Functional Analyses of Plant-specific Histone Deacetylases
Their Role in Root Development, Stress Responses and Symbiotic Interactions

Huchen Li
PROPOSITIONS

Plant-specific histone deacetylases regulate the switch from cell division to expansion during Arabidopsis root development.

(this thesis)

Environmental stimuli determine the subcellular localization of plant-specific histone deacetylases.

(this thesis)

The conclusion that hypomethylation of the Karma locus underlies the mantled phenotype in oil palm fruit requires genetic evidence.

(Ong-Abdullah et al., 2015. Nature 525, 533-537)

Science should not be driven only by our needs of today.

The increase of communication options has led to reduced connections.

The time of pursuing a PhD career abroad compromises that of maintaining domestic partnership.

Propositions belonging to the thesis, entitled

“Functional Analyses of Plant-specific Histone Deacetylases: Their Role in Root Development, Stress Responses and Symbiotic Interactions”

Huchen Li

Wageningen, 16 October 2017
Functional Analyses of Plant-specific Histone Deacetylases
Their Role in Root Development, Stress Responses and Symbiotic Interactions
Thesis committee

Promotor
Prof. Dr T. Bisseling
Professor of Molecular Biology
Wageningen University & Research

Co-Promotor
Dr. O. Kulikova
Researcher, Laboratory of Molecular Biology
Wageningen University & Research

Other members
Prof. Dr J. Bakker, Wageningen University & Research
Prof. Dr F. P. M. Govers, Wageningen University & Research
Dr K. A. Boutilier, Wageningen University & Research
Dr P. F. Fransz, University of Amsterdam

This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences.
Functional Analyses of
Plant-specific Histone Deacetylases
Their Role in Root Development, Stress
Responses and Symbiotic Interactions

Huchen Li

Thesis
submitted in fulfilment of the requirements for the degree of doctor
at Wageningen University
by the authority of the Rector Magnificus,
Prof. Dr A.P.J. Mol,
in the presence of the
Thesis Committee appointed by the Academic Board
to be defended in public
on Monday 16 October 2017
at 4:00 p.m. in the Aula.
Huchen Li

Functional Analyses of Plant-specific Histone Deacetylases
Their Role in Root Development, Stress Responses and Symbiotic Interactions
188 pages

PhD thesis, Wageningen University, Wageningen, the Netherlands (2017)
With references, with summary in English

ISBN: 978-94-6343-681-6
DOI: 10.18174/422163
CONTENTS

OUTLINE

<table>
<thead>
<tr>
<th>CHAPTER</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General Introduction</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Plant-specific Histone Deacetylases HDT1/2 Regulate GIBBERELLIN 2-OXIDASE 2 Expression to Control Arabidopsis Root Meristem Cell Number</td>
<td>33</td>
</tr>
<tr>
<td>3</td>
<td>Plant-specific Histone Deacetylases Are Involved in Halotropism in Arabidopsis</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>MAPK-triggered Chromatin Reprogramming by Histone Deacetylase in Plant Innate Immunity</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>The Function of Medicago Plant-specific Histone Deacetylases During Nodule Development</td>
<td>121</td>
</tr>
<tr>
<td>6</td>
<td>MtHDT2 Regulates Arbuscule Formation in the Medicago truncatula (Medicago) – Arbuscular Mycorrhizal (AM) Symbiosis</td>
<td>151</td>
</tr>
<tr>
<td>7</td>
<td>General Discussion</td>
<td>169</td>
</tr>
</tbody>
</table>

SUMMARY | 181

ACKNOWLEDGEMENTS | 184

CURRICULUM VITAE | 185
OUTLINE

Plants being sessile organisms experience a constantly changing environment. They have to adapt their growth and development in order to cope with multiple environmental stimuli. Some stresses, either biotic such as pathogenic bacteria and fungi, or abiotic for instance salinity or nutrient deprivation, in general result in transient reduction of growth, so plants can retain energy to acquire resistance. Roots of some land plants could also develop beneficial interactions with soil microorganisms like arbuscular mycorrhiza or rhizobia. During these interactions, new structures can be formed on plant roots. These are arbuscule containing root cortical cells in the case of symbiotic interaction with arbuscular mycorrhiza and root nodules in the case of the legume rhizobium symbiosis.

The ability of plants to cope with (a)biotic environmental stresses relies on flexible mechanisms for reprogramming gene expression. Transcriptional factors (TFs) and chromatin remodelling factors play important roles in reprogramming genes expression in response to environmental stimuli, as well as during developmental transitions. The role of TFs in this reprogramming is intensively studied. However the knowledge on chromatin remodelling factors is elusive. The objective of this thesis is to investigate the role of plant-specific histone deacetylases (HDTs) in adaptation of plant development to biotic and abiotic factors.

In **Chapter 1** an overview of chromatin modifications mediated plant response to environmental factors, as well as regulated cell fate transitions are presented. *Arabidopsis thaliana* (Arabidopsis) roots and *Medicago truncatula* (Medicago) root nodules are model systems to study cell fate transitions, therefore the current knowledge concerning chromatin remodelling factors controlled cell fate switches during these two organs development is introduced.

In **Chapter 2** we studied how in Arabidopsis roots the switch from cell division to expansion is controlled by chromatin modification. We characterize two paralogs encoding plant-specific histone deacetylases, AtHDT1 and AtHDT2, involved in the regulation of this switch. The regulation framework of AtHDT1/2 is investigated by transcriptome analyses and ChIP. The results show that AtHDT1/2 repress *C_{19}-gibberellin 2-oxidase 2* (*AtGA2ox2*) expression and in this way regulate the switch from cell division to expansion. Most likely AtHDT1/2 are involved in fine tuning gibberellin level in root tips.
In Chapter 3 we explored whether the AtHDT1/2 play a role in halotropism, that is a response of plant roots to avoid a saline environment. We show that AtHDT1/2 knock-down mutants display a more severe halotropic response. Interestingly, during halotropism AtHDT1/2 levels are reduced, whereas expression of one of their targets, AtGA2ox2, is induced at the high salt side. Constitutive expression of AtHDT2, as well as exogenous application of GA reduces halotropic response. We discuss that an asymmetric distribution of AtHDT1/2 that is formed during halotropism most likely decreases the GA concentration at the high salt side and through this way is involved in halotropism.

AtHDT1/2 proteins are nuclei localized but more abundant in nucleolus than in nucleoplasm. In spite of this they regulate the transcription of a plethora of genes in nucleoplasm. In Chapter 4 we studied a mechanism that regulates the shuttle of HDT proteins between nucleolus and nucleoplasm under biotic stress. Previously Heribert Hirt’s laboratory (Institute of Plant Sciences, Evry, France) discovered that mitogen-activated protein kinases (MPKs) can phosphorylate many proteins including AtHDT2. We collaborated with this group to study whether the phosphorylation status of AtHDT2 determines its sub-nuclear localization. We show that AtHDT2 directly interacts with AtMPK3 and is phosphorylated by it. Upon flagellin22 treatment that activates MPK signalling pathway, translocation of AtHDT2 from nucleolus to nucleoplasm occurs, leading to transcriptional reprogramming of defense genes. This provides a protein synthesis independent mechanism by which AtHDT2 becomes available for gene regulation upon biotic stress.

During symbiotic interactions, Medicago can form nitrogen fixing root nodules with rhizobia and develop cortical cells with arbuscules. In Chapter 5 and Chapter 6, we explored the function of HDTs in controlling these two symbiotic interactions.

In Chapter 5, we studied the role of all 3 Medicago HDT genes (MtHDTs) in nodule development. Functional analyses of the MtHDT genes using a RNA interference approach show that they are functionally redundant in regulating nodule development. Knock-down of MtHDTs blocks the development of nodule primordia. The number of formed nodules is very low and in these nodules meristem is mal-functional and rhizobial infection is hampered. Transcriptome analyses show that MtHDTs are involved in controlling the expression of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase (MtHMGR) genes. This
includes as well MtHMGR1 whose encoded protein is known to interact with MtDMI2, a receptor like kinase which is a component of the common signalling pathway for nodule symbiosis. It has been shown that MtHMGR1 is required to initiate Ca\(^{2+}\) spiking and symbiotic gene expression in Medicago roots in response to rhizobia. These data suggest that MtHDTs are involved in regulating MtHMGR1 expression to control nodule development.

The role of MtHDTs during arbuscules development was studied in Chapter 6. We show that in mycorrhiza colonized root segments, MtHDT2 is expressed whereas MtHDT1 and MtHDT3 are not. MtHDT2 is especially activated in arbuscule containing cells and in these cells MtHDT2 displays variable sub-nuclear localization patterns. Knock-down of MtHDT2 significantly reduces arbuscule formation in mycorrhized root segments, and possibly affects AM symbiosis maintenance.

In Chapter 7, I discussed the data obtained in this thesis, integrated them with published data and outlined perspectives for future research.
CHAPTER 1

General Introduction

Huchen Li

Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
Unlike animals, plants are sessile organisms that cannot escape from their environment. Therefore they evolved sophisticated mechanisms to adapt their growth and development in response to environmental cues, including (a) biotic stresses (Boyer, 1982; Grativol et al., 2012). These stresses reprogram gene expression in specific tissues or cells, along with alterations in enzymatic activity, metabolism and cell cycle progression (Cutler et al., 2010). Transcription factors (TFs) and chromatin remodelling factors contribute to these alterations by regulating expression of genes. Over recent years the stress-responsive TF networks have been intensively studied (Jisha et al., 2015; Hu et al., 2016; Song et al., 2016; Zhu, 2016). In most stress responses, the transcriptional reprogramming is also accompanied by changes in chromatin structure (Mirouze and Paszkowski, 2011; Luo et al., 2012a; Asensi-Fabado et al., 2017; Jiang and Berger, 2017). Here I describe mechanisms that contribute to the regulation of gene expression by altering chromatin structure and discuss how these mechanisms are involved in stress responses, developmental transitions and symbiotic interactions.

Chromatin and Transcription

Eukaryotic genomic DNA is packed together with histone proteins in chromatin. The fundamental repeating unit of chromatin is the nucleosome, which is constituted of 147 base pairs of DNA wrapped around an octamer of histones (Figure 1A). A standard histone octamer consists of two pairs of each core histone proteins H2A, H2B, H3 and H4. These core particles are connected by 20 base pairs of linker DNA. One additional H1 protein is associated with linker DNA (Venkatesh and Workman, 2015). A long chain of nucleosomes constitutes chromatin and its additional level of condensation determines whether a gene is accessible for TFs and the basal transcriptional machinery (Ernst and Kellis, 2012; Liu et al., 2015). Chromatin functions as an extra strata of gene regulation above DNA sequences recognized by TFs and in some cases modifications of chromatin structure can be inherited to the next generations. Therefore their modifications have been named as epigenetic mechanisms (Cosgrove and Wolberger, 2005).

The formation of a specific chromatin structure can be mediated by four type of modifications: (1) DNA methylation that occurs on cytosine (C) in CG, CHG and CHH (H represents A, C, T) and in general leads to gene repression. It is catalyzed by DNA methyltransferases and demethylases (Teixeira and Colot,
General Introduction

(2009; Matzke and Mosher, 2014; Bewick et al., 2017; Bewick and Schmitz, 2017); (2) Repositioning (loop, twist or slide) of nucleosomes along the DNA which is controlled by ATP-dependent chromatin remodelling factors (Saha et al., 2006b, a; Henikoff, 2008; Clapier et al., 2017); (3) Histone variants, that exchange with regular histones and result in an active or silent chromatin (Kamakaka and Biggins, 2005; Stroud et al., 2012; Yelagandula et al., 2014;)

Figure 1. Structure, Assembly and Modifications of the Nucleosome Unit.

(A) Two histones H3-H4 heterodimers form a tetramer and two H2A-H2B dimers associate with H4 to form the protein scaffold, which is wrapped by 147 base pairs of nucleotides, forming a nucleosome unit.

(B) Amino acid residues in N-terminal tails of H2A, H2B, H3 and H4, representing potential post-translational modification (PTM) sites. N, amino terminus; C, carboxyl terminus; K, lysine; S, serine; E, glutamic acid; A, acetylation; M, methylation and P, phosphorylation. Modified from (Marks et al., 2001; Venkatesh and Workman, 2015).
Zhang et al., 2017) and (4) Post-translational modifications (PTMs) of residues in the N-terminal histone tails, such as acetylation, methylation, phosphorylation and others (Figure 1B) (Strahl and Allis, 2000; Kouzarides, 2007; Xiao et al., 2016). Acetylation of the lysine residues at the N-terminus of histone proteins is one of the major post-translation modification of proteins controlled by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs add the acetyl group to histones and in general this causes an “open” chromatin preferentially associated with active genes. HDACs remove acetyl group from histones and are responsible for a “closed” chromatin configuration and inactivation of genes (Marks et al., 2001; Shahbazian and Grunstein, 2007). Histone methyltransferases catalyze the transfer of 1 to 3 methyl groups to the H3 or H4 histones. Their activities are counteracted by the histone demethylases (Liu et al., 2010; Du et al., 2015). Depending on position of the methyl groups, methylated histones can either contribute to activation (such as H3K4me2/3) or repression (such as H3K27me2/3 and H4K20me3) of genes (Sanchez and Gutierrez, 2009; Le Masson et al., 2012; Gan et al., 2015). Phosphorylation of histone H3 serine 10/28 leads to chromosome condensation and repression of gene expressions (Ozawa, 2008; Sawicka and Seiser, 2012). These post-translational modifications of histones constitute the so-called ‘histone code’ (Jenuwein and Allis, 2001). Together with the other three types of modifications, they affect chromatin status and determine the expression level of genes.

Environmental Stresses and Chromatin Structure

Upon perceiving environmental cues, some plant cells change their transcriptional program. Alterations in chromatin structure are a prerequisite for this, or a consequence of this transcriptional reprogramming.

DNA Methylation Affects Stress Responses

A number of studies have shown that different environmental stresses alter the methylation status of DNA. This depends on the type of stresses as well as plant species involved (Table 1) (Peng and Zhang, 2009). For example, cold stress induces the expression of a cold-responsive gene ZmMI1 in maize, and this induction correlates with a hypomethylation of the gene (Steward et al., 2002). In tobacco leaves cold stress also causes demethylation in the coding sequence of a glycerophosphodiesterase-like gene (NtGDPL). The induced NtGDPL demethylation correlates with its higher expression level, this also
Table 1. Studies that have analyzed the function of chromatin remodelling factors in response to stresses. The stresses applied, the specific chromatin modification monitored, the species and genotype and the regulated genes are indicated.

<table>
<thead>
<tr>
<th>Stress</th>
<th>Chromatin modification type</th>
<th>Species, genotype</th>
<th>Genes regulated</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold</td>
<td>DNA methylation</td>
<td>Maize</td>
<td>ZmMt1</td>
<td>(Steward et al., 2002)</td>
</tr>
<tr>
<td>Cold, salt, aluminium and oxidative</td>
<td>DNA methylation</td>
<td>Tabacco</td>
<td>NtGDPL</td>
<td>(Choi and Sano, 2007)</td>
</tr>
<tr>
<td>Drought</td>
<td>DNA methylation</td>
<td>Pea</td>
<td></td>
<td>(Labra et al., 2002)</td>
</tr>
<tr>
<td>Salt</td>
<td>DNA methylation</td>
<td>Arabidopsis, met1</td>
<td>HKT1</td>
<td>(Baek et al., 2011)</td>
</tr>
<tr>
<td>Virus infection</td>
<td>DNA methylation</td>
<td>Tabacco</td>
<td></td>
<td>(Kovalchuk et al., 2003)</td>
</tr>
<tr>
<td>Avirulent bacteria</td>
<td>DNA methylation</td>
<td>Arabidopsis, drm1/drm2 /drm3</td>
<td></td>
<td>(Zhang, 2012)</td>
</tr>
<tr>
<td>Fusarium oxysporum</td>
<td>DNA methylation</td>
<td>Arabidopsis, ros1/dml2 /dml3</td>
<td></td>
<td>(Le et al., 2014)</td>
</tr>
<tr>
<td>SA</td>
<td>nucleosomal reposition</td>
<td>Arabidopsis</td>
<td>PR1</td>
<td>(Duque, 2016)</td>
</tr>
<tr>
<td>Drought</td>
<td>nucleosomal reposition</td>
<td>Arabidopsis</td>
<td>ABI5</td>
<td>(Han et al., 2012)</td>
</tr>
<tr>
<td>Heat</td>
<td>nucleosomal reposition</td>
<td>Arabidopsis</td>
<td></td>
<td>(Brzezinka et al., 2016)</td>
</tr>
<tr>
<td>JA, Ethylene, Pseudomonas syringae</td>
<td>nucleosomal reposition</td>
<td>Arabidopsis, syd</td>
<td></td>
<td>(Walley et al., 2008)</td>
</tr>
<tr>
<td>Osmotic stress</td>
<td>nucleosomal reposition</td>
<td>Arabidopsis</td>
<td></td>
<td>(Perruc et al., 2007; Han and Wagner, 2014)</td>
</tr>
<tr>
<td>Drought, salt and heat</td>
<td>nucleosomal reposition</td>
<td>Arabidopsis, MINU1Oe, CHR12Oe, CHR23Oe</td>
<td></td>
<td>(Mlynarova et al., 2007; Leegang et al., 2015)</td>
</tr>
<tr>
<td>Drought, ABA</td>
<td>histone variant</td>
<td>Arabidopsis, His1-3</td>
<td>RAB18</td>
<td>(Ascenzi and Gantt, 1997, 1999)</td>
</tr>
</tbody>
</table>

(continued on next page)
<table>
<thead>
<tr>
<th>Stress</th>
<th>Chromatin modification type</th>
<th>Species, Genotype</th>
<th>Genes regulated</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dehydration, low light intensity</td>
<td>histone variant</td>
<td>Arabidopsis, hta9/11</td>
<td>HSP70</td>
<td>(March-Diaz et al., 2008; Kumar and Wigge, 2010)</td>
</tr>
<tr>
<td>Salt, drought</td>
<td>histone acetylation</td>
<td>Arabidopsis, hda9</td>
<td></td>
<td>(Zheng et al., 2016)</td>
</tr>
<tr>
<td>Cold</td>
<td>histone acetylation</td>
<td>Maize</td>
<td>ZmDREB1,</td>
<td>(Hu et al., 2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ZmCOR413</td>
<td></td>
</tr>
<tr>
<td>Cold</td>
<td>histone acetylation</td>
<td>Rice</td>
<td>OsDREB1</td>
<td>(Roy et al., 2014)</td>
</tr>
<tr>
<td>Drought</td>
<td>histone acetylation</td>
<td>Rice</td>
<td></td>
<td>(Fang et al., 2014)</td>
</tr>
<tr>
<td>Magnaporthe oryzae, Xanthomonas oryzae pv oryzae</td>
<td>histone acetylation</td>
<td>Arabidopsis, OsHDT701OE, OsHDT701-RNAi</td>
<td></td>
<td>(Ding et al., 2012a)</td>
</tr>
<tr>
<td>Submergence</td>
<td>histone acetylation/methylation</td>
<td>Rice</td>
<td>OsADH1,</td>
<td>(Tsui et al., 2006)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OsPDC1</td>
<td></td>
</tr>
<tr>
<td>Salt, heat, cold and</td>
<td>histone acetylation/methylation</td>
<td>Arabidopsis, hac1-1</td>
<td>WRKY53,</td>
<td>(Singh et al., 2014)</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td></td>
<td></td>
<td>FRK1,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NHL10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RD29A/B,</td>
<td>(Kim et al., 2008; Kim et al., 2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RD20,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>RAP2.4</td>
<td></td>
</tr>
<tr>
<td>Drought</td>
<td>histone acetylation/methylation</td>
<td>Arabidopsis</td>
<td></td>
<td>(Shen et al., 2014)</td>
</tr>
<tr>
<td>Salt</td>
<td>histone methylation</td>
<td>Arabidopsis, JMJ15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altanaria brassicicola, Botrytis cinerea</td>
<td>histone methylation</td>
<td>Arabidopsis, sdg8-1, sdg25-2, sdg825</td>
<td>LAZ5,</td>
<td>(Berr et al., 2010; Palma et al., 2010; Lee et al., 2016)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CCR2,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CER3</td>
<td></td>
</tr>
<tr>
<td>Cold</td>
<td>histone methylation</td>
<td>Arabidopsis</td>
<td>FLC</td>
<td>(Shindo et al., 2006)</td>
</tr>
<tr>
<td>Dehydration</td>
<td>histone methylation</td>
<td>Arabidopsis</td>
<td>RD29A/B</td>
<td>(Ding et al., 2012b)</td>
</tr>
</tbody>
</table>
occurs upon salt, aluminium and oxidative stresses (Choi and Sano, 2007). While under drought stress or after pathogenic infection, root tips of the pea or tobacco show a hypermethylation DNA status (Labra et al., 2002; Kovalchuk et al., 2003).

The involvement of DNA methylation in response to environmental cues is underlined by mutations in genes that encode DNA methyltransferases (MET1, CMT3, DRM1 and DRM2) or demethylases (ROS1, DME, DML2 and DML3) as the mutants display altered responses to stresses (Rout and Das, 2013; Sanchez et al., 2016). An Arabidopsis met1 mutant is hypersensitive to salt stress due to the hypomethylation of HKT1 which encodes a sodium transporter (Baek et al., 2011). drm1/drm2/cmt3 mutants are more resistant to bacterial pathogens, and a hypomethylation of pathogen-responsive genes may be responsible for this (Zhang, 2012). In contrast, ros1/dml2/dml3 mutants show increased susceptibility to the fungal pathogen Fusarium oxysporum (Le et al., 2014).

Repositioning of Nucleosomes During Stress Responses

Unlike DNA methylation that mediates gene repression at the DNA level, repositioning of nucleosomes alters their density. In general, higher expression levels correlate with lower nucleosome occupancy (Clark and Wolffe, 1991; Kwon et al., 2009; Han et al., 2015). Changes in nucleosome density occurs when plants encounter stress. For example, salicylic acid (SA) reduces nucleosome occupancy of PR1, a gene that is highly induced upon SA treatment or pathogenic attack (Duque, 2016). Under drought stress, ABI5, an ABA response regulator, is de-repressed by a reduced nucleosome occupancy (Han et al., 2012). This is most likely mediated by BRM, a chromatin remodelling ATPase which is part of SWI/SNF complexes. BRM is also involved in heat stress by interacting with FGT1, this protein is known to be associated with the promoter regions of actively expressed genes in a heat-dependent fashion (Brzezinka et al., 2016). Other known chromatin remodelling ATPase members, such as SYD, MINU1, PKL and CHR12/23 that affect nucleosome reposition also play a role in stress responses (Mlynarova et al., 2007; Perruc et al., 2007; Walley et al., 2008; Leeggangers et al., 2015). For example, syd mutants are hypersensitive to pathogenic fungus (Walley et al., 2008) and pkl mutants display a hypersensitive germination response to ABA (Perruc et al., 2007; Han and Wagner, 2014). Overexpression of MINU1 causes growth arrest under drought, salt and heat.
CHAPTER 1

stresses. While overexpression of CHR12/23 results in a pronounced reduction in germination under salt and heat stresses (Leeggangers et al., 2015), (Table 1).

Histone Variants and Stress Responses

Each histone type has a number of variants with some differences in amino acid sequence and structure. Histone variants differ in their affinity for DNA and for histone binding proteins. They can substitute their canonical counterpart and in this way change properties of nucleosomes (Talbert and Henikoff, 2014). It has been shown that genes encoding diverse histone variants are induced under various environmental stresses. For instance, in Arabidopsis, Histone H1.3 is induced by ABA and drought stress and it replaces H1 in nucleosomes of RAB18 and this facilitates the activation of RAB18 expression (Ascenzi and Gantt, 1997, 1999). This H1.3 variant is also required for plant adaptive responses to water deficiency combined with low light intensity (Rutowicz et al., 2015). Another example is the transcriptional activation of temperature sensitive genes in Arabidopsis. Upon heat stress Histone H2A.Z becomes part of nucleosomes in the vicinity of transcriptional start sites of these genes (Kumar and Wigge, 2010; Jarillo and Pineiro, 2015). This enrichment of H2A.Z is correlated with lower transcriptional activity of these genes (Coleman-Derr and Zilberman, 2012). In line with this, loss-of-function mutations in H2A.Z result in a constitutive expression of SAR which enhances resistance to pathogenic bacteria (March-Diaz et al., 2008), (Table 1).

Histone Post-translational Modification During Stress Responses

While histone variants have one or a few amino acid differences compared with their conventional counterparts, histone post-translational modifications only result in a reversible covalent modification at certain amino acids. Histone post-translational modifications (PTMs) are extremely important in the controlling of condensation degree of chromatin. Histone PTMs such as acetylation and methylation, are the most commonly used chromatin remodelling strategy by plants during (a)biotic stress (Grativol et al., 2012; Asensi-Fabado et al., 2017).

Upon salt and drought stress, a number of Arabidopsis genes involved in response to water deprivation are induced rapidly, possibly due to an increased H3K9 acetylation level at their promoters (Zheng et al., 2016). In maize, cold stress induces the expression of HDACs and this leads to a global deacetylation
of H3 and H4 within 24h. Repression of HDACs expression under cold stress, inhibits the expression of *DREB1* and *COR413*, two cold-responsive genes (Hu et al., 2011). The elevated acetylation level of H3K9 and H3K14 at the rice *DREB1* promoter occurs within 4h upon cold stress (Roy et al., 2014). Four rice HATs are significantly induced within 33 hours by drought stress and their overexpression increases the acetylation level on H3K9, H3K18, H3K27 and H4K5 (Fang et al., 2014). The alteration in acetylation level of histones occurs during biotic stress as well (Gomez-Diaz et al., 2012). Expression of *HDAC19* is induced during the interaction between Arabidopsis and pathogenic bacteria, and its expression is accompanied with changes in expression of jasmonic acid (JA) and ethylene-regulated genes (Zhou et al., 2005). A plant-specific HDAC, HDT701, regulates plant innate immunity after fungal pathogen infection in rice. Silencing of *HDT701* causes an increased H4 acetylation level and elevates transcription of defense-related genes (Ding et al., 2012a), (Table 1).

Besides acetylation, methylation of histones is also involved in regulating gene expression in response to various stresses. In Arabidopsis, salt stress alters genome-wide the H3K27me3 landscape within 24h (Sani et al., 2013). It also alters the H3K4me2/3 levels at salt-responsive gene loci, such as *RD29A/B*, *COR15A* and *P5CS1/2* which are preferentially modified by JMJ15, a histone H3K4 demethylase. The importance of JMJ15 is illustrated by its overexpression as this enhances salt tolerance (Shen et al., 2014). The histone methyltransferases SDG8/25 play a role in plant defense against fungal pathogens by modifying H3K4me2/3, H3K36me2/3 levels of a subset of genes which are involved in JA and ethylene signalling pathways in Arabidopsis. They are also required to trigger plant defense to pathogenic bacteria in tomato (Berr et al., 2010; Palma et al., 2010; Lee et al., 2016). Interestingly, plants could “remember” the stress by retaining H3K4/27me3 levels at certain genes (Kwon et al., 2009; Ding et al., 2012b; Espinas et al., 2016). One well known example is vernalization in which case increased H3K27me3 levels in the promoter of *FLC*, a negative regulator of flowering, correlates with exposure time to cold and results in gene repression (Shindo et al., 2006). A similar “memory” is also observed after dehydration stress. The H3K4me3 level at *RD29B* and *RAB18* is increased in response to dehydration stress, and this increase is retained during recovery (Ding et al., 2012b). This memory of stress by histone methylation enables plants to fortify their defense responses rapidly when the same stress re-occurs.
Several studies indicate that (de)acetylation and (de)methylation of histones can occur simultaneously and they together determine gene expression upon stresses. In rice submergence-inducible \textit{ADH1} and \textit{PDC1} genes are activated in a biphasic manner. The first induction occurs after 2h of submergence and is associated with a change from a H3K4me2 state to K3K4me3 of these genes. The second step occurs after 12h and an increased H3ac level of these genes might be responsible for this (Tsuji et al., 2006). Repetitive mild abiotic stress such as salt, heat and cold, as well as pathogen attack increase H3K4me2/3 and H3K9ac levels at pattern-triggered immunity genes, like \textit{WRKY53/FRK1/NHL10} and promote their transcription (Singh et al., 2014). In addition, a simultaneously induced enrichment of H3K4me3 and H3K9ac at drought-inducible genes, such as \textit{RD29A/B, RD20} and \textit{RAP2.4} is also observed under drought stress and they together promote the expression of these genes (Kim et al., 2008; Kim et al., 2012).

Enzymes that are involved in histone PTMs operate within multi-protein complexes of which at least one of the subunits has a DNA binding domain. A number of studies identified components of such complexes. In Arabidopsis, a plant-specific HDAC, HDT3, recruits a RPD3-type HDAC, HDA6, and they together regulate ABA responses (Sridha and Wu, 2006; Luo et al., 2012b). Silencing of \textit{HDT3/HDA6} increases H3K9ac as well as H3K14ac levels and decreases H3K9me2 levels which is associated with the induction of \textit{ABI1/2}, two ABA-responsive genes. HDA6/19 interacts with HDC1 which belongs to HDAC complex 1. This promotes histone deacetylation and attenuates depression of genes under drought stress (Perrella et al., 2013). HDA19 has also been shown to interact with MSI1 which belongs to a family of histone binding WD40-repeat proteins. The HDA19-MSI1 complex maintains low level of H3K9ac at ABA receptor genes and fine-tunes ABA signalling (Mehdi et al., 2016). While ADA2b, interacts with a HAT GCN5 that is required to maintain H3/4ac level at \textit{RD29B} and its mutation causes a reduced salt sensitivity (Kaldis et al., 2011).

Developmental Transitions and Chromatin Modifications

Chromatin structure changes not only in response to environmental stimuli, but also during developmental transitions (Kouzarides, 2007; Boycheva et al., 2014; Cao et al., 2015; Perino and Veenstra, 2016; Wang et al., 2016). When a transition occurs, cells alter their fate and gain a new identity that is accomplished by transcriptional reprogramming which can involve chromatin
General Introduction

modifications (Costa and Shaw, 2006; Kornet and Scheres, 2008; She et al., 2013; Moris et al., 2016). Chromatin modification mechanisms that regulate cell fate switches are well studied during the development of Arabidopsis roots.

Arabidopsis roots consist of three distinct zones, root meristem (RM), the elongation zone and differentiated zone (Verbelen et al., 2006), (Figure 2A). Cell fate switches occur not only at the transition from the RM to elongation zone, and from the elongation to differentiated zone, but also within the RM.

The RM is maintained by the quiescent center (QC) and its surrounding stem cells [Figure 2B, (van den Berg et al., 1995; Scheres, 2007)]. The stem cells divide to renew themselves and provide daughter cells which continue to divide for a while before differentiating into the various tissues that form the root. This switch from stem cell identity to differentiation is suppressed by two independent pathways controlled by transcription factors; the SHORT-ROOT(SHR)/SCARECROW (SCR) pathway and the PLETHORA (PLT) pathway (van den Berg et al., 1997; Sabatini et al., 2003; Aida et al., 2004; Cruz-Ramirez et al., 2013). It is also suppressed by chromatin remodelling factors, such as the histone acetyltransferase GCN5 and the chromatin remodelling ATPase BRM. Both GCN5 and BRM are required for proper regulation of PLT gene expression (Kornet and Scheres, 2009; Yang et al., 2015). Knock-out of BRM and GCN5 results in differentiation of QC and stem cells.

Some chromatin remodelling factors are required for suppression of the switch to differentiation of specific stem cells. For example, a layer of columella stem cells is located below the QC (Figure 2B). Upon division one of the daughter cells will differentiate into a columella cell (Dolan et al., 1993). This switch is suppressed by the histone deacetylase HDA19 as in the knock-down hda19 mutant columella stem cells are differentiated (Pi et al., 2015). The chromatin remodelling factor DECREASED DNA METHYLATION 1 (DDM1) might also play a role at this switch, as DDM1 is absent in the columella, this results in the most hyper-methylated genome in columella cells, compared with other cell types of the RM (Kawakatsu et al., 2016).

Transit amplifying cells divide a few times before they switch to expansion in the elongation zone (Scheres et al., 1994; Kang et al., 2003; Ishida et al., 2010), (Figure 2A). Although chromatin remodelling factors associated with the switch from cell division to expansion are unknown, transit amplifying cells are
Figure 2. Longitudinal Schematic Views of the Arabidopsis Root and Medicago Nodule Primordium.

(A) Arabidopsis root consists of the meristem zone, elongation zone and differentiated zone. Boundaries between three zones are indicated by arrowheads. The dividing cells are in the meristem zone, expanding cells are in the elongation zone. Cells in the differentiated zone are visualized by emergence of root hairs in epidermis.

(continued on next page)
characterized by weaker and more dynamic histone-DNA interactions than cells from elongation zone. This is at least in part determined by histone acetylation levels (Rosa et al., 2014).

The expanding cells form the elongation zone and reach their final size at the beginning of the differentiated zone (Figure 2A). There in specific epidermal cells root hairs emerged. A histone deacetylase HDA18 is shown to affect the differentiation of hair and non-hair epidermal cells. Both knock-out and overexpression of HDA18 result in epidermal cells with root hairs at the non-hair position (Xu et al., 2005; Liu et al., 2013).

Legume Root Nodule Development and Chromatin Modifications

Legumes can interact with rhizobium bacteria that results in the formation of a new root organ, the nodule. Nodule formation starts with perception of Nod factors, which are secreted by rhizobia. This induces transcriptional reprogramming in different root cell types and changes their cell fates. In the model legume Medicago the first cell fate switch occurs in pericycle, cortical and endodermal cells. These cells are mitotically activated and form a nodule primordium [Figure 2C, (Timmers et al., 1999; Xiao et al., 2014)]. The inner cortical cell layers (C4 and C5) form about 8 cell layers of the central tissue. Infection threads are initiated in root hairs and they grow towards the nodule primordia and enter the 8 layers of the future central tissue and there rhizobia are released into these cells. The middle cortical cell layer (C3) is also mitotically activated and from this the

(continued)

(B) Magnification of boxed area in (A) and marked in colour, indicating the organization of quiescent center and its surrounding initial cells that will differentiate to different cell types.

