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Abstract

In many developing countries there are no systems for alarming farm-
ers of the risk of plant diseases and insect pests. The growth, and therefore
risk of plant diseases and pests are mainly related to weather conditions.
Insects require an accumulation of heat, while diseases are also dependant
on sufficient moisture availability. The relationships between meteoro-
logical variables and the development of insects and plant diseases are
used in simple, species-specific models. Unfortunately, in most develop-
ing countries meteorological observations, used as input in such models,
are lacking or of questionable quality. I have investigated whether an
alternative source of meteorological data are suitable: the analysis and
forecast data from the Global Forecast System (GFS) from the National
Centres for Environmental Predictions. In areas with a strong topography
temperature and relative humidity are highly variable in space. In such
areas the spatial resolution of the GFS data are too coarse for obtain-
ing localised risk indices. Therefore I have applied and validated several
methods to downscale the GFS data to a kilometre scale level, methods
which are based on a high resolution Digital Elevation Model. To validate
the downscaling methods, I have made use of an extensive observational
network in Washington State (USA). I have then analysed how sensitive
insect en disease models are to the quality of the meteorological data. I
have shown that using downscaled data significantly improves insect pest
prediction compared to using uncorrected GFS data. However, GFS data
are less suitable for predicting disease risk due to the systematic underes-
timation of relative humidity in cropland areas.
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1 Introduction

In many developing countries insect pests and plant diseases can cause major
economical damages to the agricultural sector (Food and of the United Nations,
2001). Farmers are usually solely dependent on their own knowledge and expe-
rience concerning the mitigation of these hazards. An example is the depart-
ment of Santa Cruz, Bolivia. With 13% of Bolivia’s Gross Domestic Product
originating from agriculture and 32% of Bolivians’ occupations related to agri-
culture (Central Intelligence Agency, 2015), the agricultural sector is of major
importance to the country of Bolivia. With an estimated 45% of the population
living below the poverty line of $2/day (Central Intelligence Agency, 2015) suc-
cessful harvests are essential. However, structural pest and disease monitoring
is lacking and plagues may come without warning, causing harvest losses.

Fortunately, several simple models are available that predict the development of
plant diseases and insects as their growth largely depends on atmospheric con-
ditions (Rosenzweig et al., 2001). Insects for example require a certain amount
of accumulated heat to be able to develop and are thus dependent on air tem-
perature (Ludwig, 1928). Plant diseases, on the other hand, are more complex
and require, depending on the species, a certain humidity, air temperature, du-
ration of leaf wetness and/or precipitation (West et al., 2012). Combining these
relationships with meteorological data as input these models can keep track
of the current pest and disease risk and predict the timing of organisms’ de-
velopmental stages. For example, an insect model may indicate when insect
eggs start hatching. The larvae may then feed on, and damage, crops. This
is necessary information for farmers to know the right timing for applying pest
management. More advanced insect and disease models exist (e.g. Sankaran
et al. (2010); Tonnang et al. (2017)) but will not be treated in this thesis, as
they require more advanced, localised input data.

Figure 1: Example of how stations in developing countries may be of ques-
tionable quality due to a lack of maintenance. Left: A meteorological sta-
tion which is partly overgrown by uncut grass. Right: An example of air
temperature data from three stations, some of which show large gaps. All
examples shown are from meteorological stations in Santa Cruz, Bolivia.
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The general idea of simple insect pest and disease models is quite straight-
forward, but there is one major problem. In many developing regions, such
as Bolivia, the required meteorological observations to feed these models are
scarce. Even if they are present they might be of insufficient quality (Figure 1).
Financial resources to maintain stations might be lacking, which inhibits a con-
tinuous data provision. Concluding, there is a need for providing meteorological
data which does not depend on the presence of local meteorological observations.

In this study I will investigate whether the output from General Circulation
Models (GCM) can be used as an alternative source for meteorological data
for pest and disease modelling. Every day GCMs assimilate observational data
from extensive sources worldwide. These are then used to create an analysis
and forecast dataset completely covering the Earth, consisting of fields of var-
ious meteorological variables. I will use the analysis and forecast dataset of
the National Centres for Environmental Prediction (National Centers for Envi-
ronmental Prediction, 2015), which is created with the Global Forecast System
(GFS). This dataset is freely available and accessible world-wide, which makes
it especially attractive for application in developing regions.

Using the output from GFS, or any GCM model as is, may however not always
be suitable for agricultural use. Currently, GFS is available on a horizontal
resolution of 0.25 x 0.25 degrees. However, in areas with a strong topography
weather is spatially very heterogeneous and this resolution may not be sufficient
for application on the field, for which information on a localised, kilometre-scale
level would be much more suitable (Figure 2).

Figure 2: Example of the spacial heterogeneity of elevation (left) and land
use (right, specific land use categories not shown). The grid in red repre-
sents the resolution of the GFS data.

Therefore, the first step of my research will be to spatially downscale the GFS
data using a high resolution Digital Elevation Model. Downscaling temperature
based on elevation is done using a lapse rate which describes the change of tem-
perature with height. Often, these lapse rates are fixed at -6.5 °C/km (Lundquist
and Cayan, 2007; Maurer et al., 2002; Stahl et al., 2006). However, using the

4



vertical temperature profile that is incorporated within GFS may give a bet-
ter estimation of the true lapse rate, as it may vary with time and space. In
this thesis, several methods for defining this model-internal lapse rate will be
implemented and used to downscale temperature and, related to that, relative
humidity. The downscaled GFS data will be validated using an extensive mete-
orological network in Washington State (USA), an area which hosts the Cascade
mountain range. Finally, I will evaluate pest and disease models using down-
scaled GFS data and see if the downscaled GFS data are of sufficient quality to
be used on a field-scale level. My prime motivation of this thesis is to help farm-
ers in Santa Cruz, Bolivia, gain resilience to insect pests and diseases, but the
research done in this thesis could be applied in mountainous areas worldwide.
I divide my research into the following research questions:

1. How can coarse analysis and forecast data be downscaled to a local, kilo-
metre scale level?

2. How do downscaled data compare to observations?

3. How sensitive are disease and pest models to the accuracy of the meteoro-
logical data input?

This thesis first describes the data sources in Chapter 2. I will elaborate on
how to use this data to answer my research questions in Chapter 3. The results
are presented and discussed in Chapter 4. I will then provide an overarching
discussion and put my results into perspective in Chapter 5 and draw conclusions
based on my research in Chapter 6.

2 Data description

2.1 Site and meteorological network description

To validate downscaled analysis and forecast data I made use of an extensive
meteorological network situated in Washington State in the mountainous North-
West of the USA. The Cascade mountain range divides the state in the two dis-
tinct regions: a mild, marine western Washington and a dry, continental eastern
Washington (Figure 3). The main large-scale weather pattern is characterised
by prevailing westerly winds that transport moisture into the marine west of
Washington and precipitates out on the wind-ward slopes of the mountains.
This leaves relatively warm and dry air to reach the Columbian plateau in east-
ern Washington. Average annual rainfall is extremely variable and ranges from
approximately 5000 mm (200 inches) near the highest mountain peaks to 200
mm (8 inches) in the driest areas in the Columbian plateau (Figure 3).

The meteorological network in Washington State is maintained by AgWeath-
erNet (WSU, 2017). Variables measured include air temperature, relative hu-
midity, pressure, wind, rainfall, soil moisture and temperature, solar incoming
radiation and leaf wetness. Not every station measures all of these compo-
nents, though air temperature is always included. To ensure continuous air
temperature data, each stations has two thermometers incorporated, usually
the Rotronic HC2S3 and a Campbell 107 temperature probe. In total I used
meteorological data of 165 stations for the whole year of 2016. The data have a
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Figure 3: Left: Topographical map of Washington State, main topograpic
units are displayed (Google Earth, 2017). Right: Map showing average
annual precipitation in inches in Washington State from 1961-1990 (UCAR,
2017)

.

temporal resolution of 15 minutes which are produced from averaging 5-second
readings over a 15-minute window. I downsampled this data to a 3-hourly res-
olution in order to validate the 3-hourly GFS data. Most weather stations are
located in valley positions, in or near agricultural fields (Figure 4 and 5).

Figure 4: Elevation map for Washington State, with elevation in meters
above sea level. The dots denote the locations of meteorological stations.
The magenta dots denote stations that did not pass the quality check (Sec-
tion 2.2).

