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Abstract 11

Modern biological research is accumulating an ever-increasing amount of information on genes

and their functions. It is apparent that biological functions can very rarely be attributed to a

single genes, but rather arise from complex interaction within networks that comprise many

genes. A fundamentally important challenge in contemporary biology is to extract mechanistic

understanding about the complex behavior of genetic networks from the available data. The

interactions within a genetic network are often exceedingly complex and no-linear in nature,

and thus are not open to intuitive understanding. This situation has given rise to a host of

mathematical and computational approaches aimed at in-depth analysis of genetic network

topologies and dynamics. In particular these approaches focus on system level proprieties of

these networks, not directly derivable from their constituent components. To a large extent

the power of these theoretical approaches rely on meaningful reduction in complexity by

utilizing justified simplifications and abstractions. The underlying principle is that in order to

comprehend a mechanism, it is not necessary to take into account all the available information

about the mechanism. Given this, Computational models that follow this approach focus on

incorporating core components that are essential in answering a specific biological question,

while simplifying/omitting the less relevant processes. A fundamental question is this regard is

what simplifying concept should be employed when developing a theoretical model of a genetic

network.

A successful approach to address this question is the notion of network motif analysis. This

approach is based on the core idea that most genetic networks are not arbitrary nor unique,

instead they can be categorized into common network dynamics and topologies that perform core

functions. Analogous to components of an electric circuit (resistors, capacitor, etc) these network

motifs have distinct properties that are independent of the network that they are embedded in.

Therefore analysis of genetic networks in terms of their constituent motifs can potentially be an

effective mean in obtaining mechanistic understanding about them.

In this thesis the network motif approach is utilized to study two instances of pattern forma-

tion in plant tissues. The first study focuses on organization of stem cells within the shoot
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apical meristem of the model plant, Arabidopsis thaliana. The results demonstrate that three

interconnected network motifs can account for a range of experimental observations regarding

this system. Furthermore through an exhaustive exploration of the available data, candidate

genes and interactions corresponding to these motifs are outlined, thus paving the way for future

interdisciplinary investigations.

The second study explores the development of vasculature during arabidopsis embryogenesis.

In contrast to shoot apical mersitem in mature plant, the cell number and arrangement of

vasculature in highly dynamic during its embryonic development. To account for this feature,a

computational framework was utilized that is capable of capturing the interplay between genes

and cell growth and division. The outcome revealed that two interlocking networks motifs

dynamically control both patterning and growth of the vascular tissue. The study revealed novel

spatial features of a motif previously studies exclusively in non-spatial settings. Furthermore the

study resulted in a compelling example of model-driven discovery, where theoretical analysis

predicted a specific cellular arrangement to be crucial for the correct development of vasculature.

Subsequent analysis of experimental data confirmed the existence of this cellular arrangement

in the embryo.

the projects presented in this thesis exemplify successful applications of the network motif

approach in studying spatial genetic network. In both cases the networks were successfully

examined in terms of their constituent motifs, which subsequently lead to increased mech-

anistic understanding of them. Ultimately the work presented in this thesis demonstrates

the effectiveness of studying genetic networks by a combination of careful examination of

available biological data and a reductionist modeling approach guided by the concept of network

motifs.







CHAPTER 1

Introduction and thesis outline
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1.1 Computational modeling and developmental biology

Plat organs such as root and shoot develop via generation and regulation of spatio-temporal

patterns that regulate cellular behavior. Understanding how such patterns arise is a key aim in

developmental biology and is the focus of a substantial body of theoretical and experimental

research. Despite our increasing knowledge of genetic networks, genetics alone does not lead

to a mechanistic understating of regulatory networks that establish and regulate these patterns.

This is because genetic and functional genomics approaches often assume a direct relationship

between genes and morphology at the tissue or organism level. To understand the developmental

function of genes [1], one must take into account their spatial patterns and roles within genetic

networks. Furthermore these networks interact with mechanical and geometrical processes,

often in complex and non-linear manners [2]. Natural intuition is not sufficient for understanding

this level of complexity. Mathematical modeling has proven to be an effective tool in providing

insights into the dynamic and complex mechanisms of development.

1.2 Models of biological pattern formation

Mechanisms of pattern formation in developmental biology can be categorized into pre-pattern

and emergent pattern models. In the former group initial biases in cellular properties and/or

morphogen concentrations drive formation of new patterns. In contrast in the latter group

patterns spontaneously emerge from spatially homogeneous initial states. Many models of

biological pattern formation employ mechanisms from both of these groups.

The emergent pattern models are concerned with a defining feature of multi-celluar organisms,

the ability to create spatial patterns from a previously non-patterned state. To date, only a

handful of mechanisms have been identified that can account for such spontaneous pattern

formation. The most prominent among these is the mechanism put forward by Turing [3],

he proposed a set of reactions between two diffusing chemicals that result in development
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of spatially heterogeneous distributions, from an initially near-homogeneous state. Turing’s

reaction-diffusion (RD) model has intrigued researchers since its introduction, as it provides a

clear explanation for how spatial patterns can be encoded in chemicals interactions. A growing

body of observed patterns both in plants and animals can be successfully reproduced using

Turing’s model. However a persistent challenge has been to experimentally prove the existence

of this patterning mechanism in biology. Another prime example of a successful group of

models of emergent patterning comes from the field of plant development. These models are

focused on interactions between plant hormone Auxin and its membrane-bound transporters,

PIN FORMED (PIN) proteins [4]. In these models feedback from auxin on PIN induces a polar

localization of PIN at cell membranes. The result is a variety of heterogeneous spatial patterns

of auxin distribution [5]. Some of these models predate the discovery of PINs and provide

an excellent example of how modeling can provide insight and direct experimental research.

Several groups of auxin-PIN models exist where each group is capable of reproducing specific

observed patterns of auxin distribution [5–7]. As with the Turing model, these mechanisms have

not been conclusively shown to exist in plants. Some of the existing models propose divergent

mechanisms of PIN regulation via auxin and to date have not resulted in formulation of a unified

model which account for all observed auxin patterns.

Models based on above mentioned mechanisms are powerful tools that can explain patterning

behaviors of plants even when precise quantitative information is unavailable. Intriguingly

these models and all their variants share a same basis: local self-enhancement and long range

inhibition. A large and increasing body of observed pattern in plant development can be

reproduced by this simple concept.

1.2.1 State-of-the-art models of plant development

Feedback from mechanics and geometry on genes is a crucial component of many developmental

systems. Most developmental processes occur within the dynamic template of a developing
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tissue or organ, where morphogens affect cell mechanics that in turn feedback on morphogen

patterns. As a result many developmental processes cannot be adequately studied without taking

this feedback into account. This has led to development of modeling frameworks where chemical

signaling networks can be implemented within a dynamic template of cells. These software

allows for cellular behavior such as division and growth as well as mechanical properties, to

be regulated by morphogen concentrations [8–10]. In recent years these approaches have been

effective in advancing our mechanistic understanding of dynamic developemntal processes.

These dynamic models represent the state of the art in modeling spatial pattern formation in

biology. An increasing variety of models and platforms have been developed aimed at addressing

questions in a wide range of fields in developmental biology. The use of a modeling platform

rarely goes beyond the research group were it is developed. This complicates contrasting and

comparison between different models, even when they aim at answering the same scientific

question. With the increasing presence of computational modeling in developmental biology, it

is important to develop approaches that facilitate communication in the field.

1.2.2 Current challenges and outlook

The above touches upon some of the main advances and challenges in studying pattern formation

in plants. Several well developed theoretical models exist that successfully reproduce a wide

range of observed pattern. In most cases, notably the Turing RD model, it has been challenging

to relate these models to the available experimental data. This situation restricts the possibility

of forming a functional iterative process between theory and experimentation. Therefore it is

apparent that there is much to be gained from rigorous interdisciplinary efforts aimed at bridging

the gap between experimental and theoretical research in these areas.

Computational modeling of cellular development is advancing rapidly. We are now capable of

developing 3D final element models of growing and dividing cells with sub-cellular level imple-

mentation of chemical processes. Such approaches employ physical and chemical formulations,
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algorithms and assumptions to represent developing biological systems. Unlike experimental

biology, no commonly used protocols have been developed for scientific presentation of these

models and to facilitate reproducibility of modeling results. This is in part because computational

modeling is a relatively new field and by its nature gives rise to diverse and sometimes divergent

approaches. As such I think the field can benefit from clear presentation of computational

models that provide all information required for thorough understanding and reproduction of

modeling results. This is especially important for analysis and development of models by other

researchers, since due to the often non-linear nature of these models, the impact of different

factors on model functionality is not always readily discernible. As such to understand and assess

these models one requires a thorough and detailed description of its components, assumptions,

initial conditions etc. Ultimately research in the field can benefit considerably by focusing on

development of open-source platforms for modeling. These allow for development of wide array

of models, while providing a common base that greatly promote communication and interaction

among computational modelers.

1.3 Thesis outline

The first chapter of this thesis provides an overview of the current state of spatial patterning

models in plant biology. In doing so this chapter also outlines the overall approach to modeling

that is applied in the subsequent chapters. Furthermore the chapter includes an overview of the

experimental data relevant to work presented in this thesis. Each of the subsequent chapters of

this thesis presents a computational modeling effort aimed at answering a specific question in

plant developmental biology. For each project my aim was to form an iterative process between

modeling and experimentation. Ultimately the goal was not only to explain developmental

phenomena but also to provide useful guidelines for future research in the field. As such models

were developed in close collaboration with experimental biologists, with a focus on providing

predictions that were practical to test experimentally. For each model, I explicitly catalog the
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biological facts and assumptions underlying the model and provide a detailed mathematical and

computational description, to aid understanding, reproduction and further development of these

models.

In chapter two, I explore how a genetic network that includes a Turing reaction-diffusion motif,

can account for the stem cell organization in Arabidopsis shoot apical meristem. Using reaction-

diffusion models to account for spatial patterning of shoot apical meristem has a history of

more than a decade and several distinct modeling approaches have developed. While providing

valuable insight into SAM patterning, these efforts did little to direct experimental research

towards identification of genetic players that correspond to components of an reaction-diffusion

system. As discussed earlier, this mirrors the situation of almost every modeling effort that

employs a Turing reaction-diffusion system, especially in plant developmental biology. My

modeling effort aimed at utilizing the available data to identify the potential in vivo manifestation

of a Turing RD system within the meristem genetic regulatory networks. In close collaboration

with experimental biologists, I focused on providing testable prediction, and when possible to

devise and perform experiments in that regard.

The project introduced in chapter three focuses on studying the development of vascular tissue

during early arabidopsis embryogenesis. This developmental system provides an outstanding

opportunity for studying cellular level patterning; after a few round of cell division a single

cell develops into the basic body shape of a plant, comprised of only a handful of cells. This

minimal setting has the potential to uncover core spatial signaling mechanisms that drive plant

development. Unlike meristem, embryonic development involves major changes in cell numbers

and morphology. To capture the interplay between division, growth and spatial genetic signaling,

I used VirtualLeaf. This software modeling platform provides a mean to study genetic networks

in the context of the biophysics of growth and patterning. Virtualleaf is computationally efficient

and well suited for testing hypothesis via model simulations. Using this software I could avoid

substantial investment in time and resources required for in-house development of an equivalent

software. This allowed us to focus on hypothesis generation and model analysis. The model in
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this chapter adopts a variant of a established auxin-pin model and explores its role in patterning

the emerging vasculature. The results in this chapter provide insights into how plant hormones

interact to regulate growth, and how the feedback from the emergent tissue architecture impacts

development.

Development of vasculature has recently received significant attention from the modeling

community. Apart from the work presented in chapter three, it has been the subject of

two other modeling projects. Important differences exist between these models, including

their scope, modeling platform, template, assumptions and their conclusions. As a result,

assessing the overall contribution of these modeling efforts to the field was rather challenging.

For the most part this was because, especially to non-modeler members of the research

community, there appeared to be three divergent and competing hypotheses driven by each of

the computational effort. Chapter four presents the result of a collaboration between me and

researchers from the other modeling teams, aimed at finding a common ground,to compare and

contrast the models and their findings. This collaboration was aimed at drawing biologically

meaningful conclusions, by finding the common denominator between models and pointing out

the fundamental differences. Ultimately we aimed to highlight experimental inquiries with the

most potential to advance our understanding of plant vascular development.







CHAPTER 2

A review of spatial modeling in plant
organ and tissue development
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2.1 Systems biology and tissue-level modeling

Recent advances in molecular biology have generated a tremendous amount of information about

cellular processes and their functions. With the emergence of modern genomics, entire genomes

of an increasing number of organisms have been sequenced, and a growing number of these

genes have known functions. In the coming years we can expect the assignment and verification

of the functions of the majority of genes from the genomes of model organisms [11]. Much less

is known about the properties of regulatory networks that the individual genes and interactions

are parts of. Understanding the behavior of these networks is a necessity in studying complex

cellular processes such as cell growth and division [12]. This has led to the recent interest in the

concept of ’emergent’ behavior. Simply put, emergence in the context of complex systems means

that the properties of the system are not equal to the sum of properties of the components, these

properties cannot be predicted even with a full knowledge of the components. In other words,

system level properties are not derivable from the properties of constituent parts, but arises from

the interlinked, nonlinear and dynamic relationship between its components. Consequently

studying such properties involves application of holistic approaches as opposed to the classical

reductionist approach that has dominated modern science since its beginning [13–15]. The

following quote adequately highlights this distinction:

"The reductionist approach has successfully identified most of the components
and many of the interactions but, unfortunately, offers no convincing concepts or
methods to understand how system properties emerge...the pluralism of causes and
effects in biological networks is better addressed by observing, through quantitative
measures, multiple components simultaneously and by rigorous data integration
with mathematical models [16]."

Mathematical models with explicitly defined interactions are effective tools in analysis of

systemic behavior of complex developmental mechanisms in biology. Such models provide a

powerful and inexpensive tool for in silico testing of new hypotheses as well as discriminating

among alternative hypotheses. These systems biology approaches transform the classical box

and arrow network descriptions into explicit and informative network models [11,17,18]. A large
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portion of system biology focuses on dynamics inside single cells. Mathematical formulations

of single cell networks do not take into account any spatial component. Arguably, the spatial

properties of a single cell can have an effect on the chemical processes occurring inside the

cell, nevertheless majority of gene/protein interactions within a cell can be approximated, to a

reasonable accuracy, without considering the spatial aspects [19, 20].

With a few exceptions, all cells within a multi-cellular organism have the same genetic code.

As such, Spatiotemporal variations in gene expression play a critical role in the generation

and diversification of cell types and development of organs and tissues. These variations are

often regulated by dynamic and complex interplay between spatial gene expression domains.

Consequently many important developmental processes in multi-cellular organisms cannot be

studied without taking into account the spatial medium within which genes and proteins interact.

Embryonic development, disease progression, tumour progression and tissue regeneration are

among key events that manifest at the tissue and organ level and cannot be adequately studied at

the level of single cells. Therefore it is important to develop systems biology approaches that

take into account the multicellular context in which cell exist and function [21, 22].

Organ and tissue level modeling is an relatively new field that aims to integrate intracellular and

intercellular interactions within the mechanical and geometrical context of tissue and organs.

Recently, computational models of multicellular systems have been successfully utilized in a

wide range of fields in both animal and plant studies [23–25].

2.1.1 The reductionist approach in modeling

The reductionist approach in the context of computational biology is not equivalent or analogous

to the classical reductionism in biological research discussed above. The underlying philosophy

is that a model is constructed to answer a specific biological question. As such, it should

only contain components which are highly relevant in addressing the question in hand, i.e.

the model should be as simple as possible and not aim at incorporating all the information



Chapter 2 29

available about the system under study. This is in contrast to all-encompassing approaches such

as whole-genome metabolic networks that take into account all available data about the network.

For example the production of a protein from its encoding gene principally involves promoter

binding, transcription, translation and post transnational modifications. In a model where the

focus is on cell signaling via molecules that are exchanged between cells, the intricate details of

the intracellular process of protein productions can be summed up by assuming the production

rate of the protein is directly dependent on the concentration of the promoter. At the same time

the intercellular process of protein transport can be captured in detail by taking into account

diffusion and active transport via various influx and efflux carriers. As such, the ’scope’ of the

model would be set appropriately to address the biological question.

Keeping a model as simple as possible greatly aids with analysis and understanding. In

addition, even with simple networks with spatial components, the computational expenses

can be significantly high. Therefore the development, implementation and simulation of a spatial

model can be greatly aided by simplification.

2.1.2 Biological network motifs

For the most part, the behavior of cellular networks, possesses a complex and unintuitive nature

which is not easy to understand and analyze. A successful theoretical approach that has emerged

to address this problem is to view biological networks as an interconnected system of network

motifs. The available data suggests that biological networks are constructed in a similar manner

to electrical circuits: while they are extremely diverse, they are made up of a limited number

of subunits. [1, 26]. A These small and recurring functional subunit of a biological network

are called biological network motifs. Some network motifs are identified using their recurring

feature: biological networks are compared to randomized networks with the same number of

edges and nodes. The basic concept is that if a pattern occurs significantly more in real networks

compared to randomized ones, then it must have been selected because of an advantage that it
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confers to the organism. In absence of such an advantage the motif is expected to occur at a

similar rate in randomized networks and the real networks [27].

These building blocks, perform information processing functions that are independent from the

network that they are embedded in. Studying biological network motifs is akin to attempting

to understand an electrical circuit by studying its constituent subunits: resistors, capacitors etc.

While such functional subunits are a feature of man-made circuits, there is an increasing body

of evidence that shows the concept is useful when utilized to dissect genetic networks [1, 26].

Once motifs have been identified in a network, the behavior of the network as a whole can

then be analyzed in terms of relationship between these subunits [27]. This approach holds a

great potential to improve our understanding of network functionality, evolution and dynamic

behavior. Analogous to electronic components, networks motifs are not specific to a network

or a developmental context but are universal components of genetic regulation. Thus, studying

these motifs provides insight beyond their role in a particular biological process. In this section

we will review two classes of network motifs that feature prominently in computational models

of plant development in general, and in this thesis specifically.

2.1.3 Self-organized motifs in patterning

Development can be seen as progression of patterns, where new structures develop on the ground

of previously established patterns. When the result of this progression is a simple linear mapping

of the previous patterns, it can be said that intrinsically, new patterns have not been established.

In contrast when a developmental process involves the establishment of complex patterns from

a state of lesser complexity, via internal interactions, the process is said to exhibit self-organized

patterning [28]. This complexity is an emergent property of the system of interactions and

not determined by external influence. While development of many patterns in biology can be

understood as propagation and manipulation of pre-existing patterns, some core patterns must be

generated spontaneously in biological systems via cellular networks. Such self-organizing patter
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formation is a fascinating feature of development because it mean that spatial patterns of organs

and tissues are encoded in chemical interactions between genes and proteins. Self-organizing

patterning models are among the earliest and most successful computational models on origins

of biological form [28, 29].

Reaction Diffusion systems

Alan Turing’s Reaction-Diffusion (RD) model is a seminal example of a self-organized patterning

motif. In 1952 Turing published his landmark paper, ‘The chemical basis of morphogenesis’ [3].

The paper proposed that patterns seen during the development of multi-cellular organisms can

arise from the pattern of underlying chemicals, which he termed morphogens. In this theory the

spatial pattern of chemicals leads to cellular differentiation in a concentration dependent manner.

Turing considered a system of two diffusing interacting morphogenes. Assuming that in absence

of diffusion the system reaches a stable steady-state resistant to homogeneous perturbations. He

showed mathematically that for a specific type of interactions, the system is turned unstable

via diffusion. This can lead to the amplification of initial spatial perturbations into a periodic

heterogeneous steady state. [3]. Thus the system can be said to self-organize; regular spatial

patterns can arise from small initial perturbations in an otherwise homogeneous state. Hence

he demonstrated, for the first time, how spatial non-uniformity may arise naturally out of a

homogeneous, uniform state. This is an striking outcome, since it shows that diffusion, generally

regarded as a stabilizing process, results in instability.

Mathematically, RD systems take the form of semi-linear parabolic partial differential equations.

In its basic form a RD system can be written as following.

∂ �A

∂t
= DA

�A∇2 + F (A)

∂ �B

∂t
= DB

�B∇2 +G(B)

(2.1)
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�A and �B are concentrations of the two morphogens, DA and DB are matrices of diffusion

constants and F (A) and G(B) describe the reaction kinetics. The conditions under which such

a system can produce a pattern, can be mathematically driven. Therefore RD systems have been

subject of detailed mathematical studies and various extension of the basic system exist. RD

systems produce a wide array of solutions, including the formation of wave fronts and wave-like

phenomena, space-dependent stationary solutions, such as spots, stripes, hexagons and more

intricate structure like dissipative solitons [30].

Initially RD systems did not attract much attention. The invariability of output for a given set of

parameters was found at odds with developmental processes that adjust in response to intrinsic

and extrinsic perturbations. The early analysis of reaction-diffusion systems determined that

they are too sensitive to initial conditions and noise. As Turing himself admitted, the chemical

reactions he proposed in his model were uninformative and strange [31]. RD systems did not

attract much attention as a biological patterning mechanism until more feasible formulations

emerged.

Gierer-Meinhardt Model

In 1972, Alfred Gierer and Hans Meinhardt revived the concept of RD by coherent extension of

its terminology and by carefully studying its implication and variations [32]. They demonstrated

that pattern regulation can be achieved via manipulations of interaction rates of a morphogen. In

addition, Gierer and Meinhardt put forward a biochemically plausible realization of a reaction-

diffusion system, see Fig. 2.1.A [26]. The Gierer-Meinhardt system also termed activator-

inhibitor system, produces patterns where the activator and the inhibitor have overlapping

extrema, i.e. the two waves are in phase, as shown in Fig. 2.1.B.

Since the initial publication by Gierer and Meinhardt, their formulation of a Turing system

has attracted considerable attention as a core mechanisms for pattern formation in biology. To
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Activator-inhibitor Model

X

A B

diffusiondiffusion faster
diffusion

self-activation
activation

inhibition

Y Y

X

Figure 2.1: Activator inhibitor model Schematic representation of Geier-Meinhardt model, a combi-
nation of local self-activation and long distance inhibition produces overlapping peaks of concentration
(B).

this date, reaction diffusion systems remain as one of the few models in developmental biology

that account for spontaneous formation of pattern. RD models are utilized to explain various

patterns, from animal coat patterns [33] to trichome distribution in plant leaves [34].

While RD systems reproduce many biological patterns, the biological proof that such patterns are

produced via a biological RD system is largely lacking. Only recently publications have emerged

where strong candidates for the activator, the inhibitor and the necessary network interactions

have been identified [35], [36]. For a given system of reaction diffusion, there are often multiple

stable solution; Small variations in initial conditions can lead to formation of different patterns.

Moreover, for a typical system, the subset of parameters that satisfy conditions in (2.1) is small

and hence the patterning capability of the model depends on precise parametrization. Small

deviation in parameters can lead to the loss of pattern, thus the system can be non-robust to

perturbations. Another issue is that the resulting patterns are scale dependent. This is in contrast

to the ’scale-invariance’ that many biological patterning systems posses. However certain

variants of the Turing’s model do not suffer from this limitation [37, 38].

Many decades have passed since the introduction of Turing’s model and it has been the subject

of ever-increasing interest from theoretical biologists. New variations of Turing’s model are
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regularly published, while these models reproduce many biological patterns. Only recently

publications have emerged where both the activator and the inhibitor along with the necessary

interaction have been identified [35], [36]. In [35], a variant of activator-inhibitor model is

implemented in a growing domain, in combination with other gradient-based morphogens. The

resulting model, reproduces digit patterning in wildtype and various non-wildtype settings.

Moreover the work provides some of the most convincing experimental evidence for the

existence of reaction-diffusion system in biology. The work suggests that the biological

manifestation of RD systems often does not correspond to the minimal theoretical definition of

these systems, and that they function in conjunction with other spatial network motifs. This work

highlights the effectiveness of interdisciplinary approaches that combines theoretical analysis

with careful probing and examination of the available data.

Polar Auxin transport models

Models concerned with transport of plant hormone Auxin are another successful group of models

that spontaneously generate spatial patterns. Auxin is the most well studied plant hormone

and is involved in many aspects of plant growth and development. auxin functions as the

coordinator of development; it is synthesized in specific sites in the plant and transported to

target tissues where is initiates a signaling pathway resulting in developmental responses [39].

Hence the spatiotemporal patterns of auxin distribution are strictly regulated [5]. Unlike other

plant hormones auxin is actively and directionally transported (active transport is speculated

for other plant hormones but has not been experimentally established yet). In general auxin

concentration is not determined by local synthesis and degradation but rather the long distance

transport and accumulation of auxin [40].

Several influx and efflux carriers of auxin have been identified. AUXIN-RESISTANT1 (AUX1)

localizes to the plasma membrane and has been shown to function as an auxin influx carrier.

With some notable exceptions AUX1 shows uniform localization to plasma membranes of
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cell [41,42]. Furthermore its localization is not affected by local auxin distribution and flux [42].

Evidence points towards the role of Aux1 as a general facilitator of auxin movement that does

not play a significant role in establishment of polar auxin transport (PAT) [43].

Members of the PIN-FORMED (PIN) family of proteins are an important group of auxin efflux

carriers. In contrast to Aux1, most family members exhibit strong polar localization at the

plasma membrane and are known to strongly regulate the long distance transport of auxin

as well as establishment of peaks of auxin concentration [4, 5]. PIN proteins continuously

cycle between endosomes and plasma membrane. Auxin has been shown to affect PIN levels

at the plasma membrane by inhibiting the internalization of PIN in the endosomes [44, 45].

The constant shuttling of PINs and the feedback loops between PINs and auxin constitute an

exceptionally dynamic mechanism of PIN localization capable of rapid redirection of auxin

flow and re-positioning of auxin peaks. These aspects of auxin transport are associated with

important developmental stages as well as responses to environmental changes [46].

An interesting feature of PAT is that the polarity of PINs with regard to auxin distribution varies

among the members of the family. In general, PIN polarity comes in two from; PIN localization

pointing toward a maxima of auxin concentration, e.g. in epidermal layer of shoot meristem PIN

localization points towards the auxin maxima that mark the incipient primordia [5, 47]. Another

instance of PIN localization comes in the form of canalization; long distance orientation of

PINs away from a maxima of auxin concentration, as seen in inner cell layers below incipient

primordia, where auxin forms strands radiating away from the auxin maxima [5]. With such

intriguing features in mind, and the difficulty of measuring auxin concentration qualitatively,

computational modeling has emerged as a useful approach to formulate and test hypothesis

regarding the inner-working of auxin transport. PAT has been the subject of various modeling

approaches even before the discovery of PINs [7, 48].