(C) A stage V nodule primordium (provided by T. Xiao). The Pericycle/Endodermis derived cells contribute to uninfected cell layers at the basal of the nodule. The inner cortex (C4 and C5) form around 8 layers of infected cells at the central tissue and the middle cortex (C3) gives rise to the future nodule meristem. The outer cortex (C1 and C2) and Ep have limited role in nodule ontology. The arrow indicates the infection thread. Pe, pericycle; En, endodermis; C1-5, cortical cell layers and Ep, epidermis.
nodule meristem is formed. The nodule meristem continuously adds cells to the central tissue and the peripheral tissues and this is the second cell fate switch, as the new added cells stop dividing and start to express early nodulation genes (Lohar et al., 2006). These new added cells form the infection zone where cells are infected by rhizobia and undergo endoreduplication (Vinardell et al., 2003).

Recently, a DNA demethylase gene \textit{MtDME} has been shown to be critical for the induction of endoreduplication of infected cells as well as differentiation of rhizobia (Satge et al., 2016; Montiel et al., 2017). This is the first chromatin remodelling factor that is shown to play a role during nodule development.

Concluding Remarks

Plants must coordinate their growth and development when exposed to stresses. It is obvious that a crosstalk between developmental pathways and stress signalling pathways exist. Chromatin modifications most likely function as a part of this crosstalk, as chromatin structure changes accompany developmental transitions, and chromatin structure is continuously modulated in response to environmental stimuli. However, their role in connecting environmental cues and developmental transitions is still elusive. This is possibly due to a few reasons: 1) Functional redundancy of chromatin remodelling factors. For example, 18 HDACs have been identified in Arabidopsis and they can be divided into three subfamilies: RPD3/HDA (12 members), HDT (4 members) and SIR2 (2 members) (Pandey et al., 2002; Hollender and Liu, 2008; Alinsug et al., 2009). Their catalytic substrates are histones and one HDAC might easily take over the function of the other; 2) Unknown spatial expression patterns of chromatin remodelling factors under control conditions and whether their spatial expression patterns will be affected by environmental stimuli. When these are known we could investigate the phenotype of specific cells/tissues/organs where genes are expressed and exclude secondary effects of others; 3) Severe/lethal phenotype of knockout mutants. Although single gene knockout mutants are available for most factors, they do not display any phenotype, and stacked combination could induce a severe/detrimental effect on plants and have not often been studied (Huang et al., 2007).

In our studies, we first focus on the role of HDTs in regulating Arabidopsis root development under control condition (Chapter 2). HDTs encode plant-specific HDAC with no sequence homology to the \textit{RPD3/HDA} and \textit{SIR2} subfamilies.
General Introduction

(Lusser et al., 1997). This phylogenetic divergence makes probable that there is no functional redundancy with other type of HDAC. 4 HDT genes present in Arabidopsis genome, therefore it is possible to determine their functional redundancy. We study their expression patterns under control (Chapter 2) and abiotic stress (Chapter 3) and biotic stress (Chapter 4) conditions. We then perform RNA interference to knockdown HDT(s) expression specifically to study their role in root growth and development under different conditions. The response of a HDT mutant under biotic stress is studied in (Chapter 4). Medicago has 3 HDT genes and the role of HDTs in regulating nodule (Chapter 5) and arbuscular mycorrhiza (Chapter 6) formation is explored.

REFERENCES

General Introduction

ZmDREB1 gene in maize. Plos One 6, e22132.

Complex1 Expression Level Titrates Plant Growth and Abscisic Acid Sensitivity in Arabidopsis. The Plant cell 25, 3491-3505.

the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response. Genes & development 20, 3079-3083.

Yang, S., Li, C., Zhao, L., Gao, S., Lu, J., Zhao, M., Chen, C.Y., Liu, X., Luo, M., Cui, Y,

CHAPTER 2

Plant-specific Histone Deacetylases HDT1/2 Regulate GIBBERELLIN 2-OXIDASE 2 Expression to Control Arabidopsis Root Meristem Cell Number

Huchen Li, a Jesus Torres-Garcia, a David Latrasse, b,c Moussa Benhamed, c,d Stefan Schilderink, a Wenkun Zhou, e Olga Kulikova, a Heribert Hirt, b,d Ton Bisseling a,1

a Department of Plant Sciences, Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
b Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - Université d’Evry Val d’Essonne - ERL CNRS 8196 - Saclay Plant Sciences, 2 rue Gaston Crémieux, 91057 Evry, France
c Institut de Biologie des Plantes (IBP), CNRS-Université Paris-Sud 11, UMR 8618, 91405 Orsay cedex, France.
d King Abdullah University of Sciences and Technology, Thuwal, Saudi Arabia
e Department of Plant Sciences, Plant developmental Biology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands

1 Address correspondence to: ton.bisseling@wur.nl

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantcell.org) is: Ton Bisseling (ton.bisseling@wur.nl).

Published in The Plant Cell (2017)
CHAPTER 2

ABSTRACT

Root growth is modulated by environmental factors and depends on cell production in the root meristem (RM). New cells in the meristem are generated by stem cells and transit-amplifying cells, which together determine RM cell number. Transcription factors and chromatin-remodelling factors have been implicated in regulating the switch from stem cells to transit-amplifying cells. Here we show that two Arabidopsis thaliana paralogs encoding plant-specific histone deacetylases, HDT1 and HDT2, regulate a second switch from transit-amplifying cells to expanding cells. Knockdown of HDT1/2 (hdt1,2i) results in an earlier switch and causes a reduced RM cell number. Our data show that HDT1/2 negatively regulate the acetylation level of the C_{19}-GIBBERELLIN 2-OXIDASE 2 (GA2ox2) locus and repress the expression of GA2ox2 in the RM and elongation zone. Overexpression of GA2ox2 in the RM phenocopies the hdt1,2i phenotype. Conversely, knockout of GA2ox2 partially rescues the root growth defect of hdt1,2i. These results suggest that by repressing the expression of GA2ox2, HDT1/2 likely fine-tune gibberellin metabolism and they are crucial for regulating the switch from cell division to expansion to determine RM cell number. We propose that HDT1/2 function as part of a mechanism that modulates root growth in response to environmental factors.
INTRODUCTION

Root architecture and growth is regulated through the activity of root meristems. The root growth rate correlates with the cell number in the root meristem (RM), as this determines the number of cells that can differentiate in a given time. The RM includes the stem cell niche (SCN), which is composed of the quiescent center (QC) and its surrounding stem cells (van den Berg et al., 1995; Scheres, 2007). The daughter cells of the stem cells divide a few times before they switch to expansion. These dividing cells are the transit-amplifying cells and together with the SCN they form the RM, whereas the expanding cells form the elongation zone (Moubayidin et al., 2009; Perilli et al., 2010). The RM cell number is determined by the activity of stem cells, as well as by the number of times transit-amplifying cells divide before switching to expansion.

The genes and mechanisms involved in regulating the stem cell activity or the switch from cell division to expansion are becoming clear (Helariutta et al., 2000; Sabatini et al., 2003; Aida et al., 2004; Dello Ioio et al., 2007; Galinha et al., 2007; Dello Ioio et al., 2008; Bennett and Scheres, 2010; Moubayidin et al., 2010). In Arabidopsis thaliana roots, the stem cell activity depends on two independent pathways controlled by transcription factors; the SHORT-ROOT (SHR)/SCARECROW (SCR) pathway and the PLETHORA (PLT) pathway (Helariutta et al., 2000; Sabatini et al., 2003; Aida et al., 2004; Galinha et al., 2007). The expression domains of SHR and SCR overlap with the distal PLT transcript accumulation area to position the SCN (Aida et al., 2004). Loss-of-function mutations in SHR, SCR or PLT1/PLT2, cause a loss of stem cell maintenance and this results in a reduced RM cell number (Helariutta et al., 2000; Sabatini et al., 2003; Aida et al., 2004; Galinha et al., 2007). The switch from cell division to expansion is controlled by transcription factors ARR12, ARR1 and SHY2 (Dello Ioio et al., 2007; Bennett and Scheres, 2010; Moubayidin et al., 2010). ARR1 and ARR12 activate the expression of SHY2, a transcriptional repressor that triggers the switch from cell division to expansion (Dello Ioio et al., 2008). Gain-of-function mutations in ARR1 or SHY2 cause a reduced RM cell number due to an earlier switch to expansion (Dello Ioio et al., 2008; Moubayidin et al., 2010).

Beside transcription factors, chromatin-remodelling factors also contribute to transcriptional reprogramming by creating an active or silent chromatin configuration (Strahl and Allis, 2000; Jenuwein and Allis, 2001; Kouzarides, 2007; Shahbazian and Grunstein, 2007). Some of them are essential for maintaining
CHAPTER 2

stem cell activity in Arabidopsis. For example, the chromatin-remodelling ATPase BRAHMA is indispensable to maintain the SCN by controlling PIN gene expression (Yang et al., 2015). GCN5, a histone acetyltransferase, positively regulates PLT-mediated SCN maintenance (Kornet and Scheres, 2009). In loss-of-function mutants of brm or gcn5, RM cell number is reduced due to gradual loss of stem cells.

Recently, it has been demonstrated that the switch from cell division to expansion in Arabidopsis roots is accompanied by changes in level of histone acetylation (Rosa et al., 2014). Histone acetylation level is regulated by histone acetyltransferases and histone deacetylases (Shahbazian and Grunstein, 2007). In the region where the switch from cell division to expansion is initiated, among the highest expressed histone acetylation genes in Arabidopsis roots are the four plant-specific histone deacetylase genes, named HDT1–HDT4 [Supplemental Dataset 1, (Birnbaum et al., 2003)]. This suggests that these HDTs may play a role in controlling the switch from cell division to expansion. However, the function of HDTs in root development has not been investigated.

It has been shown that HDTs are involved in responses to biotic and abiotic stress (Sridha and Wu, 2006; Bourque et al., 2011; Ding et al., 2012; Luo et al., 2012) and they can repress the expression of defence-related genes by altering their chromatin acetylation status (Bourque et al., 2011; Ding et al., 2012). We studied whether HDTs regulate the switch from cell division to expansion, and in this way contribute to the mechanisms controlling RM cell number and subsequently root growth.

Here we investigated the RM phenotype of hdt mutants. We show that two members of the HDT family, HDT1/2, determine the RM cell number by affecting the switch from cell division to expansion. Down-regulation of their expression (hdt1,2i) reduces RM cell number and results in a markedly changed transcriptome. Genetic analyses indicate that the strongly increased expression of C19-GIBBERELLIN 2-OXIDASE 2 (GA2ox2) in hdt1,2i is a cause of this reduced RM cell number. HDT1/2 negatively regulate the level of histone H3 acetylation of GA2ox2 and possibly in this way repress the transcription of this gene. These data indicate that HDT1/2 repression of GA2ox2 expression contributes to regulation of the switch from cell division to expansion in Arabidopsis roots.
RESULTS

HDT1 and HDT2 Control Root Growth

To test whether HDTs control Arabidopsis root growth, we analyzed T-DNA insertion mutants of all four HDT genes [designated hdt1, 2, 3-1, 3-2 (Luo et al., 2012) and 4, respectively; Supplemental Figure 1]. Reverse transcription PCR (RT-PCR) analyses showed that hdt1, 3-1 and 4 were null mutants, as transcript of the mutated genes was not detectable (Figure 1A). hdt2, however, was a knockdown mutant that retained 20% of transcript (Figure 1A and 1B). hdt1, hdt3-1, hdt3-2 and hdt4 displayed no root phenotype. However, hdt2 showed a 12% reduced root length, compared to WT (Figure 1C, Supplemental Figure 2), at 7 days after germination (DAG).

To determine if the other three HDTs contribute to root growth in the hdt2 mutant background, we crossed hdt2 with hdt1, 3-1 and 4 to generate double mutants. hdt2 hdt3-1 and hdt2 hdt4 homozygous plants were morphologically indistinguishable from hdt2 (Supplemental Figure 2), suggesting that neither HDT3 nor HDT4 contributes to root growth. In contrast, selfing of HDT1/hdt1 HDT2/hdt2 did not result in any homozygous hdt1 hdt2 double mutants among more than 200 daughter plants tested. This indicates that loss of function of both HDT1 and HDT2 is lethal, by which the role of HDT1 in root growth could not be studied. In order to study this role, we first determined the HDT1/2 expression patterns in roots, by creating HDT1/2 promoter/GUS fusions (pHDT1:GUS and pHDT2:GUS) as well as translational GFP fusions (pHDT1:HDT1-GFP and pHDT2:HDT2-GFP). The latter two constructs were functional, as they complemented the hdt1 hdt2 lethal phenotype and fully restored root growth in the corresponding background (Supplemental Figure 2). This indicates that both promoter regions are sufficient to drive genes expression at the right place. Transgenic pHDT1:GUS and pHDT2:GUS plants showed that both promoters were especially active in the RM. They displayed patchy expression patterns, suggesting a cell cycle phase dependent expression (Figure 1D and 1E). Their high activity in the RM is consistent with transcriptome data (Birnbaum et al., 2003) and supports the idea that both HDT genes are involved in controlling RM activity. To study this, we made use of the root-specific ROOT CLAVATA HOMOLOGUE 1 (RCH1) promoter to knockdown both HDT1/2. The RCH1 promoter is specifically active in the RM and it is first activated during the torpedo stage of embryo development (Casamitjana-Martinez et al., 2003).
Figure 1. Silencing of HDT1 and HDT2 Leads to Reduced Root Growth.

(A) Expression of HDT genes in WT and hdt mutants. RT-PCR analysis was performed with cDNA prepared from seedlings at 6 DAG. The TUBULIN gene was used as a loading control.

(B) Reverse transcription quantitative PCR (RT-qPCR) analyses of HDT1 and HDT2 expression in WT, hdt1, hdt2, hdt1,2i-1 and hdt1,2i-8 root tips at 6 DAG. All panels show mean ± SEM values determined from three independent experiments.

(C) Primary root length of WT, hdt1, hdt2, hdt1,2i-1 and hdt1,2i-8 seedlings at 7 DAG. Data shown are average ± SD (n>20). Asterisks indicate significant differences compared with the WT (*p<0.05, ***p<0.001; Student’s t test).

(D) and (E) Expression patterns of pHDT1:GUS (D, n=22) and pHDT2:GUS (E, n=25) in root tips of seedlings at 6 DAG. Arrows indicate the SCN and arrowheads indicate the boundary between the RM and elongation zone. Bars=50µm.
if HDT1/2 are essential for developmental processes preceding this embryonic stage, these will not be affected. Five independent lines (designated hdt1,2i-1, 4, 6, 8 and 9) were generated. The levels of HDT1/2 transcript, in these lines, were between 15% and 40% of that of the WT (Figure 1B, Supplemental Figure 3). In comparison with hdt2, all hdt1,2i lines showed more severely reduced root growth (Figure 1C, Supplemental Figure 2), indicating that both HDT1 and HDT2 control root growth. The level of root length reduction in these hdt1,2i lines correlates with decreasing levels of HDT1/2 transcript (Figure 1B and 1C, Supplemental Figure 2, Supplemental Figure 3), indicating that HDT1/2 positively regulate root growth.

Reduced Root Growth of hdt1,2i Involves a Lower RM Cell Number

To investigate how HDT1/2 affect root growth, the kinematic growth of roots was analyzed in WT and two hdt1,2i lines, hdt1,2i-1 and hdt1,2i-8, which had the strongest reduction of HDT1/2 mRNA levels. Root growth rate from 6 to 7 DAG was determined (see Methods). In comparison with the WT, hdt1,2i-1 or hdt1,2i-8 roots grew 56% and 60% slower, respectively (Table 1, Supplemental Table 1). Root growth rate is determined by number of cells that are added from the RM to elongation zone within a defined time period and to what extent these cells subsequently expand (De Veylder et al., 2001). Therefore the reduced root growth rate of hdt1,2i could be due to fewer cells being added to the elongation zone, or reduced expansion of newly added cells. The length of cortical cells

<table>
<thead>
<tr>
<th>Parameter</th>
<th>WT</th>
<th>hdt1,2i-1</th>
<th>Difference (%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root growth rate (µm/h, M)</td>
<td>320.6±35.0</td>
<td>141.8±24.7</td>
<td>-56</td>
<td><0.001</td>
</tr>
<tr>
<td>Fully expanded cell length (µm, N)</td>
<td>191.0±9.2</td>
<td>195.2±9.0</td>
<td>-</td>
<td>NS</td>
</tr>
<tr>
<td>Cell production per day (X)</td>
<td>40.3±4.3</td>
<td>17.4±2.9</td>
<td>-57</td>
<td><0.001</td>
</tr>
<tr>
<td>Cell number in the RM (Y)</td>
<td>38.0±3.9</td>
<td>17.3±1.7</td>
<td>-54</td>
<td>0.001</td>
</tr>
<tr>
<td>Cell cycle duration (h, Z)</td>
<td>22.8±2.4</td>
<td>24.4±4.7</td>
<td>7</td>
<td>0.107</td>
</tr>
</tbody>
</table>

The analyses were performed based on WT and hdt1,2i-1 root cortical cell file. Data shown are average ± SD. p values were determined by Student’s t test (n>20). NS, no statistical significance. X=24*M/N, Z=24*YIX.
in the differentiated zone of both hdt1,2i-1 and hdt1,2i-8 roots was measured and shown to be the same as in WT. However, the number of cells added to the elongation zone was reduced in hdt1,2i-1 and hdt1,2i-8 (Table 1, Supplemental Table 1). This reduced cell number could be caused either by the presence of fewer cells in hdt1,2i RM, or by a prolonged cell cycle duration. We inferred cell cycle duration from kinematic growth analyses and this showed that it was only 7% or 6% longer in hdt1,2i-1 and hdt1,2i-8 compared to WT. However, RM cell number was reduced by 54% in hdt1,2i-1 and by 59% in hdt1,2i-8. This reduction equals the difference in root growth rate (Table 1, Supplemental Table 1).

The reduced cell number in RM can be caused either by the loss of the SCN or by a reduced number of divisions of the transit-amplifying cells. To distinguish between these two possibilities, we first investigated whether the SCN was lost in hdt1,2i. The columella stem cells in hdt1,2i-1 and hdt1,2i-8 were present; these are the cells adjacent to the QC and not containing starch granules, which occur in differentiated columella cells (Figure 2A, 2B, Supplemental Figure 4A). Also, SCR which is required for SCN maintenance (Sabatini et al., 2003), had a WT-like expression pattern in the QC and endodermis of hdt1,2i-1 roots (Figure 2D and 2E). QC divisions were more frequently observed in hdt1,2i-8, but not in hdt1,2i-1 (Supplemental Figure 4A, 4I). However, expression of WOX5, another QC marker (Sarkar et al., 2007), was maintained in hdt1,2i-8, like in WT and hdt1,2i-1 (Supplemental Figure 4D-4F). This suggests that QC cells are maintained in hdt1,2i-8. In addition, the RMs of hdt1,2i-1 and hdt1,2i-8 were still present at 21 DAG (Supplemental Figure 4J-4L). Together these data indicate that the reduced cell number in hdt1,2i RM is not caused by loss of the SCN.

RM cell number increases after germination, and it reaches a maximum when the number of cells added by cell division is equal to the number of cells that switch to expansion (Dello Ioio et al., 2008). By monitoring at what time the maximum RM cell number is reached, we determined when cell division and cell expansion have reached a balance. The maximum RM cell number was established at 4 DAG in hdt1,2i-1, whereas this was first reached at 6 DAG in WT (Figure 2F). Similar results were also obtained for the hdt1,2i-8 line (Supplemental Figure 4C). This demonstrates that HDT1/2 are involved in regulating the switch from cell division to expansion. The reduced RM cell number indicates that an earlier switch occurs after fewer divisions of the transit-amplifying cells in hdt1,2i.
Figure 2. Reduced Cell Number in hdt1,2i-1 and GA2ox2^{OE1} RM Is Caused by an Eariler Switch from Cell Division to Expansion.

(A) to (C) mPS-PI-stained root tips of the WT (A), hdt1,2i-1 (B) and GA2ox2^{OE1} (C) seedlings at 6 DAG. Arrows indicate columella stem cells which did not display any starch granule.

(D) and (E) Expression pattern of the pSCR:SCR-GFP in the WT (D) and hdt1,2i-1 (E) root tips at 7 DAG (n=10; representative images are shown). Identical confocal microscope settings were used in (D) and (E).

(F) Cell number of the RM in WT, ga2ox2, hdt1,2i-1, ga2ox2hdt1,2i-1 and GA2ox2^{OE1} seedlings measured daily after germination during 8 days. Data shown are average ± SD (n>20). Bars=50μm in (A) to (E).
CHAPTER 2

Possible Targets of HDT1/2 Revealed By Transcriptome Analyses

In the RM and elongation zone, HDT1/2 were located in both nucleolus and nucleoplasm (Supplemental Figure 5B and 5C), where they could alter the expression level of genes by changing chromatin acetylation levels (Wu et al., 2003; Zhou et al., 2004; Ding et al., 2012). We performed Illumina RNA sequencing to determine the transcriptome differences between WT and \textit{hdt1,2i-1} to obtain insight in how RM cell number might be reduced in \textit{hdt1,2i-1}. HDT1/2 proteins accumulated highest in the meristem, markedly lower in the elongation zone and were hardly detectable in the differentiated zone (Figure 3A, Supplemental Figure 5A). We compared transcriptomes from the WT and \textit{hdt1,2i-1} in these three zones (See Methods). This resulted in 90, 114 and 42 differentially expressed genes (DEGs) in the meristem, elongation and differentiated zones, respectively (Figure 3B, Supplemental Dataset 2).

In the meristem zone 75 genes were up-regulated in \textit{hdt1,2i-1}, representing about 83% of DEGs in this zone. This is consistent with a function of HDTs in repressing gene expression (Wu et al., 2003; Zhou et al., 2004). In the elongation and differentiated zones, the number of up-regulated genes was 63 and 25, representing about 55% and 60% of DEGs, respectively (Figure 3C). 24 DEGs were shared between the meristem and elongation zones, 5 DEGs were shared between the elongation and differentiated zones, and only 1 DEG was shared between the meristem and differentiated zones. In total, 217 DEGs were identified (Figure 3B, Supplemental Dataset 2).

Gene Ontology (GO) enrichment analyses for the 217 DEGs showed that the up-regulated genes in \textit{hdt1,2i-1} were enriched in genes involved in “response to chemical/stimulus”. The down-regulated genes were enriched in genes involved in regulating root development (Supplemental Figure 6). As HDT1/2 most likely repress the expression of genes (Wu et al., 2003; Zhou et al., 2004; Ding et al., 2012), we expected that the earlier switch to expansion of transit-amplifying cells in \textit{hdt1,2i-1} was at least in part caused by genes with increased expression. The most up-regulated gene from the \textit{hdt1,2i-1} meristem zone encodes a MATE protein that belongs to a proton-dependent efflux transporter family, which contains at least 54 members in Arabidopsis (Eckardt, 2001). However, the expression level of several paralogs was very high in WT and was not changed in \textit{hdt1,2i-1} (Supplemental Dataset 2). Assuming functional redundancy of these genes, the up-regulation of one MATE gene probably did not have a
major effect on root growth. GA2ox2 was the second most up-regulated gene (Supplemental Dataset 2). This gene, the highest expressed member from its family in root tips, was a good candidate to contribute to the reduced RM cell number in hdt1,2i-1. GA2ox2 encodes an oxidase that inactivates bioactive C$_{19}$ gibberellins via 2-oxidation. This is a major gibberellin (GA) inactivating pathway in Arabidopsis, and GA delays the switch from cell division to expansion in

Figure 3. HDT1/2 Orchestrate Transcriptional Reprogramming.
(A) Expression pattern of pHDT2:HDT2-GFP that complements hdt1hdt2 lethal phenotype in root of 7 DAG seedling. Bar=100μm.
(B) DEGs overlapped between the meristem zone (M), elongation zone (E) and differentiated zone (D) of WT and hdt1,2i-1 roots.
(C) The number of up-regulated and down-regulated DEGs in M, E and D of hdt1,2i-1 roots, compared to the WT.
Arabidopsis roots (Rieu et al., 2008; Ubeda-Tomas et al., 2008; Ubeda-Tomas et al., 2009; Moubayidin et al., 2010).

hdt1,2i-1 Root Tips Have a Gibberellin Deficient Phenotype

To determine whether GA level is indeed reduced in *hdt1,2i-1* root tips we made use of a DELLA reporter construct (*pRGA:GFP-RGA*). GA destabilizes DELLA proteins such as RGA (REPRESSOR OF *ga1-3*) (Peng et al., 1997; Silverstone et al., 2001). *hdt1,2i-1* plants were crossed with *pRGA:GFP-RGA* to generate homozygous plants. RGA protein level was quantified by measuring GFP intensity in WT (n=11) and *hdt1,2i-1* (n=12) roots. In each root, GFP intensity in nuclei of five cortical cells, at the transition from division to elongation, were measured and the average values were determined. This showed that in *hdt1,2i-1*, RGA protein level was around 50% increased (Figure 4A-4C), indicating that *hdt1,2i-1* root tips have a reduced GA level. Consistent with this, PIN1 and PIN2 levels which are positively regulated by GA (Willige et al., 2011), were considerably reduced in *hdt1,2i-1*, compared to WT (Supplemental Figure 7A-7D).

To investigate whether the reduced GA level in *hdt1,2i-1* root tips is caused by the up-regulation of GA2ox2, WT and *hdt1,2i-1* seedlings were treated with exogenous GA$_4$ or GA$_3$. GA$_4$ is a substrate of GA2ox2 whereas GA$_3$ is not (Thomas et al., 1999; Hedden and Phillips, 2000; Yamauchi et al., 2007). RM cell number in both WT and *hdt1,2i-1* was increased significantly after GA$_3$ (1 and 10 μM) application (Figure 4D). A similar increase in RM cell number was also observed in WT after GA$_4$ (1 and 10 μM) application in WT. However, in *hdt1,2i-1* RM cell number was not affected by applying 1μM GA$_4$ and it was only increased slightly by application of 10μM GA$_4$. This suggests that the up-regulated GA2ox2 in *hdt1,2i-1* root tips rapidly degrades exogenously applied GA$_4$ but not GA$_3$.

In line with the reduced GA level in *hdt1,2i-1* root tips, the exogenously applied paclobutrazol (PAC, 0.1 and 1 μM), a GA biosynthesis inhibitor (Wang et al., 1986), significantly reduced RM cell number in WT. Whereas RM cell number in *hdt1,2i-1* was not affected (Figure 4E). This suggests that the GA level in *hdt1,2i-1* is so low that PAC has no additional inhibitory effect on RM cell number. Collectively, these data indicate that the up-regulation of GA2ox2 reduces GA level in *hdt1,2i-1* root tips and this contributes to the decreased RM cell number.
Figure 4. The hdt1,2i-1 Root Tip Has Gibberellin Deficient Phenotype.

(A) and (B) Expression of pRGA:GFP-RGA in WT (A) and hdt1,2i-1 (B) root tips at 6 DAG. Arrowheads indicate the boundary between the RM and elongation zone. Closeup of boxed areas show 5 cortical cells that were used for quantification in (C). Identical confocal microscope settings were used to image pRGA:GFP-RGA proteins in (A) and (B), representative images are shown. Bars=50 μm.

(C) Quantification of fluorescence intensity of pRGA:GFP-RGA in WT (n=11) and hdt1,2i-1 (n=12). Arbitrary unit was used for GFP intensity. Root cells used for quantification are indicated in (A) and (B). Data shown are mean ± SEM. Asterisk indicates significant difference between WT and hdt1,2i-1 (**p<0.01, Student’s t test).

(D) and (E) Cell number in WT and hdt1,2i-1 RM after treatment with 1μM and 10μM GA₄/GA₃ (D) or with 0.1μM and 1μM PAC (E) at 6 DAG. Data shown are average ± SD (n>40). Asterisks indicate significant differences compared with the mock [(-); (**p<0.01, ***p<0.001; Student’s t test)].
CHAPTER 2

HDT2 Regulates the Expression of GA2ox2 Directly

To examine whether there is a correlation between the expression levels of HDT1/2 and GA2ox2, we compared the GA2ox2 mRNA level in root tips of several hdt mutants/lines. This included the hdt1 and hdt2 mutants, the hdt1 hdt2 double mutant complemented by pHDT2:HDT2-GFP, hdt1,2i-1 and hdt1,2i-8. The hdt1 as well as the complemented line had a similar GA2ox2 mRNA level as WT, whereas in hdt2 and two hdt1,2i lines the expression level of GA2ox2 was increased (Figure 5A). Lower level of HDT2 mRNA (Figure 1B) correlates with higher expression level of GA2ox2. This inverse correlation suggests that the expression of GA2ox2 is negatively regulated by HDT2.

HDTs can mediate transcriptional repression by deacetylating genes (Ding et al., 2012). To investigate whether HDT2 binds to the GA2ox2 locus, we performed ChIP-quantitative PCR (ChIP-qPCR) on WT and pHDT2:HDT2-GFP complemented seedlings using an anti-GFP antibody. Five different DNA fragments were amplified spanning a region from 850 bp upstream to 618 bp downstream of the GA2ox2 start codon. These included three fragments from the promoter region and a part of the first and the second exon, respectively (Figure 5B). The MATE gene (AT2G04050) was used as positive control. It is also up-regulated in hdt1,2i-1 (Supplemental Dataset 2) and HDT2 binds to its first exon (David Latrasse, personal communication). A randomly selected Arabidopsis intergenic region of chromosome 5 was used as negative control. A marked enrichment of HDT2 on the positive control, as well as on the first exon of GA2ox2 was found in pHDT2:HDT2-GFP complemented seedlings, compared to WT seedlings. In addition, a statistically significant enrichment was also found for one promoter fragment (TATA box) and the second exon of GA2ox2. No enrichment was observed for the negative control and the other two fragments of GA2ox2 (Figure 5C). This indicates that HDT2 binds to GA2ox2.

Subsequently we determined whether knockdown of HDT1/2 affects the acetylation level of the HDT2 bound GA2ox2 regions. Since histone H3ac generally marks actively transcribed chromatin (Kouzarides, 2007), we determined H3ac levels of GA2ox2 in hdt1,2i. We carried out ChIP-qPCR on hdt1,2i-1 and WT roots (see Methods) using an anti-H3ac antibody. An increase in H3ac level was found for the positive control in hdt1,2i-1 roots. Further, at the HDT2 binding sites, a 2.6-fold increase was found for the first exon of GA2ox2 and a statistically significant increase in H3ac level was also found for the TATA
Figure 5. HDT2 Directly Regulates the Expression of GA2ox2.

(A) RT-qPCR analyses of GA2ox2 expression in root tips of the WT, hdt1, hdt2, pHDT2:HDT2-GFP complemented hdt1hdt2 mutant, hdt1,2i-1 and hdt1,2i-8 lines at 6 DAG.

(B) Schematic representation of the GA2ox2 genomic region. Black boxes represent exons and grey box indicates TATA box. The bent arrow indicates the transcription start site. Bars below with numbers indicate regions used in ChIP-qPCR experiments. Bar=100bp.

(C) and (D) ChIP-qPCR analyses of pHDT2:HDT2-GFP complemented hdt1hdt2 and WT seedlings using anti-GFP antibody (C), and hdt1,2i-1 and WT roots using anti-H3ac antibody (D). PC or NC represents positive or negative control.

Data shown in (A), (C) and (D) are mean ± SEM values determined from three independent experiments. Asterisks in (C) and (D) indicate significant differences compared with the WT (**p<0.01, Student’s t test).
CHAPTER 2

box region (1.9-fold) and the second exon (1.9-fold) (Figure 5D). Furthermore, there was no increase in H3ac level at the negative control locus and the HDT2 non-binding sites in hdt1,2i-1. This shows that knockdown of HDT1/2 results in an increased H3ac level at regions to which HDT2 binds. Taken together, these results indicate that HDT1/2, repress the expression of GA2ox2 likely by deacetylating histone H3 at specific regions within the GA2ox2 locus.

GA2ox2 Is a Determinant in HDT1/2 Regulated Switch from Cell Division to Expansion

To further study whether the reduced root growth of hdt1,2i plants is caused by the up-regulation of GA2ox2, we generated four GA2ox2 overexpression lines driven by the root-specific RCH1 promoter (GA2ox2OEt-OE4) (Casamitjana-Martinez et al., 2003). In these lines, the level of GA2ox2 transcripts was 30 to 100 times higher than that of the WT (Figure 6A). All four GA2ox2OE lines formed shorter roots than the WT. The level of reduction was correlated with the level of up-regulation of GA2ox2 (Figure 6B). To test whether overexpression of GA2ox2 causes the short root phenotype in a similar way as hdt1,2i, the SCN and the length of fully differentiated cells were analyzed, the RM cell number was determined daily from 1 to 8 DAG in GA2ox2OEt1 and GA2ox2OEt2. In both lines, the SCN was shown not to be disturbed at 6 DAG and expression of WOX5 was WT-like. (Figure 2A and 2C; Supplemental Figure 4B, 4D and 4G-4I). This was also supported by the maintenance of the RM cell number at 14 DAG (Supplemental Figure 4J, 4M and 4N). The length of fully differentiated cortical cells in both GA2ox2OEt1 and GA2ox2OEt2 roots was measured and shown to be identical to WT (Figure 6C). The maximum RM cell number was established at 5 DAG in both GA2ox2OEt1 and GA2ox2OEt2 (Figure 2F, Supplemental Figure 4C), whereas in WT this was first reached at 6 DAG. RM cell number of GA2ox2OEt1 and GA2ox2OEt2 was reduced significantly at 6 DAG, compared to that of WT (Figure 7A, 7C and 2F, Supplemental Figure 4C). These results suggest that the switch from cell division to expansion occurs earlier in GA2ox2OE lines, like in hdt1,2i lines. The similarity of the GA2ox2OE RM to that of hdt1,2i further supports that lower GA levels in hdt1,2i-1 root tips contribute to RM size regulation.