The Digital Elevation Model (DEM) I used in this study is the ASTER Global
Digital Elevation Model (NASA JPL, 2009). This DEM covers the entire earth
with a 30 m pixel size. The elevation in Washington State ranges from sea level
to 4392 m a.s.l., the height of the highest mountain of the state: Mount Rainier
(Figure 4). To obtain detailed information on the elevation of the meteorologi-
cal stations, the DEM is slightly upscaled to a resolution of 1.8” (approximately
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Figure 5: Land Cover map of Washington State. The legend shows ab-
breviated land use classifications in subsequent order: Unclassified, Crop-
land/natural vegetation mosaic, Urban and built-up, Croplands, Grass-
lands, Mixed forest, Evergreen Needleleaf forest and Water. The dots
denote the locations of meteorological stations. The magenta dots denote
stations that did not pass the quality check (Section 2.2).

50 meridional metres).

The land use map used in this thesis is the MODIS Land Cover map (Friedl
et al., 2010). I used the most recent, 2012 land cover dataset with a spatial
resolution of 5’ x 5’, approximately 0.083 degrees or roughly 9 x 9 km. A
large part of Washington State, mainly the marine region to the west and the
mountainous areas, is covered by forests. The Columbian Plateau in the East
is intensively used for agriculture, with interconnected crop fields and pivots
that extend up to tens of kilometres in length. The agricultural area is mostly
surrounded by (dry) grasslands. Vancouver to the South-West and Seattle in
the North-West are the main urban areas and smaller cities can be found mostly
on the Columbian Plateau (Figure 5).

7



2.2 Quality check of meteorological stations

First, I will discuss the data reliability of the meteorological stations followed
by the effect of urban areas on the temperature.

All stations are equipped with two thermometers. If the temperatures recorded
by both thermometers differ too much from each other, the data are considered
unreliable. These data are not used for validation. To filter out unreliable data
I performed a systematic quality check for each station, per day and per month.
The daily and monthly filters are applied in order to validate on a daily and
seasonal basis.
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Figure 6: Example of data filtering for station WSU Othello. Red and blue:
Air temperature1 - Air temperature2, with red the data that is labelled as
unreliable. Black: The resulting air temperature data that passed the
quality test.

First, a daily quality check was done, with the following criteria for filtering
out unreliable data:

• At least 10% of the measurements show a difference between the temper-
ature of thermometer 1 and thermometer 2 of more than 0.5 °C.

• There is at least one instance where the difference in temperatures is larger
than 1 °C.

• One or more measurements are missing.

If during a day one or more of the criteria is met, the whole day is filtered out
and every measurement is replaced with a dummy value. Hereafter, a monthly
quality check was done, with the following criterion:

• At least 10 days fully consist of dummy values.

If this criterion is met, the temperature measurements of the whole month is
replaced with dummy values. This ensures that for a monthly validation suffi-
cient reliable observations are present. An example of the data filtering is given
in Figure 6. For pressure and relative humidity such data filtering is not possi-
ble, as for each of these variables there is only one measuring device. However,
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pre-existing dummy values within the dataset are not used for validation. Next
to checking the reliability of temperature readings using the aforementioned fil-
tering procedure, I left out stations which are located within or near urban areas.

Urban areas are sensitive to the urban heat island (UHI) effect. Compared
to the surrounding rural areas cities are warmer, especially during night (Oke,
1982). As the spatial resolution of the GFS model may not always be sufficient
for incorporating the UHI effect, the modelled temperatures will in general be
too low (Figure 7). As the error caused by the UHI is dominant over the error
due to elevation differences I did not use stations in or near urban areas for the
validation process. For selecting such stations I used the USGS land cover map
described earlier. 11 stations were labelled as urban in de land cover map and
15 stations were in close proximity to urban or built areas.
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Figure 7: Bias error (T2mGFS − T2mobs) throughout the day, averaged for
2016, for two exemplary urban stations: Seattle and Vancouver. The hour
of day is given in Local Winter Time (LWT). I adjusted for elevation dif-
ference using a lapse rate of -6.5 °C/km.

Next to the 26 urban or near-urban stations, 2 stations did not fulfil the quality
criteria throughout the whole year of 2016, leaving 137 stations for validation.

2.3 GFS analysis and forecast dataset

I investigated whether analysis and forecast data of a General Circulation Model
(GCM) can substitute for meteorological observations and subsequently be used
for insect and disease modelling. The analysis and forecast dataset I used is
the NCEP GDAS/FNL (Final) 0.25 Degree Global Tropospheric Analyses and
Forecast Grids dataset ds083.3 (National Centers for Environmental Prediction,
2015). This dataset is created using the same model as the Global Forecast
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System (GFS) but it is initialised one hour later in order to incorporate approx-
imately 10% more observational data (Peng, 2015). As a consequence the final
analyses are somewhat delayed but provide the most realistic global analysis.

The analysis and forecast dataset has a temporal coverage starting July 2015
and is archived until a near-current date, approximately until 5 days to the
current date. For every 6 hours, in addition to an analysis, a 3-, 6-, and 9-hour
forecast is made. I will make use of the 6-hourly analyses and the accompanied
+3 hour forecasts for obtaining a dataset with a temporal resolution of 3 hours.
The spatial resolution is 0.25 by 0.25 degrees and covers the entire globe. A full
description of the dataset can be found on NCEP’s website (National Centers
for Environmental Prediction, 2015). In the remainder of this thesis I refer to
this dataset using GFS as an abbreviation.
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3 Methodology

3.1 Spatial downscaling of analysis data

In heterogeneous areas plant pest and disease models are most effective when
providing output on a local, kilometre-scale. However, the GFS data have a rel-
atively coarse horizontal resolution of 0.25 x 0.25 degrees that cannot capture
local, field-scale variability. To overcome this problem I will downscale the GFS
analysis and forecast data. In simple insect and disease models temperature is
the most important variable. Next to temperature, relative humidity can play
an important role for disease modelling. In the following I will discuss method-
ologies for downscaling these variables as well as pressure, which is needed to
downscale relative humidity. For validating the downscaling techniques, I down-
scale GFS data to a resolution of approximately 50 m and only to the sub-grids
in which meteorological stations are located. This will minimize errors caused
by the uncertainty of the elevation of a station and reduce computational power
and memory.

3.1.1 Temperature

Air temperature decreases with height. Using the air temperature of the GFS
grid cell and combining this with high resolution elevation data, using a certain
lapse rate, the GFS data can be downscaled to a sub-grid level. After defining
a lapse rate, Γ, the temperature at sub-grid i, j, having a specific elevation,
follows from Equation 1:

Ti,j = TGFS + Γ×∆zi,j (1)

With TGFS being the GFS analysis temperature [°C], Γ being the lapse rate
[°C/km] and ∆zi,j being the difference in height [km] between the sub-grid i, j
and the GFS grid, thus:

∆zi,j = zi,j − zGFS (2)

For defining the lapse rate several methodologies exist. The easiest and fastest
way is to define a fixed lapse rate. A commonly used lapse rate is -6.5 °C
km−1 (Lundquist and Cayan, 2007; Maurer et al., 2002; Stahl et al., 2006).
This does not account for spatial, nor for temporal variability of the lapse rate.
Another approach is to compute a lapse rate by interpolating temperature mea-
surements at varying elevations (Stahl et al., 2006). This is however not a real-
istic option for regions with no or scarce observations. A more complex method
which accounts for both spatial and temporal variation in the lapse rate is to
use the GCM-internal lapse rate, as has been done with the ERA-Interim re-
analysis dataset by Gao et al. (2012). He showed that using a model-internal
lapse rate reduced the root-mean-square error by 32% compared to when using
a literature-based, monthly lapse rate.

To obtain a model-internal lapse rate one must choose upper and lower iso-
baric levels of which the difference in temperature and geopotential height are
used according to Equation 3.

Γ =
Tup − Tlow

gphup − gphlow
(3)
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With Tup and Tlow being the temperature [°C] at the upper and lower boundary
of the chosen atmospheric layer defined by gphup and gphlow [km]. For every
grid cell and for every 3 hours, the GFS dataset consists of vertical pressure
levels of which temperature and geopotential height are modelled.