Despite the recent advances made in understanding of the inner workings of PAT, a com-

prehensive mechanistic understanding of cellular perception of auxin and subsequent PIN

regulation is currently lacking [5, 49]. As a result, the existing models of PAT focus on
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reproducing the experimental observations, combining aspects of the current knowledge with

assumptions regarding the feedback mechanism to reproduce auxin and PIN distributions in

different tissues [5]. PAT models can generally be divided into two groups, concentration-based

and fluxed-based models:

Flux-based models: Early models by Mitchison are based on Sach’s canalization hypothesis;

auxin flux within a cell increases the capacity of the cell to transport auxin in the direction of

the flux [7]. In early model this effect was represented by increase in membrane permeability in

the direction of the flux. Later models ( [6, 50]) and later by PIN levels at the plasma membrane.

These models can reproduce various auxin canalization pattern and typically require an auxin

source and a sink for canalization to occur. Various models of this group can produce results

consistent with observations of vein formation in developing leaves. Two mechanisms have

been postulated for the flux-based feedback; enhanced polar transport and diffusion. The first

hypothesis suggests enhanced PIN localization in the direction of flux, while the second is based

on enhanced diffusion irrespective of flux direction. Currently conclusive experimental evidence

for both scenarios is lacking.

Up the gradient models: These models are build around the hypothesis that the amount of PIN

on a membrane is proportional to the auxin level in the neighboring cell facing that membrane.

Up the gradient models are commonly utilized to study developmental processes involving the

formation of auxin maxima, namely phyllotaxis [51, 52]. This is achieved by amplification of

differences in auxin concentration and the formation of periodic auxin maxima. These models

require non-linear dependency of wall PIN levels on the concentration of auxin in adjacent

cells (Smith et al used an exponential relation and Joensson et al employed one based on a

hill function). In both cases the models are capable of producing approximately equidistant

peaks.

The temporal and spatial dynamics of PAT via PINs exemplify non-linear processes that are

too complex to be studied via classical biological approaches alone. Despite this, PAT remains
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as a major focal point in studying plant development. This is to a large part due to theoretical

studies of PAT, that are a prime example of the contribution that computational and mathematical

approaches can make in biological studies. Mathematical models of PAT predate and anticipated

the discovery of PIN proteins and can reproduce variety of observed PIN and auxin patterns.

While concrete biological evidence for computational PAT models is lacking, these models

have been instrumental in understanding the possible mechanisms of PIN-auxin interactions.

Nevertheless, a major challenge in computational modeling of PAT is to capture the two major

PAT processes: maxima formation and canalization, with a unified PAT model. Despite some

efforts [53] a unified model of PAT that can reproduce the relevant biological observations has

not been put forward.

2.1.4 Feed-forward loop network motif

Arguably one of the most significant and well-studied genetic network motif is the feedforward

loop (FFL). This motif has been shown to be the most widely occurring genetic network motif in

yeast and E.coli [27]. The motif is comprised of three genes, where one gene regulates another,

both directly and via a third intermediate, as shown in Fig. 2.2. Thus a FFL loop comprises

three interaction, each of which can be positive (activation) or negative (inhibition). These give

rise to eight possible FFL configuration, see Fig. 2.2. Coherent FFLs are the four configuration

in which the direct and indirect interactions have the same sign, as shown in Fig. 2.2.A, the

incoherent group (IFFL) comprises the other four in which the two interactions have opposite

signs, Fig. 2.2.B. The type 1 coherent FFLs are the most common in real networks [27].

The properties of various types of FFLs have been determined using mathematical analyses

based on deterministic rate equation approach [27]. Studies of FFls focus on their role as

temporal signal processors, in non-spatial settings. Coherent FFLs are shown to function as

sign sensitive delay elements in signal processing; sign sensitive delay means the response

time to step-like stimuli is asymmetric. The response time is rapid in one direction (ON to
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Figure 2.2: FFL network motif. There are eight different types of FFLs which are subdivided into
coherent and incoherent FFLs. In coherent FFLs the direct and indirect regulation of z by x are of the same
nature (activation or inhibition), while in incoherent FFLs these regulation are of opposite nature.

OFF) and delayed in the other (OFF to ON) [54]. Consequently when X is transiently activated,

activation of z is minimal. Activation of z only occurs when x is activated for a sufficiently

long time. Once x is deactivated, z expression is rapidly turned off, Fig. 2.2. In this capacity

coherent FFLs act as noise buffers, filtering out transient fluctuations of the input signal. This is

thought to be the reason that type-1 coherent FFLs are the most common type of FFLs in genetic
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networks. The role of coherent FFLs as sign-sensitive delay elements has been experimentally

confirmed [54]. The incoherent FFLs exhibit several interesting properties among which are:

acting as sign-sensitive accelerators that speed up signal in one direction (OFF to ON) [55],

fold-change detection in gene regulation [56], and generation of non-monotonic input functions

for genes [57].

FFLs studies serve as an excellent example of network motif approach in studying biological

networks. It shows how network motifs can be detected, studied and understood as independent

signal processing units embedded within genetic networks. An important aspect of the research

concerning FFLs in genetic networks is its interdisciplinary nature. Theoretical studies of FFLs

are almost always coupled with experimental investigation of the properties determined via

mathematical analysis. This has served to further our understanding of the complex dynamics of

genetic networks and has demonstrated the strength and effectiveness of network motif studies

to the molecular biology community.

2.2 Cell-centered modeling of tissue

Modeling tissues and organ level processes have been of great interest recently. Often modeling

a tissues involves interconnecting various detailed models of sub-cellular and inter-cellular

processes. Arguably such approaches can result in accumulated complexity and therefore

potentially suffer from the same problems as their in vivo counter parts when it comes to

understanding the systemic behavior of interest. Biological systems are inherently stochastic

and often overwhelmingly complex. To a large extend the effectiveness of models in advancing

our understanding comes from their power to reduce the complexity in a manner that is helpful

in addressing a specific question. Therefore a model should not aim at producing an in silico

replica of a biological system, but rather aim at capturing behavior at the appropriate level

via well-justified simplified abstractions. This concept is effectively illustrated via an analogy

in [21]; One can construct a car from LEGO bricks using a step-by-step manual. Such a replica
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is an accurate representation of the actual car but does not necessarily provide an insight into

how a car functions. One can gain insights by focusing on functional components (e.g. engine

and differentials) and their interactions while setting aside arbitrary properties such as paint,

number of pistons etc.

2.2.1 Spatial modeling of plant developmental processes

When it comes to modeling the role of signaling networks in plant tissue development, cells

provide a natural level of abstraction. Plant cells are building blocks of the plant that semi-

autonomously interact with their direct environment and compartmentalize the signaling net-

works that govern their growth, division and differentiation. Moreover, from a developmental

point of view, the complexity at the plant cellular level is rather limited [26]. Cells can

grow, divide, differentiate, retain their size, secrete and absorb molecules etc. Therefore in

modeling plant tissue formation the focus is on how cells grow and divide and respond to

signaling molecules that are transported between cells [21]. Consequently, any cell-centered

model of plant tissue formation has to first extract rules about cell behavior from experimental

observations. This constitutes a descriptive single-cell model. The single cell-behavior is

integrated at the tissue level via a cell signaling network. The model assumptions regarding

the cell behavior and the signaling network are then tested by the ability of the model to match

existing experimental data (mutant and overexpression phenotypes, etc.) and its ability to make

accurate testable predictions. Through iteration between experiments and modeling one can

deduce the minimal set of cell behaviors that are sufficient to reproduce the tissue level behavior

of interest. Ultimately this can leads to understanding of the role of the genetic regulatory

networks that integrate single-cell behavior into tissue level phenomena.

Despite the advances made in formulating and executing complex computational simulations,

modeling even the simplest tissue forming processes, can be a challenging endeavor. Therefore

developmental systems with inherently simple architecture and dynamics serve as a good testbed
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to generate and develop interdisciplinary research methods to study tissue/organ dynamics. In

the remainder of this chapter I review specific plant tissues, and developmental stages that are

the subject to theoretical studies in this thesis.

2.2.2 Shoot apical meristem

Shoot apical meristem (SAM) is a population of cells at the tip of the shoot apex that give rise

to the aerial parts of the plant. SAMs are remarkably organized and stable structures that can

retain functionality during the lifetime of a plant. This is despite the continual division, growth

and differentiation of its constituent cells.

Daughter cells of the stem cells that remain at center of SAM replenish the stem cell pool,

whereas daughter cells that are placed towards the peripheral zone (PZ), which is marked by

a higher cell division rate, enter differentiation and form organ primordia. The shape and the

domain structure of the SAM are kept unchanged, although all cells continuously divide and

differentiating stem cell daughters leave the meristem. Cell tracking and ablation experiments

demonstrate that the fate of each cell is determined by its current position and not by lineage

specific heritage, highlighting the importance of cell-cell communication [58–60]. Due to its

changing cellular context, pattern formation of the shoot meristem does not rely on a stable

point of reference, but rather occurs in a self organized manner [61]. Current data demonstrates

that the feedback loop between CLAVATA3 gene (CLV3), expressed in the stem cell niche, and

WUSCHEL gene which is expressed in organizing center (CZ) (WUS) plays a central role in

SAM organization [62]. For a more detailed description of meristem zones and WUS and CLV3

interactions see chapter 3.

The strong evidence for self-organization, limited cell differentiation and relatively simple

geometry of the SAM constitute an optimal setting for investigation of self-organized patterning

in plants.
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Previous computational models of SAM

The presence of cell lineage-independent self-organization suggests that the internal structure

is maintained by a network of signals that interact with each other and can create stable

isolated peaks of concentration [62]. Activator-inhibitor models have been the main approach in

modeling the self-organized pattern formation in the SAM. Jönsson et al. in 2005 [63] were

the first to model the stem cell regulation in the SAM using an activator-inhibitor model. This

was followed by a model by Hohm et al. [64] which could not only reproduce the expression

patterns observed in the wildtype SAM, but also some mutants and gene up and down-regulation

phenotypes, further demonstrating the capability of activator-inhibitor models in accounting for

SAM organization. The activator-inhibitor based models can account for some fundamental

aspects of stem cell regulation within the SAM, albeit lack of data has led to various assumptions,

particularly regarding the CLV3-independent regulation of WUS. The clv3 mutant phenotype

can be reproduced by assuming a molecule that inhibits WUS through a reaction-diffusion

system. Published activator-inhibitor based models of SAM regulation incorporate such a

hypothetical factor into their models in order to explain the CLV3 independent confinement of

WUS expression. Additionally, often restricted zones of expression/activation of WUS, CLV3 or

other molecules are incorporated in order to account for the specific geometry of gene expression

in the SAM.

Mathematical models of pattern formation in the SAM, like other spatial models of cellular

development, have restrictions regarding the level of detail and the scope of the model. Often it

is unavoidable to consider the input of other processes as pre-patterns. At the same time it can

be argued that when the WUS/CLV3 patterns are essentially pre-defined, the resulting model

does not exhibit self-organizing properties. In this regard the current modeling efforts can be

divided in two groups: models that focus on the emergence of CLV3 and WUS patterns via the

interaction of network components [63–65] and others that investigate the role of such stable

pattern in SAM organization [66–68].
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Models in both groups include pre-patterns. For instance a signaling molecule that established an

apical basal axis is a common factor in many of these models. Arguably such an assumption does

not undermine the self-organizational aspects of the model (i.e. when the new pattern is not a

simple and linear mapping of pre-pattern). However when such pre-patterns dictate WUS and/or

CLV3 expression/activation zones, the resulting patterns are not self-organized. While the first

group of models point towards pattern formation via an activator-inhibitor system, several of the

models in the second group, have demonstrated the interaction between the WUS/CLV3 patterns

and Ck signaling/perception network [66–68]. For instance, Yadav et al. [66] investigate a model

that relates Ck perception via AHK4 receptor to pattern formation in the SAM. In this model,

Ck is induced by an AHK4/Ck signal, which is produced at the center of OC. The expression

zones (i.e. binary expression templates) of WUS, CLV3, and KAN1 are restricted to the center

of the SAM, OC, and the peripherial zone (PZ), respectively. Given these inputs the model can

robustly establish the spatial patterns of WUS, CLV3 and KANDI1. Furthermore, these patterns

can withstand perturbations caused by cell growth and division. In the aforementioned work

the localized expression of AHK4 at the center of the OC is fundamental for correct patterning

of WUS. This suggests that the patterning of OC takes place at the level of Ck reception and

signaling. Consequently, this implies that the self-organizing properties of the OC, arise from

the underlying Ck signaling/perception pattern.

2.2.3 Plant embryo

Arguably the ideal developmental stage to study pattern formation is embryogenesis. During

embryogenesis, both in plants and animals, the organism develops from several equivalent

cells to an intricate collection of cell types and gene expression patterns. In animal embryonic

development, cell movement and migration play a crucial role. In contrast, in plant embryo,

due to the fused cell walls no cell movement/migration occurs, therefore precise control of cell

growth and division is essential in correct development of plant embryo [69]. During plant
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embryogenesis dynamic spatial patterns of diffusing morphogens carry information that regulate

organism-scale development [69, 70]. The development of a plant can thus be described as the

accumulations of successive patterns of gene expression and subsequent cell-fate determination.

In very early embryonic development, this fewer established patterns exist and relatively few

morphogens have to be taken into account. Moreover, after only a few rounds of cell division the

embryo forms all vegetative tissues that are present in the mature plant. In other words by the

mid-heart stage the fundamental tissues that constitute a plant are established [71]. Compared

to the mature plant, these tissues are less complex; There are fewer cell types and in general

and less differentiation events have occurred [71]. Furthermore during early embryogenesis,

patterning in terms of cell geometry and gene expression are in place, while cell differentiation

does not occur until later [72]. This provides an excellent opportunity to study the mechanism of

pattern formation without having to take into account the extra complexity added by the process

of differentiation. In Chapter three, this situation is exploited to study vascular pattern formation

in embryo. In summary plant embryo development offers a minimal and simple platform for

modeling and analysis of spatial genetic patterns that govern development.
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3.1 Introduction

Genetic studies mainly in Arabidopsis reveal that the WUSCHEL (WUS) and CLAVATA3

(CLV3) feedback loop is a pivotal regulator of stem cell number [59, 62, 73]. A small cell

group underneath the stem cells named organizing center (OC) expresses the transcription

factor WUS that maintains the stem cell in two ways. First, WUS protein moves into the

stem cells, presumably through intercellular plasmatic bridges, called plasmodesmata [74].

In the stem cells, WUS directly binds to the promoter of CLV3 and promotes transcription,

in addition to maintaining pluripotency through a yet unidentified mechanism [62]. CLV3

encode a small extracellular signal peptide that binds to receptor kinase complexes, including

CLV1, and triggers an intracellular signal cascade that downregulates WUS transcription [62,75].

This negative feedback loop between OC and stem cells provides a mechanistic framework

to keep the number of stem cells constant [62], see Fig. 3-1A. Second, in the OC cells, WUS

directly represses transcription of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) and 15

(ARR15) genes [76], which encodes intracellular inhibitors of response to the plant hormone

Cytokinin (CK), thereby promoting cellular CK response [77]. Hence, the question of how

WUS expressions is centered and restricted within the SAM, becomes a key question in studying

the stem cell homeostasis in the SAM.

Several lines of evidence further indicate that CK is an important factor in shoot meristem regu-

lation: first, mutants deficient in CK biosynthesis, reception, or overexpressing CK degrading

enzymes, have a reduced SAM size [73, 79, 80]. Second, the CK receptor, arabidopsis histidine

kinase 4 (AHK4), is expressed in the meristem center, overlapping with the OC in its distal

part [67]. The receptor is involved in the upregulation of WUS expression via exogenously

supplied CK at relatively high levels, and it has been assumed to confer WUS regulation also at

endogenous CK levels. CK response, measured by the reporter pTCS, peaks at the OC [68], in

agreement with WUS enhancing CK response in these cells. Based on the expression pattern of

the transcription factor SHOOTMERISTEMLESS (STM) that promotes expression of the CK
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A B

Figure 3-1: SAM architecture and its representation in the model. (A) An image of the SAM and the
immediate surrounding area. The regions of interest are marked with colored boundaries. Modified with
permission from [78]. (B) Schematic representation of WUS and CLV domains; The three dimensional
SAM consisting of cells of various shapes and sizes is modeled by a two dimensional grid consisting of
identical blocks representing cells. The enclosed cells represent the direction in which the field of cells
extends (basal and lateral directions).

synthesis gene ISOPENTENYL TRANSFERASE 7 (IPT7), CK is probably produced broadly

throughout the shoot meristem, although direct evidence is still missing [81]. Furthermore,

immunodetection of CKs suggest a rather broad and uniform distribution throughout the shoot

meristem in Sinapsis alba [82]. Recent findings in rice indicate that activation of CK (clipping

of a ribose residue) by the LONELY GUY (LOG) enzyme is confined to the 2-3 outermost cell

layers of the shoot meristem, and it has been discussed whether active CK is locally produced in

the shoot meristem and moves from the top downwards [73, 83]. In arabidopsis, there are eight

LOG homologs. One of them, LOG4 is specifically expressed in the L1 layer, but the expression

patterns of the other LOG genes are unknown and at least some of the other LOG genes seem to

be also expressed in the shoot meristem [58, 67].

3.2 Aim of this study

The capability of activator-inhibitor networks in accounting for SAM patterning has been already

demonstrated. In general, the experimental identification of network components has been a
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major challenge in application of reaction-diffusion models in biology. Particularly in the plant

field, it remains a major challenge to demonstrate the existence of reaction diffusion networks

experimentally.

In our context this highlights the importance of motivating the pre-patterns of a model by known

biological knowledge as much as possible; when pre-patterns are abstract and cannot be directly

linked to the known biological mechanisms, the task of experimental identification of network

components is complicated. In contrast, when these assumptions are motivated by experimental

observations, they can be more readily investigated via experimentation. As discussed earlier,

theoretical and experimental data point towards CK signaling and perception as a fundamental

factor in patterning of the SAM [66–68]. Here we aim to expand upon the current state of

research and avoid incorporation of abstract assumptions in our model, by utilizing the available

data as much as possible. Our model links WUS/CLV3 feedback loop to an activator-inhibitor

system based on CK signaling. We demonstrate that these components function together to

position WUS expression at the OC.

3.3 The Model

In order to investigate the apical-basal position and the lateral extension of the OC within the

shoot meristem, we chose a two dimensional model of a longitudinal section. In our model,

mobile signals are free to diffuse out of the SAM and into the surrounding cells, (Fig. 3-1).

The system is described by a set of coupled non-linear ordinary differential equations on a

discrete grid, where the grid points represent the individual cells. Hence, cells are assumed to be

spatially uniform and intracellular concentration gradients are not taken into account, which

is considered a reasonable simplification due to the difference in timescale between cytosolic

mobility (fast) and the actual pattern formation process, i.e., gene expression (slow). Therefore,

we use the term diffusion not in its actual physical but rather in an effective sense, meaning

unbiased bi-directional spread of molecules between cells through special openings termed
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Figure 3-2: Two coupled sub-networks and boundary information define WUS and CLV3 expres-
sion domains in the SAM. A and B stand for type-b and type-A ARRs. Ap and Bp denote phosphorylated
type-B and type-B ARRs. (a) The model can be divided into the CK signaling and WUS/CLV3 sub-
networks. The former determines the position of the WUS domain via a self-organizing system while the
latter specifies the CLV3 domain, taking the WUS domain as an input. Parts of the CK signaling sub-
network correspond to the components of the (b) classical activator/inhibitor system; (c) the the network
component corresponding to the autocatalytic activator and (d) to the activation/inhibition interactions.

plasmodesmata or via the apoplast. Moreover, for simplicity, we assume that the dynamics

of the WUS/CLV3 regulatory system arising from the assumed reaction-diffusion system are

sufficiently faster than the cell division rate in the SAM. Therefore, the essential features of the

patterning process of the aforementioned system can be well described by a static model that

does not incorporate cell division or growth.

3.3.1 Facts and assumptions underlying the model

The proposed model is based on the following published results:

• CK binds to the AHK4 receptor, which in turn causes phosphorylation of both type-A and

type-B ARRs via arabidopsis histedine phosphotranfer proteins (AHPs) [84]. In absence

of CK the receptor functions as a phosphatase [85, 86].
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• Type-B ARRs are transcription factors that activate transcription of CK response genes,

including type-A ARRs [87].

• Type-A inhibit type-B ARR function, the precise mechanisms has yet to be determined

[77, 88]. Evidence suggests that type-A ARRs inhibit type-B ARRs via repression of

upstream CK signaling. In addition it has been proposed that type-B repress type-A via

competition for phosphate molecules [89].

• There is a feedback loop between WUS and CLV3 genes, where WUS moves from the OC

into the stem cells and activates the transcription of the CVL3 gene. The CLV3 peptide is

mobile and inhibits the expression of WUS [62, 90].

• Expression of WUS is activated by CK signaling [67], presumably via canonical type-B

ARRs effector genes. Additionally WUS represses the expression of type-A ARRs [76],

thus promoting CK signaling.

In addition, our model incorporates the following assumptions:

• The SAM consists of equivalent cells that have the potential to express all genes included

in the model. The exception is the epidermis (L1 layer), which is assumed to be different

from the rest of the cells in the SAM. This means that in our model the identity of the L1

cell layer is not determined via the proposed self-organizing mechanism.

• We hypothesize a molecule (L1 signal) that is supplied by the uppermost cell layer (L1)

and diffuses downward, establishing a gradient. The presence of this molecule is necessary

for the cells to be able to respond to WUS signal by producing CLV3. Such a molecule

has been identified by Knauer et al., who charactrized a microRNA, miR394, that is

produced at the L1 layer and is required for establishment of CLV3 expression. In our

model the L1 signal is necessary for cells to be able to respond to WUS and establish

stem cell identity [91].
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• A diffusing inhibitor and a self-activating component are essential parts of pattern forming

activator-inhibitor mechanisms [92]. Currently there is no evidence of such an inhibitor

involved in SAM patterning; our trials show that several molecules within the model can

be assumed to act as an inhibitor or to induce an inhibitor. For example, type-A ARRs

appear as a plausible candidate for the role of the inhibitor. It is known that type-A ARRs

inhibit CK signaling [77]. In the model the inhibitor is assumed to be downstream of

the type-A ARRs. This is because to fulfill the role of the inhibitor within an activator-

inhibitor system, type-A ARRs have to be highly mobile signals. In absence of evidence

regarding the mobility of these molecules, we assumed that the inhibitory function is

conveyed via a highly mobile intermediate, factor X. Thus in our model two mechanisms

exist for inhibition of type-B by type-A ARRs, via phosphate competition and via factor

X.

• We assume that type-B ARRs promote CK signaling via direct induction of AHK4. Ex-

perimental results presented on Arabidopsis eFP browser [93], (data from AtGenExpress

project [94]) show that application of Zeatin leads to significant up-regulation of AHK4

levels. For the model, this assumed interaction constitutes the autocatalytic loop of the

activator-inhibitor subnetwork.

• In our reductionist approach, we do not distinguish between mRNA and protein of the

genes unless it is essential in addressing the question at hand. Considering the expression

pattern of CLV3 mRNA [62] and its demonstrated inhibitory effect at the OC, it becomes

apparent that CLV3 elicits a signal that travels further than its mRNA. This is reflected

in the model by distinguishing CLV3 mRNA and protein. The mRNA is assumed to be

immobile while the protein is able to diffuse.

• In the model we assume that phophotransfer from the receptor to the ARRs are suffi-

ciently fast processes compared to gene expression. Therefore the phosphotransfer is

implemented using a quasi-steady-state assumption. See details in discussion.
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Reaction-diffusion modeling of the SAM has a history of more than a decade and the model

presented in this work is inspired and motivated by earlier modeling efforts. It utilizes concepts

and components (experimentally verified as well as hypothetical) put forward in earlier works.

In particular, factor X is a universal component of activator-inhibitor models of the SAM

[63–65, 95]. As the inhibitor in an activator-inhibitor systems, models consistently predict it to

be a fast diffusing molecule with an expression pattern centered around OC. To date evidence

for a molecule that fulfills the role of such inhibitor and matches its predicted expression pattern

has not emerged. Similarly the concept of L1 signal was first established by Joensson et al.

in [95]. In later works this was utilized as a signal defining the lateral expression of WUS [96],

as well as in an apical-basal setting, as a cofactor that along with WUS is required for production

of CLV3, in both two-dimensional [74], and three-dimensional settings [66]. In our model

the L1 signal is essentially the same as the in latter; an apical basal signal required for CLV3

induction in response to WUS. As already pointed out in [66], the strongest evidence for the

existence of such a signal comes from the observation that in pCLV3::WUS both WUS andCLV3

are expressed in the uppermost three cell layers of the SAM [97].

3.3.2 Model equations

Integrating the above stated experimental observations and hypothetical assumptions in a

mathematical model, we arrive at the following system of non-dimensionalized coupled ordinary
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differential equations:

dBij

dt
=

k1ΓijBij

(1 + k6Xij)
− k7Bij + D̂Bij (3.2)

dAij

dt
=

k8ΓijBij

(1 + k6Xij)(1+k9Wij)
− k10Aij + d1D̂Aij (3.3)

dRij

dt
=

k11ΓijBij

1 + k6Xij + k12ΓijBij
− k13Rij + d2D̂Rij (3.4)

dXij

dt
= k14ΓijAij − k15Xij + d3D̂Xij (3.5)

dWij

dt
=

k16ΓijBij

(1 + k6Xij)(1 + k17Csij)
−Wij + d4D̂Wij (3.6)

dCij

dt
=

k18LijWij

1 + k19Wij
− k20Cij (3.7)

dCsij
dt

= k21Cij − k22Csij + d5D̂Csij (3.8)

where we defined:

A := [type-A ARR]; B := [type-B ARR]

C := [CLV3 mRNA]; Ck := [Ck]

Cs := [CLV3 peptide]; R := [AHK4]

W := [WUS]; X := [Inhibitor]

L := [L1 signal]

Γij :=
Ck ijRij

(1 + k2Ck ij + k3Rij)(1 + k4Aij + k5Bij)
. (3.9)

The subscript ij denotes the position x = xij on the grid and Lij and Ckij refer to the L1 signal

and the CK expression profiles. These profiles are each independent of other molecules in the

model and can be determined analytically, as described in the next section. The spatial coupling

between the grid points is achieved by the diffusion operator D̂ operating on the square grid

index is defined by:

D̂Cij = Ci−1j + Ci+1j + Cij+1 + Cij−1 − 4Cij .
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We use reflecting boundary conditions for the apical side. The basal and lateral boundary is not

well defined; we use boundary conditions which are, for simulation purposes, equivalent with

using an infinite domain for the apical-basal dimension; in the numerical simulations the grid

is extended in basal and lateral directions until the concentrations decay to almost zero; this

makes the boundary condition at the basal and lateral end of the grid irrelevant and provides

a good approximation for the in vivo SAM. We close the domain basally and laterally using

reflecting boundary conditions. All simulations, unless stated otherwise, were carried out in

a cell grid where the first three staggered rows capture the domes-shaped architecture of the

SAM (Fig. 3-1A). Parameters were chosen from the biological and physical relevant ranges

and adjusted to maximally approximate the available data. All simulation where carried out

with arbitrary initial concentrations of all the molecules in the model, within the [0,0.5] range.

