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INTRODUCTION 

Plants are constantly engaged in battles against a wide range of potential pathogens 

within their environment. Nevertheless, only few of these potential pathogens 

succeed in invading a plant to cause disease, as plants have evolved innate 

immunity to protect themselves against microbial attack (Dodds and Rathjen, 2010; 

Thomma et al., 2011). Plant innate immunity against pathogen attack is governed 

by immune receptors that sense pathogen(-induced) ligands to activate defense. 

Originally, the interaction between plant immune receptors and pathogen ligands 

was described as a “gene-for-gene” model, stating that the products of plant 

resistance (R) genes induce race-specific resistance upon recognition of the 

products of corresponding pathogen avirulence (Avr) genes (Flor, 1971). Decades 

later, an updated view of plant innate immunity has been introduced as the “zigzag” 

model, by incorporating pathogen-secreted effector molecules that suppress host 

immune responses, but that may subsequently be recognized by newly evolved 

immune receptors, in turn (Jones and Dangl, 2006). In this model, the first layer of 

defense is governed by plasma membrane-localized pattern recognition receptors 

(PRRs) that detect conserved microbe-associated molecular patterns (MAMPs) to 

activate MAMP-triggered immunity (MTI). In subsequent layers of defense effectors 

are recognized by corresponding resistance proteins (R proteins), resulting in 

effector-triggered immunity (ETI). Although initially portrayed as separate layers 

of defense, numerous studies on various plant-microbe interactions have revealed 

that the delineation between MTI and ETI is not strict, but rather a continuum 

(Thomma et al., 2011). Moreover, the conceptual conflict that MAMPs are defined 

from the perspective of the host whereas effectors are defined from the perspective 

of the invader has recently inspired the proposal of the Invasion Model, in which 

host receptors (termed invasion pattern receptors; IPRs) detect either an externally 

encoded or modified-self ligand that indicates invasion (termed invasion patterns; 

IPs) (Cook et al., 2015). In this model, any molecule can serve as an IP that is 

potentially detected by an IPR, but the probability of a particular ligand-receptor 

complex to evolve within the framework of host immunity increases with 

increasing ligand probability to retain function, conservation across organisms, 

importance in establishment of symbiosis, and accessibility. 
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Verticillium is a relatively small genus of ascomycete fungi that currently 

comprises ten species (Inderbitzin et al., 2011; Figure 1). All presently recognized 

Verticillium species are soil-borne fungi, and several of them cause so-called 

vascular wilt diseases in a wide range of economically important crops, including 

tomato, potato, tobacco, cotton, hop plants, lettuce, olive trees, oilseed rape, 

sunflower, sugar beet etc (Pegg and Brady, 2002; Figure 2). Although symptoms 

may vary considerably between plant hosts, the most frequently observed 

symptoms of Verticillium wilt include stunting, wilting, chlorosis, necrosis, vascular 

discoloration and early senescence (Fradin and Thomma, 2006). Within the 

Verticillium genus, V. dahliae is the most notorious species that can cause 

Verticillium wilt diseases in over 200 plant host species worldwide. V. albo-atrum, V. 

longisporum, V. alfalfae and V. non-alfalfae are also economically important vascular 

pathogens, albeit with narrower host ranges (Pegg and Brady, 2002; Agrios, 2005; 

Fradin and Thomma, 2006; Klosterman et al., 2009; Inderbitzin et al., 2011; 

Depotter et al., 2015). Polygenic resistance to Verticillium spp. has been described 

in several plant species, including potato, hop, alfalfa, cotton and strawberry (Simko 

et al., 2004; Bolek et al., 2005; Wang et al., 2008; Yang et al., 2008; Jakse et al., 2013; 

Antanaviciute et al., 2015), whereas single dominant resistance genes have been 

identified in tomato, potato and lettuce species only (Schaible et al., 1951; Simko et 

al., 2004; Hayes et al., 2011; Christopoulou et al., 2015). In tomato (Solanum 

lycopersicum), a single dominant locus that confers Verticillium resistance has been 

identified as the Ve locus, which controls Verticillium isolates that are assigned to 

race 1, but not to race 2 (Schaible et al., 1951; Pegg, 1974). This locus contains two 

closely linked and inversely oriented genes, Ve1 and Ve2, that both encode 

extracellular leucine rich repeat (eLRR) receptor-like proteins (RLPs) (Kawchuk et 

al., 2001; Wang et al., 2010). Of these, only Ve1 was found to act as a functional V. 

dahliae resistance gene in tomato (Fradin et al., 2009). Interestingly, interfamily 

transfer of Ve1 from tomato to Arabidopsis resulted in Verticillium resistance in the 

latter species (Fradin et al., 2011, 2014; Zhang et al., 2014), implying that the 

underlying immune signalling pathway is conserved (Fradin et al., 2011; Thomma 

et al., 2011). So far, several Ve1 homologs were identified within the Solanaceae 

family (in wild relatives of tomato and eggplant and in cultivated potato; Chai et al., 

2003; Fei et al., 2004; Simko et al., 2004; Liu et al., 2012), as well as outside this 
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family (mint, lettuce, cotton and grape; Vining and Davis, 2009; Hayes et al., 2011; 

Zhang et al., 2011; Zhang et al., 2012; Yang et al., 2014; Chen et al., 2016; Chen et al., 

2017). Through comparative population genomics, the V. dahliae effector protein 

that is recognized by the tomato Ve1 immune receptor was identified as Ave1 (for 

Avirulence on Ve1 tomato) (de Jonge et al., 2012). Intriguingly, homologs of V. 

dahliae Ave1 (VdAve1) were identified in a number of plant pathogenic microbes, 

 

 
Figure 1. Phylogeny of species within the Verticillium genus. The phylogenetic tree of Verticillium 
species is adapted from Shi-Kunne et al. (unpublished data). Verticillium species marked on the right by 
a pirate pumpkin are pathogenic fungi on plants, while Verticillium species marked on the right by a 
smiling pumpkin are saprophytes. 
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Figure 2 Disease symptoms on various host plants caused by various Verticillium species. A, C-E, 
H-K, Verticillium wilt symptoms caused by V. dahliae on tomato (A), lettuce (C), sugar beet (D), potato 
(E), sunflower (H), eggplant (I), cotton (J) and olive tree (K). B, Verticillium wilt of hop plants caused by 
V. nonalfalfae. F, Disease caused by V. alfalfae on tobacco. G, Stem striping caused by V. longisporum on 
oilseed rape. Photos are courtesy of Sebastjan Radišek and Branka Javornik (panel B), Krishna Subbarao 
(panel C), Jasper Depotter (panel G), Shuqing Yang and Jun Zhao (panel H), Longfu Zhu (panel J) and Jelle 
Hiemstra (panel K). 

 

including the citrus bacterial canker pathogen Xanthomonas. axonopodis pv. citri 

(XacPNP), the fungal tomato wilt pathogen Fusarium oxysporum f. sp. lycopersici 

(FoAve1), the fungal sugar beet leaf spot pathogen Cercospora beticola (CbAve1), 

the crucifer anthracnose pathogen Colletotrichum higginsianum (ChAve1) and the 

cucurbit anthracnose pathogen Colletotrichum orbiculare (CoAve1) (Nembaware et 

al., 2004; de Jonge et al., 2012; Gan et al., 2013), and a few of these homologs are 

differentially recognized by tomato Ve1 (de Jonge et al., 2012). Consequently, Ve1 
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was found to mediate resistance towards F. oxysporum in tomato, demonstrating 

involvement of this tomato immune receptor in resistance against multiple fungal 

pathogens (de Jonge et al., 2012).  

 
MAIN OBJECTIVE AND RESEARCH QUESTIONS 

The main objective of my PhD research was to characterize the role of the immune 

receptor Ve1 in tomato and its homologs in various plant species in Verticillium 

resistance, and to mechanistically unravel the functionality of tomato Ve1. To this 

end, I have addressed the following research questions: 

i. Can we identify a minimal motif in the effector VdAve1 that is required for its 

recognition by tomato immune receptor Ve1? 

ii. Do homologs of tomato Ve1 that are found in other plant species similarly act as 

immune receptors that govern resistance against race 1 strains of V. dahliae in a 

VdAve1-dependent manner? 

iii. Does ectopic expression of tomato Ve1 in crop species confer VdAve1-dependent 

Verticillium resistance? 

 
THESIS OUTLINE 

Research on effectors secreted by pathogens during host colonization has 

dominated the field of molecular plant-microbe interactions over recent years. 

Chapter 2 reviews the current knowledge on how soil-borne pathogens employ 

secreted effector molecules to support host colonization. Whereas most well-

studied effectors are proteinaceous molecules, non-canonical effectors, such as 

metabolites and small RNAs, have also been described. Soil-borne pathogens live in 

a complex and sophisticated belowground environment. In addition to attenuation 

of host immunity and roles in self-defense, the potential role of effectors in 

interactions with other microbiome inhabitants, including competitors and 

mycoparasites, is discussed. 

Effectors are molecules secreted by plant pathogens to facilitate infection, 

often through deregulation of plant immune responses. During host colonization, 

race 1 strains of V. dahliae secrete the effector protein VdAve1 that activates Ve1-

mediated immunity. Homologs of VdAve1 were identified in the bacterial plant 
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pathogen X. axonopodis pv. citri (XacPNP) and in the plant pathogenic fungi F. 

oxysporum f. sp. lycopersici (FoAve1), C. beticola (CbAve1), and C. higginsianum 

(ChAve1). These homologs are differentially recognized by Ve1, with the most 

efficient recognition of VdAve1 and no recognition of XacPNP. Chapter 3 aims to 

identify a minimal motif of VdAve1 that is required to activate Ve1-mediated 

immunity. The approach was based on epitope prediction, guided by the alignment 

of differentially recognized VdAve1 homologs, followed by functional analyses of a 

combination of serial deletions assays, domain swaps, synthetic peptides, three-

dimensional structural prediction and chimeric proteins. 

So far, several Ve1 homologs were identified within and outside the Solanaceae 

family. However, functionality of these homologs against Verticillium wilt remained 

obscure. In Chapter 4, I report the cloning and functional characterization of Ve1 

homologs from tobacco (Nicotiana glutinosa), potato (Solanum tuberosum), wild 

eggplant (Solanum torvum) and hop (Humulus lupulus). 

The tomato immune receptor Ve1 recognizes VdAve1 and its homologs from 

other pathogenic microbes including the tomato pathogen F. oxysporum f. sp. 

lycopersici (FoAve1) and the sugar beet pathogen C. beticola (CbAve1). Previous 

work revealed that tomato Ve1 mediates resistance against multiple fungal tomato 

pathogens including V. dahliae, V. albo-atrum and F. oxysporum, and transgenic 

expression of tomato Ve1 in Arabidopsis confers Verticillium resistance through 

recognition of VdAve1. In Chapter 5 I investigated whether the tomato immune 

receptor gene Ve1 can confer Verticillium wilt resistance when transferred from 

tomato to the closely related crop species tobacco (Nicotiana tobacum cv. Samsun) 

and the distantly related crop species cotton (Gossypium hirsutum). The Ve1-

transgenic lines were subjected to molecular characterization and disease assays 

using race 1 Verticillium strains.  

Previous studies have shown that the expression of silencing constructs in host 

plants designed to target transcripts of pathogen genes can specifically silence 

these genes in invading pathogens, including fungi, which is referred as host-

induced gene silencing (HIGS). HIGS was shown to operate against the fungal 

pathogens Blumeria graminis, Puccinia spp., Fusarium spp., Sclerotinia sclerotiorum 

and Rhizoctonia solani. In Chapter 6 I assessed the effect of HIGS on Verticillium 

wilt disease. This was done by transient assays in tomato based on virus-induced 
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gene silencing, followed by experiments with stable transgenic Arabidopsis thaliana 

plants expressing hairpin constructs targeting transcripts of three V. dahliae genes. 

In the final chapter of the thesis, Chapter 7, the major results described in the 

previous chapters are discussed and placed in a broader perspective. 
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ABSTRACT  

Soil-borne phytopathogenic microbes live in complex and sophisticated below-

ground environments. To establish themselves within their host plants, these 

pathogens have to overcome plant defense mechanisms, ranging from preformed 

barriers to activated defenses. To this end, they typically secrete effector molecules 

that play important roles to support host colonization through a wide range of 

mechanisms. Whereas most well-studied effectors are proteinaceous molecules, 

non-canonical effectors, such as metabolites and small RNA molecules, have also 

been described. In addition to targeting plant components, part of the effector 

catalogue may be required for self-defense against, and targeting of, other 

microbiome partners, including antagonists and competitors. 
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INTRODUCTION  

Soil-borne pathogenic microorganisms cause significant yield and quality losses in 

crops worldwide. They reside in the soil for brief or extended periods of time, where 

they survive on plant residues or as resting structures such as melanised mycelium, 

chlamydospores, oospores, or (micro)sclerotia, until root exudates trigger them to 

become active and invade the roots of plants (Agrios, 2005). Once inside, they may 

be confined to the root system, or invade above-ground tissues, or again move 

outside to infect other parts of the root system or roots from neighbouring plants 

(Agrios, 2005). Plants that are infected by soil-borne pathogens suffer from seedling 

damping-off, root rot, root blackening, wilting, stunting or plant death (Agrios, 2005). 

Importantly, since damage to plants by soil-borne pathogens may result from below-

ground infection, crop yield and quality losses caused by soil-borne pathogens are 

often underestimated and sometimes even remain unnoticed (De Coninck et al., 

2015). 

Soil-borne pathogens are notoriously difficult to control due to their general 

persistence in the soil for long periods of time through the formation of resilient 

survival structures (Koike et al., 2003; De Coninck et al., 2015). Soil fumigants that 

were widely used for controlling soil-borne diseases have nowadays largely been 

banned due to their extremely hazardous effects on the environment as well as on 

human health. Since many soil-borne pathogens have a wide range of hosts, crop 

rotation is often ineffective (Reddy, 2012). 

The most important soil-borne microbial pathogens belong to three taxonomic 

groups: fungi, oomycetes and bacteria. The most prominent soil-borne fungal 

pathogens comprise Fusarium oxysporum (Michielse and Rep, 2009), Verticillium spp. 

(Fradin and Thomma, 2006; Klosterman et al., 2009; Klimes et al., 2015) and 

Rhizoctonia solani (Gonzalez et al., 2011), whereas the most notorious oomycetes 

include Phytophthora spp. (van West et al., 2003; Kamoun et al., 2015) and Pythium 

spp. (van West et al., 2003). Collectively, these filamentous pathogens are 

responsible for diseases in hundreds of plant species. Fewer diseases are caused by 

soil-borne bacterial pathogens, as there are only few soil-borne bacteria infecting 

roots, such as Agrobacterium spp. (Otten et al., 2008) and Ralstonia solanacearum 

(Peeters et al., 2013). In addition, soil-borne microbial pathogens occur in other 

kingdoms, such as Plasmodiophoromycete protists in the eukaryotic kingdom of 
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Rhizaria, including Plasmodiophora brassicae that is the causal agent of club-root 

disease of crucifers (Hwang et al., 2012; Schwelm et al., 2015) and Spongospora 

subterranea that causes powdery scab on potato (Harrison et al., 1997). Here, we 

summarize the current knowledge on the biological functions of effectors secreted 

by soil-borne pathogens.  

 
EFFECTOR DISCOVERY  

Effectors are defined as molecules that are secreted by phytopathogenic microbes in 

order to manipulate host physiology and support host colonization. Although the 

vast majority of effector activities and host targets presently still remains unknown, 

at least a subset is experimentally found to suppress immune responses (de Jonge et 

al., 2011; Rovenich et al., 2014; Cook et al., 2015). Importantly, this host immunity 

suppression activity implies that effectors can be used as probes to identify vital 

components of host immune systems and can be used for effector-informed crop 

improvement (Vleeshouwers and Oliver, 2014). 

Recent advances in next-generation sequencing technologies, genome assembly, 

gene annotation, and effector identification methods hold promise to fully disclose 

pathogen effector repertoires through computational prediction (Sperschneider et 

al., 2015; Gibriel et al., 2016). Many bacterial pathogens directly inject effectors into 

the host cytoplasm via a specialized secretion machinery, namely the type III 

secretion (T3S) system (Cambronne and Roy, 2006; Galán and Wolf-Watz, 2006). N-

terminal sequence signals direct bacterial effectors to the T3S system and thus 

machine learning approaches have been developed to predict bacterial T3S effectors 

from sequenced genomes based on N-terminal protein sequence information 

(McDermott et al., 2011). In oomycetes, consensus N-terminal amino acid motifs, 

namely the RxLR (Arg-x-Leu-Arg) motif and the LxLFLAK motif, have been proposed 

to facilitate host cell translocation (Whisson et al., 2007; Schornack et al., 2010). Thus, 

these motifs can be queried to identify RxLR and Crinkler (CRN) effectors encoded 

within oomycete genomes (Tyler et al., 2006; Jiang et al., 2008; Haas et al., 2009). 

Prediction of proteinaceous effectors of fungal pathogens is less straightforward, 

as fungal effectors generally lack significant sequence similarity and consensus 

motifs (Sperschneider et al., 2015). To date, most characterized fungal effectors are 

small in size (typically less than 300 amino acids) and rich in cysteine residues (four 
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or more) (Stergiopoulos and de Wit, 2009). However, these features cannot strictly 

be used as criteria to identify effector repertoires, as some well-characterized fungal 

effectors lack these properties. For example, the effectors Cmu1 and ApB73 from the 

fungal pathogen Ustilago maydis are much larger in size (Djamei et al., 2011; 

Stirnberg and Djamei, 2016). Thus, to describe potential effector repertories of 

individual fungal pathogens only rather universal features, such as their secretion 

and expression in planta, can be considered (Sperschneider et al., 2015). Recently, 

the first machine learning tool called “EffectorP” was introduced which is trained to 

improve the prediction of fungal effector proteins from secretomes based on 

sequence-derived properties, such as sequence length, molecular weight and protein 

net charge, as well as cysteine, serine and tryptophan content (Sperschneider et al., 

2016). When combined with in planta expression data, “EffectorP” is proving useful 

for prioritizing putative effector candidates (Sperschneider et al., 2016). Although 

the computational effector prediction has great potential to identify putative 

effectors, further experimental studies are required to validate their role in plant-

pathogen interactions.  

 
EFFECTOR EVOLUTION 

In general, effectors are expected to exhibit accelerated evolution, enabling 

pathogens to escape or overcome recognition, evade or suppress host immunity and 

support colonization of specific hosts or adapt to new hosts (Stergiopoulos and de 

Wit, 2009; Raffaele and Kamoun, 2012; Karasov et al., 2014; Seidl and Thomma, 2014; 

Dong et al., 2015). Effector genes are often found in dynamic genomic regions that 

show increased rates of recombination, and possibly also mutation, in the genome 

(Raffaele and Kamoun, 2012; Karasov et al., 2014; Seidl and Thomma, 2014; Dong et 

al., 2015). Sometimes these regions even concern separate chromosomes that can be 

transferred between pathogens. In bacteria, pathogenicity islands are clusters of 

genes that contain an abundance of genes involved in host associations that are 

located either on the chromosome or on accessary plasmids. These genomic regions 

contain sequences associated with flanking repeats or transposons as well as with 

tRNA genes, which are targets for genetic integration and excision (Hacker et al., 

1997; McCann and Guttman, 2008). 
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In filamentous plant pathogens, effector genes are often embedded within 

highly variable lineage-specific (LS) genomic regions. For example, comparative 

analysis of the genomes of Fusarium species revealed that Fusarium pathogens carry 

LS genomic regions that are found as small conditionally dispensable chromosomes 

(CDCs) containing effector genes (Ma et al., 2010). Further genomic comparisons 

between CDCs from legume-infecting F. oxysporum strains revealed small conserved 

genomic regions that contain in planta expressed genes encoding secreted effector 

proteins (Williams et al., 2016). Similarly, genomic comparisons of multiple strains 

of V. dahliae revealed that all V. dahliae strains carry LS genomic regions that are 

significantly enriched for in planta expressed effector genes (de Jonge et al., 2013; 

Faino et al., 2015; 2016). Genetic flexibility of such dynamic genomic regions is 

governed by various mechanisms including recombination and activity of 

transposable elements (TEs) (Raffaele and Kamoun, 2012; Seidl and Thomma, 2014). 

Genomic rearrangements induce duplications, deletions and translocations, leading 

to the gain, or loss of genomic material, while TEs can generate a local genomic 

environment that facilitates genomic rearrangements (Raffaele and Kamoun, 2012; 

Seidl and Thomma, 2014). For V. dahliae it has been shown that LS regions evolved 

by genomic rearrangements that are mediated by erroneous double-strand repair, 

often utilizing TEs as a substrate for repair (de Jonge et al., 2013; Faino et al., 2016). 

TEs seem to contribute to effector evolution in oomycete genomes as well (Haas et 

al., 2009; Raffaele et al., 2010). These findings illustrate that soil-borne plant 

pathogens deploy various mechanisms to establish variable genomic regions that are 

enriched for effectors. Ultimately, these mechanisms maintain effector catalogues 

that impact pathogen lifestyle and host colonization.  

 
EFFECTORS WITH APOPLASTIC FUNCTIONS  

The initial contact between host plants and soil-borne pathogens is often established 

in the apoplast, the extracellular spaces of plant tissues. The apoplast is an 

environment with a relatively low pH (Felle, 1998) that is hostile for microbes 

because of various plant-secreted hydrolytic enzymes, including chitinases and 

glucanases, that affect microbial cell wall integrity and release microbial cell wall 

fragments (Sánchez-Vallet et al., 2015; Rovenich et al., 2016). These released 

microbial cell wall fragments may activate host immune receptors, leading to 
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production of plant-derived proteases, antimicrobial compounds, and lignins for 

thickening of the plant cell walls that constitute the next host barrier for the 

pathogen (Hückelhoven, 2007; Sánchez-Vallet et al., 2015; Rovenich et al., 2016). To 

overcome these biochemical and physical barriers in the apoplast, soil-borne 

pathogens require effector molecules. 

Extracellular alkalinisation of host tissue is thought to contribute to fungal 

virulence (Prusky and Yakoby, 2003). To thrive in the acidic apoplast, some fungal 

pathogens secrete effectors to modulate the extracellular pH (Prusky and Yakoby, 

2003). The F. oxysporum genome encodes a peptide that is homologous to the plant 

peptide hormone RALF (rapid alkalinisation factor), which is known to increase 

extracellular alkalinisation (Murphy and De Smet, 2014). Genetic analysis revealed 

that functional Fusarium RALF (F-RALF) is required for efficient host alkalinisation 

and contributes to the virulence of F. oxysporum in tomato plants (Masachis et al., 

2016). F-RALF homologues are widely distributed in several bacterial species and 

various fungi, many of which infect plants, including V. dahliae and V. alfalfae 

(Masachis et al., 2016; Thynne et al., 2016), implying that other phytopathogenic 

microbes may use RALF peptides to efficiently induce extracellular alkalinisation in 

the host, thereby enabling infection. 

To protect hyphae from plant-secreted chitinases, fungal pathogens secrete 

effectors to prevent cell wall hydrolysis by plant chitinases and interfere with host 

immune receptor activation (Sánchez-Vallet et al., 2015). Vd2LysM is a chitin-

binding LysM-containing effector from V. dahliae that protects fungal hyphae from 

degradation by plant hydrolytic enzymes (Kombrink et al., 2017). Similar protective 

activity mediated by LysM effectors was found in other fungal pathogens (Kombrink 

and Thomma, 2013; Sánchez-Vallet et al., 2015). Although the molecular mechanism 

by which LysM effectors protect hyphae against hydrolysis by plant chitinases 

presently remains elusive, they may form chitin-dependent oligomeric chains to 

cover fungal hyphae and prevent access of plant chitinases to the chitin in the fungal 

cell wall (Sánchez-Vallet et al., 2015). This mechanism was previously demonstrated 

for the Cladosporium fulvum effector Avr4 and the Pseudocercospora fuligena 

orthologue PfAvr4 that bind to fungal cell walls through an invertebrate chitin-

binding domain in order to protect hyphae from host chitinases (van den Burg et al., 

2006; Kohler et al., 2016). Alternatively, Vd2LysM protects hyphae through indirect 
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or direct inhibition of host chitinase activity. It has been proposed that direct 

inhibition of plant chitinases is a general strategy for fungal pathogens to protect 

fungal cell walls (Sánchez-Vallet et al., 2015). Indeed, F. oxysporum f. sp. lycopersici 

secretes a metalloprotease and a serine protease that synergistically cleave 

extracellular tomato chitinases, leading to compromised antifungal activity and 

enhanced disease in tomato (Jashni et al., 2015). Similar activities occur in other 

fungal pathogens, including V. dahliae (Jashni et al., 2015). In addition to protecting 

the fungal cell walls from hydrolysis by plant chitinases, LysM-containing effectors 

outcompete host immune receptors for chitin fragment binding to interfere with 

chitin-triggered immunity. The C. fulvum LysM effector extracellular protein 6 (Ecp6) 

binds to chitin fragments with high specificity through its LysM domains to prevent 

chitin-triggered immunity (de Jonge et al., 2010; Sánchez-Vallet et al., 2013). 

Similarly, the Vd2LysM effector deregulates chitin-triggered immunity through 

chitin fragment binding, and contributes to virulence of V. dahliae during infection 

(de Jonge et al., 2013; Kombrink et al., 2017). 

In addition to the ability to prevent hydrolysis by plant chitinases and interfere 

with chitin-triggered immunity, effectors have been shown to inhibit plant 

glucanases in order to avoid host immune receptor activation (Rose et al., 2002; 

Sánchez-Rangel et al., 2012). A glucanase inhibitor protein 1 (GIP1) from 

Phytophthora sojae was shown to directly inhibit a soybean endoglucanase (EGaseA), 

thus preventing release of oligosaccharides and activation of the corresponding, yet 

enigmatic, host immune receptor (Rose et al., 2002).  

Plants secrete proteases, such as papain-like cysteine proteases (PLCPs), serine 

and aspartic proteases into the apoplast (Jashni et al., 2015; Misas‐Villamil et al., 

2016). Several plant proteases are induced in the presence of pathogens, are able to 

induce expression of plant defense genes, and degrade effectors secreted by 

pathogens (Jashni et al., 2015; Misas‐Villamil et al., 2016). Thus, plant proteases 

acting as important components of the plant defense system could be targeted by 

effectors. The tomato serine protease P69B is inhibited by two serine proteases, EPI1 

and EPI10 (extracellular proteinase inhibitor 1 and 10), from Phytophthora infestans 

(Tian et al., 2004; 2005). Similarly, PLCP C14 of tomato and potato is inhibited by 

two cystatin-like effectors EPIC1 and EPIC2B from P. infestans (Kaschani et al., 2010). 

Moreover, the tomato protease C14 is also targeted by another P. infestans effector, 
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AVRblb2, which prevents C14 secretion into the apoplast (Bozkurt et al., 2011). The 

finding that P. infestans evolved distinct and structurally divergent protease 

inhibitors to target the same plant protease indicates that inhibition of that 

particular plant protease is important for P. infestans infection. An additional 

example for an important plant protease targeted by different phytopathogens is 

provided by inhibitors of tomato PLCP Rcr3 (Required for Cladosporium resistance-

3) found in unrelated pathogens (Rooney et al., 2005; Song et al., 2009; Lozano-

Torres et al., 2012). The sequence-unrelated effectors EPIC1 and EPIC2B from P. 

infestans (Song et al., 2009), Avr2 from C. fulvum (Rooney et al., 2005), and Gr-VAP1 

from the nematode Globodera rostochiensis (Lozano-Torres et al., 2012) all inhibit 

tomato Rcr3. Both effectors Avr2 and EPIC2B also inhibit Pip1 (Phytophthora 

inhibited protease 1), which is related to tomato Rcr3 (Tian et al., 2007; van Esse et 

al., 2008). However, the role of these particular plant proteases in plant defense 

remains unknown.  

The necrosis and ethylene-inducing peptide 1 (NEP1) was originally identified 

in culture filtrates from F. oxsporum (Bailey, 1995), and NEP1 homologues named as 

NLPs (NEP1-like proteins) found in many bacteria, fungi, and oomycetes that are 

generally associated with necrotic activity in dicotyledonous plants through plasma 

membrane permeabilization and cytolysis of plant cells (Ottmann et al., 2009). With 

the increasing availability of bacterial, fungal, and oomycete genomes, it has become 

apparent that NLPs are widely distributed in microorganisms (Gijzen and 

Nürnberger, 2006; Oome and Van den Ackerveken, 2014), and that the NLP family is 

significantly expanded in several oomycetes (Gijzen and Nürnberger, 2006; Cabral et 

al., 2012; Dong et al., 2012; Oome and Van den Ackerveken, 2014). Most identified 

NLPs not only trigger cell death but also elicit strong immune responses in dicots 

(Gijzen and Nürnberger, 2006; Qutob et al., 2006). There is accumulating evidence 

that NLP effectors exhibit functional diversification in various pathogens (Dong et al., 

2012; Zhou et al., 2012; Santhanam et al., 2013; Oome and Van den Ackerveken, 

2014). Characterization of a set of NLPs in V. dahliae indicated that the expanded V. 

dahliae NLP family displays functional diversification, with differential cytotoxicity 

among the NLP family members (Zhou et al., 2012; Santhanam et al., 2013). Another 

observation for functional diversification in the V. dahliae NLP family comes from the 

differential contributions of cytotoxic NLP members NLP1 and NLP2 to virulence on 
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different host plants. Both NLP1 and NLP2 are required for full virulence of V. dahliae 

strain JR2 on tomato and Arabidopsis, while neither of these two is involved in 

virulence of V. dahliae strain V592 on cotton (Zhou et al., 2012; Santhanam et al., 

2013). Moreover, NLP1 is required for virulence of V. dahliae strain JR2 on Nicotiana 

benthamiana, whereas NLP2 is not even expressed during N. benthamiana infection 

(Santhanam et al., 2013). One out of 3 P. infestans NLPs tested causes necrosis 

(Kanneganti et al., 2006), whereas eight out of 19 P. sojae NLPs examined are able to 

induce necrosis (Dong et al., 2012).  

Cell wall-degrading enzymes (CWDEs) that are capable of degradation of cell 

wall polysaccharides to break down the physical barrier of the plant cell walls during 

infection can be considered as effectors. Functional redundancy has complicated 

investigations into the role of individual CWDEs in virulence (Kubicek et al., 2014). 

However, the importance of CWDEs acting as virulence factors was demonstrated 

through disruption of the sucrose nonfermenting 1 gene (SNF1) in F. oxysporum and 

V. dahliae. SNF1 encodes part of a kinase complex regulating the expression of 

CWDEs and SNF1 mutants show compromised virulence (Ospina-Giraldo et al., 2003; 

Tzima et al., 2011). Other examples showing a positive correlation between 

individual CWDEs and virulence include studies on R. solanacearum, F. oxysporum f. 

sp. lycopersici, V. dahliae, Phytophthora parasitica and P. sojae (Novo et al., 2006; Wu 

et al., 2008; Poueymiro and Genin, 2009; Maruthachalam et al., 2011; Ma et al., 2015; 

Bravo Ruiz et al., 2016). These studies conclude that CWDEs are important for 

virulence. Genome analyses revealed that V. dahliae, V. albo-atrum and F. oxsporum 

have an expanded arsenal of particular CWDE families compared with other fungi, 

including a significant expansion of pectin-degrading enzymes (Klosterman et al., 

2011; Zhao et al., 2013). It has been hypothesized that expansion of pectinolytic 

enzymes in V. dahliae, V. albo-atrum and F. oxsporum may facilitate host colonization 

(Klosterman et al., 2011; Yadeta and Thomma, 2013; Zhao et al., 2013). Genomic 

analysis revealed that high numbers of pectin-degrading enzymes were also 

observed in the genome of the broad host-range fungal pathogen R. solani (Hane et 

al., 2014). Enhanced numbers of pectinolytic enzymes in this pathogen facilitate to 

break down pectinaceous host barriers, presumably providing also this pathogen the 

capacity to colonize a broad range of plants. 
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EFFECTORS WITH CYTOPLASMIC FUNCTIONS 

Some effectors are translocated across the plant cell membrane into the host 

cytoplasm, where they target plant components in order to benefit pathogen 

proliferation in the host. 

Plant hormones are key signaling molecules that regulate multiple aspects of 

plant growth, development, and defense (Kazan and Lyons, 2014). Salicylic acid (SA), 

jasmonic acid (JA), and ethylene (ET) are considered as primary defense 

phytohormones that act in response to pathogen infection. SA is important for 

resistance to biotrophic and hemibiotrophic pathogens while JA and ET are 

associated with resistance to necrotrophic microbes (Pieterse et al., 2012; Fu and 

Dong, 2013). Components of SA, JA and ET biosynthesis and signaling pathways are 

targeted by pathogen effectors to promote infection (Kazan and Lyons, 2014). 

Effectors VdIsc1 and PsIsc1, which are secreted by V. dahliae and P. sojae, 

respectively, are isochorismatases that hydrolyse the SA precursor isochorismate to 

interfere with the plant SA metabolism pathway and thus promote infection (Liu et 

al., 2014). Similarly, the effector PbBSMT of the protist P. brassicae disrupts SA 

signalling through decreasing the accumulation of SA in A. thaliana plants and 

promote tissue colonization (Ludwig-Muller et al., 2015). These examples indicate 

that reducing SA accumulation level is an important strategy for pathogens to 

establish infection. Pathogens also secrete effectors to interfere with phytohormone 

perception and signaling through mimicking of plant hormones. For example, some 

strains of the bacterial pathogen Pseudomonas syringae produce phytotoxin 

coronatine (COR), a structural mimic of the bioactive JA hormone JA-Ile (Geng et al., 

2012). COR is perceived by the plant JA receptor COI1, activating JA-dependent 

responses that, in turn, attenuate SA-dependent responses involved in P. syringage 

resistance (Geng et al., 2012). Notably, COR is more active than the host JA-Ile in 

triggering the JA pathway, indicating that COR acts as a potent and highly specific 

mimic of JA-Ile perception in plants (Geng et al., 2012). In fact, bioactive JAs are 

produced by some F. oxysporum strains (Brodhun et al., 2013; Cole et al., 2014). JA-

insensitive Arabidopsis mutants display enhanced resistance against Arabidopsis-

infecting F. oxysporum strains that produce detectable JAs (Cole et al., 2014). In 

contrast, JA-insensitive Arabidopsis and tomato mutants do not show altered 

resistance against Arabidopsis- and tomato-infecting F. oxsporum strains that do not 
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produce JAs, respectively (Cole et al., 2014). Thus, some strains of F. oxsporum appear 

to secrete JAs as effectors, but the mechanism how F. oxsporum-secreted JAs promote 

infection is unknown. 

Reactive oxygen species (ROS), including hydrogen peroxide (H2O2), play an 

essential role in plant defense against pathogens (Heller and Tudzynski, 2011). Some 

effectors have been shown to interfere with production of ROS in order to promote 

virulence. Plant catalases are localized to the peroxisome and convert H2O2 into H2O 

and O2, thus contributing to ROS homeostasis in plant cells (Mhamdi et al., 2010). 

Two CRN effectors, PsCRN63 and PsCRN115, from P. sojae interact with plant 

catalases to regulate plant cell death and H2O2 homeostasis to promote infection 

(Zhang et al., 2015). PsCRN63 promotes plant cell death through interacting with and 

destabilizing plant catalases, thus increasing H2O2 accumulation. PsCRN115, 

however, counteracts these processes to decrease H2O2 levels and inhibit plant cell 

death (Zhang et al., 2015). Another CRN effector, PsCRN70 from P. sojae, suppresses 

plant cell death, H2O2 accumulation and expression of defense-related genes, to 

enhance pathogen infection (Rajput et al., 2014). However, the mechanism how 

PsCRN70 regulates plant ROS production remains unknown. Recently, the type III 

effector RipAK from R. solanacearum has also been shown to interact with and inhibit 

plant catalases and suppresses plant immunity, thus resulting in enhanced bacterial 

infection (Sun et al., 2017). These findings clearly show that modulation of plant ROS 

production by pathogens through effectors is important for disease development. 

The plant ubiquitin-proteasome system plays a central role in many cellular 

processes including defense responses and hormone signaling, and thus is an 

essential target of effectors (Banfield, 2015). GALA proteins (also named RipG 

[Ralstonia injected proteins G proteins]) are secreted by the T3S system of R. 

solanacearum, which contain a conserved GAxALA amino acid motif in the C-terminal 

leucine-rich repeat region and a plant-type F-box domain in the N-terminal region 

(Cunnac et al., 2004). The GALA effector is able to interact with the A. thaliana SKP1-

like protein (ASK), a component of the plant SCF (SKP1-CULLIN1-F-box protein) E3 

ubiquitin ligase, suggesting that the GALA effector may interfere with the ubiquitin-

proteasome pathway and promote infection (Angot et al., 2006). GALA7 was shown 

to be a host-specificity factor required for disease promotion on Medicago truncatula 

plants and its F-box domain was found to be essential for its virulence function 
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(Angot et al., 2006). Mutants lacking all seven GALA genes in R. solanacearum strains 

GMI1000 display compromised virulence on diverse plants (Angot et al., 2006; 

Remigi et al., 2011). However, it is yet unknown whether GALAs contribute to 

degradation of host targets. Similar to GALAs, the F-box domain containing VirF, 

which is secreted by the type IV secretion system of A. tumefaciens, was previously 

shown to interact with A. thaliana ASKs and promote virulence during A. tumefaciens 

infection (Schrammeijer et al., 2001). VirF interacts with plant VIP1 (VirE2-

interacting protein 1) and targets VIP1 into the host ubiquitin-proteasome for 

proteolysis (Tzfira et al., 2004). In P. infestans, the RxLR effector Avr3a was shown to 

interact with and stabilize the host ubiquitin E3 ligase CMPG1 for suppression of 

INF1-induced host cell death during biotrophic growth (González-Lamothe et al., 

2006; Bos et al., 2010). These examples illustrate that the host ubiquitin-proteasome 

system can be exploited by pathogens through effectors for their own benefit. 

Plant perception of microbial pathogens leads to transcriptional 

reprogramming towards host defense against pathogens. In response, pathogens 

secrete effectors to reprogram host gene expression by targeting defense-related 

transcription factors, activating the expression of host susceptibility genes and 

interfering with host post-transcriptional gene silencing in order to establish 

infection (Toruño et al., 2016). A number of host transcription factors that regulate 

the expression of the host defense-related genes appear to be targets of effectors. 

Effectors can directly target host transcription factors in order to downregulate host 

genes involved in defense responses. Plant WRKY transcription factors, known for 

the canonical WRKYGQK DNA-binding motif, are key components that regulate host 

defense responses against several pathogens (Rushton et al., 2010; Chi et al., 2013). 

The acetyltransferase PopP2 (RipP2) from R. solanacearum localizes to the plant cell 

nucleus and directly acetylates lysine residues in the WRKYGQK DNA-binding motif 

of WRKY transcription factors (Deslandes et al., 2003; Le Roux et al., 2015; Sarris et 

al., 2015). Acetylation by PopP2 interferes with the DNA binding of WRKY 

transcription factors and thus with the transcriptional activation of WRKY 

transcription factor-regulated immune genes, leading to enhanced virulence (Le 

Roux et al., 2015; Sarris et al., 2015). In addition to WRKY transcription factors, 

PopP2 interacts with and acetylates two lysine residues in the C-terminal WRKYGQK 

domain of the A. thaliana intracellular immune receptor RRS1-R (Resistance to 



Chapter 2 

32 

2 

Ralstonia solanacearum 1). Acetylation of RRS1-R by PopP2 disrupts the binding of 

RRS1-R to W-box DNA sequences, leading to the activation of the RRS1-R-associated 

immune receptor RPS4 (Resistance to Pseudomonas syringae 4) (Le Roux et al., 2015; 

Sarris et al., 2015). P. infestans secretes the RxLR effector Pi03192 that interacts with 

two plant NAC transcription factors NTP1 and NTP2 (NAC Targeted by Phytophthora 

1 and 2) at the endoplasmic reticulum (ER) membrane and prevents their 

localization from ER to the nucleus to increase host susceptibility (McLellan et al., 

2013). Finally, the Phytophthora capsici CRN effector CRN12-997 was shown to 

directly bind to the tomato immune-related transcription factor SITCP14-2, resulting 

in compromised immunity mediated by SITCP14-2 (Stam et al., 2013). CRN12-997 

affects SITCP14-2 association with nuclear chromatin and SITCP14-2 sub-nuclear 

localization, preventing SITCP14-2 from positively regulating defense against P. 

capsici (Stam et al., 2013). These examples illustrate show how effectors prevent the 

activation of host defense through modification of transcription factor DNA binding 

site or mislocalization of transcription factors during host colonization. 

Pathogen effectors can directly act as plant transcription factors and induce the 

expression of host susceptibility genes. Ralstonia transcription activator-like 

effectors (TALEs), termed RipTALEs that are found in many R. solanacearum strains 

are structurally homologous to Xanthomonas TALEs (Lange et al., 2013; Li et al., 

2013). Xanthomonas TALEs are injected into host cells and enable to directly activate 

host target genes through a repeat structure domain involved in the binding to 

specific DNA sequences, known as effector binding elements (EBEs), at promoters of 

host target genes (Boch and Bonas, 2010). Among the plant genes targeted by TALEs 

are those encoding proteins involved in development, stress responses and sugar 

transport. Rice SWEET genes are involved in sugar transport and activated by TALEs 

from the rice bacterial pathogen Xanthomonas oryzae pv. oryzae, presumably 

facilitating sugar export for bacterial consumption and promoting infection (Boch et 

al., 2014; Chen, 2014). Characterization of Xanthomonas TALE DNA-binding 

specificity has uncovered several examples of host target genes that confer bacterial 

susceptibility as well as target genes present in resistant plants that induce disease 

resistance (Boch et al., 2014). It was shown that RipTALEs can also act as 

transcription activators in plant cells (Lange et al., 2013; Li et al., 2013). However, 

host target genes of RipTAL effectors remain unknown. 
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RNA silencing (or post-transcriptional gene silencing) serves as a major defense 

mechanism against viruses in plants. To counter host antiviral responses, viruses 

employ suppressors of RNA silencing that interfere with the host RNA silencing 

machinery and favour viruses to proliferate within the host (Vance and Vaucheret, 

2001). However, plant viruses are not the only microorganisms to interfere with the 

plant RNA silencing machinery. P. sojae delivers two RxLR effectors, PSR1 and PSR2 

(Phytophthora suppressor of RNA silencing 1 and 2), that act as suppressors of plant 

RNA silencing and enhance susceptibility to P. sojae (Qiao et al., 2013). Further, PSR1 

was shown to interact with an evolutionarily conserved nuclear protein known as 

the PSR1-interacting protein 1 (PINP1) which regulates accumulation of small RNAs. 

Thus, PSR1 affects the biogenesis of plant small RNAs to promote infection (Qiao et 

al., 2015). Fungal pathogens can also manipulate RNA silencing machinery. V. dahliae 

secretes small RNAs that target the Arabidopsis RNA silencing component Argonaute 

(AGO1), downregulate the expression of host defense genes and thus promote fungal 

infection (Wang et al., 2016). A similar mechanism was previously demonstrated for 

the fungal pathogen Botrytis cinerea-derived small RNAs target the Arabidopsis AGO1 

to impair the expression of host defense genes for promoting fungal virulence 

(Weiberg et al., 2013). These examples illustrate that the host RNA silencing 

machinery can be exploited by soil-borne pathogens through effectors to establish 

infection. 

 
EFFECTORS PLAY ROLES IN SELF-DEFENSE AND COMPETITION 

Before establishing themselves within a host plant, soil-borne pathogens need to 

interact with numerous microbial competitors, antagonists, or hyperparasites within 

the microbe-rich belowground environment. Likely, antagonists and hyperparasites 

produce a range of antimicrobial compounds and lytic enzymes to attack soil-borne 

pathogens. Consequently, soil-borne pathogens require molecules for self-defense 

and interaction with other microbes. For example, the phenolic antibiotic 2,4-

diacetylphloroglucinol (DAPG) from Gram-negative antagonistic bacteria is toxic 

towards a wide range of pathogenic microbes, including fungal plant pathogens 

(Raaijmakers et al., 2009). It was shown that DAPG tolerance is positively correlated 

with the ability of F. oxysporum strains to degrade this antimicrobial metabolite via 

deacetylation into the less fungitoxic derivatives monoacetylphloroglucinol and 
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phloroglucinol (Schouten et al., 2004). This finding suggests that degradation of 

antimicrobial compounds produced by antagonistic microorganisms is an 

important self-protection strategy for DAPG-tolerant F. oxysporum strains, although 

the exact molecules secreted by tolerant F. oxysporum isolates that metabolizes 

DAPG remain to be identified. Moreover, F. oxysporum produces the secondary 

metabolite fusaric acid that appears to specifically repress the expression of DAPG 

biosynthetic genes in the antagonistic bacterium Pseudomonas fluorescens CHA0 

through increasing the binding characteristics of the bacterial repressor-promotor 

complex (Schnider-Keel et al., 2000; Notz et al., 2002). In addition to self-defense, 

effectors secreted by soil-borne pathogens act in interaction with microbial 

competitors. A. tumefaciens uses the type VI secretion (T6S) system to secrete a 

DNase effector Tde that exhibits a potent antibacterial DNase activity and confer a 

competitive advantage to A. tumefaciens during host colonization (Ma et al., 

2014).The toxic activity of the Tde DNase is counteracted by a cognate immunity 

protein, termed Tdi, protecting the toxin DNase-producing bacterium from self-

killing. The A. tumefacines uses Tde to attack both intra- and inter-species bacterial 

competitors inside a plant host (Ma et al., 2014). The Tde and Tdi couples are broadly 

conserved among Gram-negative bacteria, suggesting a widespread antibacterial 

weapon beneficial for niche colonization (Ma et al., 2014).  

 
EFFECTOR RECOGNITION 

Plant immunity has been described as a multi-layered recognition system to prevent 

microbial infections (Jones and Dangl, 2006). The first layer involves the perception 

of microbe-associated molecular patterns (MAMPs), which are conserved across 

classes of microbes, by cell surface-localized pattern recognition receptors (PRRs) 

(Jones and Dangl, 2006). Activation of PRRs leads to MAMPs-triggered immunity 

(MTI) and acts as an early warning system against a wide range of potential 

pathogens (Jones and Dangl, 2006). Adapted pathogens are able to subvert these 

early defense responses by escaping or suppressing PTI through the activity of 

secreted effector molecules, resulting in effector-triggered susceptibility (Jones and 

Dangl, 2006). In turn, particular plant genotypes have evolved resistance (R) 

proteins that recognize particular effectors and activate effector-triggered immunity 

(ETI), which is recognized as a second layer of plant innate immunity (Jones and 
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Dangl, 2006). Although described as separate layers of defense, numerous studies on 

various plant-microbe interactions have revealed that the delineation between MTI 

and ETI is not strict, but rather a continuum (Thomma et al., 2011). For example, 

tomato Ve1 recognizes the effector protein Ave1 that is secreted by race 1 strains of 

Verticillium spp. and contributes to fungal virulence on susceptible plant genotypes, 

leading to race-specific Verticillium resistance in tomato (Kawchuk et al., 2001; 

Fradin et al., 2009; de Jonge et al., 2012). Interestingly, homologues of Ave1 were 

found in plants but also in a number of plant pathogenic microbes. Ave1 is recognized 

not only by tomato Ve1, but also by a homologue from Nicotiana glutinosa (Zhang et 

al., 2013). Furthermore, Ve1 also mediates resistance against F. oxysporum f. sp. 

lycopersici in tomato (de Jonge et al., 2012), demonstrating involvement of this race-

specific Ve1 protein in resistance against multiple fungal pathogens. Heterologous 

expression of tomato Ve1 in Arabidopsis leads to race-specific Verticillium resistance 

triggered by the effector Ave1 (Fradin et al., 2011; de Jonge et al., 2012). These 

findings, combined with the observation that Ve1 mediates recognition of Ave1 

homologues from multiple plant pathogens (de Jonge et al., 2012), imply that Ve1 has 

traits of a typical race-specific R protein as well as of a typical PRR, and indicate that 

R proteins and PRRs exist on a continuum in plant innate immunity (Fradin et al., 

2011; Thomma et al., 2011). 

NLPs act as effectors that positively contribute to pathogen virulence (Gijzen 

and Nürnberger, 2006; Ottmann et al., 2009), indicating that NLP effector-triggered 

immunity could be considered as belonging to ETI. On the other hand, the 

widespread distribution of NLPs among diverse microbes and perception of the 

conserved motif, nlp20 or nlp24, by a typical cell surface-localized complex (RLP23-

SOBIR1-BAK1 complex) (Böhm et al., 2014; Oome et al., 2014; Albert et al., 2015) 

appears as a feature of pattern recognition in PTI. Thus, also plant detection of NLP 

effectors blurs the PTI-ETI dichotomy and illustrates a continuum between PTI-ETI. 

