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The potato: Origin, expansion and production trends 

Potato (Solanum tuberosum L) is the 3
rd

 most important food crop in the world after wheat 

and rice in terms of human consumption. The crop originated in the Andes Mountains of 

South America, where it has served as a staple in the diet of native people for a long time. It 

was domesticated 7,000 years ago near Lake Titicaca, (on the border between Bolivia and 

Peru), where the greatest diversity of wild species is currently found (Simmonds, 1995; 

Spooner et al., 2005). The successful journey of potato around the globe started in the 16
th

 

century, when the Spanish brought it to Europe from the South American Andes. From 

Europe, the crop found its way to Asia and Africa in the 17
th

 and in the 19
th

 century, 

respectively (Hawkes, 1994).  

In modern agriculture the crop is by far the most widely cultivated tuber-bearing species, with 

a production of 365 million tonnes fresh weight of tubers produced in 2012 from 21 million 

hectares of land (FAOSTAT, 2012). Globally, more than a billion people utilize potato, 

making it a critical crop in terms of food security in the face of population growth and 

increased hunger. In many developing countries the poorest and most undernourished farm 

households depend on potatoes as a primary and secondary food and nutrition source 

(FAOSTAT, 2008). The overall trend in potato production from 1991 to 2012 shows a 27% 

increase, from 268 million tons (Mt) to 365 million tons (FAOSTAT, 2012). Globally, in 

developing countries, the production of potato has increased from 28 million metric tons in 

1963 to 149 million metric tons in 2005, which more than offsets the drop in production in 

industrialized countries (FAOSTAT, 2011). 

 Several governments are appreciating the economic and nutritional importance of potato and 

are developing appropriate policies to encourage its production and consumption with 

medium and long-term strategies for sustainable potato development. According to the 

International Potato Center CIP, as much as 50% of the increased food production that will be 

necessary to produce to meet the demands in the next 20 years will come from potatoes in 

China, the world’s biggest producer of potatoes (2012). Generally remarkable progress has 

been made in potato production and productivity levels in certain countries of the world, 

whereas in other countries the progress is limited. The opportunities for further development 

of the potato industry appear to be considerable, however at the same time the production 

constraints to be addressed are huge.  

  

http://faostat.fao.org/
file:///C:/Users/getah003/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/MMWFFEFE/FAOSTAT,%202008
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Production constraints of potato 

In the past, potato breeding programs focused primarily on developing varieties with 

maximum yield and quality, good storage properties, low incidence of physiological disorders 

and improved genetic resistance to major pests and pathogens that adversely affect the potato 

industry. Production constraints related to nutrient use efficiency were not considered as a 

priority research agenda for potato. Nowadays, problems related to nitrogen fertilization and 

use have become more critical, economically as well as environmentally. According to Hirel 

et al. (2011), nitrogen availability has become the second priority production constraint after 

drought to be addressed in the crop’s abiotic stress improvement program. A dramatic 

increase has occurred in crop yield through global utilization of synthetic nitrogen (N), 

increasing from 11.6 million tons in 1961 to 104 million tons in 2006 (Hoang et al., 2010). 

Consequently, high crop productivity is heavily dependent on nitrogen fertilization. However, 

the increase in crop yield and synthetic N consumption has resulted in increased air pollution, 

alteration of the quality of surface and ground water resources through runoff and leaching, 

increased greenhouse gas emission and coastal eutrophication (Billen et al., 2013). Moreover, 

N fertilizer prices are currently very high, which is a direct result of the cumulative world 

demand for the limited fossil fuel reserves. The high costs and low returns of fertilizer use 

particularly burdens smallholder farmers in developing countries, forcing them to grow their 

crops under suboptimal N supply (Lafitte and Edmeades, 1994; Dethier et al., 2012). 

 Potato is one of the major contributors to the leaching of nitrogen into the groundwater. 

Different research results indicate that adequate nitrogen application in the growing season is 

required to realize high potato yield and quality (Stark et al., 2004). However, effective 

management of nitrogenous fertilizers is a challenging task in potato production. Elevated 

ground water nitrate concentrations have been attributed to commercial potato production 

(Hill 1986; Richards et al., 1990) and significant emissions of nitrous oxide (a greenhouse 

gas) have been measured from potato fields (Flessa et al., 2002; Burton et al., 2008). 

Moreover, because of the high cost of N fertilizer, potato is one of the crops that suffer from 

being cultivated at N limiting conditions in tropical and sub-tropical regions of developing 

countries like Ethiopia.  

Potato was introduced in Ethiopia in 1858 by the German Botanist Schimper (Pankhurst 

1964), and used to be an important garden crop in many parts of the country. Currently it is 

one of the major food crops produced in large farm lands, especially in the highland parts of 

the country. The production area has increased more than fivefold from 30,000 ha from the 
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1970s (Kidane Mariam, 1979) to more than 179,000 ha today (CSA, 2014). Potato can 

potentially be cultivated on 70% of the 10 million hectares of arable land in the country 

(FAOSTAT, 2008). However, the average productivity in Ethiopia is below 10 tons/ha, which 

is far below the country’s potential. Poor soil fertility is one of the major production 

constraints that contribute to this low productivity. The Ethiopian potato breeding program 

has developed a number of improved potato varieties under high input conditions, while most 

farmers are producing in low input farming systems. According to Mulat (1999), the amount 

of fertilizer applied by most Ethiopian farmers to crops is below the recommended level; for 

instance, only 35% of the total cereal production area receives chemical fertilizer, and the 

average fertilizer use of Ethiopia is about 17kg/ha, which is very low by any standard 

(Agriculture For Impact, 2014).  

As the need for food production increases with an increasing population growth, it is 

important that strategies are developed to enhance the nutrient uptake and utilization 

efficiencies under both conditions of sufficient fertilization and conditions with chronic 

shortage of nitrogen. Several different strategies are currently being pursued to address 

problems associated with inefficient agricultural systems and the Nitrogen (N) cascade 

(Galloway et al., 2002). One of the strategies is breeding aimed at developing crop varieties 

that are more efficient at capturing soil nitrogen (N), thereby decreasing N leaching and 

denitrification losses and reducing plant N requirements (Cassman et al., 2002). To develop 

crop varieties that are more N efficient, knowledge of the genetic diversity and relationships 

among the genotypes is very useful in order to recognize gene pools that can be utilized for 

growth improvement under N-limiting conditions and more efficient use of nitrogen, to 

identify the gaps in germplasm collections and to realize effective conservation and utilization 

strategies (Esfahani et al., 2009). 

Genetic diversity of potato 

Broadening the genetic basis of a gene pool that is used as a gene source is highly desirable 

for any crop improvement program, because genetic diversity provides buffering against 

losses due to abiotic and biotic stresses. Cultivated potato and its wild relatives group under 

the genus solanum, which is the largest genus in the family Solanaceae with 2000 species 

(Volkov et al., 2003). All tuber-bearing Solanum species are grouped in the section Petota, 

and this section is subdivided into two subsections, Potatoe and Estolonifera (Hawkes, 1990). 

The subsection Potatoe comprises all tuber bearing potatoes, while the two non-tuber bearing 

series Etuberosa and Juglandifolia are grouped in subsection Estolonifera. Subsection 

file:///C:/Users/getah003/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.IE5/MMWFFEFE/FAOSTAT,%202008
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Potatoe (the tuber-bearing species) members have unique reproductive characteristics, that 

include the possibility to use both vegetative and sexual reproduction, presence of different 

ploidy levels, existence of an endosperm dosage system which controls interspecific 

hybridization, production of gametes with unreduced chromosome number and introgression 

(sexual compatibility among species) (Carputo and Barone, 2005). These unique 

characteristics may be of paramount importance in genetic diversity, breeding and evolution 

studies, however they increase the complexity of the taxonomic classification in section 

Petota, as it is difficult to differentiate one species from the other (Spooner and Bamberg, 

1994; Spooner, 2009).  Cultivated potato species have a haploid chromosome number of 12 

with ploidy level ranging from diploid (2n=2x=24) to hexaploid (2n=6x=72). The majority of 

the diploid species are self-incompatible, while the tetraploid and hexaploids are self-

compatible (Hawkes, 1990). 

 Potato has an extremely diverse gene pool that can be utilized in different potato breeding 

programs (see Fig. 1 for example in tuber genetic diversity) (Watanabe, 2002). However, due 

to loss of genotypes in the journey from South America to Europe, the genetic basis for 

commercial potato cultivars is narrow, and only a few stocks of the cultivated potato from 

South America were introduced in Europe (Ross 1986). After introduction, the genetic 

diversity was reduced further in Europe by the selection of short day phenotypes, and still 

further limited by the blight epidemics in the mid-nineteenth century. Moreover, exposure to 

high N fertilizer application rates in potato breeding and variety development resulted in 

cultivars that are more responsive to high N but less capable of producing optimum yields 

under minimum or insufficient nitrogen supply (Rowe, 1969; Hawkes, 1990). However, not 

all cultivars that are more responsive to high N are necessarily inefficient in using N. 

Cultivars that have good genetic potential for Nitrogen use efficiency and N responsiveness 

may be available in commercial cultivars. The ideal genotypes have both high genetic NUE 

and high N responsiveness, provided that the traits for NUE and N responsiveness are not 

genetically linked (weak linkage) (Han et al., 2015). Thus, in order to improve N use 

efficiency both in high N input and low N input systems, the available genetic resources that 

are found in the hands of the subsistence potato growers including commercial potato 

cultivars, traditional cultivars and the wild species will need to be exploited. 
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Fig. 1: Phenotypic variation of tuber shape and colour caused by genetic diversity of potato.  

Source: http://cipotato.org/potato/facts 

Nitrogen use efficiency: Definitions and concepts  

Nitrogen use efficiency (NUE) was defined by different authors in different ways, depending 

on the objective of the study and the crop under study. For example, Moll et al. (1982) 

defined NUE as the yield per unit of nitrogen resource available to the plant. Bock (1984) 

defined NUE as the total dry weight of the plant per unit of soil N. In this thesis we follow the 

definition of Moll et al. (1982). NUE is a function of two primary components; N uptake 

efficiency (NUpE) and N utilization efficiency (NUtE). N uptake efficiency (NUpE) is 

defined as the whole plant N content per unit of N supplied. It is the ability of the crop to take 

up nitrogen from the soil and store in the plant. The NUpE of genotypes depends on the plant 

root architecture and functioning in the soil. N utilization efficiency (NUtE) is the ratio of 

plant dry matter content per unit of N taken up by the plant. It is the efficiency of the 

genotype to fix carbon for the nitrogen taken up from the soil, which includes the process of 

photosynthesis, canopy development and longevity, nitrogen remobilization from all tissues 

to grain (sink) during grain filling in cereals, or bulking in root and tuber crops (Good et al., 

2004). These two components have been compared between fertilization levels and crop 

varieties in order to decide which component is more important for the overall NUE, however 

the results are often inconsistent and depending on the fertilization level and the crop species. 

For example, in maize the relative contribution of NUpE for the overall NUE was more at 

high N, while at low N, NUtE contributed more to the total NUE variation (Moll et al., 1982; 

http://cipotato.org/potato/facts
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Bertin and Gallis, 2000). This result seems to be opposite to wheat, for which NUpE 

contributed more to NUE at low N fertilization levels (Le Gouis et al., 2000). Overall these 

findings suggest that the contribution of NUpE and NUtE to the total NUE variation depends 

on the level of applied N fertilizer and the crop species or genotypes under evaluation. 

Potato N requirement 

Crop nitrogen uptake under non-limiting N supply is primarily determined by crop growth 

(Gastal and Lemaire, 2002) and there is generally a close relationship between plant N uptake 

and plant dry matter accumulation (Vos, 1997). In potato, before emergence, growth is 

primarily controlled by soil temperature (Yuan and Bland, 2005) and the seed tuber 

physiological maturity (Allen and Scott, 1992); it is hardly affected by soil N. After 

emergence potatoes require a steady supply of nutrients (Stark et al., 2004; Westermann, 

2005). Deficiencies or variations of soluble nutrients (especially N) cause poor vine health, 

reduced pathogen and insect resistance, resulting in decreased tuber yields and tuber quality 

(Ojala et al., 1990, Stark et al., 2004).  

Increased fertilizer N application increases leaf area index (LAI) through increased size and 

number of leaves (Vos 1995). It can also increase leaf longevity and rate of photosynthesis 

(Vos and Biemond 1992), thereby increasing length of maturity period. N availability has also 

an effect on onset of tuberization (Ewing and Struik, 1992), final tuber yield and harvest 

index of potato (Vos & MacKerron, 2000). The amount of N fertilizer applied has also its 

own influence on the nitrogen uptake and utilization efficiency of potato. N use and 

utilization efficiency decreased with increasing fertilizer N rate (Zebarth et al., 2004a, Ospina 

et al., 2014). The crop’s ability to take up available soil nitrogen is typically low; 50% lower 

than other crops (Tyler et al., 1983; Dilz 1987). This is at least partly attributed to its shallow 

rooting system and therefore inefficiency N uptake (Yamaguchi et al., 1990; Peralta et al., 

2002; Pack et al., 2006).  

The extent to which N availability affects different physiological and agronomic traits of a 

crop species depends on the ability of the crop species to take up N from the soil and utilize it 

for the production of proteins and other essential N-containing components and therefore 

implicitly depends on the NUE of the crop species.  
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N use efficient plants 

Plants use three main strategies to use the available resource efficiently or to survive in 

irregular resource availability conditions. The first strategy is specialization: a genotype has 

adapted optimally to a specific environmental situation (low N environment-specific efficient 

or high N environment-specific efficient strategy); the second one is generalization: a 

genotype expresses moderate relevance for most environments, and the third one is 

phenotypic plasticity: the potential of the genotypes to express different phenotypes in 

different environments (Fritsche-Neto et al., 2012). Given the above three nutrient use 

strategies, farmers cultivating their crops under varying conditions including both stress and 

ideal conditions do not only need varieties that can give reasonable yield under low N stress 

conditions, but that also respond to ideal conditions with a sufficient yield increment 

(phenotypic plasticity). However, in most cases, phenotypic plasticity has a high negative 

association with yield stability (Bradshaw 2006), and stable varieties typically have low 

plasticity (less yield difference between most environments). Tolerant genotypes usually give 

moderate yield whether it is under ideal growing conditions or marginal conditions (under 

permanent stress) (Cruz et al., 2004). The productivity of these “generalized” genotypes is 

higher in resource poor environments, but under non-limiting environmental conditions, the 

yield increment is relatively low. Conversely, high-yielding crops under abundant N 

availability often show high plasticity, and therefore relatively low yields under N-limiting 

conditions. Limiting the trade-off between phenotypic plasticity and high yields under both 

low and high N is the challenge that breeders face in developing cultivars that are stable and 

high yielding under varying conditions. This trade-off also exemplifies the need to select for 

NUE and NUE traits under both high and low N conditions. 

N limitation adaptation mechanisms in plants 

At field conditions, plants are exposed to N-limiting situations due to several environmental 

factors like soil erosion, leaching, volatilization and microbial consumption. Therefore, 

adaptation to N-limiting conditions is an important survival strategy for plants to complete 

their life cycle effectively and give progenies. These adaptations include reduction in growth 

and photosynthesis, remobilization of N from old organs to actively growing ones, and the 

accumulation of anthocyanins (Ding et al., 2005; Diaz et al., 2006). N shortage results in 

marked reduction of plant photosynthesis in several crops, and the reduction is substantial, 

because more than half of the total leaf N is allocated to the photosynthetic apparatus (Makino 

and Osmond, 1991). Photosynthetic capacity and total amount of N per unit of leaf area are 
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often positively correlated (Sage and Pearcy, 1987; Walcroft et al., 1997). N deficiency 

strongly affects photosynthesis, sugar metabolism, and /or carbohydrate partitioning between 

source and sink tissues (de Groot et al., 2003; Scheible et al., 2004). There is tangible 

evidence that N deficiency induces a sink constraint within the plant due to reduced growth, 

and photosynthesis is reduced to balance carbon assimilation to the reduced sink and low N 

availability (Paul and Foyer, 2001). N deficiency was shown to result in carbohydrate 

accumulation (sugars and starch) in the leaves, higher levels of carbon allocation to the roots 

and an increase in the root-to-shoot biomass ratio (Scheible et al., 2004; Remans et al., 2006).  

Generally, plants constantly sense the changes in their environment, and when mineral 

elements are scarce, they usually allocate a higher proportion of their biomass to the root 

system, and this response is a result of metabolic changes in the shoot and an adjustment of 

carbohydrate transport to the roots (Lawlor et al., 2001). All these physiological and 

morphological changes are genetically and environmentally controlled, thus to develop N 

efficient crop varieties under N deficient conditions, knowledge about the genetics of NUE 

and NUE related traits is vital. 

 

The genetic basis of NUE  

NUE is a complex agronomic trait controlled by a large number of genes. The recent 

advancements in quantitative genetics have provoked a number of research groups to exploit 

the genetic differences of NUE in a focused manner. The association of physiological and 

agronomic traits with molecular markers is vital to infer the genetic basis of complex traits 

like NUE to determine the genes underlying the traits (Prioul et al.,1997; Hirel et al., 2007). 

The key organizational elements of the N assimilation pathway in higher plants are well 

recognized. Nitrate or ammonium uptake signifies the first step in this pathway, and a number 

of N transporters have been identified (Orsel et al., 2002). The enzymes nitrate reductase 

(NR) and nitrite reductase (NiR) are involved in the reduction process of nitrate to nitrite and 

nitrite to ammonium, respectively (Meyer and Stitt, 2001). The ammonium produced by this 

primary assimilation process is then incorporated in organic molecules by the glutamine 

synthetase (GS) or the glutamate synthase (GOGAT) pathway (Hirel and Lea, 2001).  
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Figure 2. Main reactions involved in nitrogen assimilation in higher plants. The main enzymes involved in 

nitrogen assimilation are indicated in italics: NR = nitrate reductase; NiR = nitrite reductase; Nase = nitrogenase; 

GS = glutamine synthetase; GOGAT = glutamate synthase. Ammonium is incorporated into organic molecules in 

the form of glutamine and glutamate through the combined action of the two enzymes GS and GOGAT. Carbon 

originating from photosynthesis through the tricarboxylic acid cycle (TCA cycle) provides the α–ketoglutarate 

needed for the reaction catalyzed by the enzyme GOGAT. Amino acids are used for the synthesis of proteins, 

nucleotides and other N-containing molecules (adapted from Hirel et al., 2011). 

In order to identify the main regulatory and functional genes involved in regulation of the N 

assimilation pathway that can be marked for genetic mapping and tested for linkage with the 

trait, information on the biochemical and signaling pathways is required (Werij et al., 2007; 

Appleford et al., 2005). GS1 might be a key component of plant NUE and yield, whereas the 

physiological function of GS2 associated with NUE still needs to be identified (Bernard et al., 

2009; Bernard et al., 2008). In addition to the identification of genes that regulate GS1 and 

GS2, researchers have identified QTLs for NUE and related physiological and agronomic 

traits in a number of crops. Obara et al., (2001) identified QTLs associated with NUE and 

determined their co-localization with glutamine synthetase1 (GS1) and glutamate synthetase 

NADH-GOGAT in rice. Many QTLs for agronomic traits associated to NUE and yield have 

been detected in the chromosomal regions surrounding GS2 and these may be important for 

breeding wheat and rice varieties with improved agronomic performance and NUE (Wu and 

Luo 1996; Obara et al., 2001; Yamaya et al., 2002; Fontaine et al., 2009). In a maize study, 

QTLs for yield (and its components) and QTLs for GS enzyme activity were identified in the 

same region, both of which co-localized with genes encoding cytosolic GS (Hirel and Lea, 

2001).  
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In potato, a wide range of phenotypic variation was observed for NUE among wild accessions 

and commercial cultivars, however efforts to understand the physiological and genetic basis 

for differences in NUE among cultivars are generally limited. Ospina (2016) tried to assess 

the genetic variation of potato for NUE under low and high N conditions using molecular 

markers and as a result both N level dependent and independent QTLs were detected for most 

canopy development traits of potato. Quantification of genetic diversity of the available 

genetic resources for their NUE and NUE related traits using biometrical tools and molecular 

markers is crucial to understand the genetic basis of NUE in potato. 

Breeding for NUE 

Nitrogen availability is crucial to obtain high yields in potato. Improvement of NUE in potato 

can reduce the nitrogen input required, consequently economic gain will be increased and 

environmental pollution due to N loss will be reduced. Although genetics and breeding of 

potato uses advanced approaches to identify the genes required for the genetic improvement 

of potato, the tetrasomic inheritance, high heterozygosity and self-incompatibility barriers 

hinders the genetic improvement of the potato crop (Jansky and Peloquin, 2006; Lindhout et 

al., 2011). On the other hand, these reproductive constraints can be compensated by other 

unique features of potato; namely the use of unreduced gametes (2n gametes) and the 

possibility of crossing diploids with tetraploids. These attributes contributed a lot to the 

evolution and genetic variation of potato (den Nijs and Peloquin, 1977; Peloquin et al., 1989; 

Carputo and Barone, 2005; Ortiz et al., 2005)     

A wide range of phenotypic variation in NUE has been reported in commercial potato 

cultivars, clonal selections, and accessions of wild potato species (Errebhi, Rosen, and Martin 

et al., 1998, Errebhi et al., 1999; Zebarth et al., 2004a; Sharifi et al., 2007). This genetic 

variability within the cultivated potato and its wild relatives can be exploited by breeders to 

improve the NUE of the crop. However, the observed variation (phenotypic variation) is the 

interaction effect of genotype with environment, and to determine the independent effect of 

these factors, the total phenotypic variation should be partitioned into heritable and non-

heritable components using suitable genetic parameters. According to Gopal (1999), genetic 

parameters and trait associations provide information about the expected response of different 

traits to selection and these aid in developing optimal breeding strategies. However, it may be 

challenging to improve such complex traits by direct selection. Due to this fact, the efficiency 

of selection for complex traits in low N environments may be improved through selection for 

correlated secondary traits (Blum, 1988; Hamawaki et al., 2012). Traits related to N uptake 

efficiency and N utilization efficiency have been suggested as a selection criteria for the 
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improvement of NUE. In potato, NUE is highly correlated with canopy cover traits and 

maturity, and it was generally higher for later maturing potato cultivars than for early 

maturing ones (Zebarth et al., 2004a; Tiemens-Hulscher et al., 2012 ; Ospina et al, 2014). 

With this information, one can identify the best selection strategy of superior genotypes for a 

targeted trait breeding program. Successful breeding for complex traits like NUE does not 

only require information about the effective agronomic and physiological traits that contribute 

to NUE improvement, but their heritability and genotype-by-environment interaction should 

be established, and suitable selection tools for these traits of interest need to be available. 

Genetic mapping approaches like quantitative trait loci (QTL) and association mapping using 

molecular markers and genomics tools are nowadays essential tools in dissecting genetics of a 

complex trait like NUE. 

QTL mapping 

Biometrical approaches of quantitative genetics that deploy the phenotypic and pedigree 

information examine the joint effects of all genetic factors, and cannot distinguish the effects 

of individual loci. To dissect the complexity of quantitative traits in component loci and 

identify the genetic factors that influence quantitative traits, QTL analysis is a powerful tool 

(Doerge, 2002). QTL analysis with a wide range of molecular markers provides opportunities 

not only for the identification of QTLs that determine the phenotypic value of a particular 

trait, but also for the analysis of the relationships between traits (Lebreton et al., 1995; Simko 

et al., 1997). In the last two decades many QTL analysis studies have been published on 

different traits of potato, such as flower color, foliage maturity, tuber skin texture, dry matter 

content, specific gravity and yield (McCord et al.,2011), yield, agronomic and quality traits 

(Bradshaw et al.,2008), tuber yield and starch content (Schafer-Pregl et al.,1998, Werij et al., 

2012), tuber dormancy (van den Berg et al., 1996), tuber shape (Van Eck et al., 1994b), tuber 

skin color (Gebhardt et al.,1989), tuber flesh color (Bonierbale et al., 1988), shoot fresh 

weight, tuber number, tuber weight and root length under drought stress and recovery 

conditions (Anithakumari et al., 2011;  2012) and NUE related canopy cover traits under 

contrasting N regimes (Ospina, 2016). However, knowledge about the genetic dissection of 

NUE in potato is still limited and hardly any QTL has been published for NUE and NUE 

related traits of potato. Moreover, selection for NUE and improvement of NUE in potato 

under marginal conditions targeted at regions where subsistence farmers rely on potato yields 

with little or no N input (like in Ethiopia) is hardly or not at all explored.  
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Association mapping 

Traditional QTL mapping has been used as a method to understand the genetic regulation of 

polygenic traits and has been important for detecting QTLs in different crop species in the last 

20 years. However, association mapping is rapidly becoming the method of choice to identify 

QTL and to find molecular markers associated with complex traits. This is mainly due to its 

broad allele coverage, high resolution and cost effectiveness, as it does not require the 

creation of mapping populations, and can be used to target multiple traits (Ross-Ibarra et al., 

2007; Stich et al., 2006). This methodology avoids some limitations of QTL mapping and it is 

often even a preferred alternative for genetic studies. Association analysis has the potential to 

detect QTL associated with the desired trait and, when a large number of markers are 

available for a large set of genotypes, even to identify the causal polymorphisms within a 

gene that are responsible for the difference in two alternate phenotypes (Gupta et al., 2005). In 

association mapping the resolution of the QTL mapping is high as often only closely linked 

alleles are in linkage disequilibrium (LD) due to long history of many generations of 

recombination (Ingvarsson and Street, 2011). Moreover, association mapping deals better 

than bi-parental mapping with non-inbred crop species like potato that has complex 

tetrasomic inheritance (Li et al., 2010b). Association mapping studies in potato have been 

published for disease resistance and quality trait mapping. Gebhardt et al., (2004) mapped late 

blight resistance and plant maturity, Simko et al. (2004) Verticillium resistance, Malosetti et 

al., (2007) late blight resistance and D’hoop et al. (2008, 2014) used association mapping for 

agro-morphological and quality traits. The genetic desiccation of NUE and NUE related traits 

in potato using association mapping method has been reported by Ospina (2016). Various N 

level dependent and N level independent marker-trait associations were identified for many 

NUE related traits; however, the consistency of the identified marker-trait associations may 

be affected by the genotypes involved in each study and the variation of the environment in 

which the trial was conducted.   

Genotype-by-environment: the challenge in selecting for NUE 

NUE is a complex quantitative trait, and such traits are often controlled by multiple genes, 

with each gene having a small effect. In addition, the phenotypic evaluation of the NUE-

associated traits is strongly influenced by environmental variation. Genotypes tested in 

different production systems, locations and years usually have significant fluctuation in yield 

due to the response of the  genotypes to biotic as well as abiotic environmental effects (Kang, 

2002). This so-called genotype-by-environment (GE) interaction affects the breeding 
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progress, because it complicates the detection of superior genotypes across environments 

(Ebdon and Gauch, 2002). It also results in low correlation between phenotypic and genotypic 

values, causing reduced selection efficiency. This leads to estimations of heritability in one 

environment that cannot be easily translated to other environments, and to poor predictions of 

genetic advance (Comstock and Moll, 1963). Therefore, determining the degree of GE 

interaction for a trait of interest facilitates more reliable selection and creation of test 

programs for the development of superior varieties.  

Evaluation of crop varieties for their NUE potential is not common in most crop breeding 

programs. Most breeding programs are conducted in environments where inputs like nitrogen 

(N) fertilizers are highly controlled to minimize the nutrient deficiency and environmental 

variability. However, cultivars developed under high N input condition may not perform well 

under low N input conditions. Sofar no work has been done on the suitability of test 

environments and stability of potato cultivars for NUE under different production conditions 

including low N level and high N level as part of the environment.  

Objectives and scope of the thesis 

The research described in this thesis was initiated to enhance our understanding of the genetic 

basis of NUE and NUE-related agronomic and physiological traits in potato when grown in 

Ethiopia. We have studied genetic diversity for NUE of cultivated potato from Ethiopia and 

Western Europe under Ethiopian growing conditions, and identified the joint and individual 

effects of QTLs on our target traits in these cultivars as well as in a diploid mapping 

population. Finally we have addressed GxE interaction considering N level as part of 

environment and NUE as a target trait, which will help us to exploit genetic and 

environmental resources more efficiently and identify ideal test environments and superior 

genotypes for NUE improvement at different N fertilizations levels and production systems.  

In Chapter 2, the extent and pattern of genetic diversity and association among desired 

agronomic and physiological traits that affect NUE of potato under low and high N 

availability are extensively evaluated and discussed. Cluster analysis, estimation of genetic 

parameters, correlation and path coefficient analysis are used as tools to assess the genetic 

diversity and association of traits. Potential agronomic and physiological traits that show 

strong positive correlations with NUE and can be used as potential secondary traits for 

indirect selection and genetic improvement of NUE are identified and discussed. Chapter 3 is 

dedicated to finding genetic factors contributing to NUE under low and high N conditions in a 

diploid mapping population (CxE). The population was grown in Ethiopia, at several 
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locations and in two seasons, and significant variation among genotypes was observed for 

NUE and NUE related traits both under low and high N condition.  In order to identify 

potential QTLs that contribute to NUE of potato under low and high N conditions, a SNP 

marker-rich integrated linkage map of CxE was used. In Chapter 4, European commercial 

potato cultivars and progenitor lines genotyped using infinium SNP array technology markers 

were used for association mapping. The population was grown in multiple locations and 

years, and phenotyped, and marker trait associations and multi-trait QTLs were identified. 

In Chapter 5, Genotype x Environment interaction of the response to low and high N levels is 

described in European commercial potato cultivars and progenitor lines, along with Ethiopian 

cultivars. Eight environments representing low and high N level combined with rain fed and 

irrigation production conditions were considered as test environments. As a result, two mega 

environments, suitable cultivars in each mega environment and ideal testing environments 

within the mega-environment were identified. The discriminating power and 

representativeness of test environments, and the mean performance and stability of the 

genotypes in NUE within a mega-environment are extensively reviewed and discussed. In the 

general discussion (Chapter 6), the results from Chapter 2 to Chapter 5 are summarized, and 

examined for their implications on the potato breeding strategy for the improvement of NUE. 

The prospects of breeding for NUE in potato especially for low N conditions in relation to our 

findings is discussed. 
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Abstract   

The importance of proper N fertilizer use gets more critical as environmental and economic 

concern over N fertilizer use intensity in crop production increases. To assess the genetic 

diversity for nitrogen use efficiency (NUE) and related traits in potato, a total of ninety seven 

(eighty-eight Dutch and nine Ethiopian) cultivars were evaluated at two nitrogen levels (40kg 

ha
-1

, and 120kg ha
-1

) for 18 quantitative traits in Debre-Tabor and Injibara, (Ethiopia) in the 

2013 rainfed season. Plant height, maximum canopy cover (Vmax), area under the canopy 

curve (AUC), lower leaf chlorophyll content, tuber yield componets and NUE were 

significantly affected by N levels across locations. NUE, tuber dry matter %, and days to 

maturity had higher mean values at low N (LN) than at high N (HN) in both locations. The 

tuber yield reduction due to N limitation was significant, and tuber number plant
-1

 reduced 

total tuber weight more than average tuber weight especially in Injibara. The cluster analysis 

grouped the Ethiopian cultivars into five and four clusters at low and high conditions, 

respectively. The Dutch cultivars grouped in to five clusters at low N input and seven clusters 

at high N input and the genetic distance between most clusters was significant. High 

phenotypic coefficient of variation, genotypic coefficient of variation, heritability and genetic 

advance as a percent of mean were observed for tuber number plant
-1

, average tuber weight 

and NUE in Debre-Tabor and plant height, tuber number plant
-1

 and average tuber weight in 

Injibara under both N regimes. Strong phenotypic correlation coefficients were observed 

between NUE and tuber number plant
-1,

 days to maturity, tuber dry matter %, Vmax and AUC 

under both low and high N input conditions. Dutch cultivars showed rapid initial canopy 

development and matured early compared to the Ethiopian cultivars at both N levels and 

locations. Higher NUE values were observed for late maturing potato cultivars at both N 

rates. Our study indicates that potato cultivars can be exploited for NUE improvement 

through improving and pyramiding of component traits at both low and high N levels. 

Keywords: Genetic diversity, correlation, NUE, potato  
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Introduction 

Potato is the 1
st
 non-grain food crop in the world, with an important contribution to the diets 

and livelihoods of millions of people globally. It is  well-recognized by the United Nations 

(UN) as staple food in contributing to the Millennium Development Goals (MDG) for its 

potential to reduce poverty and improve food security (Bradshaw, 2009). However, the 

productivity potential is highly dependent on nitrogen fertilizer level applied and/or available 

in the soil. With high N fertilizer prices, the return of N input is low due to low uptake and 

utilization efficiency of the crop. The high costs and low returns of fertilizer use particularly 

burdens smallholder farmers in developing countries, and force them to grow their crop under 

suboptimal N supply (Lafitte and Edmeades, 1994). Application of surplus nitrogen beyond 

the utilization capacity of the crop is affordable in high input agriculture and maximizes yield, 

but leads to nitrate pollution of ground water (Bertin and Gallais, 2001). In developed 

countries 50-70% of the nitrogen provided to the soil for crop production is lost (Hodge et al., 

2000).  Most commercial potato cultivars are grown with high N fertilizer levels often 

combined with irrigation, resulting in high reduction of nitrogen utilization efficiency 

(Zebarth et al, (2004a), highly contributing to N leaching and ground water contamination 

(Hill, 1986; Richards et al., 1990). Significant emissions of nitrous oxide (a greenhouse gas) 

were also measured from potato fields (Flessa et al., 2002). Collectively, this makes a 

compelling case for improving N fertilizer use in agricultural crops in developed as well as 

developing countries; to avoid nitrate pollution and to retain a sufficient profit margin, 

cultivars that are tolerant to low levels of nitrogen input are desirable (Bänziger et al., 2001).  

Identification of crop plants that show exploitable variation for the traits of interest is the first 

step of any successful crop breeding program. Genetic diversity studies contribute to the 

understanding of genetic relationships among populations and consequently lead to specific 

heterogeneous groups which are essential for the identification of parents for hybridization 

(Mostafa et al., 2011). Knowledge about the level of genetic diversity can aid with the 

introgression of desirable genes from diverse genepools into the available germplasm 

(Thompson and Nelson, 1998). To this end, a better understanding of the genetic diversity, the 

different physiological processes involved and the underlying genetic relationships in plants 

grown under low and high N input regimes could give a better insight for breeding programs 

on nitrogen use efficiency (NUE). Genetic variation in potato germplasm offers opportunities 

to improve potato by combining favorable traits contributing to yield under low N input 

conditions. Significant variation in biomass partitioning and N uptake efficiency at low and 
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high N environments was observed among potato cultivars, hybrids and wild species (Errebhi 

et al., 1999). Differences in NUE under high and low N input regimes were shown to be 

strongly associated with maturity type (Tiemens-Hulscher et al., 2012). Late maturing potato 

cultivars recorded higher NUE values than early maturing ones (Zebarth et al., 2004a, Ospina 

et al., 2014). However, the genetic base of NUE in potato is still poorly understood. 

Therefore, it is important to have genetic diversity information of commercial cultivars in 

NUE and related traits in order to use them as germplasm source for potato NUE breeding 

programs. 

Genetic parameters and trait associations provide information about the expected response of 

different traits to selection and help in developing an optimal breeding strategy (Gopal, 1999).   