We next determined whether knockout of GA2ox2 (ga2ox2, Supplemental Figure 1) could rescue the RM defect in hdt1,2i-1. ga2ox2 plants were crossed with hdt1,2i-1 plants to generate ga2ox2 hdt1,2i-1 homozygous plants. At 6
Figure 6. GA2ox2 Controls Root Growth.

(A) RT-qPCR analyses of GA2ox2 expression in root tips of the WT and four independent GA2ox2 overexpression lines at 6 DAG. All panels show mean ± SEM values determined from three independent experiments.

(B) Primary root length of the four GA2ox2 overexpression lines and WT at 7 DAG. Data shown are average ± SD (n>20). Asterisks indicate significant differences between mutants and WT (*p<0.05, ***p<0.001; Student’s t test).

(C) The length of fully differentiated cortical cells in WT, GA2ox2OE1 and GA2ox2OE2 at 7 DAG. Data shown are average ± SD (n>20) with no significant difference between the WT and mutants (Student’s t test).
DAG, *ga2ox2* plants had a similar RM cell number as WT (Figure 7A, 7D and 7F). In *ga2ox2 hdt1,2i-1* plants the averaged RM cell number was 24.0. This is a substantially increased cell number in comparison to 16.6 in *hdt1,2i-1* (Figure 7B, 7E and 7F). The maximum cell number was established at 5 DAG in *ga2ox2 hdt1,2i-1*, compared to 4 DAG in *hdt1,2i-1* plants (Figure 2F). Therefore, knockout of *GA2ox2* rescues (in part) the RM defect of *hdt1,2i-1*. These findings suggest that HDT1/2 repress *GA2ox2* expression to fine tune gibberellin homeostasis in order to determine RM cell number.

GA2ox2 Expression Is Increased in All Transit-amplifying Cells in hdt1,2i-1

In roots of *hdt1,2i-1* plants the switch from cell division to expansion occurs earlier than in WT, as caused by the up-regulation of *GA2ox2*. Therefore we
determined in which cells GA2ox2 expression was increased. We created a GA2ox2 promoter/GUS reporter line (pGA2ox2:GUS) and crossed it with hdt1,2i-1 to generate homozygous pGA2ox2:GUS hdt1,2i-1 plants. In WT roots, a low level of expression of pGA2ox2:GUS occurred in vascular tissue and pericycle at the transition from the RM to elongation zone, but it was not detected in endodermis, cortex and epidermis (Figure 8A). This expression pattern is consistent with the gene expression map of the Arabidopsis roots (Birnbaum et al., 2003). In hdt1,2i-1 GUS activity was markedly increased in both RM and the distal part of elongation zone, and it was not restricted to vascular tissue and pericycle. Instead, we observed high GUS activity in the RM within all cell files (Figure 8B). The level of GUS activity gradually decreased from the distal to the proximal elongation zone where it became undetectable. This is consistent with the expression level of GA2ox2 in these zones in hdt1,2i-1 (Supplemental Dataset 2). These data indicate that HDT1/2 determine GA2ox2 expression level in the RM and elongation zone.
CHAPTER 2

DISCUSSION

In this study, we demonstrate that HDT1/2 influence the switch from cell division to expansion in the root tip by repressing GA2ox2 expression. Knockdown of HDT1/2 causes an earlier switch to cell expansion and results in a reduced RM cell number. The up-regulation of GA2ox2 is a contributing factor to this phenotype. We show that HDT2 binds to several regions of GA2ox2, and at these binding sites the acetylation level is negatively regulated. Up-regulation of GA2ox2 in hdt1,2i most likely causes a reduced GA level that results in an earlier switch from cell division to expansion of transit-amplifying cells.

pHDT1:GUS and pHDT2:GUS exhibit a patchy accumulation pattern suggesting cell cycle-dependent expression. However, HDT1/2-GFP fusion proteins are present at an equal level in transit-amplifying cells. It seems unlikely that they have a function in a specific stage of the cell cycle. This is consistent with the observation that cell cycle duration is not affected in hdt1,2i-1. We expect that HDT proteins are especially made when the chromatin is duplicated, similar to histone transcription and translation. The equal levels of HDTs might be caused by the relatively stable nature of these proteins. This is supported by the occurrence of HDT1/2-GFP in expanding cells whereas GUS is not detectable. An alternative explanation is that HDT1/2 are transported to adjacent cells. This could explain why low levels of HDT1/2-GFP are detected in the SCN, whereas GUS is below the detection level (n>20).

We show that HDT1 and HDT2 determine the RM cell number. Notably, treatment with trichostatin A (TSA), an inhibitor of certain zinc binding motif containing histone deacetylases (Finnin et al., 1999), increases the RM cell number (Rosa et al., 2014). This seems in disagreement with our finding that decreased HDT activity leads to a reduced cell number. However, although HDTs contain a zinc binding domain it has not been demonstrated that their activity is targeted by TSA. Furthermore, other studies show that application of TSA inhibits root growth and triggers QC divisions (Nguyen et al., 2013; Pi et al., 2015). To determine whether TSA could target HDT1/2 we compared the effect of TSA on QC cell division in WT and hdt1,2i-1. This showed that a TSA treatment and HDT1/2 knockdown increase the frequency of QC divisions in a similar way (Supplemental Figure 4I), indicating that TSA-mediated QC divisions do not involve HDT1/2 but involve other targets.
Overexpression of *GA2ox2* causes a similar RM phenotype as *HDT1/2* knockdown (Figure 2F, 7B, 7C). Therefore, in *hdt1,2i* the up-regulation of *GA2ox2*, (in part) causes the decreased RM cell number. Up-regulation of *GA2ox2* in *hdt1,2i* root tips (Figure 8A, 8B) causes most likely a rapid degradation of GA. In agreement with this, the *hdt1,2i-1* RM cell number is partially restored by *GA3*, and hardly affected by *GA4* (Figure 4D). In addition, PAC which decreases RM cell number in WT that can be restored by *GA3* (Ubeda-Tomas et al., 2009), has no additional effect on *hdt1,2i-1* RM cell number (Figure 4E). This suggests that GA level in *hdt1,2i-1* is very low. The most direct way to show that GA level is reduced in *hdt1,2i-1* would be by GA quantification, which is technically difficult. However, the increased accumulation of RGA, as well as the decreased PIN1/2 abundance in *hdt1,2i-1* root tips (Figure 4A-4C, Supplemental Figure 7) are consistent with a reduced GA level. Similar phenotypes are also observed in other GA-deficient mutants or PAC-treated seedlings (Ubeda-Tomas et al., 2009; Moubayidin et al., 2010). A transit-amplifying cell exits the mitosis as it enters into the elongation zone (Blilou et al., 2002; Vanstraelen et al., 2009). GA is required to promote mitotic activity (Peng et al., 1997; Silverstone et al., 2001; Achard et al., 2009; Ubeda-Tomas et al., 2009). In line with this, GA biosynthesis mutants *ga1* and *ga3ox1 ga3ox2*, as well as a non-GA-degradable DELLA mutant have a reduced RM cell number due to an earlier exit from the mitotic cell cycle (Ubeda-Tomas et al., 2009; Moubayidin et al., 2010). We postulate that in *hdt1,2i* the up-regulation of *GA2ox2*, causes most likely a reduced GA level that results in an earlier switch from division to expansion and in this manner (in part) decreases RM cell number.

Previously it has been shown that *GA2ox6* transcript level in Arabidopsis roots is higher than that of *GA2ox2* (Dugardeyn et al., 2008). However, *GA2ox6* is only expressed in the differentiated zone (Supplemental Dataset 2). In WT both genes are hardly expressed in root tips, whereas in *hdt1,2i-1*, *GA2ox2* is remarkably up-regulated in RM and its expression starts to decrease in the distal elongation zone and becomes undetectable in the proximal elongation zone and differentiated zone (Figure 8B, Supplemental Dataset 2). This suggests that GA levels will only be disturbed in RM and the distal elongation zone. GA controls the size of fully differentiated root cells (Band et al., 2012; Shani et al., 2013). This is in agreement with the observation that the size of fully differentiated root cells is not affected (Table 1, Supplemental Table 1).
CHAPTER 2

SHY2 is an AUX/IAA-type transcriptional repressor that triggers the switch from cell division to expansion (Dello Ioio et al., 2008; Moubayidin et al., 2010). SHY2 expression is induced in this transition zone by ARR1 and ARR12, two cytokinin-responsive transcription factors, which are expressed in the transition zone as well. GA represses the expression of ARR1 and in this manner delays the accumulation of SHY2 (Mason et al., 2004; Mason et al., 2005; Dello Ioio et al., 2008). However, we did not observe any effect on ARR1/SHY2 transcript levels in hdt1,2i-1 RM and elongation zone. Possibly the reduced GA level in hdt1,2i-1 transit-amplifying cells causes ARR1/SHY2 transcript to accumulate so the proteins will reach the threshold level required to induce the switch from cell division to expansion earlier than in WT. This most likely does not affect their transcript levels in total root extracts (Dello Ioio et al., 2007; Dello Ioio et al., 2008), as the size of the region where they are expressed is most likely not affected.

The fact that hdt1,2i lines have a stronger phenotype than the hdt2 mutant points to an additive effect of HDT1 and HDT2 in controlling root growth (Figure 1B, 1C, Supplemental Figure 2). They both presumably repress GA2ox2 expression, as in hdt1,2i-1/8 lines this gene is induced much higher than in hdt2 (Figure 5A), whereas HDT2 mRNA levels in these mutants are very similar (Figure 1B). This could mean that HDT1 and HDT2 repress the expression of same genes, but together have to be present at a sufficient level. This is supported by the observation that the hdt1 mutant has no root phenotype, but has an increased HDT2 expression level (Figure 1B, 1C).

GA2ox2 is only one gene out of 217 DEGs in hdt1,2i-1. However, knockout of GA2ox2 rescues hdt1,2i-1 root growth significantly and GA2ox2 overexpression phenocopies hdt1,2i-1 (Figure 2F, 7B, 7E). This suggests that GA2ox2 up-regulation is a cause of the short-root phenotype in hdt1,2i. HDT2 binds to 2 exons of GA2ox2, as well as to the TATA box (Figure 5B and 5C). The identified HDT2 binding sites from GA2ox2 are also potential HDT1 binding sites, as HDT1 and HDT2 are most likely functionally redundant. Binding to the TATA box appears to be important as pGA2ox2:GUS is markedly enhanced in hdt1,2i-1 background. This reporter construct does contain the TATA box but not the 2 exons (see Methods). The TATA box is considered to be the binding site of basal transcriptional machinery (Patikoglou et al., 1999; Bernard et al., 2010; Liu et al., 2015a). Knockdown of HDT1/2 results in increased histone acetylation
levels of the GA2ox2 locus. We postulate that this increases the accessibility of the GA2ox2 promoter to basal transcription factors.

Remarkably, the DEGs in hdt1,2i-1 are enriched in genes involved in response to various stimuli and root development (Supplemental Figure 6). This suggests that HDT1/2 play a role in adaptation of root development to environmental stimuli. It has been shown that mild abiotic stress conditions in general lead to transiently reduced growth that is reversible. The hormone abscisic acid (ABA) plays a key role in regulating stress responses and exogenously applied ABA and salt reduce RM cell number in Arabidopsis seedlings (Yang et al., 2014; Liu et al., 2015b). Expression of the four HDTs is repressed by ABA and salt (Luo et al., 2012). We postulate that the HDTs may be part of a mechanism that modulates root growth upon response to abiotic stress. Repression of HDT1/2 results in retarded root growth by reducing the number of transit-amplifying cells. However, the SCN is well maintained (Figure 2A, 2B, Supplemental Figure 4A) and thus the root can re-establish growth upon release of the stress.

METHODS

Plant Materials and Growth Conditions

The Arabidopsis thaliana accession Columbia-0 was used as WT. The T-DNA insertion lines used are the following: GK355_H03 for HDT1 (At3g44750), SAIL_1247_A02 for HDT2 (At5g22650), SAIL_240_C08 and SALK_129799 (Luo et al., 2012) for HDT3 (At5g03740), GK_279_D04 for HDT4 (At2g27840) and SALK_051749 for GA2ox2 (At1g30040), (Alonso et al., 2003; Rieu et al., 2008). All seeds were obtained from the Nottingham Arabidopsis Stock Centre (NASC). The T-DNA insertions were verified by genotyping with primers listed in Supplemental Table 2.1. The Arabidopsis GFP reporter lines used are pSCR:SCR-GFP (Helariutta et al., 2000), pRGA:GFP-RGA (Silverstone et al., 2001), pPIN1:PIN1-GFP (Benkova et al., 2003) and pPIN2:PIN2-GFP (Blilou et al., 2005).

Plants were grown vertically on ½ Murashige and Skoog medium including vitamins (Duchefa) and 1% sucrose under long-day conditions (16h light/8h dark) at 22 °C. For the GA and PAC treatment, 2-days-old seedlings were transferred to the same medium containing GA$_3$, GA$_4$ or PAC (Duchefa).
CHAPTER 2

Root Growth Phenotype Analyses

Root length of Arabidopsis plants was measured at 7 DAG. The cell number in root meristem was determined by counting cortical cells from the cortical-endodermal initial cell to the first expanding cortical cell daily from 1 to 8 DAG. For the kinematic growth analyses, root tips of ~ 30 seedlings were marked at 6 and then at 7 DAG, and the length increase within this 24-hour interval was determined by measuring the distance between these two marks. The size of fully differentiated cells was determined by measuring the length of cortical cells in the differentiated zone. All measurements were done by using Image Lab 2.0 Software (Bio-Rad, USA).

Histology and Microscopy

Arabidopsis roots were mounted on slides in chloral hydrate solution and analyzed under Axio Imager A1 microscope (Zeiss) with Nomarski optics. β-glucuronidase (GUS) activity was visualized after incubation of transgenic plants for 1 hour at 37°C in 0.1 M NaH₂PO₄-Na₂HPO₄ (pH 7) buffer including 3% sucrose, 0.05 mM EDTA, 0.5 mg/ml X-gluc, 2.5 mM potassium ferrocyanide and potassium ferricyanide (Jefferson et al., 1987). All confocal images were acquired using Leica SP2 confocal laser scanning microscope (Leica, Germany). Fresh transgenic roots were mounted on slides with 10 μM propidium iodide for cell wall staining. GFP was detected with an excitation wavelength of 488 nm and propidium iodide was detected with an excitation wavelength of 543 nm. GFP intensity was measured by using Image Lab 2.0 Software (Bio-Rad, USA). To visualize starch in columella cells, mPS-PI staining was performed according to (Truernit et al., 2008).

Constructs and Plant Transformation

To generate pHDT1:HDT1-GFP and pHDT2:HDT2-GFP constructs the genomic sequences of HDT1 and HDT2 including their putative promoters (1.5 kb for HDT1 and 0.5 kb for HDT2) were PCR amplified from genomic DNA using Phusion High-Fidelity DNA Polymerase (FINNZYMES), and directionally cloned into pENTR-D-TOPO (Invitrogen). Subsequently, these pENTR-D-TOPO constructs, the pENTR 4-1 vector (Invitrogen) and the pENTR 2-3 vector (Invitrogen) containing a GFP open reading frame and a CaMV 35S terminator were recombined into the binary destination pBnRGW vector by Multisite Gateway reaction. The pBnRGW vector is a modified vector based on PKGW.
Root Development

(Karimi et al., 2002) including the pNAP:RFP expression cassette from pFluar101 (Stuitje et al., 2003) for easy selection of red fluorescent transgenic seeds. For pHDT1:GUS, pHDT2:GUS and pGA2ox2:GUS constructs, the promoters (1.8 kb for GA2ox2) were cloned into the pENTR-D-TOPO vector. The pENTR-D-TOPO constructs, the pENTR4-1 vector (Invitrogen) and the pENTR 2-3 vector containing a GUS were recombined into the binary destination pBnRGW vector by Multisite Gateway reaction. The primers used for making these constructs are listed in Supplemental Table 2.2.

To build the pRCH1:HDT1HDT2 RNAi construct (hdt1,2i), the CaMV 35S promoter in pK7GWIWG2 vector (Limpens et al., 2005) was replaced with RCH1 promoter [pK7GWIWG2(II)]. The RCH1 promoter was first amplified on genomic DNA and cloned into pENTR-D-TOPO. Then it was cut out from the vector by HindIII (partial digestion) and Xba I and recombined with two fragments of the pK7GWIWG2(II) vector in a three-point ligation. The two fragments of pK7GWIWG2(II) vector were obtained by digestion either with HindII and NcoI, or with SpeI (compatible with XbaI) and HindIII. The whole RNAi cassette including the RCH1 promoter was cut out from the vector using ApaI and HindIII and ligated into the pBnRGW binary vector digested with the same enzymes and in such way creating pBnRRGWIWG vector. The RNAi target sequences of HDT1 and HDT2 coding sequences (0.6 kb for each) were combined in one amplicon using a two-step PCR, following the procedure described in (Franssen et al., 2015). In brief, the first step PCRs introduced short overlaps (15 bp) in PCR fragments of HDT1 and HDT2 coding sequences with HDT1mai-F and HDT1mai-R primers, or with HDT2mai-F and HDT2mai-R primers. These two fragments were used as templates in the second step PCR with HDT1mai-F and HDT2mai-R primers. The final PCR fragment was introduced into pENTR-D-TOPO vector and recombined in inverse-repeat orientation into the pBnRRGWIWG binary vector by a LR Gateway reaction (Invitrogen). The primers used for RNAi are presented in Supplemental Table 2.3.

To construct pRCH1:GA2ox2 (GA2ox2OE), the RCH1 promoter was cut out of the pENTR-D-TOPO vector using the NotI and AscI restriction sites, and then ligated with a BsaI-digested pENTR4-1 vector. GA2ox2 cDNA was cloned into pENTR-D-TOPO vector. These two vectors and the CaMV 35S terminator containing pENTR 2-3 vector were recombined in a Multisite Gateway reaction.
into the binary destination pBnRGW vector. The primers used are shown in Supplemental Table 2.4.

All constructed binary vectors were introduced into Arabidopsis through *Agrobacterium tumefaciens* (strain C58)-mediated transformation by floral dipping method (Clough and Bent, 1998). The Arabidopsis (Columbia-0) plants were transformed with *pHDT1:GUS*, *pHDT2:GUS*, *pGA2ox2:GUS*, *pRCH1:HDT1HDT2 RNAi* and *pRCH1:GA2ox2* constructs. To test whether *pHDT1:HDT1-GFP* and *pHDT2:HDT2-GFP* could complement the *hdt1 hdt2* mutant, homozygous line for *hdt1* and heterozygous for *HDT2* plants were transformed with *pHDT1:HDT1-GFP* and *pHDT2:HDT2-GFP*. The primers used for confirming the complementation are listed in Supplemental Table 2.5.

Gene Expression Analyses

For RT-PCR, ~10 WT and *hdt* seedlings were collected at 6 DAG. For study of gene expression by RT-qPCR, ~100 root tips (including meristem and elongation zone) were collected at 6 DAG and this was done in three independent experiments (three biological replicates). The collected plant material was used for total RNA extraction using the E.Z.N.A. Plant RNA Kit (Omega, USA). cDNA was synthesized from 1 μg of RNA by reverse transcription with random hexamer primers using the iScript Select cDNA synthesis kit (Bio-Rad, USA) according to the manufacturer’s instructions. RT-qPCR was performed in a 10-μl reaction with MyiQ SYBR Green Super-mix (Bio-Rad, USA). Each sample was quantified in triplicates using CFX3.0 software (Bio-Rad, USA) and normalized using *TUBULIN* as a reference. The normalization using *ACTIN* as a reference shows similar results. The primers used for RT-PCR or RT-qPCR are listed in Supplemental Table 2.6 or S2.7.

RNA-Seq

Root tips of ~1000 WT and ~2000 *hdt1,2i-1* seedlings at 6 DAG were cut and collected in three parts: the meristem zone (M, from columella till the disappeared lateral root cap, approximate 500 or 300μm in the WT or *hdt1,2i-1*), elongation zone (E, till the appeared root hairs, approximate 900 or 800μm in the WT or *hdt1,2i-1*) and differentiated zone (D, approximate 1 mm for both, to avoid lateral root primordia). The experiment was performed three times (three biological replicates). Total RNA from each zone was extracted using RNeasy Micro Kit (QIAGEN, Germany). RNA was sequenced at BGI Tech Solutions (Hong Kong).
Root Development

using low-input Hiseq2000 instrument. This generated approximately 12 million 50 bp clean single-end reads for each sample. Sequencing data were analyzed by mapping to the Arabidopsis thaliana genome (TAIR10) using CLC Genomics Workbench (Denmark). Gene expression levels were determined by calculating the RPKM [(Reads Per Kilobase per Million mapped reads), (Consortium et al., 2006)]. Differentially expressed genes (DEGs) are defined based on relatively stringent statistics and filtering (fold change>2, FDR P value<0.05) within the CLC. GO enrichment analyses was performed using agriGO v2.0 (Tian et al., 2017).

Chromatin Immunoprecipitation (ChIP) Assay

Approximately 1 gram of WT and pHDT2:HDT2-GFP (in hdt1hdt2 background) complemented seedlings at 6 DAG were used for each anti-GFP ChIP assay. Approximately 0.5 gram of WT and hdt1,2i-1 roots (approximately 5mm from the tip) at 6 DAG were used for each anti-H3ac ChIP assay. For both assays 3 independent ChIP experiments were performed as described in (Kaufmann et al., 2010), with some modifications. For anti-GFP assays, sonicated chromatin was incubated with GFP-Trap agarose beads (Chromotek) for 90 min at 4ºC. For anti-H3ac assays, sonicated chromatin was immunoprecipitated with an anti-H3ac antibody (06-599, Millipore) for 1 h at 4ºC and then incubated with Protein A/G PLUS-Agarose beads (SantaCruz) for 50 min at 4ºC. Immunoprecipitated DNA was recovered using the IPure kit v2 (Diagenode) and quantified using Qubit dsDNA HS Assay Kit (Life Technologies). An aliquot of non-treated sonicated chromatin was processed in parallel and used as total input DNA control. ChIP-qPCR data analyses was performed according to (Frank et al., 2001). All ChIP enrichments were calculated as % DNA immunoprecipitated at the locus of interest relative to the corresponding input samples, and normalized to the % DNA immunoprecipitated at that locus in WT plants. The primers used for ChIP-qPCR are listed in Supplemental Table 2.8.

Accession Numbers

Sequence data from this article can be found in the Arabidopsis Genome Initiative or GenBank/EMBL databases under the following accession numbers: HDT1 (At3g44750); HDT2 (At5g22650); HDT3 (At5g03740); HDT4 (At2g27840); MATE (At2g04050) and GA2ox2 (At1g30040).
CHAPTER 2

Supplemental Data (available online: http://www.plantcell.org/content/early/2017/08/30/tpc.17.00366).

Supplemental Figure 1. Genome Structure of HDT1-4 and GA2ox2 Genes.

Supplemental Figure 2. HDT1/2 Control Root Growth.

Supplemental Figure 3. Expression of HDT1 and HDT2 Genes in WT and hdt1,2i Lines.

Supplemental Figure 4. Reduced Cell Number in hdt1,2i and GA2ox2OE RM Is Caused by an Eariler Switch from Cell division to Expansion.

Supplemental Figure 5. Expression Pattern of pHDT1:HDT1-GFP and pHDT2:HDT2-GFP in Roots.

Supplemental Figure 6. Gene Ontology (GO) Enrichment Analyses of DEGs in hdt1,2i-1 Roots.

Supplemental Figure 7. PIN1 and PIN2 Proteins Are Reduced in hdt1,2i-1.

Supplemental Table 1. Kinematic Analyses of Root Growth in WT and hdt1,2i-8 Seedlings.

Supplemental Table 2. Primers Used in This Study.

Supplemental Dataset 1. Expression of Histone Acetylation Genes from 8 Subzones of the Root.

Supplemental Dataset 2. Gene Expression Map in the WT and hdt1,2i-1 Roots.

ACKNOWLEDGEMENTS

This research was supported by European Research Council (ERC-2011-AdG-294790) and China Scholarship Council (CSC). We thank Ben Scheres from Plant Developmental Biology, Wageningen University and Research Center for his critical reading of this article, and for the provision of Arabidopsis transgenic GFP reporter lines.
AUTHOR CONTRIBUTIONS

H.L. conceived this project, designed the research, analyzed the data and wrote the article. H.L., J.T., S.S and W.Z. conducted the experiments. D.L., M.B. and H.H contributed to ChIP studies. O.K. and T.B. modified the article.

REFERENCES

mediated transformation of Arabidopsis thaliana. The Plant journal : for cell and molecular biology 16, 735-743.

analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. The Plant cell 20, 2420-2436.

CHAPTER 3

Plant-specific Histone Deacetylases Are Involved in Halotropism in Arabidopsis

Huchen Li, Olga Kulikova, Ton Bisseling

Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
CHAPTER 3

ABSTRACT

Plants evolve sophisticated mechanisms to coordinate their growth and development with salt stress. Halotropism is a response of plant root to avoid a saline environment. However, the mechanism of halotropism is still elusive. Here we show that silencing of Arabidopsis thaliana AtHDT1 and AtHDT2, encoding plant-specific histone deacetylases, causes a more severe response of the roots in halotropism. By contrast, constitutively activated AtHDT2 expression reduces halotropic response. We further show that in halotropism AtHDT1/2 are reduced at the high salt side of root but their target C19-GIBBERELLIN 2-OXIDASE 2 (AtGA2ox2) is induced there, in comparison to the side opposites to high salt. These asymmetric patterns most likely cause a lower GA level at the high salt side. Exogenously applied GA inhibits halotropic response. Collectively, our data strongly suggest that the asymmetric AtHDT1/2 pattern is required for root halotropic response.
INTRODUCTION

Plants growing in nature encounter various environmental cues. To cope with these cues, they have a flexible morphology and growth potential. For example, upon salt stress, which is one of the major abiotic factors hindering root growth (Zhu, 2002; Liu et al., 2015), roots can acclimate by using halotropism to bend away from a salty environment (Galvan-Ampudia et al., 2013).

The establishment of halotropism depends on a signal transduction pathway which is activated after the perception of salt. It has been shown that in halotropism a re-distribution of auxin results in increased auxin levels at the side of the root opposite to high salt while higher auxin inhibits cell expansion (Rayle et al., 1970). The re-distribution of auxin is dependent of PIN-mediated auxin transport, like occurs in gravitropism and phototropism (Tanimoto, 2005; Petrasek et al., 2006; Wisniewska et al., 2006; Liscum et al., 2014). In gravitropism also an asymmetric distribution of gibberellin (GA) occurs in Arabidopsis, Rice, Maize and Barley (Rood et al., 1987; Cui et al., 2005; Wolbang et al., 2007; Lofke et al., 2013). Probably this contributes to halotropism as well.

Previously, we showed that in Arabidopsis root tips two plant-specific histone deacetylases, AtHDT1 and AtHDT2 repress the transcription of \(C_{19}\)-Gibberellin 2-OXIDASE 2 (AtGA2ox2) to fine-tune GA homeostasis (Chapter 2). Therefore we ask the question whether AtHDT1/2 play a role in halotropism.

Here, we show that the \(AtHDT1/2 \) RNAi knockdown mutant, \(hdt1,2i-8 \), has a more severe halotropic response than WT. During this response the level of AtHDT1/2 protein is reduced, and by contrast expression of AtGA2ox2 is induced at the high salt side. Disrupting the asymmetric accumulation of AtHDT2 by constitutive expression of \(AtHDT2 \) or by applying exogenous GA reduce the halotropic response. Our preliminary data indicate that the asymmetric distribution of AtHDT1/2 in a root contributes to halotropism most likely by decreasing the GA concentration at the high salt side.
CHAPTER 3

RESULTS

AtHDT1/2 Have a Function in Halotropism

To study whether AtHDT1/2 are involved in halotropism, we performed salt gradient assay with 200mM NaCl as a highest concentration according to [(Galvan-Ampudia et al., 2013), see Methods] on WT and hdt1,2i-8 seedlings. In this assay we could study halotropic response by measuring root bending angle. In both cases roots changed their growth direction to circumvent high salt and later on gravitropism was re-established (Figure 1A, 1B). Quantification of the root bending angle showed that this was significantly increased in hdt1,2i-8, compared to that in the WT (Figure 1C, 1D). This shows that knockdown of AtHDT1/2 leads to a more severe response to high salt.

Halotropism Induces an Asymmetric AtHDT1/2 Distribution in Root Tips

To test whether the halotropic response is due to a regulation of AtHDT1/2 expression by salt, we transferred 6-days-old WT seedlings from a plate without NaCl to a plate containing 100mM NaCl and examined expression of AtHDT1/2 in root tips by qRT-PCR. The control seedlings were transferred to plates with 0 mM NaCl. This showed that at 3 hours(h) after transfer (Figure 2A), expression of AtHDT1 and AtHDT2 were 50% and 30% reduced, respectively. Their expression levels were not changed at 6h after salt treatment, compared to 3h. This indicates that salt stress affects the expression of AtHDT1/2 rapidly and the major difference occurs as an early response to salt.

As AtHDT1/2 expression responds to salt, we ask the question whether AtHDT1/2 obtains an asymmetric distribution during halotropism. To examine this, Arabidopsis seedlings expressing pHDT1:HDT1-GFP or pHDT2:HDT2-GFP were exposed to the salt gradient. AtHDT1/2 levels in root tips at the high salt side was compared with that of the side opposites to high salt. AtHDT1/2 levels were studied by confocal microscopy. Both proteins are nuclear localized (Chapter 2). To ensure the whole nucleus is included we made z-stacks (~8 μm) of the epidermal cells. The moment when the formation of salt gradient was started was defined as 0h. This showed that at 6h after exposure to the salt gradient, both AtHDT1 and AtHDT2 were lower at the high salt side (Figure 2B, 2C), likely caused by salt induced repression of AtHDT1/2 expression. Both proteins were mainly localized in nucleoli, like occurred under normal
Figure 1. AtHDT1/2 Inhibit Halotropic Response Likely by Disruption of the Establishment of Asymmetric Gibberellin Distribution.

(A), (B), (E) and (F) Halotropic response of seedlings after exposing to salt gradients for 48h. 6-days-old WT (A), hdt1,2i-8 (B), or HDT2C1 (E) seedlings were transferred to mock. 2-days-old WT seedlings were pre-treated by 1mM GA3 for 4 days and then transferred to the medium containing 1mM GA3 (F). Then salt gradients were generated by 200mM NaCl according to (Galvan-Ampudia et al., 2013). Arrowheads indicate the position of root tip at the start point of exposing to salt gradient.

(C) and (D) Quantification of WT (C) and hdt1,2i-8 (D) root angles in salt gradient after 24h. Bars represent percentage of root bending angle with 10 degrees range. The number indicates how many roots were measured. Different letters indicate a significant difference is present between the two groups (p<0.001, Student’s t test).
growth conditions (Chapter 2). These data indicate that during the halotropic response, salt does not affect AtHDT1/2 sub-nuclear localization, but reduces their expression levels at the high salt side.

Constitutive Activation of AtHDT2 Reduces Halotropism

Our data indicate that the reduction of AtHDT1/2 expression at the high salt side of root tips is part of the mechanism of halotropism. This would mean that a constitutive expression of AtHDT1/2 will decrease the halotropic response. To test this, we generated 35S:AtHDT2 lines that constitutively express AtHDT2, by fusing AtHDT2 coding sequence with the CaMV 35S promoter (Odell et al., 1985). This promoter does not respond to salt, therefore exposure to a salt gradient will not reduce AtHDT2 expression (Hou et al., 2016). Four lines (HDT2C1-4) were generated and they did not show a root phenotype, compared to the WT under control condition (data not shown). We exposed HDT2C1 seedlings to a salt gradient and monitored their root growth directions. This line was randomly selected out of four lines, and the halotropic response of this line was markedly reduced, compared to the WT (Figure 1A, 1E). This indicates that the asymmetric distribution of AtHDT2 contributes to the halotropic response.

Halotropism Induces an Asymmetric AtGA2ox2 Expression in Root Tips

Previous studies showed that AtHDT1/2 repress the transcription of AtGA2ox2 in root tips. To test whether the role of AtHDT1/2 in halotropism involves AtGA2ox2 repression, we determined expression level of AtGA2ox2 in root tips by qRT-PCR after transferring 6-days-old seedlings to medium containing 100 mM NaCl. The control seedlings were transferred to plates with 0mM NaCl. This showed that at 3h after transfer, a 10 times up-regulation of AtGA2ox2 was observed (Figure 2A). Its expression level was also not changed at 6h after salt treatment, compared to 3h. This indicates that AtGA2ox2 also responds to salt stress early.

To study whether AtGA2ox2 obtains an asymmetric distribution during halotropism, we first generated a pAtGA2ox2:3YFPnls reporter line by fusing the AtGA2ox2 promoter to three consecutive copies of Yellow Fluorescent Protein containing a nuclear localization signal. This protein has a higher fluorescence intensity than regular YFP and also remains in the cell where it is produced due to its high molecular weight (Mathieu et al., 2007). Under control condition, a low level of expression of pAtGA2ox2:3YFPnls occurred in vascular tissue and
Figure 2. Salt Stress Reduces AtHDT1/2 Expression and Accumulation, But Induces AtGA2ox2 Expression.

(A) Quantitative real time PCR (qRT-PCR) analyses of AtHDT1/2 and AtGA2ox2 expression in root tips of 6-days-old WT seedlings after 100mM NaCl treatment for 0 hour (h, Mock), 3h and 6h. All data show mean ± SE values determined from three independent experiments (each experiment was estimated as the average of three technical replicates).