These examples, and the conceptual conflict that MAMPs are defined from the 

perspective of the host whereas effectors are defined from the perspective of the 

invader, recently inspired the proposal of the Invasion Model, in which host immune 

receptors (termed invasion pattern receptors; IPRs) detect either an externally 

encoded or modified-self ligand that betrays invaders (termed invasion patterns; IPs) 

(Cook et al., 2015). This model recognizes that ultimately any immune receptor can 
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be effective as long as it accurately betrays pathogen presence and elicits an 

appropriate response, irrespective of whether it recognizes a pathogen- or host-

derived ligand that is either conserved or lineage-specific. 
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ABSTRACT 

Effectors are secreted by plant pathogens to facilitate infection, often through 

deregulation of plant immune responses. During host colonization, race 1 strains of 

the soil-borne vascular wilt fungus Verticillium dahliae secrete the effector protein 

Ave1 that triggers immunity in tomato genotypes that encode the cell surface-

localized immune receptor Ve1. Homologs of V. dahliae Ave1 (VdAve1) are found in 

plants and in few plant pathogenic microbes, and are differentially recognized by 

Ve1. However, how VdAve1 is recognized by Ve1 remained unknown. Interestingly, 

C-terminally affinity-tagged versions of VdAve1 failed to activate Ve1-mediated 

immunity, suggesting that exposure of the C-terminus of VdAve1 is required for 

Ve1-mediated recognition. This was confirmed by subsequent analyses of C-

terminal deletion mutants, and by amino acids swap experiments. Although 

required, only the C-terminus of VdAve1 is not sufficient to activate Ve1-mediated 

immunity. Further analyses of N-terminal deletion mutants revealed that also the 

N-terminus of VdAve1 is required to activate Ve1-mediated immunity. Intriguingly, 

a three-dimensional structural model of VdAve1 revealed that the N- and C-termini 

co-localize on a surface-exposed patch of the VdAve1 protein. Thus, we propose 

that a surface-exposed patch of the VdAve1 protein that is composed of co-localized 

N- and C-termini is recognized by the tomato cell-surface immune receptor Ve1. 
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INTRODUCTION 

Plants are constantly engaged in battles against diverse groups of microbes within 

their environment. However, only few of these actually become pathogens to cause 

disease, as plants have developed innate immunity to protect themselves against 

microbial attack (Dodds and Rathjen, 2010; Thomma et al., 2011; Cook et al., 2015). 

In its simplest form, plant immunity against pathogen attack is governed by 

immune receptors that sense pathogen-derived(induced) ligands to activate 

defense. Originally, the interaction between plant immune receptors and pathogen 

ligands was described in the “gene-for-gene” model, stating that the products of 

plant resistance (R) genes induce race-specific resistance upon recognition of the 

products of corresponding pathogen avirulence (Avr) genes (Flor, 1971). Decades 

later, an updated view of plant innate immunity has been introduced as the “zigzag” 

model, by incorporating pathogen-secreted effector molecules that suppress host 

immune responses, but that may subsequently be recognized by newly evolved 

immune receptors, in turn (Jones and Dangl, 2006). In this model, the first line of 

defense is governed by plasma membrane-localized pattern recognition receptors 

(PRRs) that detect conserved microbe-associated molecular patterns (MAMPs) to 

activate MAMP-triggered immunity (MTI). In subsequent layers of defense, 

effectors are recognized by the corresponding resistance proteins (R proteins), 

resulting in effector-triggered immunity (ETI). Although initially portrayed as 

separate layers, numerous studies on various plant-microbe interactions have 

revealed that the delineation between MTI and ETI is not strict, but rather a 

continuum (Thomma et al., 2011; Cook et al., 2015). Moreover, the fact that MAMPs 

are defined from the perspective of the host, whereas effectors are defined from the 

perspective of the invader, creates a conceptual conflict and has recently inspired 

the formulation of the Invasion Model, in which host receptors (termed invasion 

pattern receptors; IPRs) detect either externally encoded or modified-self ligands 

(termed invasion patterns; IPs) that betray invasion (Cook et al., 2015). In this 

model, any molecule can serve as an IP that is detected by an IPR, but the 

probability of a particular ligand-receptor complex to evolve within the framework 

of host immunity increases with increasing ligand probability to retain function, 

conservation across organisms, importance in establishment of symbiosis, and 

accessibility (Cook et al., 2015). 
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Verticillium dahliae is a xylem invading fungal pathogen that causes 

Verticillium wilt diseases in a wide range of plant species worldwide (Fradin and 

Thomma, 2006). V. dahliae persists in the soil and enters plants through their roots. 

Once inside the root, the fungus grows intercellularly and invades the xylem vessels, 

where it sporulates to spread through the vascular system. Typical symptoms of V. 

dahliae infection include stunting, wilting, chlorosis, and necrosis (Fradin and 

Thomma, 2006). In tomato (Solanum lycopersicum), a single dominant locus that 

confers Verticillium resistance has been identified as the Ve locus, which controls 

Verticillium isolates that are assigned to race 1 (Schaible et al., 1951). The Ve locus 

comprises two closely linked and inversely oriented genes, Ve1 and Ve2, that both 

encode extracellular leucine-rich repeat (eLRR) receptor-like proteins (RLPs) 

(Kawchuk et al., 2001; Wang et al., 2010). Of these, only Ve1 was found to confer 

resistance against race 1 isolates of Verticillium in tomato (Fradin et al., 2009). 

Intriguingly, interfamily transfer of Ve1 from tomato to Arabidopsis thaliana has 

resulted in race-specific Verticillium resistance in the latter species (Fradin et al., 

2011, 2014; Zhang et al., 2014), implying that the underlying immune signalling 

cascade across plant taxonomy is evolutionarily conserved (Fradin et al., 2011; 

Thomma et al., 2011). Moreover, homologs of tomato Ve1 that have the potential to 

recognize race 1 strains of V. dahliae have been characterized in other plant species, 

including tobacco, potato, wild eggplant and hop, suggesting an ancient origin of the 

tomato immune receptor Ve1 (Song et al., 2017). 

Through comparative population genomics, the V. dahliae effector protein that 

is recognized by the tomato cell surface-localized immune receptor Ve1 was 

identified as Ave1 (for Avirulence on Ve1 tomato) (de Jonge et al., 2012). 

Interestingly, homologs of V. dahliae Ave1 (VdAve1) were identified from a number 

of fungal pathogens, including the tomato pathogen Fusarium oxysporum f. sp. 

lycopersici (FoAve1), the sugar beet pathogen Cercospora beticola (CbAve1) and the 

crucifer pathogen Colletotrichum higginsianum (ChAve1) (de Jonge et al., 2012). 

Strikingly, however, most VdAve1 homologs were found in plants, with the most 

closely related homologs derived from tomato (S. lycopersicum; SlPNP) and grape 

(Vitis vinifera; VvPNP) (de Jonge et al., 2012). Finally, a more distantly related 

homolog was identified in the plant pathogenic bacterium Xanthomonas axonopodis 

pv. citri (XacPNP) (de Jonge et al., 2012). Co-expression of VdAve1, SlPNP, FoAve1, 
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and CbAve1 with tomato Ve1 in tobacco triggers a hypersensitive response (HR), 

whereas co-expression of ChAve1 with tomato Ve1 does not lead to an HR (de Jonge 

et al., 2012). Moreover, Ve1 was found to mediate resistance towards F. oxysporum 

in tomato, demonstrating involvement of the tomato immune receptor Ve1 in 

resistance against multiple fungal pathogens (de Jonge et al., 2012). 

Many eLRR-containing cell-surface immune receptors recognize peptide 

sequences as epitopes of their pathogen ligands. For example, flg22 is the 22-

amino-acid peptide derived from bacterial flagellin that is perceived by the 

receptor-like kinase (RLK)-type immune receptor FLS2 (Zipfel et al., 2004), while 

the Arabidopsis RLK-type EFR immune receptor was shown to recognize elf18, an 

18-amino-acid peptide derived from bacterial EF-Tu (Zipfel et al., 2006). Similarly, 

a highly conserved 22-amino-acid sequence derived from the bacterial cold shock 

protein, named csp22, is perceived by the tomato RLK-type immune receptor CORE 

(Felix and Boller, 2003; Wang et al., 2016), while a surface-exposed pentapeptide 

TKLGE of the 22 kDa ethylene-inducing xylanase (EIX) from the biocontrol fungus 

Trichoderma viride determines recognition by the RLP-type receptor LeEIX2 in 

tomato (Rotblat et al., 2002; Ron and Avni, 2004). Furthermore, the tyrosine-

sulfated 21-amino-acid peptide RaxX21-sY of Xanthomonas oryzae pv. oryzae RaxX 

is sufficient to activate XA21-mediated immunity in rice (Pruitt et al., 2015). Finally, 

a conserved 20-amino-acid fragment present in most Nep1-like proteins (NLPs) 

(nlp20) is sufficient to activate RLP23-mediated immunity in Arabidopsis (Böhm et 

al., 2014; Oome et al., 2014; Albert et al., 2015). Here, we aimed to identify a 

minimal motif in the V. dahliae effector protein VdAve1 that is necessary and 

sufficient for recognition by the tomato cell-surface immune receptor Ve1. Our 

approach was based on epitope prediction, guided by the alignment of differentially 

recognized VdAve1 homologs, followed by functional analyses of a combination of 

serial deletion assays, amino acids swaps, synthetic peptides, chimeric proteins and 

three-dimensional modelling.  

 
RESULTS 

Sequence conservation among Ave1 homologs  

Previously, we reported the cloning of Ave1 from V. dahliae and described the 

absence of allelic variation among 85 Ave1 alleles derived from V. dahliae and V. 
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albo-atrum (de Jonge et al., 2012). Ave1 alleles were not identified in any of the V. 

dahliae and V. albo-atrum race 2 strains analysed, nor in strains that are not 

pathogenic on tomato, nor in V. longisporum or V. tricorpus (de Jonge et al., 2012). 

To further explore Ave1 diversity, we assessed presence in a collection of 129 

Verticillium strains isolated from various host plants and different geographical 

locations, resulting in the identification of 22 novel Ave1 alleles (Table S1). No 

allelic variation was found among the newly identified Ave1 alleles amplified from V. 

dahliae as well as from V. alfalfae and V. nonalfalfae, two species that have recently 

been recognized as novel species distinct from V. albo-atrum (Inderbitzin et al., 

2011). However, a VdAve1 homolog was identified in four isolates of V. nubilum 

(VnAve1), a species that is known as a saprophyte and opportunistic pathogen 

(Isaac, 1953). While the predicted VnAve1 protein sequence displays 13 amino acid 

polymorphisms when compared with VdAve1 (Figure 1A), the four VnAve1 alleles 

were found to be identical to each other.  

Alignment of the amino acid sequences of VdAve1 and its homologs from 

plants (SlPNP and VvPNP) and plant pathogens (VnAve1, FoAve1, CbAve1, ChAve1 

and XacPNP) revealed blocks of highly conserved amino acids that are alternated 

with more variable regions (Figure 1A). Based on prediction by SignalP 4.1 

(Petersen et al., 2011), all VdAve1 homologs contain a predicted N-terminal signal 

peptide that directs secretion into the extracellular space (Figure 1A; D-cutoff 

score > 0.6). Moreover, the four cysteine residues that are present in VdAve1 are 

conserved among all homologs (Figure 1A), and in silico analysis using DISULFIND 

(Ceroni et al., 2006) suggests the formation of disulphide bridges between Cys35 

and Cys63, as well as between Cys71 and Cys79. From the alignment it is apparent 

that XacPNP is the most divergent, while all other VdAve1 homologs are relatively 

similar (Figure 1A).  

 

Comparison of the necrosis-inducing activity of VdAve1 homologs 

It was previously demonstrated that tomato Ve1 recognizes not only VdAve1, but 

also SlPNP, FoAve1 and CbAve1 (de Jonge et al., 2012). We now also tested the 

necrosis-inducing capacity of VnAve1, VvPNP and XacPNP that were isolated from V. 

nubilum, V. vinifera and X. axonopodis, respectively. Co-expression of the sequence-

unrelated effector Avr9 from the tomato leaf mould fungus Cladosporium fulvum 
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Figure 1. Distinct necrosis induced by VdAve1 homologs through co-expression with tomato Ve1 
in Nicotiana tabacum. (A) Amino acid sequence alignment of VdAve1 homologs from Verticillium 
dahliae (VdAve1), V. nubilum (VnAve1), Solanum lycopersicum (SlPNP), Vitis vinifera (VvPNP), Fusarium 
oxysporum f. sp. lycopersici (FoAve1), Cercospora beticola (CbAve1), Colletotrichum higginsianum 
(ChAve1), and Xanthomonas axonopodis pv. citri (XacPNP). Phylogeny of VdAve1 and its homologs 
described above is shown. The bootstrap percentage support for each branch is indicated. The scale bar 
represents 5% weighted amino acid sequence divergence. Blue shade background indicates identical 
amino acids while the color intensity represents the frequency. Asterisks indicate the 13 amino acid 
polymophisms between VdAve1 and VnAve1. The positions of four conserved cysteine residues are 
indicated with arrows in the bottom. The N-terminal amino acids in the frame denote the predicted 
signal peptides (SP) of the VdAve1 homologs. (B) Coexpression of Ve1 and Ave1 homologs VdAve1, 
VnAve1, SlPNP, VvPNP, FoAve1, CbAve1, ChAve1, and XacPNP in N. tabacum. Expression of the 
sequence-unrelated effector Avr9 from the tomato leaf mold fungus Cladosporium fulvum in combination 
with Ve1 or absence of Ve1 are shown as negative controls. Pictures were taken at five days post 
infiltration (dpi). (C) Quantification of necrosis resulting from recognition of VdAve1 homologs by Ve1 at 
5 dpi (n > 20). Bars represent the average percentage of necrotic leaf area of infiltration zones with 
standard deviations. Asterisks above the top of the bars represent statistically significant differences 
when compared with VdAve1-indcued necrosis (P < 0.05). 

 

(van Kan et al., 1991) with Ve1 served as a negative control. Whereas expression of 

VnAve1 or VvPNP together with Ve1 in Nicotiana tabacum resulted in strong HR, co-

expression of XacPNP or Avr9 with Ve1 triggered little to no necrosis in addition to 

the small wounds that were caused by the infiltration procedure (Figure 1B). To 
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compare the necrosis induced by the various VdAve1 homologs, they were co-

expressed with Ve1 in N. tabacum and HR development was measured by 

quantification of the leaf area that developed necrosis at five days post infiltration 

(dpi). Importantly, none of the VdAve1 homologs induced necrosis in the absence of 

Ve1 (Figure 1B). Whereas agroinfiltration of either VdAve1 or VnAve1 with Ve1 

resulted in complete necrosis of the infiltrated leaf area, agroinfiltration of FoAve1 

with Ve1 resulted in large necrotic spots in the infiltrated leaf area, although no 

complete collapse of the infiltrated area was observed (Figure 1B, C). Upon 

agroinfiltration of CbAve1 with Ve1, spreading of smaller and larger necrotic spots 

was observed in all infiltrated areas, but the infiltrated leaf area did not turn 

completely necrotic. For ChAve1, XacPNP and Avr9, necrosis did not extend beyond 

the wounded infiltration sites (Figure 1B, C). Upon agroinfiltration of the tomato 

and grape VdAve1 homologs, SlPNP and VvPNP, most of the infiltrated leaf area 

developed necrosis (Figure 1B, C), occasionally affecting the complete infiltrated 

leaf sector. To confirm that variable levels of HR induced by VdAve1 homologs are 

not due to instability of the VdAve1 homologs in planta, GFP-tagged VdAve1 

homologs were detected by immunoblotting. Similar to GFP-tagged VdAve1 protein 

or GFP-tagged VnAve1, all other GFP-tagged VdAve1 homologs accumulated to 

clearly detectable protein levels in planta (Figure S1). 

 

The C-terminus of VdAve1 is required, but not sufficient, for recognition by 

tomato Ve1 

In order to perform further functional analyses, a construct encoding C-terminally 

GFP-tagged VdAve1 (VdAve1_c GFP) was generated. However, C-terminal fusion of 

a GFP tag to VdAve1 resulted in loss of recognition by Ve1 (Figure 2A, C). 

Considering that the GFP tag (~27 kDa) is relatively large, we engineered C- 

terminally tagged VdAve1 fusions with smaller protein tags (<12 kDa; VdAve1_c 

3xHA, VdAve1_c 6xHis, VdAve1_c 4xMyc, VdAve1_c 10xMyc and VdAve1_c FLAG; 

Figure 2A). Despite their smaller size, all additionally tested C-terminal tags 

abolished, or significantly reduced, HR development on Ve1-expressing tobacco 

leaves (Figure 2A, C). Importantly, the C-terminally GFP-tagged VdAve1 fusion was 

clearly detected by immunoblotting (Figure S2A), suggesting that accessibility of 

the VdAve1 C-terminus is important in VdAve1 recognition by Ve1. 
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Figure 2. Effect of C- or N- terminally tagged VdAve1 versions on recognition of VdAve1 by Ve1 in 
tobacco. (A) Constructs encoding full-length VdAve1 (VdAve1) and C-terminally tagged VdAve1 
versions (VdAve1_c GFP, VdAve1_c 3xHA, VdAve1_c 6xHis, VdAve1_c 4xMyc, VdAve1_c 10xMyc, 
VdAve1_c FLAG) were assayed for necrosis-inducing capability. The constructs were co-expressed with 
Ve1 in tobacco respectively, and the occurrence of necrosis was monitored at 5 dpi. The feature includes 
a predicated signal peptide (SP) involved in effector secretion. (B) Constructs encoding N-terminally 
fused VdAve1 versions (VdAve1_n GFP, VdAve1_n HA, VdAve1_n Myc and VdAve1_n Avr9) were assayed 
for necrosis-inducing capability. The constructs were co-expressed with Ve1 in tobacco respectively, and 
the necrosis occurrence was monitored at 5 dpi. A construct encoding mature Avr9 fused with VdAve1 
signal peptide (SP_Avr9) co-expressed with Ve1 is used as a negative control. (C) Quantification of 
necrosis resulting from recognition of tagged VdAve1 proteins by Ve1 at 5 dpi. The graph shows the 
average percentage of necrotic leaf area of infiltration zones at 5 dpi (n > 5). Data are presented as mean 
with standard deviations. Asterisks indicate statistically significant differences when compared with 
wild-type VdAve1-indcued necrosis (P < 0.05). 

 

To further investigate the role of the C-terminus in recognition of VdAve1 by 

Ve1, a number of C-terminal truncation mutants were generated. Deletion of 42 
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amino acids from the C-terminus (Lys93 to Ile134; VdAve1Δ93-134) resulted in loss of 

VdAve1 recognition by Ve1 (Figure 3A, B). Subsequent analysis of step-wise smaller 

truncations revealed that a C-terminal deletion of nine amino acids (VdAve1Δ126-134) 

resulted in loss of Ve1-mediated recognition (Figure 3A, B), even though the 

presence of GFP-tagged VdAve1Δ126-134 protein in planta was verified by 

immunoblotting (Figure S2A). We subsequently performed complementation 

experiments in V. dahliae to confirm the importance of the C-terminus for 

activation of Ve1-mediated immunity. To this end, we expressed VdAve1Δ126-134 

driven by the native VdAve1 promoter in a VdAve1 deletion mutant (V. dahliae 

JR2ΔVdAve1; de Jonge et al., 2012) and inoculated Ve1 tomato plants with the 

complemented strains. Plants that were inoculated with three independent V. 

dahliae strains expressing VdAve1Δ126-134 (VdAve1Δ126-134 #1, VdAve1Δ126-134 #2 and 

VdAve1Δ126-134 #3) showed a similar disease phenotype as Ve1 plants inoculated 

with the V. dahliae JR2ΔVdAve1 strain, whereas plants inoculated with wild-type V. 

dahliae strain JR2 and the VdAve1 complementation strain resembled mock-

inoculated plants (Figure 3C, D). Collectively, these results demonstrate that the C-

terminal nine amino acids of VdAve1 are required to activate Ve1-mediated 

immunity. 

Since the C-terminal nine amino acids appear to be essential for VdAve1 

recognition, and the bacterial homolog XacPNP that is significantly divergent in this 

region (Figure 1A) is not recognized by Ve1 (Figure 1B, C), C-terminal nine-amino-

acid swaps between VdAve1 and XacPNP were performed. An expression construct 

encoding a chimeric VdAve1 protein was engineered in which the C-terminal nine 

amino acids of VdAve1 were replaced by those of XacPNP (Vd_XacPNPc 9AA; Figure 

4A). As expected, similar to XacPNP, co-expression of Vd_XacPNPc 9AA with Ve1 in 

tobacco failed to induce an HR, as only minimal necrotic spots were observed 

(Figure 4A, B). Conversely, a construct encoding another chimeric VdAve1 protein 

was generated in which the last nine amino acids of XacPNP were replaced by those 

of VdAve1 (Xac_VdAve1c 9AA; Figure 4A). Co-expression of Xac_VdAve1c 9AA with Ve1 

in tobacco induced a relatively strong HR when compared with XacPNP or 

Vd_XacPNPc 9AA-induced HR, although full necrosis was not observed in the 

infiltrated leaf area (Figure 4A, B). Immunoblotting confirmed that the GFP-tagged 

Vd_XacPNPc 9AA and Xac_VdAve1c 9AA proteins were present in planta (Figure S2B).  
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Figure 3. The C-terminal nine amino acids of VdAve1 are required to establish Ve1-mediated 
immunity. (A) VdAve1 C-terminal truncations result in loss of recognition by Ve1. Constructs encoding 
four VdAve1 truncations that lack the C-terminal 42 (VdAve1Δ93-134), 32 (VdAve1Δ103-134), 18 (VdAve1Δ117-

134) and 9 (VdAve1Δ126-134) amino acids of VdAve1 co-infiltration with Ve1 were assayed respectively, and 
the occurrence of necrosis was recorded at 5 dpi. Constructs VdAve1 and SP_Avr9 were used as a 
positive and negative control, respectively. The feature includes a predicated signal peptide (SP) 
involved in effector secretion. (B) Quantification of necrosis resulting from recognition of VdAve1 C-
terminal truncations by Ve1 at 5 dpi. The graph shows the average percentage of necrotic leaf area of 
infiltration zones at 5 dpi (n > 5). Data are presented as mean with standard deviations. Asterisks 
indicate statistically significant differences when compared with wild-type VdAve1-indcued necrosis (P 
< 0.05). (C) Complementation assays in Verticillium dahliae show that the VdAve1 C-terminal nine amino 
acids are required to activate Ve1-mediated immunity in tomato. Three independent V. dahliae VdAve1 
deletion (ΔVdAve1) strains expressing a construct encoding VdAve1 lacking the C-terminal nine amino 
acids (VdAve1Δ126-134 #1, VdAve1Δ126-134 #2 and VdAve1Δ126-134 #3) escape recognition by Ve1 tomato 
compared with V. dahliae wild-type (WT) and genetic complementation strains (VdAve1) evidenced by 
stunted Ve1 plants at 14 days post Verticillium inoculation. (D) Average canopy area of 8 Ve1 tomato 
plants inoculated with different V. dahliae strains or mock-inoculation. Different letters indicate 
statistically significant differences (P < 0.05). The data shown are representative of three independent 
experiments. 
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Figure 4. (A) The C-terminal nine amino acids of VdAve1 are critical but not sufficient for Ve1-mediated 
recognition in tobacco. Constructs encoding full-length VdAve1 and XacPNP with their own signal 
peptides (SP) and two chimeras in which their C-terminal nine amino acids were swapped (Vd_XacPNPc 

9AA and Xac_VdAve1c 9AA) were assayed. In chimera Vd_XacPNPc 9AA the C-terminal nine amino acids of 
VdAve1 were replaced by those of XacPNP, while in chimera Xac_VdAve1c 9AA the C-terminal nine amino 
acids of XacPNP were replaced by those of XacPNP. A construct encodes the C-terminal nine amino acids 
of VdAve1 fused to the VdAve1 signal peptide (SP_VdAve1c 9AA). A construct encodes a GFP that is C-
terminally fused to the C-terminal nine amino acids of VdAve1, and N-terminally fused to the VdAve1 
signal peptide to establish extracellular secretion (SP_GFP_VdAve1c 9AA), while a construct encoding GFP 
fused with the VdAve1 signal peptide (SP_GFP) and construct SP_Avr9 were used as negative controls. 
Furthermore, a chemically synthetized peptide encompassing VdAve1 C-terminal nine amino acids 
peptide (AVNIEFRQI) was used. A construct VdAve1 was used as a positive control. The feature includes 
a predicated signal peptide (SP) involved in effector secretion. All the constructs were co-expressed with 
Ve1 in tobacco respectively, and the occurrence of necrosis was monitored at 5 dpi. (B) Quantification of 
necrosis resulting from recognition of VdAve1 chimeras by Ve1 at 5 dpi. The graph shows the average 
percentage of necrotic leaf area of infiltration zones at 5 dpi (n > 10). Data are presented as mean with 
standard deviations. Asterisks indicate statistically significant differences when compared with wild-
type VdAve1-indcued necrosis (P < 0.05). 
 

These results confirm that the C-terminal nine amino acids of VdAve1 are critical 

for recognition by Ve1, and furthermore suggest that these are sufficient for 

recognition. 
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To determine whether the C-terminal nine amino acids are indeed sufficient to 

trigger Ve1-mediated recognition, we generated a construct encoding the C-

terminal nine amino acids of VdAve1 fused to the VdAve1 signal peptide 

(SP_VdAve1c 9AA; Figure 4A). This construct was co-expressed with Ve1 in tobacco, 

but no necrosis was observed in the infiltrated leaf (Figure 4A, B). Additionally, 

infiltration of a chemically synthetized peptide encompassing the C-terminal nine 

amino acids of VdAve1 (peptide sequence: AVNIEFRQI) did not induce an HR in 

Ve1-expressing tobacco up to a concentration of 1 mg/mL (Figure 4A, B). However, 

possibly the nine amino acid peptide is not stable in the apoplast. In an attempt to 

overcome such complications, we generated two constructs in which the coding 

sequence of GFP or Avr9 was N-terminally fused to the VdAve1 signal peptide and 

C-terminally fused to the C-terminal nine amino acids of VdAve1 (SP_GFP_VdAve1c 

9AA and SP_Avr9_VdAve1c 9AA; Figure 4A). As negative controls, two constructs in 

which the coding sequence of GFP or Avr9 was N-terminally fused to the VdAve1 

signal peptide without the C-terminal nine amino acids of VdAve1 (SP_GFP and 

SP_Avr9; Figure 4A) were generated. All constructs were co-expressed with Ve1 in 

tobacco and HR development was monitored at 5 dpi. However, only slight necrosis 

was observed following infiltration of Ve1 with SP_GFP_VdAve1c 9AA or 

SP_Avr9_VdAve1c 9AA in the infiltrated sector (Figure 4A, B), despite detection of 

SP_GFP_VdAve1c 9AA protein in planta by immunoblotting (Figure S2A). These data 

reveal that the C-terminal nine amino acids of VdAve1 are not sufficient to activate 

Ve1-mediated immunity. 

To test whether longer stretches of the C-terminus of VdAve1 can be used to 

trigger Ve1-mediated recognition, we generated a construct encoding the C-

terminal 18 amino acids of VdAve1 fused to the VdAve1 signal peptide (SP_VdAve1c 

18AA; Figure 5A). This construct was co-expressed with Ve1 in tobacco, but only 

slightly increased necrosis was observed in the infiltrated sector (Figure 5A, B). We 

further generated two constructs in which the coding sequence of GFP or Avr9 was 

N-terminally fused to the VdAve1 signal peptide and C-terminally fused to the C- 

terminal 18 amino acids of VdAve1 (SP_GFP_VdAve1c 18AA and SP_Avr9_VdAve1c 18AA; 

Figure 5A). Co-infiltrations of Ve1 with SP_GFP or SP_Avr9 were used as negative 

controls. Co-expression of Ve1 with SP_GFP_VdAve1c 18AA or SP_Avr9_VdAve1c 18AA in 

tobacco induced similar necrosis formation as SP_VdAve1c 18AA protein at 5 dpi  
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Figure 5. VdAve1 C-terminus is not sufficient for VdAve1 recognition by Ve1. (A) Occurrence of the 
necrosis in tobacco upon co-expression of VdAve1 C-terminal chimeras with Ve1. Three constructs 
encoding the VdAve1 signal peptide (SP) fused to the VdAve1 C-terminal 18-amino-acid (SP_VdAve1c 

18AA), or the GFP and VdAve1 C-terminal 18-amino-acid (SP_GFP_ VdAve1c 18AA) , or the mature Avr9 and 
VdAve1 C-terminal 18-amino-acid (SP_Avr9_ VdAve1c 18AA) were generated. Furthermore, constructs 
encoding the extended VdAve1 C-termini (SP_VdAve1c 32AA and SP_VdAve1c 42AA), or N-terminally GFP-
tagged VdAve1 C-terminal extensions (SP_GFP_VdAve1c 32AA and SP_GFP_VdAve1c 42AA), or N-terminally 
Avr9-fused VdAve1 C-terminal extensions (SP_Avr9_VdAve1c 32AA and SP_Avr9_VdAve1c 42AA) were 
assayed too. Constructs VdAve1, SP_GFP and SP_Avr9 were used as controls. The feature includes a 
predicated signal peptide (SP) involved in effector secretion. The constructs were co-expressed with Ve1 
in tobacco respectively, and the necrosis occurrence was recorded at 5 dpi. (B) Quantification of 
necrosis resulting from recognition of VdAve1 C-terminal chimeras by Ve1 at 5 dpi. The graph shows the 
average percentage of necrotic leaf area of infiltration zones at 5 dpi (n > 10). Data are presented as 
mean with standard deviations. Asterisks indicate statistically significant differences when compared 
with wild-type VdAve1-indcued necrosis (P < 0.05). 

 

(Figure 5A, B). Immunoblotting confirmed that the chimeric SP_GFP_VdAve1c 18AA 

protein was present in planta (Figure S3). Subsequent analyses showed that also 

the C-terminal 32 amino acids and the C-terminal 42 amino acids of VdAve1 induce 

signs of a weak HR at 5 dpi (Figure 5A, B), although their presence was verified by 
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immunoblotting (Figure S3). Taken together, these results reveal that the C-

terminus of VdAve1 is required, but not sufficient, to activate Ve1-mediated 

recognition. 

 

The N-terminus of VdAve1 is required, but not sufficient for Ve1-mediated 

recognition 

We previously observed that affinity tags that were C-terminally fused to VdAve1 

compromised recognition by Ve1, resulting in the finding that the C-terminus of 

VdAve1 is required for recognition. Accordingly, when we fused various tags (GFP, 

HA, Myc and Avr9) to the N-terminus of mature VdAve1, we similarly observed 

significantly compromised Ve1-mediated recognition upon use of the GFP 

(VdAve1_n GFP), or Myc (VdAve1_n Myc), or Avr9 (VdAve1_n Avr9) tag (Figure 2B, 

C), although N-terminal tagging of VdAve1 with HA (VdAve1_n HA) did not 

significantly affect recognition by Ve1 (Figure 2B, C). Immunoblotting confirmed 

that the N-terminally GFP-tagged VdAve1 protein was stably produced in planta 

(Figure S2A). These data suggest that, besides the VdAve1 C-terminus, also the N-

terminus of VdAve1 is involved in recognition by Ve1. 

To further investigate the importance of the N-terminus of VdAve1 in Ve1-

mediated recognition, recognition of VdAve1 upon deletion of the N-terminal 16 

amino acids (from Asp19 to Ala34; VdAve1Δ19-34) by Ve1 was tested in tobacco. 

Indeed, deletion of the 16 N-terminal amino acids of the mature VdAve1 abolished 

recognition by Ve1 (Figure 6A, B). Furthermore, we engineered two constructs in 

which the coding sequence of GFP or Avr9 was N-terminally fused to the VdAve1 

signal peptide and C-terminally fused to the mature VdAve1 lacking the N-terminal 

16-amino-acid of mature VdAve1 (SP_GFP_VdAve1Δ19-34 and SP_Avr9_ VdAve1Δ19-34; 

Figure 6A). Co-expression of Ve1 with SP_GFP_ VdAve1Δ19-34 or SP_Avr9_ VdAve1Δ19-34 

in tobacco did not result in Ve1-mediated recognition (Figure 6A, B), although 

production of SP_GFP_VdAve1Δ19-34 was confirmed by immunoblotting (Figure S4). 

To further confirm the involvement of the VdAve1 N-terminus in Ve1-mediated 

recognition, we introduced the coding sequence VdAve1Δ19-34 under the control of 

the native VdAve1 promoter into V. dahliae JR2ΔVdAve1 (de Jonge et al., 2012) and 

performed disease assays on Ve1 tomato plants. These assays showed that, similar 

to V. dahliae JR2ΔVdAve1, also complementation strains expressing VdAve1Δ19-34 
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caused clear Verticillium wilt symptoms on Ve1 tomato plants, while wild-type V. 

dahliae strain JR2 and the complementation strain expressing VdAve1 caused no 

disease symptoms on tomato plants expressing Ve1 (Figure 6C, D). These results 

reveal that the N-terminal 16 amino acids of mature VdAve1 are required to trigger 

Ve1-mediated immunity. 
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Figure 6. (A) The N-terminal sixteen amino acids of mature VdAve1 are required but not sufficient for 
Ve1-mediated recognition in tobacco. Occurrence of the necrosis in N. tabacum upon co-expression of N-
terminal chimeras with Ve1. Constructs encoding a VdAve1 truncation that lacks the N-terminal 16-
amino-acid of mature VdAve1 (VdAve1Δ19-34), and the corresponding N-terminal GFP or Avr9 fusion 
(SP_GFP_VdAve1Δ19-34 and SP_Avr9_VdAve1Δ19-34) were used. Furthermore, constructs encoding the 
VdAve1 signal peptide (SP) fused to the N-terminal 16-amino-acid of mature VdAve1 (SP_VdAve1n 16AA), 
or the GFP and the N-terminal 16-amino-acid of mature VdAve1 (SP_GFP_VdAve1n 16AA), or the mature 
Avr9 and VdAve1 C-terminal 16-amino-acid (SP_GFP_VdAve1n 16AA) were assayed. Constructs VdAve1, 
SP_GFP and SP_Avr9 were used as controls. The constructs include a predicted signal peptide (SP) to 
direct effector secretion. The constructs were co-agroinfiltrated with Ve1 in tobacco respectively, and 
the necrosis occurrence was monitored at 5 dpi. (B) Quantification of necrosis resulting from 
recognition of VdAve1 N-terminal chimeras by Ve1 at 5 dpi. The graph shows the average percentage of 
necrotic leaf area of infiltration zones at 5 dpi (n > 10). Data are presented as mean with standard 
deviations. Asterisks indicate statistically significant differences when compared with wild-type 
VdAve1-indcued necrosis (P < 0.05). (C) Complementation assays in V. dahliae show that the N-terminal 
sixteen amino acids of mature VdAve1 protein are required to activate Ve1-mediated immunity in 
tomato. Two independent V. dahliae VdAve1 deletion (ΔVdAve1) strains expressing a construct encoding 
VdAve1 lacking the N-terminal sixteen amino acids of mature VdAve1(VdAve1Δ19-34 #1 and VdAve1Δ19-34 

#2) escape recognition by Ve1 tomato compared with V. dahliae wild-type (WT) and genetic 
complementation strains (VdAve1) evidenced by stunted Ve1 plants at 14 days post Verticillium 
inoculation. (D) Average canopy area of 8 Ve1 tomato plants inoculated with different V. dahliae strains 
or mock-inoculation Different letters indicate statistically significant differences (P < 0.05). The data 
shown are representative of three independent assays. 

 

To examine whether that the N-terminal 16 amino acids are sufficient to 

trigger Ve1-mediated recognition, we engineered a construct encoding the N-

terminal 16-amino-acid of mature VdAve1 fused to the VdAve1 signal peptide 

(SP_VdAve1n 16AA; Figure 6A). However, co-expression of SP_VdAve1n 16AA with Ve1 in 

tobacco was not able to induce an HR at 5 dpi (Figure 6A, B). Furthermore, two 

constructs were designed in which the coding sequence of GFP or Avr9 was N-

terminally fused to the VdAve1 signal peptide and C-terminally tagged to the N-

terminal 16-amino-acid of mature VdAve1 (SP_GFP_VdAve1n 16AA and 

SP_Avr9_VdAve1n 16AA; Figure 6A). Co-expression of Ve1 with SP_GFP_VdAve1n 16AA or 

SP_Avr9_VdAve1n 16AA in tobacco failed to induce necrosis in tobacco (Figure 6A, B), 

although immunoblotting showed that the SP_GFP_VdAve1n 16AA was present in 

planta (Figure S4). Collectively, these results demonstrate that the N-terminal 16 

amino acids of mature VdAve1 are required, but not sufficient, to establish Ve1-

mediated immunity. 
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Structural modelling reveals co-localization of VdAve1 C- and N-termini on a 

surface-exposed patch  

In an attempt to gain a better insight in VdAve1 recognition by Ve1, a three-

dimensional structural model of VdAve1 was generated. Structural comparison 

with the protein databank (RCSB PDB) (Rose et al., 2013) revealed the maize 

protein EXPB1 (PDB ID: 2HCZ) (Yennawar et al., 2006) as a potential structural 

analogue (TM-Score 0.84) of VdAve1. The VdAve1 structural model shows that the 

C-terminal nine amino acids (Figure 7; shown in red) are exposed at the surface of 

the mature VdAve1 protein. The model also predicts that the N-terminus (Figure 7; 

shown in orange) congregates with the C-terminus on the exposed surface of the 

mature VdAve1 protein (Figure 7), which suggests that Ve1 may recognize a 

surface-exposed patch of the VdAve1 protein that includes both the N- and C-

termini. Taken together, we conclude that a surface-exposed patch of the VdAve1 

protein that is composed of co-localized N- and C-termini is recognized by the 

tomato cell-surface immune receptor Ve1. 

 
DISCUSSION 

We have previously shown that the V. dahliae effector VdAve1 is recognized by the 

tomato cell-surface immune receptor Ve1 (de Jonge et al., 2012), and we have 

identified several homologs of VdAve1 that are differentially recognized by Ve1 

(Figure 1B, C). In this study, we reveal that a surface-exposed patch of the VdAve1 

protein that is composed of co-localized N- and C-termini of V. dahliae effector 

VdAve1 is recognized by tomato immune receptor Ve1. Our analyses revealed that 

the C-terminus as well as the N-terminus individually are required, but not 

sufficient, to activate Ve1-mediated immunity. 

Plant cell surface-localized PRRs are often activated upon recognition of short 

peptide sequences on the surface of their ligands, such as flg22 or flgII-28 that are 

derived from flagellin (Felix et al., 1999; Cai et al., 2011; Clarke et al., 2013), the 

pentapeptide TKLGE derived from EIX (Rotblat et al., 2002), the csp22 peptide 

derived from the bacterial cold shock proteins (Felix and Boller, 2003), elf18 or 

EFa50 derived from EF-Tu (Kunze et al., 2004; Furukawa et al., 2014), and the 

nlp20 peptide found in most NLPs (Böhm et al., 2014; Oome et al., 2014). In our 

study, we attempted to identify such motif in VdAve1 for recognition by the tomato  
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Figure 7. Three-dimensional structural model of the VdAve1 protein. The VdAve1 structure was 
predicted using I-TASSER (Zhang, 2008). The inferred VdAve1 structure is of high quality indicated by a 
confidence score (C-Score) of 1.22, and displayed as a ribbon (A), and surface (B) model from the side 
(left) and the top (right). The C-terminal nine amino acids sequence of VdAve1 is indicated in red, while 
the N-terminal eight amino acids sequence is indicated in orange. 

 

cell-surface immune receptor Ve1. Clearly, our results suggest that the co-

localization of the two termini of the primary amino acid sequence, rather than a 

contiguous stretch of amino acids composes the recognition motif. Our efforts to 

identify an artificial minimal peptide that can be recognized by tomato Ve1 by 

generating chimeric peptides consisting of the N-terminal sixteen amino acids in 

combination with various C-terminal peptides, and fused to various tags, were 

fruitless (data not shown). This suggests that also the folding of the recognized 

sequence patch, and the spatial orientation of the two protein termini, is important 

for the activation of Ve1-meidated immunity. 

Although several minimal motifs have been identified in ligands of cell surface 
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receptors, similar examples for intracellular NLR (nucleotide-binding domain 

leucine-rich repeat) immune receptors have not been reported. Moreover, it has 

suggested that simultaneous recognition of multiple epitopes within a single 

effector is required for NLR activation. For example, distinct regions of the 

Pseudomonas syringae effector AvrRps4 are required for the activation of the 

intracellular NLR receptors PRS4/RRS1-mediated immunity (Sohn et al., 2009, 

2012). Similarly, multiple contact points are likely required for recognition of the 

flax-rust effectors AvrL567 and AvrM by the corresponding NLR receptors in flax 

(Wang et al., 2007; Ve et al., 2013). Likewise, multiple residues at separate locations 

on the surface of the Hyaloperonospora arabidopsidis effector ATR1 are required for 

recognition by the Arabidopsis NLR receptor RPP1 (Chou et al., 2011; Goritschnig et 

al., 2016). In contrast to these findings, our data suggest that, although physically 

separated on the primary amino acid chain, recognition converges at a single 

surface-exposed patch of the VdAve1 protein. 

Thus far, we have failed to show a direct physical interaction between VdAve1 

and Ve1. Functional analysis of the tomato immune receptor Ve1 through domain 

swaps with its non-functional homolog Ve2, and subsequent alanine scanning 

mutagenesis on the solvent exposed β-strand/β-turn residues across the eLRR 

domain previously identified several regions of the Ve1 protein that are required 

for functionality (Fradin et al., 2014; Zhang et al., 2014). In these studies, Ve1 

functionality was restricted to three consecutive eLRR regions, namely eLRR1-

eLRR8, eLRR20-eLRR23 and eLRR32-eLRR37, of which two regions eLRR1-eLRR8 

and eLRR20-eLRR23 were proposed to contribute to ligand binding, while eLRR32-

eLRR37 was proposed to function in immune signalling activation (Zhang et al., 

2014). Realistically, final confirmation of this model cannot be obtained through 

domain swaps, domain deletions, gene shuffling analyses and site-directed 

mutagenesis within the immune receptor or the recognized ligand, but will 

ultimately have to follow from structural analysis of receptor-ligand interactions, 

for instance through crystallography.  

 
MATERIALS AND METHODS 

Plant materials and plant growth conditions 

Tobacco (Nicotiana tabacum cv. Petite Havana SR1) and 35S::Ve1 tomato (Solanum 
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lycopersicum cv. MoneyMaker background; Fradin et al., 2009) plants were grown 

in the greenhouse (Unifarm, Wageningen, the Netherlands) at 21°C/19°C during 

16/8 hours day/night periods, respectively, with 70% relative humidity and 100 

W/m-2 supplemental light when the light intensity dropped below 150 W/m-2. After 

agroinfiltration, tobacco plants were grown in the climate room at 22°C/19°C 

during 16-h/8-h day/night periods, respectively, with 70% relative humidity. 

 

Sequence alignments and phylogenetic analysis 

Signal peptide prediction was performed using the SignalP 4.1 server 

(http://www.cbs.dtu.dk/services/SignalP/; Petersen et al., 2011). Multiple 

sequence alignments were conducted by using the Cluastal X program 

(http://www.clustal.org/). Phylogenetic tree was constructed by using the 

neighbour-joining method in MEGA7 (http://www.megasoftware.net/). Bootstrap 

reassembling analysis based on 1000 replicates was used to assess the confidence 

values indicated at the individual nodes. 

 

Generation of binary expression vectors  

Construction of all binary expression vectors is described in Methods S1. 

 

Transient expression assays 

Overnight cultures of A. tumefaciens strain GV3101 containing expression 

constructs were harvested at OD600 of 0.8 to 1 by centrifugation and resuspended 

to a final OD of 2 in infiltration medium as described previously (Zhang et al., 

2013). A. tumefaciens cultures containing constructs to express Ve1 and VdAve1, or 

VdAve1 homologs, or VdAve1 chimeras were mixed in a 1:1 ratio and infiltrated into 

leafs of five- to six-week-old tobacco plants. At five days post infiltration (dpi), 

infiltrated leaves were photographed, and necrosis was quantified by using ImageJ 

to measure the area of necrosis as percentage of the total infiltrated leaf area (Song 

et al., 2017). 

 

Protein extracts and immunoblotting 

For immunological detection of GFP-tagged VdAve1 homologs and VdAve1 

chimeras, A. tumefaciens carrying the corresponding expression constructs was 

http://www.cbs.dtu.dk/services/SignalP/
http://www.clustal.org/
http://www.megasoftware.net/
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infiltrated into mature tobacco leaves as described previously (Zhang et al., 2013). 

The co-immunoprecipitations and immunoblotting were performed as described 

previously (Zhang et al., 2014). 

 

Generation of complementation V. dahliae strains  

To generate VdAve1, VdAve1Δ126-134 and VdAve1Δ19-34 complementation constructs, 

DNA fragments containing the PacI and NotI restriction sites were amplified by PCR 

from the corresponding plasmids VdAve1, VdAve1Δ126-134 and VdAve1Δ19-34 using 

primers listed in Table S2, and cloned into the vector pFBT005 which ToxA 

promoter was replaced by the native VdAve1 promoter (~1.6 kb) and contains a 

nourseothricin cassette, respectively. All the constructs were confirmed by DNA 

sequencing (Eurofins Genomics, Ebersberg, Germany), and subsequently 

transformed into A. tumefaciens strain AGL1 by electroporation. A. tumefaciens-

mediated transformation of V. dahliae strain JR2ΔVdAve1 (de Jonge et al., 2012) was 

performed as previously described (Santhanam, 2012). V. dahliae transformants 

were selected on potato dextrose agar (PDA; Oxoid, Basingstoke, UK) plates 

containing 50 µg/mL nourseothricin sulphate (Sigma-Aldrich Chemie BV, 

Zwijndrecht, the Netherlands). After five to seven days at room temperature, 

individual transformants were transferred to fresh PDA plates and incubated for 7 

to 10 days. Genomic DNA was extracted from individual transformants and PCR 

was performed to test presence of the inserted nourseothricin cassette and 

presence of the inserted chimeric VdAve1 fragment. 

 

Disease assays 

V. dahliae was grown on PDA plates at 22 °C, and conidia were collected from 7- to 

10- day-old V. dahliae cultures on PDA plates and washed with tap water. Disease 

assays on tomato plants were performed as previously described (Fradin et al., 

2009). Briefly, 10-day-old tomato plants were uprooted, the roots were rinsed in 

water, dipped for 5 min in a suspension of 106 conidiospores/mL water while the 

roots of mock plants were dipped in tap water without conidiospores, and 

transplanted to fresh commercial potting soil (Horticoop, Bleiswijk, the 

Netherlands). Disease symptoms were scored up to 14 days post Verticillium 

inoculation, inoculated plants were photographed. The canopy area of 8 plants was 
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measured with ImageJ software and a One-Way ANOVA was performed with IBM 

SPSS statistics software. 

 

Generation of the structural model of VdAve1 

The V. dahliae VdAve1 structure was predicted using I-TASSER v4.3 (Zhang, 2008) 

and rendered using UCSF Chimera v1.10.1 (Pettersen et al., 2004). Structural 

predictions with C-Scores > -1.5 are generally considered to have a correct fold (C-

Scores are typically in the range of [-5,2]); Roy et al., 2010). The structural analog in 

the protein data bank (RCSB PDB) (Rose et al., 2013) was identified using the TM-

align program which is part of the I-TASSER package. Analogous structures with 

TM-Scores > 0.5 are considered to have a similar fold (TM-Scores in the range [0,1]) 

(Roy et al., 2010). 
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SUPPLEMENTAL INFORMATION 
 

Table S1. Verticillium strains analysed for presence of VdAve1 homologs. 