Simulations were continued until the steady state was reached. We always checked that the

grid is large enough to approximate an infinite domain in the described manner. In figures that

display model outputs, the area of the grid that contains no information has been cropped. For

examples of models out put in an uncropped template see Fig. 3-4. For a list of parameters used

in model simulations see appendix A.1.

3.3.3 Derivation of phosphate transfer function

The AHK4 receptor exhibits the interesting feature that it works as a kinase as well as a

phosphatase depending on whether CK is bound to it or not [98]. The other interesting feature is

that phosphorylation of the type-A and type-B ARRs is not directly but through phosphotransfer

proteins, the AHP family. For simplicity we assume in the following derivation of the transfer

function that the CK signaling, i.e., binding of CK to AHK4, binding of AHP to AHK4,

phosphorylation of AHP, phosphorylation of the ARRs are sufficiently fast processes compared

to the time scale of gene expression. Moreover, we consider the extracellular binding of CK to

AHK4 as being independent of the intracellular binding of AHP. Using the quasi-steady state
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assumption and suppressing for notational simplicity the spatial index on the concentrations

we find for the amount of receptors occupied by CK: Rb = αCkR(1 + αCk)−1 and for the

unoccupied receptors: Rf = R(1 + αCk)−1, where Ck denotes the CK concentration (we

neglect the depletion of the free CK by binding to AHK4), R is the concentration of AHK4, and

α is the corresponding inverse Kd value of the binding reaction. Assuming further a surplus

of AHP phosphotransfer proteins compared to the amount amount of AHK4 receptors, the

abundance Hp of phosphorylated AHPs is given by: Hp = γRb(1 + βRf )
−1, where γ and β

describe the kinase and phosphatase activity of the receptor, respectively. The phosphorylated

AHP (Hp) can bind either to type-A (A) or type-B ARR (B), hence A and B compete with

each other for Hp. Using again the quasi steady-state assumption we find for the fraction of

phosphorylated A:

Ap

A
= σA

Hp

1 + σAA+ σBB
.

Here σA and σB are the inverse Kd values for the binding reactions for A and B, respectively.

Inserting the above results for Hp, Rb, and Rf we arrive at:

Ap

A
= σAαγ

CkR

(1 + αCk + βR)(1 + σAA+ σBB)
.

To obtain non-dimensional quantities we rescale all concentrations with the half-maximal

concentration W 1
2

of the CLV3 activation by WUS, Eq. (3.7). Defining: k2 := αW 1
2

, k3 :=

βW 1
2

, k4 := σAW 1
2

, k5 := σBW 1
2

yields:

Ap

A
∼ Γ.

where Γ is the transfer function for describing the two-step phosphorelay given in Eq. (3.9).

Following the suggestion in the literature [98] that the phosphotransfer to the type-B ARR is

inhibited by phosporylated type-A ARR, we assume that a non cell-autonomous inhibitor X ,

which is activated by Ap, inhibits the phosphorelay to type-B ARR non-competitively:

Bp

B
=∼ Γ

1 + k6X
.
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Rescaling time with the inverse degradation rate of WUS, the other terms in Eqs. (3.2) - (3.8)

follow directly from the assumptions described above.

L1 signal and CK profile

For both the L1 signal and CK the problem can be described as diffusion in one-dimensional

semi-infinite space with finite production regime. We approach the problem by dividing the

space into two section, a region where the signaling molecule is produced, and a region where

the production of the signaling molecule does not occur.

For simplicity we treat space as continuous; the corresponding partial differential equation for

the concentration φ of a diffusing molecule in steady state reads:

D
∂2φ<

∂x2
− λφ< + Γ = 0 : x ≤ x0

D
∂2φ>

∂x2
− λφ> = 0 : x > x0

D
∂φ<

∂x

∣∣∣∣
x=0

= 0

φ<(x0) = φ>(x0)

D
∂φ<

∂x

∣∣∣∣
x=x0

= D
∂φ>

∂x

∣∣∣∣
x=x0

lim
x→∞

φ>(x) = 0

In above equations λ is the degradation rate, Γ is the production rate of the signaling molecule

in the production domain and D is the diffusion rate. Rescaling the spatial dimension with the

typical length scale L for a cell in the SAM tissue, i.e. x̃ = x/L, the solution to these equations

are given by:

φ< (x̃) =
Γ

λ

(
1− e−

n0
l̃ cosh

(
x̃

l̃

))
x̃ ≤ n0 (3.10)

φ> (x̃) =
Γ

λ
e−

x̃
l̃ sinh

(
n0

l̃

)
x̃ > n0 (3.11)
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where l̃ :=
√
d/(λL2) and n0 = x0/L. The L1/CK profile is given by L1ij/CKij = φ(x =

i). The rescaled profile φ/φ(x̃ = 0) is shown in Fig. 3-3 for different values of n0 and l̃,

corresponding to L1 and CK, resp.

We take the observation that CK profile is not observed after the 25th cell layer into account by

requiring CK i=25j/CK i=1j = 1/2. From this follows:

25− n0 = l̃ ln

(
1 + exp

(
−n0

l̃

))

which can only be solved numerically. Rewriting the root of this equation, l̃ = l̃(n0), for the

inverse degradation rate- λ−1 = τ , the average lifetime, finally yields the relation between the

lifetime, synthesis range and diffusion constant:

τ(n0, d) =
l̃2(n0)L

2

d
.

In Fig. 3-14 we used L = 5µm, taken from [99]. The function Γ is the transfer function for the

two step phosphorelay from CK binding to the phosporylation of the ARRs .

Cells

C
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n

L1 

Ck 

Figure 3-3: Boundary layer profiles. Re-scaled (φ/φ0, φ0 = φ(0)) concentration profiles as given by
Eqs. (3.10) and (3.11) of the L1 (red) signal and CK (blue). The distance from the L1 layer is measured in
units of the average cell size within the meristem. Parameters used: n0 = 1, l̃ = 4 for L1 and n0 = 8,
l̃ = 30 for CK concentration profiles.

3.3.4 Mobility of molecules in the model

In a model, the ‘assigned’ mobility of molecules can occur at the level of any intermediate

components that are not explicitly present in the model. Moreover, in such a case, often, mRNA
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and protein of a gene are considered a single identity, hence in reality, the assigned mobility can

occur at the level of either mRNA or the gene.

The correct patterning of the model depends on mobility of WUS, CLV3 peptide, L1 signal and

factor X. WUS needs to me mobile to reach L1 layer and trigger the expression of CLV3. The

mobility of WUS protein has been demonstrated previously and WUS protein is detected at

L1 layer [90]. In order to inhibit WUS at the OC, CLV3 is required to be mobile in the model.

Similarly the intercellular movement of CLV3 peptide has been established [75]. As an inhibitor

in an activator-inhibitor system, the mobility of factor X is required for model functionality. As

mentioned earlier, a feasible candidate for the role of L1 signal is miRNA394, which has been

shown to act as a mobile signal. [91]

L1type-A ARR

WUS CK

Figure 3-4: Examples of model output on the full simulation grid. The full simulation template
constitutes a 45x60 rectangular grid. The concentration of the molecules approaches zero at the template
boundary.
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3.4 Model analysis

We tested whether the proposed model can account for the observed patterns of CLV3 and

WUS in the SAM and whether it can reproduce known experimental results, which are relevant

to the patterning process. To this end, we performed numerical experiments: we examined

whether the model is capable of reproducing the observed phenotype of wildtype SAM as well

as various non-wildtype scenarios including mutants and overexpression lines. Because we

use a mechanistic model, we can map experimental manipulations directly to the parameters

of the model. Therefore the non-wildtype scenarios can be implemented by changing the

model component that corresponds to the specific mutation, overexpression, etc. For instance, a

knock-out mutation is implemented by setting the production rate of the affected gene to zero.

To simulate the ablation scenarios, the appropriate changes are applied to the wildtype system at

the steady sate. Once the system reaches a steady state again, the resulting expression patterns

are compared against the experimental observations.

3.4.1 Model subnetwork structure

The model in essence consists of two coupled subnetworks: WUS/CLV3 (Fig. 3-2A, lower part)

and the CK signaling (Fig. 3-2A, upper part ). In addition boundary information is supplied by

CK and the L1 signal (Fig. 3-2A, red arrows; also see Fig. 3-3 for the profiles). Parts of the CK

signaling network correspond to components of a classical activator/inhibitor system (Fig. 3-2A).

The AHK4/B/Bp part of the network acts as an autocatalytic activator (Fig. 3-2C), while the

pathway leading from Bp to X, fulfills the role of induction of the inhibitor by the activator

(Fig. 3-2D). The CK gradient confines the domain of pattern formation to the upper part of the

meristem. The activator-inhibitor network is coupled to the WUS/CLV3 subnetwork via an

incoherent feed-forward loop (Bp/WUS/A) which specifies WUS expression by type-B ARR.

The WUS/CLV3 subnetwork generates the expression domain of CLV3. Boundary information
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supplied by the L1 signal determines the correct orientation of the CLV3 expression in the

apical-basal direction.

3.4.2 Robust reproduction of the wildtype expression patterns of the genes included in

the model

The sine qua non for the model is of course whether the observed wildtype pattern can be

established and maintained. The simulated wildtype pattern is shown in Fig. 3-5. WUS is

present in a high concentration in a small region at the center of SAM, which in both lateral and

apical basal directions corresponds to the observed experimental pattern [62]. In our model the

lateral position of a single WUS peak is always at the center, whereas the apical basal position

depends on the region defined by CK. The size of the WUS domain depends on the dynamics of

the activator-inhibitor subnetwork as well as inhibition from CLV3.

We investigated the effect of WUS mobility on model output by setting WUS diffusion to

zero. This cell-autonomous version of WUS is only detected in the OC and is absent from

the upper cell layers of the SAM, Fig. 3-7.A. This results in significant reduction of CLV3

levels and misplacement of its domain, Fig. 3-7.C in comparison to wildtype, Fig. 3-7.B and D.

This simulated WUS pattern closely resembles the observed transcriptional pattern of WUS in

the SAM [90, 100]. In contrast, when WUS mobility is considered in the model the resulting

expression extends to the L1 layer, Fig. 3-7.B and D. The predicted patterns of AHK4 and

WUS by the model, overlap in the OC. This has been observed experimentally and reproduced

by previous models of WUS/CLV3 interactions [68, 101]. Furthermore the model predicts

the WUS expression domain to constitute a sub-section of the broader AHK4 domain. This

is in agreement with the observed distribution of WUS::DsRed-N7 in the apical half of the

AHK4 receptor domain marked by AHK4::GFP, in inflorescence meristem [67]. Patterns of

type-A and type-B ARRs, see Fig. 3-5C and Fig. 3-5D, are comparable to the patterns reported

by [68].It should be noted that the pattern of type-A ARR expression in the model refer to the
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phohporylated portion of these proteins, while the relevant experimental data primarily consists

of GUS reporter and transcriptional marker gene expressions [68, 76, 102]. This complicates

the comparison of model output in terms of type-A ARR expression against experimental data.

Nevertheless the model predicts that WUS expression domain and the domains associated with

CK signaling (AHK4, type-A and type-B ARR expression domains), largely overlap. This is

in agreement with experimental observations of ARR5 [67] and AHK4 [67, 68]transcriptional

reporters in the SAM, as well as with previous models of mutual interactions between CK

signaling and WUS in the SAM [67, 68]. CLV3 (mRNA) expression is limited to the tip of the

meristem, with an expression zone that is wider at the apical end and narrows towards basal

limit of CLV3 expression, Fig. 3-5E. This is in agreement with the CLV3 (mRNA) patterns

observed experimentally.

We investigated the effects of our choice of representation of meristem and L1 layer on model

output. We observed that the model is not dependent on this particular representation; model

simulations using several other representations of meristemic geometry and L1 layer, produce

the correct output, see Fig. 3-6.

3.4.3 Sensitivity Analysis

In order to analyze the model performance we carried out a parameter survey in which we

compared the simulated patterns against experimental observations of WUS and CLV3 pattern

in the SAM.

Cost function construction

The first step is to define a quantitative and biologically meaningful criteria to evaluate the

model output against experimental observations of WUS and CLV3 pattern in the SAM. In

evaluating the model output we are concerned with general patterning capabilities rather than

reproduction of experimentally observed patterns in detail. Therefore we focus on essential
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Figure 3-5: Wildtype expression pattern of the molecules in the model. (A) AHK4, (B) X, (C) type-a
ARR (D) type-b ARR, (E) CLV3 mRNA, (F) WUS, (G) L1, (H) CLV3 protein, (I) CK. Dark red indicates
the highest concentration and dark blue indicates zero concentration. The relative levels in each figure are
depicted by a color spectrum shown by the color bar in (A).

features that define the existence of the correct pattern. This allows for variability in model

output by not imposing a too strict of a criteria for the correct pattern. The output of the model

can be assessed using the WUS and CLV3 concentration distributions. We define the following

marginalized distributions:

W i(�p) =

∑
j∈Ω Wij(�p)

‖
∑

j∈Ω Wij(�p)‖
(3.12)

Ci(�p) =

∑
j∈Ω Cij(�p)

‖
∑

j∈Ω Cij(�p)‖
(3.13)

Where ‖.‖ denotes the L2 norm. The cell indices i and j are restricted to the integration

domain Ω which consists of the uppermost 9 cell layers, encompassing the central region of

the meristem; Ω = {(i, j)|3 < i ≤ 12; 2 < j ≤ 11}. These profiles adequately capture the
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L1 layer

WUS

CLV3

A B C

Figure 3-6: Simulation output in alternative templates and L1 layer assignment. WUS and CLV3
patterns resulting from model simulations in alternative templates. are qualitatively unchanged compared to
wildtype. (A) The original template coupled with an alternative implementation of L1 layer. (B) Extension
of meristem by one cell layer in apical direction.(C) A simple rectangular implementation of the meristemic
dome.

distinguishing features of the patterns and can be obtained from the experimental data in the

same manner (Fig. 3-8A). GFP intensity is used as a proxy for the concentration of WUS and

CLV3 in an apical-basal cross-section of the 3D confocal stacks of SAM in pWUS-n3GFP and

pCLV3-n3GFP respectively.

Using the two marginalized distributions given in equations. (3.12) and (3.13), we define two

objectives as the distances between the marginalized profiles:

dW (�p) = ‖W (�p)−W ref‖

dC(�p) = ‖C(�p)− Cref‖.
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C D

Figure 3-7: WUS mobility is required for correct patterning of WUS. (A) Model simulation of
wildtype WUS pattern. (B) Model simulation of WUS pattern when WUS mobility is set to zero in
the model. (C) Wildtype WUS, CLV3 and L1 signal profiles along the center-line of the meristem (as
shown in (A) and (B)). WUS domain extends to L1 layer. CLV3 pattern has a maximum at L1 layer. (D)
Effects of WUS immobility in the model; WUS is not present in the upper cell layers of the SAM and
CLV3 domain is severely reduced and misplaced.

W ref and Cref are the experimentally obtained marginalized reference concentration profiles.

We aggregate the two objectives into a single cost function:

L(�p) = dW (�p) + dC(�p).

Next we preformed a parameter survey using the described cost function. Table S1 in appendix

A lists the non-dimensionalized parameters used in simulations presented in the main text unless

otherwise stated.
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Figure 3-8: Scoring function objectives. (A) The scoring objectives focus on the a region of the cellular
grid that corresponds to the stem cell niche and OC. From this a marginalized WUS/CLV3 concentration
profile is obtained. (B) A reference WUS/CLV3 concentration is obtained from the experimental data. (C)
The comparison of these two profiles provides a measure of the model output against the experimentally
observed patterns of WUS/CLV3 in the SAM.

Parameter survey

Focusing on the aforementioned parameter set, �p1, we define a hypercube Ω on the logarithmic

scale, where we extended each parameter one order of magnitude in each direction: Ωp =

Πj [p
j
1/10, 10p

j
1]. Within this hypercube a total of N = 2.5×105 parameter sets were generated.

For each parameter set �p ∈ {�p1, �p2, ..., �pN} we calculated a score L(�p), as described above.

The subset defined by ωp = {�p ∈ {�p1, �p2, ..., �pN}|L(�p) < 0.1} was obtained. Subset ωp

consists of parameter sets whose outputs are consistent with experimental observations. The

threshold of 0.1 allows for variation in model output, while it insures the existence of the correct

patterns.

For the subset of tested parameters for which the model performed in sufficient agreement with

the experimental data we preformed a sensitivity analysis.



Chapter 3 69

Sensitivity calculation

To characterize the effect of perturbations on model output a local sensitivity analysis was

carried out. The normalized sensitivity of parameter pji belonging to the parameter point �pi is

defined by:

Sj
i =

pji
L(�pi)

∣∣∣∣∣
L(p1i , . . . , p

j−1
i , pji + δ, pj+1

i , . . . )− L(�pi)

δ

∣∣∣∣∣ .

From the set of Sj
i we calculated the quartiles as shown in the box-plot 3-9. For the sensitivity

analysis δ = 0.01 was used.
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Figure 3-9: Parameter sensitivity. The plot displays the sensitivity of model parameters to small
perturbations. Most parameter show little sensitivity, while k1, k6, k14 and d2 show highest levels of
sensitivity. In each box the central red line is the median. Edges of the box are the 25th and 75th percentiles.
The whiskers show the range for data points that are not considered outliers. The red dots outside of this
range are individual outliers. The parameter sets generated by the parameter survey and the sensitivity
analysis, are all within the Turing space.

The model displays little sensitivity to variations of most of the parameters, demonstrating

robustness within the defined parameter sub-space, Fig. 3-9. The model shows high sensitivity

to parameters k1, k6, k14 and d2, which correspond to production rate of type-B ARRs (k1),
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phosphorelay inhibition by X (k6), production of the inhibitor X (k14) and the diffusion rate

of WUS (d2). The first three parameters (k1, k6, k14) are essential for the correct functioning

of the reaction-diffusion system and correspond to the activity of the autocatalytic loop (k1),

inhibitory effect of the inhibitor (k6) and the production rate of the inhibitor (k14). The model

shows the highest sensitivity to the diffusion rate of WUS d2 which represents the ratio of WUS

diffusion to type-B ARR diffusion. The direct effect of d2 is to influence the width of the WUS

expression peak. Additionally WUS diffusion along with L1 signal determines the expression

of CLV3. This double effect of the WUS diffusion rate d2 on both WUS and CLV3 expression

domains explains why it is the most sensitive parameter. Other diffusion/degradation rates in the

reaction-diffusion subnetwork do not directly affect the expression pattern of CLV3.

3.4.4 The L1 signal has to be confined to a few cell layers

By altering the hypothetical L1 signal we can identify some properties of this signal, which are

essential for the correct behavior of the model. This can be used to assess the model hypothesis

about the directional signal in the SAM, when a candidate for such a signal is identified. For

simulations of the wildtype shown in Fig. 3-5, the L1 signal extends to only a few cell layers

below the L1 layer as shown in Fig. 3-5G. We examined the scenario where the L1 signals

extend farther down the meristem. This can be achieved either by increasing the diffusion

rate of the signal and/or by decreasing its degradation rate. The extension of L1 signal results

in enlargement of CLV3 domain and presence of CLV3 in the OC (compare Fig. 3-10A and

Fig. 3-10B), which is never reported in wildtype. Therefore, the model predicts that in wildtype

the directional signal originating in the L1 layer, is confined to the 3-4 uppermost cell layers,

which is in good agreement with the spread detected for miR394 [91].
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A B
Figure 3-10: Extension of L1 signal beyond the first three cell layers; The white bar in the figures
show the distance at which the concentration of the L1 signal drops to half of its initial concentration (a)
CLV3 expression in wt. (b) CLV3 expression resulting from the extended L1 signal. the CLV3 mRNA
expression extends to organizing center. This has never been observed experimentally in the wildtype
SAM, hence the model predict that L1 signal is confined to the upper three cell layers.

3.4.5 Reproduction of the clv3 mutant expression patterns

In the CLV3 mutant the WUS expression domain expands laterally. Additionally the concentra-

tion of WUS within its domain increases. The lateral expansion of WUS domain is accompanied

by lateral expansion of the meristem as a whole [62]. Wether the WUS domain elongation

happens as a result of meristem elongation or is the cause of it, or whether they are independent

of each other, is not clear. In our simulations of the clv3 mutant, the concentration of WUS

increases within its domain and the expansion of the domain occurs in all directions, while the

upward shifting of the WUS domain does not occur (Fig. 3-11). This could result from the static

nature of the model which does not consider cell division and/or elongation.

3.4.6 Reproduction of the effect of laterally extending the meristem size

Graf et al. identified mgol-4 mutant which is defective in shoot meristem development. In

mature mgol-4 plant, the meristem is enlarged and becomes fragmented into multiple apices,

each containing a separate stem cell niche. We simulated this effect by laterally doubling the

width of the meristem, as shown in Fig. 3-12. In vivo, the mutant exhibits other developmental

defects and the enlarged SAM does not possess a smooth and uniform edge, but forms a rather
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Figure 3-11: The effect of the clv3 mutation on WUS expression; green shows the extent of WUS
expression in wildtype, and red shows WUS expression in the clv3 mutant. The expression zones are
defined as cells that express WUS at the half maximum level of expression in the mutant or higher. In the
mutant the concentration of WUS increases, this means the number of cells that express WUS at a high
enough level to be considered within the expression zone, increases.

jagged and disorganized structure [103]. Our aim was to investigate whether the model, in

general, is capable of generating multiple WUS centers in a larger domain. When the width

of the domain is doubled, two WUS centers appear, the expression of WUS and CLV3 can

be seen in Fig. 3-12A,B. This multiplication of the pattern in a larger domain, is a known

characteristic of reaction-diffusion systems [104], and further demonstrated the competence of a

reaction-diffusion system in modeling the WUS regulation within the SAM. Furthermore, the

jabba-ID mutant of Arabidopsis exhibit enlarged and laterally expanded meristems, in some

of which the formation of two distinct WUS centers and the laterally extended CLV3 domain

can be observed [105]. These closely resemble our simulations results of CLV3 expression in a

laterally extended meristem, shown in Fig. 3-12B.

3.4.7 The model exhibits regenerative ability of the meristem following laser ablation

Experimental observations show that after the removal of the OC and stem cell domain in the

SAM of tomato via laser ablation, two new WUS centers form at the opposite sides of the

ablation [60]. Starting from a wildtype expression pattern (Fig. 3-13A-B), we eliminated the

WUS and CLV3 expressing cells. When the system again reaches a steady state, two new OCs

and stem cell niches form at either side of the ablation site in a very similar manner to the
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CLV3

WUS
Figure 3-12: Expression of the molecules in the model, when meristem size is doubled laterally; (A)
two separate WUS expression centers form, (B) CLV3 expression zones form above each WUS center.

experimental observation (Fig. 3-13C-D). Such regenerative ability is an essential property of

the SAM. The model predicts the presence of CK signaling and AHK4 at newly formed WUS

expression centers after ablation. To our knowledge the presence of AHK4 expression patterns

and CK activity have not been analyzed in the SAM after laser ablation. We therefore performed

laser ablation experiments and tested for recovery on the level of CK signaling.

3.4.8 Limitation of the CK response profile

For the proposed model it is only important that CK is limited to the upper 20-30 cell layers

of the meristem, the actual process by which this is achieved is not important. As there is

no experimental evidence that a diffusion or transport barrier - such as a Casperian strip - in

this region exists, we analyze the consequences of the assumption that the CK profile is not

limited by a physical barrier. Because no evidence for a directed transport of CK in the SAM

exists, we consider the mobility of CK as a non-directional diffusion-like process. In this case
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CLV3

WUS

A B

C D
Figure 3-13: WUS and CLV3 expression patterns after in silico ablation; (A) and (C): the wildtype
expression pattern of WUS and CLV3. (B) and (d): WUS and CLV3 expression patterns that form after
ablation of the center of the SAM including the SCD and OC.

the CK profile is governed by three parameters: the size of the synthesis zone n0, the average

lifetime τ of a CK molecule and the effective diffusion rate Deff . Unfortunately, for none of

these parameters estimates are available. CK profile was experimentally measured to cover

the first 25 cell layers of the meristem [82], i.e., the synthesis regime does not extend beyond

this. It seems reasonable to limit it further to the actual meristem [99]. From this follows

that 1 ≤ n0 � 7. The long-distance translocation of CKs is mediated by the xylem and the

phloem and is experimentally investigated [106]. However, for this study the local short-distance

mobility of CK across the plasma membrane and the cell wall is important, for which the

mechanisms are not well understood [107]. The purine permease family and the equilibrative

nucleoside transporter family have been proposed as candidates for CK transporters. While

the first can transport free-base CKs in a proton-coupled manner the latter facilitate diffusion

of nucleosides along a concentration gradient [108]. In any case, the mobility of CK in the



Chapter 3 75

SAM is determined by its diffusion in the cytoplasm and the transport/diffusion across the cell

boundaries, where the latter is likely to be the limiting process. In order to obtain an estimate

for the upper limit for the effective diffusion rate in the SAM tissue we consider the diffusion of

a molecule in the cytoplasm. Based on measurements in E. coli, we find as a rough estimate

of the diffusion constant in the cytoplasm D>
eff ≈ 241µm2s−1 [109, 110]. An estimate for the

lower limit can be obtained by considering the diffusion of molecules within the cell wall [108].

We obtain for CK as lower limit D<
eff ≈ 42µm2s−1. The degradation of CK is catalyzed by CK

oxidase/dehydrogenase [99]. It appears that degradation is a highly regulated process, which

makes it difficult to say something about the rate. To date the degradation rate of CK in the

SAM has not been measured. Therefore, no further information is available. However, we

can use these considerations to obtain an idea about the average lifetime of a CK molecule.

For a given diffusion rate Deff and a range n0 of the synthesis zone the average degradation

rate or life-time τ of CK follows from the limiting the profile to the upper 25 cell layers (see

section 3.7.13). The resulting τ as a function of Deff and n0 is shown in Fig. 3-14. Due to

the rough estimates available for the other parameters, there is of course a range for τ , but

interestingly the deliberations above point towards a lifetime of CK of the order of a few minutes.

3.4.9 Role of advection

A simple physical picture for the CK transport inside the phloem is that of mass transport

due to the bulk motion of a fluid (advection). The phloem starts several cell layers below

the meristem [111, 112]. To study this problem we now divide the tissue into three zones:

x ≤ x0: synthesis regime (synthesis + degradation + diffusion), xm ≥ x > x0: diffusion regime

(diffusion + degradation), and x > xm, advection regime (diffusion + advection + degradation).
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Figure 3-14: CK lifetime as a function of Deff and n0. The average lifetime τ of CK in minutes in the
meristem and the extension n0 in cell layers of the CK synthesis zone consistent with the observation of a
CK profile covering the upper 25 cell layers of the meristem. The colorbar shows the chosen value of the
effective diffusion constant of CK in the meristem tissue, ranging from 42µm2s−1 to 241µm2s−1 (see
text).