Figure 8: Schematic representation of the different methods used for defin-
ing a model-internal lapse rate. The lapse rate is obtained from the tem-
perature and geopotential height at certain pressure levels (orange lines,
specific levels are depicted for the Weighted method only but the same lev-
els apply for each method). Using the model-internal lapse rate the GFS 2
m temperature at the height of the GFS grid (zGFS) is downscaled to the
temperature the height of the sub-grid (zi,j).

I will evaluate several methods for using the GFS temperature profile and geopo-
tential heights to calculate model-internal lapse rates. Next to using model-
internal lapse rates (Figure 8), I will test the usage of a fixed lapse rate. All
downscaling methods are summarised in Table 1. The Fixed and Gao method
are based on literature, whereas the subsequent methods are novel methods
introduced in this study. In the following the methods are discussed in more
detail.

Fixed
The first method is to simply use a spatio-temporally fixed lapse rate of −6.5
°C/km.

Gao
The second method is based on Gao et al. (2012) and is therefore simply re-
ferred to as the Gao method. Gao separates the atmosphere into two layers
that are controlled by two different processes. Down in the valley, Gao assumes
the atmosphere to be mostly controlled by a local circulation pattern, whereas
aloft the atmospheric flow can be described by a free air flow. He makes this
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Table 1: Summarised description of the methods for defining a lapse rate.

Method Description
Fixed Lapse rate fixed at -6.5 °C/km
Gao zi,j < 1500 → gphup: 850 hPa; gphlow: 925 hPa

zi,j > 1500 → gphup: 700 hPa; gphlow: 850 hPa
Local First GFS pressure level above and below zGFS

Local Skip As Local, but lower and upper level move one level
vertically upwards

Parallel Use GFS’ Tprofile(2m) and interpolate to zi,j . Main-
tain bias T2m − Tprofile(2m)

Weighted Interpolate all layers of the Tprof from 650 to 1000
hPa to sublayers of ∆z = 50m and calculate the
lapse rate for every sub-layer. Sort lapse rates and
calculate mean of the interquartile range

separation at 1500 m a.s.l., approximately the geopotential height of the 850
hPa pressure level. Based on the sub-grid elevation, zi,j , he then calculates
either a ’free atmospheric’ or ’local’ lapse rate. If the sub-grid is located lower
than 1500 m a.s.l., gphup and gphlow are set to 850 and 925 hPa respectively.
If the sub-grid is located higher than 1500 m a.s.l, gphup and gphlow are set to
700 and 850 hPa respectively.

Local
The first novel method, Local, was defined to assess the effect of using only a
shallow atmospheric layer of the GFS temperature profile to define a localised
lapse rate. This method uses the first GFS pressure level above and below the
height of the GFS grid, zGFS as the upper and lower boundary, respectively.

Local Skip
The fourth method, Local Skip, is the same as Local, however the upper and
lower level are shifted one level upwards. The idea behind this method is to not
incorporate pressure levels that are located below the GFS surface. The GFS
model calculates a temperature profile down to 1000 hPa even in mountainous
regions where surface pressure is always lower. If, for example, the upper and
lower level for a certain sub-gird as defined by the Local method are 750 and
700 hPa, the upper and lower level for the Local Skip method are 700 and 650
hPa.

Parallel
The fifth method, Parallel, makes use of the vertical temperature profile of GFS
(Tprof,GFS) and linearly interpolates the profile to the sub-grid elevation zi,j .
The lapse rate itself is thus not explicitly calculated. The 2 m temperature of
GFS may not always coincide with the temperature of the profile interpolated
to 2 m above the GFS surface. This bias, T2m − Tprofile(2m), is maintained.
The most likely reason for this bias is that surface processes are incorporated
in the calculations of the GFS 2 m temperature, but not in the vertical tem-
perature profile. The vertical temperature profile represents a modelled state of
the atmosphere if no topography were present, whereas the 2 m temperature is
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calculated incorporating surface processes and maintaining the surface energy
balance.

Weighted
The last method, Weighted, makes use of the whole atmospheric layer that
comprises the elevation range of Washington State (except for the two highest
mountain peaks). Opposite to the Local methods, here I used a broad atmo-
spheric layer to calculate a weighted lapse rate, from 650 hPa down to 1000
hPa. These levels are fixed regardless of the elevation of the GFS grid. In real-
ity the surface of a GFS grid may be located above the 1000 hPa pressure level.
Despite this, these levels are fixed in order not to introduce uncertainties in the
validation of this method that originate from a variable layer from which the
lapse rate is calculated.

The vertical temperature profile from 650 to 1000 hPa is interpolated to sub-
layers with a ∆z of 50 m. For each of the sub-layer a lapse rate is calculated.
The resulting weighted lapse rates are then sorted based on their magnitudes
and the final lapse rate is calculated from the mean of the interquartile range,
i.e. all lapse rates between the 25th and 75th percentile. This is to ensure that
outliers do not influence the eventual lapse rate.

3.1.2 Relative humidity and pressure

To downscale relative humidity (RH), I assume the specific humidity q [kgv/kgd]
to be conserved. This is true if no diabatic processes or changes in air mass oc-
cur. RH at height zi,j can be calculated from pressure and temperature. As
I assume q to remain constant, q at 2 m can be directly obtained from the
GFS dataset, while the pressure and temperature at the sub-grid are obtained
by downscaling. For a complete derivation of the following equations I refer
to Moene and van Dam (2014).

First, the pressure at the height of a sub-grid, pi,j [Pa], is calculated by ap-
plying Equation 4:

pi,j = pGFSe
−g∆zi,j/R<T> (4)

With g the acceleration due to gravity [9.81 m s−2], temperature < T > taken

as the average temperature of the considered column (=
TGFS+Ti,j

2 ) in [K] and
pGFS the GFS surface pressure [Pa]. Then, the saturated water vapour pressure,
es [Pa] at temperature Ti,j , is obtained from Equation 5:

es(Ti,j) = 611.2 exp

[
17.62(Ti,j − 273.15)

−30.03 + Ti,j

]
(5)

The water vapour pressure ei,j [Pa] can be obtained by rewriting Equation 6:

qi,j = qGFS =
ρv
ρ

=
R

Rv

ei,j
pi,j
≈ Rd

Rv

ei,j
pi,j

(6)

With ρ being the total air density [kg m−3], ρv the water vapour density [kg
m−3] and R the specific gas constant [J kg−1 K−1], with subscript d and v for
dry air and water vapour respectively. As q � 1, R ≈ Rd. Using the downscaled
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es and e from Equation 5 and 6, the relative humidity at height zi,j is calculated
from Equation 7.

RHi,j = 100× ei,j
es(Ti,j)

(7)

3.2 Insect and disease models

3.2.1 Insects

Insects are ectotherm organisms, meaning their internal temperature is the same
as their surroundings. Throughout the life cycle of an insect, from egg to larva,
from larva to pupa and finally egg-laying adults insects are dependant on heat to
grow. For example, when the temperature is below a species-specific threshold,
a hibernating pupa will not yet evolve to its adult form. When the temperature
exceeds the lower threshold the growth rate generally increases linearly with
temperature. Depending on the species above a certain temperature the growth
rate does not increase anymore, perhaps slows down or even ceases.

The heat accumulation required to fulfil a certain life stage has shown to be
fairly constant per species (Bursell, 1964). Keeping track of the air tempera-
ture allows one to predict fairly well the timing of certain developmental stages.
Knowledge on the current status of an organism’s development is crucial for
successfully timing pest management.

Figure 9: The concept of degree day accumulation. Degree days (in grey)
are accumulated when the temperature exceeds a certain minimum tem-
perature threshold. (Adapted from University of California (2016))

Using temperature data as input the aforementioned concept is used to define
simple insect models. These empirical models are based on species-specific heat
accumulations required for completing developmental stages. The specific heat
accumulations have been found from conducting lab experiments and are usu-
ally validated in one or multiple regions.

Heat accumulation is expressed as a unit of temperature times a unit of time.
Often, degree days (DD) are used. When the temperature is above the lower
threshold by 1 degree for 24 hours, 1 DD has been accumulated. This concept
is visualised in Figure 9. The start date to keep tracking the degree day ac-
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cumulation differs per model. Some models simply start accumulating degree
days on a fixed calendar date, other models start accumulating when a ’bio-fix’
occurs, e.g. the first time an insect has been spotted in the field, or caught in a
trap.