Species Isolate Original host Origin Ave1 

V. dahliae JKG2 catalpa Netherlands - 

 CIG3-Vd hop Slovenia - 

 JKG1 potato Netherlands - 

 JKG8 potato Netherlands - 

 A56 potato Slovenia + 

 DJK chrysanthemum Netherlands - 

 MH chrysanthemum Netherlands - 

 Mint mint USA - 

 T9 cotton USA - 

 Vd1795 sugar beet USA - 

 Vd850-4 potato USA - 

 GAJ09 hop Slovenia - 

 PDRENU hop Slovenia - 

 CasD hop Slovenia - 

 KresD hop Slovenia - 

 MoD hop Slovenia - 

 Oset hop Slovenia - 

 12099 hop U.K. - 

 12042 hop U.K. - 

 PD335 cabbage unknown - 

 PD584 mint unknown - 

 V-176l cotton Netherlands + 

 V-138l cotton Germany - 

 PAPmb pepper Slovenia - 

 PAP pepper Slovenia + 

 Pap99 pepper Slovenia + 

 Pap2008 pepper Slovenia + 

 2009-605 pepper Ukrain + 

 Vd52 pepper Austria + 

 V4 cotton Spain + 

 V117 cotton Spain - 

 V991 cotton China - 

 BP2 cotton China - 

 CQ2 cotton China - 

 1cd3-2 cotton China - 

 4TM6-15 cotton China - 

 1hn-1 cotton China - 

 CFA3 sunflower China - 

 GRN1 sunflower China - 

 GYA2 sunflower China - 

 HnA4 sunflower China - 

 SX4 sunflower China - 

 WYA3 sunflower China - 



Chapter 3 

74 

3 

Table S1 (continued) 

Species Isolate Original host Origin Ave1 

V. dahliae HeA4 sunflower China - 

 12 sunflower China - 

 77 sunflower China - 

 89 sunflower China - 

 VPRI 42056 tomato Australia - 

 VPRI 42057 tomato Australia - 

 VPRI 42058 tomato Australia - 

 VPRI 42079 tomato Australia - 

 VPRI 42080 tomato Australia - 

 VPRI 42081 tomato Australia - 

V. nonalfalfae P10 hop Germany - 

 P114/1 hop Germany - 

 P34/1 hop Germany - 

 P15 hop Germany - 

 P55 hop Germany - 

 P83 hop Germany - 

 6/99 hop Germany - 

 14/93 hop Germany - 

 15/98 hop Germany - 

 P84/2 hop Germany - 

 16/00 hop Germany - 

 T2 hop Slovenia - 

 TABOR6 hop Slovenia - 

 Ledina09-V.aa hop Slovenia + 

 BIZ hop Slovenia - 

 VranBis09 hop Slovenia - 

 Sent4 hop Slovenia - 

 MO3 hop Slovenia - 

 OCer hop Slovenia - 

 zup hop Slovenia - 

 Rec91 hop Slovenia - 

 KRES98 hop Slovenia - 

 Gajsek hop Slovenia - 

 1985a hop U.K. - 

 11041 hop U.K. - 

 11055 hop U.K. - 

 11047 hop U.K. - 

 11097 hop U.K. - 

 11100 hop U.K. - 

 1974 hop U.K. - 

 298099 hop U.K. - 

 298100 hop U.K. - 

 298101 hop U.K. - 

 298102 hop U.K. - 

 11052 hop U.K. - 

 1953 hop U.K. - 
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Table S1 (continued) 

Species Isolate Original host Origin Ave1 

V. nonalfalfae 298092 hop U.K. - 

 298095 hop U.K. - 

 Sol hop Poland + 

 CBS393.91 hop Belgium - 

 kum cucumber Slovenia - 

 Surf surfinias Slovenia - 

 11077 Galinsoga ciliata U.K. - 

 11081 chrysanthemum U.K. + 

 CBS102.464 cynara Italija - 

 CBS241.82 catalpa Italija + 

 CBS454.51 potato U.K. - 

 CBS682.88 potato Netherlands - 

 11066 potato U.K. - 

 T179 tomato U.K. + 

 CBS321.91 tomato Netherlands - 

 AR01/067 tomato U.K. - 

 AR0/140 tomato U.K. - 

 AR01/JS1 tomato U.K. - 

 PD83/53a tomato Netherlands - 

 PD2000/4186a tomato Netherlands + 

 VnaCBS385.91 tomato  Netherlands + 

 Vna5431 tomato unknown + 

 Vna1 unknown Luxembourg - 

V. alfalfae Luc alfalfa U.K. + 

 41 alfalfa Canada - 

 CBS392.91 alfalfa Netherlands - 

 Va2 unknown Netherlands - 

 107 alfalfa USA - 

 PD693 potato Iran - 

 314193 potato Australia - 

 340646 potato Spain + 

 11 alfalfa Slovenia - 

V. nubilum CBS456.51 potato UK + 

 CBS457.51 soil UK + 

 PD621 mushroom compost UK + 

 PD702 potato UK + 

V. tricorpus CBS227.84 potato Netherlands - 

 JKG20 linden  Netherlands - 

V. longisporium CBS110218 Brassica napus Sweden - 

 PD330 cabbage unknown - 
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Figure S1. Stability of N-terminally GFP-tagged of mature VdAve1 homologs proteins in planta. 
Total protein extracts of transiently transformed leaf tissue were subjected to immunoprecipitation(IP) 
using α-GFP affinity beads. Immunoprecipitation proteins were subjected to sodium dodecyl sulfate-
polyacrylamide electrophoresis (SDS/PAGE) and immunoblotted (IB) using α-GFP antibody. Coomassie 
blue staining (CBS) of the blot containing total protein extracts showed equal loading in each lane based 
on the 50-kDa RuBisCo (ribulose-1,5-bisphosphate carboxylase/oxygenase) band. GFP-tagged VdAve1 
signal peptide was used as a control. 
 

 

 
Figure S2. Presence of GFP-tagged VdAve1 chimeras proteins in planta. (A) VdAve1_c GFP, 
VdAve1_n GFP, SP_GFP_VdAve1c 9AA and N-terminally GFP-tagged VdAve1Δ126-134 proteins are detected in 
planta by immunoprecipitation (IP) using α-GFP affinity beads, followed by immunoblotting (IB) using 
α-GFP antibody. Coomassie blue staining (CBS) of the blot containing total protein extracts showed equal 
loading in each lane based on the 50-kDa RuBisCo (ribulose-1,5-bisphosphate carboxylase/oxygenase) 
band. GFP-tagged VdAve1 signal peptide was used as a control. (B) N-terminally GFP-tagged XacPNP, 
Vd_XacPNPc 9AA and XacP_VdAve1c 9AA proteins are detected in planta by immunoprecipitation (IP) using 
α-GFP affinity beads, followed by immunoblotting (IB) using α-GFP antibody. Coomassie blue staining 
(CBS) of the blot containing total protein extracts showed equal loading in each lane based on the 50-
kDa RuBisCo (ribulose-1,5-bisphosphate carboxylase/oxygenase) band. GFP-tagged VdAve1 signal 
peptide and VdAve1_n GFP were used as controls. 
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Figure S3. Stability of N-terminally GFP-tagged VdAve1 C-termini proteins in planta. 
SP_GFP_VdAve1c 18AA, SP_GFP_VdAve1c 32AA and SP_GFP_VdAve1c 42AA proteins are detected in planta by 
immunoprecipitation (IP) using α-GFP affinity beads, followed by immunoblotting (IB) using α-GFP 
antibody. Coomassie blue staining (CBS) of the blot containing total protein extracts showed equal 
loading in each lane based on the 50-kDa RuBisCo (ribulose-1,5-bisphosphate carboxylase/oxygenase) 
band.  
 

 

 
Figure S4. Presence of GFP-tagged VdAve1 N-terminal truncation proteins in planta. 
SP_GFP_VdAve1Δ18-34 and SP_GFP_VdAve1n 16AA proteins are detected in planta by immunoprecipitation 
(IP) using α-GFP affinity beads, followed by immunoblotting (IB) using α-GFP antibody. Coomassie blue 
staining (CBS) of the blot containing total protein extracts showed equal loading in each lane based on 
the 50-kDa RuBisCo (ribulose-1,5-bisphosphate carboxylase/oxygenase) band. GFP-tagged VdAve1 
signal peptide and VdAve1_n GFP were used as controls. 
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Table S2. Primers used in this study. 
Primer name Oligonucleotide sequence (5’→3’) Descriptiona 

VdAve1-F (attB1) ggggacaagtttgtacaaaaaagcaggctATGAAGCTTTCTACGCTT VdAve1 and VdAve1 chimeras 

VdAve1-R (attB2) ggggaccactttgtacaagaaagctgggtTTATATCTGTCTAAATTC VdAve1 and VdAve1 chimeras 

VnAve1-F (attB1) ggggacaagtttgtacaaaaaagcaggctATGAAGCTTTCTACGCTT VnAve1 

VnAve1-R (attB2) ggggaccactttgtacaagaaagctgggtTTATATCTGTTCAAACTC VnAve1 

SlPNP-R (attB2) ggggaccactttgtacaagaaagctgggtTCAAATCTGGACATATTC SlPNP 

VvPNP-R (attB2) ggggaccactttgtacaagaaagctgggtTCAAATCTGTATGTACTC VvPNP 

FoAve1-R (attB2) ggggaccactttgtacaagaaagctgggtTCATCTTTGTACAAAATCG FoAve1 

CbAve1-R (attB2) ggggaccactttgtacaagaaagctgggtCTATATCTGCATATACTC CbAve1 

ChAve1-R (attB2) ggggaccactttgtacaagaaagctgggtTCAAATTTGTACGTACTC ChAve1 

XacPNP-R (attB2) ggggaccactttgtacaagaaagctgggtTTAAATATTTGCCCAGGG XacPNP 

VdAve1(ΔSC)-R (attB2) ggggaccactttgtacaagaaagctgggtcTATCTGTCTAAATTC VdAve1 (C-terminal tag) 

VdAve1Δ93-134-R (attB2) ggggaccactttgtacaagaaagctgggtTTACTTATGCCTCGTTCCCTT VdAve1Δ93-134 

VdAve1Δ103-134-R (attB2) ggggaccactttgtacaagaaagctgggtTTAAACAATGGCATCATATGAGT VdAve1Δ103-134 

VdAve1Δ117-134-R (attB2) ggggaccactttgtacaagaaagctgggtTTACTTGTGTGCTGCTTTGGTAA VdAve1Δ117-134 

VdAve1Δ126-134-R (attB2) ggggaccactttgtacaagaaagctgggtTTAAGCTCTGTCAACCACCCGCA VdAve1Δ126-134 

GFP-VdAve1c 9AA-R (attB2) ggggaccactttgtacaagaaagctgggtTTATATCTGTCTAAATTCGATGTT
GACCGCTTTGTATAGTTCATCCATGC 

SP_GFP_VdAve1c 9AA 

Avr9-VdAve1c 9AA-R TTATATCTGTCTAAATTCGATGTTGACCGCCTTATGCCTCGTTCCCT
TCCACTGATTATGTACACATTGGAGCTTA 

SP_Avr9_VdAve1c 9AA 

GFP-VnAve1-F GCATGGATGAACTATACAAACAATTAGGGACCGCATCC VnAve1_n GFP 

GFP-VnAve1-R GGATGCGGTCCCTAATTGTTTGTATAGTTCATCCATGC VnAve1_n GFP 

GFP-SlPNP-F GCATGGATGAACTATACAAAGATATTGGCACGGCTAC SlPNP_n GFP 

GFP-SlPNP-R GTAGCCGTGCCAATATCTTTGTATAGTTCATCCATGC SlPNP_n GFP 

GFP-VvPNP-F GCATGGATGAACTATACAAAGACATTGGCACTGCAAAC VvPNP_n GFP 

GFP-VvPNP-R GTTTGCAGTGCCAATGTCTTTGTATAGTTCATCCATGC VvPNP_n GFP 

GFP-FoAve1-F GCATGGATGAACTATACAAAGATATCGGAACTGCAAATATTC FoAve1_n GFP 

GFP-FoAve1-R GAATATTTGCAGTTCCGATATCTTTGTATAGTTCATCCATGC FoAve1_n GFP 

GFP-CbAve1-F GCATGGATGAACTATACAAAGACATCGGCACCGCCGTC CbAve1_n GFP 

GFP-CbAve1-R GACGGCGGTGCCGATGTCTTTGTATAGTTCATCCATGC CbAve1_n GFP 

GFP-ChAve1-F GCATGGATGAACTATACAAAGATATCGGAACAGCAGGC ChAve1_n GFP 

GFP-ChAve1-R GCCTGCTGTTCCGATATCTTTGTATAGTTCATCCATGC ChAve1_n GFP 

GFP-XacPNP-F GCATGGATGAACTATACAAAGACATCGGTACAATTAG XacPNP_n GFP 

GFP-XacPNP-R CTAATTGTACCGATGTCTTTGTATAGTTCATCCATGC XacPNP_n GFP 

GFP-Vd_XacPNPc 9AA-R (attB2) ggggaccactttgtacaagaaagctgggtTTAAATATTTGCCCAGGGCGCTGT
TCTTGCCTTATGCCTCGTTCCCTT 

Vd_XacPNPc 9AA_ n GFP 

GFP-VdAve1c 18AA-R TTATATCTGTCTAAATTCGATGTTGACCGCCTTATGCCTCGTTCCCT
TCCACTGATTTTTGTATAGTTCATCCATGC 

SP_GFP_VdAve1c 18AA 

Avr9_VdAve1c 18AA-R TTATATCTGTCTAAATTCGATGTTGACCGCCTTATGCCTCGTTCCCT
TCCACTGATTATGTACACATTGGAGCTTA 

SP_Avr9_VdAve1c 18AA 
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Table S2 (continued) 

Primer name Oligonucleotide sequence (5’→3’) Descriptiona 

VdAve1c 32AA-F ATGAAGCTTTCTACGCTTGGAGCCCTCATTTCATTGACTTCACTGG
TCACTGCCGCGACCATGATCTTATCT 

SP_ VdAve1c 32AA 

GFP-VdAve1c 32AA-F GCATGGATGAACTATACAAAGCGACCATGATCTTATCT SP_GFP_VdAve1c 32AA 

GFP-VdAve1c 32AA-R AGATAAGATCATGGTCGCTTTGTATAGTTCATCCATGC SP_GFP_VdAve1c 32AA 

Avr9-VdAve1c 32AA-F TAAGCTCCAATGTGTACATGCGACCATGATCTTATCT SP_Avr9_VdAve1c 32AA 

Avr9-VdAve1c 32AA-R AGATAAGATCATGGTCGCATGTACACATTGGAGCTTA SP_Avr9_VdAve1c 32AA 

VdAve1c 42AA-F ATGAAGCTTTCTACGCTTGGAGCCCTCATTTCATTGACTTCACTGG
TCACTGCCAAGACAACTGTTACCAAAGC 

SP_ VdAve1c 42AA 

GFP-VdAve1c 42AA-F GCATGGATGAACTATACAAAAAGACAACTGTTACCAAAGC SP_GFP_VdAve1c 42AA 

GFP-VdAve1c 42AA-R GCTTTGGTAACAGTTGTCTTTTTGTATAGTTCATCCATGC SP_GFP_VdAve1c 42AA 

Avr9-VdAve1c 42AA-F TAAGCTCCAATGTGTACATAAGACAACTGTTACCAAAGC SP_Avr9_VdAve1c 42AA 

Avr9-VdAve1c 42AA-R GCTTTGGTAACAGTTGTCTTATGTACACATTGGAGCTTA SP_Avr9_VdAve1c 42AA 

GFP-VdAve1Δ19-34-F GCATGGATGAACTATACAAATGCGGCGGCAGCAATCCC SP_GFP_VdAve1Δ19-34 

GFP-VdAve1Δ19-34-R GGGATTGCTGCCGCCGCATTTGTATAGTTCATCCATGC SP_GFP_VdAve1Δ19-34 

Avr9-VdAve1Δ19-34-F TAAGCTCCAATGTGTACATTGCGGCGGCAGCAATCCC SP_Avr9_VdAve1Δ19-34 

Avr9-VdAve1Δ19-34-R GGGATTGCTGCCGCCGCAATGTACACATTGGAGCTTA SP_Avr9_VdAve1Δ19-34 

VdAve1n 16AA-R (attB2) ggggaccactttgtacaagaaagctgggtTTAGGCAGTGGGAAGGTA SP_ VdAve1n 16AA 

GFP-VdAve1n 16AA-R GGCAGTGGGAAGGTAGGGTGGGTTATAGTAGGATGCGGTCCCTAG SP_GFP_VdAve1n 16AA 

Avr9-VdAve1n 16AA-R GGCAGTGGGAAGGTAGGGTGGGTTATAGTAGGATGCGGTCCCTAGA
TCATGTACACATTGGAGCTTA 

SP_Avr9_VdAve1n16AA 

VdAve1-F (PacI) TTAATTAAAATGAAGCTTTCTACGCTTGGA For VdAve1, VdAve1Δ19-34 
complementation strains 

VdAve1-R (NotI) GCGGCCGCTCATATCTGTCTAAATTCGATGTTGA For VdAve1, VdAve1Δ19-34 
complementation strains 

VdAve1Δ126-134-R (NotI) GCGGCCGCTCACTTATGCCTCGTTCCCTTCCAC For VdAve1Δ126-134 
complementation strains 

aThe type of experiment for which the primers were used.  
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Methods S1. Generation of binary expression vectors 

Constructs for the constitutive expression of VdAve1, SlPNP, VvPNP, FoAve1, CbAve1, ChAve1 and XacPNP 

have been described previously (de Jonge et al., 2012; Song et al., 2016). VnAve1 was amplified from V. 

nubilum cDNA by using the primers VnAve1-F (attB1) and VnAve1-R (attB2) listed in Table S2, and 

subsequently cloned into the entry vector pDONR 207 by using the Gateway® BP Clonase® II Enzyme 

Mix (Invitrogen, California, USA), and recombined into the Gateway-compatible destination vector 

pSol2092 (Zhang et al., 2013) to generate expression construct pSol2092::VnAve1. 

Constructs encoding C-terminally tagged VdAve1 versions. To generate VdAve1 fused at the C-

terminus to the green fluorescent protein (GFP), the VdAve1 coding sequence without stop codon was 

amplified by using primers VdAve1-F(attB1) and VdAve1(ΔSC)-R(attB2) listed in Table S2. The PCR-

amplified fragment was cloned into pDONR207 by using the Gateway® BP Clonase® II Enzyme Mix 

(Invitrogen, California, USA) to generate entry vector pDONR207::VdAve1 (ΔSC) verified by DNA 

sequencing (Eurofins Genomics, Ebersberg, Germany). Subsequently, pDONR207::VdAve1 (ΔSC) was 

transferred into the Gateway-compatible destination vector pSol2095 (C-terminal GFP tag) (Zhang et al., 

2013) by using Gateway® LR Clonase® II Enzyme Mix (Invitrogen, California, USA) to generate C-

terminally GFP-tagged VdAve1 (VdAve1_c GFP; Figure 2A). Similarly, pDONR207::VdAve1 (ΔSC) was 

recombined into the Gateway-compatible destination vectors pGWB14, pGWB8, pGWB17, pGWB20 and 

pGBW11 (Nakagawa et al., 2007) to generate C-terminally affinity-tagged VdAve1 versions VdAve1_c 

3xHA, VdAve1_c 6xHIS, VdAve1_4xMyc, VdAve1_c 10xMyc, VdAve1_c FLAG (Figure 2A), respectively. 

Constructs encoding N-terminally fused VdAve1 versions. To fuse different tags (GFP, HA, Myc 

and mature Avr9) to the N-terminus of mature VdAve1, the corresponding tag coding sequence lacking 

the stop codon was fused at the N-terminus to the sequence encoding the signal peptide of VdAve1 to 

ensure extracellular targeting, and at the C-terminus to the mature VdAve1 protein. DNA fragments for 

constructs VdAve1_n GFP, VdAve1_n HA, VdAve1_n Myc, VdAve1_n Avr9, SP_GFP and SP_Avr9 ( Figure 

2C) were obtained by gene synthesis (Eurofins MWG Operon, Ebersberg, Germany), and cloned into the 

entry vector pDONR 207 and subsequently transferred into the Gateway-compatible destination vector 

pSol2092 (Zhang et al., 2013). 

Constructs encoding VdAve1 C-terminal deletions. To generate VdAve1 truncations VdAve1Δ93-

134, VdAve1Δ103-134, VdAve1Δ117-134, VdAve1Δ126-134 and VdAve1n 16AA, these DNA fragments were amplified 

from plasmid pSol2092::VdAve1 (Zhang et al., 2013) by using the forward primer VdAve1-F (attB1) in 

combination with the reverse primers VdAve1Δ93-134-R (attB2), VdAve1Δ103-134-R (attB2), VdAve1Δ117-134-R 

(attB2), VdAve1Δ126-134-R (attB2) and VdAve1n 16AA-R (attB2) (Table S2), respectively. A fragment 

SP_GFP_VdAve1c 9AA was amplified by PCR from plasmid SP_GFP using the primers VdAve1-F (attB1) and 
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GFP-VdAve1c 9AA-R (attB2) (Table S2). Vd_XacPNPc 9AA, Xac_VdAve1c 9AA, SP_VdAve1c 9AA, SP_VdAve1c 18AA, and 

VdAve1Δ19-34 were obtained by gene synthesis (Eurofins MWG Operon, Ebersberg, Germany), and cloned 

into the entry vector pDONR 207 and subsequently transferred into the vector pSol2092 (Zhang et al., 

2013). The AVNIEFRQI peptides were synthesized by GenScript corporation (GenScript, New Jersey, 

USA). 

Constructs encoding N-terminally GFP-tagged VdAve1 homologs and chimeras. To generate 

VnAve1, SlPNP, VvPNP, FoAve1, CbAve1, ChAve1, XacPNP  and Xac_VdAve1c 9AA fused GFP tag to the N-

terminus, the GFP coding sequence lacking the stop codon was fused at the N-terminus to the sequence 

encoding the signal peptide of VdAve1, and at the C-terminus to the mature VdAve1 homologs. The 

SP_GFP fragment and DNA fragments for the mature VdAve1 homologs were separately amplified and 

fused by the overlapping PCR. Seven SP_GFP fragments were amplified from plasmid SP_GFP by using 

the forward primer VdAve1-F (attB1) in combination with the reverse primers GFP-VnAve1-R, GFP-

SlPNP-R, GFP-VvPNP-R, GFP-FoAve1-R, GFP-CbAve1-R, GFP-ChAve1-R and GFP-XacPNP-R (Table S2). 

Eight fragments VnAve1, SlPNP, VvPNP, FoAve1, CbAve1, ChAve1, XacPNP and Xac_VdAve1c 9AA were 

amplified from plasmids VnAve1, SlPNP, VvPNP, FoAve1, CbAve1, ChAve1, XacPNP and Xac_VdAve1c 9AA 

by using the forward primers GFP-VnAve1-R, GFP-SlPNP-R, GFP-VvPNP-R, GFP-FoAve1-R, GFP-CbAve1-

R, GFP-ChAve1-R, GFP-XacPNP-R, GFP-XacPNP-R in combination with the corresponding reverse 

primers VnAve1-R (attB2), SlPNP-R (attB2), VvPNP-R(attB2), FoAve1-R (attB2), CbAve1-R (attB2), 

ChAve1-R (attB2) and XacPNP-R (attB2), VdAve1-R (attB2) (Table S2). Subsequently, eight desired DNA 

fragments were obtained by overlapping PCR by using the forward primer VdAve1-F (attB1) in 

combination with the corresponding reverse primers VnAve1-R (attB2), SlPNP-R (attB2), VvPNP-R 

(attB2), FoAve1-R (attB2), CbAve1-R (attB2), ChAve1-R (attB2), XacPNP-R (attB2), and XacPNP-R (attB2) 

(Table S2), and cloned into the entry vector pDONR 207 and subsequently recombined into the vector 

pSol2092 (Zhang et al., 2013). To generate VdAve1Δ126-134, Vd_XacPNPc 9AA fused GFP tag to the N-

terminus, the GFP coding sequence lacking the stop codon was fused at the N-terminus to the sequence 

encoding the signal peptide of VdAve1, and at the C-terminus to the VdAve1 chimeras. Two desired DNA 

fragments were amplified from plasmid VdAve1_n GFP by using the forward primer VdAve1-F (attB1) in 

combination with the reverse primers VdAve1Δ126-134-R (attB2) and GFP-Vd_XacPNPc 9AA-R (attB2) (Table 

S2), and cloned into the vector pDONR 207 and subsequently transferred into the vector pSol2092 

(Zhang et al., 2013). 

Constructs encoding C- or N-terminus. To generate constructs SP_VdAve1c 32AA, SP_VdAve1c 42AA, 

DNA fragments were amplified by the 1st round PCR using plasmid VdAve1 as templates and the reverse 

primer VdAve1-R (attB2) in combination with the forward primers VdAve1c 32AA-F, VdAve1c 42AA-F (Table 
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S2), and followed by the 2nd round PCR using primers VdAve1-F (attB1) and VdAve1-R (attB2) (Table 

S2). The resulting PCR fragments were cloned into the entry vector pDONR 207, sequenced and 

subsequently recombined into the vector pSol2092 (Zhang et al., 2013). 

Constructs encoding N-terminally GFP or Avr9-fused C- or N-terminus. To generate 

SP_GFP_VdAve1c 18AA, SP_GFP_VdAve1n 16AA, DNA fragments were amplified by the 1st round PCR using 

plasmid SP_GFP as templates and the forward primer VdAve1-F (attB1) in combination with the forward 

primers GFP-VdAve1c 18AA-R and GFP-VdAve1n 16AA-R (Table S2), respectively, and followed by the 2nd 

round PCR using primers VdAve1-F (attB1) and VdAve1-R (attB2) (Table S2). To generate constructs 

SP_Avr9_VdAve1c 9AA, SP_Avr9_VdAve1c 18AA, SP_Avr9_VdAve1n 16AA, DNA fragments were amplified by the 

1st round PCR using plasmid SP_Avr9 as template and the forward primer VdAve1-F (attB1) in 

combination with the forward primers Avr9-VdAve1c 9AA-R, Avr9-VdAve1c 18AA-R and Avr9-VdAve1n 16AA-

R (Table S2), respectively, and followed by the 2nd round PCR using primers VdAve1-F (attB1) and 

VdAve1-R (attB2) (Table S2). The resulting PCR fragments were cloned into the vector pDONR 207, 

sequenced and subsequently transferred into the vector pSol2092 (Zhang et al., 2013). To construct 

SP_GFP_VdAve1c 32AA, SP_GFP_VdAve1c 42AA, SP_GFP_VdAve1Δ19-34, SP_Avr9_VdAve1c 32AA, SP_Avr9_VdAve1c 

42AA and SP_Avr9_VdAve1Δ19-34, DNA fragments SP_VdAve1c 32AA, SP_VdAve1c 42AA, VdAve1Δ19-34, SP_GFP and 

SP_Avr9 were separately amplified and fused by the overlapping PCR. Fragments SP_GFP and SP_Avr9 

were amplified from plasmids SP_GFP and SP_Avr9 by using the forward primer VdAve1-F (attB1) in 

combination with the reverse primers GFP-VdAve1c 32AA-R, GFP-VdAve1c 42AA-R, GFP-VdAve1Δ19-34-R, 

Avr9-VdAve1c 32AA-R, Avr9-VdAve1c 42AA-R and Avr9-VdAve1Δ19-34-R (Table S2). Fragments SP_VdAve1c 32AA, 

SP_VdAve1c 42AA and VdAve1Δ19-34 were amplified from plasmid VdAve1 using the reverse primer VdAve1-

R (attB2) and in combination with the forward primers GFP-VdAve1c 32AA-F, GFP-VdAve1c 42AA-F, GFP-

VdAve1Δ19-34-F, Avr9-VdAve1c 32AA-F, Avr9-VdAve1c 42AA-F and Avr9-VdAve1Δ19-34-F (Table S2). 

Subsequently, six desired DNA fragments SP_GFP_VdAve1c 32AA, SP_GFP_VdAve1c 42AA, SP_GFP_VdAve1Δ19-34, 

SP_Avr9_VdAve1c 32AA, SP_Avr9_VdAve1c 42AA and SP_Avr9_VdAve1Δ19-34 were obtained by overlapping PCR 

using the primers VdAve1-F (attB1) and VdAve1-R (attB2) (Table S2), and cloned into the entry vector 

pDONR 207 and subsequently recombined into the vector pSol2092 (Zhang et al., 2013). 

All the destination vectors were transformed into Agrobacterium tumefaciens strain GV3101 

(pMP90) by electroporation. 
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ABSTRACT 

Plant pathogenic microbes secrete effector molecules to establish themselves on 

their hosts, whereas plants use immune receptors to try and intercept such 

effectors in order to prevent pathogen colonization. The tomato cell surface-

localized receptor Ve1 confers race-specific resistance against race 1 strains of the 

soil-borne vascular wilt fungus Verticillium dahliae that secrete the Ave1 effector. 

Here, we describe the cloning and characterization of Ve1 homologues from tobacco 

(Nicotiana glutinosa), potato (Solanum tuberosum), wild eggplant (Solanum torvum) 

and hop (Humulus lupulus), and demonstrate that particular Ve1 homologues 

govern resistance against V. dahliae race 1 strains through recognition of the Ave1 

effector. Phylogenetic analysis shows that Ve1 homologs are widely distributed in 

land plants. Thus, our study suggests an ancient origin of the Ve1 immune receptor 

in the plant kingdom. 
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INTRODUCTION 

In order to activate immune responses that ward off invading microorganisms, 

plants employ immune receptors that detect pathogen(-induced) ligands of various 

nature (Boller and Felix, 2009; Thomma et al., 2011). The recognition of such 

ligands by immune receptors results in the activation of defense responses, which 

are often accompanied by a hypersensitive response (HR) in which necrosis of 

plant tissue surrounding the site of attempted penetration is sacrificed to restrict 

further pathogen invasion. 

Verticillium wilts are vascular wilt diseases that are caused by soil-borne 

fungal pathogens that belong to the Verticillium genus. Verticillium dahliae is the 

most notorious species that can infect hundreds of dicotyledonous hosts (Fradin 

and Thomma, 2006; Inderbitzin et al., 2011). In tomato (Solanum lycopersicum), the 

Ve locus that confers race-specific resistance against Verticillium has been 

characterized (Fradin et al., 2009; Kawchuk et al., 2001). This locus contains two 

closely linked and inversely oriented genes, Ve1 and Ve2, which encode 

extracellular leucine-rich repeat receptor-like proteins (eLRR-RLPs) (Kawchuk et 

al., 2001; Wang et al., 2008, 2010). Of these, only Ve1 was found to provide V. 

dahliae resistance in tomato (Fradin et al., 2009). Interestingly, interfamily transfer 

of Ve1 from tomato to Arabidopsis resulted in Verticillium resistance in the latter 

species (Fradin et al., 2011, 2014; Zhang et al., 2014), implying that the underlying 

immune signaling pathway is conserved (Fradin et al., 2011; Thomma et al., 2011). 

Comparative genomics of V. dahliae race 1 and race 2 strains identified the 

Ave1 effector that activates Ve1-mediated immunity (de Jonge et al., 2012). 

Interestingly, Ave1 homologs were found in the bacterial plant pathogen 

Xanthomonas axonopodis pv. citri (XacPNP) and in the plant pathogenic fungi 

Colletotrichum higginsianum (ChAve1), Cercospora beticola (CbAve1), and Fusarium 

oxysporum f. sp. lycopersici (FoAve1), and these homologs are differentially 

recognized by Ve1 (de Jonge et al., 2012). During optimization of an agroinfiltration 

assay in tobacco for functional analysis of Ve1 signaling, we found that expression 

of Ave1 in leaves of Nicotiana glutinosa triggered an HR, suggesting that this species 

contains an endogenous Ve1 allele (Zhang et al., 2013a). Indeed, inoculation 

experiments revealed that N. glutinosa is resistant to race 1 V. dahliae, while an 
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Ave1 deletion strain was able to cause Verticillium wilt disease on these plants 

(Zhang et al., 2013a). 

So far, several Ve1 homologs were identified within and outside the Solanaceae 

family, such as SlVe1 from Solanum lycopersicoides (Chai et al., 2003), StVe1 from S. 

tuberosum (Simko et al., 2004a), StVe and StoVe1 from S. torvum (Fei et al., 2004; 

Liu et al., 2012), mVe1 from Mentha longifolia (Vining and Davis, 2009), Vr1 from 

Lactuca sativa (Hayes et al., 2011), VvVe from Vitis vinifera (Tang et al., 2016) and 

GbVe, Gbve1, Gbvdr5 and Gbvdr3 from Gossypium barbadense (Chen et al., 2016; 

Yang et al., 2014; Zhang et al., 2011; Zhang et al., 2012). However, functionality of 

these homologs against Verticillium wilt often remains obscure. Here, we describe 

the cloning and functional characterization of Verticillium wilt resistance genes 

from tobacco (N. glutinosa), potato (S. tuberosum), wild eggplant (S. torvum) and 

hop (Humulus lupulus), and demonstrate that particular Ve1 homologs govern 

resistance against V. dahliae race 1 strain through the recognition of the Ave1 

effector. 

 
RESULTS 

Isolation of NgVe1 from Nicotiana glutinosa  

In our first attempt to clone the previously identified Ve1 homolog from N. glutinosa 

(Zhang et al., 2013a), a single cDNA fragment of ~2800 bp was obtained using 

primers that were designed on the tomato Ve1 sequence (Table S1). To obtain the 

full-length N. glutinosa Ve1 (NgVe1) transcript sequence, 3’ rapid amplification of 

cDNA end (RACE) polymerase chain reaction (PCR) was performed, resulting in a 

single fragment of approximately 1200 bp. Likewise, a fragment of approximately 

640 bp was amplified with 5’ RACE (Methods S1). The sequences of the three 

fragments were aligned to deduce the full-length NgVe1 cDNA sequence. 

Subsequently, a pair of NgVe1-specific primers (NgVe1-F and NgVe1-R; Table S1) 

was designed and amplicons amplified from N. glutinosa cDNA and genomic DNA 

were sequenced, indicating that both amplicons are identical (GenBank accession: 

KT895339) and that NgVe1 is an intronless gene. 

The full-length cDNA of NgVe1 is 3225 bp, and contains a predicted translation 

initiation site (ATG) at nucleotide position 34 and a stop codon (TGA) at nucleotide 

position 3178, resulting in a single open reading frame of 3147 bp. The predicted 
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NgVe1 protein comprises 1048 amino acids (GenBank accession: ALK26499), and 

shares an overall identity of 76% with tomato Ve1 (Figure S1). Immunoblotting 

analysis using GFP antibody displayed clear signals for NgVe1-GFP and Ve1-GFP in 

transiently transformed tobacco leaves (Figure S2). 

 

Co-expression of Ave1 and NgVe1 induces an HR in N. tabacum 

Recently, an optimized agroinfiltration assay has been developed for Ve1-mediated 

immune signaling in N. tabacum, revealing a swift HR upon co-expression of tomato 

Ve1 with V. dahliae Ave1 (Zhang et al., 2013a). To test functionality of NgVe1, co-

expression with Ave1 upon agroinfiltration in N. tabacum was performed. At 5 days 

post infiltration, the infiltrated leaves developed clear necrosis, and the HR induced 

upon co-expression of NgVe1 and Ave1 was as strong as HR induced upon co-

infiltration of tomato Ve1 and Ave1, for which the complete infiltrated areas became 

fully necrotic (Figure 1A). In contrast, agroinfiltration of NgVe1 or Ave1 alone did 

not induce necrosis (Figure 1A). These data strongly suggest that NgVe1 is a 

functional homolog of tomato Ve1. 

 

Targeting of NgVe1 expression in N. glutinosa compromises Ave1-induced HR, 

but not Verticillium resistance  

To investigate the role of NgVe1 in N. glutinosa Verticillium resistance, we used 

virus-induced gene silencing (VIGS). Tobacco rattle virus (TRV)-based VIGS is a 

well-established method for gene functional analysis in several Solanaceae species, 

also for investigation of Ve1-mediated Verticillium resistance (Fradin et al., 2009; 

Senthil-Kumar et al., 2007; Zhang et al., 2013a). In an attempt to establish VIGS in N. 

glutinosa, a 1:1 mixture of Agrobacterium tumefaciens cultures carrying pTRV1 and 

pTRV2::PDS to target the phytoene desaturase (PDS) gene was infiltrated into 

cotyledons of N. glutinosa plants. Visible photobleaching symptoms were observed 

in all agroinfiltrated N. glutinosa plants by 4 weeks post infiltration (Figure S3A), 

albeit that a strongly varying degree of photobleaching was observed (Figure S3A). 

Nevertheless, a recombinant TRV vector was designed to target NgVe1 expression 

(pTRV2::NgVe1). As a negative control, a construct (pTRV2::GUS) containing a 

fragment of the β-glucuronidase (GUS) gene was used. At 4 weeks after TRV 

infection, mature leaves were agroinfiltrated to express Ave1, with VdNLP1 as a 
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positive control (Santhanam et al., 2013) and the functionally and structurally 

unrelated effector Avr9 from the tomato leaf mould pathogen Cladosporium fulvum 

as a negative control (van Kan et al., 1991; Van der Hoorn et al., 2000). 

Agroinfiltration of Ave1 in N. glutinosa upon GUS targeting resulted in a clear HR 

within 5 days, confirming that TRV infection did not compromise Ve1-mediated HR 

(Figure 1B). However, targeting of NgVe1 expression in N. glutinosa significantly 

compromised HR upon expression of Ave1 (Figure 1B). As expected, VdNLP1-

mediated cell death was not compromised upon targeting of NgVe1 expression 

whereas Avr9 expression never triggered HR (Figure 1B). 

 

 
Figure 1. Expression of NgVe1 in tobacco mediates the Ave1-triggered hypersensitive response 
(HR). (A) Co-expression of NgVe1 and Ave1 in tobacco results in an HR. Pictures were taken at 5 days 
post infiltration, and show representative leaves of at least three independent assays. As a positive 
control, HR was induced upon co-infiltration of Ve1 and Ave1. As a negative control, NgVe1 and Ave1 
were expressed separately. (B) Ave1-triggered HR, but not the VdNLP1-mediated cell death is 
attenuated in NgVe1-silenced Nicotiana glutinosa plants, while Avr9 does not trigger cell death. 
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To test the role of NgVe1 in Verticillium resistance, 3 weeks after TRV 

inoculated plants were challenged either with V. dahliae race 1 strain JR2 (Faino et 

al., 2015), or a transformant from which the Ave1 gene had been deleted (V. dahliae 

JR2△Ave1; de Jonge et al., 2012), and monitored for disease development (stunting, 

wilting, chlorosis and necrosis) up to 14 days post inoculation (dpi). As expected, 

no disease symptoms were observed in N. glutinosa plants upon GUS targeting and 

subsequent mock-inoculation or upon inoculation with the V. dahliae JR2, whereas 

the Ave1 deletion strain caused clear Verticillium wilt disease (Figure. S3B). 

However, unexpectedly, in repeated assays also no Verticillium wilt symptoms 

were observed upon NgVe1 targeting and subsequent inoculation with V. dahliae 

(Figure S3B). However, in line with the extremely variable photobleaching (Figure 

S3A), assessment of the silencing efficiency revealed only a slight reduction in 

NgVe1 expression in NgVe1-targeted N. glutinosa plants when compared with GUS-

silenced plants (Figure S3C), and attempts to increase the silencing efficiency were 

unsuccessful. These results confirm previous observations that N. glutinosa is not 

very amenable to TRV-based VIGS (Senthil-Kumar et al., 2007; Zhang et al., 2013a), 

and, furthermore, suggest that the moderate silencing efficiency that we obtained in 

our experiments is sufficiently high to compromise the NgVe1-mediated HR, but 

insufficient to compromise NgVe1-mediated resistance. 

 

Expression of NgVe1 in Arabidopsis confers Verticillium resistance  

As TRV-based VIGS appeared not to be very suitable for gene functional analysis in 

N. glutinosa, we pursued other strategies to functionally characterize NgVe1. We 

have previously shown that interfamily transfer of tomato Ve1 to Arabidopsis 

resulted in resistance against race 1 Verticillium strains, providing a relatively fast 

method to assess Ve1 functionality (Fradin et al., 2011; 2014; Zhang et al., 2014). 

To further confirm functionality of NgVe1 in Verticillium resistance, heterologous 

expression of NgVe1 in Arabidopsis was obtained (Figure S4). No obvious 

developmental alterations were observed in transgenic plants when compared with 

wild-type plants (Figure 2A) and, subsequently three independent NgVe1-

transgenic lines (NgVe1-1, NgVe1-2 and NgVe1-3) as well as transgenic plants 

expressing tomato Ve1 (Fradin et al., 2011) and non-transgenic controls were 

inoculated with V. dahliae JR2. Interestingly, like tomato Ve1-expressing plants,  
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Figure 2. Expression of NgVe1 in Arabidopsis mediates resistance against race 1 Verticillium 
dahliae. (A) Typical appearance of non-transgenic Arabidopsis and transgenic lines that constitutively 
express NgVe1 upon mock-inoculation or inoculation with V. dahliae strain JR2 or V. dahliae JR2ΔAve1 at 
21 days post inoculation (dpi). (B) Quantification of Verticillium wilt symptoms in Arabidopsis Col-0 and 
transgenic plants at 21 dpi. Bars represent quantification symptom development as percentage of 
diseased rosette leaves with standard deviation, with Col-0 (control) set to 100%. (C) Fungal biomass 
determined by quantitative PCR (qPCR) in Arabidopsis Col-0 and transgenic plants at 21 dpi. Bars 
represent Verticillium internal transcribed spacer (ITS) transcript levels relative to AtRuBisCo (RuBisCo, 
ribulose-1,5-bisphosphate carboxylase/oxygenase) transcript levels (for equilibration) with standard 
deviation in a sample of five pooled plants. The fungal biomass in Col-0 (control) is set to 100%. Three 
independent lines are shown (1, 2 and 3). Asterisks indicate significant differences when compared with 
Col-0 (P < 0.05). Ve1 transgenic plants were used as a positive control. The data shown are 
representative of at least three independent experiments. 
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NgVe1-transgenic plants were clearly resistant to race 1 V. dahliae as significantly 

less Verticillium wilt symptoms were observed when compared with non-

transgenic control plants (Figure 2A, B). In contrast, NgVe1 and Ve1 transgenic 

plants were as diseased as non-transgenic controls upon inoculation with the Ave1 

deletion strain (Figure 2A, B). These data are further supported by fungal biomass 

quantifications that revealed significantly reduced fungal accumulation in NgVe1-

transgenic and Ve1-expressing Arabidopsis plants for V. dahliae carrying Ave1, but 

not for the Ave1 deletion mutant, when compared with wild-type Arabidopsis 

plants (Figure 2C). Collectively, these data confirm that NgVe1 acts as a functional 

homologue of tomato Ve1 that recognizes race 1 V. dahliae. 

 

Cloning and functional analysis of Ve1 homologues from potato and wild 

eggplant 

Ve gene homologues occur in the solanaceous species S. lycopersicoides (SlVe1; Chai 

et al., 2013) and the wild eggplant species S. torvum (StVe and StoVe1; Fei et al., 

2004; Liu et al., 2012). Moreover, in tetraploid potato (S. tuberosum), a quantitative 

trait locus (QTL) for Verticillium resistance was identified using the tomato Ve1 

gene as a probe. This locus was found to contain at least 11 genes, all putatively 

encoding LRR-type receptor-like proteins (Simko et al., 2004a). The tomato and 

potato genomes are highly collinear and the QTL locus was mapped to a region on 

potato chromosome 9 that is syntenic to the short arm of the tomato chromosome 9 

that carries Ve1 and Ve2 (Diwan et al., 1999; Simko et al., 2004b). Subsequently, this 

Verticillium resistance QTL locus was annotated and found to contain two predicted 

receptor-like protein 12-like genes [National Center for Biotechnology Information 

(NCBI): XM_006362308 and XM_006362309] in the genome sequence of S. 

tuberosum group Phureja DM 1-3 516 R44 (Xu et al., 2011). Here, the coding 

sequences (CDSs) of Ve gene homologues were amplified from cDNA of the 

heterozygous diploid potato breeding line S. tuberosum group Tuberosum RH 89-

039-16 (Xu et al., 2011), sequenced and submitted to NCBI as StuVe1 and StuVe2 

(GenBank accessions: KT946795 and KT946797) (Methods S1). The predicted 

StuVe1 and StuVe2 proteins are composed of 1053 and 1138 amino acids (GenBank 

accessions: ALK26501 and ALK26503), respectively, and share 87% and 84% 
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identity with tomato Ve1 and 81% and 91% identity with tomato Ve2, respectively, 

and 82% identity with each other (Figure S1). 

 

 
Figure 3. StuVe1 and StoVe1, but not StuVe2 and StoVe2, recognize Ave1 in Nicotiana tabacum. (A) 
Co-expression of StuVe1 and StoVe1, but not StuVe2 and StoVe2, with Ave1 in tobacco induces signs of a 
relatively weak hypersensitive response (HR). Pictures were taken at 5 days post infiltration, and show 
representative leaves of at least three independent assays. As a positive control, HR was induced upon 
co-infiltration of Ve1 and Ave1. As a negative control, StuVe1, StuVe2, StoVe1, StoVe2, and Ave1 were 
expressed separately. (B) Green fluorescent protein (GFP)-tagged StuVe1, StuVe2, StoVe1, and StoVe2 
proteins are present in planta by immunopurification (IP) using GFP-affinity beads, followed by 
immunoblotting (IB) using α-GFP antibody. Coomassie Blue Staining (CBS) of the blotting containing 
total protein extracts showed equal loading in each lane based on the 50-kDa RuBisCo (ribulose-1,5-
bisphosphate carboxylase/oxygenase) band. 
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To study the composition of the Ve locus in wild eggplant, the CDSs of Ve gene 

homologs were cloned from the cDNA of the Verticillium-resistant S. torvum 

genotype Tuolubamu, sequenced and deposited at NCBI as StoVe1 and StoVe2 

(GenBank accessions: KT946794 and KT946796) (Methods S1). The predicted 

StoVe1 and StoVe2 proteins comprise 1051 and 1135 amino acids (GenBank 

accessions: ALK26500 and ALK26502), respectively, and share 83% and 80% 

identity with tomato Ve1 and 81% and 85% identity with tomato Ve2, respectively, 

and 92% identity with each other (Figure S1). 

To check functionality of StuVe1, StuVe2, StoVe1 and StoVe2, mature tobacco 

leaves were co-infiltrated with a 1:1 mixture of A. tumefaciens cultures carrying 

Ave1 and the various Ve1 homologues. Intriguingly, agroinfiltration in at least three 

independent assays revealed that expression of Ave1 together with StuVe1 or 

StoVe1 induced signs of a weak HR at 5 days post infiltration (Figure 3A). However, 

when compared with the HR induced upon co-agroinfiltration of tomato Ve1 and 

Ave1, only a minor part of the infiltrated region developed necrosis (Figure 3A). 

Nevertheless, agroinfiltration of Ave1 with StuVe2 or StoVe2 induced no such 

responses at all (Figure 3A). Immunoblotting confirmed that the StuVe1, StuVe2, 

StoVe1, and StoVe2 fusion proteins were expressed (Figure 3B). 

As VIGS-based gene silencing in potato genotype Tuberosum RH 89-039-16 

and wild eggplant genotype Tuolubamu has not been established, we did not 

attempt VIGS-based assays to test the role of these Ve1 homologuess in Verticillium 

resistance. Rather, heterologous expression in Arabidopsis was pursued (Figure S4). 

No developmental alterations were observed in transgenic plants when compared 

with Ve1-expressing and wild-type plants (Figure 4A) and three independent 

transgenic lines expressing StuVe1, StuVe2, StoVe1 or StoVe2 were assayed for V. 

dahliae resistance. Intriguingly, despite the weak HR observed upon agroinfiltration 

together with Ave1 in N. tabacum, StoVe1- and StuVe1-expressing plants were 

clearly resistant to race 1 V. dahliae strain JR2, similar to Ve1-transgenic plants 

(Figure 4A, B). In contrast, StuVe2- and StoVe2-transgenic plants were as diseased 

as non-transgenic controls (Figure 4A, B). Importantly, all genotypes were equally 

susceptible to the V. dahliae Ave1 deletion mutant (Figure 4A, B), suggesting that all 

these Ve1 alleles recognize the Ave1 effector. The phenotypes correlated with the 

degree of V. dahliae colonization as determined by real-time PCR (Figure 4). 
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Collectively, these data confirm that StuVe1 and StoVe1, but not StuVe2 and StoVe2, 

act as functional homologues of tomato Ve1 that confer resistance to race 1 V. 

dahliae.  
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Figure 4. StuVe1 and StoVe1, but not StuVe2 and StoVe2, provide resistance against race 1 
Verticillium dahliae in Arabidopsis. (A) Typical appearance of non-transgenic Arabidopsis and 
transgenic plants that engineered to express 35S-driven StuVe1, StuVe2, StoVe1 or StoVe2 upon mock-
inoculation or inoculation with V. dahliae JR2 or V. dahliae JR2ΔAve1 at 21 days post inoculation (dpi). (B) 
Quantification of Verticillium wilt symptoms in Arabidopsis Col-0 and transgenic plants at 21 dpi. Bars 
represent quantification symptom development as percentage of diseased rosette leaves with standard 
deviation, with Col-0 (control) set to 100%. (C) Fungal biomass determined by quantitative PCR (qPCR) 
in Arabidopsis Col-0 and transgenic plants at 21 dpi. Bars represent Verticillium internal transcribed 
spacer (ITS) transcript levels relative to AtRuBisCo (RuBisCo, ribulose-1,5-bisphosphate 
carboxylase/oxygenase) transcript levels (for equilibration) with standard deviation in a sample of five 
pooled plants. The fungal biomass in Col-0 (control) is set to 100%. Three independent lines are shown 
(1, 2 and 3). Asterisks indicate significant differences when compared with Col-0 (P < 0.05). Ve1 
transgenic plants were used as a positive control. The data shown are representative of at least three 
independent experiments. 