This is in steady state described by the following set of equations:
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In addition we require that the system is closed at x = 0 and that the solution is continuous and

vanishes at infinity:

∂φ1

∂x

∣∣∣∣
x=0

= 0; φ1(x0) = φ2(x0); φ2(xm) = φ3(xm); lim
x→∞

φ3(x) = 0.
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In order to further analyze this, we rescale length again with the typical cell size L. Also, we

rescale the concentrations φi with φ0 = Γ/λ and finally arrive at:

l2
∂2φ1

∂x̃2
− φ1 + 1 = 0 : x̃ ≤ n0

l2
∂2φ2
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with la = v/(Lλ). For large Péclet numbers la/l2 = vL/D � 1 the flux continuity equation

at x̃ = x̃m simplifies to φ3(x̃m) = 0 and by using the continuity of the solution we find:

φ2(x̃m) = 0, which yields a closed set of equations for x̃ ≤ x̃m. For a phloem flux of

v = 50µm/s [113] the Péclet number would be roughly in the range 6 > la/l
2 > 1. Using the

approximation for large Péclet numbers, we find:

φ1 (x̃) = 1− cosh

(
x̃

l

)
cosh

(
x̃m−n0

l

)

cosh
(
x̃m

l

) x̃ ≤ n0

φ2 (x̃) = sinh

(
x̃m − x̃

l

)
sinh

(
n0

l

)

cosh
(
x̃m

l

) x̃m ≥ x̃ > n0

φ3 (x̃) = 0 x̃ > x̃m

In adult plants the closest distance to the phloem was measured to be roughly 220µm [111,112],

which translates to x̃m ≈ 44. Corrections to the estimate of the lifetime of CK are of the order

O(e−2x̃m/l0), where l0 is the root of the equation Ck i=25j/Ck i=1j = 1/2 without advection,

i.e., la = 0. Using x̃m ≈ 44 and l0 ≈ 32 we find e−2x̃m/l0 ≈ 0.06. Taken together the results

suggests that advection via phloem, at a distance of roughly 220µm, hardly affects the CK

profile in the meristemic zone, which is rather defined by the diffusion length scale. However, in

young plants the situation is quite different. Unless the the diffusion length is modified during

the growth process, the meristemic zone defined by the CK profile would be unrealistically
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large. The close proximity of the phloem to the meristemic region (from 0− 10µm for a mature

embryo [114] to about 80µm for a 11 days old seedling [111] suggests that advection via the

phloem can dictate the length scale of the CK profile and hence the size of the meristemic region

in a young plant.

3.4.10 Microsurgical and laser ablation experiments

The model assumptions presented here suggest that the WUS expression in the OC is maintained

via a reaction-diffusion network at the CK expression level. Laser ablation and microsurgical

studies have shown that upon removing the WUS expressing cells the WUS expression is

regenerated [60]. Our model further predicts that this recovery takes place at the level of

CK signaling. In order to test this hypothesis, we performed microsurgical and laser ablation

experiments, where we removed the cells within meristem that express the GFP under the

TCS marker gene. We also performed the same experiment with GFP expressed under WUS

promoter. In our initial trials, we observed that the expression of TCS fades away following

the dissection of the meristem. This could be due to the lack of CK supply through the stem

to the meristem. In order to compensate for the lack CK supply via the stem and to aid the

visualization of the expression of TCS in the days following the dissection, we cultured the

meristems after dissection in a CK containing medium. Our results demonstrate that the CK

signaling domain within the meristem regenerates within 1-2 days following microsurgical

ablation as shown Fig. 3-15A-C, in a similar manner and time-frame as WUS expression,

Fig. 3-15D-F. Furthermore, we carried out ablation experiments on plants expressing pclv3-GFP.

Upon removing the organizing center and the CLV3 expressing cells, it was observed that CLV3

becomes visible 3 days after the ablation, Fig. 3-15G-I. The time-frame of recovery of CLV3

compared to WUS and TCS is in agreement with the model assumptions.
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Figure 3-15: Laser ablation of WUS, TCS and CLV3; WUS-GFP promoter fusion expression before
(A), just after (B) and 1 d after (C) laser ablation. TCS expression before (D), just after (E) and 1 d after (F)
laser ablation. CLV3 expression before (G), just after (H) and 2 d (I) after laser ablation. The green signal
is WUS-GFP in a, b, c, TCS-GFP in d, e, f, CLV3 in g, h, i. Red signal is propidium-iodide (PI)-stained
cell wall or laser ablated cells.

3.5 Discussion

WUS is a major component of SAM development and stem cell homeostasis. Recent experimen-

tal evidence has revealed a diverse and extensive network comprising genes and hormones that

contribute towards regulation of the SAM. Despite these findings, and several modeling efforts,

it is still unclear how the WUS expression domain is restricted and centered within the SAM.

We argue that the patterning and regulation of WUS within the SAM cannot be well understood

without addressing the cell lineage-independent nature of it. The current knowledge, puts CK

forward as a major factor in positioning and patterning of the SAM. We developed a model

strictly based on the known mechanism of CK reception and signaling via the AHK4 receptor.

Our experimental results, in agreement with earlier findings, show that upon laser ablation of

OC and stem cell niche, the meristem is able to regenerate the WUS expressing cells as well as
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stem cells. In addition we demonstrate that the CK signaling domain within the SAM shows

similar regenerative capabilities. Considering the time-frame of the recovery of WUS and TCS

expression after ablation and the current understanding of the role of CK signaling in regulating

the SAM activity, the experimental results suggest that the CK signaling could be the basis of

the regenerative ability of the SAM as a whole. The time-frame of the regeneration of CLV3

compared to WUS and TCS, demonstrated that the recovery of CK signaling and subsequently

the WUS expression is sufficient for the recovery of stem cell population.

Concepts such as L1 and factor X have been consistent features of activator-inhibitor-based

modeling of SAM and their role in the work presented here is in principle same as earlier works.

The main contribution of this work lies in the observation that some known components of

CK signaling network have the capability of functioning as an activator-inhibitor system. By

incorporating our assumptions of a diffusing inhibitor, a feedback loop involving the type-B

ARRs and AHK4 and L1 signal, we demonstrate the potential of the CK signaling network in

generating patterns within the SAM, in close agreement with the experimental observations. In

addition our experimental results suggest that specification of OC including its self-organizing

properties can arise, at least in part, via CK signaling. If type-A ARRs are assumed to be highly

mobile, the intermediate factor X is not required and the model can function with type-A ARRs

directly inhibiting the phosphorylation of type-B ARRs. We explicitly tested this scenario and

observed, with adjustment of parameters the model is capable of producing the same patterns.

In case the type-A ARRs do not fulfill the requirements, the proposed intermediate factor X is

necessary. To our knowledge the studies focused on genetic regulation of the SAM do not put

forward a candidate for factor X. While inhibiting type-B ARRs, factor X is predicted to have an

overlapping peak and expression domain with type-B ARRs. At first sight, AHP6, a well-known

inhibitor of CK signaling [101] appears as a likely candidate. However its expression pattern

does not match the predicted pattern for factor X [115, 116]. In the model factor X has a higher

diffusion rate than other molecules, including the small CLV3 peptide. This hints at factor X

being an even smaller molecule, perhaps a micro-RNA (miRNA). miRNA165/166, are mobile
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signaling molecules that suppress CK signaling via inhibition of CK production [117, 118].

However the expression pattern of these molecules is very different from the predicted expression

of factor X [119]. It remains to be seen whether the new and active area of research on the

role of miRNAs in plant genetic regulation would identify an experimental counterpart for this

hypothetical molecule.

The inhibition of upstream CK signaling via type-A ARRs is essential for correct model output.

This is because the aforementioned interaction constitutes a part of the core activator-inhibitor

motif. In contrast the type-A ARR inhibition of type-Bs via competition for phosphate is not

necessary for correct model functionality, see Fig. 3-16. Our simulations show that the model

can produce the corrects output in presence and absence of phosphate competition. While

verification of the mechanism of type-A ARRs inhibitory effects are out of the scope of the

model, the results suggest that the upstream inhibition is the main mechanism in meristem

patterning.

One important ingredient of the model is the observation that the CK concentration profile is

limited to the upper 20-25 cell layers. The exact cause of this is not important for the model to

work, but as there is no evidence of a diffusion barrier for CK, we explored the consequences

of a diffusion-like transport of CK within the tissue. Because the determining parameters for

the CK profile are unknown, we cannot limit the synthesis regime of CK, besides the plausible

assumption that CK synthesis is confined to the SAM. However, based on these considerations

and using estimates for the effective diffusion rate of CK we conclude that the average lifetime

of a CK molecules within the SAM is of the order of a few minutes. A further consequence

of the model is that the size of the meristem might be determined by two distinct physical

mechanisms. The model suggests that in adult plants the size of the SAM is governed by the

length scale of CK diffusion, while in young plants it is determined by the distance from the L1

to the phloem.

We have shown that a combination of boundary driven patterns - CK and L1 signal acting as

morphogenes - and a reaction diffusion system including AHK4 and its assumed inhibitor can
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Figure 3-16: Phosphate competition between type-B and type-A ARRs does not significantly affect
the model output. The difference in model simulation of WUS and CLV3 expression, when phosphate
competition between ARRs is absent from the model. The expression profile of WUS and CLV3 in
absence of phosphate competition were subtracted from the corresponding wildtype expression profile.
The expression profiles were normalized to maximum levels in each case and the absolute difference
between the two was calculated. To simulate the absence of phosphate competition, parameters k4 and k5
are set to zero. Model output is not significantly changed in absence of the phosphate competition.

account for a variety of observed phenomena regarding the SAM. The reorganization of the

SAM after laser ablation and the appearance of multiple OCs upon lateral extension of the SAM

closely resemble the properties of a reaction diffusion system. Our results suggest that both

a short and a long range morphogene are required for establishment and regulation of WUS

and CLV3 expression patterns within the SAM. The long ranged (on the scale of the SAM) CK

confines the WUS expression peak to the SAM, while the short ranged L1 signal is required

in order to restrict the expression of CLV3. We show that L1 signal, originating from the L1

layer and diffusing downwards, can adequately explain the induction of CLV3 expression in a

specific location at the tip of the SAM. The model predicts that the signal does not diffuse past

the first few cell layers beneath the L1. The recently characterized miR394, produced at the L1
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layer and necessary for establishment and regulation of stem cells by WUS, provides a suitable

candidate for the role of L1 signal in the SAM.

The proposed minimal model focuses on specific aspects in order to understand the core

regulatory concepts and is not expected to capture the complex biological system in its full

detail. This is specifically true for redundancy, which is a common feature of many biological

systems. A survey of literature reveals a high degree of redundancy within the CK sub-network.

There are several types of CKs in plants. Many ARRs have similar expression patterns and

are thought to be at least partially redundant [77]. Single and even multiple mutants deficient

in CK biosynthesis do not show significant SAM phenotypes [120, 121]. The same is true for

many type-A and type-B ARR genes. Therefore, single mutant phenotypes predicted by the

reductionist model presented here, cannot be expected to correspond to the observed single

mutant phenotypes. However, the model is expected to exhibit systemic behavior that could be

used to assess the hypothesis under study. Furthermore, the model makes specific predictions

that can be utilized to design experiments to test the model hypothesis and to further clarify

underlying mechanism of gene expression patterning within the SAM. In summary, we show

that regulation of the CK receptor AHK4, through a reaction-diffusion mechanism can plausibly

account for an array of observed phenomena regarding WUS patterning and thus providing one

possible answer to the question of how the organizing center is centered.
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Yamaguchi7, Saiko Yoshida1, Gert Van Isterdael8,9, Joakim
Palovaara1, Bart Nijsse4, Mark V. Boekschoten10,11, Guido
Hooiveld10, Tom Beeckman8,9, Doris Wagner7, Karin Ljung5,
Christian Fleck4,‡, and Dolf Weijers1,‡

1 Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands.

2 LifeGlimmer GmbH, Markelstrasse 38, 12163 Berlin, Germany.

3 Albert-Ludwigs-University Freiburg, Faculty of Biology, Plant Biotechnology, Schaenzlestrasse 1, D-79104 Freiburg,

Germany.

4 Laboratory of Systems and Synthetic Biology, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, the Netherlands.

5 Ume̊a Plant Science Centre (UPSC), Department of Forest Genetics and Plant Physiology, SLU, SE-901 83 Ume̊a, Sweden.

6 Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký
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4.1 Introduction

Because plant cells cannot migrate during development, control of cell division orientation

and simultaneous tissue patterning during early growth is vital to create a functional three-

dimensional (3D) structure. The basic body plan of the plant is determined during early

embryogenesis. The root vascular tissues develop from four provascular initial cells (Fig.4-1)

that undergo several rounds of oriented, periclinal cell divisions to create a patterned vascular

bundle by the end of embryogenesis [122, 123]. The vascular bundle then contains xylem

cells marked by high auxin signaling and flanking zones of procambium cells characterized by

high CK signaling [124] from which the phloem tissues will differentiate post-embryonically.

Although growth through oriented cell divisions and pattern formation are thus crucial for normal

development, it is yet unknown how these intertwined processes are regulated and if this occurs

through distinct or overlapping pathways. Here, we combined experimental and theoretical

approaches to unravel the integration of vascular growth and patterning during Arabidopsis

embryogenesis.

4.2 LOG4 is a direct TMO5/LHW target gene

The TARGET OF MONOPTEROS5/LONESOME HIGHWAY (TMO5/LHW) basic helix-

loop-helix (bHLH) transcription factor dimer is a rate-limiting regulator of periclinal cell

divisions [125]. Mutants show a reduction in vascular tissue size due to loss of periclinal

division frequency, whereas ectopic coexpression of TMO5 and LHW can trigger this type of

division in any cell type of the root [125]. The expression domains of TMO5 and LHW overlap

in young xylem cells that strongly correlate with the zone in which periclinal divisions occur.

However, xylem cells do not themselves divide periclinally, which suggests that the TMO5/LHW

dimer promotes these divisions by inductive signaling toward neighboring procambium cells.

Indeed, TMO5/LHW misexpression induces excess divisions both cell-autonomously and
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non–cell-autonomously, suggesting that these transcription factors trigger periclinal cell division

through a yet unknown diffusible signal [125].

Given that TMO5/LHW is a transcription complex, we sought to identify this unknown signal,

RESEARCH | RESEARCH ARTICLE

Figure 4-1: LOG4 is a direct target of the TMO5/LHW dimer. (A) Growth (blue) and patterning (red:
cambium; green: xylem) occur simultaneously in vascular tissue during embryogenesis. (B) Combinatorial
microarray analysis, identifying LOG4 as putative target gene of TMO5. (C) ChIP-qPCR experiment
shows direct binding of TMO5 and LHW fusion proteins close to a G-box (−326 bp) of the LOG4
promoter. (D) Relative qRT-PCR expression of LOG4 in mutants or TMO5/LHW-OE compared to wild
type (WT) (Col−0). (E) Relative expression levels (qRT-PCR) of TMO5 and LOG4 in roots upon 1 µM
2,4-dichlorophenoxyacetic acid (2,4−D) treatment for the indicated time. Error bars in (C) to (E) indicate
SE.

or components of its biogenesis, through determining the direct transcriptional targets. We

devised a combinatorial transcript profiling approach using independent, rapidly inducible

TMO5 versions (see Materials and Methods in appendix A3 for detailed information). Only

three genes were significantly induced by TMO5 in all independent experiments (P < 0.05,

fold change >1.5) (Fig. 4-1B and table B2), and their regulation by TMO5 was confirmed

by quantitative reverse transcription–polymerase chain reaction (qRT-PCR) (Fig. B1). One of

these genes encodes LONELY GUY 4 (LOG4), an enzyme involved in the final biosynthesis

step of CK [126, 127]. Given the previously established importance of CK in root vascular
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tissue patterning [128], we focused our attention on this gene. Chromatin immunoprecipitation

(ChIP) confirmed direct binding of both TMO5-3GFP (triple green fluorescent protein) and

LHW-YFP (yellow fluorescent protein) to the same upstream fragment of the gene (Fig. 4-1C).

This coincided with a predicted bHLH-binding G-box (CACGTG) located 326 base pairs (bp)

upstream of the LOG4 start codon (Fig. 4-1C). LOG4 transcripts were reduced in tmo5 and

lhw mutant roots and increased upon TMO5/LHW misexpression (Fig. 4-1D), suggesting that

TMO5/LHW are indeed required for LOG4 gene expression. TMO5 is a direct auxin response

gene [129], and as expected, LOG4 was also induced by auxin, but with delayed induction

kinetics (Fig. 4-1E).

TMO5 expression marks the first four vascular founder cells in the globular embryo [128].

Consistent with direct regulation by the TMO5/LHW dimer, LOG4 transcript (Fig. 4-2A and

Fig. B2) and a pLOG4-n3GFP reporter (Fig. 4-2, B and C) were expressed in these same cells.

Later, LOG4 expression was confined to the TMO5/LHW domain in the xylem (Fig. 4-2, G

and H). Because the LOG4 expression domain was extended in pRPS5A-TMO5/pRPS5A-LHW

misexpression (TMO5/LHW-OX) roots (Fig. 4-2, I and J) and absent in the xylem domain of lhw

roots (Fig. 4-2, K and L), TMO5/LHW is a key transcriptional input. Nonetheless, expression of

LOG4 in xylem pole pericycle and xylem pole endodermis cells (Fig. 4-2H) suggests additional,

TMO5-independent post-embryonic input. Together, these outcomes identify LOG4 as a direct

target gene of the TMO5/LHW transcription complex.

4.3 TMO5/LHW controls CK biosynthesis through LOG4

LOG proteins catalyze a rate-limiting step in CK biosynthesis [126,127], and thus the TMO5/LHW

dimer may act by promoting CK biosynthesis. Indeed, concentrations of several CK species were

reduced in tmo5 t5l1 mutant roots, whereas most CK species were increased in TMO5/LHW-OX

roots (Fig. 4-3A and table S2). In line with these elevated CK concentrations, TMO5/LHW-OX
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Figure 4-2: LOG4 expression depends on TMO5/LHW. (A to F) In situ hybridization (A and D) and
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false color scale across the entire xylem axis. Asterisks indicate endodermis; arrows indicate xylem. Roots
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plants showed a strong postembryonic shoot phenotype, including ectopic leaf outgrowths (Fig.

B3) that resembled CK-overproducing plants [129]. We next used gene expression reporters

to determine if TMO5/LHW-dependent CK biosynthesis generates a transcriptional response.

Whereas the synthetic CK response reporter pTCSn-GFP [101] was active only in the root cap

and vascular initial cells in wild-type roots (Fig. 4-3B), it was ectopically activated throughout

TMO5/LHW-OX roots (Fig. 4-3C). Likewise, the CK-repressed pAHP6-GFP reporter [130] was

down-regulated upon TMO5/LHW misexpression (Fig. 4-3, D and E). Additionally, protoxylem

differentiation was inhibited in TMO5/LHW-OX and LOG4 misexpression roots (Fig. 4-3, H
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and I), indicative of increased CK activity (Fig. 4-3, F and G) [130]. Hence, the TMO5/LHW

complex triggers CK biosynthesis via inducing LOG4 expression.

We next addressed the biological significance of LOG-dependent CK activity for TMO5/LHW
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Figure 4-3: TMO5/LHW triggers CK biosynthesis. (A) Abundance of CK species in roots of t5t5l1
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misexpression (m, metaxylem; p, protoxylem). Error bars in (A) and (B) indicate SE. Images in (B) to (E)
are counterstained with FM4-64. Scale bars, 10 µm.

function in promoting periclinal division and vascular tissue development. Consistent with a

requirement for CK response, excess TMO5-induced periclinal cell division was suppressed

in the wol receptor mutant (Fig. 4-4, A to F) [131]. LOG4 single mutants did not show clear

vascular defects (Fig. B3A-C), but this gene is member of a family of nine members (LOG1

to LOG9) that has been shown to act redundantly in CK biosynthesis [126, 127]. We found

that, indeed, CK-dependent pTCSn-GFP expression was absent in vascular precursors in the

log1234578 heptuple mutant roots, but that expression could be restored by CK treatment (Fig.

4-4, G to J). Hence, LOG function is collectively required for CK biosynthesis in vascular

tissue, which is reflected in defective embryonic vascular tissue development (Fig. B4A-B)

and patterning (Fig. B4C) in this mutant. To determine which of the LOG genes may act
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redundantly with LOG4, we first determined the expression patterns of all LOG genes. Only

LOG3, LOG4, and LOG7 were consistently detected in young vascular tissues (Fig. 4-4, D

to F, and Fig. B5) [126]. We therefore introduced the log3 log4 log7 triple mutant [132]

into the TMO5/LHW-OX line and found this to suppress excess periclinal cell division (Fig.

4-4K). The partial suppression in this triple mutant suggests contributions of other LOG genes

because several were up-regulated in a log4 mutant (Fig. B4D), probably through CK-dependent

repression (Fig. B4E). We next tested if CK activation is not only required but also sufficient

for TMO5/LHW-dependent periclinal cell division. Mutations in LHW, as well as in TMO5

and TMO5-LIKE1 (T5L1), reduce vascular cell file numbers and lead to a switch from diarch

to monarch pattern [125, 132]. Treatment of lhw and t5t5l1 mutants with CK was sufficient

to increase the number of periclinal divisions, revert to diarch patterns in both mutants, and

even rescue cell number in the lhw mutant to wild-type levels (Fig. 4-4, L to R). In summary,

these data suggest that LOG-derived CK is a major contributor to the vascular function of

TMO5/LHW.

4.4 A model of vascular tissue formation

In addition to its function in vascular periclinal cell division, CK is also essential for patterning

the vascular tissue into distinct domains, comprising the xylem axis with high auxin signaling

and the flanking cambial domains with high CK signaling [124]. Thus, auxin-CK interactions

appear to underlie both growth and patterning, and a key question is how these are coordinated.

Previously, a phloem source of CK was postulated in the postembryonic root [133], but no

functional phloem exists before seed germination [122], and recent modeling suggests that the

phloem source may not provide positional information [134]. We therefore explored whether

the auxin-MP-TMO5/LHW-LOG4-CK module could have a dual role and account for both

patterning and growth using a computational approach.
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Figure 4-4: CK activation mediates TMO5/LHW activity. (A to F) Mature roots (top) and primary
root meristems (bottom) of WT (Col-0), pRPS5A-TMO5-GR, and pRPS5A-TMO5-GR in wol mutant
background; grown on 10 µM dexamethasone (DEX). Arrows indicate ectopic periclinal cell division (m,
metaxylem; p, protoxylem). (G to J) pTCSn-GFP expression in log1234578 mutant without (G and H) or
with (I and J) BA treatment. (H) and (J) are false color images of (G) and (I), respectively (counterstained
with FM4-64). (K) Quantification of the distribution of vascular cell file number in roots of the lines
indicated. (L) Number of vascular cell files in WT (Col-0), lhw, and t5t5l1 mutant backgrounds upon BA
treatment (concentration as indicated). Error bars indicate SE. (M to R) Histologic cross sections of WT
(Col-0), lhw, and t5t5l1 mutant roots grown without (control) or with 0.1 µM BA. Arrows indicate phloem
poles. Scale bars, 10 µm.

4.4.1 Reaction network

We employ a reductionist modeling approach; that is we aim for a minimal set of assumptions

and model components that can address the biological question at hand. Our model aims to test

whether the identified genetic pathway, in which auxin triggers local CK production through

MP, TMO5/LHW and LOG4, can account for stable patterning of the vascular tissues during

embryonic growth. This entails a bilaterally symmetric pattern containing a central axis with
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high auxin signaling (xylem cells), and two flanking zones with high CK signaling (cambial

cells) [135]. In the model, auxin concentration is a proxy for auxin signaling; hence the xylem

axis is characterized by relative high concentration of auxin. The model further incorporates the

following facts and assumptions:

• In our mathematical model (Fig. 4-8A), the auxin-MP-TMO5/LHW-LOG4-CK module

is represented as a set of ordinary differential equations mapped to a growing cellular

grid using the VirtualLeaf software [9]. Because of the highly linear pathway, MP,

TMO5/LHW, and LOG4 intermediates are not explicitly modeled, and thus in the model,

auxin directly promotes CK production.

• Auxin levels in cells are determined by basal synthesis and degradation activity, as well

as by passive diffusion and PIN-mediated active transport. (ii) PIN levels are subject to

regulation by auxin and CK in addition to fixed synthesis and degradation [51].

• CK cell-autonomously inhibits PIN localization at the membrane [136], as has been

shown for PIN1, the dominant PIN expressed in embryonic vasculature [136, 137]. We

thus simplify the redundant PIN gene family [45, 137] by a representative “general PIN”

that has PIN1-like properties. (iii) CK levels are promoted by auxin, and further depend

on degradation and passive diffusion across membranes.

• Even though xylem cells produce CK, only the neighboring cambial cells respond by

undergoing periclinal divisions. Thus, the CK-producing tissues do not respond to CK

themselves. To capture this, we distinguish between CK and CK response. CK response

is inhibited by auxin, as has been shown experimentally [116, 130].

• CK promotes periclinal division, which is represented in the model by lowering the cell

size at which cells undergo division.

• By default, cells divide over their shortest axis once they double their area. CK signaling

inside a cell lowers the threshold area for division thus increasing cell division rate [9].
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• Auxin-dependent PIN dynamics are adopted from [63], as implemented in VirtualLeaf [9].

• There is an asymmetric flow of auxin towards the source cells due to the PIN protein

topology in overlying cells (Fig. 4-8F-I and Fig. 4-9A,B). This is reflected in an increased

auxin production rate of the two source cells.

• We assume that the cells with higher auxin input are fixed relative to the geometry of the

tissue. This means if one of these cells divide, the daughter cell closer to the pericycle

cells retains the higher auxin input, while the other daughter cell produces auxin at the

same rate as non-source cells.

• Pericycle and endodermis cells divide along the axis that connects their centers to the

center of the tissue. This is based on the observed division planes of these cells during

vascular development [138].