In some insect models not only a lower temperature threshold is defined, but an
upper threshold as well. Different methodologies exist for defining how temper-
atures exceeding the upper threshold affect population growth. These so-called
cut-off methods are shown in Figure 10. If an insect model assumes growth
to remain constant after exceeding the upper threshold a horizontal cut-off is
applied. The growth rate is then no longer increasing with increasing tempera-
ture, nor does the growth rate decrease. Insect populations may also be affected
negatively by temperatures exceeding the upper threshold. If at too high tem-
peratures the growth rate slows down, an intermediate cut-off is applied. For
some insects, too high temperatures may even be fatal and cease growth com-
pletely. Then, a vertical cut-off is used.

Figure 10: Different cut-off methods. (Adapted from University of Cali-
fornia (2016))

In this research I have used one exemplary insect model to assess the applica-
bility of downscaled GFS temperature for insect modelling: the Western cherry
fruit fly. Ali Niazee (1979) experimentally obtained a model which provides the
amount of degree days that are required to fulfil developmental stages (Table
2). The Western cherry fruit fly requires a temperature of at least 5 °C in order
to develop. In this model, there is no upper temperature limit for development.
The degree day accumulation starts on a fixed calender date, March 1.

Table 2: Degree-day accumulations required for each stage of development
of the Western cherry fruit fly. The degree days are accumulated from
March 1 onwards. (Ali Niazee, 1979)

Stage DD (°C×day)
First adult spring emergence 462

Beginning of egg-laying 541
Egg hatch 594

50% adult spring emergence 631
Peak egg-laying 685

Pupation 795
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3.2.2 Diseases

Plant diseases are caused by viral, bacterial or fungal pathogens. Contrary to
insect development the growth and spread of pathogens is more complex and
is influenced not only by temperature, but often by (relative) humidity, rainfall
and/or leaf wetness duration as well (University of California, 2016; West et al.,
2012). Typically, the relative humidity has to be high enough (e.g. > 90%) for
a plant disease to develop.

As an exemplary disease model, I will use an adapted model of Ullrich and
Schrödter (1966) for Late Blight on potatoes. This model calculates a weekly
risk of Late Blight using hourly data of temperature and relative humidity. For
every week the hour sum when relative humidity requirements are met are mul-
tiplied by a multiplication factor which depends on temperature. All multiplied
hour sums are then added up to generate a weekly risk value. If the risk value
exceeds 150 disease is expected (Table 3). This adapted model, contrary to the
original, does not contain a rainfall requirement.

The model shows two peaks for the multiplication factor, one around 11 de-
grees and one around 21 degrees. This bi-modal behaviour stems from the
optimal temperature which is lower for germination and infection on the one
hand, and higher for pathogen growth on the other hand. The range of tem-
peratures Late Blight requires for development is between 9 and 24 °C. The
risk for blight increases when the period of consecutively high relative humid-
ity is longer. During unfavourable conditions of low relative humidity, the risk
decreases.
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Table 3: Adapted Late Blight model (Ullrich and Schrödter, 1966). The
risk for Late Blight is calculated per week based on hourly relative humid-
ity and temperature data. For every week the hour sum (h) when certain
requirements (right column) are met combined with a certain temperature
range (middle column) is multiplied by a multiplication factor (r, left col-
umn). The resulting 14 r × h values are then summed to obtain a weekly
risk value. If the risk value exceeds 150 disease is expected.

Multiplication
factor (r)

Number of hours hourly
temperature averages are
in this range (h), or other

conditions to be met

RH requirements, or
other conditions to be

met

0.899 10.0 - 11.9
Only count hours that
co-occur with 4 or more
consecutive hours at
RH>=90%.

0.4118 14.0 - 15.9
0.5336 16.0 - 17.9
0.8816 18.0 - 19.9
1.0498 20.0 - 21.9
0.5858 22.0 - 23.9
0.3924 10.0 - 11.9

Only count hours that
co-occur with 10 or more
consecutive hours at
RH>=90%.

0.0702 14.0 - 15.9
0.1278 16.0 - 17.9
0.9108 18.0 - 19.9
1.4706 20.0 - 21.9
0.855 22.0 - 23.9

0.1639 15.0 - 19.9
Do not consider RH or
rain, add 7.5479 to the

product of r x h

0.0468
Number of hours with

average RH < 70%
Subtract 7.8624 from the

product of r × h
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3.3 Statistical model validation

For statistically validating the model results against data from meteorological
stations I have made use of two difference measures: The root-mean-square
error (RMSE) and the bias error. Whereas the bias gives a good indication of
a systematic error, the RMSE is used to assess the performance of downscaling
methods. If elevation differences between the meteorological station and the
GFS grid are dominant in determining the error, the subsequent systematic
cold or warm bias will be corrected for after downscaling. This will then reduce
the bias error as well as the RMSE. In the following, O refers to the observed
variate obtained from the meteorological stations, while P refers to the GFS
model-predicted variate. The RMSE is calculated from:

RMSE = [N−1
N∑
i=1

(Pi −Oi)
2]0.5 (8)

The bias error is calculated from:

Bias = N−1
N∑
i=1

(Pi −Oi) (9)

4 Results

This chapter presents this research’s results and interpretation. First, I will
discuss the uncorrected and downscaled GFS 2 meter temperature in Section
4.1 and the 2 meter relative humidity in Section 4.2. As this concerns validation
only, GFS data was only downscaled to sub-grids which contain meteorological
stations. Except when explicitly stated, stations that did not pass the quality
test, the urban stations as well as two unreliable stations, were not used for
obtaining the following results.

Finally, the use of either observed, uncorrected and downscaled weather data
for insect and disease modelling will be discussed in Section 4.3 and 4.4.

4.1 GFS 2 m Temperature

The GFS 2 m air temperature is downscaled to the elevation of a sub-grid
by applying adiabatic warming or cooling following a certain lapse rate. The
performance of GFS when no downscaling is applied is assessed in Section 4.1.1.
First, the area as a whole is considered after which the focus shifts to stations
with |∆zi,j | < 30 m. For these stations, errors are hardly influenced by elevation
differences. This is followed by the performance of GFS when downscaling is
applied in Section 4.1.2. As the downscaling methods are based on elevations
differences, the methods are validated using only stations with |∆zi,j | > 100
m. For these stations, elevation differences are relatively more important in
determining the bias of GFS.

4.1.1 GFS performance without downscaling

First I will discuss the overall performance of the GFS model, considering all
meteorological stations for the whole year 2016. This includes urban as well
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as two unreliable stations. Before applying downscaling methods, the spatio-
temporal mean of the RMSE of the GFS 2 m temperature is 2.5 °C, with a
standard deviation (σ) of 0.7 °C. This is the mean of all 165 meteorological
stations over the whole year of 2016.

However, the RMSE varies with space and time. The spatial variation of
the time-averaged RMSE can be seen in Figure 11. The lowest accuracy, or
highest RMSE, can be found in mountainous areas with a strong topography
(mean RMSE: 3.5 °C). This is to be expected as large elevation differences
will cause rapid spatial temperature differences. Nevertheless, also areas with a
relatively weak topography, the marine lowlands in the west (mean RMSE: 2.0
°C) and the stations on the Columbian Plateau (mean RMSE: 2.3 °C) show
considerable errors which may partly be related to land-use related effects.

It was to be expected that a strong topography will cause a high RMSE. In-
deed, for stations positioned relatively high in the landscape (high meaning
higher than the GFS grid elevation), GFS overestimates the 2 m temperature
and vice versa (Figure 12). However, for each station the bias shows a sig-
nificant temporal variation as indicated by the error bars. The temporal bias
variation can have several explanations: the performance of the GFS model is
not constant throughout time, cooling or warming due to local phenomena are
time-dependant (e.g. irrigation during the growing season), the lapse rate is
not constant, but variable in time or other processes are present that determine
the error. Literature on the upper air climatology of the United States already
show a seasonal variation of lapse rate (Kunkel (1988) and Ratner (1957)) with
higher (drier) lapse rates in summer and lower (more moist) lapse rates in win-
ter. These climatological lapse rates and the observed lapse rates in Washington
State are plotted in Figure 13. The seasonal variation of the lapse rate in Wash-
ington State shows a similar behaviour compared to the literature-based clima-
tology, however the summer pattern is distinctly different. This is likely to be
explained by irrigation, which will be further elaborated upon in the Discussion.

