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“The management of organic matter for nutrient supply and soil improvement is as old 

as the history of arable agriculture itself. Yet science has been slow to provide the 

predictive understanding that will assist farmers to move beyond their own traditional 

knowledge based on centuries of empirical trial and error” 

(Palm et al. 2001) 



 

 

 

Abstract 

The aim of this thesis was to improve understanding of the role of organic inputs and soil organic 

matter (SOM) for crop production in contemporary arable farming in Europe. For this purpose, 

long-term experiments were analysed on the additional yield effect of organic inputs and savings in 

mineral fertiliser. In addition, a farm survey was conducted to find drivers and barriers for the use 

of organic inputs and to assess if arable farmers in Europe perceive a deficiency of SOM. 

The findings in this thesis suggest that at least on the shorter term, on average, there seems to be no 

immediate threat from a deficiency of SOM to crop production in arable farming in Europe. The 

long-term experiments showed that with sufficient use of only mineral fertilisers, on average, 

similar yields could be attained over multiple years as with the combined use of organic inputs and 

mineral fertiliser. This was reflected in the farm survey, in which a large majority of farmers 

indicated not to perceive a deficiency of SOM. Analysis of long-term experiments also showed that 

more mineral fertiliser N was saved when using farmyard manure at high N rates (with mineral 

fertiliser application) than at low N rates (without mineral fertiliser application), based on 

comparisons at equal yield. 

Specific crops and environments did benefit from organic inputs and more SOM in terms of crop 

production. Long-term experiments showed that organic inputs give benefit to crop production in 

wet climates and on sandy soils. In addition, farmers perceived a higher deficiency of SOM on steep 

slopes, sandy soils, wet and very dry climates. The additional yield effect of organic inputs was 

significant for potatoes. More in general, farmers who cultivated larger shares of their land with 

specialized crops (including potatoes, sugar beets, onions and other vegetables) than cereals 

perceived a higher deficiency of SOM. It seems that while the functions of SOM can be replaced 

with technical means to a large extent (e.g. tillage, use of mineral fertilisers), there are limits to this 

technical potential when environmental conditions are more extreme and crops are more 

demanding. 

The farm survey revealed that farmers perceive a trade-off between improved soil quality on the 

one hand and increased pressures from weeds, pests and diseases and financial consequences on the 

other hand when using organic inputs. If policies aim to stimulate the maintenance or increase of 

SOM, more insight is needed into the conditions that regulate the pressures of weeds, pests and 

diseases in response to organic inputs. Financial consequences (at least on the short term) should 

also be accounted for. More importantly however, benefits from SOM for crop production cannot 

be taken for granted. Only in specific situations such benefits will exist. If European policies on 

SOM aim to include benefits for crop production, focus should be on areas with more extreme 

environmental conditions (very dry or wet climates, steep slopes, sandy soils), or cropping systems 

with more specialized or horticultural crops rather than cereals.
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Chapter 1. General introduction 

Soil organic matter (SOM) is known to improve many soil properties such as soil 

structure, water holding capacity and nutrient supply (Johnston et al. 2009). For this 

reason, SOM content is commonly seen as the main indicator for soil fertility (Reeves 

1997). Yet there is surprisingly little scientific consensus on the exact relation between 

SOM and crop production. For such a generally accepted indicator this might seem 

rather strange at first. However, when the many pathways through which SOM affects 

soil productivity are considered, and how these may vary, depending on the prevailing 

environment and cultivation technologies, it becomes more understandable.  

European agriculture benefits from a mostly temperate climate and has achieved 

relatively high yields through intensive use of external inputs and technologies. 

Nonetheless, concerns have been raised that SOM is declining in European soils (Morari 

et al. 2016; Toth et al. 2008). Therefore, proposals have been made to maintain SOM 

above 3.5% SOM (EC 2011a) or increase SOM annually with 4‰ (UNFCCC 2015) to 

protect productive capacity of soils. It is currently unclear whether these concerns are 

justified. The aim of this thesis is to improve understanding of the role of organic inputs 

and SOM for crop production in contemporary arable farming in Europe. Effects of 

SOM on crop productivity are analysed in European soils and climates and with current 

degrees of intensification. In addition, perceptions of European arable farmers on the 

use of organic inputs and their SOM content are assessed using a farm survey.  

In this chapter, I introduce my thesis by providing a short overview on SOM 

composition and the carbon cycle (Section 1.1). This should be considered background 

information and is not intended to be comprehensive. For further details, readers are 

advised to follow the references. Subsequently, an overview is given on the different 

functions SOM has in arable farming and how these relate to environmental conditions 

and farm management (Sections 1.2 to 1.5). This leads us to the research questions and 

outline of this thesis (Sections 1.6 and 1.7). 

1.1. SOM and the carbon cycle 

SOM is composed of plant or animal debris (including faeces) in various stages of 

decomposition to humus and includes the living organisms in soils (Oades 1988). Based 

on physical fractionation, SOM can be divided into a number of fractions based on either 

particle size, density class or aggregate size (Stockmann et al. 2013). Based on chemical 
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fractionation, SOM is often divided into humic acids, fulvic acids, and humin 

(Stevenson 1994; Stockmann et al. 2013).  

In contrast, for modelling purposes SOM is often divided into a number of arbitrary 

pools, based on decomposition rates rather than chemical or physical characteristics 

(Shibu et al. 2006). When these model pools were conceived, they were conceptual in 

nature and could not be directly related to measurable fractions (Zimmermann et al. 

2007). Some authors have tried to relate SOM fractions to SOM pools used for 

modelling purposes (Dungait et al. 2012; Wander 2004; Zimmermann et al. 2007). In 

these cases, often three broad categories are used which can be denoted active, slow or 

passive SOM (for an example see Table 1.1). Besides chemical stabilization, SOM can 

also be physically stabilized through association with silt and clay particles (Feller & 

Beare 1997; Six et al. 2002) or by forming micro and macro aggregates (Tisdall & Oades 

1982).  

Table 1. 1 Mean residence time of SOM pools used in the Century model linked to chemical compounds (based on 

Dungait et al. 2012; Stockmann et al. 2013).  

Mean residence time (yr) Chemical compounds 

Active SOM 1-2 

Living biomass 

Particulate organic matter 

Polysaccharides 

Slow SOM 15-100 

Lignified tissues 

Waxes 

Polyphenols 

Passive SOM 500-5000 

Humic substances 

Clay-OM complexes 

Biochar 

Rice and MacCarthy (1991) have shown that elemental composition of SOM (carbon 

[C], hydrogen [H], oxygen [O], nitrogen [N] and sulphur [S]) is very similar around the 

world, regardless of the origin. This suggests that a relatively narrow range of 

compositions exists for SOM, especially for C content. Conventionally the factor 1.72 

is used between SOM and SOC (Pribyl 2010; Waksman & Stevens 1930). 

Despite the similarity in elemental contents, it is not possible to construct a molecular 

structure that fully describes a humic substance (MacCarthy 2001). In addition, no 

scientific consensus exists on how formation of SOM molecules takes place. Lehmann 

and Kleber (2015) identify four theoretical models on SOM formation: 1) classic 

humification; 2) selective preservation; 3) progressive decomposition and 4) soil 

continuum model. In classic humification, synthesis of decomposed and smaller 

molecules results in large macromolecules resistant to decomposition (Schulten et al. 
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1991; Stevenson 1994). Selective preservation is similar to classic humification, with 

the difference that compounds can be labile or more recalcitrant and that the latter do 

not necessarily have to be large macromolecules (Baldock et al. 1992). In progressive 

decomposition, organic materials are degraded on an energetic downhill trajectory, as 

opposed to the classic humification model (Hedges et al. 2000; Lehmann & Kleber 

2015). Finally, in the soil continuum model, a continuum of organic fragments exists 

that are continuously processed towards smaller molecular sizes while at the same time 

opportunities for incorporation into aggregates increase (Lehmann & Kleber 2015). 

Carbon is an essential component of SOM and part of the global carbon cycle. In the 

global carbon cycle, three large reservoirs of carbon exist: sedimentary carbonates and 

kerogens (together > 60,000,000 Pg C, Falkowski et al. 2000), ocean reservoirs (38,400 

Pg C, Falkowski et al. 2000) and reservoirs of fossil fuels (mean estimation 1,972 Pg C, 

Ciais et al. 2013). Sedimentary carbonates and large parts of the ocean reservoirs are 

inorganic carbon. In addition to these reservoirs, smaller pools of carbon exist, of which 

size estimations differ. Generally, the soil carbon pool (around 1,500 Pg C) is thought 

to be roughly three times larger than the terrestrial vegetation carbon pool (500 Pg C) 

and two times larger than the carbon present in the atmosphere (currently around 829 

Pg C, Ciais et al. 2013; Janzen 2004; Scharlemann et al. 2014).  

Since the start of the industrial revolution (middle of the 18th century) concentrations of 

atmospheric carbon dioxide (CO2) have increased from around 280 ppm to 400 ppm in 

2016 (Dlugokencky & Tans 2017; Eggleton 2013). This increase in CO2 concentration 

is mainly caused by the burning of fossil fuels and to a lesser extent cement production 

and land use change (Le Quéré et al. 2012).  

1.2. SOM content of arable fields 

Between 1765 and 2005, 6.6-6.8 million km2 of forest land has been converted into crop 

land  (Meiyappan & Jain 2012). Conversion from natural vegetation – especially forests 

- to agriculture almost always causes a decrease in SOM content (Poeplau & Don 2015) 

due to non-permanent vegetation, export of biomass and consequently reduced amounts 

of organic inputs. It has been estimated that the global soil carbon pool has decreased 

78 + 12 Pg between 1850 and 1998 due to land use change and soil cultivation (Lal 

2004a). If SOM content could be increased in arable lands, this would be a potential 

global carbon sink (Lal 2004b). Therefore, a number of initiatives exist to promote soil 

carbon sequestration, such as the recent 4/1000 initiative (UNFCCC 2015).  
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Increasing SOM content in arable fields is however strongly limited by environmental 

conditions and inherent SOM dynamics (Ingram & Fernandes 2001). SOM content is a 

balance between rates of inputs (composition) and rates of outputs (decomposition). 

This balance is affected by three environmental factors (soil texture, temperature and 

precipitation) and management (Burke et al. 1989; Haynes & Naidu 1998; Kätterer et 

al. 1998; Krull et al. 2001; Leiros et al. 1999; Miller et al. 2004; Motavalli et al. 1995).  

Which crops a farmer cultivates and the achieved yields determine together the amounts 

of available crop residues that can be returned to the soil. Amounts of crop residues can 

be increased by cultivating green manures within a crop rotation, including more cereals 

or returning crop residues such as straw which otherwise would have been sold. If 

available, a farmer can also import organic inputs from other fields or livestock farms. 

In addition, a number of crop management choices such as drainage or tillage systems 

and crop protection or erosion prevention measures influence the actual SOM content 

of a field.  

On a given arable field, a farmer can thus increase SOM content by: 1) increasing 

organic inputs, ii) reducing tillage or iii) reducing drainage (Verheijen 2005b). The 

effect of reducing tillage on SOM depends on soil texture, with more effects shown on 

clay soil than on sandy soils (Chivenge et al. 2007). Reducing tillage might only increase 

stratification of SOM in the surface soil horizons, while reducing SOM content below, 

with no net change as a result (Baker et al. 2007; Luo et al. 2010).  

1.3. Benefits of SOM for soil fertility 

SOM content is known to improve soil fertility by stabilizing soil structure, increasing 

nutrient availability and improving water holding capacity (Johnston et al. 2009; Watts 

& Dexter 1997). Despite these positive attributes, crop yields do not always increase 

with higher SOM contents (Loveland & Webb 2003). This discrepancy between 

improvements in soil quality and lack in yield response has been explained by De Haan 

(1977) and Janssen (2002). They assert that apparently sometimes factors improved by 

adding organic matter are not the yield limiting ones. 

Crop yield factors can be divided into three categories: water, nutrients and pests and 

diseases (Fig. 1.1, arrows 8 to 10; van Ittersum & Rabbinge 1997). SOM contents affects 

yield factors in a number of ways such as by increasing the cation exchange capacity, 

improving aggregate stability or changing soil microbial mass (Fig. 1.1, arrows 1 to 6). 

Farmers might profit from SOM content if yields are increased (Fig. 1.1, arrow 11) or if 
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improved workability of the soil leads to more flexibility in their working schedule (Fig. 

1.1, arrows 7 and 12). 

 

 

During the last century, different technical replacements have been developed which 

replace some of the functions of SOM (Fig. 1.2, van Noordwijk et al. 1997). Mineral 

fertilisers can complement nutrient supply, irrigation can complement water holding 

capacity and an array of pest control methods have been developed (chemical or 

biological) which can replace or complement these functions of SOM. The degree of 

intensification often determines the extent to which a cropping system relies on SOM or 

on technical replacements to provide the functions mentioned. 

Fig 1. 1: Schematic overview of the different functions of SOM and relations with crop yields and farm level 

benefits. 
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In traditional agricultural systems, SOM content is maintained either by importing 

organic inputs from other fields or by rotating cultivated land (e.g. slash-and-burn 

agriculture or using a ley-arable cropping system). Slash-and-burn agriculture is hereby 

a typical example of a cropping system that primarily relies on SOM for all the 

functions. Hydroponic horticulture is a typical example in which SOM has been 

completely replaced by technical means. Most other cropping systems fall somewhere 

in between (horizontal axis Fig. 1.2). 

 

For nutrient supply, using a combination of both mineral fertilisers and organic inputs 

has been recommended, in what is framed as integrated soil fertility management 

(Richards et al. 2016; Vanlauwe et al. 2010). N in organic inputs is released more slowly 

than N in mineral fertilisers, mainly depending on the C/N ratio (Flavel & Murphy 

2006). Therefore, N in organic inputs must be carefully matched with mineral fertiliser 

N application to make sure that sufficient N is available for crop growth while avoiding 

leaching. One manner in which this can be done is to characterize organic inputs by their 

Nitrogen Fertiliser Replacement Value (NFRV, Jensen 2013). NFRV is defined as the 

amount of mineral fertiliser N saved when using organic input-N (kg/kg), while attaining 

the same crop yield (Herron & Erhart 1965). 

It is often difficult to disentangle the different functions of SOM as they are 

interdependent. Janssen (2002) made a division between effects of SOM through the 

Fig 1. 2: Schematic overview of the existing technical replacements of SOM (van Noordwijk et al. 1997). 
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provision of macro-nutrients (N, P and K) and other effects. Any effect of organic inputs 

or SOM on crop yield not related to macro-nutrients is called “the additional yield effect 

of SOM”(Janssen 2002). De Haan (1977) made an investigation into the additional yield 

effect of farmyard manure (FYM) in two experiments in the Netherlands. After around 

20 years he found a positive additional yield effect for potatoes and sugar beets, but no 

effects on cereals. As his analysis was only based on two experimental sites with FYM, 

it’s not clear to which extent these results are valid for different types of organic inputs 

across different climates and soil types. 

1.4. Threshold values for SOM 

With a decrease in SOM content, most soil properties change along a continuum (Karlen 

et al. 2001). This continuous change is one of the factors which makes it difficult to 

define a critical or desirable SOM content for farmers (Sparling et al. 2003). Even so, 

for the percentage of SOM to be a useful indicator for productive capacity, target values 

need to be specified. Sparling et al. (2003) argue in favour of a minimum or threshold 

soil C value: “below which there would be loss of desirable soil characteristics, 

productive capacity and ecological functions that were not readily restored within an 

acceptable timeframe”. 

A number of authors have tried to specify minimum or threshold values for SOM for 

crop production (also called critical levels), using a range of approaches such as 

information from soil surveys, literature reviews, soil organic carbon modelling, expert 

opinions or a combination of these (Aune & Lal 1997; Körschens et al. 1998; Loveland 

& Webb 2003; Sparling et al. 2003). Proposed threshold values range between 1 to 5.1% 

SOM (0.6 to 3% SOC). None of the authors of these studies asked farmers for their 

views whilst farmers are the group of stakeholders with the longest and most practical 

exposure to SOM of their fields. Farmers would therefore be well suited to asses SOM 

in view of their local context.  

1.5. Management of SOM by farmers 

When managing their farm, farmers need to balance SOM management with different 

objectives such as profit maximization or labour use efficiency (Mandryk 2016). In a 

recent farm survey in Denmark, Case et al. (2017) found low costs an important driver 

for the use of organic inputs. Glenk et al. (2017) however found that organic inputs have 

mixed effects on farm gross margin. In two different areas in Europe (Scotland and 
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Spain), incorporation of straw was found to have a negative effect on farm gross margin, 

cultivation of green manure a small negative or neutral effect and the application of 

animal manure had a positive effect on farm gross margin. This study relied on an 

economic model which only included effects on crop yields and input costs. Farmers 

might have a larger number of drivers and barriers for using certain measures, beyond 

effects on yields and input costs, such as seasonal labour or machinery requirements. 

Glenk et al. (2017) note that farmers’ behaviour may be motivated by factors which are 

not directly economic such as perceived workability of the soil, or soil health for future 

generations. 

Similarly, Van den Putte et al. (2010) argue that farmers often have too few incentives 

to use soil conservation measures because productive capacities of farms are not affected 

by soil degradation in the short term (and thus not included in economic models). Simple 

cost-benefit models do not capture the complexity of farmers’ behaviour and attitudes 

(Lynne et al. 1988). Therefore, Burton (2004) argues that using the theory of planned 

behaviour (Ajzen 1991) might improve our understanding of farmers’ willingness to 

adopt certain management practices. 

According to the theory of planned behaviour, farmers will base their SOM management 

on three main constructs: 1) their attitude, 2) their subjective (social) norm and 3) the 

degree of perceived behavioural control. The attitude refers to the expected impact or 

outcome of SOM management. The subjective norm is the social pressure to manage 

SOM in a certain way. Perceived behaviour control reflects past experiences and 

anticipated impediments and obstacles for SOM management. This theory can be used 

to find drivers and barriers for farmers to use specific measures (such as specific types 

of organic inputs) or to understand farmers’ intention to increase SOM content of their 

soils.  

1.6. Research questions 

My aim in this thesis is to improve understanding of the role of organic inputs and SOM 

for crop production in contemporary arable farming in Europe. The adjective term 

contemporary relates to the current level of agricultural intensification in Europe 

(relatively high yields and intensive use of external inputs and technologies), placed 

more to the right on the horizontal axis of Fig. 1.2. The following research questions are 

addressed: 
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 What is the additional yield effect of organic inputs for arable crops in Europe? 

(Chapter 2) 

 Do mineral fertiliser savings from organic inputs depend on total N supply? 

(Chapter 3) 

 What are currently the main drivers and barriers for arable farmers to use organic 

inputs? (Chapter 4) 

 How are farmers’ beliefs on SOM related to their use of organic inputs? (Chapter 5) 

 Do farmers perceive a deficiency of SOM? (Chapter 6) 

This thesis uses data form field and farm level to answer the research questions. To 

answer the first two research questions, data from long-term experiments were analysed. 

To answer the last three research questions, a large farm survey was conducted in six 

European countries (the Netherlands, Belgium, Austria, Spain, Italy and Germany).  

1.1. Outline of the thesis 

This thesis consists of this introductory chapter, five research chapters and a discussion 

chapter. Each of the research chapters answers a research question. In Fig. 1.3 an 

overview is given of the research questions, outcomes and the relationships between the 

different components of this thesis. 

The effect of SOM on crop production will depend on the measure used to maintain or 

increase SOM content. My research focuses on the use of organic inputs as a measure 

to maintain or increase SOM content. As mentioned, organic inputs can be crop residues, 

green manures, compost or animal manures (also called organic fertilisers, organic 

amendments, organic manures or organic resources). In Chapters 2 to 5, relationships 

between the use of different types of organic inputs and crop production are analysed. 

In Chapters 2, 5 and 6, the relationships between SOM and crop production are analysed 

(Table 1.2). 
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Table 1. 2: Focus on either SOM or on the use of organic inputs in each research chapter 

 Subject of investigation: 

  Organic inputs SOM 

Chapter 2. Additional yield effects of organic inputs X X 

Chapter 3. Mineral fertiliser savings from organic inputs  X  

Chapter 4. Drivers and barriers for organic inputs  X  

Chapter 5. Farmers’ beliefs on SOM (case study in the Netherlands) X X 

Chapter 6. Perceived deficiency of SOM by farmers  X 

I hypothesize that the contribution of SOM to crop production on arable farms depends 

on environmental conditions and crop types cultivated. Where possible, analyses 

therefore include effects of environmental factors (slope, soil texture and climate) and 

types of crops cultivated on the relation between SOM and crop production (Table 1.3).  

Table 1. 3: Overview of environmental factors and land use included as co-variables in each chapter 

  Climate Slope 

Soil 

texture 

Crop 

type 

Chapter 2. Additional yield effects of organic inputs X  X X 

Chapter 3. Mineral fertiliser savings from organic inputs      

Chapter 4. Drivers and barriers for organic inputs  X X X  

Chapter 5. Farmers’ beliefs on SOM (case study in the Netherlands)   X  

Chapter 6. Perceived deficiency of SOM by farmers X X X X 

Chapter 2 differentiates the additional yield effect for climate, soil texture and crop type. 

Chapter 4 differentiates drivers and barriers for organic inputs by agro-ecological zones, 

which are based on climate, slope and soil texture. In a case study in the Netherlands, 

Chapter 5 differentiates farmers’ intention to increase SOM content by soil texture. 

Chapter 6 differentiates perceived deficiency of SOM by farmers by climate, slope, soil 

texture and crop types cultivated. 

In Chapter 2, a meta-analysis was performed to find the additional yield effect of organic 

inputs and SOM. Using data from 20 long-term experiments, yield response curves to 

mineral fertiliser-N were calculated, with and without organic inputs (and with sufficient 

P and K supply). The additional yield effect of organic inputs was calculated by taking 

the difference between the maxima of the yield response curves. The size of the 

additional yield effect was related to clay content, aridity, crop types and SOM content 

of the fields.  

In Chapter 3, yield response curves to mineral fertiliser-N were calculated, with and 

without organic inputs (and with sufficient P and K supply). Using data from eight long-
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term experiments, savings in mineral fertiliser N from organic inputs were compared at 

low and high total N supply. 

In Chapter 4, the theory of planned behaviour was used to analyse drivers and barriers 

for the use of organic inputs (incorporation of straw, cultivation of green manures or 

cover crops, FYM and compost). A farm survey was held among 1180 arable farmers 

in six agro-ecological zones in four European countries (the Netherlands, Belgium, 

Austria and Italy). Drivers and barriers were based on underlying beliefs of farmers and 

classified into nine main categories (soil type & climate, soil quality, crop protection, 

land use, technical, financial, environmental impact, legal and social). Drivers and 

barriers were compared per type of organic input and agro-ecological zone. 

To assess how farmers’ underlying beliefs on SOM are related to their intention to 

increase SOM content and use of organic inputs, a case study was done in the 

Netherlands (Chapter 5). In an online survey, 435 arable farmers were asked questions 

to understand their attitude (perceived benefits), subjective norm (social pressure) and 

perceived behavioural control (anticipated impediments and obstacles) related to 

management of SOM. Farmers’ answers were compared to their intention to increase 

SOM content, reported use of organic inputs and perceived increase in SOM content.  

A risk indicator for SOM deficiency is proposed in Chapter 6 based on environmental 

factors (climate, slope and soil texture) and agricultural land use. The proposed risk 

indicator was tested using a farm survey among 1452 farmers in five European countries 

(Belgium, Germany, Austria, Spain and Italy). Threshold values for SOM content were 

developed by comparing perceived deficiency of SOM to reported SOM contents by 

farmers.  

Chapter 7 summarizes and integrates the various chapters. First, an answer is given to 

each research question. Then, the influence of environmental factors and crop types on 

the relation between SOM and crop production on arable farms in Europe is discussed. 

Following, attention is given to synergies and trade-offs with other ecosystems services 

and limitations of the study. Finally, implications of the findings are presented.  
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Abstract  

Organic inputs have a positive effect on the soil organic matter balance. They are 

therefore an important asset for soil fertility and crop growth. This study quantifies the 

additional yield effect due to organic inputs for arable crops in Europe when macro-

nutrients are not a limiting factor.  

A meta-analysis was performed using data from 20 long-term experiments in Europe. 

Maxima of yield response curves to mineral fertiliser nitrogen were compared, with and 

without organic inputs, under abundant P and K supply.  

We were surprised to find that, across all experiments, the mean additional yield effect 

of organic inputs was not significant (+ 1.4 percent + 1.6 - 95 % Confidence Interval). 

In specific cases however, especially for root and tuber crops, spring sown cereals, or 

for very sandy soils or wet climates, organic inputs did increase attainable yields. A 

significant correlation was found between increase in attainable yields and increase in 

soil organic matter content. 

Aggregating data from 20 long-term experiments in Europe, this study shows that 

organic inputs and/or soil organic matter do not necessarily increase yields, given 

sufficient nutrients are supplied by mineral fertilisers. Results show the relevance of 

some environmental factors for additional yield effect of organic inputs, but no simple 

relation between organic inputs and crop growth. 

Keywords: soil fertility, soil organic matter, organic inputs, crop yield, food security, 

soil carbon sequestration 

Abbreviations 

C carbon 

K potassium  

N nitrogen 

P phosphorus 

SOC soil organic carbon 

SOM soil organic matter 
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2.1. Introduction  

Soil organic matter (SOM) is often considered the most important indicator of soil 

fertility (Johnston et al. 2009; Reeves 1997). It contributes to each of fertility’s three 

dimensions: the physical (structure, aeration, water retention), the biological (biomass, 

biodiversity, nutrient mineralisation, disease suppression) and the chemical (nutrient 

supply) dimension. On this basis, maintaining SOM is an important strategy to maintain 

crop productivity (Lal 2004a). SOM contains about 50% organic carbon (Pribyl 2010), 

making it’s increase a potential means to mitigate greenhouse gas emissions (Smith 

2016). Because of this positive contribution to climate change mitigation and food 

security, a voluntary action plan has been proposed at COP21 to increase SOM in all 

soils, called “the 4/1000 initiative: Soils for Food security and Climate”(UNFCCC 

2015). 

In some cases however, yield effects of SOM seem smaller than expected. Reviewing 

the literature, Loveland and Webb (2003) found it difficult to establish a critical level of 

SOM for temperate regions. They also did not find evidence for an adverse effect on 

crop yields where SOM contents in the soils of England and Wales were reduced. 

Similarly, comparing potential yields of winter wheat and spring barley across a large 

range of SOM contents in Denmark, Oelofse et al. (2015) found no significant effect on 

yields of winter wheat and only a small effect on yields of spring barley.  

The mentioned studies compared the effect of actual SOM content, they did not assess 

specific management practices used to increase SOM. In arable soils, SOM can be 

increased by increasing organic inputs or reducing organic outputs (Freibauer et al. 

2004). Increasing organic inputs can be done by increasing returned biomass (roots, 

litter) via higher yields or adding additional organic inputs such as compost, animal 

manure or crop residues. Decreasing organic outputs can be done by changing the 

moisture content of the soil or by using reduced or no tillage, although the effect of the 

latter two remain disputed (Govaerts∗ et al. 2009). Actual increase in SOM depends on 

a number of factors, such as the current amount of SOM, type of organic input, and 

environmental factors such as temperature, soil texture, and humidity (Smith et al. 

1997).  

Studies assessing the effects of organic inputs on crop yields show mixed results. A 

recent meta-analysis of 32 long-term experiments in China compared the combined use 

of organic inputs and fertilizers with either only organic inputs or only fertilisers (Wei 

et al. 2016). The average yield increase of combining organics and fertilizers on wheat, 
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maize and rice was found to be 8% compared to using only fertilizers. In a different case 

however, Dawe et al. (2003) found no improvement in grain yield trends with 

application of either manure or straw in intensive rice systems.  

How do these contrasting insights compare? Although previous research has found a 

positive effect of either organic inputs or SOM on crop yields (Monreal et al. 1997; Wei 

et al. 2016), it has been argued that in these studies the effect of nutrients is seldom 

separated from other effects (Oelofse et al. 2015). In fact, Wei et al. (2016) mention this 

as the largest limitation of their study. 

To circumvent this limitation, we have assessed the effect of organic inputs in a system 

without macro-nutrient limitation. In such a system, any effect of organic inputs on yield 

can be attributed to improved soil structure or soil life (the other two components of soil 

fertility). In our study, effects of organic inputs (also called organic fertilisers, organic 

manures or organic inputs) on attainable crop yields were examined in 20 long term 

experiments across a variety of soils and climates in Europe. To exclude the effects of 

macro-nutrients, the yield effect was analysed under abundant phosphorus (P) and 

potassium (K) supply and varying rates of nitrogen (N). Using this approach, we answer 

the following research question: Do organic inputs increase attainable yields? 

Previously, any effect of organic inputs or SOM on crop yield which are not related to 

macro-nutrients has been called the “additional yield effect”(Janssen 2002). Our 

objective is: to find the additional yield effect of organic inputs, beyond the nutrients 

supplied. 

2.2. Materials and methods 

2.2.1. Literature search 

To find data on long term experiments in Europe, two databases with metadata were 

used: the EuroSOMNET metadata on 110 long-term experiments and a database 

compiled in a recent European research project called CATCH-C, containing 377 long-

term experiments. Promising experiments were selected and publications were searched 

using online search engines (Google scholar, ISI Web of knowledge). When more 

publications were available for one treatment, only yield data from the most recent 

publication was included.  

The following selection criteria were used to select experiments: (1) at least 4 increasing 

levels of N applications without organic inputs; (2) at least 4 increasing N application 
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levels with organic inputs; (3) P and K applied in ample amounts on all fields; (4) at 

least 5 years of yield data; (5) if crops are cultivated in rotation, yield data available for 

at least 2 rotations; (6) yield data reported for individual crop types (mean yield values 

averaged over rotation were excluded). 

Data from 20 experiments was found adhering to these selection criteria (Fig. 2.1 and 

Table 2.1). Following, 107 distinct data sets were created, each representing a single 

combination of experiment location, crop type and organic input type, covering a 

number of years of yield observations. All data were processed in R 3.0.0. 

 

 

 

Fig 2. 1: Overview of locations of long term experiments included in the meta-analysis (N=20). 
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2.2.2. Calculating additional yield effect of organic inputs for each set of 

data  

Crop yields are known to steeply increase at lower levels of N application while 

levelling off or slightly decrease at high levels of N application. When yields are known 

at different levels of N application, response curves can be fitted (Cerrato & Blackmer 

1990). For each set of data in our meta-analysis, two yield response curves were drawn: 

one with and one without organic inputs (Fig. 2.2a). To fit the curves, the following 

equation was used (George 1984):  

𝑦𝑖𝑒𝑙𝑑 = 𝑎 + 𝐵 ∗ 0.99𝑁 + 𝑐 ∗ 𝑁 + 𝜀                                                                                                               (2.1)  

In Equation 2.1, N is nitrogen added as mineral fertiliser (kg N/ha), a, b and c are 

parameters to be fitted and 𝝴 is the error term. The maximum of each curve was 

calculated by setting the first-order derivative equal to zero and inserting the optimal N 

rate in Equation 2.1. As P and K were applied in ample amounts, at the maximum of 

each curve N, P and K (the macro-nutrients necessary for crop growth) are not a limiting 

factor for crop yields. Accordingly, the maximum of each curve was regarded as the 

attainable yield for local environmental conditions and management. The additional 

yield effect of organic inputs was calculated by taking the difference between the 

attainable yield with and without organic inputs (Fig. 2.2b). 

  

Fig 2. 2: Example of yield response curves to mineral fertiliser-N under sufficient P and K supply with and without 

organic inputs. a) Black line is the response curve without organic inputs. Green line is the response curve with 

organic inputs. Squares indicate the maximum of each curve. The vertical difference between the two maxima is 

due to the additional yield effect of organic inputs. b) Green circle is the relative difference between the two 

maxima. Green line indicates the 95% confidence interval due to the goodness of fit of the two curves. Yield data 

is from maize grown in Novi Sad between 1996 and 2003, with and without farmyard manure. 
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For each data set, response curves might fit the data points better or worse, creating an 

error in the estimation of the additional yield effect. To correct for the goodness of fit of 

each curve, the delta method (Oehlert 1992) was used, giving a variance for each data 

set. The inverse of the variance was used as a weighting factor for the calculated 

additional yield effect of each data set. To enable comparisons among crops, the relative 

difference was chosen as the response variable in the meta-analysis, expressing the 

additional yield effect of organic inputs as percentage of attainable yield with only 

mineral fertiliser. 

Supplementary Fig. 2.1 to 2.4 show the individual response curves, while 

Supplementary Fig.2.5 gives the additional yield effect and related 95% confidence 

interval for each data set (pages 30 to 35). 

2.2.3. Removing of outliers  

Sizes of the additional yield effects were checked for outliers by assessing the point 

cloud across different variables and constructing a funnel plot. If a data point was located 

outside the point cloud and P and K could not be excluded as yield limiting factors in 

the treatment without organic inputs, the data was removed from the meta-analysis (this 

was only necessary in one case). 

2.2.4. Assessing influence of co-variates 

To assess the influence of environmental conditions, crop characteristics or type of 

organic input, a number of factors and co-variables were identified. Two grouping 

factors were used: type of organic input and crop type. In some cases, a combination of 

organic inputs was used, for example straw and slurry, where one of year straw was 

applied and the next year slurry. Each combination of organic inputs was included as a 

separate category.  

In addition, for each dataset the following information was obtained from the literature: 

clay content, percentage of SOM content at the beginning of each experiment, amount 

of carbon (C) in organic input, SOM change during each experiment and duration of 

each experiment. When numbers were given in percentage of soil organic carbon (SOC), 

they were multiplied with the conventional factor 1.724 ((Pribyl 2010; Waksman & 

Stevens 1930). Duration of each experiment was multiplied with yearly C applied to 

give the total C added over the years. Geographical coordinates of each experiment were 

used to find the CGIAR-CSI Global Aridity Index (Trabucco & Zomer 2009).  
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To assess the effect of the grouping factors and co-variates, a mixed effects model with 

a hierarchical structure (Konstantopoulos 2011) was used. Mixed effect models allow 

for incorporation of random effects, which is important when observations are not from 

a stratified or random sampling design as is typical in meta-analyses (Gurevitch & 

Hedges 1999). The following two random effects were incorporated in the analysis: (1) 

Experiment: As a single experiment may produce multiple data sets, experiment was 

used as a random factor. (2) Treatment without organic inputs: Within a single 

experiment, multiple treatments with organic inputs can exist (for example one 

treatment with farmyard manure and one with crop residues) which are all compared to 

the same treatment without organic inputs (with only mineral fertiliser). 

Group means for crop type and type of organic input were estimated with R-package 

lsmeans (Lenth 2015). To find the marginal effect of each co-variate on the additional 

yield effect of organic inputs, a separate model was made for each co-variate using the 

function lme (linear mixed-effects model) of package nlme (Pinheiro et al. 2015). 

Within these models, log-likelihood was maximized and yield effects were weighted by 

the inverse of the variance. Interaction between crop type and co-variate were checked 

on significance. Only SOM change had a significant interaction with crop type. 

2.2.5. Model selection  

To assess which combination of co-variates and factors could best explain the difference 

in the additional yield effect of organic inputs, multi-model dredging was performed 

using the dredge function in the R-package MuMin (Barton 2015). This function 

constructs a list of models by combining the given co-variates and then gives a ranking 

according to the corrected Akaike Information Criteria (AICc), an indicator commonly 

used to assess model fit (Bozdogan 1987). 

Two model selections were run. In the first model selection, only data from experiments 

was included for which information on both percentage of clay and SOM content was 

available (15 out of 20). For the second model selection, only experiments were included 

for which data on SOM change was available (8 out of 20). 

2.2.6. Sensitivity analysis  

For some sets of data, maximum yield was not reached within the N applications of the 

experimental set-up. These maxima had to be estimated beyond the experimental set-

up, resulting in a higher uncertainty. When analysing the data, these points could be 
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either included or excluded, with each choice having its own advantage. Excluding these 

data points gives a dataset with more certainty on each individual estimate, but including 

them increases the size of the total dataset. Because a greater uncertainty results in a 

larger variance, meaning a smaller weight is given to a yield effect which is calculated 

with a maximum yield outside the experimental setup, we chose to include these data 

sets in the meta-analysis. To see the effect of including or excluding the maxima outside 

the experimental set-up, a sensitivity analysis was done on the main results. 