4.4.2 Model Equations

The reaction network shown in Fig. 4-8A is described by the following five ordinary differential

equations for each cell with cell index i:

dAi

dt
= k1χi − k2Ai +

k3
ai

D̂Ai +
k4
ai

∑
j∈Ni

lij

(
PijAj

1 +
Aj

k5

− PjiAi

1 + Ai

k5

)
(4.14)

dPi

dt
= k6 − k7Pi +

∑
j∈Ni

lij
ai


k20Pij −

k15PiAj(
1+ Pi

k16

)(
1 +

Aj

k17

)(
1+

k18

(
Ci
k19

)p

1+
(

Ci
k19

)p

)


(4.15)

dPij

dt
=

k15PiAj(
1 + Pi

k16

)(
1 +

Aj

k17

)(
1 +

k18

(
Ci
k19

)p

1+
(

Ci
k19

)p

) − k20Pij (4.16)

dCi

dt
= k8κi

(
Ai

k9

)m

1 +
(

Ai

k9

)m − k10Ci +
k11
ai

D̂Ci (4.17)

dCr i
dt

=
k12Ci

1 +
(

Ai

k13

)n − k14Cr i (4.18)
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Ai, Pi, Ci and Cr i are concentrations of Auxin, PIN, CK and CK signaling in the cytoplasm

of cell i. Pij is the concentration of PIN at the cell wall of cell i adjacent to cell j. Ni denotes

the set of cellular neighbors of cell i and lij is the length of the wall shared by cells i and j.

The index functions χi and κi are defined by: The diffusion operator D̂ operating on index i

reads:

D̂Xi =
∑
j∈Ni

lij(Xj −Xi) (4.19)

The index functions χi and κi are defined by:

χi =

{
R: cell i is an auxin source cell
1 : cell i not an auxin source cell (4.20)

κi =

{
1: cell i is within the vascular bundle excluding pericycle cells
0: cell i is within the vascular bundle excluding pericycle cells (4.21)

The equations are integrated in iterative steps using fifth-order, adaptive-step-size Runga-Kutta

algorithm [9].

4.4.3 Growth algorithm

The simulation starts with a heart stage embryo template where the four vascular founder cells

are surrounded by pericycle and endodermis layers (cortex and epidermis are not included in

the model). These surrounding layers do not produce CK and have a fixed growth rate, which

is not affected by CK levels. These layers thus do not contribute to the model itself. Besides

this, the entire model (Fig. 4-8A) continuously runs in all cells. Cell growth is modeled using

turgor pressure uniformly exerted on all walls of a cell that can counteract, irreversibly expand,

or yield in response (Fig. 4-6). The area at which all cells except pericycle and endodermal cells

divide is given by:

ai(t) =
2a0i

1 +
k21

(
Cri(t)

k22

)q

1+
(

Cri(t)

k22

)q

(4.22)

where a0i is the initial area of cell i. The pericycle and endodermal cells divide once they reach

2 and 3.2 times their original area, respectively.
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4.5 Model components and assumptions

The model consists of a set of nonlinear ordinary differential equations (see further) mapped

to a growing cellular grid using the VirtualLeaf software [9]. In VirtualLeaf, cells are defined

as polygons and cell walls consist of viscoelastic cell wall elements connected by nodes. A

Monte-Carlo based energy minimization algorithm describes the resulting displacement of

nodes. The mechanical energy state of the system is described by the Hamiltonian [9]:

H

kBT
= λA

∑
i

(ai(t)−Ai(t))
2 + λM

∑
j

(lj(t)− L)2 (4.23)

• Indices i and j sum over all cells and walls respectively.

• λA defines a cell’s resistance to area expansion and compression.

• λM defines resistance of the cell walls to elongation and compression.

• Ai(t) is the resting area at time t of cell i, which is defined as an area at which the

intracellular turgor pressure is balanced by ambient pressure.

• L is the resting length of a wall element, and is defined as the length it would attain in

absence of turgor pressure.

• ai(t) and lj(t) are the area of cell i and length of wall element j at time t.

Over the course of a simulation, the aforementioned algorithm results in fluctuations around

the optimal energy configuration, which leads to non-unique energy minimizations paths. In

other words, different instances of the same simulation do not produce identical outputs (Fig

4-5)further details of VirtualLeaf assumptions and algorithms we refer to the original publication

of the software [9]. Model components are comprised of cytoplasm and cell wall.

All molecules in the model are only present in the cellular compartment itself; except for PIN

proteins, which can be present in both cytoplasm and membrane (represented in the model by the

cell wall). Since our model aims to investigate mechanisms of pattern formation and hormonal
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Figure 4-5: Fig. S8. Stochasticity in VirtualLeaf simulations. Due to the stochasticity of VirtualLeaf
simulations, repeated simulations using the same setting and parameters do not produce identical outputs.
Depicted are 8 independent simulations with identical parameters given in table S4, in which auxin
signaling is shown in green (left panels) and CK signaling in red (right panels).

responses, we do not impose strict limits regarding the number of cells (18-60) in the model

output. Simulations of mutants (Fig 4-10G,K and Fig 4-10H,L) and TMO5/LHW overexpression

(Fig 4-13A,B), are run for the corresponding time-span of the wild-type simulation (Fig. 4-

4F,J).
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4.5.1 Simulation timescale

VirtualLeaf modeling platform assumes that mechanical equilibration of the growing tissue

occurs much faster than the changes in protein and hormone concentrations. This separation

of time scales is exploited in the simulation algorithm. One simulation step consists of three

parts:

i The resting areas of the individual cells are incremented according to:

Ai(t+∆t) = Ai + α∆t (4.24)

where ∆t is the time for one simulation step and α is the cell growth rate.

ii Mechanical equilibration is achieved; according to the above mentioned time scale

separation this is considered to be instantaneous.

iii The reaction network is integrated from t to t + ∆t, which completes the simulation

step (Fig. 4-6). We assume that, by default, cells divide once they double their area.

During this time, the average division rate of cells is approximately 130 hours. This gives

us: α = µm2 h−1. In our simulations we use ∆t = 10 min. Note that α∆t and ∆t

correspond to the parameters cell_expansion_rate and rd_dt in VirtualLeaf, respectively.

4.5.2 Simulation termination criteria

Simulations of the wild-type are terminated and the output is recorded when the source cells

have divided at least once and there are at least 18 cells in the vascular bundle. This is justified

by the observation that in wild-type, the protoxylem cells are at least two cells apart at the end of

embryogenesis [139]. If the source cells remain undivided wild-type simulations are terminated

once the cell number exceeds 60. This allows for a larger variation of the cell number in the

model output compared to wild-type late heart stage embryo.
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Figure 4-6: Overview of a VirtualLeaf simulation step. Mechanical equilibration of the growing tissue
occurs much faster than the changes in protein and hormone concentrations. This is exploited in the
simulation algorithm as in one simulation step first the mechanical configuration is equilibrated, then the
reaction network is integrated and finally the target area of the cells are increased in order to mimic growth.

4.5.3 Model parameters

Model parameters were chosen from within biologically realistic ranges and manually curated

to reproduce experimental observations. The following parameter values have been used in

simulations of wild-type (Fig. 4-10F, J and Fig. 4-5).

4.5.4 Models parameters in mutant and over expression simulations

Mutation of MP gene was modeled by setting the parameter k1 to zero. For the wol mutant,

parameter k8 was set to zero. TMO/LHW-OX was modeled by adding a constant production of

CK (0.5µmol/(µm2min)) in every cell.

As mentioned, we specified two “source cells” that contain elevated auxin concentration as a

consequence of auxin transport from overlying tissues. During vascular tissue initiation, the

cotyledon primordia become specified, which generates PIN1 convergence points [140] and

hence local auxin sources in the cell layers overlying the vascular initials. As a consequence,
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Table 4.1: Parameters used for the simulation in the main text.

Parameter Value Description Unit
k1 0.038 auxin production µmol

µm2 min

k2 0.053 auxin degradation 1
min

k3 0.16 auxin membrane permeability µm
min

k4 0.45 auxin active transport µm2

µmol min

k5 1.0 half max. auxin concentration for active transport µmol
µm2

k6 0.01 cytosolic PIN production µmol
min

k7 0.10 PIN degradation 1
min

k8 6.0 auxin dependent CK production µmol
µm2 min

k9 2.51 half max. auxin concentration for CK production µmol
µm2

k10 0.498 CK degradation 1
min

k11 0.10 CK membrane permeability µm
min

k12 2.11 CK response activation 1
min

k13 2.5 half max. auxin concentration for response inhibition µmol
µm2

k14 0.12 CK response degradation 1
min

k15 5.0 PIN wall insertion rate µm3

min

k16 1.0 half max. PIN concentration for wall insertion µmol
µm2

k17 2.0 half max. auxin concentration for PIN wall insertion µmol
µm2

k18 271.18 CK inhibition strength of PIN wall insertion 1
k19 9.42 half max. CK concentration for inhibition of PIN wall insertion µmol

µm2

k20 0.30 PIN dissociation rate from the wall µm
min

k21 1.17 strength of CK suppression of the division threshold 1
k22 0.046 half max. Cr concentration for threshold suppression µmol

µm2

R 10 ratio of auxin production in source to non-source cells 1
m 5 Hill coefficient 1
n 5 Hill coefficient 1
p 4 Hill coefficient 1
q 5 Hill coefficient 1
λA 1 resistance of the cells to area expansion and compression 1

µm4

λM 100 resistance of the cell walls to elongation and compression 1
µm2

L 3 resting length of the cell walls µm

α 1/60 cell growth rate µm2

min

auxin is nonuniformly provided to the underlying vascular initials that are in closest proximity to

the cotyledon primordia (Fig. 4-8B-E). Indeed, 3D reconstructions showed that auxin-dependent

pTMO5 (Fig. 4-8, F to I), pDR5, and pLOG4 expression (Fig. 4-9A-B) was stronger in the two

vascular initials that subtend the cotyledon primordia, and cotyledon number has previously

been correlated with vascular tissue patterns [141].
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4.6 Model analysis

4.6.1 Early geometric constraints bias vascular patterning

We simulated this network (Fig. 4-8A) and monitored growth and patterning, where auxin

accumulation is a proxy for xylem identity and CK response reflects the cambial domain.

Because exact values are unknown for most parameters, we performed a survey to find parameter

sets for which the model generates a bisymmetric vascular bundle with a central high-auxin

domain (See model analysis and Fig. 4-14). All following model analysis is based on the

identified well-performing parameters sets.

Cellular connection bridge

We initially started from a stylized cross section of the embryonic root at early heart stage [122]

(Fig. 4-10A). However, this simple geometry did not lead to a continuous central xylem axis

flanked by cambial domains (Fig. 4-10A). Further exploration of the starting template indicated

that the initial geometry strongly biases final model output. Only a configuration in which

two of the four founder cells are connected by a small “bridge” (Fig. 4-10B) yielded stable

realistic patterns (Fig. 4-10, E and F, I and J). We found that the existence of a bridge is

required. Existence of a central cell wall between the two source cells coupled with growth

and division of cells in flanking regions, results in elongated geometry of these cells prior to

division. This ultimately leads to formation of the orientated division axis that in turn yields

the correct geometry required for formation of a xylem axis (Fig 4-10B). In case of a four-way

junction, due to the resulting overall symmetry, source cells attain a more symmetrical shape.

This however does not guarantee the formation of the appropriate division axis required for the

correct patterning (Fig. 4-10A). The scenario where the initial central wall was is shared by

non-source cells did not lead to correct patterning (Fig. 4-10C).
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Alteration of the bridge

We investigated whether the orientation of the connecting bridge has any effects on the growth

and patterning of the tissue. Experimentations with the angle of the bridge between the two

source cells reveal that any deviation from a vertical angle (perpendicular to the line passing

through the centers of source cells) would result in reversion to the vertical angle (Fig. 4-7A).

The Hamiltonian energy function as described earlier, maximizes the cell area while equalizing

the edge length. This results in regular polygons. Hence, the irregular geometry of source cells

resulting from deviation of the bridge from the vertical position is subsequently changed by

reversion of the bridge to a vertical position. Similarly, altering the length of the bridge in the

initial template does not affect the patterning capability of the model nor the length of the bridge

in model output (Fig. 4-7B-C).

Furthermore, blocking active and passive transport across the bridge, does not affect the

patterning ability of the model (Fig. 4-7D), indicating that the contribution of the bridge

towards patterning is primarily geometrical.

We next evaluated the presence of a cellular connection between source cells, and found this

geometry in nearly all embryos analyzed in 3D up to globular stage (21 out of 26; Fig. 4-10D

and Fig. 4-9C) and in all embryos at postglobular stages (11 out of 11; Fig. 4-10D and Fig.

4-9C). Tracing the origin of the bridge revealed that it is a consequence of division planes at

the two- to four-cell transition (Fig. 4-9C). Thus, this particular geometry in the center of the

embryo follows from the improbability of generating exact four-way junctions [142] during

earlier cell divisions, followed by cell expansion [123].

Intriguingly, the bridge needs to connect the source cells subtending the future cotyledon

primordia (Fig. 4-10, B and C), and hence receive increased auxin input (Fig. 4-8, F to I, and

Fig. S6, A and B). We therefore analyzed whether the bridge serves a function in intercellular

signaling. In our simulation, we blocked transport of auxin and CK across this bridge and found

that the model output remained unchanged (Fig. 4-7). We therefore conclude that the bridge
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Figure 4-7: Model simulations using various bridge configurations. Tilting (A), decreasing (B),
increasing (C) the bridge in the initial template, does not affect the patterning ability of the model. (D)
Blocking active and passive transport across the bridge does not alter the pattern potential of the model.

imposes a geometric constraint to cell division.

We next tested robustness of our model toward parameter variation by performing sensitivity

analysis (Supplementary Mathematical Modeling; Fig. 4-14). This showed that model perfor-

mance depended most strongly on parameters connected to CK biosynthesis, CK response, and

effect on PIN1 localization and cell division.

Finally, to validate this model, we determined whether it could recapitulate the developmental

consequences of reduced auxin response [monopteros (mp) mutant; parameter k1 set to 0] [143]

or reduced CK response (wol mutant, parameter k8 set to 0) [131]. In both cases, the model
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Figure 4-8: Connectivity of vascular initial cells. (A) Schematic representation of the identified genetic
network (left) in an early heart stage embryo, and simplified ordinary differential equations reflecting these
interactions in the model (right). (B to E) 3D reconstructed heart stage embryo showing the association
of the connected vascular initial cells to the forming cotyledons. (F to I) pTMO5-n3GFP expression at
different locations in the heart stage embryo relative to the location of the cotyledons. Scale bars, 10 µm.

correctly predicted the cellular pattern and hormonal responses (Fig. 4-10, G and K, H and L).

4.6.2 Network architecture during vascular tissue patterning

To understand how the genetic network is able to generate growth and patterning, we analyzed its

modules in more detail. The conceptualized version of this network contains two interconnected

incoherent feed-forward loop (IFFL) motifs (Fig. 4-11) [27]. IFFL-1 entails the opposing

effects of auxin and auxin-dependent CK on PIN levels, whereas IFFL-2 describes the effects of

auxin on CK biosynthesis and response. Although the temporal dynamics of IFFLs have been
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Figure 4-9: Two connected vascular founder cells have increased auxin-dependent expression. (A-
D) Expression of the pLOG4-n3GFP (A) and pDR5-n3GFP (B) reporter lines at different locations in the
he art stage embryo (as indicated by the dashed line)relative to the location of the cotyledons (asterisks).
(C) 3D segmentation of confocal stacks of successive stages of embryogenesis showing the connection
(‘bridge’) between two of the four provascular initial cells (arrows). The dotted line in the upper panel
represents the location of the cross section shown in the lower panel. Note that the bridge is more
pronounced at the apical part of the cell in the 4-cell stage, compared to the basal part and that the presence
of the bridge becomes clearer later in development. For example, the bridge was clear in all transition (6/6)
and heart stage (5/5) confocal stacks analyzed, while seen at lower percentage in earlier stages (e.g. 5 out
of 8 at 16-cell stage). Scale bars are 10 µm.

previously discussed [27], their spatial properties may be more relevant for correct patterning

in our model, given the intercellular signaling within a growing multicellular structure. In the

following section we analyze the individual contributions of these two IFFLs to spatiotemporal

tissue patterning by separating the two subnetworks. We demonstrate that IFFL-1 can generate

a high-auxin domain between the two source cells in the growing tissue (Fig. 4-11), but

fails to from a sharp bisymmetric pattern. IFFL-2, on the other hand, can generate sharp

boundaries between the high-auxin domain and the neighboring CK response domains (Fig.

4-11). Integration of both motifs thus generates stable and distinct hormonal response zones

within the growing vascular tissue. As such, the high-auxin domain in the xylem axis acts as an
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Figure 4-10: A growing model of vascular tissue formation. (A to C) Different initial geometries tested
in the model. Left: four-way junction; middle: connection between source cells (SC); right: connection
between non-source cells. Auxin signaling is shown in green, and PIN protein quantity at the membrane in
red. (D) 3D reconstructed globular stage embryo showing connection between two vascular founder cells.
(E to L) Model simulations using a realistic heart stage embryo template before (E and I) and after (F to
H and J to L) growth showing auxin signaling (green) (E to H) and CK signaling (red) (I to L) in a WT
situation (E and F, I and J), with reduced auxin signaling (representing mp: G and K) and with reduced CK
response (representing wol: H and L). Scale bars, 10 µm (D); those in (E) to (L) are relative to each other.

organizer for the entire vascular bundle.

4.6.3 Analysis of the IFFL motifs

IFFL-1

In order to explore the mathematical model we analyzed the patterning properties of the

two coupled IFFLs separately. First, we examined the properties of IFFL-1 (Fig. 4-11).
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Figure 4-11: The genetic network comprises two incoherent feed-forward loops. Overview of the
two connected IFFLs in the genetic network. IFFL-1 generates a high-auxin domain, whereas IFFL-2
creates sharp boundaries, as indicated by a discretized 1D model (along the white arrow) representing CK
concentration (dashed line) and CK response (in cambium, red bars) according to the distance from the
auxin domain (xylem axis, green bar).

Because growth and non-linear active transport are an integral ingredients of this motif,

analytical examination is challenging. We therefore performed numerical experiments in

order to investigate the behavior of the motif across the parameter space. The mathematical
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equations describing IFFL-1 read:

dAi

dt
= k1χi − k2Ai +

k3
ai

D̂Ai +
k4
ai

∑
j∈Ni

lij

(
PijAj

1 +
Aj

k5

− PjiAi

1 + Ai

k5

)
(4.25)

dPi

dt
= k6 − k7Pi +

∑
j∈Ni

lij
ai


k20Pij −

k15PiAj(
1+ Pi

k16

)(
1+

Aj

k17

)(
1+

k18

(
Ci
k19

)p

1+
(

Ci
k19

)p

)


(4.26)

dPij

dt
=

k15PiAj(
1 + Pi

k16

)(
1 +

Aj

k17

)(
1 +

k18

(
Ci
k19

)p

1+
(

Ci
k19

)p

) − k20Pij (4.27)

dCi

dt
= k8κi

(
Ai

k9

)m

1 +
(

Ai

k9

)m − k10Ci +
k11
ai

D̂Ci (4.28)

We simulated these equations on growing discrete domain using the same model settings as

for the main model. It is important to note that in the absence of Cr cells divide when they

doubled there size (see Eq. (4.22)). The prevailing property of this motif is to form connected

domains of high auxin concentration, given at least one source cell (cell with high basal auxin

content) exists. A typical pattern result of this motif is shown in Fig. 4-11 using the parameters

listed in table 4.1, besides: (k1 = 2.8, k2 = 0.25, k8 = 2, k10 = 0.5, k12 = 0.25, k14 = 0.25,

k18 = 40, k19 = 2.8, k21 = 1, k22 = 0.15). Cells with high auxin content will have also

high CK content, Eq. (4.28). It follows that inhibition of PIN insertion by CK, Eq. (4.27),

attenuates the positive feedback of auxin on the active transport from neighboring cells and

finally blocks active transport in cells with high auxin, Eq. (4.25). Due to this mechanism

neighboring cells with high auxin levels can coexist. In contrast, without CK inhibition this

configuration is unstable because small differences in auxin content between adjacent cells will

be amplified.

IFFL-2

Next we investigated the capability of the IFFL-2 motif in producing distinct domains of hor-

monal responses. To this end it is sufficient to implement the motif in a one-dimensional setting
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assuming a fixed level of auxin in the center of the domain. The spatial index n corresponds to

the direction perpendicular to the xylem axis. The equations are as follows:

dCi

dt
= k8Ai − k10Ci +

k11l

a
(Ci+1 + Ci−1 − 2Ci) (4.29)

dCr i
dt

=
k12Ci

1 +
(

Ai

k13

)n − k10Cr i (4.30)

We assumed that all cells have the same area and are connected with wall elements of the same

length, i.e., ai ≡ a and lij ≡ l. The auxin input profile reads:

Ai =

{
A0: i = 0
A1: |i| > 0

(4.31)

The steady state solution to this discrete set of equation, using the boundary conditions

limi→∞ Ci = 0 and Ci = C−i read:

Ci =

{
β(A0(1+2γ−γe−q)+2A1(γ+γ2(1−e−q)))

1+4γ−γe−q+2γ2(1−e−q) : i = 0

βA1 +
βγ(A0−A1)

1+4γ−γe−q+2γ2(1−e−q)e
−q(|i|−1): |i| > 0

Cr i =




βθA0

1+
(

A0
k13

)n

(1+2γ−γe−q)+2
A1
A0

(γ+γ2(1−e−q))

1+4γ−γe−q+2γ2(1−e−q) : i = 0

βθA0

1+
(

A1
k13

)n

[
A1

A0
+

γ(1−A1
A0

)

1+4γ−γe−q+2γ2(1−e−q)e
−q(|i|−1)

]
: |i| > 0

We defined the following parameters: β = k8

k10
, θ = k12

k14
, γ = k11l

k10a
, q = 2argsinh

[√
1
4γ

]
.

∂C

∂t
(y) = k8A(y)− k10C(y) +D

∂2C

∂y2
(y) (4.32)

∂Cr(y)

∂t
=

k12C(y)

1 +
(

A(y)
k13

)n − k14Cr(y) (4.33)

The auxin input profile reads:

A(y) =

{
1: y ≤ y0
0: y > y0

(4.34)

The steady-state solution using the boundary conditions ∂yC(y = 0) = 0 and limy→∞ C(y) =

0 are given by:

C(y) =

{
k18

k10

(
1− e−

y0
l cosh

(
y
l

))
: y ≤ y0
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The IFFL-2 motif produces a Cr concentration zone distinct from the auxin input (Fig. 4-11),

where it acts as an inverter of the input profile. The drop from cell i = 0 (auxin input zone) to

cell i = 1 is given by:

C1

C0
=

βA1(1 + 4γ − γe−q + 2γ2(1− e−q)) + βγ(A0 −A1)

β(A0(1 + 2γ − γe−q) + 2A1(γ + γ2(1− e−q)))

for which we find the limiting cases: limγ→0
C1

C0
= A1

A0
and limγ→∞

C1

C0
= 1. Experimental

observation show that the CK response does not extend very far from the central zone. The range

is the CK profile is given by q−1. It follows q � 1 (by this the CK profile does only significantly

extend to the cell layer next to the xylem axis). This means that 2 argsinh
[
1/
√
4γ

]
� 1 or

roughly γ � 1 due to the properties of argsinh. If we assume rectangular cells with an area

a = 400µm2 and l = 20µm, we find: 20µm � k11

k10
, which puts a constraint on the ratio of

the CK membrane permeability k11 and the CK degradation k10. We find this fulfilled for all

parameter sets �p ∈ ω1. E.g., for the parameters shown in table 4.1 we obtain: k11

k10
≈ 0.5µm,

which leads to q ≈ 4.6.

In IFFL-2 auxin promotes CK but inhibits CK response. The strength Ii of the inhibition at

point i can be defined as:

Ii = 1− Cr i
lim

k13→∞
Cr i

=

(
Ai

k13

)n

1 +
(

Ai

k13

)n

CK response should be inhibited inside the xylem axis, but not outside. For a steep response of

the inhibition to changes in auxin concentration the hill coefficient should be n ≥ 3. Further, for

the background production of auxin, Ai = A1 for |i| > 1, should be low. It follows that A1

k13
< 1

should hold. If we assume A0 ≈ Rk1

k2
and A1 ≈ k1

k2
we find that 1 > k1

k2k13
should hold, which

constrains the half max. auxin concentration for response inhibition k13. For the parameter set

given in table S4 we have k1

k2
= 0.72 and k13 = 2.5, i.e., A0

k13
≈ 2.9 and A1

k13
≈ 0.29.
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4.6.4 Reproduction of mutant and overexperssion phenotypes

In our model, the same genetic network runs in all cells, but spatial bias imposed by local

auxin sources is propagated to limit CK activation to TMO5/LHW-expressing xylem cells. To

determine if local CK activation is required for normal growth and patterning, we first simulated

the effects of uniform TMO5/LHW or LOG4 expression by increasing the CK activation rate in all

cells. This increased periclinal cell division and generated a large disorganized vascular bundle

lacking a central xylem axis (Fig. 4-13, A and B), resembling the TMO5/LHW-OX phenotype

[125]. We next tested the model prediction that local CK activation is important for vascular

development by complementing the log1234578 mutant with either local (pTMO5) or ubiquitous

(pRPS5A) LOG4 expression. pTMO5-driven LOG4 expression completely complemented the

log1234578 mutant phenotype, whereas in contrast, pRPS5A-driven LOG4 expression induced

supernumerary vascular cell files and loss of protoxylem differentiation (Fig. 4-13, C to F, and

Fig. B6). Hence, local LOG4 expression is sufficient for normal vascular development, and

limitation to this domain is required to constrain cell number and patterning.

If CK is indeed locally activated in the xylem axis and diffuses outward, a gradient of CK

response should be observed in procambium cells with maximal intensity close to the xylem

(Fig. 4-10J). We tested this prediction by analyzing reporters for CK response. Indeed, both

pTCSn-GFP and pARR5-nYFP markers displayed this gradient (Fig. 4-13, H to K) [124],

suggesting that our model accurately predicts CK activity in the growing vascular tissue.

4.7 Parameter exploration

4.7.1 Model evaluation

In order to evaluate the resulting simulation patterns one needs to define appropriate quantitative

measures. The correct patterning of the model can be assessed using the auxin concentration

distribution. A one-to-one comparison of auxin distributions would impose overly strict
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restrictions on the model behavior, because the focus of the model is the general pattering

behavior as opposed to exact reproduction of a specific pattern. Rather then comparing two-

dimensional patterns we extract essential features from the auxin concentration distribution,

which characterize the correct model output. Model analysis requires definition of a consistent

geometrical coordinate system. The two-dimensional geometrical outline of a cross section of a

wild-type vascular bundle during embryogenesis can be defined in reference to orientation of

the xylem axis. In order to define an appropriate Cartesian coordinate system, we follow the

below protocol:

1. Determine the direction of the x-axis by the direction of the line passing through the

centroids of the source-cells (Fig. 4-12A).

2. Look for the integration path with highest auxin concentration parallel to the direction

defined in 1 (Fig.4-12B).

3. The integration path with the highest auxin concentration defines the x-axis and the

mid-point of the line defined in step 1. projected to the x-axis defines the origin of the

coordinate system (Fig. 4-12C).