The variability of the GFS performance is assessed using the temperature obser-
vations from stations with a |∆zi,j | < 30 m. For these stations errors are hardly
caused by elevation differences. In total, 31 such stations exist. These stations
show a similar land use distribution compared to the land use distribution of all
stations, regardless of the station elevation (Figure 14). This ensures that the
stations selected to assess the performance of the GFS model are representative
for the whole observational network used to assess the downscaling methods.
Note that the land use distribution of the meteorological stations in general is
not the same as the land use distribution of the area as a whole (Figure 14). As
the observation network is used mostly for agricultural purposes, the stations
are biased to being located in the vicinity of crop fields.
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Figure 11: The time-averaged RMSE of the GFS 2 m temperature before
applying downscaling methods. Upper panel: Background of the land use
map; lower panel: Background of the DEM. The symbols denote the sub-
area: diamonds for marine stations, triangles for mountainous stations and
squares for stations in the Columbian Plateau. Black circles denote stations
that are classified as Urban and built up, or are situated in the vicinity of
urban areas. All 165 stations are incorporated in this figure, including the
28 stations that did not pass the quality test.
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Figure 12: Mean bias error (T2mGFS−T2mobs) for each station (black dots)
versus ∆zi,j (=elevation station - elevation GFS). The error as a function
of ∆zi,j is computed using simple linear regression with intercept (y). The
error bars indicate the 25th and the 75th percentile of the error throughout
2016. Urban stations are not included, as well as 2 stations of poor quality,
leaving 137 stations.
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Figure 13: Temporal variability of the adiabatic lapse rate. Red: Observed
monthly lapse rates for Washington State. These were obtained by apply-
ing simple linear regression to the stations’ monthly bias versus their ∆zi,j,
interpreting the regression slope as the lapse rate, similar to the slope of y
in Figure 12. Stations used were non-urban and had an absolute value for
∆zi,j larger than 100 m. Blue: Climatology of lapse rates for the United
States, calculated by Kunkel (1988) from upper-air measurements from
Ratner (1957).

Figure 14: Land use distribution for stations used to assess the temporal
performance of GFS, with an absolute ∆zi,j smaller than 30 m (left) and
the land use distribution of all stations (right). Note that urban stations
are not used for assessing the GFS model performance, and are thus not
shown in these pie charts.
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Figure 15 shows the temporal variability of the bias of GFS separately for crop-
land and non-cropland stations. Even though ∆zi,j is too small to matter (a
super-adiabatic lapse of -10 °C would at most cause a 0.3 degree bias) there
is a significant bias between the model and observation. In general, the model
overestimates the 2 m temperature, especially for cropland stations. A clear
exception is 16 LWT, when on average hardly any bias is present. This may
however be caused by known a deficiency in the GFS model: the rapid de-
coupling of the boundary layer after sunset, followed by a too rapid cool-down
(Personal communication with Grace Peng, NCEP). During night the spread of
the bias is large for non-cropland stations but consistently warm for cropland
stations. Throughout the year, the warm bias is strongest in summer for crop-
land stations whereas December and January show a slight cold bias regardless
of land use type. This will be discussed in Section 5.
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Figure 15: Bias (T2mGFS−T2mobs) for stations with |∆zi,j | < 30 m. The hour
of day is given in Local Winter Time (LWT). For each box, the central mark
is the median, the edges are the 25th and 75th percentile and the whisker
includes all points not considered outliers. Data beyond approximately 2.7
standard deviations from the median are considered outliers and denoted
with red ’+’-symbols. All data, including outliers, are shown.
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4.1.2 GFS performance with downscaling

I have validated the downscaled GFS data against stations with a |∆zi,j | > 100
m. This is done because for these stations elevation differences play a dominant
role in the systematic bias of GFS. The performance of the different methods
is assessed using only those instances when, for a given time step, all methods
give a realistic lapse rate, realistic defined as −10 < Γ − 3. To ensure a fair
comparison the statistics are based on model output when all methods provide
a realistic lapse rate simultaneously. All sample sizes are in this way equal.
Similarly, the original, uncorrected GFS data are used for the statistics only
when all lapse rates are realistic. In this way, also the sample size for the un-
corrected GFS data is equal to those of the downscaling methods. This ensures
that any reduction in RMSE is solely caused by downscaling, and not by a
decrease in sample size. Spatially averaged, realistic lapse rates are calculated
simultaneously during 45% of the time. First, I will assess the performance of
the downscaling methods based on the reduction in RMSE with respect to the
uncorrected GFS data. I will do this separately for stations with a ∆zi,j > 100
m and subsequently for stations with a ∆zi,j < −100 m. One should keep in
mind that the GFS model is already biased towards warmer temperatures, most
clearly during daytime and in the summer months (Figure 15).

Using stations with a ∆zi,j > 100 m, the daily and yearly variation of RMSE
for uncorrected and downscaled GFS data is given in Figure 16. For these sub-
grids, the GFS 2 m temperature is adiabatically cooled. Throughout the day,
downscaling is most effective in the morning and the early afternoon with a
RMSE reduction of approximately 0.5 °C. During these hours, GFS performs
relatively well and shows a slight warm bias (see Figure 15). As GFS performs
better during day, elevation differences will become more dominant in deter-
mining the bias. In addition, the slight warm bias (also Figure 15) makes the
adiabatic cooling extra effective. Due to the 16 LWT cool bias, downscaling only
slightly decreases the RMSE. At night, the RMSE reduction is less significant,
or even slightly increasing (19 LWT). Throughout the year, downscaling is most
effective during spring and autumn, while for the summer months the reduction
is lower. In December and January, the already present cold bias is increased
by adiabatic cooling. This further increases the RMSE when applying down-
scaling. This is likely to be caused by irrigation and snow coverage, which will
be discussed in Section 5. When ’going up’, applying downscaling reduces the
RMSE by 12 to 15% (Table 4). The differences among downscaling methods
are small. The Parallel method is most effective when ’going up’.

Using stations with a ∆zi,j < −100 m, the daily and yearly variation of RMSE
for uncorrected and downscaled GFS data is given in Figure 17. When going
down, the air is warmed adiabatically. Interestingly, downscaling is now more
effective during night than during day. During day, the already warm bias is
aggravated by applying adiabatic warming. Apparently, the pre-existing warm
bias is stronger than a cold bias caused by elevation differences. During night,
for sub-grids with ∆zi,j < −100 m there is on average a strong cold bias (not
shown). This is effectively reduced by applying downscaling. However, even
after adiabatic warming GFS still shows a night-time cold bias for around half
of the stations, regardless of land-use. For these sub-grids GFS exaggerates
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night-time cooling. This may be caused by the too rapid de-coupling of the
boundary layer after sunset that the GFS model produces. Throughout the
year all methods decrease the RMSE, except for the month of August. Likely,
this originates from irrigation. When ’going down’, applying downscaling re-
duces the RMSE by 15 to 18% (Table 5). The differences among downscaling
methods are small. The Fixed method is most effective when ’going up’.
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Figure 16: The RMSE for the original and downscaled 2 m temperatures
throughout the day (upper figure, hour of day in given in Local Winter
Time (LWT)) and throughout the year (lower figure), assessed for stations
with ∆zi,j > 100 m. For these stations, the average ∆zi,j is equal to 159 m.

Table 4: RMSE of the 2 m temperature before (Original) and after ap-
plying downscaling, and RMSE reduction compared to the original RMSE.
Assessed for stations with ∆zi,j > 100 m.

Method RMSE (°C) RMSE red. (%)
Original 2.16 -
Parallel 1.83 15.2
Local 1.84 14.7
Weighted 1.86 13.5
Fixed 1.87 13.4
Local Skip 1.87 13.3
Gao 1.90 12.1
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Figure 17: The RMSE for the original and downscaled 2m temperatures
throughout the day (upper figure, hour of day in given in Local Winter
Time (LWT)) and throughout the year (lower figure), assessed for stations
with ∆zi,j < −100 m. For these stations, the average ∆zi,j is equal to -258
m.

Table 5: RMSE of the 2 m temperature before (Original) and after apply-
ing downscaling, and RMSE reduction compared to the original RMSE.
Assessed using stations with ∆zi,j < −100 m.

