profiles have a different shape. The June profile grows till its peak is reached 

at 14 months, after which it declines. The august profile grows till the age of nine months after which it 

declines, till it starts growing again at the age of 21 months. The September profile grows till ten months. 

After that is a short dip at 13 months. Then at the age of 18 months it reached its peak again and declines 

till the age of 27 months.  

 

FIGURE 12.CONDITIONAL MEANSS OF THE CI GREEN OF EACH MEASUREMENT CAMPAIGN TOGETHER WITH THE SIMULATED GROWTH PROFILE 

OF SUGARCANE. 
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When the growth profiles are compared to the simulated green chlorophyll index in Figure 12, it can be 

seen that they do not resemble each other. The simulated growth profile reaches its peak at six months 

with a value of 14, while the highest value of one of the growth profiles reaches 4.5. 

4.3. MODEL ACCURACY 
In Figure 13, the incoming solar radiation in megajoule per square meter per day is displayed for both 

aWhere and NASA power. The black line represents the solar radiation measured by aWhere. The red 

line represents the solar radiation measured by NASA power. 

 

FIGURE 13. SOLAR RADIATION MEASURED BY AWHERE AND NASA POWER FOR THE COORDINATES LONGITUDE 30.1355 AND LATITUDE -1.9641 

WHICH REPRESENTS THE AREA IN WHICH THE STUDY AREA LIES. THE DATA WAS COLLECTED BETWEEN 1 OCTOBER 2014 AND 1 JANUARY 2017. 

The black line of the data collected by aWhere differs from the data collected by NASA power in a way 

that there is a more seasonal pattern in the data collected by aWhere. The aWhere data shows a peak  

in measured solar radiation around march. The solar radiation is lowest around July. The data collected 

by NASA power does not show this seasonal pattern.    

The tables below represent the predicted yield for the mean 𝐺𝑃𝑃 ( ∑ 𝑉𝐼 ∙ 𝑃𝐴𝑅 ) per age category per 

zone. The results were obtained using the meteorological data acquired of both aWhere and NASA 

power. 

Fit represents the mean predicted yield. The lower (LWR) and upper (UPR) represent the lower and 

upper limit in which the yield can be predicted with a pre-determined certainty. In this case a prediction 

is made of the yield with 95% certainty and 75% certainty. For age category 1 (date of planting between 

1 October 2014 and 31 December 2014); R2 amounted to 0.5. 
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TABLE 4.  PREDICTIONS AGE CATEGORY 1. FIT REPRESENTS THE MEAN PREDICTED VALUE OF THE SUGARCANE YIELD IN TONNES PER 

HECTARE. LWR AND UPR REPRESENT RESPECTIVELY THE LOWER AND UPPER BOUNDERY IN WHICH THE YIELD CAN BE PREDICTED WITH A 

PRE-DETERMINED CERTAINTY (IN THIS CASE 95% AND 75%).   

ZONE METEO  FIT LWR 95 % UPR 95%  LWR 75% UPR 75% 

26  aWhere 62.03 -575.50 699.56 -59.10 183.16 

RUGALIKA aWhere 115.11 -575.04 805.26 -16.02 246.24 

RUYENZI aWhere 76.35 -50.98 655.68 -33.72 186.42 

26 NASA 62.89 -675.69 801.47 -77.44 203.23 

RUGALIKA NASA 109.38 -657.84 876.61 -36.39 255.16 

RUYENZI NASA 81.22 -564.20 726.63 -41.42 203.85 

R2 age category 1 aWhere: 0.50.  R2 age category 1 NASA power: 0.36. 

TABLE 5. PREDICTIONS AGE CATEGORY 2. 

ZONE METEO FIT LWR 95% UPR 95 % LWR 75% UPR 75% 

24 aWhere 97.57 -112.77 307.91 19.18 175.96 

26 aWhere 93.95 -100.80 288.70 21.37 166.53 

RUGALIKA aWhere 81.98 -114.79 278.75 8.65 155.32 

RUYENZI aWhere 79.50 -127.97 286.98 2.18 156.83 

24 NASA 87.14 -120.87 295.14 9.62 164.66 

26 NASA 87.02 -124.32 298.37 8.26 165.79 

RUGALIKA NASA 89.71 -129.05 308.47 8.18 171.24 

RUYENZI NASA 89.14 -113.08 291.35 13.77 164.50 

R2 age category 2 aWhere: 0.07.  R2 age category 2 NASA power: 0.002. 

TABLE 6. PREDICTIONS AGE CATEGORY 4. 