Using this coordinate system cellular auxin concentrations are mapped to a two-dimensional

auxin concentration field: Ai(�p) → A(x, y; �p), where �p is the parameter vector. The first feature

we extract from this two-dimensional concentration field is the marginalized and normalized

auxin profile in y-direction, given by:

Ā(y; �p) =

∫
Ω
A(x, y; �p)dx∥∥∫

Ω
A(x, y; �p)dx

∥∥ (4.37)

Due to higher auxin input of the source-cells in the model, higher auxin concentrations can form

along x-axis regardless of correct patterning. To address this bias the integration domain Ω is

limited to a rectangle that excludes the source cells (Fig. 4-12C). The marginalized auxin field

captures an essential feature of a correct pattern and can be easily compared to experimental

data.
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The second feature is the coefficient of variation η of the auxin concentration along the x-axis

between the two source-cells:

η(�p) =

√
1
L

∫
Ω
(A(x, 0; �p)− µ)

2
dx

µ
(4.38)

with L being the extension of the integration domain Ω (Fig. 4-12C) in x-direction at y = 0 and

µ is the average auxin concentration along this line, given by:

µ =
1

L

∫

Ω

A(x, 0; �p)dx (4.39)

This feature distinguishes a non-continuous xylem axis from a correct pattern (Fig. 4-14D,E).

For numerical integration, the extended trapezoidal rule is applied [144].

Reference auxin profile

A reference marginalized auxin concentrationĀexp(y) can be obtained from experimental

data by using GFP intensity as a proxy for auxin concentration in a cross-section of a 3D

confocal stack of a postembryonic pDR5-n3GFP root (Fig. 4-12). A reference marginalized

auxin concentration profile Āexp(y) can be obtained from experimental data by using GFP

intensity as a proxy for auxin concentration in a cross-section of a 3D confocal stack of a

post-embryonic pDR5-n3GFP root (Fig. 4-14). In the model, auxin concentration is a proxy

for auxin downstream signaling. Experimentally, auxin response reporter genes are used as

proxies for auxin signaling. Hence for model evaluations, we compare the pattern of auxin

concentration against the pDR5-n3GFP expression pattern. We estimated the width σiof the

marginalized auxin profile and the background level ci for each experimental curve individually

by solving:

min
σi,ci

‖g(σi, ci)− Āi
exp‖2 (4.40)

Here ‖ · ‖ denotes the L2 norm, Āi
exp the ith experimentally measured profile, and g is given by:

g(x;σ, c) = c+(2πσ2)−1/2e−x2/(2σ2). Using four experimental curves we found 〈σ〉 = 0.0745
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and 〈c〉 = 1.23. This resulted in the reference profile:

Āref(x) =
g(x; 〈σ〉, 〈c〉)

‖g‖
(4.41)

which we used in the cost function as described below.

Construction of the cost function

The simulated pattern was evaluated against two objectives:

1. the distance d of the marginalized auxin profile Ā, (Eq. 4.37), from the reference profile

Āref , Eq. (4.41):

d(�p) = ‖Ā(�p)− Āref‖ (4.42)

2. and the variation η along the x-axis at y = 0, given by Eq. (4.38).

We aggregate the two objectives into the cost function L used for the parameter sampling

process:

L(�p) =

(√
2d(�p)

d0

)2

+

(
η(�p)

η0

)2

(4.43)

where d0 denotes the distance of a flat, i.e., constant profile Ā(y) = const to the reference

profile. The cost function is constructed such that for (d2 = d20/2, η = 0), i.e. flat profile, as well

as for (d = 0, η = η0), i.e. perfect auxin profile with moderated variation in x-direction, L = 1

holds. We used (d0, η0) = (0.65, 0.4) in the sampling process. Due to the inherent stochasticity

of the Monte-Carlo simulations, the score L(�p) for parameter vector �p is a stochastic value. We

therefore average the score 〈L(�p)〉 over 200 simulations with identical initial conditions and

parameters. The estimated standard error of the sample mean calculated by bootstrapping [144]

was 0.0058 for 200 runs of the parameters described above.
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Parameter sampling

In order to explore the global behavior of the model, we performed a qualitative parameter

scan. We centered around an initial parameter set �p1 with 〈L(�p1)〉 < 1 a hypercube Ω on the

logarithmic scale, where we extended each parameter one order of magnitude in each direction:

Ω = Πj [p
j
1/10, 10p

j
1]. Out of this subspace we randomly selected N = 106 parameter sets

using Latin Hypercube Sampling [145]. For each of these sets or vectors �p ∈ {�p1, . . . , �pN},

we calculated the averaged score 〈L(�p)〉as described above. The subset defined by ω1 = {�p ∈

{�p1, . . . , �pN}|〈L(�p)〉 < 1} gives those parameter sets for which the model produces a good

pattern. Out of N = 106 tested we found M = 25 good parameter sets, i.e., #ω1 = 25.

Sensitivity Analysis

Sensitivity was calculated as described in chapter 3:

Sj
i =

pji
〈L(�pi)〉

∣∣∣∣∣
〈L(p1i , . . . , p

j−1
i , pji + δ, pj+1

i , . . . )〉 − 〈L(�pi)〉
δ

∣∣∣∣∣ (4.44)

where 〈·〉 denotes averaging over 200 simulations. From the set of Sj
i we calculated the quartiles

as shown in the box-plot Fig. 4-14A.

4.7.2 Discussion

For decades, classical tissue culture experiments have been used to study the interaction between

auxin and CK during tissue growth [146]. These phytohormones were suggested to act in

a mutual inhibitory fashion in vascular tissue patterning [125, 130]. Here, we identified an

interaction in which auxin promotes local CK activity in a manner central to both growth and

patterning.

In parallel to promoting CK biosynthesis through TMO5/LHW as shown here, auxin was

previously revealed to suppress CK response in the xylem [101]. Hence, auxin triggers the
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formation of a nonresponding CK source. Modeling showed that this network, representing an

IFFL, could account for generating a sharp boundary between high-auxin and high-CK domains.

Furthermore, provided that auxin-dependent CK response suppression is cell-autonomous, CK

diffusion will displace the domain of response to neighboring cells. An important question is

what the nature of CK response inhibition is. Auxin activates expression of the CK response

inhibitor AHP6 [124], but mutant phenotypes suggest that parallel or redundant functions must

exist [101]. A recent study proposed local activity of a CK oxidase in xylem cells as a potential

redundant mechanism [9]. However, it is questionable if local catabolism is compatible with

the xylem acting as a CK source. The presence of a CK response gradient with the highest

levels close to the xylem axis [9, 125] also renders regulation at the level of catabolism unlikely.

Thus, inhibition likely acts at the level of CK response, and it will be important to identify its

mediators.

Our simulations also revealed a surprising contribution of initial geometry to vascular tissue

patterning. The bridge that connects the two auxin-accumulating vascular founder cells can

be traced to the second round of divisions of the apical cell in the embryo. In addition, we

have previously shown that the orientation of the first division is biased relative to the axes of

the seed [123]. Thus, symmetry breaking in the vascular tissue could occur much earlier than

previously thought. Likewise, lineages that generate the two cotyledons, the likely sources of

auxin for vascular initiation [124, 147], can also be traced to these very early divisions [148].

Hence, both the geometric constraints and the signaling input that promote vascular tissue

patterning are biased by the same cues. Whereas these findings show a clear correlation

between geometry and pattern, it will be challenging to test causality because cell arrangements

cannot easily be manipulated. Another critical question emerging from this is whether vascular

tissue development in other plant species and during postembryonic organogenesis is similarly

influenced by tissue geometry.

In conclusion, here we have identified a genetic network that reinfoerces an early developmental

bias in auxin distribution to create a local, nonresponding source of CK, which drives growth
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and patterning of the embryonic vascular tissues.
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Figure 4-12: Overview of the model evaluation algorithm. Model output is evaluated against two
objective. First the central axis of is determine using the line that connected the two centroids of the
source cells (A-B). The first objective is calculated by comparing the marginalized auxin profile against a
reference profile obtained from experimental data (C). The second objective measures variation along the
central axis (D). The latter objective distinguishes a non-continuous axis from the experimentally observed
continuous pattern (E).
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Figure 4-14: Model sensitivity. (A) Box-plot representation of the parameter sensitivities Sj
i on a

logarithmic scale. Parameters related to CK signaling are most sensitive (k8, k12, k18, m, n, p, q). An
exception is k15 which controls the auxin dependent PIN insertion into the membrane. (B) Scatter plot
showing the values of the objectives used in the cost function 〈L(�p)〉 for all 25 parameter sets �p ∈ ω1.
The gray shaded region denotes the region for which L ≤ 1 holds. The red dashed line depicts the path
resulting from altering the value of k18 for the parameter set given in table S4 (I= 1.5k18, II= k18,
III= 0.1k18, IV= 0.05k18). (C) Typical model output corresponding to the points along the path shown in
(B).
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5.1 Introduction

Over the last few years there has been considerable insight into the molecular mechanisms

controlling the specification of root vascular pattern. In Arabidopsis embryos, the vascular

cylinder forms from a group of four provascular initial cells [71] (Fig. 5.1). As the embryo

develops, these provascular initials proliferate through a sequence of highly regulated cell

divisions to produce a vascular cylinder of approximately 40 cells by the time the seed germinates.

In addition to cell proliferation, cell specification is critical to establish the xylem and phloem

cell lineages. These tissues go on to form the main conduit for long-distance transport of water,

nutrients and signaling molecules within the plant. As the xylem and phloem initials differentiate

a bisymmetric pattern becomes apparent, and this is defined by a central axis of xylem cells

flanked by two domains of pluripotent procambial cells and two phloem poles.

Experimental studies have shown that the two hormones, auxin and CK, are essential in

mediating both the cell proliferation and specification processes. The auxin response factor

MONOPTEROS (MP/ARF5) is a central regulator of vascular formation, and mutants lacking

this gene show defects in the formative divisions that create the vascular cylinder [143].

Amongst other targets, MP promotes the expression of a basic helix-loop-helix transcription

factor, TARGET OF MOPOTEROS 5 (TMO5) [128]. Together with its homologues, TMO5

forms heterodimers with the LONESOME HIGHWAY (LHW) group of helix-loop-helix

transcription factors to determines the frequency and orientation of cell divisions within the

vascular cylinder [124, 149].

Auxin and CK also play a crucial role in regulating patterning, and the bisymmetric vascular

pattern is the outcome of an initial bisymmetry in the signaling domains of these two hormones.

Auxin response is highest in a central line of cells that will go on to become the xylem axis, while

signaling peaks in the two domains flanking this axis [101, 123](Fig. 5.1B). Mutants severely

impaired in either auxin or CK response lack bisymmetry and display a radially symmetric

vascular pattern [101, 123].
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These distinct boundaries in the domains of hormonal signaling are maintained by two key

interactions. High auxin response directly promotes transcription of the CK inhibitor ARA-

BIDOPSIS HISTINE PHOSPHOTRANSFERASE 6 (AHP6) [123]. In contrast, CK signaling

modulates the activity of a group of auxin transfer proteins known as PINFORMED proteins

(PINs) [123, 150, 151]. Although the molecular mechanisms governing the control of PINs by

CK are not completely understood. CK indirectly regulates PIN7 transcription and modulates

the subcellular localization of PIN1 [123, 136, 152].

A second patterning process controls the disposition of the two cell types which make up the

xylem axis. Protoxylem forms first at the marginal positions of the axis. It is characterized by

the helical deposition of lignin that allows the cells to elongate as the root grows. Once the

cells have completed elongation, larger metaxylem cells with a pitted secondary wall structure

form in the center of the axis. This patterning of the axis is controlled by an additional group

of transcription factors. The transcription factor SHORT ROOT (SHR) is expressed within the

stele and moves to the endodermis where it forms a complex with SCARECROW [153]. The

SHR:SCR complex induces the expression of microRNA165/6 which moves into the vascular

cylinder and targets the class III HD-ZIP transcription factors, including PHABULOSA (PHB)

for degradation [117]. Collectively, these HD-ZIP genes determine proto versus metaxylem

identity in a dose dependent manner, but they also interfere with the hormonal patterning

mechanism by restricting AHP6 expression [117].

5.2 Why model biological systems?

Molecular research has traditionally focused on individual gene products. However, these

products often undergo a complex series of interactions, often in non-linear pathways with

multiple feedbacks occurring at both the cellular and tissue scales. Mathematical modeling

provides a framework to formalize these interactions and understand how they can generate

pattern in both time and space. Whilst mathematical models can serve to “document” molecular
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processes and testing the plausibility of interactive networks by recapitulating observed patterns

of expression, they have a more powerful role in challenging experimental assumptions and

identifying gaps in our knowledge to direct future theoretical and experimental work.

5.3 Previous models of hormone action in the root tip

There have been models of auxin transport for several decades [50] but only more recently has

auxin transport been considered in multicellular models at the organ scale. In order to explore

the transport dynamics of auxin within the root, a number of independent models of auxin

transport have been generated. These both are both based on a structured grids of rectangular

cells [154–156]. But differ in the amount of positional information included. In Grieneisen et al.,

2007 the first, multiple auxin transporter types are placed within the cells based on experimental

observations of multiple PINs [155], whilst in Mironova et al., 2010, a single PIN type is

modeled with its synthesis and degradation controlled by auxin (Mironova et al., 2010). Both

these models are able to correctly generate an auxin maximum at the root quiescent center.

More recent auxin transport models have used realistic root geometries [157] and have used

new sensor lines [158] to incorporate a more detailed understanding of where auxin is localized

within the root. In the mature root, while PIN levels change in response to perturbations, PIN

polarity seems to be fixed, therefore most models of auxin action in the root are not concerned

with formation and regulation of PIN polarity. These studies have shown that, in addition to the

PIN proteins controlling auxin efflux, a group of auxin importers (AUX/LAX) is also required

to recreate the pattern of auxin seen at the root tip. In general these models have all focused

on the longitudinal flow of auxin; whilst there have been some models considering the radial

flow of auxin in outer tissues [154, 159] these have not studied radial auxin flow through the

vascular tissues. There have also been models which consider the crosstalk between auxin and

CK, initially within the context of a single cell, but later in a one-dimensional line of cells. There
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have been several models that have combined auxin and CK signaling networks within a single

cell [160, 161].

Figure 4-15: Schematic diagram showing cross sections taken through an embryo (left) and mature root
(right) showing how four provascular initial cells (labeled with asterisks) give rise to a fully patterned
vascular cylinder. Cells with high auxin response are shown in yellow and cells with high CK response, in
red. The epidermis is shown in blue and the ground tissue in green. Note the “bridge” in the embryonic
cross section between the two cells with high auxin response. It is necessary for these cells to have a shared
cell wall for simulations to produce a correctly patterned xylem axis. Image reproduced with permission
from (Mellor and Bishopp, 2014).

5.4 Modeling Root Vascular Patterning

In the last two years, there have been three independent publications modeling root vascular

patterning in Arabidopsis. At first glance these models might seem redundant, but each model

asks different questions and provides novel insights into the system. In this review, we explore

the commonalities between these models as well as investigating their differences. We also

run new simulations to test whether findings of specific models are supported by the different

modeling approaches. Finally, we discuss specific areas where there is as yet no clear consensus
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and highlight areas where future experimental programs may provide new insights.

The first of the three publications considered here, by [134], uses both a two-cell template and a

multicellular geometry to identify a minimal gene regulatory network involved in establishing

and maintaining vascular pattern. The second, by [72], builds upon this patterning mechanism to

explore how root vascular pattern is established and develops during embryogenesis. Importantly,

it considers both cell growth and division and provides new data showing how auxin and CK

interact. The final publication, by [162], focuses on auxin transport in a spatially realistic model

incorporating hormonal regulation of the auxin transporters. Hereafter, the three models are

referred to as the Minimal Framework model [134], the Growing Root model [72] and the Auxin

Flux model [162]. A summary of the network configurations in the different models is given in

Fig. 5.2.

Figure 4-16: Schematic diagrams showing the network configurations of the three vascular patterning
models. These have been re-arranged from the original figures to aid comparison between models.
Activation or repression is shown with solid lines. Dashed lines indicate transport of auxin into and out
of the cell, with the arrowhead indicating whether it promotes or inhibits auxin accumulation within that
cell. The long dashed lines indicate a mechanisms by which PIN proteins are polarized within a cell in a
manner dependent on the concentration of auxin within neighboring cells (see text). Although only 2 cells
are shown, these models are all embedded within multicellular templates.
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5.5 Model construction

Mathematical models will always be an abstraction of complex biological systems. There is

never a clear answer as to how detailed to make them, and different teams will always take

different approaches regarding how much information to include, depending on the question

being addressed. A summary of the different network configurations is given in Fig. 5.2. The

Minimal Framework model seeks to understand the interaction between molecular components

and how these interact as a network to control pattern. To this end it includes each key class

of molecule modeled explicitly. This has the advantage of providing greater insight into the

molecular circuitry, and indeed this model has led to new insights into the patterning of AHP6

by a PHB-miR165/6 module that has not been considered in the other models.

In contrast, the Auxin Flux model addresses a different question, asking how the hormonal

activation of auxin transport is regulated in a spatial context. In terms of spatial structure

this is the most comprehensive of the three models as it offers the most detail in terms of

compartmentalization of cells, by considering the apoplast as a separate compartment. In

contrast the molecular network in this model is designed using the most conservative approach

of making the most parsimonious model of vascular development possible. Essentially, the

model uses as few molecular components as possible whilst maintaining the ability to address

the biological question. In this model, no distinction is made between hormone levels and

hormone signaling output. Some key components such as AHP6 are not modeled as discrete

components; instead, AHP6 is handled via a generic repression of CK in response to auxin.

The Growing Root model asks how hormones control tissue development and as such it is

essential to use a growing template to investigate both the effects both on cell growth/proliferation

and also on cell patterning. Since a new role for auxin-mediated CK biosynthesis is an essential

finding of this paper, and the authors investigate this by separately modeling CK levels and CK

response separately, enabling the two processes to be differentiated. However, they take a more

parsimonious approach to some elements of their model where modeling would be unlikely to
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provide critical insights, applying a generic repression of CK signaling by auxin (similar to the

Auxin Flux model) and simplifying chains of interaction.

The three models used different modeling platforms: the Minimal Framework model was built

using OpenAlea [163], the Growing Root model used Virtual Leaf [9], and the Auxin Flux

model was a Cellular Potts based models. The first two approaches are the most similar as

they are both vertex-based. Geometrically, such models are comprised of polygons, with each

polygon representing a distinct cell; a set of Ordinary Differential Equations (ODEs) determines

the molecular processes occurring within each cell, and components can move between cells

based on a set of terms in the ODEs governing the permeability across membranes or cell

vertices. Cellular Potts models differ in that cells are comprised of a number of pixels or voxels

arranged in a grid and thus have internal space; in addition, the apoplast is explicitly included

in the model. Whilst the vertex-based approaches simulate movement of molecules purely as

permeability across a membranes. In contrast, the Cellular Potts-based model, also allows the

the investigation of diffusion within a cell and in the apoplast. Simulating the diffusion within

cells has previously been shown to be important in templates with larger cells, such as those

considering root bending or lateral root initiation [164]. In general vertex-based and Cellular

Potts models have similar capabilities in a static setting, the major differences emerge when they

are used to model cellular growth. This discussion is not within the scope of this paper and is

covered in detail elsewhere [165, 166].

5.6 A Minimal Molecular Framework for Vascular Patterning

The Minimal Framework model [134] investigated the feasibility of an auxin-CK mechanism

as a control of tissue specific patterning, first in a two-cell system but later in a multicellular

template. The two-cell system was based on a pair of identical cells with a shared interface

through which auxin and CK could diffuse or, in the case of auxin, be transported through polar

auxin transport. Within each cell a series of equations calculated how the various components
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(auxin, CK, AHP6, PIN7) interacted to determine the steady state solutions for each cell. For

simulations run with extremely high/low levels of either auxin/CK only one possible steady-

state solution existed, in which both cells would have similar outputs. For example, extremely

high auxin levels resulted in both cells expressing high levels of AHP6 and having negligible CK

response. However, for a large subset of intermediate conditions, multiple steady state solutions

existed in which one cell had high AHP6 and the other cell high PIN7. The presence of multiple

steady state solutions suggest that the system can act in a ‘switch like’ manner to determine

discrete domains of gene activity, and reinforces the concept that the auxin-CK interaction can

act as a patterning mechanism. However, this two-cell approach does not address how these

patterns could look in a realistic tissue.

To introduce this model into a multicellular template, a series of simulations were run in which

the expression/localization of PINs were fixed based on experimental observations and were not

regulated by the model in order to explore genetic redundancy between the PINs. In an effort to

simplify an otherwise complex network, later included only a single PIN type whose activity

was based upon that of PIN7. During this work, the authors assumed a flat field of both CK

and auxin production, although subsequent work has shown this not to be the case. In order

to direct pattern formation, an initial asymmetry was required; this was supplied through an

initial pre-pattern in PIN7 expression. An experimentally defined network of auxin and CK

regulation, including the regulation of AHP6 by PHB [117], was not sufficient to recreate the

stable domains of gene expression as seen in roots. However, the authors were able to stably

reproduce the observed patterns of gene expression by making two changes to this network

configuration. The first involved altering the way in which PHB and microRNA165/6 interact.

The introduction of a mutual degradation between these two components was required in order

to produce stable gradients that could restrict AHP6 sufficiently restrict AHP6 to the marginal

positions. The second change involved the incorporation of an additional, as yet unidentified,

inhibitor of CK (termed CKIN). This was required alongside AHP6 to restrict CK response, and

therefore PIN7, in the central parts of the xylem axis. At the time, the authors proposed that
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this component could target either CK biosynthesis or signaling; however, subsequent studies

suggest that the former is unlikely.

The revised network could reproduce a stable vascular pattern, but it required an initial

asymmetry in PIN7. To test the robustness of this system, the output from a previous simulation

was used as a set of initial conditions that closely resembled the pattern of gene expression seen

in wild-type roots. Simulations were then run to steady state in a system in which every cell had

the potential to express PIN7. These simulations revealed that the initial vascular pattern was

maintained, suggesting that the network provides a robust mechanism for maintaining pattern

around an initial asymmetry, even though it does not generate the initial asymmetry, or address

its possible causes.

5.7 Early events specifying the xylem axis

This question was addressed in the Growing Root model [72] by investigating how the xylem

axis was specified during embryogenesis. The model incorporated both growth and patterning

within a dynamic array of cells. This study identified a crucial new interaction through which

auxin promotes the transcription of the LONELY GUY 4 (LOG4) gene via the TMO5/LHW

dimer (De Rybel et al., 2014). LOG4 is a crucial enzyme involved in the final stages of the CK

biosynthesis pathway and is believed to be the rate-limiting step during CK homeostasis [125].

LOG4 is expressed in all four of the vascular initials, but in the growing root it is expressed

throughout the xylem axis, suggesting that the xylem axis acts as a source of CK [72]. Although

this model regulates both growth and patterning, it is likely that it achieves these activities via

two independent CK responses. In this model CK signaling promotes periclinal cell division.

PIN localization is regulated via CK directly, in what the model assumes to be an independent

CK response pathway. The PIN dynamics differ from those used in the Minimal Framework and

Auxin Flux models; CK mediates the inhibition of PIN1 localization [136] rather than inducing

expression of PIN7. Furthermore, PIN1 is also polarized in response to auxin gradients, as
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has been done in some other models [51]. In this model, xylem cells are capable of producing

CK via TMO5/LHW via TMO5/LHW dependent activation of LOG4. As a result of mutual

interaction between cell growth and the reaction network, the production of CK is constrained

to the developing xylem axis in model simulations. As a result of high auxin levels in the xylem

axis, CK signaling is inhibited in these cells, which results in suppression of periclinal cell

division.

The model itself comprised a combination of two interconnected feed-forward loops that

controlled both growth and patterning. The first feed-forward loop considered CK rather

than CK response to control PIN regulation and cell growth. The second feed-forward loop

incorporated the interaction between auxin and CK response to control periclinal cell divisions.

When applied to a template consisting of four provascular initial cells these interconnected

loops were sufficient to recapitulate both the growth and patterning processes necessary to

create an axis of high auxin response in a growing template. However, this required two

additional inputs within the initial four-cell template. The first was a bias in which auxin was

elevated in two source cells representing the convergence points of the cotyledons. Second

the two source cells had to be connected by a small bridge (see Fig. 5.1), an assumption that

subsequent experimental analyses have shown to be valid. Not only can these simulations

recreate experimental observations based on limited prior information, but the simulations also

showed gradients in both CK and CK response, with the highest CK response in the cells

adjacent to the xylem axis. Whilst some of our CK markers are not sensitive enough to reflect

this gradient, re-analysis of others has shown such a gradient.

5.8 A parsimonious model of auxin fluxes

The Auxin Flux model [162] delves much deeper into the concentration and flux patterns of

auxin. Whilst the previous models only considered a single PIN protein, this model included

PIN1, 3 and 7 with a combined role for PIN2 and the PGPs. It also incorporated a generic
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auxin importer to account for AUX1, LAX1 and LAX2. The Auxin Flux model incorporates

CK-mediated upregulation of PIN7 in a similar way to the Minimal Framework model. However,

the role of AHP6 is simplified in this model; instead of explicitly modeling AHP6, the linear

chain between auxin, AHP6, and repression of CK-mediated PIN activation is simplified to a

generic repression of PIN7 and PIN1 by auxin.

Using a series of so called “static simulations”, in which the auxin transporters were localized

as observed experimentally but were not regulated by the hormone, the model was able to

recreate patterns of auxin response similar to those seen experimentally in wild-type roots.

However, static simulations run in the woodenleg(wol) mutant [130], which almost completely

lacks CK signaling response, did not recreate the auxin response patterns observed patterns in

mutant plants; hormonal regulation of transporters in “dynamic simulations” was required to

recapitulate the correct pattern. Further analysis revealed that the difference between the static

and dynamic simulations resulted from differences in the diffusion of auxin through the apoplast.

The authors also simulated the outcome of a mutation in the auxin importers. While auxin still

accumulated in the xylem axis in these mutations, the concentration was much lower. This led

the authors to suggest that xylem specification might be unstable in plants with impaired auxin

transport, a finding they confirmed experimentally, as aux1 lax1 lax2 triple mutant plants were

found to have unstable pattern formation.

Although the Auxin Flux Flux model focused on vascular patterning in the root tip, it provided

unexpected insights into the process of lateral root priming. Lateral roots originate from the

pericycle cells flanking the xylem poles [167]. In the model, certain subcellular arrangements

of PIN1 generate an Auxin Flux circuit that not only allows the xylem pole pericycle cells to

accumulate auxin at the expense of the xylem axis, but also allows the two poles to compete

against each other for auxin. While this dynamic provides a potential mechanism to prime

lateral roots, future work is needed to experimentally assess the subcellular status of PIN1 and

to evaluate the Auxin Flux circuit in simulations of a growing, three-dimensional root.