Method RMSE (°C) RMSE red. (%)
Original 2.93 -
Fixed 2.39 18.2
Weighted 2.42 17.4
Parallel 2.42 17.3
Gao 2.44 16.6
Local Skip 2.45 16.5
Local 2.48 15.4
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Downscaling reduces the RMSE, both when adiabatically going upwards and
downwards. Differences between downscaling methods, only looking at RMSE
reduction, were no larger than a few percent. The aforementioned statistics
were only based on those instances when all methods provide realistic lapse
rates. When calculated lapse rates are unrealistic, in practice they will be set
to a fixed number, for example lapse rates >-3 °C/km can be set to -3, and
rates <-10 °C/km to -10. Another option is to fix the lapse rate to -6.5 °C/km.
If one has to adjust the lapse rate often, the method is not very robust. The
robustness of each method can be quantified by calculating how often the lapse
rate is unrealistic. This is calculated using only the stations with |∆zi,j | > 100
m. The results are shown in Table 6. The Local Skip method is the least robust,
only in 63% of the time it gives realistic lapse rates. The Weighted method has
the highest occurrence of realistic lapse rates, after the Fixed method, which
has a prescribed lapse rate and is therefore always robust.

When the methods do give realistic lapse rates, the mean lapse rates among
different methods do not differ too much (Table 7). The Gao method produces
the strongest lapse rate, whereas the Weighted methods calculates on average
the weakest lapse rate. When focussing on lapse rate variability the Local Skip
method produces the most variable lapse rates. The reason for this is that the
local methods only use a thin layer of the atmosphere to calculate the lapse rate.
Over short distances the profile may be erratic and the lapse rate fluctuating
rapidly. On the other hand the Weighted method is, among the model-internal
lapse rates, the least variable. This method takes a much larger part of the
vertical profile into account and calculates a smartly weighted lapse rate.
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Table 6: Overall percentage of occurrences each method generates a real-
istic lapse rate, realistic defined as being in between -10 and -3 °C/km.

Method Mean occurrence
(%)

Standard devia-
tion (%)

Fixed 100 0
Weighted 97 1
Parallel 86 17
Gao 79 9
Local 77 16
Local Skip 63 11

Table 7: The average and standard deviation of the generated lapse rates
when methods provide a realistic lapse rate, realistic defined as being in
between -10 and -3 °C/km.

Method Mean
lapse rate
(°C/km)

Std
(°C/km)

Weighted -6.3 1.3
Fixed -6.5 0
Parallel -6.5 1.6
Local -6.6 1.6
Local Skip -6.7 2.1
Gao -6.9 1.9

The Weighted method effectively reduces the RMSE while being both vari-
able (through space and time) and robust. Therefore, I consider the Weighted
method to be most suitable for downscaling temperature. Before downscaling
68% of the temperature bias could be explained by ∆zi,j (R2 = 0.68, Figure
12). After downscaling the temperature bias is no longer related to ∆zi,j , which
shows from the small regression coefficient and R2 value (Figure 18). Before
downscaling, the GFS warm bias, which can be deducted from the intercept,
was 0.25 °C. This warm bias is not related to ∆zi,j and thus remains practically
unchanged.

The Weighted method will be used to downscale relative humidity in Section
4.2. The downscaled temperature and relative humidity using the Weighted
method will be applied for insect and disease modelling in Section 4.3 and 4.4
respectively.
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Figure 18: Mean bias error (T2mGFS−T2mobs) for each station (black dots)
versus ∆zi,j after downscaling using the Weighted method. The error as a
function of ∆zi,j is computed using simple linear regression with intercept
(y). The error bars indicate the 25th and the 75th percentile of the error
throughout 2016. Urban stations are not included, as well as 2 stations of
poor quality, leaving 137 stations.
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4.2 GFS 2 m Relative humidity

Before downscaling the GFS 2 m relative humidity (RH) in Section 4.2.2, I
will first assess the performance of GFS 2 m RH in Section 4.2.1. The focus
is first laid upon the validation of uncorrected GFS data against all stations
(except urban and unreliable stations). Then the focus shifts specifically to the
GFS performance assessed using stations with a |∆zi,j | < 30. The downscaling
methods are finally validated using all stations.

Often disease models require hourly relative humidity input, therefore the fol-
lowing analysis is based on GFS 3-hourly relative humidity data that has been
linearly interpolated to 1-hourly data. The use of non-downscaled, downscaled
and observed relative humidity for disease modelling will be discussed in 4.4.

4.2.1 GFS performance without downscaling

Relative humidity is related to temperature and decreases with increasing tem-
perature (keeping the specific humidity constant). It is to be expected that
relative humidity is overestimated when the GFS temperature has a cold bias,
as cold air can contain less water vapour and vice versa. The bias of relative
humidity versus ∆zi,j is given in Figure 19. It can be seen that indeed the
bias of relative humidity is, through temperature, related to ∆zi,j . What first
strikes the eye is that, for all stations, GFS underestimates the relative humid-
ity, which can be seen from the intercept. On average, the RH underestimation
is 6.6%. When distinguishing between cropland (-8.6 %) and non-cropland (-
4.1%) stations, the underestimation is more than twice as large for cropland
stations. This difference can be explained by extensive irrigation in agricultural
areas. Compared to the temperature bias (Figure 12), a smaller portion (31 %
for all stations) of the relative humidity bias can be explained by ∆zi,j . This
means other factors, land use being the most obvious one, influence the RH
bias. Especially for cropland stations, other factors are more dominant. Only
26% of the bias can be explained by ∆zi,j , whereas for non-cropland stations
this is 38%. An additional reason for the low R2 for cropland stations, is that
irrigation itself can be rather variable. Some stations are located in more or less
intensely irrigated area and have a stronger or weaker influence on the RH bias.

-800 -600 -400 -200 0 200

dZ [m]

-30

-20

-10

0

10

20

B
ia

s
 [
%

]

y = -6.6 + -0.02x; R
2
 =0.31

Data

y

-800 -600 -400 -200 0 200

dZ [m]

-30

-20

-10

0

10

20

B
ia

s
 [
%

]

y = -8.6 + -0.019x; R
2
 =0.26

Data

y

-800 -600 -400 -200 0 200

dZ [m]

-30

-20

-10

0

10

20

B
ia

s
 [
%

]

y = -4.1 + -0.018x; R
2
 =0.38

Data

y

Figure 19: Relative humidity bias (GFS 2 m RH - observed RH) versus
∆zi,j. Left: all validation stations; middle: the 70 stations with land use
’Croplands’, right: 67 non-cropland stations. Red lines denote the linear
regression lines (y).
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Next, I will assess the temporal variability of the performance of the GFS 2
m RH. To this end I validate the GFS relative humidity against observed rela-
tive humidity, using stations with |∆zi,j | < 30 m. The bias variation throughout
the day and throughout the year is given in Figure 20, separately for cropland
and non-cropland stations. For all stations, the bias and its variation is smallest
during day-time. GFS generally underestimates relative humidity, especially in
cropland area. For croplands, this underestimation seems to increase through-
out the year, until December. This suggests that GFS, assuming little or no
irrigation in the area, steadily depletes soil moisture throughout the year. By
that, the evaporative capacity of the land surface and consequently the rela-
tive humidity is reduced. In reality the irrigation in cropland area compensates
for the soil moisture deficit, keeping the soil well-watered and evaporation not
limited by water availability.
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Figure 20: Bias (GFS 2 m RH - observed RH) throughout the day (left) and
year (right) for stations with |∆zi,j | < 30 m. Upper panel: Bias for croplands
(16 stations), lower panel: Bias for non-croplands (14 stations). The hour
of day is given in Local Winter Time (LWT). For each box, the central mark
is the median, the edges are the 25th and 75th percentile and the whisker
includes all points not considered outliers. Data beyond approximately 2.7
standard deviations from the median are considered outliers and denoted
with red ’+’-symbols. All data, including outliers, are shown.
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4.2.2 GFS performance with downscaling

The bias of downscaled relative humidity against ∆zi,j is shown in Figure 21
for all stations and separately for cropland and non-cropland stations. The
systematic dry bias, which can be deducted from the intercept, is not related to
∆zi,j . Therefore, this dry bias remains more or less the same after downscaling.
What downscaling does change, is that it eliminates the height-temperature-
relative humidity relationship. This can be seen from negligibly small R2 and
regression coefficient. However, as the systematic dry error persists, the RMSE
does not decrease after downscaling, but remains the same at 13.7%. How this
dry error affects disease modelling, for which the input of relative humidity (or
related) variables is necessary, will be discussed in Section 4.4.
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Figure 21: Relative humidity bias (GFS 2 m RH - observed RH) versus ∆zi,j
after downscaling using the Weighted method. Left: all validation stations;
middle: the 70 stations with land use ’Croplands’, right: 67 non-cropland
stations. Red lines denote the linear regression lines (y).