(B) to (D) Asymmetric patterns of AtHDT1 (B), AtHDT2 (C) and AtGA2ox2 (D) in root tips during halotropic response. Arabidopsis seedlings expressing pHDT1:HDT1-GFP (B), pHDT2:HDT2-GFP (C) or pAtGA2ox2:3YFPnls (D) were grown in salt gradients for 6h (B and C) or 24h (D). White arrows indicate the high salt side. For each reporter ~10 seedlings were imaged and representative data were shown. Bars=50μm.
pericycle at the transition from root meristem to elongation zone (data not shown). This expression pattern is consistent with that of \textit{pAtGA2ox2:GUS} (Chapter 2). We next exposed these plants to a salt gradient and compared \textit{AtGA2ox2} expression levels at the high salt side with that at the side opposite to high salt. This showed that at 6h, no difference in \textit{AtGA2ox2} expression was observed between the two sides. However, after 24h at the high salt side, expression of this gene was markedly increased, compared to the opposite side of root (Figure 2D). This indicates that high salt induces \textit{AtGA2ox2} expression. The induction of \textit{AtGA2ox2} was later than the reduction of \textit{AtHDT1/2} which supports the conclusion that high salt reduces the \textit{AtHDT1/2} level and this subsequently leads to an increased expression of \textit{AtGA2ox2}.

Symmetric GA Distribution Reduces Halotropism

Both \textit{AtHDT1/2} and \textit{AtGA2ox2} obtain asymmetric patterns during halotropism. This most likely results in a low GA level at the high salt side (Chapter 2). To investigate whether this contributes to the halotropic response we exogenously applied 1\textmu M \textit{GA$_3$} to WT seedlings to monitor their root growth direction. \textit{GA$_3$} is not a substrate of \textit{AtGA2ox2} and has previously been shown to rescue root phenotype in GA-deficient \textit{ga1-3} mutants (Thomas et al., 1999; Hedden and Phillips, 2000; Yamauchi et al., 2007; Ubeda-Tomas et al., 2009). Therefore we hypothesize that its application avoids the establishment of asymmetric GA distribution when roots are exposed to a salt gradient. This showed that application of \textit{GA$_3$} caused a markedly reduced halotropic response (Figure 1A, 1F), indicating that an asymmetric distribution of GA in root tips contributes to halotropism.

DISCUSSION

We show that during the halotropic response \textit{AtHDT1/2} become asymmetrically distributed with the lower level at the high salt side. The mechanism by which the \textit{AtHDT1/2} control halotropism most likely involves regulation of asymmetric GA accumulation. The involvement of \textit{AtHDT1/2} in controlling halotropism seems to be in disagreement with the observation that in the \textit{AtHDT1/2 RNAi} line the halotropic response is more severe than in WT. This implies that with asymmetric GA distribution in the meristem the additional mechanisms can contribute to halotropism. For example, study of PIN1 and PIN2 accumulation
Salt Stress

in the AtHDT1/2 RNAi line exposed to salt gradient might shed light on this. The involvement of AtHDT1/2 in halotropism is consistent with the fact that an exposure to (homogenous) salt represses AtHDT1/2 expression in root tips (Figure 2A), as well as in seedlings (Luo et al., 2012). In line with this, during halotropic response, at 6h after exposure to the salt gradient AtHDT1/2 proteins are lower in root tips at the side of high salt (Figure 2B, 2C). Bending is initiated after ~9h (Christa Testerink, personal communication), which means that the decrease of AtHDT1/2 levels most likely precedes the start of bending. Whether the increase of AtGA2ox2 expression precedes bending cannot yet be concluded as we only measured its expression level at 6 and 24h after exposure to the salt gradient.

The importance of the asymmetric accumulation of AtHDT1/2 and subsequently GA in halotropsim is underlined by the reduced halotropism when AtHDT2 is constitutively expressed (Figure 1C). It is also supported by the observation that exogenously application of GA also reduces the halotropic response (Figure 1D). The involvement of asymmetric accumulation of GA during halotropism is shared with that in gravitropism (Lofke et al., 2013). This indicates that the mechanisms controlling bending in both tropic responses share common aspects. A more degradation of PIN2 at the upper than the lower side of root plays an important role in gravitropism (Abas et al., 2006; Kleine-Vehn et al., 2008). AtHDT1/2 appear to play a role in stabilizing PIN2 under control condition (Chapter 2). We hypothesize that in halotropism the reduction of AtHDT1/2 is linked to observed endocytosis of PIN2 at high salt side (Galvan-Ampudia et al., 2013).

METHODS

Plant Materials and Growth Conditions

The Arabidopsis accession Columbia-0 was used as WT. The Arabidopsis pHDT1:HDT1-GFP and pHDT2:HDT2-GFP reporter lines used were described as before (Chapter 2).

Plants were grown vertically on ½ Murashige and Skoog medium (pH 5.8) including vitamins (Duchefa), 0.5% sucrose and 1% Daishin agar (Duchefa) under long-day conditions (16h light/8h dark) at 22 °C. At 6 days after
germination, seedlings were transferred to the medium containing homogenous 100mM NaCl for a corresponding period, or to plates in which the formation of the salt gradient was started when root tips were above the diagonal border below which 200mM salt was applied according to (Galvan-Ampudia et al., 2013). For the GA$_3$ treatment, 2-days-old seedlings were pre-treated with GA$_3$ for 4 days before transferring them to the in the salt gradient with mock side containing GA$_3$.

Root Growth Phenotype Analyses and Microscopy

After transferring, only those seedlings with a 5-10 mm distance from root tips to media interphase at the moment of generating in gel salt gradient were studied. Root growth direction was monitored on vertical plates by marking the root tip at 0h and 24h. 0h was defined as the moment when the salt gradient medium was set. Root bending degree was defined by the angle between vertical line and the straight line between the two marks. The measurement was done by using Image Lab 2.0 Software (Bio-Rad, USA).

Roots imaged during halotropism were cut out together with the gel to keep orientation and mounted on cover slides with or without 10 μM propidium iodide for cell wall staining. All confocal images were acquired using Leica SP8 confocal laser scanning microscope (Leica, Germany). GFP, YFP and propidium iodide were detected with an excitation wavelength of 488 nm, 514nm and 543 nm, respectively.

Constructs and Plant Transformation

To construct pAtGA2ox2:3YFPnls, AtGA2ox2 promoter was cut out of the pENTR-D-TOPO vector (Chapter 2) using the Not I and Asc I restriction sites, and then ligated with a Bsa I digested pENTR4-1 vector (Invitrogen). This vector, the pGEM-T easy 221 entry vector containing 3 consecutive copies of YFP with nucleus localization signal (Ben scheres), and the CaMV 35S terminator containing pENTR 2-3 vector (Invitrogen) were recombined in a Multisite Gateway reaction into the binary destination pBnRGW vector (Karimi et al., 2002; Stuitje et al., 2003).

To generate 35S:AtHDT2 (HDT2c) construct, the coding sequence of AtHDT2 was first amplified by primers, Forward: CACCATAAAATAGCCCCAAACCCACTGCC and Reverse: AGCTCTACCCTTCCCTTGCC, and then directionally cloned into
Salt Stress

pENTR-D-TOPO vector (Invitrogen). Subsequently, this vector, the pENTR 4-1 vector containing CaMV 35S promoter (Invitrogen) and the pENTR 2-3 vector containing a CaMV 35S terminator (Invitrogen) were recombined into the binary destination pBnRGW vector by Multisite Gateway reaction (Karimi et al., 2002; Stuitje et al., 2003).

The two constructed binary vectors were introduced into Arabidopsis (Columbia-0) through Agrobacterium tumefaciens (strain C58)-mediated transformation by floral dipping method (Clough and Bent, 1998).

Gene Expression Analyses

Total RNA from root tips (including meristem and elongation zone) was extracted using the plant RNA easy kit (Omega, USA). cDNA was synthesized from 1µg of RNA by reverse transcription with random hexamer primers using the iScript Select cDNA synthesis kit (Bio-Rad, USA) according to the manufacturer’s instructions. qRT-PCR was performed in a 10 µl reaction system with MyiQ SYBR Green Super-mix (Bio-Rad, USA). Each sample was quantified in triplicates using CFX3.0 software (Bio-Rad, USA) and normalized using TUBULIN as a reference. The primers used for qRT-PCR are listed in Chapter 2.

REFERENCE

seeds. Plant & cell physiology 48, 555-561.

CHAPTER 4

MAPK-triggered chromatin reprogramming by histone deacetylase in plant innate immunity

David Latrasse¹, Teddy Jégu¹, Huchen Li², Axel de Zelicourt³, Cécile Raynaud¹, Stéphanie Legras⁴, Andrea Gust⁵, Olga Samajova⁶, Alaguraj Veluchamy³, Naganand Rayapuram³, Juan S. Ramirez-Prado⁵, Olga Kulikova², Jean Colcombet¹, Jean Bigeard¹, Baptise Genot¹, Ton Bisseling², Moussa Benhamed¹,³, Heribert Hirt¹,³

¹Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France

²Laboratory of Molecular Biology, Wageningen University, Droevendaalsesteeg 1 6708PB Wageningen, The Netherlands

³Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia

⁴Plateforme Biopuces et séquençage, IGBMC, 1 rue Laurent Fries Parc d’Innovation, 67400 Illkirch, France

⁵Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany

⁶Palacky University Olomouz, Slechtitelu 11, 78371 Olomouz, Czech Republic

Published in Genome Biology (2017) 18: 131
CHAPTER 4

ABSTRACT

Microbial-associated molecular patterns (MAMPs) activate several MAP Kinases (MAPKs), which are major regulators of the innate immune response in Arabidopsis that induce large-scale changes in gene expression. Here, we determined whether MAMP-triggered gene expression involves modifications at the chromatin level. Our results show that histone acetylation and deacetylation are major regulators of MAMP-triggered gene expression and implicate the histone deacetylase HD2B (named as HDT2 in Chapter 2 and 3) in the reprogramming of defense gene expression and innate immunity. The MAPK MPK3 directly interacts with and phosphorylates HD2B, thereby regulating the intra-nuclear compartmentalization and function of the histone deacetylase. By studying a number of gene loci that undergo MAMP-dependent activation or repression, our data reveal a mechanistic model for how protein kinase signaling directly impacts chromatin reprogramming in plant defense.
INTRODUCTION

Due to their sessile nature, plants have developed sophisticated ways to respond and adapt to a variety of external stress factors that would otherwise compromise proper development, reproductive success and ultimately survival. Numerous cellular proteins interact and communicate in response to extracellular stimuli and, through multiple signaling networks, transmit signals to the nucleus for reprogramming chromosomal gene expression. These dynamic regulatory mechanisms contribute to the capacity of plants to adapt to the onslaught of both biotic and abiotic challenges. Indeed, the success of photosynthetic eukaryotes is influenced by the adaptive dynamics of chromatin regulatory mechanisms, like histone modifications, which are rapid and reversible.

The choice of gene expression ultimately determines the fate of cells, forming the basis of biological diversity. The regulation of gene expression is closely coupled to chromatin structure and its modifications, which determine the accessibility of many regulatory proteins and non-coding RNAs to the DNA, adding a further layer of complexity to the genetic information encoded by the DNA sequence (Kouzarides, 2007; Saze et al., 2012; Mercer and Mattick, 2013). Chromatin is a tightly contained higher order structure that compacts genomic DNA to fit within the nucleus. The fundamental unit of chromatin is the nucleosome, which is composed of DNA that is wrapped around an octamer of histone proteins. Chromatin structure is modulated by a variety of mechanisms including DNA methylation catalyzed by DNA cytosine methyltransferases, histone post-translational modifications, such as acetylation and methylation, catalyzed by a wide range of enzymes specific for each modification, alterations in histone-DNA interactions that facilitate nucleosome sliding and are catalyzed by chromatin remodeling complexes, histone variants, and long and small noncoding RNAs (ncRNAs) that can act directly on chromatin and induce RNA-dependent DNA methylation (RdDM) (Bannister and Kouzarides, 2011; Bender, 2012; Keller et al., 2013).

Many developmental and environmental cues induce changes in chromatin structure. Plants sense pathogens through the perception of MAMPs, which induce signaling cascades to activate transcription factors and invoke chromatin regulatory mechanisms to reorganize the chromatin structure and, ultimately, provoke the changes in gene expression necessary for plant defense. Thus, in response to different stimuli, a single eukaryotic genome (DNA sequence) can
CHAPTER 4

give rise to distinct epigenomes.

Here, we examine the role of chromatin remodeling in *Arabidopsis thaliana* upon challenge with a synthetically produced 22 amino-acid long flagellin peptide (flg22) that mimics the response to bacterial pathogens. Flg22 is recognized in *Arabidopsis* by the plasma membrane Leucine-Rich Repeat-Receptor Kinase (LRR-RK) FLS2 and activates two MAPK signaling pathways that initiate an array of defense responses including the production of several hormones, reactive oxygen species and the induction of a large set of defense genes, processes generally referred to as MAMP-triggered immunity (MTI). These two main cascade branches involve the successive recruitment of MAP kinase kinase kinases (MAP3Ks), which phosphorylate and activate MAP kinase kinases (MAP2Ks) that phosphorylate and activate the MAP kinases MPK3, 4, 6 and 11 (Asai et al., 2002; Gao et al., 2008; Bethke et al., 2012). Ultimately, these MAPKs phosphorylate and thereby regulate protein factors responsible for the increased or decreased expression of specific gene sets with the goal to counteract the pathogen assault. Although specific transcription factors have been identified as targets for MPK3 (Djamei et al., 2007), MPK4 (Andreasson et al., 2005) and MPK6 (Bethke et al., 2009), much of the protein machinery orchestrating gene regulation in response to flagellin has not been identified.

Here, we report a role for the MAP kinase MPK3 in chromatin modulation and dissect the defense mechanism during the response to flagellin. We show that MPK3 interacts directly with and phosphorylates the histone deacetylase HD2B, which has been shown to deacetylate the lysine 9 residue of Histone 3 (H3K9), a modification generally linked to the compaction of chromatin. We also show that, upon flagellin perception, HD2B is re-localized from the nucleolus to the nuclear compartment, leading to global genome-wide shifts in the H3K9 acetylation landscape. We identified flg22-regulated defense genes targeted by the MPK3-HD2B regulatory module and show that HD2B is directly implicated in bacterial defense in plants. Our results mechanistically define how a MAMP-activated MAP kinase regulates global changes in the chromatin landscape.
RESULTS

MPK3 Interacts with and Phosphorylates HD2B in vivo

Our previous phosphoproteomic approach aimed at identifying MAPK substrates revealed 303 in vivo phosphorylation sites in proteins isolated from Arabidopsis root cells (de la Fuente van Bentem et al., 2008). Among these sites, 91 matched the proline-directed motifs pS/pT-P that commonly serve as phosphorylation sites for MAPKs. Because we were interested to identify global regulators of gene expression that play a role in pathogen defense, we selected the histone deacetylase (HDAC) HD2B, which was phosphorylated at the amino acid positions T249 and S266, matching the S/T-P consensus motif for MAPK substrates (Supplemental Figure S1-S5).

We first assayed whether HD2B was a substrate of the canonical MAPK pathways activated by pathogen recognition. To this end, we immuno-purified endogenous flg22-activated MPK3, MPK4 and MPK6 from a root cell culture extract and tested whether the MAPKs phosphorylated HD2B in vitro. Using MBP and GST as positive and negative controls, respectively, MPK3 showed the highest phosphorylation activity toward GST-tagged HD2B among the 3 tested MPKs (Figure 1A), whereas MPK4 and MPK6 showed a weaker substrate preference to HD2B when compared with the artificial substrate MBP (Figure 1A). To control our MAPK antibody specificity, we performed kinase assays with protein extracts from mpk3, mpk4, mpk6 and mpk7 mutants and their respective wild type lines after immunoprecipitation with the corresponding antibodies (Supplemental Figure S6). MPK7 antibody was used as a negative control as this kinase is not activated upon flg22 treatment. The results indicated that the antibodies specifically immunoprecipitated the respective kinases (Supplemental Figure S6). To confirm the substrate specificity of the phosphorylation of HD2B by MPK3, we also tested several additional substrates that were identified in the phosphoproteome screen. As shown in Supplemental Figure S7, PI-4Kß1 (At5g64070) was specifically phosphorylated by MPK3 and MPK6, SCF (At5g13300) was not phosphorylated by any of the three immune MAPKs, MSL9 (At5g19520) and GOS12 (At2g45200) were preferentially phosphorylated by MPK6. To determine whether MPK3 phosphorylated the previously identified HD2B in vivo sites T249 and S266 (de la Fuente van Bentem et al., 2008), the T249 amino acid residue was mutated individually to glutamate or in combination with S266 to aspartate residues (HD2B-T249E
Figure 1. MPK3 Phosphorylates HD2B in vitro and Interacts with HD2B.

(A) In vitro phosphorylation assays of MBP (left), GST (middle) and HD2B-GST (right) by MPK3 (3), MPK4 (4) and MPK6 (6). MPK3, 4 and 6 were immunoprecipitated from flagellin-treated root cell suspensions. For each assay, Coomassie staining of the gel (CBB) is shown on the left as a protein loading control and the autoradiography (Autorad) is shown on the right.

MPK3, 4 and 6 were able to phosphorylate MBP, but not GST. HD2B phosphorylation was observed with all three MPKs, but MPK3 showed the highest activity. Arrows continued on next page
and HD2B-T249E/S266D, respectively; denominated further as HD2B-ED), and these mutant HD2B proteins together with WT HD2B were tested for their ability to serve as MPK3 substrates (Figure 1B). In comparison to WT HD2B, HD2B-T249E showed reduced and HD2B-T249E/S266D complete lack of phosphorylation by MPK3, indicating that the \textit{in vivo} phosphorylation sites T249 and S266 can be targeted by MPK3 \textit{in vitro} (Figure 1B).

To better understand where the MPK3 and HD2B interaction takes place, we investigated the subcellular localization of the HD2B and MPK3 proteins. A GFP-HD2B fusion protein was localized in the nucleolus (Zhou et al., 2004; Pendle et al., 2005), whereas MPK3 was observed in both cytoplasmic and nuclear cell compartments (Figure 1C and Supplemental Figure S8). Using indirect immunofluorescence staining, we found that MPK3 and HD2B were co-localized in the nucleoli of the same plant tissue (Figure 1D). To determine if MPK3 and HD2B can interact \textit{in vivo}, we performed a bimolecular fluorescence

\textbf{(B)} \textit{In vitro} phosphorylation assays of wild type HD2B (WT) and the mutant HD2B protein forms HD2B-T249E and HD2B-T249E/S266D. Coomassie staining of the gel (CBB) is shown as a protein loading control.

\textbf{(C)} Cell fractionation assay of MPK3 localization. Proteins from total, cytoplasmic and nuclear cell extracts were subjected to SDS-PAGE and analyzed by immunoblotting with anti-MPK3 antibody. Anti-H3 and anti-PEPC antibodies were used as controls for nuclear and cytoplasmic proteins, respectively.

\textbf{(D)} Immuno-staining of MPK3 and HD2B performed on plants expressing a GFP-HD2B fusion. Antibodies used to reveal the presence of the proteins are noted above the panels. DAPI staining was used to label the nuclei. MPK3 could be detected both in the cytoplasm and in the nucleus while GFP-HD2B was only observed in the nucleus.

\textbf{(E)} BiFC analysis of HD2B interaction with MPK3 in epidermal cells of \textit{Agrobacterium}-infiltrated \textit{Nicotiana benthamiana}. Empty vectors were used as controls. Fluorescence indicates that YFPc-HD2B interacts with YFPn-MPK3. YFPc-HD2B does not interact with empty YFPn vector and YFPn-MPK3 does not interact with empty YFPc vector Overlay indicates merging the YFP and light transmission images.
complementation assay (BiFC). To this end, the MPK3 and HD2B cDNAs were inserted into binary vectors, containing the split YFP N-terminal fragment (YFPn) and the C-terminal fragment (YFPc), respectively. When YFPc-HD2B and YFPn-HD2B were expressed together in transiently transformed *Nicotiana benthamiana* leaves, YFP fluorescence was observed inside nuclei revealing an *in planta* interaction between the two proteins (Figure 1E, upper panels). No fluorescence was observed when each tagged protein was expressed separately with the corresponding empty vector (Figure 1E, middle and bottom panels). Because both MPK4 and MPK6 showed a capacity to phosphorylate HD2B, but with a weaker preference than MPK3, we tested their interaction with HD2B by BiFC. As expected we found that as MPK4 and MPK6 can also interact with HD2B but with a lower efficiency (supplemental Figure S9). Due to the fact that MPK3 showed the highest phosphorylation activity we decided to focus our study on this specific MAPK. To confirm the MPK3/HD2B interaction *in vivo* we performed co-immunoprecipitation experiments. First, protein extracts obtained from protoplasts transiently expressing *HD2B-c-Myc* and *MPK3-HA* tagged proteins were immunoprecipitated with an anti-c-Myc antibody and analyzed by immunoblotting with anti-c-Myc or anti-HA antibodies. We observed that HD2B interacts with MPK3 (Supplemental Figure S10A) consistent with our *in vitro* kinase assays (Figure 1A). Second, co-IP assays performed with transgenic plants expressing both *GFP-HD2B* and *MPK3-c-Myc* tagged proteins (Supplemental Figure S10B) confirmed our BiFC assays (Figure 1E) that HD2B interacts with MPK3 *in vivo*. Taken together, our results showed that MPK3 interacts with and phosphorylates HD2B.

The MPK3-HD2B Module Controls the Transcription of Biotic Stress Response Genes by Modulating H3K9ac Levels

To gain insight into the role of HD2B and its interaction with MPK3 in gene regulation and plant defense, we examined the gene expression consequences of HD2B and MPK3 loss-of-function mutants in resting conditions and in flagellin-challenged plants. To this end, we performed RNA-seq analyses on *hd2b* and *mpk3* mutants and wild type (WT) plants (Supplemental Table I and II) either mock-treated for 30 minutes or treated for the same period of time with 1µM of flg22. First, when compared to WT, we observed that 1714 genes were deregulated in *hd2b* with a fold change >2 and p-value <0.05. From these 1714 genes 74% were up-regulated and 26% down-regulated (Figure 2A). This
pattern is consistent with the role of HD2B as a repressor. A functional annotation of *hd2b* up-regulated genes under control conditions showed a clear enrichment in genes involved in transcription (Figure 2A and Supplemental Figure S11). By contrast, an annotation of down-regulated genes showed enrichment in genes involved in transport activity (Supplemental Figure S12A and S12B). Because HD2B is a histone deacetylase and as such a putative repressor of gene expression, we focused our subsequent analyses on the set of genes that was up-regulated in the *hd2b* mutant. Comparative analysis between the *hd2b* and *mpk3* transcriptomes revealed an overlap among the identity of the deregulated genes in the two mutants. Indeed, a total of 414 genes were commonly up-regulated in the two mutants (Figure 2B) representing 32% of the *mpk3* up-regulated genes. This result was not surprising because MPK3 likely has many substrates in addition to HD2B that contribute to the gene expression modifications observed in the transcriptome of our mutants. Reciprocally, HD2B likely is involved in diverse cellular processes that include, but are not limited to, pathogen defense. Gene ontology analysis of this class of genes revealed a significant enrichment in RNA biosynthetic processes and transcription (Figure 2C).

To put these responses in the context of defense responses, the transcriptome results of untreated *hd2b* and *mpk3* mutants were compared to data obtained on WT plants after flagellin treatment, which allowed us to distinguish 150 genes that were up-regulated in the *mpk3* and *hd2b* mutants and upon flagellin treatment (Figure 2D), suggesting that the HD2B-MPK3 module normally represses the expression of these genes but that the inhibitory effect is alleviated during pathogen defense.

To further dissect the mechanisms by which MPK3 and HD2B regulate these genes, and based on the changes in their expression levels from the RNA-seq data, we selected four genes, *AT2G31290, AT5G03350, AT3G11380* and *AT2G28180*, for further analysis. Quantitative RT-PCR confirmed the RNA-seq results indicating an over-expression of *AT2G31290, AT5G03350, AT3G11380* and *AT2G28180* in *mpk3* and *hd2b* mutants (Figure 2E).

Because HD2B is a histone deacetylase, we hypothesized that HD2B could be directly interacting with the gene loci to repress their transcription. To test if HD2B directly binds the four regulated genes, we performed chromatin immunoprecipitation (ChIP)-qPCR on seedlings expressing a GFP-HD2B fusion
Figure 2. HD2B and MPK3 Regulate the Basal Expression of a Subset of Defense Genes.

continued on next page
protein under the control of the endogenous HD2B promoter (\textit{pHD2B::GFP-HD2B}). As a negative control, we included the AT1G07690 gene that is up-regulated in \textit{hd2b} mutants (Supplemental figure S13A) but was not identified as a HD2B target by ChIP-seq. A marked enrichment of HD2B binding on each of the four candidate genes but not on \textit{AT1G07690} was found in the absence of flagellin treatment (Figure 2F and Supplemental Figure S13B). Therefore, the HD2B protein is associated with chromatin and binds to these four genes, suggesting that HD2B directly regulates their transcription.

Acetylation and deacetylation are dynamic processes that can be rapidly reprogrammed, depending on the signals received by the cell. To determine

\textbf{(A)} Annotation of \textit{hd2b} deregulated genes. 26\% of \textit{hd2b} deregulated genes are downregulated (green, 452 genes) whereas 74\% are up-regulated (red, 1263 genes). Generation of a hierarchical tree graph with the Agrigo GO Analysis Toolkit shows that up to 63\% of the up-regulated genes code for proteins with significant enrichment in “transcription” and “RNA biosynthetic process”.

\textbf{(B)} Comparisons among the transcriptomes of \textit{hd2b} and \textit{mpk3} mutants. 32\% of up-regulated (414) and 29 \% of down-regulated (126) genes in \textit{mpk3} are in common with \textit{hd2b} mutants.

\textbf{(C)} Gene Ontology (GO) analysis of commonly up-regulated genes in \textit{hd2b} and \textit{mpk3} mutants with the Agrigo GO Analysis Toolkit. Histograms of the values highlight the enrichment of genes involving RNA biosynthesis and transcription. P-values for each enriched class are indicated (p-v).

\textbf{(D)} Comparisons of the 414 commonly up-regulated genes in \textit{hd2b} and \textit{mpk3} mutants with the genes up- or down-regulated in WT seedlings by flg22 treatment for 30 minutes.

\textbf{(E)} Validation of transcriptomic data by RT-qPCR. The up-regulation of 4 genes (of the 150 commonly up-regulated genes in \textit{hd2b} and \textit{mpk3} and flg22-treated WT in Figure 2D) was confirmed by RT-qPCR.

\textbf{(F)} HD2B protein binding to flg22-inducible genes in mock conditions. ChIP-qPCR assays with anti-GFP antibodies were performed on \textit{pHD2B::GFP-HD2B} seedlings (Figure 2E). An IgG antibody was used as a negative control.

\textbf{(G)} MPK3 and HD2B promote H3K9 deacetylation of flg22-inducible genes in mock conditions. Using an anti-H3K9ac antibody, ChIP-qPCR assays were performed in \textit{hd2b}, \textit{mpk3} and WT seedlings. Compared to WT, the 4 loci (Figure 3E and 3F) were hyperacetylated in \textit{hd2b} and \textit{mpk3} mutants.
the level of H3K9 acetylation, we performed ChIP-qPCR assays on these representative genes. Interestingly, we found hyper-acetylation on these four genes in both *mpk3* and *hd2b* mutants when compared to WT (Figure 2G). Altogether, our results indicate that the HD2B-MPK3 module is required to regulate the basal expression of a subset of genes. In *hd2b* and *mpk3* mutants, the absence of deacetylation results in the constitutive induction of these genes (Figure 2E). Thus, in addition to responding to pathogen stress, MPK3 activity appears to be required under normal conditions to promote HD2B-directed histone deacetylation to repress unwanted expression of these genes (Figure 2E, 2F and 2G).

HD2B is Involved in Pathogen Defense

Because the MPK3-HD2B module regulates pathogen response genes, we investigated the direct relevance of HD2B during biotic stress. In Arabidopsis, MPK3 has been shown to negatively regulate the basal activity of defense genes in the absence of MAMPs, but to be required for full expression of defense-related genes upon pathogen challenge (Frei dit Frey et al., 2014). Because MPK3 interacts and phosphorylates HD2B, we hypothesized that HD2B might also be implicated in defense against pathogens. To test this hypothesis, *hd2b* mutants were challenged with the non-pathogenic bacterial strain *Pseudomonas syringae pv. tomato hrcC-*(Pst hrcC-) that carries a mutation in the type 3 secretion apparatus and is hence deficient in effector deployment. Mutants showed increased sensitivity compared to wild-type plants (Figure 3A). As a control, we also tested the *hd2b* mutant complemented by expression of HD2B under its own promoter (*pHD2B::GFP-HD2B*). *hd2b* complemented with *pHD2B::GFP-HD2B* showed infection levels of *Pst hrcC-* that were similar to wild type col-0 plants. We also compared the resistance of the *hd2b* mutant and HD2B over-expressing lines to wild type Col-0 plants upon infection to virulent *Pseudomonas syringae pv. tomato* (*PstDC3000*). *hd2b* mutants were also more susceptible than wild type, whereas plants over-expressing *HD2B* under the constitutive 35S cauliflower mosaic virus promoter (*35S::HD2B*) were more resistant to *Pst DC3000* (Supplemental Figure S14). These results show that HD2B is implicated in the defense against pathogens probably by regulating defense genes. We hypothesized that HD2B is not involved in MAMP signaling upstream of the MAP Kinase pathway. To confirm this, we first analyzed the MPKs activation after flg22 treatment in both WT and *hd2b* mutant and no
Biotic Stress

Figure 3: HD2B Plays a Role in Plant Immunity and Shuttles from the Nucleolus to the Nucleoplasm.

(A) Susceptibility of *hd2b* mutant and independent *hd2b* transgenic lines expressing an unphosphorylatable version of HD2B-AA (*hd2b pHD2B::GFP-HD2B-AA #1 and #2*) to *Pseudomonas syringae* pv. *tomato hrcc* was compared to that of wild type *Col-0* and to a complemented mutant line (*hd2b pHD2B::GFP-HD2B*) as a control. 14-day-old in vitro seedlings were incubated with a suspension of *Pst hrcc*-, and bacteria were quantified 2 hrs (day 0) and two days (day 2) after inoculation. *hd2b* mutant plants and GFP-HD2B-AA lines showed enhanced susceptibility compared to *col-0* and to the nonmutated GFP-HD2B complemented line. Average values and standard deviations were calculated from three independent experiments. For each condition (day 0, day 2), a one way ANOVA followed by an all pairwise multiple comparison procedure was performed (Holm-Sidak method, 23>n>8, p<0.05).

(B) Immunofluorescence staining was performed on *pHD2B::GFP-HD2B* rosette leaves either mock-treated or elicited with flg22 for 30 minutes. In mock-treated tissues, GFP-HD2B was localized to the nucleolus while GFP-HD2B was observed in the whole nucleus after flg22 treatment. Scale bars, 5μm.

(C) GFP-HD2B-ED that mimics a constitutively phosphorylated version of HD2B was stably expressed in Arabidopsis plants and accumulated in the nucleoplasm while GFP-HD2B-AA was localized in the nucleolus. Scale bars, 5μm.
CHAPTER 4

changes were observed (Supplemental Figure S15). This result suggested that the signaling cascade is not affected in the *hd2b* mutant. We next asked if flagellin sensitivity is affected in this mutant. We did not observe any difference in growth inhibition (Supplemental Figure S16), suggesting that HD2B is not involved in MAMP-induced growth inhibition which is MAPK-independent.

The HD2B Phosphorylation Status Determines Its Sub-nuclear Localization and Choice of Target Genes.

Having established that HD2B contributes to pathogen defense and that it can be phosphorylated by MPK3, we investigated in more detail the consequences of MPK3-dependent HD2B phosphorylation in response to flagellin. MPK3-mediated phosphorylation could affect HD2B activity in several ways, such as modulating its catalytic activity, its stability or cellular localization. To discern if MPK3-mediated phosphorylation affects any of these parameters, we first investigated the subcellular localization of HD2B after flagellin-induced MPK3 activation. In *pHD2B::GFP-HD2B* leaves, GFP-HD2B was observed to be relocated from the nucleolus to the nucleoplasm (diffuse and speckle pattern) uniquely after flg22 recognition but not after mock treatment (Figure 3B). This relocalization was confirmed also to occur in protoplasts (Supplemental Figure S17), indicating that HD2B moves from the nucleolus to other sites in the nuclear compartment in response to flg22 treatment. To examine the role of HD2B phosphorylation by MPK3 on the sub-nuclear localization of HD2B, we analyzed the localization of WT and mutated HD2B. Consistent with phosphorylation playing a role in HD2B localization, YFP-HD2B-ED (HD2B-T249E/S266D), a mutated form of HD2B that mimics a constitutively phosphorylated version of the HD2B protein, accumulated in the whole nucleus of Arabidopsis protoplasts even in the absence of flagellin treatment (Supplemental Figure S18). We confirmed this nuclear re-localization in stably transformed Arabidopsis lines expressing *pHD2B::GFP-HD2B-ED* (Figure 3C and Supplemental figure S19) suggesting that flg22-triggered MPK3 phosphorylation of HD2B induces the nuclear re-localization of HD2B. To test the role of HD2B phosphorylation in vivo, we introduced a non-phosphorylatable HD2B version HD2B-AA (HD2B-T249A/S266A) in the *hd2b* mutant. This mutated version of the protein accumulated only in the nucleolus (Figure 3C). We next tested the sensitivity of HD2B-AA complemented *hd2b* lines to *Pst hrcC*-. These plants displayed enhanced sensitivity to the pathogen when compared to plants expressing
wild type \textit{HD2B} (Figure 3A), further confirming that phosphorylation of HD2B is required for proper activation of defense mechanisms. Consistently, the HD2B-AA protein fails to restore a normal expression level to HD2B target genes that are constitutively activated in the \textit{hd2b} mutant (Supplemental Figure S20).