2.3. Results 

The mean additional yield effect of organic inputs across all 107 data sets is not 

significant in this meta-analysis (1.4 percent + 1.6 - 95% CI). When excluding maxima 

estimated outside the experimental set-up, the mean yield effect is slightly higher: 1.9 

percent + 2.0 (95% CI.), yet still not significant.  

2.3.1. Additional yield effect across type of organic inputs, crop types and 

time of sowing 

Comparing different types of organic inputs, the yield effect is roughly similar, but only 

the mean additional yield effect of farmyard manure is significantly positive (2.2 percent 

+ 1.8 - 95% CI, Fig. 2.3a). Yet we did find effects on specific crops. For potatoes the 

mean yield increase is 7.0 percent + 4.9 (95% CI). In addition, our results show that 

maize, a crop with a less developed root system than wheat or barley, also benefits 

significantly from organic inputs (mean yield effect of 4.0 percent + 3.7 - 95% CI, Fig. 

2.3b).  

Across the 20 experiments, cereals sown in winter do not benefit form organic inputs in 

our meta-analysis (Fig. 2.3c). On the other hand, spring sown cereals do benefit (3.4 

percent + 2.6 - 95% CI). Spring sown crops have a shorter time frame to develop their 

root system which is needed to acquire sufficient nutrients and water (Johnston et al. 

2009). Organic inputs, by improving soil structure, might facilitate this process, 

resulting in larger yields. 
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Fig 2. 3 Influence of type of organic input (a), crop type (b) and time of sowing (c) on the additional yield effect 

of organic inputs. Circles are mean additional yield effects, lines the 95% confidence interval. Numbers in brackets 

are the number of data sets in each group. Only groups with at least 8 data sets are shown. Green residues are 

either green manures or beet leaves. Groups with less than 8 data sets and results of the sensitivity analysis are 

shown in Supplementary Fig. 2.6. 

2.3.2. Influence of soil, climate and amount of C added 

Crops grown on more sandy soils show a positive yield effect of organic inputs, while 

more clayey soils show neutral or negative yield effects (Fig. 2.4a). Relatively sandy 

soils normally have a poorer soil structure, which can be improved by adding organic 

inputs. Soils with low SOM content would also be expected to benefit more from organic 

inputs, but this is not apparent in our results (Fig. 2.4b). 

For each experiment, climate was expressed in terms of aridity using the CGIAR-CSI 

Global Aridity Index (Trabucco & Zomer 2009). Lower values indicate lower 

temperatures with more rainfall while higher numbers indicate higher temperatures with 
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less rainfall. In our study, crops grown in wetter climates benefit more from organic 

inputs (Fig. 2.4c).  

 

 

 

Experiments differ in the type and the amounts of organic inputs applied annually, and 

in their duration. After converting all organic inputs to total C (tonnes C/ha, cumulated 

over the years), no significant relation was found between total C input and the yield 

effect (Fig. 2.4d). 

2.3.3. Relative increase in SOM 

For a subset of experiments, percentage increase in SOM during the experiment could 

be calculated. When running a model selection, combining the relative increase in SOM 

content with crop type gives the largest explanation of variance in the additional yield 

effect of organic inputs (Supplementary Tables 2.2 and 2.3, pages 37-38). The 

magnitude of the effect is shown in Fig. 2.5a. 

Fig 2. 4: Influence of soil texture (a), SOM content at the start of the experiment (b) climate (c) and amount of C 

applied over the years (d) on the additional yield effect of organic inputs. Clay content is expressed as the 

percentage of particles < 2µm in the soil. Climate is expressed as the CGIAR-CSI Global Aridity Index. Larger 

points have a smaller variance and therefore a higher weight. P (Δ intercepts) is the probability for the intercepts 

to be equal. P (slope) is the probability the common slope is equal to zero. 
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Fig 2. 5 Relation between increase in SOM and yield increase. a) Increase in yield related to increase in SOM. x-

axis: increase in SOM between the treatment with only mineral fertiliser and the treatment with organic inputs 

added. y-axis: difference in maximum yield between the treatment with only mineral fertiliser and the treatment 

with organic inputs added. b) axes vice versa from a. Larger points have a smaller variance and therefore a higher 

weight. P (Δ intercepts) is the probability for the intercepts to be equal. P (Δ slope) is the probability for the slopes 

to be equal. 

2.4. Discussion 

When discussing possible benefits of organic inputs and SOM beyond nutrients 

supplied, it has been suggested that root or tuber crops might benefit more than cereals 

(De Haan 1977; Verheijen 2005a). The reason being that root and tuber crops depend 

more on soil structure for their successful cultivation and harvesting. Our study confirms 

this suggestion with a mean yield increase for potatoes of 7 percent.  

Crops grown in both very dry or very wet conditions could potentially benefit from 

organic inputs as SOM increases water holding capacity in dry climates (Díaz-Zorita et 

al. 1999) and prevents soil compaction in wet climates (Soane 1990). In our study, crops 

grown in wetter climates do benefit more from organic inputs. As expected for a meta-

analysis over Europe, most of our experiments (16) however have a humid climate 

(index > 0.65), with three experiments having a dry sub-humid climate (index 0.5-0.65), 

one a semi-arid climate (0.2-0.5) and none arid or hyper arid climates (index <0.2).  As 

very dry climate were not included, this could be the reason why we could not confirm 

whether organic inputs have additional yield effects in dry climates.  

Very weathered soils, mostly occurring in tropical regions, were also not included in our 

meta-analysis. Weathered soils often have very low cation exchange capacity (Palm et 

al. 1997) and lack a number of micro nutrients necessary for crop growth (Gupta et al. 

2008). On weathered soils therefore, yield effect of organic inputs could be larger when 

related to treatments with only N, P and K supplied. A recent global database suggests 
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experimental set-ups as used in our meta-analysis do not exist outside temperate regions 

(ISCN 2015), establishment of such long term experiments would therefore be 

recommended.  

Before analysis, percentage of SOM at the start of each experiment was expected to be 

the largest influencing factor. Yet, no significant difference was found comparing 

experiments with different SOM contents (Fig. 2.4b). There is however uncertainty 

associated with comparing SOM contents across 20 experiments. When available, 

measurements of the upper soil layer or plough layer (often 24-30 cm) were included in 

the analysis, yet depth of measurement was not always explicitly stated. In addition, 

measurements of SOM are known to deviate, depending on methods used (Hoogsteen 

et al. 2015). Even though some error in SOM measurements might be involved, our 

finding does correspond well with a recent study in Denmark comparing yields of winter 

wheat across a large range of SOM contents (Oelofse et al. 2015), with similarly no 

effects found.  

Fig. 2.5a seems to indicate that more so than the total SOM at start (Fig. 2.4b) or the 

total C added (Fig. 2.4d), it is the percentage of fresh SOM in the soil which makes a 

difference. If so, this finding corresponds well with suggestions of (Loveland & Webb 

2003) that the proportions of fresh SOM is more important than the total pool of SOM. 

On the other hand, higher yields also have an effect on SOM by returning more crop, 

root and stubble residues (Glendining & Powlson 1995). One could therefore question 

if  larger yields in our analysis are the result of the increased SOM content (Fig.2.5a), 

or vice versa (Fig. 2.5b)? In practice, both possibilities might be true and – if so – can 

be mutually reinforcing: in some cases more SOM gives somewhat higher yields, which 

adds more organic matter to the soil which in turn gives higher yields, which then again 

gives more SOM.  

2.4.1. Limitations of study and broader contextualization 

This meta-analysis did not find a significant mean additional yield effect of organic 

inputs. When assessing the use of organic inputs on a farm or regional level however, 

other aspects might also be relevant. Organic inputs can promote the buffering function 

of soil in years with less favourable conditions, thereby reducing yield variability (Pan 

et al. 2009). In our experiments, variability in attainable yields was not lessened with 

organic inputs (data not shown), but this could be tested further under more extreme 

climates. 



Additional yield effect of organic inputs 

 

27 

 

Using organic inputs can also have environmental effects. Soils with higher SOM 

contents for example might create a more flourishing habitat for soil biota (Chang et al. 

2007). Maintaining SOM contents can therefore contribute to biodiversity conservation. 

Combining organic inputs with mineral fertilisers can decrease the demand for mineral 

fertilisers which can have positive effects such as a decrease in demand for fossil fuels 

(Wood & Cowie 2004). In our meta-analysis, the savings of mineral fertiliser N with 

organic inputs are substantial (Supplementary Fig. 2.7 and Table 2.4, page 39). The 

savings in mineral fertiliser N however do not outweigh the total N in the organic inputs 

and the occasionally added mineral fertiliser N for growth of green manures or 

decomposition of straw. Consequently, organic inputs might affect the extend of nitrate 

leaching, nitrous oxide or ammonia emissions. For nitrate leaching, both positive 

(Leclerc et al. 1995) and negative cases (Basso & Ritchie 2005; Oelofse et al. 2015) are 

known. It has been suggested that the number of years of application is crucial and that 

over the long-term, if nutrients are applied attuned to crop requirements, organic inputs 

have no significant effect on nitrate leaching (Maeda et al. 2003). 

Even though the mean additional yield effect across all data sets was not significant, a 

large variance exists between data sets (additional yield effects ranged between -10 to 

+18%; supplement Fig. 2.5). Using grouping factors (crop type, type of organic input) 

and co-variates (clay content, aridity), some variance was explained, but large parts 

remained unknown. In some individual cases, organic inputs did increase attainable 

yield significantly. In others, organic inputs might have had little effects on soil 

structure, either because soil structure was already very good or because it was beyond 

simple repair. These type of nuances can be tackled in-depth in single experiments, but 

are difficult to disentangle when aggregating larger data sets. Combining meta-analysis 

with more in-depth studies is therefore vital for more thorough understanding of 

processes and mechanisms involved. 

2.5. Conclusions 

Using organic inputs to increase SOM is often seen as a win-win situation for food 

security and climate change mitigation, such as in the recently proposed  “4/1000 

initiative” at COP21 (UNFCCC 2015). Using organic inputs to sequester carbon might 

be a viable option to buy time for developing technologies for reducing industrial 

emissions (IGBP 1998), this meta-analysis however shows that benefits for crop yields 

cannot be assumed to follow directly. On sandy soils, in wet climates and for certain 

crops (some root or tuber crops and spring sown cereals) organic inputs can increase 
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yields beyond the nutrients they supply. In those cases, increases in attainable yields 

vary mostly between 3 to 7%. In the majority of cases however, supplying only mineral 

fertiliser gives similar yields. 
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Response curves of root and tuber crops 
 

 

Supplementary Fig. 2. 1: Yield response curves of root and tuber crops to mineral fertiliser with and without 

organic inputs. X-axes are mineral fertiliser applied in kg N/ha. Y-axes are crop yield in tonnes/ha. Colours 

indicate types of organic input. Squares indicate the maximum of each curve. Shaded areas lie outside the 

experimental set-up. 
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Response curves of spring sown cereals 
 

  

Supplementary Fig. 2. 2: Yield response curves of spring sown cereals to mineral fertiliser with and without 

organic inputs. X-axes are mineral fertiliser applied in kg N/ha. Y-axes are crop yield in tonnes/ha. Colours 

indicate types of organic input. Squares indicate the maximum of each curve. Shaded areas lie outside the 

experimental set-up. 
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Response curves of winter sown cereals 
 

  

Supplementary Fig. 2. 3: Yield response curves of winter sown cereals to mineral fertiliser with and without 

organic inputs. X-axes are mineral fertiliser applied in kg N/ha. Y-axes are crop yield in tonnes/ha. Colours 

indicate types of organic input. Squares indicate the maximum of each curve. Shaded areas lie outside the 

experimental set-up. 
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Supplementary Fig. 2. 4: Yield response curves of winter sown cereals to mineral fertiliser with and without 

organic inputs. X-axes are mineral fertiliser applied in kg N/ha. Y-axes are crop yield in tonnes/ha. Colours 

indicate types of organic input. Squares indicate the maximum of each curve. Shaded areas lie outside the 

experimental set-up. 
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Additional yield effect for all data sets  

 

  

Supplementary Fig. 2. 5: Additional yield effect of organic inputs across experiments, crops and types of organic 

input.  Lines indicate 95% confidence interval.* indicates maximum yield was estimated outside the experimental 

set-up. Numbers of data sets are explained in Supplementary Table 2.1  
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Supplementary Table 2. 1: Explanation of dataset numbers of Supplementary Fig. 2.4. m = maize; p= potatoes; s 

= sugar beet; sb = spring barley; wb =winter barley; wr = winter rye; ww = winter wheat; sw = spring wheat. 

FYM = farm yard manure, GM = green manure, BL = beat leaves. 

1 Grabow: p with FYM 55 Puch: s with straw & GM & BL 

2 Methau: p with straw 56 Bologna 1: ww with slurry 

3 Muncheberg: sb with FYM 57 Vienna: ww with straw & GM & BL 

4 Vienna: s with straw & GM & BL 58 Ivanovice: ww with FYM 

5 Muncheberg: m with FYM 59 Methau: ww with straw 

6 Sproda: s with FYM 60 Speyer: wb with straw & GM & BL 

7 Grabow: sb with FYM 61 Prah Ruzyne: ww with FYM 

8 Tartu: p with FYM 62 Muencheberg: wr with FYM 

9 Bad Lauchstadt: p with FYM 63 Vienna: ww with slurry 

10 Grabow: m with FYM 64 Sproda: s with straw 

11 Puch: m with straw & GM & slurry 65 Prah Ruzyne: s with straw & GM & BL 

12 Vienna: wb with straw & GM & BL 66 Limburgerhof: m with straw & GM & slurry 

13 Bad Lauchstadt: p with straw 67 Limburgerhof: m with straw & GM 

14 Muencheberg: m with straw 68 Lukavec: wb with straw & GM 

15 Muencheberg: sb with straw 69 Novi Sad: ww with FYM 

16 Puch: m with slurry 70 Speyer: s with straw & GM & BL 

17 Lukavec: p with FYM 71 Iasi: s with straw & BL 

18 Tartu: p with straw & BL 72 Speyer: ww with FYM 

19 Iasi: s with FYM 73 Bad Lauchstadt: s with straw 

20 Vienna: s with slurry 74 Ivanovice: ww with straw & BL 

21 Puch: s with straw & BL 75 Muencheberg: ww with FYM 

22 Puch: m with straw & slurry 76 Keszthely: wb with straw & GM 

23 Tartu: sb with straw & BL 77 Rau: ww with FYM 

24 Rau: s with FYM 78 Novi Sad: s with straw & BL & slurry 

25 Vienna: wb with slurry 79 Limburgerhof: ww with straw & GM & slurry 

26 Oldenburg: s with straw & GM & BL 80 Sproda: ww with FYM 

27 Keszthely: wb with FYM 81 Methau: s with straw 

28 Vienna: wb with FYM 82 Muencheberg: s with straw 

29 Grabow: ww with FYM 83 Madrid: ww with straw 

30 Rau: s with straw & GM & BL 84 Sproda: sb with FYM 

31 Oldenburg: wb with straw & GM & BL 85 Bad Lauchstadt: s with GM 

32 Methau: sb with straw 86 Rau: ww with straw & GM & BL 

33 Oldenburg: s with slurry 87 Novi Sad: ww with straw & BL & slurry 

34 Muencheberg: s with FYM 88 Madrid: sb with straw 

35 Tartu: sw with FYM 89 Novi Sad: ww with straw & BL 

36 Novi Sad: m with straw & BL & slurry 90 Prah Ruzyne: ww with straw & GM & BL 

37 Vienna: ww with FYM 91 Bologna 1: m with straw 

38 Novi Sad: m with straw & BL 92 Muencheberg: p with FYM 

39 Muencheberg: ww with straw 93 Speyer: ww with straw & GM & BL 

40 Iasi: m with FYM 94 Sproda: ww with straw 

41 Lukavec: p with straw & GM 95 Madrid: sb with FYM 

42 Bologna 1: ww with FYM 96 Ivanovice: wb with FYM 

43 Oldenburg: ww with straw & GM & BL 97 Lukavec: wb with FYM 

44 Novi Sad: m with FYM 98 Muencheberg: p with straw 

45 Puch: m with straw 99 Sproda: sb with straw 

46 Iasi: m with straw & BL 100 Prah Ruzyne: wb with FYM 

47 Oldenburg: wb with slurry 101 Tartu: sw with straw & BL 

48 Limburgerhof: ww with straw & GM 102 Rau: wb with straw & GM & BL 

49 Oldenburg: ww with slurry 103 Rau: wb with FYM 

50 Bologna 1: ww with straw 104 Ivanovice: wb with straw & BL 

51 Bad Lauchstadt: p with GM 105 Tartu: sb with FYM 

52 Novi Sad: s with straw & BL 106 Madrid: ww with FYM 

53 Muencheberg: wr with straw 107 Prah Ruzyne: wb with straw & GM & BL 

54 Speyer: wb with FYM   
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Sensitivity analysis 

 

  

Supplementary Fig. 2. 6: Results of sensitivity analysis for including or excluding estimations of maximum yield 

outside the experimental set-up. Circles are mean effect size, lines show the 95% confidence interval. The number 

in brackets is the number of data sets in each group. GM = green manure or cover crop. 
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Savings of mineral fertilisers when using organic inputs (at equal yields) 

 

 

 

Supplementary Table 2.4: Comparing mineral fertiliser N needed to achieve equal yields with and without organic 

inputs (as illustrated in supplementary Fig. 6). Mineral fertiliser N requirements are compared at  the highest 

yield which is achieved both with and without organic inputs. Analysis and results only for data sets with N 

contents of organic inputs measured/reported (38 data sets across 8 experiments). 

Organic input 

# 
data 
sets 

Mean fertiliser 
N savings with 
organic inputs 
(kg N/ha/year) 

Mean mineral 
fertiliser N 

added to straw 
or green 
manures 

(kg N/ha/year) 

Mean total N 
in organic 

inputs 
(kg N/ha/year) 

Δ mineral 
fertiliser N + 

added N + 
total N organic 

inputs  
(kg N/ha/year) 

FYM 17 -76.92 0.00 120.22 43.30 

Slurry 1 -109.25 0.00 189.68 80.42 

Straw 15 -7.42 0.00 22.18 14.76 

Straw & beet 

leaves 
2 -81.16 16.67 79.42 14.93 

Straw & GM 

& beet leaves 
3 -64.44 16.67 49.30 1.53 

Supplementary Fig. 2.7: Illustration of difference in mineral fertiliser N application rate needed to reach equal 

crop yield with and without organic inputs. Squares indicate the maximum of each curve. The blue arrow shows 

the difference in mineral fertiliser N needed to achieve a similar level of high yield (N savings). Data is from 

maize grown in Novi Sad between 1996 and 2003, with and without farmyard manure. 
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Abstract 

Nitrogen (N) supply from organic inputs (such as farmyard manure (FYM), slurries or 

crop residues) to crops is commonly expressed in the input’s Nitrogen Fertiliser 

Replacement Value (NFRV). Values for NFRV can be determined by comparison of crop 

yield or N uptake in amended plots against mineral fertiliser-only plots. Most 

commonly,  NFRV is defined as the amount of mineral fertiliser N saved when using 

organic input-N (kg/kg), while attaining the same crop yield. Factors known to affect 

NFRV are crop type cultivated, soil type, manuring history and method or time of 

application. 

We investigated whether long-term NFRV depends on N application rates. Using data 

from eight long term experiments in Europe, values of NFRV at low total N supply were 

compared with values of NFRV at high total N supply. Our findings show that FYM has 

a significant higher NFRV value at high total N supply than at low total N supply (1.12 

vs 0.53, p = 0.04). For the other input types investigated, NFRV was also higher at high 

total N supply than at low total N supply, but sample sizes were too small or variations 

too large to find significant differences. 

Farmers in Europe usually operate at high rates of total N applied. If fertiliser 

supplements are based on NFRV of the manure estimated at low total N supply, N 

fertiliser requirements might be overestimated. This might lead to overuse of N, lower 

N use efficiency and larger losses of N to the environment.  

Keywords: Nitrogen Fertiliser Replacement Value, Mineral Fertiliser Equivalent, 

organic inputs, mineral fertiliser, Nitrogen, soil fertility, crop yield 

 

Abbreviations 

DM dry matter weight 

FM fresh matter weight 

FYM farmyard manure 

K potassium 

LS least squares 

N nitrogen 
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NFRV Nitrogen Fertiliser Replacement Value 

NFRVhigh NFRV at high total N supply 

NFRVlow NFRV at low total N supply 

Nsaved high mineral fertiliser N saved from organic inputs at high total N supply 

Nsaved low mineral fertiliser N saved from organic inputs at low total N supply 

N yield N content crop yield 

P phosphorus 

3.1   Introduction 

Efficient use of nitrogen (N) requires careful matching of N supply to crop demand. 

Often application of mineral fertilisers is combined with application of organic inputs 

such as farmyard manure (FYM), slurries, and crop residues (also called organic 

manures, organic fertilisers or organic inputs). N in organic inputs generally has a lower 

availability to crops than N in mineral fertilisers, mainly depending on the C:N ratio of 

the input (Flavel & Murphy 2006). Therefore, N in organic inputs must be carefully 

matched with mineral fertiliser N application to avoid leaching while making sure 

sufficient N is available for crop growth. This requires the characterization of the 

organic inputs by their Nitrogen Fertiliser Replacement Value (NFRV), also called the 

Mineral Fertiliser Equivalent (Jensen 2013). 

NFRV can be based on the amount of mineral fertiliser N which is substituted by an 

amount of organic input-N (kg/kg) while attaining the same crop yield (Herron & Erhart 

1965; Schilling 1987; Schröder 2005b). Crop yields can be expressed as fresh matter 

weights (FM), dry matter weights (DM) or N contents (N yields, Jensen 2013). These 

are all valid procedures, with the difference that values of NFRV based on N yields are 

often slightly lower than those based on DM or FM weights (Jensen 2013). N in organic 

inputs is always accompanied by other nutrients, such as phosphorus (P), potassium (K) 

or sulphur (S) which also affect crop yields. It is therefore important to exclude these 

effects when estimating values of NFRV based on yields (either DM, FM or N yields, 

Schröder 2005b)  

Lory et al. (1995) have suggested to calculate NFRV using economic N rates (mineral 

fertiliser N application rates at which marginal crop yields offset marginal fertiliser 

costs) with and without organic inputs. Yields at economic N rates with and without 
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organic inputs might however differ, which hampers comparison at equal yield levels. 

In addition, economic N rates are dependent on prices of fertilisers and harvested 

products, which makes estimations less robust through time and space.  

Another manner to determine NFRV of organic inputs is by using isotope dilution 

techniques. Using 15N labelled materials, the fate of N from either organic inputs or 

mineral fertilisers is measured among plant and soil fractions and compared (Diekmann 

et al. 1993; Janzen et al. 1990). Additional methods to calculate NFRV (such as the 

analysis of near infrared reflectance spectra of organic inputs) have been proposed but 

need further development (Delin et al. 2012). 

Values for NFRV differ when estimated in the first year of application of organic inputs 

(short-term NFRV) or after repeated applications and several years (long-term NFRV, 

Gutser et al. 2005; Schröder 2005a), with higher values found for long-term NFRV. For 

FYM, NFRV ranges between 0.10 and 0.70 (Birkmose 2009; Jensen 2013; Pikula et al. 

2016; Webb et al. 2013). For slurry, NFRV ranges between 0.20 and 0.90 (Birkmose 

2009; Delin et al. 2012; Jensen 2013; Kundler et al. 1989; Langmeier et al. 2002; Webb 

et al. 2013). For straw, NFRV has been estimated to be around zero (Dhillon and Dev 

(1984) as cited by Katyal 1993). For green manures, NFRV has been estimated ca. 0.4 

(Janzen et al. 1990), but this will probably depend on the species of green manure 

cultivated.  

Factors known to affect NFRV (at a given dose of the input) include the form of N in the 

input, crop type cultivated, soil type, method of application, time of application and the 

manuring history which may govern N retention and losses (Birkmose 2009; Jensen 

2013; Katyal 1993; Kundler et al. 1989; Webb et al. 2013). Here we evaluate the effect 

of an additional factor on NFRV which is currently not taken into account: the total N 

supply. We address the following research question: Does NFRV of organic inputs 

depend on total N supply? 

3.2   Materials and methods 

To answer the research question, values for long-term NFRV were calculated based on 

yield response curves (either DM or FM weights of marketable products) at low and 

high total N supply. This required data from field trials where different N rates were 

applied with and without organic inputs. In such a set-up, mineral fertiliser N saved with 

an addition of organic input at low mineral fertiliser rates (Nsaved low) can be compared 

with mineral fertiliser N saved by adding the same amount of organic input at high 
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mineral fertiliser rates (Nsaved high). In these cases, sufficient P and K has to be applied to 

ensure these macro-nutrients are not a yield limiting factor and affect the calculation of 

NFRV of organic inputs. Organic inputs however do not only supply N, P and K but also 

other nutrients, such as sulphur (S). Over the past decades, S was often not yield limiting 

due to the ample supply from the atmosphere (Eriksen 2009). More recently this has 

changed but not always adjusted for in field experiments. 

In Chapter 2, a database was compiled with data from 20 long term experiments. All 

these 20 experiments fulfilled the following six criteria: (1) at least four increasing levels 

of mineral fertiliser N rates  without organic inputs; (2) at least four increasing mineral 

fertiliser N rates with organic inputs; (3) P and K applied in ample amounts on all fields; 

(4) at least five years of yield data; (5) if crops are cultivated in rotation, yield data 

available for at least two rotation cycles; (6) yield data reported for individual crop types 

(no aggregated data of whole-rotation yield output were used).  

Assessing NFRV called for an additional requirement: (7) N contents of organic inputs 

must be known. Using these seven criteria, 38 data sets (with multiple crops and organic 

input types) were assembled  from eight experiments in five countries across Europe 

(Table 3.1).  

The experiments ranged in duration between 15 to 44 years. These data, therefore, can 

be used to consider long-term NFRV, including the greater part of the residual effect of 

manure (Hernández et al. 2013; Jensen 2013; Schröder 2005a). The setup of these 

experiments implies that mineral fertiliser N rates are always confounded with total N 

supply. We therefore use the term ‘total N supply’. 

For each data set, two yield response curves to mineral fertiliser-N were fitted, one 

without (Y0) and one with organic inputs (YA), following George (1984), see Fig. 3.1. 

𝑌 = 𝑎 + 𝑏 ∗ 0.99𝑁 + 𝑐 ∗ 𝑁 + 𝜀                                                                                                                       (3.1) 
 

In Equation 3.1, Y is crop yield (t/ha) expressed in either fresh or dry matter weight of 

the marketable product, N is the mineral fertiliser N rate (kg N/ha), a, b and c are 

parameters to be fitted and 𝝴 is the error term.  
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For each pair of curves, the amount of mineral fertiliser saved with an organic input was 

calculated at low and high total N supply (Nsaved low and Nsaved high). Nsaved low was defined 

as the amount of mineral fertiliser N required without organic inputs to match the yield 

obtained with the input alone (Equation 3.2; N = 0):  

𝑌0(𝑁saved low) = 𝑌𝐴(𝑁 = 0)                                                                                                                          (3.2) 

To calculate Nsaved high, the highest yield level which was reached by both response 

curves within the experimental set-up was determined for each pair of response curves 

and called 𝑌max
0,𝐴

. This could be the maximum of one of the two response curves (as in 

Fig. 3.1a) or the highest yield reached within the experimental set-up (as in Fig. 3.1b).  

 

 

 

Accordingly, 𝑁max
0  was defined as the mineral fertiliser N rate needed to reach 𝑌max

0,𝐴
 

without organic inputs. Following, Nsaved high is the reduction in mineral N fertiliser when 

reaching 𝑌max
0,𝐴

 with organic inputs (Equation 3.3):  

𝑌𝐴(𝑁𝑚𝑎𝑥
0 − 𝑁𝑠𝑎𝑣𝑒𝑑 ℎ𝑖𝑔ℎ) =  𝑌𝑚𝑎𝑥

0,𝐴                                                                                                                   (3.3) 

Thus, Nsaved low represents the reduction of mineral fertiliser when using organic inputs 

at low total N supply. Nsaved high represents the reduction of mineral fertiliser when using 

organic inputs at high total N supply matching the highest yield possible. For each 

dataset, a pair of response curves with Nsaved low and Nsaved high indicated is presented in 

the supplementary information (Supplementary Fig. 3.1 to 3.4, pages 54 to 56). 

Fig 3. 1: Illustration of calculating savings of N with organic inputs at low total N supply (Nsaved low) and at high 

total N supply (Nsaved high). Y0 is the yield response curve without organic inputs. YA is the yield response curve 

with organic inputs. At the left yields are shown from maize grown in Muencheberg between 1995-2003, with and 

without straw. At the right yields are shown from winter barley grown in Keszthely between 1999-2010, with and 

without farmyard manure. 
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To find NFRVlow and NFRVhigh, both Nsaved low and Nsaved high were divided by the total N 

content of the organic inputs (Equations 3.4 and 3.5). 

𝑁𝐹𝑅𝑉𝑙𝑜𝑤 =
𝑁𝑠𝑎𝑣𝑒𝑑 𝑙𝑜𝑤

𝑇𝑜𝑡𝑎𝑙 𝑁 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑖𝑛𝑝𝑢𝑡
                                                                                               (3.4) 

𝑁𝐹𝑅𝑉ℎ𝑖𝑔ℎ =
𝑁𝑠𝑎𝑣𝑒𝑑 ℎ𝑖𝑔ℎ

𝑇𝑜𝑡𝑎𝑙 𝑁 𝑜𝑟𝑔𝑎𝑛𝑖𝑐 𝑖𝑛𝑝𝑢𝑡
                                                                                             (3.5) 

Following, for each pair of response curves, the difference between NFRVlow and 

NFRVhigh  was calculated. Statistical models based on the function lme (linear mixed-

effects model) of package nlme (Pinheiro et al. 2015) were used to find the least squares 

(LS) means for NFRVlow and NFRVhigh per type of organic input. These models can 

account for random effects. In this analysis, the eight experiment locations were 

included as random effects. All data were processed in R version 3.2.5. 

3.3   Results 

For FYM, mean NFRVlow was 0.53 (+ 0.26 - 95% Confidence Interval [CI]) and mean 

NFRVhigh was 1.12 (+ 0.71 - 95% CI; N=17, Table 3.2). NFRVhigh was 2.13 times larger 

than NFRVlow (p = 0.04, Table 3.2). For slurry, only one dataset was available. For this 

set, the ratio between NFRVhigh and NFRVlow was 1.65 (N=1, Table 3.2).  

For straw, one third of the NFRV values were negative at low total N supply, while 

almost half (47%) of the NFRV values for straw were negative at high total N supply. 

Mean NFRVlow for straw was 0.12 (+ 0.36 – 95% CI) and mean NFRVhigh was 0.35 (+ 

1.67 – 95% CI). NFRVhigh for straw was 3.07 times larger than mean NFRVlow, but not  

significantly so due to the large variation in the effects of straw on mineral fertiliser 

requirements (p =0.79).   

In five data sets, a combination of straw and green residues (green manures and/or beet 

leaves) was used as an organic input. At low total N supply, this combination had a 

negative NFRV in two cases and no negative NFRV at high total N supply. Mean  

NFRVlow was 0.14 (+ 0.39 – 95% CI) and mean NFRVhigh was 0.91 (+ 1.21 – 95% CI). 

For the combination of straw and green residues, NFRVhigh was 6.6 times larger than 

NFRVlow, but not significantly so, due to the small sample size (Table 3.2). 
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3.1   Discussion 

For all types of organic inputs, mean NFRV was higher at high total N supply than at 

low total N supply. Only for FYM the difference was significant (p =0.04). For the other 

types of organic input either the sample sizes were too small or the variation too large. 

Currently, values for NFRV are often estimated by applying organic inputs without 

mineral fertilisers. In Europe, farmers often apply a mixture of organic inputs and 

mineral fertilisers, thus having a higher total N supply (Potter et al. 2010). We compared 

values for NFRV at high total N supply (either the highest yield within the experimental 

set-up or the maximum of a response curve) with values of NFRV for organic inputs at 

low total N supply (at the start of the response curves). In practice, farmers will (1) 

operate within environmental restrictions on N applications and (2) try to achieve an 

economic optimum. Therefore, most often farmers will target yields somewhat below 

the maximum of the N response curves, which will generally be closer to the values we 

calculated for NFRVhigh than for NFRVlow. 

Crop residues are often not used by farmers to replace mineral fertilisers as they have a 

high C:N ratio and might require N for decomposition (Knapp et al. 1983). In these 

cases, crop residues have a negative NFRV. Straw had a negative NFRV in one third 

(NFRVlow) to half (NFRVhigh) of the cases in our study. A combination of green manures 

and straw had a negative NFRV in two fifth (NFRVlow) to none (NFRVhigh) of the cases.  

Our findings are based on 38 datasets from eight long term experiments. Besides straw 

and FYM, however, there were only a limited number of observations per organic input 

type (Table 3.2). Further work is needed to assess to what extent NFRV differs between 

low and high total N supply for the other input types, for different soil and climate 

conditions and in combination with different crop types. Such an exercise would require 

a much larger dataset, preferably with N contents of organic inputs available.  

A number of mechanisms might change the shape of the yield response curve and 

therefore cause a difference between the values of NFRVlow and NFRVhigh, on which we 

will now elaborate. A first mechanism could be that organic inputs provide other 

benefits than N to the crops (other nutrients or soil improvements), which has not been 

adjusted for in the mineral fertiliser only plots. In this case, the calculated values of 

NFRV cannot be solely attributed to N but include additional yield effects (Janssen 2002; 

Wadman et al. 1987). Elimination of the limitation(s) that caused such additional yield 

effect (e.g. by supplying a mineral S fertilizer) would result in a steeper mineral fertilizer 
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response (i.e. a better conversion of applied mineral fertiliser N into DM or FM yield). 

Consequently, NFRVhigh would decrease and approach NFRVlow. A second alternative 

explanation is that addition of mineral fertiliser might increase available N from the 

input (or vice versa). Third, addition of mineral fertiliser could increase uptake 

efficiency of N from organic input (or vice versa). Finally, a combination of above 

mechanisms might take place at the same time.  

In our study, savings of mineral fertiliser when using organic inputs were compared at 

low and high total N supply. At low N supply, using only organic inputs was compared 

with using only mineral fertiliser. At high total N supply, using a combination of organic 

inputs and mineral fertiliser was compared with using only mineral fertiliser. The larger 

value of NFRV at high total N supply could suggest that the NFRV of organic inputs is 

higher when combined with mineral fertiliser than without. This suggestion could be 

further investigated by calculating NFRV (at equal yield) of organic inputs when applied 

in different amounts. If validated, this would open a new perspective on the advantage 

of distributing available organic inputs among many farmers in a given region: the 

region would require less fertiliser to produce the same yield output, than when organic 

inputs were concentrated in few farms. 

In this study, we have used yield response curves expressed in either dry or fresh matter 

to calculate values for NFRVlow and NFRVhigh. Other methods exist to calculate NFRV, 

such as based on N content (Jensen 2013) or using isotope dilution techniques 

(Diekmann et al. 1993; Janzen et al. 1990). An exploration of different methods into 

NFRVlow and NFRVhigh might give further insights into possible mechanisms.  

3.2   Conclusions 

Currently, values for NFRV are often based on experiments where crop yields in plots 

with only organic inputs (no mineral fertilisers) are compared with crop yields in plots 

with only mineral fertiliser, at relatively low total N supply. In many European 

countries, however, farmers operate at high total N supply. NFRV coefficients play a 

key role in fertiliser recommendation systems and tools (e.g. MANNER-NPK,  

Nicholson et al. 2013) and various national Action Programmes in response to the EU 

Nitrates Directive (EEC 1991). For example, current Action Programmes in the UK, 

Denmark and the Netherlands use NFRV values of 0.10, 0.45 and 0.30-0.60  kg/kg, 

respectively for total N in FYM, and values of 0.45, 0.75 and 0.60-0.80 kg/kg for pig 
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slurry (Dalgaard et al. 2014; RVO 2014; UK 2015)1. These values are often a political 

compromise, but based on short or long-term estimations of NFRV. These statutory 

values define, in combination with N application standards, the maximum amounts of 

N fertiliser that farmers in those countries may apply, depending on crop and soil type. 