What initial conditions are required to set vascular pattern? All three models require an
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initial asymmetry in order to establish the vascular pattern, but each addressed the asymmetry

differently. In both the Minimal Framework and Auxin Flux models, an initial asymmetry was

required to generate the vascular pattern, which was provided from an initial pre-placement

of PINs. Furthermore, in the case of the Minimal Framework model, this initial asymmetry

is required only required transiently; once established the system is able to maintain a stable

pattern, even after the asymmetry is removed. The Growing Root model, in contrast, uses a

persistent asymmetry in auxin input to drive pattern formation. Two of the four vascular cells

continuously receive continuously higher auxin input than other cells in the vascular bundle,

based on the observation that symmetry breakage first occurs in the apical part of the embryo

and leads to an asymmetric production and transport of auxin at the incipient cotyledon, as cells

immediately subtending the cotyledons have been shown to have higher auxin response [72],

whilst mutants with altered numbers of cotyledons have been shown to generate roots with

irregular numbers of xylem poles [141]. A key question, which we now investigate with a new

set of simulations, is whether a transient auxin input can be used to drive patterning in the

Minimal Framework model.

To test this, we reran the minimal Minimal Framework Framework model using the original

parameters and allowing each component (including PIN7) to be expressed in any cell, but with

an initial condition of high auxin at both protoxylem cells and all four xylem- pole pericycle

cells, where high AHP6 expression has been observed. The production rate of auxin is uniform

throughout the tissue. We made one additional change to the model. In the original model we

had a hypothetical component termed ’CKIN’ that acted redundantly to AHP6 to inhibit CK in

the metaxylem. We changed this from a repressor of CK levels to a repressor of CK response

in keeping with the subsequent discovery of the xylem as a source of CK. With these changes,

the resulting steady state pattern of AHP6 expression closely resembles the initial conditions

with only a minor shift in the position of the xylem axis (Fig 5.3). These simulations support the

idea that an asymmetry in auxin drives pattern formation in the root but suggest that such an

asymmetry is required only transiently. Whilst in the embryo and primary root of Arabidopsis a
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the continuous transport of auxin from the cotyledons/pre-existing vascular is likely to provide

a continuous asymmetry in auxin input as incorporated within the Growing root Root model,

this is not necessarily the case in newly formed roots (such as lateral or crown roots) or during

pattern specification in other plant species with three or more vascular poles. To investigate

the importance of a continuous asymmetric auxin input for functionality of the growing root

model, we ran model simulations using a transient asymmetric auxin input; the model does not

produce the correct pattern of auxin and CK. However when run in a static template (Fig. 5.4B),

the same simulation produces the correct CK and auxin patterns. The results from the growing

model suggests that continuous asymmetric auxin input is necessary during establishment of

vasculature, while this input is not required in later stage and in mature root to maintain auxin

and CK signaling domains. We feel that the observation that transient changes in auxin can be

propagated as stable changes in vascular pattern will allow future models to address this process

in other species.

5.9 The xylem axis as a source of CK

Although there are multiple markers for observing CK response at a cellular/tissue scale, there

are no methods for imaging the location of CK itself at this resolution. Although the Minimal

Framework and Auxin Flux models could produce stable patterning with a homogenous field

of CK production in each cell, experimental results published with the Growing Root model

showed that the xylem provides the major source of CK. One output of the Growing Root model

is that by driving CK synthesis in the xylem axis only in the xylem axis, it is possible to create a

gradient of CK across the vascular tissues. Does such a gradient exist in plants and is it required

for patterning? Analyses of independent CK responsive marker genes suggest that a gradient in

CK response does occur, but the current technology does not allow us to know whether this is

mirrored by a gradient in CK itself. The presence of a CK gradient in these tissues is a question

where there are different viewpoints between the authors.
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Figure 4-17: Initial conditions (A) and steady state values (B) of a simulation using the Minimal
Framework model with the previously published parameter values. Rather than pre-patterning via PIN7
localisation as in Muraro et. al. 2014, the model is primed by having high auxin in the protoxylem and
xylem pole pericycle as an initial condition, after which the production rate of auxin is equal in all cells.
The model is able to pattern two poles of AHP6 either end of the xylem axis, with only a small change to
the initial pattern provided. Colour ranges show arbitrary nondimensional values.

The Growing Root model investigates both cell division and patterning through regulation of the

PINs. Although CK regulates both of these processes it is likely that it does so using different

downstream regulatory components; CK-mediated patterning and cell proliferation are therefore

handled separately in the model. As little is known about the mechanism through which CK

regulates PIN1, this was modeled as a direct interaction between CK and PIN1 based on data

from lateral root organogenesis [136]. This simplification was introduced in order to reduce

unnecessary parameters, although subsequently it has since been shown that this interaction

is dependent on CK signaling rather than being a direct activity modulated by the hormone

itself [136]. Within the Growing Root model, a gradient of CK promotes increased polarization

of PINs away from the xylem axis is instructive in polarizing the PINs. Here we test whether a

gradient of CK is an absolute requirement for this model.

By running simulations in the Growing Root model with increased CK diffusion, we were able
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to observe that the correct output can be achieved with much shallower gradients than were

previously published. In the most extreme simulations CK diffusion could be increased up to

40x-fold with levels and maintain correct patterning (Fig. 5.4A). Nevertheless to specify pattern

correctly there is a requirement for CK levels to be higher in the xylem than in adjacent cambial

cells. The idea that only a shallow gradient of CK is required is appealing as, although the

majority of LOG activity is within the xylem axis [72], other sources of CK are likely to exist.

In reality multiple modes of CK-mediated PIN activity likely co-exist in plants and further

experimental analyses documenting the exact interaction between CK and individual PINs

is needed. Collectively these simulations show that a shallow gradient of CK is required in

simulations incorporating PIN1-like regulation, as this appears to be the most important PIN

during embryonic root formation [137], it is possible that there are different requirements for

CK gradients during the formation of embryonic and mature roots. These studies highlight the

need for detailed analyses analyzing exactly how each PIN responds to CK in specific tissue

types. Whilst this is feasible for the growing root, it provides a significant technical challenge to

investigating this process during embryogenesis.

A gradient of any molecule within across a multicellular tissue is possible providing it is

synthesized (either exclusively or at higher levels) in a group of source cells and that the

molecule must moves between cells (e.g. via diffusion). The slope of the gradient results

exclusively from the balance between the rates of diffusion and degradation. A molecule

that diffuses very quickly or degrades very slowly will form a shallow gradient or become

homogenously distributed throughout the tissue; a slower rate of diffusion or quicker rate of

degradation will form a steeper gradient. The identification of the xylem axis as a key source for

CK provides a group of source cells, but what kind of gradient forms around this source?

The identification of the xylem as a key source for CK production clearly meets the first

criterion, but how about the second and third criteria? This depends on two critical parameters,

CK diffusion and CK degradation. Unfortunately as we are unable to visualize individual

molecules, the degradation rate and diffusion coefficient of CK are both unknown. In the Auxin
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Figure 4-18: (A) Output of a Simulation using the growing model where CK localization on cell wall is
upregulated via CK signaling. The correct patterns of auxin and CK signaling is obtained, while CK forms
a homogeneous gradient throughout the cellular template. Parameters used in this simulation are listed in
supplementary information. (B) Results of a simulation of the growing root model in a static template with
a transient high auxin input within the xylem axis. The initial asymmetric transient auxin input is sufficient
to establish the correct patterns of auxin and CK within the template.

Flux paper the authors argue that parameters required to generate a informative gradient of

CK in tissues the size of an Arabidopsis root requires are unrealistic. Since all three models

only include passive movement of CK via diffusion, the choice of these parameters is critical

for determining the shape of the resulting gradient; however, problems arise because these

parameters are simply unknown.
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5.10 Can a gradient of CK exist?

In the Minimal Framework and Growing root models, movement of chemicals between cells is

governed only by permeability across a membrane. In the Auxin Flux model, movement also

occurs via diffusion within cells and in the apoplast, arguably giving a more realistic modeling of

diffusion. This is of particular importance for hormonal signaling since, at least in short-range,

signaling molecules are thought to propagate faster apoplasticaly than symplasticaly [168].

The Auxin Flux model uses the same diffusion co-efficient for CK and auxin based on the

rationale that they are similar sized molecules. Although the parameter for auxin diffusion has

been used in other computational models and is based on experimental values, these were not

measured in plants but were generated using a polar membrane created between egg lecithin

and decane [169]. Within this system, diffusion was dependent on pH and the rate of Auxin

Flux across the membrane was increased as through conversion of auxin to an ionized form at

the membrane surface. Whilst these may represent the “best estimates” of CK diffusion, they

are open to debate and only direct measurements will be able to provide irrefutable parameters.

Since an informative gradient would require that the CK diffusion or degradation rates differ

by several orders of magnitude from those used in the Auxin Flux model, the authors carried

out an experiment to establish a lower limit on the diffusion of CK. They treated roots with

exogenous CK and measured the change in CK response within the root; CK response increased

in both the outer and inner layers of the root within six hours, suggesting that CK can traverse

the radius of the Arabidopsis root in a matter of hours [123]. This is a rate of CK movement

which is incompatible with the formation of an informative CK gradient via diffusion unless the

degradation rate is also orders of magnitude higher; however, such rapid degradation would also

place limits on how far CK could travel and would affect the time scale of regulatory networks.

The authors therefore suggest that other mechanisms, such as active CK transport or uneven

expression of the CK perception machinery, might be responsible for the observed CK signaling

patterns.
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Although the models use a different system for dealing with diffusion, the Auxin Flux model

was able to reproduce the gradient formed in the Growing Root model with an appropriate

choice of parameters. We therefore endeavored to evaluate the questions of whether the xylem

axis can act as a sole source of CK and whether an informative CK gradient can exist using the

Minimal Framework model.

To reconcile these findings and test whether the xylem axis could function as the sole source of

CK we ran new simulations in the Minimal Framework model with CK production restricted to

the xylem axis. As before, we provide an initial asymmetry in PIN localization and then test

the robustness of any pattern by removing this restriction on PIN placement. Using the original

model parameters produces a sharp gradient of CK away from the xylem axis, resulting in very

low PIN7 expression except in the protoxylem, and AHP6 expression spreads throughout the

pericycle and adjacent cells in the stele. (Fig. 4.5A).

As discussed above, while the Auxin Flux model uses a diffusion coefficient in a Cellular Potts

model to simulate CK movement within and between cells, the other models only simulate

movement from cell to cell using a permeability parameter. We estimate that based on an

estimated average width of cells in the cross section of 30µm, the diffusion coefficent used in the

Auxin flux Flux model of Dck=600µm 4s−1 would correspond to a permeability, Pck =20µm

s−1 in either of the other models. Based on an approximate average width of the cell layers in

the cross section of 30µm , we estimate that, for a given CK production and degradation rate, the

CK distribution in the Auxin Flux model with Dck=600µm2 s−1 can be reproduced in the other

two models with Pck =20µm s−1. Similarly we predict the results with permeability Pck =10µm

s−1 used in the minimal Minimal Framework Framework model can be roughly reproduced

in the Auxin Flux with an estimated effective diffusion coefficient of 300 µm2 s−1. Though

this effective diffusion coefficient is of the same order of magnitude to that used in the Auxin

Flux model, CK degradation (dck), the other key parameter in determining the sharpness of any

CK gradient, is much higher in the Minimal Framework model than in both the Growing Root

and Auxin Flux models, resulting in the sharp gradient in (Fig. 4.5A). Although the exact data
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regarding the turnover of CK is not available, reducing this in line with the other models (from

10 s−1 to 0.1 s−1), so that it degrades over the time scale of minutes rather than seconds, results

in improved patterning of the xylem axis (Fig. 4.5B). A further adjustment, so that the level of

CK in the procambium regions is closer to that in the published model, results in the correct

patterning of the root vascular cylinder and the formation of a gradient of CK peaking within

the xylem axis (Fig. 4.5C).

Using the parameters from the Auxin Flux model (CK production pck = 0.001 arbitrary units

s−1, degradation dck = 0.0001 s−1, estimated permeability Pck =20µm s−1) in the Minimal

Framework model with CK production restricted to the xylem results in little or no gradient in

CK, but also no regular pattern due to insufficient overall levels of CK (Fig. 4.5D). However,

when raising the level of CK production to pck = 0.003 arbitrary units s−1 , while there is still

no CK gradient, the overall level of CK is raised sufficiently so ensure that the correct pattern is

generated and maintained robustly (Fig. 4.5E).

As these new simulations required a change of parameters, we tested the sensitivity of the three

key parameters relating to CK activity: CK production (pck), CK degradation (dck) and CK

permeability (Pck ). Using the value of Pck from the Minimal Framework model (Pck =10 µm

s−1) as a starting point we found ranges of the other two parameters, pck and dck, for which the

correct pattern is maintained robustly. To assess whether the pattern is formed correctly we use

k-means clustering to categorize cells into two clusters based on the level of AHP6 protein. If

and only if the cluster of cells with the highest AHP6 level is exactly equal to the set of six cells

comprising the two protoxylem and four xylem pole pericycle cells do we conclude the model

has patterned the tissue correctly.

Plotting the region of two-parameter space for which the correct pattern is formed (Fig. 4.5F)

shows that, with the permeability Pck =10 µm s−1, no pattern can be formed for degradation

rates above around dck = 0.22 s−1. Below this degradation rate there always exists a range

for which patterning occurs. This shows that while the model is able to form a pattern with

very shallow or intermediate CK gradients, when the CK degradation rate is too high, the CK



144 5.11 Conclusion

gradient away from the xylem axis becomes too steep to be able to maintain a stable pattern. We

also note that for a given degradation rate below the threshold value, there is only a relatively

narrow range of CK production that will support a pattern. This parameter does not affect the

CK gradient, but instead determines the overall level of CK in the tissue. Since PIN7 is sensitive

to the level of CK, if production is too high PIN7 expression dominates throughout the stele,

while if it is too low AHP6 expression dominates instead. The narrow range of viability to form

the correct pattern further illustrates the importance of the regulation of CK production as shown

by [72]. Similarly shaped regions of parameter spaces, but with different numerical ranges are

produced when repeating the exercise using the permeability from the Growing Root model

(Pck =0.1 µm min-1) and the estimated representative permeability from the Auxin Flux model

(Pck =20 µm s−1) (see supp info).

If CK is expressed evenly throughout the tissue, rather than just in the xylem axis, it is still

possible to produce the desired pattern of AHP6 expression. Plotting the region of two-parameter

space for which the desired pattern occurs as before we see that while for a given CK degradation

rate there is a corresponding range of production rates for which there is the correct, stable

pattern, there is no upper limit on the degradation rate, as is the case when production is limited

to the xylem (Fig. 5.5G).

Together these simulations suggest that, whilst restricting CK production to the xylem axis is a

plausible method for vascular patterning at least in the Minimal Framework and Growing Root

models it is not an absolute requirement for the patterning process.

5.11 Conclusion

The organization of root vascular tissues provides a fascinating model to investigate how

patterns form in multicellular structures, and the surge in research in vascular development is

testament to this. Experimental studies have identified the key components involved in this

process and determined how they interact. More recently theoretical studies have investigated
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these non-linear interactions and feedback mechanisms and revealed how they collectively

determine patterning output. Whilst each of the models incorporates known values where

possible, all models by necessity rely on parameter estimation. To address the uncertainty

of these parameters, each of the models has made an exploration of the parameter space

required that allows patterning. Whilst there are some areas where the authors favor alternative

hypotheses, on most issues the three models are largely in agreement. All three models support

the interaction of auxin and CK as a plausible system for generating pattern. The exact wiring of

this system varies, and this largely depends upon the different questions that each model pursues.

In this paper we ran new simulations to test the findings of the different models. Although the

three models use quite different platforms, it is reassuring to see that the several findings are

transferable across these platforms. Collectively we feel that our modeling efforts support the

hypothesis that an asymmetry in auxin input can direct the formation of vascular pattern. We

agree that the correct pattern can be generated using the xylem axis as the sole source of CK,

but other sources of CK do exist and our simulations in this paper show that broader patterns

of CK production can also pattern the root. We do not have a consensus of whether there is a

meaningful gradient of CK present in the root; however, we show that a CK gradient is required

only required with certain configurations of PIN dynamics, and even then correct patterning

can be generated from a very shallow gradient. Moreover, the theoretical dispute about the

formation and presence of a CK gradient presents a challenge to be resolved by experiments;

we hope that future work will either show that the parameters relevant to CK diffusion are in

the range to form an informative gradient or demonstrate that CK is patterned by an alternative

mechanism. We have also highlighted several other key areas that need further research, namely

further insight into how CK regulates PIN activity and the factor(s) that operate alongside AHP6

to limit auxin response in the xylem axis.

The three independent modeling approaches together offer considerable insight into the pat-

terning process. All models support each other in some aspects; but at the same time each

model provides new insights into the network that are unique to that model. In a few areas
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they find disagreements. By comparing the three modeling approaches, we are able to focus

future experimentation on aspects where the modeling has indicated that there is additional

complexity. We believe that the approach of integrating multiple independent models of root

vascular patterning serves as an exemplar for understanding other developmental processes in

plants.
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Figure 4-19: Output from the Minimal Framework model with CK production limited to the proto- and
meta-xylem cells, for a range of parameter values. A) parameters as in Muraro et. al. 2014, B) as A) with
lower CK degradation, C) as B) with lower CK production, D) parameters as in El Showk et. al. 2015, E)
as D) with higher CK production. Only C) and E) are able to pattern the tissue correctly. Colour ranges
show arbitrary nondimensional values. F-G) Two-parameter plots for CK production and degradation
showing the region of parameter space for which robust patterning is maintained. F) CK permeability
as in the Minimal Framework model with production restricted to the xylem axis, G) CK production
homogeneous throughout tissue.





CHAPTER 6

General Discussion





Chapter 6 151

The task of evaluating the model output based on observed experimental data is not straight-

forward, especially when it comes to spatial models. For non-spatial models the relevant

data is often single quantities that represent the concentration of a molecule in a single cell.

In contrast in non-spatial models the data is often comprised of gene expression domain

spanning many cells. This requires application of methods that quantify these spatial domains in

biologically meaningful manner. Furthermore, due to simplifications and abstractions applied to

model interactions and spatial framework, a one-to-one comparison between model output and

biological observation is not valid in most cases, i.e. the model is only expected to qualitatively

reproduce the experimental data. This is especially relevant when dealing with models simulation

with stochastic components where model outputs cannot be compared against a single fixed

reference observations. This is because stochastic simulations can result in a range of outputs that

differ from each other but are equally valid. Even when a model is deterministic, in many cases,

a one-to-one ( e.g. pixel-wise) comparison of model output against an experimental observation

is too restrictive. This is due inherent variability of biological observations, which complicates

their representation by a single reference instance. In general, a simple averaging of many

observations is often not the appropriate answer. These problems are perfectly demonstrated

when considering a system with oscillating spatial output. System output can appear very

different due to their phase difference. A simple averaging of many outputs of such a system

would produce a homogeneous outcome, which is far from an adequate representation of the

system output. The model evaluation procedure outlined in this thesis is aimed at addressing

that problem. The approach concentrated on identifying essential features of the experimental

observation that define and distinguish the observation. In our example of an oscillating system,

frequency and amplitude of the output correspond to such essential features.Identifying such

features requires a careful study and evaluation of the experimental data, since defining a feature

as essential is only meaningful when considering the biological context. The model evaluation

procedure applied in chapters three and four is by no means complete, it is only a first step

towards establishing a framework for assessing simulation output of spatial models against
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biological data. In particular, the criteria for choosing quantifiable measures to match against

experimental data is not well-defined and can benefit from further investigation.

In chapter three I set out to identify the genetic components involved in SAM patterning

that correspond to a Turing RD system. We started with a through inspection of the available

experimental data related to SAM patterning, spanning several species and developmental stages.

We identified specific genes and genetic interaction that constitute likely candidates for a Turing

RD system. Wherever this was not possible due to lack of available data, we made minimal

assumptions that closely followed the available data. By putting these components together

we constructed a computational model, comprised of three motifs: two gradient motif and

a Turing RD motif. We demonstrated that interaction between these motifs can account for

several observation regarding SAM patterning. Using a network analysis approach we assessed

the impact of each of these motifs on model output. The results demonstrated that elements

of a RD system can exist embedded within a signaling network, where a whole subnetwork,

with multiple elements, is equivalant a single interaction. In addition, in contrast to classical

RD systems, in our work, the initial conditions do not include a homogeneous (albeit noisy)

distribution of the chemical species. The gradient motifs of the model, L1 signal and CK form

gradients that interact with a core RD system. The work clearly demonstrates to what extent

the abstract realization of such systems can differ from their biological counterpart. This might

at least partially explain how, despite their demonstrated predictive power, reaction-diffusion

systems have not passed the burden of biological proof. While, successful in reproducing many

biologically observed patterns [170–172], for the most part, experimental identification of RD

systems has been challenging.

Our results suggest that identification of biological counterparts of reaction diffusion systems,

requires detailed investigation of existing data and examining the capabilities of various net-

works/subnetworks in functioning as constituent parts of RD systems. The concept of reaction-

diffusion systems is concerned with systems that, without diffusion, are at a homogeneous

steady-state, and obtain a non-homogeneous ’patterned’ steady-state when diffusion is added.
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The analytical methods developed for the study of reaction-diffusion systems use such a criteria

for defining pattering and non-patterning networks and parameter regimes. The work presented

here and others [173, 174], suggests that the development of mathematical methods to analyze

RD patterns that do not arise from an initially homogeneous state can be a next step in

studying RD systems. Finally we performed and proposed experiments to test the model

assumptions and predicted specific properties for the hypothetical model components such as

their spatial distribution and their upstream signaling components. Taken together this project

was successful in bringing experimental and theoretical research of SAM patterning closer

together and providing directions for future experimental efforts.

In the work presented in chapter four, the biological context and the developmental time-

frame of interest under study made it possible to address the question via a two-dimensional

representation of a cross-section of the embryo. The results, demonstrated the importance of

auxin transport and patterning in the development of vasculature. In the model, the apical-basal

pattern of auxin is not explicitly modeled and is considered as an input (the higher auxin levels

of two of the vascular founder cells). We demonstrate that this apical-basal input of auxin is

an essential factor in establishing bilateral symmetry in lower vascular tissue. The apical-basal

auxin and PIN patterns during vascular development appear to be consistent with the flux-based

models. While, as demonstrated in this thesis, the lateral patterns matches the concentration

based models. Naturally the next challenge would be to investigate auxin patterning in whole

embryo, using three dimensional modeling platforms. A dual model of PAT has shown the

capability of reproducing experimental observations [53]. It would be interesting to see whether

such a model would be able to account for the early embryonic patterns of auxin distribution,

which shows features of both peak formation and canalization. We demonstrated that auxin and

CK can regulate vascular development via controlling the growth and geometry of the vascular

cells, thus controlling the position of shortest wall that divides those cells. Recently it has been

established that auxin is capable of overwriting the shortest wall rule for cell division and result
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in asymmetrical cell divisions [122]. An important finding of the work presented in chapter

four is that the position of connected vascular founder cells in relation to the cotyledons is

determined prior to initiation of vasculature. In fact such asymmetry can be traced back to first

periclinal division of the embryo; The cell division cell division plane forms with a consistent

angle with respect to the axis of the ovule, suggesting that the bilateral symmetry of the plant

embryo is established with the first periclinal division. Investigating how the very first cell

divisions in embryo are regulated would provide clues into how the bilateral symmetry of the

embryo is initially established.

This modeling effort benefited greatly from utilizing the VirtualLeaf modeling platform. By

employing this well-developed tool for model simulation and analysis I could focus my efforts

solely on model development. Several spatial patterning models are included in VirtualLeaf,

including an auxin-PIN up the gradient model, which greatly facilitated the investigation of

the role of auxin in the context of the project. Furthermore model description and subsequent

communications with other researchers was greatly facilitated thanks to the previously published

detailed description of VirtualLeaf and the familiarity of many researchers in the field with

this software. This project clearly demonstrate the advantages of a utilizing such platforms to

focus and facilitate computational modeling of development in a given field. Ultimately such an

approach holds the potential to improve interactions and exchange between researcher active in

plant and animal fields.

Chapter five was a result of a collaboration between three research groups involved in com-

putational modeling of vasculature formation. Each group had independently developed a

computational model concerning the role of CK and auxin in development and regulation

of vasculature in Arabidopsis. These models arrived at different conclusions regarding the

genes/hormone regulatory networks involved. Since these models focused on different research

questions and employed distinctive modeling approaches, comparison of their conclusions and

methodology was not straight forward. The collaboration aimed to determine the fundamental

differences in of these models, and to identify assumptions and prediction common between
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them. The results showed, in two of these models, while the effect of CK on PIN levels

was modeled differently, the overall effect of this interaction was essentially the same. This

was confirmed by showing that CK interactions on PIN as specified by one model, result in

correct patterning in another model. Thus we could conclude, despite the seemingly conflicting

implementation in these models, The CK effect on auxin distribution via regulation of PINs

plays a central role in vascular development. The collaboration also pointed out that some

important differences in output of these models were due to divergent assumptions regarding

CK diffusion rate, thus highlighting the critical experimental data that could lead to further

clarification of the role of Ck in shaping plant vasculature.

When it comes to studying processes that give rise to plant organs and tissues, the application

of mathematical modeling is inevitable. As demonstrated in this thesis, even in the simplest

of settings, such problems are complex and non-intuitive. They fundamentally differ from

approaches that deal with intracellular phenomena; mechanical properties of cells, diffusion

of chemicals from cell to cell are among aspects that greatly increase the complexity of

models. Moreover unlike non-spatial models, outputs are often not numbers corresponding to

concentrations; measures that are quantitative and more readily comparable with experimental

data. Model output is often in the form of ’expression domains’; patterns that are rather

qualitative.

Spatial models of development often deal with pattern formation. When dealing with such a

model a critical question is: has the model shown the emergence of a pattern from interactions

of its components? do the model assumptions and settings constitute a pattern that is essentially

same as the model output. It can be argued that the latter type of models do not demonstrate

any system-level behavior but are rather an propagation and maintenance of already existing

patterns. The models presented in this thesis are a mixture of both scenarios. They incorporate

preexisting patterns, however they demonstrate emergence of patterns that are fundamentally

different from the input patterns. Particular attention has been paid to clarify this distinction

in the description of the models. This is carried out by clearly stating model assumptions,
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model initial conditions and boundary conditions etc. This enable a clear assessment of the

contribution of a model to the existing knowledge. This was in part motivated by the observation

that often such clarity is lacking in published mathematical models of plant development; model

assumptions are not clearly stated and must be inferred indirectly by scrutinizing the details of

simulations and model description. This can greatly hinder the understanding and reproduction

of such published models which in turn negatively impacts progress in the field. I believe the

field of mathematical modeling in plant development can greatly benefit from clarity when it

comes to mathematical and computational descriptions of models and the models presented in

this thesis are a testament to this.
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A Chapter three appendix

A.1 Model parameters

Table S1 lists the non-dimensionalized parameters used in simulations presented in the main

text unless otherwise stated.