ZONE METEO FIT LWR 95% UPR 95 % LWR 75% UPR 75% 

24 aWhere 95.80 -88.08 279.68 27.27 164.33 

26 aWhere 101.62 -97.84 301.08 27.28 175.96 

RUGALIKA aWhere 82.87 -97.23 262.98 15.75 150.00 

RUYENZI aWhere 72.71 -134.30 279.74 -4.44 149.87 

24 NASA 104.92 -29.46 239.30 54.84 155.00 

26 NASA 103.21 -29.72 236.14 53.67 152.75 

RUGALIKA NASA 92.39 -34.86 219.64 44.97 139.82 

RUYENZI NASA 52.49 -106.32 211.29 -6.70 111.67 

R2 age category 4 aWhere: 0.16.  R2 age category 4 NASA power: 0.56. 

For all the zones in the age categories, the lower boundary 95% (LWR 95%) and upper boundary 95% 

(UPR 95%) are far apart, meaning there is a wide range in which the yield can be predicted with 95% 

certainty. The lower boundary suggests the yields would be negative, with the upper boundary the yields 
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could go up to 805.262 tonnes per hectare. Even for the lower and upper boundary at 75% certainty, 

the values are far apart. Zone Rugalika in age category 4 has the smallest width, ranging from 15.750 to 

149.997. 

Both values are highly unrealistic, with registered yields of approximately 70 tonnes per hectare for 

planted crops and approximately 80 tonnes per hectare for ratooning crops. This wide range is an 

indicator that the model is not accurate. This could also be deduced from the low R2.  

While the R2 values of the age categories with the NASA power data differed from the age categories 

with the aWhere data, the range of the yield prediction is still very wide for each age category. The R2 

of 0.5642 for age category 4 was the highest R2 in the results. However, the lower boundary for 95% is 

negative for all zones and the upper boundary lies above 200. For 75% certainty the lower boundary 

comes close to the registered yields of 70 and 80 tonnes per hectare for the zones 24, 26 and Rugalika. 

The upper boundary still lies way above these registered yields as well as realistic yields in the region.   
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4.4. REMOTE SENSING IMAGERY 
When doing a first reconnaissance of the remote sensing data a few things stand out. First of all, when 

visually assessing the green chlorophyll index for, in this case Rugalika-1a in June, there sharp 

differences between the individually measured plots. In Figure 14 it can be seen that there were large 

differences between different plots with a sharp line dividing the fields, with the plots on the left that 

are more bright than the plots on the right. This sharp line suggest differences in the primary acquired 

data, in this case the different wavelengths. This indicates that the measuring circumstances varied.  

Furthermore, in the remote sensing data there were some far outliers. In Figure 15, the green 

chlorophyll index went as high as 663.  

 

FIGURE 14. CI GREEN IN RUGALIKA. SHARP DIFFERENCES CAN BE OBSERVED BETWEEN AREAS THAT WERE MEASURED DURING DIFFERENT 

FLIGHTS AT THE SAME MEASUREMENT CAMPAIGN. 
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4.4.1.  CALIBRATION OF REMOTELY SENSED IMAGERY 

To calibrate the measuring equipment, targets with a pre-set reflectance across all wavelengths were 

used. Those targets have a flat response at 6% and 33% reflectance and are placed in the field. In 

previous research by de Bruin (2016), indicators of image quality from point pairs were contrived. The 

point pairs were acquired over the calibration targets.  

de Bruin (2016) found that the responses fluctuated from the lines of 6% and 33% reflectance. The 

reflectance was not a linear line, but varied throughout the spectrum. For the 6% reflectance, the green 

band usually had a small overestimation (0.5% – 1% overestimation) while the NIR had a greater 

overestimation (2% – 6% overestimation). At the 33% reflectance, the green band had a greater 

underestimation (2% – 33% underestimation), while the NIR had a smaller underestimation (1% – 3% 

underestimation). On the whole, the reflectance of 6% tended to be overestimated, while the 

reflectance  of 33% were underestimated. These dispositions affect VIs near absorbance and reflectance 

bands producing lower VI values.  

 

 

 

 

 

 

 

 

FIGURE 15. THE GREEN CHLOROPHYLL INDEX IS DISPLAYED FOR A PLOT. THE YELLOW AND RED AREAS SHOW EXTRAORDINARY VALUES FOR THE 

VI. 
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5. DISCUSSION 
In this chapter the adopted model will be evaluated. Its constraints and how these could have an effect 

on the outcome of the model are discussed. Furthermore, the results of the model are assessed 

together with the data quality.  

5.1. EVALUATING THE MODEL 

Regarding the model (section 3.2.2.), one could argue the light use efficiency (LUE) model 𝐺𝑃𝑃 ∝ 𝑉𝐼 ×

𝑃𝐴𝑅𝑖𝑛 is a suitable model to accurately predict sugarcane yield. It is arguable that the yield of a crop 

can be predicted using a linear model with two variables: the vegetation index of a crop and the 

incoming photosynthetically active radiation. Peng and Gitelson (2012) found an instantaneous relation 

between GPP and 𝑉𝐼 × 𝑃𝐴𝑅𝑖𝑛 in soybean and maize. The relation for sugarcane GPP and vegetation 

index times photosynthetically active radiation may vary from the relation soybean and maize have. The 

model used in this research does not take into account this factor which leaves the question if this model 

represents sugarcane growth accurately.  