This meta-analysis of eight long term experiments on different types of organic inputs 

shows that NFRV of FYM was roughly up to two times larger at high than at low total 

N supply rate. Currently, NFRV is usually assessed at the ‘lower end’ of the N response 

curve. Considering that farmers in Europe normally operate at relatively high mineral 

fertilisation rates, the use of NFRV determined at the ‘lower’ end of the N response curve 

may underestimate NFRV of organic inputs. When using these lower values to estimate 

the N fertilizer replacement value of organic inputs, complementary mineral N fertiliser 

requirements are estimated to be larger than actually needed for achieving certain yields. 

This might lead to overuse, lower N use efficiency and more losses to the environment. 

If our findings can be further generalized, the observed contrast in NFRV between the 

respective N ranges may have practical implications for fertiliser recommendations, 

depending on the mechanisms underlying the contrast. Similarly, the contrast might 

justify adjustment of statutory values for fertiliser equivalency coefficients as used to 

regulate N use in the Action Programmes - under the Nitrates Directive - of various EU 

member states.  
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Supplementary Fig. 3.2 Mineral fertiliser N savings from slurry at low 
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N savings from FYM at low and high total N supply 

 

  
Supplementary Fig. 3. 1: Yield response curves to mineral fertiliser, with and without FYM. Blue arrows pointing 

to the left indicate a saving of mineral fertiliser N when applying FYM. Blue arrows pointing to the right indicate 

additional mineral fertiliser N is needed when applying FYM. Years of yield data: A) 1990-2000; B) 1986-2006; 

C) 1984-1992; D) 1999-2010; E) 2002-2007; F) 2002-2007; G) 1985-1993; H) 1983-1999; I) 1996-2004; J) 1984-

2002: K) 1995-2003; L) 1978-1982; M) 1994-1999; N) 1994-1999; O) 1999-2010; P) 1999-2010; Q) 1999-2010 
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N savings from slurry at low and high total N supply 

 

Supplementary Fig. 3. 2: Yield response curves of winter wheat to mineral fertiliser, with and without slurry 

applied in Bologna (1999-2010). Blue arrows pointing to the left indicate saving of mineral fertiliser N when 

applying slurry at low and high total N supply. 

 

N savings from a combination of straw and green residues at low and high total N 

supply 

 

Supplementary Fig. 3. 3: Yield response curves to mineral fertiliser, with and without a combination of straw and 

green residues. X-axes indicate mineral fertiliser N, including additional mineral fertiliser N added for the 

cultivation of green manures or decomposition of straw (at each site on average 16.7 kg N/ha/year). Blue arrows 

pointing to the left indicate a saving of mineral fertiliser N for a combination of straw and green residues. Blue 

arrows pointing to the right indicate additional mineral fertiliser N is needed for a combination of straw and green 

residues. Years of yield data: A) 1984-1992; B) 1986-2006; C) 1994-1999; D) 1994-1999; E) 1994-1999.  
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N savings from straw at low and high total N supply 

 

Supplementary Fig. 3. 4: Yield response curves to mineral fertiliser, with and without straw application. Blue 

arrows pointing to the left indicate a saving of mineral fertiliser N when applying straw. Blue arrows pointing to 

the right indicate additional mineral fertiliser N is needed when applying straw. Years of yield data: A) 1991-

2001; B) 1990-2000; C) 1999-2010; D) 1999-2010; E) 1999-2010; F) 1999-2010; G) 1995-2003; H) 1983-1999; 

I) 1978-1982; J) 1985-1993; K) 1996-2004; L) 1984-2002; M) 1999-2010; N) 1999-2010; O) 1999-2010 
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Abstract 

Soil organic matter (SOM) can be built up by using organic inputs (such as straw, 

compost, farmyard manure or the cultivation of green manures or cover crops). SOM is 

known to have benefits for long-term soil fertility and can provide certain ecosystem 

services. This could be an incentive to stimulate farmers to use more organic inputs. 

Farmers’ behaviour is known to be motivated by a large number of factors. Using the 

theory of planned behaviour, we aim to disentangle these factors. We address the 

following research question: What are currently the main drivers and barriers for arable 

farmers in Europe to use organic inputs? 

This study focuses on six agro-ecological zones in four European countries (Austria, 

Belgium, Italy and the Netherlands) and four practices (straw incorporation, cultivation 

of green manure or cover crops, application of compost and application of farmyard 

manure). In a first step, relevant factors were identified for each practice using five to 

ten semi-structured interviews with farmers per agro-ecological zone. In a second step, 

these factors were quantified as either drivers or barriers in a large scale farm survey 

among 1180 farmers.  

In the semi-structured interviews, 91 relevant factors were identified influencing 

farmers’ decisions to use an organic input. In the larger farm survey, 60% of the factors 

included were evaluated as drivers, while 40% were evaluated as barriers for the use of 

organic inputs. Major drivers to use organic inputs were related to perceived effects on 

soil quality (such as improved soil structure or reduced erosion) and the positive 

influence from social referents (such as fellow farmers or agricultural advisors). Major 

barriers to use organic inputs were financial (increased costs or foregone income) and 

perceived effects on crop protection (such as increased pressure from weeds, pests and 

diseases, or increased pesticide use).  

Our study shows that farmers perceive a trade-off between improved soil quality on the 

one hand and increased pressures from weeds, pests and diseases and financial 

consequences on the other hand when using organic inputs. Motivating farmers to use 

organic inputs therefore requires specific guidance on how to adapt cultivation practices 

in order to reduce the pressure of weeds, pests and diseases for specific soil types, 

weather conditions, and crops cultivated. In addition, more research is needed on the 

long-term financial effects of using organic inputs. 

Key-words: drivers; barriers; straw; farmyard manure; green manures; cover crops; 

compost; soil organic matter; Europe; agro-ecological zones  
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Abbreviations 

AEZ agro-ecological zone 

CT conservation tillage 

FYM farmyard manure 

SOM soil organic matter 

4.1. Introduction 

Using organic inputs (such as straw, green manures, compost or animal manure) 

contributes to the soil organic matter (SOM) content of a soil (Panagos et al. 2015). 

SOM is generally considered an important indicator for soil fertility (Christensen & 

Johnston 1997; Reeves 1997) as it is known to stabilize soil structure, increase nutrient 

availability and improve water holding capacity (Johnston et al. 2009; Watts & Dexter 

1997). In addition, SOM content can have environmental benefits such as supporting 

soil biodiversity or sequestering carbon (Chang et al. 2007; Freibauer et al. 2004). 

Recently, a decline in SOM content has been identified as a threat to soil quality at 

European scale (Stolte et al. 2015; Toth et al. 2008). Precise magnitudes of decline are 

unknown as monitoring of SOM is currently sparse (ten Berge et al. 2017) or give 

contrasting results. For Great Britain, monitoring studies suggest no changes in SOM 

content over the last decades (Chapman et al. 2013; Reynolds et al. 2013). For Austria 

and the Netherlands, positive changes in SOM content have been reported (Dersch 2015; 

Reijneveld et al. 2009). For Germany, Italy, Belgium, Finland and Denmark, a negative 

change in SOM content of arable soils over the last decades has been reported (Capriel 

2013; Fantappiè et al. 2011; Goidts & van Wesemael 2007; Heikkinen et al. 2013; 

Taghizadeh-Toosi et al. 2014). 

Currently, maintenance of SOM content is included in the cross-compliance standards 

of Good Agricultural and Environmental Conditions (GAEC, EC 2013). Most member 

states have specified only a ban on burning of stubble, but a small number of countries 

has added additional measures including the use of organic inputs (such as solid manures 

or soil organic manures; Frelih-Larsen et al. 2016). Frelih-Larsen et al. (2016) 

recommend a strengthening of GAEC 6 by adding a requirement to incorporate crop 

residues, either directly or following mulching, after composting or after use as animal 

bedding. Before enforcing such a measure, it is important to understand the current 

drivers and barriers for farmers in Europe to use organic inputs. 
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Van den Putte et al. (2010) argue that farmers often have few incentives to use soil 

conservation measures because productive capacities of farms are not affected by soil 

degradation on the short term. Glenk et al. (2017) made an economic farm level analysis 

of SOM management in two areas in Scotland and Spain and found varied effects on 

farm gross margin, depending on input type and region. They did however note that 

farmers’ behaviour may be motivated by factors which are not directly economic such 

as perceived workability of the soil, or soil health for future generations. Simple cost-

benefit models might therefore not capture the complexity of farmers’ behaviour and 

attitudes (Lynne et al. 1988). Burton (2004) argues that understanding farmers’ 

willingness to adopt certain management practices improves when the theory of planned 

behaviour (Ajzen 1991) is used as a conceptual framework. 

 

Fig 4. 1: Illustration of the framework of the Theory of planned behaviour (Ajzen 1991). 

According to the theory of planned behaviour (Fig. 4.1), people base their behaviour on 

three main constructs: 1) their attitude, 2) their subjective (social) norm and 3) the degree 

of perceived behavioural control. In this framework, an attitude refers to the degree to 

which a person expects a certain outcome, together with the desirability of that outcome. 

An outcome is an expected result or impact of the practice, for example increased weed 

pressure or improved soil fertility. Subjective norm refers to the influence from social 

referents to perform a behaviour. Social referents in this case are for example fellow 

farmers or an agricultural advisor. Perceived behavioural control refers to perceived 

support or hindrance from control factors. A control factor is a specific, often local, 

condition that governs the impact of the practice, or facilitates or hampers its adoption. 

These three constructs together lead to an intention, which might lead to a certain 

behaviour (Ajzen 1991). 
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The theory of planned behaviour has been successfully applied previously in an 

agricultural context. For example, Werner et al. (2017) found that in Germany, attitudes 

and perceived behavioural control were linked to intentions of farmers to cultivate cover 

crops. 

In this study, the theory of planned behaviour is used to identify drivers and barriers for 

the use of different organic inputs. We presume that specific drivers and barriers will be 

context-specific, depending among others on soil types and climates. Therefore, we 

assess drivers and barriers in six regions with specific combinations of slope, soil texture 

and climate, hereafter called agro-ecological zones (AEZ). We ask the following 

research question: What are currently the main drivers and barriers for arable farmers to 

use organic inputs?  

4.2. Materials and methods 

4.2.1. Study approach 

The study approach consisted of two steps: 1) a qualitative step to identify relevant 

outcomes, referents and control factors for each practice; 2) a quantitative step to 

quantify each relevant outcome, referent or control factor (Fig. 4.2). For the first step, 

semi-structured interviews were held with a small number of farmers, whilst for the 

second step, a much larger farm survey was conducted. In this manner, a bottom-up 

approach is used relying on farmers’ knowledge of their local farming conditions in each 

AEZ. 

 

Fig 4. 2: Overview of the study approach. 

4.2.2. Study area 

This study formed part of the European project CATCH-C in which AEZs in Europe 

were identified based on three environmental factors: climate, slope and soil texture. 

Each AEZ has more or less homogeneous conditions for each factor (Hijbeek et al. 

2013). Six AEZs were studied in four countries (Austria, Belgium, Italy and the 
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Netherlands). Selection of AEZs in each country was mainly based on the area of the 

AEZ and the economic importance of agriculture in the AEZ. Six AEZs were selected 

(Fig. 4.3 and Table 4.1): Austria (AT1), Belgium (BE1), Italy (IT1, IT2) and the 

Netherlands (NL1, NL2). Within each AEZ, data collection was focused on arable 

farmers.

 

Fig 4. 3: Map of study area indicating the six AEZs in four European countries (Austria, Belgium, Italy and the 

Netherlands). 

In Austria, AT1 has a relatively dry climate (mean aridity index of 0.51), level or gentle 

slopes and a medium soil texture (meaning > 15% sand and 18-35% clay or 15-65% 

sand and  < 18% clay). In Belgium, BE1 has a relatively wet climate (mean aridity index 

0.73), a medium fine soil texture (meaning <15% sand, < 35% clay) and level to gently 

sloping lands.  

In Italy, IT1 and IT2 both have a very dry climate. IT1 is mainly present in the Po plain 

and has more level land. IT2 is mostly located in the hills of centre and southern Italy 

and has steeper slopes. To differentiate this difference, in figures and tables IT1 is 

labelled IT1-level and IT2 is labelled IT2-sloping. To keep the text flowing, this 

adjective is not added in the text.  
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In the Netherlands, NL1 and NL2 both have a wet climate and level land. NL1 however 

has medium or medium fine soil textures and NL2 has only coarse soil textures (meaning 

> 65% sand  and < 18% clay). To differentiate this difference in soil texture between the 

two AEZs in the Netherlands, NL1 is labelled NL1-clay and NL2 is labelled NL2-sand 

in figures and tables. 

Table 4. 1 Characteristics of each AEZ. Climate zones follow Metzger et al. (2005). Aridity index of each climate 

zone is calculated by dividing annual precipitation by potential evapotranspiration, using spatial climatic data for 

the period 1975-2009 (Janssen et al. 2009). A lower aridity index indicates a drier climate. Soil texture classes 

follow classes used in the European soil database (EC & ESBN 2004). 

 Climate zone 

Average aridity 

index of the climate 

zone Slope Soil texture 

AT1 Pannonian 0.51 (dry) level (0°) or gentle (2-3°) medium 

BE1 Atlantic Central 0.73 (wet) nearly level (1°) medium fine 

IT1-level Mediterranean North 0.38 (very dry) level (0°) or gentle (2-3°) coarse to medium fine 

IT2-sloping Mediterranean North 0.38 (very dry) gentle to moderate (2-7°) 

medium or medium 

fine 

NL1-clay 

Atlantic North and 

Central 0.76 (wet) level (0°) 

medium or medium 

fine 

NL2-sand Atlantic Central 0.76 (wet) level (0°) coarse 

Farmers were questioned on four types of organic inputs: incorporation of small grain 

cereal straw or grain maize straw; cultivation of green manures or cover crops; 

application of compost; and application of farmyard manure (FYM). Not all practices 

were included in each AEZ (Table 4.2). Incorporation of straw was included in five 

AEZs. Cultivation of green manures or cover crops was included in six AEZs. 

Application of compost was included in two AEZs. Application of FYM was included 

in only one AEZ.  

Table 4. 2: Overview of AEZs and types of organic inputs included in the farm survey. 

 

Incorporation of 

straw 

Cultivation of green 

manures or cover crops Compost FYM 

AT1  X   

BE1 X X X X 

IT1-level X X   

IT2-sloping X X   

NL1-clay X X   

NL2-sand X X X  

4.2.3. Step 1: semi-structured interviews 

In the first step, five to ten farmers were interviewed in each AEZ to identify outcomes, 

referents and control factors for each practice. The objective of these semi-structured 

interviews was to use farmers’ knowledge to identify relevant factors for each practice, 
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based on the theory of planned behaviour. Farmers were asked five questions to identify 

outcomes of each practice, four questions to identify social referents for each practice 

and three questions to identify control factors for each practice (specific questions asked 

are listed in Supplementary Table 4.1, page 84). 

The semi-structured interviews in the six AEZs resulted in 285 identified outcomes, 

referents and control factors. Each of these was related to a type of organic input and an 

AEZ. As could be expected, a substantial number of these items were similar, or almost 

similar, across different types of organic inputs and AEZs. Therefore, mentioned 

outcomes, referents and control factors were clustered in 101 classes (40 outcome 

classes, 12 referent classes and 49 control factor classes). Following, they were given 

shorthand labels (such as soil structure, or contract workers), which had overlap between 

outcomes, referents and control factors (e.g. the label contract worker could refer to a 

referent or a control factor). This resulted in 91 labels. The 91 labels were classified into 

nine main categories (Table 4.3). The nine main categories were: soil type & climate, 

soil quality, crop protection, land use, technical, financial, environmental impact, legal 

and social (Fig. 4.4). 

 

Fig 4. 4: Overview of the nine main categories used for clustering outcomes, referents and control factors as 

identified in the semi-structured interviews. 
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4.2.4. Step 2: farm survey 

The outcomes, referents and control factors for the use of organic inputs identified in 

the semi-structured interviews were quantified in a large farm survey. For each outcome, 

referent and control factor, two questions were asked, based on the theory of planned 

behaviour. In this manner, the attitude, subjective norm and perceived behavioural 

control on the use of organic inputs could be calculated.  

The sampling for the questionnaires depended on the availability of a valid sampling 

frame of arable farmers within each country (i.e. contact details of farmers). The most 

ideal sampling frame to obtain a completely random sample is a nation-wide database 

of farmers’ addresses. Such a database was available for Flanders (Belgium) and the 

Netherlands. In these countries farmers were invited by letter to participate in the farm 

survey. In Austria and Italy researchers depended on farmers’ associations, farmers’ 

extension services or other contacts to distribute the questionnaires. Questionnaires were 

filled online (Austria and the Netherlands) or as a paper questionnaire (Belgium and 

Italy). Response rates varied between 12 to 59% (Table 4.4). 

To reduce the length of the questionnaires and increase the response rate, in Belgium 

and the Netherlands questionnaires were split into two or three parts allocated to 

different groups of farmers. As such, each group of farmers received a questionnaire 

with a common introduction section combined with in-depth questions only on a specific 

type of organic input. Questions on the incorporation of straw were then for example 

only sent to a subset of farmers. To reduce errors in farmers’ answers, respondents were 

not obliged to fill out every question. In the case of partly completed questionnaires, 

only the filled parts were used in the analysis. For these two reasons, numbers of farmers 

can differ between analyses. Questionnaires were returned during the summer and 

autumn of 2013. Filled questionnaires were checked on irregularities (typing mistakes 

or extreme numbers) and if any, removed from analysis.  

Table 4. 4: Numbers of farmers included in the semi-structured interviews (step 1) and the larger farm survey 

(step 2) NA = not applicable. 

 Step 1 Step 2   

 

Semi-structured 

interviews 

Questionnaires 

sent Response Response rate 

AT1 8 open online survey 34 NA 

BE1 7 1600 430 27% 

IT1-level 8 211 124 59% 

IT2-sloping 9 165 98 59% 

NL1-clay 10 2700 336 12% 

NL2-sand 5 2000 241 12% 
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In the farm survey, farmers were also asked if they used each type of organic input. 

Hence, farmers were asked whether they cultivate green manures or cover crops, 

incorporate straw, use FYM or compost, on at least one of their fields. 

Quantification of attitudes 

For each identified outcome (i), two types of questions were asked in the farm survey: 

1) To which degree a farmer expects a certain outcome (i.e., result, effect) from the 

given practice (‘belief strength’) and 2) how the outcome is  valued on a scale from 

‘bad’ to ‘good’ (‘outcome valuation’). For example: a possible outcome from the 

application of compost is improved soil structure. In the farm survey, farmers were first 

asked to which degree they expect compost to improve soil structure (1 = little, 5 = 

much) and second how they evaluate an improvement in soil structure (1 = bad, 5 = 

good). Outcome valuations were lowered by three points to give a negative to positive 

scaling (-2 to +2). In the data analysis, beliefs strengths and outcome valuations were 

multiplied to obtain an attitude score for each outcome (Equation 4.1, values for attitude 

ranging from -10 to +10). 

𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝑖 = 𝑏𝑒𝑙𝑖𝑒𝑓 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖 ∗ (𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑖 − 3)                                                                (4.1) 

Quantification of subjective norm 

For each social referent (k) identified in the semi-structured interviews, two types of 

questions were asked in the farm survey: 1) how motivated they are to comply with the 

referents’ view (‘motivation to comply’) and 2) to which degree the referent is positive 

or negative towards a practice (‘normative belief’). For example: A social referent for 

the incorporation of straw are fellow farmers. In the farm survey, farmers were first 

asked if they thought fellow farmers are positive on the incorporation of straw (1 = 

negative, 5 = positive). Second, farmers were asked how motivated they are to comply 

with the opinion of fellow farmers (1 = little, 5 = much). Normative beliefs were lowered 

by three points to give a negative to positive scaling (-2 to +2). In the data analysis, 

motivations to comply and normative beliefs were multiplied to obtain a subjective norm 

score for each referent (Equation 4.2, values for subjective norm ranging from -10 to 

+10). 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑛𝑜𝑟𝑚 𝑘 = 𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑦𝑘 ∗ (𝑛𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 𝑏𝑒𝑙𝑖𝑒𝑓𝑘 − 3)                                    (4.2) 

Quantification of perceived behavioural control 

For each identified control factor (m), also two types of questions were asked in the farm 

survey: 1) to which degree that control factor is valid for the farm (‘control strength’) 

and 2) to which  degree the control factor makes the practice attractive or difficult 
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(‘control power’). For example: a control factor for using compost is the availability of 

compost in the farmers’ region. In the farm survey, farmers were first asked if there is 

compost availability in the region  (1 = not agree, 5 = agree) and second how much they 

thought availability of compost will affect utilization (1 = negative, 5 = positive). 

Control powers were lowered by three points to give a negative to positive scaling (-2 

to +2). In the data analysis, control strengths and control powers were multiplied to 

obtain a value for perceived behavioural control for each control factor (Equation 4.3, 

values for perceived behavioural control ranging from -10 to +10). 

𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑚 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑚 ∗ (𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑤𝑒𝑟𝑚 − 3)                     (4.3) 

Classification as drivers or barriers 

For each attitude, subjective norm and perceived behavioural control, the mean value 

across all respondents in an AEZ was calculated, together with the 95% confidence 

interval. The 95% confidence interval was calculated as 1.96 ∗
𝑠𝑑

√𝑁
 in which sd is the 

standard deviation and N is the number of farmers who answered the question. 

Significantly positive values (when zero was not included in the 95% confidence 

interval) were considered drivers. Significantly negative values were considered 

barriers.  

Each driver or barrier belonged to one of the 91 sub categories (Table 4.3) and nine main 

categories (Fig. 4.4). If two identified factors for a type of organic input and AEZ fell 

into the same subcategory (e.g. soil fertility) and they were both positive (or both 

negative), the average was taken. When two identified factors for a practice and AEZ 

fell into the same sub category but the signs differed (the one being negative and the 

other positive) they were kept separate in the analysis (meaning the sub category 

represents both a driver and a barrier for a given practice). The latter was done because 

apparently sometimes an outcome or control factor (e.g. soil fertility) can be both a 

driver and a barrier, and we wanted to keep this information visible in the results. 

4.3. Results 

4.3.1. Characteristics of farmers in the survey 

When conducting the farm survey, we aimed to target arable farmers with specific 

climates, slopes and soil textures (Table 4.1), based on European scale datasets. 

Targeting farmers with similar conditions for slope and soil texture however proved to 

be difficult as these characteristics differ at smaller geographical scales. Overall, soil 
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textures and slopes of the respondents in each AEZ showed correspondence with the 

targeted AEZs but there was also considerable variation within each AEZ (Table 4.5). 

Table 4. 5: Characteristics (slope, soil texture) of the AEZ and their farms in the survey, averaged per AEZ. N 

indicates number of farmers on which the analysis is based, if a range is specified, this means that the number of 

farmers varied by practice.  

  

AT1 

(N=34) 

BE1  

(N=371-395) 

IT1-level 

(N=102-114) 

IT2-sloping 

(N=82-85) 

NL1-clay 

(N=331-333) 

NL2-sand 

(N=217-219) 

Slope (mean percentage 

farm area)             

Level (0°) 18% 39% 80% 8% 100% 100% 

Nearly level (1°) 22% 31% 10% 8% 0% 0% 

Gently sloping (2-3°) 32% 22% 5% 31% 0% 0% 

Sloping (4-7°) 16% 7% 4% 39% 0% 0% 

Steep (>8°) 12% 2% 1% 14% 0% 0% 

Soil texture (mean 

percentage farm area)             

Sand 26% 8% 12% 1% 1% 93% 

Loam 40% 91% 72% 62% 7% 1% 

Clay 32% 1% 16% 38% 91% 1% 

Peat 0% 0% 0% 0% 0% 4% 

In Austria, respondents to the farm survey had a very diverse range of slopes and soil 

textures. In Belgium, farmers had mainly loamy soils (91%) and mostly level to gently 

sloping lands. In Italy, IT1 farmers had mainly level land and in IT2 farmers had mainly 

gentle to steep sloping land. In the Netherlands, farmers in NL1 had mainly clay soils 

and farmers in NL2 had mainly sandy soils. 

4.3.2. Current use of organic inputs 

In all AEZs, farmers used organic inputs to some degree (Table 4.6). When cultivating 

cereals, the majority of farmers incorporated straw sometimes to always, although some 

differences between AEZs were observed. In BE1, fewer farmers incorporated straw 

(26%), probably at least partly due to the high use of FYM (in which case straw is 

exported to livestock farms and then again imported as FYM). When cultivating grain 

maize, the majority of farmers also incorporated straw sometimes to always, only in 

NL1 this was not the case.   

A large difference in the cultivation of green manures or cover crops is observed 

between the six AEZs (Table 4.6). While in AT1, BE1, NL1 and NL2 most farmers 

cultivated green manures or cover crops on at least one of their fields (> 80%), only a 

small minority cultivated green manures or cover crops in IT1 and IT2 (10%).  
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Table 4. 6: Use of organic inputs in each AEZ. Bold numbers indicate combinations of AEZ and input type for 

which questions on outcomes, referents and control factors are included in the farm survey. For straw 

incorporation, percentages are calculated as share of the farmers who cultivate the specified crop. 

 AT1 BE1 IT1-level IT2-sloping NL1-clay NL2-sand 

Straw incorporation  

(% farmers incorporating straw 

sometimes to always)1             

small grain cereal straw 71% 26% - - 68% 60% 

maize straw 88% 94% - - 38% 65% 

cereals, maize or sunflower - - 93% 69% - - 

       
Cultivation of green manure or 

cover crops on at least one field 

(% farms)             

Green manure or cover crop 93% 87% 10% 10% 84% 83% 

       
Application FYM or compost 

(% farmers applying compost or 

FYM  on at least some part of 

the land)             

Compost 17% 8% 42% 55% 35% 29% 

FYM 46% 71% 57% 67% 39% 16% 

A higher percentage of farmers in IT1 and IT2 (42 and 55%) used compost compared to 

farmers in AT1 and BE1 (17% and 8%), with NL1 and NL2 in between (35% and 29%). 

The use of FYM varies widely, with the highest percentage of farmers using FYM in 

BE1 and IT2 (71% and 67%) and the lowest  in NL2 (16%). In the Netherlands, farmers 

on sandy soils are often located near pig farms, which create a large availability of slurry, 

possibly explaining the low use of FYM.  

4.3.3. Drivers and barriers for the incorporation of straw 

Incorporation of straw was included in the farm survey of five AEZs (BE1, IT1, IT2, 

NL1 and NL2). The total number of outcomes, referents and control factors identified 

for the incorporation of straw was 93 (summed over the five AEZ’s, or on average 15.5 

per AEZ). Out of these, 48 were evaluated significantly positive as drivers and 33 were 

evaluated significantly negative as barriers by the farmers (Fig. 4.5). Of the drivers, 

around 40% were related to soil quality (N=19). 

 

                                              
1 Only farmers are included when a specific crop (maize, cereal) was present in the  a crop rotation of farm. In 

Italy, sunflower was also included in the question on straw incorporation.  
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Fig 4. 5: Drivers and barriers for incorporation of straw per AEZ. ■ = mean attitude score on outcome; ● = mean 

subjective norm of referent ▲= mean perceived behavioural control on control factor. Lines indicate 95% 

confidence interval. N = numbers of farmers included in analysis. Numbers in [] link to farmers’ descriptions in 

Supplementary Table 4.2. GM = green manure. Colours indicate main categories. 
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Of the barriers, Almost half was financial (N=15), yet there were also some financial 

drivers (N=6). All outcomes and control factors related to crop protection were 

evaluated as barriers (4 out of 4). 

In all AEZs, effects on soil structure and SOM content were identified as outcomes and 

evaluated as drivers for straw incorporation (Fig. 4.5). In almost all AEZs - besides BE1 

- weeds, pests and diseases in general or specifically fungal diseases were evaluated as 

a barrier for straw incorporation. In addition, costs of straw incorporation and loss of 

income from selling straw were also evaluated as barriers for straw incorporation in all 

AEZs. In most AEZs, subjective norms of referents were positive on straw 

incorporation. Only in BE1, a negative subjective norm exists from fellow farmers and 

contract workers.  

In BE1, legal nutrient limits were seen as a driver as well as a barrier. Like the 

Netherlands, the region of Flanders in Belgium (where the study was conducted), is a 

Nitrate Vulnerable Zone, which gives stricter limitations on nutrient inputs for farmers. 

Straw is however not counted within the legal nutrient limits, therefore it is seen by 

some farmers as an easy manner to increase SOM content. At the same time, other 

farmers prefer to add N to straw for decomposition, in which case the legal nutrient 

limits are a barrier. The relatively high application of FYM in BE1 (Table 4.6) also 

makes incorporation of straw less attractive.  

In Italy (both IT1 and IT2), legal prohibition of burning straw was considered a driver 

for straw incorporation. In IT1 specifically, effects of straw incorporation on product 

quality (protein content) was a driver, while in IT2 availability of adequate machinery 

for chopping and incorporating residue was a driver.  

In the Netherlands (NL1 and NL2), reduced labour or time requirements for straw 

incorporation (compared to removing it from the land) and positive effects on 

workability of the soil were considered important drivers. Fertiliser use was evaluated 

by farmers as a strong barrier, because farmers believe additional fertiliser is needed for 

straw decomposition.  

4.3.4. Drivers and barriers for the cultivation of green manures or cover 

crops 

Cultivation of green manures or cover crops was evaluated in the farm survey of all six 

AEZs (Fig. 4.6).  



Drivers and barriers for organic inputs 

73 

 

 

Fig 4. 6: Drivers and barriers for cultivation of green manures or cover crops per AEZ. ■ = mean attitude score 

on outcome; ● = mean subjective norm of referent ▲= mean perceived behavioural control on control factor. 

Lines indicate 95% confidence intervals. N = numbers of farmers included in analysis. Numbers in [] link to 

farmers’ descriptions in Supplementary Table 4.3. GM = green manure. CT = conservation tillage. For legend of 

colours see Fig. 4.5 or 4. 7 
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The total number of outcomes, referents and control factors identified for the cultivation 

of green manure or cover crops was 138 (summed over the six AEZ’s, or on average 23 

per AEZ). The majority (N=80) was evaluated significantly positive as drivers, a 

minority (N=42) was evaluated significantly negative as barriers. A small minority 

(N=16) was not significantly different from zero (Fig. 4.6). Of the drivers, 35% was 

related to soil quality (N=28). One third of the barriers was financial (N=14), yet there 

were also some financial drivers (N=9). All outcomes and control factors related to 

environmental impact were evaluated as drivers (5 out of 5). 

Like for straw incorporation, effects on soil structure and SOM content were identified 

and evaluated as drivers in each AEZ for the cultivation of green manures or cover crops 

(Fig. 4.6). The effect of green manures or cover crops on soil erosion was also identified 

and evaluated  as a driver in almost each AEZ, except in IT1 (not included in survey 

because it was not identified as an outcome or control factor in the semi-structured 

interviews). In the Netherlands (NL1 and NL2) subjective norms of all referents were 

positive, unlike for example Italy (IT1 and IT2) where especially fellow farmers and 

family were perceived to have a negative view on the cultivation of green manures or 

cover crops. 

In four AEZs (AT1, BE1, NL1 and NL2) weeds, pests and diseases (as a general term) 

or more specifically increases in weeds, nematodes, herbicide use or pesticide use (as 

specific terms) were evaluated negatively as barriers for the cultivation of green manures 

or cover crops. In BE1 however, positive effects of green manures or cover crops on 

weeds were also a driver. In IT1 and IT2 issues with crop protection were not mentioned 

in the semi-structured interviews with the farmers and therefore not included in the farm 

survey. In all AEZs, costs and effects on income were important barriers for the 

cultivation of green manures or cover crops.  

In AT1, effects of cultivating green manures or cover crops on the water holding 

capacity of the soil was evaluated as well a driver as a barrier (Fig. 4.6a). Previous 

studies have shown – on average - no significant effect on water holding capacity from 

the cultivation of green manures or cover crops in this area (Bodner 2013; Bodner et al. 

2011). Austrian farmers can receive a subsidy for the cultivation of green manures or 

cover crops, which is evaluated as a driver. To receive a subsidy, farmers have to follow 

specific trainings. 

In Flanders (BE1), farmers can also receive a subsidy for cultivating green manures or 

cover crops at the time the survey was conducted. To be eligible for subsidy, farmers in 

Flanders have to sow the green manure before a certain date (before the 1st of September 
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or the 15th of October, depending on their location). As the time period between harvest 

of some crops and legal sowing date is perceived as too short, this preconditions was 

considered a barrier.  

In Italy (IT1 and IT2), costs were a major barrier for the cultivation of green manures or 

cover crops. Additional costs include production factors such as seeds, but also 

mechanical operations such as tillage or sowing. Interestingly, farmers perceived a 

positive effect of green manure or cover crops on fertiliser use in IT2, with savings of 

fertiliser in the following cash crop. In IT1, having clay soils was seen as a barrier for 

the cultivation of green manure or cover crops. On clay soils, seedbed preparation for 

green manures might be more complicated due to excessive soil water content. 

In the Netherlands (NL1 and NL2), improved workability of the soil was evaluated as 

an important driver. This relates to perceived reductions in fuel costs and perceived 

reductions in the loss of soil during harvest. In the Netherlands (NL1 and NL2), 

requirements in labour and time to cultivate green manures or cover crops was 

considered a barrier. This relates specifically to the small time frame available at the end 

of summer after harvesting the main crop for the sowing of the green manure. 

4.3.5. Drivers and barriers for the application of compost or FYM 

Application of compost was included in the farm survey of two AEZs (BE1 and NL2-

sand), while the use of FYM was included only in BE1. As both types of input are often 

imported on arable farms, the results of these two input types are presented together. 

The total number of outcomes, referents and control factors identified for the application 

of compost or FYM was 54 (summed over three AEZs, or on average 18 per AEZ). Out 

of these, 23 were evaluated significantly positive as drivers and 25 were evaluated 

significantly negative as barriers (Fig. 4.7). Of the drivers, more than half were related 

to soil quality (N=13). Forty percent of the barriers was financial (N=10) and almost a 

quarter of the barriers was technical (N=6). A number of outcomes and control factors 

related to crop protection, environmental impact and legal aspects were identified 

(respectively 2, 2 and 1). These were all evaluated as barriers. 

For compost, the effect on SOM content was evaluated positively by farmers as a driver 

in both AEZs (Fig. 4.7). In BE1, effects of compost on various aspects related to soil 

quality were also evaluated as drivers (e.g. soil life, soil health, soil fertility and soil 

structure). In the Netherlands compost may be applied throughout the year - in contrast 

to animal manures - making it a more attractive option compared to other organic inputs. 

Therefore, the legally allowed timing of application was also evaluated as a driver for 
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compost in NL2. Availability of alternative organic inputs such as animal manure, 

pollution of compost and required labour and time for spreading were considered 

barriers for using compost in both BE1 and NL2. In addition a range of other issues were 

evaluated as barriers in BE1, such as availability, required knowledge, nitrogen 

leaching, increases in weeds, pests and diseases, legal nutrient restrictions, availability 

of appropriate machinery and compatibility with residue incorporation.  

 

Fig 4. 7: Drivers and barriers for application of compost or FYM per AEZ. ■ = mean attitude score on outcome; 

● = mean subjective norm of referent ▲= mean perceived behavioural control on control factor. Lines indicate 

95% confidence intervals. N = numbers of farmers included in analysis. Numbers in [] link to farmers’ descriptions 

in Supplementary Tables 4.4 to 4.5. FYM = farmyard manure. N = nitrogen. Colours indicate main categories. 
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For the application of FYM, a similar range of  positive effects were found on soil 

quality as from compost (e.g. soil life, soil health, soil fertility and soil structure). An 

important barrier for FYM in Flanders was the need for appropriate storage facilities 

during winter. Many farmers state that they do not have such a storage place and that 

this makes the use of FYM  unattractive. 

4.3.6. Drivers and barriers aggregated per category 

Of all the 285 identified outcomes, referents and control factors in the semi-structured 

interviews, 151 were evaluated significantly positive as a driver and 100 were evaluated 

significantly negative as a barrier (Fig. 4.8). 

 

Fig 4. 8: Counts and percentages of drivers and barriers per practice and category. Red colours indicate barriers 

and blue colour indicates drivers. 
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Aggregating drivers across AEZs, soil quality stands out as the most important driver 

for using organic inputs. For all types of organic input, soil quality consistently has the 

highest count and percentages of cases in which it is evaluated as a driver (except 

environmental impact of green manures or cover crops, Fig. 4.8b).  