In potato, many authors reported medium to high genetic parameter estimates. Moderate 

genotypic coefficient of variation (GCV) and high phenotypic coefficient of variation (PCV) 

values were reported for plant height, leaf area, tuber specific gravity and tuber dry matter 

(Regassa and Barasavaj, 2005; Desai and Jaiminis, 1997). High heritability combined with 

high genetic advance was also recorded for tuber yield plant
-1

, tuber number plant
-1

 and 

average tuber weight (Regassa and Barasavaj, 2005). However, genetic parameter estimates 

may vary from population to population as well as from environment to environment. 

Accordingly, when estimating genetic parameters, one should also consider the population 

represented in the experiment and the environmental condition where the experiment was 

conducted in (Dudely and Moll, 1969; Nyquist, 1991). Therefore, information on the genetic 

parameters of potato NUE and related agronomic and physiological traits grown both under 

low and high N conditions is vital for NUE improvement in potato. Similarly, the interrelation 

of NUE with other physiological and agronomic traits is important for designing an effective 

breeding program. So far, information on the genetic parameters of different agronomic and 

physiological traits involved in NUE and the underlying genetic relationships of these traits in 

potatoes is limited.  The objective of this study was: (i) To assess the extent and pattern of 

genetic diversity for NUE of Western potato cultivars compared to Ethiopian cultivars (ii) To 

estimate genetic parameters and association among desired traits that affect NUE of potato 

under low and high N availability. 
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Materials and methods  

Plant materials 

Potato tubers of eighty-eight Dutch cultivars provided by HZPC Holland BV and nine 

Ethiopian varieties were used in the experiment. The Dutch cultivars are common cultivars in 

the European potato market, used for different purposes. From the Ethiopian set, Agerie and 

Ater-Ababa are traditional cultivars that are relatively tolerant to most biotic as well as abiotic 

stresses. Other varieties originated from the International Potato Center (CIP) and were 

released by different research centers in Ethiopia for their late blight resistance, tuber yield 

and wide adaptability in different parts of the country. See Suppl Table 1 for a full list of the 

used varieties. 

Field trials and experimental design 

The experiment was conducted at two different sites in North-western Ethiopia: Injibara and 

Debre-Tabor, which represent the major potato growing areas in this part of the country. 

Injibara is located at 10.85˚N latitude and 36.80˚E longitude. The area receives about 

2300mm average rainfall per year with average temperature of 8˚C (night) and 22˚C (day). 

The soil at the Injibara site is Acrisol with a pH of 4.8, and is of very strongly acidic nature. 

This soil acidity normally originates from the high amount of rainfall in the area, which is 

associated with heavy leaching of the top soil nutrients. Debre-Tabor is situated at an 

elevation of 2650 masl with 11.89˚
 
N longitude and 38.04˚

 
E latitude. The average night and 

day temperature is 12˚C and 23˚C, respectively, with average rainfall of 1500mm per year. 

The soil at the Debre-Tabor site is Luvisol of pH 5.2. The experiment was laid out in a split-

plot arrangement with two replications, where the main plots were allocated to the low and 

high N rates (40kg ha
-1

, and 120kg ha
-1

) and the sub-plot to the genotypes. Each subplot was 

planted in a single row consisting of 10 tubers, planted at a recommended inter- and intra-row 

spacing of 0.75m and 0.30m respectively, and each subplot was bordered by a reference 

potato cultivar. Pest and disease management, weeding and ridging and other cultivations 

were carried out as recommended and when required.  
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Table 1. Chemical properties of soils of the testing sites in Debre Tabor and Injibara.  

 
Exchangeable Cations (cmolc.kg

-1
) 

Sites Soil 

type 

Soil 

depth 

(cm) 

Soil 

pH 

Total 

N (%) 

Organic 

carbon 

(OC) % 

C/N Available 

P (ppm) 

Na
+
 K

+
 Ca

2+
 Mg

2+
 H

+
 Al

3+
 

D/Tabor Luvisol 0-20 5.2 0.08 3.2 40 3.7 0.6 0.5 9.9 2.1 0.04 0.2 

20-40 5.5 0.07 2.6 37 3.4 1.1 0.5 11.0 2.2 0.02 0.2 

Injibara Acrisol 0-20 4.8 0.03 3.5 117 9.5 1.2 0.5 6.7 2.0 0.08 2.3 

20-40 4.8 0.07 3.4 49 7.4 1.2 0.4 8.0 2.1 0.62 2.0 

 

Phosphorus and nitrogen sources were from the soil as well as from externally applied 

fertilizer. To determine the available nitrogen in the soil, composite soil samples were 

collected using a core sampling method at five locations at 0-20 cm and 20-40 cm depth 

before planting from each of the experimental sites and the available residual nitrogen in the 

form of NO3
-
 and NH4

+
 was extracted using a KCl extraction method. A total of 15 and 12kg  

ha
-1

 N were recorded at Injibara and Debre-Tabor, respectively. The total amounts of N (40 

and 120 kg ha
-1

) were achieved by adding N to the soil in the form of urea and di-ammonium 

phosphate (DAP). Phosphorus fertilizer was applied following the recommendation for that 

area (69kg ha
-1

 P2O5) in the form of DAP and tri-super phosphate (TSP). The whole P source 

was applied at planting while N application was split in two: a week after emergence and at 

early flowering.  

Trait measurements  

The traits were measured similarly at the two experimental locations (Debre-tabor and 

Injibara). Days to emergence (DTE) was the number of days from planting when 50% of the 

plants emerged; it was assessed daily until all the plots had more than 50% emergence. Plant 

height (PH) was measured as the distance in cm from the soil surface to the top of the canopy 

when 50% of the genotypes were flowering. Stem number plant
-1

 (SNPP) was the number of 

stems of a genotype counted before the plant canopy declined. Chlorophyll content (CC) was 

measured in the lower and upper part of two middle plants in a row and on two leaves of each 

plant. The readings for chlorophyll content was taken from the third or fourth leaf from the 

top of the plant for upper leaf chlorophyll content (UCC), and the second or the third leaf 
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from the base of the plant for lower leaf chlorophyll content (LCC) using a SPAD-502 

chlorophyll meter (Minolta Co., Ltd. Japan), when 50% of the genotypes were flowering. 

Soil cover (SC) was assessed every five days starting from 30 days after planting using a 

0.6m x 0.75m frame with 100 grid squares, positioned over the same middle plants in a plot 

for each measurement. Squares filled with foliage for more than 50% were counted, and the 

percentage of filled grid squares was considered soil cover percentage (SC%). Days to 

maturity (DTM) was determined as the number of the days from emergence to the day at 

which more than 90% of the plants in a plot attained physiological maturity (90% of the 

haulm tissues brown). The assessment was carried out every day starting from the time that 

early varieties showed the first signs of maturity. 

Tuber traits  

Harvesting was carried out once, when the last cultivars reached physiological maturity, and 

eight plants per plot were harvested and used to evaluate tuber traits. Tuber number plant
-1 

(TNPP) was recorded as the number of tubers collected from a matured plant at harvest. 

Average tuber weight (ATW) was the ratio of the weight of tubers per plant and number of 

tubers per plant at harvest. Tuber yield plant
-1

 (TYPP) (the average tuber yield plant
-1

) was 

calculated taking the tuber yield (fresh weight) of all harvested plants from a cultivar, divided 

by number of plants harvested.  

Specific gravity (SG) was determined using the tuber specific gravity procedure of weight in 

air and under water (Murphy and Goven, 1959). In evaluating the SG of each variety, healthy 

and marketable-sized grade (20mm and above) tubers were selected randomly from each 

variety harvest. Then, tubers were cleaned, and weighed both in air and water following the 

procedure of Murphy and Goven (1959). Specific gravity values were computed using the 

following formula:    

where SG= specific gravity of the material, W1= weight in air of the sample tuber, in g and 

W2= Weight of the sample completely immersed in water, in g. Tuber dry matter % (TDM%) 

normally is determined as a ratio of dry tuber weight to fresh weight expressed in percentage; 

we determined TDM% indirectly from SG using empirical conversion factors following the 

equation of Kleinkopf et al. (1987): solid (Dry matter %) = -214.9206 + (218.1852 x SG). 
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Tuber dry weight (TDW) was estimated indirectly from specific gravity and tuber dry matter 

content in percentage, using the following formula: 

 

 

Where TDW = Tuber dry weight in g, TDM% = Tuber dry matter percentage, TFW = Tuber 

fresh weight in g. 

Nitrogen use efficiency (NUE) is typically calculated as the yield per unit of N resource 

available to the plant (Moll et al., 1982). However, the method of NUE determination 

depends on the crop species and the objective of the study. In our case NUE was determined 

as the tuber dry matter production, or dry weight of the tuber per unit of N supplied. In this 

study, NUE was determined as the tuber dry matter production, or dry weight of the tubers  

ha
-1

, per unit of N supplied ha
-1

 (N in the soil + applied N). 

 Data processing 

The beta thermal time for canopy cover assessment was calculated from the date of 

emergence for each experimental unit, using the sigmoid part of the beta function for 

determinate growth (Yin et al.,2003), and a cardinal temperature (with 5.5
0
C as a base 

temperature, 23.37
0
C as optimum, and 34.58

0
C as ceiling temperature) that determines the 

vegetative growth of potato (Khan 2012, Khan et al.,2013). Hourly temperature was collected 

from the Debre-Tabor weather station for Debre-Tabor and we used the local climate 

estimator (New_LocClim) in the FAO wave site metrological database for Injibara (FAO, 

2014).  

The model for canopy development was fitted using the soil cover data and beta thermal time 

for each assessment, with the NOLIN procedure of SAS (SAS, Institute inc, 2004) (Yin et al., 

2003). The canopy cover dynamics in potato as quantified by the grid method typically 

followed a pattern that can be divided in three major growing phases of the crop, i.e building 

phase, maximum cover phase and declining phase, and the equations describing each phase of 

the curve are shown along with the initial values for each parameter in Khan (2012) and Khan 

et al. (2013). Estimated parameters with their standard errors were obtained after 

optimization. For each experimental unit we estimated the values of five model parameters 

(tm1, t1, t2, te and Vmax) according to Khan (2012) and Khan et al. (2013). The time (t) 

parameters: tm1 (inflection point in the build-up phase of the growth curve), t1 (time when 

100

*% TFWTDM
TDW 
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the canopy cover reaches its maximum growth), t2 (time of onset of canopy declining), and te 

(time when canopy cover reach to zero) were expressed in thermal time/day (td). The last 

parameter Vmax is the maximum canopy cover value with percentage of soil cover as unit. 

Based on the canopy development curve model the following characters were calculated: t2-t1 

(duration of maximum canopy cover in td), te-t2 (duration of senescing of the canopy), 

AP1(area under the curve for growth phase one in % td), AP2 (area under the curve for 

growth phase two in % td), AP3 (area under the curve for growth phase three in % td), and 

AUC (area under the curve for the entire crop growth cycle in % td). The value of AUC 

represents the capacity of the crop to intercept solar radiation over the whole growing season 

(Vos 1995, 2009).  

 

Statistical analysis  

To estimate the variance components for each trait, two types of analysis of variance 

(ANOVA) were performed using software Genstat 16
th 

Edition. The first ANOVA was 

executed separately for each N level at each location following a randomized complete block 

design system using one-way ANOVA. The second ANOVA was performed for each location 

and across locations using the general linear model for split plot design with two N level 

treatments as main plot and the genotypes as sub-plot. Least significant difference (LSD) was 

used to separate the means at 1% and/or 5% level of significance. Clustering was carried out 

using SAS software version 9.3 based on the generalized D
2
 distances by an average linkage 

method of hierarchical clustering called Unweighted Pair Group Methods with Arithmetic-

average (UPGMA). Genetic distance within and between clusters was calculated using the 

generalized Mahalanobis's D
2
 statistics. The D

2
 is defined as:     xjxiSxjxiijD  12  

where, D
2
ij = is the distance between two clusters i and j; Xi and Xj are the two vector means 

of the traits for i
th

 and j
th

 groups respectively, and S
-1

 is the inverse of the pooled covariance 

(Mahalanobis,1936). The D
2
 value obtained for pairs of clusters was considered as the 

calculated value of Chi-squared (χ2
) and was tested for significance at the required level of 

probability against the tabulated values of χ2
 for p degrees of freedom, where p is the number 

of characters considered (Singh and Chaudhary, 1985).  

Regression and correlation analysis were carried out between the traits measured in each 

specific environment for traits that had a significant F test value. The variance components 

were computed using Genstat 16
th 

Edition. The phenotypic (PCV) and genotypic (GCV) 

coefficient of variations were determined using the method defined by Burton et al. (1953): 
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Broad sense heritability was estimated from the total genetic variance using the method 

described by Falconer and Mackay (1996): eggH 2222 /   . The genetic advance (GA) 

expected under selection, assuming selection intensity of 5% was calculated by the formula 

suggested by Johanson et al. (1955):  pHKGA 2  

Where k = selection differential (k= 2.06 at 5% selection intensity), H
2 

= broad sense 

heritability, and p  phenotypic standard deviation.  

To study the inter-relationships among measured traits and their direct and indirect 

contributions to NUE under low and high N fertilizer level, means of traits that revealed high 

genetic variation were subjected to correlation and path analysis (Dewey and Lu, 1959; Lal et 

al., 1997).  

Results  

N level effects 

A summary of traits values under low and high N regimes at each location is presented in 

Table 2. The response to the N treatments were different from trait to trait. Most traits had 

higher mean values at high nitrogen (HN) than at low N (LN). NUE, tuber dry matter 

percentage (TDM%) and days to maturity (DTM) were traits that showed higher mean values 

at LN than at HN in both locations.  The mean values of curve-derived thermal time 

parameters tm1 (the inflection point, during the canopy building growth phase), t1 (the time 

point when the crop reaches maximum canopy cover level), t2-t1 (the duration when the crop 

retains its maximum canopy), t2 (the time point when maximum canopy cover start decline), 

and te (the time point canopy cover zero) showed small differences between low and high N 

conditions.  

Low N availability caused a significant (P ≤ 0.01) reduction (23% in Debre-Tabor and 40% in 

Injibara) in potato maximum canopy cover (Vmax) (Table 2, Figure 1). Similarly, the area 

under the canopy curve for the entire crop growth cycle (AUC), representing the total light 

intercepted by a cultivar during the growth cycle, was significantly (P ≤ 0.01) affected by low 

N availability. Among the three growing phases, the effect of N on area under the curve in the 
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building phase (AP1) and area in the senescence phase (AP3) was considerable compared to 

area under the curve in phase two (AP2) especially in Injibara, while in Debre-Tabor the 

effect was higher in AP2 (Table 2). The extent of the N effect was also different between the 

two locations. AUC was reduced by 28% at Debre-Tabor and 37% at Injibara. Area under the 

curve in the building phase (AP1) was reduced by 25% at Debre-Tabor and 53% at Injibara, 

while area in phase two (AP2) and three (AP3) respectively were reduced by 46 and 21% in 

Debre-Tabor and 20 and 32% in Injibara. The effect of N levels on days to maturity was not 

significant at both locations. The result indicate that N shortage substantially affected the area 

under the canopy curve parameters in all growing phases and in both locations, however the 

effect was different between locations. AUC, AP1 and AP3 were highly affected by low N in 

Injibara, while AP2 was highly reduced by low N in Debre-Tabor. The differences in 

response to N of these parameters at least partly reside in the opposite response of the 

maximum canopy duration (t2-t1) in Injibara compared to Debre-Tabor (increased in Injibara, 

while decreased in Debre-Tabor (Table 2).    

Table 2. Trait means of 97 potato cultivars evaluated at high N level (HN) and low N level (LN) in Debre-Tabor 

and Injibara. 

Traits Debre-Tabor 

N-levels 

 Injibara 

N levels 

 HN LN % reduction 

(LN vs HN) 

HN LN % reduction 

(LN vs HN) 

DTE 13.5 13.1 4 13.9 13.0 7 

PH 44.2 36 19 27 16 42 

SNPP  4 4 4 4 4 4 

Vmax   69.5 53.3 23 62.0 37.1 40 

  tm1 7.9 8.1 2 9.6 10.6 10 

t1 13.5 13.6 1 16.7 17.5 4 

t2  17.7 16.6 5.7 21.5 24.0 11.3 

t2-t1 4.2 3.0 27 4.8 6.5 35.4 

te  30.7 30.0 2 34.0 38.0 11.8 

te-t2 

 
13.0 13.39 3 12.5 14.3 14.6 
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Traits Debre-Tabor 

N-levels 

 Injibara 

N levels 

 HN LN % reduction 

(LN vs HN) 

HN LN % reduction 

(LN vs HN) 

AUC  1314 948.0 28 1366.3 856.2 37 

AP1 419.8 313.7 25 538.2 254.8 53 

AP2 283.6 154.6 46 295.9 237.2 20 

AP3 610.6 480.0 21 532.3 364.2 32 

LCC 40.4 37.9 6 47.3 42.0 11 

UCC 43.5 39.3 10 43.3 38.1 12 

DTM 69 68 1 76 80 4 

TNPP  8 7 16 8 5 38 

TYPP 460.5 322.1 30 424.2 219.6 48 

ATW 59.6 49.7 17 58.8 49.3 16 

TDW 2064.5 1640.9 20.5 2393.7 1631.0 31.9 

TDM% 10.0 11.5 13 11.3 14.9 24 

SG  1.0 1.0 1 1.0 1.1 1 

NUE 17.2 41.0 126.7 20.0 40.8 104.4 

DTE = Days to emergence,  PH = Plant height (cm), SNPP = Stem number  plant
-1

 , Vmax = Maximum canopy 

cover in%,   tm1= Inflection point in thermal day (td), t1 = Canopy stabilized  in td,  t2 = Onset of canopy 

senesced in td,  t2-t1= Duration for max canopy in td, te = Completely senesced canopy in td,  AUC= Total area 

under the canopy in % td, AP1= Area for growth phase one in % td, AP2 = Area for growth phase two in % td,  

AP3= Area for growth phase three in % td, LCC =Lower leaf chlorophyll content (SPAD readings), UCC= 

Upper leaf chlorophyll content (SPAD readings), DTM= Days to maturity Tuber, TNPP = Tuber number plant
-1

 , 

TYPP = Tuber yield  plant
-1

 in g, ATW= Average tuber weight in g, TDW=Tuber dry weight in kg ha
-1

, TDM% 

= Tuber dry matter (%), SG = Specific gravity g g
-1

  Nitrogen use efficiency kg kg
-1, 

HN= high N (120kg ha
-1

), 

LN= low N (40kg ha
-1

) 

 

The effect of N levels on tuber traits of the cultivars was signifcant. The reduction due to N 

shortage was considerable for average tuber weight (ATW), tuber number plant
-1

 (TNPP), and 

total tuber yield plant
-1

 (TYPP) at both locations. The TYPP was reduced by 30% in Debre-

Tabor and 48% in Injibara. Of the two tuber yield components, TNPP was reduced by 16% in 

Debre-Tabor and 38% in Injibara, while ATW was reduced by 17% in Debre-Tabor and 16% 

in Injibara. This higher tuber yield reduction at Injibara may be related to the low pH of the 
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soil. The effect of N for almost all traits was higher in Injibara than in Debre-Tabor, but not 

for NUE. NUE increased by 126.7% in Debre-Tabor and 104.4 % in Injibara at low N 

compared to high N levels. TNPP was lower in Injibara compared to Debre-Tabor, and 

TDM% was higher in Injibara.  

Location and cultivar effects 

The variation among cultivars was significant for all traits at both locations (Table 3). The 

effect of location was significant for most measured traits except ATW, NUE, te-t2 and AUC 

(Table 3). The non-significant variation between the two locations for AUC is due to the 

counterbalancing effect of higher maximum canopy cover (Vmax) in Debre-Tabor and higher 

cumulative thermal time for the growth period in Injibara (Figure 1).  Potatoes in the Injibara 

trial matured later, and were harvested later as well. The duration for maximum canopy cover 

phase (t2-t1) was shorter compared to the other two phases in both Debre-Tabor and Injibara 

(Table 2). 

 

Figure 1. Canopy cover development at low and high N regime in Injibara and Debre-Tabor. INHN= Injibara 

high N, INLN= Injibara low N, DTLN=Debre-Tabor low N, DTHN= Debre-Tabor high N and BTT= beta 

thermal time in 
0
C day,  td= thermal day   
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Based on the maturity data collected in this experiment, we have classified our cultivars into 

an early, intermediate and late maturity group. The variation between the late maturity group 

and the intermediate and early maturity group was visible for most traits (including TYPP, 

TDM% and AUC) under low and high N conditions in Debre-Tabor (Figure 2). The late 

maturity group cultivars had higher values for AUC as well as TYPP at both N levels in 

Debre-Tabor. In Injibara however, the variation among these maturity groups was lower, and 

even negligible for TYPP at both N levels. The late maturity group even had higher values for 

AUC compared to the early and intermediate maturity group (Figure 2).  

  

Figure 2. Box plots of selected traits to show the mean performance of cultivars in their maturity group 

combined with nitrogen levels in Debre-Tabor and Injibara. The grouping elements on the x-axis are a 

combination of N levels and maturity groups. LNE= low nitrogen with early cultivars, LNM= low nitrogen with 

mid cultivars, LNL= low nitrogen with late cultivars, HNE = high nitrogen with early cultivars, HNM= high 

nitrogen with mid cultivars, HNL= high nitrogen with late cultivars. TYPP = Tuber yield  plant
-1

, TDM% = 

Tubrt dry matter in %, and AUC = Area under the canopy curve in % thermal day(%td). LN= low N (40kg ha
-1

), 

HN= high N (120kg ha
-1

).  
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Most Dutch cultivars were classified in the early and intermediate maturity group while most 

Ethiopian cultivars clustered in the late maturity group at both locations, suggesting that 

maturity is the main factor for the variation between the Ethiopian and the Dutch cultivars. To 

test this, Ethiopian and Dutch cultivars that clustered in the same (late) maturity group were 

compared, and this revealed that in the late maturity cluster, the Ethiopian cultivars performed 

better than the Dutch cultivars for AUC especially under high N conditions, but had lower 

tuber yields in Injibara (Figure 3), indicating that the Ethiopian cultivars in Injibara in 

particular were not able to translate the higher light interception capacity to higher yields. 

 
 
Figure 3. Box plots of tuber yield plant

-1
 and area under the canopy curve (AUC) to show the mean performance 

of the Ethiopian and Dutch cultivars in the late maturity group in Injibara. The grouping elements on the x-axis 

are a combination of origin of cultivars and N levels. LN= low N (40kg ha
-1

), HN= high N (120kg ha
-1

). Eth 

LN= Ethiopian cultivars at low N, Dut LN= Dutch cultivars at low N, Eth HN = Ethiopian cultivars at high N,  

Dut HN= Dutch cultivars at high N. AUC = Area under the canopy curve in % thermal day (% td), TYPP = 

Tuber yield plant
-1

 in g.  

 

Interaction effect 

The combined analysis of variance over locations revealed that the cultivar effect was highly 

significant for all of the characters measured. Student’s T-test was used to assess the effect of 

N level on various agronomic and physiological traits. The effect of N level was significant 

for most traits except stem number and some curve-derived thermal time parameters (Table 

3). The interactions of N level x Cultivar, N level x Location and Location x Cultivar were 

highly significant for the majority of the evaluated traits. The three-way interaction (N level x 

Location x Cultivars) was not significant for almost all characters except LCC and tuber dry 

weight (TDW).  
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Table 3. Analysis of variance 18 traits of 97 potato cultivars in Debre-Tabor and Injibara at different N levels  

Traits  Significance of F value 

 
Genotype  

(G)  

Location 

 (L) 

N level 

 (N) 

G xL G x N  N x L G x N X L 

Degrees of Freedom 96 1 1 96 96 1 96 

 DTE ** ** ** * * ns Ns 

PH ** * ** ** ** ** Ns 

SNPP 
** ** ns ns ns ns Ns 

Vmax  
** ** ** * ** ** Ns 

AUC 
*** ns ** ns *** *** Ns 

AP1 
*** *** * ** ns *** Ns 

Ap2 
*** *** ** ns ns *** Ns 

AP3 
*** *** * ns ns ns Ns 

tm1 
*** *** ns ns ns *** Ns 

 t1 
** ** ns ns ns ns Ns 

t2 
** *** ns ns ns *** Ns 

t2-t1 
ns *** ns ns ns *** Ns 

te-t2 
*** ns ns ns ns ns Ns 

Te 
*** *** ns *** ns *** Ns 

LCC 
** ** ** ** ** ** ** 

DTM 
** ** ns ** ** ** Ns 

TNPP 
** ** ** ** ** ** Ns 

TYPP 
** ** ** ** ** ** Ns 

ATW 
** ns ** ** * ns Ns 

TDW 
** ** ** ** ns ** ** 

TDM% 
** ** ** ns ns ** Ns 

SG 
** ** ** ns ns ** Ns 

NUE 
** ns ** ** ns * Ns 

ns = not significant; *= significant at P≤0.05; ** = significant at P≤0.01;  *** = significant at P≤0.001 DTE = Days to emergence,  PH = 
Plant height (cm), SNPP = Stem number  plant-1 , Vmax = Maximum canopy cover in%,   tm1= Inflection point in thermal day (td), t1 = 

Canopy stabilized  in td,  t2 = Onset of canopy senesced in td,  t2-t1= Duration for max canopy in td, te = Completely senesced canopy in td,  

AUC= Total area under the canopy in % td, AP1= Area for growth phase one in % td, AP2 = Area for growth phase two in % td,  AP3= Area 
for growth phase three in % td, LCC =Lower leaf chlorophyll content, UCC= Upper leaf chlorophyll content, DTM= Days to maturity Tuber 

TNPP = Tuber number plant-1 , TYPP = Tuber yield  plant-1 in g, ATW= Average tuber weight in g, TDW=Tuber dry weight in kg ha-1, 

TDM% = Tuber dry matter (%), SG = Specific gravity g g-1  Nitrogen use efficiency kg  kg-1,  
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Cluster analysis 

Cluster analysis was performed based on the mean data of 12 quantitative traits, in order to 

visualize genetic relationships of cultivar phenotypes at low and high N conditions across 

locations. Linked traits with double contribution (collinearity effect) were excluded from the 

cluster analysis. Means over the two locations were used as input for Unweighted Pair Group 

Method with Arithmetic Mean (UPGMA) hierarchical clustering and the 97 cultivars were 

clustered into 9 and 11 genetically distinct classes at low and high N at an average distance 

cut off value of 1.0 and 0.8, respectively. However, not all cultivars ended up in the same 

clusters under low and high N levels. The group size varied from 1 to 84 cultivars at low N 

and from 1 to 63 cultivars at high N (Figure 4 and Figure 5).   

  

Figure 4.  Average distance of 97 potato cultivar similarities based on 12 agronomic and physiological NUE related 

quantitative traits at low N using Unweighted Pair Group Method with Arithmetic Mean (UPGMA) hierarchical clustering. 

Traits: plant height, stem number, upper leaf chlorophyll content, canopy stabilized, completely senesced canopy,area under 

the canopy curve, tuber yield plant-1, tuber number plant-1, average tuber weight, tuber dry matter%, and NUE 
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Cluster I, II, III, IV and V consisted of more than one cultivar, while Zengena, Lady Claire, 

Orchestra and Dagim were cultivars that existed as singletons at low N. At high N, cluster I to 

cluster VII, were clusters that contained more than one cultivar, whereas Berber, Lady Claire, 

Fabula and Agerie were cultivars that existed as singletons.  Most of the cultivars grouped in 

a single cluster (cluster I) at both N levels; 87% at low N and 65% at high N. The Ethiopian 

cultivars Ater-Ababa, Awash and Gudenie were included in the largest cluster (cluster I) at 

low N level, the rest were Dutch cultivars. Most Dutch cultivars were clustered in cluster I, 

while the Ethiopian cultivars were distinctly grouped in cluster IV and V at low N and in 

cluster IV, VI and VII at high N levels, suggesting the presence of significant genetic distance 

between the Dutch and the Ethiopian potato cultivars.  

 

Figure 5. Average distance of 97 potato cultivar similarities based on 12 agronomic and physiological  NUE related 

quantitative traits at high N using Unweighted Pair Group Method with Arithmetic Mean (UPGMA) hierarchical clustering. 

Traits: plant height, stem number, upper leaf chlorophyll content, canopy stabilized, completely senesced canopy,area under 

the canopy curve, tuber yield plant-1, tuber number plant-1, average tuber weight, tuber dry matter%, NUE 
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With the exception of the genetic distance between cluster I and II at low N and between 

cluster I and cluster III and V at high N, the average inter-cluster squared distances (D
2
) 

between clusters were significant at (P≤0.05 and P≤0.01) at both N levels (Supplementary 

Table 2 and 3). There was a significant (P≤0.01) D
2
 difference between the largest cluster 

(cluster I) and cluster III, IV and V at low N.  The D
2
 between cluster I and cluster IV, VI, 

and VII was highly significant (P≤0.01) at high N. DTM, PH, AUC, TYPP and NUE were the 

traits that contributed most to the difference between the Dutch and the Ethiopian set of 

cultivars at both N levels (Supplementary Table 4 and 5). Significant (P≤0.01) D
2
 was 

observed between singleton cultivars and clusters that consisted more than one cultivar at 

both N levels: Zengena, Lady Claire, Orchestra and Dagim at low N, and Berber, Lady Claire, 

Fabula, and Agerie at high N (Supplementary Table 2 and 3). The lowest inter-cluster 

distance was recorded between cluster I and II at low N and between cluster I and III at high 

N, indicating the relatively high relatedness of the cultivars included in the two large clusters 

at both N levels. The highest inter-cluster genetic distance was observed between two 

singleton cultivars, Zengena and Orchestra, at low N, and between cluster V and a single 

cultivar, Agerie at high N. Trait means of NUE and AUC under low N, and DTM and TNPP 

under high N condition were the  main cause for the significant genetic distance difference 

between Zengena and Orchestra, and between cluster V and Agerie. Agerie, an Ethiopian 

traditional cultivar, was distinct mainly for its high number of tubers and late maturing 

characteristics.  

 

Estimates of genetic parameters 

Studies on genetic parameters and trait associations provide information about the expected 

response of different traits to selection and help in developing optimal breeding strategies 

(Gopal, 1999). We classified the observed variation in the potato cultivars into heritable and 

non-heritable components, and values for broad sense heritability (H
2
), coefficient of 

phenotypic variation (PCV) and genotypic variation (GCV), and genetic advance as percent 

of mean (GA%) obtained under low and high N level are presented in Supplementry tables 6 

and 7. With the exception of Vmax, TDM% at low N and NUE at both N levels in Injibara, 

estimates of H
2
 were high for the traits at both N levels and in both locations. Similarly, all 

traits had high GA% except for UCC and DTM. H
2
 varied over treatments and locations 

between 0.33 and 0.95. NUE has high H
2 

values in Debre-Tabor at low and high N levels 

(0.80 and 0.72 respectively), but only 0.4 at both N levels in Injibara, indicating that the 
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contribution of the environment to the total NUE variation was high in Injibara compared to 

Debre-Tabor.  

The differences of H
2
 values of traits under high and low N conditions were small in most of 

the traits at both locations. This may suggest a weak interaction effect of N levels with the 

genotypes. However, with the exception of ATW, TNPP and UCC in Injibara, and TYPP and 

NUE in Debre-Tabor, all traits had higher H
2
 values at high N than at low N conditions, 

indicating that the environmental factors affect the measured traits more under N limited 

conditions compared to under high N conditions. The differences between PCV and GCV 

were minimal for all measured traits over treatments and locations, revealing that the 

contribution of genetic factors to the total phenotypic variation was large compared to the 

environmental factors, in line with the relatively high heritability estimates. For most traits 

considered in this study, a high value of genetic parameter estimates was observed at low and 

high N levels and across locations suggesting that the measured traits in our experimental 

setup can be used for genetic improvement through selection. 

Correlation and path analysis 

Information of mutual association between yield and yield component traits is important for 

effective utilization of genetic resources. Estimations of location-combined phenotypic 

correlation coefficients between traits under low N and high N is presented in Table 4. Low to 

high correlation coefficient values were found between the traits and NUE across locations. 

Strong phenotypic correlation coefficients were observed between NUE and all traits except 

ATW and UCC across N levels. Most of the traits showed higher phenotypic correlation 

coefficient values at high N level than at low N level.  The correlation coefficients of traits 

between low and high N level were high except for UCC and te, which implies the effect of N 

levels was small on the association of traits and the trait may be in the same chromosomal 

region at both N levels (Table 4). 

The correlations between traits presented in Table 4 do not indicate the cause and effect 

relationship, because different traits may contribute positively or negatively to the observed 

correlation coefficient between the two traits due to the physiological interrelationships 

among traits. Estimation of correlation components using path analysis (Figures 6 and 7) 

revealed that the largest direct contributions to the variation observed in NUE under low and 

high N condition were of TDM% and TNPP. ATW also had a strong positive direct effect on 

NUE, even though the phenotypic correlation coefficient between the two traits was not 

significant. This week correlation between ATW and NUE resulted from the strong negative 
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indirect effect of ATW via TNPP and TDM% on NUE. Except in Debre-Tabor at high N 

level, TDM% had the strongest direct influence on NUE at both N levels and in both 

locations. Some traits did not have a strong direct effect on NUE, however they had a strong 

indirect effect via the other traits (Figure 6 and 7). For instance, AUC had a negligible direct 

effect on NUE, while its high indirect effect via TDM% and TNPP counterbalance the 

negligible direct effect on the observed variation of NUE. ATW and TNPP had a strong direct 

contribution for the variation observed on NUE, but their indirect effect via each other on 

NUE was negative. 
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Table 4. Pearson phenotypic correlation coefficients under low N (below  bold diagonal) and high N (above bold diagonal) among 13  agronomic and physiological NUE related traits across 

locations 

 

 High N             

Low N PH UCC t1 t2 te Vmax AUC DTM TNPP ATW TYPP TDM% NUE 

PH 0.95*** -0.02 0.29** 0.42*** 0.61*** 0.76*** 0.78*** 0.69*** 0.37*** 0.21* 0.65*** 0.27** 0.69*** 

UCC -0.10 0.19 -0.11 0.07 0.00 -0.17 -0.13 0.01 -0.16 0.20* -0.01 -0.01 -0.02 

t1 0.43*** -0.11 0.55*** 0.46*** 0.48*** 0.32** 0.35** 0.34** 0.22* 0.02 0.31** 0.04 0.28** 

t2 0.33** -0.12 0.42*** 0.46*** 0.42*** 0.37*** 0.52*** 0.39*** 0.17 0.04 0.44*** 0.21* 0.48*** 

te 0.58*** -0.09 0.60*** 0.41*** 0.24* 0.65*** 0.79*** 0.84*** 0.29** 0.31** 0.64*** 0.25* 0.68*** 

Vmax 0.44*** -0.25* 0.49*** 0.35** 0.50*** 0.62*** 0.95*** 0.66*** 0.59*** 0.09 0.73*** 0.25* 0.76*** 

AUC 0.52*** -0.20* 0.56*** 0.51*** 0.66*** 0.95*** 0.71*** 0.75*** 0.55*** 0.13 0.78*** 0.30** 0.83*** 

DTM 0.64*** -0.09 0.42*** 0.27** 0.76*** 0.35** 0.46*** 0.63*** 0.32** 0.32** 0.71*** 0.29** 0.75*** 

TNPP 0.37*** -0.24* 0.28** 0.35** 0.39*** 0.40*** 0.47*** 0.36*** 0.81*** -0.58*** 0.41*** 0.40*** 0.58*** 

ATW 0.21* 0.23* 0.09 -0.08 0.10 -0.11 -0.09 0.05 -0.58*** 0.79*** 0.40*** -0.49*** 0.08 

TYPP 0.65*** -0.03 0.53*** 0.40*** 0.59*** 0.41*** 0.51*** 0.47*** 0.41*** 0.40*** 0.62*** -0.10 0.80*** 

TDM% 0.23* -0.10 0.07 0.04 0.25* 0.32** 0.33** 0.23* 0.35** -0.39*** -0.03 0.76*** 0.44*** 

NUE 0.42*** -0.06 0.50*** 0.33** 0.52*** 0.58*** 0.60*** 0.47*** 0.28** 0.09 0.44*** 0.39*** 0.78*** 
Significant level, *=P≤0.05, **=P≤0.01, ***=P≤0.001; PH = plant height, UCC = upper leaf chlorophyll content, t1= canopy stabilized, t2 = onset of canopy senesced te = compleltely 

sensceed canopy, Vmax =  maximum canopy cover, AUC = Total area under the canopy curve, DTM= days to maturirty, TNPP = tuber number plant
-1

, ATW = average tuber weight, 

TYPP = tuber yield plant
-1

, TDM% = tuber dry matter%, NUE = nitrogen use effeciency
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Figure 6. Diagram showing correlations and path coefficients of 5 factors influencing NUE under high and low N condition 

in Debre-Tabor. Double arrow lines indicate mutual association as measured by correlation coefficients and the red color 

single arrowed lines denote direct influence as measured by path coefficients. Negligible correlation and path coefficients 

were omitted. NUE: Nitrogen use efficiency, ATW: average tuber weight, TDM: tuber dry matter in %, DTM: days to 

maturity, TNPP: tuber number plant-1, AUC: area under the canopy curve 

 

Figure 7. Diagram showing correlations and path coefficients of 5 factors influencing NUE under high and low N condition 

in Injibara. Double arrow lines indicate mutual association as measured by correlation coefficients  and  the red color single 

arrowed lines denote   direct influence as measured by path coefficients. Negligible correlation and path coefficients   are 

omitted. NUE: Nitrogen use efficiency, ATW: average tuber weight, TDM: tuber dry matter in %, DTM: days to maturity, 

TNP: tuber number plant-1, AUC: area under the canopy curve 
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Discussion  

Genetic variation is a precondition for breeding programs aimed at potato improvement. The 

results of analysis of variance in the present study showed that the effect of genotype was 

significant for almost all of the measured traits including NUE, which implies the tested 

cultivar set had significant variation that may be used for breeding to improve NUE in potato. 