To determine if the change in HD2B localization has an impact on the genes that this HDAC targets, we performed chromatin immunoprecipitation followed by sequencing (ChIP-seq) in \textit{pHD2B::GFP-HD2B} seedlings after a 30 min flagellin or mock treatment. First we controlled the HD2B enrichment after ChIP-seq (Figure 4A) and then performed a peak detection using MACS2. In control mock conditions, HD2B bound 5460 genomic loci, whereas it bound 8149 loci in flg22-treated plants (Supplemental Table IV), indicating that flg22 treatment induced a recruitment of HD2B on chromatin. These differences could be attributed to a relocalization of the protein rather than to modifications of its accumulation since the expression of \textit{HD2B} remains constant upon flagellin treatment (Supplemental Figure S21). 4431 HD2B target sites overlapped between mock- and flg22-treated plants, revealing a redistribution of HD2B on chromatin.

In mock- and flg22-treated conditions, most HD2B peaks were found approximately 300 base pairs (bp) downstream of the transcription start site (TSS) (Figure 4C and 4D), and most target genes (84\% in mock- and 78\% in flg22-treated plants) were protein-coding genes (Figure 4B). Eight of these ChIP-seq identified targets were confirmed by ChIP-qPCR in this study (Figure 2F and 6C). A Gene Ontology (GO) analysis of the protein-coding HD2B-targeted genes revealed a significant enrichment for genes involved in defense response under mock conditions, whereas HD2B targeted genes after flg22 treatment were mainly involved in plastid organization and interestingly these genes are down-regulated after a pathogen attack (Figure 4E and supplemental figure S22).

To correlate HD2B binding to changes in gene expression, we compared the ChIP-seq results obtained for HD2B binding sites with the transcriptome of the \textit{hd2b} mutant. 277 of HD2B direct targets were up-regulated in the \textit{hd2b} mutant, whereas only 79 were down-regulated (Supplemental Figure S23). This low level of correlation could be explained by the redundancy in the HD2 protein family. Together, these results indicate that after pathogen recognition, MPK3 modulates HD2B localization and activity to promote its dynamic redistribution on a new set of target genes.
Figure 4. Flagellin Recognition Leads to HD2B Redistribution to a New Set of Genes.

(A) Comparison of HD2B tag density in the regions of ± 1kb around the HD2B-occupied loci upon flg22 treatment. HD2B binding was determined by ChIP-seq experiments with an anti-GFP antibody in pH2D:B::GFP-HD2B seedlings upon either mock or flg22 treatment. A comparison with the Input tag density confirmed HD2B enrichment after ChIP-seq in mock and flg22 conditions.
Modulation of H3K9ac Levels Is a Hallmark of the Flagellin Response

Because HD2B targets are a highly varied set of genes before and after flg22 treatment, it is possible to assume that changes in histone acetylation are an important component of the cellular response to pathogens. To analyse the contribution of histone acetylation to the flg22-induced immune response, we analyzed the H3K9ac landscape before and after 30 min of flg22 treatment using a ChIP-seq approach. We identified about 15000 peaks both in control and flg22-treated plants (Supplemental Table III). A subset of these ChIP-seq results was validated by ChIP-qPCR (Figure 6C). Most of these peaks were observed at core promoters or protein-coding genes where they predominantly localized to the first nucleosome after the TSS (Supplemental Figure S24A-E). According to the agriGO toolkit, genes harbouring the H3K9ac mark were associated with developmental processes, responses to abiotic and biotic stimulus, signalling

(B) Pie chart representation of the classification of HD2B target genes upon mock or flg22 treatment. Genomic annotation of the detected HD2B peaks was performed using the Genomic Position Annotation Tool (GPAT).

(C) HD2B global profiles. The majority of HD2B peaks were located at approximately 300 bp downstream of the transcription start site. HD2B peaks in both mock- and flg22-treated plants are represented to compare their relative position to the TSS.

(D) Genome Browser view of ChIP-seq data across a region of chromosome 3 targeted by HD2B.

(E) Flagellin treatment induces HD2B targeting to a new set of genes involved in plastid organization which is repressed by biotic stresses. The Venn diagram represents the overlap between HD2B targets in mock and flg22 conditions (left). The hierarchical tree graph shows a significant enrichment of the specific flg22-HD2B-targets in "plastid organization" with Agrigo GO Analysis Toolkit (middle). The heatmap generated with publically available microarrays data and the Genevestigator software 56 indicates that specific flg22-HD2B target genes are repressed after biotic or elicitor stresses. Each column represents a gene from the list, and each line represents a particular microarray experiment. Red, green and black colors indicate up- or down-regulation or no change of gene expression, respectively (right).
Figure 5. Flagellin Recognition Modulates the Genome-wide H3K9 Acetylation Landscape.

(A) Flagellin triggers hyper- and hypo-acetylation of two different peak clusters. H3K9ac ChIP-seq data from mock- and flg22-treated plants were compared using seqMINER. From these analyses 3 classes of peaks emerged: Class I and II contain hyper- and hypo-acetylated peaks, respectively, after flg22 treatment and the third class contains peaks that do not change.

continued on next page
Biotic Stress

cascades and responses to hormone stimuli, both in control conditions and after flg22 treatment (Supplemental Figure S24F).

We next compared the two ChIP-seq data sets using seqMINER and diffReps, which allows qualitative and quantitative comparisons to be made between a reference set of genomic positions and multiple ChIP-seq datasets (Ye et al., 2011). Using this approach, we observed 3 classes of genes. The first class, consisting of 731 genes (Supplemental Table III), was hyper-acetylated after flg22 treatment (Figure 5A and 5B). Gene ontology analysis of this class revealed

continued

(B) Tag read densities of class I H3K9ac peaks are stronger upon flg22 treatment. The graph represents the average of tag reads relative to the H3K9 peak summit positions for all the peaks from cluster I.

(C) GO analysis of H3K9 flg22 hyper-acetylated genes. Genomic annotation of the H3K9 hyper-acetylated peaks was performed using the Genomic Position Annotation Tool (GPAT). GO data were extracted with the Agrigo GO Analysis Toolkit. A histogram of the values highlights the enrichment of the GO classes. P-values for each enriched class are indicated (p-v).

(D) H3K9 flg22 hyper-acetylated genes mainly are induced by biotic or elicitor stresses. The gene expression of flg22-induced H3K9 hyper-acetylated genes was analyzed using publically available microarrays data and the Genevestigator software 56. Each column represents a gene from the list, and each line represents a particular microarray experiment. Red, green and black colors indicate an up- or down-regulation or no change of gene expression, respectively.

(E) Tag read densities of class II peaks are stronger in mock conditions. The graphic represents the average of tag reads relative to the H3K9 peak summit positions for all the peaks from cluster II.

(F) GO analysis of H3K9 flg22 hypo-acetylated genes. Genomic annotation of the H3K9 hypo-acetylated peaks was performed as in Figure 5C. A histogram highlights the enrichment of the GO classes. P-values for each enriched class are indicated (p-v).

(G) H3K9 flg22 hypo-acetylated genes are repressed mainly by biotic or elicitor stresses. The gene expression of flg22-induced H3K9 hypo-acetylated genes was analyzed and displayed as in Figure 5D.
a significant enrichment in genes involved in defense and immune responses and phosphorylation (class I, Figure 5C and Supplemental Figure S26A). The second class of 13159 genes did not display any obvious changes in H3K9ac marks (class II, Figure 5A). The third class totaling 787 genes was hypo-acetylated after flg22 treatment (class III, Figure 5A and 5E and Supplemental Table III) and mainly consisted of genes involved in chloroplast and plastid organization and in metabolic processes (Figure 5F and Supplemental Figure S26B). Gene expression analysis revealed that most hyper-acetylated genes were induced (Figure 5D) and most hypo-acetylated genes were repressed by diverse biotic stresses (Figure 5G), providing strong evidence for a positive correlation between the acetylation and the expression level of biotic stress responsive genes. Consistently, comparing these results with the transcriptome of WT plants treated with flg22 revealed that about 98% of hyper-acetylated genes were induced by flg22 treatment whereas only 2% were repressed, and about 64% of hypo-acetylated genes were repressed by flg22 treatment, whereas only 36% were induced (Supplemental Figure S27), clearly showing that H3K9ac is associated with gene activation. Our results indicated that flg22-induced genes were regulated mainly by de novo acetylation, whereas flg22-repressed genes were regulated by dynamic deacetylation, highlighting the role of HDAC proteins in the control of flg22-regulated genes.

HD2B Is a Major Contributor of Flg22-induced Changes in Histone Acetylation

Because histone acetylation appears to be a major factor controlling the transcriptional reprogramming induced by pathogen recognition, we investigated whether HD2B could be a central contributor to this process. Among the 787 genes hypo-acetylated after flg22 treatment, 60% were HD2B targets, indicating that HD2B plays an important role in the transcriptional reprogramming induced by pathogens (Figure 6A). As expected among the 731 hyper-acetylated genes only 14% were HD2B targets (Figure 6A).

To clarify the mechanism by which the MPK3-HD2B module acts on genes after flg22 treatment, we selected four HD2B target genes that were hypo-acetylated after flg22 treatment. We first confirmed their acetylation status (Figure 6B), and then verified that they were bound by HD2B after flg22 treatment (Figure 6C). Secondly, we analyzed their expression and acetylation levels before and after flg22 treatment in WT plants and compared them to the levels in *mpk3* and *hd2b*
Figure 6. The MPK3-HD2B Module Contributes to the Regulation of H3K9 Acetylation Dynamics in Response to Flagellin.
mutants (Figure 6D). As expected, in WT control plants, hypo-acetylated genes were repressed and were further hypo-acetylated after flg22 treatment, but neither gene repression nor a change in acetylation occurred in the mpk3 and hd2b mutants, confirming the role of the MPK3-HD2B module in the repression and acetylation dynamics of these genes (Figure 6B, 6C and 6D). Furthermore, to functionally prove that HD2B phosphorylation plays a major role in this process we analyzed the expression levels of these specific four genes by qRT-PCR in our HD2B-AA line. We observed that this repression is not restored in the HD2B-AA line, providing further evidence for the functional relevance of HD2B phosphorylation (Supplemental Figure S28).

(A) 60 % of H3K9 flg22-induced hypo-acetylated genes are HD2B targets (left) compared to only 14% of H3K9 flg22-induced hyper-acetylated (right).

(B) MPK3 and HD2B promote H3K9 deacetylation of hypo-acetylated genes after flg22 treatment. ChIP-qPCR assays on 4 selected loci using an anti-H3K9ac antibody were performed in WT and hd2b and mpk3 mutant seedlings either mock- or flg22-treated for 30 minutes. The 4 genes were hypo-acetylated after flagellin treatment in WT plants, and this deacetylation failed to occur in the hd2b or mpk3 mutants. Asterisks indicate significantly different values (ANOVA test, P < 0.05).

(C) HD2B is bound to hypo-acetylated genes after flg22 treatment. ChIP-qPCR assays with anti-GFP antibodies were performed on pHD2B::GFP-HD2B seedlings using oligonucleotides in the proximal promoter region of the 4 selected loci. IgG antibody was used as a negative control. Asterisks indicate significantly different values (Student’s t test, P < 0.05).

(D) MPK3 and HD2B are required for gene repression of hypo-acetylated genes after flg22 treatment. Expression of the 4 selected genes was analyzed by qRT-PCR in WT, hd2b and mpk3 seedlings mock or flg22 treated for 30 minutes. Genes were repressed in the wild-type but not in hd2b and mpk3 mutants. Asterisks indicate significantly different values (ANOVA test, P < 0.05).
DISSCUSSION

Plants are sessile organisms that constantly have to respond to changes in environmental conditions such as biotic or abiotic stress. In the case of biotic stresses, plants have adapted the capacity to recognize pathogens through MAMPs via specific receptors. The multi-faceted responses of plants to pathogens have been examined extensively, and these studies have revealed that receptor-mediated pathogen recognition triggers MAP kinase signaling cascades, which, through the activation and repression of large gene sets, ultimately result in the establishment of MAMP-triggered immunity.

Previous studies have identified several transcription factors targeted by MAP kinases. For example, the bZIP (basic leucine zipper) transcription factor VIP1 (VirE1-INTERACTING PROTEIN 1) is specifically phosphorylated by MPK3 upon flg22 treatment and activates a number of defense-related genes such as PR1 (PATHOGENESIS-RELATED 1) (Djamei et al., 2007; Pitzschke et al., 2009). However, extensive changes in the transcriptional program of cells likely rely not only on the activation of specific transcription factors but also on chromatin modifications that can dynamically and reversibly regulate gene expression. Consistently, we show here that flagellin-activated MAP kinases interact with and phosphorylate the histone deacetylase HD2B to control the expression level of biotic stress-regulated genes through modulation of the H3K9ac histone mark.

To date, a handful of histone modifiers have been implicated in plant innate immunity. For example, salicylic acid (SA) signaling plays an essential role in plant pathogen resistance and is controlled partially by the HDAC SIRUTUIN2 (SRT2), which represses the expression of several SA biosynthetic genes such as PAD4 and SID2 (Wang et al., 2010). Consistently, srt2 mutant Arabidopsis plants were reported to be more resistant to pathogen infection than WT control plants, whereas an SRT2 over-expressing line was more susceptible. In addition, it was reported in Arabidopsis that mutations in the HDAC HDA19 result in enhanced basal expression of several biotic responsive genes (Tian et al., 2005) and improve tolerance to P. syringae (Choi et al., 2012), although contradictory results have been described previously (Kim et al., 2008). Moreover, the rice HDAC HDT701 negatively regulates innate immunity by directly binding and modulating the histone H4 acetylation levels of PRR and defense-related genes (Ding et al., 2012).
Here, we measured the resistance of hd2b mutants to both virulent and non-pathogenic *Pseudomonas syringae* strains and concluded that hd2b mutants were more susceptible than wild type control plants, whereas HD2B over-expressing plants were more resistant. Hence, different HDACs can lead to similar or contrasting outcomes for plant immunity likely depending on the genes they target, and our results and those reported by others clearly highlight the crucial contribution of chromatin regulation to pathogen defense.

Although several studies provide evidence for the involvement of histone modifiers in pathogen response, the way in which their activity is connected to biotic stress signaling cascades has not been unraveled. In this work, we connected MAPK-induced signal transduction to HDAC-dependent histone modifications. Indeed, our results show that H2DB is a direct target of MAPKs and that HD2B regulates a large number of genes involved in pathogen defense. Although our study is the first to describe a general histone modifying protein as a direct target of a MAPK in plants, such mechanisms seem to be highly conserved in eukaryotes. Indeed, in animals, MAPKs drive histone modifications and direct chromatin remodeling. For example, phosphorylation of the histone acetyl-transferase p300 by the MAP kinase ERK2 promotes its localized histone binding (Chen et al., 2007). Likewise, ERK1 and ERK2 modulate the assembly of chromatin remodeling complexes and, thereby, control the expression of vitamin D-responsive genes (Oya et al., 2009).

The Arabidopsis genome codes for 18 HDACs, which fall into four groups (Dangl et al., 2001; Wu et al., 2003): Class I and II HDACs correspond to yeast RPD3 and HDA1, respectively, class III enzymes are NAD-dependent HDACs related to yeast SIR2 and class IV HDACs are plant-specific and consist of four members called HD2A-D (Dangl et al., 2001). The four class IV HDACs all contain a conserved N-terminal catalytic and a central acidic domain and a divergent C-terminal region that suggest specific functioning of the different proteins (Dangl et al., 2001). In contrast to the other three Arabidopsis HD2s, HD2B does not contain a Zn-finger motif in its C-terminus. However, with the exception of Arabidopsis HD2A, the two MAPK-targeted C-terminally located HD2B *in vivo* phosphorylation sites are highly conserved in other species, including the equivalent rice and maize HD2s (Dangl et al., 2001). Our data indicate that phosphorylation of these sites is important for the molecular function of HD2B and that the phosphorylation status of the two residues
Biotic Stress
determines the intra-nuclear localization of the HD2B. Possibly, a nucleolar protein could anchor unphosphorylated HD2B to this sub-nuclear compartment, and MAPK-directed phosphorylation of HD2B could release HD2B to enter the remaining nuclear compartment and associate with novel chromosomal loci. In this way, the nucleolus could serve as a stocking center to prevent HD2B from potentially associating with certain labile nuclear sites and could provide a protein synthesis-independent mechanism to make HD2B rapidly available for gene regulation upon signaling.

Our results show that MPK3 likely modulates HD2B activity by altering its nuclear distribution. Indeed, flagellin treatment induces the relocalization of HD2B in an MPK3-dependent manner, and this effect can be obtained by expressing a phosphomimetic version of HD2B. Consistently, control of the intracellular location has been described in yeast and mammals as an important regulatory mechanism of HDAC activity (Bjerling et al., 2002; Segre and Chiocca, 2011). As expected from their ability to deacetylate histones, HDACs are found generally in the nucleus of most organisms. Nevertheless, in mammals, the Class IIa histone deacetylases (HDACs) were found both in the cytoplasm and in the nucleus. Indeed, specific phosphorylation of HDAC7 induces its nuclear exclusion, rendering it unable to impact transcription (Dequiedt et al., 2006). In the case of HD2B, phosphorylation leads to a sub-nuclear relocalization from the nucleolus to the nucleoplasm in specific chromatin regions. In agreement with the flg22-induced relocalization of HD2B, our ChIP-seq analyses revealed a drastic shift in the HD2B chromatin targeted sites upon flagellin treatment. In mammals, it has been reported that the phosphorylation of HDAC2 leads to its redistribution on chromatin and increased recruitment to promoters (Sun et al., 2002; Sun et al., 2007), suggesting that HDAC phosphorylation could be a mechanism conserved from mammals to plants to drive their redistribution in response to a stimulus.

HD2B is a HDAC and is predicted to function as a repressor of gene expression. As expected, a proportion of HD2B target genes were constitutively up-regulated in \textit{hd2b} mutants. Furthermore, 64% of the genes that are hypo-acetylated after flagellin treatment are direct HD2B targets, indicating that HD2B contributes substantially to MAMP-triggered transcriptional reprogramming. The study of pathogen-induced histone modifications is a fledgling field of research. In mammals, although four bacteria have been reported to modulate histone
acetylation levels upon infection, the underlying mechanisms are not known (Wang et al., 2005; Basu et al., 2007; Garcia-Garcia et al., 2009; Eskandarian et al., 2013). In plants, modulation of histone acetylation levels in response to biotic stress has also been described, but again the underlying mechanisms remained unclear (Kim et al., 2010; Wang et al., 2010; Bourque et al., 2011; Choi et al., 2012; Ding et al., 2012). Our data show that genome-wide modulation of H3K9ac levels is an early chromatin response to a biotic stress. Histone acetylation is a labile chromatin mark (Waterborg, 2001; Scott, 2012), and, as such, is a fast and reversible post-translational process that can allow plants to rapidly modulate gene expression. Thus, this mark is ideally suited for biological programs that require an immediate response to fluctuating environmental conditions. In line with this characteristic, we observed a strong correlation between up-regulation of gene expression and hyper-acetylation, whereas down-regulation correlated with hypo-acetylation. Altogether, our data suggest that modulation of the genome-wide H3K9ac landscape is a hallmark of the flg22 response, and that HD2B is a key player in this process. However, our studies do not exclude the involvement of additional HDACs in this process.

Finally, our detailed analysis of the expression levels, HD2B binding and histone acetylation of HD2B target genes under control and flg22 treatment conditions revealed that HD2B has several roles. We have shown that HD2B regulates the basal expression level of a subset of genes in the absence of pathogen challenge, probably by acting as a counter-balance to the activity of HATs. Indeed, expression of these HD2B-targeted genes in unchallenged plants is constitutively high in *hd2b* mutants. These genes can be distributed into two classes after flagellin treatment: Class I genes are repressed by flagellin due to increased HD2B recruitment on these sites, whereas Class II genes are induced by flagellin due to eviction of HD2B from these loci.

In summary, our work defines the first example of a MAP kinase-regulated chromatin mechanism and details how MAMP-triggered MAP kinase signaling regulates global changes in the chromatin landscape. As such, it sets the stage for other large-scale studies examining the contribution of protein kinase-mediated chromatin regulation in plants and mammals.
Biotic Stress

METHODS

Plant Material, Growth Conditions and Treatments

T-DNA insertion lines *hd2b* (At5g22650) from SAIL collection (Sessions et al., 2002) Sail_1247_A02 (Supplemental Figure S29) and *mpk3* SALK_151594 (Wang et al., 2007) were obtained from the the Nottingham Arabidopsis Stock Centre (NASC). To produce transgenic plants expressing a 35S::GFP:MPK3 construct, the coding region of MPK3 (At3g45640) was amplified from cDNA of Col-0 by PCR using the following primers: forward, 5'gc gga tcc atg aac acc ggc ggt ggc3', reverse 5'gc act agt cta acc gta tgt tgt gct gag3'. The restriction enzyme sites, set in bold, that had been added to the primers were utilized to ligate the open reading frame to BamHI/SpeI sites of pCAT-GFP, resulting in p35S::GFP-MPK3. For the generation of stably transformed *A. thaliana* plants, the expression cassette was excised by Sse8387I and cloned into the PstI site of the binary vector pCB302 (Xiang et al., 1999). This vector was transformed to *A. tumefaciens* strain GV3101 by electroporation. *A. thaliana* Col-0 plants were transformed by floral dip method according to Clough and Bent (Clough and Bent, 1998). Transformed plants were selected on BASTA.

Both *pHD2B::GFP-HD2B* and 35S::GFP-HD2B constructs were made by using Gateway technology (Invitrogen). The CDS of HD2B was PCR amplified from cDNA with forward primer 5'-caccATGGAGTTCTGGGGAGTTG-3' and reverse primer 5'-AGCTCTACCCTTCCCTTGC-3' using Phusion High Fidelity DNA polymerase (New England BioLabs). The putative promoter (1.055 kb upstream of the start codon) was PCR amplified from genomic DNA with forward primer 5'-caccGTGTTGATCTGCGAGACAAGG-3' and reverse primer 5'-TGTTGTTGAAGGAGGAGAGAG-3'. Both PCR fragments were cloned into pENTR/D-TOPO (Invitrogen). The promoter was then re-cloned from the pENTR/D-TOPO into a pENTR4-1 vector (Invitrogen) in front of a GFP using the NotI and Ascl restriction sites. The pENTR4-1 containing the HD2B promoter and GFP, the pENTR-D-TOPO-AtHD2B vector and a pENTR2-3 vector containing a CaMV 35S terminator were recombined by a multisite gateway reaction (Invitrogen) into the binary destination pBnRGW vector. This is a modified vector based on pKGW (Karimi et al., 2002) in which the kanamycin resistance was replaced with basta resistance and the NAP::DsRed expression cassette from pFluar 101 (Stuitje et al., 2003) was introduced for easy selection of red fluorescent transformed seeds. To create 35S::GFP-HD2B construct...
the same strategy was used but pENTR4-1 contained CaMV35S promoter. A. tumefaciens strain C58 mediated transformation for both constructs was performed as described by Bechtold and Pelletier (Bechtold and Pelletier, 1998). Seed-specific expression of red fluorescent protein DsRed permitted the identification of mature transformed seeds by fluorescence stereo microscopy (Leica).

For flagellin experiments, seeds were surface-sterilized by treatment with bayrochlore and then soiled in sterile half-strength MS liquid medium, placed for 2-4 days at 4°C to obtain homogeneous germination, and plants were grown in chambers at 20°C in long-days (16h of light) conditions. After 14 days, flg22 peptide was added in the medium to a final concentration of 1µm when necessary.

Infection assays in Arabidopsis rosette leaves with Pseudomonas syringae pv. tomato PstDC3000 were performed as described previously (Kemmerling et al., 2007) on leaves of 4-5 week old plants grown on soil in environmental chambers at 22°C under short-day conditions (8h of light).

For Pseudomonas pathogen assays in Arabidopsis seedlings, ½ MS plates containing 14-day old Arabidopsis plantlets were flooded with a bacterial suspension of the hrcC- mutant (defective in type III secretion system) of Pseudomonas syringae pv. tomato DC3000 during 3 minutes. The bacteria were grown ON at 30°C in LB broth+Rif, and re-suspended in 10 mM MgCl₂ after several washings for the removal of the media and the antibiotic. The final concentration of the suspension was adjusted to an OD₆₀₀ =0.1 and supplemented with 0.025% Silwet L-77. After discarding the bacterial suspension, the plates were sealed with micropore and put back in the incubation room. Day 0 samples were taken 2 hours post-inoculation and day 2 samples after 48 hours. For the sampling process the rosettes of 4 plantlets were cut and weighed together, registering each time the fresh weight in mg. Afterwards, the rosette surface was sterilized by a 5-seconds wash in 70% ethanol, followed by 2 washes in sterile water. The samples were ground in order to release the bacteria, and serial dilutions performed. 10 μl of each dilution was plated on plates with LB+Rif and incubated during 2 days at 30°C. The growth of the bacterial population inside the plantlets was determined by calculating the total amount of bacterial CFU per mg of fresh weight. Each experiment was performed in quintuplicate, analyzing 8 samples per accession on each experiment.
Kinase Assays

Full-length HD2B (At5g22650) was amplified and cloned into pGEX4T-1. For mutagenesis of HD2B, PCR was performed on plasmids with Pfu Ultra. PCR mixtures were digested for 2 hours with DpnI and transformed into Escherichia coli. Clones were sequenced and each mutation was transformed into E. coli BL21. GST protein expression was induced for 4 hours at 37°C with 1 mM IPTG, and purified according to the manufacturer’s protocol. For producing HD2B T249E and S266D, the following primers were used: GGAGGACACACCGCCGAAC-CACACCCAGCT, AGCTGGGTGTGGTTCGGCGGTGTGTCTCC, GTGAAT-GCTAACCAGGACCCAAAGTCTGGA and TCCAGACTTGGGGTCTGTT-TAGCATTAC, respectively.

Radioactive kinase assays were performed with MPK3, -4 and -6 immunoprecipitated from extracts of A. thaliana cell cultures that were treated for 10 minutes with 1 µM flg22. Non-radioactive kinase assays for phosphosite mapping were performed the same for 45 minutes at 30°C.

Protein Localisation in Protoplasts

Full-length HD2B and HD2B-DD mutated form were cloned in a pGreen plasmid behind a yellow fluorescent protein (YFP) gene driven by a 35S promoter. Arabidopsis protoplasts were prepared from a suspension culture as described (Cardinale et al., 2000). One day after transformation, flg22 peptide was added in the medium to a final concentration of 2µM for 15 minutes when necessary and localization was checked by fluorescence microscopy.

Immunofluorescence Labelling

Leaves of plants stably transformed with p35S::GFP-HD2B construct were treated during 30 min with or without 1µM flg22 and fixed in PFA 4% in PHEM (PIPS 60mM; HEPES 25mM; EGTA 10mM; MgCl₂ 2mM pH 6.9) during 1 hour at room temperature (apply vacuum 20 min to facilitate uptake of the fixation solution). Seedlings were washed 5 min in PHEM and 5 min in PBS pH 6.9 and chopped on a Petri dish in PBS supplemented with 0.1% Triton X-100 (w/v). The mixture was filtered (50µm) and centrifuged 10 min at 2,000 g. The supernatant was carefully removed and the pellet washed once with PBS, gently resuspended in 20µL PBS and a drop was placed on a poly-lysine slide and air dried. Slides were rehydrated with PBS and permealized 2 times by 10
min incubation in PBST (PBS, 0.1% Tween-20 v/v). Slides were placed in a moist chamber and incubated overnight at 4°C with primary antibody anti-GFP (Clontech, ref. 632592) in PBST supplemented with BSA (3% w/v). Slides were washed 5 x 10 min in PBST (at RT) and incubated 1 h at RT in the dark with the secondary antibody (A11037 Invitrogen, Alexa Fluor 594 goat anti-rabbit) diluted (1/400 v/v) in PBST, 3% BSA. Slides were washed 5x 10 min in PBST and then mounted with a drop of Vectashield with DAPI and observed as described for pollen mitosis analysis with the suitable cube fluorescence filters (BP340-380, DS 400, BP 450-490 for DAPI) (BP570-590, DS595, BP 605-655 for A594).

For whole mount immunofluorescence labeling, six-day-old pH2B::GFP-HD2B seedlings were labeled according to the method of Sauer et al. (Sauer et al.) with small modifications: seedlings were fixed in 1.5% paraformaldehyde and 0.5% glutaraldehyde in ½ MTSB buffer (50 mM K-PIPES, 5 mM MgSO$_4$-7H$_2$O, 5 mM EGTA) at pH 6.8; cell-wall digestion enzyme mixture contained 1% meicelase, 1% cellulase and 1% macerozyne in PBS; samples were incubated with rabbit polyclonal anti-AtMPK3 (SIGMA-ALDRICH) primary antibody diluted 1:350 in PBS supplemented with 2% BSA at 4°C overnight, and subsequently with secondary antibody Alexa-Fluor 546 goat anti-rabbit IgGs (H+L) (Invitrogen) diluted 1:500 in PBS containing 2% BSA for 3 h (1.5 h at 37°C and 1.5 h at room temperature). Finally, samples were counterstained with DAPI and mounted in one drop of 0.1% [w/v] para-phenylenediamine prepared in 90% [v/v] glycerol in PBS. Microscopic analysis of immunolabeled samples was performed using a Zeiss LSM710 (Carl Zeiss Jena, Germany). DAPI was excited at 405 nm and emission was detected between 410 and 476 nm. GFP was excited at 488 nm and emission was detected between 500 and 535 nm. Alexa 546-conjugated antibody was excited at 561 nm, and fluorescence was detected between 566 and 591 nm. The post-processing of images was done using ZEN 2010 software, Photoshop 6.0/CS, and Microsoft PowerPoint.

BiFC Experiment

LR recombinations of HD2B and MPK3 coding sequences in pENTR3C were done with split-YFP destination vectors pBiFC3 and pBiFC2 that allow N-terminal fusion with the C- and N-terminal YFP moieties, respectively (Azimzadeh et al., 2008). Recombined vectors were transformed into the Agrobacterium C58C1 strain. *Nicotiana benthamiana* leaves were agro-infiltrated as previously described (Colcombet et al., 2013). After 3 days, the YFP fluorescence was
Biotic Stress

visualized using a confocal laser scanning microscope (Leica, Germany).

Live-Cell Imaging

For microscopy, 6-days-old plants stably transformed with \textit{p}35S::\textit{GFP-MPK3} construct were transferred to microchambers mounted between microscopic slides and coverslips with one Parafilm layer as a spacer. The chambers were filled with liquid half-strength MS medium. Microscopic analysis was performed using a Zeiss LSM 710 confocal laser scanning microscope (Carl Zeiss Jena, Germany). All images were acquired using a 40X objective lens (NA 1.42). GFP was excited at 488 nm and detected between 500 and 535 nm. Post-processing of images was done with the aid of Zeiss ZEN software (Ver 2010b) and Microsoft PowerPoint applications.

Cell Fractionation

Two grams of 16-day-old Col-0 seedlings were ground in a mortar with liquid nitrogen and were resuspended in buffer A containing 2.5% Ficoll type 400 (F-4375, Sigma-Aldrich), 5% Dextran (D1662, Sigma-Aldrich), 0.4 M sucrose, 25 mM Tris-HCl pH 7.5, 10 mM MgCl$_2$, 5 mM DTT (D0632, Sigma-Aldrich), protease inhibitors (Complete cocktail, Roche) and phosphatase inhibitors (1 mM NaF, 0.5 mM Na$_3$VO$_4$, 15 mM B-glycerophosphate, 15 mM 4-nitrophenyl phosphate, Sigma-Aldrich chemicals). After a few minutes incubation on ice, the samples were filtrated through one layer 62 µm nylon mesh by centrifugating for 3 min at 212 g at 4°C. Triton X-100 was then added to a final concentration of 0.5% and the samples were gently mixed and incubated on ice for 15 min. An aliquot was kept at this step, hereafter referred to as Input. The samples were then centrifuged for 5 min at 1,500 g at 4°C and an aliquot of the supernatants was kept at this step, hereafter referred to as Cytoplasmic fraction. The pellets were gently resuspended in buffer B (buffer A and 0.1% Triton X-100) and centrifuged for 5 min at 1,500 g at 4°C. The pellets were then resuspended in buffer A and centrifuged for 5 min at 2,000 g at 4°C. The pellets were finally resuspended in SDS-sample buffer; they are hereafter referred to as nuclear fractions. SDS-sample buffer was also added to the Input and Cytoplasmic fractions and all three kinds of aliquots were heated at 95°C for 10 min for complete denaturation. Protein samples were resolved by SDS-PAGE at a constant amperage of 15 mA per gel and transferred onto methanol-activated PVDF membranes (GE Healthcare) for 1 h at a constant voltage of 100 V. Blots were blocked with 5%
CHAPTER 4

non-fat dry milk in 1x TBST for 1 h and probed with primary antibodies overnight at 4°C: anti-H3 (Abcam ref. Ab1791, diluted 1:10,000), anti-PEPC (Tebu-bio ref. 100-4163, diluted 1:15,000) and anti-MPK3 (described in Nakagami et al., 2006, diluted 1:4,000). The membranes were washed four times with 1x TBST. Goat anti-rabbit antibodies, at a dilution of 1:20,000 in 5% non-fat dry milk in 1x TBST, conjugated to horseradish peroxidase (A6154, Sigma-Aldrich) were used as secondary antibodies for 1 h at RT. The membranes were washed again four times with 1x TBST and the antigen-antibody interaction was detected with enhanced chemiluminescence reagent (ECL Prime, GE Healthcare) using a GeneGnome imaging system (Syngene).