 

HLVe1-2A, but not HLVe1-2B, recognizes Verticillium effector Ave1 

Polygenic resistance to Verticillium spp. has also been described in several non-

solanaceous species, including hop, alfalfa, cotton and strawberry ( Antanaviciute et 

al., 2015; Bolek et al., 2005; Jakse et al., 2013; Wang et al., 2008; Yang et al., 2008). 

Genetic resistance against Verticillium wilt in hop (Humulus lupulus) was 

introduced into breeding programs from American wild hop (H. lupulus var. 

neomexicanus) and is still used today as the main resistance source (Darby, 2001). 

Genetic analysis identified a single significant QTL for this resistance, suggesting 

that Verticillium wilt resistance in hop is conferred by more than a single gene 

(Jakse et al., 2013; Majer et al., 2014). To investigate the presence of Ve-like 

sequences in hop, Southern blotting with the tomato Ve1 gene as probe was 

performed, revealing low copy numbers of Ve-like sequences in hop cultivars 

(Figure S5 and Methods S1). With thermal asymmetric interlaced (TAIL)-PCR 

(Terauchi and Kahl, 2000), several Ve-like sequences were identified (Methods S1). 

Further analysis revealed two Ve1 alleles in the Verticillium-resistant hop cultivar 

‘Wye Target’, designated HLVe1-2A (GenBank accession: KJ647426) and HLVe1-2B 

(GenBank accession: KJ647427), which both encode 1039-amino-acid proteins 

(GenBank accessions: AIE39594 and AIE39595) sharing 52% and 51% identity 

with tomato Ve1 and Ve2, respectively, and 98% identity with each other (Figure 

S1). To investigate the functionality of HLVe1-2A and HLVe1-2B, co-agroinfiltration 

with Ave1 in N. tabacum was performed. When mature tobacco leaves were co-

infiltrated with a 1:1 mixture of A. tumefaciens cultures carrying Ave1 and HLVe1-2A, 
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signs of a weak HR were observed at 5 days post infiltration with a minor part of 

the infiltrated region developing necrosis (Figure 5A). However, in contrast, co-

expression of Ave1 and HLVe1-2B in tobacco induced no such response, similar to 

co-agroinfiltration of Ve1, HLVe1-2A, and HLVe1-2B with Avr9 (Figure 5A). To test 

whether failure of HLVe1-2B to induce an HR is the result of the instability of the 

protein, the coding regions of HLVe1-2A and HLVe1-2B were cloned to generate C-

terminally GFP-tagged expression constructs, and the stability of both proteins was 

verified by immunoblotting (Figure 5B). 

 

 
Figure 5. Co-expression of HLVe1-2A, but not HLVe1-2B, with Ave1 in Nicotiana tabacum activates a 
hypersensitive response (HR). (A) HLVe1-2A or HLVe1-2B was transiently co-expressed with Ave1 in N. 
tabacum, respectively. As a negative control, Avr9 was co-expressed with Ve1 homologues. As a positive 
control, HR was induced upon co-expression of Ve1 and Ave1. (B) Green fluorescent protein (GFP)-
tagged HLVe1-2A and HLVe1-2B proteins are detected in planta by immunopurification (IP) using GFP-
beads, followed by immunoblotting (IB) using α-GFP antibody. Coomassie Blue Staining (CBS) of the 
blotting containing total protein extracts showed equal loading in each lane based on the 50-kDa 
RuBisCo (ribulose-1,5-bisphosphate carboxylase/oxygenase) band. 

 

To further assess the role of HLVe1-2A and HLVe1-2B in resistance to V. dahliae, 

heterologous expression in Arabidopsis was pursued (Figure S4). No phenotypic 

alterations were observed in plants that expressed HLVe1-2A or HLVe1-2B when 

compared with Ve1-transgenic or non-transgenic plants (Figure 6A), and three 

independent transgenic lines for HLVe1-2A and HLVe1-2B were assayed for V. 

dahliae resistance. Interestingly, despite the weak HR observed upon 

agroinfiltration together with Ave1 in N. tabacum, HLVe1-2A-expressing plants were 

clearly resistant to V. dahliae race 1 strain JR2 as few, if any, symptoms were 

observed (Figure 6A, B). In contrast, HLVe1-2B transgenic plants were as 

susceptible as non-transgenic controls (Figure 6A, B), and all genotypes were  
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Figure 6. HLVe1-2A, but not HLVe1-2B, confers resistance to race 1 Verticillium dahliae in 
Arabidopsis. (A) Typical appearance of non-transgenic Arabidopsis and transgenic lines that 
constitutively express HLVe1-2A or HLVe1-2B upon mock-inoculation or inoculation with V. dahliae strain 
JR2 or V. dahliae JR2ΔAve1 at 21 days post inoculation (dpi). (B) Quantification of Verticillium wilt 
symptoms in Arabidopsis Col-0 and transgenic lines at 21 dpi. Bars represent quantification symptom 
development as percentage of diseased rosette leaves with standard deviation, with Col-0 (control) set to 
100%. (C) Fungal biomass determined by quantitative PCR (qPCR) in Arabidopsis Col-0 and transgenic 
plants at 21 dpi. Bars represent Verticillium internal transcribed spacer (ITS) transcript levels relative to 
AtRuBisCo (RuBisCo, ribulose-1,5-bisphosphate carboxylase/oxygenase) transcript levels (for 
equilibration) with standard deviation in a sample of five pooled plants. The fungal biomass in Col-0 
(control) is set to 100%. Three independent lines are shown (1, 2 and 3). Asterisks indicate significant 
differences when compared with Col-0 (P < 0.05). Ve1 transgenic plants were used as a positive control. 
The data shown are representative of at least three independent experiments. 
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equally susceptible to the V. dahliae Ave1 deletion mutant (Figure 6A, B). The 

phenotypes correlated with the level of V. dahliae biomass as determined by real-

time PCR (Figure 6). Collectively, these data verify that HLVe1-2A, but not HLVe1-

2B, acts a functional Ve1 homologue that provides resistance to race 1 V. dahliae. 

 

Functional Ve1 homologues mediate recognition of Ave1 homologues from 

multiple plant pathogens 

We have previously shown that tomato Ve1 recognizes not only V. dahliae and V. 

albo-atrum Ave1, but also homologues derived from F. oxysporum f. sp. lycopersici 

(FoAve1) and C. beticola (CbAve1) (de Jonge et al., 2012). To investigate whether 

the newly identified functional Ve1 homologs similarly recognize these Ave1 

homologues, co-expression of the five functional Ve1 homologs with a series of Ave1 

homologs [FoAve1, CbAve1, ChAve1, CoAve1 (Colletotrichum orbiculare; Gan et al, 

2013) and XacPNP (Gottig et al., 2008)] was performed (Figure 7A). Co-expression 

of the effector Avr9 (van Kan et al., 1991; Van der Hoorn et al., 2000) in 

combination with the Ve1 homologues was used as a negative control. To compare 

the HR induced upon co-expression of Ave1 homologues and functional Ve1 

homologues in tobacco, HR development was measured by quantification of the leaf 

area that developed necrosis at 5 days post infiltration (Figure 7B). Co-expression 

of Ve1 with FoAve1 and CbAve1, but not with ChAve1, CoAve1 and XacPNP, in N. 

tabacum resulted in HR (Figure 7). StuVe1 seems to recognize a wider panel of Ave1 

homologues, as co-expression with Ave1, FoAve1, CbAve1, ChAve1, CoAve1 and 

XacPNP induced HR (Figure 7). For NgVe1 and StoVe1, co-infiltration with Ave1 and 

FoAve1 induced HR, whereas infiltration with CbAve1, ChAve1, CoAve1 and XacPNP 

failed to induce HR (Figure 7). Finally, the most narrow recognition spectrum is 

observed for HLVe1-2A that recognizes none of the Ave1 homologues apart from 

that from V. dahliae (Figure 7). These data demonstrate that the newly identified 

functional Ve1 homologues, similar to tomato Ve1, differentially recognize Ave1 

homologues from different plant pathogens. 
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Figure 7. Distinct necrosis induced by Ave1 homologues through co-expression with functional 
Ve1 orthologues in Nicotiana tabacum. (A) Co-expression of functional Ve1 orthologues with Ave1 
homologues (Ave1, FoAve1, CbAve1, ChAve1, CoAve1 and XacPNP) in N. tabacum. Expression of Avr9 in 
combination with Ve1 homologues is shown as negative controls. Leaves were photographed at 5 days 
post infiltration to visualize necrosis resulting from recognition by functional Ve1 homologues. (B) 
Quantification of necrosis resulting from recognition of Ave1 homologues by functional Ve1 orthologues 
at 5 days post infiltration. Bars represent the average percentage of necrotic leaf area of infiltration 
zones with standard deviation. 

 

Comparison of the protein sequences of Ve1 homologs 

Tomato Ve1 is predicted to contain a signal peptide, an eLRR domain composed by 

two eLRR regions, separated by a non-LRR island domain (also referred as C1, C3 

and C2, respectively; Figure S6 and S7), a transmembrane domain, and a short 

cytoplasmic tail that lacks obvious motifs for intracellular signaling (Kawchuk et al., 

2001; Wang et al., 2010; Zhang and Thomma, 2013). Alignment of the functional 

Ve1 protein sequences identified in this study clearly shows the typical eLRR-RLP 

domain architecture (Figure S6). All Ve1 homologues contain 37 eLRR repeats in 

two eLRR regions that are interrupted by a non-LRR island domain (Figure S6). 
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Previously, we have determined that three eLRR regions are crucial for Ve1 

functionality; eLRR_1 to eLRR_8, eLRR_20 to eLRR_23 and eLRR_32 to eLRR_37 

(Zhang et al., 2014). A comparison of the functional Ve1 homologues studied here 

shows that the eLRR_1 to eLRR_8 (44.2% identity) and eLRR_20 to eLRR_23 (46.5% 

identity) regions of the C1 domain are only slightly more conserved than the 

eLRR_9 to eLRR_19 (40.2% identity) and eLRR_24 to eLRR_31 (45.0% identity) 

regions of the C1 domain, respectively (Figure S6 and S7). A similar comparison of 

the C1 domains among the non-functional Ve1 homologues studied here shows that 

the eLRR_1 to eLRR_8 (50.2% identity) region of the C1 domain is slightly more 

conserved that the eLRR_9 to eLRR_19 (45.5% identity) region of the C1 domain, 

whereas the eLRR_20 to eLRR_23 (50.0% identity) region of the C1 domain is 

conserved to a similar extent to the eLRR_24 to eLRR_31 (50.3% identity) region of 

the C1 domain (Figure S7). Further comparison among the functional Ve1 

homologues shows that the C3 domain (eLRR_32 to eLRR_37, 48.4% identity) is 

more conserved than the C1 domain (43.3% identity), C2 domain (8.0% identity) 

and C-terminal eLRR-flanking domain (9.2% identity) (Figure S6 and S7). This 

result is consistent with a previous comparison of tomato eLRR-RLPs, which 

showed that the C3 domain is more conserved than the C1 domain (Fradin et al., 

2014). Finally, a comparison of the non-functional Ve1 homologues studied here 

shows that the C1 domain (48.7% identity) and C3 domain (eLRR_32 to eLRR_37, 

53.3% identity) are more conserved than the C2 domain (8.0% identity) and C-

terminal eLRR-flanking domain (7.2% identity) (Figure S7). Collectively, these 

findings do not point towards a particular conservation of the three LRR regions 

that were previously implicated in Ve1 functionality.  

 

Phylogenetic analysis of Ve1 homologues in the plant kingdom 

To determine the phylogenetic breadth among Ve1 homologues in plants, we 

systematically queried the available genomes of 41 plant species for the occurrence 

of Ve1 homologues. In these genomes, we identified 1361 bona fide Ve1 homologues, 

all of which occur in land plants (embryophytes) and none in green algae (Figure 

8A). To further analyze the phylogenetic relationship of tomato Ve1 and its close 

homologues, we used a neighbor-joining phylogeny to guide the extraction of the 

tomato Ve1 clade and the relevant sister clades (Figure 8B and S8). These 
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sequences were used to infer a refined maximum likelihood phylogeny containing 

608 Ve1 homologues that encompasses monocots and dicots. This phylogeny 

revealed a Ve1 orthologous group, defined at the last common ancestor of monocots 

and dicots, which contains all functional Ve1 homologues that have been described 

so far (Figure 8B and S8). The broad phylogenetic distribution, with homologues 

present in all land plants, establishes that Ve1 is an ancient immune receptor 

(Figure 8 and S8), and that the last common ancestor contained at least a single, but 

more likely several, Ve1-like genes. Moreover, we inferred a Ve1 orthologous group 

that comprises both monocots and dicots and includes all functional Ve1 genes, 

suggesting the conservation of function within this group of genes.  

 
DISCUSSION 

In this article, we describe the cloning and characterization of Ve1 homologues 

within and outside the Solanaceae family, and demonstrate that Ve1 homologues of 

tobacco (NgVe1), potato (StuVe1), wild eggplant (StoVe1) and hop (HLVe1-2A) act 

as functional homologues of tomato Ve1 by providing resistance to race 1 V. dahliae 

strain, mediated through the recognition of the Ave1 effector, implying that 

functional Ve1 homologues are conserved across plant species within and outside 

the Solanaceae. We further show that all functional Ve1 proteins contain a 

conserved domain architecture with 37 eLRR repeats (Figure S6). It has been 

previously determined that the two regions of the C1 domain, namely eLRR_1 to 

eLRR_8 and eLRR_20 to eLRR-23, are required for Ve1 functionality, probably 

because they contribute to ligand binding (Zhang et al., 2014). Here, these regions 

appear to be only slightly more conserved than other regions within the functional 

Ve1 homologues (Figure S6 and S7). In addition, the C3 domain (eLRR_32 to 

eLRR_37) was shown to be critical for Ve1 functionality (Zhang et al., 2014; Figure 

S6), potentially through interaction with common factors required for downstream 

signalling (Fradin et al., 2014; Fritz-Laylin et al., 2005; Zhang and Thomma, 2013)). 

As expected, this region is most conserved among the functional Ve1 homologues 

(Figure S6 and S7). Previously, Ve1 homologues from other plant species have also 

been associated with Verticillium wilt resistance, although conclusive evidence for 

a causal role in resistance has mostly been lacking. For example, Vining and Davis 

(2009) showed that the mint Ve1 homologue mVe1 associates with Verticillium wilt 



Chapter 4 

104 

4 

 



Broad taxonomic characterization of Verticillium wilt resistance genes 

105 

4 

Figure 8. Phylogenetic analysis of Ve1 homologs indicates that Ve1 homologues are widely 
distributed in land plants. (A) Phylogeny of Ve1 proteins from 41 plant species from the Phytozome 
database. Tomato Ve1 is indicated with red arrow. (B) Maximum likelihood phylogenetic tree of selected 
Ve1 homologues (dark grey clades in A) displaying the tomato Ve1 clade and the relevant sister clades. 
Tomato Ve1 clade is indicated by highlighted background. Official gene identifiers and species name are 
indicated. Bootstrap values are shown in the tree. The scale represents branch length expressed as the 
relative number of amino acid substitutions. 

 

resistance. Genome-wide analysis of disease resistance genes in lettuce, in 

combination with QTL mapping, showed that three Ve homologues, including Vr1, 

are located within a 100-kb region on chromosome 9 that co-segregates with 

resistance to race 1 V. dahliae ( Christopoulou et al., 2015; Hayes et al., 2011). The 

grapevine Ve1 homologue VvVe has been shown to enhance defense against V. 

dahliae in N. benthamiana (Tang et al., 2016). Remarkably, cotton Ve1 homologues 

GbVe, Gbve1, Gbvdr5 and Gbvdr3 have been shown to confer Verticillium resistance 

upon ectopic expression in Arabidopsis or cotton (Chen et al., 2016; Yang et al., 

2014; Zhang et al., 2011; Zhang et al., 2012), although this concerns V. dahliae 

isolates that do not carry the Ave1 effector gene, and thus Verticillium wilt 

resistance cannot be mediated by Ave1 recognition in these cases (Song et al., 

unpublished data). 

Previously, we have noted the absence of correlation between Ave1-induced 

HR and resistance through Ve1, as treatment with Ave1 leads to HR in tomato and 

tobacco plants that express Ve1, but not in N. benthamiana or Arabidopsis, whereas 

Ve1-transgenic Arabidopsis shows Ave1-triggered resistance (de Jonge et al., 2012; 

Zhang et al., 2013a, b). Similarly, in the present study, we observed robust 

resistance mediated by the S. torvum and hop Ve1 homologues StoVe1 and HLVe1-

2A, whereas only a weak HR is observed on co-expression of Ave1. These findings 

suggest that the HR may occur as a consequence of Ve1/Ave1-induced immune 

signaling under particular conditions, but is not required for V. dahliae resistance 

(Zhang et al., 2013b). This finding may also explain that we were unable to 

compromise NgVe1-mediated V. dahliae resistance on VIGS in N. glutinosa, but were 

able to compromise Ave1-mediated HR. 

Phylogenetic analysis revealed that Ve1 homologues are widely distributed in 

phylogenetically distant plant species, implying an ancient origin of the Ve1 

immune receptor. Nevertheless, this origin does not imply functionality in V. 
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dahliae resistance. The most obvious example is the close tomato homologue Ve2 

which, despite its homology, does not act as a functional V. dahliae resistance gene. 

Similarly, in this study, we identified the non-functional Ve1 homologues StuVe2, 

StoVe2 and HLVe1-2B. The Ve locus as it occurs in tomato, with two homologues Ve1 

and Ve2, appears to originate before speciation, as clustered Ve1 family members 

also appear in potato and wild eggplant. Furthermore, a functional study 

addressing Ave1 recognition in the genus Nicotiana only identified Ave1 

recognition, and thus presence of a potentially functional Ve1 homologue, in the 

species N. glutinosa (Zhang et al., 2013a). Considering the extremely wide host 

range of V. dahliae, and the general occurrence of strains that carry Ave1, the 

question arises whether the ancient progenitor of the currently functional Ve1 

orthologues already functioned as a V. dahliae resistance gene, and thus that 

several species/homologues lost the capacity to recognize Ave1 as a result of 

adverse effects associated with Ve1 functionality, or whether several 

species/homologues evolved the capacity to recognize Ave1 after the occurrence of 

speciation events. The latter hypothesis would imply that Ave1 recognition evolved 

multiple times in the plant kingdom through parallel evolution. Our present data do 

not allow verification or disqualification of either hypothesis. 

Plants and animals employ germline-encoded pattern recognition receptors 

(PRRs) to detect broadly distributed microbe-associated molecular patterns 

(MAMPs) and to activate antimicrobial defense (Macho and Zipfel, 2014). We have 

previously noted that tomato Ve1 is an ancient pathogen receptor with traits of 

typical PRRs. This finding was based on the transferability of Ve1 across plant 

species and the observation that Ve1 resistance affected three fungal species; V. 

dahliae, V. albo-atrum and F. oxysporum (Fradin et al., 2011; de Jonge et al., 2012; 

Thomma et al., 2011). We have now demonstrated that members of the Ve1 gene 

family in N. glutinosa, S. tuberosum, S. torvum and H. lupulus encode receptors that 

recognize Ave1 and are able to mediate V. dahliae resistance in Arabidopsis. As our 

findings are based on stable expression in a heterologous host, we realize that 

definitive evidence for the role of the Ve1 homologues in disease resistance in the 

endogenous hosts from which the Ve1 homologues are derived needs to be 

provided through targeted gene deletion in these hosts, or stable expression in 

susceptible genotypes of these species. We also discovered that the functional Ve1 
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homologues have divergent recognition specificities, suggesting that some of them 

recognize an even wider spectrum of plant pathogens than tomato Ve1 (Figure 7). 

Collectively, these findings mean that tomato Ve1 has traits of a typical race-specific 

resistance protein as well as of a typical PRR. Similarly, Arabidopsis RLP23 

recognizes an epitope of Nep-like effector proteins (NLPs) that are widely 

distributed among bacteria, fungi and oomycetes (Gijzen and Nürnberger, 2006) to 

induce immune responses (Albert et al., 2015). Thus, it is becoming apparent that 

MAMP receptor systems are more dynamic than generally appreciated and are 

conditioned similar to prototypical resistance genes (Albert et al., 2015; Cook et al., 

2015; Shibuya and Desaki, 2015). Findings like these have inspired the proposal of 

the “Invasion Model”, which describes plant immunity as a surveillance system to 

detect invasion, in which host receptors, termed invasion pattern receptors (IPRs), 

detect either externally encoded or modified-self ligands that indicate invasion, 

termed invasion patterns (IPs) (Cook et al., 2015).  

 
MATERIALS AND METHODS 

Plant growth conditions and manipulations 

Plants were grown at 21°C/19°C during 16 h/8 h light/dark photoperiods, 

respectively, in the climate chamber or the greenhouse with a relative humidity of 

~75%, and 100 W·m-2 supplemental light when light intensity dropped below 150 

W·m-2. Arabidopsis transformations were performed as described previously 

(Clough and Bent, 1998). 

 

Isolation of Ve1 homologues  

The isolation of Ve1 homologues from N. glutinosa, S tuberosum, S. torvum and H. 

lupulus is described in Methods S1 and Tables S2-S4. 

 

Binary over-expression constructs and transient expression in planta 

For NgVe1, StuVe1, StuVe2, StoVe1, StoVe2 HLVe1-2A and HLVe1-2B constructs, CDS 

regions were amplified from N. glutinosa, S. tuberosum and S. torvum cDNA, 

respectively, while the CDS regions of HLVe1-2A and HLVe1-2B were amplified from 

the corresponding plasmids (Table S1). The CDS fragments were cloned into 

pDONR207 by using Gateway® BP Clonase® II Enzyme Mix (Invitrogen, Carlsbad, 
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USA). All pDONR207 clones were sequenced, and fragments were subsequently 

transferred to pEarleyGate 100, pSol2095 (C-terminal GFP tag) (Zhang et al., 

2013a), or to pFAST_R02 as described (Shimada et al., 2010) by using Gateway® LR 

Clonase® II Enzyme Mix (Invitrogen, Carlsbad, USA). Constructs for constitutive 

expression of Ave1, FoAve1, CbAve1, ChAve1 were described previously (de Jonge et 

al., 2012). CoAve1 (Gan et al., 2013) and XacPNP (Gottig et al., 2008) were obtained 

by gene synthesis (Eurofins MWG Operon, Ebersberg, Germany), and subsequently 

recombined into the destination vector pSol2092 (Zhang et al., 2013a) to generate 

expression constructs pSol2092_CoAve1 and pSol2092_XacPNP. All constructs 

were transformed to Agrobacterium tumefaciens strain GV3101 (pMP90) by 

electroporation. 

A. tumefaciens carrying expression constructs were infiltrated into tobacco 

plants as described previously (Zhang et al., 2013a). A. tumefaciens cultures 

containing constructs to express Ave1 and Ve1 homologues were mixed in a 1:1 

ratio and infiltrated into leaves of 5- to 6-week-old tobacco plants. At 5 days post 

infiltration, pictures were taken, and necrosis was quantified by using ImageJ to 

measure the area of necrosis as percentage of the total infiltrated leaf area.  

 

Protein extracts and immunoblotting 

For detection of GFP-tagged Ve1 homologs, A. tumefaciens carrying the 

corresponding expression constructs was infiltrated into mature tobacco leaves as 

described previously (Zhang et al., 2013a). The co-immunopurifications and 

immunoblotting were performed as described previously (Zhang et al., 2014).  

 

Reverse transcription-PCR (RT-PCR) and reverse transcription-quantitative 

PCR (RT-qPCR) 

Target specificity of the constructs TRV::GUS and TRV::NgVe1 was determined in 

the TRV-infected N. glutinosa plants. Four weeks after TRV inoculation, whole 

tobacco plants were collected, and frozen in liquid nitrogen, and stored at -80°C for 

total RNA isolation. 

For the expression of Ve1 homologues in the corresponding transgenic plants, 

2-week-old Arabidopsis seedlings were harvested and ground into a powder in 

liquid nitrogen. Total RNA extraction, cDNA synthesis and RT-PCR were performed 
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as described earlier (Zhang et al., 2013b; Table S1). To analyse expression of NgVe1 

expression in TRV-targeted N. glutinosa plants, RT-qPCR was conducted using 

primers NgVe1-F(qRT) and NgVe1-R(qRT) with tobacco Actin as an endogenous 

gene (Table S1) using the qPCR Core Kit for SYBR Green I (Eurogentec Nederland 

BV, Maastricht, NL) as described earlier (Fradin et al., 2009).  

 

VIGS 

Constructs pTRV2::PDS and pTRV2::GUS were used as controls. To silence NgVe1 in 

N. glutinosa, the construct pTRV2::NgVe1 was generated. TRV vectors were 

agroinfiltrated as described before (Liu et al., 2002; Zhang et al., 2013a). Briefly, 

cotyledons of 10- to 15-day-old N. glutinosa seedlings were infiltrated with 1:1 

mixtures of pTRV1 and pTRV2 constructs. Photobleaching was observed at 4 weeks 

after agroinfiltration of pTRV2::PDS. For HR assays, 4 weeks after virus inoculations, 

mature leaves were agroinfiltrated to individually express Ave1, VdNLP1 

(Santhanam et al., 2013) and Avr9 (van Kan et al., 1991; Van der Hoorn et al., 2000). 

VdNLP1 and Avr9 were used as positive and negative controls, respectively. Five 

days after agroinfiltration, leaves were examined for the development of HR. For 

Verticillium wilt disease assays, 3 weeks after TRV infection, the TRV-infected 

plants were inoculated with race 1 V. dahliae strain JR2 (Faino et al., 2015), and the 

corresponding Ave1 deletion mutant (V. dahliae JR2ΔAve1; de Jonge et al., 2012) 

and tap water as control. The inoculated plants were evaluated by the observation 

of disease symptoms at 14 dpi.  

 

Disease assays 

Verticillium dahliae was grown on potato dextrose agar (PDA; Oxoid, Basingstoke, 

UK) at 22°C, and conidia were collected from 7- to 10-day-old plates and washed 

with tap water. Verticillium disease assays on N. glutinosa plants were performed as 

described previously (Zhang et al., 2013a). Briefly, 5-week-old plants were 

uprooted, the roots were rinsed in water, dipped for 3 min in a suspension of 106 

conidiospores/mL water, and transferred to commercial potting soil (Horticoop, 

Bleiswijk, the Netherlands). Verticillium wilt disease assays on Arabidopsis, as well 

as Verticillium biomass quantification in infected Arabidopsis plants were 

performed as described before (Ellendorff et al., 2009). 
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Phylogenetic identification 

To obtain the phylogenetic relationship of tomato Ve1 and its homologues, we 

identified similar sequences in 41 plant species acquired from Phytozome (v9.1) 

(Goodstein et al., 2012) and manually added Ve1 homologues of tobacco, potato, 

wild eggplant and hop. Sequence similarity was established using BLAST (version 

322.28+), applying a conservative e-value cutoff of 1e-50. To prevent spurious hits, 

we removed sequences where the matching area was < 75% or the ‘actual-

matching’ was < 50% of either Ve1 or the subject. The matching area is defined as 

the area from the start position of the first segment to the end position of the last 

segment, and the ‘actual-matching’ area is defined as the sum of the covered area by 

each individual segment. Moreover, sequences that deviate in length (< 80% or > 

120% of the length of Ve1) or contain protein domains other than leucine-rich 

repeats, as predicted by HMMER3 (version 3.0)(Finn et al., 2011) on a local PFAM 

database (version 27), were discarded. Subsequently, all protein sequences were 

aligned using MAFFT (version 7.047b) (Katoh et al., 2002) and the most consistent 

alignment (LINSI) was chosen using trimAl (version 1.2) (Capella-Gutiérrez et al., 

2009), after which the heuristic method of trimAl was applied to trim the alignment. 

This cleaned alignment was used to construct an initial phylogenetic tree using 

quick tree (version 1.1; 1000 bootstraps). The clade of interest (with tomato Ve1) 

and surrounding sequences were manually gathered and realigned. The final 

phylogenetic tree was inferred using RAxML (version 7.6.3) (Stamatakis, 2006), 

with the gamma model of rate heterogeneity and the Whelan and Goldman amino 

acid substitution matrix.  
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SUPPLEMENTAL INFORMATION 

 

 
Figure S1. Percentage of amino acid identity shared between nine Ve1 homologues. The highest 
percentage of homology between two Ve1 homologues is indicated in red. Dashes (-) represent identical 
sequences. 
 

 

 
Figure S2. Stability of green fluorescent protein (GFP)-fused NgVe1 protein in planta. Total protein 
extracts of transiently transformed leaf tissue were subjected to immunopurification (IP) by using GFP-
affinity beads. Immunopurified proteins were subjected to sodium dodecylsulfate-polyacrylamide gel 
electrophoresis (SDS/PAGE) and immunoblotted (IB) using α-GFP antibody. Coomassie Blue Staining 
(CBS) of the blot containing total protein extracts showed equal loading in each lane based on the 50 kDa 
RuBisCo (ribulose-1,5-bisphospate carboxylase/oxygenase) band. GFP-tagged Ve1 protein was used as a 
control. 
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Figure S3. Tobacco rattle virus (TRV)-mediated gene silencing in Nicotiana glutinosa. (A) Virus-
induced gene silencing of the phytoene desaturase (PDS) gene results in patchy photobleaching in leaves 
of N. glutinosa. Pictures were taken at 4 weeks post TRV::PDS infiltration, and show representative 
infected plants of at least three independent assays. (B) TRV::NgVe1-inoculated plants show resistance 
against Verticillium dahliae strain JR2, but not V. dahliae JR2ΔAve1. N. glutinosa plants were inoculated 
with a recombinant TRV targeting the β-glucuronidase (GUS) gene as a control (TRV::GUS) or 
recombinant TRV targeting the NgVe1 gene (TRV::NgVe1). At 3 weeks after TRV infiltration, TRV-
inoculated plants were inoculated either with V. dahliae strain JR2, or with V. dahliae JR2ΔAve1 mutant. 
Pictures were taken at 2 weeks after V. dahliae inoculation, and show representative inoculated plants of 
at least three independent assays. (C) Silencing efficiency was determined by using reverse 
transcription-quantitative PCR (RT-qPCR) at 28 days post infiltration in TRV::NgVe1- and TRV::GUS-
inoculated N. glutinosa plants. Bars represent levels of NgVe1 transcripts relative to the transcript levels 
of N. glutinosa actin (for normalization) with standard deviation of a sample of three pooled plants. 
NgVe1 expression in the TRV::GUS-infected plants is set to 1. 
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Figure S4. Expression of NgVe1, HLVe1-2A, HLVe1-2B, StuVe1, StuVe2, StoVe1 and StoVe2 in 
transgenic plants was detected by reverse transcription-PCR (RT-PCR). As an endogenous control, 
a fragment of the AtRuBisCo (RuBisCo, ribulose-1,5-bisphospate carboxylase/oxygenase) gene was 
amplified from cDNA. For each construct, three independent transgenic lines are shown (1, 2 and 3). 
Water is used as a control. 

 

 

 
Figure S5. Sothern blotting of seven hop cultivars with the tomato Ve1 gene as a probe reveals the 
presence of Ve-like sequences in the hop genome. Seven hop cultivars are indicated as: 1, ‘Wye 
target’; 2, ‘Fuggle’; 3, ‘Wye Challanger’; 4, ‘Savinjski Golding’; 5, ‘Aurora’; 6, ‘Celeia’; 7, ‘Yeoman’. Hop 
genomic DNA was digested with the restriction enzymes EcoRI, EcoRV and HindIII, separated on 0.8% 
agarose gel and blotted on nylon membranes with the P32-labelled tomato Ve1 gene sequence as a probe. 
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Figure S6. Primary structure and protein sequence alignment of functional Ve1 proteins from 
tomato, tobacco, potato, wild eggplant and hop. The N-terminal amino acids in the dashed frame 
denote the predicted signal peptides (SPs) of the functional Ve1 homologues. eLRR, extracelluar leucine-
rich repeat (C1 domain and C3 domain); IS, non-LRR island domain (C2 domain); AC, acidic domain; TM, 
transmembrane domain; CT, cytoplasmic domain. The locations of the predicted solvent-exposed β-
sheet (xxLxLxx) on the concave surface of the receptor are indicated above the eLRR domains. Identical 
amino acid residues are highlighted in red, whereas conserved amino acid residues are highlighted in 
blue. Three consecutive eLRR regions required for the functionality of Ve1 are indicated by bold colors, 
whereas other regions that could not be implicated in Ve1 functionality are indicated in light colors. Ve1 
homologue sequences can be found in the GenBank database using the following GenBank accessions: 
ACR33105 (Ve1); ALK26499 (NgVe1); ALK26501 (StuVe1); ALK26500 (StoVe1); AIE39594 (HLVe1-2A). 
(A high resolution image of the Figure S6 can be downloaded from the link:  http://onlinelibrary.wiley.com/doi/10.1111/mpp.12390/full). 

 

 

 
Figure S7. Percentage of amino acid identity shared between the C1 domain, C2 domain, C3 domain and 
C-terminal extracelluar leucine-rich repeat (eLRR)-flanking domain of the functional and non-functional 
Ve1 homologues from tomato, tobacco, potato, wild eggplant and hop.  

http://onlinelibrary.wiley.com/doi/10.1111/mpp.12390/full
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Figure S8. An unrooted phylogenetic tree based on protein sequences of Ve1 homologues from 
the tomato clade and the relevant sister clades. The Tomato Ve1 clade is indicated by the highlighted 
background. Official gene identifiers and species name are indicated. Bootstrap values are shown in the 
tree. The scale represents branch length expressed as the relative number of amino acid substitutions. 
(A high resolution image of the Figure S8 can be downloaded from the link:  http://onlinelibrary.wiley.com/doi/10.1111/mpp.12390/full).  
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Aquca 053 00130|Aquca 053 00130.1|22026536 peptide|Acoerulea
Aquca 053 00131|Aquca 053 00131.1|22026526 peptide|Acoerulea

MDP0000473467|MDP0000473467|22656238 peptide|Mdomestica
MDP0000201499|MDP0000201499|22646188 peptide|Mdomestica
MDP0000533216|MDP0000533216|22640419 peptide|Mdomestica

MDP0000138646|MDP0000138646|22673494 peptide|Mdomestica

MDP0000564969|MDP0000564969|22625117 peptide|Mdomestica
gene04925−v1.0−hybrid|mrna04925.1−v1.0−hybrid|27249283 peptide|Fvesca

Eucgr.E01374|Eucgr.E01374.1|23578098 peptide|Egrandis
Eucgr.E01370|Eucgr.E01370.1|23578094 peptide|Egrandis
Eucgr.E01379|Eucgr.E01379.1|23578102 peptide|Egrandis

Eucgr.E01372|Eucgr.E01372.1|23578096 peptide|Egrandis
Eucgr.E01397|Eucgr.E01397.1|23578112 peptide|Egrandis

Eucgr.E01380|Eucgr.E01380.1|23578103 peptide|Egrandis

Eucgr.E01238|Eucgr.E01238.1|23577959 peptide|Egrandis
Eucgr.E01200|Eucgr.E01200.1|23577919 peptide|Egrandis

Eucgr.E01227|Eucgr.E01227.1|23577949 peptide|Egrandis
Eucgr.E01234|Eucgr.E01234.1|23577956 peptide|Egrandis
Eucgr.E00153|Eucgr.E00153.1|23576812 peptide|Egrandis
Eucgr.E00143|Eucgr.E00143.2|23576805 peptide|Egrandis
Eucgr.E00148|Eucgr.E00148.1|23576809 peptide|Egrandis

Eucgr.E02472|Eucgr.E02472.1|23578993 peptide|Egrandis
cassava4.1 024080m.g|cassava4.1 024080m|17977979 peptide|Mesculenta

Bra037254|Bra037254|22717420 peptide|Brapa
Bra002085|Bra002085|22693032 peptide|Brapa
Bra007453|Bra007453|22714769 peptide|Brapa
AT1G47890|AT1G47890.1|19656408 peptide|Athaliana

Carubv10011769m.g|Carubv10011769m|20892347 peptide|Crubella
Carubv10008162m.g|Carubv10008162m|20891794 peptide|Crubella
Carubv10011409m.g|Carubv10011409m|20891109 peptide|Crubella
Carubv10011219m.g|Carubv10011219m|20889762 peptide|Crubella

Carubv10008198m.g|Carubv10008198m|20893158 peptide|Crubella

AT1G45616|AT1G45616.1|19653135 peptide|Athaliana

Bra031338|Bra031338|22687192 peptide|Brapa
Bra020706|Bra020706|22690568 peptide|Brapa
Bra001992|Bra001992|22693724 peptide|Brapa
Carubv10016627m.g|Carubv10016627m|20885870 peptide|Crubella

Bra005567|Bra005567|22687219 peptide|Brapa
Bra032039|Bra032039|22719003 peptide|Brapa
Bra021746|Bra021746|22718443 peptide|Brapa
Bra021750|Bra021750|22718854 peptide|Brapa
Bra021806|Bra021806|22720633 peptide|Brapa

Thhalv10010006m.g|Thhalv10010006m|20186558 peptide|Thalophila

Carubv10012961m.g|Carubv10012961m|20898126 peptide|Crubella
Carubv10012951m.g|Carubv10012951m|20900408 peptide|Crubella

Carubv10015400m.g|Carubv10015400m|20897496 peptide|Crubella
Carubv10016349m.g|Carubv10016349m|20898657 peptide|Crubella

480008|480008|16053764 peptide|Alyrata
AT3G24900|AT3G24900.1|19664076 peptide|Athaliana

AT3G24982|AT3G24982.1|19663396 peptide|Athaliana
AT3G25020|AT3G25020.1|19664732 peptide|Athaliana

AT3G25010|AT3G25010.1|19659840 peptide|Athaliana
480073|480073|16051651 peptide|Alyrata

AT2G33020|AT2G33020.1|19641565 peptide|Athaliana
Carubv10025247m.g|Carubv10025247m|20902261 peptide|Crubella
AT2G32680|AT2G32680.1|19638602 peptide|Athaliana

Bra005510|Bra005510|22685219 peptide|Brapa
Bra021824|Bra021824|22720628 peptide|Brapa

Thhalv10016223m.g|Thhalv10016223m|20180996 peptide|Thalophila

Bra036871|Bra036871|22703353 peptide|Brapa
Bra032746|Bra032746|22720560 peptide|Brapa

Thhalv10026954m.g|Thhalv10026954m|20193625 peptide|Thalophila
Thhalv10024378m.g|Thhalv10024378m|20192986 peptide|Thalophila
Bra032740|Bra032740|22718461 peptide|Brapa
Carubv10004113m.g|Carubv10004113m|20895397 peptide|Crubella
Bra032741|Bra032741|22720818 peptide|Brapa

Carubv10006927m.g|Carubv10006927m|20893996 peptide|Crubella
Carubv10007990m.g|Carubv10007990m|20914289 peptide|Crubella

AT4G13920|AT4G13920.1|19646613 peptide|Athaliana

AT1G71400|AT1G71400.1|19653618 peptide|Athaliana
497292|497292|16047372 peptide|Alyrata
Bra025935|Bra025935|22696640 peptide|Brapa
AT3G05370|AT3G05370.1|19661895 peptide|Athaliana
Bra013112|Bra013112|22709739 peptide|Brapa
Carubv10015659m.g|Carubv10015659m|20897898 peptide|Crubella
AT2G15080|AT2G15080.1|19638097 peptide|Athaliana
Carubv10012906m.g|Carubv10012906m|20899647 peptide|Crubella

Bra001388|Bra001388|22710395 peptide|Brapa
Bra034161|Bra034161|22706398 peptide|Brapa

Thhalv10000632m.g|Thhalv10000632m|20208491 peptide|Thalophila
Thhalv10002367m.g|Thhalv10002367m|20200804 peptide|Thalophila
Thhalv10000035m.g|Thhalv10000035m|20208248 peptide|Thalophila
Thhalv10000044m.g|Thhalv10000044m|20208793 peptide|Thalophila
Thhalv10000033m.g|Thhalv10000033m|20208727 peptide|Thalophila

Bra000618|Bra000618|22712675 peptide|Brapa

AT3G05660|AT3G05660.1|19658504 peptide|Athaliana
477857|477857|16040879 peptide|Alyrata

Carubv10012954m.g|Carubv10012954m|20897866 peptide|Crubella
AT3G05650|AT3G05650.1|19662670 peptide|Athaliana

Bra034278|Bra034278|22719291 peptide|Brapa

AT3G11080|AT3G11080.1|19661938 peptide|Athaliana

AT5G27060|AT5G27060.1|19671282 peptide|Athaliana
AT3G11010|AT3G11010.1|19662184 peptide|Athaliana

Carubv10012934m.g|Carubv10012934m|20900545 peptide|Crubella

Carubv10012903m.g|Carubv10012903m|20899758 peptide|Crubella
Carubv10008133m.g|Carubv10008133m|20892073 peptide|Crubella

GSVIVG01037155001|GSVIVT01037155001|17841867 peptide|Vvinifera
Solyc07g005150.1|Solyc07g005150.1.1|27292502 peptide|Slycopersicum
PGSC0003DMG400003195|PGSC0003DMT400008282|PGSC0003DMP400005769|Stuberosum
PGSC0003DMG400036994|PGSC0003DMT400087423|PGSC0003DMP400059098|Stuberosum
Solyc01g005760.2|Solyc01g005760.2.1|27303685 peptide|Slycopersicum
Solyc01g006550.2|Solyc01g006550.2.1|27301419 peptide|Slycopersicum
Solyc01g009690.1|Solyc01g009690.1.1|27300546 peptide|Slycopersicum

Solyc12g099950.1|Solyc12g099950.1.1|27308347 peptide|Slycopersicum
PGSC0003DMG401004726|PGSC0003DMT400012051|PGSC0003DMP400008386|Stuberosum

Solyc12g100030.1|Solyc12g100030.1.1|27306624 peptide|Slycopersicum

PGSC0003DMG401002869|PGSC0003DMT400007449|PGSC0003DMP400005181|Stuberosum
PGSC0003DMG400015824|PGSC0003DMT400040909|PGSC0003DMP400027746|Stuberosum

PGSC0003DMG400004284|PGSC0003DMT400010939|PGSC0003DMP400007623|Stuberosum

PGSC0003DMG400004725|PGSC0003DMT400012045|PGSC0003DMP400008385|Stuberosum

Solyc12g049190.1|Solyc12g049190.1.1|27307997 peptide|Slycopersicum
PGSC0003DMG400023864|PGSC0003DMT400061303|PGSC0003DMP400041265|Stuberosum
Solyc12g099980.1|Solyc12g099980.1.1|27308090 peptide|Slycopersicum

Solyc06g008300.2|Solyc06g008300.2.1|27283750 peptide|Slycopersicum

Solyc12g006020.1|Solyc12g006020.1.1|27307012 peptide|Slycopersicum
PGSC0003DMG400013898|PGSC0003DMT400036087|PGSC0003DMP400024515|Stuberosum

PGSC0003DMG400029572|PGSC0003DMT400076049|PGSC0003DMP400051498|Stuberosum
Solyc06g033920.1|Solyc06g033920.1.1|27283276 peptide|Slycopersicum
PGSC0003DMG400001831|PGSC0003DMT400004618|PGSC0003DMP400003280|Stuberosum
Solyc08g077740.1|Solyc08g077740.1.1|27304832 peptide|Slycopersicum
PGSC0003DMG400001829|PGSC0003DMT400004611|PGSC0003DMP400003278|Stuberosum
PGSC0003DMG401001828|PGSC0003DMT400004606|PGSC0003DMP400003276|Stuberosum
PGSC0003DMG400022452|PGSC0003DMT400057823|PGSC0003DMP400038931|Stuberosum
PGSC0003DMG400028591|PGSC0003DMT400073599|PGSC0003DMP400049802|Stuberosum
Solyc01g098370.1|Solyc01g098370.1.1|27302593 peptide|Slycopersicum

PGSC0003DMG401002888|PGSC0003DMT400007484|PGSC0003DMP400005207|Stuberosum
PGSC0003DMG400002937|PGSC0003DMT400007608|PGSC0003DMP400005295|Stuberosum
Solyc12g009730.1|Solyc12g009730.1.1|27306588 peptide|Slycopersicum
Solyc12g009750.1|Solyc12g009750.1.1|27307869 peptide|Slycopersicum

Solyc12g009770.1|Solyc12g009770.1.1|27307910 peptide|Slycopersicum
PGSC0003DMG400002910|PGSC0003DMT400007537|PGSC0003DMP400005241|Stuberosum

Solyc12g009740.1|Solyc12g009740.1.1|27307461 peptide|Slycopersicum

Solyc04g054450.1|Solyc04g054450.1.1|27278519 peptide|Slycopersicum
Solyc12g009520.1|Solyc12g009520.1.1|27307600 peptide|Slycopersicum
PGSC0003DMG400002885|PGSC0003DMT400007477|PGSC0003DMP400005202|Stuberosum
Solyc12g013680.1|Solyc12g013680.1.1|27306646 peptide|Slycopersicum
PGSC0003DMG400015351|PGSC0003DMT400039719|PGSC0003DMP400026916|Stuberosum
PGSC0003DMG400015347|PGSC0003DMT400039706|PGSC0003DMP400026911|Stuberosum

Eucgr.F02779|Eucgr.F02779.1|23583677 peptide|Egrandis
Eucgr.F02778|Eucgr.F02778.1|23583676 peptide|Egrandis
Eucgr.F02783|Eucgr.F02783.1|23583681 peptide|Egrandis

Thecc1EG045328|Thecc1EG045328t1|27442942 peptide|Tcacao
Thecc1EG045334|Thecc1EG045334t1|27442218 peptide|Tcacao

Thecc1EG032520|Thecc1EG032520t1|27446009 peptide|Tcacao
Thecc1EG030700|Thecc1EG030700t1|27446066 peptide|Tcacao
Thecc1EG030697|Thecc1EG030697t1|27444655 peptide|Tcacao
Gorai.009G449100|Gorai.009G449100.1|26771610 peptide|Graimondii

Gorai.009G448500|Gorai.009G448500.1|26762992 peptide|Graimondii
Gorai.009G448200|Gorai.009G448200.1|26770976 peptide|Graimondii
Gorai.009G444400|Gorai.009G444400.1|26768447 peptide|Graimondii
Gorai.009G447900|Gorai.009G447900.1|26769079 peptide|Graimondii
Gorai.009G448100|Gorai.009G448100.1|26762524 peptide|Graimondii

Gorai.009G444500|Gorai.009G444500.1|26768997 peptide|Graimondii
Gorai.009G448600|Gorai.009G448600.1|26771267 peptide|Graimondii
Gorai.009G448900|Gorai.009G448900.1|26768544 peptide|Graimondii
Gorai.009G448000|Gorai.009G448000.1|26770126 peptide|Graimondii

Gorai.002G104200|Gorai.002G104200.1|26796683 peptide|Graimondii
Thecc1EG032524|Thecc1EG032524t1|27445256 peptide|Tcacao

Thecc1EG025238|Thecc1EG025238t1|27425195 peptide|Tcacao

ppa026889m.g|ppa026889m|17665844 peptide|Ppersica
ppa001095m.g|ppa001095m|17657413 peptide|Ppersica
ppa023897m.g|ppa023897m|17667655 peptide|Ppersica

Medtr4g064760|Medtr4g064760.1|23052588 peptide|Mtruncatula
Medtr5g086530|Medtr5g086530.1|23032168 peptide|Mtruncatula

Medtr5g086810|Medtr5g086810.1|23032539 peptide|Mtruncatula

Medtr5g086570|Medtr5g086570.1|23028399 peptide|Mtruncatula
Medtr5g087090|Medtr5g087090.1|23032208 peptide|Mtruncatula

Medtr5g087320|Medtr5g087320.1|23031921 peptide|Mtruncatula
Medtr5g087070|Medtr5g087070.1|23028982 peptide|Mtruncatula

Medtr5g087080|Medtr5g087080.1|23028311 peptide|Mtruncatula
Medtr5g086550|Medtr5g086550.1|23032566 peptide|Mtruncatula

Medtr5g086630|Medtr5g086630.1|23034542 peptide|Mtruncatula

Phvul.008G210800|Phvul.008G210800.1|27155752 peptide|Pvulgaris

Glyma14g04640|Glyma14g04640.1|26285026 peptide|Gmax
Glyma14g04870|Glyma14g04870.2|26285584 peptide|Gmax
Glyma14g05040|Glyma14g05040.1|26285822 peptide|Gmax

Phvul.008G210400|Phvul.008G210400.1|27155125 peptide|Pvulgaris

Glyma14g34880|Glyma14g34880.1|26284685 peptide|Gmax
Phvul.008G173600|Phvul.008G173600.1|27153314 peptide|Pvulgaris

Medtr5g063740|Medtr5g063740.1|23034003 peptide|Mtruncatula

Phvul.008G274000|Phvul.008G274000.1|27155819 peptide|Pvulgaris
Phvul.008G273800|Phvul.008G273800.1|27156269 peptide|Pvulgaris
Phvul.008G273600|Phvul.008G273600.1|27154634 peptide|Pvulgaris