For several traits the Ethiopian cultivars behaved distinctly different from the Dutch cultivars. 

Dutch cultivars showed rapid initial canopy development and they matured early compared to 

the Ethiopian cultivars at both N levels and locations. This may be associated with limited 

adaptation to the experimental conditions, since the Ethiopian cultivars were selected under 

Ethiopian conditions while the Dutch cultivars were selected for Western-European, long day 

conditions. Haverkort (1990) suggested that potato varieties adapted to long day conditions 

may mature earlier and senesce between 60-70 days after emergence when grown around the 

equator. This physiological change is likely related to environmental factors like photoperiod 

and temperature. According to Ewing and Struik (1992), photoperiod and temperature are the 

major environmental factors that influence the growth of potato. Reduction in vegetative 

growth, early tuberization and senescence are the response of potato under short day condition 

(Maris 1964;  Haverkort 1990; Van Dam et al.,1996).  

The late maturity group of cultivars showed higher values for AUC and TYPP in Debre-Tabor 

compared to early and intermediate groups, however in Injibara the variation among maturity 

groups was not visible. In fact, in Injibara the late maturity group had higher AUC values 

compared to the early and intermediate group but there was no visible difference in tuber 

yield, which may indicate that radiation use efficiency (RUE) of these late cultivars was lower 

compared to the early and intermediate varieties. The reason for the lower RUE of the later 

maturing cultivars especially at Injibara is not known, however the soil of Injibara is very 

strongly acidic with pH value (4.8) and the average night temperature is low (8
0
C), compared 

to Debre-Tabor with pH value (5.2) and higher night temperature. Okazawa (1967) reported 

that low pH inhibited lateral shoot growth and retard tuberization. According to the author, in 

potato plants, enzymes like amylase and phosphorylase which are responsible for the 

carbohydrate metabolism would play an important role in tuber formation, and the optimum 

pH value of these enzymes ranges between 6.0 and 7.0. Consequently, it seems reasonable to 

assume that the low soil pH value may have affected the tuber yield of potato cultivars in 

Injibara.    
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Except Vmax and AUC, the effect of N level on canopy parameters was not significant. 

However, regardless of the effect of N levels, there was a difference in growth phase 

durations. Duration to reach maximum canopy cover (t1) was relatively longer than duration 

for maintenance of maximum canopy (t2-t1) at both N levels, resulting in an area under the 

curve for growth phase one (AP1) was greater than the area for the maximum canopy 

maintenance phase (AP2).  Conversely, Ospina et al. (2014) using genotypes with similar 

genetic background but under European environmental conditions reported that high N 

enhanced t2-t1 and the duration for maintenance of maximum canopy (t2-t1) was higher than 

duration to reach maximum growth (t1). AP1 thus decreased due to short duration of t1, and 

AP2 increased due to long duration of t2-t1. The contrasting results for growth phases 

duration (t1 and t2-t1) between the two environments (tropical and temperate), may be related 

with the  reduction in time to mature, as our genotypes matured on average in less than 70 

days under Ethiopian conditions whereas it took more than 100 days under European 

conditions. 

The tuber yield reduction due to N shortage was substantial and significant in both locations. 

Of the two tuber yield components, tuber number had a larger effect on total tuber yield than 

average tuber weight especially in Injibara, which indicates that tuber bulking may be less 

affected than tuberization by limiting N conditions. Previous studies indicated that limited N 

availability prior to tuberization leads to low yield due to poor tuberization (Roberts et al., 

1982; Dubetz and Bole, 1975). The reduction in tuber number with low N supply in Injibara 

may also be related to the soil chemical properties, as low pH affects tuber formation of 

potato (Okazawa, 1967). This may also affect the availability of important macro and micro 

nutrients and the physiological activity of the crop (Robson and Abbott, 1989). The high 

values for TDM% in Injibara may be related to the lower temperature at this location, because 

when the temperature is high there will be high competition between vegetative growth and 

tuber bulking, and there may be high vegetative growth in the expense of tuber bulking. 

According to Winkler, (1971) and Ewing (1981), at low temperatures there is high assimilate 

accumulation and lower transpiration, and no considerable vegetative growth at the expense 

of tuber bulking.  

In potato, genetic variation of NUE has been largely explained by maturity type (Tiemens-

Hulscher et al., 2012; Ospina et al., 2014). In our study, high NUE values were recorded at 

low N with late maturing potato cultivars. Similar results were reported by others (Ospina et 
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al., 2014; Khan et al., 2013; Zebarth et al., 2004b; Zvomuya and Rosen, 2002). The long 

vegetative period may be the cause for the strong relationship between NUE and late maturity 

as late maturing cultivars have more time to accumulate assimilates compared to early 

cultivars. In this study, irrespective of the environment and N levels some of the late maturing  

potato cultivars like Kuras, Asterix from the Dutch and most Ethiopian varieties showed a 

relatively better NUE performance than the other Dutch cultivars, indicating the persistent 

inherent potential of the cultivars for NUE at both low and high N conditions.  

In the cluster analysis, most of the cultivars grouped in a single cluster (cluster I) at both N 

levels. Eighty-seven percent at low N and sixtyfive percent at high N were grouped in cluster 

I, and four cultivars at each N level were grouped separately, which implies that the diversity 

of the population or the compositional similarities between genotypes in the population was 

not proportionally distributed. Broad genetic distance was observed between Zengena and 

Orchestra at low N and between cluster V and Agerie at high N, however the most contrasting 

cluster means with significant inter-cluster genetic distance was shown between cluster II and 

Zengena at low N, and cluster VII and Berber at high N for our targeted traits days to 

maturity, NUE, TYPP and AUC. This indicates that crosses of parents from these paired 

clusters/cultivars at the respective N levels will be expected to give suitable segregates for 

those specified traits.  

Coefficients of variation (PCV and GCV) measure the magnitude of variation present in a 

population. The results in this study revealed that estimates of PCV were quite close to the 

estimates GCV for all measured traits over treatments at each location, indicating negligible 

environmental effect on the variance of traits. Similarly, Gopal (1999) using clones from 

Indian potato breeding programs and in Indian autumn and spring production season and 

Baye et al. (2005) using CIP-sourced Ethiopian breeding clones under rain fed production 

season reported high PCV and GCV values for plant height, tuber yield, average tuber weight 

and tuber number, which verifies that the genetic effect is consistently contributing highly to 

the measured variation of these traits in different testing materials and environments. 

Implicitly the contribution of the environment for the total variation of the traits is small 

compared to the contribution of the genetic component, indicating the traits are well heritable 

and suitable for selection. The contribution of environmental variance to phenotypic variance 

at low N was a bit greater than at high N. Possibly high N input can mask soil heterogeneity 

more than low N input, and as a result environmental variance was higher at low N than at 

high N supply (Bertin and Gallais, 2001; Presterl et al.,2003).  
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With the exception of Vmax and TDM% at low N and NUE at both N levels which exhibited 

medium H
2
 in Injibara, the H

2
 estimates were high for all traits at both N levels and in both 

locations, which indicates the suitability of these characters for genetic improvement through 

selection. Similar results were reported for several other studies (Regassa and Barasavaj, 

2005; Baye et al., 2005; Chaudhary, 1985; Desai and Jaiminis, 1997) and this similarity of 

heritability estimates in different testing environments and materials for plant height, tuber 

yield, average tuber weight and tuber number suggests that these genetic factors have a robust 

contribution to the total phenotypic variation of the traits.   

All traits showed high GA% accompanied with high H
2
 (except for chlorophyll content and 

days to maturity, which had low to medium genetic advance values across N levels and 

locations) indicating most likely the H
2
 is due to additive gene effects and early generation 

selection may be effective for these traits. As Johnson et al. (1955) stated, the estimates of 

GA% are more important as a means of selection when considered jointly with the estimates 

of H
2
. High and low values of GA% are indicative for additive gene action and non-additive 

gene action (Singh and Narayanan, 1993). The H
2
 estimates for the prediction of selection 

will therefore be reliable if it is accompanied by high GA% estimates. Neele et al. (1991) also 

reported that an additive gene effect was more important in determining the inheritance of 

tuber yield and yield related traits. Conversely, Gopal (1998) reported that non-additive gene 

effect was more important than additive gene effect in determining yields, TNPP and ATW. 

In our study, ATW, TNPP, and AUC showed consistently high H
2
 and GA% values across 

treatments and locations. Thus, based on our results can be based on these traits and their 

phenotypic expression would be a good indicator of their genotypic potential.   

The path analysis showed that the direct effect of TDM% and TNPP, and their indirect effects 

via DTM and AUC were substantial, indicating that direct selection with these traits can give 

satisfactory gain in NUE. However, although DTM and AUC had a strong positive correlation 

with NUE and considerable indirect effects via TDM%, and TNPP, their direct contribution 

for NUE variation were minor. In these situations the best strategy, according to Neder et al. 

(2013), should be the simultaneous selection of traits, targeting those with significant indirect 

effects. The over-location residual effect (R) of N levels ranged from 0.09 to 0.17, indicating 

that more than 83% of the variability in  NUE was contributed by the nine traits studied in the 

path analysis. This residual effect towards NUE in the present study may be due to various 

reasons such as other traits which are not included in this study, environmental factors and 
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sampling errors (Sengupta and Karatia, 1971). Generally, from the present investigation it can 

be suggested that the potato cultivars evaluated in this study can be exploited for NUE 

improvement through improving and pyramiding of component traits such as TNPP, AUC, 

DTM, TDM% and ATW. However, to use the above proposed traits as indirect selection 

criteria for NUE improvement further multi-year and location trials are required.  
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Abstract   

Developing N use efficient potato varieties requires exploring the genetic basis of nitrogen use 

efficiency (NUE) and associated agronomic and physiological traits. In order to identify QTLs 

for NUE and NUE-related traits, and to determine the relationships between the traits and 

QTLs in potato, a diploid potato mapping population (CxE) was evaluated in the field in 

Ethiopia under low and high N fertilizer levels. QTL detection was performed using interval 

mapping and multiple QTL mapping (MQM). A total of 52 putative QTLs were identified for 

ten traits, of which 28 QTLs were detected under low N availability while the remaining 24 

QTLs were detected under high N conditions. Several QTLs were location and N level 

specific, suggesting the presence of QTL x environment interaction. The significant positive 

phenotypic correlations between different traits and co-localization of QTLs at specific 

regions in the genome demonstrated genetic and functional relations between these traits. A 

region on linkage group V (21-38cM) accumulated the largest number of QTLs. This region 

coincides with the earliness locus encoded by the CDF1 gene, suggesting that earliness had a 

profound influence on NUE. A putative second QTL region on linkage group V located 20cM 

from the earliness locus (38-56cM) that may be separate from the earliness locus, and a region 

on linkage group IV (60-72cM) might be useful regions to focus on for NUE improvement in 

potato. To verify the stability of the identified QTLs and to use these for further investigation 

and detection of possible candidate genes, further multi-environment trials with larger 

population size may be required. 

 

 

Key words: Potato, NUE, QTL, nitrogen  
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Introduction  

Crop productivity is greatly affected by nutrient availability and nutrient use efficiency. 

Nitrogen Use Efficiency (NUE) has become the second priority production constraint after 

drought in crop abiotic stress improvement programs (Hirel et al., 2011). Indeed, improving 

agronomic NUE is relevant for the majority of crops currently cultivated; Less than 50% of 

the applied nitrogen is typically used by most crops and a large amount of N fertilizer is 

required to reach maximum yield (Zhang et al., 2007). The N that is not utilized by the plant 

is lost due to nitrate leaching, denitrification and loss of ammonia to the atmosphere which 

has a harmful effect on the environment as well as on the economy (Glass, 2003).  

N availability affects many developmental processes, depending on the plant species (Zheng, 

2009). In potato, N availability affects rate of canopy development and leaf appearance, final 

leaf size, rate photosynthesis, onset of tuberization, final tuber yield and harvest index (Vos 

and Biemond, 1992, Ewing & Struik, 1992; Vos, 1995; Vos & MacKerron, 2000; Ospina et 

al., 2014).  Deficiencies or variation in availability of nitrogen and other soluble nutrients 

cause poor vegetative growth and health, reduced pathogen and insect resistance, decreased 

tuber yields, and these affect tuber quality as well (Ojala et al., 1990, Olsen et al., 2003, Stark 

et al., 2004). In general, potato requires high amounts of N fertilizer to give maximum tuber 

yield, however the crop is relatively poor in agronomic NUE (yield produced per nitrogen 

applied). The high nitrogen requirement and low use efficiency is not only because of low N 

utilization by the plant, but also because of inefficient uptake due to its shallow inefficient 

root system (Munoz et al., 2005; Pack et al., 2006). 

In potato, a wide range of variation in NUE has been reported in cultivated potato clonal 

selections, and accessions of wild potato species (Errebhi, Rosen, and Martin et al.,1998, 

Errebhi et al., 1999; Zebarth et al., 2004; Zvomuya et al., 2002; Sharifi et al., 2007), 

suggesting the possibility of improving NUE through breeding. Various traits related to NUE 

and contributing to NUE were used to increase the efficiency of the selection process and 

support the development of cultivars that give reasonable yield under low N availability 

(Errebhi, Rosen, and Martin et al., 1998). Among these traits, nitrogen uptake efficiency, yield 

and its components, Leaf Area Index (LAI) and period for maximum soil covering showed 

significant variation at low N conditions (Tiemens-Hulscher et al., 2012). However, the 

genetic basis of NUE is still poorly understood, and the complexity of many phenotypic traits 

involved in adaptation to stress conditions is likely to arise from a number of quantitative trait 
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loci (QTL) (Bulmer et al., 1985; Falconer and Mackay, 1996). To dissect the complexity of 

such quantitative traits into component loci and identify the genetic factors that influence 

quantitative traits, QTL analysis/genetic mapping is a powerful tool (Doerge, 2002). For 

instance, a QTL approach offers an opportunity to dissect physiological and genetic 

components that affect the source-sink relationship under abiotic stress conditions (Pelleschi 

et al., 2006; Welcker et al., 2007; Miralles and Slafer, 2007), which is likely to be a major 

component for potato yield. 

QTL analysis also provides opportunities for the analysis of the relationships between traits 

(Lebreton et al., 1995; Simko et al., 1997). Co-localization of QTLs for two traits that are 

phenotypically correlated is good evidence that the two traits are functionally and genetically 

linked (Quarrie, 1996; Thumma et al., 2001). Simko et al. (1997), used QTL analysis to 

evaluate the causal relationship between tuber dormancy and abscisic acid (ABA) content. In 

maize, the relationship between ABA as a major stress hormone with yield and other drought 

related traits was analysed using QTL approach (Lebreton et al., 1995; Quarrie, 1996). 

However, QTLs can be affected by environmental variation. Some QTLs exist consistently 

over environments (constitutive QTLs), while other QTL are identified only in specific 

environments, or modulate their effect with changing environmental conditions (adaptive 

QTLs) (Tuberosa et al., 2008). Studies of QTLs affecting traits related to NUE have been 

reported in maize (Agrama et al., 1999; Hirel et al., 2001), Arabidopsis (Loudet et al., 2003) 

and rice (Cho et al., 2007), and many of these QTLs were dependent on N levels. 

 In the last two decades many QTL analysis studies have been published on different traits of 

potato, such as flower colour, foliage maturity, tuber skin texture, dry matter content, specific 

gravity and yield (McCord et al., 2011), yield, agronomic and quality traits (Bradshaw et al., 

2008), tuber yield and starch content (Schafer-Pregl et al., 1998), tuber dormancy (van den 

Berg et al., 1996), tuber shape (Van Eck et al., 1994), tuber skin colour (Gebhardt et al., 

1989), tuber flesh colour (Bonierbale et al., 1988) and drought related traits (Anithakumari et 

al., 2011, 2012; Khan et al., 2014) .The number of QTL studies for NUE are still very limited. 

Only recently QTLs affecting traits related to NUE under contrasting N regimes were reported 

in potato (Ospina, 2016). The aims of the present study were: (1) To determine the 

chromosomal location and genetic effect of QTLs for NUE and traits associated with NUE in 

potato under low and high N conditions in Ethiopia, and (2) Deliver basic genetic and 
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physiological information of NUE and related traits for future candidate gene identification 

and marker assisted selection studies.   

 

Materials and Methods 

Plant materials 

One hundred individuals of a diploid backcross population (CxE) including the parents were 

used in this study. The population was obtained from the original cross between the female 

parent, C (USW5337.3) (Hanneman and Peloquin, 1967) and the male parent, E (77.2102.37) 

(Jacobsen, 1980). Clone C is a hybrid of S. phureja (PI225696.1) and S. tuberosum dihaploid 

USW42. Clone E is the result of a cross between clone C and the S. vernei-S. tuberosum 

backcross clone VH34211 (Jacobsen, 1980). Absence of dormancy, early maturity and short 

day tuberization are some of the characteristics of S. phureja. On the contrary, Solanum 

tuberosum is characterized by long dormancy, long day tuberization and variable maturity 

(Hawkes 1990; Ewing and Struik 1992). 

 

Field studies 

The field studies were conducted in Ethiopia at Koga from January to May 2014 and at 

Injibara and Debre-Tabor from July to October 2014 under irrigation and rainfed conditions, 

respectively. In Ethiopia, the rainfed production season is from June to October, and is fully 

dependent on rain water. The irrigation production season is from Nov-April and is fully 

dependent on irrigation water from rivers and streams. The experiment was laid out in a split 

plot arrangement with two replications, with the low and high N levels (40kg ha
-1

 and 120kg 

ha
-1

) assigned as main plots and the genotypes as sub plots. Each replication consisted of 10 

plants, planted at a recommended inter- and intra-row spacing of 0.75m and 0.30m 

respectively and each genotype replication was bordered by a plant from reference cultivar. 

Soil available nutrients and externally applied urea, Di-ammonium phosphate (DAP) and tri-

superphosphate (TSP) were used as source of N and P. Composite soil samples were collected 

at five different locations in the experimental field and at a soil depths of 0-20cm and 20-

40cm before planting to estimate the available residual nitrogen in the form of NO3
-
 and NH4

+
 

using a KCl extraction method. The whole P source was applied at planting while N 

application was split in two: a week after emergence and at early flowering. Pest and disease 

management, weeding and ridging and other cultivation practices were conducted as per 

recommendation and when required. 
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Phenotypic measurements  

The phenotypic measurements were carried out in similar manner at all experimental 

locations (Koga, Debre-Tabor and Injibara). Plant height (PH), Chlorophyll content (CC) at 

lower and upper part leaf using SPAD-502 chlorophyll meter (Minolta Co., Ltd. Japan) were 

measured when 50% of the genotypes were flowering. The readings for chlorophyll content 

were taken on the third or fourth leaf from the top of the plant for upper leaf chlorophyll 

content (UCC), and the second or the third leaf from the base of the plant for lower leaf 

chlorophyll content (LCC). Stem number plant
-1

 (SNPP) was counted before the plant foliage 

declined. Canopy cover dynamics or soil cover (SC) was assessed every five days starting 

from date of emergence to the declining phase of the crop growth using a 0.6m x 0.75m frame 

with 100 grid squares, positioned over the same middle plants in a plot for each measurement, 

and the canopy measurements were carried out from date of emergence to the end of the 

declining phase of the crop growth. The beta thermal time for canopy cover assessment was 

calculated from the date of emergence for each experimental unit, using the sigmoid part of 

the beta function for determinate growth (Yin et al., 2003), and an estimated cardinal 

temperature (with 5.5
0
C as a base temperature, 23.37

0
C as optimum, and 34.58

0
C as ceiling 

temperature) that determines the vegetative growth of potato (Khan 2012, Khan et al., 2013). 

Hourly temperature data was collected from the nearest weather station for each location. The 

model for canopy development was fitted using the soil cover data, beta thermal time for each 

assessment, and the canopy cover measurements, and the following model parameters were 

estimated: the inflection point in the build-up phase of the growth curve (tm1), time at which 

canopy cover reaches its maximum (t1), the maximum canopy cover value with percentage of 

soil cover as unit (Vmax), time for onset of canopy decline (t2), time when canopy cover 

reaches zero (te), and area under the curve for the entire crop growth cycle ( AUC ) in %.td, 

were estimated using the NOLIN procedure of SAS, SAS Institute Inc, 2004 (Khan et al., 

2013). Days to maturity (DTM), determined as the number of the days from emergence to the 

day at which more than 90 percent of the plants in a plot attained physiological maturity (90% 

of the haulm tissues brown) was assessed every day starting from the time that early varieties 

showed the first signs of leaf yellowing.  

Tuber traits: tuber number plant
-1

 (TNPP), average tuber weight (ATW), tuber yield plant
-1

 

(TYPP), Specific gravity (SG), tuber dry matter percentage (TDM%) and Nitrogen Use 

Efficiency (NUE; defined as dry tuber weight per unit N available (N applied + N available in 

the soil) were measured and estimated at harvest. Specific gravity (SG) was determined using 
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the tuber specific gravity procedure of weight in air and under water (Murphy and Goven, 

1959). In evaluating the SG of each variety, healthy and marketable-sized grade (20 mm and 

above) tubers were selected randomly from each variety harvest. Then, tubers were cleaned, 

and weighed both in air and water following the procedure of Murphy and Goven (1959). 

Specific gravity values were computed using the following formula: 

    

where SG= specific gravity of the material, W1= weight in air of the sample tuber, in g and 

W2= Weight of the sample completely immersed in water, in g. Tuber dry matter content 

(TDM%) normally is determined as a ratio of dry tuber weight to fresh weight expressed in 

percentage; we determined TDM% indirectly from SG using empirical conversion factors 

following the equation of Kleinkopf et al., (1987): solid (Dry matter %) = -214.9206 + 

(218.1852 x SG). Tuber dry weight (TDW) was estimated indirectly from specific gravity and 

tuber dry matter content in percent, using the following formula: 

100

*% TFWTDM
TDW   

Where TDW = Tuber dry weight in g, TDM% = Tuber dry matter (%), TFW = Tuber fresh 

weight in g. Nitrogen use efficiency (NUE) is calculated as the yield per unit of N resource 

available to the plant (Moll et al., 1982). In this study, NUE was determined as the tuber dry 

matter production, or tuber dry weight ha
-1

, per unit of N supplied/ha (N in the soil + applied 

N).  

Statistical analyses 

Analyses of variance (ANOVA) of the different traits, correlation and principal component 

analysis (PCA) were done with GenStat software 17
th

 edition. Restricted maximum likelihood 

(REML) variance component  analysis, genotypic variance (σ2
g), environmental variance 

(σ2
e) and broad sense heritability (H

2
) were estimated using Breeding View, the IBP Breeding 

Management system (BMS) version 3.0.9 (https://www.integratedbreeding.net/breeding-

management-system), with a model broad sense heritability (H
2
) =σ2

g / (σ2
g+ σ2

e/r), 

where (σ2
g) is the genotypic variance, (σ2

e) is the environmental variance and r is the 

https://www.integratedbreeding.net/breeding-management-system
https://www.integratedbreeding.net/breeding-management-system
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number of replications. To generate phenotypic values for QTL mapping, the genotype was 

modelled as a fixed effect and all other effects were random, and the best linear unbiased 

estimates (BLUE) means were computed with BMS-breeding view software.  

Genetic map construction 

 

Details of the genetic map and markers employed like Simple Sequence Repeats (SSR), 

Amplified Fragment Length Polymorphism (AFLP), Cleavage Amplified Polymorphism 

(CAP) and Single Nucleotide Polymorphism (SNPs) can be found in Anithakumari et al., 

(2011). The integrated CE map constructed using JoinMap 4.0 (Kyazma, Van Ooijen 2006) 

was utilized for the QTL analysis. 

 

QTL analyses  

MapQTL6 (Kyazma, Van Ooijen 2009) was used for the QTL analysis. Each trait was 

analysed using interval mapping. For this analysis, a map with 12 linkage groups and 534 

SNP markers with a total genetic map distance of 1326 cM were employed, equivalent to an 

average distance between markers of 2.5 cM assuming that these are equally distributed. 

Significance for QTL detection was determined by permutation tests (1000 permutations) and 

a genome wide scan was used as a QTL detection threshold at 5% significant level. 

Subsequently, Multiple QTL Mapping (MQM) was performed with the markers nearest to the 

QTLs detected by interval mapping selected as cofactors.  

Results 

Phenotypic variation, heritability and variance components  

The C x E diploid potato backcross population was grown at three different locations in two 

different production seasons (rainfed and irrigation) under low and high N fertilizer regimes 

to evaluate potato genotypes for NUE. NUE is defined in different ways, depending on the 

objective of the study and the crop under study (Good et al., 2004). In this study NUE is 

defined as the dry tuber yield per unit of nitrogen resource available to the plant. The 

combined analysis of variance over location showed that the genotypic variation was highly 

significant for all of the traits measured (supplementary Table 1), indicating that sufficient 

variation is present in the population for genetic analysis. In addition to the genotype, 

significant effects were observed for location, the interaction of location with N levels and 

genotype x location interaction for most agronomic and physiological traits. These results 
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indicate that the genotype x location interaction often had a larger effect than the genotype x 

N level interaction, suggesting that genotype x location interaction contributed more to the 

total genotype x environment interaction.  

Mean values of different yield and yield related traits of the parents C and E, minimum and 

maximum performance of progeny and genetic variance components under low and high 

nitrogen condition across locations are presented in supplementary Table 2. The two parents 

(C and E) performed differently in tuber yield and foliage traits (canopy cover parameters) 

under both N conditions. Parameters describing different aspects of canopy growth and 

development were derived from the canopy cover dynamics of potato as quantified by the grid 

method, and modelled using beta thermal time as described in the material and methods 

section (Khan et al. 2013). Among the canopy cover parameters, the maximum value of the 

canopy cover (Vmax), and the total area under the canopy (AUC), which reflects the capacity 

of the crop to intercept solar radiation during the whole growing period, were the predominant 

traits that were different between the two parents. Parent C showed higher mean performance 

compared to parent E in tuber yield related traits as well as foliage traits under low and high N 

conditions in all locations except for maximum canopy cover (Vmax) and total area under the 

canopy cover (AUC) at Debre-Tabor, for which parent E performed better than parent C. The 

mean performance of the parents for most of the traits was a bit higher than the mean of the 

progeny.  

The effect of N levels was significant (according to a student’s T-test) for most agronomic 

and physiological NUE related traits considered in this study. Significant phenotypic variation 

(P ≤ 0.001) was observed for N level in the CE population and between the two parents for 

most traits measured in this study except stem number plant
-1

 (SNPP), the inflection point in 

the build-up phase of the growth curve (tm1), time for onset of canopy decline (t2), and time 

when canopy is completely senesced (te). Low N application substantially affected agronomic 

and physiological traits of the parents, with stronger performance reductions for parent E than 

for parent C. The overall differences for selected traits between parent C and parent E, and the 

progeny are presented in Table 1.  
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Table 1. Mean performance, Difference due to N level and difference of parent C and parent E, and the progeny 

for some selected traits under low N (LN) and high N (HN) conditions 

Traits Parent C Parent E Progeny 

Mean Reduction 

(%) at  

LN compared 

to HN 

Mean Reduction (%) at 

LN compared to 

HN  

Mean Reduction (%) 

at LN 

Compared to 

HN  

 LN HN  LN HN  LN HN  

PH 31 37 17 36 43 16.7 28 35 20 

LCC 46 49 6 46 49 4.8 47 52 10 

DTM 88 85 2.5 87 85 1.7 86 84 2 

TNPP 8 13 36.9 6 9 38.7 7 10 30 

ATW 35.2 35.4 0.5 28.7 34 15.7 24 29 17 

TYPP 300 430 31.5 170 320 46.4 170 287 41 

NUE 57.8 26.6 117.3 37.76 22.85 65.3 34 18 89 

Vmax 40.5 50.9 20.5 31.75 46.43 31.6 27 40 33 

AUC 1138.23 1174 3.05 750.57 1139.4 34.13 649 953 32 

PH= Plant height in cm, LCC= lower leaf chlorophyll content, DTM= Days to maturity, TNPP= Tuber number plant
-1

, ATW= 

Average tuber weight in g, TYPP  = Tuber yield plant
-1

 in g , NUE= Nitrogen use efficiency(kg kg
-1

), Vmax= maximum canopy 

cover in %, AUC= Area under the canopy curve in % thermal day (% td) 
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Figure 1.  Effect of N levels on the phenotypic distributions of some selected traits for parent C, E and the C xE 

potato genotypes. PH= plant height in cm, Vmax = maximum canopy cover in %, AUC = area under the canopy 

curve in %td, ATW = average tuber weight in g, TYPP = tuber yield plant
-1

. a) plant height at low N, b) plant 

height at high N, c) maximum canopy cover at low N, d) maximum canopy cover at high N, e) area under the 

canopy curve at low N, f) area under the canopy curve at high N, g) average tuber weight at low N, h) average 

tuber weight at high N, i) tuber yield plant
-1

 at low N, j) tuber yield plant
-1

 at high N 

Significant differences (P ≤ 0.05) in days to maturity (DTM) were found due to the effect of 

N levels, and of genotype. The genotypes matured on average between 75 and 95 days at both 

N levels. Based on the total number of days to reach maturity, genotypes were grouped as 

early (between 75 and 82 days), intermediate (between 83-89 days) and late maturing ones 

(90 days and above). Large differences were found between late and early maturing genotypes 

for Vmax, AUC, TYPP, and NUE at the same N level. Late maturing cultivars showed higher 

canopy cover compared to early ones under low N conditions (see example for some 

genotypes in Figure 2).  

The heritability of the traits varied from 0 to 0.83 under low N and from 0.37 to 0.86 under 

high N conditions (supplementary Table 2). For most traits, the highest heritability was 

recorded at high N level compared to low N. However, the heritability estimate difference 

between high and low N conditions was negligible. The highest heritability value difference 

(0.43) between high and low N conditions was observed for the trait AUC followed by LCC 

(0.40) at Debre-Tabor and Injibara respectively. Among the locations, Koga showed higher 

heritability estimates for most traits compared to Debre-Tabor and Injibara. Except tuber dry 

matter and chlorophyll content, for most traits the genotypic variance value is higher than that 

of environmental variance (supplementary Table 2), indicating that the contribution of the 

genetic factor to the total phenotypic variation was large compared to the environmental 

factor.   
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Figure 2. Difference in canopy development process of some CE genotypes selected randomly based on maturity 

group using raw canopy cover data and maturity data under low N condition, a) early maturing, b) late maturing. 