4.3 Insect modelling

In this section I will discuss the use of either observed temperature, GFS tem-
perature or downscaled GFS temperature using the Weighted method for insect
modelling. I will do this by using the Western cherry fruit fly model as an ex-
ample, but the basic principles apply to any insect model which is based solely
on degree day accumulation. The empirical model is outlined in Section 3.2.1.

An example for the degree day (DD) accumulation for a station which is located
in a relatively low position is given in Figure 22. With a ∆zi,j of -805 m this is,
compared to the GFS grid, the lowest of all stations. The relatively low posi-
tion of the station leads to a systematic cold bias when using the original GFS
2 m temperature. This reduces the modelled rate of degree day accumulation.
As this is a systematic error the DD difference between observed and GFSorig

increases with a near-constant rate. When looking at fixed DD accumulations,
the difference in time it takes to reach a certain amount of degree days (∆tDD)
increases with increasing DD. However, this also largely depends the weather: a
warm spell in the first half of June increased the DD accumulation rate, as can
be seen from the increasing steepness of GFSOrig. This decreased the ∆tDD.
The example shown here thus gives ∆tDD that are specific for the year of 2016,
but may vary from year to year.
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The timing of pest management is based upon the modelled DD accumula-
tion of insect models. Therefore, it is very important for the timing error to be
reduced to a minimum. The Western cherry fruit fly is most harmful after the
egg hatch of larvae, as larvae bore into the cherries. The first eggs hatch after
594 DD have been accumulated, which for this exemplary location occurred on
May 15 according to observations. Using the original, non-downscaled GFS data
this amount has only been accumulated on June 26, more than one month too
late. Applying downscaling reduces the ∆tDD to a mere 3 days. The example
shown here is based on egg hatch prediction for a relatively low position. When
downscaling to a sub-grid where ∆zi,j > 0 m, not applying downscaling will
result in a too early prediction of egg hatch.

Figure 22: Degree Day accumulation since March 1 for station ’Malaga’,
with a ∆zi,j of -805 m. Degree days are accumulated using the observed
(grey), original GFS temperature (red) or downscaled GFS temperature
using the Weighted method (blue).

The previous example showed the improvement of DD accumulation when the
∆zi,j was large. However, when the ∆zi,j is relatively small, timing uncertain-
ties originate relatively more from factors other then elevation differences. An
example of this is shown in Figure 23. For this sub-grid, with a ∆zi,j of -87 m,
there is a strong warm bias, especially at night. This is common for croplands
(Figure 15). Applying downscaling will add to this pre-existing warm bias as
the sub-grid is located lower than the GFS grid. For this station, downscaling
leads to an egg hatch timing error of 7 days. When using the uncorrected GFS
data, this error would have been smaller with only 4 days.

Figure 22 and 23 were two examples of how downscaling influences the timing
prediction of the egg hatch. In Figure 24 we generalise that GFS is systemati-
cally too cold in regions located in a relatively low position and vice versa. This
produces a systematic error in the predicted timing of egg hatch. For every 100
m of ∆zi,j , the timing is 5 days off. In an optimal situation, where farmers
have on-site weather stations, the average timing error caused by measurement
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Figure 23: Degree Day accumulation since March 1 for station ’Mc Nary’,
with a ∆zi,j of -87 m. Degree days are accumulated using the observed
(grey), original GFS temperature (red) or downscaled GFS temperature
using the Weighted method (blue).

errors of the equipment is 0.7 ± 1.3 days. I estimated this measurement error
from the differences between thermometer 1 and 2. When there are no on-site
weather stations, using downscaled GFS temperature gives a mean timing error
of 0.2 ± 6 days.
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Figure 24: Difference in timing of predicted egg hatch compared to egg
hatch timing using thermometer 1. A positive ∆t denotes a delayed pre-
dicted egg hatch timing. Left: ∆t using the original GFS 2m temperature;
middle: ∆t using thermometer 2; right: ∆t using the downscaled (applying
the Weighted method) 2m temperature.
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Overall, in mountainous areas downscaling the GFS 2 m temperature greatly
improves the accuracy of the predicted timing of developmental transitions com-
pared to using uncorrected GFS data. The average timing error is less than a
day with a standard deviation of less than a week. This makes using downscaled
GFS 2 m temperature for simple insect models very attractive, especially in ar-
eas without on-site weather stations. For areas which do have on-site weather
stations, as in Washington State, the forecast temperature may be used to pre-
dict when certain amounts of degree days will be accumulated. Downscaling
temperatures forecast for more than +3 hours ahead is not investigated in this
thesis. However, I expect that applying downscaling will significantly improve
the accuracy of the predicted timing compared to using uncorrected GFS fore-
casts.

4.4 Disease modelling

To demonstrate the sensitivity of disease models to the quality of the weather
data I used an adapted version the Late Blight model by Ullrich and Schrödter
(1966). A full model description can be found in Section 4.4. In short, a high
relative humidity and a favourable temperature increase the risk for Late Blight.
As GFS systematically underestimates relative humidity, using GFS data will
likely cause an underestimation of the risk for plant diseases.

For every cropland sub-grid and for each week of the year, a risk value (RV) is
calculated. Figure 25 shows the RVs that have been accumulated as a function
of weekly average temperature and relative humidity. RV was calculated using
either observations, uncorrected and corrected GFS data. For clarity, the size
of the dots are scaled with the risk value. It becomes clear that even though
the blight model is bimodal, there is a strong preference for a high RV when
weekly averaged temperature is around 10 to 12 degrees. The model’s second
mode around 21 degrees does not show from the risk values. This can only be
because at higher temperatures (prolonged) saturation is less likely to occur. It
is also interesting to note that in general risk values are low, as the disease is
expected at risk values higher than 150. Using the GFS data, both uncorrected
and downscaled, leads to an underestimation of the occurrence of relatively high
risk values. As the strong systematic dry error of GFS is not resolved by down-
scaling the risk values are underestimated and therefore both GFS scatterplots
do not show clear differences.

When looking at how the RV develops throughout the year (Figure 26) it can
be seen that the average RV is relatively low, by far not reaching the action
threshold of 150. The spring and autumn season have the highest average RV,
which may be explained by a combination of favourable temperatures and not
yet too low relative humidity, which is the reason for the ’dip’ in summer. The
winter period shows on average the lowest RV values. In this case the relative
humidity is not the limiting factor, but the low temperature.

This then raises the question which parts of the region are the most vulner-
able for Late Blight. Figure 27 shows for each station the highest RV that
occurred in the whole year of 2016. Again, shown are the RV calculated from
observations, uncorrected and corrected GFS data. Highest RV clearly occur in
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Figure 25: Colour plots of weekly accumulated Late Blight risk values (RV)
as a function of weekly averaged temperature and humidity for cropland
stations. The risk values are calculated using observations (left), uncor-
rected (middle) or corrected GFS data using the Weighted method (right).
Each dot represents one RV value for one station, in total there are 81
cropland stations with 52 risk values each. Note that dots may overlap.
The size and colour of each dot is scaled to the risk value. As you can
start to accumulate the RV on each arbitrary day of the week, the RV may
be higher or lower depending on the start date. RVs shown here are, for
every starting day, the highest RVs obtained weekly.
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Figure 26: Boxplot of the development of the Late Blight risk value (RV)
throughout the year for cropland stations. Risk values are accumulated
on a weekly basis. The risk values are calculated using observations (left),
uncorrected (middle) or corrected GFS data using the Weighted method
(right). The boxplot shows the spatial variation of 81 cropland stations
stations. Red crosses denote outliers.

the marine region. This is also picked up quite well by GFS. The high RV in
the marine region has a simple explanation: not only is the relative humidity
high due to moisture advection from the sea, but temperatures are mild and
’blight-friendly’ during winter. This is also depicted by the GFS model. What
GFS does not depict at all is the high RV in the plateau region. Climatologi-
cally this is a very dry region with a low relative humidity. However, water is
added to the system through irrigation raising the relative humidity. This will
be further discussed in Section 5.
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Figure 27: Spatial distribution of the yearly maximum Late Blight risk
value (RV). The risk values are calculated using observations (left), uncor-
rected (middle) or corrected GFS data using the Weighted method (right).