For each type of organic input, financial consequences are most often mentioned as a 

barrier, but crop protection has the highest percentage of cases in which it is evaluated 

as a barrier compared to the total sum of barriers and driver in that category. Both 

financial consequences and crop protection are therefore important barriers for the types 

of organic input considered in this study. 

4.4. Discussion 

4.4.1. Drivers and barriers identified 

In this study, a large number of outcomes, referents and control factors (285) were 

identified being relevant to farmers for using organic inputs. To support data analysis, a 

clustering was made consisting of 91 labels falling into nine main categories (Table 4.3). 

Using a bottom-up approach, the categories were based on insights provided by farmers.  

For all types of organic inputs, important drivers were perceived effects on soil quality 

and a positive influence from social referents. In contradiction to the assumption that 

farmers have too few incentives to use soil conservation measures because productive 

capacities are not affected by soil degradation on the short term (Van den Putte et al. 

2010), farmers in our survey show a great interest in maintaining long term soil fertility 

and SOM contents. Effects on SOM content and soil fertility are consistently amongst 

the top drivers for each type of organic input (Fig.4.5, 4.6 and 4.7). We confirmed the 

notion that farmers’ behaviour is  motivated by a wide array of factors which are not all 

directly economic (Glenk et al. 2017) as financial aspects were only a selected part of 

the total listed drivers and barriers. If mentioned, financial consequences of using 

organic inputs were more often evaluated negative than positive.  

In our farm survey, farmers consistently evaluated the effects of organic inputs on crop 

protection negatively. From field experiments, cereal straw is known to spread an 

important fungal disease causing grain contamination (Fusarium head blight, FHB) to 

subsequent cereals in crop rotations (Maiorano et al. 2008), although some measure to 

relieve this pressure are also known. For example, the spread of FHB can be reduced 

when crop residues are incorporated into the soil (Blandino et al. 2012). Organic inputs 

have been observed to reduce soil-borne diseases, but only if they are rich in nitrogen 
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(Bailey and Lazarovits 2003). In a recent literature review on the role of compost on 

soil-borne plant diseases, Mehta et al. (2014) found a large variation in effects, but 

mainly positive effects on disease suppression when composts were enriched with 

specific soil microbes. In a more general observation, Bailey and Lazarovits (2003) note 

that it takes time to develop disease suppressive soils when using organic inputs and that 

benefits manifest only after a number of successive years. If farmers see negative effects 

on crop protection in the first year of using a specific type of organic input, they might 

however not be willing –without convincing evidence - to wait and see if this changes 

in the future. 

4.4.2. Relating drivers and barriers to the use of organic inputs  

When considering the use of organic inputs in each AEZ (Table 4.6), the most striking 

was the difference in cultivation of green manures or cover crops. In both IT1 and IT2, 

only 10% of farmers cultivated green manures or cover crops, whilst in the other AEZs 

this percentage was above 83%. Looking at the drivers and barriers for the cultivation 

of green manures or cover crops (Fig. 4.6), the number of identified outcomes, referents 

and control factors is smaller in IT1 and IT2 (12 and 15 respectively) compared to the 

other AEZs (ranging from 23 in BE1 to 38 in AT1). This situation, however, cannot 

satisfactorily explain the low adoption in Italy, because a similar situation (small number 

of outcomes, referents and control factors) was also found for straw incorporation, for 

which the adoption was higher. Relatively more outcomes, referents and control factors 

were evaluated as barriers compared to drivers in IT1 and IT2 (50% and 47%) than in 

the other AEZs (ranging from 16% in NL1 and NL2 to 43% in BE1).  

As in the other AEZs, costs and foregone income were also mentioned in IT1 and IT2 

as barriers for the cultivation of green manures or cover crops. In IT1 and IT2 however, 

fellow farmers and family were also perceived to have a negative view on the cultivation 

of green manures or cover crops whilst suppliers and advisors were somewhat neutral. 

In Italy, suppliers have a more positive view regarding straw incorporation (Fig. 4.5b,c). 

Thus, it appears that the community around farmers does not help in promoting the 

adoption of green manures or cover crops. From the personal experience of the Italian 

co-authors it is known that, because green manure is still a relatively new practice for 

Italian farmers, communication and learning from peers are very important factors to 

increase the adoption. From the experience of farmers who are already successful with 

green manures or cover crops in Italy, other farmers could learn what are the best species 

or mixes, seed rate, seeding date, seeding technique, and termination technique in a 
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given soil and climate. Currently the adoption of green manures or cover crops is 

however low so that farmers have little exposure to these practices. 

4.4.3. Straw incorporation and N requirements 

For the incorporation of straw, legal nutrient limits are mentioned to be relevant in BE1, 

NL1 and NL2. Flanders (Belgium) and the Netherlands are designated Nitrate 

Vulnerable Zones (EEC 1991). In these cases, farmers are restricted by legal nutrient 

limits when using mineral fertilisers and/or organic inputs. In BE1, legal nutrient limits 

are as well a driver and barrier for the incorporation of straw. This can be explained by 

the variability in N demands of straw decomposition. In certain cases, incorporation  of 

straw can supply N to crops, whilst in other circumstances, it can induce temporary N 

immobilization and needs N for decomposition (Chapter 3 of this thesis; Silgram & 

Chambers 2002). A similar phenomenon is seen in IT1, where fertiliser use is evaluated 

as a driver and a barrier for the incorporation of straw by farmers. 

4.4.4. Limitations of the study 

Agro-ecological zones 

For this study, farmers were clustered in AEZs to assess drivers and barriers for the use 

of organic inputs of large groups of farmers in certain areas. The aim was to assess these 

drivers and barriers for farmers with similar environmental conditions (soil textures, 

slopes, climates) After data collection, it became obvious that slope and soil texture 

varied greatly within each AEZ. For the purpose of this study, it was however not 

possible to divide farmers on their separate farm characteristics, because numbers per 

group would become too small to make meaningful comparisons. In further chapters of 

this thesis which are based on the farm survey (Chapters 5 and 6), environmental 

conditions for each individual farm will be calculated and used as such in the data 

analysis. 

Underlying beliefs 

In this study, we assessed means of the combined scores for attitude, subjective norm 

and perceived behavioural control. These concepts are based on underlying farmers’ 

beliefs (e.g. attitudes are formed by belief strengths and outcome valuations, Equation 

4.1). In future work, these two separate components might be explored in more detail, 

as done for example by Bechini et al. (2015) for straw incorporation in Italy and by 

Viaene et al. (2016) for compost in Flanders.  
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Assessing the different types of organic inputs separately 

Drivers and barriers were analysed separately for the use of each type of organic input. 

Farmers indicated that the use of one type of organic input depends on the use of another 

type of organic input (for example, if a farmer already uses slurry, that might be a reason  

not to use FYM). Both the Netherlands and Belgium have a large supply of animal 

manure due to the presence of a relatively large livestock sectors (Oenema and 

Berentsen 2004; Viaene et al. 2016). Sometimes, animal slurry is even offered for free 

to arable farmers. In these cases, this cheap offer of slurry is a barrier for the use of for 

example compost (BE1 and NL2, Fig. 4.7). In a case study in the Netherlands (Chapter 

5 of this thesis), an aggregated measure of all organic inputs used by a farmer will be 

used, expressed in total C or effective C. In addition, drivers and barriers for increasing 

SOM content (as a general concept) will be analysed, including underlying beliefs.  

4.5. Conclusion 

Major drivers for the use of organic inputs across six AEZs in this study were perceived 

effects on soil quality (e.g. soil structure, soil fertility, soil health) and in most cases a 

positive influence from social referents. Major barriers for the use of organic inputs were 

perceived  negative effects on (or the need for) crop protection (e.g. effects on the 

incidence of weeds, pests and diseases or effects on herbicide or pesticide requirements) 

and financial consequences (higher costs; income forgone).  

Our findings shows that farmers perceive a trade-off between improved soil quality on 

the one hand and increased pressures from weeds, pests and diseases and financial 

consequences on the other hand when using organic inputs. If agricultural and 

environmental policies aim to include the use of organic inputs as a measure to maintain 

or increase SOM contents (as proposed by Frelih-Larsen et al. 2016), then farmers need 

specific guidance on how reduce the pressure of weeds, pests and diseases. Ideally, this 

advice would be differentiated for specific soil types, weather conditions, and crops 

cultivated.  

On the moment, financial consequences of using organic inputs cannot be assumed to 

be neutral on the short term, at least not from a farmers’ perspective. Therefore, more 

research is needed on the long-term financial effects of using organic inputs. If the use 

of organic inputs has societal benefits beyond the farm-gate (e.g. biodiversity 

conservation or soil carbon sequestration), these financial consequences could be 

accounted for.  
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Questions asked in semi-structured interviews 

Supplementary Table 4. 1 Questions asked in the semi-structured interviews. For each type of organic input in 

each AEZ, all questions were asked with each farmer, which resulted in a list of outcomes, referents and control 

factors. Between brackets [] the specific type of organic input was mentioned by the interviewer. 

 

A. General questions on the BMP 

Do you use [this practice]? 

 

B.  Questions to elicit behavioural outcomes (with the example of low pressure tires): 

What do you believe are the advantages of [this practice]? 

What do you believe are the disadvantages of [this practice]? 

Is there anything else you associate with [this practice]? 

Would [this practice] lead to any good or bad things? 

Can you think of other consequences of [this practice]? 

 

C. Questions to elicit normative referents: 

Are there any individuals or groups who would approve of [this practice]? 

Are there any individuals or groups who would disapprove of [this practice]? 

Are there any other individuals or groups who come to mind when you think about [this practice]? 

Are there people or groups of people who try to influence your decision to use [this practice]? 

 

D. Questions to elicit control factors: 

What factors or circumstances would enable (make it easy) you to use [this practice]? 

What factors or circumstances would make it difficult or impossible for you to use [this practice]? 

Are there any other issues that come to mind when you think about the difficulty of using [this practice]? 
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Incorporation of straw 

Supplementary Table 4. 2: Labels (as used in the figures) and related farmers ‘descriptions of outcomes, referents 

and control factors for the incorporation of straw 

AEZ [#] Label Category TPB Farmers' description 

BE1 [1] Soil structure outcome Improved soil structure 

BE1 [2] Long term quality Outcome Good investment for my soil 

BE1 [3] Soil fertility outcome Increased soil fertility 

BE1 [4] Soil organic matter outcome More soil humus 

BE1 [5] Legal nutrient limits control factor Straw is not calculated as source of N 

and P in legislation 

BE1 [6] Market control factor Not easy to find a buyer for straw 

BE1 [7] Livestock farmers referent Animal farmers 

BE1 [8] Wet climate control factor Straw is often too wet and of bad 

quality 

BE1 [9] Fertiliser use control factor Additional nitrogen is needed to 

digest straw 

BE1 [10] High biomass straw control factor Dry matter yield of straw is high on 

my field 

BE1 [11] Straw decomposition outcome Straw is hard to digest 

BE1 [12] # field operations control factor Two operations are needed instead of 

one 

BE1 [13] Sowing cover crops outcome Sowing cover crops is difficult 

BE1 [14] Cooperation livestock control factor Agreement with animal farmer (straw 

against manure) 

BE1 [15] Night harvests control factor I prefer to harvest cereals at night 

BE1 [16] Costs chopping straw control factor Increased cost for chopping straw 

BE1 [17] Legal nutrient limits control factor Not allowed to give enough nitrogen 

to digest straw 

BE1 [18] Other organic inputs control factor I often use manure 

BE1 [19] Fellow farmers referent Other arable farmers 

BE1 [20] Contract workers referent Contract worker 

BE1 [21] Fuel use outcome Additional fuel is needed 

BE1 [22] Straw prices control factor Good prices for straw 

IT1-level [23] Soil structure outcome Improved soil structure 

IT1-level [24] Soil organic matter outcome Higher soil organic matter 

IT1-level [25] Fertiliser use outcome Reduced use of mineral fertilisers 

IT1-level [26] Burning not allowed control factor Crop residues burn is forbidden 

IT1-level [27] Suppliers referent Advisors of companies selling 

production factors 

IT1-level [28] Fellow farmers referent Other farmers 

IT1-level [29] Protein content outcome Increased protein content in wheat 

grain 

IT1-level [30] Straw decomposition outcome Slow decomposition of crop residues 

in soil 

IT1-level [31] Fellow farmers referent Farm that collect crop residues 

IT1-level [32] Straw prices control factor Residues selling at a high price 

IT1-level [33] Fertiliser use outcome Increased nitrogen fertiliser use 
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IT1-level [34] Weather control factor Adverse environmental conditions 

that hinder residues degradation 

IT1-level [35] Fungal diseases outcome Increased risk of fungal diseases 

IT2-sloping [36] Soil fertility outcome Increased soil fertility 

IT2-sloping [37] Soil structure outcome Improved soil structure 

IT2-sloping [38] Soil organic matter outcome Higher soil organic matter 

IT2-sloping [39] Machinery control factor I have adequate machineries 

IT2-sloping [40] Burning not allowed control factor Legislation forbids crop residues 

burning 

IT2-sloping [41] Suppliers referent Advisors of producer association 

IT2-sloping [42] Family referent Family members 

IT2-sloping [43] Fellow farmers referent Other farmers 

IT2-sloping [44] Availability of straw control factor Crop residues given for free 

IT2-sloping [45] Costs chopping straw control factor Residues chopping and distribution is 

expensive 

IT2-sloping [46] Straw prices control factor Crop residue sale is possible, high 

price residues & else loss of income 

IT2-sloping [47] Weeds, pests, diseases outcome More weeds, pests and diseases 

IT2-sloping [48] Fertiliser use outcome Increased nitrogen fertiliser use 

IT2-sloping [49] Sowing cover crops outcome Following crop sowing hindered by 

residues 

NL1-clay [50] Soil structure outcome Improves soil structure 

NL1-clay [51] Soil organic matter outcome Provides organic matter to the soil 

NL1-clay [52] Soil fauna outcome Improves soil fauna 

NL1-clay [53] Soil workability outcome Improves soil cultivation 

NL1-clay [54] Soil nutrients outcome When straw is not removed nutrients 

stay in the field 

NL1-clay [55] Labour/time outcome Easier to incorporate straw than to 

remove it 

NL1-clay [56] Compatibility GM control factor I sow a green manure after my wheat 

NL1-clay [57] Magazines referent Magazines are positive 

NL1-clay [58] Advisors referent Extension agents recommend the 

incorporation of straw 

NL1-clay [59] Study club referent Study club is positive 

NL1-clay [60] Fellow farmers referent Other arable farmers are positive 

NL1-clay [61] Wet climate control factor The weather is often too wet to 

remove the straw 

NL1-clay [62] Other organic inputs control factor There are enough other ways to apply 

organic matter 

NL1-clay [63] Cooperation livestock control factor I have a corporation with a husbandry 

farm for the straw 

NL1-clay [64] Straw as crop cover control factor I use the straw to cover beats and 

potatoes 

NL1-clay [65] Straw prices control factor Price is often too good to incorporate 

it 

NL1-clay [66] Legal nutrient limits control factor The Manure and Fertiliser Act makes 

it impossible to apply the necessary N 

to the straw to decompose 
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NL1-clay [67] Cultivation silage corn control factor I have silage corn: to incorporate 

straw of corn I need to change to corn 

cop mix 

NL1-clay [68] Machinery outcome Incorporation does not need heavy 

machinery 

NL1-clay [69] Costs outcome Costs extra money 

NL1-clay [70] Fungal diseases outcome Increases fungal diseases 

NL1-clay [71] Fertiliser use outcome Decomposition of straw needs extra N 

NL2-sand [72] Soil structure outcome Improves soil structure 

NL2-sand [73] Soil organic matter outcome Provides organic matter to the soil 

NL2-sand [74] Soil fauna outcome Improves soil fauna 

NL2-sand [75] Soil workability outcome Improves soil cultivation 

NL2-sand [76] Labour/time outcome Easier to incorporate straw than to 

remove it 

NL2-sand [77] Magazines referent Magazines are positive 

NL2-sand [78] Compatibility GM control factor I sow a green manure after my wheat 

NL2-sand [79] Soil nutrients outcome When straw is not removed nutrients 

stay in the field 

NL2-sand [80] Study club referent Study club is positive 

NL2-sand [81] Fellow farmers referent Other arable farmers are positive 

NL2-sand [82] Advisors referent Extension agents recommend the 

incorporation of straw 

NL2-sand [83] Wet climate control factor The weather is often too wet to 

remove the straw 

NL2-sand [84] Straw as crop cover control factor I use the straw to cover beats and 

potatoes 

NL2-sand [85] Other organic inputs control factor There are enough other ways to apply 

organic matter 

NL2-sand [86] Straw prices control factor Price is often too good to incorporate 

it 

NL2-sand [87] Legal nutrient limits control factor The Manure and Fertiliser Act makes 

it impossible to apply the necessary N 

to the straw to decompose 

NL2-sand [88] Cooperation livestock control factor I have a corporation with a husbandry 

farm for the straw 

NL2-sand [89] Cultivation silage corn control factor I have silage corn: to incorporate 

straw of corn I need to change to corn 

cop mix 

NL2-sand [90] Costs outcome Costs extra money 

NL2-sand [91] Fungal diseases outcome Increases fungal diseases 

NL2-sand [92] Machinery outcome Incorporation does not need heavy 

machinery 

NL2-sand [93] Fertiliser use outcome Decomposition of straw needs extra N 
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Cultivation of green manures or cover crops 

Supplementary Table 4. 3: Labels (as used in the figures) and related farmers ‘descriptions of outcomes, referents 

and control factors for the cultivation of green manures or cover crops 

AEZ [#] Label Category TPB Farmers' description 

AT1 [94] Reduced erosion outcome Reduced erosion  

AT1 [95] Soil structure outcome Soil is rooted and loosened 

AT1 [96] Soil fauna outcome Enhanced soil life 

AT1 [97] Soil organic matter outcome Increased humus content 

AT1 [98] Soil water outcome Improved water storage over the 

winter 

AT1 [99] Soil nutrients outcome Fixation of nitrogen & enrichment 

soil other nutrients 

AT1 [100] Attracting insects outcome Attractive & food for (beneficial) 

insects 

AT1 [101] Extensification outcome Relaxing of the crop rotation 

AT1 [102] Landscape view outcome More beautiful landscapes 

AT1 [103] Weather control factor Sufficient precipitation 

AT1 [104] Seed costs control factor Cheap seeds 

AT1 [105] Machinery control factor Available technical equipment & use 

of cultivator 

AT1 [106] Subsidy control factor Support by ÖPUL 

AT1 [107] Adjacent agricultural 

land 

control factor Contiguous agricultural area 

AT1 [108] Agricultural education referent Agricultural school 

AT1 [109] Magazines referent Literature 

AT1 [110] Compatibility CT control factor Combination with mulch or non-

inversion tillage 

AT1 [111] Advisors referent Advisor of the Chamber of 

Agriculture & "Bioforschung Austria"  

AT1 [112] Fodder need control factor Fodder for the animals 

AT1 [113] Crop rotation control factor Gaps in the crop rotation are needed 

AT1 [114] Land availability control factor Higher availability of agricultural area 

AT1 [115] Fellow farmers referent Other farmers 

AT1 [116] Government referent Politicians 

AT1 [117] Study club referent Society "Distelverein" (Association 

for Agriculture and Nature 

Conservation)  

AT1 [118] Suppliers referent Advisors of seed companies 

AT1 [119] Livestock control factor Reduced livestock 

AT1 [120] Weeds, pests, diseases outcome "Green bridges" cause a higher 

disease pressure 

AT1 [121] Knowledge control factor No sufficient know-how 

AT1 [122] Crop rotation outcome Not possible to use the field for cash 

crops 

AT1 [123] Residue incorporation outcome Difficult incorporation of crop 

residues 

AT1 [124] Soil water outcome Loss of water that is no longer 

available for the main crop 



Drivers and barriers for organic inputs 

 

89 

 

AT1 [125] Risk low biomass GM outcome High risk of failure  

AT1 [126] Weeds outcome Higher weed pressure 

AT1 [127] Labour/time outcome Time consuming 

AT1 [128] Income outcome Reduction of the income 

AT1 [129] Pesticide use outcome Higher application of plant protection 

AT1 [130] Fuel use outcome Higher use of fuel  

AT1 [131] Costs outcome Higher costs 

BE1 [132] Soil structure outcome Improved soil structure 

BE1 [133] Soil health outcome Increased soil health 

BE1 [134] Reduced erosion outcome Lower erosion risk 

BE1 [135] Soil carbon 

sequestration 

outcome More carbon in soil 

BE1 [136] Weeds outcome Prevents development of weeds 

BE1 [137] Soil workability outcome Can be tilled earlier to till in spring 

BE1 [138] Nitrogen leaching outcome Prevents nitrogen leaching 

BE1 [139] Legal nutrient limits control factor I fertilize as much as is allowed on 

my parcels 

BE1 [140] Fellow farmers referent Other arable farmers 

BE1 [141] Subsidy control factor Subsidy compensates cost of cover 

crops 

BE1 [142] Government referent Flemish government  stimulates cover 

crops by providing subsidy 

BE1 [143] Fertiliser use control factor Additional fertilization is needed  for 

white mustard 

BE1 [144] Labour/time control factor Additional labour for sowing and 

incorporation 

BE1 [145] Seeding control factor I grow seed for cover crop myself 

BE1 [146] Costs control factor Increase of total cost 

BE1 [147] Wet climate control factor Weather conditions are often bad in 

autumn 

BE1 [148] Administrative 

demands 

control factor Too much administration  to get 

subsidy 

BE1 [149] Crop rotation control factor Crops are harvested late in autumn 

BE1 [150] Legal sowing 

restrictions 

control factor sowing before Sept 1 to get subsidy 

BE1 [151] Machinery control factor No appropriate machinery for sowing 

& incorporation 

BE1 [152] Weeds outcome Might result in more weeds 

BE1 [153] Herbicide use outcome Increased use of herbicides 

BE1 [154] Land owners referent Owner of land 

IT1-level [155] Soil organic matter outcome Higher soil organic matter 

IT1-level [156] Soil structure outcome Improved soil structure 

IT1-level [157] Soil nutrients outcome Higher soil nitrogen content 

IT1-level [158] Crop yields outcome Higher crop yield 

IT1-level [159] Advisors referent Advisors of professional organisation 

IT1-level [160] Suppliers referent Advisors of companies selling 

production factors & producer 

associations 
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IT1-level [161] Sod seeding control factor I do sod seeding 

IT1-level [162] Clay soil control factor Clay soils 

IT1-level [163] Fellow farmers referent Other farmers 

IT1-level [164] Knowledge control factor I know green manure benefits 

IT1-level [165] Income control factor No incentives for green manure 

IT1-level [166] Costs control factor Additional costs for green manure 

IT2-sloping [167] Soil structure outcome Improved soil structure 

IT2-sloping [168] Soil organic matter outcome Higher soil organic matter 

IT2-sloping [169] Fertiliser use outcome Reduced use of mineral fertilisers 

IT2-sloping [170] Protein content outcome Increased protein content in following 

crop  

IT2-sloping [171] Reduced erosion outcome Reduced erosion 

IT2-sloping [172] Income control factor I have incentives for green manure 

IT2-sloping [173] Protein content 

contracts 

control factor Cultivation contracts that remunerate 

high protein content 

IT2-sloping [174] Clay soil control factor Clay soils 

IT2-sloping [175] Suppliers referent Advisors of companies selling 

production factors & producer 

associations 

IT2-sloping [176] Costs fertilisers control factor Low prices of mineral fertilisers 

IT2-sloping [177] Soil water outcome Green manure depletes the soil water 

content 

IT2-sloping [178] Family referent Family members 

IT2-sloping [179] Fellow farmers referent Other farmers 

IT2-sloping [180] Machinery control factor Lack of adequate machineries 

IT2-sloping [181] Costs cultivation outcome Higher cultivation costs 

NL1-clay [182] Soil structure outcome Better soil structure 

NL1-clay [183] Soil workability outcome Improve soil handling 

NL1-clay [184] Soil organic matter outcome More organic matter 

NL1-clay [185] Soil nutrients outcome Support long term soil fertility & N 

mineralisation 

NL1-clay [186] Soil fauna outcome Increase soil fauna 

NL1-clay [187] Reduced erosion outcome Less wind and soil erosion 

NL1-clay [188] Nitrogen leaching outcome Less nitrogen leaching 

NL1-clay [189] Advisors referent Extension agents recommend green 

manures 

NL1-clay [190] Magazines referent Magazines are positive 

NL1-clay [191] Study club referent Study club is positive 

NL1-clay [192] Fellow farmers referent Other arable farmers are positive 

NL1-clay [193] Suppliers referent Green manure seed salesmen are 

positive 

NL1-clay [194] Ploughing straw control factor I like to plough down my straw 

NL1-clay [195] Other organic inputs control factor Enough other ways to apply organic 

matter 

NL1-clay [196] Timing application control factor It is not always possible to apply 

liquid manure in time 
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NL1-clay [197] Cultivation winter 

wheat 

control factor I mainly grow winter wheat 

NL1-clay [198] Cultivation potatoes control factor I grow a lot of early potatoes 

NL1-clay [199] Crop rotation control factor sometimes growing season is too 

short for good crop 

NL1-clay [200] Land exchange control factor I exchange land with husbandry 

farmers 

NL1-clay [201] Wet climate control factor In the fall there are not enough dry 

days to sow green manures 

NL1-clay [202] Legal nutrient limits control factor Nitrogen quotum too low to grow 

green manures 

NL1-clay [203] Weeds outcome More weeds in following crop 

NL1-clay [204] Nematodes outcome More nematodes 

NL1-clay [205] Labour/time outcome Requires extra time 

NL1-clay [206] Costs outcome Increases costs 

NL2-sand [207] Soil structure outcome Better soil structure 

NL2-sand [208] Soil organic matter outcome More organic matter 

NL2-sand [209] Reduced erosion outcome Less wind and soil erosion 

NL2-sand [210] Soil nutrients outcome Support long term soil fertility & N 

mineralisation 

NL2-sand [211] Soil fauna outcome Increase soil fauna 

NL2-sand [212] Soil workability outcome Improve soil handling 

NL2-sand [213] Nitrogen leaching outcome Less nitrogen leaching 

NL2-sand [214] Advisors referent Extension agents recommend green 

manures 

NL2-sand [215] Magazines referent Magazines are positive 

NL2-sand [216] Study club referent Study club is positive 

NL2-sand [217] Fellow farmers referent Other arable farmers are positive 

NL2-sand [218] Suppliers referent Green manure seed salesmen are 

positive 

NL2-sand [219] Ploughing straw control factor I like to plough down my straw 

NL2-sand [220] Other organic inputs control factor Enough other ways to apply organic 

matter 

NL2-sand [221] Crop rotation control factor sometimes growing season is too 

short for good crop 

NL2-sand [222] Cultivation potatoes control factor I grow a lot of early potatoes 

NL2-sand [223] Timing application control factor It is not always possible to apply 

liquid manure in time 

NL2-sand [224] Cultivation winter 

wheat 

control factor I mainly grow winter wheat 

NL2-sand [225] Land exchange control factor I exchange land with husbandry 

farmers 

NL2-sand [226] Wet climate control factor Not enough dry days to sow green 

manures 

NL2-sand [227] Legal nutrient limits control factor Nitrogen quota too low to grow green 

manures 

NL2-sand [228] Weeds outcome More weeds in following crop 

NL2-sand [229] Labour/time outcome Requires extra time 

NL2-sand [230] Nematodes outcome More nematodes 
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NL2-sand [231] Costs outcome Increases costs 

Application of compost 

Supplementary Table 4. 4: Labels (as used in the figures) and related farmers ‘descriptions of outcomes, referents 

and control factors for the use of compost 

AEZ [#] Label Category TPB Farmers' description 

BE1 [232] Soil fauna outcome Improved soil life 

BE1 [233] Soil health outcome Improved soil health 

BE1 [234] Reduced erosion outcome Lower erosion risk 

BE1 [235] Soil organic matter outcome Increased humus content of soil 

BE1 [236] Soil nutrients outcome Improved long term N release by 

the soil 

BE1 [237] Soil structure outcome Obtain less heavy soils 

BE1 [238] Fellow farmers referent Other arable farmers make little use 

of compost 

BE1 [239] Livestock farmers referent I can do animal farmers in area a 

favour by using their 

slurry/farmyard manure 

BE1 [240] Magazines referent agricultural magazines 

BE1 [241] Other organic inputs control factor I prefer organic fertilizer of animal 

origin & solid/liquid 

BE1 [242] Residue incorporation control factor I incorporate straw 

BE1 [243] Contract workers control factor Dependent on contractor to spread 

compost 

BE1 [244] Fertiliser use outcome Supply of nitrogen needed to digest 

compost 

BE1 [245] Heterogeneous spread outcome no homogenous spread 

BE1 [246] Other organic inputs control factor More than enough slurry & manure 

available 

BE1 [247] Uncertainty N release outcome Unsure on timing of N release for 

crop 

BE1 [248] Legal nutrient limits control factor Legislation  for fertilization is too 

strict 

BE1 [249] Variation in quality control factor Much variation in quality 

BE1 [250] Labour/time control factor Slurry is spread for me. compost 

not 

BE1 [251] Diseases outcome Higher risk on diseases 

BE1 [252] Weeds outcome More weeds 

BE1 [253] Nitrogen leaching outcome Higher risk on too high N residue in 

autumn 

BE1 [254] Costs control factor Expensive or difficult 

transport/compared to 

alternatives/variable/ 

BE1 [255] Knowledge control factor Not enough knowledge on 

composition/ no experience 

BE1 [256] Availability of compost control factor Not sure on availability when 

needed & low offer 

BE1 [257] Polluted compost outcome Contains waste products 

NL2-sand [258] Soil organic matter outcome Compost provides organic matter 
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NL2-sand [259] Timing application outcome Can be applied in the fall/winter 

NL2-sand [260] Advisors referent Extension agents are positive 

NL2-sand [261] Fellow farmers referent Other arable farmers are positive 

NL2-sand [262] Study club referent Study club is positive 

NL2-sand [263] Availability of compost control factor It is not available in my region 

NL2-sand [264] Costs control factor Compost application increases costs 

NL2-sand [265] Other organic inputs control factor Plenty of other possibilities to apply 

organic matter 

NL2-sand [266] Legal nutrient limits control factor The levy free Phosphate level is too 

low 

NL2-sand [267] Other organic inputs control factor Slurry is largely available 

NL2-sand [268] Labour/time outcome Cost more labour to apply 

NL2-sand [269] Polluted compost outcome It can contain unwanted waste 

Application of FYM 

Supplementary Table 4. 5: Labels (as used in the figures) and related farmers ‘descriptions of outcomes, referents 

and control factors for the use of FYM 

AEZ [#] Label Category TPB Farmers' description 

BE1 [270] Soil structure outcome Better soil structure compared to 

slurry 

BE1 [271] Soil fauna outcome More soil life 

BE1 [272] Reduced erosion outcome Lower erosion risk 

BE1 [273] Soil organic matter outcome More organic matter compared to 

slurry 

BE1 [274] Soil water outcome Improved water holding capacity of 

the soil 

BE1 [275] Soil nutrients outcome Higher N supplying capacity of the 

soil & soil fertility 

BE1 [276] Contract workers control factor Depending on the contractor 

BE1 [277] Livestock farmers referent Animal farmers offer more slurry 

BE1 [278] Legislation on effective 

N 

control factor Working with system of effective 

nitrogen 

BE1 [279] Fellow farmers referent Other arable farmers  apply it a lot 

BE1 [280] Contract workers control factor Contractor not available when 

farmyard manure has to be spread 

BE1 [281] Machinery control factor Appropriate machinery not available 

& homogeneous spread 

BE1 [282] Uncertain N release outcome Less sure on timing and quantity of N 

release by the soil compared to 

mineral fertilizer and slurry 

BE1 [283] Costs control factor Slurry is less expensive for me/ 

transport costs FYM 

BE1 [284] Availability of FYM control factor Limited supply of farmyard manure 

in my area/ supply varies/region 

BE1 [285] Storage facilities control factor Farmyard manure has to be stored on 

the farm/ appropriate storage 

capacity 
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Abstract 

Soil organic matter (SOM) is an important resource base for arable farming. For policies 

on SOM to be effective, insight is needed on why and under which conditions farmers 

are willing to increase SOM content. 

This study uses the theory of planned behaviour to analyse what prevents or encourages 

Dutch farmers to increase the percentage of SOM content of their fields. In an online 

survey, 435 arable farmers were asked questions to understand their attitude (perceived 

benefits), subjective norm (social pressure) and perceived behavioural control 

(anticipated impediments and obstacles) related to management of SOM. Farmers’ 

answers were related to their intention to increase SOM content, use of organic inputs 

and perceived increase of SOM content.  

Our results show that Dutch farmers are well aware of the possible benefits of SOM 

content for crop productivity. Most Dutch farmers also have a positive subjective norm 

on SOM (rating 5.84 on a scale from -10 to +10, based on e.g. scientific research or 

agricultural advisors). Consequently, most farmers in our survey have a high or very 

high intention to increase SOM content (90.1%). A higher intention to increase SOM 

content was correlated with the use of organic inputs as expressed in total and effective 

C (P=0.003 and P=0.002 respectively), but this did not lead to a perceived increase in 

SOM content. The Dutch Manure and Fertiliser Act and the need to cultivate profitable 

crops (such as potatoes or sugar beets) were indicated as important impeding factors for 

increasing SOM content.  

 

Keywords: soil organic matter; soil management; organic inputs; theory of planned 

behaviour; farmers’ intentions; farmers’ behaviour; soil conservation  

Abbreviations 

C carbon 

FYM farmyard manure 

SO standard output 

SOM soil organic matter 
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5.1. Introduction 

Soil organic matter (SOM) content co-determines many soil properties including soil 

structure, nutrient availability and soil health (Johnston et al. 2009). Increasing SOM 

content can therefore be seen as a strategic means to safeguard long term farm 

productivity. As such, SOM management is an important farm objective for many Dutch 

arable farmers (Mandryk et al. 2014).  

Farmers can use different practices to increase SOM content of their fields. They can 

use more organic inputs (such as animal manures or compost) instead of mineral 

fertilisers, include more cereals in their crop rotation or cultivate green manures 

(Magdoff & Weil 2004). These practices might conflict with other farm objectives such 

as profit maximization, labour use efficiency or minimization of gross margin variation. 

Farmers need to balance these objectives, which can prevent implementation of 

practices to increase SOM content of their topsoil. This can become especially more 

challenging when short-term profits outweigh long-term objectives (Ingram et al. 2014; 

Mandryk 2016). 

In the Netherlands, organic inputs are widely available for arable farmers due to the 

large livestock sector and related production of animal manures. Since the 1980s 

however, restrictions on the use of organic manure have been implemented (Schröder & 

Neeteson 2008), which has caused some concern for farmers’ abilities to maintain or 

increase SOM contents. Using approximately two million soil samples, Reijneveld et al. 

(2009) showed that between 1984 and 2004, average SOM content remained stable in 

agricultural soils in the Netherlands. Some increases in SOM content were found in 

regions with lower initial SOM contents and decreases in SOM content in regions with 

higher initial SOM content. 

Maintenance of SOM is a policy target, as documented in European policy documents 

(EC 2011a, b) and international food security and climate objectives (UNFCCC 2015). 

Through maintenance of SOM, soil is being protected as a resource base for food 

production, soil life is conserved (Chang et al. 2007) and carbon sequestered (Smith 

2016). For policies on SOM to be effective, insight is needed on why and under which 

conditions farmers are willing to increase SOM content. 

Behavioural research approaches aim to identify what prevents or encourages 

individuals from displaying a certain type of behaviour. In this case, we would like to 

understand what prevents or encourages Dutch arable farmers to increase SOM content. 
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Several models have been developed to try to understand and predict human behaviour. 

The most widely used of these models is the theory of planned behaviour (Ajzen 1991), 

which will be used in this study.  

 

 

According to the theory of planned behaviour, people base their behaviour on three main 

constructs: 1) their attitude, 2) their subjective (social) norm and 3) the degree of 

perceived behavioural control. In this framework, an attitude refers to the degree to 

which a person expects a certain impact or outcome. The subjective norm refers to the 

social pressure to perform a behaviour. Perceived behaviour control refers to the 

perceived ease of performing a behaviour, and reflects both past experiences and 

anticipated impediments and obstacles. These three constructs together lead to an 

intention, which might lead to a certain behaviour (Ajzen 1991, Fig. 5.1, other relations 

between component might also be possible).  