DAP = Days after planting  
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Correlation and Principal Component Analysis (PCA) 

The phenotypic correlation coefficients of traits under low and high N condition are presented 

in Table 2. The correlation between NUE and most agronomic and physiological traits was 

positive and significant both under low and high N conditions. However, depending on the 

traits, some differences in correlations were observed between low and high N levels. LCC 

and UCC are traits that correlate negatively with most traits at both N levels. The two tuber 

yield component traits (TNPP and ATW) were significantly negatively correlated under low 

and high N conditions (-0.36 and -0.37 respectively), which reflects a trade-off between the 

two traits both under low and high N availability. 
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Tabel 2.  Coefficients of correlations (r) between various physiological and agronomic traits, of the mapping population under low N and high N conditions 

Treatments  High N 

 Traits PH SNPP LCC UCC tm1 t1 t2 te Vmax AUC DTM TNPP TYPP ATW TDM% NUE 

Low N PH 0.88 0.13 0.01 -0.09 0.22 0.40 0.19 0.02 0.78 0.60 0.41 0.48 0.67 0.23 -0.24 0.58 

 SNPP 0.08 0.51 -0.26 -0.22 0.42 0.41 0.24 -0.02 0.41 0.29 0.23 0.46 0.36 -0.22 -0.20 0.33 

 LCC -0.02 -0.08 0.68 0.83 -0.05 -0.10 -0.25 -0.17 -0.16 -0.19 0.00 -0.18 -0.23 -0.06 0.17 -0.15 

 UCC -0.16 -0.19 0.82 0.75 -0.07 -0.15 -0.20 -0.14 -0.21 -0.24 -0.05 -0.17 -0.29 -0.18 0.20 -0.19 

 tm1 0.17 0.50 -0.21 -0.15 0.52 0.52 0.24 0.03 0.44 0.32 0.63 0.46 0.42 -0.06 -0.09 0.39 

 t1 0.21 0.51 -0.09 -0.16 0.65 0.56 0.57 0.00 0.62 0.47 0.57 0.53 0.52 -0.01 -0.15 0.52 

 t2 -0.06 0.46 -0.12 -0.12 0.47 0.38 0.21 0.24 0.31 0.34 0.37 0.39 0.38 -0.05 -0.12 0.39 

 Te 0.06 0.23 -0.03 -0.08 0.11 -0.06 0.32 0.69 0.07 0.14 0.12 0.04 0.04 -0.02 -0.07 0.06 

 Vmax 0.65 0.22 -0.12 -0.30 0.26 0.35 0.01 0.03 0.77 0.73 0.55 0.69 0.82 0.14 -0.31 0.74 

 AUC 0.60 0.27 -0.15 -0.30 0.32 0.31 0.11 0.25 0.94 0.75 0.43 0.57 0.70 0.05 -0.24 0.62 

 DTM 0.23 0.53 -0.14 -0.28 0.59 0.52 0.28 0.06 0.39 0.41 0.73 0.47 0.57 0.11 -0.13 0.57 

 TNPP 0.23 0.54 -0.13 -0.26 0.40 0.39 0.38 0.16 0.52 0.53 0.53 0.85 0.74 -0.37 -0.27 0.65 

 TYPP 0.55 0.44 -0.22 -0.36 0.39 0.38 0.24 0.17 0.73 0.73 0.57 0.66 0.87 0.27 -0.30 0.87 

 ATW 0.46 -0.11 -0.11 -0.15 0.05 0.10 -0.18 0.01 0.27 0.25 0.10 -0.36 0.38 0.73 -0.04 0.23 

 TDM% -0.06 -0.13 0.19 0.18 0.03 0.12 -0.06 -0.03 -0.21 -0.18 0.11 -0.20 -0.21 0.01 0.34 0.07 

 NUE 0.55 0.41 -0.17 -0.32 0.40 0.41 0.23 0.18 0.67 0.68 0.62 0.63 0.92 0.38 0.11 0.76 

 

PH =Plant Height, SNPP=stem number plant
-1

, LCC= Lower leaves chlorophyll content, UCC= upper leaf chlorophyll content tm1= inflection point in canopy building phase, 

t1= canopy stabilized, t2= on set of canopy decline, te= time canopy cover zero, Vmax=  maximum canopy cover in percent, AUC= total area under the canopy, DTM= days to 

maturity, TNPP=Tuber Number Plant
-1

,  TYPP= Tuber Yield Plant
-1

,  ATW= Average Tuber Weight,  TDM%=Tuber Dry Matter in percent, NUE= Nitrogen use efficiency  

Color Key -1 0 1 
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 Figure 3. a) Bi-plot of PC1 viz. PC2 from principal component analysis showing the distribution and similarities among 100 CE potato 

genotypes under low N, b) Bi-plot of PC1 viz. PC2 from principal component analysis showing distribution and similarities among 100 CE 

potato genotypes under high N. PH=Plant Height, SNPP=stem number plant-1, LCC= Lower leaves chlorophyll content, UCC= upper leaf 

chlorophyll content, tm1= inflection point in canopy building phase, t1= canopy stabilized, t2= on set of canopy decline, te= time canopy cover 

zero, Vmax=  maximum canopy cover in percent, AUC= total area under the canopy, DTM= days to maturity, TNPP=Tuber Number Plant -1,  

TYPP= Tuber Yield Plant-1,  ATW= Average Tuber Weight,  TDM%=Tuber Dry Matter in percent, NUE= Nitrogen use efficiency  

a) 

b

) 
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Principal component analysis (PCA) is one of the main statistical tools widely used to 

categorise phenotypic traits into groups based on similarities. The principal component analysis 

biplots in Figure 3 depict the distribution and similarities of 100 CE potato progeny genotypes 

including their parents under low (Figure 3a) and high N conditions (Figure 3b) over all 

locations combined. In the PCA 52.81% and 53.87% of the total variance was explained by 

PC1 and PC2 together under low and high N conditions, respectively. The angles between 

vectors in the biplot indicate the level of association between traits. An angle less than 90˚ 

(acute angle) suggests presence of strong positive correlation, an angle greater than 90˚ (obtuse 

angle) suggests a weak correlation. Thus, the biplots point out the genetic relationship between 

traits.  As showed in the biplots a strong correlation was observed between tuber number plant
-1

 

(TNPP) and days to maturity (DTM); and NUE and tuber yield plant
-1

 (TYPP) under low N 

condition. Under high N there was strong correlation between average tuber weight (ATW), 

plant height (PH), and days to maturity (DTM); between maximum canopy cover (Vmax), 

Tuber yield plant
-1

 (TYPP), tuber number plant
-1

 (TNPP) and time at which canopy cover 

reaches its maximum (t1).   

QTL detection 

The QTL analysis was done separately for each N level at each location. We have done QTL 

analysis for all measured traits, and we found QTL for ten traits at three experimental locations 

(Debre-Tabor, Injibara, and Koga) under low and high N conditions (summarized in Table 3). 

A total of 52 QTLs were identified for the ten traits distributed over 13 QTL regions on seven 

of the 12 linkage groups, of which 28 QTLs were detected under low N while 24 QTLs were 

detected under high N conditions. Among the experimental locations, the highest number of 

QTLs under low and high N conditions together, were detected in Debre-Tabor and Koga (19 

QTLs). The identified QTLs accounted for a 11.9 to 37.1% of the total phenotypic variation for 

low N, and 15.3 to 38.4% for high N conditions. Many QTLs were detected repeatedly across 

locations and N levels (Table 4). We considered QTLs detected in at least two of the three 

experimental locations under both low N and high N conditions to be constitutive and N-level 

independent QTLs, and QTLs that were exclusively detected in at least two of the three 

experimental locations under either high N or low N conditions as high N-specific or low-N 

specific QTLs. Four QTLs were low N specific and 4 QTLs were high N specific, suggesting 

the presence of QTL x N interaction. The remaining 3 QTLs were detected under both N 

conditions.  DTM, NUE and TYPP were some of the traits that had low N specific QTLs, while 

high N specific QTLs were detected for LCC, Vmax and AUC (Table 4).  
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The CxE population is a backcross population with three alleles. Thus, we treated it as a CP 

population type (population resulting from a cross between heterogeneous, heterozygous and 

homozygous diploid parents) in the MapQTL model, because all other models in MapQTL 

assume a maximum of two alleles. 

Table 3. QTLs detected for ten agronomic and physiological traits under low and high N conditions in the CxE 

mapping population.  

Traits  Environment QTL name Linkage 

Group 

Peak Marker LOD Peak 

position 

Interval 

(cM) 

explained. 

variation in 
(%) 

Area under Canopy 

(AUC) 

IBLN AUC_I_LN V GP21_2007 6.1 24.7 21-26 26.2 

  IBHN AUC_I_HN V Mando 6.1 26.1 24-38 25.9 

  KOHN AUC_K_HN1 V Mando 5.0 26.1 24-38 17.5 

  DTHN AUC_D_HN V PotSNP1146 5.3 43.5 38-47 23 

  KOHN AUC_K_HN2 V PotSNP1143 4.5 47 43-50 20.1 

Days to maturity 

(DTM) 

DTLN DTM_D_LN1 IV PotSNP51 4.9 65.7 60-72 21.7 

 IBLN DTM_I_LN1 V Mando 4.6 26.1 24-38 14.3 

 IBHN DTM_I_HN V SPUD237 5.6 31.1 26-38 24.1 

 IBLN DTM_I_LN2 V PotSNP1143 7.0 47 43-50 29.2 

 DTHN DTM_D_HN1 V Myb_t10 4.7 49.6 46-54 16.7 

 DTLN DTM_D_LN2 V PotSNP43 4.8 51.6 46-56 16.6 

 DTHN DTM_D_HN2 IX E32M51-1c9 4.5 54.6 51-57 15.2 

Lower leaf 
chlorophyll (LCC) 

KOLN LCC_K_LN I PotSNP1037 4.9 44.5 42-47 21.4 

 DTLN LCC_D_LN1 I E32M61-18e13 5.8 45.3 42-48 22 

 DTLN LCC_D_LN2 II PotSNP1 4.0 51.1 46-57 15.8 

 DTHN LCC_D_HN II PotSNP807 5.1 51.6 46-57 22.3 

 KOHN LCC_K_HN II PotSNP807 9.4 51.6 49-57 37.1 

 DTLN LCC_D_LN3 VIII E32M51-15h8 5.2 81.3 77-84 20.1 

Nitrogen use 

efficiency (NUE) 

DTLN NUE_D_LN1 IV PotSNP51 5.3 65.7 60-72 23.2 

 KOHN NUE_K_HN V PotSNP573 5.5 15.5 0-21 23.7 

 DTLN NUE_D_LN2 V Mando 4.9 26.1 24-38 16.4 

 KOLN NUE_K_LN V SPUD237 8.11 31.1 26-38 33.1 

Plant height (PH) IBLN PH_I_LN1 V PBSQ 5.4 24.4 21-26 18.7 

 IBHN PH_I_HN1 V GP21_2007 6.24 24.7 21-26 20.5 

 KOLN PH_K_LN1 V GP21_2007 7.14 24.7 21-27 22.5 

 KOHN PH_K_HN1 V GP21_2007 5.7 24.7 24-38 16.6 

 IBLN PH_I_LN2 V Myb_t10 4.6 49.6 46-54 20.4 

 IBHN PH_I_HN2 V Myb_t10 5.2 49.6 46-54 22.8 

 KOHN PH_K_HN2 V E32M61-9h5 5.3 61.3 58-70 15.3 

 KOLN PH_K_LN2 V E32M61-9h5 6.2 61.3 58-70 26.5 

Stem number/plant 

(SNPP) 

KOLN SNPP_K_LN V E32M61-9h5 4.6 61.3 58-70 20.5 

Tuber number/plant 
(TNPP) 

DTHN TNPP_D_HN V SPUD237 5.4 31.1 26-38 23.3 

 DTLN TNPP_D_LN V SPUD237 6.9 31.1 26-38 28.9 

 IBHN TNPP_I_HN V SPUD237 5.8 31.1 26-38 24.9 

 KOHN TNPP_K_HN V SPUD237 5.3 31.1 26-38 23.1 
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Traits  Environment QTL name Linkage 

Group 

Peak Marker LOD Peak 

position 

Interval 

(cM) 

explained. 

variation in 
(%) 

 KOLN TNPP_K_LN V SPUD237 6 31.1 26-38 25.7 

Tuber yield/plant 

(TYPP) 

KOHN TYPP_K_HN V PBSQ 7.4 24.4 21-26 30.5 

 KOLN TYPP_K_LN1 V Mando 6.3 26.13 24-38 21.5 

 DTLN TYPP_D_LN V SPUD237 8.2 31.1 26-38 33.2 

 IBLN TYPP_I_LN V SPUD237 4.7 31.1 26-38 20.7 

 IBHN TYPP_I_HN V PotSNP1143 5.3 47 43-50 22.9 

 KOLN TYPP_K_LN2 V E32M61-9h5 4.6 61.3 58-70 20.2 

 DTHN TYPP_D_HN VII PotSNP788 7.4 42.1 39-49 26.6 

Upper leaf 
chlorophyll (UCC) 

DTLN UCC_D_LN1 I STM5136 4.5 23 18-27 16.5 

 DTLN UCC_D_LN2 II PotSNP1111 4.6 112.5 106-115 16.7 

 DTLN UCC_D_LN3 V potSNP90 6.0 51.6 46-56 13.2 

 DTLN UCC_D_LN4 VII potSNP542 5.5 89.2 86-91 11.9 

Maximum canopy 

cover (Vmax) 

IBLN Vmax_I_LN V Mando 5.9 26.13 24-28 25.2 

 IBHN Vmax_I_HN V Mando 5.4 26.13 24-38 23.4 

 KOHN Vmax_K_HN1 V Mando 4.5 26.13 24-38 15.8 

 KOLN Vmax_K_LN V GP21_2007 9.8 24.7 21-27 38.4 

 DTHN Vmax_D_HN V PotSNP1146 5.3 43.5 38-47 23.2 

 KOHN Vmax_K_HN2 V PotSNP1143 4.7 47 43-49 20.9 

DTLN = Debre-Tabor low N, DTHN = Debre-Tabor high N, IBLN = Injibara low N, IBHN = Injibara high N, KOLN = Koga low N, KOHN = 

Koga high N, QTL names are given as trait name followed by location and the N-levels e.g AUC_I_LN: Area under canopy (AUC);  Location, 

Injibara (I); N-Level (LN), low N 

 

Table 4. List of agronomic and physiological traits for which QTLs were found in more than one location under 

low or high N specific conditions and under both N level conditions 

Traits High N 

 specific QTLs 

Low N 

 specific QTLs 

Low and 

 high N  

conditions 

Linkage 

 group 

Interval(cM) Locations 

PH    V 21-27 DT and  Injibara 

LCC    II 46-57 DT and Koga 

LCC    I 42-48 Koga and Injibara 

AUC    V 24-38 DT and Injibara 

AUC    V 38-50 DT and Koga 

Vmax    V 38-49 DT and Koga 

Vmax    V 24-38 Koga and Injibara 

DTM    V 43-56 DT and Injibara 

TNPP    V 26-38 DT and Koga 

TYPP    V 24-38 DT, IB and Koga 

NUE    V 24-38 DT and Koga 

PH = Plant height, LCC = lower leaf chlorophyll content, AUC = Area under the canopy curve, Vmax = Maximum canopy cover, 

DTM= Days to maturity, TNPP = Tuber number plant
-1

, TYPP = Tuber yield plant
-1

, NUE = Nitrogen use efficiency. DT= Debre-

Tabor, IB= Injibara 

Consequently, the genotypes were coded with “ab x cd”, where a and b represent the alleles of 

parent C and c and d represent the alleles of parent E with possible genotypes ac, ad, bc, and 
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bd. In our backcross population, one of the alleles derived from the C parent is in fact identical 

to one of the E-derived alleles, but haplotype information is not available, so it was not possible 

to distinguish which allele is which. For the QTLs identified for days to maturity (DTM) on 

linkage group IX under low and on linkage group V under high N conditions at Debre-Tabor 

the ‘c’ allele from the E-parent most likely contributes to late maturity type in this population 

(Figure 4a and b). The QTL identified on chromosome V with peak marker SPAD237 for tuber 

number plant
-1

 detected under both N conditions showed a similar positive contribution of the E 

parent-derived allele (Figure 4c and d). For tuber yield plant
-1

, however, a specific combination 

of C- and E-derived alleles was linked to high tuber yields (Figure 4e and f) for each of the 

QTLs. 

 

Figure 4. Expected mean of CE offspring for some selected trait QTLs in different genomic locations under high and low N 

condition in Debre-Tabor.a)  DTM_D_HN2 for marker E32M51-1c9 on linkage group IX, b)  DTM_D_LN2 for marker 

PotSNP43 on linkage group V, c)  TNPP_D_HN for marker SPUD237 on linkage group V, d)  TNPP_D_LN for marker 

SPUD237 on linkage group V, e)  TYPP_D_HN for marker PotSNP788 on linkage group VII, f)  TYPP_D_LN for marker 

SPUD237on linkage group V 
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The identification of similar QTLs for tuber number plant
-1

 with similar allele contributor under 

both N conditions suggests that the same gene effect is responsible for these QTLs. However, 

the QTLs identified for tuber yield plant
-1

 had different allele contributors for low and high N 

levels. Overall, as shown above, the CE progeny that had the alleles corresponding to ‘a’ from 

the female parent C and allele ‘c’ from the male parent E showed a high score, and allele ‘c’ 

was responsible for the high value in most listed traits under low and high N conditions.   

Of the 13 QTL regions, four genomic regions, i.e. on linkage group V between 21-38cM, 38-

56cM, and 58-70cM, and on linkage group IV between 60-72cM contained QTL regions 

accumulating QTLs for more than one trait under different N conditions and locations (Figure 

5). The peak markers for the QTL regions on chromosome V were more than 20cM apart, 

which might indicate these are indeed independent QTL regions. However, we do not have 

sufficient marker information and recombinants to confirm this. The QTLs for AUC, PH, 

Vmax, DTM, TNPP, TYPP and NUE co-localized between 21 and 38cM on linkage group V. 

QTLs for DTM and PH under both N conditions, and Vmax, AUC and TYPP under high N 

conditions co-located between 38 and 56cM on linkage group V. This co-localization of QTLs 

of different traits in the same chromosomal regions suggests the existence of physiological 

and/or genetic relationships between these traits. NUE and DTM under low N conditions 

shared the same QTL region (60-72cM) on linkage group IV, explaining 23.2% and 21.7% of 

the total phenotypic variation of NUE and DTM respectively. In total, 77% of the detected 

QTLs were located on linkage group V, grouped into 4 cluster regions. From these 4 QTL 

cluster regions, the region between 21 and 38 cM accumulated most QTLs for NUE and related 

traits. 
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Figure. 5 Locations of the QTLs on the CE integerated map. Only chromosomes (linkage groups) with QTL are presented. The 

numbers on the left side are genetic distances in centimorgans (cM); marker names and locations are given on the right side. QTLs 

are presented at the right side as vertical bars with trait names in different colors for different locations (red: Debre-Tabor; 

green:Injibara; Purple: Koga). QTL names are given as trait name followed by locations and N-levels. e.g AUC_I_LN (Area under  

canopy curve (AUC);  Location, Injibara (I); N-Level(LN) or low N .Abbreviations for trait names: Area under  canopy(AUC), Days 

to maturity  (DTM), Lower leaf chlorophyll (LCC), Nitrogen use efficiency (NUE), Plant Height (PH), stem number(SNPP) ,Tuber 

number (TNPP), Tuber yield (TYPP), Upper leaf chlorophyll (UCC), Maximum canopy cover (Vmax).  
 

Discussion     

Breeding for higher yields in crops can be successful via the monitoring and selection for the 

component physiological traits that determine biomass partitioning and production, and the 

identification of QTLs that control the heritable variation of these traits (Tuberosa et al., 2008). 

This is especially true for improving yields under stressful conditions, like low nutrient 

availability. In the present study, the CxE backcross diploid potato population was evaluated 

under field conditions to identify QTLs that contribute to NUE and related traits under low and 

high N availability in potato.  

The pooled analysis of variance showed significant differences between genotypes, locations, 

N levels, and their interaction for most measured traits. Nitrogen availability affects various 

physiological processes and morphological traits of the potato crop. TYPP, TNPP, and Vmax 

were among the traits that were strongly affected by N level in our study. Vos and Biemond 

(1992) reported that N availability affects the rate of canopy development, leaf appearance, 

final leaf size and rate of photosynthesis. N supply was also suggested to affect onset of 
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tuberization, final tuber yield and harvest index (Ewing & Struik, 1992; Vos, 1995; Vos & 

MacKerron, 2000; Ospina et al, 2014). In our study, area under the canopy curve (AUC) was 

significantly affected by the level of applied N. Similarly, Grindlay (1997) and Ospina et al. 

(2014) reported that limitation in N supply affects canopy cover negatively, resulting in 

reduction in the amount of solar radiation intercepted and the overall photosynthetic capacity.  

QTL identification  

To date, only a few studies report QTLs regulating potato responses to abiotic stress 

(Anithakumari et al., 2011 2012; Khan et al., 2014; Ospina, 2016). Our study detected multi-

location as well as multi-treatment QTLs for NUE and NUE-related traits. Most of the 52 

identified QTLs explained more than 15% of the total phenotypic variation of the trait.  

Four genomic regions which harbor QTLs affecting more than one trait were identified on 

linkage group V and on linkage group IV under different N levels and locations. AUC, PH, 

Vmax, DTM, TNPP, TYPP and NUE QTLs co-localized on linkage group V between 21-38cM 

and most of the QTLs had the same peak markers, indicating that a single gene with pleiotropic 

effects may contribute to this cluster of traits or that the measured traits are physiologically 

and/or morphologically linked (El-Soda, Martin, and Boer et al., 2014). These traits had a 

strong positive correlation with NUE and with each other under both N conditions. The 

colocalization of yield and canopy traits is in line with Haverkort et al. (1991) and Vos (2009) 

who reported a strong correlation of canopy cover with intercepted photosynthetically active 

radiation and tuber yield. The strong positive association of traits with NUE and co-localization 

in the same QTL region make the traits interesting for breeders to consider them as a selection 

criterion to improve NUE in the potato breeding programs. This region was found previously to 

harbour QTLs for multiple traits under different abiotic stresses and normal growing 

conditions. Anithakumari et al. (2012) in their drought tolerance study found that the same 

region was associated with shoot fresh weight, tuber number, tuber weight and root length 

under drought stress and recovery conditions. QTLs associated with foliage maturity and late 

blight resistance were also identified in this region under normal potato growing conditions 

(Visker et al., 2005; McCord et al., 2011). Khan et al. (2014) in their drought tolerance study 

also reported that this QTL region harboured QTLs for plant height, chlorophyll content, tuber 

number and tuber weight under drought and well-watered conditions, indicating that the region 

is a potential QTL region for most important agronomic and physiological traits of potato. This 

region of linkage group V in the potato genome is strongly linked to early maturity and 

initiation of tuberization, for which the CDF1 gene was shown to be responsible (Kloosterman 
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et al., 2013). In our study, earliness has a profound influence on NUE regardless of N level, and 

our results are in line with the findings of Zebarth et al. (2004) and Ospina et al. (2014). For the 

most effective use of the QTLs in this region for NUE improvement programs in potato, it may 

be necessary to see whether the NUE QTL effects are not caused by variation in the CDF1 

gene, and to identify the genes that regulate the NUE related traits. If the genes are different 

from CDF1 gene but linked with it, disentangling the earliness gene from the genes that 

regulate NUE and other NUE related traits may be helpful or even required to improve these 

traits.  

Additional QTLs for DTM and PH under both N conditions, Vmax, AUC and TYPP under 

high N conditions, and UCC under low N condition (in total about 11 QTLs) were co-located 

between 38-56cM on linkage group V. Previously QTLs associated with foliage traits were also 

identified in this region: QTLs for fresh biomass (Anithakumari et al., 2011), plant height, 

shoot fresh weight and shoot dry weight under drought stress and recovery condition 

(Anithakumari et al., 2012), for fresh and dry harvest index and stem diameter under drought 

and well-watered conditions (Khan et al., 2014) were identified in this region. Most of the 

QTLs detected in this region are more than 20cM downstream of the CDF1 gene, and may 

constitute different loci, independent of the earliness locus. This region may be used as a 

potential source of genes for NUE improvement. The QTL region at 58-70cM on linkage group 

V harbored 4 QTLs for PH, SNPP and TYPP particularly under low N conditions in Koga. 

Similarly, Anithakumari et al. (2012) detected QTLs for plant height, stem number, shoot fresh 

weight and shoot dry weight in this region under drought stress conditions. These QTLs related 

to growth and yield under both drought stress and N deficiency conditions are more likely to be 

independent of maturity, and are potential targets for improving growth under marginal 

conditions like the test-sites of our trials in Ethiopia. In addition to the multi-QTL locus on 

chromosome V, NUE and DTM also shared the same QTL region on linkage group IV under 

low N conditions. The strong phenotypic correlation between NUE and DTM and the 

colocalization of their QTLs at several regions indicates that NUE and DTM are genetically 

strongly related.  

In general, the strong positive correlation of TYPP and NUE  with DTM, Vmax, AUC, PH and 

their coinciding QTLs as reported in this study highlight the genetic and physiological relationship 

between these traits.  Notably, the clustered QTLs had a similar additive effect: Parent E 

contributed the responsible allele for high performance values for the above mentioned traits 

under low and high N conditions. The traits may be causally related and thus could be 
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simultaneously improved in potato breeding. Especially linkage group V may be enriched with 

the N metabolism genes. Coincidence of QTL for traits with QTL effects in the same direction 

may not provide conclusive evidence, but it offers additional evidence that the two traits are 

functionally associated (Thumma et.al., 2001). The ultimate evidence that two correlated traits 

are causally correlated may require identification of the putative candidate genes underlying the 

traits.  

QTL x Environment interaction 

Quantitative traits are influenced by the environment and have a tendency to express variable 

degrees of Genotype × Environment Interaction (GEI). The analysis of variance in this study 

indicated presence of GEI. However, the G x N level interaction was low as compared G x 

location interaction. Gallais and Coque (2005) in their maize NUE genetic variation study 

reported that although the genotype by N level interaction was low, different traits and genes 

may underlie the genetic variation in NUE at high N and low N level; the variation at high N 

was mainly due to variation in N uptake while at low N level both components of NUE had a 

significant contribution to the total NUE variation. This implies that the genes that control NUE 

at low N may be different from those at high N conditions. This may be reflected in QTL x 

Environment interaction (QEI). GEI is determined by all the trait-underlying genes of all QTLs 

combined, while QEI indicates the interaction of a single QTL with the environment. The 

presence of highly significant GEI typically may or may not indicate the presence of QEI (Wei 

et al., 2012).  Most of the identified QTLs were present only under low N or high N conditions, 

and only some of them under both N conditions, at least over two experimental locations. QTLs 

identified at either low N or high N condition are N level dependent, adaptive QTLs, while 

QTLs identified under both N condition are N level independent, constitutive QTLs. The 

occurrence of adaptive QTLs specific for N level  suggests the presence of QTL x N 

interaction.  Our study was conducted in three different locations, and two production seasons 

(rainfed and irrigation production) which are different in several environmental factors 

(altitude, temperature, soil type and water availability) under low and high N conditions. This 

difference in environmental factors will have contributed to QEI. However, the QTLs identified 

for TNPP, TYPP, NUE, Vmax, and AUC were shared in both rainfed and irrigation production 

seasons, suggesting that these QTLs are not production season specific. The difference in 

number of QTLs between location was almost similar to the difference in number of QTL 

between N levels, indicating QTL x location and QTL x N level interaction had similar 

contribution to the total QEI.   



70 

 

Implications for breeding 

In our study, most measured physiological and agronomic traits had a strong correlation with 

NUE and co-localized in the same QTL regions. This coincidence of QTLs for NUE with other 

NUE related traits would suggest the NUE related traits played a role in the NUE performance 

of potato genotypes (have a causal relationship with NUE). However, to have evidence for 

causal relationship, identification of the genes that regulate the expression of these correlated 

traits should be considered in the future study. Moreover, the result suggested that when we 

simultaneously improve NUE and NUE related traits undesirable genetic linkage and 

pleiotropy should be considered in the future breeding. Fine mapping and identification of 

candidate genes is also required to obtain more information about the above mentioned QTL 

regions simultaneously controlling NUE and related traits. This study can be considered as a first 

exploratory work on the genetic relation of NUE and related traits under low and high N condition 

in potato.  Most of the QTLs identified in this study were different across environments, 

suggesting the use of these QTLs would be difficult in breeding or general stability.  To verify the 

identified QTLs in this study are consistently expressed in different environments and to use in 

breeding for general stability, multiple field trials will be required in different environments. 
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Abstract 

Nitrogen use efficiency (NUE) is a complex agronomic trait controlled by multiple genes. 

Deciphering the genetic basis of complex traits like NUE requires the linking of physiological 

functions and agronomic traits to DNA markers. A genome-wide association mapping study 

(GWAS) was conducted in potato to identify markers associated with NUE and NUE related 

agronomic and physiological traits under low N and high N conditions. The study was 

conducted in two production systems (irrigation and rainfed) at Debre-Tabor, Injibara and 

Koga, Ethiopia in 2013 and 2015. The association panel comprised of 70 tetraploid European 

potato cultivars and progenitor lines genotyped using markers from a 20k Infinium SNP array. 

The cultivar panel showed large variation under both N conditions for most traits, including 

maximum canopy cover, total area under the canopy curve, days to maturity, tuber number 

plant
-1

, tuber yield plant
-1

, and tuber dry matter. Marker-trait associations were discovered 

using the R-software package GWASpoly and for each trait four GWAS were conducted based 

on the additive, simplex-dominant, duplex-dominant and general genetic models. Most NUE 

and NUE related trait QTLs were identified using dominant genetic models. A total of 77 

marker trait associations were identified for NUE and NUE related agronomic and 

physiological traits. The effect of production season on QTL x Environment interaction was 

greater than the effect of N levels for most NUE related traits.  Multi-trait genomic regions that 

harboured significant marker-trait associations for NUE and NUE related traits were found on 

chromosome III, V and VI.  

 

 

Key words: Genome wide assocation, QTL, NUE, potato 
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Introduction 

Nitrogen is one of the most essential agricultural inputs for high crop production and 

productivity in the world. Application of mineral N fertilizer is the main driver for restoring 

soil N and high crop yields (Hirel et al., 2011).  A dramatic increase has occurred in crop yield 

through global utilization of synthetic N, however in the last decades the consumption rate of 

N fertilizer and the crop yield increase were not proportional. In the last 40 years, the amount 

of mineral N application to cultivated crops increased 7.4-fold, while the overall crop yield 

increase was only 2.4-fold (Tilman et al., 2002). According to the Food and Agriculture 

Organization (FAO), the growth rate of cereal crop yield has been relatively slow (1% annually 

since the mid-1980s); especially in developed countries the increase of crop yield is close to 

non-existent (Fischer et al., 2009). The recent increase of N fertilizer use has not only lead to 

only minor yield gains and reduced nitrogen use efficiency (NUE) of the crops, but also to 

serious environmental problems (Cassman et al.,2003; David et al., 2010).  

Considering these recent crop yield trends together with the forecasted population growth and 

environmental strain caused by synthetic N fertilizer use, breeding efforts need to focus on 

traits related to yield stability and maintenance with suboptimal N availability. Breeding for N 

efficient crop cultivars is a sustainable strategy towards this goal. However, NUE is a complex 

trait controlled by a large number of genes. Deciphering the genetic basis of complex traits like 

NUE requires the linking of physiological functions and agronomic traits to DNA markers 

(Prioul et al., 1997; Hirel et al., 2007b). Knowledge about the genes and molecular mechanisms 

involved in N metabolism and the traits that are affected by low N input is important to 

elucidate the genetic basis of potato NUE and discover the genes underlying the traits. 

Improvement and identification of genes responsible for the genetic variation of agronomically 

important traits like NUE is not an easy task, as these traits are quantitatively inherited 

(Neumann et al., 2011). The indirect selection of genetic determinants that are identified by 

estimating the genomic positions and effects of quantitative trait loci (QTL) using marker 

assisted selection (MAS) facilitates the development of new crop varieties with desirable 

component traits (Stich et al., 2008).  

The most common genetic mapping approach in cultivated plant species involves bi-parental 

segregating populations derived from parents with contrasting phenotypes and genotypes. 

However, such mapping populations represent only a small proportion of all possible allele 

combinations (Simko and Hu, 2008). These also have relatively low resolution: Bi-parental 
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QTL mapping detects genomic regions with QTL for a trait with a precision ranging from a few 

to several tens of centiMorgans (cM), and this chromosomal region may harbour several 

hundreds to thousands of genes (Ingvarsson et al., 2010). Large size mapping populations 

improve mapping resolution but require time to evaluate in multiple environments in order to 

obtain reliable phenotypic information (Mather et al., 2004; Jun et al., 2008). In contrast to 

linkage mapping, association mapping (AM) is an approach that identifies the relationship 

between phenotypic variation and genetic polymorphisms in collections of genotypes, without 

the need for developing bi-parental populations (Simko et al., 2008). According to Zhu et al. 

(2008), the existing genetic variation of complex traits in for instance natural populations can 

be investigated using association mapping approaches with high mapping resolution. 

Association mapping detects QTLs by exploring marker-trait associations resulting from 

linkage disequilibrium (LD) between markers and trait-functional polymorphisms across a 

panel of diverse individuals (Zhu et al. 2008).  It deals better than linkage analysis using 

segregating bi-parental populations with tetraploid, non-inbred crops (Li et al., 2010) like 

potato, for which tetrasomic inheritance is complex (Malosetti et al., 2007).  

Cultivated potato is a vegetatively propagated auto-tetraploid (2n=4x=48) crop. Association 

mapping studies in potato have been performed for disease resistance and quality trait mapping. 

Gebhardt et al. (2004) mapped late blight resistance and plant maturity, Simko et al. (2004 a) 

Verticillium resistance, Malosetti et al. (2007) late blight resistance, and D’hoop et al. (2008) 

used association mapping for quality traits. In this study, a genome wide association mapping 

approach was used to identify markers associated with NUE and NUE-related agronomic and 

physiological traits under low N and high N environment, which may help in further 

identification of candidate genes that may be useful for allele mining in potato germplasm, and 

marker assisted selection in the NUE improvement of potato.   

Materials and Methods 

Population description. A set of 70 tetraploid potato cultivars and progenitor lines with 

release dates ranging from 1908 to 2011 (Berloo et al., 2007) for commercial production in 

Europe were used in this study, referred to here as the association panel (Supplementary Table 

1). The panel represents European and American origin potato cultivars with different market 

niches and phenotypic diversity for agronomic traits. Based on their market niche, the set 

includes 35 fresh consumption, 11 general purpose, 22 processing industry, 1 starch and 1 

ancient cultivar. The materials were kindly provided by the Dutch potato breeding company 

HZPC Holland BV. 
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Phenotypic evaluation 

Ethiopian crop production is classified into two main seasons: a rainfed production season and 

irrigation production season. The rainfed production season is from May-October and is fully 

dependent on rainfall, while the irrigation production season is from October-April and fully 

dependent on irrigation water from rivers and streams. Phenotypic evaluation of the association 

mapping panel was carried out from May to September 2013 in the main production season 

(rainfed condition) at Debre-Tabor and Injibara and from February to June 2015 under 

irrigation production at Injibara and Koga in Ethiopia, following a split plot design with two 

replications at each location. As indicated in Chapter 2 and Chapter 3, the locations are found at 

different elevations with different rain fall, temperature and soil type. The low and high N 

levels (40kg ha
-1

 and 120kg ha
-1

, respectively) were assigned as main plots and the genotypes 

as sub-plots. The N fertilizer was applied using a side-banding method, half the amount applied 

a week after emergence and half at early flowering.  Each experimental plot consisted of 10 

plants, planted with inter- and intra-row spacing of 0.75m and 0.30m respectively and each plot 

was bordered by a reference cultivar.  

The data were recorded on two to eight plants depending on the trait, selected randomly from 

the middle part of the rows. Days to emergence (DTE) was the number of days from planting 

till 50% of the plants in a plot emerged. Plant height (PH), Chlorophyll content (CC) at lower 

and upper part the leaves were measured using a SPAD-502 chlorophyll meter (Minolta Co., 

Ltd. Japan) when 50% of the genotypes were flowering. The readings for chlorophyll content 

were taken from the third or fourth leaf from the top of the plant for upper leaf chlorophyll 

content (UCC), and the second or third leaf from the base of the plant for lower leaf chlorophyll 

content (LCC). Stem number plant
-1

 (SNPP) was the number of stems of a genotype counted 

before the plants collapsed. The canopy cover or soil cover (SC) was assessed every five days 

starting from date of emergence until the declining phase of the crop growth using a 0.6m x 

0.75m frame with 100 grid squares, positioned over the same middle plants in a plot for each 

measurement. Squares filled for more than 50% with foliage were counted, and the percentage 

of filled grid squares was considered canopy cover percentage. 

Based on the canopy cover measurements, a curve was fitted using beta thermal time for each 

assessment, and model parameters describing the curve were estimated using the NOLIN 

procedure of SAS, SAS Institute Inc, 2004 (Khan et al., 2013). These include the inflection 

point in the build-up phase of the growth curve  (tm1), time when the canopy cover reaches its 

maximum growth (t1), the maximum canopy cover (in percentage of soil cover) (Vmax), time 

of onset of canopy declining (t2), time when canopy cover reach to zero (te), Duration of max 
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canopy( t2-t1), Duration of senescing of the canopy (te-t2),  Area under the curve for growth 

phase one (emergence till t1) (AP1), Area under the curve for growth phase two (t1 till t2) 

(AP2), Area under the curve for growth phase three (t2 till te) (AP3), and area under the curve 

for the entire crop growth cycle (AUC) in %.td. Days to maturity (DTM) was taken as the 

number of the days from emergence to the day at which more than 90% of the plants had 

changed their green foliage to yellow and attained physiological maturity. It was assessed every 

day starting from the time that early varieties showed the first signs of maturity (senescence of 

the foliage). 