Co-immunoprecipitation

For co-immunoprecipitation assays in protoplasts, protein extracts were prepared from protoplasts as described (Cardinale et al., 2002). For co-immunoprecipitation, samples were extracted in 50 mM Tris-HCl, pH 7.8, 150 mM NaCl, 1 mM EDTA, 0.1% Nonidet P-40 (NP-40), and proteinase inhibitor mix (Complete EDTA free, Roche). Three independent protoplast transformation 100 µL of each were pulled and used for protein extraction. Protein extracts were precleared with 15 mL of protein A–Sepharose beads for 2 h at room temperature, then immunoprecipitated overnight in the presence of antibodies with 25 µL of beads. Samples were washed three times with wash buffer (50 mM Tris-HCl pH 7.8, 150 mM NaCl, 5 mM EGTA, 5 mM EDTA, and 0.1% Tween 20) and subjected to immunoblotting.

For co-immunoprecipitation experiments in planta, transgenic lines expressing p35S::GFP-HD2B or p35S::MPK3-c-Myc constructs were crossed together to obtain plants expressing both constructs. Plant leaves were ground to a fine powder in liquid nitrogen. Cells were homogenized and lysed in Chris buffer containing 50 mM Tris-HCl pH 8.0, 0.5% NP-40, 200 mM NaCl, 0.1 mM EDTA, 10% glycerol, 10 mM NEM and protease inhibitor mix (Complete EDTA-free, Roche). GFP-HD2B and MPK3-c-Myc were then immunoprecipitated using respectively a polyclonal anti-GFP antibody (Clonetech) and a polyclonal anti-c-Myc antibody (Sigma). Immune complexes were collected by incubation for 2 h at 4°C with Protein A/G Ultralink Resin (Thermo Scientific) and washed six times in lysis buffer. Immunoprecipitated proteins were detected by immuno-blot using a polyclonal anti-c-Myc antibody (Sigma).
Immunoblotting

About 200 mg of 14-day-old seedlings were ground with liquid nitrogen and resuspended in 500 μL of a buffer containing 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 0.1% NP40, 5 mM EGTA, 0.1 mM DTT (Sigma-Aldrich chemicals), protease inhibitors (Complete cocktail, Roche), and phosphatase inhibitors (1 mM NaF, 0.5 mM Na₃VO₄, 15 mM β-glycerophosphate, 15 mM 4-nitrophenyl phosphate, Sigma-Aldrich chemicals). The suspension was centrifuged at 20,000 g for 15 min at 4°C, and the supernatant was collected. Protein quantification was carried out by Bradford method (Protein Assay Kit, Thermo Fisher Scientific), and the normalized protein amounts of all samples were denatured with SDS-sample buffer by boiling them at 95°C for 10 min. Protein samples were resolved by SDS-PAGE and transferred onto PVDF membranes (Bio-Rad). Blots were blocked with 5% BSA in 1x TBST and then probed with Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) (D13.14.4E) XP rabbit monoclonal antibody (#4370, Cell Signaling), hereafter referred to as anti-pTpY antibody. Goat anti-rabbit antibodies conjugated to horseradish peroxidase were used as secondary antibodies (A6154, Sigma-Aldrich). The antigen–antibody interaction was detected with chemiluminescent reagents (Clarity ECL substrate, Bio-Rad) using an imaging system (ChemiDoc MP System, Bio-Rad). Coomassie blue staining of blots was then carried out for protein visualization.

Gene Expression Analysis

Total RNA were extracted from seedlings with the RNeasy MiniPrep kit (Qiagen), according to the manufacturer's instructions. First strand cDNA was synthesized from 2μg of total RNA using Improm-II reverse transcriptase (A3802, Promega) according to the manufacturer's instructions. 1/25th of the synthesized cDNA was mixed with 100nM of each primer and LightCycler® 480 Sybr Green I master mix (Roche Applied Science) for quantitative PCR analysis. Products were amplified and fluorescent signals acquired with a LightCycler® 480 detection system. The specificity of amplification products was determined by melting curves. UBQ10 was used as internal control for signals normalization. Exor4 relative quantification software (Roche Applied Science) automatically calculated relative expression level of the selected genes with algorithms based on ΔΔCt method. Data were from duplicates of at least two biological replicates. The sequences of primers can be found in Supplemental Table V.
Transcriptomic analyses were performed RNA-seq at the URGV platform (Evry, France). Three biological replicates were run for each condition.

For Gene Ontology analyses, the GO Analysis Toolkit and Database for Agriculture Community (Du et al., 2010) was used.

Chromatin Immunoprecipitation Experiments

ChIP assays were performed on 14-day-old *in vitro* seedlings using anti-GFP (Santa Cruz), IgG control (Millipore), or anti-H3K9ac (Millipore) antibodies, using a procedure adapted from Gendrel et al. (Gendrel et al., 2005). Briefly, after plant material fixation in 1% (v/v) formaldehyde, tissues were homogenized, nuclei isolated and lysed. Cross-linked chromatin was sonicated using a water bath Bioruptor UCD-200 (Diagenode, Liège, Belgium) (30 s on/30 s off pulses, at high intensity for 60 min). Protein/DNA complexes were immunoprecipitated with antibodies, overnight at 4°C with gentle shaking, and incubated for 1h at 4°C with 50 μL of Dynabeads Protein A (Invitrogen, Ref. 100-02D). Immunoprecipitated DNA was then recovered using the IPure kit (Diagenode, Liège, Belgium) and analyzed by quantitative real-time PCR. An aliquot of untreated sonicated chromatin was processed in parallel and used as the total input DNA control.

For ChIP-qPCR experiments, fold enrichment of targets in ChIPed DNA relative to input was calculated from an average of three replicate qPCR reactions. The sequences of primers can be found in Supplemental Table V. Positions of the amplified regions on the different loci are indicated in supplemental figure S30.

Chromatin Immunoprecipitation-sequencing Analysis

After immunoprecipitation of the chromatin, ChIP-Seq libraries were generated and sequenced. Alignment was performed using Bowtie (Langmead et al., 2009) v0.12.7 on *Arabidopsis thaliana* genome TAIR10. Default Bowtie parameters were used except for : -best -strata (used to get the best mapping position with the minimum of mismatches). Peak calling was performed with MACS (http://liulab.dfci.harvard.edu/MACS/) (Zhang et al., 2008). Gene annotation and peak distribution relative to annotated Arabidopsis transcription start site was performed with GPAT (http://bips.u-strasbg.fr/GPAT/Gpat_home.html).

Global clustering of the H3K9ac ChIP-seq data and quantitative comparisons were performed using the seqMINER program (http://bips.u-strasbg.fr/seqminer/) (Ye et al., 2011). As reference coordinates, we used the MACS
determined peaks for H3K9ac. Tag densities from each ChIP-seq data set were collected in a window of 1 kb around the reference peak. The collected values were subjected to k-means clustering coupled to linear-based normalization. The normalization procedure reduces bias in the clustering due to inherent differences between ChIP-seq experiments.

Supplemental Data (available online: https://genomebiology.biomedcentral.com/articles/10.1186/s13059-017-1261-8).

Supplemental Figure 1-5. HD2B Phosphorylation Sites.

Supplemental Figure 6. MPK3, MPK4, MPK6 and MPK7 Antibody Specificity.

Supplemental Figure 7. MPK3, MPK4 and MPK6 Substrate Specificity.

Supplemental Figure 8. Subcellular Localization of MPK3.

Supplemental Figure 9. BiFC Analysis of HD2B Interaction with MPK3, 4 and 6 in Epidermal Cells of *Agrobacterium*-infiltrated *Nicotiana benthamiana*.

Supplemental Figure 10. Co-immunoprecipitation of HD2B with MPK3.

Supplemental Figure 11. GO Analysis of Transcription Factors Up-regulated in *hd2b* Mutant.

Supplemental Figure 12. GO Analysis of Down-regulated Genes in *hd2b* Mutant.

Supplemental Figure 13. Validation of Transcriptomic Data by RT-qPCR.

Supplemental Figure 14. Susceptibility of *hd2b* Mutant and *HD2B* Overexpressing lines.

Supplemental Figure 15. Flg22-induced Activation of MPK3, MPK4 and MPK6 Is Similar in Col-0 and *hd2b* Mutant.

Supplemental Figure 16. Flg22 Growth Inhibition Assay of *hd2b* Mutant.

Supplemental Figure 17. Flagellin-induced Relocalization of HD2B.

Supplemental Figure 18. Nucleolar HD2B and Nuclear HD2B-ED Localization.

Supplemental Figure 19. Nuclear HD2B Localization.
CHAPTER 4

Supplemental Figure 20. Gene Expression Analyses of hd2b and mpk3 Over-expressed Genes in the HD2B-AA line.

Supplemental Figure 21. Flagellin-independent Expression of HD2B.

Supplemental Figure 22. Specific HD2B Targets in Mock Conditions Are Involved in Defense Response.

Supplemental Figure 23. Correlation Between HD2B Binding and Gene Expression in hd2b Mutants in Mock and flg22 Conditions.

Supplemental Figure 24. Characterization of H3K9 Acetylated Regions in Mock- and flg22-treated Seedlings.

Supplemental Figure 25. Comparison Between HD2B and H3K9ac Peak Positions Relative to TSS.

Supplemental Figure 26. GO Analysis of H3K9-hyper and H3K9-hypo acetylated Genes After flg22 Treatment.

Supplemental Figure 27. H3K9 Acetylation Levels Are Directly Correlated with Expression Levels After flg22 Treatment.

Supplemental Figure 28. Gene Expression Analyses of hd2b and mpk3 flg22 De-regulated Genes in the HD2B-AA Line.

Supplemental Figure 29. Characterization of hd2b Mutant Line.

Supplemental Figure 30. Positions of the Regions Analyzed by ChIP-qPCR Experiments on the Different Loci.

Additional Files:
List of HD2B Target Genes in Mock and flg22 Conditions. (XLSX 167 kb)
List of H3K9 Hyper- and Hypo-acetylated Genes After flg22 Treatment. (XLSX 60 kb)
List of Deregulated Genes in hd2b and mpk3 Mutants. (XLSX 51 kb)
List of Deregulated Genes After flg22 Treatment in Wt. (XLSX 52 kb)
List of Primers Used in this Study. (XLSX 13 kb)
REFERENCES

ChIP-Seq (MACS). Genome Biol 9, R137.
CHAPTER 5

The Function of Medicago Plant-specific Histone Deacetylases
During Nodule Development

Huchen Li, Stefan Schilderink, Olga Kulikova, Ton Bisseling

Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands

Manuscript in preparation
CHAPTER 5

ABSTRACT

Legumes and rhizobia interact to develop nitrogen-fixing root nodules. The nodule formation is accomplished through transcriptional reprogramming of root cells. In this study, we show that Medicago truncatula (Medicago) plant-specific histone deacetylases (MtHDTs) are required for this. MtHDTs are induced in early stages of nodule primordia and stay active during the following nodule development stages. Knock-down of their expression by using RNAi strategy blocks nodule primordia development. A few nodules still can be formed but their nodule meristems are mal-functional and rhizobial release into the meristem derived cells is markedly reduced. Transcriptome analyses indicate that a decreased expression of 3-hydroxy-3-methylglutaryl coenzyme a reductase 1 (MtHMGR1) and its paralogs is possibly responsible for this phenotype.
INTRODUCTION

Legumes, of which *Medicago truncatula* (Medicago) is a model, can establish an endosymbiosis with nitrogen-fixing bacteria, known as rhizobia. This symbiosis culminates in the formation of root nodules where rhizobia differentiate into bacteroids which are able to convert atmospheric nitrogen into ammonia, that is used by the plant and in return get carbohydrates (Geurts and Bisseling, 2002).

The legume-rhizobia symbiosis requires a molecular dialogue between plants and bacteria. The process is initiated when plant roots secrete flavonoids which can be recognized by rhizobia. The bacteria respond with the production and secretion of lipochitooligosaccharide molecules, called Nod factors. The recognition of Nod factors by the plant activates both, infection process in epidermis, where bacteria enter the root hair through an infection thread, and mitotic division of pericycle, endodermis and cortical cells that contributes to the formation of the nodule primordia (Denarie et al., 1996; Timmers et al., 1999; Oldroyd and Downie, 2008; Xiao et al., 2014). The infection threads grow into primordium cells where release of rhizobia from infection threads is initiated. Medicago forms indeterminate nodules with a persistent meristem at its apex (Libbenga et al., 1973). This meristem is derived from the middle cortical cell layer and continuously adds cells to the infection zone where cells enter endoreduplication process (Vinardell et al., 2003; Mergaert et al., 2006). The infected cells in the fixation zone are specialised to accommodate thousands of fully differentiated bacteroids (Perret et al., 2000; Mergaert et al., 2006; Gavrin et al., 2014).

Transcriptional reprogramming occurs during consecutive stages of nodule development. Transcription factors contribute to this reprogramming and their roles during Medicago nodule development are well documented. Some of them are involved in Nod factor signalling pathway. For example, in epidermis Nod factors perception activates Cyclops/IPD3, a transcriptional activator that induces the expression of *NIN* (Yano et al., 2008; Singh et al., 2014). NIN in its turn induces expression of *NF-YA1* that encodes the CCAAT box-binding transcription factor (Soyano et al., 2013). NIN and NF-YA1 together with transcription regulators NSP1 and NSP2 control infection thread formation (Schauzer et al., 1999; Kalo et al., 2005; Smit et al., 2005; Laporte et al., 2014). In addition, they play a pivotal role in initiating pericycle, endodermis and cortical cell divisions as ectopic expression of *NIN* or *NF-YA1* is sufficient to stimulate
cortical cell division. Besides, the AP2 family transcription factors, PLT1-4 control nodule meristem formation and maintenance (Franssen et al., 2015).

Transcriptional reprogramming relies on chromatin remodelling factors. A recent study indicates that Medicago demethylase gene (MtDME) that modifies DNA methylation is critical for endoreduplication of nodule infected cells and differentiation of rhizobia (Satge et al., 2016). So far the roles of other chromatin remodelling factors in nodule development, especially at early stages has not been studied. There are strong evidences that nodules are evolutionary related to lateral roots (Hirsch and LaRue, 1997; Gualtieri and Bisseling, 2000). During Arabidopsis lateral root primordium initiation, before the first cell division takes place 4 members of plant-specific histone deacetylases (AtHDTs) are markedly up-regulated in founder cells, and they stay active in dividing cells (De Smet et al., 2008). Medicago contains 3 HDT members (MtHDT1/2/3) (Grandperret et al., 2014), and we hypothesize that they might be induced in cells of young nodule primordia. In addition, laser capture microdissection RNA sequencing (LCM-RNA-seq) analyses indicate that all 3 MtHDTs are expressed in mature nodules (Roux et al., 2014).

Here we investigated the function of MtHDTs in nodule development. The study on the temporal and spatial expression patterns of the 3 MtHDTs during nodule development shows that they are induced in young nodule primordia and stay active till the nodule meristem becomes functional. In mature nodules MtHDTs are expressed in nodule meristem and infection zone. Knock-down of MtHDTs expression blocks nodule primordia development. In the few formed mature nodules, meristem functioning and rhizobial infection are affected. Transcriptome analyses indicates that MtHDTs are required for MtHMGRs expression and in this way they might affect Nod factor signalling.

RESULTS

MtHDTs Are Expressed During Nodule Development

3 HDT genes are identified in Medicago [Medtr4g055440, Medtr2g084815 and Medtr8g069135, which are designated as MtHDT1, MtHDT2 and MtHDT3, respectively, (Li et al., 2012; Grandperret et al., 2014)]. Sequence homology analyses by BLAST showed that the MtHDT2 coding sequence was 60.2% and
Nodule Development

55.1% identical to that of MtHDT1 and MtHDT3, respectively (Pearson et al., 1997). All 3 MtHDT proteins contain the conserved N-terminal EFWG motif and a central acidic domain. Both MtHDT2 and MtHDT3 also have a C-terminal putative zinc finger domain (Supplemental Figure 1).

To determine the spatial expression pattern of the 3 MtHDTs, we performed RNA in situ hybridization on longitudinal sections of the nodules using probes specific for each MtHDTs. This showed that all 3 MtHDTs were mainly expressed in the nodule meristem and infection zone (Figure 1A-1C). MtHDT2 was the highest, while MtHDT3 was the lowest expressed gene. The expression of MtHDT2 is at an equal level in the meristem and infection zone. In the latter it is expressed in both infected and uninfected cells. The transition of infection to fixation zone is, among others, characterized by the sudden accumulation of starch in the infected cells (Gavrin et al., 2014). At this transition the expression of MtHDT2 dropped dramatically, which underlines that this is a major developmental switch in nodules and expression of MtHDTs is tightly regulated. Promoter-GUS (pMtHDTs:GUS) studies showed a similar expression pattern as the in situ experiments (Figure 1D, Supplemental Figure 3A-3C). In addition, it also showed that all 3 MtHDTs were expressed in the nodule vascular meristem, and MtHDT1 and MtHDT2 were also expressed in nodule vasculature.

Nodule primordia development is divided into six stages (Xiao et al., 2014). To determine expression patterns of the 3 MtHDTs during nodule primordium formation, we made use of the promoter-GUS constructs. At stage I all 3 MtHDTs were expressed in dividing pericycle and cortical cells and slightly activated in cells that have not yet divided but most likely have entered the cell cycle (Figure 1E, Supplemental Figure 3D-3F). At primordia stage V all 3 MtHDTs were also expressed in dividing cells. In the infected cells MtHDT2 and MtHDT1 were expressed, but MtHDT3 expression was not detectable (Figure 1F, Supplemental Figure 3G, 3H). During primordium development, the expression level of MtHDT2 was highest and MtHDT3 lowest which is similar to their expression levels in nodules. The high DNA sequence homology and similar expression patterns of MtHDTs suggest that they are functionally redundant in controlling nodule development.

Subcellular Localization of MtHDTs in Nodule Cells

To study the subcellular localization of MtHDTs in nodule cells, we created
Figure 1. Expression of MtHDTs During Nodule Development.
N-terminal GFP translational fusions with their coding sequences and these fusion constructs are driven by their own promoters (pMtHDTs:GFP-HDTs). To test whether the pMtHDT2:GFP-HDT2 fusion is biologically functional, we introduced it into the Arabidopsis HDT1hdt1HDT2hdt2 mutants, as Medicago hdt mutants are not available. The Arabidopsis hdt1hdt2 mutant is lethal (Chapter 2). This mutant was rescued by introducing pMtHDT2:GFP-HDT2 (Supplemental Figure 2), confirming that this fusion is functional. In Medicago root cells, MtHDT2 protein was detected in nuclei and especially in the nucleoli (Figure 2A). In cells of the nodule meristem and infection zone, MtHDT2 was also present in nucleoli, but in comparison to root cells, the level in the nucleoplasm was markedly increased (Figure 2B). In nuclei of lateral root primordia, MtHDT2 was also primarily located in nucleoli, whereas in nodule primordia an increased level of MtHDT2 was observed in nucleoplasm (Supplemental 5A, 5B). These data indicate that MtHDT2 displays slightly different sub-nuclear localization patterns during nodule and root development.

The expression level of MtHDT1:GFP-HDT1 was rather low in root nodules and therefore we performed immuno-cytology using anti-GFP antibodies. This showed that MtHDT1 was located in the meristem and the infection zone (Supplemental Figure 5C, 5D). The MtHDT3:GFP-HDT3 fusion was not detectable in the nodule even by using immuno-cytology with anti-GFP antibodies.

(A) to (C) In situ localization of MtHDT1 (A), MtHDT2 (B) and MtHDT3 (C) transcripts in WT M. truncatula nodules. Nodules were harvested at 21dpi.

(D) to (F) Expression pattern of MtHDT2 in the nodule and nodule primordia. (D) A mature nodule harvested at 21dpi. (E) A stage I nodule primordium. (F) A stage V nodule primordium. GUS activity was visualized after incubation with GUS buffer for 6 hours.

Longitudinal nodules/nodule primordia sections were shown. Bars=100μm.
Figure 2. The Sub-nuclear Localization of MtHDT2 in Root and Nodule Cells.

(A) Localization pattern of pMtHDT2:GFP-HDT2 in root cells. Epidermal cells at the transition from root meristem to elongation zone were shown. GFP signal was mainly detected in nucleoli.

(B) Localization pattern of pMtHDT2:GFP-HDT2 in nodule cells. Arrowhead or arrow indicate cells from nodule meristem or infection zone with considerable GFP signal in nucleoplasm. M, nodule meristem; I, infection zone and F, fixation zone.

Longitudinal root/nodule sections were shown. Bars=25μm.
Knock-down of MtHDTs Affects Nodule Formation

To test whether MtHDTs control nodule formation, we made conditional RNA interference (RNAi) constructs specific for individual genes, or different combinations of the two or all 3 MtHDT genes simultaneously. The constructs are driven by ENOD12 promoter which is activated in all nodule primordia cells and remains active in nodule meristem and infection zone of mature nodules. This pattern covers the expression domains of the MtHDTs (Pichon et al., 1992; Limpens et al., 2009; Limpens et al., 2013; Franssen et al., 2015). Due to the high homology of MtHDTs, we first tested the specificity of the RNAi constructs that aimed to reduce the expression of the corresponding MtHDT gene(s). The knock-down level of MtHDT(s) mRNA in nodules was determined by qRT-PCR. This showed that in the transgenic nodules interfered MtHDT(s) was specifically knocked-down with a 3 to 8-fold reduction (Figure 3A), while the expression of non-interfered MtHDT(s) was not affected.

Control roots at 21 days post inoculation (dpi), formed about 6 nodules per root (Figure 3B). Knock-down of any individual MtHDT gene or simultaneously knock-down of MtHDT1/3, MtHDT2/3 did not reduce the nodule number significantly. In contrast, nodule number on transgenic MtHDT1/2 RNAi roots was reduced significantly. A slightly higher reduction was observed on MtHDT1,2,3 RNAi (MtHDTs RNAi) roots. These data indicate that MtHDTs and especially MtHDT1 and MtHDT2 are required for nodule formation. It also suggests that MtHDTs have functional redundancy in controlling nodule formation.

Expression of MtHDTs in nodule primordia suggests that the reduced nodule formation on MtHDTs RNAi roots could be caused either by the reduced initiation or by a block of nodule primordia development at an early stage. To examine this, we transformed Medicago ENOD11:GUS plants (Journet et al., 2001) with ENOD12-EV (Empty Vector, see Methods) as a control or MtHDTs RNAi constructs. The ENOD11 promoter is active in dividing cells of nodule primordia, but it is only slightly expressed in pericycle derived dividing cells of lateral root primordia (Supplemental Figure 4). This allows us to distinguish between nodule primordia and lateral root primordia. At 6 dpi, 37 and 29 nodule primordia were identified in 5 comparable transgenic control and MtHDTs RNAi roots, respectively (Figure 3C). This shows that knock-down of MtHDTs does not reduce nodule primordia initiation. On the transgenic control roots more than 80% (30 out of 37) of nodule primordia passed the stage II and a relatively
Figure 3. Silencing MtHDTs Reduces Nodule Formation.

(A) Quantitative real time PCR (qRT-PCR) analyses of MtHDT1, MtHDT2 and MtHDT3 expression in control (ENOD12-EV) and MtHDT(s) RNAi nodules. Nodules were harvested at 21dpi. All panels show mean ± SE values determined from three biological replicates (each replicate was estimated as the average of three technical replicates).
Nodule Development

A high number of them (35%, 13 out of 37) developed into or passed stage V. In contrast, on *MtHDTs RNAi* transgenic roots, the majority of nodule primordia (62%, 18 out of 29) were in stage I or stage II, and only a few nodule primordia had developed into or passed stage V (7%, 2 out of 29). The latter is similar to the number of nodules that are formed. These data indicate that knock-down of *MtHDTs* blocks nodule primordia development and in this way affects nodule formation.

Meristem Functioning and Rhizobial Release Require MtHDTs

Although *MtHDTs RNAi* markedly reduces nodule number, some nodules can be formed due to the *MtHDTs* expression level probably above the threshold level required for the early stages of nodule development. This allows to study the role of MtHDTs in mature Medicago nodules. *MtHDTs RNAi* nodules were in general smaller than control nodules. To determine the cause of this size reduction, we analyzed longitudinal sections of these nodules. At 21 dpi, both the control (n=24) and *MtHDTs RNAi* (n=30) nodules had meristems (Figure 4A, 4B). Meristems of control nodules consisted of about 6 cell layers, however the number of cell layers in *MtHDTs RNAi* meristems was reduced to about 3. In agreement with this, expression of *MtPLT3* and *MtPLT4*, two genes that are expressed throughout the nodule meristem (Franssen et al., 2015), was markedly reduced in *MtHDTs RNAi* nodules (Figure 4C). In mature Medicago nodules about 8 proximal cell layers of infected cells are directly derived from the primordium cells and not from the nodule meristem (Xiao et al., 2014), whereas the other infected cells at the distal part of the nodule are derived from the nodule meristem. In *MtHDTs RNAi* nodules the proximal 8 layers of cells were

(B) Number of nodules formed on control (*ENOD12-EV*) roots and *MtHDTs RNAi* roots at 21dpi. Only those roots with a length between 8-10cm were considered for analysis. More than 20 roots were analyzed for each line.

(C) Number of different stages of nodule primordia formed on control (*ENOD12-EV*) and *MtHDTs RNAi* roots in *ENOD11:GUS* background at 6dpi. 5 comparable roots from each line were collected and sectioned.
Figure 4. Knock-down of *MtHDTs* Affects Nodule Meristem Activity and Rhizobial Infection.

(A) and (B) Longitudinal sections of 3-weeks old control (*ENOD12-EV, A*) and *MtHDTs RNAi* (B) nodules. Representative figures were shown. Both control and *MtHDTs RNAi* nodules have ~8 central tissue layers (below the red line) infected by rhizobia. *MtHDTs RNAi* nodule has a relatively small nodule meristem, and in the infection zone cells are less infected. M, nodule meristem; I, infection zone and F, fixation zone. Bars=100μm.
control-like, whereas the number of cell layers derived from the nodule meristem was markedly reduced (Figure 4D). In addition, in cells derived from the nodule meristem rhizobial release was reduced. These data indicate that knock-down of MtHDTs reduces rhizobial release in cells derived from the meristem but not from primordia. Most likely release in the former cells requires a higher threshold levels of MtHDTs than in the latter. These data suggest that meristem functioning and rhizobial release are affected in the MtHDT RNAi nodules.

Knock-down of MtHDTs Results in Transcriptome Changes

HDT proteins are known to regulate gene transcription (Wu et al., 2003; Ding et al., 2012). To investigate which genes might be regulated by MtHDTs during nodule development, we performed illumina RNA sequencing to compare transcriptome differences in the nodule meristem and infection zone, as MtHDTs are preferentially expressed there. To dissect the nodule meristem and infection zone from the rest, transgenic control and MtHDTs RNAi roots were inoculated with rhizobia expressing nifH::GFP. The nifH promoter is activated in bacteria that fix atmospheric nitrogen (Gavrin et al., 2014). This gene is switched on at the transition from infection to fixation zone where MtHDT2 is switched off. So, the nodule meristem and infection zone can be distinguished and dissected from the fixation zone under fluorescent microscope.

We detected the expression of ~20,000 genes in control and MtHDTs RNAi nodules (Supplemental Data Set 1, see Methods). The differences in expression level of MtHDT1/2 and MtPLT3/4 between control and MtHDTs RNAi nodules (C) Quantitative real time PCR (qRT-PCR) analyses of MtPLT3 and MtPLT4 expression in control (ENOD12-EV) and MtHDTs RNAi nodules. Nodules were harvested at 21dpi. All panels show mean ± SE values determined from three biological replicates (each replicate was estimated as the average of three technical replicates).

(D) Number of cell layers added by nodule meristem in 3-weeks old control (ENOD12-EV) and MtHDTs RNAi nodules. Data shown are average ± SD (n>20). Asterisks indicate significant differences (*** p<0.001; Student’s t test).
transcriptomes are consistent with qRT-PCR data. This indicates that RNA-seq data are most likely reliable. To identify differential expressed genes (DEGs), we performed relatively stringent statistics and filtering (fold change>4 and FDR p-value<0.05). In total 49 DEGs were identified between control and MtHDTs RNAi (Supplemental Data Set 1).

To obtain insight in the biological functions of these 49 DEGs, we performed Gene Ontology (GO) analyses. This showed that some of these genes display oxidoreductase activity (Supplemental Figure 6) and two of them encode 3-hydroxy-3-methylglutaryl-coenzyme A reductases (MtHMGR1 and MtHMGR4). MtHMGR1 has been shown to interact with SymRK (MtDMI2) which is an important component of the Nod factor signalling cascade (Kevei et al., 2007; Venkateshwaran et al., 2015). Noteworthy its expression is down-regulated in MtHDTs RNAi nodules. As Nod factor signalling is important for bacterial release (Moling et al., 2014), it suggests that the decreased expression of MtHMGR1 might explain the reduced bacterial release in MtHDTs RNAi nodule cells.

It has previously been shown that knock-down of MtHMGR1 blocks nodule primordia development (Kevei et al., 2007), this is similar to our MtHDTs RNAi studies (Figure 3C). We ask the question whether MtHDTs RNAi affects MtHMGR1 expression in nodule primordia. The expression of MtHMGR1 was determined in MtHDTs RNAi late stages of nodule primordia by qRT-PCR and it showed that its was also reduced (Figure 5). This suggests that the reduced expression of MtHMGR1 is sufficient to explain the phenotype of MtHDTs RNAi nodule primordia.

DISCUSSION

In this study we show temporal and spatial expression patterns of MtHDTs during nodule formation. Conditional knock-down of MtHDTs blocks nodule primordia development and in mature nodules meristem functioning and rhizobial release are affected. Transcriptome data suggest that MtHDTs control Nod factor signalling pathway by regulating expression of MtHMGR1 and its paralogs and in this way control nodule development.
Knock-down of *MtHDTs* reduces nodule meristem activity (Figure 4B-4D). This is similar to the function of Arabidopsis HDT1/2 in maintaining root meristem size by repressing *AtGA2ox2* (Chapter 2). However, transcriptome studies indicate that expression of *MtGA2oxs* is not affected in *MtHDTs* RNAi nodules (Supplemental Data Set 1). This suggests that HDTs regulate meristem activity in these two organs, root and nodule, but most likely in a different manner. This is to some extent in line with the different sub-nuclear localization patterns of MtHDT2 in the meristematic cells of nodule and root (Figure 2). Noteworthy, a cell cycle gene *cyclinB1* expression (Gutierrez, 2009) is not affected by knocking-down of *MtHDTs*, pointing to the existence of a potential post-transcriptional regulation in *MtHDTs RNAi* nodule.

Figure 5. Expression of *MtHMGR1* and Its Paralogs in Nodule Primordia

Quantitative real time PCR (qRT-PCR) analyses of *MtHMGRs* in control (*ENOD12-EV*) and *MtHDTs RNAi* nodule primordia. Nodule primordia were harvested at 6dpi. All panels show mean ± SE values determined from three biological replicates (each replicate was estimated as the average of three technical replicates).
Rhizobial release from infection threads into the nodule cells requires Nod factor receptors NFP and LYK3, as well as a plasma membrane located LRR-type receptor kinase MtDMI2. In MtNFP RNAi and MtDMI2 RNAi nodules rhizobial release is markedly reduced (Limpens et al., 2005; Moling et al., 2014), similar to that in MtHDTs RNAi nodules (Figure 4B), suggesting that MtHDTs might affect Nod factor signalling. We show that MtHDTs regulate the expression of MtHMGR1, encoding an interactor of MtDMI2 (Kevei et al., 2007), and likely in this way affects rhizobial release in nodules. MtHMGR1 is also down-regulated in MtHDTs RNAi nodule primordia (Figure 5). It has been shown that knock-down of MtHMGR1 expression blocks nodule primordia development (Kevei et al., 2007), which is consistent with the main phenotype of MtHDTs RNAi (Figure 3B). In both cases rhizobial release is blocked and nodule meristems are not formed, indicating that MtHDTs and MtHMGR1 are required for both, rhizobial release and nodule organogenesis.

Besides MtHMGR1, all other members of the MtHMGR family were down-regulated in MtHDTs RNAi nodule primordia and nodules (Figure 5, Supplemental Data Set 1), suggesting that knock-down of MtHDTs decreases mevalonate biosynthesis. This might also contribute to the reduction of nodule formation, as pharmacological inhibition of HMGR enzymatic activity by applying lovastatin reduces nodule formation as well (Alberts et al., 1980; Kevei et al., 2007). Intriguingly, five down-regulated MtHMGR paralogs are localized in tandem on chromosome 5 (Supplemental Figure 7). Similar to this, five (3S)-linalool/(E)-nerolidol/(E, iso)flavone-7-O-methyltransferase genes and five cytochrome P450 family 71 genes grouped by Gene Ontology analyses are also tandem and all down-regulated in MtHDTs RNAi nodules (Supplemental Data Set 1). The clustering could facilitate regulation by histone modification genes, such as MtHDTs. We conclude that MtHDTs control nodule formation, in part by regulating the transcription of MtHMGR1 and its paralogs.

METHODS

Plant Growth, Transformation and Inoculation

Medicago ecotype Jemalong A17 was used as wild-type in all experiments. ENOD11:GUS stable line was described in (Journet et al., 2001). For transformation, Agrobacterium rhizogenes MSU440 mediated hairy root
transformation was used according to (Limpens et al., 2004). The plants with transgenic roots were grown at 21°C in a 16 h : 8 h, light : dark regime in perlite at low nitrate conditions in the presence of *Sinorhizobium melilotii* 2011 or the rhizobial strain expressing *nifH:GFP* to form nodules as described by (Limpens et al., 2004b). Nodule primordia were harvested at 6 days after inoculation (dpi). Mature nodules were harvested at 21 dpi.

Constructs

To make *pMtHDTs:GUS* constructs, DNA fragments of putative promoter regions of *MtHDTs* genes were generated by PCR using *Medicago* genomic DNA as a template and Phusion high-fidelity DNA polymerase (Finnzymes) and specific primers indicated in Supplemental Table 1.1. Fragments were cloned into pENTR-D-TOPO (Invitrogen), verified by nucleotide sequence analysis, and recombined into the modified Gateway vector pKGWFS7 containing the *UBQ10:DsRED* selection marker and GUS reporter gene (Karimi et al., 2002).