5.2. DATA LIMITATIONS 

Firstly, the calibration of the model (section 3.2.5.) depended on historic data. Historic data was 

available for this research, but not for every zone. Furthermore, the timescale of this data was very 

limited, including only two seasons. Historic yields over a longer time scale are required to properly 

calibrate the model, because the model currently is heavily dependent on the yields of the two seasons. 

The measured yields could deviate from yields due to negative or positive contemporary factors. The 

time scale of the remote sensing measurements should be assessed in further research. 

A major constraint in the model is the limiting number of VI observations. The measurements made in 

the months July, August and September were deemed to represent the whole growth cycle. The VI is 

an indicator about crop status, but over a small time scale the crop status cannot represent the whole 

growth cycle. When predicting the sugarcane yield, a time-series of the whole growth cycle is a 

prerequisite. Any influences that happened before or after the measurements were taken were not 

accounted  for in the yield prediction. An assessment on how many remote sensing observations over 

the growth period are required for the model to properly represent crop growth should be made.  

The data of NASA power and aWhere do not follow the same trends. It is hard to tell which one lies 

closest to the reality because there were no measurements with the required time scale available that 

were made at the location itself. Both sources use different methods to acquire the incoming solar 

radiation. 

Despite the large differences in solar radiation, the impact of the solar radiation is minimal on the 

outcome of the model. This is due to GPP per day per plot being summed to a total GPP over 3 months 

per plot (see Fig. 2). This makes the incoming photosynthetically active radiation less significant if the 

source provides the PAR in a consistent fashion.     

Some other inconsistencies in the data prevented the model from giving more reliable results: 
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● Not all the plots in the zones were incorporated in the model for that specific zone, because no 

remote sensing imagery was available for all 3 measuring campaigns for these plots. Depending 

on the data availability for a plot, the plot was incorporated into the model. To increase the 

accuracy of the prediction of the yield of a zone, incorporation of all the fields would benefit 

the model.  

● No distinction was made between planted crops and ratoon crops. As a consequence of no data 

being available for the plots in a zone for a certain age category. Dividing the model to represent 

planted and ratoon crops could increase the accuracy of the model.  

● The spatial scale of the model used in this research is at zone level. Delécolle et al. (1992) argued 

that assessment of large agricultural regions should be performed at field level, since other 

factors like crop variety and soil type could vary. Calibrating at field level requires historic yield 

data for each field which was not available for this research. This would increase accuracy in 

future attempts to predict yield.  

5.3. EVALUATING THE RESULTS 

In the space-time substitution, the plots of the conditional mean do not resemble the plot of the 

simulated growth profile (Figure 10). The mean value of the combined plots was constantly lower than 

that of the simulated growth profile. The sharp increase in the first few months is missing. Furthermore, 

the plots of the individual fields do not follow the shape of the simulated growth profile at any time. 

The conditional means of all the plots are not higher than a green chlorophyll index of five. Also, the 

shape does not match the shape of the simulated growth profile.   

When inspecting the individual plot 6 in the zone Ruyenzi-2 (the cyan line in Figure 7), the growth curve 

does not look anything like the simulated growth curve. It is expected for the sugarcane to have a 

declining green chlorophyll index from around the 15th month (∼450 days). However, the plot in Figure 

5 has a sharp increase in the green chlorophyll index. This would imply a LAI increase from 0.795 to 

7.951 in a period of two months at the end of the growing cycle. Compared to the simulated growth 

profile, this is not credible.  

The individual plot 23 in zone 24 (the purple line in Figure 7) shows a decline in CI green after which it 

increases again. This is unusual for the age of the crop.  

Plot 23 in zone 24 was planted at 1 July 2015. The moments of measuring were at June, August and 

September 2016. During this period no floods were recorded (Fig. 6). The decline of the green 

chlorophyll index is not related to floods according to flood data, which means other factors account 

for unrealistic values of the green chlorophyll index. 

Two reasons could contribute to the individual plots not resembling the simulated growth profile: the 

age of the crop is communicated wrong or something went wrong with the calibration of the measuring 

equipment.  
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In chapter 4.4.1. it is shown that the calibration of the measuring equipment hadn’t been properly. The 

dispositions lowered the CI green values for that measuring campaign.  This explanation seems plausible 

in the case of the remotely sensed imagery that was obtained in Rwanda. The mean and median CI 

green values are consistently lower than the simulated growth profile. Also, when inspecting Figure 11, 

difference between lines of flights can be observed which indicates flawed calibration of the measuring 

equipment.  
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6. CONCLUSIONS AND RECOMMENDATIONS 
In this chapter, following the points that are made in the discussion, the research question are 

answered. Succeeding the conclusions, a couple of recommendations are made to improve the 

prediction of sugarcane yield in future research. 