Tuber traits included tuber number plant
-1

 (TNPP), average tuber weight (ATW), calculated as 

the ratio of the weight of tubers per plant and number of tubers per plant at harvest, tuber yield 

plant
-1

 (TYPP), calculated as the tuber yield (fresh weight) of all harvested plants from a 

cultivar, divided by number of plants harvested. Specific gravity (SG), tuber dry matter 

percentage (TDM%) and Nitrogen Use Efficiency (NUE) defined as dry tuber weight per unit 

N available were measured and calculated at harvest. To calculate the NUE, the dry tuber 

weight and N available was calculated in hectare base. Specific gravity (SG) was determined 

using the tuber specific gravity procedure of weight in air and under water (Murphy and Goven, 

1959). Tuber dry matter percentage (TDM%) normally is determined as a ratio of dry tuber 

weight to fresh weight expressed in percentage; we determined TDM% indirectly from SG 

using empirical conversion factors following the equation of Kleinkopf et al. (1987): solid 

(Dry matter %) =    -214.9206 + (218.1852 x SG).  

Statistical analyses 

Phenotypic data analyses 

In two experimental seasons at three locations we have collected data for various agronomic 

and physiological traits of the association mapping panel. To estimate the variance components 

for each trait and assess the genotype-by-environment interaction, three types of analysis of 

variance (ANOVA) was performed: 

1) Analysis of variance including all environments and N levels was carried out using the 

dataset from the three locations for each trait to get insight in the existence of genotypic 

variation and Genotype x Environment (Genotype x Location and Genotype x N level) 

interaction, with Genstat version 18.1 edition. ANOVA was performed across locations using 
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the general linear model for split plot design with two N level treatments as main plot and the 

genotypes as sub-plot, two replications and three locations. 

2) Analysis of variance for low N and high N was done independently using all low N 

environment data, and all high N environment in separate analyses. Within each N level we had 

four environments (four low N and four high N environments). ANOVA was performed across 

four environments using the general linear model for randomized complete block design with 

four environments for each N level.  This low N level and high N level location and production 

season combined data were used to find estimates of the genotypic variance (σ
2
g), Genotype-

by- Environment interactions (σ
2
ge) variance and environmental variance (σ

2
e) for each trait at 

each N level. Subsequently, these estimates were used to calculate the heritability (H
2
) of each 

trait based on genotype means over the four low N and four high N level environments using 

the formula:
   reeegeg

g
H

// 222

2
2






  where e and r are the number of environments 

and replications per environment respectively. Combined mean values for low and high N were 

calculated for each trait by combining the phenotypic trait values for all four low N level 

environments and the four high N environments. 

 3) The third ANOVA was executed separately for each N level at each location, following a 

randomized complete block design system using one-way ANOVA. This data was used to 

estimate the genotypic variance (σ
2
g), environmental variance (σ

2
e) for each trait and to 

calculate the heritability (H
2
) of each trait based on genotype means at each location and at 

each N level using the formula: eggH 2222 /   .  

The best linear unbiased estimates (BLUEs) were computed, to generate phenotypic values for 

marker trait association studies using breeding view, the IBP Breeding Management system 

(BMS) version 3.0.9 (https://www.integratedbreeding.net/breeding-management-systemBMS-

breeding view software. Each N level at each location in each production season was 

considered as a single environment for the association mapping analysis with a total of eight 

environments.  

Genotypic data analyses 

The panel was genotyped with a 20k Infinium SNP array (Vos et al., 2015). 14,587 markers 

were scored in 5 dosage classes (nulliplex, simplex, duplex, triplex and tetraplex) depending on 

the number of copies of the allele (0 to 4) using fitTetra (Voorrips et al., 2011). Of the markers 

scored, 12,519 were polymorphic SNPs that were used for genome-wide association mapping. 

https://www.integratedbreeding.net/breeding-management-systemBMS-breeding
https://www.integratedbreeding.net/breeding-management-systemBMS-breeding
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Linkage disequilibrium (LD) and population structure were calculated previously for a larger 

genotype set by d’Hoop et al. (2010) that included the 70 cultivars used for this study. All 

individual environments as well as combined mean data (all low N environments taken together 

and all high N environments) for each trait were subjected to single marker trait association 

analysis using the R software package for auto-tetraploids (GWASpoly). This package is 

unique in its ability to conduct the single marker test for association using different models of 

gene action (Rosyara et al., 2016). GWASpoly used mixed model analysis to perform marker 

trait association analysis, and for each trait four GWAS were conducted based on additive, 

simplex-dominant, duplex-dominant and general genetic models. The package used both a Q 

and a K matrix; the Q-matrix to account for population structure, and the K-matrix to correct 

for kinship of the association panel, to reduce the plausible but false marker-trait associations. 

Bonferroni correction for a genome wide-scan was used as a QTL detection threshold at 5% 

significance level. When multiple significant markers were detected within a 10Mb region, 

only the most significant marker was reported along with the corresponding genetic model.  

Results 

Phenotypic variation and heritability 

A summary of the analysis of variance for traits of the association panel at different N levels 

and locations is presented in supplementary Table 2. For the association panel, the analysis of 

variance that included all locations and N levels reveals that the variation due to genotypes and 

locations was highly significant for almost all of the traits measured.  We used a T-test to check 

the significance of N level on traits measured in our experiment. Significant phenotypic 

variation (P ≤ 0.001) was observed for N response in the association panel for most traits 

measured in this study except days to emergence (DTE), days to maturity (DTM), the inflection 

point in the build-up phase of the growth curve (tm1), time when the canopy cover reaches its 

maximum growth (t1), time for onset of canopy decline (t2), and time when canopy cover 

reaches zero (te). Various genotypes responded differently to locations as indicated by the 

highly significant (P≤0.01 and 0.001) interaction effect of genotype (G) x location (L) for most 

physiological and agronomic traits. However, the interaction of genotype (G) x N level (N) was 

not significant for most traits, indicating G x L interaction had a larger contribution than G x N 

interaction to the total genotype-by-environment interaction (Supplementary Table 2). 

The combined means over all locations, the minimum and maximum values of different 

agronomic and physiological traits in the association panel, and the variance components under 

low N (LN) and high N (HN) conditions are presented in Table 1. Significant reduction due to 
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low N level was observed for Vmax and AUC (reduced by 26.22 and 29.2%, respectively), and 

TNPP and TYPP (23.22 and 29.66% respectively). NUE increased more than 2-fold under low 

N compared to high N, suggesting that not all the available N under high N level conditions 

was effectively used for yield production.  

The estimates of variance components under low and high N at each location and production 

system are presented in supplementary Table 3. For most traits, the environmental variance 

(σ
2
e) was higher than the genotypic variance (σ

2
g) at both locations in each production system. 

However, the estimates of σ
2
g were higher than estimates of environments for traits such as PH, 

LCC, UCC, SNPP, TNPP, TYPP, and ATW in the rainfed production system under low and 

high N at both locations. In the irrigation production system, most traits showed higher 

environmental variance than genotypic variance at both low and high N.  

The analysis of variance that included location and production system had estimates for 

genotype (σ
2
g) that were low compared to the estimates for environment (σ

2
e) and genotype-

by-environment interaction (σ
2
ge), for most measured traits at both N levels (Table 1). This is 

reflected in the heritability estimates. Traits that showed a higher estimate of genotypic 

variance than environment at each location and production system also showed high genotypic 

variance in the analysis that compared production systems (with data from locations within a 

production system combined) (Supplementary Table 4), indicating that the effect of production 

season was large compared to location and N level.  
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Table 1. Summary statistics of the association mapping panel for various agronomic and physiological trais 

(combined over location and production system) under low N (LN) and high N (HN) conditions 

Traits  Treat Mean 

  

Range Variance component 

Min Max σ
2
e σ

2
g σ

2
ge H

2
 

DTE LN 24.0 20.0 28.0 9.6 1.01 2.08 0.4 

 HN 25.0 22.0 29.0 18.9 0.06 1.01 0.02 

PH LN 31.0 25.0 39.0 16.3 5.7 14.3 0.5 

 HN 38.0 29.0 47.0 19.9 8.5 16.2 0.6 

SNPP LN 3.0 2.0 5.0 0.5 0.2 0.2 0.6 

 HN 3.0 2.0 5.0 0.4 0.2 0.3 0.5 

LCC LN 44.5 38.8 49.4 15.4 1.6 3.6 0.4 

 HN 47.3 42.7 52.8 12.8 1.2 7.8 0.3 

UCC LN 42.4 37.1 47.1 10.04 0.6 3.6 0.2 

 HN 46.0 42.8 51.2 8.2 0.8 7.3 0.2 

DTM LN 74.0 63.0 81.0 69.8 0.7 7.9 0.06 

 HN 73.0 65.0 80.0 65.3 1.2 14.4 0.09 

tm1 LN 23.4 19.0 25.4 8.6 0.05 -0.6 0.05 

 HN 22.4 19.1 25.0 12.8 0.2 -1.4 0.16 

t1 LN 30.4 27.5 32.1 7.9 0.07 -0.3 0.07 

 HN 30.2 27.8 33.8 10.1 0.07 0.3 0.05 

t2 LN 36.5 34.5 38.9 9.9 0.03 0.7 0.02 

 HN 36.2 33.2 39.1 8.2 0.01 2.3 0.01 

Te LN 51.7 47.7 54.7 5.2 0.5 1.5 0.3 

 HN 50.5 48.1 52.5 5.9 0.2 0.6 0.2 

t2-t1 LN 6.1 3.4 8.5 10.2 0.01 1.0 0.002 

 HN 6.0 3.8 9.7 10.6 0.00 1.2 0.001 

te-t2 LN 15.3 12.3 18.4 15.3 0.6 0.6 0.2 

 HN 14.3 10.3 18.3 12.9 0.4 2.8 0.2 

Vmax LN 45.4 36.5 58.6 90.5 7.06 31.4 0.3 

 HN 61.5 42.9 76.7 113.7 17.7 51.0 0.4 

AP1 LN 404.0 259.4 531.6 20461.0 219.5 6126.0 0.05 
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Traits  Treat Mean 

  

Range Variance component 

Min Max σ
2
e σ

2
g σ

2
ge H

2
 

 HN 572.8 409.9 795.1 31320.0 101.0 10240.5 0.02 

AP2 LN 255.8 145.3 406.8 21072.0 264.6 5230.0 0.06 

 HN 349.3 208.4 639.1 37189.0 1919.8 8780.0 0.2 

AP3 LN 480.2 315.5 706.2 30944.0 1259.4 2315.0 0.2 

 HN 607.3 370.9 806.6 37029.0 1248.9 13926.5 0.13 

AUC LN 1139.6 883.4 1575.6 58737.0 6313.9 32060.0 0.3 

 HN 1608.8 974.8 2174.6 113083.0 217184.1 3200749.5 0.06 

TNPP LN 5.4 3.8 7.7 1.5 0.3 1.2 0.4 

 HN 7.0 5.4 10.2 3.8 0.5 0.6 0.4 

ATW LN 74.8 44.8 103.9 314.9 57.3 201.2 0.4 

 HN 81.6 55.0 106.4 444.1 49.2 131.6 0.4 

TYPP LN 380.2 269.5 558.3 10165.0 673.0 3193.0 0.3 

 HN 540.4 353.0 771.4 28994.0 1345.4 5128.0 0.2 

TDM% LN 13.2 9.6 16.9 13.9 0.6 1.6 0.2 

 HN 12.1 9.6 16.7 10.4 0.6 0.7 0.3 

NUE LN 59.4 36.0 98.4 816.4 19.3 -56.0 0.2 

 HN 27.0 16.6 38.9 196.2 3.1 -14.2 0.13 

 DTE = Days to emergence, PH = Plant height in cm,  SNPP = Stem number plant
-1

,  LCC = Lower leaf chlorophyll content, UCC = 

Upper leaf chlorophyll content, DTM = Days to maturity, tm1= inflection point in the build-up phase of the growth curve in thermal 

day (td),  t1= time when the canopy cover reaches its maximum growth in td, t2 = time of onset of canopy declining in td,  te = time 

when canopy cover reach to zero in td, t2-t1= Duration of max canopy in td,  te-t2 = Duration of senescing of the canopy in td, Vmax = 

the maximum canopy cover in % , AP1= Area for growth phase one (emergence till t1) in % td, AP2 = Area for growth phase two (t1 

till t2) in % td,  AP3 = Area for growth phase three (t2 till te) in % td,  AUC = area under the curve for the entire crop growth cycle  in 

% td,  TNPP = Tuber number plant
-1

, ATW =  Average tuber weight in g,  TYPP = Tuber yield plant
-1

 in g , TDM% = Tuber dry 

matter in percent, NUE = Nitrogen use efficiency (kg kg
-1

), LN= low N (40kg ha
-1

), HN= high N (120kg ha
-1

). σe2 = environmental 

variance,  σg2 = genotypic variance , σge2 = genotype x environement interaction variance, H2 = broad sense heritability 

 

The association panel included three distinct market groups (fresh consumption type, general 

purpose, and processing type, consisting of 35, 12 and 23 cultivars respectively). Although not 

statistically significant, considerable differences in TDM% and NUE were observed between 

the market groups under low and high N conditions. In the rainfed production system, the 

processing group scored considerably higher than the fresh consumption and general purpose 
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group for both TDM% and NUE especially under low N conditions (Fig. 1a, c). The effect of N 

levels on TDM% and NUE was also most clear in the rainfed production system. In the 

irrigation production system, a clear difference was only observed between N levels for NUE 

(Fig 1b, d) and not between marketing groups. 

 

Figure 1. Box plots of selected traits of cultivars separated in market niche groups under different N levels in 

rainfed irrigation production systems. LNFC= low nitrogen fresh consumption, LNG= low nitrogen general 

purpose, LNP= low nitrogen processing, HNFC = high nitrogen fresh consumption, HNG= high nitrogen general 

purpose, HNP= high nitrogen processing type. TDM% = tuber dry matter in %, NUE = nitrogen use efficiency  

(kg kg
-1

) 

Overall, higher tuber yield and NUE values were recorded under irrigation compared to rainfed 

production season. This may be related to the amount and distribution of rain in the rainfed 

season. The rain fall was heavy and frequent from mid-June to August (growing and bulking 

period of potato), and this high rain fall favoured potato diseases and insect pest occurrence, 

which may have reduced the tuber yield and NUE. In fact, we applied fungicide (redomil) for 

the management of late blight on the foliage before infection or when the disease is in very 

early stages. However, confounding disease symptoms were observed in addition to late blight 

that may have reduced the performance of the cultivars. Heavy and frequent rain may have also 

reduced available N in the rainfed locations compared to the irrigated locations. 
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The Pearson correlation coefficients (r) between various physiological and agronomic traits 

under low N and high N conditions are presented in Table 2. NUE showed strong positive 

correlations with Vmax, AP3, AUC, TNPP, TYPP and TDM% under both N levels indicating 

the potential of these traits for indirect selection for NUE under low and high N level 

conditions. Most traits considered in this study showed medium to high positive correlations 

between low and high N conditions. 
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Table 2. Correlation coefficients of the four-environment combined agronomic and physiological traits of the association mapping panel under high N (above 

diagonal) and low N (below diagonal) 

 

High N DTE SNPP UCC tm1 t1 t2 te Vmax t2-t1 te-t2 AP2 AP3 AUC DTM TYPP TNPP TDM% NUE 

Low 

N DTE 0.35 -0.26 0.23 0.09 -0.13 -0.14 -0.11 0.13 -0.02 0.03 0.12 0.13 0.15 -0.17 0.12 -0.05 0.02 0.1 

 

SNPP -0.41 0.74 -0.23 -0.14 0.02 0.07 0.06 0.1 0.05 -0.01 0.08 0.03 0.04 0.08 0.03 0.41 0.07 0.03 

 

UCC -0.15 0.01 0.46 0.23 -0.01 0.11 0.09 -0.16 0.12 -0.02 -0.02 -0.09 -0.1 0.28 -0.15 -0.23 -0.08 -0.17 

 

tm1 -0.23 0.09 0.08 0.00 0.55 0.21 0.08 0.21 -0.31 -0.11 -0.11 0.12 0.09 0.2 0.11 -0.06 0.01 0.14 

 

t1 -0.3 0.27 0.02 0.46 0.14 0.47 0.21 0.06 -0.48 -0.22 -0.33 -0.05 0.04 0.24 -0.18 -0.01 0.01 -0.15 

 

t2 0.06 -0.05 0.04 0.36 0.39 0.36 -0.01 0.25 0.55 -0.76 0.54 -0.32 0.3 0.19 0.04 0.22 0.21 0.12 

 

te -0.36 0.23 0.11 0.62 0.42 0.06 0.49 0.35 -0.2 0.66 -0.08 0.7 0.37 0.44 0.31 0.14 0.03 0.23 

 

Vmax 0.18 -0.02 -0.22 0.22 0.22 0.26 0.15 0.59 0.19 0.05 0.6 0.72 0.93 0.23 0.54 0.53 0.27 0.53 

 

t2-t1 0.33 -0.29 0.01 -0.09 -0.55 0.55 -0.33 0.03 0.32 -0.54 0.85 -0.27 0.27 -0.04 0.22 0.23 0.21 0.26 

 

te-t2 -0.33 0.21 0.06 0.26 0.08 -0.6 0.76 -0.04 -0.62 0.44 -0.46 0.7 0.01 0.15 0.17 -0.07 -0.14 0.06 

 

AP2 0.39 -0.28 -0.13 0.1 -0.3 0.57 -0.15 0.55 0.79 -0.49 0.57 0.08 0.65 0.03 0.37 0.43 0.34 0.44 

 

AP3 -0.09 0.12 -0.07 0.32 0.22 -0.19 0.61 0.74 -0.38 0.61 0.08 0.5 0.68 0.26 0.48 0.28 0.06 0.39 

 

AUC 0.16 -0.01 -0.14 0.15 0.21 0.26 0.24 0.96 0.05 0.02 0.57 0.77 0.72 0.2 0.46 0.48 0.3 0.49 

 

DTM -0.52 0.08 0.22 0.37 0.32 0.09 0.5 0.15 -0.21 0.34 -0.09 0.35 0.2 0.16 0.16 -0.05 -0.06 0.05 

 

TYPP 0.09 -0.05 0.12 0.13 0.11 0.29 0.26 0.6 0.16 0.02 0.39 0.52 0.62 0.18 0.53 0.38 -0.09 0.78 

 

TNPP -0.14 0.38 0 0.2 0.21 0.08 0.25 0.3 -0.12 0.15 0.03 0.34 0.27 0.11 0.36 0.65 0.29 0.46 

 

TDM% -0.1 0.15 -0.16 0.09 0.09 -0.01 0.1 0.32 -0.09 0.09 0.14 0.28 0.3 0.07 -0.03 0.18 0.52 0.48 

 

NUE -0.05 0.11 0.07 0.2 0.21 0.2 0.31 0.57 -0.01 0.12 0.27 0.54 0.58 0.25 0.67 0.39 0.64 0.32 

 

color key 

 
-1 0 1 

Traits: DTE = days to emergence, SNPP = stem number plant-1, UCC = upper leaf chlorophyll content, tml = the inflection point in the build-up phase of the growth curve  t1= canopy stabilized, t2 = onset of 

canopy senesced te = compleltely sensceed canopy, Vmax = maximum canopy cover, t2-t1 = duration of maximum canopy, te-t2 = duration senesceing of the canopy, AP2 = Area under the curve for growth 

phase two (t1 till t2), AP3 = Area under the curve for growth phase three (t2 till te), AUC = Total area under the canopy curve, DTM= days to maturirty, TYPP = tuber yield plant-1, TNPP = tuber number 

plant-1, TDM% = tuber dry matter%, NUE = nitrogen use effeciency 
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Association mapping  

Association mapping was performed with 12,519 polymorphic SNP markers, using a Q + K 

matrix to correct for population structure and kinship in the association panel. We defined the 

marker-trait associations (MTA) that were within a 10Mb region as a single QTL, and only 

report the peak marker in this region. QTLs above the calculated threshold of p ≤ 0.05 (-

log(10)P value of 4.5) for NUE and NUE-related agronomic and physiological traits measured 

in 15 environments including the over-environment combined data, with allele frequencies 

above 5%, are presented in Supplementary Table 2. The significant MTAs in these QTLs had –

log10(P) values ranging from 4.52 to 7.28. Of the identified QTL regions, 18 harbour QTLs for 

two or more traits (Table 3). In total 77 QTLs were detected for 18 measured or calculated 

phenotypic traits in 8 low and high N single environments, and production season, low N, and 

high N combined environments (Supplementary Table 5). 

QTLs for NUE and other agronomic and physiological traits that have a strong positive 

correlation with NUE were detected on chromosomes, III, V and VI under various 

environments. On chromosome III, QTLs for NUE and AUC co-localized at the same genomic 

region in low N environments, while QTLs for t2, t2-t1, DTM and TDM% under different 

environments were clustered on another region of the same chromosome. SNPP, tm1, t2, t2-t1, 

te, Vmax, AUC, TDM% and NUE had QTLs on chromosome V, with QTLs for Vmax, AUC, 

and TDM% co-localising in the same region with NUE between 351,772bp and 9,824,216bp. A 

region between 52,929,083bp and 58,844,975bp on chromosome VI harboured QTLs for NUE 

and other NUE related traits such as TNPP, UCC and AP2. 

 AUC and DTM shared an association with the same marker (PotVar0010985) on chromosome 

IX under high N conditions in the rainfed production season at Injibara. Other QTLs for AUC 

were detected on chromosome III, V, and IX, and marker PotVar0019456 on chromosome III 

was associated with AUC in over location and production season combined low N environment 

and irrigation production season combined low N environment. This QTL can be considered as 

a low N dependent but location and production season-independent QTL for AUC. QTLs were 

detected on chromosomes I, IV, XI and XII for TYPP, and particularly QTLs linked with the 

marker solcap_snp_c2_26796 on chromosome IV and marker PotVar0060022 on chromosome 

XI were associated with TYPP in two low N condition environments under irrigation 

production system, indicating that these QTLs were low N as well as irrigation season 

dependent. QTLs detected for traits t1, Vmax, AP3, DTM and NUE were specific for rainfed 

production season, while TYPP and te-t2 were irrigation production season specific QTLs. 



86 

 

SNPP, tm1, t2-t1, AP2, TNPP and TYPP had QTLs in more than one environment under both 

production systems. Constitutive QTLs were detected for the major tuber yield component trait 

TNPP on chromosome VII with marker solcap_snp_c2_25261 and for SNPP on chromosome 

X with marker PotVar0116800 in different environments.  

We detected more than one QTL for most traits in several environments, but environment-

specific or environment-excluding QTLs were also identified, suggesting presence of QTL x 

environment interaction. A summary of QTLs in various environments for each trait is 

presented in Supplementary Table 2. Only 8% of these QTLs were detected in two or more 

environments and the remaining 92% were environment-specific. Of the total identified QTLs 

in both single or combined low and high N environments, 49% were detected in high N level 

environments, 46% in low N level environments, and 5% in combined environments. From the 

detected QTLs 38 (49%) were detected only in rainfed and 21 (27%) only in irrigation 

production systems. Overall, most QTLs identified in this study were environment-dependent 

indicating presence of QTL-by-Environment interaction in our association panel. 
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Table 3. list of 18 QTL regions (within 10 Mb) that harbour QTLs for two or more traits  

Chromosome Traits Chromosome region(bp ) 

I t2 & TYPP 51,293,720 - 58,197,448 

 SNPP, DTE & AP2 75,179,906 - 82,029,061 

II TNPP, t1, t2-t1 & SNPP 50,890,271 - 55,659,310 

III NUE & AUC 2,235,688 - 2,742,393 

 TDM%, t2-t1, DTM & t2 50,890,271-55,659,310 

IV DTM, t2-t1 & AP3 66,147,280 - 67,807,068 

 TYPP & te 641,790 - 9,524,541 

V tm1, NUE, SNPP, TDM%  &  t2-t1 2,964,094 - 12,658,442 

 t2 & te 50,863,328 - 51,682,609 

 Vmax & AUC 351,772 - 1,413,732 

VI NUE, TNPP, UCC & AP2 52,929,083 - 58,844,975 

VII te-t2, AP2, TNPP & t2-t1 44,288,221 - 50,155,639 

VIII SNPP &TDM% 53,835,553 - 56,624,935 

IX te, UCC, AUC & DTM 52,407,969 - 57,422,879 

 AP2 & tm1 48,735,918 - 49,977,704 

X SNPP 1,910,636 

XI TNPP & tm1 40,967,802 - 44,430,446 

XII TNPP & TYPP 59,793,350 - 59,957,211 

Traits: t2 = onset of canopy senesced, TYPP = tuber yield per plant, SNPP = stem number plant-1, DTE = days to emergence, AP2 = Area under 

the curve for growth phase two (t1 till t2), TNPP = tuber number plant-1, t1= canopy stabilized, t2-t1 = duration of maximum canopy, NUE = 

nitrogen use efficiency, AUC = Total area under the curve, TDM% = tuber dry matter%, DTM= days to maturirty, AP3 = Area under the curve 

for growth phase three(t2 till te), te = compleltely sensceed canopy, tml = the inflection point in the build-up phase of the growth curve  Vmax = 

maximum canopy cover, UCC = upper leaf chlorophyll content, te-t2 = duration senesceing of the canopy 

 To detect MTAs and QTLs, various gene models were used in separate association analyses. In 

this study, a simplex-dominant genetic model, duplex-dominant genetic model, additive and 

general genetic models were used to identify MTAs, and the majority (75%) of the MTAs were 

identified using dominant genetic models. All MTAs identified for NUE, AUC and t1 were 

using dominant genetic models, while other traits had MTAs detected by general, dominant and 

additive genetic models (see also Figure 3). The quantile-quantile (QQ) plots (Figure 3b, d, f 

and h) demonstrate that the Q + K mixed model allowed as to reduce the false marker trait 

associations, as quantified by the linear regression coefficient of the observed vs expected –

log(10)P values.   
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Figure 3. Manhattan plots and QQ plots for several traits using different gene models. (a) Manhattan plot of the simplex dominant model for area under 

the canopy curve for maximum canopy cover phase (AP2). The –log10 P-values from genome wide scan are plotted against the positions of the 12 

chromosomes. The horizontal dotted line indicates the significance threshold (P≤0.05). (b) Quantile-quantile (QQ) plot of the simplex dominant model 

for AP2. (c) Manhattan plot of the duplex dominant model for stem number plant
-1 (

SNPP). (d) Quantile-quantile plot of duplex dominant model for 

SNPP. (e) Manhattan plot of additive model for tuber number plant
-1

 (TNPP). (f) Quantile-quantile plot of additive model for TNPP. (g) Manhattan plot 

of general model for complete canopy senesced (te). (h) Quantile-quantile plot of the general model for te. 
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Discussion 

 

Phenotypic variation  

NUE is a complex physiological process determined in potato by the efficient uptake, 

accumulation and partitioning of nitrogen and assimilates to facilitate production of tubers. 

Uncovering the mechanisms underlying such a complex trait is not straightforward due to the 

complexity of the adaptive response of the crops to changes in available N. In this study, we 

present the genetic analysis of NUE in European commercial potato cultivars, linking traits that 

contribute to NUE under low and high N conditions to specific genomic regions in potato. The 

cultivars were evaluated under low and high N conditions in rainfed and irrigation production 

systems in different locations and years, and the genotype-by-environment interaction was 

significant for most traits considered in this study. The environment-combined variance 

component analysis showed low genotypic variance (σ
2
g) compared to estimates of genotype-

by-environment interaction variance (σ
2
ge) and environmental variance (σ

2
e) for all traits, 

indicating presence of large differences between environments. In particular, the genotype-by-

location interaction, which includes production season, had larger contributions to the total 

genotype-by-environment interaction than the genotype-by-N level interaction, indicating a 

significant effect of experimental locations as well as production seasons on the performance of 

potato cultivars. In most potato growing countries potato cultivars grown in specific areas are 

selected according to the environmental conditions prevailing in these countries. Lisinska and 

Leszczynski (1989) reported that tuber yield and quality traits of potato were generally linked 

to the prevalent climatic conditions of a given area. In our study, the large contribution of 

genotype-by-location interaction to total genotype-by environment interaction could at least 

partly be attributed to differences in production season (rainfed vs irrigated), and these may be 

the predominant non-genetic factors affecting growth, yield and NUE of potato. This high 

environmental variance compared to genotypic variance particularly in the irrigation production 

system may be attributed to irrigation management. As we conducted the field experiment 

using furrow irrigation method, seepage and other factors may enhance within field variation, 

and thus increase the environmental variance in the irrigation experiments.  

NUE and most-NUE related traits had high genotypic variance and heritability estimates under 

rainfed production season conditions, whereas under irrigation the estimates were low for most 

traits (Supplementary table 5). As shown in Supplementary Table 4, the H
2 

estimate differences 

between locations and N levels within each production season were small for most traits, while 

the H
2 

estimate differences between production seasons (rainfed vs irrigation) in the locations 
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combined data was large for most agronomic and physiological traits (Supplementary Table 5). 

This further points to production season contributing more to the total genotype-by-

environment interaction than locations and N levels.  Thus, our study suggests that the target 

breeding environment should be divided into sub-target environments (mega-environments) 

based on production seasons, so as to increase the heritability and selection efficiency of potato 

for NUE (for a more detailed study of genotype-by-environment interaction see Chapter 5).   

Within the market groups in our potato genotype set, the processing type group had higher 

values of DM% and NUE compared to the other two groups especially under rainfed 

conditions. Bártá and Bártová (2008) determined extractable protein in European processing 

and table potato cultivars and reported that tuber dry matter percentage was significantly higher 

in processing potato cultivars than table potato cultivars, in line with our results under rainfed 

conditions. Remarkably, this difference was not observed under irrigated conditions. Whether 

this difference is related to a season influence remains to be established.  

Genetic variation for NUE in potato 

The phenotypic data analysis showed that there is genetic variation in the panel population for 

traits related to NUE, indicating that the population may be a suitable panel for detection of 

QTLs for these traits, provided that the population structure and linkage disequilibrium (LD) 

are acceptable. Population structure (unaccounted sub-populations in the genotype set) induces 

LD between unlinked loci (Pritchard et al., 2000). Consequently, some marker-trait 

associations that are statistically associated to the analysed trait may not be genetically 

associated with the phenotypic variation (Mezmouk et al., 2011). We used Q and K matrixes to 

correct for the population structure and kinship, moreover linkage disequilibrium (LD) and 

population structure were calculated previously for a larger genotype set by d’Hoop et al. 

(2010) that included the 70 cultivars used for this study. Both results revealed that there was no 

clear structure in the panel, suggesting that it is suitable for association mapping studies. In the 

identification of significant MTAs, we tried to reduce false positives. As showed in the 

quantile-quantile plot, inflation of the P-value above the linear regression line was very low, 

which is an indication that the models successfully control the population structure. Moreover, 

rare alleles were removed and the MTAs were identified using Bonferroni correction as a 

threshold test, which is one of the most conservative approaches to avoid spurious positives 

(Rosyara et al., 2016). All the aforementioned tests make it likely that the identified MTAs are 

indeed resulting from genetic linkage of the markers to the phenotypic traits.  
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The cultivars in the association panel were mainly developed for high N input and   European 

long day conditions, and they may lack genetic diversity and optimal alleles for NUE and 

related traits under low N conditions and short days, which is the most common cultivation 

environment in Ethiopia. Many authors indeed reported that modern plant breeding may have 

reduced crop genetic diversity (Borlaug, 2007; Govindaraj et al., 2015; Babiker et al., 2015), 

and this may be especially true for traits that were not selected for. However, in our panel there 

was still considerable variation for NUE and related traits under both low and high N 

conditions. This variation may be attributed to the fact that it includes cultivars released for 

production over a wide range of years and for different purposes. Based on the frequency of 

genotypes in the markers scored, the processing cultivars contributed more positive alleles to 

the identified NUE QTLs under low N level condition, while under high N fresh consumption 

type cultivars contributed more compared to processing types. Of the 8 cultivars which have 

more positive allele contribution for the identified QTLs under low N 5 cultivars were 

processing type. Under high N, 7 cultivars showed higher contribution of positive alleles of 

which 4 were fresh consumption type. This suggests that the two groups have N level-specific 

genetic potential for NUE improvement of potato.  

 The QTL mapping described in Chapter 3 using the CxE diploid backcross population 

conducted in a similar field experimental set-up resulted in the detection of several QTL 

regions. Many QTLs were detected on chromosome V, with QTLs controlling NUE and other 

physiological and morphological traits accumulating at different genomic locations. QTLs 

found with a bi-parental mapping approach often cannot directly lead to identification of 

candidate genes, mainly due to the often-low resolution of biparental QTL mapping (Bernardo, 

2008). Association mapping typically has a higher resolution compared to QTL mapping due to 

the higher number of recombination and it does not confound the analysis of non-additive gene 

effect like dominant gene effect. In our association mapping approach under low and high N 

conditions we identified QTLs in different regions of the potato genome, including several 

associations accumulating on chromosome V (Supplementary Table 2). Markers associated 

with Vmax and AUC co-located between 351,772bp and 1,413,732bp on chromosome V. The 

SNP marker PotVar0026355 on chromosome V, positioned at 4,335,324bp, associated with 

NUE in the present study and is 3.83Mb away from the PotSNP573 marker positioned at 

507,660bp which was associated with NUE in the CxE QTL mapping study (this thesis Chapter 

3). The marker PotVar0026355 is also about 0.34Mb away from the SSR marker Mando 

located at 4.67Mb, which was associated with days to maturity in the same linkage mapping 



92 

 

study (Chapter 3) and 0.16Mb from the CDF1 gene (PGSC0003DMG400018408) shown to be 

responsible for early maturity and involved in photoperiod-induced initiation of tuberisation 

(Kloosterman et al., 2013).  The co-localization of these QTLs in both a biparental and an 

association mapping population validates the detected QTLs. The presence of QTLs for NUE 

and days to maturity in close proximity to the CDF1 gene suggests that this gene underlies both 

maturity and NUE, and that NUE and maturity are correlated. Indeed Tiemens-Hulscher et al. 

(2012) reported that differences in NUE under high and low N input conditions were shown to 

be strongly associated with maturity type. Others reported that late maturing potato cultivars 

recorded higher NUE values than early maturing ones under both high and low N conditions 

(Zebarth et al., 2004, Ospina et al., 2014), which was confirmed in our genetic diversity study 

in Chapter 2.  In the current study, the environment-combined correlation between NUE and 

days to maturity (DTM) was low (Table 2); we found a high correlation between the two traits 

in the rainfed production season (Chapter 2), while it was low under irrigation production 

season. Although this may reflect a different relationship between DTM and NUE in the two 

seasons, we cannot rule out that the low correlation between the two traits under irrigation may 

be caused by the difference in harvesting times between seasons. Maturing of the late cultivars 

in the irrigation production season overlapped with the onset of the rainfed production season, 

and because of the high rainfall, we had to harvest the experiments before all cultivars 

(especially the late cultivars) matured. This relative early harvesting of the late cultivars may 

have reduced the contribution of maturity to yield and NUE and thus may have affected the 

correlation between the two traits. 