According to the theory of planned behaviour, attitudes, subjective norm and perceived 

behavioural control are formed by underlying beliefs. These can be beliefs on the 

outcomes of a certain behaviour, beliefs on the views of social referents or beliefs on 

the strength of control factors restricting a certain behaviour.  

When recently asked for their concerns on the future of soil fertility, Dutch farmers place 

SOM content at the top of the list (Reijneveld 2013). It is however yet unknown how 

Fig 5. 1: Illustration of the framework of the Theory of planned behaviour (Ajzen, 1991). When experiences are 

clear and risks are low, perceived behaviour control is directly linked to actual behaviour. 
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the different elements of the theory of planned behaviour play a role in farmers’ 

intention to increase SOM content or use of organic inputs. In this study the theory of 

planned behaviour is used to analyse why and under which conditions Dutch arable 

farmers are willing to increase the percentage of SOM content of their fields. We address 

the following research questions for arable farmers in the Netherlands: 

1. Which beliefs form farmers’ attitudes, subjective norms and perceived 

behavioural controls regarding SOM and its management? 

2. How do these beliefs (Q. 1) influence the intention of farmers to increase SOM 

content? 

3. How does actual behaviour (use of organic inputs) correspond to farmers’ 

intention to increase SOM content? 

5.2. Materials and Methods 

A farm survey was conducted among 435 arable farmers in the Netherlands (Section 

5.2.1). Using this  survey, we first studied the underlying beliefs of attitude, subjective 

norm and perceived behavioural control of Dutch farmers regarding SOM and its 

management (Section 5.2.2). Second, we related these beliefs to farmers’ intention to 

increase SOM content (Section 5.2.3). Farmers’ intention to increase SOM content was 

then related to actual (as stated by respondent) use of organic inputs (Section 5.2.4). 

Finally, perceived change in SOM was related to perceived behavioural control, 

intentions to increase SOM content and the use of organic inputs (Section 5.2.5). 

5.2.1. Online farm survey 

An online survey was held among arable farmers in the Netherlands. We focused only 

on arable farmers because (compared to livestock farmers) arable farmers cultivate less 

grass and feedstocks and are therefore assumed to be more dependent on high soil 

fertility and related SOM content. Three groups of farmers were targeted: farmers on 

sandy soils, farmers on loam soils and farmers on clay soils (Supplementary Fig. 5.1, 

page 121). Addresses were obtained from the national agricultural census 2012 (CBS 

2012). While selecting addresses the following two criteria were used to exclude 

pensioners and hobby farmers: 1) year of birth after 1947 and 2) spending more than 20 

hours labour per week to farming. In total, 4770 letters were sent to farmers with a 

personal link and password to the online questionnaire. 
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Before data analysis, two criteria were used to select only arable farmers from the 

respondents (following Andersen et al. 2007): 1) more than 2/3 of the monetary value 

of agricultural outputs from arable crops; and 2) less than 50% of farm land was 

grassland (either temporary or permanent). In addition, farmers with less than 10 ha of 

land or having peat soils (either reporting peat soils and/ or more than 12% SOM on 

average across all fields) were also excluded from data analysis. 

Each farmer was asked to provide information on age, gender, farm size (ha), crop 

rotation, soil texture and average SOM content. To reduce errors, farmers could leave 

certain questions unanswered (for example due to confidentiality of crop rotation or 

manure application). In those cases, only filled sections were used in the data analysis. 

Economic farm sizes (expressed in the monetary value of agricultural output at farm-

gate price) were calculated using farm activities (e.g. crops cultivated, ha) and Standard 

Output (SO) coefficients for the Netherlands (Eurostat 2013). Economic intensity of 

each farm was calculated by dividing economic farm size by farm ha (and thus expressed 

in €/ha). In addition, farmers were asked to indicate which type of organic inputs they 

used and how much. 

5.2.2. Finding underlying beliefs of attitude, subjective norm and perceived 

behavioural control regarding SOM and its management 

Farmers’ attitude 

A literature review revealed nine outcomes that SOM may have for soil properties, 

processes and functions in arable farming: improved soil structure, rooting, workability, 

water holding capacity, soil life, nutrient release, nutrient binding capacity, soil fungi 

and productivity (Allison 1973; Gregorich et al. 1994; Johnston et al. 2009; Murphy 

2014). 

For each outcome (N = 9, Table 5.1), farmers were asked to rate its probability of 

occurrence on a Likert scale from not very likely (1) to very likely (5). For instance, 

farmers were asked to rate the likelihood that SOM improves workability of their soil. 

This is called the belief strength. Farmers were also asked to evaluate each outcome. In 

the same example, farmers were asked to evaluate workability from negative (1) to 

positive (5). This is called the outcome valuation. Outcome valuations were lowered by 

three points to give a negative to positive scaling (-2 to +2). 

For each farmer, an attitude on each outcome (i) was found by multiplying belief 

strength with outcome valuation (Equation 5.1). Consequently, attitude values ranged 



Farmers’ beliefs on SOM 

 

101 

 

between -10 and +10. Mean attitude values for each outcome were found by taking the 

average across all farmers. 

𝑎𝑡𝑡𝑖𝑡𝑢𝑑𝑒𝑖 = 𝑏𝑒𝑙𝑖𝑒𝑓 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑖 ∗ (𝑜𝑢𝑡𝑐𝑜𝑚𝑒 𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛𝑖 − 3)                                                                (5.1) 

 

Table 5. 1: Expected outcomes of increasing SOM content, farmers’ referents and control factors included in the 

farm survey. For each factor, two types of scales were used, scale 1 and scale 2. Scores on these respective scales 

were multiplied to find farmers’ attitudes, subjective norm and perceived behavioural control on increasing SOM 

content, following Equations 5.1 to5. 3. 

  Scale 1 Scale 2 

A. Outcomes Belief strength Outcome valuation 

Improved soil structure not likely (1) - likely (5) bad (-2) to good (+2) 

Easy rooting not likely (1) - likely (5) bad (-2) to good (+2) 

Increased productivity not likely (1) - likely (5) bad (-2) to good (+2) 

Improved workability not likely (1) - likely (5) bad (-2) to good (+2) 

Increased water holding capacity not likely (1) - likely (5) bad (-2) to good (+2) 

More soil life not likely (1) - likely (5) bad (-2) to good (+2) 

Continuous nutrient release not likely (1) - likely (5) bad (-2) to good (+2) 

Increased binding capacity of 

nutrients not likely (1) - likely (5) bad (-2) to good (+2) 

Increase in fungi not likely (1) - likely (5) bad (-2) to good (+2) 

B. Referents Normative belief Motivation to comply 

Advisors negative (-2) to positive (+2) none (1) to very much (5) 

Research negative (-2) to positive (+2) none (1) to very much (5) 

Magazines negative (-2) to positive (+2) none (1) to very much (5) 

Study clubs negative (-2) to positive (+2) none (1) to very much (5) 

Fellow farmers negative (-2) to positive (+2) none (1) to very much (5) 

C. Control factors Control strength Control power 

Effects of SOM are long term instead 

of short term none (1) to very much (5) negative (-2) to positive (+2) 

Costs of organic inputs none (1) to very much (5) negative (-2) to positive (+2) 

Availability of organic inputs none (1) to very much (5) negative (-2) to positive (+2) 

Crop rotation with specialized crops
1
 none (1) to very much (5) negative (-2) to positive (+2) 

Dutch Manure and Fertiliser Act none (1) to very much (5) negative (-2) to positive (+2) 

Usually, overall attitude of farmers is calculated as the sum of the attitude values for the 

separate outcomes. In this study however, we aimed for consistency in scales between 

categories by keeping all scales between -10 to +10. Therefore, the mean attitude value 

of all outcomes was taken as a proxy for overall attitude (which had no further 

consequences in data analysis except for improving readability of tables). 

                                              
1 In the Dutch questionnaire the term ‘hakvruchten’ was used. This category of crops includes potatoes, sugar 

beets, carrots, onions and other vegetables 
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Farmers were not only asked to rate specific outcomes of SOM (such as improved water 

holding capacity or nutrient binding capacity), but also to rate the overall effect of SOM 

on crop productivity as a more general term (thus bypassing any presumed mechanisms 

of contribution to crop yields). To assess how the perceived specific outcomes of SOM 

are related to perceived effect of SOM on productivity as a general term, a correlation 

analysis was done using a Spearman correlation (Kendall 1948). 

Farmers’ subjective norm 

As part of the CATCH-C project, a series of open interviews revealed five social 

referents to be most important for arable farmers in the Netherlands, being: advisors, 

research, magazines, study clubs and fellow farmers (Pronk et al. 2014). These five 

referents were included in our questionnaire. For each referent (N = 5, Table 5.1), 

farmers were asked if they thought the referent had a negative or positive view on 

increasing SOM. For example, farmers were asked if they thought agricultural advisors 

are positive on increasing SOM (1 to 5). This is called the normative belief of farmers’ 

referents on SOM. For each social referent, farmers were also asked how motivated they 

are to comply with the referents’ view. For example, farmers were asked how motivated 

they are to comply with the opinion of fellow farmers (1 to 5). This is called the farmers’ 

motivation to comply. 

For each farmer, subjective norm for each social referent (k) was found by multiplying 

normative belief with the motivation to comply (Equation 5.2). Normative beliefs were 

lowered by three points to give a negative to positive scaling (-2 to +2). This resulted in 

a subjective norm value for each referent for each farmer between -10 and +10. Mean 

values of subjective norm for each referent were found by taking the average value of 

the farmers in the survey. Means of all subjective norm scores (N=5, see Table 5.1) were 

taken as a proxy for overall subjective norm. 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑛𝑜𝑟𝑚 𝑘 = 𝑚𝑜𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑐𝑜𝑚𝑝𝑙𝑦𝑘 ∗ (𝑛𝑜𝑟𝑚𝑎𝑡𝑖𝑣𝑒 𝑏𝑒𝑙𝑖𝑒𝑓𝑘 − 3)                                    (5.2) 

Farmers’ perceived behavioural control 

Perceived behavioural control of farmers on increasing SOM content was assessed using 

five control factors: the long-term effect of SOM, costs of organic inputs, availability of 

organic inputs, cultivation of specialized crops and the Dutch Manure and Fertiliser Act. 

For each control factor (N =  5, Table 5.1), farmers were asked how strongly they 

thought the factor was applicable to them. For example, farmers were asked if 

availability of organic inputs was limited in their region on a scale from 1 to 5. This is 
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called the control strength. For each control factor, farmers were also asked to what 

extent they thought the control factor hampers increasing SOM content. For example, 

farmers were asked if they thought limited availability prevents increasing SOM on a 

scale from 1 to 5. This is called the control power. 

For each farmer, perceived behavioural control of each control factor (m) was found  by 

multiplying control strength with control power (Equation 5.3). Values for control 

power were lowered by three points to obtain a negative to positive scaling (-2 to +2). 

This resulted in a value for perceived behavioural control for each control factor for each 

farmer between -10 and +10. Mean values were found by taking the average score of all 

farmers in the survey. Means of all values for perceived behavioural control (N=5, see 

Table 5.1) were taken as a proxy for overall perceived behavioural control. 

𝑝𝑒𝑟𝑐𝑒𝑖𝑣𝑒𝑑 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟𝑎𝑙 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑚 = 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝑚 ∗ (𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑝𝑜𝑤𝑒𝑟𝑚 − 3)                    (5.3)  

Dependency of farmers’ beliefs on farm characteristics 

Statistical tests were done to assess if beliefs of attitude, subjective norm and perceived 

behavioural control were dependent on certain farm characteristics such as soil texture, 

age, farm size or farm intensity. Farms and farmers were classified according to their 

age, soil texture, farm size and farm intensity. For soil texture, the dominant soil texture 

present on a farm (largest share of farm land being either sand, loam or clay) was chosen 

as an indicator. When constructing classes based on continuous variables (such as age 

or farm intensity), farmers were divided into three equally sized groups (N = 145) where 

possible. 

For each class, means of beliefs were calculated and a test of significant difference was 

done using a Kruskal-Wallis rank sum test (McDonald 2009). If a significant difference 

was found, pairwise comparisons were done using the Conover-Iman test (Holm, 1979) 

to find which group means actually differed (e.g. whether attitudes of farmers on the 

effect of SOM on water holding capacity on clay soils differed from those farmers on 

loam soils or farmers on sandy soils or both). 

5.2.3. Testing correlations between underlying beliefs and farmers’ 

intention to increase SOM 

Farmers were asked to indicate their intention to increase SOM content on a Likert scale 

from low (1) to high (5). Correlations were tested between intention to increase SOM 

content and stated beliefs on outcomes, referents and control factors. In addition, 
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correlation tests were done between farmers’ intention to increase SOM content and 

calculated values of attitude, subjective norm and perceived behavioural control using 

Spearman’s rank correlation test (Kendall 1948). 

5.2.4. Testing correlations between farmers’ intention to increase SOM 

content and (stated) use of organic inputs 

Farmers were asked to report their use of organic inputs, such as compost, slurry, 

farmyard manure (FYM) and the incorporation of straw. Fresh weight quantities as 

reported by farmers were converted to total carbon (C) and effective C content (see for 

conversion coefficients Supplementary Table 5.1, page 122). To calculate effective C, 

humification coefficients were used indicating the remaining fraction of residues which 

is still present in the soil after one year (Wolf & Janssen 1991). This conversion allowed 

for the calculation of  an annual input of organic inputs expressed in total C and effective 

C per ha, which we refer to as ‘actual organic input’. Following, farmers’ intentions to 

increase SOM were correlated with their annual organic input.  

5.2.5. Testing correlations between perceived change in SOM, perceived 

behavioural control, intentions to increase SOM and use of organic 

inputs 

Farmers were asked to state whether SOM content of  their fields showed an increasing 

or decreasing trend, on a scale from 1 to 5. This perceived trend was correlated with 

actual organic input (as defined above), farmers’ intentions to increase SOM and the use 

of organic inputs. All correlations were tested using Spearman’s rank correlation test. 

5.3. Results 

5.3.1. Farm and Farmers’ characteristics and actual use of organic inputs 

Of the 4770 farmers who were sent an invitation, 542 farmers filled out the section of 

the survey that dealt with SOM. Of these farmers, 501 were confirmed to be arable 

farmers (more than 2/3 of the Standard Output (SO) comes from arable crops and less 

than 50% of farm land is grassland). Of these 501 farmers, 10 were excluded from 

analysis because their farm size was smaller than 10 ha. Another 52 farmers were 

excluded because they either reported to farm peat soils or have an average SOM content 

above 12%. Four farmers were removed because their stated application of organic 
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inputs seemed unreasonably high (more than two times the legally permitted N 

application), which we interpreted as typographical error. As a result, 435 farmers were 

included in the analysis. 

 

Fig 5. 2: Characteristics of farmers in the farm survey (N = 435). Land use categories: Cereals indicates more 

than 50% of farm land is cultivated with cereals such as wheat, barley, rye, oat, triticale and/or grass. Specialized 

land use indicates more than 50% of farm land is cultivated with specialized crops such as potatoes, sugar beets, 

carrots, onions. Mixed land use means none of both categories is present on more than 50% of farm land. 
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Mean age of farmers included in the analysis was 48.8 years old, with median age 

exactly 50 years (Fig. 5.2a). Farmers in our survey were some years younger compared 

to the entire  population of Dutch farmers, for which mean age was 55 years in 2012 

(Voskuilen et al. 2013). The difference in age can at least partly be attributed to our 

criteria used for address selection (only farmers born after 1947 were included). 

Farm size can be expressed in ha or monetary values, for example by using the monetary 

value of agricultural output at farm-gate price (SO). Mean farm size of the farmers 

included in the analysis was 79.4 ha (Fig. 5.2c), which was larger than the mean farm 

size of Dutch arable farmers in the same year (57.2 ha according to CBS (2017), 

excluding farms SO < € 25,000). Mean economic farm size was € 238,924 (Fig. 5.2d), 

which was also larger than mean economic farm size of Dutch arable farmers in 2013 

(€ 187,700 according to CBS (2017), excluding farms SO < € 25,000). 

Mean reported SOM contents of farms was 3.61% SOM (Fig.5.2e), which is very similar 

to mean SOM content of Dutch arable farms on mineral soils in the last decades (around 

20 g C/kg soil in the upper 25 cm, or approximately 3.5% SOM, as reported by 

Reijneveld (2013). Most farmers cultivated specialized crops (such as potatoes, sugar 

beets or onions) on more than half of their land (Fig.5.2h). 

Most farmers (N = 409) also provided information on their use of organic inputs (Fig. 

5.3). The majority of the farmers (around 87%) cultivated green manures on some parts 

of their land, but exact percentages of farm land cultivated with green manures differed 

widely (Fig. 5.3a). Slurry was the most often used animal manure, with 81% of the 

farmers using some amount of slurry (Fig. 5.3b). Most farmers did not use FYM (N = 

271), while 21 farmers used less than 1 tonne FYM per ha (together 292 farmers, Fig. 

5.3c). Most farmers did not use compost (N = 258), and 35 farmers used less than 2 

tonnes compost per ha (together 293, Fig. 5.3d). 

When grain maize or other cereals were cultivated, more than half of the farmers 

incorporated the straw, from at least sometimes up to always (Fig. 5.3e). When 

converting organic inputs into total C content, mean application was 1.35 tonne 

C/ha/year (+ 0.06 - 95% Confidence Interval [CI], Fig. 5.3f). When converting organic 

inputs into effective C content, mean application was 0.57 tonne effective C/ha/year (+ 

0.04, 95% CI, Fig. 5.3g). 
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Fig 5. 3: Use of organic inputs by farmers in the farm survey (N = 435). 
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5.3.2. Beliefs of Dutch farmers on SOM 

Farmers’ attitude 

Dutch farmers had a strong positive valuation on eight outcomes of SOM and a negative 

valuation of one outcome (the last being soil fungi, Fig 5.4b). 

 

 
Among the positive outcomes, nutrient release and nutrient binding capacity were 

considered the least strong outcomes of SOM content and were also evaluated least 

positive by Dutch arable farmers (Fig. 5.4a). At the other end of the spectrum, soil 

Fig 5. 4: Mean values of outcome strengths related to mean outcome valuations. CEC = nutrient binding 

capacity; nutrients = nutrient release. 
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structure was considered one of the strongest outcomes of SOM and was also evaluated 

most positively by Dutch arable farmers. For farmers on sandy soils, water holding 

capacity takes exactly the same position as soil structure for both outcome strength and 

valuation. For farmers on clay soil, workability takes almost the exact same position as 

soil structure for outcomes strength and valuation. 

Farmers evaluated the general term ‘soil life’ positive, but when asked specifically for 

soil fungi, this was the only outcome of SOM which was evaluated negatively (Fig. 

5.4c). The perceived strength of SOM causing soil fungi was however much weaker 

than the strength of the other perceived outcomes (2.6-2.8 and.4.3-4.9 respectively).  

Combining outcome strengths and valuations into attitude scores, farmers with different 

soil textures had a significantly different attitude on a number of outcomes from SOM. 

These outcomes were: workability, productivity, water holding capacity, nutrient 

binding capacity and soil fungi (Table 5.2).  

Table 5. 2: Attitudes on SOM (calculated using Equation 5.1). Farmers are grouped  by the dominant soil texture 

of their farm. Letters indicate a significant difference within one column between outcome scores. * indicates a 

significant difference between at least two outcome scores within one row (using the post hoc Conover-Iman test). 

 Sand (N = 147) Loam (N = 98) Clay (N = 190) 

 

Attitude 

(-10 to +10) Rank 

Attitude 

(-10 to +10) Rank 

Attitude 

(-10 to +10) Rank 

Improved soil structure 8.76ab 3 9.17a 1 9.12a 1 

Easy rooting 8.54bc 4 8.92ab 2 8.61b 3 

Improved workability 7.99cd* 6 8.70ab* 3 9.08a* 2 

Increased productivity 8.83a* 1 8.62c* 4 8.30c* 4 

Increased water holding capacity 8.78ab* 2 7.99c* 6 8.04bc* 6 

More soil life 8.44abc 5 8.10bc 5 8.07bc 5 

Continuous nutrient release 6.64e 8 7.36d 7 6.87d 7 

Increased binding capacity of 

nutrients 7.70d* 7 5.87e* 8 6.68d* 8 

Increase in soil fungi         -3.19f* 9         -2.50f* 9         -2.44e* 9 

MEAN 6.94  6.91  6.93  

Despite these differences in attitude for specific benefits of SOM, mean attitudes on the 

overall benefit of SOM did not vary significantly between soil textures (mean attitude 

scores vary non-significantly between 6.90 and 6.96). This shows that farmers across 

different soil textures appreciated the effects of SOM content equally, but for different 

reasons. On sandy soils, farmers valued the effect of SOM content on productivity, water 

holding capacity and soil structure the most. On loam and clay soils, farmers valued the 

effect of SOM content on soil structure, ease of rooting and workability the most. 
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How are the perceived effects of SOM on specific soil characteristics related to 

perceived effects of SOM on crop productivity? On sandy and clay soils correlations 

were overall highest (Fig. 5.5). On sandy soils, perceived effects of SOM on crop 

productivity was strongest correlated with perceived effects of SOM on continuous 

nutrient release and water holding capacity (Spearman’s rho > 0.5). On clay soils, 

perceived effects of SOM on crop productivity was strongest correlated with perceived 

effects of SOM on ease of rooting and soil life.(Spearman’s rho > 0.5). On loam soils, 

perceived effects of SOM crop productivity was strongest correlated with perceived 

effect of SOM on ease of rooting (Spearman’s rho > 0.5). 

 

 

Fig 5. 5: Correlations between perceived effect of SOM on specific soil characteristics and perceived effects of 

SOM on productivity, using Spearman’s rank correlation test. Numbers indicate Spearman’s rho. Stars show 

confidence level of correlation coefficients (* means P<0.05. ** means P<0.01).  

Farmers’ subjective norm 

Considering the subjective norm of Dutch arable farmers, there were significant 

differences dependent on the age group. The results indicate that younger farmers are 

less motivated to comply with views from the given referents (such as fellow farmers, 

research or advisors, Fig. 5.6). Overall, advisors were thought to be most positive about 

increasing SOM content, whilst fellow farmers were thought to be least positive on 

increasing SOM content. 
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On average, subjective norm of farmers to increase SOM content was positive (5.84 on 

a scale from -10 to +10). Age group had a significant effect on the subjective norm. 

Older farmers (55-65 year) had a significantly more positive overall subjective norm on 

increasing SOM content than medium age (45-55 year) or younger (18-45 year) farmers 

(6.29 vs 5.96 and 5.28 respectively, Table 5.3). 

Table 5. 3: Subjective norm on SOM (calculated using Equation 5.2). Farmers are classified according to their 

age. Letters indicate a significant difference within one column between referent scores. * indicate a significant 

difference between at least two referent scores within one row (using the post hoc Conover-Iman test). 

 

Young 18-45 yr 

(N = 124) 

Middle 45-55 yr 

(N = 176) 

Old 55-65 yr 

(N = 131) 

 

Subjective norm 

(-10 to +10) Rank 

Subjective norm 

(-10 to +10) Rank 

Subjective norm 

(-10 to +10) Rank 

Advisors 6.25a 1 6.80a 1 6.75ab 2 

Research 5.06b* 3 6.27ab* 2 6.83a* 1 

Study club 5.41b* 2 5.94b* 4 6.23b* 4 

Magazines 4.85b* 4 6.03b* 3 6.55ab* 3 

Fellow farmers 4.81b 5 4.74c 5 5.07c 5 

MEAN 5.28*  5.96*  6.29*  

Fig 5. 6: Mean values of normative belief related to mean motivation to comply with referents. Shapes indicate 

age groups of farmers. 
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Farmers’ perceived behavioural control  

Considering the perceived behavioural control of Dutch arable farmers, the long-term 

effect of SOM was evaluated as the factor with the highest control strength and valuated 

most positively (Fig. 5.7). Availability and costs of organic inputs were considered more 

or less neutral in control power, while Dutch law on manure and fertiliser use (The 

Dutch Manure and Fertiliser Act) and crop rotations were considered to have a negative 

influence on SOM management. 

 

 

There were some significant differences in perceived behavioural control, depending on 

farm intensity (€/ha). Farmers with high intensive farms were most positive on the long-

term effect of SOM content. Farmers with medium intensive farms were most negative 

on the costs of organic inputs. Farmers with low intensive farms were least negative on 

the effects of specialized crops on the management of SOM. Overall perceived 

behavioural control was not significantly different across farm intensities (Table 5.4). 

For low, medium and high intensive farms, control factors had exactly the same ranking 

in order of relevance. For all farm intensities, the Dutch Manure and Fertiliser Act was 

considered the most hampering factor, followed by crop rotations with specialized 

crops.  

Fig 5. 7: Mean values of control strength related to control power. Crop rotation = crop rotation with specialized 

crops. Law = Dutch Manure and Fertiliser Act. Shapes indicate farm intensity. 

 



Farmers’ beliefs on SOM 

 

113 

 

Table 5. 4: Perceived behavioural control on SOM content by farmers (calculated using Equation 5.3). Farmers 

were divided into equally sized groups according to their farm intensity. Low intensive farms: < 2273.4 €/ha. 

Medium intensive farms: 2273.4 -  3062.4 €/ha. High intensive farms: > 3062.4 4 €/ha. A different uppercase letter 

indicates a significant difference within one column between control factors. * indicates a significant difference 

between at least two values for perceived behavioural control within one row (using the post hoc Conover-Iman 

test). 

 

Low intensive farms 

(N = 144) 

Medium intensive farms 

(N = 144) 

High intensive 

farms 

(N = 143) 

 

Perceived 

behavioural 

Control 

(-10 to +10) Rank 

Perceived 

behavioural 

control 

(-10 to +10) Rank 

Perceived 

behavioural 

Control 

(-10 to +10) 

R

a

n

k 

Effects of SOM are long term 

instead of short term  4.00d* 1  4.13d* 1  5.00d* 1 

Costs of organic inputs  0.35c* 2 -0.10c* 2  0.91c* 2 

Availability of organic inputs -0.19c 3 -0.24c 3  0.16c 3 

Crop rotations with specialized 

crops 

             -

1.24b* 4 

             -

1.90b* 4 

             -

2.84b* 4 

Dutch Manure and Fertiliser Act -4.61a 5 -4.80a 5 -4.81a 5 

MEAN -0.34  -0.58  -0.31  

5.3.3. Correlations between farmers’ beliefs and farmers’ intention to 

increase SOM 

Most Dutch farmers who participated in the survey stated an intention to increase SOM 

content (90.1%). On a scale from 1 to 5, 71.9% gave a 5 and 18.2% a 4. Only 2.5% of 

the farmers did not want to increase SOM content of their fields (indicating either 1 or 

2 on a scale of 5) and 7.4% of the farmers was neutral (indicating a 3). 

In the previous sections, underlying beliefs of Dutch arable farmers on SOM were 

assessed. How are these underlying beliefs related to farmers’ intention to increase SOM 

content? Almost all beliefs on outcomes and social referents were significantly but 

weakly related to farmers’ intentions to increase SOM content. Beliefs on control factors 

were much less related to farmers’ intentions to increase SOM content (Table 5.5)  

For outcomes, (Table 5.5a), belief strengths and outcome valuations were more or less 

equally related to farmers’ intention to increase SOM content (significant spearman 

Rho’s between 0.15 and 0.30). The strongest relation was found between perceived 

increase in crop productivity and intention to increase SOM content.  

There was a stronger correlation between normative beliefs of referents and farmers’ 

intentions to increase SOM content than between the motivations to comply with those 

referents and farmers’ intentions to increase SOM content (Table 5.5b, 0.22-0.33 vs 
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0.11-0.16). Subjective norms based on advisors and study clubs were slightly stronger 

related with intentions to increase SOM content than the subjective norms of research, 

magazines and fellow farmers. 

 

Table 5. 5: Correlations between farmers’ intentions to increase SOM content and beliefs on expected outcomes, 

referents and control factors on increasing SOM content. Tests of significance were done using Spearman’s rank 

correlation test. Numbers indicate Spearman’s rho. 

 

Correlation 

with 

intention to 

increase 

SOM P value 

Correlation 

with 

intention to 

increase 

SOM P value 

Correlation 

with 

intention to 

increase 

SOM P value 

A. Outcomes Belief strength Outcome valuation Attitude 

Improved soil structure 0.21 0.000 0.29 0.000 0.28 0.000 

Easy rooting 0.16 0.001 0.26 0.000 0.24 0.000 

Increased productivity 0.30 0.000 0.26 0.000 0.32 0.000 

Improved workability 0.22 0.000 0.15 0.002 0.18 0.000 

Increased water holding 

capacity 0.18 0.000 0.29 0.000 0.27 0.000 

More soil life 0.18 0.000 0.26 0.000 0.24 0.000 

Continuous nutrient release 0.17 0.000 0.16 0.001 0.18 0.000 

Increased binding capacity of 

nutrients 0.21 0.000 0.27 0.000 0.26 0.000 

Increase in soil fungi -0.07 0.127 0.07 0.143 0.12 0.013 

B. Referents Normative belief Motivation to comply Subjective norm 

Advisors 0.33 0.000 0.13 0.006 0.29 0.000 

Research 0.25 0.000 0.08 0.084 0.21 0.000 

Magazines 0.25 0.000 0.16 0.001 0.24 0.000 

Study clubs 0.33 0.000 0.09 0.053 0.29 0.000 

Fellow farmers 0.22 0.000 0.11 0.027 0.21 0.000 

C. Control factors Control strength Control power 

Perceived behavioural 

control 

Effects of SOM are long term 

instead of short term 0.05 0.291 0.12 0.010 0.11 0.018 

Costs of organic inputs 0.10 0.043 0.15 0.002 0.13 0.007 

Availability of organic inputs 0.07 0.177 -0.03 0.591 -0.05 0.267 

Crop rotation with specialized 

crops 0.15 0.002 -0.11 0.021 -0.13 0.008 

Dutch Manure and Fertiliser Act 0.19 0.000 -0.08 0.091 -0.06 0.212 
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Control factors were not or only weakly related with farmers’ intention to increase SOM 

content (Table 5.5c, significant numbers ranging between -0.11 to 0.19). Significant 

relations between perceived behavioural control and intentions to increase SOM content 

were only found for costs of organic inputs, long-term effects of SOM and crop rotations 

with specialized crops. This indicates that despite low availability of organic inputs or 

the restrictions of the Dutch Manure and Fertiliser Act, farmers still have the intention 

to increase SOM content. If they succeed in doing so is a different question. 

5.3.4. Correlations between farmers’ intention to increase SOM and actual 

use of organic inputs 

Comparing farmers’ intention to increase SOM content with their use of organic inputs, 

a positive correlation was found with the use of slurry and compost (p=0.044 and 

p=0.035 respectively, Table 5.6c).  

Table 5. 6: Actual use of organic inputs by farmers with different intentions to increase SOM content. For 

incorporation of straw, only farmers for which the mentioned cereal is included in their crop rotation are shown. 

P values below 0.05 indicate a significant positive trend between a intention to increase SOM and the use of an 

organic input (straw - spearman rank correlation test, all others - Jonckheere-Terpstra trend test). 

 
Intention to increase SOM (1 = low, 5 = high)  

  
1 

(N=2) 

2 

(N=7) 

3 

(N=31) 

4 

(N=75) 

5 

(N=290) p  

A. Green manures 
     

 

Percentage farm land with green manures 24% 34% 20% 33% 33% 0.079 
       

B. Straw       

Grain maize (never/sometimes/always) N = 99 0/1/0 0/1/0 4/6/0 6/9/3 40/23/6 0.11 

Other cereals (no/sometimes/yes) N = 390 0/1/1 3/0/5 17/5/8 
28/20/2

5 

82/81/11

4 
0.06 

Rapeseed(no/sometimes/yes) N = 63 0/1/0 0/1/0 1/10/1 0/9/2 4/32/2 0.81 
       

C. Off-farm       

Slurry application (t/ha) 3.00 6.70 10.71 11.86 12.56 0.044 

FYM application (t/ha) 3.41 0.73 1.52 1.06 1.15 0.555 

Compost application (t/ha) 0.00 0.00 1.39 1.80 2.09 0.035 
       

D. Total       

Total C added (t/ha) 1.16 1.09 1.04 1.33 1.40 0.003 

Effective C added (t/ha) 0.43 0.35 0.45 0.55 0.60 0.002 
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When converting all organic inputs into total C added or total effective C added (Table 

5.6d), in both cases application amounts increased with higher intentions to increase 

SOM content (p=0.003 and p=0.002 respectively). 

5.3.5. Correlations between perceived change in SOM, perceived 

behavioural control, intentions to increase SOM and use of organic 

inputs  

Farmers also indicated if SOM contents on their farm increased or decreased. Asked if 

SOM content was decreasing on their farms, on a scale from 1 to 5, only 1% indicated 

a 5 (meaning large decrease of SOM content). Following, 11% of the farmers indicated 

to perceive some decrease. Around one third (33.6%) of the farmers gave a neutral 

indication, while the majority (55% of the farmers) indicated a 1 or a 2, meaning that 

the SOM content of their farms was stable or increasing.  

Perceived change in SOM content was significantly related to the perceived behavioural 

control of farmers (Table 5.7, significant numbers ranging between -0.22 and 0.25). 

Among the different control factors, perceiving the Dutch Manure and Fertiliser Act as 

a strong obstacle was strongest related with perceived trends in SOM content. 

Table 5. 7: Correlations between farmers’ beliefs on control factors and perceived increase in SOM content. Tests 

of significance are done using Spearman’s rank correlation test. Numbers indicate Spearman’s rho. 

 

Correlation 

with 

perceived 

increase in 

SOM P value 

Correlation 

with 

perceived 

increase in 

SOM P value 

Correlatio

n with 

perceived 

increase in 

SOM P value 

Control factors 
Control strength Control power 

Perceived behavioural 

control 

Effects of SOM are long term 

instead of short term 0.04 0.392 0.21 0.000 0.17 0.000 

Costs of organic inputs -0.11 0.021 0.11 0.024 0.11 0.024 

Availability of organic inputs -0.22 0.000 0.09 0.059 0.05 0.310 

Crop rotation with specialized 

crops -0.16 0.001 0.12 0.013 0.13 0.008 

Dutch Manure and Fertiliser 

Act -0.19 0.000 0.25 0.000 0.24 0.000 

No correlation was found between the use of organic inputs and perceived increase in 

SOM (Fig. 5.8). This might be due to the time it takes before organic inputs have an 

effect on SOM content and thus before any change will be perceived by the farmers (for 
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example through soil analyses) - this can take decades. At the same time, the lack of 

correlation also illustrates how difficult it can be for farmers to increase SOM content.  

There was a weak but significant negative correlation between perceived increase in 

SOM and the intention to increase SOM content (Spearman’s Rho -0.16). The more 

SOM content was perceived to decrease, the higher was farmers’ intention to increase 

SOM content. Thus, a perceived decrease in SOM content can lead to a higher intention 

to increase SOM content, which again can lead to an increase in the use of organic inputs 

(Fig. 5.8). In addition, a significant correlation was found between perceived 

behavioural control and perceived increase (or decrease) of SOM content, highlighting 

the apparent importance of control factors on the long term. 

 

 

 

5.4. Discussion 

The 435 Dutch arable farmers included in the analysis of this study were somewhat 

younger and had larger farms (both in total land area cultivated and economic size) than 

average Dutch arable farmers. The differences were however small. In addition, SOM 

contents of farmers’ soils corresponded very well with the average for the Netherlands 

Fig 5. 8: Correlations between farmers’ attitude, subjective norm, perceived behavioural control, intention to 

increase SOM and perceived increase of SOM using Spearman’s rank correlation test. Numbers in circles 

indicate mean values. Numbers besides arrows give correlation coefficients (Spearman’s rho). Numbers at top of 

figure indicate potential ranges. Dotted lines indicate relations with no significant correlation. Stars show 

confidence level of correlation coefficients (* means P<0.05. ** means P<0.01 
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(3.6 vs 3.5% SOM). The outcomes of this study could therefore be considered 

representative for the larger population of Dutch arable farmers. 