1. What are existing methods for predicting sugarcane harvest yield using remotely sensed data?  

 

Implementation of remotely sensed data is possible in empirical, semi-empirical and mechanistic 

models. However, remotely sensed imagery is not a necessity for an empirical method since such a 

method is based on historic data about yield at a specific location and specific growing conditions. In 

mechanistic methods, it is possible for remotely sensed imagery to be an input. For the prediction of 

yield, remotely sensed imagery is a crucial component in the semi-empirical model. 

2. What inputs and parameters are needed for implementing these methods? 

 

Depending on the model, inputs range from historic yield and conditions to input of the mechanistic 

nature. Inputs for the empirical model are based on historic measurements of the crop. Crop class, area, 

yield, harvest age and harvest month are all variables used to predict yield in the empirical method. For 

the mechanistic method, all variables that explain yield can be added to make a model. Soil data, 

weather data, crop data, and management data are all potential inputs. For the method that was used 

in this research, crop data - acquired out of a remote sensing image - in the form of the green chlorophyll 

index was used. The incoming solar radiation was multiplied with the median green chlorophyll index in 

a plot to get the GPP for a day in that plot. Then, this was multiplied with the number of plots in a zone 

and the number of days in the growth period to predict the gross in a zone over a certain period of time.  

3. Given data availability within the “Sugar: make it work” project, which is a viable model for 

predicting sugar cane yields? 

 

The Light use efficiency (LUE) model – where the gross primary product of the sugarcane crop is 

proportional to the green chlorophyll index multiplied with the photosynthetically active radiation 

( 𝐺𝑃𝑃 ∝ 𝑉𝐼 × 𝑃𝐴𝑅𝑖𝑛 ) – was the most suiting model. Comparing the available data with the 

requirements of the model, the semi-empirical approach was the most convenient and applicable 

method. However, given the poor accuracy of the model, it is arguable if even this method is viable for 

predicting the yield. Given that there are doubts about the consistency and accuracy of the data, no 

method will currently be able to predict the yield accurate enough for KSW to be useful.  

4. Are the available data suitable for obtaining accurate yield predictions using the selected 

model? 

Very low accuracy was achieved with the chosen model. The R-squared of the models for the different 

age categories did not exceed 0.5. For this research, this low value of the R2 is not sufficient. The 95% 

prediction intervals for yield extended from -88 to 280 in the best case. The 75% prediction intervals 

extended from 27 to 164 Both prediction intervals indicate large uncertainty about yields using currently 
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available data in combination with the LUE approach. This range is useless when estimating how much 

sugarcane at one moment will be delivered to the sugarcane factory for processing. KSW aims to have 

the model predict the yield within a margin of 10 tonnes per hectare. With the results of the chosen 

model, this is not viable. In future endeavours to predict sugarcane yield, the data has to be more 

consistent, accurate and precise. Otherwise, no model will be able to make an accurate estimation of 

the yield. 

For the prediction of sugarcane yield, quality of data plays an important role. For the data to be useful 

it has to be consistent and accurate. Flying regularly (having more time-steps) will aid the calibration of 

the model to get a more accurate result of the predicted yield. Assessment of how many time-steps are 

required should be assessed in further research. In order to avoid inconsistency in the image data, 

calibrating the measuring equipment using a reflectance panel each mission is a prerequisite. 

Additionally, a database with general information about the historically obtained yields, floods, diseases, 

crop variety, date of planting and if the crop is planted or ratooned will aid the model to give more 

accurate yield predictions (per crop class). Storing information about the historic yield per hectare per 

zone over a longer time will aid in the calibration of the model. Monitoring general information and 

keeping track of the yields that have been obtained in the past per hectare per zone is happening 

already. This is a step in the right direction and has to be further developed. 

To measure incoming solar radiation, equipment is needed at a location adjacent to the sugarcane plots. 

A measuring device at each zone would be preferable to make accurate predictions for each zone.  

With the requisition of more data, the opportunity arises to implement other models. With the 

collection of soil data, management data and additional environmental data, mechanistic models like 

SUCROS and LINTUL will be able to make a yield prediction. Adding remote sensing and weather data 

could provide real-time data on crop status. Real-time information about crop status provides 

possibilities to counter negative influences on crops.  

A reliable model is conceivable using accurate remote sensing data, weather data, the date of planting 

of the sugarcane and area of a plot. This data is already collected. A lot of progress can be made, when 

data is more carefully acquired. 
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