The QTLs detected for Vmax, AUC, DTM and NUE shared the same peak marker on 

chromosome V in our CxE linkage mapping study (Chapter 3). Similarly, Ospina et al. (2016) 

detected QTLs for canopy development traits in the SH x RH diploid biparental potato 

population that shared the same peak marker with the above-mentioned region of chromosome 

V. This co-location and sharing of the same peak marker underscores the importance of this 

region in influencing NUE and NUE-related traits. Although this region can be used as a 

potential target for NUE improvement, the influence of maturity is substantial. Thus, priority 

should be given to see whether the linkage between the maturity-driving CDF1 gene and NUE 

and related traits can be separated. 

AUC on chromosome III and TNPP and AP2 on chromosome VI co-located with QTLs for 

NUE. These two genomic regions may be useful for NUE improvement in potato other than 

chromosome V, and these are independent of maturity type. Trait-specific stable QTLs (QTLs 
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for one specific trait observed in more than one environment) were detected for various NUE 

related traits in different environments. Stable QTLs for TYPP with peak markers 

solcap_snp_c2_26796 on chromosome IV and marker PotVar0060022 on chromosome XI 

were observed at two low N level environments under irrigation production system, indicating 

the QTLs may be low N as well as irrigation season dependent. This suggests the presence of 

QTL x Environment interaction. However, the difference in overall number of identified QTLs 

between low and high N level is lower than the QTL number difference between the two 

production seasons, suggesting QTL x N level interaction was lower than the QTL x production 

season interaction, in line with the stronger contribution of production system to the total 

genotype x environment interaction compared to N levels, as already discussed. Similarly, 

studies in rapeseed using multi-environment trials that included various locations and growing 

seasons showed that a large number of QTLs were stable across N levels, while Genotype x 

Trial interaction was strong and most of the QTLs were specific to a single trial (Bouchet et al., 

2016). In a bread wheat QTL x environment interaction study, Kuchel et al. (2007) reported 

that a large portion of the G x E interaction could be explained by interaction of the QTLs with 

climatic factors.  

To identify QTLs, various gene models were used in different association studies. Most QTL 

studies focus on estimating the additive effect of the QTL, assuming absence of interaction 

among QTLs (Bocianowski and Krajewski, 2009; Rovaris et al., 2011). However, epistatic and 

dominance effects also play a very important role in controlling the expression of quantitative 

traits (Bocianowski, 2013). In this study, we use additive, simplex and duplex dominant, as 

well as general models; most of the MTAs (including MTAs identified for NUE, AUC, TNPP, 

and TYPP) were detected using dominant genetic models. This indicates that the source of 

heritable variation for the identified MTAs is mostly due to dominant gene action or due to the 

interaction of alleles at a single locus, and that dominant gene effects are important in 

controlling potato NUE and NUE related traits. Gopal (1998) in his study on early generation 

of potato general combining ability also reported that non-additive gene effects were more 

important than additive gene effects in determining potato tuber yield and yield components. 

Previous selection which may have narrowed the genetic base of the studied genotypes may be 

one of the possible causes for greater non-additive genetic variance effect for various traits 

(Plaisted et al., 1962). Killick and Malcolmson (1973) in their potato combining ability study 

reported that Specific Combining Ability (SCA) is more important than General Combining 

Ability (GCA) in most traits, suggesting that traits subjected to directional selection would be 
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expected to show little additive variance. Our results endorse this concept as most of the 

cultivars used in our panel have been subjected to selection for tuber yield and other tuber 

quality traits under various potato breeding programs. 

Combining QTLs that control traits of interest from different genomic regions in a single 

genetic background is a challenging mission in plant breeding. The use of markers for loci that 

accumulate several traits may increase the QTL pyramiding efficiency in marker assisted 

selection. In this study, several traits that contribute to NUE mapped to the same regions on the 

genome and can thus be introduced in a new cultivar together, thus reducing the challenge of 

collecting QTLs that control traits of interest from different genomic regions.  

In conclusion, genome-wide association mapping detected both stable and environment specific 

QTLs for NUE and NUE related traits. NUE-related traits such as DTM, Vmax and AUC had a 

strong positive correlation with tuber yield and yield component traits. The colocalization of 

QTLs for these traits with NUE QTLs suggests that these can be used for indirect assessment of 

some tuber yield and yield component traits. Multi-trait chromosome regions have been 

identified on chromosome III, V and VI associated with NUE and NUE related traits.  Markers 

found in the aforementioned chromosome regions could be used for future improvement of 

NUE and related traits through marker assisted selection. However, to use the markers detected 

on chromosome V efficiently, it would help to be able to separate the trait earliness from the 

other traits. Our result demonstrated that the effect of production season was greater than the 

effect of N levels on NUE and NUE related traits under our experimental conditions. Still, 

critical genomic regions associated with NUE that were stable across potato populations were 

identified. 



95 

 

 

 

 

Chpater 5    

Genotype-by-Environment interaction for nitrogen use efficiency 

of potato (Solanum tuberosum L.) under different growing 

conditions in North western Ethiopia. 

Baye Berihun Getahun
1,2

, Mulugeta Atinaf Tiruneh
4
, Marcos Malossetti

3
, Richard GF Visser

1,2
, 

C. Gerard van der Linden
1,2

 

1
Graduate School Experimental Plant Sciences, Wageningen University & Research, PO Box 

386, 6700 AJ Wageningen, The Netherlands; 

 
2
Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ Wageningen, The 

Netherlands;  

3
Biometris, Wageningen University and Research, PO Box 16, 6700 AA Wageningen, The 

Netherlands;  

4
 Ethiopian Institute of Agricultural Research, PO Box 25, Addis Ababa, Ethiopia  

 

 

 

 

 

 

 

 

 

 

 



96 

 

Abstract 

Understanding genotype-by-environment interaction (GE interaction) and the way to exploit it, 

is important in developing crop breeding strategies for potato. The objectives of this study were 

to determine the GE interaction and stability of nitrogen use efficiency (NUE) in potato 

cultivars, identify promising genotypes, and evaluate test environments. The study was 

conducted in eight environments representing low and high nitrogen levels combined with 

rainfed and irrigation production conditions at three different locations in Ethiopia; Debre-

Tabor, Injibara and Koga. These are located in potato growing areas of North western Ethiopia. 

Eighty-one European commercial potato cultivars were evaluated using a split plot design with 

two replications. Data were analysed using the genotype, and the genotype and environment 

(GGE) biplot model. The GGE analysis identified two mega-environments that coincide with 

the two production systems. Three promising cultivars (Kuras, Asterix and Desirée) in the 

rainfed mega-environment, and two cultivars in the irrigation mega-environment (Hermes and 

Kuroda) combined good mean performance with stability in NUE. Testing environments for 

proper selection of genotypes based on representativeness and discriminating ability were also 

identified. The high N level environments at both Debre-Tabor and Injibara were the most 

suitable environments in discriminating the potato cultivars and being representative test 

environments for NUE evaluation in the rainfed mega-environment. The low N environment at 

Koga was the most suitable environment in discriminating and representing the irrigation 

mega-environment.  

 

Key words : Genotype-by-environment interaction, mega-environment, growing conditions, NUE, potato 
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Introduction  

Crop genotypes grown in different environments encounter considerable fluctuations in yield, 

especially when the growing environments are markedly different. This instability of crop 

performance with a changing growing environment is referred to as genotype-by-environment 

interaction (GE interaction). Bowman (1972) defined GE interaction as a change in the relative 

performance of a “trait” of two or more genotypes in two or more environments. The 

occurrence of GE interaction in a crop improvement program potentially influences the 

selection and varietal development for a target set of environments, especially when the rank 

order changes among the genotypes (Navabi et al., 2006). Understanding the environmental 

and genotypic causes of GE interaction is important to many plant breeding goals, including 

ideotype strategies and parent selection based on traits of interest (Jackson et al., 1998; Yan and 

Hunt, 1998). Various statistical models have been proposed and used to analyze and further 

partition the GE interaction.  The additive main effect and multiplicative interaction (AMMI) 

(Zobel et al., 1988) approach, and genotype plus genotype-by-environment interaction (GGE) 

approach as proposed by Yan et al., (2000) have been the most widely used models to analyze 

multi-environment data. However, GGE best fits a mega environment analysis, genotype and 

evaluation of test environments (Amira et al., 2013; Yan et al., 2007). 

In Ethiopia, potato is cultivated both in the rainy season under rainfed conditions and in the dry 

season using irrigation. The two production systems have different production constraints; 

higher maximum and lower minimum average temperature are the predominant irrigated potato 

production system constraints, while incidence of late blight is the prevailing production 

constraint in the rainfed potato production system (Yigzaw et al., 2008). Despite the difference 

in production constraints and climatic conditions between the two production systems, farmers 

grow the same cultivars for both rainfed and irrigation production systems. The Ethiopian 

potato breeding program has developed a number of improved potato varieties. However, these 

improved varieties were released only for rainfed production systems under high input 

conditions. Nevertheless, according to Mulat (1999) the amount of fertilizer applied by most 

Ethiopian farmers is below the recommended level. For instance, from the total cereal 

production areas only 35% receive chemical fertilizer. The average fertilizer use of Ethiopia as 

a country for all crops is about 17kg/ha, which is very low by any standard (Agriculture For 

Impact, 2014). For these type of environments, potato varieties that have higher nitrogen use 

efficiency (NUE) under low N input conditions are required.  NUE has critical economic and 

environmental values. Although it is difficult to assess the economic costs associated with 
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inefficient N use, Raun and Johnson (1999) have estimated that every 1% increase in N 

fertilizer uptake efficiency of cereal crops would save approximately US$2.3 billion in a year 

on fertilizer costs in the world. Despite its importance, the main mechanisms of NUE and the 

genetic factors involved are poorly understood (Basra and Goyal, 2002). Partly this may be due 

to the inherent complex nature of NUE, as it is a function of several interacting genetic and 

environmental factors. The existence of genetic variation among genotypes for NUE at least 

suggests that improving NUE through breeding is an option. Information about the relative 

importance of various traits related to NUE is vital for efficient breeding for NUE, but genetic 

studies of NUE are hampered by interaction with environmental factors. very often, the 

environmental variation of NUE supersedes the genotypic contribution to NUE performance in 

field-grown crops in particular (Bertin and Gallais 2000; Dawson et al., 2008). Factors like 

temperature, water availability, and soil type may affect NUE by affecting crop growth as well 

as the availability of N in the soil by affecting mineralization of soil organic matter, organic 

fertilizer and leaching of soil nitrate (Agostini et al, 2010). Increased insight in GE interaction 

of NUE related genetic factors in potato can therefore be very helpful. 

Often in GE interaction studies, crop yield is used as the target trait to evaluate the suitability of 

the test environments and the superiority of the cultivars in each environment, because yield 

has a critical economic value and is used in assessing the superiority of the genotypes. In this 

study, we selected nitrogen use efficiency (NUE) as a target trait. According to Barraclough et 

al. (2010), yield is a measure of nitrogen use efficiency, and the definition of NUE used in this 

study is the ratio of dry potato tuber yield and the available nitrogen (N in the soil + applied N). 

GE interaction considering N level as part of environment and NUE as a target trait is vital to 

exploit potato genetic resources efficiently and identify optimal test environments and superior 

genotypes for NUE improvement in different fertility level and production systems. So far, no 

work has been done on the suitability of test environments and stability of potato cultivars for 

NUE in different production conditions, including low N level and high N level as part of the 

environment. The aim of this study was (a) to evaluate the influence of locations, N levels, and 

production conditions on NUE and on stability of potato cultivars and (b) to identify optimal 

testing environments. 
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Materials and methods  

Plant Materials 

A total of 81 Dutch potato cultivars were used in this experiment. The cultivars were released 

from different potato breeding companies for different purposes and in different years (Berloo 

et al., 2007) and are common cultivars in the North-western European potato market 

(Supplementary Table 1).  

Description of experimental area 

The experiments were conducted at three different locations in North-western Ethiopia: at 

Injibara and Debre-Tabor in 2013 under rainfed conditions, and at Koga and Injibara in 2015 in 

the dry season under irrigation. The locations are situated in the Amhara region (Figure 1), 

which is the major potato growing area of the country accounting for about 40% of the 

Ethiopian potato farmers (CSA 2008/2009). Debre-Tabor and Injibara are located at higher 

altitudes. Debre-Tabor is located at 2650masl with expected average annual rain fall of 

1500mm, and Injibara is located 2600masl with 2300mm annual average rain fall.  However, 

Debre-Tabor is relatively dry highland, while Injibara is a wet highland area.  Although the 

intensity was high, the rainfall distribution was good for potato production in both locations, 

during the main rainfed production season.  

The irrigation experiments in 2015 were conducted during the dry season (February to June).  

The irrigation period of the year in Ethiopia is characterized by dry weather, high day 

temperature, low night temperature and low disease incidence. The two experimental sites are 

located in different agro-ecologies. Koga is located at mid altitude (1900 masl), while Injibara 

is located at higher altitude (2600masl). Irrigation water was applied every week in both 

locations. There was no scarcity of irrigation water especially at Koga, but at Injibara there was 

scarcity of irrigation water particularly at the beginning of the experiment. The environmental 

variation experienced from location to location even within a short distance, and from rainfed 

production season to irrigation production season are among the most dominant features of the 

Ethiopian environmental conditions (EMA, 1988). We defined eight target environments for 

the data analysis. Each location combined with a production season and N level was considered 

as a separate target environment making a total of eight test environments for this study. 

Description of the test locations and the eight defined environments are presented in Table 1 

and Table 2, respectively. 
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Figure 2. Location map of the study area 

 Table 1. Description of the experimental locations used in this study. 

 Geographical position  Temperature(
o
C) Soil 

type 

Soil pH 

Locations Latitude Longitude Altitude 

(masl) 

Ave. 

 rain 

fall(mm) 

Min Max    

D/Tabor 11.89 
o
N 38.04 

o
E 2650 1500 11.8 23 luvisol 5.2 

Injibara 

 

10.85 
o
N 36.8 

o
E 2600 2300 8.0 22 Acrisol 4.8 

Koga 

 

11.37 
o
N 37.12 

o
E 1900 1400 9.0 32 Nitosol 5.4 

Table 2. Adopted environments with the involvement of different factors 

Environments 

(E)  

Location   N-levels  Year Production condition/season  

E1 Debre-Tabor Low N 2013 Rainfed 

E2 Debre-Tabor High N 2013 Rainfed 

E3 Injibara Low N 2013 Rainfed 

E4 Injibara High N 2013 Rainfed 

E5 Injibara Low N 2015 Irrigation 

E6 Injibara High N 2015 Irrigation 

E7 Koga Low N 2015 Irrigation 

E8 Koga High N 2015 Irrigation 

E1= Debre-Tabor low N(Rainfed), E2= Debre-Tabor high N(Rainfed), E3= Injbara low N (Rainfed), E4=Injbara high N 

(Rainfed), E5=Injbara low N (irrigation), E6= Injbara high N (irrigation), E7= Koga low N (irrigation), E8=Koga high N 

(irrigation), LN= low N (40kg ha-1), HN= high N (120kg ha-1).  

  



101 

 

 

Field trials and experimental design 

The field experiments were conducted with a similar experimental setup in all locations under 

rainfed and irrigation production conditions. The trials had a split-plot design with two 

replications, where the main plots were assigned to the low and high N rates (40kg/ha and 

120kg/ha) and the sub-plots to the genotypes. Each experimental plot consisted of 10 tubers 

planted in one row with an intra-row of 0.30m and 0.75m spacing between rows, and each 

experimental plot was bordered by a reference potato cultivar. Application of irrigation water, 

pest and disease management, weeding and ridging and other cultivations was done following 

the recommendation of each location and when required. The total amounts of N (40 and 120 

kg/ha) included the available N in the soil and application of commercial N fertilizer in the 

form of urea and di-ammonium phosphate (DAP). Phosphorus fertilizer was applied following 

the recommendation for each location in the form of DAP and tri-supper phosphate (TSP). The 

whole P source was applied at planting while N application was split in two: a week after 

emergence and at the start of flowering. 

Trait measurements 

Phenotypic data were collected for several agronomic and physiological traits. Harvesting was 

conducted when the last cultivar reached physiological maturity (90% of the haulm tissue 

brown), and eight plants per plot were harvested and used to evaluate the tuber yield plant
-1

, 

yield- related traits and NUE. To calculate NUE, we measured first the specific gravity of the 

tuber. Specific gravity (SG) was determined using the tuber specific gravity procedure of 

weight in air and under water (Murphy and Goven, 1959). In evaluating the SG of each variety, 

healthy and marketable-sized grade (20mm and above) tubers were selected randomly from 

each variety harvest. Then, tubers were cleaned, and weighed both in air and water following 

the procedure of (Murphy and Goven, 1959).  

 

where SG= specific gravity of the material, W1= weight in air of the sample tuber, in g and 

W2= Weight of the sample completely immersed in water, in grams. we determined tuber dry 

matter in percent (TDM%) indirectly from SG using empirical conversion factors following the 

equation of Kleinkopf et al. (1987): solid (Dry matter %) = -214.9206 + (218.1852 x SG). And 
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then Tuber dry weight (TDW) was estimated indirectly from specific gravity and tuber dry 

matter content, using the following formula:
100

*% TFWTDM
TDW 

 

 

Where TDW = Tuber dry wieght in g, TDM = Tuber dry matter percentage, TFW = Tuber 

fresh weight in g.  Finally, NUE was determined as the tuber dry matter production, or dry 

weight of the tubers ha
-1

, per unit of N supplied ha
-1

 (N in the soil + applied N). 

Data analysis  

The analysis of variance of NUE data for each trial was done using a split-plot design with 

GenStat 18
th

 edition software. The adjusted NUE means of each trial was used in a combined 

analysis of variance to evaluate the main effect of environment (E), genotype (G), and 

genotype-by-environment interaction (GE) variances. Further partitioning and analysis of GE 

interaction was carried out with GGE biplot model using GGE software (Yan, 2001). The GGE 

biplot was constructed using the first two principal components (PC1 and PC2) derived from 

environment-centred NUE data ((Yan et al., 2000). Environment-centred data is the data with 

the grand mean and the environmental effects removed from the data as defined by the 

following GGE model: 

ijjiiijYij   222111  Where Yij is the measured mean of genotype i(=1,2,….,n) 

in environment j(=1,2…,m), μ is the grand mean, βj is the main effect of environment j,  λ1 and 

λ2 are the singular values (SV) for the first and second principal component (PC1 and PC2), 

respectively, ξi1 and ξi2 are eigenvectors of genotype i for PC1 and PC2, respectively, ŋ1j and ŋ2j 

are eigenvectors of environment j for PC1 and PC2, respectively, εij is the residual associated 

with genotype i in environment j. 

Results  

Variance analysis 

The individual and combined analysis of variance for tuber yield revealed highly significant 

differences (P≤0.001) among genotypes in all environments except in E8 (Koga, high N in 

2015) (Table 3). The experimental coefficients of variation (CV) were relatively low, ranging 

from 0.15 to 0.25, except in E8 (CV 0.36). The irrigation production season test environments 

(E5, E6, E7 and E8) showed higher tuber yield and NUE performance compared to rainfed 

production season test environments (E1, E2, E3 and E4) (Table 3). However, within the 

irrigation production season, test environments at Injibara (E5 and E6) have shown lower 



103 

 

performance compared with test environments at Koga (E7 and E8). The low tuber yield and 

NUE performance of our cultivars at Injibara in the irrigation production season may be 

attributed to shortage of irrigation water especially at early stage (emergence and growth) stage 

of the crop.  Genotype G61 Navigator had the highest tuber yield (0.6 kg/plant). All other 

genotypes yielded 0.35 kg or more except G6 Annabelle (0.32 kg/plant). Among the 

environments E8 had the highest mean yield (0.89 kg/plant) (Supplementary Table 2). 

Similarly, the individual analysis of variance for NUE was significantly different (P≤ 0.05) 

among genotypes in E8 and highly significantly different (P≤0.001) in all other environments 

(Table 3). The coefficients of variations (CV) were a bit higher in irrigation experiments 

compared to rainfed; this higher CV may be related with irrigation water management. As the 

experiments were conducted using furrow irrigation at field conditions there may be differences 

in seepage and other factors between plots that may have caused higher CV values.  

Test environments in the same production season were positively correlated with each other, 

while the correlation between test environments of most rainfed and irrigation season test 

environments were mostly low (Table 4), indicating GE interaction.  

 The combined analysis of variance over environments revealed that potato NUE is 

significantly (P<0.001) affected by the environment (E), genotype (G) and genotype-by-

environment interaction (GE) (Table 5). The environment accounted for 79.6% of the total sum 

of squares (SS) of (G + E + GE) variation, which is the largest contribution to the total 

variation. The genotype and genotype-by-environment interaction respectively accounted for 

only 4.1% and 16.3% of the total sum of square variation (Table 5). The significant effect of 

the GE interaction in the combined analysis of variance suggests that the genotypes had 

variable performance in the tested environments (different best performers at different 

environments).  
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Table 3. Mean squares of individual analysis of variance by environment for tuber yield and NUE of 81 potato genotypes in 8 environments 

 Mean squares of individual environment analysis of variance  

Source of variation  Df E1 E2 E3 E4 E5 E6 E7 E8 

Replication (a) 1 0.4 0.11 0.014 0.28 0.075 0.23 0.45 0.13 

Replication (b) 1 453.9 12.69 554.2 301.61 1323.6 479.27 18974 5454.4 

 

Genotype (a) 

 

80 

 

0.01*** 

 

0.02*** 

 

0.003*** 

 

0.014*** 

 

0.014*** 

 

0.021*** 

 

0.045*** 

 

0.12 

Genotype (b) 80 243.43*** 38.98** 430.9*** 64.10*** 438.2*** 83.68*** 1454.3*** 416.8* 

 

Residual (a) 

 

80 

 

0.003 

 

0.005 

 

0.001 

 

0.004 

 

0.004 

 

0.005 

 

0.025 

 

0.09 

Residual (b) 80 89.39 20.04 102.6 21.64 194.4 34.94 471.5 288.2 

          

mean (a) (kg plant
-1

)  0.31 0.44 0.22 0.43 0.35 0.42 0.63 0.89 

mean(b) (kg ha
-1 

kg
-1

 ha
-1

)  37.06 14.60 41.21 15.64 41.21 15.63 101.31 51.11 

CV(%) (a)  17.6 16.4 16.5 14.5 17.7 17.1 25.4 35.6 

CV(%) (b)  25.5 30.7 24.6 29.7 35.4 37.3 21.4 33.2 

(a)= analysis of variance for tuber yield/per plant, (b)= analysis of variance for NUE, CV(%)= coefficient of variation in percent, E1= Debre-Tabor low N(Rainfed), E2= Debre-Tabor high 

N(Rainfed), E3= Injbara low N (Rainfed), E4=Injbara high N (Rainfed), E5=Injbara low N (irrigation), E6= Injbara high N (irrigation), E7= Koga low N (irrigation), E8=Koga high N (irrigation) 
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 Table 4. Pearson correlation coefficients among the 8 potato testing environments based on NUE data  

 

E1 E2 E3 E4 E5 E6 E7 E8 

E1 - 

       E2 0.54
***

 - 

      E3 0.37
***

 0.49
**

 - 

     E4 0.41
***

 0.50
**

 0.43
***

 - 

    E5 0.08
ns

 0.01
ns

 -0.15
ns

 0.09
ns

 - 

   E6 0.03
ns

 0.05
ns

 -0.18
ns

 -0.03
ns

 0.72
***

 - 

  E7 -0.0003
ns

 0.01
ns

 -0.2
ns

 -0.16
ns

 0.29
**

 0.37
**

 - 

 E8 -0.05
ns

 -0.042
ns

 -0.29
**

 -0.12
ns

 0.14
ns

 0.17
ns

 0.43*** - 

E1= Debre-Tabor low N(Rainfed), E2= Debre-Tabor high N(Rainfed), E3= Injibara low N (Rainfed), 

E4=Injibara high N (Rainfed), E5=Injibara low N (irrigation), E6= Injibara high N (irrigation), E7= Koga low N 

(irrigation), E8=Koga high N (irrigation). *** = significant at P≤ 0.001, ** = significant at  P≤ 0.01, ns= not 

significant 

Table 5. Combined analysis of variance for NUE (kg/kg) of 81 potato cultivars for all 8 environments taken 

together 

DF=Degrees of freedom, SS=sum of square, MS= mean of square, V= variance, GE= genotype-by- environment 

interaction, CV%= coefficient of variation, P= significance level  

Mega environment analysis 

Considering the mega-environment components of a target region for a specific crop is a 

precondition for determining proper approaches of genotype evaluation and cultivar 

recommendation. The vector view of the GGE biplot for NUE of 81 potato cultivars evaluated 

in 8 environments is shown in Figure 2a. The environments are connected to the biplot origin 

by the vectors. The percentages of GGE explained by PC1 and PC2 were 31.4% and 25.8% 

respectively, and the biplot explained 57.2% of the total variation due to G and GE using an 

environment-standardized model. In this case the total variation is referred to as the variation 

Source of 

 Variation 
DF SS Ms V    P 

variation (%) 

 

Environment (E) 7 901752.8 128821.8 718.35 ≤ 0.001 79.6 

Genotype (G) 80 46419.3 580.2 3.24 ≤0.001 4.1 

GE 560 184643.6 329.7 1.84 ≤0.001 16.3 

Residual 647 116026.9 179.3    
 

Total 1295 
1250565    

 

Mean  
 40.1   

 

CV(%)  
 33.4   
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due to the G and GE, because the variation due to the environment main effect is excluded by 

this model. The GGE and especially PC1 clearly separated the two production seasons 

(irrigation and rainfed). All environments within the same production season appeared to be 

correlated (as indicated by the less than 90˚ angle between them), while the two production 

seasons appeared to be negatively correlated (as indicated by more than 90˚ angles (Yan, 

2002), in agreement with the correlations presented in Table 4. The negative correlations 

between groups of test environments are a strong indication that the environments can be 

grouped in two different mega-environments. 

Mega-environments can be defined by which-won-where patterns, and the GGE biplot is an 

effective graph to show these in a genotype-by-environment dataset.  The biplot in Figure 2b 

is similar to the biplot Figure 2a except that the environment vectors were removed and a 

polygon with lines perpendicular to the polygon sides was added. The polygon was drawn 

based on cultivars placed away from the biplot origin so that all cultivars are included in the 

polygon. The 8 environments fall into two sectors delineated by the straight lines radiating 

from the biplot origin and perpendicular to sides of the polygon.  

The sector delineated by lines 1 and 7 comprises the four rainfed environments E1, E2, E3 

and E4. The genotype G43 (Kuras) is placed on the vertex of the polygon for this sector, and 

is therefore considered the most nitrogen efficient cultivar for this group of environments (see 

also supplementary Table 1). The second sector is defined by the radiate lines 6 and 7, and 

includes the four environments of the irrigation production season (E5, E6, E7, and E8). 

Genotype G3 is on the vertex for this section suggesting that G3 (Agria) was the winner at 

these environments, and this genotype indeed has the highest NUE in the irrigation production 

season trials. Thus, we identified two mega-environments (the irrigation and rainfed), and the 

test-environment and genotype evaluation was done separately for each of the two mega 

environments.  
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Figure 2: GGE biplot for NUE. Figure 2a is the vector-view GGE biplot based on environment-focused singular 

value partitioning, showing the interrelationship among test environments. Figure 2b is the “which-won-where” 

view of the GGE biplot under each mega-environment constructed based on environment-centered and 

symmetrical singular value partitioning. See codes of environments and genotypes in Table 1 and Chapter 5 

supplementary Table 2, respectively. 



108 

 

Test environment evaluation  

Evaluating the test environments is helpful to identify test environments that can effectively 

identify superior genotypes and representative test environments for a mega environment, in 

our case for the rainfed or the irrigated production season. The GGE biplots in Figure 3 and 4 

were constructed based on environment-focused singular value partitioning for the two 

production seasons separately, in order to visualize the representativeness and genotype-

discriminating power of the test environments in these mega environments. In the two biplots 

the single arrowed red line that passes through the biplot origin is the average environment 

axis (AEA), and the small red circle on the AEA represents the average environment. The 

double arrowed blue line perpendicular to the AEA represents the average environment 

coordination (AEC). The representativeness of the environments is measured by the cosine of 

the angle between the test environments and AEA; the closer the test environment is to the 

average environment the more desirable it is as core testing environment (Yan et al., 2007). 

The vector length from the origin of the biplot to the environments is a measure of the 

discriminating power of the environments. Figure 3 demonstrates that all test environments 

are positively correlated with the AEA, and therefore they were all representative but to 

different degrees (see also Table 6). E2 and E4 (the high N environments) were closest to the 

average environment with good discriminating ability (long vector lengths) suggesting that 

these are the test environments that best represent the rainfed mega environment, while E1 

and E3 (the low N environments) were well-discriminating but less representative 

environments. 

Similar to the rainfed mega environment, all four test environments in the irrigation mega-

environment were correlated with the AEA of the mega environment (Figure 4 and Table 7). 

E7 was more representative, while E8 was less representative. The two testing environments 

at Injibara (E5 and E6, low and high N) were strongly correlated with each other, indicating 

their similarity in discriminating the genotypes and representativeness of the mega-

environment.    
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Figure 3. The Representativeness vs Discrimination view of the GGE biplot for test environments based on NUE value of potato cultivars in 

rainfed mega environment of North western Ethiopia as ranked based on distance to the ideal environment. The double arrow blue line is the 

average environment coordinate (AEC) and the single arrow red line is the average environment axes (AEA). E1= Debre-Tabor low 

N(Rainfed), E2= Debre-Tabor high N(Rainfed), E3= Injibara low N (Rainfed), E4=Injibara high N (Rainfed),   

 

Figure 4. The Representativeness vs Discrimination view of the GGE biplot for test environments based on NUE value of potato 

cultivars in irrigation mega environment of North western Ethiopia as ranked based on distance to the ideal environment. The double 

arrow blue line is the average environment coordinate (AEC) and the single arrow red line is the average environment axes (AEA). 

E5=Injibara low N (irrigation), E6= Injibara high N (irrigation), E7= Koga low N (irrigation), E8=Koga high N (irrigation 
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  Table 6. Numerical values for the test environments within the rainfed mega-environment based on Figure 3 

Test environment Vector Length Correlation with AEA Distance to ideal test environment 

E1 1.92 0.80 1.75 

E2 1.72 0.99 1.20 

E3 1.84 0.82 1.76 

E4 1.60 0.97 1.41 

E1= Debre-Tabor low N(Rainfed), E2= Debre-Tabor high N(Rainfed), E3= Injibara low N (Rainfed), E4=Injibara high N (Rainfed),  

Table 7. Numerical values for the test environments within the irrigation mega-environment based on Figure 4 

Test environment Vector Length Correlation with AEA Distance to ideal test environment  

E5 1.74 0.81 1.64 

E6 1.75 0.85 1.51 

E7 1.58 0.89 1.38 

E8 1.68 0.67 1.92 

E5=Injibara low N (irrigation), E6= Injibara high N (irrigation), E7= Koga low N (irrigation), E8=Koga high N (irrigation 

 

Genotype evaluation  

To identify widely adapted genotypes, the Mean vs. Instability forms of the GGE biplot 

containing all test environments within each mega-environment are presented in Figure 5 and 

6, supplemented with numerical outputs in Supplementary Table 4 and 5. These biplots were 

constructed based on genotype-focused singular value partitioning to visualize the mean 

performance and instability of the genotypes. In the biplots, the double-arrow blue line 

pointing outward from the bi-plot origin which passes through the origin perpendicular to the 

AEA is the AEC. The AEC from the biplot can be used to visualize the mean performance 

and instability of the genotypes when it is based on genotype-focused singular value 

partitioning (Figures 5 and 6). Regardless of the direction the two arrows point to higher 

instability for the genotypes, i.e. greater contribution to GE interaction, and the small circle on 

the AEA represents the ideal genotype. The ideal genotype is a virtual genotype that is 

defined to have the highest value in the trials (the longest vector of all genotypes) that is 

absolutely stable and on the AEA (Yan, 2014). In Figure 5, the genotype G43 (Kuras) has the 

longest positive projection along the AEA, suggesting that it has the highest mean NUE 

across the test environments within the mega-environment. The genotype G2 (Agata) has the 

longest negative projection onto AEA indicating that it had the lowest mean NUE value 

across the test environments.  

According to Yan (2014), if the test environments are placed on both sides of the AEC 

ordinate, then the G/GE in the data set would be too small for the AEC to be reliably used for 
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genotype evaluation. In Figure 5 all test environments are on the same side of the AEC, 

indicating that the G/GE in this data set is high enough, and that the AEA is meaningful in 

genotype evaluation. To better visualize the mean performance and instability of the 

genotypes, a line was drawn from each genotype to the AEA. The length of the line from 

AEA is a measure for the genotype’s instability. The longer the line, the less stable the 

genotype. Consequently, G43 (Kuras) contributed little to GE and therefore it was stable, 

while genotypes like G18 (Carlita) and G39 (Jazzy) contributed more to GE and thus were 

unstable. Both G18 and G39 were unstable, however they were on opposite sides of the AEA 

indicating their interactions with the environments were in opposite directions, and they were 

unstable for contrasting interactions with the environments. Closeness to the ideal virtual 

genotype helps to select the most stable and best performing genotype within the mega-

environment. The distance of the genotypes to the ideal genotype (GGE distances) as well as 

their rank relative to the ideal genotype are presented in supplementary table 4. The higher the 

mean and the smaller the distance of a genotype to the ideal genotype, the more desirable it is. 

Thus, G43 is the most desirable, while G2 (Agata) is the least desirable. G9 (Asterix) and G27 

(Desiree) were the second and the third most desirable genotypes in this mega environment.  

In the same fashion, in the irrigation mega environment (Figure 6), the genotype G3 (Agria) 

has the longest positive projection, suggesting that it has the highest mean NUE value across 

the test environments, while G22 (Cleopatra) has the longest negative projection. Genotype 

G35 (Hermes) was located closer to AEA, and had less contribution to GE. In the contrary, 

genotypes, G51 (Marabel), G53 (Marilyn) and G62 (Nicola) contributed more to GE 

interaction suggesting these are unstable. Based on the criteria of the ideal genotype, G35 was 

the most desirable genotype as placed closer to AEA and had the longest vector next to G3.   
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Figure 5. The Mean vs instability view of the GGE biplot for NUE of potato cultivars in rainfed mega environment of North western 

Ethiopia as ranked based on distance to the ideal genotype. The double arrow blue line is the average environment coordinate (AEC) 

and the single arrow red line is the average environment axes (AEA)  

 

Figure 6. The Mean vs instability view of the GGE biplot for NUE of potato cultivars in the irrigation mega environment of North west 

Ethiopia as ranked based on distance to the ideal genotype. The double arrow blue line is the average environment coordinate (AEC) and the 

single arrow red line is the average environment axes (AEA) G with numbers =  Genotype codes ( see the name of the genotypes in  Chapter 

5, supplementary Table 2) 
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Discussion  

Analysis of genotype-by-environment interaction for a key trait is an important topic of crop 

variety trial data analysis. To assess mega-environments, test-environments and genotype 

aspects in a genotype-by-environment analysis, 81 European commercial potato cultivars (G1 

to G81) were evaluated for NUE in eight testing environments (E1 to E8) in North western 

Ethiopia. The effect of environmental conditions on NUE of potato was highly significant. 