Phvul.008G274100|Phvul.008G274100.1|27154564 peptide|Pvulgaris
Phvul.008G273900|Phvul.008G273900.1|27153554 peptide|Pvulgaris

Glyma16g28460|Glyma16g28460.2|26353597 peptide|Gmax
Glyma16g28480|Glyma16g28480.1|26352791 peptide|Gmax

Glyma16g28410|Glyma16g28410.1|26353294 peptide|Gmax
Glyma16g28500|Glyma16g28500.2|26352117 peptide|Gmax

Glyma16g28510|Glyma16g28510.2|26353788 peptide|Gmax

Medtr5g095120|Medtr5g095120.1|23029030 peptide|Mtruncatula
Medtr5g080000|Medtr5g080000.1|23032318 peptide|Mtruncatula

Medtr3g027330|Medtr3g027330.1|23011420 peptide|Mtruncatula
Medtr2g032560|Medtr2g032560.1|23018837 peptide|Mtruncatula
Medtr5g096340|Medtr5g096340.1|23035238 peptide|Mtruncatula
Medtr4g032320|Medtr4g032320.1|23047073 peptide|Mtruncatula

Medtr5g095420|Medtr5g095420.1|23028535 peptide|Mtruncatula

Ciclev10017911m.g|Ciclev10017911m|20815486 peptide|Cclementina
Ciclev10024171m.g|Ciclev10024171m|20806899 peptide|Cclementina
orange1.1g048289m.g|orange1.1g048289m|18127186 peptide|Csinensis
orange1.1g002771m.g|orange1.1g002771m|18124145 peptide|Csinensis
Ciclev10014113m.g|Ciclev10014113m|20818893 peptide|Cclementina

orange1.1g002167m.g|orange1.1g002167m|18103484 peptide|Csinensis
Ciclev10018328m.g|Ciclev10018328m|20817263 peptide|Cclementina

Ciclev10018112m.g|Ciclev10018112m|20814987 peptide|Cclementina

cassava4.1 031360m.g|cassava4.1 031360m|17985639 peptide|Mesculenta
Potri.001G389100|Potri.001G389100.1|27040703 peptide|Ptrichocarpa

Ciclev10023797m.g|Ciclev10023797m|20808909 peptide|Cclementina
Ciclev10024087m.g|Ciclev10024087m|20807244 peptide|Cclementina

Gorai.009G354600|Gorai.009G354600.1|26770910 peptide|Graimondii

Gorai.009G367500|Gorai.009G367500.1|26765721 peptide|Graimondii
Gorai.009G367700|Gorai.009G367700.1|26764351 peptide|Graimondii

Gorai.009G367800|Gorai.009G367800.1|26767460 peptide|Graimondii

Thecc1EG031783|Thecc1EG031783t1|27446550 peptide|Tcacao

Gorai.002G060500|Gorai.002G060500.1|26796584 peptide|Graimondii

Thecc1EG031790|Thecc1EG031790t1|27445773 peptide|Tcacao

Thecc1EG046011|Thecc1EG046011t1|27425562 peptide|Tcacao
Thecc1EG031844|Thecc1EG031844t1|27445290 peptide|Tcacao
Thecc1EG031854|Thecc1EG031854t1|27444413 peptide|Tcacao
Thecc1EG046015|Thecc1EG046015t1|27425568 peptide|Tcacao

Thecc1EG031847|Thecc1EG031847t1|27445475 peptide|Tcacao
Thecc1EG031842|Thecc1EG031842t1|27444291 peptide|Tcacao

Gorai.013G174000|Gorai.013G174000.1|26786340 peptide|Graimondii

Gorai.010G203200|Gorai.010G203200.1|26757501 peptide|Graimondii
Gorai.004G023800|Gorai.004G023800.1|26775991 peptide|Graimondii
Gorai.004G023400|Gorai.004G023400.1|26774018 peptide|Graimondii

Gorai.004G023200|Gorai.004G023200.1|26776284 peptide|Graimondii

cassava4.1 023057m.g|cassava4.1 023057m|17985635 peptide|Mesculenta
cassava4.1 000728m.g|cassava4.1 000728m|17985647 peptide|Mesculenta
29836.t000011|29836.m000564|16810277 peptide|Rcommunis

Thecc1EG031926|Thecc1EG031926t1|27445950 peptide|Tcacao
Gorai.002G052800|Gorai.002G052800.1|26794449 peptide|Graimondii
Gorai.002G052900|Gorai.002G052900.1|26793739 peptide|Graimondii

Cucsa.362340|Cucsa.362340.1|16980916 peptide|Csativus
Cucsa.362210|Cucsa.362210.1|16980903 peptide|Csativus

Ciclev10017514m.g|Ciclev10017514m|20815678 peptide|Cclementina
Ciclev10017615m.g|Ciclev10017615m|20818982 peptide|Cclementina
Ciclev10017448m.g|Ciclev10017448m|20817383 peptide|Cclementina

orange1.1g045967m.g|orange1.1g045967m|18139039 peptide|Csinensis
orange1.1g041976m.g|orange1.1g041976m|18138918 peptide|Csinensis

Thecc1EG032025|Thecc1EG032025t1|27444381 peptide|Tcacao
Thecc1EG032338|Thecc1EG032338t1|27444483 peptide|Tcacao
Gorai.002G060300|Gorai.002G060300.1|26796653 peptide|Graimondii
Gorai.002G060400|Gorai.002G060400.1|26792075 peptide|Graimondii

Thecc1EG030723|Thecc1EG030723t1|27445241 peptide|Tcacao
Thecc1EG030726|Thecc1EG030726t1|27445536 peptide|Tcacao
Thecc1EG030708|Thecc1EG030708t1|27444911 peptide|Tcacao

Eucgr.F00297|Eucgr.F00297.1|23580974 peptide|Egrandis
Eucgr.F00286|Eucgr.F00286.1|23580965 peptide|Egrandis
Eucgr.F00295|Eucgr.F00295.1|23580972 peptide|Egrandis

Eucgr.F00289|Eucgr.F00289.1|23580967 peptide|Egrandis
Eucgr.F00285|Eucgr.F00285.1|23580964 peptide|Egrandis

Eucgr.F00281|Eucgr.F00281.1|23580962 peptide|Egrandis

Eucgr.L00863|Eucgr.L00863.1|23605987 peptide|Egrandis
Eucgr.F00707|Eucgr.F00707.1|23581411 peptide|Egrandis
Eucgr.F00702|Eucgr.F00702.1|23581408 peptide|Egrandis
Eucgr.F00665|Eucgr.F00665.1|23581386 peptide|Egrandis

Eucgr.L00665|Eucgr.L00665.1|23605848 peptide|Egrandis
Eucgr.L02824|Eucgr.L02824.1|23607429 peptide|Egrandis

Eucgr.I00219|Eucgr.I00219.1|23594749 peptide|Egrandis

Eucgr.F00688|Eucgr.F00688.1|23581399 peptide|Egrandis
Eucgr.F00689|Eucgr.F00689.1|23581400 peptide|Egrandis
Eucgr.F00662|Eucgr.F00662.1|23581384 peptide|Egrandis
Eucgr.F00693|Eucgr.F00693.1|23581402 peptide|Egrandis
Eucgr.F00701|Eucgr.F00701.1|23581407 peptide|Egrandis
Eucgr.F00700|Eucgr.F00700.1|23581406 peptide|Egrandis
Eucgr.F00706|Eucgr.F00706.1|23581410 peptide|Egrandis

Eucgr.F00560|Eucgr.F00560.1|23581261 peptide|Egrandis
Eucgr.H00982|Eucgr.H00982.1|23590391 peptide|Egrandis

Eucgr.H00985|Eucgr.H00985.1|23590394 peptide|Egrandis
Eucgr.L00872|Eucgr.L00872.1|23605991 peptide|Egrandis

Potri.T085800|Potri.T085800.1|27027281 peptide|Ptrichocarpa

Potri.011G105000|Potri.011G105000.1|27001898 peptide|Ptrichocarpa
Potri.011G104900|Potri.011G104900.1|27002496 peptide|Ptrichocarpa
Potri.011G105100|Potri.011G105100.1|27001247 peptide|Ptrichocarpa

Potri.T086100|Potri.T086100.1|27027283 peptide|Ptrichocarpa
Potri.011G104600|Potri.011G104600.1|27002222 peptide|Ptrichocarpa

Potri.T085500|Potri.T085500.1|27027280 peptide|Ptrichocarpa

Potri.009G112000|Potri.009G112000.1|26988649 peptide|Ptrichocarpa

Potri.T164100|Potri.T164100.1|26983125 peptide|Ptrichocarpa
Potri.012G009900|Potri.012G009900.1|27049492 peptide|Ptrichocarpa

Potri.012G005700|Potri.012G005700.2|27050939 peptide|Ptrichocarpa

Potri.012G009200|Potri.012G009200.1|27050641 peptide|Ptrichocarpa

Potri.012G007800|Potri.012G007800.1|27050186 peptide|Ptrichocarpa
Potri.011G054500|Potri.011G054500.1|27002322 peptide|Ptrichocarpa
Potri.012G025400|Potri.012G025400.1|27049103 peptide|Ptrichocarpa
Potri.012G027600|Potri.012G027600.1|27049944 peptide|Ptrichocarpa

Potri.012G025100|Potri.012G025100.1|27050058 peptide|Ptrichocarpa
Potri.011G055200|Potri.011G055200.1|27000892 peptide|Ptrichocarpa

Potri.012G028600|Potri.012G028600.1|27048905 peptide|Ptrichocarpa
Potri.012G028500|Potri.012G028500.1|27050880 peptide|Ptrichocarpa

Potri.012G027400|Potri.012G027400.1|27048768 peptide|Ptrichocarpa
Potri.012G026000|Potri.012G026000.1|27049168 peptide|Ptrichocarpa

cassava4.1 032707m.g|cassava4.1 032707m|17960680 peptide|Mesculenta

28228.t000001|28228.m000020|16800418 peptide|Rcommunis
cassava4.1 025624m.g|cassava4.1 025624m|17964134 peptide|Mesculenta
cassava4.1 030915m.g|cassava4.1 030915m|17980728 peptide|Mesculenta

Jcr4S01516.10.g|Jcr4S01516.10|Jcr4S01516.10.p|Jcurcas
Jcr4S00875.10.g|Jcr4S00875.10|Jcr4S00875.10.p|Jcurcas

GSVIVG01015659001|GSVIVT01015659001|17826370 peptide|Vvinifera
Potri.001G437700|Potri.001G437700.1|27047788 peptide|Ptrichocarpa

Potri.011G021400|Potri.011G021400.1|27000783 peptide|Ptrichocarpa

Thecc1EG017221|Thecc1EG017221t1|27455911 peptide|Tcacao
Gorai.005G029400|Gorai.005G029400.1|26803291 peptide|Graimondii
Gorai.005G026400|Gorai.005G026400.1|26805627 peptide|Graimondii
Gorai.005G044400|Gorai.005G044400.1|26803184 peptide|Graimondii
Gorai.005G028600|Gorai.005G028600.1|26804202 peptide|Graimondii
Gorai.005G029200|Gorai.005G029200.1|26803135 peptide|Graimondii
Gorai.005G026300|Gorai.005G026300.1|26803177 peptide|Graimondii
Gorai.005G026600|Gorai.005G026600.1|26802847 peptide|Graimondii
Gorai.005G029300|Gorai.005G029300.1|26804698 peptide|Graimondii
Gorai.005G029100|Gorai.005G029100.1|26803220 peptide|Graimondii
Gorai.005G028900|Gorai.005G028900.1|26806548 peptide|Graimondii

Gorai.011G155400|Gorai.011G155400.2|26812260 peptide|Graimondii

mgv1a000665m.g|mgv1a000665m|17685144 peptide|Mguttatus v1.1

Pavirv00024200m.g|Pavirv00024200m|23759824 peptide|Pvirgatum
Sb07g021730|Sb07g021730.1|1976171 peptide|Sbicolor v1.0
Pavirv00060461m.g|Pavirv00060461m|23792827 peptide|Pvirgatum
Sb07g021720|Sb07g021720.1|1976170 peptide|Sbicolor v1.0
Si013157m.g|Si013157m|19691652 peptide|Sitalica

Pavirv00006183m.g|Pavirv00006183m|23800056 peptide|Pvirgatum
Pavirv00056947m.g|Pavirv00056947m|23810774 peptide|Pvirgatum

Pavirv00002463m.g|Pavirv00002463m|23766799 peptide|Pvirgatum

LOC Os01g06920|LOC Os01g06920.1|24118971 peptide|Osativa

LOC Os12g12130|LOC Os12g12130.1|24146208 peptide|Osativa
LOC Os12g11860|LOC Os12g11860.1|24145951 peptide|Osativa
LOC Os12g11940|LOC Os12g11940.1|24149042 peptide|Osativa
LOC Os12g12120|LOC Os12g12120.1|24146431 peptide|Osativa
LOC Os12g11720|LOC Os12g11720.1|24148893 peptide|Osativa
LOC Os12g12010|LOC Os12g12010.1|24145400 peptide|Osativa
LOC Os12g11680|LOC Os12g11680.1|24146541 peptide|Osativa

Pavirv00048819m.g|Pavirv00048819m|23762135 peptide|Pvirgatum
Sb08g006880|Sb08g006880.1|1977950 peptide|Sbicolor v1.0

Pavirv00013074m.g|Pavirv00013074m|23773940 peptide|Pvirgatum
Sb08g006800|Sb08g006800.1|1977940 peptide|Sbicolor v1.0

Sb08g006810|Sb08g006810.1|1977943 peptide|Sbicolor v1.0

LOC Os12g11500|LOC Os12g11500.1|24149363 peptide|Osativa
LOC Os12g11930|LOC Os12g11930.1|24147876 peptide|Osativa
LOC Os12g11370|LOC Os12g11370.1|24148315 peptide|Osativa
LOC Os12g10870|LOC Os12g10870.1|24146413 peptide|Osativa

Si027359m.g|Si027359m|19706954 peptide|Sitalica
LOC Os01g06730|LOC Os01g06730.1|24115925 peptide|Osativa
Si004994m.g|Si004994m|19676005 peptide|Sitalica
Pavirv00017705m.g|Pavirv00017705m|23776325 peptide|Pvirgatum
Sb03g004950|Sb03g004950.1|1960598 peptide|Sbicolor v1.0
Pavirv00034456m.g|Pavirv00034456m|23790317 peptide|Pvirgatum
LOC Os01g06520|LOC Os01g06520.1|24117810 peptide|Osativa
LOC Os01g06720|LOC Os01g06720.1|24114343 peptide|Osativa
LOC Os01g07280|LOC Os01g07280.1|24116274 peptide|Osativa
GRMZM2G368865|GRMZM2G368865 T01|20830142 peptide|Zmays

LOC Os01g06670|LOC Os01g06670.1|24114592 peptide|Osativa

LOC Os04g28210|LOC Os04g28210.1|24104303 peptide|Osativa
Si000156m.g|Si000156m|19677095 peptide|Sitalica
Pavirv00049724m.g|Pavirv00049724m|23763294 peptide|Pvirgatum
Pavirv00016137m.g|Pavirv00016137m|23763481 peptide|Pvirgatum

GRMZM2G062576|GRMZM2G062576 T01|20828814 peptide|Zmays
Sb03g005090|Sb03g005090.1|1960617 peptide|Sbicolor v1.0

Bradi5g14330|Bradi5g14330.1|21825768 peptide|Bdistachyon
LOC Os04g40440|LOC Os04g40440.1|24107173 peptide|Osativa
Si011896m.g|Si011896m|19694597 peptide|Sitalica
Pavirv00029794m.g|Pavirv00029794m|23792017 peptide|Pvirgatum
Pavirv00009603m.g|Pavirv00009603m|23796891 peptide|Pvirgatum
LOC Os01g06790|LOC Os01g06790.1|24118679 peptide|Osativa
Bradi2g03920|Bradi2g03920.1|21803112 peptide|Bdistachyon
LOC Os01g06900|LOC Os01g06900.1|24119100 peptide|Osativa
Sb03g005070|Sb03g005070.1|1960614 peptide|Sbicolor v1.0
Si028781m.g|Si028781m|19712210 peptide|Sitalica
Si028774m.g|Si028774m|19712687 peptide|Sitalica
Si033352m.g|Si033352m|19710885 peptide|Sitalica

Bradi2g61460|Bradi2g61460.1|21805575 peptide|Bdistachyon
GRMZM2G174128|GRMZM2G174128 T01|20880750 peptide|Zmays
Pavirv00040346m.g|Pavirv00040346m|23816906 peptide|Pvirgatum
Pavirv00054582m.g|Pavirv00054582m|23776507 peptide|Pvirgatum
Pavirv00014929m.g|Pavirv00014929m|23789655 peptide|Pvirgatum
Pavirv00044551m.g|Pavirv00044551m|23786787 peptide|Pvirgatum
LOC Os01g04070|LOC Os01g04070.1|24114229 peptide|Osativa
Si014924m.g|Si014924m|19691578 peptide|Sitalica
Bradi2g02160|Bradi2g02160.1|21807624 peptide|Bdistachyon

Bradi4g21190|Bradi4g21190.1|21813696 peptide|Bdistachyon
Si033359m.g|Si033359m|19709481 peptide|Sitalica

Aquca 045 00177|Aquca 045 00177.1|22027109 peptide|Acoerulea
Solyc01g098680.2|Solyc01g098680.2.1|27301249 peptide|Slycopersicum
PGSC0003DMG400028575|PGSC0003DMT400073563|PGSC0003DMP400049780|Stuberosum
Solyc01g098690.2|Solyc01g098690.2.1|27302863 peptide|Slycopersicum
PGSC0003DMG400028576|PGSC0003DMT400073564|PGSC0003DMP400049781|Stuberosum

mgv1a000464m.g|mgv1a000464m|17693939 peptide|Mguttatus v1.1
PGSC0003DMG400022068|PGSC0003DMT400056743|PGSC0003DMP400038157|Stuberosum
Solyc10g076500.1|Solyc10g076500.1.1|27280323 peptide|Slycopersicum
NgVe1

Solyc09g005090.1|Solyc09g005090.1.1|27308919 peptide|Slycopersicum
PGSC0003DMG400006268|PGSC0003DMT400016034|PGSC0003DMP400011110|Stuberosum
Solyc09g005080.1|Solyc09g005080.1.1|27310418 peptide|Slycopersicum
StoVe2
StoVe1

StuVe1

mgv1a020447m.g|mgv1a020447m|17696201 peptide|Mguttatus v1.1
mgv1a025558m.g|mgv1a025558m|17677948 peptide|Mguttatus v1.1

Glyma07g08770|Glyma07g08770.2|26347413 peptide|Gmax
Phvul.010G088600|Phvul.010G088600.1|27141414 peptide|Pvulgaris

Glyma01g29030|Glyma01g29030.2|26325481 peptide|Gmax
Glyma01g28936|Glyma01g28936.1|26325833 peptide|Gmax
Phvul.010G013700|Phvul.010G013700.1|27139904 peptide|Pvulgaris
Phvul.010G013600|Phvul.010G013600.1|27139797 peptide|Pvulgaris
Medtr5g046350|Medtr5g046350.1|23031854 peptide|Mtruncatula
Medtr4g017370|Medtr4g017370.1|23050829 peptide|Mtruncatula
Medtr4g017490|Medtr4g017490.1|23046911 peptide|Mtruncatula
Medtr4g017350|Medtr4g017350.1|23049215 peptide|Mtruncatula
Medtr4g017280|Medtr4g017280.1|23051290 peptide|Mtruncatula

Glyma18g43630|Glyma18g43630.1|26355450 peptide|Gmax
Glyma03g22050|Glyma03g22050.2|26333172 peptide|Gmax
Phvul.008G096900|Phvul.008G096900.1|27154169 peptide|Pvulgaris
Glyma18g43621|Glyma18g43621.1|26354547 peptide|Gmax
Phvul.008G094000|Phvul.008G094000.1|27156215 peptide|Pvulgaris
Phvul.008G093900|Phvul.008G093900.1|27154791 peptide|Pvulgaris

Glyma03g06804|Glyma03g06804.1|26336494 peptide|Gmax
Phvul.010G073300|Phvul.010G073300.1|27140208 peptide|Pvulgaris

Glyma03g07240|Glyma03g07240.1|26336206 peptide|Gmax

Glyma01g29615|Glyma01g29615.1|26325171 peptide|Gmax
Glyma01g29570|Glyma01g29570.2|26323713 peptide|Gmax
Glyma01g29580|Glyma01g29580.2|26323511 peptide|Gmax

Glyma03g18170|Glyma03g18170.2|26335205 peptide|Gmax
Glyma01g31711|Glyma01g31711.1|26324478 peptide|Gmax

Medtr4g018910|Medtr4g018910.1|23047635 peptide|Mtruncatula
Medtr4g019010|Medtr4g019010.1|23047844 peptide|Mtruncatula

Medtr4g018940|Medtr4g018940.1|23047746 peptide|Mtruncatula

Glyma18g43520|Glyma18g43520.2|26355646 peptide|Gmax

Glyma18g43500|Glyma18g43500.2|26357184 peptide|Gmax
Glyma18g43490|Glyma18g43490.2|26355880 peptide|Gmax

Glyma18g43510|Glyma18g43510.2|26355617 peptide|Gmax

Glyma07g18590|Glyma07g18590.2|26349875 peptide|Gmax
Glyma07g18640|Glyma07g18640.2|26349181 peptide|Gmax

Phvul.008G095300|Phvul.008G095300.1|27155582 peptide|Pvulgaris

orange1.1g001612m.g|orange1.1g001612m|18131622 peptide|Csinensis

Ciclev10011057m.g|Ciclev10011057m|20797536 peptide|Cclementina
Ciclev10010962m.g|Ciclev10010962m|20798791 peptide|Cclementina
orange1.1g001624m.g|orange1.1g001624m|18134835 peptide|Csinensis

Ciclev10010939m.g|Ciclev10010939m|20797893 peptide|Cclementina
orange1.1g001166m.g|orange1.1g001166m|18131611 peptide|Csinensis

orange1.1g047927m.g|orange1.1g047927m|18131619 peptide|Csinensis

Ciclev10024804m.g|Ciclev10024804m|20801238 peptide|Cclementina
orange1.1g046844m.g|orange1.1g046844m|18130075 peptide|Csinensis

Ciclev10027416m.g|Ciclev10027416m|20800518 peptide|Cclementina

orange1.1g001842m.g|orange1.1g001842m|18132685 peptide|Csinensis
Ciclev10027041m.g|Ciclev10027041m|20801800 peptide|Cclementina

Lus10006825.g|Lus10006825|23150770 peptide|Lusitatissimum
Lus10042239.g|Lus10042239|23153774 peptide|Lusitatissimum
Lus10026415.g|Lus10026415|23156410 peptide|Lusitatissimum

Lus10003389.g|Lus10003389|23175220 peptide|Lusitatissimum
Lus10003387.g|Lus10003387|23175208 peptide|Lusitatissimum

Potri.016G120600|Potri.016G120600.1|27011668 peptide|Ptrichocarpa
Potri.016G120500|Potri.016G120500.1|27011857 peptide|Ptrichocarpa

29601.t000009|29601.m000437|16803514 peptide|Rcommunis
29601.t000010|29601.m000438|16803515 peptide|Rcommunis
cassava4.1 028371m.g|cassava4.1 028371m|17965347 peptide|Mesculenta
cassava4.1 025332m.g|cassava4.1 025332m|17965346 peptide|Mesculenta
cassava4.1 000567m.g|cassava4.1 000567m|17965439 peptide|Mesculenta

cassava4.1 025415m.g|cassava4.1 025415m|17975559 peptide|Mesculenta

HLVe1-2B
HLVe1-2A

ppa026755m.g|ppa026755m|17649622 peptide|Ppersica
gene18849−v1.0−hybrid|mrna18849.1−v1.0−hybrid|27256749 peptide|Fvesca

gene16503−v1.0−hybrid|mrna16503.1−v1.0−hybrid|27245720 peptide|Fvesca
gene16496−v1.0−hybrid|mrna16496.1−v1.0−hybrid|27245322 peptide|Fvesca

gene06515−v1.0−hybrid|mrna06515.1−v1.0−hybrid|27251366 peptide|Fvesca

MDP0000299178|MDP0000299178|22649258 peptide|Mdomestica
MDP0000213823|MDP0000213823|22632923 peptide|Mdomestica
MDP0000213824|MDP0000213824|22632928 peptide|Mdomestica
MDP0000691040|MDP0000691040|22659853 peptide|Mdomestica
MDP0000456401|MDP0000456401|22636875 peptide|Mdomestica
ppa015767m.g|ppa015767m|17642874 peptide|Ppersica
ppa022632m.g|ppa022632m|17667425 peptide|Ppersica
ppa024468m.g|ppa024468m|17640489 peptide|Ppersica
MDP0000224347|MDP0000224347|22633180 peptide|Mdomestica
MDP0000272549|MDP0000272549|22624288 peptide|Mdomestica
MDP0000167796|MDP0000167796|22639193 peptide|Mdomestica
MDP0000167795|MDP0000167795|22639192 peptide|Mdomestica

gene13478−v1.0−hybrid|mrna13478.1−v1.0−hybrid|27258691 peptide|Fvesca
gene13479−v1.0−hybrid|mrna13479.1−v1.0−hybrid|27260077 peptide|Fvesca
ppa023852m.g|ppa023852m|17640781 peptide|Ppersica

MDP0000297696|MDP0000297696|22661896 peptide|Mdomestica
MDP0000250110|MDP0000250110|22624050 peptide|Mdomestica
MDP0000413774|MDP0000413774|22652244 peptide|Mdomestica
MDP0000206592|MDP0000206592|22653955 peptide|Mdomestica
MDP0000456404|MDP0000456404|22636874 peptide|Mdomestica
MDP0000172674|MDP0000172674|22647497 peptide|Mdomestica
MDP0000166990|MDP0000166990|22653952 peptide|Mdomestica

MDP0000739225|MDP0000739225|22636773 peptide|Mdomestica
MDP0000642244|MDP0000642244|22627747 peptide|Mdomestica
MDP0000198378|MDP0000198378|22673206 peptide|Mdomestica

MDP0000304719|MDP0000304719|22644619 peptide|Mdomestica
MDP0000271894|MDP0000271894|22638587 peptide|Mdomestica

MDP0000650965|MDP0000650965|22629267 peptide|Mdomestica

Thecc1EG021646|Thecc1EG021646t1|27421975 peptide|Tcacao
Gorai.006G184100|Gorai.006G184100.1|26830093 peptide|Graimondii

Gorai.002G264500|Gorai.002G264500.1|26793910 peptide|Graimondii
Gorai.002G259400|Gorai.002G259400.1|26793426 peptide|Graimondii
Gorai.002G262300|Gorai.002G262300.1|26792962 peptide|Graimondii

Gorai.002G259500|Gorai.002G259500.1|26795472 peptide|Graimondii

Gorai.012G117200|Gorai.012G117200.1|26825385 peptide|Graimondii
Gorai.012G117000|Gorai.012G117000.1|26827457 peptide|Graimondii

Thecc1EG021647|Thecc1EG021647t1|27422900 peptide|Tcacao

GSVIVG01030345001|GSVIVT01030345001|17836877 peptide|Vvinifera
evm.TU.supercontig 120.26|evm.model.supercontig 120.26|16406962 peptide|Cpapaya
evm.TU.supercontig 120.25|evm.model.supercontig 120.25|16406961 peptide|Cpapaya

Eucgr.A00585|Eucgr.A00585.1|23562294 peptide|Egrandis
Eucgr.A00564|Eucgr.A00564.1|23562277 peptide|Egrandis

Eucgr.A00568|Eucgr.A00568.1|23562284 peptide|Egrandis

Eucgr.A00583|Eucgr.A00583.1|23562292 peptide|Egrandis
Eucgr.A00577|Eucgr.A00577.1|23562289 peptide|Egrandis
Eucgr.A00560|Eucgr.A00560.1|23562275 peptide|Egrandis
Eucgr.A00587|Eucgr.A00587.1|23562295 peptide|Egrandis
Eucgr.A00570|Eucgr.A00570.1|23562285 peptide|Egrandis

Eucgr.A00592|Eucgr.A00592.1|23562300 peptide|Egrandis
Eucgr.A00590|Eucgr.A00590.1|23562299 peptide|Egrandis

Eucgr.A00565|Eucgr.A00565.1|23562278 peptide|Egrandis

Eucgr.A00706|Eucgr.A00706.1|23562420 peptide|Egrandis
Eucgr.A00696|Eucgr.A00696.1|23562412 peptide|Egrandis
Eucgr.A00698|Eucgr.A00698.1|23562415 peptide|Egrandis
Eucgr.A00700|Eucgr.A00700.1|23562417 peptide|Egrandis
Eucgr.A00704|Eucgr.A00704.1|23562418 peptide|Egrandis

Eucgr.A00695|Eucgr.A00695.1|23562411 peptide|Egrandis
Eucgr.A00694|Eucgr.A00694.1|23562410 peptide|Egrandis

Eucgr.A00575|Eucgr.A00575.1|23562287 peptide|Egrandis
Eucgr.A00558|Eucgr.A00558.1|23562273 peptide|Egrandis

Lus10014910.g|Lus10014910|23152726 peptide|Lusitatissimum
Lus10032335.g|Lus10032335|23168612 peptide|Lusitatissimum
Lus10024721.g|Lus10024721|23161640 peptide|Lusitatissimum
Potri.001G128400|Potri.001G128400.1|27042051 peptide|Ptrichocarpa
Ciclev10030623m.g|Ciclev10030623m|20803701 peptide|Cclementina
orange1.1g001554m.g|orange1.1g001554m|18121599 peptide|Csinensis

Potri.001G400500|Potri.001G400500.1|27041244 peptide|Ptrichocarpa

Medtr7g009790|Medtr7g009790.1|23022277 peptide|Mtruncatula

Medtr7g010730|Medtr7g010730.1|23024673 peptide|Mtruncatula
Medtr7g009470|Medtr7g009470.1|23024625 peptide|Mtruncatula
Medtr7g009450|Medtr7g009450.1|23020696 peptide|Mtruncatula

Medtr7g009510|Medtr7g009510.1|23023491 peptide|Mtruncatula
Medtr7g009570|Medtr7g009570.1|23019953 peptide|Mtruncatula

Glyma09g26930|Glyma09g26930.1|26342727 peptide|Gmax
Phvul.008G043400|Phvul.008G043400.1|27155486 peptide|Pvulgaris

Eucgr.A01034|Eucgr.A01034.1|23562768 peptide|Egrandis
Eucgr.I00550|Eucgr.I00550.1|23595081 peptide|Egrandis
Eucgr.A01030|Eucgr.A01030.1|23562765 peptide|Egrandis
Eucgr.A01037|Eucgr.A01037.1|23562769 peptide|Egrandis
Eucgr.I00290|Eucgr.I00290.1|23594826 peptide|Egrandis

Eucgr.B00682|Eucgr.B00682.1|23565807 peptide|Egrandis
Eucgr.B00683|Eucgr.B00683.1|23565808 peptide|Egrandis

Eucgr.E02541|Eucgr.E02541.1|23579061 peptide|Egrandis
Eucgr.E02192|Eucgr.E02192.1|23578753 peptide|Egrandis

Eucgr.B00686|Eucgr.B00686.1|23565810 peptide|Egrandis
Eucgr.B01500|Eucgr.B01500.1|23566651 peptide|Egrandis

Eucgr.J03001|Eucgr.J03001.1|23601124 peptide|Egrandis
Eucgr.J03004|Eucgr.J03004.1|23601127 peptide|Egrandis

Eucgr.J02998|Eucgr.J02998.1|23601121 peptide|Egrandis

Gorai.001G223400|Gorai.001G223400.1|26824796 peptide|Graimondii

Potri.016G127000|Potri.016G127000.1|27013476 peptide|Ptrichocarpa
Potri.016G126900|Potri.016G126900.1|27013694 peptide|Ptrichocarpa
Potri.T092300|Potri.T092300.1|27019829 peptide|Ptrichocarpa
Potri.T092200|Potri.T092200.1|27019826 peptide|Ptrichocarpa
Potri.T091900|Potri.T091900.1|27019825 peptide|Ptrichocarpa

29848.t000074|29848.m004518|16811174 peptide|Rcommunis
29848.t000071|29848.m004515|16811171 peptide|Rcommunis

Gorai.001G203400|Gorai.001G203400.1|26820890 peptide|Graimondii

Thecc1EG019545|Thecc1EG019545t1|27455311 peptide|Tcacao
Thecc1EG019546|Thecc1EG019546t1|27452359 peptide|Tcacao

Thecc1EG019574|Thecc1EG019574t1|27453384 peptide|Tcacao

Thecc1EG044742|Thecc1EG044742t1|27441450 peptide|Tcacao
Thecc1EG044741|Thecc1EG044741t1|27443396 peptide|Tcacao
Thecc1EG044531|Thecc1EG044531t1|27441635 peptide|Tcacao
ppa020501m.g|ppa020501m|17663036 peptide|Ppersica

MDP0000267689|MDP0000267689|22629225 peptide|Mdomestica

MDP0000450173|MDP0000450173|22649141 peptide|Mdomestica
MDP0000322483|MDP0000322483|22678320 peptide|Mdomestica
MDP0000149925|MDP0000149925|22676986 peptide|Mdomestica
MDP0000265550|MDP0000265550|22624803 peptide|Mdomestica

MDP0000608270|MDP0000608270|22676581 peptide|Mdomestica
MDP0000560624|MDP0000560624|22639601 peptide|Mdomestica

MDP0000183107|MDP0000183107|22633509 peptide|Mdomestica

MDP0000181895|MDP0000181895|22679011 peptide|Mdomestica

Ciclev10000193m.g|Ciclev10000193m|20785704 peptide|Cclementina
orange1.1g002435m.g|orange1.1g002435m|18116359 peptide|Csinensis

orange1.1g047985m.g|orange1.1g047985m|18119285 peptide|Csinensis

orange1.1g040113m.g|orange1.1g040113m|18117724 peptide|Csinensis
Ciclev10010871m.g|Ciclev10010871m|20799271 peptide|Cclementina
Ciclev10003330m.g|Ciclev10003330m|20788401 peptide|Cclementina
Ciclev10003200m.g|Ciclev10003200m|20789094 peptide|Cclementina
Ciclev10000162m.g|Ciclev10000162m|20786057 peptide|Cclementina

Ciclev10003877m.g|Ciclev10003877m|20787664 peptide|Cclementina
Ciclev10000141m.g|Ciclev10000141m|20786349 peptide|Cclementina

Ciclev10003540m.g|Ciclev10003540m|20785692 peptide|Cclementina

Ciclev10014185m.g|Ciclev10014185m|20817045 peptide|Cclementina
Ciclev10017753m.g|Ciclev10017753m|20817666 peptide|Cclementina

Ciclev10017533m.g|Ciclev10017533m|20817032 peptide|Cclementina
Ciclev10017648m.g|Ciclev10017648m|20818704 peptide|Cclementina

Ciclev10018209m.g|Ciclev10018209m|20815915 peptide|Cclementina

Eucgr.K00633|Eucgr.K00633.1|23602098 peptide|Egrandis
Eucgr.K00641|Eucgr.K00641.1|23602104 peptide|Egrandis
Eucgr.K00638|Eucgr.K00638.1|23602101 peptide|Egrandis
Eucgr.K00629|Eucgr.K00629.1|23602094 peptide|Egrandis
Eucgr.K00632|Eucgr.K00632.1|23602097 peptide|Egrandis

Eucgr.K00624|Eucgr.K00624.1|23602090 peptide|Egrandis
Eucgr.K00645|Eucgr.K00645.1|23602107 peptide|Egrandis
Eucgr.K00637|Eucgr.K00637.1|23602100 peptide|Egrandis

Eucgr.G00996|Eucgr.G00996.1|23586612 peptide|Egrandis
Eucgr.K00636|Eucgr.K00636.1|23602099 peptide|Egrandis

Jcr4S05361.10.g|Jcr4S05361.10|Jcr4S05361.10.p|Jcurcas
Gorai.007G281100|Gorai.007G281100.1|26785328 peptide|Graimondii
Gorai.006G056300|Gorai.006G056300.1|26831150 peptide|Graimondii

Cucsa.310980|Cucsa.310980.1|16976616 peptide|Csativus
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Methods S1. Isolation of Ve1 homologues 

A ~1300 bp fragment was amplified from Nicotiana glutinosa cDNA using primers combination 

(Ve1SeqF1 and NgVe1-GSPR). To obtain the full-length NgVe1 sequence, 5’ and 3’ rapid amplification of 

cDNA ends (RACE) reactions were performed by using the GeneRace® Core Kit (Invitrogen, Carlsbad, 

USA) following the manufacturer’s instructions with minor modifications. Forward gene-specific 

primers NgVe1-GSPF1 and NgVe1-GSPF2 were used for 3’ RACE, while reverse gene-specific primers 

NgVe1-GSPR1 and NgVe1-GSPR2 were used for 5’ RACE (Table S1). The first round of PCR was followed 

by a nested PCR. The RACE products were purified and cloned into the Zero Blunt® TOPO® PCR Cloning 

Kit (Invitrogen, Carlsbad, USA) and sequenced. The full-length NgVe1 was determined by aligning 5’ and 

3’ RACE product sequences with the partial cDNA fragment cloned earlier (Zhang et al., 2013). Primers 

NgVe1-F and NgVe1-R (Table S1) were designed based on sequence information of inserts from multiple 

clones derived from 5’ RACE and 3’ RACE products, and were utilized to amplify the full-length cDNA 

and genomic DNA (gDNA) from N. glutinosa. PCR reactions were performed using the Thermo Scientific 

Phusion High-Fidelity PCR Kit (Thermo Scientific, Massachusetts, USA). The amplicons of full-length 

NgVe1 from N. glutinosa cDNA and gDNA were sequenced using pre-mixed sequencing primers (Table 

S1). The sequence of full-length NgVe1 is deposited at NCBI under accession number: KT895339. 

To amplify the coding sequences (CDSs) of Ve gene homologues in heterozygous diploid potato, the 

primer pairs StuVe1-attB1/StuVe1-attB2 and StuVe2-attB1/StuVe2-attB2, respectively (Table S1), were 

designed based on the sequences of the Ve locus (NCBI reference sequence: XM_006362308 and 

XM_006362309) from a doubled monoploid potato genotype Phureja DM 1-3 516 R44 (Xu et al., 2011). 

To obtain the CDSs of StoVe1 and StoVe2, the primer pairs StoVe1-attB1/StoVe1-attB2 and StoVe2-

attB1/StoVe2-attB2, respectively (Table S1), were designed based on the sequence of StoVe1 (GenBank 

accession: DQ020574; Liu et al., 2012) and StVe (GenBank accessions: AY311527; Fei et al., 2004) from 

wild eggplant. All PCR products were cloned into pDONR207 by using Gateway® BP Clonase® II Enzyme 

Mix (Invitrogen, Carlsbad, USA), and subsequently sequenced using pre-mixed sequencing primers 

(Table S1), and named StuVe1 (GenBank accession: KT946795) and StuVe2 (GenBank accession: 

KT946797), StoVe1 (GenBank accession: KT946794) and StoVe2 (GenBank accession: KT946796). 

Southern blotting was performed to query for Ve homologues in hop. 5 µg of hop genomic DNA 

(seven hop cultivars: ‘Wye target’, ‘Fuggle’, ‘Wye Challanger’, ‘Savinjski Golding’, ‘Aurora’, ‘Celeia’ and 

‘Yeoman’) was digested with EcoRI, EcoRV and HindIII, separated on 0.8% agarose gel and transferred to 

nylon membranes. Southern blotting was performed with the P32-labelled tomato Ve1 gene sequence as a 

probe and washing was performed with 0.5X SSC (Maniatis et al., 1982). A pair of specific and 

degenerative primers HLVe(deg)-F and HLVe(deg)-R (Table S1) was constructed based on the protein 
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ClustalW alignment of tomato Ve1 (GenBank accession: AAK58682), mint Verticillium wilt resistance-like 

protein (GenBank accession: ACB99689), three vine grape proteins (GenBank accessions: CAO63881, 

CAN76702 and CAO63885) and a hop EST sequence (GenBank accessions: GD247683), which showed 

similarity to Ve1. A Ve-like sequence from hop cultivar ‘Wye Target’ with a length of ~1300 bp was 

amplified. Its alignment showed similarity to Ve1 from amino acid 142 forward. This part of the sequence 

was the basis for isolation of the flanking sequences of HLVe using TAIL-PCR combined six degenerate 

primers (Table S2) with designed hop sequence-specific primers (Table S3) from the hop cultivar ‘Wye 

target’. A primary TAIL-PCR reaction was performed in 20 µl containing 20 ng of hop genomic DNA, 1X 

Dream Taq Buffer, 0.8 mM of dNTPs, 0.8 U of Dream Taq enzyme (Thermo Scientific, Massachusetts, 

USA), 0.2 mM of primary reaction hop specific primer and one of the following arbitrary primers: AD1, 

AD6 (2 µM), AD2 (3 µM), AD3, AD4 or AD5 (4 µM) (Table S2; S3). The reaction was diluted 50 times and 

1 µl was used in the secondary TAIL-PCR reaction (20 µl) with a changed amount of Dream Taq 

polymerase (0.6 U), secondary reaction hop specific primer (0.2 mM) and a different amount of AD 

primers (AD1 and AD6 1,5 μM, AD2, AD3, AD4 or AD5 2 µM) (Table S2; S3). The reaction mixture of the 

tertiary TAIL-PCR was identical to the secondary one, with the exception that 1 µl of diluted secondary 

reaction diluted 1:50 was added as template and tertiary reaction hop specific primer was used (Table 

S2; S3). The amplification protocols are listed as Table S4. Amplicons of tertiary TAIL-PCR reactions were 

cleaned and sequenced and the obtained sequences were assembled in CodonCode Aligner (version 

3.7.1); contigs were further checked for similarity with Ve1 using blast X algorithm. Based on the 

assembled sequences, two full-length Ve1-like sequences were amplified from hop cultivar ‘Wye Target’ 

genomic DNA using primers HLVe-F and HLVe-R (Table S1). Two sequences were deposited at NCBI as 

HLVe1-2A (GenBank accession: KJ647426) and HLVe1-2B (GenBank accession: KJ647427). 
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Table S1. Primers used for amplification, sequencing and expression of Ve1 homologs. 
Primer name Oligonucleotide sequence (5’→3’) Descriptiona 

Ve1SeqF1 TTCAATGTTGGCATACCAGTTGG Fradin et al., 2011 

NgVe1-GSPR (Nested) ACTTGCATTCCAACAGGCTTAAGGGT 5’ RACE 

GeneRacer™ 3′ Primer GCTGTCAACGATACGCTACGTAACG 3’RACE  
(provided in RACE Kit) 

GeneRacer™ 3′ Nested Primer CGCTACGTAACGGCATGACAGTG 3’RACE 
(provided in RACE Kit) 

GeneRacer™ 5′ Primer CGACTGGAGCACGAGGACACTGA 5’RACE 
(provided RACE Kit) 

GeneRacer™ 5′ Nested Primer GGACACTGACATGGACTGAAGGAGTA 5’RACE 
(provided in RACE Kit) 

NgVe1-GSPF1 CAATGCCTTGAGTGGCACAATACCA 3’RACE 

NgVe1-GSPF2 (Nested) TCTTGGAGTGCTGAATCTTGGGAAC 3’RACE 

NgVe1-GSPR1 CCAAGCAAGATGGATGACAGAAAGAG 5’RACE 

NgVe1-GSPR2 (Nested) TCGCTCGCCTGAGCTGAAAGATCAA 5’RACE 

NgVe1-F GTCATATACCTATACAAGTTTGCATG NgVe1 transcription sequence 

NgVe1-R GTACTCCTCATTTATTGGTTTAAGC NgVe1 transcription sequence 

NgVe1-attB1 ggggacaagtttgtacaaaaaagcaggctATGAAAATGAGAACTCTACA NgVe1 coding sequence 

NgVe1-attB2 ggggaccactttgtacaagaaagctgggtTCACATCTTTGAAAACCA NgVe1 coding sequence 

NgVe1-attB2(∆SC) ggggaccactttgtacaagaaagctgggtcCATCTTTGAAAACCAAAG GFP-tagged NgVe1 

NgVe1-F(TRV) ggggacaagtttgtacaaaaaagcaggctGACTCTCAGACCTCATCTACAT NgVe1 (VIGS) 

NgVe1-R(TRV) ggggaccactttgtacaagaaagctgggtCTGGGAAAAAGTGAATGAC NgVe1 (VIGS) 

NgVe1-F(qRT) TCTTTCTGTCATCCATCTTGC NgVe1 (RT-qPCR & RT-PCR) 

NgVe1-R(qRT) TGTCTCCTGACTCAATGTAATC NgVe1 (RT-qPCR & RT-PCR) 

HLVe(deg)-F ACGCCAGTAAATCGACGAAG Degenerative primer for hop 
Ve-like sequence 

HLVe(deg)-R CKRTTISWRTGIARRTCIAHAVE Degenerative primer for hop 
Ve-like sequence 

HLVe-F TTCGTTTGCCCATTTTGTTT Full length hop Ve1-like 
sequence 

HLVe-R TGAACGCCTTCTTGGTCT Full length hop Ve1-like 
sequence 

HLVe1-attB1 ggggacaagtttgtacaaaaaagcaggctATGAGAATTCATCAGTGT HLVe1-2A & HLVe1-2B coding 
sequence 

HLVe1-attB2 ggggaccactttgtacaagaaagctgggtTTAATACTGTTGAGGAAA HLVe1-2A & HLVe1-2B coding 
sequence 

HLVe1-attB2(∆SC) ggggaccactttgtacaagaaagctgggtcATACTGTTGAGGAAAGAG GFP-tagged HLVe1-2A & 
HLVe1-2B 

HLVe1-F TTGCCTCGTGTGAACTAACTAC HLVe1-2A & HLVe1-2B (Seq & 
RT-PCR) 

HLVe1-R CCTGTGAAGTTGTTTTCTCGTA HLVe1-2A & HLVe1-2B (Seq & 
RT-PCR) 

StuVe1-attB1 ggggacaagtttgtacaaaaaagcaggctATGATGACAACTCTGTACTTTCT StuVe1 coding sequence 

StuVe1-attB2 ggggaccactttgtacaagaaagctgggtTCACTTTCTTGAAAACCAAA StuVe1 coding sequence 

StuVe1-attB2(∆SC) ggggaccactttgtacaagaaagctgggtaCTTTCTTGAAAACCAAAG GFP-tagged StuVe1 
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Table S1 (continued) 

Primer name Oligonucleotide sequence (5’→3’) Descriptiona 

StuVe2-attB1 ggggacaagtttgtacaaaaaagcaggctATGAGATTTTTACACTTTCTATGG StuVe2 coding sequence 

StuVe2-attB2 ggggaccactttgtacaagaaagctgggtTCAAAACTTTTTGTGATATATGAC StuVe2 coding sequence 

StuVe2-attB2(∆SC) ggggaccactttgtacaagaaagctgggtaAAACTTTTTGTGATATATGACT GFP-tagged StuVe2 

StuVe1-F1(Seq) CTTGTCAGATAACGAGTTGCTT Potato StuVe1 (Seq) 

StuVe1-R1(Seq) GAAATGAATCTGGGATAACACC Potato StuVe1 (Seq) 

StuVe1-F2(Seq) CTTTCACATTTCCCCAGTTG Potato StuVe1 (seq) 

StuVe1-R2(Seq) CGTAATCATCAGCAACCATC Potato StuVe1 (Seq) 

StuVe2-F1(Seq) TTCCACAATGGCAAACCTTA Potato StuVe2 (Seq) 

StuVe2-R1(Seq) CCTTCAGGCTGGTTGAGTTC Potato StuVe2 (Seq) 

StuVe2-F2(Seq) ACTTTCTCTCTTCCATCCGT Potato StuVe2 (Seq) 

StuVe2-R2(Seq) GAAGTTGGAAGAAAGTGAGAG Potato StuVe2 (Seq) 

StoVe1-attB1 ggggacaagtttgtacaaaaaagcaggctATGAAAATGATGACAACTCTCC StoVe1 coding sequence 

StoVe1-attB2 ggggaccactttgtacaagaaagctgggtTCACTTCCTTGAAAACCAAA StoVe1 coding sequence 

StoVe1-attB2(∆SC) ggggaccactttgtacaagaaagctgggtcCTTCCTTGAAAACCAAAGC GFP-tagged StoVe1 

StoVe2-attB1 ggggacaagtttgtacaaaaaagcaggctATGAGATTTTTACACTTTCTATGG StoVe2 coding sequence 

StoVe2-attB2 ggggaccactttgtacaagaaagctgggtTCAAAACTTTTTGTGACATATGAC StoVe2 coding sequence 

StoVe2-attB2(∆SC) ggggaccactttgtacaagaaagctgggtcAAACTTTTTGTGACATATGACC GFP-tagged StoVe2 

StoVe1-F(Seq) AGTGGTAGTGTTCCGAGTTT Wild eggplant StoVe1 (Seq) 

StoVe1-R(Seq) ACATTCAGGACCTCCAAAAA Wild eggplant StoVe1 (Seq) 

StoVe2-F(Seq) AAGTTGCTTAGTGGTAGTATTC Wild eggplant StoVe2 (Seq) 

StoVe2-R(Seq) TGGAGGAACTTATACTGGAT Wild eggplant StoVe2 (Seq) 

M13-F CGCCAGGGTTTTCCCAGTCACGAC pCR blunt II TOPO (Seq) 

M13-R TCACACAGGAAACAGCTATGAC pCR blunt II TOPO (Seq) 

pENTRattL1 TCGCGTTAACGCTAGCATGGATCTC pDONR207 (Seq) 

pENTRattL2 ACATCAGAGATTTTGAGACACGGGC pDONR207 (Seq) 

NgActin-F TATGGAAACATTGTGCTCAGTGG Tobacco actin (RT-qPCR) 

NgActin-R CCAGATTCGTCATACTCTGCC Tobacco actin (RT-qPCR) 

AtRubisco-F GCAAGTGTTGGGTTCAAAGCTGGTG Arabidopsis Rubisco 

AtRubisco-R CCAGGTTGAGGAGTTACTCGGAATGCTG Arabidopsis Rubisco 

ITS1-F AAAGTTTTAATGGTTCGCTAAGA V. dahliae 

STVe1-R CTTGGTCATTTAGAGGAAGTAA V. dahliae 

aThe type of experiment for which the primers were used is indicated in brackets (RACE: rapid amplification of cDNA ends, VIGS: Virus-

induced gene silencing, Seq: sequencing, RT-PCR: Reverse transcription-PCR, RT-qPCR: reverse transcription-quantitative PCR). 
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Table S2. Degenerative primers used for TAIL-PCR amplification of the flanking regions of 
putative hop Ve1 homologues. 