Table S1: The Parameters used in the main text simulations. All parameters are dimensionless.

ParameterValue Description
k1 4 Type-B ARR production
k2 1 Inverse half maxima for AHK4 activation
k3 0.8 Inverse half maxima for AHP phosphorylation
k4 0.1 Rescaled inverse Kd for AHP binding to type-A ARR
k5 0.1 Rescaled inverse Kd for AHP binding to type-B ARR
k6 1.5 Strength of the phosphorelay inhibition by X
k7 1.5 Type-B ARR degradation
k8 10 Type-A ARR production
k9 0.01 Strength of the type-A ARR inhibition by WUS
k10 1.4 Type-A ARR degradation
k11 6 AHK4 production
k12 0.1 Inverse half maxima for AHK4 production
k13 3 AHK4 degradation
k14 15 X production
k15 10 X degradation
k16 0.2 WUS production
k17 0.2 Strength of the WUS inhibition by CLV3 peptide
k18 10 CLV3 mRNA production
k19 1 Inverse half maxima for CLV3 mRNA production
k20 20 CLV3 mRNA degradation
k21 12 CLV3 peptide production
k22 2 CLV3 peptide degradation
d1 300 X diffusion
d2 2 WUS diffusion
d3 200 CLV3 peptide diffusion

A.2 Plant material and shoot meristem culture

Plants and cultured apices were grown under the long photoperiod (16 h light). The following

lines of Arabidopsis have been described previously: Arabidopsis TCS-GFP containing an
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enhanced version of the published construct [175] and WUS-GFP [176] are in the Col-0

background. CLV3-GFP (Yadav et al. 2009) is in the Landsberg erecta (Ler) background.For

in vitro Arabidopsis shoot meristem culture, inflorescence meristems of Arabidopsis plants

were dissected and transferred to MS medium containing 0.7% phytagel. For Ck treatment,

benzyladenine (Sigma-Aldrich) was added to the medium at final concentration of 500M.

In laser ablation experiments 7/9, A total of 6 WUS-GFP seedling were ablated and all

subsequently recovered. Out of the 9 TCS-GFP seedling that were ablated and subsequently

placed in BA medium 7 recovered. All of 5 CLV3-GFP seedling that were ablated subsequently

recovered. In microsurgical experiments 2/2, 2/2 and 3/3 recovered for TCS-GFP, WUS-GFP

and CLV3-GFP respectively.

A.3 Microscopy and laser ablation

Confocal analysis was carried out using a Leica upright confocal laser-scanning microscope

(Leica TCS SP5) with long-working distance water immersion objectives. The cell wall was

stained with 0.2% propidium iodide (PI; Sigma-Aldrich) for 1min. Apices were observed in

the 3% agarose medium. Following laser settings are used for the observation; GFP (Argon

laser, excitation 488nm, emission, 500-530nm), PI-staining (Argon laser, excitation 488nm,

emission 600-700nm). Poking was carried out by fine tungsten needles (World Precision

Instruments). Laser ablation was carried out by diode laser at the wavelength of 405 nm. Target

cells were chosen using the Leica bleach point function and submitted to UV laser irradiation

(90% laser power for 25 seconds). Confocal z-stacks were 3D reconstructed by MorphographX

software [177].
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B.1 Plant material and cloning

All seeds were surface-sterilized, sown on solid MS plates, and vernalized for 2 days before

growing at a constant temperature of 22°C in a growth room. The log mutants [132] and

TMO5/LHW misexpression constructs were genotyped using the primers listed in table B4.

All cloning was performed using the LIC cloning system [178] and the vectors described

therein. For transcriptional fusions of the LOG genes, 3-kb fragments upstream of the ATG were

PCR-amplified from genomic DNA using Q5 polymerase (NEB). To generate pRPS5A-driven

misexpression, the coding sequences of all genes were amplified from complementary DNA

(cDNA) clones. All constructs were completely sequenced.

B.2 Microscopic analysis

Differential interference contrast, fluorescence, and confocal microscopy were performed as

described previously [179]. For histological sections, roots were fixed overnight and embedded

as described previously [180]. 3D imaging of embryos was performed according to [181].

Confocal image stacks were reconstructed, and segmentation was performed in MorphoGraphX

software [177]. Confocal imaging was performed on a Leica SP5-II system (HyD detector).

B.3 CK measurements

CK quantification by ultrahigh performance liquid chromatography–electrospray tandem mass

spectrometry (LC-MS/MS) was performed according to the method described previously [182].

Briefly, 25 to 60 mg fresh weight of 4-day-old Arabidopsis seedling roots were collected

and extracted in ice-cold modified Bieleski buffer (methanol/water/formic acid, 15:4:1, v/v/v)
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[183]. To each extract, stable isotope-labeled CK internal standards (0.5 pmol of CK bases,

ribosides, N-glucosides and 1 pmol of O-glucosides, nucleotides) were added to validate the

quantification. For the purification of free CKs, two solid-phase extraction columns were used:

the octadecylsilica-based column (500 mg of C18 sorbent, Applied Separations) and the MCX

column (30 mg of mixed-mode sorbent, Waters) [184]. Analytes were eluted by two-step elution

using a 0.35 M NH4OH aqueous solution and 0.35 M NH4OH in 60% (v/v) methanol solution.

Samples were then evaporated under vacuum at 37°C to dryness in vacuo. Purified samples

were analyzed by the LC-MS/MS system consisting of an ACQUITY UPLC System (Waters)

and a Xevo TQ (Waters) triple quadrupole mass spectrometer. Quantification was obtained using

the multiple reaction monitoring mode of selected precursor ions and the appropriate product

ions. For each mutant line, four independent biological replicates were analyzed. See Table B3

B.4 ChIP and qRT-PCR analysis

ChIP was performed as previously described [185]. Six hundred milligrams of 5-day-old

pTMO5-TMO5-3GFP or pLHW-LHW-sYFP seedlings grown in long-day conditions were used.

Anti-GFP antibody (5 µl per sample) (cat. no. 632592, Clontech) was used. Real-time PCR

was performed using Power SYBR Green PCR Master Mix (Applied Biosystems). TMO5

and LHW occupancy on genomic DNA was calculated by computing the enrichment over the

respective input and normalized over wild type. The primers used for ChIP-qPCR are listed

in table B4. Other qRT-PCR analyses were performed as described previously [186]. RNA

was extracted with the RNeasy kit (Qiagen). Poly(dT) cDNA was prepared from 1 µg of total

RNA with an iScript cDNA Synthesis Kit (Bio-Rad) and analyzed on a CFX384 real−time

PCR detection system (Bio−Rad) with iQ SYBR Green Supermix (Bio−Rad) according

to the manufacturer’s instructions. Primer pairs were designed with Beacon Designer 8.0

(Premier Biosoft International). All individual reactions were done in triplicate with two or three
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biological replicates. Data were analyzed with qBase [187]. Expression levels were normalized

to those of EEF1α4, CDKA1;1, and ACTIN2. The primer sequences are listed in table B4.

B.5 Combinatorial transcriptome profiling, cell sorting experiments, and data analy-

sis

To identify targets of the TMO5/LHW dimer, transcriptional changes were analyzed after

a brief (1 hour) induction of ubiquitously expressed TMO5-GR protein (pRPS5A::TMO5-

GR) [125] by dexamethasone in root tips (Fig. B1). This induction was also performed in

the presence of the protein synthesis inhibitor cycloheximide to exclude activation of indirect

target genes. Because ectopic TMO5 expression can induce PD outside of the vascular domain,

in an independent approach, TMO5-GR was ectopically induced in the ground tissue cells,

where LHW is already present, thus allowing ectopic TMO5/LHW dimers to form. To enrich

for TMO5-GR-expressing cells, we analyzed transcriptional changes in GFP-positive ground

tissue cells after dexamethasone treatment in J0571»TMO5::GR/GFP root tips [125] (Fig.

B1). These cells were sorted by fluorescence-activated cell sorting using fluorescence of

the J0571 GAL4 enhancer trap line. Protoplasting and cell sorting was done as reported

previously [188]. Total RNA (100 ng) was labeled using an Ambion WT Expression Kit (Life

Technologies) and hybridized to Arabidopsis Gene 1.0 ST arrays (Affymetrix), which probes

the expression of 27,827 unique genes. Sample labeling, hybridization to chips, and image

scanning were performed according to the manufacturer’s instructions. Microarray analysis

was performed using MADMAX pipeline for statistical analysis of microarray data [189].

Expression values were calculated using the robust multichip average (RMA) method, which

includes quantile normalization [190, 191]. Probe sets on the array were redefined using current

genome information [192]. Here, probes were reorganized on the basis of the gene definitions

as available in the TAIR10 database. Differentially expressed probe sets (genes) were identified
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by linear models and an intensity-based moderated t statistic, taking into account the paired

design [193]. P values were corrected for multiple testing by a false discovery rate method [144],

and probe sets that satisfied the criterion of P < 0.05 were considered to be significantly regulated.

Combining these three experiments yielded a small set of 143 genes that were significantly

up-regulated (>1.5-fold; P < 0.05) in at least one experiment (see table B2). The transcriptomics

data files are submitted to Gene Expression Omnibus (GEO) (accession no. GSE56868).
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Figure B1: Array validation and CK-related defects in TMO5/LHW-OX lines. (A-B) Relative
expression levels of AT4G38650 (A) and AT3g23880 (B) in TMO5-GR root tips upon 1h dexamethasone
(DEX), cycloheximide (CHX) or DEX+CHX treatments compared to a control treatment (qRT-PCR
confirmation of micro-array). (C-F) Expression of the pTCSn-GFP and pAHP6-GFP reporters in WT
and TMO5/LHW- OX root tips. Right images show false color scales of the left image. (G-J) Basic
fuchsin stained roots of wild type (Col-0), wild type treated with 0.1 µM BA, TMO5/LHW-OX and LOG4
misexpression (m: metaxylem, p: protoxylem). Error bars in A-B indicate standard error. Scale bars are 10
µm. Images in C-F are counterstained with FM4-64.
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Figure B2: In situ hybridization of LOG3/4. ((Left) DIC images of globular and transition stage
embryos hybridized with anti-sense LOG3 or LOG4 probes. LOG3 shows highly specific expression in
the provascular initial cells (as seen with the pLOG3-n3GFP reporter line), while LOG4 expression is
less focused but enriched in vascular cells. (Right) ClustalW multiple sequence alignment of LOG4 and
its closest homolog LOG3. Note that LOG4 is almost identical to LOG3, but LOG3 has predicted 3’ and
5’UTR regions that were included in the probe.
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Figure B3: Shoot and leaf phenotypes of TMO5/LHW misexpression. (A-D) Shoot and rosette
phenotype of TMO5/LHW-OX compared to wild type (Col-0). (E-H) Leaf series (E-F) and close-up (G-H)
of the base of the petiole of TMO5/LHW-OX compared to wild type (Col-0).
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Figure B4: log mutant vascular phenotypes and transcriptional LOG regulation. (A) Quantification
of vascular cell file number in root meristems of log single and multiple mutants and wol mutant compared
to wilt type (WT) (**: p-value < 0.01 as determined by two-sided student t-test). (B-I) Cross sections of
vascular tissue in five- day-old root meristems of log single and multiple mutants and wol mutant compared
to wilt type (Col-0). Asterisks indicate endodermis. (J) Relative expression levels of LOG1, LOG3 and
LOG4 after 10 µM benzyl adenine (BA) treatment for the indicated time. (K) Relative expression levels of
LOG1, LOG3 and LOG6 in log4 mutant roots. Error bars in A, J, K indicate standard error. Scale bars in
B-I are 10 µm.
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Figure B5: Expression of the LOG family in embryo and root. (A-H) Expression pattern in post-
embryonic roots and during embryogenesis of pLOGx-n3GFP reporters for LOG1 (A), LOG2 (B), LOG3
(C), LOG4 (D), LOG5 (E), LOG6 (F), LOG7 (G) and LOG8 (H). Note that only LOG3 and LOG4 show
vascular expression during embryogenesis and LOG7 shows vascular expression in the post-embryonic
root (see arrow). LOG1 had a variable expression pattern. Scale bars are 10 µm.
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Figure B6: Complementation of the log 1324578 (hept.) mutant. (A-B) Seedling and shoot
phenotypes of the log hept. mutant and log hept.complemented with pTMO5-LOG4 or pRPS5A-LOG4
transgenes. (C-H) Mature root vascular (C-E) and root meristem (F-H) phenotypes of the log hept. mutant
and log hept. complemented with pTMO5-LOG4 or pRPS5A-LOG4 transgenes (m: metaxylem, p:
protoxylem).
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AT1G22651 AT1G27870 AT1G03746 AT2G37390 AT1G29950 AT5G39080
AT2G01023 AT1G29951 AT1G08430 AT3G04430
AT2G05185 AT1G35625 AT1G10640
AT2G19440 AT1G56540 AT1G16390
AT2G20722 AT1G63340 AT1G16850
AT2G36307 AT1G29952 AT1G22400
AT2G39540 AT1G67000 AT1G23090
AT2G39675 AT2G04070 AT3G02410
AT2G43870 AT2G37390 AT1G25425
AT2G45403 AT3G04430 AT1G28160
AT1G29950 AT3G14620 AT1G04490
AT1G01110 AT3G28420 AT1G29560
AT3G21930 AT3G57460 AT3G25710
AT3G45930 AT3G61400 AT1G65900
AT3G49630 AT4G12190 AT1G29951
AT3G55490 AT4G12410 AT1G31670
AT4G00885 AT4G17788 AT1G33670
AT4G01020 AT4G32280 AT1G35610
AT4G03140 AT4G33800 AT1G35820
AT4G11213 AT4G38560 AT1G36180
AT4G17788 AT5G03890 AT1G43720
AT4G39180 AT5G07010 AT1G48390
AT5G07010 AT5G20470 AT1G48670
AT5G09710 AT5G24540 AT1G54200
AT5G22700 AT5G39080 AT1G54680
AT5G39080 AT5G42325 AT1G58380

AT5G46520 AT1G60110
AT1G60830
AT1G29952
AT1G68620
AT1G80340
AT2G05790
AT2G11891
AT2G17010
AT2G17220
AT2G19800
AT2G20515
AT2G21430
AT4G38340
AT3G17130
AT3G56220
AT4G35420
AT2G31585
AT2G36400
AT2G37390
AT3G60176
AT2G40610

Table B2: Micro-array Data -Overview of significantly up-regulated genes for each treatment and the
overlaps (>1.5 fold change, p<0.05). DEX: 3-day-old pRPS5A-TMO5-GR seedlings were grown on
control medium and transferred to medium containing 10µM DEX for 1h. Root tips were next used for
RNA extraction. DEX+CHX: 3-day-old pRPS5A-TMO5-GR seedlings were grown on control medium
and transferred to medium containing 10µM DEX and 10µM CHX for 1h. Root tips were next used for
RNA extraction. FACS:3-day-old J0571»pUAS-TMO5-GR seedlings were grown on control medium and
transferred to medium containing 10µM DEX for 2h. Root tips were next protoplasted before cell sorting
and RNA extraction.First row of numbers shows the amount of genes in that column, the second number
the amount of unique genes.The raw .CEL data files are submitted to GEO (accession number GSE56868).
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AT3G20830
AT4G16855
AT2G29330
AT4G20650
AT4G25780
AT4G28870
AT4G29990
AT2G28120
AT4G14690
AT5G05490
AT5G05460
AT3G45650
AT5G07460
AT5G07640
AT3G24450
AT5G09270
AT5G11430
AT5G27200
AT5G37030
AT5G42590
AT5G46050
AT5G47900
AT1G28110
AT5G60760
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sample
FW 
(mg) tZ tZOG tZR tZROG tZ7G tZ9G tZR5'

MP
1 Col-0_r1 64.2 0.2798 2.4981 0.0832 0.0879 4.0805 0.6888 0.1207
2 Col-0_r2 52.6 0.2408 2.2281 0.1019 0.0477 4.4354 0.7158 0.2287
3 Col-0_r3 54.2 0.2490 2.4050 0.1144 0.0653 4.3664 0.5710 0.1753
4 Col-0_r4 62.4 0.3350 2.5553 0.1715 0.1038 5.5367 0.8944 0.1280
5 tmo5xtmo5like1_r1 22.5 0.2416 3.0071 0.1062 <LOD 4.4400 0.6729 0.0860
6 tmo5xtmo5like1_r2 25.4 0.1829 1.6839 0.0821 <LOD 3.3547 0.4693 0.0480
7 tmo5xtmo5like1_r3 27.9 0.1099 2.0821 0.0837 <LOD 2.9667 0.5043 0.0476
8 tmo5xtmo5like1_r4 17.4 0.2112 3.2672 0.1347 <LOD 5.0632 0.7190 0.0729
9 TMO5/LHW-OE_r1 42.7 0.6500 14.5482 0.5951 0.5536 30.9754 4.7642 0.8948
10 TMO5/LHW-OE_r2 39.2 0.7096 23.4385 0.7842 1.1311 36.1028 4.6385 0.8099
11 TMO5/LHW-OE_r3 61.9 0.9671 15.9174 1.0288 0.8153 41.9129 5.8819 1.0640
12 TMO5/LHW-OE_r4 64.2 0.8502 19.3603 1.1338 0.7181 39.1117 6.2157 1.4249

sample
FW 
(mg) cZ cZOG cZR cZROG cZ9G

cZR5́
MP

1 Col-0_r1 64.2 0.6439 2.2209 0.3699 <LOD 0.4849 0.9466
2 Col-0_r2 52.6 0.5447 2.3660 0.3517 <LOD 0.4190 1.1639
3 Col-0_r3 54.2 0.5223 2.8284 0.3803 <LOD 0.4511 1.2875
4 Col-0_r4 62.4 0.6346 2.3026 0.4704 <LOD 0.5702 1.2123
5 tmo5xtmo5like1_r1 22.5 0.3729 1.7916 0.3644 <LOD 0.4689 0.5511
6 tmo5xtmo5like1_r2 25.4 0.3130 1.6299 0.2579 <LOD 0.3441 0.4858
7 tmo5xtmo5like1_r3 27.9 0.1989 1.2763 0.2436 <LOD 0.2513 0.3186
8 tmo5xtmo5like1_r4 17.4 0.4190 2.2402 0.4278 <LOD 0.4960 0.4333
9 TMO5/LHW-OE_r1 42.7 0.1211 3.0244 0.3253 0.3860 1.1721 0.7728
10 TMO5/LHW-OE_r2 39.2 0.1640 3.2589 0.3176 0.5611 1.1855 0.7566
11 TMO5/LHW-OE_r3 61.9 0.1816 2.1449 0.3743 0.6496 1.0286 0.8701
12 TMO5/LHW-OE_r4 64.2 0.1436 2.8830 0.4413 0.4857 0.8361 0.7104

sample
FW 
(mg) DHZ DHZOG DHZR

DHZR
OG DHZ7G

DHZ9
G

DHZR
5́MP

1 Col-0_r1 64.2 <LOD <LOD <LOD <LOD 0.9861 <LOD <LOD
2 Col-0_r2 52.6 <LOD <LOD <LOD <LOD 1.5456 <LOD <LOD
3 Col-0_r3 54.2 <LOD <LOD <LOD <LOD 1.4638 <LOD <LOD
4 Col-0_r4 62.4 <LOD <LOD <LOD <LOD 1.5322 <LOD <LOD
5 tmo5xtmo5like1_r1 22.5 <LOD <LOD <LOD <LOD 0.9996 <LOD <LOD
6 tmo5xtmo5like1_r2 25.4 <LOD <LOD <LOD <LOD 0.6783 <LOD <LOD
7 tmo5xtmo5like1_r3 27.9 <LOD <LOD <LOD <LOD 0.6086 <LOD <LOD
8 tmo5xtmo5like1_r4 17.4 <LOD <LOD <LOD <LOD 1.0523 <LOD <LOD
9 TMO5/LHW-OE_r1 42.7 <LOD 0.3670 0.0816 <LOD 8.4347 0.1290 <LOD
10 TMO5/LHW-OE_r2 39.2 0.0199 0.6145 0.0575 <LOD 10.2296 0.1429 <LOD
11 TMO5/LHW-OE_r3 61.9 0.0102 0.3336 0.0661 <LOD 13.1813 0.1968 <LOD
12 TMO5/LHW-OE_r4 64.2 0.0179 0.4885 0.1047 <LOD 13.3498 0.1567 <LOD

sample
FW 
(mg) iP iPR iP7G iP9G

iPR5́M
P

1 Col-0_r1 64.2 0.0682 0.1245 20.9759 0.6757 0.4319
2 Col-0_r2 52.6 0.0391 0.1379 19.6523 0.6838 0.6460
3 Col-0_r3 54.2 0.0475 0.1318 20.3362 0.6319 0.7828
4 Col-0_r4 62.4 0.0693 0.1874 25.6654 0.9122 0.6199
5 tmo5xtmo5like1_r1 22.5 0.0314 0.1620 21.6173 1.1249 0.5796
6 tmo5xtmo5like1_r2 25.4 0.0235 0.1644 18.6055 0.8819 0.4720
7 tmo5xtmo5like1_r3 27.9 0.0174 0.1038 14.7889 0.6326 0.6918
8 tmo5xtmo5like1_r4 17.4 0.0320 0.2095 25.4391 1.1201 0.7632
9 TMO5/LHW-OE_r1 42.7 0.1622 0.3547 108.4042 3.4461 3.3536
10 TMO5/LHW-OE_r2 39.2 0.1581 0.6438 113.3747 3.6334 3.5087
11 TMO5/LHW-OE_r3 61.9 0.2006 0.6397 132.9404 3.8048 3.6050
12 TMO5/LHW-OE_r4 64.2 0.1764 0.4767 123.2382 3.8231 5.1112

Table B3: Cytokinin measurements. in 4-day-old root tips of wild type, tmo5 tmo5-like1 double mutant
and pRPS5A-TMO5 x pRPS5A-LHW double misexpression lines. Cytokinin content in 1g of extracted
4-day old root tissue (pmol/g).
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cloning primers for LIC cloning
primer for/rev sequence with LIC adapter
pLOG1 for TAGTTGGAATGGGTTCGAAgctaaattgccataaaatgaagg

rev TTATGGAGTTGGGTTCGAActttctcttcacacaaagttttg
pLOG2 for TAGTTGGAATGGGTTCGAAcatccacatcccacatcttttaatgg

rev TTATGGAGTTGGGTTCGAAtatctctctctctttctgtctttttcc
pLOG3 for TAGTTGGAATGGGTTCGAAgtgatatcactgccatcgtcatgg

rev TTATGGAGTTGGGTTCGAAgtgattctaaattttgggcgg
pLOG4 for TAGTTGGAATGGGTTCGAAgtctgttcgaatcctgcgagattgg

rev TTATGGAGTTGGGTTCGAAtggttacgatgagagctcaagc
pLOG5 for TAGTTGGAATGGGTTCGAAccattttcctagaaaagaaaagaaag

rev TTATGGAGTTGGGTTCGAAtttcttagccaaatcagtttactttc
pLOG6 for TAGTTGGAATGGGTTCGAAgaaatagtcgctggttacaaatgc

rev TTATGGAGTTGGGTTCGAAtgtttcggctaacttgtcaaagtcg
pLOG7 for TAGTTGGAATGGGTTCGAActctgatcgttggggttttgcaaggg

rev TTATGGAGTTGGGTTCGAAatttctctctctttctctttgttactttgtc
pLOG8 for TAGTTGGAATGGGTTCGAAgtttgcatttttttcccaattacc

rev TTATGGAGTTGGGTTCGAAtaatggataaaaatctacaaatc
LOG4-CDS for TAGTTGGAATAGGTTCatggaggtcaacaatgaaaccatgc

rev AGTATGGAGTTGGGTTCtcagtcttcagaagagtagtcaatcc

genotyping primers
primer for/rev sequence
log3-1 for CATTCCCAAGACCCTCATGCCTAGA

rev CTAATTTTAAGTGCCAGATGTTGAT
log4-3 for GGTTTGCTTTGTAATGATTTCTGGG

rev TCAGTCTTCAGAAGAGTAGTCAATC
log7-1 for GTCATTACATGGGCTCAACTCGGTA

rev TCACAATCAGGGGTTATGTAGTCGT

Q-PCR primers
primer for/rev sequence
CDKA for ATTGCGTATTGCCACTCTCATAGG

rev TCCTGACAGGGATACCGAATGC
EEF for CTGGAGGTTTTGAGGCTGGTAT

rev CCAAGGGTGAAAGCAAGAAGA
ACT2 for CTCCATTTGTTTGTTTCATT

rev TCAATTCGATCACTCAGA
TMO5 for CGATAGAAGAAGCGTTAA

rev CGATTCACCATCTTACTA
LOG1 for TCCCACTTGTGAAATCTCA

 

Table B4: Primer List. Overview of the primers used for cloning, genotyping, Q-RT-PCR and in situ
hybridization (p: promoter). All primer sequences are from 5’ to 3’.
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rev CGGTTTGCTTGGACTAAG
LOG3 for GGAAGGGATAGATTTTGATTAGTT

rev GAGAGTTGCGACAATTACATAA
LOG4 for GGTTTGATGGGTTTGGTTTCGC

rev CTACTGTTTCACCGGTCAACTCTC
LOG6 for GGTGATGAGGAAGATTGA

rev GAGACATTGACAGAGTGA
AT4G38650 for AAGTTAAGGCGACGACAG

rev ATGATGCCAACTCTATACTCTC
AT3G23880 for TACATCAACGGGACACTA

rev AAGCTCCTTGAACTCATC

in situhybridisation probes
primer for/rev sequence
LOG3 for aaaaaaGAATTCGTTTGTTTGACACTCGTAAAAC

rev aaaaaaGGATCCGTTGCGACAATTACATAAAC
LOG4 for aaaaaaGAATTCATGGAGGTCAACAATGAAACC

rev aaaaaaGGATCCTCAGTCTTCAGAAGAGTAGTC

ChIP-Q-
PCR
primer for/rev sequence
LOG4-1 for CGATGGTATCTTCGACGTCAT

rev GTCATTGCTATGCCCCATTT
LOG4-2 for AGAAAGCGAGGAGCCTTTTC

rev GTGTGCGCCGAATACAGAT
LOG4-3 for GCTCATGGAAAACGATGTCA

rev GCTTGGAAGCAATGAATTTG
LOG4-4 for AGGGAATCAAAAAGCGAGGT

rev TGTCGTGCGAAAGATAATGG
LOG4-5 for TCCAAGAGCATGACGAGAAA

rev CGAGAGTTGGGGATTGTTGT
TA3 for CTGCGTGGAAGTCTGTCAAA

rev CTATGCCACAGGGCAGTTTT
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