The results of the field trials demonstrated the impact of environment, and in particular 

production season on the NUE of potato cultivars. Large contributions of the environment that 

influenced NUE of genotypes was reported in a number of studies (Bertin and Gallais, 2000; 

Dawson et al., 2008; Agostini et al., 2010; Liu et al., 2012). Significant GE interaction can 

result in different ranking of potato cultivars and complicate selection, because measured 

performance in one environment fails to predict performance in another environment (Baker, 

1988). To gain more insight in the influence of environment on potato cultivar performance 

and to increase selection efficiency, a GGE biplot analysis was done to evaluate test 

environments and cultivars. From the GGE biplot analysis, usually only the first Interaction 

Principal Component axes (IPCA 1 and IPCA2) are needed to adequately explain the data, 

even though other IPCAs that have no significant contribution to explain the biplot may be 

detected (Gauch and Zobel 1997; Yan et al., 2000). In our study the first two (IPCAs) of the 

biplot indeed accounted for more than 50% of the G x E interaction, demonstrating that in the 

GGE biplots model the first two PCs can be used to explain interpretable patterns of the GE 

interactions.  

Figure 2b shows that the radiates of the biplot divided the plot into seven sectors, with four 

environments all appearing in one sector (left of the biplot), and the remaining four appearing 

in the right side of the biplot. These two sectors had different high NUE vertex genotypes 

indicating the presence of crossover GE interaction, and suggesting the test environments 

should be divided into mega environments (Yan et al., 2007). Understanding and 

identification of mega environments can result in increased heritability through evaluations in 

relatively well-defined and predictable target environments (Abdalla et al., 1996). These 

targets the most promising genotypes for a target trait and improves the efficiency of breeding 

programs.  Our results suggest that there are at least two potato mega environments for potato 

NUE evaluation in North western Ethiopia, coinciding with the rainfed and irrigation 

production systems (Fig. 2b).  
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The relevance of these two mega environments is supported by the fact that environments did 

not cluster based on location: Environments E3, 4, 5 and 6 are all in Injibara, but these were 

divided over the two mega-environments based on production system, demonstrating that 

season was the main contributor for the GE interaction and the driver for the formation of the 

two mega environments. Previously, CIP-sourced Ethiopian clones and local cultivars were 

evaluated under rainfed and irrigation production systems in North Western Ethiopia, but 

stable cultivars for both rainfed production system and irrigation production system were not 

found, indicating that an independent selection program is required for each production 

system (Yigzaw et al., (2008). However, to reach a final conclusion, and to recommend 

different selection programs for each production system, this result needs to be confirmed in 

trials over more years, and possibly more locations. 

Understanding and selection of suitable test environments is one of the most important factors 

for the success of any plant breeding program (Yan et al., 2011). For selecting a test 

environment, the discrimination ability and representativeness of the target environment 

should be taken into account (Yan, 2002; Xu et al., 2014). In the present study, the two test 

environments represented by high N level at both Debre-Tabor and Injibara under rainfed 

production conditions had good discriminating ability and representativeness of the rainfed 

mega environment, suggesting these test environments may be good test environments for 

both low and high N cultivation conditions. In the irrigation mega-environment however, the 

low N testing environments were more discriminating and representative, which may suggest 

that under irrigation production systems, evaluation and selection of cultivars for NUE 

improvement may be conducted under low N conditions.  According to Murphy et al. (2007), 

the most efficient way to improve crops yield under low input conditions is indeed to select 

varieties under low input or stress conditions. In the irrigation mega environment the low and 

high N environments at Injibara (E5 and E6) were strongly associated with each other. The 

analysis of variance at this location also showed non-significant genotype by N level 

interaction, which means differences between genotypes are consistent from low N to high N 

environment. This suggests no significant shift in rank order of genotypes with respect to 

NUE occurred between N levels for these trials at Injibara. The absence of a significant N 

effect may be attributed to the strong acidic nature of the Injibara area soil, as low pH may 

affect the availability of N also under the high N condiitons. Atlin and Frey (1989) found no 

genotype by N level interaction in oats yield, suggesting the possibility of indirect selection 
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(i.e selection at low N or high N for both high and low N conditions). However, this may be 

dependent on the genotypes used, and conclusions should be drawn with care. 

 Genotype evaluation within a mega environment should consider both mean performance and 

stability (Yan and Kang, 2003). In our GGE biplot analysis the estimations of yield and 

stability of genotypes is done by using average environment (tester) coordinate (AEC) 

methods (Figure 5 and 6) according to Yan (2001). Cultivar Kuras was identified as having 

consistently high relative NUE performance across the rainfed mega-environment. This 

implies that this cultivar grows well both in low and high N rainfed environments, indicating 

that it is able to adapt to available N in such a way that yield is always high. Farmers, 

especially in developing countries, need such type of varieties that can give reasonable yield 

under stress conditions, and respond to ideal conditions with a yield increment.   

However, Kuras was not a good performer for NUE in the irrigation mega environment. 

Given our results, it is likely that this specific adaptation to mega environments should be 

taken into account, and specifically adapted genotypes for a mega environment should be 

selected and cultivated in these environments. Although there is an increase in costs of 

breeding for specific adaptation relative to a wide adaptation strategy, breeding for specific 

adaptation tends to imply greater genetic gains. The genetic gains can be derived from 

exploitation of GE interaction effects via useful adaptive traits (Bidinger et al., 1996), as well 

as increased heritability of the target trait as a consequence of decreased GE interaction 

(Kang, 1998). Thus, as the rainfed and irrigation mega environments are independent and 

distinct, different set of improved materials may be required for each of the 

megaenvironments.  

In conclusion, GE interaction was significant for potato NUE indicating that some 

environments were better for testing than others. The GGE analysis divided the test 

environments over two mega-environments. The identification of mega-environments in the 

North western Ethiopian potato production region and seasons may have various implications. 

First, it offers the opportunity for the potato breeders to also exploit more targeted adaptation 

for NUE and related traits to achieve maximum yield and NUE. Second, by focusing in 

breeding programs on target genotype distribution to a specific mega environment the 

heritability and the efficiency of testing will be improved. In each of the mega environments, 

the mean performance and stability analysis identified genotypes that had high mean 
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performance and stability for NUE, and these may be used as parents for future NUE 

improvement in potato. 

Overall, we obtained valuable information that suggests independent potato varietal selection 

programmes are required for each production system in North western Ethiopia, however the 

results and must be verified by additional multi-year data, to reach conclusive final 

recommendations. 
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Chapter 6    

General Discussion 
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 This thesis addressed the complexity and challenges of breeding for NUE, taking potato as a 

focus crop and North-western Ethiopia as the target study area. Nitrogen is one of the most 

important yield-enhancing agricultural inputs. Application of inorganic nitrogen on a large 

scale is important as it is not possible to provide sufficient organic nitrogen in order to feed 

the world’s population (Smil, 1991). However, the cost of inorganic nitrogen will increase 

with rising costs of energy required for its production. In various parts of the world, farmers 

are applying too low levels of inorganic and organic nitrogen as a risk-avoiding and cost-

minimizing strategy for cultivation due to the unavailability or high costs of fertilizer, 

resulting in low yields and sometimes crop failure (Witcombe et al., 2008). Thus, improving 

NUE of crop plants is of great importance for sustainable agriculture and food security not 

only now but also so in the future.  

Potato is a prime food security crop for smallholder farmers in the highland parts of North-

western Ethiopia, where nutrient availability and especially a lack of nitrogen is a major 

constraint for crop productivity. Smallholder potato farms in this area are often characterized 

by variable conditions and preferences. In this challenging scenario, breeders have a series of 

options to work with. Conventionally, breeding practices through indirect selection for 

physiological and agronomic traits that improve NUE under low N condition can be used. It 

can also be studied in an integrated manner by means of quantitative genetic approaches using 

molecular markers, genomics, and combining physiological and agronomic studies (Gallais 

and Hirel, 2004).  

  This chapter highlights the initial efforts made in understanding the genetic and 

physiological basis of NUE in potato. In doing so, it brings together approaches of physiology 

and genetics to identify traits related with NUE and locate the genomic regions that 

genetically underlie the variation for those traits (Chapters 3 and 4). We identified traits 

important for indirect selection of NUE (Chapter 2), and used a genotype x environment 

interaction analysis (Chapter 5) to identify N use efficient genotypes and the best testing 

environment for NUE evaluation in North-western Ethiopia. The complexity of each of the 

above aspects needs to be understood in order to effectively address the breeding challenges 

of NUE. NUE is a term that describes a highly complex, multigenic trait, with various inter-

connected physiological processes involved and modified by numerous other factors. These 

include environmental factors affecting both the crop growing process and the availability of 

N in the soil (Agostini et al, 2010). Nitrogen use efficiency (NUE) was defined by different 
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authors in different ways, depending on the objective of the study and the crop under study. In 

this study NUE is defined as the tuber yield per unit of nitrogen resource available to the 

plant. Clear understanding of the main mechanisms and inheritance of NUE is lacking (Basra 

and Goyal, 2002), and this is partly due to the inherent complexity of NUE, as it is a function 

of multiple interacting genetic and environmental factors (Dawson et al., 2008). The genetic 

diversity of the germplasm source involved in this study, the environmental conditions and 

the genetic diversity and QTL mapping are the central points discussed in this concluding 

chapter. 

 

 

Figure 1. schematic overview of the research presented in this thesis  

Germplasm used as a gene source  

Broadening the genetic basis of the gene pool used as a gene source for variety development 

is highly desirable for any crop, because genetic diversity provides buffering against 

environmental extremes and biotic stresses. A population with broad genetic variation will 

have a better chance of surviving and flourishing in a given environment than a population 

with limited genetic variation. In this thesis, we have used Ethiopian local cultivars, Ethiopian 

commercial cultivars originating from the International Potato Centre (CIP, Lima Peru) 

selected under Ethiopian environmental conditions, European commercial cultivars developed 
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for European conditions, and the diploid CxE experimental backcross population to evaluate 

the genetic variation for NUE under Ethiopian field conditions.  

The tested commercial cultivars (both the Dutch and the Ethiopian) in our study showed 

significant variation that may be used for breeding to improve NUE in potato (Chapter 2, 4 

and 5). There is a common understanding that commercial cultivars are not necessarily the 

most promising source of materials for genetic improvement of NUE, because commercial 

cultivars may have lost a lot of genetic diversity, as they are mostly developed for high yield 

under high N input conditions. Indeed, a wider range of genetic variation in NUE was 

reported for wild accessions of potato than for commercial potato cultivars (Errebhi et al., 

1999). Accessions of S. chacoense were identified as a promising source for improving NUE 

in potato breeding programs (Errebhi et al., 1999). Nevertheless, several studies confirmed 

that although wild Solanum species may provide a valuable pool of diverse germplasm for 

this purpose, significant variation in crop N use efficiency (NUE) is still present in 

commercial potato cultivars (Midmore et al., 1987; Errebhi et al., 1998b, 1999; Zebarth et al., 

2004a; Zvomuya et al., 2002; Sharifi et al., 2007; Ospina et al., 2014). On average, 

commercial potato cultivars have similar or higher N use efficiency potential compared to 

wild potato accessions under both low and high N supply conditions. However, there were 

also exceptional wild accessions and/or selections which perform better for some NUE 

parameters than the commercial cultivars (Errebhi et al. 1998; Zebarth et al., 2008). 

The tuber yield mean performance of different cultivar groups in different locations under low 

and high N conditions is presented in Figure 2. The maximum mean tuber yield was recorded 

in Ethiopian local cultivar groups and Dutch commercial cultivar groups at Debre-Tabor and 

Injibara under low and high N availability. At low N there was no clear difference between 

cultivar groups in both locations. At high N there was a big difference between the Ethiopian 

and Dutch cultivar groups in Debre-Tabbor. In Injibara however, the difference between 

cultivar groups in tuber yield was hardly noticeable, even though the Dutch cultivar group had 

the highest mean compared to Ethiopian cultivars.  

The effect of N level on the mean tuber yield of each cultivar group was substantial. The yield 

difference between low N and high N levels of the Ethiopian local cultivars group in 

particular was considerable, indicating their phenotypic plasticity (the potential of the local 

cultivars to adapt to the different conditions in different environments). Farmers especially in 
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developing countries, need such type of varieties that can give reasonable yield under stress 

conditions, and respond to ideal conditions with yield increment.   

 

Figure 2. Box plots of tuber yield per plant of potato cultivars in their cultivar group at different nitrogen levels 

in Debre-Tabor and Injibara in the 2013 rainfed production season. The grouping elements on the x-axis are a 

combination of N levels and cultivar groups. ETLLN= Ethiopian local cultivars at low nitrogen, ETLHN= 

Ethiopian local cultivars at high nitrogen, ETCLN= Ethiopian commercial cultivars at low nitrogen, ETCHN= 

Ethiopian commercial cultivars at high nitrogen, DULN= Dutch cultivars at low nitrogen, DUHN= Dutch 

cultivars at low nitrogen;TYPP = tuber yield per plant in g  

 Overall, commercial cultivars had higher yields than local cultivars, resulting in higher NUE.  

The local potato cultivars used in this study performed almost similar to the Ethiopian 

commercial cultivars, and better than most European potato cultivars in NUE under both low 

and high N levels, indicating the potential of these genotypes as a genetic resource for NUE 

improvement programs (Chapter 2). These materials are still in the hands of the local farmers 

and were cultivated under low input production systems for a long time, and they are 

potentially more resilient to changes in environmental conditions. Even though there are 

improved potato varieties developed under high input conditions in Ethiopia, most farmers 

still prefer to cultivate local cultivars that have higher farm level resilience (Labarta et al., 

2012; Kolech et al., 2015). About 70-90% of the Ethiopian potato farmers are growing at least 

two local potato cultivars, and 77% of the total potato growing area in the country is planted 

with local cultivars every year (Kolech et al., 2015).  Especially their potential to give yield 

without any external application of inorganic fertilizer (only by using the nutrients available 

in the soil) is of great interest. Foulkes et al. (1998) reported that old cultivars were more able 

to capture soil nitrogen, while modern cultivars were more able to utilize the high levels of 

fertilizer nitrogen. According to Kidane Mariam (1979), the Ethiopian local potato cultivars 

may have originated from a small number of introductions and they are relatively poor in 

yield. Because of the perception of poor yield, local cultivars have gotten little attention from 
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the research community. Instead, varietal development has focused on clones developed by 

outside sources, primarily the International Potato Center, CIP. According to Williams et al. 

(1991), the first step in crop improvement for a developing country should be full assessment 

of local materials. Similarly, Ortiz (2001) reported that including locally adapted potato 

germplasm in a crossing program would help to ensure the resulting cultivars could be 

produced in a sustainable and environmentally-friendly manner. Thus, we suggest that the 

Ethiopian potato breeding program should reconsider local potato cultivars as gene source, 

either to use them as a cultivar or a parent to cross with commercial potato cultivars for 

abiotic stress improvement programs in potato. For instance, one of the of Ethiopian 

traditional cultivars “Agerie” was distinct mainly for its high number of tubers and late 

maturing characteristics (Chapter 2). These two traits had a strong positive correlation with 

NUE, indicating that using Agerie in crossing programs can give a pronounced contribution 

for NUE improvement in potato. In general, to exploit the available genetic resources of 

potato for NUE improvement of the crop, one should consider local cultivars or landraces, 

wild potato accessions and other elite materials, which may have a gene source that can be 

used for potato NUE improvement program.  

Environmental conditions for NUE evaluation 

Environmental factors such as rainfall, temperature, light and soil composition vary between 

locations and growing seasons and can impact NUE of genotypes. In this study, field 

experiments were conducted in different locations, and under rainfed and irrigation 

production systems. The objective of the experiments was to evaluate potato genotypes at 

varying field conditions under low and high N levels. The study gives an informative 

overview of performance of cultivars under the various conditions that are relevant for potato 

cultivation, but that complicate genetic analysis for NUE. This section further compares 

genetic variation for NUE based on the comparison between: a) Production systems, b) 

locations, c) N levels. 

 Rainfed versus irrigation production systems 

In Ethiopia, two production systems can be distinguished for potato: rainfed and irrigated. 

The rainfed production system is the dominant production system in which the most of the 

food crops are grown, and this production system is practised in the rainy season (from May 

to September). Irrigation production is practiced in the dry season of the year (from 

November to April). Potato is cultivated in both production systems. However, the crop has 
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different production constraints depending on the production system. Higher maximum and 

lower minimum average temperature are the major irrigated potato production system 

constraints, while late blight strongly affects potato cultivation in the rainfed potato 

production system (Yigzaw et al., 2008). According to these authors, cultivars that are 

optimal for both production systems have not been found as yet. 

 Our GxE analysis in Chapter 5 indeed indicated that the two production systems are 

independent mega-environments. As shown in Chapter 5 (Figure 2a and 2b), all irrigation 

production system test environments were clustered on one side of the biplot while all rainfed 

production system test environments were on the other side of the biplot. Each cluster had a 

different highest yielding genotype: cultivar Kuras in the rainfed mega-environment, and 

Agria in the irrigation mega environment, suggesting that test environments should be divided 

into mega-environments (Yan et al., 2007). The average performance values of our cultivars 

were 18 tons/ha for tuber yield and 27 for NUE in the rainfed mega-environment. In the 

irrigation mega-environment, the genotypes average performance values were 27 tons/ha for 

tuber yield and 52 for NUE. This low performance of tuber yield and NUE in the rainfed 

mega-environment compared to irrigation may be related with agro-climatic factors, 

especially the rainfall (amount and frequency) and temperature. 

In North-western Ethiopia, the amount and distribution of rainfall in the rainfed production 

season can be characterized as erratic (a week or two of heavy rain sandwiched between 

weeks dry- spilled) in the onset and offset of the season; heavy and frequent in the middle of 

the season especially around July and August. The relative humidity is also high from July to 

August. While the irrigation production season is characterized by lower minimum average  

temperatures (Oct-Dec) and high maximum average temperatures (February to April) as 

presented in Figure 3a.  
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Figure 3. The average minimum and maximum monthly temperatures and average rainfall (2005-2015) of the 

rainfed and irrigation production seasons in North Western Ethiopia a) Aver.min and max temperature b) 

average rain fall. The rainfed production season ranges from May to September, and the irrigation production 

season ranges form November to April (Source: (FAO) local climate estimator online data (New LocClim)). 
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 As shown in Figure 3a, the average maximum temperature from May to June is 26 
0
C, which 

is good for sprouting and consequently plays a vital role in obtaining high yields in potato. 

Ahmed (1980) and Zemba et al. (2013) in their study on potato response for some climate 

variables in Nigeria reported that day temperature ranges of 21-26
0
C are required for proper 

sprouting and emergence of the potato tuber. A shift from the upper mentioned range of 

temperature to higher temperatures at sprouting to emergence/vegetative stage may induce 

knobbiness and secondary growth in tuber and consequently affect the tuber yield negatively 

(Ahmed,1980). 

As shown in Figure 3b, at the onset of the rainfed production season (May to Mid- June) the 

amount of rain may be enough for the emergence and early stage growth of potato, however 

the distribution is erratic. This erratic distribution results in low in soil moisture, which 

negatively affects the sprouting and emergence of the tuber and finally the ultimate yield. The 

crop potato requires more frequent supply of water than most other root and tuber crops 

(Onwoume et al., 1994). The available moisture as well as nutrients in the soil are important 

for the plant at sprouting to emergence stage of potato development (Burton, 1989). In 

addition, drought stress studies on different potato varieties revealed that the rate of leaf 

expansion in the plant was slowed down or ceased and leaf variation was reduced due to 

water deficit which adversely affect the development of the crop (Sale, 1973; Zaag and 

Burton 1978; Wolfe et al., 1983). 

From end of June to mid-July, the rainfall follows a more regular pattern in North western 

Ethiopia, which is useful for potato tuber set/initiation. Precipitation is important and 

significantly positively correlated with tuber set/ initiation stage of potato (Levi, 1999; Eliot, 

2007). Early July to mid-August is the time when the average maximum and minimum 

temperature is around 22 
0
C and 9 

0
C, respectively (Figure 3a). This temperature is an ideal 

temperature for tuber bulking. A minimum temperature of 15 
0
C at tuber bulking stage is 

positively correlated with high tuber yield in potato (Lopez et al,1987; Kochalar, 1991; Levi, 

1999; Eliot, 2007; Zemba et al., 2013), and Ochigbo (1993) reported that low temperature is 

more conducive for tuber growth at bulking , and economic tuber production happens  when 

the average temperature falls below 15 
0
C. However, early July to mid-August is the time 

where frequent and maximum rain fall was recorded in our experiment. When the maximum 

rainfall coincides with tuber bulking time, yield may reduce, because rainfall increases the 

threats of potato diseases and insect pest occurrence will also increase. The occurrence and 
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severity of late blight (Phytophthora infestans) particularly high when it is accompanied by 

high relative humidity, dew and frequent rainfall (Hienfling, 1987), a common feature of July 

and August in North western Ethiopia. Moreover, the soil may become over-saturated, 

resulting in poor soil aeration and hypoxia.   

In the irrigation production season, temperature is the major production constraint of potato. 

As shown in Figure 3a, in the beginning of the season (October-January) the temperature is 

low, on average about 7 
0
C. This low temperature may cause frost in some years. However, in 

normal years, if the crop is planted early and reaches maturity in these cold months of the year 

the low temperature may favour tuber bulking.  Ifenkwe and Okonkwo (1983) reported that 

under irrigation potato production planting should be adjusted to make sure that the time of 

tuber bulking coincides with the period of low temperature. However, most of the times in 

North western Ethiopia irrigation is started after the harvest of the rainfed production season 

crops and the tuberization of potato coincide with the hottest months (Feb-Apr) of the year 

which may affect tuber initiation as well as bulking negatively. Temperature and photoperiod 

are the two most important environmental factors that determine potato tuberization. In our 

irrigation production season, the day temperature was high (25-30 
0
C) during tuber initiation 

and bulking, but tuberization was not inhibited by the high day temperature.  This is probably 

linked to the low night temperature. As shown in Figure 3a, the average minimum 

temperature during the night was below 10 
0
C throughout the year. The trials in Ethiopia have 

short day conditions. Short days with cool night temperature favour tuberization, while long 

days with high temperatures delay or inhibit tuberization (Gregory, 1956; Went, 1959; Slater, 

1968). 

Overall, in our experiments the average minimum and maximum temperature in the rainfed 

production season can be considered as good for potato production. The amount and 

distribution of the rainfall especially at sprouting to emergence stage was also fine, however it 

was high and frequent at bulking (July to August), due to this reason confounded disease 

syptoms were observed which may have reduced potato tuber yield. Moreover because of the 

high intensity of the rainfall, the soil was over-saturated resulting in poor aeration which may 

have significantly affected the tuber yield in the rainfed prodution season. In the irrigation 

season experiments, the disease symptoms including late blight were minimal, and the night 

temperature was also low (on average below 10 
0
C) which favoured the tuberization and the 

ultimate tuber yield in the irrigation production season. All these climatic differences between 
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the rainfed and irrigation production seasons strongly suggest that the two production seasons 

are distinct, which is strongly reflected in significant genotype-by-environment (GE) 

interaction (Chapter 5), confirming that the two seasons should be considered as two 

independent mega-environments and should follow a different selection strategy in breeding.  

The Ethiopian potato breeding program developed a number of improved potato varieties and 

these improved varieties were released only for the rainfed production system under high 

input conditions. However, farmers are using these rainfed production system varieties for the 

irrigation production system as well. So far, no clear report has been delivered about the the 

production area coverage of potato in rainfed and irrigation production season independently. 

However, the Ethiopian Central Statistics Autority CSA (2014) reported that the total 

production area coverage of potato was about 179,000 ha with total production of 1.6 million 

tons. Based on this information the productivity of the crop is about 9 tons/ha which is low 

compared with the world average productivity of potato (19 tons/ha) (FAOSTAT (2012).   

Overall, studies on the difference of the two potato production systems is lacking, and 

improved potato varieties that specifically match requirements for the irrigation production 

system have not been developed. Although our study may not be conclusive, as mega-

environment analysis require multi-year data, it suggests that the two production systems 

should be considered as two independent mega-environments for potato tuber yield and NUE 

improvement evaluation in North western Ethiopia. As presented in Chapter 5, the pooled 

environment variance component analysis showed low genotypic variance (σ
2
g) compared to 

estimates of genotype-by-environment interaction variance (σ
2
ge) and environmental variance 

(σ
2
e) for NUE, indicating presence of large differences between environments. In particular, 

the genotype-by-location interaction, which includes production season, had larger 

contributions to the total genotype-by-environment interaction than the genotype-by-N level 

interaction. NUE and most-NUE related traits had high genotypic variance and heritability 

estimates under rainfed production season conditions, whereas under irrigation the estimates 

were low for most traits suggesting the target breeding environment should be divided into 

sub-target environments (mega-environments) based on production seasons (Chapter 5), 

which indicates once more that the Ethiopian potato improvement program should have 

breeding and selection strategies for both production systems. 

 

http://faostat.fao.org/
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Location 

Location can have a positive or negative impact on the performance of the potato genotypes. 

The environmental factors that differed most between the locations used in this thesis were 

altitude, temperature, soil acidity and rainfall. With genotype-by-location two-way data 

analysis the superiority of tested genotypes in terms of the key traits can be assessed over 

locations and seasons, or within lcoations and seasons. We have evaluated our cultivars at 

three different locations: Debre Tabor, Injibara and Koga. The locations can be divided in 

high altitude (more than 2500 masl) and mid altitude (1900 masl) areas. Debre-Tabor and 

Injibara are in high altitude areas, but are different in temperature, rainfall and soil pH. 

Especially the soil of Injibara is more acidic, which is less favourable for crop production 

compared to Debre-Tabor.  

Based on these distinct environmental factors we tried to group our locations using GGE  

analysis. As shown in Chapter 5 Figure 3, the locations did not cluster in the biplot. Rather, 

regardless of the locations, our test environments were grouped based on production season. 

We conducted the experiments at Injibara both in the rainfed and irrigation season, and 

Injibara as a location was present both in the rainfed and irrigation mega environments. This 

indicated that the the season effect was larger than the location effect, and that locations may 

not have to be considered as separate target environments when designing proper strategies of 

genotype evaluation and cultivar recommendation. However, in the analysis of variance, the 

test locations within each mega-environment showed significant differences, which indicates 

that the difference between locations and their appropriateness as a test environment. 

According to Yan (2014), the test locations within a mega-environment should be different 

enough from one another to represent the environments that are likely encountered in the 

mega environment.  

 In chapter 2, we found a significant difference between the locations (Debre-Tabor and 

Injibara) in tuber yield.  Both Debre-Tabor and Injibara are high altitude areas, and they have 

similar but not identical environmental indices. The overall N levels combined average 

location performance of our cultivars was 18tons/ha at Debre-Tabor and 15tons/ha at Injibara. 

The extent of the N effect on tuber traits was also significantly different between the two 

locations (Chapter 2).  Tuber yield was reduced by 30% in Debre-Tabor and 48% in Injibara, 

and tuber number was reduced by 16% in Debre-Tabor and 38% in Injibara due to low N. 

Both tuber yield difference and effect of N level on tuber traits may be attributed to soil 
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acidity; Injibara is an acidic (pH=4.8) area, and this may have had a large contribution to the 

difference between the two locations. Low pH physiologically impairs the nitrogen cycle and 

absorption of Ca, Mg, and P, and increases solubility and toxicity of Al, Mn and Fe (Grime, 

2001). Low soil pH also decreases the availability of important macro and micro nutrients, 

such as Phosphorus, Nitrogen, Calcium, Magnesium, Sulphur, Zinc and Molybednum (Rao et 

al., 1993). According to Jackson (1967), at low pH autotrophic micro-organisms (Nitromonas 

and Nitrobacter) which are largely responsible for the nitrification of ammonium to nitrite and 

nitrite to nitrate both function poorly or not at all. Thus, our locations may be considered as 

one target mega environment but with sufficient difference between them to use a test 

locations. However, from the environmental factors acidity may need especial attention in the 

high land area of North western Ethiopia.    

In Ethiopia, about 41% of the total land area is covered by acid soils, and acid soils with pH < 

5.5 in the surface layer are found in about 13 % of the total acid soil land area (Schlede 1989; 

Abebe 2007). As a result, the Ethiopian government has made an effort to mitigate the 

problem through the use of lime on cultivated farm lands especially in the high land parts of 

the country, where potato is a staple food crop. However, acid soil reclamation through liming 

requires a large amount of lime. Thus it would be worthy to consider the development of acid-

tolerant crop varieties for major food crops that are growing in low soil pH areas. Our result 

may be used as evidence for the Ethiopian potato breeding program to consider high soil 

acidity tolerance as a research theme and important trait in future breeding strategies. 

Low N and high N  

Nitrogen use efficiency is affected by the availability of N, and genetic factors determining 

NUE may be different at high and low N availability. In maize studies, significant G x N level 

interaction was found for kernel number (Bertin and Gallais, 2000). In potato, significant G x 

N level interaction was observed for tuber yield, N utilization efficiency and harvest index 

(Zebarth et al., 2004b). Lafitte et al. (1997) in their maize landraces NUE study identified 

different types of groups: some of the cultivars are among the best performers under adequate 

N levels, but they are not under limited N conditions. Other genotypes in the same study 

showed an opposite response, which indicates specific adaptation to N environments. This 

demonstrates that when we conduct a selection for a target trait related to NUE, we will have 

to consider different N levels in the growing environments. In studying the efficiency of high 

N environments for improving maize for low nitrogen target environments, Bänziger et al. 



130 

 

(1997) suggested that maize breeding programs targeting low N environments in the tropics 

should include low N selection environments to maximize selection gains.  

In Chapter 2, we found significant G x N interaction for NUE and most NUE-related traits, 

which indicates a genotypic difference in N responsiveness. The average NUE performance of  

the population in this study (Chapter 2) was 17 and 35 kg of dry tuber yield/ kg of N 

respectively under high and low N conditions.  Some of the cultivars that are poor in NUE 

(below the population average) under high N conditions were best performers under low N 

condition (see Figure 4). However, most of the cultivars that performed well under high N 

were also best under low N conditions. For example, one of the Ethiopian commercial 

cultivars (Zengena) performed well with an NUE value of 36 kg of dry tuber yield/ kg of N 

under high N and 45 under low N conditions. This cultivar belongs to a group of cultivars that 

suggests the possibility of selection under high N environment for a low N target 

environment.   The GGE biplot analysis in Chapter 5 (Figure 3 in that chapter) also suggests  

that high N level test environments at both Debre-Tabor and Injibara were representative test 

environments for rainfed mega environment. 

 

 Figure 4. Some selected potato cultivars that showed poor performance under high N condition and good 

performance under low N condition at Debre-Tabor and Injibara (2013). HN = High N conditions (120kg ha
-1

), 

LN = Low N conditions (40kg ha
-1

. NUE = Nitrogen use efficiency (kg kg
-1

)
,
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Selections for most breeding programs targeting low input production systems are conducted 

under high N conditions. However, there is a question as to whether indirect selection under 

high N is more efficient than under low N conditions to improve a target trait under low N 

culitvation (target environment). The relative gains of indirect vs direct selection, considering 

equal selection intensities depends on the estimates of heritability at both N levels and the 

genetic correlation between input levels (Falconer, 1974). In maize, (Bänziger et al., 1997; 

Bertin and Gallais, 2000), in barley (Sinebo et al., 2002) and in wheat, ( Calhoun et al., 1994) 

estimates of heritability were generally lower under low input level or stressed environments 

than under high input levels or non-stressed environments. However, Agrama et al. (1999) in 

their maize NUE study reported heritabilities that were higher at low N levels than at high N 

levels. The estimates of heritability depend on the experimental conditions, so if we manage 

our experiments precisely we can have high heritability estimates under low N, and selection 

for low N production system can be carried out directly under low N condition. 

The level of genetic correlation between environments can greatly differ, depending on the 

traits studied, the genetic material, and the type of stress as well as its intensity. Atlin and 

Frey (1989a) found a very high genetic correlation between high and low N level 

environments for grain yield of oat lines resulting in similar predictive responses of grain 

yield to selection in either environment. The genetic correlation between grain yield of maize 

under low and high N levels decreased with increasing N stress intensity (Bänziger et al., 

1997), which indicates direct selection in the target environment under more severe stress 

conditions may be more efficient than indirect selection. Atlin and Frey (1990), and Zavala-

Garcia et al. (1992) compared predicted responses of maize grain yield to indirect and direct 

selection to assess the value of well-watered selection environments for improving grain yield 

in drought stress environments. They concluded that although estimates of heritability for 

yield were often lower under stress conditions, direct selection was often superior to indirect 

selection in targeting yield improvement under stress environment.   

In Ethiopia, potato is often grown under low N conditions because of the cost of fertilizer and 

limitation of other sources. Potato breeding in Ethiopia is nevertheless conducted under well 

fertilized (high N) conditions, raising the question whether direct selection under low N 

should at least be included to improve tuber yield in low N target environments or the relative 

contribution of this indirect selection (selection under high N fertilizer level) to selection 

gains for our low input production system should be assessed. In our study the correlation 
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coefficient and heritability estimate of NUE was similar under low and high N conditions. 

Tuber yield showed similar correlation and heritability estimates under both N conditions 

(Chapter 2 and 3) indicating that direct selection under low N conditions for low N target 

environment is indeed possible. 

Genetic diversity and QTL mapping  

Morphological characterization   

The first step in many breeding projects is to define the desired phenotype and select 

important traits that can contribute to the improvement of your trait of interest. In addressing 

the improvement of NUE by evaluation of agro-morphological traits, one needs to determine 

the level of genetic variation in the different genotypes of a crop and identify the association 

of other traits with NUE that can contribute to its improvement. According to Gopal (1999), 

genetic parameters and trait associations provide information about the expected response of 

different traits to selection and help in developing an optimal breeding strategy. Therefore, to 

explore the genetic diversity for NUE of cultivated potato from Ethiopia and Western Europe 

in Ethiopian growing conditions, we addressed the following questions: 1) how much of the 

total phenotypic variation of traits is due to heritable and non-heritable components, and 2) 

which agronomic and physiological traits contribute to NUE?  

In this study, high heritability estimate differences were observed between Debere-Tabor and 

Injibara for NUE. The heritability estimates of NUE were 0.8 and 0.72 under low and high N, 

respectively at Debere-Tabor, and 0.4 at Injibara under both N levels (Chapter 2). This 

heritability estimate difference between the two locations for NUE indicates the sensitivity of 

the trait to environmental differences, possibly linked to its complexity.  Thus, it may be 

challenging to improve such a complex trait by direct selection. Due to this fact, breeders may 

adopt indirect selection for complex quantitative traits with low heritability, and selection 

through correlated traits (Hamawaki et al., 2012). Correlation analysis allows to evaluate the 

degree of association between two traits and the feasibility of indirect selection, which in 

some cases may lead to faster progress than direct selection.  

Strong phenotypic correlation coefficients were observed between NUE and most traits 

considered in this study across locations (Chapter 2 Table 4). According to Blum (1988) the 

efficiency of selection for yield under low N environments may be improved through 

selection for correlated secondary traits. Thus, the high heritability value of the NUE related 

traits and their high correlation value with NUE across locations indicate the feasibility of 
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these traits for indirect selection for NUE across locations. However, estimates of genetic 

parameters including heritability depends on the population and the environment. Heritability 

estimates should refer to defined populations of genotypes and environments (Dudely and 

Moll, 1969; Nyquist, 1991). Defining the environments and sufficient sampling of the 

genotypes in a reference population is important because this gives the context to which the 

heritability estimate refers. Our results may suggest feasibility of the NUE related traits for 

indirect selection of NUE in the specified locations, however to use this result as breeding 

strategy for NUE improvement in North western Ethiopia as a target area, heritability 

estimates should be made from data collected from multiple locations and years representing 

the target set of environments, or else the estimates will be biased (unless genotype-by-

environment is negligible) (Nyquist, 1991).  