In the Netherlands, farmers usually have sufficient access to mineral fertilisers (Eurostat 

2012; Potter et al. 2010). It is therefore not surprising that Dutch farmers value nutrient 

release and nutrient binding capacity of SOM the least (Table 5.2 and Fig. 5.4): they do 

not primarily rely on these functions of SOM for crop production. Farmers value the 

effect of SOM content on soil structure more, especially where it improves workability 

on clay soils and water holding capacity on sandy soils. In this respect, farmers’ views 

align well with findings from field experiments (Barzegar et al. 2002; Hamza & 

Anderson 2005; Rawls et al. 2003; Soane 1990; Watts & Dexter 1997). 

Farmers with a higher intention to increase SOM content used significantly more 

compost and slurry (P=0.035 and 0.044 respectively) and applied significantly more 

total C and effective C to their soils (P=0.003 and 0.002 respectively). We however 

found that the use of organic inputs was not directly related to a perceived increase in 

SOM content. Increasing SOM content by using organic inputs often takes many years 

or even decades (Körschens et al. 2013), which could be one explanation for this lack 

of correlation. 

Comparing farm intensities, farmers with high intensive farms (with the highest 

economic output per ha), value the long-term effect of SOM more than medium or low 

intensive farms and see the costs of organic inputs as less of a constraint (Table 5.4). At 

the same time, farmers with more intensive farms cultivate more specialized crops 

(including root and tuber crops), which makes it more difficult for them to increase SOM 

content. This can be an additional challenge considering root and tuber crops depend 

more on a good soil structure for successful crop growth than cereals (Verheijen 2005b). 

Over the past decades, the ratio of gross margins between specialized crops and cereals 

has gone up (KWIN 2015), thereby making crop rotations with higher shares of cereals 

economically challenging. 

Comparing age groups, younger farmers were less motivated to comply with social 

referents than older farmers, especially when it comes to messages received from 

research, farmers’ magazines and study clubs (Fig. 5.6). In general, advisors were 

perceived to be most positive about increasing SOM content, especially compared with 

fellow farmers, who were perceived to be the least positive.  
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This study looked specifically at farmers’ beliefs in increasing SOM content in the 

Netherlands. In the Netherlands there is a large supply of animal manure due to the 

presence of a relatively large livestock sector (Oenema & Berentsen 2004), making this 

a relatively cheap source of nutrients. In addition, costs of fertilizers are low relative to 

land prices in the Netherlands. Therefore, in other countries nutrient supply of SOM and 

costs of organic inputs might play a larger role. 

5.5. Conclusion 

Using the theory of planned behaviour, this study has gained insight into the underlying 

beliefs of farmers to increase SOM content. We found that Dutch arable farmers are well 

aware of the benefits of SOM. Most Dutch farmers also have a positive subjective norm 

on SOM (rating 5.84 on a scale from -10 to +10). Advisors seem most positive on 

increasing SOM content, whilst Dutch arable farmers are most motivated to comply with 

findings from research.  

Farmers’ attitude, subjective norm and perceived decrease in SOM content were  

significantly related to their intention to increase SOM content (Fig. 5.8). In our farm 

survey, this intention was very strong: 90.1% of the farmers stated a high or very high 

intention to increase SOM content of their fields.  

In contrast, perceived behavioural control had no significant correlation with farmers’ 

intention to increase SOM content. Perceived behavioural control did have a significant 

positive correlation with perceived increase in SOM content. From a farmers point of 

view, this indicates that increase of SOM content is to a large degree beyond their direct 

influence. Important impeding factors on SOM management were found to be the Dutch 

Manure and Fertiliser Act and need for crop rotations with specialized crops.  

Currently, Dutch and European laws on manure and fertiliser use mainly focus on 

reducing nutrient leaching to surface waters, not necessarily enhancing organic matter 

applications. There is however potential to re-use organic wastes with low nutrient 

contents to arable land (van der Kolk & Zwart 2013). Meyer-Kohlstock et al. (2015) 

recently found that only one third of biowaste is used as compost in Europe. 

International policies to increase SOM content could therefore start by investigating 

how the availability of organic inputs can be increased by facilitating the use of organic 

wastes. Meyer-Kohlstock et al. (2015) recommend setting recycling targets and 

implementation of collection systems. In addition, incentives are needed for farmers to 
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cultivate crops in a more balanced crop rotation, i.e. a higher share of cereals or other 

crops which are beneficial for SOM content. 
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Soil texture map of the Netherlands 

 

  
Supplementary Fig. 5. 1: Soil texture map of the Netherlands. Sampling area for this study includes farmers on 

sand, loam and clay soils. Figure is adapted from the Dutch soil map (WUR-Alterra, 2006). 
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Conversion coefficients for C and effective C contents of organic inputs 

 

Supplementary Table 5. 1: Conversion coefficients for calculating total and effective C content of organic inputs. 

If estimates of biomass or C content are based on multiple literature sources, averages are taken. Where 

information was absent, carbon content of dry organic plant material is assumed to be 0.425 tonne C per tonne 

dry organic matter (Janssen, 2002). FM = Fresh matter.  
Conversion coefficients Comments References 

On-farm 

Total C 

(tonnes 

C/ha) 

Effective C 

(tonnes effective 

C/ha) 

 
 

Green manures  1.28 0.34 For each ha 

cultivated with 

green manures 

(De Jonge 1981 as cited by 

Dekker et al. 2004; Florentín 

2011; Timmer et al. 2004) 

Straw from maize  1.60 0.57 For each ha 

cultivated with 

maize, when 

incorporated 

On biomass estimates:  

(LNE 2009) 

On straw to grain ratios:(De 

Jonge 1981 as cited by Dekker et 

al. 2004; Fleischer et al. 1989; Lal 

1995) 

Straw from other 

cereals (such as 

wheat, barley, rye, 

oat, triticale) 

1.63 0.54 For each ha 

cultivated with 

cereals, when 

incorporated 

On biomass estimates: 

(KWIN 2015; LNE 2009) 

On straw to grain ratios: 

(Bauder 2000; De Jonge 1981 as 

cited by Dekker et al. 2004; Lal 

1995) 

Straw from 

rapeseed 

1.15 0.40 For each ha 

cultivated with 

rapeseed, 

when 

incorporated 

On biomass estimates:  

(KWIN 2015) 

On straw to grain ratios:  

(De Jonge 1981 as cited by 

Dekker et al. 2004; Lal 1995) 

 
   

 

Off-farm 

(tonne 

C/tonne FM 

organic 

input) 

(tonne effective 

C /tonne FM 

organic input) 

 

 
Slurry  0.03 0.011  (CBAV 2017; de Vries 2014; 

LNE 2009; Pronk & Korevaar 

2008) 

FYM  0.08 0.044  (De Jonge 1981 as cited by CBAV 

2017; De Vries et al. 2012; 

Dekker et al. 2004; LNE 2009; 

Pronk & Korevaar 2008) 

Compost  0.10 0.093  (De Jong 1981 as cited by CBAV 

2017; Dekker et al. 2004; LNE 

2009; Pronk & Korevaar 2008) 

 

 

 



Perceived deficiency of SOM 

 

123 

 

Chapter 6 

 

Do farmers perceive a deficiency of soil organic matter? A European and farm 

level analysis 

Renske Hijbeek1, Anouk Cormont2, Gerard Hazeu3, Luca Bechini4, Laura Zavattaro5, 

Bert Janssen1, Magdalena Werner6, Norman Schlatter7, Gema Guzmán8, Jo Bijttebier9, 

Annette A. Pronk10, Michiel van Eupen2, Martin K. van Ittersum1 

1Plant Production Systems, Wageningen Plant Research, Wageningen University and 

Research, the Netherlands 

2Earth informatics, Wageningen Environmental Research, Wageningen University and 

Research, the Netherlands 

3Spatial Knowledge Systems, Wageningen Environmental Research, Wageningen 

University and Research, the Netherlands 

4Department of Agricultural and Environmental Sciences, Università degli Studi di 

Milano, Italy 

5Department of Agricultural Forest and Food Sciences, Università degli Studi di Torino, 

Italy 

6Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Germany 

7Department for Soil Health and Plant Nutrition, Austrian Agency for Health and Food 

Safety, Austria. 

8Department of Agronomy, University of Cordoba, Spain 

9Flanders research institute for agriculture, fisheries and food, Belgium 

10Agrosystems Research, Wageningen University and Research, the Netherlands 

 

Ecological Indicators (2017) 83: 390–403 

 

  



Chapter 6 

 

124 

 

Abstract 

Agricultural soils with too little soil organic matter (SOM) content are characterized by 

fertility problems. A number of authors have tried to specify threshold values for SOM 

content to indicate what is ‘too little’, ranging from 1 to 5%, below which yields may 

be affected. How much SOM content is sufficient, however, depends on a number of 

environmental factors. In addition, up to date farmers’ perceptions were not included 

when developing thresholds. Therefore, this study focuses on the following three 

objectives: (1) to put forward a risk indicator for SOM deficiency based on 

environmental factors and agricultural land use; (2) to test the risk indicator using 

farmers’ perceptions and (3) to establish threshold values for SOM content based on 

farmers’ perceptions.  

For objective 1, literature was reviewed on effects of environmental factors and land use 

on SOM deficiency. Findings were combined into nine options for a risk indicator on 

SOM deficiency, mapped at European scale. For objective 2, a farm survey was done 

among 1452 arable farmers in five European countries (Belgium, Germany, Austria, 

Spain and Italy). Associations between perceived deficiency of SOM by farmers and 

environmental factors, land use and the risk indicator were investigated. For objective 

3, farmers’ perceptions on SOM deficiency were related to the average SOM content of 

their fields.  

Mapping the risk indicator at European scale gives a high to very high risk of SOM 

deficiency for 7 to 37% of European agricultural land, mainly located in Southern and 

Eastern Europe. Of the farmers in our survey, 18% perceived a high to very high SOM 

deficiency. A weak correlation was found between the risk indicator and farmers’ 

perceptions of SOM deficiency (0.15-0.18, Spearman’s rank correlation). Stronger 

relations were found between separate environmental factors and perceived SOM 

deficiency. Apparently, having a more extreme environmental condition for one factor 

gives a higher chance of perceiving a deficiency of SOM than a combination of 

moderate environmental conditions. Based on farmers’ perceptions threshold intervals 

for SOM content were established (sand: 1.2–4.7%, loam: 0.6–2.6% and clay: 1.0–

2.4%).  

If policies on SOM management want to include benefits for crop production, targeting 

areas with a relatively high risk of SOM deficiency, more extreme environmental 

conditions or with very low SOM contents (below the given threshold intervals) seems 

most promising. 
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farmers' perceptions; SOM deficiency; threshold value; critical level; land use; arable 

farming; Europe; crops; agriculture  

Abbreviations 

IQR inter-quartile range 

L lower extreme: lowest point observed within Q1 – (1.5*IQR) and Q3 + 

(1.5*IQR) 

LL lower extreme for the range of SOM contents of farmers with a low 

perceived deficiency of SOM 

LVL lower extreme for the range of SOM contents of farmers with a very low 

perceived deficiency of SOM 

Q1 first quartile 

Q3 third quartile 

SOM soil organic matter 

U upper extreme: highest point observed within Q1 – (1.5*IQR) and Q3 + 

(1.5*IQR) 

UH upper extreme of the range of SOM contents of farmers with a high 

perceived deficiency of SOM 

UVH upper extremes of the range of SOM content of farmers with a very high 

perceived deficiency of SOM 

6.1. Introduction 

Percentages of soil organic matter (SOM) in soils vary widely, from below 1% for some 

sandy soils, to almost 100% for certain peat soils (Loveland & Webb 2003). When 

pastures or forests are converted to arable land, SOM content decreases often to less 

than 10% SOM, depending on soil texture, climate, land use and management 

(Verheijen 2005b). This decrease in SOM also reduces the global carbon stock (Smith 

2004), which could be an incentive to maintain or increase SOM content in arable soils 

above certain levels, especially if this improves productive capacity.  
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SOM improves a number of soil properties relevant for productive capacity such as soil 

structure, water holding capacity and buffering of nutrients (Hudson 1994; Johnston et 

al. 2009; Oades 1984). Farming on soils with a loose soil structure, low water holding 

capacity or low availability of nutrients can generate less profit, which would be an 

incentive for farmers to maintain SOM content above certain threshold values (Gardner 

& Barrows 1985; Kimetu et al. 2008; Scrimgeour & Shepherd 1998). At the same time, 

demands for organic inputs (such as straw) are increasing with new markets for bio-

energy and renewable materials emerging (Nicholson et al. 2014).  

With a decrease in SOM content, most soil properties change along a continuum (Karlen 

et al. 2001), making it difficult to define a critical or desirable C content for farmers 

(Sparling et al. 2003). Even so, for the percentage of SOM to be a useful indicator for 

productive capacity, target values need to be specified. Sparling et al. (2003) argue in 

favour of a minimum or threshold soil C value: “below which there would be loss of 

desirable soil characteristics, productive capacity and ecological functions that were 

not readily restored within an acceptable timeframe”. This study follows this definition, 

focussing mainly on the relevance for productive capacity. With sufficient supply of 

external inputs or when target yields are low, threshold values will mostly depend on 

the contribution of SOM to stability of soil structure and related ease of cultivation 

(Janssen & De Willigen 2006).  

Setting threshold values can be an important guide for farmers to improve their 

management and for policy makers when providing farm subsidies. A number of authors 

have tried to specify minimum or threshold values for SOM for crop production (also 

called critical levels), using a range of approaches such as information from soil surveys, 

literature reviews, soil organic carbon modelling, expert opinions or a combination of 

these. Table 6.1 shows a summary of these threshold values. Often, values mentioned 

by authors are very tentative. When based on experiments, threshold values are often 

related to observed losses in aggregate stability or direct losses in yield.  

When threshold values depend on soil texture, typically higher values are given for soils 

with more clay or fine silt particles. How much SOM is needed however will probably 

not only depend on soil texture, but also on other environmental factors (such as slope 

or climate) and land use (types of crops cultivated).  
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Furthermore, none of the studies asked farmers for their views whilst farmers are the 

group of stakeholders with the longest and most practical exposure to SOM of their 

fields. 

For targeted and effective policies on SOM management, more insight is needed under 

which circumstances increases in SOM content benefit the productive capacity of soils. 

It is hereby imperative to base this insight not only on results from experimental fields, 

but also on farmers’ knowledge and perceptions. Currently, it is unclear which areas 

have a high risk of SOM deficiency for productive capacity and farmers’ knowledge has 

not been included when proposing thresholds for SOM content in agricultural soils. 

Therefore, this study focuses on the following three research objectives:  

1. To put forward  a risk indicator for SOM deficiency based on environmental 

factors and land use. 

2. To test the risk indicator using farmers’ perceptions. 

3. To establish threshold values for SOM content based on farmers’ perceptions.  

Objectives 1 and 3 give insight where policies on SOM management can increase 

productive capacities of soils, whilst objective 2 brings together farmers’ knowledge 

and existing scientific evidence. 

6.2. Methodology 

For objective 1, literature was reviewed on the influence of different environmental 

factors and land use on the relationship between SOM content and productive capacity. 

Effects of environmental factors and land use were combined into an aggregated risk 

indicator on SOM deficiency, mapped at European scale (Section 6.2.1).  

For objectives 2 and 3, a farm survey was conducted to estimate farmers’ perceptions 

on SOM deficiency of their fields. Following, farmers’ perceptions were related to 

environmental factors, land use, the combined risk indicator and the average SOM 

content of farmers’ fields (Section 6.2.2). 

6.2.1 Developing a risk indicator on SOM deficiency 

In this study, a higher risk of SOM deficiency indicates that with similar soil 

management, a farmer has an increased chance of perceiving a reduction in productive 

capacity due to low SOM contents compared to a farmer with a lower risk of SOM 
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deficiency. A reduction in productive capacity might be observed directly (e.g. lower 

yields) or indirectly (reduced workability of the soil). From this definition it follows that 

specific problems perceived by the farmer due to SOM deficiency (e.g. concerning soil 

structure) can be solved by increasing SOM content. The risk of SOM deficiency for the 

productive capacity of agricultural soils depends on environmental conditions and land 

use. In this paper, we aim to define a risk indicator on SOM deficiency with a scale from 

1 to 5. 

To develop a risk indicator on SOM deficiency (objective 1), a number of consecutive 

steps were followed. First scientific literature was reviewed to find effects of 

environmental factors and land use on the risk of SOM deficiency. Following, findings 

were used to define a risk indicator on SOM deficiency. Finally, the risk indicator on 

SOM deficiency was mapped at European scale. Each step is explained below. 

Literature review on effects of environmental factors and land use on SOM and risk of 

SOM deficiency 

Relevant environmental factors for SOM deficiency were identified based on three 

criteria: 1) The factor is not changed by human management (therefore shaping the 

context in which farmers have to operate); 2) Datasets have to be available at European 

scale; 3) Literature has to be available on how the environmental factor influences the 

relation between SOM content and productive capacity. Following these criteria, the 

following three environmental factors were selected: land slope, soil texture, and 

climate.  

Soil texture was chosen to describe soil types instead of soil taxonomy classes for a 

number of  reasons: 1) Soil classifications schemes such as the World Reference Base 

for Soil Resources (ISSS Working Group, WRB 1998) have many taxonomy classes 

(WRB has 32 main groups) which makes statistical analyses difficult. 2) We wanted to 

compare the risk indicator with farmers’ perceptions in which case we relied on farmers’ 

descriptions of soils. Farmers are more aware of their soil texture than of the scientific 

names given to their soil profiles. 3) Soil textures have more easily understandable 

relations with aggregate stability, water holding capacity and productive capacity than 

do soil classifications. 

Scientific literature was searched using online search engines (Google scholar, ISI Web 

of knowledge) to find how these different factors plus land use (types of crops 

cultivated) influence the effect of SOM content on productive capacity. Based on the 
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literature, two types of effects on the relation between SOM and productive capacity 

were identified for each environmental factor and land use: 1) a direct effect on actual 

SOM content (e.g. wetter climates slow down decomposition rates) and 2) an indirect 

effect on how likely it will be that SOM affects productive capacity (e.g. wetter climates 

give a higher chance on soil compaction which SOM might alleviate). The second effect 

illustrates that in some conditions, SOM will have a larger contribution to productive 

capacity than others. The difference between the two types of effects is schematically 

shown in Fig 6.1.  

 

Fig 6. 1: Schematic overview of two types of effects of environmental factors and land use on the relation between 

SOM and productive capacity: (1) a direct effect on actual SOM content and (2) an indirect effect on the possible 

contribution of SOM content to productive capacity. Corn figure adapted from Thomas (2010). 

In the following four paragraphs, the specific effects of each environmental factor and 

land use are described. A summary of the literature findings is given per effect type in 

Table 6.2. Often, findings were described in trends rather than precise magnitudes. 

Therefore, qualitative diagrams were drawn for each factor, showing an increase, 

decrease or parabolic curve along an environmental spectrum (Fig 6.2). 
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Slope effect 

Soils on steeper slopes often have less SOM while they would benefit more from the 

soil structural effects of SOM content and steeper slopes are more prone to erosion (Fox 

& Bryan 2000; Gregorich et al. 1998). Erosion causes a loss of soil and thus SOM, while 

SOM itself can reduce runoff by increasing porosity and enhancing aggregate stability, 

both diminishing surface sealing and promoting infiltration rates (Benito & Diaz-Fierros 

1992; Malinda 1995; Rhoton et al. 2002). Therefore, soils on steeper slopes are expected 

to have a higher risk of SOM deficiency to maintain productive capacity (Fig 6.2a) 

Soil texture effect 

SOM content improves structures of both very heavy and very light soils. Light sandy 

soils normally have a loose soil structure, which can be improved by adding organic 

inputs (Chaney & Swift 1986; Johnston et al. 2009; Tisdall & Oades 1982). SOM binds 

more easily to clay particles and therefore, on average, clay soils have a higher SOM 

content (Körschens et al. 1998; Reeves 1997; Verheijen et al. 2005). When clay soils 

are very heavy, however, they are – despite the higher SOM contents - more prone to 

soil compaction. Soil compaction causes mechanical impedance for root growth and 

inadequate aeration (Janssen & van der Weert 1977; Wiersum 1957). Increasing SOM 

contents can reduce compaction of soils (Soane 1990). Therefore, soils at both ends of 

the soil texture spectrum are expected to have a higher risk of SOM deficiency than in 

the middle (Fig 6.2b). 

Climate effect 

Soil productivity benefits from SOM in both very dry and very wet climates. For crops 

cultivated in hot and dry areas, SOM increases water holding capacity (Díaz-Zorita et 

al. 1999). In wet climates, SOM prevents soil compaction and water logging (Soane 

1990). At the same time, soils in cold and wet climates are expected to have more SOM 

content due to slower decomposition (Gonçalves & Carlyle 1994; Verheijen 2005b). 

Yet apparently, effects of reduced decomposition are often not sufficient to prevent 

compaction. Therefore, a parabolic relationship is proposed between aridity and risk of 

SOM deficiency (Fig 6.2c). 

Land use effect (types of crops cultivated) 

The type of crops a farmer cultivates (i.e. land use) has an effect on the SOM balance, 

whilst also determining the dependence on soil structure for crop growth.  
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In general, cereals and grass provide more crop residues (root, stubble, leaves) which 

can be returned to the field as organic inputs than specialized or horticultural crops (such 

as root or tuber crops, legumes or flowers (Zwart et al. 2013)).In addition, most 

specialized and horticultural crops have a less developed root system and therefore 

depend more on a better soil structure for their successful cultivation and harvesting (De 

Haan 1977; Hijbeek et al. 2017; Verheijen 2005b). Specialized and horticultural crops 

thus contribute less to the amount of SOM content whilst benefiting more from it. 

Therefore, soils with more specialized and/or horticultural crops than cereals are 

expected to have a higher risk of SOM deficiency (Fig 6.2d). 

 

 

Combining effects of environmental factors and land use into a risk indicator 

Environmental effects and land use do not affect SOM deficiency in solitude, but 

interact with each other. For example, a farmer will probably have a higher risk of SOM 

deficiency on a sandy soil when the farm is on a steep slope than on level land. This risk 

will again be different, depending on land use or climate.  

Fig 6. 2: Proposed relationships between environmental factors and land use and risk of SOM deficiency, based 

on literature. X-axes show ranges of different environmental factors and land use. Y-axes show risk of SOM 

deficiency 



Chapter 6 

 

134 

 

Effects of all four factors (Fig. 6.2) interact with each other. Therefore, effects of 

different environmental factors and land use were combined into a risk indicator on 

SOM deficiency. This risk indicator gives a risk score of SOM deficiency for each 

combination of slope, soil texture, climate and land use on a scale of 1 to 5. 

To calculate the risk indicator, effects of environmental factors and land use were added 

one by one using expert views. First, effects of soil texture and land slope were 

combined into a soil risk score. Each combination of soil texture and slope was given a 

score between 1 and 5, where 1 indicates a very low soil risk of SOM deficiency (e.g. a 

loamy soil with no slope) and 5 a very high soil risk of SOM deficiency (e.g. a sandy 

soil on a steep slope). Assigning the numbers 1 to 5 included some arbitrary choices. To 

reduce the effect of this arbitrariness, three types of combination options were proposed, 

resulting in a low, medium and high estimate for soil risk (Supplementary Tables 6.1-

6.3, page 155). 

Second, soil risk scores were combined with aridity into an environmental risk score. 

Each combination of a soil risk and a degree of aridity was given a score between 1 and 

5. Again, 1 indicates a very low environmental risk of SOM deficiency (e.g. a low soil 

risk with an intermediate climate) and 5 a very high environmental risk of SOM 

deficiency (e.g. high soil risk with a very dry climate). Again, three types of combination 

options were proposed, resulting in a low, medium and high estimate for environmental 

risk (Supplementary Tables 6.4-6.6, page 156). 

Finally, environmental risk scores were combined with type of land use into a total risk 

score on SOM deficiency. Each combination of environmental risk and land use was 

given a score between 1 and 5, where 1 indicates a very low risk of SOM deficiency 

(e.g. low environmental risk with cereals or grass) and 5 a very high risk of SOM 

deficiency (e.g. high environmental risk with specialized crops). One combination 

option was proposed, in which cereals and grass reduce the risk and specialized and 

horticultural crops increase the risk of SOM deficiency (Supplementary Table 6.7, page 

157). 

A flow diagram of the procedure to combine the different factors into a risk indicator is 

shown in Fig. 6.3. The procedure resulted in nine different versions of the risk indicator 

(3 options for soil risk x 3 options for environmental risk x 1 option for the effect of land 

use). 
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Creating a spatial overview of the risk of SOM deficiency in Europe 

To create a spatial overview on risk of SOM deficiency in Europe, a dataset was needed 

for each environmental factor and land use. For slope, the GTOPO30 (a global elevation 

dataset; USGS 1996) was used. For soil texture, the European Soil Database (EC & 

ESBN 2004) was selected. For climate, the degree of aridity was calculated by dividing 

annual precipitation with potential evapotranspiration, using spatialized climatic data 

for the period 1975-2009 (Janssen et al. 2009). For land use, the land use dimension of 

the European farm typology as developed by Andersen et al. (2007) was used. 

Datasets were combined spatially using QUICKScan (Verweij et al. 2016). For each 

data pixel (km2), QUICKScan used the rules from Supplementary Tables 6.1-6.7 and 

calculated a combined risk score on SOM deficiency. This resulted in nine maps 

showing estimated risk of SOM deficiency with European coverage. 

6.2.2 Perceived deficiency of SOM by farmers  

To test the risk indicator (objective 2) and to establish threshold values for SOM content 

(objective 3), a farm survey was held in five European countries. Respondents came 

from a wide range of soil types, climate zones and land uses across Europe. By doing 

so, we capitalized on many years of practical farming experience across different soils 

and SOM contents. 

Fig 6. 3: Flow diagram of the procedure followed to combine effects of different factors into a risk indicator on 

SOM deficiency. SI = Supplementary Information. 
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All farmers were asked if they perceived a deficiency of SOM on a Likert scale from 1 

to 5 (very low to very high SOM deficiency). This number is a holistic measurement of 

SOM deficiency perceived by farmers. Farmers’ perceptions might be based on many 

aspects (experience, observations, information, instinct, tacit knowledge), which they 

translate into one number. Underlying mechanisms and disadvantages of insufficient 

SOM (such as little water holding capacity, poor soil structure, little nutrient supply) all 

play a role, but in this study are aggregated together into one term (SOM deficiency). 

As seen in Fig 6.1, environmental factors and land use affect the relation between SOM 

and productivity in two ways: (1) a direct effect on actual SOM content (e.g. wetter 

climates slow down decomposition rates) and (2) an indirect effect on how likely it will 

be that SOM affects productive capacity (e.g. wetter climates give a higher chance on 

soil compaction which SOM might alleviate). To account for both mechanisms, first, 

average SOM contents of farms were related to environmental factors and land use. 

Then, perceived deficiency of SOM was related to environmental factors and land use 

separately and to the risk indicator. In this manner, we compared scientific findings on 

the influence of environmental factors and land use on SOM deficiency with farmers’ 

practical experience. Next, perceived deficiency of SOM was related to the average 

SOM content of each farm to find threshold values. Finally, farmers with a very high or 

very low perceived deficiency of SOM were clustered around gradients of 

environmental factors and land use. Each of these steps is explained in more detail 

below. All data was processed in R (version 3.2.5). 

Farm survey  

A large-scale farm survey was held in five European countries (Belgium, Germany, 

Austria, Spain and Italy). This survey was sent out as part of a European research project 

CATCH-C. The sampling for the questionnaires depended on the availability of a valid 

sampling frame within each country (i.e. contact details of farmers). The most ideal 

sampling frame to obtain a completely random sample is a nation-wide database of 

farmers’ addresses. Such a database was available for Flanders in Belgium and some 

states in Germany. In the other countries, researchers had to depend on farmers’ 

associations, farmers’ extension services or other contacts to distribute the 

questionnaire. Questionnaires were distributed online (Austria), as paper questionnaire 

(Belgium and Italy), or both (Germany and Spain). In Spain questionnaires were only 

distributed in Andalusia. 



Perceived deficiency of SOM 

 

137 

 

Questionnaires were returned during the summer and autumn of 2013. Filled 

questionnaires were checked on irregularities (typing mistakes or extreme numbers) and 

if any, removed from analysis. Because of the specific nature of peat soils (Lucas, 1982), 

farmers reporting peat soils or reporting an average SOM content above 12% were 

excluded from analysis. To reduce errors in farmers’ answers, farmers were not obliged 

to fill out every question. If a farmer was uncertain of the SOM content of their soils, 

they could tick the option: “I do not know”. Questions on slope or land use information 

could also be left unanswered. In those cases, only the filled parts of the questionnaire 

were used in the analysis. 

Relating SOM contents to environmental factors and land use 

Environmental factors and land use are known to affect SOM content (Fox & Bryan 

2000; Gonçalves & Carlyle 1994; Gregorich et al. 1998; Körschens et al. 1998; 

Verheijen et al. 2005). SOM contents of farmers’ fields in our survey were related to the 

factors identified above (slope, soil texture, climate and land use) to assess if patterns 

are similar as found in the literature.  

Farmers were asked to declare the average SOM content of their fields and to report 

different soil textures present on their farm, slopes of their land and types of crops 

cultivated. Farms were then classified according to their dominant soil textural class 

(largest percentage of farm land in a certain soil texture class), dominant slope (largest 

percentage farm land with a certain slope) and land use type (> 50% farm land with 

cereals and/or grass; > 50% with specialized and/or horticultural crops; a mix of these 

two categories and forage crops). Supplementary Table 6.8 (page 157) gives an 

overview of the crops cultivated by the farmers in our survey and how they were 

classified. Farm locations were used to calculate an aridity index.  

For each environmental factor, similar classes were used as in the risk indicator 

(Supplementary Tables 6.1-6.7). Following, ranges of SOM contents were calculated 

for each class. Because SOM contents among farms did not have a normal distribution 

(distribution was slightly skewed to the right), group medians were compared using the 

non-parametric Kruskal-Wallis test (Conover 1971; Pohlert 2014). If applicable, a post-

hoc Nemenyi test was used to see which group medians differed (Sachs 1997). 

Relating perceived deficiency of SOM to environmental factors and land use 

Perceived deficiency of SOM by farmers was compared with patterns found in the 

literature. Frequency distributions of SOM deficiency (expressed on a 1 to 5 Likert 
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scale) were made, classifying farmers by their soil texture, slope, climate or land use. 

For each environmental factor and land use, similar classes were used as in the risk 

indicator (Supplementary Tables 6.1-6.7). Following, a non-parametric test using 

ordinal data, the Jonckheere-Terpstra test (Jonckheere 1954; Seshan 2012) was done to 

assess if trends in perceived SOM deficiency by farmers followed similar patterns as 

found in the literature (Fig 6.2). 

Relating perceived deficiency of SOM to the risk indicator 

Using the indicator developed in Section 2.1.2, a risk of SOM deficiency was calculated 

for each farmer. To assess if a high risk indication also corresponds with a high 

perceived deficiency of SOM by farmers, a Spearman’s rank correlation test (Kendall 

1948) was performed. 

Establishing threshold intervals of SOM based on farmers’ perceptions 

Can threshold values for SOM be determined, based on farmers’ perceptions? To find 

the answer to this question, SOM contents of farms were related to perceived deficiency 

of SOM. First, farmers were classified according to their perceived deficiency of SOM: 

very low, low, neutral, high, or very high perceived deficiency of SOM. A low or very 

low perceived deficiency of SOM means farmers have a positive perception on the SOM 

content of their fields, while a high or very high perceived deficiency of SOM means 

farmers have a negative perception on the SOM content of their fields. Ranges of SOM 

contents were calculated for each level of SOM deficiency (from very low to very high).  

Because SOM contents did not have a normal distribution, inter-quartile ranges were 

used to calculate lower and upper extremes (Frigge et al. 1989; McGill et al. 1978). With 

this non-parametric method, the distance between the first quartile (Q1) and the third 

quartile (Q3) is the inter-quartile range (IQR). Values lower than Q1 – (1.5*IQR) and 

higher than Q3 + (1.5*IQR) were considered outliers. Causes for numbers to be an 

outlier can be either extreme soil conditions or mistakes in the recordings. The upper 

extreme is the highest SOM value not being an outlier. The lower extreme is the lowest 

SOM value not being an outlier. 

Based on the lower extremes of farmers with a low perceived deficiency of SOM and 

the upper extremes of farmers with a high perceived deficiency of SOM, threshold 

intervals for SOM were calculated for each soil textural class. Below each interval, 

farmers perceive a neutral, high or very high deficiency of SOM. Above each interval, 

farmers perceive a neutral, low or very low deficiency of SOM. 
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Clustering farmers along gradients of environmental factors and land use 

Below a certain SOM content, farmers could be found with any perceived degree of 

SOM deficiency (from very low to very high SOM deficiency). At these low SOM 

contents, different farmers might have the same SOM content, one perceiving a very 

low deficiency of SOM and the other a very high deficiency of SOM. Using only farmers 

with a low SOM content and with either a very high or very low perceived deficiency 

of SOM, a principal component analysis was done to find possible causes. Instead of 

using classes for each environmental factor or land use type, for the principal component 

analysis continuous variables were used. For soil texture, the percentage of farm land 

with sandy soils was used as a variable. For slope, the percentage of land with moderate 

or steep slopes was used. For land use, the percentage of farm land cultivated with 

specialized or horticultural crops was used. As climate could not be converted into a 

continuous variable at farm level, it was left out of the principal component analysis. 

6.3. Results 

6.3.1 A spatial overview of the risk of SOM deficiency in Europe 

Fig 6.4 shows the spatial distribution of estimated risk of SOM deficiency in Europe, 

using nine different manners of combining environmental factors and land use. This 

figure is based on four datasets (Section 6.1.1) that are combined following the scheme 

of Fig 6.3.  

Depending on the manner in which environmental factors and land use are combined 

(Supplementary Tables 6.1 to 6.7), 7 to 37% of agricultural land in Europe has a high or 

very high risk of SOM deficiency (Fig. 6.4). It is self-evident that combining high 

estimates for soil risks and high estimates for environmental risks gives the largest share 

of a high total risk of SOM deficiency. 

Higher estimates for soil or environmental risk might give a larger share of agricultural 

land with a higher risk of SOM deficiency, the distribution between areas is very similar 

(Fig 6.4). On all maps, soils with a high or very high risk of SOM deficiency are mainly 

located in southern and eastern European countries (in areas with drier climates, steeper 

slopes, coarse soils and/or more cultivation of specialized or horticultural crops). Soils 

with a lower risk of SOM deficiency are mainly located northern and western European 

countries.  
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Fig 6. 4 Percentage of European agricultural land area with a low to very high risk of SOM deficiency within 

each of the nine risk indicator options. Maps are obtained following the procedure of Fig. 6.3. 
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6.3.2 Perceived deficiency of SOM by farmers 

Respondents to farm survey 

In total 1642 arable farmers (all cultivating more than 50% of their farm land with arable 

crops) responded to the farm survey. Seventeen respondents were removed from 

analysis because of irregularities in answers. An additional 83 farmers reported to have 

peat soils and/or had an average SOM content above 12% and were also excluded from 

analysis. A summary of farm characteristics per country is provided in Supplementary 

Table 6.9 (page 158). 

Not all farmers provided information on slope, soil texture and land use (Table 6.3). In 

total 1447 farmers provided information on slope, 1481 on soil texture and 1466 on land 

use. For all farmers included in the analysis (1542) an aridity index was calculated. 

Using the information on environmental factors and land use, a risk indication on SOM 

deficiency was calculated for 1371 farmers. In addition, 683 farmers reported an average 

SOM content, while 1469 farmers gave an indication of perceived deficiency of SOM. 

Relatively more farmers from Austria and Germany reported SOM contents than did 

farmers from Belgium, Italy and Spain (respectively, 68%, 62%, 42%, 34% and 22%), 

probably because in Austria and Germany soil analyses are more common. 

Table 6.3: Numbers of farmers providing specific information in the farm survey. In total 1542 farmers were 

included in the analysis. To reduce errors, farmers could leave questions unanswered, therefore numbers differ 

per category. 

 

Total 

(n) 

Farmers 

providing 

average SOM 

content (n)  

Farmers 

providing 

perceived 

deficiency of 

SOM (n) 

Farmers 

providing 

average SOM 

content and 

perceived 

deficiency of 

SOM (n) 

Farmers with information on slope 1447 665 1402 657 

Farmers with information on soil texture 1481 680 1433 672 

Farmers with an aridity index calculated 1542 683 1469 675 

Farmers with information on land use 1466 668 1411 660 

Farmers for which risk indicator can be 

calculated 1371 648 1331 640 

SOM contents related to environmental factors and land use 

SOM contents reported by farmers in the survey were very variable, ranging from 0.5 

to 11.6 % SOM (mean 2.6%, median 2.2%, standard deviation 1.3%). This indicates that 

our survey covered a wide range of conditions. In Section 2.1.1, the effects of 

environmental factors and land use on the risk of SOM deficiency were discussed, 
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including effects on actual SOM content. How do SOM contents reported by our farmers 

vary with environmental factors and land use? In Fig 6.5, SOM contents of farmers’ 

fields are related to their slope, soil texture, aridity and land use. 