Primer name Oligonucleotide sequence (5’→3’  ) Level of degeneracy Reference 

AD1 NTCGASTWTSGWGTT 64X Liu et al., 1995 

AD2 NGTCGASWGANAWGAA 128X Liu et al., 1995 

AD3 WGTGNAGWANCANAGA 256X Liu et al., 1995 

AD4 STTGNTASTNCTNTGC 256X Qiu et al., 2010 
(AD8) 

AD5 WCAGNTGWTNGTNCTG 256X Qiu et al., 2010 
(AD9) 

AD6 TTGIAGNACIANAGG* 16X Qiu et al., 2010 
(AD11) 

*I-inosine 

 

 
Table S3. Specific primers used for the TAIL-PCR based isolation of hop Ve1 sequences. 

 
Primers are listed according to the TAIL-PCR procedure, consisting of three steps (1° – primary, 2° – secondary, 3° – tertiary) in which each 

was utilized. 

 

 
Table S4. Amplification conditions used for TAIL-PCR (Liu et al., 1995). 

Level of TAIL-PCR  No. of cycles Step in amplification 

1° 1 1 min 93°C, 1 min 95°C 

5 1 min 94°C, 1 min 62°C, 2.5 min 72 °C 

1 1 min 94°C, 2 min cooling to 72 °C, 2.5 min 72°C 

15 30 s 94°C, 1 min 68°C, 2.5 min 72°C 

30 s 94°C, 1 min 68°C, 2.5 min 72°C 

30 s 94°C, 1 min 44°C, 2.5 min 72°C 

1 5 min 72°C 

2° 12 30 s 94°C, 1 min 68°C, 2.5 min 72°C 

30 s 94°C, 1 min 68°C, 2,5 min 72°C 

30 s 94°C, 1 min 44°C, 2,5 min 72°C 

1 5 min 72°C 

3° 20 1 min 94 °C, 1 min 44°C, 2.5 min 72°C 

1 5 min 72°C 

 

1° TAIL PCR 2° TAIL PCR 3° TAIL PCR

Name Oligonucleotide sequence (5’→3’) Name Oligonucleotide sequence (5’→3’) Name Oligonucleotide sequence (5’→3’)

VeT1F1 TTTGGGAACTTGGCAATGGGAATCTTATC VeT1F2 GATGAGCCTGCAGGAACCATATTCTC VeT1F3 GCCTGCAGGAACCATATTCTCCTC

VeT1R1 GTTTTGAACCAGCATCCCCAAATCC VeT1R2 ATCCCCAAATCCGGGTTCTCAAGTTTC VeT1R3 GTGGAGATATCAAGAGTGACCAAGTTTGTC

Ve1T2F1 CACATGGAGCTCAAATTCAGATTG Ve1T2F2 AGTTTAGATGGCGAGGGACGT Ve1T2F3 GCTTGAGCAGTGAGTGGATCTCT

Ve2T2F1 TCACATGGAGTCAAAATTCAGATTG Ve2T2F2 TAACTTTGGATGGTGAGGGACG Ve2T2F3 TTGAGCAATGAGCGGATCTCT

K1T2F1 ATTCCCGATGCCTTTCCG K1T2F2 TTGGGAACAATGATATGAGTGGTG K1T2F3 TGGTGATTTTCCATGCTTGTTG

K1T2R1 AGCACTTGAAGATAGGGTGCATTA K1T2R2 TTACATATGGATTTTGGCACAATACC K1T2R3 GTCTGCGGGAATTGAGGAAGT

K2T2F1 GCTCAATTCATGATGCCTTTCC K2T2F2 CTTGGGAACAATCATATGAGTGGTAC K2T2F3 GTGGTACTTTTCCTTGCTTGTTGA

K2T2R1 TCAAGCACTTGAAGGTAGGTTGC K2T2R2 CATATGGATTTTGGCATAGTTCCTATAA K2T2R3 ATGTCTGTGGGAATTGAGCAAGA

Ve1T3F1 CAACTTCATGGGGAAATACCTTATTG Ve1T3F2 CCATCTAAATCTTTCCCACAATCAT Ve1T3F3 CTAACCAGCTCCAAGGGAAGATT

Ve1T4F1 TCACAGGCAGAATCCCATCAT Ve1T4F2 ACACCTGGAGTCCTTAGACCTCTC Ve1T4F3 AATCCCATCAACCCTTGCAA

Ve2PR1 CTGCAATCTGAATTTTGACTCCAT Ve2PR2 TGTCCTTCAGTTGAAGCAACAAAG Ve2PR3 GTAAGGCATTGACCAGAGACGA
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ABSTRACT 

Verticillium wilts caused by soil-borne fungal species of the Verticillium genus are 

economically important plant diseases that affect a wide range of host plants, and 

are notoriously difficult to combat. Perception of pathogen(-induced) ligands by 

plant immune receptors is a key component of plant innate immunity. In tomato, 

race-specific resistance to Verticillium wilt is governed by the cell surface-localized 

immune receptor Ve1 through recognition of the effector protein Ave1 that is 

secreted by race 1 strains of Verticillium spp. It was previously demonstrated that 

transgenic expression of tomato Ve1 in the model plant Arabidopsis thaliana leads 

to Verticillium wilt resistance. Here, we investigated whether tomato Ve1 can 

confer Verticillium resistance when expressed in the crop species tobacco 

(Nicotiana tabcum) and cotton (Gossypium hirsutum). We show that transgenic 

tobacco and cotton plants constitutively expressing tomato Ve1 exhibit enhanced 

resistance against Verticillium wilt in an Ave1-dependent manner. Thus, we 

demonstrate that the functionality of tomato Ve1 in Verticillum wilt resistance 

through recognition of the Verticillium effector Ave1 is retained after transfer to 

tobacco and cotton, implying that the Ve1-mediated immune signalling pathway is 

evolutionary conserved across these plant species. Moreover, our results suggest 

that transfer of tomato Ve1 across sexually incompatible plant species can be 

exploited in breeding programmes to engineer Verticillium wilt resistance.  
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INTRODUCTION 

In order to activate immune responses to ward off invading microorganisms, plants 

deploy immune receptors that detect pathogen invasion through sensing 

pathogen(-induced) ligands (Dodds and Rathjen, 2010; Thomma et al., 2011; Cook 

et al., 2015). The recognition of such ligands results in the activation of defense 

responses, which are sometimes accompanied by a hypersensitive response (HR) in 

which plant tissue surrounding the site of attempted penetration is sacrificed to 

restrict further pathogen invasion. Based on structure and subcellular location, 

immune receptors fall into two major classes; cell surface localized receptors that 

comprise receptor kinases (RKs) and receptor-like proteins (RLPs) that monitor 

the extracellular space, and cytoplasm-localized nucleotide-binding domain 

leucine-rich repeat receptors (NLRs) that survey the intracellular environment 

(Rodriguez-Moreno et al., 2017). 

Verticillium wilts are vascular wilt diseases caused by soil-borne fungal 

pathogens that belong to the Verticillium genus (Fradin and Thomma, 2006; Klimes 

et al., 2015). Although Verticillium wilt symptoms may vary considerably between 

plant hosts, the most frequently observed symptoms of Verticillium wilt include 

stunting, wilting, chlorosis, necrosis, vascular discoloration and early senescence 

(Fradin and Thomma, 2006). Within the Verticillium genus, V. dahliae is the most 

notorious pathogenic species that can infect hundreds of dicotyledonous hosts, 

including ecologically important plants and many high-value crops worldwide 

(Fradin and Thomma, 2006; Klosterman et al., 2009). V. albo-atrum, V. alfalfae, V. 

nonalfalfae and V. longisporum are also economically important vascular pathogens, 

albeit with narrower host ranges (Pegg and Brady, 2002; Agrios, 2005; Fradin and 

Thomma, 2006; Klosterman et al., 2009; Inderbitzin et al., 2011; Depotter et al., 

2016). Verticillium wilt diseases are difficult to control due to the long viability of 

the resting structures, the wide host range of the pathogens, and the inability of 

fungicides to affect the pathogen once in the plant vascular system. Thus, the most 

sustainable manner to control Verticillium wilt diseases is the use of resistant 

cultivars (Fradin and Thomma, 2006; Klosterman et al., 2009).  

In tomato (Solanum lycopersicum), a single dominant locus that confers 

Verticillium resistance has been identified as the Ve locus, which controls 

Verticillium isolates that are assigned to race 1 whereas race 2 strains of 
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Verticillium escape recognition (Schaible et al., 1951; Pegg, 1974). The Ve locus 

contains two closely linked and inversely oriented genes, Ve1 and Ve2, both of 

which encode extracellular leucine-rich repeat (eLRR) RLPs (Kawchuk et al., 2001; 

Wang et al., 2010). Of these, only Ve1 was found to confer resistance against race 1 

isolates of Verticillium in tomato (Fradin et al., 2009). Interestingly, interfamily 

transfer of Ve1 from tomato to Arabidopsis thaliana leads to race-specific 

Verticillium resistance in the latter species (Fradin et al., 2011, 2014; Zhang et al., 

2014), implying that the underlying immune signalling cascade is evolutionary 

conserved (Fradin et al., 2011; Thomma et al., 2011). Moreover, homologs of 

tomato Ve1 that have the potential to recognize race 1 strains of V. dahliae have 

been characterized in other plant species, suggesting an ancient origin of the 

tomato immune receptor Ve1 (Song et al., 2017a).  

Through comparative population genomics of race 1 and race 2 strains of V. 

dahliae, the effector protein that activates Ve1-mediated immunity was identified 

as Ave1 (for Avirulence on Ve1 tomato) (de Jonge et al., 2012). No allelic variation 

was found among the identified Ave1 alleles from V. dahliae as well as from V. 

alfalfae and V. nonalfalfae (de Jonge et al., 2012; Song et al., 2017b). Interestingly, 

homologues of Ave1 were found in the bacterial plant pathogen Xanthomonas 

axonopodis pv. citri (XacPNP) and in the plant-pathogenic fungi Colletotrichum 

higginsianum (ChAve1), Cercospora beticola (CbAve1), Fusarium oxysporum f. sp. 

lycopersici (FoAve1), as well as in plants (de Jonge et al., 2012). A few of these 

homologues are differentially recognized by tomato Ve1 in Nicotiana tabacum (de 

Jonge et al., 2012; Song et al., 2017b). Although the intrinsic function of Ave1 

remains unknown, it is clear that Ave1 contributes to fungal virulence on 

susceptible plant genotypes (de Jonge et al., 2012). 

Plant immune receptors are pivotal elements of the plant immune system that 

act as sentinels against pathogens. Engineering plants via transfer of immune 

components, such as plant immune receptors, has the potential to improve disease 

resistance in crops (Rodriguez-Moreno et al., 2017). Previous reports showed that 

the transfer of individual cell surface immune receptors into crops confers 

enhanced disease resistance against diverse pathogens, including bacteria, fungi 

and oomycetes. For example, transfer of the Arabidopsis cell surface immune 

receptor EFR results in responsiveness to bacterial elongation factor Tu and 
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bacterial resistance in tomato (Lacombe et al., 2010), rice (Lu et al., 2015; 

Schwessinger et al., 2015) and wheat (Schoonbeek et al., 2015). Similarly, 

introduction of the rice Xa21 confers bacterial resistance in sweet orange (Mendes 

et al., 2010), tomato (Afroz et al., 2011) and banana (Tripathi et al., 2014). 

Heterologous expression of the Nicotiana benthamiana FLS2 in citrus leads to 

increased disease resistance to citrus canker (Hao et al., 2016). Moreover, the 

Arabidopsis DORN1/LecRK-I.9 enhances resistance to Phytophthora infestans in 

potato (Bouwmeester et al., 2014). Finally, ectopic expression of the Arabidopsis 

RLP23 in potato plants enhances immunity to the oomycete and fungal plant 

pathogens P. infestans and Sclerotinia sclerotiorum (Albert et al., 2015). In this study, 

we investigated whether the immune receptor gene Ve1 can confer Verticillium wilt 

resistance when transferred from tomato to the closely related crop species 

tobacco (N. tabacum cv. Samsun) and the distantly related crop species cotton 

(Gossypium hirsutum).  

 
RESULTS 

Generation of Ve1-expressing Nicotiana tabacum plants 

Previously, it was shown that co-expression of Ve1 and Ave1 by agroinfiltration 

induces an HR in N. tabacum (Zhang et al., 2013a), suggesting that required 

signalling components acting downstream of tomato Ve1 are functionally 

conserved in tobacco. To further test whether tomato Ve1 can confer resistance to 

race 1 Verticillium spp., transgenic tobacco lines expressing tomato Ve1 were 

generated. The binary plasmid pSol2095_Ve1 encoding C-terminally eGFP-tagged 

Ve1 (Zhang et al., 2013a; Figure 1A) was transferred to N. tabacum cv. Samsun via 

Agrobacterium-mediated transformation. Primary transformants were selected in 

tissue culture by their ability to regenerate in the presence of kanamycin, and eight 

independent T0 transformation events expressing Ve1 were obtained (Figure S1A). 

Intriguingly, 45 out of 56 progeny (T1 plants) derived from the eight T0 

transformation events were significantly smaller in size when compared to the 

parental line, while 11 plants displayed a normal stature (Figure S1B and C). We 

assumed these 45 are Ve1-transgenic plants while the 11 correspond to segregating 

wild-type plants. To assay whether Ve1 protein accumulated in these plants, we 

isolated proteins from a line (Ve1 #0) that exhibited normal growth and three lines  
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Figure 1. Generation and characterisation of Ve1-transgenic Nicotiana tabacum lines. (A) 
Schematic representation of the T-DNA region of the binary vector pSol2095_Ve1 used for tobacco 
transformation. CaMV35Spro: CaMV35S promoter, eGFP: enhanced green fluorescent protein, 
CaMV35Ster: CaMV35S terminator; Kanr: kanamycin resistance gene, LB and RB: left and right T-DNA 
borders, respectively. (B) Typical appearance of 6-week-old plants of four independent tobacco lines 
(Ve1 #0, #1, #2 and #3). (C) Accumulation of eGFP-tagged Ve1 protein (~144 kDa) in leaves of the four 
independent Ve1 transgenic tobacco lines and wild-type tobacco cv. Samsun transiently expressing the 
eGFP-tagged Ve1 fusion protein (Ve1-eGFP). Total protein extracts of transformed leaf tissue were 
subjected to immunoprecipitation (IP) using α-GFP affinity beads. Proteins were subjected to sodium 
dodecyl sulfate-polyacrylamide electrophoresis (SDS/PAGE) and immunoblotted (IB) using α-GFP 
antibody. Coomassie blue staining (CBS) of the blot containing total protein extracts is shown as a 
loading control based on the 50-kDa RuBisCo (ribulose-1,5-bisphosphate carboxylase/oxygenase) band.  

 

(Ve1 #1, #2 and #3) that showed a dwarfed phenotype (Figure 1B), and performed 

immunoblotting analysis using anti-GFP-HRP antibody. This analysis showed that 

eGFP-tagged Ve1 protein was clearly detected in the three dwarfed lines, but not in 

the line that displays a normal stature (Figure 1C), suggesting that dwarfing of 

these tobacco lines is due to Ve1 expression. Nevertheless, the progeny of these 
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three dwarfed lines was used for further assays to assess the contribution of Ve1 

expression to Verticillium wilt resistance. 

 

Generation of isogenic Verticillium genotypes lacking or expressing Ave1 

To identify Verticillium strains that can be used for inoculation assays on tobacco, 

six strains, comprising V. dahliae strains JR2 and St14.01, V. nonalfalfae strains 

Vna5431, CBS385.91 and Vna1, and V. alfalfae strain Va2 (Table S1) were 

inoculated onto wild-type tobacco cv. Samsun plants, and Verticillium wilt 

symptoms were scored up to 14 days post inoculation (dpi). As anticipated, the 

various Verticillium strains caused different degrees of Verticillium wilt symptoms 

on these plants (Figure S2A). Among these six Verticillium genotypes, V. alfalfae 

strain Va2 and V. nonalfalfae strain Vna5431 caused the most severe disease 

symptoms (Figure S2A and B) and were selected for Verticillium wilt disease assays 

on tobacco. As V. nonalfalfae Vna5431 carries the Ave1 gene, it belongs to race 1, 

while V. alfalfae Va2 belongs to race 2 as it lacks Ave1 (Figure S2C). 

In order to thoroughly investigate Ve1-mediated Verticillium wilt resistance in 

tobacco, isogenic Verticillium genotypes lacking or expressing Ave1 are required. To 

this end, we deleted Ave1 from the genome of V. nonalfalfae Vna5431, and 

simultaneously introduced Ave1 into V. alfalfae Va2 genome. Subsequently, the 

wild-type V. nonalfalfae strain Vna5431 and two independent Ave1 deletion 

mutants were used to inoculate Ve1 tomato plants and tomato plants that lack Ve1 

(Figure S3A). As expected, targeted deletion of Ave1 resulted in gain of virulence on 

Ve1 tomato plants (Figure S3B and C). Moreover, these Ave1 deletion mutants 

displayed reduced virulence on tomato plants lacking Ve1 when compared to the 

corresponding wild-type V. nonalfalfae strain Vna5431 (Figure S3B and D). These 

results show that, also for V. nonalfalfae strain Vna5431 Ave1 acts as a virulence 

factor on tomato, and confirm that deletion of Ave1 leads to escape of Ve1-mediated 

resistance.  

Simultaneously, the wild-type V. alfalfae strain Va2 and two independent Ave1 

expression strains were inoculated onto tomato plants that express or lack Ve1 

(Figure S4A). However, the wild-type V. alfalfae strain Va2, as well as the two Ave1-

expressing V. alfalfae strains, failed to cause visible disease symptoms on tomato 

plants (Figure S4B, D and E), suggesting that the V. alfalfae strain Va2 does not have 
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the capacity to infect tomato. Subsequently, we inoculated these strains on N. 

glutinosa, which is resistant to race 1 strains of Verticillium due to the occurrence of 

an endogenous Ve1 allele (Zhang et al., 2013a; Song et al., 2017a). As expected, V. 

alfalfae strain Va2 was able to infect N. glutinosa plants, while the Ave1 expression 

strains failed to cause infection (Figure S4C and F). These results reveal that ectopic 

expression of Ave1 in V. alfalfae strain Va2 can activate Ve1-mediated resistance 

against Verticillium wilt.  

 

Ave1 acts as a virulence factor on tobacco 

It was previously determined that Ave1 acts as a virulence factor of V. dahliae on 

tomato and A. thaliana (de Jonge et al., 2012). To investigate the contribution of 

Ave1 to Verticillium virulence on tobacco, isogenic Ave1 mutants and the 

corresponding wild-type Verticillium strain were inoculated onto tobacco cv. 

Samsun plants. Interestingly, Ave1 deletion strains of V. nonalfalfae Vna5431 

displayed significantly reduced virulence on tobacco plants when compared with 

the corresponding wild-type V. nonalfalfae strain Vna5431 at 21 dpi (Figure S5A), 

as inoculation with the Ave1 deletion strains resulted in reduced stunting (Figure 

S5B) and compromised fungal colonization (Figure S5C). Conversely, the two Ave1 

expression strains in V. alfalfae Va2 showed clearly increased aggressiveness on 

tobacco plants when compared with the corresponding wild-type strain (Figure 

S5D-F). These experiments show that Ave1 acts as a virulence factor on tobacco 

plants. 

 

Tomato Ve1 confers Ave1-dependent Verticillium wilt resistance in tobacco 

To test if constitutive Ve1 expression in tobacco confers resistance against 

Verticillium wilt in an Ave1-dependent manner, three independent Ve1-transgenic 

lines (Ve1 #1, #2 and #3) as well as non-transgenic control plants were challenged 

with either the wild-type race 1 V. nonalfalfae strain Vna5431, or an Ave1 deletion 

mutant (V. nonalfalfae Vna5431ΔAve1) and inspected for Verticillium wilt 

symptoms up to 21 dpi. Interestingly, Ve1-transgenic tobacco plants were clearly 

more resistant to the race 1 V. nonalfalfae strain Vna5431, as significantly fewer 

Verticillium wilt symptoms developed when compared with non-transgenic 

controls (Figure 2A and B). Importantly, despite the fact that the Ave1 deletion  
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Figure 2. Tobacco plants expressing Ve1 show Ave1-triggered resistance against Verticillium 
nonalfalfae. (A) Typical appearance of wild-type tobacco cultivar Samsun plants (WT) and three 
independent Ve1 transgenic tobacco plants (#1, #2 and #3) that were engineered to express tomato Ve1 
upon mock-inoculation, inoculation with Ave1-carrying V. nonalfalfae Vna5431, or an Ave1 deletion 
strain of V. nonalfalfae Vna5431 (ΔAve1) at 21 days post inoculation (dpi). Inoculation experiments were 
performed with at least 16 plants for each fungal strain and independently repeated three times. (B) 
Quantification of Verticillium-induced plant stunting at 21 dpi. Bars represent averages with standard 
deviation. Different letter labels indicate statistically significant differences (Student’s t-test; P < 0.05). 
(C) Fungal biomass as determined with real-time PCR at 21 dpi. Bars represent Verticillium ITS levels 
relative to tobacco actin levels (for equilibration) with standard deviation in a sample of three pooled 
plants. The fungal biomass in tobacco cv. Samsun plants upon inoculation with the wild-type V. 
nonalfalfae strain Vna5431 is set to 100%. Asterisks indicate statistically significant differences when 
compared with tobacco cv. Samsun plants upon inoculation with the wild-type V. nonalfalfae strain 
Vna5431 (Student’s t-test; P < 0.05). The data shown are representative of three independent 
experiments. 
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Figure 3. Tobacco plants expressing Ve1 exhibit Ave1-triggered resistance against Verticillium 
alfalfae. (A) Typical appearance of wild-type tobacco cultivar Samsun plants (WT) and three 
independent Ve1 transgenic tobacco plants (#1, #2 and #3) that were engineered to express tomato Ve1 
upon mock-inoculation, inoculation with V. alfalfae Va2, or two Ave1-experssing strains of V. alfalfae Va2 
(pAve1::Ave1 #1 and #2) at 14 dpi. Inoculation experiments were performed with at least 16 plants for 
each fungal strain and independently repeated three times. (B) Quantification of the canopy area of 
tobacco plants at 14 dpi. Bars represent averages with standard deviation. Different letter labels indicate 
statistically significant differences (Student’s t-test; P < 0.05). (C) Fungal biomass as determined with 
real-time PCR at 14 dpi. Bars represent Verticillium ITS levels relative to tobacco actin levels (for 
equilibration) with standard deviation in a sample of three pooled plants. The fungal biomass in tobacco 
cv. Samsun plants upon inoculation with the wild-type V. alfalfae strain Va2 is set to 100%. Asterisks 
indicate statistically significant differences when compared with tobacco cv. Samsun plants upon 
inoculation with the wild-type V. alfalfae strain Va2 (Student’s t-test; P < 0.05). The data shown are 
representative of three independent experiments. 
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mutant of V. nonalfalfae Vna5431 displays compromised virulence on wild-type 

tobacco plants, Ve1-transgenic tobacco plants were clearly susceptible to this Ave1 

deletion mutant (Figure 2A and B). The phenotypes correlated with the degree of 

fungal colonization as determined by real-time PCR (Figure 2C). Additionally, the 

three independent Ve1-transgenic tobacco lines and non-transgenic controls were 

inoculated with either the wild-type V. alfalfae strain Va2, or the two independent 

Ave1 expression strains, and monitored for the development of Verticillium wilt 

symptoms at 14 dpi. Intriguingly, upon inoculation with the Ave1 expression strains, 

no symptoms of Verticillium wilt were observed on the Ve1-expressing tobacco 

plants, whereas the non-transgenic controls displayed clear symptoms of 

Verticillium wilt (Figure 3). Importantly, all Ve1-transgenic lines were susceptible 

to the wild-type V. alfalfae strain Va2. Collectively, these data show that tobacco 

plants expressing Ve1 display enhanced Verticillium wilt resistance in an Ave1-

dependent manner. 

 

Generation of isogenic V. dahliae strains lacking Ave1 

Verticillium wilt of cotton is mostly caused by V. dahliae, and thus far effective tools 

to control Verticillium wilt in cotton are lacking (Cai et al., 2009). In a previous 

attempt to investigate whether tomato Ve1 can confer resistance against 

Verticillium wilt in cotton, transgenic cotton (G. hirsutum cv. YZ-1) lines that 

express tomato Ve1 were generated, but no increased Verticillium wilt resistance 

was observed (Liu et al., 2014). However, it was realized later on that the V. dahliae 

strains used in this study did not contain Ave1 (Liu et al., 2014).  

To re-address the potential value of Ve1 to engineer Verticillium wilt 

resistance in cotton, we pursued Ave1-carrying V. dahliae that can cause clear 

Verticillium wilt symptoms on G. hirsutum cv. YZ-1 plants. To this end, we tested V. 

dahiae strains JR2, V4, V991 and V117 (Table S1) on cotton cultivar YZ-1, and the 

development of Verticillium wilt symptoms was monitored at 21 dpi. As expected, 

differential degrees of Verticillum wilt symptoms were observed on these cotton 

plants (Figure S6A). Whereas V. dahliae strain JR2 that carries Ave1 only induced 

mild symptoms on cotton, V. dahliae strain V4 that similarly carries Ave1, and V. 

dahliae strains V991 and V117 that both lack Ave1 induced considerably stronger 
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Verticillium wilt symptoms (Figure S6). Thus, race 1 V. dahliae strain V4 was 

selected for further assays on cotton. 

In order to obtain an isogenic line that lacks Ave1, targeted replacement of 

Ave1 in V. dahliae strain V4 through homologous recombination was pursed (Figure 

S7A). To test whether the Ave1 deletion strains of V. dahliae V4 indeed overcome 

recognition by Ve1, two independent Ave1 deletion strains were inoculated onto 

tomato plants that express or lack Ve1 (Figure S7A). As expected, Ve1 tomato plants 

that were inoculated with two independent Ave1 deletion strains of V. dahliae V4 

showed a similar disease phenotype as Ve1 tomato plants inoculated with the V. 

dahliae JR2ΔAve1 strain (Figure S7B and C; de Jonge et al., 2012), whereas Ve1 

tomato plants inoculated with wild-type V. dahliae strains V4 and JR2 resembled 

mock-inoculated Ve1 tomato plants (Figure S7B and C). Moreover, the Ave1 deletion 

strains of V. dahliae strain V4 displayed significantly reduced virulence on 

susceptible tomato plants when compared with the corresponding wild-type race 1 

V. dahliae strain V4 (Figure S7B and D). These results are in line with previous 

results show that Ave1 acts as a virulence factor on tomato, and confirm that 

deletion of Ave1 leads to escape of Ve1-mediated Verticillium wilt resistance (de 

Jonge et al., 2012). 

 

Ave1 acts as a virulence factor on cotton 

To investigate whether Ave1 acts as a virulence factor on cotton, two independent 

Ave1 deletion strains and the corresponding wild-type strain V4 were used to 

inoculate cotton cv. YZ-1 plants. Interestingly, the Ave1 deletion strains of V. dahliae 

V4 displayed clearly reduced virulence on wild-type cotton plants when compared 

with the corresponding wild-type strain up to 28 dpi (Figure S8A), as inoculation 

with Ave1 deletion mutants resulted in significantly reduced stunting (Figure S8B) 

and compromised fungal colonization (Figure S8C). This assay demonstrates that 

Ave1 acts as a virulence factor also on cotton. 

 

Cotton plants expressing Ve1 exhibit enhanced Verticillium wilt resistance in 

an Ave1-dependent manner  

To investigate if cotton plants constitutively expressing tomato Ve1 display 

enhanced resistance against race 1 V. dahliae, two Ve1-trangenic lines (Ve1-4 and  
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Figure 4. Cotton plants expressing Ve1 display Ave1-triggerd resistance against Verticillium 
dahliae. (A) Typical appearance of wild-type cotton cultivar YZ-1 plants (WT) and two independent Ve1 
transgenic cotton plants (Ve1-4 and Ve1-6) upon mock inoculation, inoculation with Ave1-carrying V. 
dahliae V4, or an Ave1 deletion strain of V. dahliae V4 (ΔAve1) at 28 dpi. Inoculation experiments were 
performed with at least 20 plants for each fungal strain and independently repeated three times. (B) 
Quantification of Verticillium-induced plant stunting at 28 dpi. Bars represent averages with standard 
deviation. Different letter labels indicate statistically significant differences (Student’s t-test; P < 0.05). 
(C) Fungal biomass as determined with real-time PCR at 28 dpi. Bars represent Verticillium ITS levels 
relative to cotton ubiquitin levels (for equilibration) with standard deviation in a sample of three pooled 
plants. The fungal biomass in cotton cv. YZ-1 plants upon inoculation with the wild-type V. dahliae strain 
V4 is set to 100%. Asterisks indicate statistically significant differences when compared with cotton cv. 
YZ-1 plants upon inoculation with the wild-type V. dahliae strain V4 (Student’s t-test; P < 0.05). (D) 
Expression of tomato Ve1 in individual transgenic cotton plants and non-transgenic controls of cotton cv. 
YZ-1 (WT) as detected with reverse transcription-PCR (RT-PCR). As an endogenous control, a fragment 
of the cotton ubiquitin gene (GhUB) was amplified. The data shown are representative of three 
independent experiments.  

 

Ve1-6) as well as non-transgenic control plants were inoculated with either the 

race 1 V. dahliae strain V4 or an Ave1 deletion mutant (V. dahliae V4ΔAve1), and 

monitored for Verticillium wilt symptoms up to 28 dpi. As expected, clear 

Verticillium wilt symptoms were observed on non-transgenic plants upon 

inoculation with V. dahliae strain V4 and with the corresponding Ave1 deletion 

mutant (Figure 4A-C), despite the observation that Ave1 deletion compromises 
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virulence on cotton. Interestingly, Ve1-expressing cotton plants exhibited 

significantly enhanced resistance against V. dahliae strain V4, as less Verticillium 

wilt symptoms were observed when compared with non-transgenic controls 

(Figure 4). When the two Ve1-transgenic lines and non-transgenic controls were 

challenged with V. dahliae strain V991 that does not carry Ave1, Ve1-expressing 

cotton lines were as susceptible as non-transgenic controls (Figure 5), confirming 

that the enhanced Verticillium wilt resistance upon Ve1 expression is Ave1-

dependent. Taken together, these data demonstrate that transfer of tomato immune 

receptor Ve1 into cotton confers Ave1-dependent Verticillium wilt resistance. 

 
DISCUSSION 

Major management strategies for Verticillium wilt diseases in crops include 

chemical and biological control, cultivation practices, and for the use of disease-

resistant cultivars (Fradin and Thomma, 2006; Klosterman et al., 2009). Although 

chemical control has been proven to be successful for many diseases and pests, no 

truly effective fungicides are commercially available to control Verticillium wilt 

diseases once plants have been infected (Fradin and Thomma, 2006; Klosterman et 

al., 2009). Biocontrol measures and cultivation practices for controlling Verticillium 

wilts are time-consuming and laborious, and control effectiveness largely depends 

on the field conditions. Therefore, breeding for disease-resistant cultivars has been 

considered as the most sustainable approach to control Verticillium wilt diseases in 

crops (Fradin and Thomma, 2006; Klosterman et al., 2009). Presently, genetic 

resistance against Verticillium spp. has been described in several plant species, 

including tomato, potato, hop, alfalfa, cotton, strawberry, sunflower and lettuce 

(Schaible et al., 1951; Putt, 1964; Barrow, 1970; Lynch et al., 1997; Simko et al., 

2004; Bolek et al., 2005; Mert et al., 2005; Wang et al., 2008; Yang et al., 2008; 

Hayes et al., 2011; Jakse et al., 2013; Antanaviciute et al., 2015; Christopoulou et al., 

2015). However, only tomato Ve1 has been cloned and characterized as a dominant 

gene responsible for race 1 Verticillium wilt resistance (Kawchuk et al., 2001; 

Fradin et al., 2009). We previously reported that homologues of tomato Ve1 occur 

widespread in phylogenetically distant plant species (Song et al., 2017a). However, 

despite being widespread, Ve1 homologues occur in a scattered fashion throughout 

plant phylogeny. For instance, a functional Ve1 allele was identified in N. glutinosa, 
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Figure 5. Ve1-transgenic and non-transgenic cotton plants are equally susceptible to Verticillium 
dahliae lacking Ave1. (A) Typical appearance of wild-type cotton cultivar YZ-1 plants (WT) and 
transgenic cotton plants expressing tomato Ve1 upon mock inoculation or inoculation with V. dahliae 
strain V991 at 28 dpi. Inoculation experiments were performed with at least 20 plants for V. dahliae 
strain V991 and independently repeated three times. (B) Expression of tomato Ve1 in individual cotton 
plants from wild-type controls and transgenic lines as detected with reverse transcription-PCR (RT-PCR). 
As an endogenous control, a fragment of the cotton ubiquitin gene (GhUB) was amplified. (C) 
Quantification of Verticillium-induced plant stunting at 28 dpi. Bars represent averages with standard 
deviation. Different letter labels indicate statistically significant differences (Student’s t-test; P < 0.05). 
(D) Fungal biomass as determined with real-time PCR at 28 dpi. Bars represent Verticillium ITS levels 
relative to cotton ubiquitin levels (for equilibration) with standard deviation in a sample of three pooled 
plants. The fungal biomass in cotton cv. YZ-1 plants upon inoculation with the V. dahliae strain V991 is 
set to 100%. Same letter labels indicate no statistically significant differences (Student’s t-test; P > 0.05). 
The data shown are representative of three independent experiments. 

 

but not in other species within the genus Nicotiana (Zhang et al., 2013a; Song et al., 

2017a). This finding implies that, most likely, many plant species lost their 

functional Ve1 homologues, but underlying immune signalling cascade may have 

been retained. Indeed, we have previously shown that heterologous expression of 
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tomato Ve1 in the model plant A. thaliana that does not normally respond to Ave1, 

results in resistance against race 1 Verticillium spp. (Fradin et al., 2011; de Jonge et 

al., 2012; Zhang et al., 2013b). In this study, we investigated whether tomato Ve1 

can confer Verticillium wilt resistance when expressed in the crop species tobacco 

and cotton. We show that transgenic tobacco and cotton plants constitutively 

expressing tomato Ve1 display enhanced resistance against Verticillium wilt in an 

Ave1-dependent manner. Thus, our results reveal that the functionality of tomato 

Ve1 in resistance against Verticillum wilt through recognition of the Verticillium 

effector Ave1 is retained after transfer to these plant species, and further support 

the view that the underlying immune signalling cascade mediated by Ve1 is 

retained in these plant species. 

To date, several examples of transgenic expression of cell surface immune 

receptor genes resulting in enhanced disease resistance have been reported 

(Rodriguez-Moreno et al., 2017). Although transgenic expression of such receptors 

enhanced disease resistance, in some cases it also has adverse effects on plant 

fitness, such as growth retardation or leaf necrosis (Bouwmeester et al., 2011, 2014; 

Wang et al., 2016). In this study, we observed that expression of tomato Ve1 in 

tobacco caused stunted growth (Figure 1 and S1). A similar growth defect has 

previously been observed in N. benthamiana plants that constitutively express Ve1 

(Fradin, 2011). In contrast, potato (Kawchuk et al., 2001), tomato (Fradin et al., 

2009), A. thaliana (Fradin et al., 2011) and cotton (Figure 4 and 5) plants 

expressing Ve1 do not suffer from such growth defects. Based on these findings, we 

speculate that expression of tomato Ve1 in the genus Nicotiana may lead to a 

constitutive activation of downstream signalling cascade of tomato Ve1 that causes 

growth retardation. Alternatively, a ligand that is endogenous to these tobacco 

genotypes is recognized, leading to immune signalling activation.  

Previously, we have shown that Ave1 acts as a virulence factor on tomato as 

well as on A. thaliana (de Jonge et al., 2012). In the present study we observed that 

targeted Ave1 deletion results in significantly compromised virulence of Verticillium 

spp. on tobacco (Figure S5) and cotton (Figure S8), demonstrating that Ave1 acts as 

a virulence factor also on these plants. Previously, the bacterial homolog XacPNP 

from X. axonopodis pv. citri was characterized as a virulence factor on citrus trees 

(Nembaware et al., 2004; Gottig et al., 2008). More recently, Ave1 homologs from 
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the fungal tomato wilt pathogen F. oxysporum f. sp. lycopersici (FoAve1), and the 

fungal sugar beet leaf spot pathogen C. beticola (CbAve1) were characterized as 

virulence factors too. Although the intrinsic function of the fungal Ave1 homologs 

remains enigmatic, XacPNP is thought to manipulate the physiology of the host 

through plant natriuretic peptide activity that affects water homeostasis, stomatal 

opening, and photosynthesis to promote bacterial proliferation (Gottig et al., 2008; 

Garavaglia et al., 2010). It is tempting to speculate that the fungal homologs 

promote virulence through a similar activity, but this remains to be demonstrated. 

In any case, the finding that Ave1 promotes virulence on tomato, tobacco, cotton as 

well as A. thaliana suggests that the molecular target of the effector is widely 

conserved in the plant kingdom.  

In summary, our data demonstrate that transfer of tomato Ve1 into the closely 

related crop species tobacco and the distantly related crop species leads to 

enhanced resistance against Verticillium wilt in an Ave1-dependent manner. Given 

that Ave1 homologues were found in a number of pathogenic microbes 

(Nembaware et al., 2004; de Jonge et al., 2012; Gan et al., 2013), and these 

homologs were differentially recognized by tomato Ve1 (de Jonge et al., 2012; Song 

et al., 2017b), our findings may further broaden biotechnological avenues to exploit 

tomato Ve1 for engineering disease resistance in an Ave1(homolog)-dependent 

manner, for instance through transfer or artificial evolution of tomato Ve1. 

 
MATERIALS AND METHODS 

Plant materials and growth conditions 

Nicotiana tabacum cv. Samsun, N. glutinosa, cotton (Gossypium hirsutum cv. YZ-1), 

and tomato (Solanum lycopersicum cv. Moneymaker (ve1) or 35S::Ve1 tomato (Ve1); 

Fradin et al., 2009) plants were used in this study and grown in commercial potting 

soil (Horticoop, Bleiswijk, the Netherlands) under controlled greenhouse 

conditions (Unifarm, Wageningen, the Netherlands). 

N. tabacum cv. Samsun seeds were surface-sterilized by 70% ethanol and 1% 

commercial bleach, and grown on Murashige-Skoog (MS) medium (4.4 g MS salt, 20 

g sucrose and 8 g agar in 1 L) or MS medium supplemented with antibiotics in a 

conditioned growth chamber at 21 °C/19 °C during 16 h/8 h light/dark 

photoperiods, respectively, and a relative humidity of ~75%.  
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Generation of Ve1-transgenic plants 

Agrobacterium tumefaciens GV3101 (pMP90) carrying the binary vector 

pSol2095_Ve1 to encode C-terminally eGFP-tagged Ve1 (Figure 1A; Zhang et al., 

2013a) was used for transformation of tobacco N. tabacum cv. Samsun. 

Transformation was performed by the leaf disk method as previously described 

(Wang et al., 2016). The generated plantlets were transferred to half-strength MS 

medium containing 200 mg/L kanamycin to allow root development. Upon root 

generation, plantlets were transferred into soil and grown in the greenhouse for 

seed production. Independent tobacco transformation lines were confirmed by PCR 

and reverse transcription-PCR (RT-PCR). 

Two independent T0 generation cotton lines expressing tomato Ve1 gene 

driven by the cauliflower mosaic virus 35S promoter (Ve1-4 and Ve1-6; Liu et al., 

2014) were self-pollinated to generate seeds. After two generations of selfing, T2 

seeds were used for further experiments. 

 

Protein extraction, immunoprecipitation and immunoblotting 

To test whether eGFP-tagged Ve1 protein accumulated in transgenic tobacco lines, 

leaves of six-week-old transgenic tobacco lines were harvested and ground into a 

fine powder in liquid nitrogen. As a positive control, A. tumefaciens carrying the 

binary vector pSol2095_Ve1 was infiltrated into mature N. tabacum cv. Samsun 

leaves as described previously (Zhang et al., 2013a). Total proteins were extracted 

by using extraction buffer (150 mM NaCl, 50 mM Tris-HCl pH 8.0, 1.0% IGEPAL® 

CA-630 [NP-40] (Sigma-Aldrich Chemie BV, Zwijndrecht, the Netherlands) and one 

protease inhibitor cocktail tablet (Roche, Basel, Switzerland) per 50 mL extract 

buffer). Samples were centrifuged at 14,000 rpm for 20 min at 4°C, and then 2 mL 

of supernatant was incubated with 10 µL (50% slurry) of GFP-trap®_A beads 

(ChromoTek, Munich, Germany) at 4°C for 1 h. After incubation, GFP-trap®_A beads 

with proteins were spun down by 1,000 rpm centrifugation and subsequently 

washed for six times in 1 mL extraction buffer. After each wash step the GFP-

trap®_A beads were collected by 1,000 rpm centrifugation. Proteins were released 

from GFP-trap®_A beads by boiling for 5 min, separated on a 10% SDS-PAGE gel 

and wet-electroblotted onto PVDF membrane (Bio-Rad, Hercules, USA). 

Accumulation of eGFP-tagged Ve1 was detected by immunoblotting using anti-GFP-
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HRP antibody (Miltenyi Biotec, Bergisch Gladbach, Germany). SuperSignalTM West 

Femto Maximum Sensitivity Substrate (Thermo Scientfic, Waltham, USA) was used 

for signal development. Coomassie blue staining was used as loading control. 

 

Generation of Ave1 mutant strains 

Verticillium strains (Table S1) were grown on potato dextrose agar (PDA; Oxoid, 

Basingstoke, UK) at 22°C. The Ave1 knockout construct pRF-HU2_Ave1 that was 

described previously (de Jonge et al., 2012) was used to generate Ave1 deletion 

mutants in V. nonalfalfae strain Vna 5431 and V. dahliae strain V4 (Table S1). The 

Ave1 complementation construct pFBT 005_pAve1::Ave1 that was described earlier 

(Song et al., 2017b) was used to generate Ave1 expression strains in V. alfalfae 

strain Va2 (Table S1). 

Agrobacterium tumefaciens-mediated Verticillium transformation was 

performed as described previously (Santhanam, 2012), and Verticillium deletion 

transformants were selected on PDA (Oxoid, Basingstoke, UK) containing 200 

µg/mL cefotaxime and 50 µg/mL hygromycin (Duchefa, Haarlem, the Netherlands). 

Ave1 expression transformants were selected on PDA supplemented with 200 

µg/mL cefotaxime (Duchefa, Haarlem, the Netherlands) and 50 µg/mL 

nourseothricin sulphate (Sigma-Aldrich Chemie BV, Zwijndrecht, the Netherlands). 

Putative Verticillium transformants were tested by PCR, and subsequent 

inoculation on Ve1 tomato plants (Ve1) and tomato cultivar Moneymaker plants 

(ve1) (Fradin et al., 2009), or N. glutionsa plants carrying a functional Ve1 homolog 

(Song et al., 2017a). 

 

Disease assays 

Verticillium conidiospores were collected from 7- to 10-day-old cultures on PDA 

plates and washed with tap water. Disease assays were performed on tomato, 

tobacco and cotton plants using the root-dipping inoculation method as previously 

described (Fradin et al., 2009). Briefly, 10-day-old Ve1 or ve1 tomato seedlings (for 

inoculation with Verticillium Ave1 deletion strains), or four-week-old tobacco (N. 

tabacum cv. Samsun or N. glutinosa) plants or 10-day-old cotton seedlings were 

uprooted. Next, the roots were rinsed in water, dipped for 5 min in a suspension of 

106 conidiospores/mL water while the roots of mock plants (control) were dipped 
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in tap water without conidiospores, and subsequently transplanted to fresh 

commercial potting soil (Horticoop, Bleiswijk, the Netherlands). Disease symptoms 

were scored up to 14 days post inoculation (dpi) (tomato, N. glutinosa and N. 

tabacum cv. Samsun), or 21 dpi (N. tabacum cv. Samsun), or 28 dpi (cotton). To this 

end, plants were photographed, and Image J was used to determine the canopy area 

(for quantification of stunting) while the rectilinear scale was used to measure the 

plant height (for quantification of growth). For fungal biomass quantification in 

planta, stems of three inoculated plants were harvested at 14 dpi (for N. tabacum cv. 

Samsun upon V. alfalfae inoculation), 21 dpi (for N. tabacum cv. Samsun upon V. 

nonalfalfae inoculation), or 28 dpi (cotton upon V. dahliae inoculation). The 

samples were ground into a fine powder in liquid nitrogen and genomic DNA was 

isolated. Real-time PCR was conducted by using the fungus-specific primers ITS-F 

and ITS-R (Table S2) with primers for tobacco actin (GenBank accession number: 

X69885; for Verticillium-infected tobacco) or cotton ubiquitin (GenBank accession 

number: DQ116441; for Verticillium-infected cotton) (Table S2) as an endogenous 

plant control, employing an ABI 7300 PCR system (Applied Biosystems, Foster City, 

CA, USA) with the qPCR Core kit for SYBR Green I (Eurogentec Nederland BV, 

Maastricht, the Netherlands).  

 

Gene expression analysis 

For the expression of Ve1 in transgenic tobacco plants, leaves of six-week-old 

tobacco plants were harvested and ground into a fine powder in liquid nitrogen. 

Tobacco total RNA isolation and cDNA synthesis were performed as previously 

described (Song et al., 2017a). RT-PCR was conducted by using the primers Ve1-

F(PCR) and Ve1-R(PCR) (Table S2), and N. tabacum actin gene (NtACT) (Table S2) 

was used as the endogenous control. 