N-terminal fusions of MtHDTs with GFP under the control of their own promoter were constructed using Multisite Gateway (Invitrogen). The coding sequence (CDS) of each *MtHDT* was PCR amplified and introduced into a pENTR-D-TOPO vector (Invitrogen). The primers used were indicated in Supplemental Table 1.2. The *MtHDT* promoters were re-cloned from the pENTR-D-TOPO vectors into a pENTR4-1 vector (Invitrogen) in front of a GFP open reading frame. The pENTR4-1 vector with the *MtHDT* promoter and GFP, the corresponding pENTR-TOPO *MtHDT* CDS vector and a pENTR2-3 vector containing a CaMV35S terminator were recombined into the binary destination vector pKGW-RR-MGW, thereby creating *pMtHDT:GFP-MtHDT*.

To create *MtHDT(s) RNAi* constructs, the PCR fragments of about 400-500bp of cDNA for each *MtHDTs* were amplified and then combined by subsequential PCR steps using primers with a complementary 15 bp overhang to generate one amplicon of either *MtHDT1-MtHDT3* or the two, or all three *MtHDTs*. The following primers were indicated in Supplemental Table 1.3. These fragments were introduced into a pENTR-TOPO vector (Invitrogen) and recombined in inverted repeat orientation into the Gateway compatible binary vector pK7GW1WG2(II) driven by nodule specific *MtENOD12* promoter (Limpens et al., 2005b). The control vector [(*ENOD12:Empty Vector (EV)*)] contained no DNA coding sequence.
CHAPTER 5

Gene Expression and RNA-Seq

Total RNA from transgenic nodules or nodule primordia was isolated using the plant RNA Easy Kit (Qiagen). cDNA was synthesized with 1 μg of isolated total RNA by reverse transcription with random hexamer primers using the iScript Select cDNA synthesis kit (BioRad) according to the manufacturer’s instructions. Quantitative PCR was performed on a MyiQ (Biorad) using the Quantitative PCR kit for SYBR green (Eurogentec). UBIQUITIN and ACTIN were used as reference genes and showed similar results. Primers used for real-time PCR are listed in Supplemental Table 1.4.

For RNA-Seq analyses, nodule meristem and infection zone of ENOD12-EV and MtHDTs RNAi was cut and collected. Total RNA was extracted as described above. RNA was sequenced at BGI Tech Solutions (Hong Kong) using Hiseq2000 instrument. Sequencing data were analyzed by mapping to the Medicago genome using CLC Genomics Workbench (Denmark). Gene expression levels were determined by calculating the RPKM [(Reads Per Kilobase per Million mapped reads), (Consortium et al., 2006)]. Differentially expressed genes (DEGs) are defined based on relatively stringent statistics and filtering (fold change>4, FDR P value<0.05) within the CLC. GO enrichment analyses was performed using agriGO (Du et al., 2010).

RNA in situ Hybridization

The nodules were fixed with 4% paraformaldehyde mixed with 5% glutaraldehyde in 50 mM phosphate buffer (pH 7.4) and embedded in paraffin (Paraplast X-tra, McCormick Scientific). Nodule sections of 7 μm were prepared by RJ2035 microtome. RNA ISH was conducted according to the Affymetrix user manual for ViewRNA ISH Tissue 2-plex Assay (http://www.panomics.com/UserDocs). RNA ISH probe sets were designed and produced by Affymetrix. Each set contains 20 oligonucleotide probes, each consisting of a target-specific region and a unique sequence upon which signal amplification is built. Probe sets for MtHDT1 covered the region 2-799 nt (804 nt), for MtHDT2 the region 93-972 nt (1171nt), for MtHDT3 the region 411-968 nt (984 nt) the full-length mRNAs. Slides were analyzed with an AU5500B microscope equipped with a DFC425c camera (Leica).
Nodule Development

Histological Analysis and Microscopy

For GUS staining, plant tissues containing promoter-GUS fusions were incubated at 37°C in 0.1 M NaH$_2$PO$_4$·Na$_2$HPO$_4$ (pH 7) buffer including 3% sucrose, 0.05 mM EDTA, 0.5 mg/ml X-gluc, 2.5 mM potassium ferrocyanide and potassium ferricyanide. Incubation time varied depending on tissues and different promoter-GUS fusions. For plastic sections, root material and nodules were fixed in mixture of 4% paraformaldehyde and 5% glutaraldehyde in 0.1 M phosphate buffer (pH 7.2) overnight. After that, they were washed with 0.1 M phosphate buffer four times for 15 min each, once with water for 15 min, and dehydrated for 10 min in 10%, 30%, 50%, 70%, 90% and 100% ethanol, and sequentially embedded in plastic Technovit 7100 (Heraeus Kulzer). Sections were made of 5-10 μm using a microtome (RJ2035, Leica), stained either with 0.05% Toluidine Blue (Sigma) or 0.1% Ruthenium Red (Sigma), mounted in Euparal (Carl Roth), and analyzed with a Leica AU5500B microscope equipped with a DFC425c camera (Leica).

Immuno-detection and Confocal Microscopy

Transgenic pMthDT1:GFP-HDT1 nodules were fixed in 1% paraformaldehyde in PBS on ice for 1h. They were hand-sectioned using a double-sided razor blade and washed 3 times 0.5h each with PBS + 0.3% Triton X100. Then nodules were incubated in blocking solution (3% BSA in PBS) for 1h. Primary anti-GFP antibody (Thermo Fisher Scientific) were added to blocking solution (1: 200) and incubation was done during night in a cold room. Next day nodules were washed and incubated with secondary goat anti-rabbit Alexa-488 antibodies (1: 200, Thermo Fisher Scientific) for 3h. After washing nodules were counterstained with 0.5 μg/ml Propidium Iodide in PBS and imaged with a Leica TCS SP8 HyD 8 confocal microscope.

REFERENCES

Consortium, M., Shi, L., Reid, L.H., Jones, W.D., Shippy, R., Warrington, J.A., Baker,
CHAPTER 5

Nodule Development

DNA methylation is critical for nodule development in Medicago truncatula. Nature plants 2.

Supplemental Figure 1. Domain Organization of Medicago HDTs.

The red box represents the conserved EWFG motif, the blue box the central acidic region and the yellow box the zinc finger domain.

Supplemental Figure 2. *MtHDT2-GFP* Fusion Complements Arabidopsis *hdt1hdt2* Phenotype.

Phenotype of the wild-type (WT), *AtHDT1* loss-of-function (hdt1), *AtHDT2-GFP* complemented (*AtHDT2-GFP/hdt1hdt2*) and *MtHDT2-GFP* complemented (*pMtHDT2:GFP-HDT2*) seedlings at 6 days after germination.
Supplemental Figure 3. Expression of *MtHDTs* During Nodule Formation.
(A) to (H) Expression patterns of *MtHDT1* (A, D and G), *MtHDT2* (B and E) and *MtHDT3* (C, F and H) in mature nodules (A to C), stage I/II nodule primordia (D to F) and stage V nodule primordia (G and H). (E) is a zoom out image of Figure 1E.

Nodules or nodule primordia were harvested at 21dpi or 6dpi, respectively. Arrowheads in (A to C) or arrows in (A) and (B) indicate nodule vascular meristems or vasculature. GUS activity was visualized after incubation with GUS buffer for 6 hours (A, B, D, E and G) or for 24 hours (C, F and H). Longitudinal nodules/nodule primordia sections were shown. Bars=100μm.

Supplemental Figure 4. Expression Pattern of *ENOD11* in Lateral Root Primordium (left) and Nodule Primordium (right).

Data shown was obtained in *ENOD11:GUS* stable line after rhizobium inoculation for 6 days. GUS activity was visualized after incubation with GUS buffer for 2 hours. Bar=100μm.
Supplemental Figure 5. The Sub-nuclear Localization Pattern of MtHDT2 and MtHDT1 Proteins.

(A) and (B) Localization pattern of pMtHDT2:GFP-HDT2 in later root primordium (A) and nodule primordium (B). The boxed areas were magnified, showing a considerable GFP signal in nucleoplasm was observed in cells of nodule primordium, but not in cells of lateral root primordium.

(C) and (D) Localization pattern of pMtHDT1:GFP-HDT1 in mature nodules. GFP signal was detected using α-GFP immunocytology in nodule meristem and young infection zone (C). A weak nucleoplasm signal was detected (D). M, nodule meristem; I, infection zone and F, fixation zone.

Longitudinal sections were shown. Bars=100μm.
Supplemental Figure 6. Gene Ontology Analyses of 49 DEGs.

Supplemental Figure 7. MtHMGRs Are Localized in Tandem. Part of chromosome 5 was shown. Bar=1kb.
ChapteR 5

Supplemental Table 1. Primers Used in This Study.

<table>
<thead>
<tr>
<th>Primer name</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 pHDT1-F</td>
<td>CACCTCTTTTGGAGTTAGTTCTTATTGGG</td>
</tr>
<tr>
<td>pHDT1-R</td>
<td>TCGAAAGGAGAGCCAAAGG</td>
</tr>
<tr>
<td>pHDT2-F</td>
<td>CACCGTTTACATTCCCTTCCAGCAAC</td>
</tr>
<tr>
<td>pHDT2-R</td>
<td>TGGAAACGTGGAGACAGAGAGAG</td>
</tr>
<tr>
<td>pHDT3-F</td>
<td>CACCGTTTGTTGATGTTTTGAGG</td>
</tr>
<tr>
<td>pHDT3-R</td>
<td>GACTGAGAGAGAGAGAGAGC</td>
</tr>
<tr>
<td>1.2 HDT1-F</td>
<td>CACCATGGAAGGACAAAGGAGGTT</td>
</tr>
<tr>
<td>HDT1-R</td>
<td>ACGCGGATCTGTGGATAGCT</td>
</tr>
<tr>
<td>HDT2-F</td>
<td>CACCGATGAGTGTCGCTGGT</td>
</tr>
<tr>
<td>HDT2-R</td>
<td>CTAGCACCATTGTCTGGGCT</td>
</tr>
<tr>
<td>HDT3-F</td>
<td>CACCGTGGATTGGTGTTGTA</td>
</tr>
<tr>
<td>HDT3-R</td>
<td>GGCAATCTTCTAGCTTTAAAGGC</td>
</tr>
<tr>
<td>1.3 HDT12 RNAi F</td>
<td>CCACCCCTATGAGAAGATTCCCATATTGATTACC</td>
</tr>
<tr>
<td>HDT12 RNAi R</td>
<td>GGAATATCAATGAGGATTTTCATGAGAGG</td>
</tr>
<tr>
<td>HDT13 RNAi F</td>
<td>CCACCCCTATGAGAAGATTCCCATATTGATTACC</td>
</tr>
<tr>
<td>HDT13 RNAi R</td>
<td>AGAAGACCTCGATCTTACATGAGAGG</td>
</tr>
<tr>
<td>HDT23 RNAi F</td>
<td>AAGACTCCCAAGTCTATGAGGAGCGTCTT</td>
</tr>
<tr>
<td>HDT23 RNAi R</td>
<td>AGAAGACCTCGATCTTACATGAGAGGAGG</td>
</tr>
<tr>
<td>1.4 HDT1qPCR-F</td>
<td>GGATCAAGGCGAAGAACAACAAA</td>
</tr>
<tr>
<td>HDT1qPCR-R</td>
<td>TTGCTGATGACGAGCTTCTT</td>
</tr>
<tr>
<td>HDT2qPCR-F</td>
<td>TCGGGAGTGTCTGAGGTTAG</td>
</tr>
<tr>
<td>HDT2qPCR-R</td>
<td>TTGTCTTCTGCTAGGTTTC</td>
</tr>
<tr>
<td>HDT3qPCR-F</td>
<td>CTGAGGAGCAGCTCCAAGG</td>
</tr>
<tr>
<td>HDT3qPCR-R</td>
<td>TGGCTGCTTTCTGTAAGG</td>
</tr>
<tr>
<td>PLT3qPCR-F</td>
<td>TGACGAGGACGGGAATAGTA</td>
</tr>
<tr>
<td>PLT3qPCR-R</td>
<td>GTTCCTGCTGCTGCTTTAAAG</td>
</tr>
<tr>
<td>PT4qPCR-F</td>
<td>TCACGAGGTGCATCCATTACGAGG</td>
</tr>
<tr>
<td>PT4qPCR-R</td>
<td>ACGATATAGGCGTCTGAGGCTCCT</td>
</tr>
<tr>
<td>HMRG1qPCR-F</td>
<td>CAGCAGGATTCAGTCAAAAA</td>
</tr>
<tr>
<td>HMRG1qPCR-R</td>
<td>GGATCTTTTCAGGCCACCTG</td>
</tr>
<tr>
<td>HMRG2qPCR-F</td>
<td>CTGCTCTTCTTTCTTGCTGATC</td>
</tr>
<tr>
<td>HMRG2qPCR-R</td>
<td>GGGTTTTTTCAGCAAGTGCTT</td>
</tr>
<tr>
<td>HMRG3qPCR-F</td>
<td>CGGAGTCTGACAGAAGAGGC</td>
</tr>
<tr>
<td>HMRG3qPCR-R</td>
<td>CGGAGAATCGGTACATCTCAGT</td>
</tr>
<tr>
<td>HMRG4qPCR-F</td>
<td>CGAAGAACTCCAAAGTCTAGGC</td>
</tr>
<tr>
<td>HMRG4qPCR-R</td>
<td>GAATTGATCCAGACACCACCTG</td>
</tr>
<tr>
<td>HMRG5qPCR-F</td>
<td>TGCAACCGTGAAATCTCACAC</td>
</tr>
<tr>
<td>HMRG5qPCR-R</td>
<td>TTATCGTGGACGGCTGAAC</td>
</tr>
<tr>
<td>HMRG6qPCR-F</td>
<td>ATCGTGCTACTACAGGCCTTTC</td>
</tr>
<tr>
<td>HMRG6qPCR-R</td>
<td>AGTTTGCGAGGAGGCGTGATG</td>
</tr>
<tr>
<td>UBqPCR-F</td>
<td>CCCTCTACCTGTCATCTTCTG</td>
</tr>
<tr>
<td>UBqPCR-R</td>
<td>CACCTCAATGTATGGGTCTTCTTCC</td>
</tr>
<tr>
<td>ACTINqPCR-F</td>
<td>ACAGAGCGTTCAGATG</td>
</tr>
<tr>
<td>ACTINqPCR-R</td>
<td>ACCTCCGATCCAGACA</td>
</tr>
</tbody>
</table>
Supplemental Data Set 1. Gene Expression Map of the ENOD12-EV and MtHDTs RNAi Nodule Meristem and Infection Zone. (XLSX 18.6 Mb; available upon request).
CHAPTER 6

MtHDT2 Regulates Arbuscule Formation in the *Medicago truncatula* (Medicago) – Arbuscular Mycorrhizal (AM) Symbiosis

Huchen Li, Tian Zeng, Olga Kulikova, Ton Bisseling

Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
CHAPTER 6

ABSTRACT

Arbuscular mycorrhizal (AM) symbiosis enables plants to acquire phosphate that is usually limited in soil. Establishment of this symbiosis starts from the colonization of roots by fungal hyphae, followed by their entry into the root and eventually highly branched fungal structures called arbuscules are formed inside inner cortical cells. During this symbiotic interaction, transcriptional reprogramming occurs. Chromatin remodelling factors contribute to the regulation of gene expression and therefore most likely are involved in the establishment of AM symbiosis. Here we show that in Medicago a plant-specific histone deacetylase MtHDT2 is induced in mycorrhized roots, especially in arbuscule containing cells. In these cells MtHDT2 protein displays variable sub-nuclear localization patterns. Knock-down of MtHDT2 significantly reduces arbuscule formation in mycorrhized root segments, and possibly affects AM symbiosis maintenance.
INTRODUCTION

More than 80% of the land plants, including most crops, are able to form arbuscular mycorrhizal (AM) symbiosis with fungi that belong to the phylum Glomeromycota (Schussler et al., 2011; Berruti et al., 2016). This mutualistic interaction enables plants access to phosphorus and other nutrients, and in return the fungus obtains carbohydrates and lipids from the host (Hodge et al., 2001; Harrison et al., 2002; Helber et al., 2011; Jiang et al., 2017; Luginbuehl et al., 2017). Given the limitation of phosphorus in natural soils, the AM symbiosis plays an important role in plant growth and therefore contributes to sustainable agriculture (Fester and Sawers, 2011).

AM symbiosis is initiated at the root epidermis through a signalling pathway that is triggered by Myc factor that are secreted by the fungus (Levy et al., 2004; Imaizumi-Anraku et al., 2005; Yano et al., 2008; Ried et al., 2014). This signalling ultimately activates transcription factors, such as CYCLOPS (IPD3), NSP2 and RAM1 (Yano et al., 2008; Maillet et al., 2011; Gobbato et al., 2012; Laressergues et al., 2012) that induce transcriptional reprogramming. This allows the fungus to colonize host roots and triggers cellular rearrangement of host cells for hyphae infection through the epidermis and for the formation of arbuscules in cortical cells (Harrison, 2012). In loss-of-function cyclops/ipd3, nsp2 and ram1 mutants, mycorrhizal colonization is significantly reduced (Yano et al., 2008; Maillet et al., 2011; Gobbato et al., 2012; Laressergues et al., 2012; Pimprikar et al., 2016).

In addition to transcription factors chromatin organization plays a major role in regulation of gene expression. Chromatin remodelling factors modify chromatin organization (Strahl and Allis, 2000; Jenuwein and Allis, 2001; Kouzarides, 2007; Shahbazian and Grunstein, 2007). However, their function in controlling AM symbiosis has not been studied so far. Previously, we showed that Medicago (Medicago truncatula) plant-specific histone deacetylases (MtHDTs) are required for the development of the nodule symbiosis. They might also control AM symbiosis since there is a close evolutionary relationship between the two symbionts (Manchanda and Garg, 2007; Oldroyd, 2013; Zipfel and Oldroyd, 2017). Here we demonstrate that MtHDT2 is expressed during AM symbiosis formation. Its transcript and protein are abundant in arbuscule-containing cells. In these cells the MtHDT2 protein has variable sub-nuclear localization patterns that probably are associated with arbuscular developmental stages.
Knock-down of MtHDT2 does not affect the colonization of roots by hyphae, but significantly reduces arbuscule formation in colonized root segments and possibly affects arbuscule maintenance.

RESULTS

MtHDT2 Expression Is Induced During Arbuscule Formation

The Medicago MtHDT family contains 3 members (Grandperret et al., 2014). To test whether they are induced during arbuscule formation, we inoculated transgenic roots expressing p_{MtHDT1}:GUS, p_{MtHDT2}:GUS and p_{MtHDT3}:GUS with Rhizophagus irregularis. In non-inoculated transgenic roots MtHDT1 and MtHDT2 were highly expressed in root meristems and their expression level was markedly decreased in the root elongation zone (Supplemental Figure 1A,1C). MtHDT3 showed the same expression pattern whereas this pattern could only be detected after a prolonged incubation time in GUS buffer (Supplemental Figure 1B, 6h for MtHDT1 and MtHDT2, 24h for MtHDT3). In the differentiated zone, the expression of all 3 genes was below the detection level. At 4 weeks post inoculation (wpi) expression patterns of MtHDT1 and MtHDT3 were similar to those of non-inoculated transgenic roots (Figure 1A, 1C). Arbuscules were formed on p_{MtHDT1}:GUS and p_{MtHDT3}:GUS transgenic roots (Supplemental Figure 1D, 1E), pointing that these 2 genes are not induced during AM symbiosis. In the inoculated p_{MtHDT2}:GUS transgenic roots, the expression pattern of MtHDT2 in root meristem and elongation zone was the same as in the non-inoculated roots, however, in some regions of the differentiated zone a marked increase of MtHDT2 expression was observed (Figure 1B). This indicates that root colonization by AM fungi induces MtHDT2 expression. To better visualize the spatial expression pattern of MtHDT2 in mycorrhized roots, we embedded and sectioned these roots and this showed that MtHDT2 was highly expressed in arbuscule containing cells. It was also expressed in outer cortex and endodermis albeit at a markedly lower level (Supplemental Figure 1F). RNA in situ hybridization, by using a MtHDT2 specific probe, confirmed the expression of this gene in arbuscule containing cells. In addition, it also showed that MtHDT2 had variable expression levels in these cells within a single root segment (Figure 1D). This was consistent with p_{MtHDT2}:GUS data after a short incubation time (2h) in GUS buffer when the intensity of blue colour is still
Figure 1. Expression of MtHDTs in Roots During Arbuscule Formation.

(A) to (C) Expression patterns of pMtHDT1:GUS (A), pMtHDT2:GUS (B) and pMtHDT3:GUS (C) in mycorrhized roots.

(D) RNA *in situ* hybridization of MtHDT2 in arbuscule containing cells. Experiments were done as described in Chapter 5.

(E) Longitudinal section of mycorrhized pMtHDT2:GUS transgenic roots. Arrow or arrowhead in (D) and (E) indicates arbuscule containing cells with strong or weak expression of MtHDT2, respectively. All transgenic roots were inoculated with *R. irregularis* for 4 weeks. β-glucuronidase (GUS) activity was visualized after incubation with GUS buffer for 6 hours (A and B) or 24 hours (C), or 2 hours (E). Bars=500μm in (A) to (C), or 50μm in (D) and (E).
Figure 2. The Sub-nuclear Localization Patterns of MtHDT2 Protein.

(A) Localization pattern of pMtHDT2:GFP-HDT2 in control roots.

(B) to (E) Localization patterns of pMtHDT2:GFP-HDT2 in mycorrhized roots. In arbuscule containing cells, strong GFP signal was observed either in nucleoplasm (B and C), or in nucleolus (D). Weak nucleolar GFP signal was observed in the cell containing collapsing arbuscule (E).

Black arrows or arrowheads indicate nuclei from cortex or endodermis/pericycle, respectively. White arrow in (D) indicates the nucleus of an outer cortical cell that adjacent to the hyphae which is indicated by a white arrowhead. Identical confocal microscope settings were used to image GFP signal in (A), (D) and (E). Bars=10μm in (A) to (E).
not saturated (Figure 1E). This shows that the level of \(MtHDT2 \) in arbuscule containing cells varies and probably depends on the age of arbuscules. So \(MtHDT2 \) expression is induced during arbuscule formation, whereas expression of the other 2 \(MtHDT \) genes are not.

MtHDT2 Protein Displays Variable Sub-nuclear Localization Patterns in Arbuscule Containing Cells

During the interaction of plants with pathogens or rhizobia HDT proteins display a sub-nuclear localization pattern different from non-infected plants (Chapter 4, 5). To study whether the sub-nuclear localization of MtHDT2 protein is changed during arbuscule formation, we inoculated transgenic \(pMtHDT2:GFP-HDT2 \) roots with \(R. \ irregularis \) and analyzed MtHDT2 localization pattern in the differentiated zone where arbuscules had been formed. In the control roots, MtHDT2 was present at a low level in nucleoli (and not in nucleoplasm) of vascular and endodermal cells and was hardly detectable in cortical cells of the differentiated zone (Figure 2A). However, in inoculated roots MtHDT2 accumulated at a relatively high level in the inner cortical cells containing arbuscules (Figure 2B-2D). Further, in some of these cells a markedly increased MtHDT2 level was observed in nucleoplasm (Figure 2B, 2C). In cells containing collapsing arbuscules, the level of MtHDT2 protein was dramatically reduced (Figure 2E). These data suggest that the sub-nuclear localization patterns of MtHDT2 are associated with the arbuscule developmental stages. MtHDT2 is also detectable in outer cortical cells that are adjacent to hyphae, albeit at a low level (Figure 2D). Like in control roots MtHDT2 was detected in nucleoli of vascular and endodermal cells (Figure 2B, 2D and 2E). This shows that mycorrhizal infection results in an accumulation of MtHDT2 in cortical cells, as well as a relatively high level of the protein in the nucleoplasm in cells containing arbuscules.

Knock-down of MtHDT2 Reduces AM Formation in Mycorrhized Root Segments

To examine whether MtHDT2 plays a role during AM symbiosis, we used RNA interference to knock-down MtHDT2 expression. We expressed the RNAi construct (\(MtHDT2i \)) driven by the Arabidopsis \(EF1\alpha \) promoter which is highly expressed in Medicago roots (Axelos et al., 1989; Auriac and Timmers, 2007). The knock-down level of MtHDT2 mRNA in root tips was determined by
Figure 3. Silencing of MtHDT2 Reduces AM Symbiosis Formation in Infected
qRT-PCR, this showed a ~5-fold reduction of its expression level in MtHDT2i, compared with that in control [(EF-EV, see Methods, (Figure 3A)].

MtHDT2i roots did not display an altered phenotype in comparison to control roots (data not shown). At 4wpi with R. irregularis, we compared mycorrhizal root colonization of control and MtHDT2i roots according to (Trouvelot A, 1986). This showed that the frequency of root fragments that are mycorrhized (F), as well as the intensity of infection in all root fragments (M) and the intensity of infection in mycorrhized root parts (m) were all slightly higher in MtHDT2i roots (Figure 3B). However, in MtHDT2i the abundance of arbuscules in mycorrhized root parts (a) was significantly reduced (75% in control, compared with 40% in MtHDT2i, Figure 3B-3D). While the abundance of arbuscules in all root fragments (A) was

Root Segments.

(A) Quantitative real-time PCR (qRT-PCR) measurement of MtHDT2 expression in tips of transgenic roots expressing EF-EV or MtHDT2i constructs. Both panels show mean ± SE values determined from three biological replicates (each replicate was estimated as the average of three technical replicates). MtUBIQUITIN or MtACTIN was used as the references and showed similar results.

(B) Quantification of mycorrhizal events in EF-EV and MtHDT2i transgenic roots. Parameters in percentages (%) used are F, the frequency of analyzed root fragments that are mycorrhized; M, the intensity of infection in all root fragments; m, the intensity of infection in mycorrhized root fragments; a, arbuscule abundance in mycorrhized root parts; A, arbuscule abundance in the total root system as described in (Trouvelot et al., 1986). Data shown were mean ± SE values determined from three biological replicates (each replicate contained at least 4 transgenic roots for each construct). Asterisk indicates significant differences (*p<0.05, Student’s t test).

(C) and (D) Light microscopy images of EF-EV (C) and MtHDT2i (D) transgenic roots colonized by R. irregularis. Root segments shown were with the first observed arbuscule close to the root tips. Black arrows indicate arbuscules.

(E) and (F) Sections of EF-EV (E) and MtHDT2i (F) transgenic roots colonized by R. irregularis at 4wpi. Arrows or arrowheads in (F) indicate mature or collapsed arbuscules, respectively.
Bars=50μm in (C) to (F).
equal to the control roots (Figure 3B). Sections of mycorrhized roots showed that \textit{MtHDT2i} roots contained more collapsed arbuscules (collapsed : mature= 220 : 174, Figure 3F) than the control (collapsed : mature= 53 : 352, Figure 3E). Together, these data indicate that knock-down of \textit{MtHDT2} does not affect hyphal infection in the whole roots, but significantly reduces arbuscule formation and/or maintenance.

\textbf{DISCUSSION}

In this study aiming to determine the role of \textit{MtHDTs} in Medicago – AM symbiosis we have shown that \textit{MtHDT2} expression is induced during arbuscule formation, whereas \textit{MtHDT1} and \textit{MtHDT3} are not. In addition, \textit{MtHDT2} protein sub-nuclear localization in arbuscule containing cells is markedly different from non-infected cells. An increased \textit{MtHDT2} level is observed in nucleoplasm and this might be correlated with arbuscule age. Knock-down of \textit{MtHDT2} reduces arbuscule formation in mycorrhized root segments and likely shortens arbuscule lifespan.

In contrast to our observation that \textit{MtHDT2} is expressed during AM symbiosis, a laser capture microdissection (LCM) based transcriptome comparison between arbuscule containing cells and cortical cells of non-mycorrhized root (Gaude et al., 2012) does not indicate a significant increase in \textit{MtHDT2} expression. Therefore we speculate that \textit{MtHDT2} is only transiently expressed in arbuscule containing cells. This might occur during a specific stage of arbuscule development. In Arabidopsis roots the \textit{HDT} genes appear to have a cell cycle stage related expression pattern. Therefore we hypothesize that \textit{MtHDT2} expression coincides with endoreduplication which occurs during AM symbiosis (Berta et al., 2000). The transient expression is supported by RNA \textit{in situ} hybridization data and the \textit{pMtHDT2:GUS} study that both show that \textit{MtHDT2} displays very variable expression levels in arbuscule containing cells of the same root segment (Figure 1D, 1E).

The occurrence of arbuscules in the infected \textit{MtHDT2i} root segments is significantly reduced. This is either caused by a shorter lifespan of arbuscules which is supported by an increased number of collapsed arbuscules (Figure 3E, 3F), or by a reduced intracellular infection events of mycorrhizal hyphae, or combination of both. The reduced intracellular infections is in analogy with the reduced release of rhizobia in \textit{MtHDTs RNAi} nodules (Chapter 5). During
root infection by AM fungi, hyphae cross the outer cortex intercellularly, while in the inner cortex the hyphae grow intracellularly into cells and form highly branched arbuscules (Genre et al., 2008; Parniske, 2008). MtHDT2 has a higher expression level in these arbuscule containing cells, compared to the outer cortical cells that are adjacent to mycorrhizal hyphae (Figure 2D, Supplemental Figure 1F). This suggests that the intracellular infection of the hyphae requires more MtHDT2 proteins than the intercellular hyphal growth.

MtHDT2 displays different sub-nuclear localization patterns in different cell types. In root cells MtHDT2 is primarily present in nucleoli whereas in arbuscule containing cells, MtHDT2 protein can occur both in nucleoli and in nucleoplasm. The ratio between the two is variable. Possibly these different sub-nuclear localization patterns are associated with certain stages of arbuscule development. In line with this, a considerable amount of MtHDT2 protein could also be observed in nucleoplasm of nodule cells. Further, a shift in sub-nuclear localization pattern of AtHDT2 was induced in leaf cells upon exposure to the immune response inducing elicitor flg22. MtHDT2 could complement AtHDT2 in controlling Arabidopsis plants development (Chapter 5), suggesting MtHDT2 is an orthologous of AtHDT2 and their encoded proteins might have the same response to biotic factor. Upon flg22 perception, AtMPK3 phosphorates AtHDT2, resulting in a translocation of AtHDT2 from nucleolus to nucleoplasm. There it contributes to the suppression of flg22-regulated defense genes (Chapter 4). As MPK3 is also activated by fungal elicitor Pep13 (Cardinale et al., 2002; Wang et al., 2007; Taj et al., 2010), it is interesting to determine whether the nucleoplasm location of MtHDT2 in arbuscule containing cells depends on MtMPK3 phosphorylation.

The abundance of arbuscules in MtHDT2i mycorrhized roots is reduced significantly, whereas it is not affected in the total root segments which might be caused by a compensated intercellular mycorrhization of MtHDT2i roots (Figure 3B).

It has been shown that in nodule symbiosis MtHDTs positively regulate the expression of MtHMGR1. This gene encodes an interactor of MtDMI2 that is a receptor-like kinase required for establishment of root endosymbiosis with rhizobia as well as arbuscular mycorrhiza. In loss-of-function dmi2 mutant, infection of mycorrhiza and rhizobia are blocked (Limpens et al., 2005; Maillet et
al., 2011). In \textit{MthDT}(s) knock-down mutants, infection by mycorrhiza and rhizobia are both reduced (Figure 3B, Chapter 5, Figure 4B), suggesting the mycorrhizal phenotype in \textit{MthDT2i} roots is caused by a reduced expression of \textit{MtHMGR1} as well. Noteworthy, \textit{MtHDT1} and \textit{MtHDT2} have functional redundancy in controlling nodule development, whereas only \textit{MthDT2} is expressed during arbuscular formation. This suggests that the common signalling cascade shared by both symbionts is instructive to \textit{MthDT2} expression, while a rhizobia-specific branch is initiating also \textit{MhDT1} expression.

\textbf{METHODS}

\textbf{Plant Growth Conditions}

\textit{Medicago} ecotype Jemalong A17 was used in all experiments. For mycorrhizal inoculation, plants were placed into pots containing a 1:1 (v/v) ratio of clay and sand evenly mixed with or without \textasciitilde 5,000 \textit{Rhizophagus irregularis} spores. Each pot contained 6 plants and for mycorrhizal root colonization comparison, 3 control plants and 3 plants with \textit{RNAi} transgenic roots were placed into one pot. All plants were irrigated with modified Hoagland medium containing 20\,\textmu M potassium phosphate (Huisman et al., 2016), and were grown at 21°C in a 16 h : 8 h, light : dark regime and harvested at 4 weeks.

\textbf{Constructs and Plant Transformation}

The \textit{pMthDT1/2/3:GUS} and \textit{pMthDT2:GFP-MthDT2} constructs were generated as described in Chapter 5. To knock-down \textit{MthDT2} expression, \textit{RNAi} target sequence of \textit{MthDT2} coding sequence was amplified and introduced into a pENTR-D-TOPO vector (Invitrogen) and subsequently recombined in pK7GWIGG2(II) (Limpens et al., 2005) driven by the Arabidopsis \textit{EF1\alpha} promoter (\textit{MthDT2i}). The same vector but without \textit{MthDT2} coding sequence (Empty Vector) was used as the control (\textit{EF-EV}). \textit{Agrobacterium rhizogenes} MSU440 mediated hairy root transformation was used to generate transgenic roots, according to (Limpens et al., 2004). Only one transgenic root was kept for each plant before placing into the pot.

\textbf{RNA Isolation and qRT-PCR}

Total RNA was extracted from transgenic root tips using the plant RNA easy kit
cDNA was synthesized from 0.5-1 μg of total RNA by reverse transcription with random hexamer primers using the iScript Select cDNA synthesis kit according to the manufacturer’s instructions (Bio-Rad, USA). qRT-PCR was performed in a 10 μl reaction system with MyiQ SYBR Green Super-mix (Bio-Rad, USA). Expression of MtHDT2 (Forward primer: TCTGGGTGCTGAGGTTAAG; Reverse primer: TTTGTCCTTGGTCAGGGTTC) was quantified in triplicates using CFX3.0 software (Bio-Rad, USA) and normalized using ACTIN (Forward primer: ACGAGCGTTTCAGATG; Reverse primer: ACCTCCGATCCAGACA) or UBIQUITIN (Forward primer: CCCTTCATTTGTCCTTGTCTG; Reverse primer: CACCTCCAATGTAATGGTCTTTCC) as a reference.