 

 

 

On farmers’ fields, the effect of slope (Fig. 6.5a) was as expected: soils with steeper 

slopes have lower SOM content. The effect of soil texture however is less clear: in our 

dataset (Fig. 6.5b) farmers with loamy soils have the lowest SOM content, while this 

was expected for farms with sandy soils. This might be due to some unbalance in the 

sampling design as slightly more farms with loamy soils are located in drier climates 

with steeper slopes.  Soils on steeper slopes and in drier climates are expected to have 

lower SOM content due to faster decomposition and/or increased erosion risk 

(Gregorich et al., 1998), so this might be interfering with the effect of soil texture. 

Fig 6. 5 Range of SOM content per environmental factor and land use type as reported by the farmers. X-axes 

are classes of different environmental factors and land use. Y-axes are the SOM contents reported by farmers. 

Violin shapes show the density distribution of farmers reporting a certain SOM content. Inside the violins, 

boxplots give medians, quartiles, lower extremes and upper extremes. If the letters above the violins differ, there 

is a significant difference between the medians (using a Nemenyi test). 
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As expected, farms in very dry climates and farms with more specialized and/or 

horticultural crops have less SOM content (Fig. 6.5c,d). However, SOM contents on 

farms in wet climates do not differ significantly from SOM contents on farms with dry 

climates. The lack of a significant difference might be due to the low number of farms 

in dry climates (19). Interestingly, farms with mixed cropping systems reported the 

highest average SOM content, higher than those with mainly cereals and/or grass. 

Perceived deficiency of SOM related to environmental factors and land use 

Comparing patterns based on the literature (6.2a) and perceived deficiency of SOM by 

farmers (6.6a), some similarities can be observed. From findings in the literature, risk 

of SOM deficiency is expected to increase with increasing slopes (Fig 6.2a). A similar 

pattern is observed in our farm data on mean perceived SOM deficiency per class (p = 

0.004, Jonckheere-Terpstra trend test, Fig 6.6a).  

 

 

 

Fig 6. 6 Frequency distributions of perceived deficiency of SOM related to environmental factors and land use. 

X-axes are classes of each environmental factor and land use. Colours indicate percentage of farmers perceiving 

a certain deficiency of SOM (left y-axis). Circles indicate mean perceived deficiency per class (right y-axis). P-

values give significance of trends using the Jonckheere-Terpstra trend test. Lines between means are fitted using 

the function lm (least squares). 
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From the literature, a parabolic curve was expected in which risk of SOM deficiency 

first decreases with increasing clay content, and then starts to increase for very heavy 

clay soils (Fig. 6.2b). Based on our farm survey, perceived deficiency of SOM by 

farmers does decrease with increasing clay content (p = 0.015, Fig. 6.6b), but our farm 

data does not show a parabolic curve. The latter could be explained because our farm 

survey did not include many farms with very heavy clay soils (fine or very fine soils 

with more than 35% clay particles). 

From findings in the literature, soil in very dry and very wet climates are expected to 

have a higher risk of SOM deficiency than soils in intermediate climates (Fig. 6.2c). In 

our farm data, a significant tendency for a parabolic curve can be observed (p = 0.001, 

Fig. 6.6c).  

Finally, based on findings from literature, farms cultivating more specialized or 

horticultural crops are expected to have a higher risk of SOM deficiency (Fig 6.2d). A 

significant trend (p = 0.001, Fig. 6.6d) was found with a higher perceived deficiency of 

SOM by farmers cultivating more specialized or horticultural crops than those with 

mixed crops and those with more cereals and/or grass. 

Perceived deficiency of SOM related to the risk indicator 

Farmers’ perceptions confirm the proposed relationships between environmental factors 

and land use and risk of SOM deficiency on which the risk indicator is based (as 

discussed in the previous section). How does the risk indicator itself correlate with 

perceived deficiency of SOM by farmers?  Do farmers with a higher risk indication for 

SOM deficiency also perceive a higher deficiency of SOM on their fields? Among the 

farmers of our survey up to a quarter had a high to very high risk of SOM deficiency (3-

25%, depending on the risk indicator option). Among the same farmers, 18% 

experienced a high to very high SOM deficiency, which is within the same range. Using 

Spearman’s rank correlation test however, there was only a weak positive correlation 

between the risk indicator and farmers’ perceptions (both Likert scale 1-5). Depending 

on which of the nine risk indicator options, the Spearman's rank correlation coefficient 

differed between 0.15 and 0.18, albeit with high significance (p<0.0001). The low 

correlations indicate that none of the nine risk indicator options gives a very accurate 

prediction of SOM deficiency as perceived by farmers. 
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Threshold values of SOM based on farmers’ perceptions 

Ranges of SOM content for each degree of perceived SOM deficiency (very low, low, 

neutral, high or very high) were dependent on the dominant soil texture of the farms 

(Fig. 6.7).  

  

Fig 6. 7: SOM contents reported by farmers, classified by perceived deficiency of SOM (672 farmers) in (a) sandy, 

(b) loamy and (c) clay soils. X-axes are SOM contents reported by farmers. Y-axes are perceived SOM deficiency. 

Violin shapes show the density distribution of farmers reporting a certain SOM content. Inside the violin shapes, 

boxplots show medians, first and third quartiles and lower and upper extremes. L indicates lower extreme of 

farmers with a low (LL) or very low (LVL) perceived SOM deficiency. U indicates upper extreme of farmers with a 

high (UH) or very high (UVH) perceived SOM deficiency. Points are considered outliers. 
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Within each violin shape of Fig. 6.7, boxplots show the lower (L) and upper (U) 

extremes of SOM content for each group. Points below the lower extremes and points 

above the upper extreme are considered outliers.  

Lower extremes of SOM for farmers with a low or very low perceived deficiency of 

SOM (LL or LVL), tend to be higher than lower extremes of SOM for farmers with a high 

or very high perceived deficiency of SOM. This is the case for both sandy and clay soils 

(Fig. 6.7a,c). This indicates a certain SOM content is needed before farmers start 

perceiving a (very) low SOM deficiency. For farmers on sandy soils, LL and LVL were 

1.2%, 1.9% SOM respectively. For farmers on loamy soils, LL and LVL are 0.6% and 

0.7% SOM respectively. For farmers on clay soils, LL and LVL were 1.0% and 2.0% SOM 

respectively. 

Upper extremes of SOM content for farmers with a high or very high perceived 

deficiency of SOM (UH or UVH), are lower than upper extremes of SOM content for 

farmers with a low or very low perceived deficiency of SOM. This is the case for all 

three soil textures (Fig. 6.7). This indicates that farmers only perceive a high or very 

high SOM deficiency up to a certain percentage of SOM content. Above this SOM 

content (UH), no farmer perceives a high or very high SOM deficiency. For farmers on 

sandy soils, UH and UVH were 4.7% and 3.4% SOM respectively. For farmers on loamy 

soils, UH and UVH were both 2.6% SOM. For farmers on clay soils, UH and UVH were 

2.4% and 1.5% SOM respectively. 

For each soil texture, LL and UH values are combined into a threshold interval (yellow 

areas Fig 6.8, sand: 1.2–4.7%, loam: 0.6–2.6% and clay: 1.0-2.4%). Below each interval, 

farmers perceive a neutral, high or very high deficiency of SOM (red areas, Fig. 6.8). 

  

Fig 6. 8: Threshold intervals (in yellow) of SOM based on farmers’ perceptions, dependent on dominant soil 

texture of a farm. Yellow areas indicate the threshold interval. Below each interval, farmers perceive a neutral, 

high or very high deficiency of SOM (red areas). Above each interval, farmers perceive a neutral, low or very 

low deficiency of SOM (green areas). Numbers of farmers are indicated between brackets. 
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Above each interval, farmers perceive a neutral, low or very low deficiency of SOM 

(green areas, Fig. 6.8). Within each threshold interval, farmers can perceive any degree 

of SOM deficiency (from very low to very high), indicating that other factors (such as 

crop types cultivated, tillage management or irrigation) are more important. 

Clusters of farmers along gradients of environmental factors and land use 

The maximum SOM content of farmers with a very high perceived deficiency of SOM 

is 3.4% SOM (Uvh for sandy soils, see Fig. 6.7a). No farmers with more than 3.4% SOM 

perceived a very high SOM deficiency, in any texture class. Below this value, SOM 

content might be similar among farmers, but farmers can have a very different 

perception of SOM deficiency, ranging from very low to very high (Fig. 6.7).  

Soil texture seems to explain some but not all of the differences in perceived deficiency 

of SOM. To gain more insight on the difference in perceived SOM deficiency of farmers 

with a low SOM content, only farmers with less than 3.4% SOM were selected for a 

principal component analysis. 

The principal component analysis (Fig. 6.9) shows that farmers with a very low 

perceived deficiency of SOM on their farm (blue dots) can be found pretty much 

anywhere along the axes of soils, slopes and crops. Farmers with very high perceived 

deficiency of SOM (red dots) however, are mainly found at the extreme ends of the axes.  

 

 

Fig 6. 9: Clusters of farmers (with < 3.4% SOM) perceiving a very high or a very low SOM deficiency. Axes 

(principal component 1 and 2) are combinations of percentage of farm land with sandy soil, moderate or steep 

slopes and shares of specialized and/or horticultural crops. 
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At the extreme end of an axis, farmers score very strongly on only one environmental 

factor (slope, texture, land use). They either have a high percentage of steep slopes, a 

high percentage of sandy soil or a high percentage of specialized and/or horticultural 

crops. This would indicate that not so much the combination of environmental factors 

and land use determines a very high perceived deficiency of SOM, but rather an extreme 

value for one of these factors. 

6.4. Discussion 

6.4.1 Putting forward a risk indicator on SOM deficiency 

Up to date, a number of European risk maps have been developed on different soil 

degradation themes, such as soil erosion (Kirkby et al. 2004), soil compaction 

(Houšková & Montanarella 2008) and landslides (Günther et al. 2014). Until now no 

European risk map on SOM deficiency has been made, although three European maps 

show actual soil organic carbon, minimum soil organic carbon and maximum soil 

organic carbon (Stolbovoy & Montanarella 2008). Our maps represent a first attempt to 

highlight areas where farmers have a higher risk of SOM deficiency to maintain 

productive capacity. Fig. 6.4 shows a high to very high risk of SOM deficiency for 7 to 

37% of European agricultural land (depending on the option to combine factors), mainly 

located in Southern and Eastern Europe. The maps also show that most of the European 

agricultural land falls within the class “very low”, “low” or “middle” risk of SOM 

deficiency. The farm survey gave similar results with 18% of the interviewees 

perceiving a high to very high SOM deficiency. Ca. 53% of the interviewees perceived 

a “very low” or “low” SOM deficiency and of the remaining farmers 29% giving an 

indication in the middle. This could be regarded an encouraging result, showing that for 

most of the European farmers we have contacted, covering a wide range of cropping, 

climatic and soil types, a too low SOM content is not an issue. 

6.4.2 Testing the risk indicator using farmers’ perceptions 

Relating the risk indicator on SOM deficiency to perceived SOM deficiency by farmers, 

there is a significant positive correlation (p < 0.001). The correlation is however very 

weak (Spearman’s rank correlation coefficient of 0.15 to 0.18) and with large samples 

significance of a correlation can be misleading (Lantz 2013). Nonetheless, the 

correlation indicates that farmers in areas with a higher risk indication are more likely 

to experience a deficiency of SOM, but not unambiguously so. Stronger relations seem 
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to exist between the individual factors and perceived SOM deficiency (Fig. 6.6). These 

relations resemble the findings from the literature (Fig 6.2) on which the risk indicator 

is based.  

Why does combining the factors into one indicator not increase predictive capacity? A 

preliminary answer can be found in the results of the Principal Component Analysis (Fig 

6.9). Apparently, having a more extreme environmental condition for only one factor 

(for example, a very sandy soil or land with a very steep slope) gives a higher chance of 

perceiving a deficiency of SOM, rather than a certain combination of moderate factors 

(in this case, a slightly sandy soil combined with a gentle slope). One explanation could 

be that it might be easier for farmers to adapt their management in a situation with a 

combination of moderate environmental factors than to adapt to one extreme 

environmental condition. 

We now consider which is the best measure: the risk indicator or farmers’ perceptions? 

The answer is probably that both have their value. While the risk indicator is more 

objective as it uses a standardized approach, it is also more reductionist, disregarding 

specific management practices (tillage type, use of organic inputs or irrigation), land use 

history, farmers’ expertise and the actual SOM content that influence farmers’ 

perceptions. Perceptions of farmers are more holistic, but also subjective, depending on 

personal preferences and factors other than those included in the risk indicator, which 

probably explains the large variation. In addition, defining the risk indicator included a 

number of arbitrary choices, not unseen in soil quality targeting, as working within a 

continuum sometimes requires human value judgement when grouping variables 

(Sparling et al. 2003).  

6.4.3 Using farmers’ perceptions to define threshold values for SOM 

content 

Based on farmers’ perceptions, threshold intervals for SOM were determined for soil 

texture (sand: 1.2–4.7%, loam: 0.6–2.6% and clay: 1.0-2.4%). When SOM content falls 

below a threshold interval, a farmer will perceive benefit from more SOM, irrespective 

of other factors. When SOM content is above a threshold interval, farmers will not 

perceive benefit from more SOM. Within each threshold interval, farmers can perceive 

any level of SOM deficiency (from very low to very high), indicating that other factors 

(such as management) are more relevant.  
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Setting threshold intervals instead of specific threshold values is a better representation 

of both the fluidity of the data, the variation in contextual factors, and the large variation 

in farmers’ perceptions at equal SOM contents, revealed by our farm survey. These 

intervals should therefore be taken as indications of where low soil productive capacity 

might occur because of low SOM contents. Compared to previously suggested threshold 

values for SOM content (Table 6.1, values ranging between 1 and 5.1% SOM), our 

intervals fall in the middle of the range for sandy soils and are at the lower end for loam 

and clay soils.   

6.4.4 Limitations of the study and suggestions for further research 

Correctly combining environmental factors and land use seems to be challenging, 

especially for more extreme conditions. As a consequence, this indicator could be 

improved when more precise knowledge becomes available on how SOM content 

affects productive capacity under different environmental conditions. If more spatial 

data on farm management (such as tillage practices) comes available in the future, the 

effect on risk of SOM deficiency can also be included, thereby improving the risk 

indicator. Alternatively, a similar approach could be used at regional scale with country 

specific datasets at a finer spatial resolution (soil maps, digital elevation models and 

land use databases). In that case, a higher spatial accuracy could be achieved. 

Part of this study depended on information provided by farmers. This was considered 

an excellent method to capitalize on practical know-how and tacit knowledge (Corbeels 

et al. 2000; Musinguzi et al. 2015). There are however uncertainties associated with 

analysing data from a farm survey, of which we discuss the most important ones. First, 

farmers were asked which percentage of their farmland had a certain class of slope and 

soil texture. Wherever possible we used common terms and indicated percentages, but 

national and cultural values might have had some influence. Following, farms were 

classified according to their dominant slope or soil texture, which meant loss of 

information, especially in areas with very heterogeneous environments. Finally, SOM 

contents were reported by farmers and not measured in the fields, which would have 

given a more accurate comparison. It is likely that these uncertainties increased the 

variation in our data. Further studies could expand our approach by including on-farm 

soil analyses. 

Our study shows that farmers can perceive a certain level of SOM deficiency (very low, 

low, neutral, high or very high) along a wide range of SOM contents. In other words, 
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farmers with a similar SOM content do not necessarily perceive the same degree of SOM 

deficiency, even under the same soil texture. It would be interesting to differentiate these 

intervals further for different slopes, climates and land uses. Unfortunately, the sample 

size of our farm survey was too small to allow for such an exercise. 

Another explanation for the wide interval ranges of SOM content could perhaps be 

found in the roles different fractions of SOM play. There is recent evidence that specific 

SOM fractions play specific roles in improving aggregate stability of soils (Dexter et al. 

2008). Organic inputs from straw, stubble or roots might have a proportionally large 

impact on stable aggregates compared to organic inputs from animal manures (Powlson 

et al. 2011; Watts et al. 2006). Evaluating total SOM content – the only information 

farmers have from ordinary soil analyses - lacks this type of detail. Future studies could 

explore the contributions from different SOM fractions further.   

Last, in this study we only looked at benefits of SOM for productive capacity. Economic 

benefits are expected to follow from a higher productive capacity either direct through 

increased yields or indirect through improved workability of the soil which gives more 

flexibility in field operations. Besides economic benefits, SOM content also has 

environmental benefits such as supporting soil biodiversity or sequestering carbon 

(Chang et al. 2007; Freibauer et al. 2004). Integrating these different aspects fell 

however outside the scope of the current study objectives. Our findings could be used 

in a more broader analysis in which economic and environmental benefits are integrated. 

Besides a spatial, this could also include a temporal dimension. 

6.5. Conclusion 

This study used two very different approaches (developing a risk indicator and a farm 

survey) to assess SOM deficiency and has tried to link them. The risk indicator was 

based on increasing or decreasing risk of SOM deficiency along certain environmental 

(slope, soil texture, aridity) and land use gradients, based on a literature review. 

Remarkably similar patterns were observed between the findings from the literature 

review and perceived deficiency of SOM by farmers in the survey. In addition, a 

correlation was found between the risk indicator and farmers’ perceptions of SOM 

deficiency. Large part of the variance in farmers’ perceptions, however, could not be 

explained by the environmental factors or land use as investigated in this study. This is 

not surprising when one realizes the variation in other factors (nutrient management, 

irrigation, tillage), farmers’ experience and land use history. Nonetheless, our findings 
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provide some relevant insights (e.g. threshold intervals based on soil texture) and call 

for further investigations in which practical and expert knowledge are used 

complementary. 

Currently, worldwide and in Europe specifically, policies are proposed to maintain or 

increase SOM content in agricultural fields (EC 2006, 2011b, 2013; Toth et al. 2008; 

UNFCCC 2012, 2015). Maintaining and in particular increasing SOM content can be a 

very costly effort, requiring many years of additional inputs. Based on differences in 

carbon sequestration potential, van Groenigen et al. (2017) argue for a spatially 

differentiated strategy for soil carbon sequestration. Our study argues likewise, yet 

based on spatial differences in contributions from SOM to productive capacity.  If 

policies on SOM management want to include benefits for productive capacity, efforts 

should be focussed on areas with a higher risk of SOM deficiency (mainly Southern and 

Eastern Europe), more extreme environmental conditions (very dry or very wet climates, 

steep slopes, very sandy soils), cropping systems with larger shares of specialized or 

horticultural crops or with very low SOM contents (below the given threshold intervals). 
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Three options for combining slope and soil texture into a soil risk estimate of SOM 

deficiency 

Supplementary Table 6.1: Low soil risk estimate (soil texture x slope). 

 Level 

(0°) 

Nearly 

level (1°) 

Gentle 

(2-3°) 

Moderate 

(4-7°) 

Strong to 

steep 

(>8°) 
Coarse (> 65% sand , < 18% clay) 2 2 3 4 5 

Medium (> 15% sand, 18-35% clay or 15-65% 

sand,  < 18% clay) 
1 1 2 3 4 

Medium fine (<15% sand, < 35% clay) 1 2 3 3 4 

Fine (35-60% clay) 2 2 3 4 5 

Very fine (>60% clay) 2 2 3 4 5 

 

Supplementary Table 6.2: Medium soil risk estimate (soil texture x slope). 

 Level 

(0°) 

Nearly 

level (1°) 

Gentle 

(2-3°) 

Moderate 

(4-7°) 

Strong to 

steep 

(>8°) 
Coarse (> 65% sand , < 18% clay) 2 3 4 5 5 

Medium (> 15% sand, 18-35% clay or 15-

65% sand,  < 18% clay) 
1 1 2 3 4 

Medium fine (<15% sand, < 35% clay) 1 2 3 3 4 

Fine (35-60% clay) 2 2 3 4 5 

Very fine (>60% clay) 2 3 4 5 5 

 

Supplementary Table 6.3: High soil risk estimate (soil texture x slope). 

 Level 

(0°) 

Nearly 

level (1°) 

Gentle 

(2-3°) 

Moderate 

(4-7°) 

Strong to 

steep 

(>8°) 
Coarse (> 65% sand , < 18% clay) 2 3 4 5 5 

Medium (> 15% sand, 18-35% clay or 15-

65% sand,  < 18% clay) 
1 2 3 4 5 

Medium fine (<15% sand, < 35% clay) 1 2 3 4 5 

Fine (35-60% clay) 2 3 4 5 5 

Very fine (>60% clay) 3 4 5 5 5 
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Three options for combining soil risk and aridity into an environmental risk 

estimate of SOM deficiency 

Supplementary Table 6.4: Low environmental risk estimate (soil risk x aridity). 

 
Very low 

soil risk 

(1)  

Low soil 

risk (2) 

Average 

soil risk 

(3) 

High soil 

risk (4) 

Very 

high soil 

risk (5) 

Very dry (0-0.4) 2 3 4 5 5 

Dry (0.4-0.6) 1 2 3 4 5 

Intermediate (0.6-0.7) 1 1 2 3 4 

Wet (0.7-0.8) 1 2 3 4 5 

Very wet (>0.8) 2 3 4 5 5 

 

Supplementary Table 6.5: Medium environmental risk estimate (soil risk x aridity). 

 
Very low 

soil risk 

(1)  

Low soil 

risk (2) 

Average 

soil risk 

(3) 

High soil 

risk (4) 

Very 

high soil 

risk (5) 

Very dry (0-0.4) 2 3 4 5 5 

Dry (0.4-0.6) 1 2 3 4 5 

Intermediate (0.6-0.7) 1 2 3 4 5 

Wet (0.7-0.8) 1 2 3 4 5 

Very wet (>0.8) 2 3 4 5 5 

 

Supplementary Table 6.6: High environmental risk estimate (soil risk x aridity). 

 
Very low 

soil risk 

(1)  

Low soil 

risk (2) 

Average 

soil risk 

(3) 

High soil 

risk (4) 

Very 

high soil 

risk (5) 

Very dry (0-0.4) 3 4 5 5 5 

Dry (0.4-0.6) 2 3 4 5 5 

Intermediate (0.6-0.7) 1 2 3 4 5 

Wet (0.7-0.8) 2 3 4 5 5 

Very wet (>0.8) 3 4 5 5 5 
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Combining environmental risk and land use into (total) risk of SOM deficiency  

Supplementary Table 6.7: (total) Risk of SOM deficiency estimate (environmental risk x land use). 

 

Very low 

environment 

risk (1) 

Low 

environment 

risk (2) 

Average 

environment 

risk (3) 

High 

environment 

risk(4) 

Very high 

environment 

risk (5) 

Permanent crops, grass and 

cereals 
1 1 2 3 4 

Mixed crops: any other 

crops or land independent 

farms 

1 2 3 4 5 

horticulture and specialized 

crops 
2 3 4 5 5 

Fallow land 2 3 4 5 5 

 

Classification of crops cultivated by farmers participating in the survey 

Supplementary Table 6.8: Classification of crops cultivated by farmers in the survey. 

Cereals and grass Horticultural and specialized crops Other 

barley 

durum 

grain maize 

oat 

rice 

rye 

sorghum 

spelt 

triticale 

wheat 

other cereals or grass 

aloe vera 

asparagus 

beans 

beetroot 

bitter vetch 

cabbage 

carrots 

Cherries 

chickpeas 

Chicory 

Cichorei 

Cotton 

cucumber 

fave beans 

Flax 

flower seeds 

Flowers 

Garlics 

grass seeds 

green peppers 

Lentils 

melons 

mint 

mustard 

oil flax 

oil seeds 

onion 

parsley 

peas 

potatoes 

pumpkin 

rhubarb 

soy bean 

strawberries 

sugar beet 

tobacco 

tomatoes 

turnip 

vegetable seeds 

other vegetables open air 

other beets 

other legumes 

buckwheat 

energy maize 

forage barley 

forage ley 

forage or silage maize 

Italian rye grass 

mint 

silage rye 

other forage  or fodder 

crops 
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Farmers’ characteristics 
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Chapter 7. General discussion 

The aim of this thesis was to improve understanding of the role of organic inputs and 

SOM for crop production in contemporary arable farming in Europe. For this purpose, 

long-term experiments were analysed on the additional yield effect of organic inputs 

and savings in mineral fertiliser. In addition, a farm survey was conducted to find drivers 

and barriers for the use of organic inputs and to assess if farmers perceive a deficiency 

of SOM. In this chapter, the findings of this thesis are discussed along the following 

lines: general findings (Section 7.1); influence of environmental factors (Section 7.2); 

influence of crop types cultivated (Section 7.3); types of organic inputs (Section 7.4); 

synergies and trade-offs with other ecosystem services (Section 7.5); limitations of the 

study (Section 7.6) and implications of the findings (Section 7.7). A summary of the 

main findings is presented in Fig. 7.1. 

7.1. General findings 

This thesis set out to answer five main research questions (Section 1.6). Here the 

questions are listed together with a short answer based on the findings in each chapter.  

Q 1: What is the additional yield effect of organic inputs for arable crops in Europe? 

Based on 20 long-term experiments, the mean additional yield effect of organic inputs 

for arable crops in Europe is not significantly different from zero (1.4% + 1.6 - 95% 

Confidence Interval [CI]). In specific cases however, especially for root and tuber crops, 

spring sown cereals, or for very sandy soils or wet climates, organic inputs did increase 

attainable yields (between 3 and 7%). Initial SOM contents of the experiments were not 

related to the additional yield effect of organic inputs, but a correlation was found 

between increases in additional yield and increases in SOM content.  

Q 2: Do mineral fertiliser savings from organic inputs depend on total N supply? 

Based on eight long-term experiments, the use of FYM saves more mineral fertiliser N 

at high total N supply than at low total N supply. The nitrogen fertiliser replacement 

value (NFRV, based on equal yields) of FYM was 2.1 times larger at high than at low 

total N supply (p = 0.04). For the other types of organic inputs investigated (slurry, straw 

or a combination of straw and green manures), NFRV was also higher at high total N 

supply than at low total N supply. In these cases however, sample sizes were too small 

or variations too large to find significant differences. 
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Q 3: What are currently the main drivers and barriers for arable farmers to use organic 

inputs? 

Using a farm survey in six agro-ecological zones in four countries, major drivers to use 

organic inputs (incorporation of straw, cultivation of green manures, FYM and compost) 

were perceived effects on soil quality (such as improved soil structure or reduced 

erosion) and the positive influence from social referents (such as fellow farmers or 

agricultural advisors). Major barriers to use organic inputs were financial (increased 

costs or foregone income) and perceived increases in pressures from weeds, pest and 

diseases. 

Q 4: How are farmers’ beliefs on SOM related to their use of organic inputs? 

A case study in the Netherlands shows that arable farmers specifically value the effect 

of SOM content on soil structure, especially where it improves workability on clay soils 

and water holding capacity on sandy soils. Soil fungi were evaluated as a negative 

outcome of SOM. Among the different control factors, the long-term effect of SOM 

content was perceived as very strong and evaluated very positively. Advisors were 

considered to have the most positive view on SOM and fellow farmers were considered 

to be least positive. Farmers’ beliefs were correlated weakly but significantly with their 

intention to increase SOM content. The large majority of Dutch farmers in the survey 

(91%) had a high or very high intention to increase SOM content. A higher intention to 

increase SOM content was significantly correlated with the use of organic inputs as 

expressed in total and effective C inputs (C remaining in the soil after one year). 

Q 5: Do farmers perceive a deficiency of SOM? 

Based on a farm survey in five countries (Austria, Belgium, Germany, Spain and Italy), 

18% of 1452 farmers perceived a high to very high SOM deficiency. Perceived 

deficiency of SOM content was related to climate (aridity), slope, soil texture and land 

use. Based on farmers’ perceptions threshold intervals for SOM content were 

established (sand: 1.2–4.7%, loam: 0.6–2.6% and clay: 1.0–2.4%). Below a threshold 

interval, a farmer will benefit from more SOM content, irrespective of other factors such 

as land use or management. Above a threshold interval, farmers do not expect 

production benefits from additional SOM. Some indication was found that being at the 

extreme end for one environmental factor gives a higher chance of perceiving a 

deficiency of SOM than having a combination of moderate environmental conditions.  
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7.2. Influence of environmental factors on the role of SOM for 

crop production 

In Chapters 2, 4, 5 and 6, environmental factors were included in data collection and 

analysis to assess their effects on the role of SOM for crop production (Table 1.3). Here 

findings are discussed per environmental factor.  

Climate 

The meta-analysis of 20 long-term experiments showed that in wet climates, the 

additional yield effect of organic inputs was larger than in more moderate or dry climates 

(Fig. 2.4c). This was probably related to an improved drainage and aeration and the 

prevention of soil compaction in wet climates (Soane 1990). This finding was reflected 

in the farm survey, as farmers in wet climates perceived a higher deficiency of SOM 

than those in dry climates. 

Beforehand, it was rather expected that crops in dry climates would benefit more from 

organic inputs as SOM increases the water holding capacity of soils (Díaz-Zorita et al. 

1999), but this was not confirmed in the meta-analysis. Possibly, crops were well 

irrigated in the experiments and therefore the water holding effect of SOM did not add 

any benefit to crop yields. If and how often experimental fields were irrigated was 

however not mentioned in the publications on which this analysis was based.  

An alternative explanation is that the increase in SOM content did not increase water 

holding capacity sufficiently to affect crop yields. It has to be borne in mind however 

that even though some experiments were included with a dry sub-humid semi-arid 

climates, lower aridity indices are more common outside Europe. One indication that 

crop production benefits more from organic inputs or SOM in drier climates was found 

in the farm survey as farmers in very dry climates perceived a higher deficiency of SOM 

than those in between (Fig. 6.6c). Possibly, farmers operate in less controlled or more 

water limited settings than those found at the experimental sites.  

Land slope 

Land slope was only included as a co-variable in the farm survey. As expected, farmers 

on steeper slopes perceived a higher deficiency of SOM than those on less steep slopes 

(Fig. 6.6a). On steep slopes, SOM content was lower than on less steep slopes (probably 

due to soil erosion). In addition, SOM can promote infiltration rates (Rhoton et al. 2002), 

which is more appreciated on steeper slopes.  
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When assessing drivers and barriers to use organic inputs, two agro-ecological zones 

were included with steeper slopes (AT1 and IT2-sloping; Table 4.5). In both agro-

ecological zones, reduced erosion was evaluated as a driver for cultivating green 

manures or cover crops (Fig. 4.6a,d). It is however unclear if this is due to the increased 

SOM content or due to the reduction of bare soils when cultivating green manures or 

cover crops.  

Soil texture 

The meta-analysis of 20 long-term experiments showed that on soils with less clay 

content (i.e. more sandy soils), the additional yield effect of organic inputs was larger 

than on soils containing more clay content (Fig 2.4a). Probably, the organic inputs and 

increased SOM content improved the loose soil structure of the sandy soils (Tisdall & 

Oades 1982).  

The additional yield effect of organic inputs on sandy soils was reflected in the farm 

survey as perceived deficiency of SOM was higher on sandy soils (Fig. 6.6b). A priori, 

it was expected that farmers on very heavy clay soils would also perceive a higher SOM 

deficiency (Table 6.2). This could not be verified in the farm survey as no farmers were 

included with more than 35% clay content in their soils (and these very heavy clay soils 

are rare in Europe, EC & ESBN 2004).  

In the Dutch case study, farmers on sandy soils valued effects of SOM on productivity 

and water holding capacity the most, farmers on loam soils valued effects of SOM on 

soil structure and rooting the most and farmers and clay soils valued effects of SOM on 

soil structure and workability the most (Table 5.2).  

7.3. Influence of crop types cultivated on the role of SOM for 

crop production 

A previous analysis of two field experiments in the Netherlands (De Haan 1977) 

suggested that root and tuber crops will benefit more from organic inputs or SOM than 

cereals, even beyond the macro-nutrients supplied. This suggestion is supported for 

potatoes in the meta-analysis of 20 long-term experiments (Fig. 2.3b). The additional 

yield effect for potatoes was on average 7.0% (+ 4.9 -95% CI). This might be because 

root and tuber crops depend more on soil structure for their successful cultivation and 

harvesting. Spring sown cereals (including maize) also benefit (3.4 percent + 2.6 - 95% 

CI.). Spring sown crops have a shorter time frame to develop their root system which is 
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needed to acquire sufficient nutrients and water (Johnston et al. 2009). In addition, maize 

has a less developed root system than wheat or barley, which might be another 

explaining factor. 

In the farm survey, land use classes were made comparing farmers cultivating more 

specialized or horticultural crops with farmers cultivating more grass and cereals or a 

mixture of crops. Among the specialized and horticultural crops cultivated by the 

farmers were root and tuber crops such as potatoes or sugar beets, but also beans and 

other vegetables (Supplementary Table 6.8). Farmers who cultivated more specialized 

or horticultural crops  perceived a higher deficiency of SOM than farmers who cultivated 

more cereals (Fig. 6.6d). As crop rotations differed widely between farmers, it was not 

evident if there was a specific selection of specialized or horticultural crops causing this 

increase in perceived SOM deficiency. Further research would therefore be 

recommended looking into more details between specific crop types. 

7.4. Types of organic inputs 

It was found that the type of organic input used (e.g. FYM, compost, slurry) affects the 

relation between SOM and crop production. The additional yield effect of FYM is larger 

than that of slurry, straw or a combination of straw and green manures (even when 

compensating for the N immobilization by applying additional mineral fertiliser N, Fig. 

2.3a). 

When assessing the mineral fertiliser N savings from organic inputs, straw has a varying 

effect on N supply, from negative to positive (Table 3.2). This was confirmed in the 

farm survey, in which farmers indicated that incorporation of straw sometimes saves the 

use of mineral fertiliser N whilst in other cases it needs mineral fertiliser N for 

decomposition (Fig. 4.5). 

Based on data from eight long-term experiments, NFRV of FYM increases with total N 

supply (Table 3.2). This could suggest that NFRV of organic inputs is higher when 

combined with mineral fertiliser than without. If validated, this would open a new 

perspective on the advantage of distributing available organic inputs among many 

farmers in a given region: the region would require less fertiliser to produce the same 

yield output, than when organic inputs were concentrated in few farms. 

The main drivers to use organic inputs were perceived effects on soil quality and 

influence from social referents (for all types of organic inputs). In addition, green 
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manure was also perceived to have a positive effect on the environment. For all input 

types, perceived pressures from weeds, pests and diseases were evaluated as important 

barriers (Fig. 4.8). In addition, farmers perceived more negative financial consequences 

from FYM and compost than from the cultivation of green manures or incorporation of 

straw.  

7.5. Synergies and trade-offs with other ecosystem services 

SOM content in arable farms does not only affect crop production, but can also 

contribute to other ecosystem services. Ecosystem services which have been suggested 

positively or negatively affected by the use of organic inputs or SOM content in arable 

soils include climate change mitigation (soil carbon sequestration, greenhouse gas 

emissions), positive effects on crop protection, nutrient leaching and soil biodiversity 

conservation. Here effects of SOM on these ecosystem services will be discussed. 

Climate change mitigation 

Currently, much emphasis is placed on the carbon sequestration potential of SOM in 

agriculture. As SOM is known to improve soil quality, this is argued a win-win situation 

for climate change mitigation and food security (see for example Lal 2004a or the 

4/1000 initiative by the UNFCCC 2015). This thesis has shown that SOM can positively 

affect crop production, but only in specific situations, namely depending on 

environmental conditions, practices used to maintain or increase SOM content and crop 

types cultivated. In many other cases, no significant additional yield effect of SOM 

could be shown. 

For soil carbon sequestration, there are a number of limitations. First, after some time 

under a specific management, SOM will reach an equilibrium state in which inputs 

balance outputs (Janssen 2002). In such a state, adding organic inputs does not sequester 

more carbon. This means by definition there is only a limited potential for soil carbon 

sequestration. This limited potential also exists due to the limited availability of organic 

resources and competition with other uses (such as feed for livestock, fibre or as fuel). 