To check whether the Ve1 gene is expressed in individual T2 cotton plants, 

leaves of five-week-old cotton plants were collected separately, flash frozen in 

liquid nitrogen and stored at -80°C for total RNA isolation. Cotton total RNA was 

isolated by using Spectrum™ Plant Total RNA Kit (Sigma-Aldrich Chemie BV, 

Zwijndrecht, the Netherlands) following the manufacturer’s instructions. First-

strand cDNA synthesis was performed by using M-MLV reverse transcriptase 

system (Promega, Wisconsin, USA). RT-PCR was conducted with primers Ve1-F(RT) 
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and Ve1-R(RT) (Table S2) in a total volume of 25 µl with 17.9 sterilized-water, 5 µl 

5x PCR buffer, 0.5 µl dNTPs, 0.5 µl of each primer, 0.1 µl GoTag DNA polymerase 

(Promega, Wisconsin, USA) and 1.0 µl of first-strand cDNA. Primers GhUb-F and 

GhUb-R (Table S2) were used to amplify the cotton ubiquitin gene as endogenous 

loading control. PCR amplification consisted of an initial denaturation step of 95°C 

for 5 min, followed by denaturation at 95°C for 30 s, annealing at 55°C for 30 s, and 

extension at 72°C for 40 s with 35 cycles. The resulting PCR products were 

subjected to agarose gel electrophoresis. 
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SUPPLEMENTAL INFORMATION 

 

 
Figure S1. Characterisation of Ve1-transgenic Nicotiana tabacum cv. Samsun plants. (A) 
Transcripts of tomato Ve1 in eight independent T0 transformation events were detected by reverse 
transcription-PCR (RT-PCR). As an endogenous control, a fragment of the N. tabacum actin gene (NtACT) 
was amplified. Water was used as a PCR control. (B) Morphology of four-week-old offspring from the 
eight T0 transformation events and the parental line. (C) Morphology of six-month-old T1 Ve1-
transgenic tobacco lines and the recipient line tobacco cv. Samsun.  
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Figure S2. Verticillium strains induce differential degrees of Verticillium wilt symptoms on N. 
tabacum cv. Samsun plants. (A) Typical appearance of tobacco cv. Samsun plants upon mock-
inoculation, inoculation with V. dahliae strains JR2 and St14.01, V. nonalfalfae strains Vna5431, 
CBS385.91 and Vna1, or V. alfalfae strain Va2 at 14 dpi. Inoculation experiments were performed with 
eight plants for each fungal strain and independently repeated twice. (B) Quantification of the canopy 
area of tobacco cv. Samsun plants at 14 dpi. Bars represent averages with standard deviation. Different 
letters indicate statistically significant differences (Student’s t-test; P < 0.05). (C) Presence of the full-
length Ave1 coding DNA sequence in different Verticillium strains was determined by PCR amplification 
on genomic DNA. As an endogenous control, a fragment of the Verticillium ITS region was amplified. The 
race 2 V. dahliae strain DVD S26 that lacks Ave1 and water were used as PCR controls. The data shown 
are representative of two independent experiments.  
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Figure S3. Analysis of Ave1 deletion strains of V. nonalfalfae Vna5431. (A) Amplification of Ave1 
from genomic DNA in race 1 V. dahliae strain JR2, an Ave1 deletion mutant of V. dahliae strain JR2 
(ΔAve1), race 1 V. nonalfalfae strain Vna5431 and two independent Ave1 deletion strains (ΔAve1 #1 and 
#2). As an endogenous control, a fragment of the Verticillium ITS region was amplified. (B) Typical 
appearance of Ve1 tomato plants (Ve1) and tomato plants lacking Ve1 (ve1) upon mock-inoculation or 
inoculation with the various Verticillium strains at 14 days post inoculation (dpi). Average canopy area 
of eight Ve1 (C) or ve1 (D) tomato plants inoculated with the various Verticillium strains or mock-
inoculation. Different letter labels indicate statistically significant differences (Student’s t-test; P < 0.05). 
The data shown are representative of two independent assays.  
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Figure S4. Analysis of ectopic expression Ave1 strains in V. alfalfae Va2. (A) Amplification of Ave1 
from genomic DNA in race 1 V. dahliae strain JR2, an Ave1 deletion mutant of V. dahliae strain JR2 
(ΔAve1), wild-type V. alfalfae strain Va2 (wt), and two independent Ave1 expression strains (pAve1::Ave1 
#1 and #2). As an endogenous control, a fragment of the Verticillium ITS region was amplified. (B) 
Typical appearance of Ve1 tomato plants (Ve1) and tomato plants lacking Ve1 (ve1) upon mock-
inoculation or inoculation with the various Verticillium strains at 14 dpi. (C) Typical appearance of 
Nicotiana glutinosa plants upon mock-inoculation or inoculation with the various Verticillium strains at 
14 dpi. Average canopy area of eight Ve1 (D), ve1 (E) tomato plants, or N. glutinosa plants (F) inoculated 
with the various Verticillium strainsor mock-inoculation. Different letter labels indicate statistically 
significant differences (Student’s t-test; P < 0.05). The data shown are representative of two independent 
assays.  
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Figure S5. Ave1 acts as a virulence factor on tobacco cv. Samsun plants. (A) Typical appearance of 
tobacco cv. Samsun plants upon mock-inoculation, inoculation with V. nonalfalfae Vna5431, or two 
independent Ave1 deletion strains (ΔAve1 #1 and #2) at 21 dpi. (B) Quantification of Verticillium-
induced plant stunting at 21 dpi. Bars represent averages with standard deviation. (C) Fungal biomass 
as determined with real-time PCR at 21 dpi. Bars represent Verticillium ITS levels relative to tobacco 
actin levels (for equilibration) with standard deviation in a sample of three pooled plants. The fungal 
biomass in tobacco plants upon inoculation with the wild-type V. nonalfalfae strain Vna5431 is set to 
100%. (D) Typical appearance of tobacco cv. Samsun plants upon mock inoculation, inoculation with V. 
alfalfae Va2, or two Ave1-experssing strains of V. alfalfae Va2 (pAve1::Ave1 #1 and #2) at 14 dpi. (E) 
Quantification of in the canopy area of tobacco cv. Samsun plants at 14 dpi. Bars represent averages with 
standard deviation. (F) Fungal biomass as determined with real-time PCR at 14 dpi. Bars represent 
Verticillium ITS levels relative to tobacco actin levels (for equilibration) with standard deviation in a 
sample of three pooled plants. The fungal biomass in tobacco cv. Samsun plants upon inoculation with 
the wild-type V. alfalfae strain Va2 is set to 100%. Different letter labels indicate statistically significant 
differences (Student’s t-test; P < 0.05). The data shown are representative of three independent assays.  
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Figure S6. V. dahliae strains induce differential degrees of Verticillium wilt on cotton (Gossypium 
hirsutum) cv. YZ-1 plants. (A) Typical appearance of cotton cultivar YZ-1 plants upon mock-inoculation 
or inoculation with V. dahliae strains JR2, V4, V991 and V117 at 21 dpi. Inoculation experiments were 
performed with 10 plants for each V. dahliae strain and independently repeated twice. (B) Presence of 
the full-length Ave1 coding DNA sequence was determined by PCR amplification on genomic DNA. As an 
endogenous control, a fragment of the Verticillium ITS region was amplified. The race 2 V. dahliae strain 
DVD S26 that lacks Ave1 was used as a PCR control. The data shown are representative of two 
independent assays.  
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Figure S7. Analysis of Ave1 deletion strains of V. dahliae V4. (A) Amplification of Ave1 from genomic 
DNA in race 1 V. dahliae strain JR2, an Ave1 deletion mutant of V. dahliae strain JR2 (ΔAve1), race 1 V. 
dahliae strain V4 and two independent Ave1 deletion strains (ΔAve1 #1 and #2). As an endogenous 
control, a fragment of the Verticillium ITS region was amplified. (B) Typical appearance of Ve1 tomato 
plants (Ve1) and tomato plants lacking Ve1 (ve1) upon mock-inoculation or inoculation with the various 
V. dahliae strains at 14 dpi. Average canopy area of eight Ve1 (C) ve1 (D) tomato plants inoculated with 
the various V. dahliae strains or mock-inoculation. Different letter labels indicate statistically significant 
differences (Student’s t-test; P < 0.05). The data shown are representative of two independent assays.  
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Figure S8. Ave1 acts as a virulence factor on cotton plants. (A) Typical appearance of cotton cultivar 
YZ-1 plants upon mock-inoculation or inoculation with V. dahliae V4 and two independent Ave1 deletion 
strains (ΔAve1 #1 and #2) at 28 dpi. (B) Quantification of Verticillium-induced plant stunting at 28 dpi. 
Bars represent averages with standard deviation. Different letter labels indicate statistically significant 
differences (Student’s t-test; P < 0.05). (C) Fungal biomass as determined with real-time PCR at 28 dpi. 
Bars represent Verticillium ITS levels relative to cotton ubiquitin levels (for equilibration) with standard 
deviation in a sample of  three pooled plants. The fungal biomass in cotton plants upon inoculation with 
the wild-type V. dahliae strain V4 is set to 100%. Asterisks indicate statistically significant differences 
when compared with cotton plants upon inoculation with the wild-type V. dahliae strain V4 (Student’s t-
test; P < 0.05). The data shown are representative of three independent assays.  
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Table S1. Verticillium strains used in this study. 
Strain Description Reference 

V. dahliae JR2 Haploid, infecting tomato; Ave1 presence (de Jonge et al., 2012; Faino et al., 2015) 

V. dahliae St14.01 Haploid, infecting tomato; Ave1 presence (Fradin et al., 2009; de Jonge et al., 2012) 

V. dahliae DVD S26 Haploid, infecting tomato; Ave1 absence (de Jonge et al., 2012) 

V. nonalfalfae Vna5431 Haploid, isolated from tomato; Ave1 presence; 
Previously V. albo-atrum 

(Fradin et al., 2009; Song et al., 2017); 

V. nonalfalfae CBS385.91 Haploid, isolated from tomato; Ave1 presence;  
Previously V. albo-atrum 

(Fradin et al., 2009; Song et al., 2017) 

V. nonalfalfae Vna1 Haploid, original host is unkown; Ave1 absence; 
Previously V. albo-atrum 

(Fradin et al., 2009; Song et al., 2017); 

V. alfalfae Va2 Haploid, original host is unkown; Ave1 absence; 
Previously V. albo-atrum 

(Song et al., 2017); 

V. dahliae V4 Haploid, infecting cotton; Ave1 presence (López-Escudero et al., 2004; Song et al., 2017) 

V. dahliae V117 Haploid, infecting cotton; Ave1 absence (López-Escudero et al., 2004; Song et al., 2017) 

V. dahliae V991 Haploid, infecting cotton; Ave1 absence (Xu et al., 2014) 

V. dahliae JR2 ΔAve1 Ave1 deletion mutant in V. dahliae JR2 (de Jonge et al., 2012) 

V. nonalfalfae 
Vna5431ΔAve1 #1 

Ave1 deletion mutant in V. nonalfalfae Vna5431,  
colony 1 

This study 

V. nonalfalfae 
Vna5431ΔAve1 #2 

Ave1 deletion mutant in V. nonalfalfae Vna5431,  
colony 2 

This study 

V. alfalfae Va2 
pAve1::Ave1 #1 

V. alfalfae strain Va2 expressing Ave1, colony 1 This study 

V. alfalfae Va2 
pAve1::Ave1 #2 

V. alfalfae strain Va2 expressing Ave1, colony 2 This study 

V. dahliae V4 ΔAve1 #1 Ave1 deletion mutant in V. dahliae V4, colony 1 This study 

V. dahliae V4 ΔAve1 #2 Ave1 deletion mutant in V. dahliae V4, colony 2 This study 
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Table S2. Primers used in this study. 
Primer name Oligonucleotide sequence (5’→3’) Descriptiona 

Ve1-F(PCR) CATATTGAAATTAGCGTCTTGTCGG RT-PCR; Ve1 expression in tobacco 

Ve1-R(PCR) ACCGAGAAAAAGGAGGCAAAAC RT-PCR; Ve1 expression in tobacco 

Ave1-F CACCATGAAGCTTTCTACGCTTGGAG  Ave1; PCR 

Ave1-R TTATATCTGTCTAAATTCGATGTTGAC  Ave1; PCR 

ITS-F AAAGTTTTAATGGTTCGCTAAGA Verticillium ribosomal internal transcribed spacer region (ITS) 

ITS-R CTTGGTCATTTAGAGGAAGTAA Verticillium ribosomal internal transcribed spacer region (ITS) 

NtACT-F CTATTCTCCGCTTTGGACTTGGCA Tobacco actin 

NtACT-R AGGACCTCAGGACAACGGAAACG Tobacco actin 

GhUb-F GAAGGCATTCCACCTGACCAAC  Cotton ubiquitin 

GhUb-R CAAAACTCCAAAATCATACCCAAAG Cotton ubiquitin 

Ve1-F(RT) ATGGTTGCTGATGATTATGTGG  RT-PCR; Ve1 expression in cotton 

Ve1-R(RT) AATCAGGCAATGGTGTAGGTG  RT-PCR; Ve1 expression in cotton 

aThe type of experiment for which the primers were used is indicated in brackets (RT-PCR: Reverse Transcription-PCR). 
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ABSTRACT 

Verticillium wilt, caused by soil-borne fungi of the genus Verticillium, is an 

economically important disease that affects a wide range of host plants. 

Unfortunately, host resistance against Verticillium wilts is not available for many 

plant species, and the disease is notoriously difficult to combat. Host-induced gene 

silencing (HIGS) is an RNA interference (RNAi) based process in which small RNAs 

are produced by the host plant to target parasite transcripts. HIGS has emerged as a 

promising strategy for improving plant resistance against pathogens by silencing 

genes that are essential for these pathogens. Here, we assessed whether HIGS can 

be utilized to suppress Verticillium wilt disease by silencing three previously 

identified virulence genes of V. dahliae (encoding Ave1, Sge1 and NLP1) through the 

host plants tomato and Arabidopsis. In transient assays, tomato plants were 

agroinfiltrated with Tobacco rattle virus (TRV) constructs to target V. dahliae 

transcripts. Subsequent V. dahliae inoculation revealed suppression of Verticillium 

wilt disease upon treatment only with one of the three TRV constructs. Next, 

expression of RNAi constructs targeting transcripts of the same three V. dahliae 

virulence genes was pursued in stable transgenic Arabidopsis thaliana plants. In this 

host, V. dahliae inoculation revealed reduced Verticillium wilt disease in for two out 

of three targets. Thus, our study suggests that, depending on the target gene chosen, 

HIGS against V. dahliae is operational in tomato and A. thaliana plants and may be 

exploited to engineer resistance in Verticillium wilt-susceptible crops. 
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INTRODUCTION 

Verticillium wilts are vascular wilt diseases that are caused by soil-borne fungi of 

the genus Verticillium (Fradin and Thomma, 2006; Klimes et al., 2015). This genus 

comprises ten species of soil-borne fungi that differ in their morphological features, 

such as resting structures, as well as in their ability to cause plant diseases 

(Inderbitzin et al., 2011). Within the Verticillium genus, V. dahliae is the most 

notorious pathogenic species that can infect hundreds of dicotyledonous hosts, 

including ecologically important plants and many high-value crops worldwide 

(Fradin and Thomma, 2006; Klosterman et al., 2009). Verticillium wilt diseases are 

difficult to control due to the long viability of the resting structures, the wide host 

range of the pathogens, and the inability of fungicides to affect the pathogen once in 

the plant vascular system. Thus, the most sustainable way to control Verticillium 

wilt diseases is the use of resistant cultivars. Polygenic resistance to Verticillium 

spp. has been described for several plant species, including potato, hop, alfalfa, 

cotton and strawberry ( Antanaviciute et al., 2015; Bolek et al., 2005; Jakse et al., 

2013; Simko et al., 2004; Wang et al., 2008; Yang et al., 2008;), whereas single 

dominant resistance genes have been identified only in tomato, sunflower, cotton, 

potato and lettuce (Barrow, 1970; Christopoulou et al., 2015; Hayes et al., 2011; 

Lynch et al., 1997; Mert et al., 2005; Putt, 1964; Schaible et al., 1951). In tomato 

(Solanum lycopersicum), a single dominant locus that confers Verticillium resistance 

has been identified as the Ve locus, which controls Verticillium isolates that are 

assigned to race 1, whereas race 2 strains escape recognition (Pegg, 1974; Schaible 

et al., 1951). The Ve locus contains two closely linked and inversely oriented genes, 

Ve1 and Ve2, both of which encode extracellular leucine rich repeat (eLRR) 

receptor-like proteins (RLPs) (Kawchuk et al., 2001; Wang et al., 2010). Of these, 

only Ve1 was found to confer resistance against race 1 isolates of Verticillium in 

tomato (Fradin et al., 2009). Interestingly, interfamily transfer of Ve1 from tomato to 

Arabidopsis thaliana has resulted in race-specific Verticillium resistance in the latter 

species (Fradin et al., 2011, 2014; Zhang et al., 2014), implying that the underlying 

immune signaling pathway is conserved (Fradin et al., 2011; Thomma et al., 2011). 

Tomato Ve1 serves as an immune receptor for recognition of the effector protein 

Ave1 that is secreted by race 1 strains of V. dahliae (de Jonge et al., 2012). More 

recently, homologs of tomato Ve1 acting as immune receptors that govern 
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resistance against V. dahliae race 1 strains through recognition of the Ave1 effector 

have been characterized in other plant species including tobacco, potato, wild 

eggplant and hop, suggesting an ancient origin of the immune receptor Ve1 (Song et 

al., 2016). 

Although the tomato Ve1 gene is still currently deployed in tomato cultivars, 

isolates of Verticillium that escape Ve1-mediated recognition appeared within a few 

years after the introduction of the tomato Ve1 (Pegg and Brady, 2002). These race 2 

isolates of Verticillium steadily supplanted race 1 strains in various regions because 

of the extensive use of Verticillium race 1-resistant cultivars (Dobinson et al., 1996). 

Currently, no source of commercially employed resistance to Verticillium race 2 

strains has been described. 

RNA interference (RNAi) is a conserved regulatory mechanism that affects 

gene expression in eukaryotic organisms (Baulcombe, 2005). RNA silencing is 

triggered by the processing of double stranded RNA (dsRNA) precursors into short 

interfering RNA (siRNAs) duplexes of 21-28 nucleotides in length, and followed by 

the guided cleavage or translational repression of sequence-complementary single-

stranded RNAs by the generated siRNAs duplexes, which are incorporated into a 

silencing complex called RISC (RNA-induced silencing complex) (Ruiz-Ferrer and 

Voinnet, 2009). Plants and other eukaryotes have evolved RNAi machineries that 

not only regulate developmental programs, but also provide protection from 

invaders, such as viruses. In plants, RNAi has been exploited extensively and has 

become a powerful functional genomics tool to silence the expression of genes of 

interest as well as to engineer viral resistance (Duan et al., 2012). Interestingly, 

organisms that live within, or develop intimate contact with, a host, such as bacteria 

(Escobar et al., 2001; 2002), nematodes (Huang et al., 2006), insects (Baum et al., 

2007; Mao et al., 2007) and parasitic plants (Tomilov et al., 2008), are sensitive to 

small RNAs generated by the host and that are targeted to parasite transcripts. This 

so-called host-induced gene silencing (HIGS) has also emerged as a promising 

strategy against plant pathogens, including fungi and oomycetes. Initial reports of 

HIGS against filamentous pathogens were described for the maize kernel and ear 

rot pathogen Fusarium verticillioides (Tinoco et al., 2010) and the barley powdery 

mildew fungus Blumeria graminis (Nowara et al., 2010). Subsequent reports 

demonstrated the functionality of HIGS in suppressing diseases caused by the 
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fungal pathogens Puccinia spp. (Panwar et al., 2013; Yin et al., 2011; 2015; Zhang et 

al., 2012), Fusarium spp. (Koch et al., 2013; Ghag et al., 2014; Cheng et al., 2015; Hu 

et al., 2015; Chen et al., 2016), Sclerotinia sclerotiorum (Andrade et al., 2015) and 

Rhizoctonia solani (Zhou et al., 2016), as well as by the oomycete pathogens 

Phytophthora infestans (Jahan et al., 2015; Sanju et al., 2015) and Bremia lactucae 

(Govindarajulu et al., 2015). Many of these pathogens make very intimate contact 

with host cells, potentially facilitating the occurrence of HIGS. In this study, we 

assessed whether HIGS can be used to suppress Verticillium wilt disease in tomato 

and A. thaliana by targeting previously identified virulence factors of V. dahliae. 

 
RESULTS 

Tobacco rattle virus-based silencing in tomato compromises V. dahliae Ave1 

expression  

Tobacco rattle virus (TRV)-based virus-induced gene silencing (VIGS) has 

extensively been used in various plant species, including tomato (Liu et al., 2002; 

Senthil-Kumar et al., 2007), and TRV-based VIGS has successfully been used to 

investigate candidate genes for their involvement in Verticillium wilt resistance in 

tomato (Fradin et al., 2009). In order to investigate whether HIGS can be 

established against the xylem-colonizing fungus V. dahliae, we attempted to exploit 

TRV-based VIGS to produce dsRNAs that are targeted towards V. dahliae Ave1 

transcripts. The experiment was performed in Ve1 tomato plants that are normally 

immune to infection by Ave1-carrying V. dahliae strains, such that successful HIGS 

would immediately result in vascular wilt disease that does not occur if Ave1 

expression is not compromised (Fradin et al., 2009; de Jonge et al., 2012). To this 

end, a 1:1 mixture of Agrobacterium tumefaciens cultures carrying TRV1 and 

TRV2::Ave1 (Figure 1A) was infiltrated into cotyledons of Ve1 tomato plants. A 

recombinant construct containing a fragment of the GUS gene (TRV2::GUS) was used 

as a negative control (Figure 1A). At ten days after TRV treatment, plants were 

challenged with either the V. dahliae race 1 strain JR2 (Faino et al., 2015), or an Ave1 

deletion mutant (V. dahliae JR2△Ave1; de Jonge et al., 2012), and inspected for 

Verticillium wilt symptoms (stunting and wilting) up to 14 days post inoculation 

(dpi). As expected, no significant disease symptoms were observed on TRV::GUS-

treated plants that were inoculated with the wild-type race 1 V. dahliae strain  
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Figure 1. Schematic organization of the T-DNA region of the binary vectors used for gene 
silencing. (A) Schematic representation of the T-DNA region of the Tobacco rattle virus (TRV)-based 
virus-induced gene silencing (VIGS) vectors. Verticillium dahliae Ave1, Sge1 and NLP1 DNA fragments 
were inserted between the double CaMV35S promoter (2X35 CaMV35Spro) and the nopaline synthase 
gene terminator (NOSter) in the TRV2 vector to generate the TRV-based fungal gene silencing vectors 
TRV::Ave1, TRV::Sge1 and TRV::NLP1, respectively. Control construct TRV::GUS was described earlier 
(Song et al., 2016). RdRp, RNA-dependent RNA polymerase; 16K, 16 kDa cysteine-rich protein; MP, 
movement protein; CP, coat protein; Rz, self-cleaving ribozyme; ccdB, negative selection marker used in 
bacteria; CmR, chloramphenicol resistance marker; R1 and R2, attR1 and attR2 sites. (B) Schematic 
diagrams of the T-DNA region of the binary vectors generated for producing a hairpin RNA of Verticillium 
genes Ave1 (pFAST R03_Ave1), NLP1 (pHellsgate 12_NLP1) and Sge1 (pHellsgate 12_Sge1), as well as the 
green fluorescent protein gene (pFAST R03_GFP and pHellsgate 12_GFP) in transgenic A. thaliana plants. 
CaMV35Spro, CaMV35S promoter; CaMV35Ster, CaMV35S terminator; OCSter, octopine synthase gene 
terminator; Hygr, hygromycin resistance gene; Kanr, kanamycin resistance gene; B1 and B2, attB1 and 
attB2 sites. LB and RB, left and right borders of T-DNA. 
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(Figure 2A), indicating that TRV treatment by itself does not compromise Ave1-

triggered immunity in Ve1 tomato plants. Furthermore, the Ave1 deletion mutant 

caused clear Verticillium wilt disease, as Verticillium wilt disease developed on Ve1 

plants treated with TRV2::Ave1 and subsequent inoculation with the Ave1 deletion 

strain (Figure 2A). However, intriguingly, Verticillium wilt disease also developed on 

Ve1 plants upon TRV2::Ave1 treatment and subsequent inoculation with the wild-

type race 1 V. dahliae strain (Figure 2A). This finding suggests that Ave1 expression 

in V. dahliae is indeed compromised due to TRV-induced HIGS in tomato. The 

compromised immunity was confirmed by fungal recovery assays by plating stem 

sections on potato dextrose agar (PDA) plates, and by fungal biomass quantification 

in stem sections of the inoculated plants (Figure 2).  

 

 
Figure 2. TRV-mediated fungal gene silencing in tomato plants compromises Verticillium dahliae 
Ave1 expression. (A) Upon inoculation with the wild-type race 1 V. dahliae strain JR2, the impairment of 
Ave1-triggerred immunity in Ve1 tomato plants treated with TRV::Ave1 when compared with the 
TRV::GUS-treated plants evidenced by stunted Ve1 plants at 14 days post inoculation (14 dpi) and fungal 
outgrowth upon plating stem sections on potato dextrose agar (PDA). The Ave1 deletion mutant (V. 
dahliae JR2ΔAve1) was used as Verticillium inoculation control. Plants were photographed at 14 dpi. (B) 
Fungal biomass was determined by qPCR in Verticillium-inoculated Ve1 plants at 14 dpi. Bars represent 
Verticillium ITS levels relative to tomato actin levels (for equilibration) with standard deviation in a 
sample of three pooled plants. The fungal biomass in Ve1 tomato plants upon TRV::GUS treatment and 
subsequent inoculation with the wild-type race 1 V. dahliae strain is set to 1. Different letter labels 
indicate significant differences (P < 0.05). The data shown are representative of three independent 
experiments. 

 

It was recently demonstrated that Tobacco mosaic virus (TMV) may infect fungi 

in addition to plants, remaining for up to six subcultures, and also persisted in 

plants infected by the virus-infected fungus (Mascia et al., 2014). This finding raises 
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the theoretical possibility that also TRV may infect V. dahliae and cause VIGS 

(directly) rather than HIGS from inside the tomato cells (indirectly). To exclude that 

the impairment of Ave1-triggered immunity in Ve1 tomato plants is due to TRV-

infection of V. dahliae itself, stem sections from Verticillium-inoculated TRV::GUS- 

and TRV::Ave1-treated tomato plants were placed on PDA plates. A single colony 

that grew from wild-type V. dahliae-inoculated TRV::GUS-treated plants (V. dahliae 

JR2TRV::GUS) and Ave1 deletion mutant-inoculated TRV::Ave1-treated plants (V. dahliae 

JR2△Ave1TRV::Ave1), and three independent colonies that grew from wild-type V. 

dahliae-inoculated TRV::Ave1-treated plants (V. dahliae JR2TRV::Ave1) were subjected 

to PCR to detect a viral coat protein gene fragment of TRV (TRV2_CP), showing that 

TRV2_CP was not detected in all fungal isolates (Figure S1A). Furthermore, the 

fungal isolates were used to infect Ve1 tomato plants and tomato plants that lack 

Ve1. This analysis showed that, similar to V. dahliae JR2TRV::GUS, also V. dahliae 

JR2TRV::Ave1 induced no disease symptoms on tomato plants expressing Ve1, while 

tomato plants lacking Ve1 showed clear Verticillium wilt disease (Figure S1B-D). 

These data support the hypothesis that the impairment of Ave1-triggered immunity 

in Ve1 plants is not caused by TRV-infection of V. dahliae, but genuinely by HIGS 

through TRV-treatment of tomato.  

 

TRV-based fungal gene silencing in tomato inhibits Verticillium wilt disease 

To further investigate the potential of TRV-mediated HIGS against V. dahliae in 

tomato, two previously identified virulence genes of V. dahliae were targeted. The 

first target gene is NLP1, encoding a member of the necrosis- and ethylene-

inducing-like protein (NLP) family in V. dahliae, and targeted deletion of NLP1 in V. 

dahliae significantly compromises virulence on tomato as well as on A. thaliana 

plants (Santhanam et al., 2013). The second candidate gene is V. dahliae Sge1, 

encoding a homolog of the transcription factor Sge1 (SIX Gene Expression 1) in F. 

oxsporum, and V. dahliae mutants of the Sge1 are non-pathogenic on tomato 

(Santhanam and Thomma, 2013). 

To produce dsRNAs of the gene fragments in planta, cotyledons of ten-day-old 

Moneymaker tomato plants were treated with the silencing constructs TRV::GUS, 

TRV2::NLP1 and TRV2::Sge1 in combination with TRV1 (Figure 1A), respectively. At 

ten days after TRV treatment, plants were challenged with either the V. dahliae 
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strain JR2 (Faino et al., 2015), a NLP1 deletion mutant (V. dahliae JR2△NLP1; 

Santhanam et al., 2013), or a Sge1 deletion mutant (V. dahliae JR2△Sge1; Santhanam 

and Thomma, 2013), and monitored for Verticillium wilt symptoms on tomato 

plants at 14 dpi. As expected, significantly compromised Verticillium wilt symptoms 

were observed on Moneymaker tomato plants upon TRV2::GUS or TRV2::NLP1  

 

 
Figure 3. Effect of TRV-mediated NLP1 silencing in Moneymaker tomato plants on Verticillium 
dahliae inoculation. (A) Agroinfiltration with the TRV::NLP1 construct resulted in the suppression of 
Verticillium wilt symptoms on tomato plants, whereas no effect on disease development was observed 
on plants treated with the TRV::GUS. The NLP1 deletion mutant (V. dahliae JR2ΔNLP1) was used as 
Verticillium inoculation control. Plants were photographed at 14 dpi. (B) Fungal biomass was 
determined by qPCR in Verticillium-inoculated Moneymaker tomato plants at 14 dpi. Bars represent 
Verticillium ITS levels relative to tomato actin levels (for equilibration) with standard deviation in a 
sample of three pooled plants. The fungal biomass in tomato plants upon TRV::GUS treatment and 
subsequent inoculation with the wild-type V. dahliae strain JR2 is set to 100% (control). Asterisks 
indicate significant differences when compared with the TRV::GUS-treated plants upon inoculation with 
the V. dahliae strain JR2 (P < 0.05). The data shown are representative of three independent experiments. 
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Figure 4. Effect of TRV-mediated Sge1 silencing in tomato plants on Verticillium dahliae 
inoculation. (A) Upon inoculation with the V. dahliae strain JR2, no effect on disease development was 
observed on TRV::Sge1-treated plants compared to TRV::GUS-treated plants. The Sge1 deletion mutant (V. 
dahliae JR2ΔSge1) was used as Verticillium inoculation control. Plants were photographed at 14 dpi. (B) 
Fungal biomass was determined by qPCR in Verticillium-inoculated Moneymaker tomato plants at 14 dpi. 
Bars represent Verticillium ITS levels relative to tomato actin levels (for equilibration) with standard 
deviation in a sample of three pooled plants. The fungal biomass in tomato plants upon TRV::GUS 
treatment and subsequent inoculation with the wild-type V. dahliae strain JR2 is set to 100% (control). 
Asterisks indicate significant differences when compared with the TRV::GUS-treated plants upon 
inoculation with the V. dahliae strain JR2 (P < 0.05). The data shown are representative of three 
independent assays. (C) Relative expression level for the Sge1 gene was determined by using RT-qPCR at 
14 days post inoculation with the wild-type V. dahliae strain on TRV::Sge1- and TRV::GUS-treated plants. 
Bars represent levels of Sge1 transcripts relative to the transcript levels of V. dahliae GAPDH (GAPDH, 
glyceraldehyde-3-phosphate dehydrogenase; for normalization) with standard deviation of a sample of 
three pooled plants. Sge1 expression in V. dahliae in the TRV::GUS-treated plants upon inoculation the 
wild-type strain V. dahliae is set to 1. The data shown are representative of three independent 
experiments. 
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treatment and subsequent inoculation with the NLP1 deletion mutant of V. dahliae 

strain JR2 (Figure 3A). Interestingly, upon inoculation with the wild-type V. dahliae 

strain JR2, a moderate reduction of Verticillium wilt symptoms was observed on 

Moneymaker tomato plants treated with TRV2::NLP1 when compared to TRV::GUS-

treated plants (Figure 3A). The plants that were treated with TRV::NLP1 and 

subsequent inoculation with the wild-type V. dahliae strain JR2 showed reduced 

Verticillium wilt symptoms but were not as diseased as plants upon inoculation 

with the NLP1 deletion mutant or water (Figure 3A). These data are further 

supported by fungal biomass quantifications in stem sections of the inoculated 

plants (Figure 3B). In contrast, no significant Verticillium wilt disease reduction was 

observed in Moneymaker tomato plants upon the TRV::Sge1 treatment and 

subsequent inoculation with the wild-type V. dahliae strain JR2, although fungal 

biomass quantifications revealed that less fungal biomass accumulated in planta in 

the TRV::Sge1-treated plants than the TRV::GUS-treated plants followed by 

inoculation with the wild-type V. dahliae strain JR2 (Figure 4A, B). To determine 

whether TRV-mediated targeting transcripts of V. dahliae Sge1 in tomato results in 

complete silencing of the V. dahliae Sge1 gene, we performed reverse transcription-

quantitative polymerase chain reaction (RT-qPCR) to measure relative expression 

level for the Sge1 gene in V. dahliae JR2 inoculating with the TRV::Sge1-treated 

plants compared to the TRV::GUS-treated plants. However, only a slight reduction in 

Sge1 expression in TRV::Sge1-targeted V. dahliae was monitored when compared 

with TRV::GUS-targeted V. dahliae (Figure 4C). In conclusion, although not all TRV-

based RNAi constructs targeting V. dahliae transcripts in tomato suppressed 

Verticillium wilt disease, TRV-mediated transient HIGS against V. dahliae in tomato 

can be achieved. 

 

HIGS in Ve1-transgenic A. thaliana does not impair Ave1-triggerred immunity 

To assess whether HIGS against V. dahliae can be made operational in stable 

transgenic plants by expressing dsRNAs, we exploited hairpin RNA-based RNAi to 

produce dsRNAs to target V. dahliae Ave1 transcripts in Ve1-expressing A. thaliana 

plants. To this end, a fragment of the V. dahliae Ave1 gene was cloned into the 
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Gateway vector pFAST R03 (Shimada et al., 2010) to obtain the RNAi construct 

pFAST R03_Ave1 (Figure 1B) that leads to hairpin RNA formation after 

transcription. A recombinant RNAi construct containing a fragment of the green 

fluorescent protein (GFP) gene (pFAST R03_GFP) was used as a negative control 

(Figure 1B). Subsequently, the Ave1 and GFP RNAi constructs were transformed into 

recipient Ve1-expressing A. thaliana plants (Fradin et al., 2011; Figure S2A). No 

obvious developmental alterations were observed in the transgenic plants when 

 

 
Figure 5. Analysis of Ve1 Arabidopsis thaliana plants expressing RNAi Ave1 construct. (A) Upon 
inoculation with the race 1 V. dahliae strain JR2, Ve1 plants expressing RNAi Ave1 or GFP construct do not 
show Verticillium wilt symptoms, whereas typical Verticillium wilt symptoms are recorded on plants 
with or without tomato Ve1 upon inoculation with  either the V. dahliae JR2 or V. dahliae JR2ΔAve1 at 21 
dpi. Col-0 plants with or without tomato Ve1 were used as a controls. The V. dahliae JR2ΔAve1 strain was 
used as Verticillium inoculation control. (B) Fungal biomass was determined with qPCR in Verticillium-
inoculated Arabidopsis plants at 21 dpi. Bars represent Verticillium ITS levels relative to AtRuBisCo 
(RuBisCo, ribulose-1, 5-bisphoshate-carboxylase/oxygenase) levels (for equilibration) with standard 
deviation in a sample of five pooled plants. The fungal biomass in Ve1 plants upon inoculation with the 
wild-type race 1 V. dahliae strain JR2 is set to 1 (control). Three independent lines carrying the pFAST 
R03_Ave1 construct are shown (1, 2 and 3). Different letter labels indicate significant differences (P < 
0.05). The data shown are representative of at least three independent experiments. 
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compared with the recipient Col-0 and Ve1 plants (Figure 5A), and three 

independent Ave1 RNAi lines expressing Ve1 (pFAST R03_Ave1 in Ve1-1, pFAST 

R03_Ave1 in Ve1-2 and pFAST R03_Ave1 in Ve1-3) as well as transgenic and non-

transgenic control lines were inoculated with either the V. dahliae race 1 strain JR2 

or an Ave1 deletion mutant, and monitored for Verticillium wilt symptoms up to 21 

dpi. As expected, upon mock-inoculation or inoculation with the V. dahliae JR2, no 

disease symptoms were observed in Ve1 plants and GFP-RNAi Ve1 plants (Figure 

5A). In contrast, GFP- or Ave1-RNAi Col-0 plants lacking Ve1 were as diseased as 

non-transformed control lines (Figure 5A). However, despite transcripts for hairpin 

Ave1 formation in Ave1-RNAi Ve1 plants were detected (Figure S2A), Verticillium 

wilt symptoms were not observed in Ave1-RNAi Ve1 plants upon inoculation with 

the wild-type race 1 V. dahliae strain JR2 in repeated assays, while the Ave1 deletion 

strain caused clear Verticillium wilt symptoms on Ve1 plants (Figure 5A). The 

phenotypes correlated with the degree of V. dahliae colonization as determined 

with qPCR (Figure 5). These data show that expression of an RNAi construct 

targeting Ave1 transcripts in A. thaliana plants expressing Ve1 does not 

compromise Ave1-triggered immunity. 

 

HIGS in A. thaliana can reduce Verticillium wilt  

To further investigate whether HIGS against V. dahliae can be established in stable 

transgenic A. thaliana plants by expressing dsRNAs, V. dahliae NLP1 and Sge1 were 

targeted. To this end, RNAi constructs pHellsgate 12_NLP1 and pHellsgate 12_Sge1 

were generated (Figure 1B). The recombinant RNAi construct carrying a fragment 

of the GFP gene (pHellsgate 12 _GFP) was used as a negative control (Figure 1B). 

Subsequently, RNAi constructs targeting NLP1, Sge1, or GFP were transformed into 

A. thaliana ecotype Col-0, and independent NLP1-, Sge1, or GFP-RNAi lines were 

selected (Figure S2B, C). No phenotypic alterations were observed in NLP1- or 

Sge1-RNAi plants when compared with the recipient A. thaliana Col-0 plants or 

GFP-RNAi plants (Figure 6A, 7A). Three independent NLP1-RNAi lines (pHellsgate 

12_NLP1-1, pHellsgate 12_NLP1-2 and pHellsgate 12_NLP1-3) as well as GFP-RNAi 

and non-transgenic control lines were assayed for the development of Verticillium 

wilt symptoms. As expected, markedly compromised Verticillium wilt symptoms 

were observed on A. thaliana plants upon inoculation with the NLP1 deletion 
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Figure 6. Arabidopsis thaliana Col-0 plants expressing NLP1 RNAi construct show enhanced 
resistance against Verticillium dahliae. (A) Typical appearance of non-transgenic A. thaliana and 
transgenic lines carrying the pHellsgate 12_NLP1 construct to target NLP1 transcripts upon mock-
inoculation or inoculation with V. dahliae strain JR2 or V. dahliae JR2ΔNLP1 at 21 dpi. (B) Fungal biomass 
was determined with qPCR in Verticillium-inoculated Arabidopsis plants at 21 dpi. Bars represent 
Verticillium ITS levels relative to AtRuBisCo (RuBisCo, ribulose-1, 5-bisphoshate-carboxylase/oxygenase) 
levels (for equilibration) with standard deviation in a sample of five pooled plants. The fungal biomass in 
Col-0 is set to 100% (control). Three independent lines carrying the pHellsgate 12_NLP1 construct are 
shown (1, 2 and 3). Asterisks indicate significant differences when compared with Col-0 (P < 0.05). The 
data shown are representative of three independent experiments. 



HIGS compromises Verticillium wilt in tomato and Arabidopsis 

179 

6 

mutant (Figure 6A). Interestingly, upon inoculation with the V. dahliae JR2, a 

significant reduction of Verticillium wilt symptoms was observed in NLP1-RNAi 

plants when compared with GFP-RNAi and non-transgenic controls (Figure 6A). 

These data are further supported by fungal biomass quantifications in stem 

sections of the inoculated plants (Figure 6B). Additionally, three independent Sge1-

RNAi lines (pHellsgate 12_Sge1-1, pHellsgate 12_Sge1-2 and pHellsgate 12_Sge1-3) 

as well as GFP-RNAi and non-transformed control lines were assayed for the 

development of Verticillium wilt disease. Intriguingly, we observed a marked 

reduction of Verticillium wilt symptoms in Sge1-RNAi A. thaliana lines inoculated 

with V. dahliae JR2 (Figure 7A). In contrast, GFP-RNAi A. thaliana lines were as 

susceptible as non-transgenic control lines (Figure 7A). The phenotypes correlated 

with the level of V. dahliae biomass as determined with qPCR (Figure 7). 

Collectively, these results suggest that, although not all RNAi constructs targeting V. 

dahliae transcripts in A. thaliana induced HIGS against V. dahliae, hairpin RNA-

mediated HIGS in A. thaliana can reduce Verticillium wilt disease. 

 
DISCUSSION 

In this manuscript, we show that HIGS against V. dahliae can be achieved through 

TRV-based fungal gene silencing in tomato, and through hairpin RNA-mediated 

fungal gene silencing in stable transgenic A. thaliana lines. We established the TRV-

mediated HIGS assay through targeting V. dahliae Ave1 transcripts in Ve1 tomato 

plants, and further used this approach to assess whether HIGS against V. dahliae in 

tomato can be established through TRV constructs targeting previously identified V. 

dahliae virulence factors. We also investigated whether HIGS against V. dahliae can 

be established in transgenic A. thaliana plants through hairpin RNA-based RNAi 

constructs targeting transcripts of the same previously identified V. dahliae 

virulence genes. Our results clearly show that plants transiently (in tomato) or 

stably (in A. thaliana) expressing RNAi constructs targeting transcripts of genes that 

are essential for V. dahliae pathogenicity can become protected from Verticillium 

wilt disease. Our results are in line with, and extend beyond, recent reports on 

protection of cotton plants stably expressing an RNAi construct against V. dahliae 

(Zhang et al., 2016), and on bidirectional cross-kingdom RNAi and fungal uptake of 

external RNAs to confer plant protection (Wang et al., 2016). 
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Figure 7. Arabidopsis thaliana Col-0 plants expressing Sge1 RNAi construct show enhanced 
resistance against Verticillium dahliae. (A) Typical appearance of non-transgenic A. thaliana and 
transgenic lines harboring the pHellsgate 12_Sge1 construct to target Sge1 transcripts upon mock-
inoculation or inoculation with V. dahliae strain JR2 or V. dahliae JR2ΔSge1 at 21 dpi. (B) Fungal biomass 
was determined with qPCR in Verticillium-inoculated Arabidopsis plants at 21 dpi. Bars represent 
Verticillium ITS levels relative to AtRuBisCo (RuBisCo, ribulose-1, 5-bisphoshate-carboxylase/oxygenase) 
levels (for equilibration) with standard deviation in a sample of five pooled plants. The fungal biomass in 
Col-0 is set to 100% (control). Three independent lines carrying the pHellsgate 12_Sge1 construct are 
shown (1, 2 and 3). Asterisks indicate significant differences when compared with Col-0 (P < 0.05). The 
data shown are representative of three independent experiments. 
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Reports on HIGS against fungal pathogen infections have accumulated over 

recent years (Andrade et al., 2015; Chen et al., 2016; Cheng et al., 2015; Ghag et al., 

2014; Hu et al., 2015; Koch et al., 2013; Panwar et al., 2013; Yin et al., 2011; 2015; 

Zhang et al., 2012; Zhou et al., 2016). Among these reports, disease suppression was 

observed upon silencing of various types of genes, including those that encode the 

biosynthesis of structural components such chitin and ergosterol, but also genes 

involved in developmental regulation, secondary metabolism and pathogenicity. 

Therefore, the selection of suitable target genes is arguably the most important 

prerequisite for developing a successful HIGS against fungal pathogens. We selected 

HIGS target genes based on our previous studies of gene deletion mutants in V. 

dahliae with significantly compromised virulence (NLP1, Santhanam et al., 2013; 

Sge1, Santhanam and Thomma, 2013). Beforehand, it was not clear whether 

silencing of such genes rather than gene deletion would lead to visible virulence 

phenotypes, as the protein encoded by the target gene may not be completely 

absent. Indeed, TRV-mediated HIGS of Sge1 in tomato did not lead to compromised 

Verticillium wilt symptoms, which may be explained by the incomplete silencing of 

the Sge1 gene in V. dahliae (Figure 4C). This also explains why RNAi-mediated HIGS 

of V. dahliae Ave1 did not compromise Ve1-mediated immunity in transgenic A. 

thaliana plants. Also in the cases where the expected visual phenotypes were 

obtained, fungal biomass quantifications revealed that more fungal biomass 

accumulated in the inoculated plants upon HIGS of the fungal target gene than upon 

inoculation with the corresponding V. dahliae deletion mutant (Figure 3B, 4B, 6B, 

7B). Thus, hypothetically, RNAi may not be appropriate to target genes of which the 

activity is required early in the infection process when RNAi may not have taken its 

full effect, or genes of which a low-dose of transcripts is biologically active. 

Mobility of small RNAs within organisms is a well-known phenomenon, 

facilitating gene silencing in adjacent cells and surrounding or even distant tissues 

(Weiberg et al., 2015). Over recent years, several examples of exchange of small 

RNAs between host plants and invading pathogens have been described, although 

the mechanistic details of the actual exchange remains to be elucidated (Knip et al., 

2014). Nevertheless, small RNA-based bidirectional cross-kingdom gene silencing 

has been proposed as a common mechanism for cross-kingdom gene regulation in 

plant-pathogen interactions (Chaloner et al., 2016; Wang et al., 2016; Weiberg et al., 



Chapter 6 

182 

6 

2015). For example, endogenous small RNAs from the fungus Botrytis cinerea have 

been proposed to transfer into host plants to target defense-related plant 

transcripts to promote disease development (Weiberg et al., 2013). In this manner, 

HIGS taps into a process that naturally occurs between plants and pathogens. A 

search for pathogen-derived small RNAs matching transcripts of host plants or 

plant-derived small RNAs targeting transcripts of the invading pathogens may 

facilitate the development of HIGS strategies to engineer resistance in plants against 

pathogens for which no natural resistance sources have been identified.  

 
MATERIALS AND METHODS 

Plant growth conditions and manipulations 

Plants were grown in commercial potting soil (Horticoop, Bleiswijk, the 

Netherlands) at 21°C/19°C during 16 h/8 h light/dark photoperiods, respectively, 

in the climate chamber or the greenhouse (Unifarm, Wageningen, the Netherlands) 

with a relative humidity of ~75%, and 100 W·m-2 supplemental light when light 

intensity dropped below 150 W·m-2. A. thaliana transformations were performed as 

described (Clough and Bent, 1998). 

 

Generation of the constructs 

The Gateway-compatible Tobacco rattle virus (TRV) two-component Agrobacterium-

mediated expression system was used for gene silencing in tomato as previously 

described (Liu et al., 2002), while the Gateway-compatible vectors pFAST R03 

(Shimada et al., 2010) and pHellsgate 12 (Helliwell and Waterhouse, 2003) for 

hairpin RNA-mediated gene silencing were used to generate stable A. thaliana 

transformants. The three V. dahliae genes Ave1 (de Jonge et al., 2012), NLP1 

(Santhanam et al., 2013) and Sge1 (Santhanam and Thomma, 2013) were selected 

for RNAi-based HIGS. Gene annotations for V. dahliae Ave1, Sge1 and NLP1 were 

obtained from Ensembl Genomes database (http://fungi.ensembl.org/Verticillium_ 

dahliaejr2/Info/Index). Selected DNA fragments were amplified by PCR from the 

corresponding plasmids using gene-specific primers listed in Table S1. The DNA 

fragments were cloned into pDONR207 by using the Gateway® BP Clonase® II 

Enzyme Mix (Invitrogen, Carlsbad, USA) to generate entry vectors, and all the entry 

vectors were verified by DNA sequencing (Eurofins Genomics, Ebersberg, 
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Germany). Subsequently, the entry vector pDONR207 carrying the Ave1 fragment 

was transferred to TRV2 and pFAST R03 to generate constructs TRV2::Ave1 and 

pFAST R03_Ave1 (Figure 1), while pDONR207 entry vectors carrying NLP1 or Sge1 

fragment were recombined into pTRV2 and pHellsgate 12 to generate constructs 

TRV2::NLP1, TRV2::Sge1, pHellsgate 12_NLP1 and pHellsgate 12_Sge1 (Figure 1) by 

using Gateway® LR Clonase® II Enzyme Mix (Invitrogen, Carlsbad, USA). All 

constructs were transformed to Agrobacterium tumefaciens strain GV3101 (pMP90) 

by electroporation. 

 

TRV treatment  

TRV vectors were agroinfiltrated as previously described (Liu et al., 2002; Fradin et 

al., 2011). Briefly, cotyledons of 10-day-old tomato (Solanum lycopersicum cv. 

Moneymaker (ve1) or 35S::Ve1 tomato (Ve1); Fradin et al., 2009) were infiltrated as 

1:1 mixtures of pTRV1 and pTRV2 constructs. 10-15 days after TRV inoculation, 

plants were inoculated with race 1 V. dahliae strain JR2 (Faino et al., 2015); the 

corresponding mutants: V. dahliae JR2ΔAve1 (de Jonge et al., 2012); V. dahliae 

JR2ΔNLP1 (Santhanam et al., 2013); V. dahliae JR2ΔSge1 (Santhanam and Thomma, 

2013); or tap water as control. The inoculated plants were evaluated by observing 

disease symptoms up to 14 days post inoculation (dpi). 