Concluding, GFS can certainly be useful for depicting relatively high RVs where
conditions are favourable to due large scale phenomena such as moist air ad-
vection and mild winter temperatures in marine regions. However, if favourable
conditions stem from irrigation GFS completely misses the increased risk for
plant diseases such as Late Blight.

5 Discussion

I have investigated how sensitive disease and pest models are to the accuracy of
the meteorological data input. To do this I have first validated uncorrected and
corrected GFS analysis and forecast data using stations in Washington State.
Stations which are biased to being situated in (the vicinity of) crop fields. I
have drawn conclusions on the performance of GFS based on these biased met-
stations. Validating GFS in undisturbed areas, or validating using an un-biased
network may have resulted in a different GFS accuracy. Fact is, however, the
application of these pest and disease models will be biased toward croplands.

I have used several methodologies for the topography-based downscaling of
GFS air temperature. The decreased temperature bias and RMSE showed
that downscaling significantly improved the accuracy of the GFS 2 m temper-
ature. My results have shown that the Weighted method was one of the most
robust and reliable method for downscaling air temperature. However, using
model-internal lapse rates did not significantly improve the accuracy more than
simply using a fixed lapse rate of -6.5 °C/km. RMSE differences among down-
scaling methods did not exceed 0.1 °C. This is opposed to the results of Gao
et al. (2012), who showed that model-internal lapse rates resulted in a RMSE
that was 34% lower compared to literature-based lapse rates. However, the
network of stations he used was very different. Gao et al. (2012) validated his
downscaling method using 12 stations which were on average positioned 360 m
higher than the height of the ERA-interim grid cell. In Washington State, the
meteorological stations were on average positioned only 77 m lower than the
GFS elevation. It would be very interesting to see which of the downscaling
methods of this research performs best when ∆zi,j are more extreme.

By downscaling based on a DEM, I assumed elevation differences as being the
dominant factor in determining the bias of GFS. However, local phenomena can
also be a cause for the systematic discrepancy between GFS and observed tem-
perature and relative humidity. This is likely an issue of irrigation not being
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represented well enough in the current GFS land surface model. A summertime
warm and dry bias has been previously observed over the Great Plains and was
followed by a correction of grassland and cropland surface characteristics in the
land surface model used by GFS (American Meteorological Society, 2017). A
similar improvement may have to implemented in the North-West of the US.
This is further substantiated by ample evidence of the weather-related impacts
of irrigation: cooling in the dry season (Kueppers et al., 2007), a shifting parti-
tioning of the surface energy fluxes towards significantly more latent heat flux
(de Rosnay et al., 2003; Haddeland et al., 2006) and increases in relative hu-
midity (Kueppers et al., 2008). Even the night-time warm bias in croplands
observed in this thesis is very likely to be related to irrigation. Kanamaru and
Kanamitsu (2008) showed that irrigated, and thus wetter, soils reduce night-
time surface cooling due to an increase of the ground heat flux. This increased
ground heat flux is caused by an increased thermal conductivity of wet soils.
Next to the representation of irrigation other local phenomena are not well
represented. In or near urban areas, even as extensive as Seattle and Vancou-
ver, the observed urban heat island effect is not modelled by GFS. In addition,
topography-related phenomena such as drainage flow at night, or sun-facing
slope aspects that warm faster may be too coarse a phenomena for GFS.

In this research I have shown the application of two very simple insect and
disease models which were solely based on temperature and relative humidity.
Much more complex models do exist, but these simple, empirical models have
been, for a long time, widely applied and extensively validated. Requiring only
a limited amount of data this is a cheap way to monitor insect and disease risk.
Being rather simple, one should always be aware when applying these empirical
insect and disease models in climates other than those where the model has
been validated for. The same species may develop differently in other climates.
Despite these uncertainties, the concepts underlying insect and disease models
are the same: favourable weather conditions lead to a higher risk. This is why
I justify my generalised interpretation or my results. Even though the results
were acquired based on the application of only two models, the risk values of
which I only validated in one specific region.

In the end, for insect and disease modelling it is mainly important for the error
that is left after downscaling not to be biased. For insect modelling, down-
scaling temperature based on elevation is sufficient for obtaining an accurate
indication of the accumulated degree days, with an uncertainty of more or less
a week. Concerning disease modelling, the GFS dry bias leads to a systematic
underestimation of the risk for plant diseases in the agricultural area situated on
the Columbian Plateau. The original Late Blight model used in this study also
incorporated a rainfall threshold, whereas I have only solely used the relative
humidity threshold. When incorporating rainfall, risk values will be higher as
the conditions for an (increased) risk value accumulation are more often met.
However, for the Columbian Plateau I do not expect the effect of including rain-
fall will be large, as rainfall in this area is scarce.

As mentioned, corrected GFS data are suitable for insect modelling. This is
especially useful in areas where no (reliable) observations are available. How-
ever, also in well-monitored areas using GFS data can be useful. I have not
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investigated the accuracy of forecasts of more than 3 hours ahead, but these
could be used to make a prediction of degree day accumulation. Not only can
downscaled temperature data be used for insect modelling but in other fields
it may provide a useful application, such as hydrologic modelling (Praskievicz
and Bartlein, 2014; Hay and Clark, 2003) snow-melt modelling (Sen Gupta and
Tarboton, 2016) and downscaling climate change scenarios (Pierce et al., 2013).

6 Conclusion

There is a need for systems that can alarm farmers on the risk of insect pest
and plant diseases. Simple models exist that predict the risk for pest and dis-
eases based on weather variables. However, meteorological stations may not
be present, or are unreliable. I have investigated whether freely available GFS
data can be used to provide temperature and relative humidity data used in
such models. In mountainous areas, GFS data are however too coarse for field-
scale modelling, as weather changes rapidly with height.

I have investigated several downscaling methods for obtaining temperature and
relative humidity fields with a higher spatial resolution. These downscaling
methods were based on different techniques to define the lapse rate, which I use
to downscale temperature based on a high resolution digital elevation map. Usu-
ally, a fixed lapse rate of -6.5 °C/km is applied. However, in reality the lapse rate
is temporally and spatially variable. Using a model-internal lapse rate, obtained
from the vertical temperature profile within GFS, the lapse rate is allowed to
vary in time and space. All methods managed to significantly decrease the bias
of GFS temperature and thereby improved the accuracy of the GFS tempera-
ture data. Out of the downscaling method tested, the Weighted method was
shown be the most reliable considering both the reduction in root mean squared
error as well as being robust and reliable. The Weighted methods considers an
extensive air column. Using statistics, the eventual lapse rate is then calculated
from a weighted average lapse rate of the air column at a specific time and place.

Downscaling relative humidity was done assuming the specific humidity to be
conserved, which is true when the air mass composition is unchanged moving
up or down to the desired sub-grid. Downscaling based on elevation did indeed
eliminate the systematic error related to elevation differences, however a sys-
tematic dry bias remained. This dry bias was evident both cropland as well
as non-cropland areas, but much stronger so in cropland. The latter can be
explained by the application of irrigation, keeping the soil surface well-watered
and evaporation not limited by a lack of water availability.

The downscaled temperature data show a large potential to be used for simple
insect modelling which is based on degree day accumulation. This was shown
by using an example of the predicted timing of the egg hatch of the Western
cherry Fruit fly. Not applying downscaling results in a timing error which in-
creases by around 5 days for every 100 meter elevation difference. Downscaling
the temperature using the Weighted method resulted in an average timing error
of less than a day with an uncertainty of less than a week. This uncertainty
originated from temperature inaccuracies that remained after downscaling. In
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areas where no observations and related data on degree day accumulation are
available, downscaled GFS data can be a reliable alternative source of data.

The GFS relative humidity data show a strong dry bias, which cannot be re-
solved by downscaling based on elevation differences. As plant diseases rely on
the availability of moisture in order to develop, the risk for diseases is underes-
timated. This underestimation is strongest in cropland areas, where irrigation
leads to an increase in relative humidity. A likely solution to this problem is to
implement, or if already present to improve, an irrigation scheme in the land
surface model used by GFS. However, this will not be sufficient for areas with
small-scale agriculture where the land use map used by GFS is still too coarse
for depicting cropland.

The downscaling methods presented in this study and related degree day ac-
cumulation may not only be valuable for pest modelling in mountainous areas.
Useful applications may be found in other fields of science, such as catchment
hydrology, snow-melt modelling or downscaling climate projections.
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