Staining of Mycorrhizal Roots and Quantification of Mycorrhizal Events

The mycorrhizal roots were first incubated in 10% (w/v) potassium hydroxide for 20 minutes at 90°C and then rinsed with deionized water for three times. After that, the roots were stained in Trypan Blue solution [25ml 2% (w/v) Trypan Blue, 300ml Lactic acid, 300ml Glycerol and 400ml MQ water] for 5 min at 90°C. At the last, decant the Trypan Blue solution and the roots were submerged in glycerol. For quantification, roots were mounted in glycerol on slides labelled with 1cm scale. The mycorrhizal root colonization with three biological replicates were scored and calculated as described by (Trouvelot et al., 1986). The significance of differences was analyzed using Student's t-test and determined by SPSS v.22 (IBM, Armonk, NY, USA).

Tissue Embedding and Sectioning

The root segments were fixed in 4% (v/v) paraformaldehyde, 3% (v/v) glutaraldehyde and 3% (w/v) sucrose dissolved in phosphate buffer (7.0) for 3 h at room temperature. The roots were then dehydrated in an ethanol series and embedded in Technovit 7100 (Heraeus-Kulzer, Hanau, Germany) for polymerization according to the manufacturer’s protocol. 5 μm longitudinal sections were cut on a microtome (Leica Microsystems 2035) and stained with 0.05% Toluidine Blue (Sigma). For GUS stained roots 10 μm longitudinal sections were made and stained with 0.1% Ruthedium Red (Sigma).

Histology and Microscopy

β-glucuronidase (GUS) activity was visualized after incubation of transgenic roots at 37°C in GUS buffer [0.1 M NaH₂PO₄-Na₂HPO₄ (pH 7) buffer including 3%
sucrose, 0.05mM EDTA, 0.5 mg/ml X-gluc, 2.5 mM potassium ferrocyanide and potassium ferricyanide] (Jefferson et al., 1987). The root sections were analyzed using a Leica DM5500 light microscope equipped with DFC425C camera (Leica Microsystems, Wetzlar, Germany). For GFP visualisation confocal microscopy (Leica SP8) was used. Fresh roots were manually and longitudinally sectioned and GFP was detected with an excitation wavelength of 488 nm.

REFERENCES

CHAPTER 6

Supplemental Figure 1. Expression of *Medicago truncatula* HDTs in Root Tips and Mycorrhized Roots.

(A) to (C) Expression patterns of *MtHDT1* (A), *MtHDT3* (B) and *MtHDT2* (C) in tips of non-inoculated transgenic roots.

(D) and (E) Light microscopy images of *pMtHDT1:GUS* (D) and *pMtHDT3:GUS* (E) transgenic roots colonized by *R. irregularis* at 4wpi.

(F) Longitudinal section of mycorrhized *pMtHDT2:GUS* transgenic roots. GUS activity was visualized after incubation with GUS buffer for 6 hours (A, C and F) or for 24 hours (B). Arrowheads in (D) to (F) indicate arbuscules. Bars=50μm in (A) to (F).
CHAPTER 7

General Discussion

Huchen Li

Laboratory of Molecular Biology, Plant Sciences Group, Wageningen University and Research Centre, Wageningen, The Netherlands
CHAPTER 7

Plants have to adapt their growth and development to cope with environmental cues. These include abiotic and biotic stresses among them symbiotic interactions. Abiotic and biotic stresses can result in a transient reduction of plants growth which enables plants to retain energy in order to acquire resistance. The role of the chromatin modifiers of the Arabidopsis *HDT* gene family, encoding plant-specific histone deacetylases, in response to abiotic stress has been studied (Sridha and Wu, 2006; Luo et al., 2012). However, the mechanisms involved in coping with abiotic stress to adapt plant development are still far from understood. In Chapter 2 and Chapter 3 of this thesis I try to bridge this gap by studying the role of Arabidopsis (*Arabidopsis thaliana*) AtHDT1/2 in regulating cell fate switches during root development under control and salt stress conditions. The role of HDTs in response to biotic stress has been studied in rice and tobacco (Bourque et al., 2011; Ding et al., 2012), but never in Arabidopsis. In Chapter 4 we show that AtHDT2 plays a role in the reprogramming of defence gene expressions in response to flagellin22 in Arabidopsis leaf cells. The role of HDTs in establishing legume-rhizobium and plant-arbuscular mycorrhiza symbiosis are studied in Medicago (*Medicago truncatula*) (Chapter 5 and Chapter 6). In this chapter, I will discuss these results in a broader perspective.

Regulation of *HDT* Expression Varies Between (A)Biotic Stresses

Abiotic factors in general reduce expression of *HDTs* (Stockinger et al., 2001; Sridha and Wu, 2006; Luo et al., 2012). For example, ABA treatment, salt stress and dehydration stress reduce expression of *AtHDTs* in Arabidopsis seedlings (Sridha and Wu, 2006; Luo et al., 2012). In line with this, the expression of *AtHDT1/2* in Arabidopsis root tips is down-regulated under salt stress (Chapter 3). Biotic factors can either induce or reduce expression of *HDTs* (Demetriou et al., 2009; Bourque et al., 2011; Ding et al., 2012). For example, Medicago *MtHDT(s)* are up-regulated during symbiotic interactions with rhizobia as well as arbuscular mycorrhiza (Chapter 5, 6). In rice leaves, transcription of *OsHDT701* is increased during a compatible interaction, but decreased in an incompatible interaction, with fungal pathogens (Ding et al., 2012). It has been shown that in tobacco leaves *NtHDT1/2* transcript levels are rapidly reduced upon treatment with cryptogein, a fungal elicitor inducing a hypersensitive response (Bourque et al., 2011). By contrast, both salicylic acid and jasmonic acid increase *HvHDT1/2* expression in barley (Demetriou et al., 2009). These observations demonstrate
that expression of HDTs is tightly regulated when plants are exposed to stresses. This points to their important role in the process of plant adaptation to stresses.

The Sub-cellular Localization of HDTs Depends on Environmental Cues

HDT proteins display different sub-nuclear localization depending on the stress or type of biological interaction. Under optimal growth conditions, AtHDT1/2 are mainly localized in nucleoli of both root and leaf cells. This is consistent with the fact that they all contain a nucleolar localization domain (Koonin, 1998; Grandperret et al., 2014). Salt stress does not affect their localization in root cells. However, in leaf cells a translocation of AtHDT2 from nucleolus to nucleoplasm occurs upon flagellin 22 treatment (Chapter 2, 3, 4). A similar translocation can also occur during symbiotic interactions, as a considerable amount of MtHDT2 is observed in nucleoplasm of arbuscule containing cells, but not in non-infected root cells (Chapter 6).

The translocation of HDTs from nucleolus to nucleoplasm indicates that a mechanism exists that controls their sub-nuclear localization. Part of this mechanism is identified in Arabidopsis leaf cells after flagellin treatment (Chapter 4). AtHDT2 interacts with MAP kinase AtMPK3 and two amino acids, T249 and S266, are phosphorylated by AtMPK3 *in vivo*, upon exposure to flagellin22. This phosphorylation results in the translocation of AtHDT2 from nucleolus to nucleoplasm. AtHDT1 is a substrate of AtMPK6 and might be translocated like AtHDT2 (de la Fuente van Bentem et al., 2008). It would be interesting to determine whether the increased nucleoplasm localization of MtHDT2 in arbuscule containing cells also depends on MtMPK3 phosphorylation. In addition, salt stress also induces *AtMPK3* and *AtMPK6* expression in Arabidopsis seedlings, but no translocation is observed for AtHDT1/2 (Ichimura et al., 2000; Droillard et al., 2002). However, under salt stress the HDT genes are repressed and this seems most relevant for the adaptive response. Further, whether these MPK genes are induced in cells where HDT expression is maintained in the halotrophic response is not known.

Similar to AtHDT1/2 and MtHDT2, AtHDT3 and tobacco NtHDT are also mainly localized in nucleoli of protoplasts or leaf cells under control conditions (Sridha and Wu, 2006; Bourque et al., 2011; Luo et al., 2012). HDTs located in nucleoli could function either in repressing ribosomal genes, or as a storage to be used for a fast response to stimuli. The former, at least for AtHDT1/2 and
MtHDT2 in meristematic cells, is less likely, as cell proliferation depends on a continuous supply of ribosomes (Hannan and Rothblum, 1995; Medina et al., 2000). The latter is supported by a rapid response to flagellin 22 which causes AtHDT2 translocation to nucleoplasm to regulate expression of defense genes (Chapter 4). During nodule formation a relatively high level of MtHDT2 occurs in nucleoplasm before rhizobia infect cells. These are the nodule meristem cells as well as nodule primordium cells. The latter might be caused by a signal generated during the symbiotic interaction. The translocation of HDTs can also occur from nucleus to cytosol. It has been shown that NtHDTs are translocated from nucleus to cytosol upon treatment of tobacco leaves with cryptogein, an elicitor of cell death (Bourque et al., 2011; Grandperret et al., 2014). Similarly, HDA15, a RPD3 class histone deacetylase, is also translocated from nucleus to cytosol for degradation in response to light (Alinsug et al., 2012). Whether the AtHDTs and MtHDTs are targeted to the cytoplasm for degradation is not yet known.

HDTs, like other chromatin remodelling factors, have to recruit transcription factors to target specific DNA regions (Kuang et al., 2012; Asensi-Fabado et al., 2017). It has been shown that in the longan HDT interacts with ERF1, an ethylene-responsive factor that controls fruit senescence (Kuang et al., 2012). Whether HDTs interact with transcriptional factors in root, nodule and arbuscule containing cells, and how these interactions are triggered by environmental cues is still unknown.

Specificity and Functional Redundancy of HDTs

Several studies demonstrate that certain HDTs can have functional redundancy in one process but have specificity in others. It has been shown that AtHDT1 and AtHDT2 have functional redundancy in the establishment of Arabidopsis leaf polarity (Ueno et al., 2007). In agreement with this, I show that they both regulate root growth. Knock-down studies in Medicago nodules showed that silencing of two or more HDT members is essential to obtain a phenotype. This functional redundancy might be due to the fact that AtHDTs and MtHDTs are the result of recent gene duplication. In some monocots this duplication has not occurred (Pandey et al., 2002; Grandperret et al., 2014) and the knock-out of a single HDT701 gene in rice results in increased pathogen resistance (Ding et al., 2012). Despite this functional redundancy in certain processes the same HDT genes can also have specialised functions. For example, salt stress
reduces seeds germination rate in loss-of-function Arabidopsis hdt3 single mutant (Luo et al., 2012). We show that Arabidopsis hdt2 single mutant can display a phenotype in response to pathogenic infection in leaves. In addition, arbuscular mycorrhizal infection only induces MtHDT2 expression in roots.

It has been shown that Arabidopsis AtHDT1-3 repress transcription of genes (Wu et al., 2003). This raises the question whether the repression ability of HDTs depends on deacetylation. AtHDT1 is required for H3K9 deacetylation (Lusser et al., 1997; Lawrence et al., 2004). Similar to this, in rice HDT701 is required for H4 deacetylation (Ding et al., 2012). This is in agreement with our observations that AtHDT1/2 deacetylate the AtGA2ox2 gene to repress its expression (Chapter 2) and AtHDT2-MPK3 module promotes deacetylation of some genes under normal conditions (Chapter 4).

Gibberellin Degradation by C_{19}-GA 2-oxidases Is Part of Adaptation Mechanisms in Response to Abiotic Stress

Because plants must coordinate their growth and development to adapt to stress, it is not surprising that a crosstalk exists between stress and hormonal signalling pathways (Zhu, 2016). For example, salt, dehydration and osmotic stress result in accumulation of abscisic acid (ABA) which binds to receptor PYLs, and this regulates inhibition of growth (Boudsocq et al., 2004; Ma et al., 2009; Park et al., 2009). Pathogen infection results in jasmonic acid (JA) and salicylic acid (SA) accumulation and this inhibits plant growth as well (Vicente and Plasencia, 2011; Yang et al., 2012).

In this paragraph, I will focus on gibberellin (GA) as it appears a major target in HDT mediated responses. Recently, gibberellin (GA) inactivation is shown to play a role in cold and salt stress induced responses resulting in reduced plant growth (Skirycz et al., 2011; Claeys et al., 2012). In Arabidopsis the most prominent mechanism for GA inactivation involves up-regulation of GA2-oxidases (Sponsel and Macmillan, 1978; Thomas et al., 1999; Rieu et al., 2008). Seven AtGA2oxidase genes (AtGA2ox1-4, 6-8; AtGA2ox5 is a pseudogene) have been identified (Yamaguchi, 2006; Hedden and Sponsel, 2015). Cold stress leads to an up-regulation of AtGA2ox3 and AtGA2ox6 in Arabidopsis seedlings within 4h (Achard et al., 2008). Similarly, high salinity induces the transcription of six AtGA2oxidase genes (1,2,4,6-8) with AtGA2ox7 being the most-upregulated in seedlings. However, salt induced AtGA2ox7 transcripts
CHAPTER 7

do not accumulate in roots (Magome et al., 2008). This suggests that *AtGA2-oxidases* have their effect on GA levels in a tissue/organ specific manner.

However, mechanisms that induce *AtGA2oxidases* expression upon abiotic stresses are not well understood. *AtGA2ox2* is a direct target of *AtHDT2* and its expression is repressed by *AtHDT1/2*. Repression of *AtHDT1/2* occurs during salt stress, possibly by ABA, as salt stress induces ABA accumulation and ABA is known to reduce *AtHDT1/2* expression (Jia et al., 2002; Zhu, 2002; Luo et al., 2012). Their reduction likely induces *AtGA2ox2* in root meristem (Chapter 2, 3). In addition, *AtGA2ox8* is supposed to be regulated by this mechanism as well, as it is also up-regulated in *hdt1,2i* roots and upon salt stress [(Chapter 2, Supplemental Dataset 2) (Magome et al., 2008)]. Another mechanism comes from the study showed that *AtERF6*, an ethylene-response factor, can induce *AtGA2ox6* in growing leaves upon mild osmotic stress (Dubois et al., 2013). Noteworthy, knock-down of *AtHDT1/2* also induces *AtERF6* in root tips (Chapter 2, Supplemental Dataset 2). Therefore it will be interesting to test whether *AtHDT1/2* functions upstream of *AtERF6*.

Drought stress results in an up-regulation of *GmGA2ox4* and *OsGA2ox6* and causes a dwarf phenotype in soybean and rice, respectively (Suo et al., 2012; Lo et al., 2017). Whether this involves a repression of HDTs is not known.

As a negative correlation of HDTs and *GA2oxs* levels occurs under different abiotic stresses and in different plant species, it is probable that HDTs mediated repression of *GA2oxs* expression is a general mechanism in response to abiotic stresses.

AtHDT1/2-GA2ox2 module plays a role in halotropism

Natural environments are not homogenous and plants can acclimate to any change to a single environmental factor by using tropisms, such as gravitropism, halotropism, hydrotropism and phototropism, to link the direction of growth to environmental cues (Jaffe et al., 1985; Galvan-Ampudia et al., 2013; Goyal et al., 2013; Daniela Dietrich, 2017). Halotropism is a response of roots to avoid a saline environment (Galvan-Ampudia et al., 2013). Mechanisms of halotropism are not completely understood, however, mechanisms used to create asymmetric responses in roots during for example gravitropism might be operational when roots are exposed to non-homogenous salt stress.
During gravitropism, auxin accumulates more at the lower side of the root. This asymmetric distribution is consolidated by an increased gibberellin accumulation along the lower side which stabilizes PIN2 (Rahman et al., 2010; Lofke et al., 2013). This results in a higher auxin concentration that locally blocks cell elongation. As this occurs in an asymmetric manner the root will bend. An asymmetric distribution of auxin occurs also during halotropism (Galvan-Ampudia et al., 2013). This correlates with an endocytosis of PIN2 at the high salt side of root. This indicates that the mechanisms that control the two tropisms share common aspects. My data suggests that gibberellin also plays a role in halotropism. When GA asymmetric distribution is eliminated the halotropic response is alleviated.

The asymmetric GA distribution in halotropism is likely caused by asymmetric induction of AtGA2ox2 which leads to a reduced GA at the high salt side. This is likely results from a reduction of AtHDT1/2 (Chapter 2, 3). In agreement with this, a homogenous salt stress reduces expression of AtHDT1/2, but induces expression of AtGA2ox2 (Magome et al., 2008; Luo et al., 2012).

It is known that high auxin level in root inhibits cell elongation (Rayle et al., 1970). Therefore during halotropism at the side opposite to high salt an increased auxin concentration likely inhibits cell elongation. This contributes to root bending away from high salt. Besides this, an earlier switch from cell division to elongation at the high salt side, which is in line with AtHDT1/2 down-regulation and AtGA2ox2 up-regulation, will increase root length rapidly and might also contribute to root bending.

Concluding Remarks

Plant development results from specific patterns of gene expression that are tightly regulated in spatio-temporal manner. Chromatin remodelling factors play an important role in the establishment of these patterns and also provide regulatory flexibility for gene expression in response to environmental signals. In this thesis I show that AtHDT1/2-GA2ox2 module is operational in control of root growth and halotropism. How the AtHDT1/2-AtGA2ox2 module is regulated is still unknown. This can be the subject for future studies.
REFERENCES

neonatal cardiomyocyte hypertrophy. Cardiovascular research 30, 501-510.

CHAPTER 7

SUMMARY

Plants have a sessile lifestyle. To ensure survival, they develop a potential to respond to environmental cues to set up an adaptive growth and development. This adaptation involves transcriptional reprogramming of the genome through chromatin-based mechanisms relying on the dynamic interplay of transcription factors (TFs), post-translational modification of histones, the deposition of histone variants, DNA methylation, and nucleosome remodeling. This thesis is focused on a role of one group of histone post-translational modifiers, plant-specific histone deacetylases (HDTs), in plant development under control condition and variable stresses/symbiotic interactions.

It is well known that HDTs are involved in plant responses to environmental stresses. However, whether they play a role in regulating plant growth and development is elusive. In this thesis it is shown that *Arabidopsis thaliana* AtHDT1/2 regulate the cell fate switch from division to expansion in the Arabidopsis root. Knock-down of *AtHDT1/2* (*hdt1,2i*) causes that this switch occurs earlier and results in less cells in the root meristem. This process slows down root growth. One target of AtHDT1/2, *AtGA2ox2*, is identified here. Its overexpression displays the same root phenotype as *hdt1,2i*, and its knock-out partially rescues *hdt1,2i* root meristem phenotype. AtGA2ox2 inactivates gibberellin (GA) whose application increases root meristem cell number in WT, but not in *hdt1,2i*. Based on these data, we conclude that AtHDT1/2 repress the transcription of *AtGA2ox2*, and likely fine-tunes GA homeostasis to regulate the switch from cell division to expansion in root tips.

HDTs respond to salt stress in Arabidopsis seedlings. Halotropism is a novel reported tropism allowing roots to avoid a saline environment. Whether the AtHDT1/2-AtGA2ox2 module is operational in halotropism is studied here. We show that *hdt1,2i* mutants respond more severe in halotropism. AtHDT1/2, as well as *AtGA2ox2* display asymmetric localization patterns in halotropism with AtHDT1/2 reduced and AtGA2ox2 induced at high salt side of root tips. Our data indicate that their asymmetric patterns likely results in less GA at high salt side of root tips and this is required for halotropism establishment. In line with this, both constitutive expression of *AtHDT2* and exogenous GA application reduce halotropic response. A reduction of GA in root tips causes an earlier switch from cell division to expansion. We discuss that this earlier switch enables roots rapidly to bend away from saline environment.
It has been shown that HDTs play a role under biotic stress in rice and tobacco leaves. We demonstrate that they are also involved in response to biotic stress in Arabidopsis leaves. Arabidopsis *hdt2* mutants are more susceptible to virulent *Pseudomonas syringae pv. tomato* PstDC3000, whereas mutants with *AtHDT2* constitutive expression are more resistant. In addition, we detected a translocation of *AtHDT2* from nucleolus to nucleoplasm after the perception of flagellin22 in Arabidopsis leaf cells. This translocation is not observed under abiotic stress. A mechanism controlling this translocation is identified. *AtMPK3* is activated under biotic stress, it interacts with and phosphorylates *AtHDT2*. This leads to the accumulation of *AtHDT2* in nucleoplasm where it contributes to the repression of defense genes.

During the interaction with symbiotic microorganisms, plants could develop a symbiotic organ/structure. For example, legumes of which *Medicago truncatula* is a model, can form root nodules or arbuscules by interacting with rhizobia or arbuscular mycorrhiza.

We show that nodule-specific knock-down of *MtHDT1/2/3* (*MtHDTs RNAi*) blocks nodule primordia development and affects the function of nodule meristem. This is consistent with their roles in controlling cell division during root development and suggests that the function of nodule and root meristems is closely related. However, *MtHDT2* gains a new sub-nuclear localization pattern in nodule meristem by using a not yet known mechanism, different from that in root meristem. This suggests that these two meristems have different transcriptional landscapes. In the nodule infection zone *MtHDTs* are also expressed and in *MtHDTs RNAi* the intracellular release of rhizobia is markedly reduced. Expression of *MtHMGR1* and its paralogs, encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductases are down-regulated in *MtHDTs RNAi*. It has been shown *MtHMGR1* interacts with *MtDMI2*, a component of Nod factor signalling pathway, to control rhizobial infection. Knock-down of *MtHMGR1/MtDMI2*, as well as inhibiting *MtHMGRs* enzymatic activity blocks nodule primordia development and rhizobial infection in nodule primordia/mature nodules. This phenotype partially resembles *MtHDTs RNAi* phenotype. We discuss that *MtHDTs* regulate expression of *MtHMGRs* and in this way affect Nod factor signalling and control nodule development.

Similar to nodule symbiosis, during arbuscular mycorrhizal symbiosis cells in the cortex are also intracellularly infected. We show that *MtHDT2* is also induced in these arbuscule containing cells. Knock-down of *MtHDT2* (*MtHDT2i*)
significantly reduces the intracellular infection of the hyphae on the mycorrhized root segments, indicating that MtHDT2 control mycorrhizal intracellular infection. We discuss whether MtHDTs can regulate mycorrhizal/rhizobial infection in a similar way.

The data obtained in this thesis and the published information related to these subjects are discussed at the end. HDTs are key players in plant responses to environmental cues, whereas they respond to abiotic factors and biotic factors differently. They are also key regulators of plant growth and development that is clearly demonstrated in this thesis on examples of root and nodule development. I also propose a role of AtHDT1/2 in response to salt signal to fine-tune the switch from cell division to expansion in root tips during halotropism.
ACKNOWLEDGEMENTS

This thesis could not be completed without support and contribution from many people. I would like to thank all people who helped and accompanied me through my PhD career.

Prof. Dr Ton Bisselling and Dr. Olga Kulikova

Dr. Henk Franssen, Dr. Joan Wellink, Dr. Erik Limpens and Dr. Rene Geurts

Prof. Dr Ben Scheres and Prof. Dr Heribert Hirt

Maria Augustijn and Marie-Jose van Iersel, Dr. Ingrid Vleghels

Jan Verver, Jan Hontelez, Marijke Hartog, Sidney Linders, Kerstin Guhl and Carolien Franken

Rik Huisman, Arjan van Zeijl and Adam Folta

My chinese colleague and friends, 婷婷,添儿; 煜焜,德峰,洁宇,旭旭,杜杜,龙,鹏鹏,小严,建勇,银山,刘哥,冯哥,凤娇,明刚,媛园,小雪,李涛,李慧,宋伟,许苇,宋银,老毕,老唐,家翠,鲁玥,陈俊才,王鹏,依倩,孟立,王波,艳霞,王艳,杜羽,锦斌,金岭,艳丽,建华,朱峰,春旭,鲁玥,勇哥,国华,刘庆,杨婷,程曦,涵子,军伟,清兵,贺俊,栾明,赵涛,雪原,大钊,付星...

我的家人!
CURRICULUM VITAE

Huchen Li was born on October 21, 1986 in Liaocheng, China. He finished his high school education in 2004, and in the same year he started his four years education in College of Biological Science, Shandong Normal University. There he obtained his bachelor degree in science in 2008 and then worked as a biology teacher at a middle school for half year. In 2009 he moved to Beijing and started his Msc study in Beijing Normal University. During his three years study on Chinese traditional medicine, including theoretical and practical courses, like plant tissue culture, microbial fermentation and animal pharmacology, he started to show his interests toward plant science. In 2012 he obtained his master degree and got the scholarship from China Scholarship Council for supporting his PhD study in the Netherlands. There, from 2012 till 2016, he worked in the Laboratory of Molecular Biology of Wageningen University, under the supervision of Prof. dr Ton Bisseling and Dr. Olga Kulikova, focusing on the research topic “Functional analyses of plant-specific histone deacetylases”. From September, 2016, he started as a post-doc in the same group and extended his research topic into “Environmental stresses regulated plant growth and development“.
Education Statement of the Graduate School
Experimental Plant Sciences

Issued to: Huchen Li
Date: 16 October 2017
Group: Laboratory of Molecular Biology
University: Wageningen University & Research

1) Start-up phase
► First presentation of your project
 Title: Plant-specific Histone Deacetylases in Lateral Root and Nodule Development
 Date: 28 Jun 2013
► Writing or rewriting a project proposal
 Title: Plant-specific Histone Deacetylases in Lateral Root and Nodule Development
 Date: Sep-Nov 2012
► MSc courses
► Laboratory use of isotopes

Subtotal Start-up Phase: 4.5 credits

2) Scientific Exposure
► EPS PhD student days
 EPS PhD student day, Amsterdam, NL
 Date: 30 Nov 2012
 EPS PhD student day, Leiden, NL
 Date: 29 Nov 2013
 EPS PhD student day "Get2Gether", Soest, NL
 Date: 29-30 Jan 2015
► EPS theme symposia
 EPS Theme 4 Symposium "Genome Biology", Nijmegen, NL
 Date: 07 Dec 2012
 EPS Theme 1 Symposium "Developmental Biology of Plants", Wageningen, NL
 Date: 17 Jan 2013
 EPS Theme 1 Symposium "Plant Development Biology", Wageningen, NL
 Date: 24 Jan 2014
 EPS Theme 4 Symposium "Genome Biology", Wageningen, NL
 Date: 03 Dec 2014
 EPS Theme 1 Symposium "Developmental Biology of Plants" Leiden, NL
 Date: 08 Jan 2015
 EPS Theme 2 Symposium "Interactions between Plant and Biotic Agents", Utrecht, NL
 Date: 20 Feb 2015
 EPS Theme 4 Symposium "Genome Biology", Amsterdam, NL
 Date: 15 Dec 2015
 EPS Theme 1 Symposium "Developmental Biology of Plants", Wageningen, NL
 Date: 21 Jan 2016
 EPS Theme 3 Symposium "Metabolism and Adaptation", Wageningen, NL
 Date: 14 Mar 2017
► National meetings (e.g. Lunteren days) and other national platforms
 Annual meeting "Experimental Plant Sciences", Lunteren, NL
 Date: 22-23 Apr 2013
 Annual meeting "Experimental Plant Sciences", Lunteren, NL
 Date: 14-15 Apr 2014
 Annual meeting "Experimental Plant Sciences", Lunteren, NL
 Date: 13-14 Apr 2015
 Annual meeting "Experimental Plant Sciences", Lunteren, NL
 Date: 11-12 Apr 2016
 Annual meeting "Experimental Plant Sciences", Lunteren, NL
 Date: 10-11 Apr 2017
 Joint Dutch Chromatin Meeting and NvBMB Fall Meeting, Rotterdam, NL
 Date: 29 Oct 2013
 The 13th Dutch Chromatin Meeting, Nijmegen, NL
 Date: 22 Oct 2015
► Seminars (series), workshops and symposia
 Start symposium Plant Development Biology
 Date: 14 Oct 2013
 Symposium: "Chinese association of Life science in the Netherlands annual meeting"
 Date: 09 Nov 2013
 Mini-symposium - Plant Pathology
 Date: 24 Nov 2014
 EPS Symposium "Omics Advances for Academic and Industry - Towards True Molecular Plant Breeding"
 Date: 11 Dec 2014
 Symposium "The underground Labyrinth: Roots, Friends and Foes"
 Date: 08 Feb 2015
 Celebrative Symposium - Gene regulation and epigenetics
 Date: 14 Jun 2017
 Workshop - Expectations (EPS career day), Creativity and inspiration in science
 Date: 01 Feb 2013
 Seminar: Chromatin dynamics and cell fate in plants: From Genetics to Epigenetics
 Date: 16 Jan 2013
 Seminar: Writing for high impact journals
 Date: 08 Feb 2013
 Seminar: Plant stem cell system
 Date: 15 Apr 2013
 Seminar: Auxin and plasmodesmata: measuring fluxes in the root
 Date: 02 Jul 2013
 Seminar: Advanced Microfluidics for the Control of Living Cells
 Date: 07 Jan 2014
 Seminar: Self-organising tissues: root regeneration as a case study
 Date: 19 Mar 2014
 Seminar: Plant Sciences Seminar 11 March: Mutualism in Action
 Date: 11 Mar 2014
 Seminar: The Dynamics of Root Stem Cell Regulation: Old Players with New Function?
 Date: 11 Mar 2014
 Seminar: Genome and effector evolution in the Irish potato famine pathogen Lineage
 Date: 28 May 2014
 Seminar: Araucaria macrophyla, and their Yin-yang position in the plant-soil microbiome
 Date: 04 Jun 2014
 Seminar: Dissecting the interaction between Phytophthora sojae and soybean: making sense out of signalling and effectors
 Date: 16 Jul 2014
 Seminar: Spindle mechanics and chromosome segregation
 Date: 04 Sep 2014
 Seminar: Peptide signaing in lateral root and root nodule development
 Date: 15 Sep 2014
 Seminar: PIN-ning down the function of DG PROTEIN KINASES in auxin transport
 Date: 21 Oct 2014
 Seminar: Seminar Series Plant Sciences - Plant Bioinformatics
 Date: 04 Nov 2014
 Seminar: EPS Flying Seminar Ortrun Miltelsen Scheid-Geneomics and epigenetics: a complex relationship
 Date: 19 Nov 2014
 Seminar: Flying seminar: Seasonal flowering in annual and perennial plants
 Date: 19 Jan 2015

CONTINUED ON NEXT PAGE
Seminar:
- "The evolutionary significance of gene and genome duplications" 03 Feb 2015
- WEECS seminar: Mycoastrophy and mixotrophy : plants eating mycorrhizal fungi 28 Nov 2015
- Seminar: Genomics-enabled natural products discovery 31 Mar 2016
- Seminar: Auxin Signalling: Inputs and Outputs 07 Apr 2016
- Seminar: The evolution of branching mechanisms 12 May 2016
- Seminar: Perianth evolution in Ranunculaceae: are petals ancestral in the family? 29 May 2016
- Seminar: Genetic basis of anatomical variation in plant ground tissue: A lesson from Cordamine hirsuta 29 Aug 2016
- Seminar: Clocks across taxa: Conserved cellular clock mechanisms in plants, algae and other eukaryotes 29 May 2017
- Seminar: The immune receptor Rhl1 remodels chromatin and chromatin interactors in immunity 11 Jul 2017

International symposia and congresses
- 6th European Plant Science Retreat 2014, Amsterdam 01-04 Jul 2014
- Conference on Epigenetic & Chromatin Regulation of Plant Traits, Strasbourg, France 14-15 Jan 2016
- 5th European workshop on plant chromatin, Vienna, Austria 01-02 Jun 2017

Presentations
- Poster: Joint Dutch Chromatin Meeting and NV/SMB Fall Meeting, Rotterdam, NL 29 Oct 2013
- Talk: EPS Theme 1 Symposium "Plant Development Biology", Leiden, NL 08 Jan 2015
- Talk: EPS Theme 4 Symposium "Genome Biology", Amsterdam, NL 15 Dec 2016
- Flash talk: Conference on Epigenetic & Chromatin Regulation of Plant Traits, Strasbourg, France 14-15 Jan 2016
- Talk: NWO Plant Sciences meeting, Lunteren, NL 11-12 Apr 2016

IAB interview

Excursions
- Scientific Excursion to Rijks Zooan 27 Sep 2013

3) In-Depth Studies

- EPS courses or other PhD courses
 - Bioinformatics - A user's Approach, Wageningen, NL 25-29 Aug 2014
 - Introduction to R for statistical analysis, Wageningen, NL 16-18 May 2015
 - Phylogenetics: principles and methods, Wageningen, NL 17-19 May 2016

- Journal club
- participation in a literature discussion group at Mol. Biology 2012-2016

4) Personal development

- Skill training courses
 - PhD Competence Assessment, Wageningen, NL 23 Oct 2012
 - Course: High-Impact Writing Course, Wageningen, NL 18-21 Nov 2013
 - Information literacy PhD including Endnote Introduction, Wageningen, NL 26-29 Oct 2014
 - Course: Techniques for writing and presenting a scientific paper, Wageningen, NL 01-04 Sep 2015

- Organisation of PhD students day, course or conference

- Membership of Board, Committee or PhD council

Total Number of Credit Points

32.7

Herewith the Graduate School declares that the PhD candidate has compiled with the educational requirements set by the Educational Committee of EPS which comprises a minimum total of 30 ECTS credits.

* A credit represents a normative study load of 28 hours of study.
This work was performed in Laboratory of Molecular Biology, Wageningen University & Research, with support from European Research Council (ERC-2011-AdG-294790), from Graduate School of Experimental Plant Sciences of the Netherlands and from China Scholarship Council.

Cover design and thesis layout: Huchen Li