Some studies have shown that bioenergy produced from straw might be a more effective 

climate change mitigation measure than storage in soil, especially when assessed over 

longer periods of time (Poeplau et al. 2015; Powlson et al. 2008). In addition, built up 

of organic carbon in soils must always accompanied by other elements such as N. This 

means that increasing SOM might need additional mineral fertiliser production (Kirkby 

et al. 2016; Richardson et al. 2014), with associated costs and environmental impacts. 
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While the use of organic inputs can temporarily sequester carbon, there is a risk for 

increased greenhouse gas emissions, potentially offsetting any gains for climate change 

mitigation (Bos et al. 2017). 

While this thesis shows that increasing SOM does not always increase crop production, 

the reverse relationship has a more general validity (i.e.  higher crop production 

increases SOM). If, through any means, higher crop yields can be reached, this will lead 

to production of more aboveground biomass and roots and potentially a higher 

availability of crop residues which can be returned to the field (Fig. 2.5b, Yang & 

Janssen 1997). 

Nutrient leaching 

In some cases, the use of organic inputs instead of mineral fertilisers has been suggested 

to reduce nutrient leaching (Leclerc et al. 1995). For example, during the 1980s, the 

Synchrony Hypothesis was formulated on nutrient supply from organic inputs (Swift 

(1985) as cited by Palm et al. 2001). The Synchrony Hypothesis states that the release 

of nutrients (N,P) from organic inputs can be synchronized with plant growth demands. 

In this manner, synchrony reduces leaching of nutrients while enhancing crop growth. 

Based on a multitude of studies, Palm et al. (2001) however conclude that there is no 

single or combination of organic material that releases N in perfect synchrony to crop 

demand. This means that some percentage of nutrients applied with organic inputs will 

always be prone to losses to the environment. Following, a number of studies have tried 

to compare nutrient losses applied with mineral fertilisers versus application with 

organic inputs. It has been suggested that over the long-term, if nutrients are applied 

attuned to crop requirements, there is no difference in nitrate leaching between using 

either organic inputs or mineral fertilisers (Maeda et al. 2003). 

Crop protection measures 

There is some evidence from field experiments that in certain cases the use of organic 

inputs might reduce the need for chemical crop protection. This is especially the case 

when they are rich in nitrogen (Bailey & Lazarovits 2003) or enriched with specific soil 

microbes (Mehta et al. 2014). There are also findings pointing to the contrary. 

Incorporation of straw is for example known to spread diseases to subsequent cereals in 

crop rotations (Maiorano et al. 2008). In our farm survey, farmers consistently evaluated 

the effects of organic inputs on crop protection negatively (Fig. 4.8). There is therefore 

a need for more research on the relation between the use of various organic inputs and 
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pressures from weeds, pests and diseases. Farmers need specific guidance on which 

combination of organic inputs and crops can increase or reduce the pressure of weeds, 

pests and diseases in a given environment. 

Soil biodiversity 

Soil is one of the most species-rich habitats of terrestrial ecosystems (Decaëns et al. 

2006; Wolters 2001). In agricultural systems, most of the biodiversity resides in soils 

(Brussaard et al. 2007). In part due to these large number of soil species, most of the 

relationships between soil biodiversity and crop production remain unknown. There are 

close relations between SOM and soil life, but the precise mechanisms are not fully 

understood (Six et al. 2006). Losses of SOM might however lead to losses in soil 

biodiversity (Tibbet 2016) and agricultural intensification is known to affect 

biodiversity in agricultural soils (Tsiafouli et al. 2015). In this case, the ‘precautionary’ 

principle (Decaëns et al. 2006) could apply as we are not aware of the risks of losing 

soil biodiversity on the long term.  

7.6. Limitations of the study 

Analysis of total SOM content instead of different SOM fractions 

In this thesis, the role of SOM for crop production was based on total C content in the 

soil (Fig. 2.4b, Fig. 2.5, Fig. 6.7 and Fig. 6.8) or total or effective C content of organic 

inputs (Fig. 2.4d, Table 5.6 and Fig. 5.8). These numbers were either reported by farmers 

(Chapter 6), calculated using technical coefficients (Chapters 2 and 5) or based on soil 

analyses in experimental fields (Chapter 2). All these three methods (reports by farmers, 

using technical coefficients or soil analyses in experimental fields) might have caused 

some degree of error or variation in the data. This was however inevitable when relying 

on published data and farm surveys. Nonetheless some interesting relationships and 

patterns could be observed (as described in the previous sections). 

There is recent evidence that specific SOM fractions play specific roles in improving 

aggregate stability of soils (Dexter et al. 2008). Organic inputs from straw, stubble or 

roots might have a proportionally larger impact on aggregate stability compared to 

organic inputs from animal manures (Powlson et al. 2011; Watts et al. 2006). In contrast, 

comparing effects from animal manure and crop residues on soil structure, Bhogal et al. 

(2009) found that animal manures increased topsoil porosity, plant available water 

capacity and decreased bulk density while crop residues did not. Evaluating total SOM 
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content lacks this type of detail. Ordinary soil analyses (for field experiments or farmers) 

report only total SOC or SOM content. Taking into account specific fractions would 

therefore require introduction and acceptance of new soil analysis methods.  

Which fractions of SOM play a larger role in aggregate stability is also important when 

considering possible trade-offs or synergies with soil carbon sequestration. If the 

contribution from SOM to soil fertility is mainly from fresh or active fractions, there is 

less synergy with soil carbon sequestration, which by default relies on very stable and 

inactive pools of carbon. If the correlation in Fig. 2.5a is a causal relation (meaning a 

relative increase in SOM content causes a relative increase in additional yield), then this 

thesis would support the first option. In that case the proportion of fresh or active SOM 

is more important for soil structural benefits to crop production than older fractions. 

This would explain the observation in Fig. 2.4b, in which there is no relation between 

SOM content at the start of each experiment and the additional yield effect of organic 

inputs. If large parts of these different SOM percentages are older SOM fractions (and 

if older SOM fractions are less beneficial for soil structural benefits to crop growth), 

then fields with both lower and higher SOM contents benefit equally from fresh organic 

inputs.  

Study area 

The objective of this thesis was to cover large parts of Europe. Per chapter however, 

study areas differed. The meta-analysis of Chapter 2 was based on long-term 

experiments in nine countries (Germany, Italy, Romania, Czech Republic, Hungary, 

Spain, Serbia, Estonia and Austria), while a subset of these was taken in Chapter 3 (Italy, 

Romania, Hungary, Czech Republic and Germany), depending on data availability. 

Chapter 4 was based on a farm survey in four countries (the Netherlands, Belgium, 

Austria and Italy), whilst Chapter 5 was a case study in the Netherlands. Finally, Chapter 

6 was based on a farm survey in five countries, again differing in composition 

(Germany, Italy, Belgium, Austria and Spain).  

The data used in each chapter depended on available publications (Chapters 2 and 3) or 

inclusion of arable farmers and incorporation of questions in the farm survey of the 

CATCH-C project (Chapters 4, 5 and 6). Therefore, study areas differed between 

chapters and datasets were sometimes unbalanced with regard to spread of farmers 

across climates and soil textures and practices included. In addition, response rates to 

questionnaires were sometimes low, which might have given a bias in the type of 
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farmers filling in the questionnaire. Nonetheless, ranges of environmental conditions 

and spread of locations does seem to justify more general conclusions.  

As this study only focussed on Europe, very weathered soils, mostly occurring in 

tropical regions, were not included. Weathered soils often have very low cation 

exchange capacity (Palm et al. 1997) and lack a number of micro nutrients necessary for 

crop growth (Gupta et al. 2008). On weathered soils therefore, additional yield effects 

of organic inputs and perceived deficiency of SOM could be larger. In tropical regions 

however, soil analyses by farmers are often less common. In addition, a recent global 

database suggests experimental set-ups as used in our meta-analysis do not exist outside 

temperate regions (ISCN 2015), establishment of such long term experiments would 

therefore be recommended. 

Focus on mineral soils only 

This study is limited to mineral soils, organic (peat) soils were excluded (besides a small 

percentage of Dutch farmers in Chapter 4). Peat soils have very high contents of SOM, 

but because of their organic nature, their structure and response to organic inputs is very 

different from mineral soils (Lucas 1982). Peat soils are especially important when 

considering climate change mitigation as, globally, peat soils contain approximately 455 

Pg of carbon, which is twice the amount found in the world’s forest biomass (Dunn & 

Freeman 2011). Often, peat soils are drained to make them suitable for cultivation, 

which causes substantial amounts of greenhouse gas emissions (Erkens et al. 2016). 

These dynamics were however outside the scope of this study.  

7.7. Implications of the findings 

The findings in this thesis indicate that at least on the shorter term, on average, there 

seems to be no immediate threat from a deficiency of SOM to crop production in arable 

farming in Europe. The long-term experiments showed that with sufficient use of only 

mineral fertilisers, similar yields could be attained over multiple years as with the 

combined use of organic inputs and mineral fertiliser. This result was independent from 

SOM content in the experimental fields (Chapter 2). Similarly, the large majority of the 

farmers interviewed (82%) did not perceive a high or very high deficiency of SOM for 

productive capacity (Chapter 6). Likewise, a major barrier identified for the use of 

organic inputs are the financial consequences at farm level (either increased costs or 

reduced income, Chapters 4,5). This suggests that at least on the short term, on average, 

European arable farmers do not benefit financially from increasing SOM content. 
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These findings differ when looking in more detail at specific environmental conditions, 

types of crops cultivated and types of organic inputs used (Fig 7.1). SOM and organic 

inputs give more benefits to crop production in wet climates, on very sandy soils and on 

steep slopes. It seems that while the functions of SOM can be replaced with technical 

means to a large extent (e.g. tillage, use of mineral fertilisers), there are limits to this 

technical potential when environmental conditions are more extreme or crops are more 

demanding. 

Specialized crops (such as root and tuber crops) benefit more from organic inputs than 

cereals. Even though additional yield effects of organic inputs were small, they do exist 

for potatoes (Fig. 2.3b). More in general, farmers who cultivate a larger share of their 

land with specialized or horticultural crops (such as sugar beets, onions, carrots or other 

vegetables) perceived a higher deficiency of SOM (Fig. 6.6d). Often, such crops are the 

cash crops on which the income of a farmer relies, more than on cereals. Small changes 

in yields of these crops might therefore have a relatively large impact on the long-term 

viability of a farm. 

This thesis has found that - for the current degree of intensification in European arable 

farming - the contribution of SOM to crop production in European arable farming 

depends on a number of environmental factors, types of organic inputs used and crop 

types cultivated. If policies on SOM management aim to include benefits for crop 

production, it would therefore be advisable to focus on areas with more extreme 

environmental conditions.  

In his thesis on the on-farm benefits of SOM for England and Wales, Verheijen (2005b) 

calls for a paradigm change in which SOM’s importance for crop production shifts from 

a primary function to a secondary, or buffer, function. In this proposed new paradigm: 

“SOM still contributes to most agro-production sub-functions, but its magnitude is 

relatively low and in many cases only (measurably) occurring in ‘extreme’ climatic 

years” (Verheijen 2005b). The findings in this thesis support his suggestion and give 

reason to in include besides ‘more extreme climatic years’ also ‘more extreme 

environmental conditions’ and possibly ‘more demanding crops’.  
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Summary 

Soil organic matter (SOM) is often considered the most important indicator of soil 

fertility. It contributes to each of fertility’s three dimensions: the physical (structure, 

aeration, water retention), the biological (biomass, biodiversity, nutrient mineralisation, 

disease suppression) and the chemical (nutrient supply) dimension. Yet there is currently 

little scientific consensus on the precise relation between SOM and crop production.  

Recently, concerns have been raised that SOM is declining in European soils and that 

SOM content should be maintained above a certain threshold to (among others) protect 

productive capacity of soils. It is currently unclear whether these concerns are justified. 

The aim of this thesis was to improve understanding of the role of organic inputs and 

SOM for crop production in contemporary arable farming in Europe. On a given arable 

field, a farmer can increase SOM content by increasing organic inputs, reducing tillage 

or reducing drainage. In this thesis, the research focus was on using organic inputs to 

increase SOM contents. Types of organic inputs investigated were application of 

farmyard manure (FYM), slurry or compost, incorporation of straw and the cultivation 

of green manures. The hypothesis was that the contribution of SOM to crop production 

on arable farms depends on environmental conditions and crop types cultivated.  

The following research questions were addressed: (1) What is the additional yield effect 

of organic inputs for arable crops in Europe? (2) Do mineral fertiliser savings from 

organic inputs depend on total N supply? (3) What are currently the main drivers and 

barriers for arable farmers to use organic inputs? (4) How are farmers’ beliefs on SOM 

related to their use of organic inputs?  (5) Do farmers perceive a deficiency of SOM? 

Data from field and farm level were used to answer the research questions. To answer 

the first two research questions, data from long-term experiments were analysed. To 

answer the last three research questions, a large farm survey was conducted in six 

European countries (the Netherlands, Belgium, Austria, Spain, Italy and Germany). 

Previous studies assessing the effects of organic inputs and SOM on crop yields have 

shown mixed results. Some studies have found positive effects while others found none. 

One cause for this variation may be found in mixing the effects of nutrient supply from 

organic inputs or SOM and other effects such as improved soil structure or soil life. To 

circumvent this limitation, in this thesis effects of organic inputs on crop yields were 

assessed in a system without macro-nutrient limitation. Any effect found on crop yields 

was called the ‘additional yield effect’.  
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To find the additional yield effect of organic inputs, a meta-analysis was performed of 

20 long-term experiments (Chapter 2).Yield response curves to mineral fertiliser-N 

were calculated, with and without organic inputs (with sufficient P and K supply). The 

additional yield effect of organic inputs was calculated by taking the difference between 

the maxima (‘attainable yield’) of the yield response curves. Across all experiments, the 

mean additional yield effect of organic inputs was not significant (+ 1.4 percent + 1.6 - 

95% Confidence Interval). In specific cases however (i.e. for root and tuber crops, spring 

sown cereals, or for very sandy soils or wet climates), organic inputs did increase 

attainable yields (depending on the co-variable, additional yield effects varied mostly 

between 3-7%). A significant correlation was found between increase in attainable 

yields and increase in SOM content. 

The use of organic inputs can save mineral fertiliser N. Factors known to affect savings 

of mineral fertiliser include the form of N in the organic input, crop type cultivated, soil 

type, method of application, time of application and the manuring history which may 

govern N retention and losses. In this thesis, an additional factor on mineral fertiliser N 

savings was assessed which is currently not taken into account: the total N supply itself.  

In Chapter 3, a subset of eight experiments was taken from Chapter 2 in which N 

contents of organic inputs were reported. Mineral fertiliser savings were compared at 

low and high total N supply. Results show that FYM saves significantly more mineral 

fertiliser N at high total N supply than at low total N supply (Nitrogen Fertiliser 

Replacement Value (NFRV) of 1.12 vs 0.53, p = 0.04). The other organic input types 

investigated also saved more mineral fertiliser N at high total N supply than at low total 

N supply, but sample sizes were too small or variations too large to find significant 

differences.  

Besides effects on yield or savings of mineral fertilisers, farmers can have a wide array 

of drivers and barriers to use organic inputs or increase SOM content on their farm. 

According to the theory of planned behaviour, people base their behaviour on three main 

constructs: (1) their attitude (based on outcomes), 2) their subjective norm (based on 

social referents) and 3) the degree of perceived behavioural control (based on control 

factors). These three constructs are based on underlying beliefs of farmers and together 

lead to an intention, which might lead to a certain behaviour. 

To find drivers and barriers for the use of organic inputs (Chapter 4), semi-structured 

interviews were held with arable farmers in six agro-ecological zones in four European 

countries (the Netherlands, Belgium, Austria and Italy). These semi-structured 
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interviews were used to identify outcomes, referents and control factors relevant to the 

use of four types of organic inputs (incorporation of straw, cultivation of green manures, 

application of FYM and application of compost). Following, a large farm survey was 

held among 1180 arable farmers to quantify the outcomes, referents and control factors 

as either drivers or barriers. Drivers and barriers were classified into nine main 

categories (soil type & climate, soil quality, crop protection, land use, technical, 

financial, environmental impact, legal and social).  

Major drivers to use organic inputs were perceived effects on soil quality (such as 

improved soil structure or reduced erosion) and the positive influence from social 

referents (such as fellow farmers or agricultural advisors). Major barriers to use organic 

inputs were financial (increased costs or foregone income) and perceived effects on crop 

protection (such as increased weeds, pest and diseases or increased pesticide use). These 

findings show that farmers perceive a trade-off between improved soil quality on the 

one hand and increased pressures from weeds, pests and diseases and financial 

consequences on the other hand when using organic inputs.  

A case study among 435 arable farmers in the Netherlands (Chapter 5), showed that 

farmers specifically value the effect of SOM content on soil structure, especially where 

it improves workability on clay soils and water holding capacity on sandy soils. Soil 

fungi were evaluated as a negative outcome of SOM. Among the different control 

factors, the long-term effect of SOM content was perceived as very strong and evaluated 

very positively. Advisors were considered to have the most positive view on SOM and 

fellow farmers were considered to be least positive. Farmers’ beliefs were correlated 

weakly but significantly with their intention to increase SOM content. The large 

majority (91%) of the farmers in the survey had a high or very high intention to increase 

SOM content. A higher intention to increase SOM content was significantly correlated 

with the use of organic inputs as expressed in total and effective C inputs. 

In total 1452 farmers in five European countries (Belgium, Germany, Austria, Spain and 

Italy) were asked if they perceive a deficiency of SOM (Chapter 6). Results show that 

18% perceived a high or very high SOM deficiency, 53% perceived a very low or low 

SOM deficiency and 29% giving an indication in the middle. Perceived deficiency of 

SOM content was related to climate (aridity), slope, soil texture and land use. Based on 

farmers’ perceptions threshold intervals for SOM content were established (sand: 1.2–

4.7%, loam: 0.6–2.6% and clay: 1.0–2.4%). Below a threshold interval, a farmer will 

benefit from more SOM content, irrespective of other factors such as land use or 
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management. Above a threshold interval, more SOM content will not be beneficial for 

productive capacity from a farmers’ point of view. Some indication was found that being 

at the extreme end for one environmental factor gives a higher chance of perceiving a 

deficiency of SOM than having a combination of moderate environmental conditions.  

The findings in this thesis indicate that at least on the shorter term, on average, there 

seems to be no immediate threat from a deficiency of SOM to crop production in arable 

farming in Europe. The long-term experiments showed that with sufficient use of only 

mineral fertilisers, on average, similar yields could be attained over multiple years as 

with the combined use of organic inputs and mineral fertiliser. This result was 

independent from SOM content in the experimental fields.  

Effect of organic inputs and SOM differ when taking into account specific 

environmental conditions, types of crops cultivated and types of organic inputs used. 

Long-term experiments show that organic inputs give more benefits to crop production 

in wet climates and on sandy soils. In addition, farmers perceive more benefits from 

SOM on steep slopes, sandy soils, wet or very dry climates. The additional yield effect 

of organic inputs is larger for potatoes than for cereals and more in general, farmers who 

cultivate larger shares of their land with specialized crops (including potatoes, sugar 

beets, onions and other vegetables) perceive more benefit from SOM. Using FYM has 

more benefits to crop production than using straw (even when compensating for the N 

immobilization by applying additional mineral fertiliser N). It seems that while the 

functions of SOM can be replaced with technical means to a large extent (tillage, use of 

mineral fertilisers), there are limits to this technical potential when environmental 

conditions are more extreme and crops are more demanding. 

Indications were found that more mineral fertiliser N can be saved when using farmyard 

manure at high N rates (with mineral fertiliser application) than at low N rates (without 

mineral fertiliser application), based on comparisons at ‘equal yield’. If further 

validated, this could imply an advantage of distributing available farmyard manure (and 

possibly other types of organic input) among many farmers in a given region: the region 

would require less mineral fertiliser to produce the same yield output, than when organic 

inputs were concentrated in few farms. Main drivers for farmers to use organic inputs 

are the perceived effects on soil quality, while the main barriers are the perceived 

financial consequences and increased pressures from weeds, pests and diseases.  

If policies aim to stimulate the maintenance or increase of SOM, more insight is needed 

under which conditions the use of organic inputs increases or reduces pressures of 
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weeds, pests and diseases. Financial consequences (at least on the short term) should 

also be accounted for. More importantly however, benefits from SOM for crop 

production cannot be taken for granted. Only in specific situations does this assumption 

hold. If European policies on SOM want to align benefits for the larger society (such as 

soil carbon sequestration, biodiversity conservation) with benefits for crop production, 

focus should be on areas with more extreme environmental conditions (very dry or very 

wet climates, steep slopes, very sandy soils), or cropping systems with more specialized 

or horticultural crops and less cereals.  
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Samenvatting 

Organische stof (OS) in de bodem wordt vaak gezien als de belangrijkste indicator voor 

bodemvruchtbaarheid. OS draagt namelijk bij aan elk van de drie dimensies van 

bodemvruchtbaarheid: de fysische (structuur, beluchting, infiltratie, watervasthoudend 

vermogen), de biologische (biomassa, biodiversiteit, mineralisatie van nutriënten, 

ziektewering) en de chemische (retentie en levering van nutriënten) dimensie. 

Desalniettemin is er momenteel weinig wetenschappelijke consensus over de precieze 

relatie tussen OS en gewasproductie. 

De afgelopen jaren zijn meerdere zorgen geuit over een mogelijke daling van OS in 

Europese bodems. Dit heeft geleid tot verschillende voorstellen om te streven naar een 

bepaald percentage OS om (onder andere) de productiecapaciteit van bodems te 

waarborgen. Het is momenteel onduidelijk of deze zorgen gerechtvaardigd zijn. Het doel 

van dit proefschrift was om de rol van organische meststoffen en OS voor 

gewasproductie in hedendaagse Europese akkerbouw beter te begrijpen. Op een bepaald 

perceel akkerbouwgrond kan een boer het percentage OS verhogen door meer 

organische meststoffen aan te voeren, het ploegen te verminderen of door drainage te 

verminderen. In dit proefschrift ligt de nadruk op het toedienen van meer organische 

meststoffen om OS te verhogen of te behouden. De volgende soorten organische 

meststoffen1 zijn daarbij in acht genomen: vaste mest, drijfmest, compost, het inwerken 

van stro en het telen van groenbemesters. De hypothese van dit onderzoek was dat de 

bijdrage van OS aan gewasproductie in de akkerbouw afhangt van milieufactoren en de 

gewassen die geteeld worden. 

De volgende onderzoeksvragen zijn gesteld: (1) Wat is het specifieke effect van 

organische meststoffen op de gewasopbrengst van akkerbouwgewassen in Europa? (2) 

Is de besparing van kunstmest door gebruik te maken van organische meststoffen 

afhankelijk van de totale stikstof (N) gift? (3) Wat zijn momenteel de belangrijkste 

motivaties en belemmeringen voor boeren om organische meststoffen te gebruiken? (4) 

Hoe zijn overtuigingen van boeren over OS gerelateerd aan hun daadwerkelijk gebruik 

van organische meststoffen? (5) Ervaren boeren een tekort aan OS? Analyse van data 

vond plaats op zowel veld- als bedrijfsniveau. De eerste twee onderzoeksvragen zijn 

beantwoord met behulp van lange-termijn experimenten. De laatste drie 

                                              
1 Bij gebrek aan een eenduidige alomvattende Nederlandse term wordt het woord organische meststof hier gebruikt 

voor zowel dierlijke mest als plantaardig materiaal (zoals compost of gewasresten).  
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onderzoeksvragen zijn beantwoord met behulp van een grootschalige enquête, gehouden 

in zes Europese landen (Nederland, België, Oostenrijk, Spanje, Italië en Duitsland).  

Eerdere studies naar het effect van organische meststoffen en OS op gewasopbrengsten 

lieten wisselende resultaten zien. Sommige studies vonden positieve effecten op de 

gewasopbrengst, terwijl andere studies geen effect aantoonden. Het verschil in 

bevindingen kan mogelijk verklaard worden doordat in sommige studies bepaalde 

effecten van OS, zoals een verbeterde bodemstructuur of een gewijzigd bodemleven, 

verward worden met een verhoogde beschikbaarheid van nutriënten. Om deze koppeling 

uit te sluiten, is in dit proefschrift het effect van organische meststoffen en OS op de 

gewasopbrengst geanalyseerd in een situatie waarbij macronutriënten niet limiterend 

zijn voor de gewasgroei. In deze situatie wordt een effect van OS op gewasopbrengst 

het ‘specifieke effect’ van OS genoemd, ook wel eerder het ‘rest-effect’ genoemd, maar 

niet te verwarren met de Engelse term ‘residual effect’ wat in deze context een andere 

betekenis heeft.  

Om het specifieke effect van organische meststoffen te achterhalen is een meta-analyse 

gedaan van 20 lange termijn experimenten (Hoofdstuk.2). Curves van gewasopbrengst 

in relatie tot de toediening van kunstmest-N zijn berekend, met en zonder toevoeging 

van organische meststoffen (en met toediening van voldoende fosfor (P) en kalium (K)). 

Het specifieke effect van organische meststoffen is uitgedrukt als het verschil tussen de 

maxima (de haalbare gewasopbrengsten) van de beide curves. Gemiddeld over de 20 

lange termijn experimenten was het specifieke effect van organische meststoffen niet 

significant verschillend van nul (+ 1.4 procent + 1.6 - 95% betrouwbaarheidsinterval). 

Echter, onder bepaalde omstandigheden (bij het telen van wortel- en knolgewassen of 

zomergranen, of op erg zandige gronden of in een nat klimaat), verhoogde het gebruik 

van organische meststoffen de haalbare opbrengst wel. Het positieve effect varieerde 

hierbij, afhankelijk van de situatie, tussen de 3 en 7%.  Daarnaast werd er een 

significante correlatie vastgesteld tussen een verhoging van de haalbare gewasopbrengst 

en de toename van het percentage OS in de bodem.  

Het gebruik van organische meststoffen kan een besparing opleveren in het gebruik van 

kunstmest-N. Hoeveel kunstmest er precies bespaard wordt hangt af van de 

samenstelling van de organische meststof, het gewas dat geteeld wordt, bodemtype, 

moment en manier van toediening en de voorgeschiedenis van een perceel dat zorgt voor 

behoud of verlies van N in de bodem. In dit proefschrift is een bijkomende factor 
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onderzocht, die tot heden niet is meegenomen in eerdere studies: de totale hoeveelheid 

N die toegediend wordt. 

In Hoofdstuk 3 is een deelverzameling genomen van de experimenten uit Hoofdstuk 2. 

In deze deelverzameling van acht experimenten was bekend hoeveel N toegediend is 

met organische meststoffen. Besparingen van kunstmest (door gebruik te maken van 

organische meststoffen) zijn vergeleken bij een lage en hoge N gift. Resultaten laten 

zien dat om een bepaalde gewasopbrengst te halen, het gebruik van vaste mest 

significant meer kunstmest bespaart bij een hoge dan bij een lage N gift 

(stikstofwerkingscoefficiënt van 1.12 ipv 0.53, p =0.04). Ook de andere soorten 

organische meststoffen bespaarden meer kunstmest-N bij een hoge dan een lage N gift, 

maar de steekproefomvang was daar te klein of de variatie in de uitkomsten te groot om 

een significant verschil te kunnen aantonen. 

Naast effecten op gewasopbrengst of het besparen van kunstmest kunnen boeren een 

breed scala hebben van motivaties en belemmeringen om organische meststoffen te 

gebruiken of OS te verhogen in hun bodem. Volgens de ‘Theorie van Gepland Gedrag’ 

baseren mensen hun gedrag op drie belangrijke factoren: (1) hun attitude (gebaseerd op 

overtuigingen over ‘gevolgen’ van gedrag), (2) hun sociale norm (gebaseerd op 

overtuigingen met betrekking tot ‘sociale referenten’) en (3) ervaren gedragscontrole 

(gebaseerd op overtuigingen over ‘controle factoren’). Gezamenlijk leiden ze tot een 

intentie, die kan leiden tot een bepaald gedrag of keuzes in management. 

Om de motivaties en belemmeringen te vinden voor het gebruiken van organische 

meststoffen (Hoofdstuk 4), zijn semi-gestructureerde interviews gehouden met 

akkerbouwers in zes agro-ecologische zones in vier Europese landen (Nederland, 

België, Oostenrijk en Italië). Door middel van deze interviews zijn relevante gevolgen, 

sociale referenten en controle factoren voor het gebruik van vier soorten organische 

meststoffen (stro, groenbemesters, vaste mest en compost) in kaart gebracht. Vervolgens 

is een grootschalige enquête gehouden onder 1180 boeren om de attitudes, sociale 

normen en gedragscontrole te kwantificeren als motiverende factoren of 

belemmeringen. Motiverende factoren en belemmeringen zijn vervolgens 

geclassificeerd in negen categorieën (bodemtype & klimaat, bodemkwaliteit, 

gewasbescherming, landgebruik, technisch, financieel, milieu-impact, juridisch en 

sociaal).  

Belangrijke motiverende factoren voor boeren om organische meststoffen te gebruiken 

bleken waargenomen effecten op bodemkwaliteit (zoals een verbeterde bodemstructuur 
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of verminderde erosie) en de positieve invloed van sociale referenten (zoals andere 

boeren of adviseurs). Belangrijke belemmeringen waren financieel gerelateerd (zoals 

hogere kosten of lagere inkomsten) en te verwachten effecten op gewasbescherming 

(zoals verhoogde onkruid- of ziektedruk, meer plagen of meer noodzaak om pesticiden 

te gebruiken). Deze bevindingen laten zien dat boeren een dilemma ervaren tussen een 

verbeterde bodemkwaliteit aan de ene kant en een hogere druk van onkruid, ziekten 

en/of plagen en financiële consequenties aan de andere kant bij het gebruiken van 

organische meststoffen. 

Meer gedetailleerd onderzoek onder 435 akkerbouwers in Nederland (Hoofdstuk 5) laat 

zien dat boeren OS vooral waarderen vanwege het positieve effect op de 

bodemstructuur. Op kleigronden heeft dit voornamelijk te maken met een verbetering 

in de bewerkbaarheid van de bodem, terwijl op zandgronden de bijdrage aan het 

watervasthoudend vermogen gewaardeerd wordt. De Nederlandse boeren evalueerden 

het effect van OS op bodemschimmels als een negatieve uitkomst.  

Het lange-termijn effect van OS werd erg sterk geacht en positief gewaardeerd door de 

Nederlandse akkerbouwers. Van de verschillende sociale referenten werden adviseurs 

gezien als degenen met de meest waardering voor OS en andere boeren als degenen met 

de minst positieve waardering van OS. Overtuigingen van boeren waren zwak maar 

significant gerelateerd met hun intentie om OS te verhogen. Het merendeel van de 

Nederlandse boeren (91%) had een sterke of erg sterke intentie om OS te verhogen. Een 

sterkere intentie om OS te verhogen was significant gerelateerd met een hoger 

daadwerkelijk gebruik van organische meststoffen (uitgedrukt in totale of effectieve C 

die jaarlijks werd toegediend) door de respondenten. 

In Hoofdstuk 6 is ingegaan op de vraag of akkerbouwers in vijf Europese landen (België, 

Duitsland, Oostenrijk, Spanje en Italië) een tekort ervaren aan OS. Van de 1452 

geïnterviewden ervaarde 18% een groot of erg groot tekort aan OS, 53% een klein of 

erg klein tekort en 29% van de akkerbouwers gaf een neutrale indicatie. Ervaren tekort 

aan OS was gerelateerd aan klimaat (droog of nat), helling, bodemtextuur en 

landgebruik. Gebaseerd op de percepties van de boeren zijn ranges van grenswaarden 

voor OS vastgesteld (zand: 1.2-4.7%, zavel 0.6-2.6% en klei: 1.0-2.4%). Beneden de 

gegeven ranges ervoeren de boeren een voordeel van OS, ongeacht andere factoren zoals 

landgebruik of management. Boven de gegeven ranges ervoeren boeren een toename in 

OS niet als een voordeel voor de productie capaciteit van de bodem. Er was enige 

indicatie dat een extreme waarde van één factor (zoals helling, bodemtextuur, of 
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landgebruik) een grotere kans geeft op een tekort aan OS dan een combinatie van 

gemiddelde factoren.  

De resultaten in dit proefschrift laten zien dat op de korte termijn, gemiddeld genomen, 

er geen sprake is van een onmiddellijk risico van een tekort aan OS voor gewasproductie 

op akkerbouwgrond in Europa. De lange-termijn experimenten laten zien dat met 

voldoende gebruik van alleen kunstmest er, gemiddeld genomen over meerdere jaren, 

dezelfde gewasopbrengsten kunnen worden behaald als met een combinatie van 

kunstmest en organische meststoffen. Dit resultaat was onafhankelijk van het OS-

gehalte in de betreffende experimenten.  

Effecten van organische meststoffen op gewasopbrengsten verschillen echter 

afhankelijk van omgevingsfactoren, type gewassen die geteeld worden en het soort 

organisch meststof dat gebruikt wordt. Lange-termijn experimenten laten zien dat 

organische meststoffen meer voordeel opleveren voor gewasproductie in nattere 

klimaten en op zandige gronden. Daarnaast ervaren boeren meer voordeel van OS op 

steilere hellingen, op zandige gronden en in natte of erg droge klimaten. Het specifieke 

effect van organische meststoffen is groter voor aardappels en meer in het algemeen 

ervaren boeren die meer gespecialiseerde gewassen telen (zoals aardappels, 

suikerbieten, uien en andere groentegewassen) meer voordeel van OS. Het gebruik van 

vaste mest heeft meer voordelen voor de gewasproductie dan het inwerken van stro 

(zelfs als er gecompenseerd wordt voor N-immobilisatie door meer kunstmest-N toe te 

dienen). Het lijkt erop dat alhoewel de functies van OS merendeels vervangen kunnen 

worden door technische middelen (zoals door te ploegen of door gebruik te maken van 

kunstmest), dit vervangingspotentieel beperkter is wanneer milieufactoren extremer zijn 

en er meer veeleisende gewassen geteeld worden.  

Het gebruik van vaste mest bespaart (per eenheid vaste mest) meer kunstmest als het 

toegediend wordt in combinatie met een relatief hoge kunstmest-N gift dan in 

combinatie met een relatief lage kunstmest-N gift of zonder kunstmest-N. Dit zou 

kunnen impliceren dat met de beschikbare hoeveelheid vaste mest in een regio meer 

kunstmest bespaard wordt indien deze verdeeld wordt over meerdere bedrijven, in plaats 

van geconcentreerd wordt toegediend op enkele bedrijven. Dit zou mogelijk ook kunnen 

gelden voor andere soorten organische meststoffen.  

Belangrijke motivaties voor boeren om organische meststoffen te gebruiken zijn 

positieve effecten op bodemkwaliteit, terwijl de belangrijkste belemmeringen liggen in 

de financiële consequenties en een verhoogde druk van onkruiden, ziekten en plagen. 
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Als beleidsmakers een stimulans wil geven om OS in akkerbouwgronden te behouden 

of te verhogen, dan zal er meer inzicht nodig zijn waarom en onder welke 

omstandigheden het gebruik van organische meststoffen leidt tot een verhoogde druk 

van onkruiden, ziekten en plagen. Financiële consequenties (ten minste die op de korte 

termijn spelen) zouden hierbij ook betrokken kunnen worden. Belangrijker nog is het 

om te beseffen dat voordelen van OS voor de gewasopbrengst zich niet altijd voordoen. 

Alleen in specifieke situaties treedt dit voordeel op. Als Europees beleid omtrent OS in 

landbouwgronden maatschappelijke voordelen (zoals koolstofopslag of behoud van 

biodiversiteit) wil afstemmen met voordelen voor gewasproductie, dan zal de nadruk 

moeten liggen op gebieden met extremere milieus (erg droge of natte klimaten, steilere 

hellingen, zandige gronden), of op regio’s met meer gespecialiseerde gewassen en een 

laag aandeel granen. 
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1. More soil organic matter does not necessarily imply more soil fertility. 
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production by technical means is more limited under extreme environmental 
conditions. 
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3. Sequestering carbon in agricultural soils is at best a short-term, not a 

sustainable solution to mitigate climate change. 
 
4. The need for economic quantification of ecosystem services is a defeat of the 

rule of law by the rule of the market. 
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transform opinions into facts and facts into opinions.  
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