 

Verticillium wilt disease and fungal recovery assays 

V. dahliae was grown on potato dextrose agar (PDA; Oxoid, Basingstoke, UK) at 

22 °C, and conidia were collected from 7- to 10-day-old PDA plates and washed with 

tap water. Disease assays on tomato plants were performed as previously described 

(Fradin et al., 2009). Briefly, twenty-day-old Ve1 tomato plants (for Verticillium 

inoculation after TRV treatment) or ten-day-old Ve1 and ve1 tomato plants (for 

inoculation with Verticillium colonies re-isolated from infected tomato plants) were 

uprooted, the roots were rinsed in water, dipped for 5 min in a suspension of 106 

conidiospores/mL water, and transplanted to commercial potting soil (Horticoop, 

Bleiswijk, the Netherlands). Verticillium outgrowth assays of Ve1 tomato plants, 

canopy area measurement and fungal biomass quantification in tomato plants were 

performed as previously described (Fradin et al., 2009; Santhanam et al., 2013). 

Verticillium disease assay on A. thaliana, as well as fungal biomass quantification in 
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infected A. thaliana plants were performed as previously described (Ellendorff et 

al., 2009; Song et al., 2016). The fungus-specific primer ITS1-F, based on the 

internal transcribed spacer (ITS) region of the ribosomal DNA, in combination with 

the V. dahliae-specific reverse primer ST-Ve1-R (Ellendorff et al., 2009) were used to 

measure fungal colonization. Primers for tomato actin and A. thaliana RuBisCo 

(Table S1) were used as endogenous plant control as described earlier (Santhanam 

et al., 2013; Song et al., 2016). 

 

Quantitative PCR (qPCR) and Reverse transcription-qPCR (RT-qPCR) 

To determine expression of V. dahliae Sge1 gene for silencing, stems of TRV-treated 

tomato plants were harvested at 14 days post Verticillium inoculation as described 

above, and flash frozen in liquid nitrogen, and stored at -80 °C for total RNA 

isolation. 

To check Ave1, NLP1, Sge1, GFP DNA fragment presence in the transcripts of the 

corresponding transgenic A. thaliana lines, two-week-old transgenic and non-

transgenic A. thaliana lines were harvested and ground into a powder in liquid 

nitrogen. Total RNA extraction, cDNA synthesis and RT-PCR were performed as 

described earlier (Song et al., 2016). Primers for hairpin expression analysis are 

listed in Table S1. To analyze expression of Sge1 gene for silencing, RT-qPCR was 

conducted by using primers Sge1-F(qRT) and Sge1-R(qRT) with V. dahliae GAPDH 

as an endogenous control (Table S1), employing an ABI 7300 PCR system (Applied 

Biosystems, Foster City, USA) with the qPCR Core kit for SYBR Green I (Eurogentec 

Nederland BV, Maastricht, the Netherlands) as previously described (Santhanam 

and Thomma, 2013). 
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SUPPLEMENTAL INFORMATION 
 

 
Figure S1. Analysis of Verticillium dahliae colonies re-isolated from TRV-treated Ve1 tomato 
plants. (A) Viral coat protein gene fragment (TRV2_CP) was not detected by PCR in re-isolated V. dahliae 
colonies V. dahliae JR2∆Ave1TRV::Ave1, V. dahliae JR2 TRV::GUS and V. dahliae JR2TRV::Ave1 (#1, #2 and #3) that 
grew from wild-type V. dahliae-inoculated TRV::GUS-treated plants, Ave1 deletion strain-inoculated 
TRV::Ave1-treated plants and wild-type V. dahliae-inoculated TRV::Ave1-treated plants, respectively. 
Construct TRV::Ave1 was used as a positive control. As an endogenous control, a fragment of the V. 
dahliae ITS was amplified from all re-isolated V. dahliae colonies. (B) Typical appearance of Ve1 tomato 
plants (Ve1) and Moneymaker tomato plants lacking Ve1 (ve1) upon mock-inoculation or inoculation 
with re-isolated strains V. dahliae JR2∆Ave1TRV::Ave1, V. dahliae JR2 TRV::GUS, or V. dahliae JR2TRV::Ave1 at 14 dpi. 
(C) Average canopy area of 10 Ve1 plants inoculated with re-isolated strains described above or mock 
inoculation. (D) Average canopy area of 10 ve1 plants inoculated with re-isolated strains described above 
or mock inoculation. Different letters indicate significant differences (P < 0.05). The data shown are 
representative of three independent assays.  
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Figure S2. Polymerase chain reaction (PCR) amplification from cDNA of the corresponding 
transgenic Arabidopsis thaliana lines. (A) Transcripts for hairpin Ave1 or GFP formation in transgenic 
lines were detected by reverse transcription-PCR (RT-PCR). For pFAST R03_Ave1 construct in Ve1 plants 
three independent transgenic lines are shown (1, 2 and 3), while other lines expressing pFAST R03_Ave1 
construct or pFAST R03_GFP construct are shown as controls. (B) Transcripts for hairpin NLP1 or GFP 
formation in transgenic lines were PCR-detected. For pHellsgate 12_NLP1 construct in Col-0 plants three 
independent transgenic lines are shown (1, 2 and 3), and the corresponding control line expressing 
pHellsgate 12_GFP construct is shown. (C) Transcripts for hairpin NLP1 or GFP formation in transgenic 
lines were PCR-detected. For pHellsgate 12_Sge1 construct in Col-0 plants three independent transgenic 
lines are shown (1, 2 and 3), and the corresponding control line expressing pHellsgate 12_GFP construct 
is shown. As an endogenous control, a fragment of the AtACTIN2 gene was amplified from A. thaliana 
cDNA. A. thaliana Col-0 and water are used as RT-PCR controls. 

  



HIGS compromises Verticillium wilt in tomato and Arabidopsis 

191 

6 

Table S1. Primers used in this study. 
Primer name Oligonucleotide sequence (5’→3’) Descriptiona 

Ave1-F ggggacaagtttgtacaaaaaagcaggctATGAAGCTTTCTACGCTT Ave1 (RNAi) 

Ave1-R ggggaccactttgtacaagaaagctgggtTATCTGTCTAAATTC Ave1 (RNAi) 

Ave1-F(RT) AGCTTTCTACGCTTGGA RT-PCR 

Ave1-R(RT) TTGGCTGGGATTGCT RT-PCR 

NLP1-F ggggacaagtttgtacaaaaaagcaggctGGTCTCCAAGACAGCGGTAC  NLP1 (RNAi & RT-PCR) 

NLP1-R ggggaccactttgtacaagaaagctgggtGTTTGCGTTGTTCGAGTTGA NLP1 (RNAi & RT-PCR) 

Sge1-F ggggacaagtttgtacaaaaaagcaggctCCTGTCTGGCAATCTTCGTC Sge1 (RNAi & RT-PCR) 

Sge1-R ggggaccactttgtacaagaaagctgggtCCGTTGGTCTGCTTCTTGTT Sge1 (RNAi & RT-PCR) 

GFP-F ggggacaagtttgtacaaaaaagcaggctGTGGAGAGGGTGAAGGTGA  GFP (RNAi & RT-PCR) 

GFP-R ggggaccactttgtacaagaaagctgggtAAGGGCAGATTGTGTGGAC  GFP (RNAi & RT-PCR) 

TRV2_CP-F CTGCGAATCCAAACACAAC Coat protein  

TRV2_CP-R GAACCGCCTGAACATAAAAA Coat protein 

ITS1-F AAAGTTTTAATGGTTCGCTAAGA V. dahliae (fungal biomass; qPCR) 

STVe1-R CTTGGTCATTTAGAGGAAGTAA V. dahliae (fungal biomass; qPCR) 

SlActin-F CCATTCTCCGTCTTGACTTGG Tomato actin (fungal biomass; qPCR) 

SlActin-R TCTTTCCTAATATCCACGTCAC Tomato actin (fungal biomass; qPCR) 

AtRubisco-F GCAAGTGTTGGGTTCAAAGCTGGTG Arabidopsis Rubisco (fungal biomass; qPCR) 

AtRubisco-R CCAGGTTGAGGAGTTACTCGGAATGCTG Arabidopsis Rubisco (fungal biomass; qPCR) 

Sge1-F(qRT) CACCGAATTACGCTCAACCT V. dahliae (RT-qPCR) 

Sge1-R (qRT) AAGTCATAGGCCGTGGAGTG V. dahliae (RT-qPCR) 

VdGAPDH-F CGAGTCCACTGGTGTCTTCA V. dahliae (RT-qPCR) 

VdGAPDH-R CCCTCAACGATGGTGAACTT V. dahliae (RT-qPCR) 

Ve1-F(RT-PCR) CATATTGAAATTAGCGTCTTGTCGG Tomato Ve1 (RT-PCR) 

Ve1-R(RT-PCR) ACCGAGAAAAAGGAGGCAAAAC Tomato Ve1 (RT-PCR) 

AtACT2-F GATGGAGACCTCGAAAACCA Arabidopsis actin (RT-PCR) 

AtACT2-R AAAAGGACTTCTGGGCACCT Arabidopsis actin (RT-PCR) 

aThe type of experiment for which the primers were used is indicated in brackets (RNAi, RNA interference; RT-PCR: Reverse Transcription-

PCR; qPCR, quantitative Real Time-PCR; RT-qPCR: Reverse Transcription-qPCR). 
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ABSTRACT 

Immune receptors are pivotal elements of the plant immune system that act as 

sentinels for microbial invasion. Knowingly or unknowingly, breeding for 

resistance has largely relied on the transfer of immune receptor recognition 

specificities between plant genotypes. For decades such transfers were limited to 

crossable species. However, advents in transgene technologies have allowed 

overcoming species barriers. Novel strategies for mining of recognition specificities, 

combined with our recently increased understanding of immune receptor 

functioning, allows to increase and alter recognition specificities, which should 

ultimately increase the spectrum of recognition specificities that are available to 

control plant diseases in crops.  
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INTRODUCTION 

Plant diseases, caused by pathogens and pests, threaten food security and food 

safety worldwide and remain a major agricultural challenge. Like any other 

organism, plants evolved innate immune systems that act against pathogen attack, 

and which are continuously tweaked in the ongoing arms races with a wide range 

of microbes (Dodds and Rathjen, 2010; Thomma et al., 2011; Cook et al., 2015). 

Central to the immune system are receptors that detect pathogen invasion through 

sensing pathogen(-induced) ligands, also termed invasion patterns, to mount 

appropriate immune responses (Cook et al., 2015). Based on structure and 

subcellular location, these invasion pattern receptors fall into two major classes; 

cell surface localized receptors that comprise receptor kinases (RKs) and receptor-

like proteins (RLPs) that monitor the extracellular space, while cytoplasm-localized 

nucleotide-binding domain leucine-rich repeat receptors (NLRs) survey the 

intracellular environment. 

For decades, breeding for resistance has relied on the identification of 

resistance or of recognition traits in genotypes of crop species or their (wild) 

relatives followed by introduction into elite cultivars by crossing. For example, 

Verticillium wilt resistance in many modern cultivated tomato (Solanum 

lycopersicum) varieties is based on the introgression of the dominant Ve locus that 

was identified in the tomato accession Peru Wild in the 1930s (Schaible et al., 1951). 

Meanwhile, our mechanistic understanding of pathogen recognition has increased 

significantly (Zhang and Thomma, 2013; Cui et al., 2015; Li et al., 2016). For 

instance, research over the last decades has shown that race-specific resistance to 

Verticillium wilt in tomato is governed by the cell surface-localized RLP-type 

immune receptor Ve1 encoded by the Ve locus (Kawchuk et al., 2001; Fradin et al., 

2009) through recognition of the effector protein Ave1 that is secreted by race 1 

strains of Verticillium spp. (de Jonge et al., 2012). In this thesis we further propose 

that a surface-exposed patch of the Ave1 protein that is composed of co-localized N- 

and C-termini is recognized by tomato Ve1 (Chapter 3). These advances spur the 

identification and deployment of novel recognition specificities to enhance disease 

resistance in crops.  
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Interfamily transfer of immune receptors to confer disease 
resistance 
Since the ground-breaking finding that introduction of the cell surface-localized 

elongation factor Tu receptor (EFR) from the crucifer Arabidopsis thaliana into the 

Solanaceous plants Nicotiana benthamiana and tomato confers responsiveness to 

bacterial elongation factor Tu and bacterial resistance (Lacombe et al., 2010), it has 

become apparent that immune receptor genes may be transferred between plant 

families to engineer disease resistance (Figure 1a; Table 1). In this thesis, we show 

that homologs of tomato Ve1 are widespread in the plant kingdom (Chapter 4), and 

that tomato Ve1 can be functionally transferred to crops such as tobacco and cotton 

(Chapter 5). Successful transfers have even been reported across the dicot and 

monocot clades with, for example, transfer of the barley NLR Mildew Resistance 

Locus A (MLA1) to A. thaliana induce immunity against barley powdery mildew 

expressing the corresponding effector AVRA1 (Maekawa et al., 2012). Arguably, 

examples like these imply that signalling components downstream of immune 

receptors are sufficiently conserved among plant species, families and even clades 

to mount the appropriate defence responses. Currently, most successful interfamily 

transfers of immune receptors have been reported for cell surface receptors (Table 

1), which again also include transfer of tomato Ve1, initially to the model plant A. 

thaliana (Fradin et al., 2009), and in this thesis to the crop species tobacco and 

cotton (Chapter 5). Potentially, this is because this type of immune receptor 

participates in receptor complexes that generally require the same, highly 

conserved, receptor-associated kinases to mount downstream immune responses 

(Liebrand et al., 2014). The functionality of many, if not all, RLPs carrying 

extracellular leucine-rich repeats (eLRRs), requires constitutive association with 

the common adaptor kinase Suppressor of BAK1-Interacting Receptor-like Kinase 1 

(SOBIR1) in order to constitute a bimolecular equivalent of a genuine RK (Gust and 

Felix, 2014). This obviously also applies to RLP-type immune receptor Ve1 

(Liebrand et al., 2013). Moreover, RKs as well as RLP/SOBIR1 complexes interact in 

a ligand-dependent manner with the Brassinosteroid Insensitive 1 (BRI1)-

Associated receptor Kinase 1 (BAK1) for immune signalling activation. Although 

physical recruitment of BAK1 upon Ave1-mediated activation of the Ve1-SOBIR1 

complex has not yet been demonstrated, genetic requirement of BAK1 for the Ave1-
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induced Ve1-mediated immune response has previously been demonstrated in 

both tomato and A. thaliana (Fradin et al., 2009; 2011). Although BAK1 also 

participates in receptor complexes that mediate developmental processes, it has 

recently been proposed that immune and developmental signalling complexes 

show spatiotemporal separation in plasma membrane nanodomains, which might 

mechanistically explain dual BAK1 functionality (Bücherl et al., 2017). Importantly, 

SOBIR1 and BAK1 are widely conserved in the plant kingdom (Liebrand et al., 

2014). 

 

 
Figure 1. Strategies for plant immune receptor deployment to improve pathogen recognition 
capacities in crops. (a) Transfer of an immune receptor (displayed as an antenna) from another plant 
species to engineer disease resistance in the target crop (in the centre of the circle). (b) Generation of an 
inter-species chimeric immune receptor to engineer or alter pathogen recognition specificity. (c) 
Mutation (red dot) of an endogenous immune receptor to alter or enhance recognition specificity. (d) 
Mutation (red dot) of an effector target (green star) to expand immune receptor recognition capacity. (e) 
Integration of a decoy effector target (green star) into an immune receptor to engineer pathogen 
recognition. 
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Table 1 Examples of functional transfer of plant immune receptor genes between families. 

 
 a RK, receptor kinase; RLP, receptor-like protein; NLR, nucleotide-binding domain leucine-rich repeat receptor. 

 

Functional transfer of NLR-type immune receptors between taxonomically 

distinct families has met with relatively little success when compared with the 

transfer of cell surface receptors. Potentially this indicates that the molecular 

components that they need to interact with are less conserved. However, it is also 

increasingly becoming apparent that NLR-type immune receptors may function in 

heterologous pairs to activate immunity (Eitas and Dangl, 2010; Okuyama et al., 

2011; Yuan et al., 2011; Brotman et al., 2013; Cesari et al., 2013; Wang et al., 2013). 

In support of this, transfer of the Arabidopsis NLR pair Resistance to Pseudomonas 

syringae 4 (RPS4) with Resistance to Ralstonia solanacearum 1 (RRS1) allows 

recognition of the PopP2 and AvrRps4 effectors of Ralstonia solanacearum and 

Pseudomonas syringae, respectively, in N. benthamiana and confers resistance 

against these bacterial pathogens in tomato (Narusaka et al., 2013). Moreover, 

transgenic cucumber lines expressing RPS4-RRS1 are resistant against 

Origin Transferred to Reference

Family Species Gene Classa Family Species Outcome

Brassicaceae Arabidopsis thaliana EFR RK Solanaceae

Solanum 
lycopersicum;

Multibacterial resistance (Lacombe et al., 2010)
Nicotiana 
benthaminana

Poaceae Oryza sativa Bacterial leaf blight resistance; 
Bacterial brown stripe resistance

(Lu et al., 2015; 
Schwessinger et al., 2015)

Poaceae Triticum aestivum Bacterial halo blight resistance (Schoonbeek et al., 2015)

A. thaliana LecRK-I.9 
(DORN1) RK Solanaceae S. tuberosum;         

N. benthaminana Late blight resistance (Bouwmeester et al., 2014; 
Wang et al., 2016)

A. thaliana RPS4/RRS1 NLR Solanaceae S. lycopersicum Bacterial speck resistance; 
Bacterial wilt resistance (Narusaka et al., 2013)

Solanaceae N. benthaminana 
Recognition of the two unrelated 
bacterial effectors PopP2 and 
AvrRps4

Cucurbitaceae Cucumis sativus Anthracnose resistance

A. thaliana RLP23 RLP Solanaceae S. tuberosum Oomycete and fungal resistance (Albert et al., 2015)

A. thaliana LORE RK Solanaceae N. benthaminana; 
N. tabacum 

Perception of bacterial 
lipopolysaccharide (Ranf et al., 2015)

Solanaceae S. lycopersicum Ve1 RLP Brassicaceae A. thaliana Verticillium wilt resistance (Fradin et al., 2011)

N. benthamiana NbFLS2 RK Rutaceae Citrus sinensis Citrus canker resistance (Hao et al., 2016)

S. lycopersicum CORE RK Brassicaceae A. thaliana Detection of bacterial cold-shock 
protein (Wang et al., 2016)

Oryza longistaminata XA21 RK Rutaceae Citrus sinensis Citrus canker resistance (Mendes et al., 2010)

Solanaceae S. lycopersicum Bacterial wilt resistance (Afroz et al., 2011)

Musaceae Musa sp. Banana Xanthomonas wilt 
resistance (Tripathi et al., 2014)

Brassicaceae A. thaliana Bacterial resistance (Holton et al., 2015)

Poaceae Hordeum vulgare MLA1 NLR Brassicaceae A. thaliana Powdery mildew resistance (Maekawa et al., 2012)

Oryza sativa RGA4/RGA5 NLR Solanaceae N. benthamiana Recognition of the fungal 
pathogen effector AVR-Pia (Césari et al., 2014)
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Colletotrichum orbiculare, although it is not clear what effector is recognized in this 

case (Narusaka et al., 2013).  

 

Exploitation of the modular nature of immune receptors to 
extend pathogen recognition specificities 
Structurally, most immune receptors are modular proteins with differentiated 

domains for ligand recognition and for intracellular signalling. Conceivably, ligand 

perception by extracellular receptors is mostly determined by the eLRR domain, 

while intracellular signalling is mostly conferred by the cytoplasmic kinase domain  

(for RKs) or interaction with co-receptor SOBIR1 (for RLPs) (Couto and Zipfel, 

2016). Such modular composition offers opportunities to engineer chimeras that 

are composed of domains from different receptors (Figure 1b). The first report of a 

functional chimeric plant receptor stems from the year 2000, claiming that a 

chimeric receptor consisting of the extracellular domain of the Arabidopsis RK BRI1, 

which perceives brassinosteroids to activate developmental signalling, fused to the 

kinase domain of the rice RK XA21, an immune receptor involved in bacterial blight 

resistance, mediates immune activation upon brassinosteroid treatment (He et al., 

2000). Similarly, domain swaps between the tomato RLP Ve1 and its closely non-

functional homolog Ve2 allowed construction of artificial receptors carrying C- 

terminal part of Ve2 replaced by that of Ve1 to mediate Verticillium resistance 

through perception of the effector protein Ave1 (Fradin et al., 2014). More recently, 

chimeras between Arabidopsis EFR and rice XA21 confirmed that the XA21 kinase 

domain, despite being derived from a monocot, associates with intracellular 

components of the EFR complex in the dicot Arabidopsis to activate immunity 

(Holton et al., 2015). Similarly, rice transformants expressing EFR, or EFR:XA21 

chimeras, respond to Escherichia coli and Xanthomonas oryzae pv. oryzae elf18 

(Schwessinger et al., 2015). In addition to reinforcing the notion that signalling 

components downstream of the receptors are widely conserved, these examples 

illustrate the modular nature of immune receptors. 

NLRs consist of an N-terminal coiled-coil (CC) or Toll-interleukin (TIR) domain, 

a central ATPase nucleotide-binding site (NBS), and C-terminal LRRs. Although the 

high degree of polymorphism of the LRR domains suggests involvement in ligand 

binding (Krasileva et al., 2010), also the CC-domain was found to interact with 
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ligands (Chen et al., 2012). Switching from a non-active to an active state is 

controlled by intramolecular rearrangements within the TIR/CC and NBS 

subdomains associated with nucleotide exchange (Tameling et al., 2002; Bernoux et 

al., 2016). Domain swaps between closely related yet polymorphic proteins 

frequently lead to either inactive or constitutively active receptors (Slootweg et al., 

2013; Steinbrenner et al., 2015; Wang et al., 2015). Thus, exploitation of the 

modular nature of NLRs is less straightforward than for RKs, also because the 

mechanism by which they exactly function is less well understood. This is 

illustrated by the surprising finding that the TIR-only protein “Response to the 

bacterial type III effector protein HopBA1” (RBA1) lacks all other canonical NLR 

domains, but successfully induces immunity to P. syringae (Nishimura et al., 2017). 

Nevertheless, natural chimeric immune receptors exist as so-called NLRs with 

integrated domains (NLR-IDs). These NLR-IDs comprise non-canonical “decoy” 

domains that mimic effector target proteins, and act as a trap for pathogen effectors 

to activate immunity (Cesari et al., 2014; Wu et al., 2015). Functional analyses of 

NLR-IDs suggest these receptors act in pairs with conventional NLR partners, 

where the NLR-ID works as pathogen “sensor” while the conventional NLR acts as 

immune “activator” (Cesari et al., 2014). Examples of receptor pairs containing 

integrated decoy domains are the Arabidopsis pair RRS1 with RPS4, where RRS1 

contains a decoy WRKY domain that is targeted by two unrelated bacterial effectors 

PopP2 and AvrRps4 (Le Roux et al., 2015; Sarris et al., 2015), and the rice pairs 

Resistance Gene Analog 5 (RGA5) with RGA4 (Césari et al., 2014) and Pyricularia 

oryzae resistance-k 1 (Pik-1) with Pik-2 (Maqbool et al., 2015), where RGA5 and 

Pik-1 contain heavy metal-associated (HMA) domains that are targeted by the 

AVR1-CO39, AVR-Pik and AVR-Pia effectors of the rice blast fungus Magnaporthe 

oryzae (Cesari et al., 2013; Maqbool et al., 2015; Ortiz et al., 2017). Interestingly, the 

positioning of the IDs within the overall structure of NLR-IDs suggests structural 

plasticity, with the decoy domain integrated between the CC- and NBS domains, e.g. 

in Pik-1, or at the C-terminus of the NLR, e.g. in RRS1 and RGA5. NLR-IDs are widely 

distributed across all lineages of flowering plants (Kroj et al., 2016; Sarris et al., 

2016), and recent studies on grass genomes suggest the presence of genomic 

hotspots containing flexible NLR-"acceptor" genes that may integrate other 

domains from across the genome (Bailey et al., 2017). 
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Artificial evolution to extend immune receptor recognition 
The identification of novel pathogen recognition specificities is highly desired by 

plant breeders. Besides screening for novel specificities in natural collections, also 

artificial evolution through random or targeted mutagenesis has successfully been 

exploited to expand the recognition spectrum of plant immune receptors. The NLR 

Rx confers resistance against a single strain of potato virus X (PVX) by recognising 

its capsid protein (CP). Rx can recognise PVX isolates containing T and K at 

positions 121 and 127, respectively (CPTK), but not those with K and R at these 

positions (CPKR). Based on random mutagenesis of the LRR domain, Rx variants that 

also responded to CPKR were generated (Farnham and Baulcombe, 2006). 

Furthermore, one of the selected Rx mutants, RxM1, induced systemic necrosis 

when plants were challenged with poplar mosaic virus (PopMV), a distant relative 

of PVX, due to weak recognition of the PopMV CP. In a second round of random 

mutagenesis, five amino acid changes near the conserved ATPase nucleotide-

binding pocket increased sensitivity of RxM1 towards the PopMV-CP (Harris et al., 

2013).  

A similar approach was followed to alter the recognition specificities of the 

potato NLR R3a that only recognizes the AVR3aKI allele of Phytophthora spp., while 

the other major allele, AVR3aEM, is only weakly recognized. Using random 

mutagenesis eight amino-acid substitutions were identified that expand R3a 

recognition to include AVR3aEM. Strikingly,  particular mutations in the CC (R3aI148F), 

which resulted in an auto-active R3a variant, and in the NBS (R3aN336Y) extended 

recognition to another AVR3a homolog from P. capsici (Segretin et al., 2014). The 

tomato R3a ortholog I2 confers resistance to Fusarium oxysporum f. sp. lycopersici 

through recognition of the AVR2 effector, but only weakly responds to AVR3a. 

Mutation of the amino acid position in I2 (I2I141N) of which the homologous position 

in R3a was found to generate an auto-active phenotype not only resulted in 

recognition of two AVR2 effector variants that previously escaped I2 recognition, 

but also resulted in recognition of AVR3aKI and AVR3aEM (Giannakopoulou et al., 

2015). 

Rather than based on random mutagenesis, structure-guided mutation of 

immune receptors holds promise for extension or alteration of recognition 

specificities (Figure 1c). Presently, an increasing number of studies report on the 
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crystal structure of immune receptors, sometimes together with their ligands, 

allowing the identification of residues involved in ligand interaction (Liu et al., 2012; 

Sun et al., 2013; Tang et al., 2015), and thus also the rational design of receptor 

modifications to alter recognition specificities. For instance, analysis of the crystal 

structure of the ectodomain of the Arabidopsis RK Flagellin Sensing 2 (FLS2) 

together with the bacterial flagellin (flg22) ligand revealed that the LRR forms a 

solenoid structure whose inner surface interacts with both the N-terminus and C-

terminus of flg22 (Sun et al., 2013). Targeted mutagenesis extended FLS2 

recognition capacities towards new flg22 ligands for which the wild-type FLS2 

confers little or no response (Helft et al., 2016). As CRISPR/Cas systems are further 

refined and developed for more cropping systems (Puchta, 2017), structure-guided 

engineering of immune receptors will likely become customary. 

 

Modification of effector targets to expand receptor recognition 
capacities  
Pathogen detection by immune receptors may occur directly by physical interaction 

with pathogen-derived or induced molecules, or indirectly according to the guard 

model by detecting effector target modifications (Van Der Biezen and Jones, 1998). 

The latter mechanism in particular offers the possibility to engineer host targets to 

be recognized by immune receptors that previously did not respond to the effector 

protein (Figure 1d). The P. syringae AvrPphB effector is a protease that cleaves the 

host kinase PBS1 (for Avirulence Protein Pseudomonas phaseolicola B (avrPphB) 

Susceptible 1) that functions in basal immunity, which is monitored by the 

Arabidopsis NLR RPS5 (Shao et al., 2003). Engineering of PBS1 such that it is 

cleaved by proteases of other pathogens results in extension of disease resistance 

mediated by RPS5 (Kim et al., 2016). 

Members of the genus Xanthomonas and Ralstonia secrete transcription 

activator-like  effectors (TALEs) that bind specific DNA sequences, known as 

effector binding elements (EBEs), to activate host target genes (Kay et al., 2007; 

Boch et al., 2009; Moscou and Bogdanove, 2009). In turn, plants evolved "executor" 

genes with EBEs embedded in the promoters that induce cell death and resistance 

(Römer et al., 2007). Based on “executor” sequences, novel EBEs can be engineered 
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that trigger immunity upon invasion of pathogens that inject TALEs (Römer et al., 

2009; Hummel et al., 2012; Zeng et al., 2015). 

Already 25 years ago, a so-called two-component sensor system was proposed 

to engineer resistance against a broad range of (obligate) biotrophic pathogens by 

transgenic expression of corresponding pairs of effectors and immune receptors 

under control of (preferably two different), pathogen-inducible promoters (de Wit, 

1992). Bacterial leaf streak of rice is caused by X. oryzae pv. oryzicola, yet no 

resistance against this pathogen is known. Resistance was established in transgenic 

rice lines harbouring the M. oryzae AVR1-CO39 effector gene under the control of 

an inducible promoter with an embedded EBE when the corresponding Pi-CO39 

resistance locus was present (Hutin et al., 2016). In an alternative strategy, a 

similar transactivation of an auto-active NLR by a TAL effector of the X. oryzae pv. 

oryzae triggered bacterial blight resistance (Hutin et al., 2016). Such approaches 

based on synthetic promoter "traps" widely expand the panel of genes that can be 

exploited to engineer resistance in plants that suffer from infections by TALE-

injecting pathogens. 

 

Future engineering of disease resistance in crops through the 
deployment of immune receptors 
Securing sustainable food production remains a challenge, as pathogens 

continuously adapt to overcome host immunity and can emerge on novel crop 

species, such as the recent wheat blast outbreak in Bangladesh and India (Malaker 

et al., 2016). This is particularly problematic when resistance sources are scarce. 

The fungus Phakopsora pachyrhizi causes Asian soybean rust (ASR) that is one of 

the most economically important crop diseases and mostly controlled by chemicals 

as no effective genetic resistance occurs in cultivars, yet fungicide resistance is an 

emerging problem for this pathogen. Transgenic expression of the recently 

identified NLR CcRpp1 from the legume weed pigeonpea (Cajanus cajan) confers 

full resistance to ASR in soybean (Kawashima et al., 2016), showing how (wild) 

relatives may provide resistance traits for crop improvement. 

In addition to identification of recognition specificities based on screening for 

pathogen resistance, functional genomics approaches based on effector recognition 

(“effectoromics”) can be used for probing plant germplasm for recognition 
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specificities (Vleeshouwers and Oliver, 2014). This is especially powerful as it also 

allows screening for recognition specificities in plant species that are not hosts for 

the pathogen for which recognition is sought. Moreover, an effectoromics strategy 

allows combination with pathogenomics strategies to select the potentially most 

widespread or invariant effectors to, once identified and deployed, maximize 

durability of the recognition specificity (Bart et al., 2012). However, the subsequent 

cloning of immune receptor genes is typically laborious and slow, but functional 

genomic approaches based on NLR gene enrichment and sequencing (RenSeq), 

especially when combined with long-read sequencing, can accelerate mapping of 

functional NLRs in crop plants (Jupe et al., 2013; Witek et al., 2016), as well as in 

wild relatives (Stam et al., 2016). 

An interesting strategy has been proposed to identify cell surface receptors 

particularly based on their general ligand-induced association with the 

“promiscuous” co-receptor BAK1. Using affinity-tagged BAK1 as molecular bait, a N. 

benthamiana eLRR-RLP-type cell surface receptor was recently identified as 

NbCSPR that is involved in the response to a bacterial cold-shock peptide (csp22) 

(Saur et al., 2016). Intriguingly, based on natural variation in csp22 perception an 

RK-type cell surface receptor was identified in tomato as high-affinity receptor for 

csp22 and named CORE, which has homologs in several other Solanaceous plants, 

including N. benthamiana (Wang et al., 2016). The latter study attempted to 

reconcile the role of NbCSPR and NbCORE in csp22 perception but failed to 

demonstrate a role for NbCSPR in csp22 responsiveness, suggesting that NbCSPR is 

neither sufficient nor necessary for csp22 perception. Further studies will have to 

clarify this apparent discrepancy, which should then also validate the strategy of 

using BAK1 as molecular bait to identify cell surface receptors. 

A recent discovery indicated that approximately 10% of the NLRs belong to the 

ID-class with integrated decoys, and thus far a few hundred unique integrated 

domains have been identified (Kroj et al., 2016; Sarris et al., 2016). Interestingly, 

there is a significant overlap between integrated domains fused to plant NLRs and 

protein domains found to frequently interact with pathogen effectors in massive 

yeast two-hybrid screens against A. thaliana proteins (Mukhtar et al., 2011; 

Weßling et al., 2014; Sarris et al., 2016). Overlapping domains include putative 

kinase domains, DNA binding domains (e.g. the WRKY domain), and proteins 



General discussion 

205 

7 

involved in redox reactions (e.g. the HMA domain) as well as hormone signalling 

and cytoskeleton (Sarris et al., 2016). Obviously, these molecules may be screened 

for activation by pathogen effectors. Indeed, this idea was tested by focussing on a 

particular type of NLR-ID. Multiple NLRs have integrated a predicted DNA-binding 

BED zinc finger domain between their CC and NBS domains (Kroj et al., 2016). The 

authors tested a rice NLR-type gene that encodes a ZBED protein containing three 

N-terminally integrated BED zinc finger domains, showing that ZBED-expressing 

rice plants were more resistant to rice blast fungus M. oryzae while ZBED-deficient 

plants were more susceptible (Kroj et al., 2016). Although recognition of pathogen 

effectors by BED domains in ZBED protein remains to be established, this test 

indicates that characterization of integrated domains in NLRs can serve as an 

extremely powerful way for identification of new players in plant immunity. 

Moreover, making use of this plasticity in NLR-IDs, novel variants may be 

engineered upon integration of other “pathogen-customized” domains, based on 

interactors that can be identified for one’s favourite effector (Figure 1e). 

Transfer and artificial evolution of plant immune receptors have successfully 

been deployed to improve pathogen recognition capacities (Table 1; Farnham and 

Baulcombe, 2006; Harris et al., 2013; Chapman et al., 2014; Segretin et al., 2014; 

Giannakopoulou et al., 2015; Helft et al., 2016). These strategies can also be utilized 

to exploit known immune receptors for engineering disease resistance in crops. In 

this case, homologues of Verticillium effector Ave1 were previously identified in a 

number of pathogenic microbes, including the citrus bacterial canker pathogen 

Xanthomonas. axonopodis pv. citri (XacPNP), the fungal tomato wilt pathogen F. 

oxysporum f. sp. lycopersici (FoAve1), the fungal sugar beet leaf spot pathogen 

Cercospora beticola (CbAve1), the crucifer anthracnose pathogen Colletotrichum 

higginsianum (ChAve1) and the cucurbit anthracnose pathogen Colletotrichum 

orbiculare (CoAve1) (Nembaware et al., 2004; de Jonge et al., 2012; Gan et al., 2013), 

and these homologs are differentially recognized by tomato Ve1 and its functional 

homologues (de Jonge et al., 2012; Chapter 3 and Chapter 4). It was shown that Ve1 

mediates resistance against F. oxysporum f. sp. lycopersici in tomato, demonstrating 

involvement of this immune receptor in resistance against multiple fungal 

pathogens. And tomato Ve1 can be functionally transferred to the closely related 

plant species (Nicotiana tabacum) as well as to the distantly related plant species (A. 
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thaliana and cotton), resulting in enhanced Verticillium wilt resistance in an Ave1-

dependent manner (Fradin et al., 2011; de Jonge et al., 2012; Chapter 5). Thus, 

these findings inspire us to further exploit tomato Ve1 (homologues) for 

engineering disease resistance in an Ave1(homolog)-dependent manner, for 

example through transfer or experimental evolution of tomato Ve1(homologues). 

Recently, Kim et al. (2016) took advantage of the indirection recognition 

mechanism to engineer a host effector target to increase novel recognition 

specificities by trapping unrelated pathogen-derived proteases in their act. 

Engineering host effector target strategy may be applicable to other immune 

receptors to expand their recognition capacities. Besides monitoring of host 

effector target cleavage, sensing of inhibition, phosphorylation and other 

modification of guarded effector targets through immune receptors have also been 

reported (Rooney et al., 2005; van Esse et al., 2008; Song et al., 2009; Liu et al., 2011; 

Lozano-Torres et al., 2012; Innes, 2015; Duxbury et al., 2016). For example, the 

tomato cell surface-localized RLP-type immune receptor Cf2 monitors the 

interaction of the apoplastic tomato cysteine protease Rcr3 with the effectors Avr2 

and Gr-VAP1, protease inhibitors secreted by the tomato leaf mould fungus 

Cladosporium fulvum (Dixon et al., 2000; Rooney et al., 2005) and by the obligate 

plant-parasitic nematode Globodera rostochiensis, respectively (Lozano-Torres et al., 

2012). 

 

Auxiliary strategies for developing disease resistance in crops 
Besides deployment of immune receptors, there are a number of other 

approaches for developing disease resistance in crops. Recessive disease resistance 

genes are commonly regarded as disease susceptibility (S) genes that encode host 

proteins required for pathogen survival and proliferation. Host genes encoding 

such susceptible factors are promising candidates for engineering disease 

resistance through loss-of-function of the host susceptible factors, as inactivation of 

host susceptible factors can limit pathogen survival and growth (Pavan et al., 2010; 

Gawehns et al., 2013; van Schie and Takken, 2014). Indeed, loss-of-function of the 

Mildew resistance locus o (Mlo) in barley was found to confer recessively inherited 

broad-spectrum resistance against powdery mildew (Jørgensen, 1992). Barley Mlo 

is a plasma membrane-localized protein that is required for pathogen invasion 
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(Humphry et al., 2006; Kusch and Panstruga, 2017). Notably, mlo-mediated 

powdery mildew resistance has also been described in other plant species, 

including A. thaliana, tomato, pea, wheat, apple, grapevine, pepper, rose, tobacco, 

cucumber and melon (Kusch and Panstruga, 2017). Other successful examples of 

recessive resistance genes are the eukaryotic translation elongation initiation 

factor genes eif4e and eif4g, conferring potyvirus resistance in lettuce, melon, 

tomato, pepper, barley, pea and rice (Wang and Krishnaswamy, 2012), and rice 

xa13, xa25 and Os11N3 (also named as OsSWEET11, OsSWETT13 and OsSWEET14, 

respectively), conferring bacterial blight resistance against X. oryzae pv. oryzae 

(Zhang and Wang, 2013). Notably, the application of mutated alleles of host S genes 

in breeding programmes can be problematic if pleiotropic effects, such as dwarfism 

or spontaneous necrotic lesions, are observed in loss-of-function mutants of S genes 

(van Schie and Takken, 2014). 

RNA interference (RNAi) is a widely conserved regulatory mechanism that 

affects gene expression in eukaryotic organisms, and cross-kingdom RNAi and 

small RNA (sRNA) trafficking have been described in plant-pathogen interactions 

(Knip et al., 2014; Weiberg and Jin, 2015). Cross-kingdom RNAi from a host plant to 

its interacting pathogens or pests is called host-induced gene silencing (HIGS), a 

phenomenon in which a host plant-generated sRNA triggers silencing of a pathogen 

gene (Nunes and Dean, 2012; Koch and Kogel, 2014). Although the HIGS approach 

has been examined in multiple crops to combat plant diseases caused by various 

pathogens (Nunes and Dean, 2012; Koch and Kogel, 2014; Wang et al., 2017), it has 

not yet been applied in breeding programmes to control plant diseases. In this 

thesis, we also assessed whether HIGS can be utilized to control Verticillium wilt 

disease by silencing virulence genes of Verticillium dahliae through the host plants 

tomato and A. thaliana (Chapter 6). Our results clearly show that plants transiently 

(in tomato) or stably (A. thaliana) expressing RNAi constructs targeting transcripts 

of genes that are essential for V. dahliae pathogenicity can become protected from 

Verticillium wilt disease, suggesting that HIGS against V. dahliae may be exploited 

to engineer Verticillium wilt resistance in crops (Chapter 6). Indeed, a recent report 

on HIGS protecting Verticillium wilt-susceptible cotton plants from V. dahliae 

infection has been described (Zhang et al., 2016). Considering that HIGS is limited 

by a ban on growing genetically modified (GM) crops in large regions of the world, 
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and the instability of engineered RNA silencing traits, an alternative sRNA 

trafficking-based disease control approach called spray-induced gene silencing 

(SIGS) is proposed in which spaying sRNAs that target essential pathogen genes on 

plant surfaces confer effective crop protection (Wang and Jin, 2017). SIGS has 

recently been tested for controlling Fusarium graminearum infection on barley 

(Koch et al., 2016), inhibiting Botrytis cinerea on vegetables, fruits and flower petals 

(Wang et al., 2016), and protecting cowpea and tobacco from plant viruses (Mitter 

et al., 2017). sRNA trafficking-based disease control approaches could be 

alternatives for developing disease resistance in crops for which no natural 

resistance source is available. 

 
CONCLUDING REMARKS 

Ultimately, once it is fully understood how ligand specificity and signal 

transduction activation by immune receptors is biochemically established, we may 

be able to design complete immune receptors de novo. Potentially, this allows 

designing a spectrum of immune receptors for any given pathogen once we know 

what molecules are exposed during host colonization. Presently, however, 

recognition specificities are scarce and should be managed wisely. Thus, strategies 

based on the transfer of individual immune receptor genes can be rapidly overcome 

under field conditions and pyramiding of immune receptors that recognize 

different ligands is imperative (Kim et al., 2012; Zhu et al., 2012; Jo et al., 2014; 

Haesaert et al., 2015; Xiao et al., 2016). Moreover, durability of the immune 

receptors can be further reinforced by using strategies to engineer immunity other 

than those exploiting immune receptors, such as editing of host susceptibility genes 

or exploitation of sRNA trafficking-based disease control strategies (e.g. HIGS and 

SIGS).  
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SUMMARY 

Plant-pathogenic microbes secrete effector molecules to establish disease on their 

hosts, whereas plants in turn employ immune receptors to try and intercept such 

effectors in order to prevent pathogen colonization. Based on structure and 

subcellular location, immune receptors fall into two major classes; cell surface-

localized receptors that comprise receptor kinases (RKs) and receptor-like proteins 

(RLPs) that monitor the extracellular space, and cytoplasm-localized nucleotide-

binding domain leucine-rich repeat receptors (NLRs) that survey the intracellular 

environment. Chapter 1 describes conceptual advances explaining the plant innate 

immunity system, and advances in our understanding of genetic resistance against 

Verticillium wilt, with emphasis on Verticillium resistance mediated by the Ve locus. 

In tomato (Solanum lycopersicum), race-specific resistance to Verticillium wilt is 

governed by the extracellular leucine-rich repeat (eLRR)-containing RLP-type cell 

surface receptor Ve1, that is encoded by the Ve locus, through recognition of the 

effector protein Ave1 that is secreted by race 1 strains of Verticillium spp.. 

Homologues of Verticillium dahliae Ave1 (VdAve1) are found in plants and in a 

number of plant pathogenic microbes, and some of these VdAve1 homologues are 

recognized by tomato Ve1. The research described in this thesis aims to 

characterize the role of the tomato cell surface-localized immune receptor Ve1, and 

its homologues in various other plant species, in Verticillium wilt resistance. 

Research on effectors secreted by pathogens during host attack has dominated 

the field of molecular plant-microbe interactions over recent years. Chapter 2 

reviews the current status of research on how soil-borne pathogens employ 

secreted effector molecules to support host colonization. Most well-studied 

effectors are proteinaceous molecules, but also non-canonical effectors, such as 

metabolites and small RNA molecules, have been described. Soil-borne pathogens 

live in a complex and sophisticated below-ground environment. In addition to 

targeting of plant components, part of the effector catalogue may be required for 

self-defense against, and targeting of, other microbiome partners, including 

antagonists and competitors. 

It has previously been demonstrated that many eLRR-containing cell surface-

localized immune receptors often recognize short peptide sequence stretches as 

epitopes of their pathogen ligands. In Chapter 3, we aimed to identify a minimal 
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motif in VdAve1 that is necessary and sufficient for recognition by the tomato cell-

surface immune receptor Ve1. Epitope prediction, serial deletion mutants, domain 

swaps, synthetic peptides, chimeric protein and three-dimensional modelling were 

exploited to identify which part of the effector protein VdAve1 is recognized by Ve1. 

Our analyses revealed that the C-terminus as well as the N-terminus are 

individually required, but not sufficient, to activate Ve1-mediated immunity. A 

three-dimensional model of the VdAve1 protein explains why both termini are 

required, by showing that both termini co-localize on a surface-exposed patch of 

the VdAve1 protein. We propose that a surface-exposed patch of the VdAve1 

protein that is composed of co-localized N- and C- termini is recognized by the 

tomato cell-surface immune receptor Ve1. 

In Chapter 4, we describe the cloning and characterization of tomato Ve1 

homologues within and outside of the Solanaceae family, and demonstrate that 

particular Ve1 homologues from tobacco (Nicotiana glutinosa; NgVe1), potato 

(Solanum tubersoum; StuVe1), wild eggplant (Solanum torvum; StoVe1) and hop 

(Humulus lupulus; HLVe1-2A) serve as functional Ve1 homologues by conferring 

resistance to race 1 V. dahliae through recognition of VdAve1, implying that 

functional Ve1 homologues are conserved across plant species within and outside 

the Solanaceae. 

It was previously demonstrated that heterologous expression of tomato Ve1 in 

the model plant Arabidopsis thaliana that does not normally respond to the 

Verticillium effector Ave1, leads to Verticillium wilt resistance against race 1 

Verticillium spp. In Chapter 5 we investigated whether tomato Ve1 can confer 

Verticillium wilt resistance when expressed in the crop species tobacco (Nicotiana 

tabcum) and cotton (Gossypium hirsutum). Stable transgenic tobacco and cotton 

lines constitutively expressing tomato Ve1 were generated. Expression of tomato 

Ve1 in tobacco resulted in stunted growth, while cotton plants expressing Ve1 did 

not show growth retardation. Ve1-transgenic tobacco and cotton plants displayed 

enhanced resistance against Verticillium wilt in an Ave1-dependent manner. This 

demonstrates that the functionality of tomato Ve1 in resistance against Verticillium 

wilt through recognition of the Verticillium effector Ave1 is retained after transfer 

to tobacco and cotton. 
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Host-induced gene silencing (HIGS) is an RNA interference (RNAi)-based 

process in which small RNAs are produced by the host plant to target parasite 

transcripts. HIGS has recently emerged as a promising strategy for the 

improvement of plant resistance against pathogens by silencing genes that are 

essential for these pathogens. In Chapter 6, we assessed whether HIGS can be 

deployed to inhibit Verticillium wilt disease by silencing previously identified 

virulence genes of V. dahliae (encoding Ave1, Sge1 and NLP1 respectively) through 

the host plants tomato and A. thaliana. Firstly, we established a Tobacco rattle virus 

(TRV)-mediated HIGS assay through targeting of V. dahliae Ave1 transcripts in Ve1 

tomato plants, and further used this approach to assess whether HIGS against V. 

dahliae in tomato could be established through TRV constructs targeting previously 

identified V. dahliae virulence factors. We also investigated whether HIGS against V. 

dahliae could be established in transgenic A. thaliana plants through hairpin RNA-

based RNAi constructs targeting transcripts of the same previously identified V. 

dahliae virulence genes. Our results clearly show that plants transiently (in tomato) 

or stably (in A. thaliana) expressing RNAi constructs targeting transcripts of genes 

that are essential for V. dahliae pathogenicity can become protected from 

Verticillium wilt disease. 

In Chapter 7, the major results described in this thesis are discussed and 

placed in a broader perspective. Taking the findings of this thesis into account, a 

current overview for the improvement of plant disease resistance through the 

deployment of plant immune receptors is presented, and future directions to 

enhance disease resistance in crops through the exploitation of immune receptors 

and through using other approaches, such as editing of host susceptibility genes or 

exploitation of sRNA trafficking-based disease control strategies, is discussed. 
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  7th Utrecht PhD summer school on Environmental Signaling, Utrecht, NL 23-26 Aug 2013 

  EPS Spring School "Host-Microbe Interactomics", Wageningen, NL 02-04 Jun 2014 

  Data analyses and visualizations in R (for biologist), Wageningen, NL 12-13 Dec 2016 

►  Journal club   

  Member of literature discussion at Verticillium group in Phytopathology Lab. 2012-2016 

►  Individual research training   

Subtotal In-Depth Studies 5.4 credits* 

    

4) Personal development date 

►  Skill training courses   

  Practical English, Wageningen, NL Oct 2012-Feb 2013 

  English IETLS training, Wageningen, NL Jun-Jul 2013 

  Private English training course, Wageningen, NL Jan 2015-May 2015 

  Scientific Writing, Wageningen, NL May-Jul 2016 

►  Organisation of PhD students day, course or conference   

►  Membership of Board, Committee or PhD council   

Subtotal Personal Development 4.1 credits* 

    

TOTAL NUMBER OF CREDIT POINTS* 42.7 

Herewith the Graduate School declares that the PhD candidate has complied with the educational requirements set by 
the Educational Committee of EPS which comprises of a minimum total of 30 ECTS credits    

  

* A credit represents a normative study load of 28 hours of study.  
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