QTL analysis 

A major goal in breeding is to understand the genetic basis of variation for quantitative traits 

and how these interact with the environment; genes that control the quantitative traits may not 

function similarly in different environments. Consequently, genotypes in various 

environments could respond differently to environmental changes. This Genotype by 

Environment interaction is a common feature for quantitative traits and has been a theme of 

great concern for breeding programs (Falconer, 1981; Lin et al., 1986; Westcott, 1986). With 

the help of molecular mapping and suitable experimental designs, GE interaction can be 

dissected into components of QTL-by-Environment Interaction (QEI), which is helpful for 

marker assisted selection in crop improvement programs, and may allow the design of a 

cultivar with an optimal combination of genes (alleles) for a given target environment.  

Numerous cases of QEI have been documented in QTL mapping studies (Bochet et al., 2016; 

El-Soda et al., 2014; Hai et al., 2008; Pen-Yaun et al., 2006). A large proportion of QTLs 

identified in these studies showed plasticity in QTL expression, such as between stress and 

non-stress, and low N and high N environments.  

In this study, QTLs have been identified in multiple environments using a diploid mapping 

population and commercial cultivars (Chapter 3 and 4). Most of the identified QTLs and 

marker-trait associations (MTAs) were environment-dependent. We identified N level-

specific, production season-specific, and location-specific QTLs. However, some 

environment-independent QTLs were also identified.  Among the identified QTLs in the bi-

parental QTL mapping study (Chapter 3), the QTLs identified for tuber number, maximum 
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canopy cover (Vmax), and area under the canopy curve (AUC) colocalized on specific QTL 

regions in both the rainfed and irrigation production season, suggesting the QTLs were not 

production season-specific. QTLs identified for tuber yield, NUE and maturity on the other 

hand were production season- as well as N level-specific. QE interaction typically reduces the 

potential of the identified QTLs to be used for marker assisted selection (MAS) across 

environments. Thus, to utilize our QTLs in breeding programs QE interactions should be 

taken into account. In this study, the identified QTLs responsible for phenotypic variation of 

quantitative traits have been categorized into two groups: (i) QTLs that are significant across 

N levels and production season environments, (ii) QTLs that show QE interaction, and that 

are dependent to specific environments (N level, location, or rainfed or irrigation season 

dependent). Using the QTLs detected across environments in MAS may have higher yields 

across N levels and seasons, but at the expense of optimal yields in each environment: 

cultivars adaptable to both rainfed and irrigation systems and at both low and high N levels 

may have stable yield in all environments, however their yield may be low compared to 

environment-specific adaptable varieties. Indeed, Finlay et al. (1961) already reported that 

broadly adaptable varieties may have stable yields in various environments, but at lower level 

than narrowly adaptable varieties, which perform remarkably well in favourable conditions 

but poorly in unfavourable ones. MAS using QTLs that are constitutive and that contribute 

across environments may reduce the cost for multi-environment trials needed to select the 

experimental materials across environments. MAS using information on plastic QTLs found 

specifically under low or high N in each production season enables more efficient selection 

for high yields under specific conditions, maximizing the yield in that specific production 

system or for that specific nitrogen input level. Overall, the multi-environment breeding 

approach that includes various environments often reduces the total response achieved in a 

specific environment, while environment-specific breeding strategies may increase the cost of 

the trials. MAS based on the QTL identified in a mega-environment may be an optimal choice 

for a breeding strategy, reducing costs while considing both stability and mean performance 

of the genotypes. 

Similarly, the QTLs identified in our association mapping (Chapter 4) were production 

season- as well as N level-specific QTLs for NUE and most NUE related traits, demonstrating  

the presence of QEI.  In this study, we have identified 77 MTAs for 18 agronomic and 

physiological traits in different environments (Chapter 4 supplementary Table 6). Considering 

the number of environments and measured traits, the number of detected MTAs were 
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relatively few. Regardless of the other factors that could affect the number of detected QTLs, 

this low MTA detection power was probably related with the size of the experimental 

population. A relatively small population size significantly decreases the sensitivity of QTL 

detection (Li et al., 2006). Purcell et al. (2003) in their association genetic studies of complex 

traits of maize reported that when using a population size of 500 individuals, the probability 

of identifying a gene that explains 3% or more of the phenotypic variation of a trait was 80%, 

while 1500 individuals are required to achieve similar probability of detection power for a 

gene that explains 1% of the variation of the targeted traits, which clearly showed the effect of 

population size on the QTL detection power. In self-pollinated plant species, small population 

sizes may be adequate for detection of alleles which have a large effect (Rostoks et al., 2006; 

Atwell et al., 2010). The set we used for association mapping was small, but had little 

structure and QTLs were detected even with corrections for relatedness and structure. 

Combined with the fact that QTLs were often not restricted to a single environment and that 

some QTL regions were supported by other QTL studies, we are confident that QTLs and 

QTL regions presented in Chapter 4 represent genetic factors contributing to the variation in 

NUE and NUE-related traits in potato. Nevertheless, the identified QTLs may require further 

validation with mapping studies using larger populations, and the set of useful QTLs should 

be extended by using populations that include cultivars selected under low input production 

systems and the genetic resources available in local varieties, and possibly even wild species. 

Overall, NUE is a complex trait, and basic knowledge on how plants respond to different N 

regimes and other environmental conditions and use of DNA marker technology is vital to 

maximize the success rate of potato breeding for nitrogen use efficiency. In the future further 

emphasis should be placed on the following points: 

1) Appropriate germplasm: Successful breeding programs depend on a high level of 

genetic diversity in breeding materials. In order to broaden the genetic origin of core breeding 

materials, identification of diverse genotypes for hybridization is vital (Xu et al., 2004; Reif et 

al., 2005). Up until now, certain national programs may routinely evaluate potato genotypes 

for NUE that are introduced from other breeding programs for suitability to the country’s 

growing conditions. However, the source of the materials are mostly elite varieties that are 

under production in different countries, and that have a narrow genetic base. Genotypes 

selected for their high performance under high input conditions may not be the best cultivars 

under low input or stress conditions (Murphy et al., 2005). In this study, the Ethiopian local 
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cultivars performed better than the Dutch and Ethiopian commercial cultivars in tuber yield 

under low and high N conditions especially at Debre-Tabor (Chapter 2). This suggests that the 

local cultivars are more tolerant to low N conditions and have better phenotypic plasticity 

with sufficient N under Ethiopian climatic conditions.  

Overall, cultivars that performed well in canopy cover parameters such as maximum canopy 

cover (Vmax) and the total area under the canopy cover in the entire crop growing period 

(AUC) also had relatively high NUE. In an NUE evaluation study with selected wild potato 

accessions and their hybrids with the haploid USW551 (USW) in low and high N 

environments, many of the wild species and crosses were better than commercial cultivars in 

NUE and biomass accumulation (Errebhi et al., 1999). Among the tested wild species, 

Solanum chacoense accessions had the highest biomass accumulation and N uptake 

efficiency, suggesting wild species like S. chacoense can be used as a source of germplasm 

for NUE improvement in a potato breeding program. To identify the QTL and the genes that 

regulate these complex traits, high density genetic maps should be constructed with the use of 

molecular markers. In autogamous crops, constructing genetic map utilizes appropriate 

mapping populations such as F2, back-cross, double haploids (DH), recombinant inbred lines 

(RIL) using appropriate parents. However, these are not available to potato, being an 

outcrossing and self-incompatible crop (Pushkarnath, 1942; Pandey, 1962), and another 

complicating factor is the tetraploid nature of cultivated potato. Although genetic analysis in a 

diploid population is easier, potato breeders are forced to utilize the most complex type of 

diploid mapping population, which is the F1 progeny of two heterozygous parents in which 

up to four alleles per locus are segregating.  However, there are some self-compatible 

accessions in solanum species like S. chacoense that may be utilized ( Cipar et al., 1964). 

Recently, Endelman and Jansky (2016) developed the first diploid inbred line based F2 

population using S. chacoense as a male inbred line grandparent, and this species is one of the 

wild potato species suggested as a germplasm source for NUE improvement in potato 

(Errebhi et al., 1999). In addition, several efforts are undertaken to introduce hybrid breeding 

to potato using advanced material that is self-compatible, and they might be successful 

(Lindhout et al, 2011). Overall, to improve the NUE of potato, the parental selection should 

consider local landraces, wild potato accessions and other elite materials which may have a 

known gene source for NUE.   
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2) High throughput phenotyping: Accurate and precise phenotyping strategies are 

important, especially when dissecting the genetic architecture of complex traits into genetic 

parameters for component traits through QTL mapping or genome wide association studies 

(GWAS). However, prediction of phenotype from genotype is generally difficult, due to the 

large number of genes and gene products that contribute to most phenotypes and their 

interaction with complex and unpredictable environmental influences. According to Myles et 

al. (2009), one of the challenges to improve a trait regulated by multiple genes is collection of 

high quality phenotypic data. Despite the fact that plenty of DNA data is available, the 

implementation of accurate phenotyping for complex traits as part of quantitative or 

population genetics studies on complex traits remains a major challenge. The selection of 

germplasm having appropriate levels of relatedness and the generation of high quality 

phenotype data will be the main determinant to utilize the combined genetic and phenotypic 

data in the future (Myles et al., 2009). Precise phenotyping is essential to characterize 

phenotypes in rigorous and formal way, and link these traits to the associated genes and gene 

variants (alleles). When there is a significant variability in phenotypic scores collected by 

different individuals, more defined phenotyping protocols are required (Poland and Nelson 

2010). The deeper and more detailed the phenotyping can be done, the less complicated the 

genetic analysis will be, and the higher the chance of detecting QTLs contributing to the 

variation of the traits.  

Recently, image-based high throughput phenotyping platforms have been developed, and the 

technology was termed plant phenomics (Paproki et al., 2012). Numerous imaging 

methodologies, such as visible light imaging, infrared imaging, fluorescence imaging, and 

imaging spectroscopy are being used to extract multi-level phenotype data, from macroscopic 

to molecular scale (Sozzani et al., 2014). These high throughput phenotyping techniques can 

be deployed to characterize a large number of individual plants accurately, requiring a 

fraction of time, cost and labor of the manual techniques (Montes et al., 2007; Furbank, 

2009), and enabling the measurement of dynamic traits like plant canopy development traits 

in relation to NUE. In this thesis, the canopy data for the growth curve models were measured 

using grid-squares manually. This approach has delived reliable data, but the manual 

collection is labor-intensive and therefore at relatively low frequency, and we may have lost 

important information that could have improved our GWAS and QTL analysis.  

Efforts have been made to use high throughput phenotyping technology for NUE and related 

traits. Pavuluri et al. (2015) in their soft red winter wheat field experiment used a proximal 
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sensing method (visible light imaging) to evaluate canopy reflectance for the prediction of 

grain NUE. Ospina (2016), in his NUE study in potato, implemented phenotyping of the 

canopy cover using a fixed camera above the grid by taking pictures at various growth stages 

over the crop cycle. This demonstrates that image-based phenotyping methods can be useful 

in the characterization of complex physiological and agronomic traits related to NUE. It may 

be hard to use these technologies in developing countries, because of major bottlenecks which 

include shortage of well-trained personnel and lack of adapted analysis tools. Nevertheless, 

the emerging virtual platforms assisted by the information and communication technology 

revolution will help to overcome some of these limitations by providing breeders with better 

access to phenotyping methods, and robust analytical and data management tools. An 

example of this is the G4AW project that gives poor farmers in Uganda access to information 

about their crops from satellite data (http://g4aw.spaceoffice.nl/en/Projects/G4AW-

projects/64/Geodata-for-Innovative-Agricultural-Credit-Insurance-Schemes-GIACIS.html) 

 

3) Interaction between NUE and other abiotic stresses: 

Any variance analysis of crop genotypes on yield or NUE will reveal a genetic component, an 

environmental component and the interaction between these components: G x E interaction. 

Among environmental factors that can be observed and used to deliver a better understanding 

of the analysis required to improve NUE, water availability is one of the most important. 

Water availability affects nutrient transformation of soil-own nutrients into either plant-

available or -unavailable forms (Fierer et al., 2002). It also affects the rate of transformation 

of fertilizers added to the soil. Subsequently, it affects absorption of nutrients, total nutrient 

uptake and nutrient composition of plants. Marschner (1986) pointed out that in any case 

water supply changes resulted in corresponding changes in roots distribution in the soil profile 

and the amount of nutrient uptake from different layers. Drought conditions also induced root 

shrinkage and subsequent loss of soil-root contact, as a result it affects nutrient transport to 

the root surface (Ahmad et al., 2013). Plants grown under water deficit condition may be 

subjected to water shortage or N deficiency or a combination of both, and consequently, co-

limiting the productivity (Sadras, 2005).  Nitrogen absorption by crops is reduced under dry 

conditions, even mineral N is available in the soil colonized by the roots (Gonzalez-Dugo et 

al., 2005).  Khasanova et al. (2013) also reported that shortage of water decreases growth and 

physiological functions of the plant, including negative impact on NUE. 

Water availability may have been a factor in our trials as well. The tuber yield or NUE 

performance of our cultivars was low in the rainfed production system compared to irrigation 
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production. This low tuber yield or NUE performance in the rainfed production season may 

be attributed to the erratic rain fall at the onset of the rainfed production season in North 

western Ethiopia. When the rain fall is erratic, there may be a loss of N fertilizer through 

volatilization or changing it into unavailable form, resulted in low tuber yield and NUE 

performance (Haynes, 1986; Guntinas et al., 2012). In addition, drought spells in between 

periods of rain may result in limited diffusion of nitrogen to the roots, and uptake and 

transport of nitrogen in the plant. Moreover, in the rainfed production, the intensity and 

frequency of rain was high during the tuberization and bulking phase of the potato crop; this 

high intensity of rain may have enhanced leaching before the applied N is utilized by the 

plant. 

In addition to drought or availability of water, environmental factors such as temperature and 

soil type may affect the NUE as they affect either the crop’s growing process or the 

availability of N in the soil by affecting mineralization of soil organic matter, organic 

fertilizer and leaching of soil nitrate (Agostini et al, 2010).  Liu et al., (2012) reported that 

NUE could be reduced because of ammonia volatilization with increasing temperature and 

water limitations in the soil.  

Considering the interaction of NUE with other environmental factors, one should identify the 

major environmental factors that may play a role in the target environment and define their 

effect on the NUE so as to improve NUE in that target environment. This would require more 

extensive monitoring of environmental factors in trials, which would have allowed for 

instance our GxE analysis in Chapter 5 to be extended with location and season-specific 

temperature influences, or solar radiation data. More data on interaction between plant traits 

with environmental factors, especially on key traits leading to better adaptation of crops to N 

depleted soil under limited water conditions are required to improve the genetics of NUE 

(Olesen et al., 2011; Piao et al., 2010). In areas where the probability of drought is high, 

farmers often respond by reducing the amount of N fertilizer (McCown et al., 1992). In the 

tropics, most farmers’ fields are characterized by more than one abiotic stress, and it would be 

desirable to increase the tolerance of crops to several stresses that occur in the target 

environment.  

4) Low input breeding strategy: Although there are as many ways of running a breeding 

programs as there are breeders, most breeding programs both in developed and developing 

countries share some common concepts and consequently some common ways of handling 
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breeding materials. It has been reported that the most efficient way to improve yields under 

low input conditions is to select crop varieties under low input or stress conditions (Murphy et 

al., 2007), however this practice is done by few breeding programs ignoring low-input 

production strategy without suitable cultivars (Fess et al., 2011). Selection is mostly 

conducted in research stations with optimum amount of fertilizer and management practices 

(Rathjen & Pederson, 1986; Atlin and Frey, 1989a, 1989b; Simmonds, 1991), because under 

these conditions environmental noise can be kept under control, error variance is small and 

response to selection is high. Other practices, like variety release, and seed distribution 

systems are common between most breeders in both developed and developing countries. 

Breeding programs under optimum input and management practices have been very efficient 

in developed countries, either in favourable environmental conditions or by applying external 

inputs, under which genotype x environment interaction is not likely to pose major problems. 

However, in a considerable part of the world food crop production is carried out in less than 

optimal environments that impose stress on the crop. This is especially true for developing 

countries, where farmers cannot afford optimal fertilizer use and where the risk of crop failure 

is high mainly due to drought (McCown et al., 1992). Yield levels in fields of these farmers 

are usually several-fold lower than those attained in research stations, often due to low levels 

of input (particularly fertilizer), and other environmental factors and management practices 

that should be considered when developing varieties for these farmers. For example, in 

Ethiopia farmers started to use commercial fertilizer almost 40 years ago, in 1967 (FAO, 

1995), but most of the Ethiopian farmers still cultivate their crop in low input production 

systems. The amount of fertilizer applied by most Ethiopian farmers is below the 

recommended level (Mulat 1999), and for instance of the total cereal production areas only 

35% receives chemical fertilizer. The average fertilizer use of Ethiopia is estimated about 17 

kg/ha, which is very low by any standard (Agriculture For Impact, 2014). Considering that 

this estimate includes all types of nutrients and crops, most of the potato production in 

Ethiopia is practiced under low N condition. The main reasons for this low adoption rate of 

this important agricultural input in developing countries are costs, availability and risk. In 

Ethiopia, fertilizer availability is not a problem, however, the cost of fertilizer is very high, 

and therefore most farmers cannot afford to apply optimal amounts of fertilizer. And even if 

they can afford the cost, they are not confident enough whether they will get profit after 

covering their production costs because of other production constraints. In Ethiopia, farmers 

are reluctant to use inorganic fertilizer because their crop may be damaged due to erratic rain 
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fall, poor marketing capabilities, high transportation cost, weak extension service, and a lack 

of credit service (Samuel, 2006), and they will not get a return on their investment in 

fertilizer.   

Yet, the Ethiopian crop breeding strategy in general and the potato breeding program in 

particular are based on high input production systems, even though the adoption rate by the 

farmers for potato varieties developed in this system is low in most areas where the new 

varieties were disseminated (Abebe et al., 2013; Woldegiorgis, 2013). This indicates that 

there is a mismatch between the goals of the breeders and the preferences of the farmers. As 

stated before, based on our results, we would recommend cultivars to be developed for two 

independent mega environments (rainfed and irrigation production system, Chapter 5), as well 

as under low N input.  

 Our research results also indicate that direct selection of genotypes under low N-available 

conditions is more effective to select N-use-efficient genotypes than indirect selection under 

optimal N conditions. Our test environment analysis revealed that the low N environment was 

the best selection environment for NUE improvement in the irrigation mega environment 

while high N conditions were ideal in the rainfed mega-environment. Although our result is 

based on single year data for each production system and is certainly not conclusive, it may 

be used as an indicative result for further investigation in potato NUE improvement in North 

western Ethiopia. To mitigate the production constraints of the majority of the Ethiopian 

farmers, the Ethiopian potato breeding program in particular, and the Ethiopian crop breeding 

system at large should consider a low input breeding strategy. 

In conclusion, the results presented in this thesis provide valuable information for screening 

and evaluation of potato for NUE improvement. Important traits useful for indirect selection 

of NUE were identified by QTL mapping and correlation studies. Chromosomal regions 

responsible for regulation of NUE and related traits were identified by QTL and association 

mapping. Further exploration of the data collected in this thesis and more emphasis on 

specific traits and QTLs will facilitate marker assisted selection and identification of 

candidate genes that can be exploited in cultivated potato to improve NUE in this valuable 

crop. 
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Supplementary data 

Chapter 2 

Supplementary table 1. List of potato cultivars with their pedigrees  involved in this Study 

Variety name Year of release country Pedigree 

Adora 1990 NETH Primura x Alcmaria 

Agria 1985 GER Quarta x Semio 

Almera 1999 NETH BM 77-2102 x AR 80-31-20 

Ambition 2007 NETH Adora x Quinta 

Arinda 1993 NETH Vulkano x AR 74-78-1 

Asterix 1991 NETH Cardinal x VE- 70-9 

Bafana 2009 NETH Victoria x Felsina 

Agata 1990 NETH BM 52-72 x Sirco 

Agerie  ETHIO Local cultivar 

Annabelle 2001 NETH Nicola x Monalisa 

Arizona 2009 NETH UK 150-19 D 22 x mascott 

Ater-Abeba  ETHIO Local cultivar 

Awash 1991 ETHIO I-1058B x 700111 

Baraka 1971 NETH SVP 50-358 x Avenir 

Bartina 1988 NETH Saturna x ZPC 62-75 

Belete 2009 ETHIO 397170.16 x 389746.2 

Bellini 2001 NETH Mondial x Felsina 

Berber 1984 NETH Alcmaria x Ropta P 365 

Bintje 1910 NETH Munstersen x Jaune d' or(Fransen) 

Caesar 1990 NETH Monalisa x Ropta B1178 

Canberra 2007 NETH Latona x RedScarlett 

Carlita 1991 NETH Jaerla x Provita 

Carrera 1999 NETH Allard x Concurrent 

Challenger 2008 NETH Aziza x Victoria 

Charlotte 1981 FRA Hansa x Danae 

Cleopatra 1980 NETH ZPC 50-35 x Desiree 

Colomba 2011 NETH Carrera x Agata 

Compass 2011 NETH Pallas x Voyager 

Courage 1998 NETH Lady Rosetta x HZ 81 H 202 

Crisps4all 2008 NETH RZ 85-238 x RZ 87-44 

Dagim 2013 ETHIO Not available 

Desiree 1962 NETH Urgenta x Deesche 

Evora 2011 NETH LEE 92 - 196 x Valor 

Fabula 1997 NETH Monalisa x Hudson 

Faluka 2006 NETH Armundo x Arielle 

Felsina 1992 NETH Morene x Gloria 

Flamenco 2013 NETH Red Scarlett x Red Cloud 
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Variety name Year of release country Pedigree 

Frisia 1988 NETH ZPC 69 C 160 x AM 66-42 

Guassa 2002 ETHIO Not available 

Gudenie 2006 ETHIO Not available 

Hansa 1957 GER Oberarnbacher Fruuhe X Flava 

Hermes 1973 AUT DDR 5158 x Sw 163/55 

Innovator 1999 NETH Shepody x RZ 84-2580 

Ivory Russet 2011 NETH RZ 93 - 7105 x Innovator 

Jaerla 1969 NETH Sirtema x MPI 19268 

Jazzy 2010 NETH Franceline x Cupido 

Kastelli 2011 NETH Mondial x Felsina 

Kennebec 1948 USA USDA B 127 x USDA 96-56 

Kondor 1984 NETH KONST 61-333 x WILIA 

Kuras 1996 NETH BRDA (= PG 285) x VK 69-491 

Kuroda 1998 NETH AR 76-199-3 x KONST 80-1407 

Lady Christl 1996 NETH WS 73- 3-391 x Mansour 

Lady Claire 1996 NETH Agria x KW 78-34-470 

Lady Rosetta 1988 NETH Cardinal x VTN  62-33-3 

Leonardo 1994 NETH Edzina x Ropta D 540 

Liseta 1988 NETH Spunta x VE 66-295 

Lucinda 2011 NETH Vivaldi x Carrera 

Marabel 1993 NETH Nena x MA 75-364 

Marfona 1977 NETH Primura x Konst 51-123 

Marilyn 2006 NETH Nicola x Pomfine 

Maris Piper 1963 GB Y 22/6 (Arran cairn x Herald 

Markies 1997 NETH Fianna x Agria 

Melody 2001 NETH VE 74 -45 x W 72-22 - 496 

Memphis 2012 NETH MUH 92-13 x MUH 91-13 

Monalisa 1982 NETH Bierma A1-287 x colmo 

Mondial 1987 NETH Spunta x VE 66-295 

Mozart 2003 NETH Red Star x Caesar 

Navigator 2013 NETH BRU 93 -136 x Victoria 

Nicola 1973 GER Cluvia x 6430/101 

Orchestra 2007 NETH Maradona x Cupido 

Panther 2011 NETH Innovator x Beets 84-85-32 

Picasso 1994 NETH Cara x Ausonia 

Premiere 1979 NETH Civa x Provita 

Ramos 2000 NETH Agria x VK 69-491 

Red Scarlett 1999 NETH ZPC 80-239 x Impalia 

Rodeo 1999 NETH Mondial x Bimonda 

Ronaldo 2011 NETH Red pontiac x RZ-84-67 

Russet Burbank 1908 USA Mutant of burbank 

Sagitta 2006 NETH Gallia x RZ-86-2918 
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Variety name Year of release country Pedigree 

Santana 1994 NETH Spunta x Vk  69-491 

Sante 1983 NETH Y 66-13-636 x AM 66-42 

Saturna 1964 NETH Maritta x (Re cord x CPC 1673(adg)) 

Shepody 1980 CAN Bake king x F58050 

Sifra 2008 NETH Mondial x Robinta 

Sisay 1991 ETHIO I-1058B x 700111 

Spunta 1968 NETH Bea x USDA 96-56 

Sylvana 2008 NETH Fabula x Xantia 

Taurus 2008 NETH Panda x RZ 87-44 

Timate 1984 NETH Elvira x AM 66-42 

Triplo 2000 NETH Agria x fresco 

Victoria 1997 NETH Agria x Ropta J 861 

Vivaldi 1998 NETH TS 77-148 x Monalisa 

Volumia 2004 NETH Mondial x Adora 

Voyager 2003 NETH RZ 85-238 x Oblelix 

Vr 808 2009 NETH Lady Claire x Atlantic 

Zengena 2001 ETHIO Not available 

Zina Red 2013 NETH Symfonia x Amorosa 

Origin: AUT = Austria, CAN = Canada, ETHIO, Ethiopia FRA = France, GB = Great Brtain,  GER = Germnay, NETH = 

Netherlands, USA = United States of America  

Supplementary Table 2. Intra-cluster (diagonal ) and inter-cluster distance D
2 
among the 9 clusters at low N 

Cluster I II III IV V VI VII VIII IX 

I 0.3 16.5 28** 42.1** 35.1** 125.5** 46.0** 55.8** 38.2** 

II  7 40.6** 91.0** 85.9** 208.7** 49.5** 51.4** 62.8** 

III   7.8 44.1** 79.0** 181.7** 52.3** 53.1** 80.7** 

IV    7.8 27.6** 65.4** 88.1** 115.9** 80.3** 

V     7.8 44.9** 92.2** 139.2** 52.6** 

VI      0.0 179.4** 296.1** 155.0** 

VII       0.0 139.0** 108.8** 

VIII        0.0 85.6** 

IX         0.0 

where χ
2 
11 = 19.70 significant at 0.05(*); χ

2 
11=24.73 highly significant at 0.01(**) 
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Supplementary Table 3. Intra-cluster (diagonal )  and inter-cluster  distance D
2 
among the 11 clusters at high N 

Cluster I II III IV V VI VII VIII IX X XI 

I 0.86           

II 21.6* 5.9          

III 12.3 27.8** 4.5         

IV 40.7** 34.8** 23.6* 7.0        

V 17.9 35.4** 49.4** 85.9** 5.3       

VI 63.9** 47.6** 54.1** 43.9** 97.0** 7.0      

VII 113.8** 103.9** 80.4** 60.4** 190.3** 54.4** 7.8     

VIII 29.2** 77.5** 51.4** 94.3** 38.0** 148.5** 205.1** 0.0    

IX 60.7** 48.8** 52.4** 65.0** 109.6** 112.5** 149.2** 87.4** 0.0   

X 27.0** 41.9** 33.8** 76.1** 47.3** 84.4** 107.9** 79.5** 104.1** 0.0  

XI 390.6** 346.6** 345.3** 279.2** 520.1** 298.6** 308.1** 483.1** 223.4** 457.7** 0.0 
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Supplementary Table 4. Cluster means for 97 potato cultivars studied for 12 quantitative traits at low N  

Traits Clusters 

         

 

I II III IV V VI VII VIII IX 

trait 
means 

ATW 50.6 42.6 28.9 28.4 55.8 43.8 25.4 47.4 77.6 44.5 

TDM% 12.9 12.7 12.0 16.0 15.9 17.7 17.9 9.1 17.6 14.6 

DTM 73.4 65.0 72.0 84.5 89.3 93.0 68.0 74.0 89.3 78.7 

TNPP 5.6 4.2 9.9 10.4 6.5 8.3 8.3 7.3 4.3 7.2 

NUE 39.9 27.3 39.2 56.1 65.0 76.8 45.1 30.7 61.4 49.1 

TYPP 270.7 178.8 276.9 297.5 350.1 384.0 212.5 309.5 295.8 286.2 

UCC 38.7 40.3 40.3 36.1 34.6 29.9 31.4 47.4 40.2 37.6 

t1 17.7 16.2 16.9 19.1 20.7 21.3 16.1 18.1 15.4 17.9 

Te 35.6 31.2 35.3 39.8 40.8 44.4 31.6 33.7 38.7 36.8 

AUC 1008.3 651.0 1003.0 1295.0 1368.3 1846.9 1093.1 607.7 796.1 1074.4 

PH 29.7 22.4 27.6 38.0 42.4 41.0 24.7 27.1 33.8 31.8 

SNPP 3.6 3.4 6.1 3.7 3.6 2.3 6.4 3.5 3.1 4.0 

ATW = Average tuber weight in g, TDM% = Tuber dry matter in percent, DTM = Days to maturity,  TNPP = Tuber number 

plant-1, NUE = Nitrogen use efficiency (kg kg-1, TYPP = Tuber yield plant-1 in g, UCC = upper leaf chlorophyll 

content(SPAD readings),  t1 = time point at which the canopy stabilized in thermal day (td),  te = complete canopy senesced 

in td  , AUC = Area under the canopy curve % t.d, PH= Plant height in cm, SNPP = Stem number plant-1  
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Supplementary Table 5. Cluster means for 97 potato cultivars studied for 12 quantitative traits at high N  

traits 

clusters 

I II III IV V VI VII VIII IX X XI 

trait 
means 

ATW 61.2 41.0 63.5 49.0 53.6 65.9 70.1 39.5 26.8 94.1 30.0 54.1 

TDM 9.9 16.2 9.8 14.8 11.7 16.6 13.6 8.4 14.3 7.2 15.7 12.5 

DTM 71.0 70.9 75.3 79.6 66.9 88.9 87.6 65.0 67.3 79.3 90.0 76.5 

TNPP 7.4 9.6 8.6 9.5 5.7 8.9 11.5 8.0 12.8 6.8 21.0 10.0 

NUE 16.3 24.3 20.0 26.2 13.9 36.9 41.4 10.2 20.0 18.3 38.6 24.2 

TYPP 430.1 380.1 522.3 451.9 293.4 572.1 822.1 317.5 342.5 642.5 620.0 490.4 

UCC 43.6 43.9 40.4 41.5 45.8 43.4 44.4 45.5 40.6 49.1 42.0 43.7 

t1 17.1 16.9 18.6 18.2 17.5 18.5 17.5 17.5 16.4 17.4 18.1 17.6 

te 33.8 34.3 36.0 36.7 33.2 39.7 39.1 30.6 32.4 37.8 39.1 35.7 

AUC 1337.3 1445.1 1645.3 1823.9 1039.0 1786.5 2407.8 1077.2 1558.9 1727.3 2217.4 1642.3 

PH 34.5 35.2 38.2 49.5 29.6 42.4 54.2 28.2 28.2 37.3 50.4 38.9 

SNPP 3.7 3.5 4.8 4.3 3.1 2.8 3.8 6.5 6.1 3.0 4.9 3.8 

ATW = Average tuber weight in g, TDM% = Tuber dry matter in percent, DTM = Days to maturity,  TNPP = Tuber number plant-1, NUE = 

Nitrogen use efficiency kg  kg-1, TYPP = Tuber yield plant-1 in g, UCC = upper leaf chlorophyll content (SPAD readings),  t1 = time point at 
which the canopy stabilized in thermal day (td),  te = complete canopy senesced  in  td , AUC = Area under the canopy curve % t.d, PH= 

Plant height in cm, SNPP = Stem number plant-1  
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Supplementary Table 6. Estimates of variance components , H
2
, PCV) and GCV (GA%) of measured traits at 

two contrasting N levels in Debre-Tabor  

Trait Treat Mean .range G. mean vp Vg ve H2 PCV GCV GA% 

PH  LN 27.8-51.7 36.0  ±5.5 21.0 11.5 9.4 0.6 0.13 0.09 17.5 

 
HN 28.7-66.7 44.2 ±6.8 31.0 20.4 10.6 0.7 0.13 0.10 21.0 

Vmax  LN 28.9-100.2 53.3 ±12.5 107.5 55.8 51.7 0.5 0.19 0.14 25.0 

 
HN 39.9-101 69.5 ±14.2 150.6 102.3 48.3 0.7 0.18 0.15 28.7 

AUC LN 602-2219 1158 ±300.81 62943.0 34954.0 27989.0 0.6 0.22 0.16 29.7 

 
HN 758-2551 1467 ±380.73 103514.5 69226.0 34288.5 0.7 0.22 0.18 35.8 

UCC LN 28.80-47.9 39.3 ±3.0 7.5 6.2 1.3 0.8 0.07 0.06 13.0 

 
HN 35.1-59.8 43.5 ±4.4 18.2 17.4 0.8 0.9 0.10 0.10 19.8 

DTM LN 48.0-81.5 67.9 ±8.0 43.7 23.3 20.5 0.5 0.10 0.07 13.0 

 
HN 52.0-84.0 68.6 ±7.1 37.6 25.2 12.4 0.7 0.09 0.07 14.3 

TNPP LN 3.5-13 6.9 ±2.2 4.1 3.4 0.7 0.8 0.30 0.27 54.6 

 
HN 3.5-23 8.2 ±3.1 8.3 6.8 1.5 0.8 0.35 0.32 64.8 

TYPP  LN 180.0-622.9 322.1 ±85.3 5619.5 4106.0 1513.5 0.7 0.23 0.20 39.9 

 
HN 202.5-1103.3 460.52 ±173.99 22711.5 15478.0 7233.5 0.7 0.33 0.27 53.0 

ATW  LN 24.75-93.13 49.7 ±15.0 170.4 122.4 48.1 0.7 0.26 0.22 44.7 

 
HN 26.4-95.1 59.6 ±18.7 274.7 211.8 62.9 0.8 0.28 0.24 49.9 

TDM (%) LN 5.2-18.9 11.5 ±3.8 10.9 7.1 3.8 0.7 0.29 0.23 44.6 

 
HN 4.6-21.3 10.0 ±3.61 9.9 6.7 3.2 0.7 0.31 0.26 50.6 

NUE LN 17.0-119.2 41.0 ±18.2 274.9 220.3 54.6 0.8 0.40 0.36 73.3 

 
HN 7.4-63.3 17.2 ±10.9 93.4 67.4 26.0 0.7 0.56 0.48 94.3 

 

LN= low nitrogen (40kg  ha-1, HN= high nitrogen (120kg ha-1),   PH= Plant height in cm, SNPP=stem number plant-1, Vmax= Maximum 

canopy cover in %, AUC= Area under the canopy curve in % thermal day (% td), UCC= Upper leaf chlorophyll content (SPAD readings), 

DTM= days to maturity, TNPP= tuber number plant-1, TYPP= tuber yield plant-1 in g , ATW=average tuber weight,in g,  TDM(%)= tuber 

dry matter perceentage, NUE=nitrogen use efficiency (kg kg-1), G. mean = grand mean, vp = phenotypic variation, vg = genotypic variation, 

ve = environmental variation, VgH2 = broad sense heritability, PCV = phenotypic coefficient of variation, GCV = genotypic coefficient of 

variation, GA% = genetic advance as percent of mean 
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Supplementary table 7. Estimates of variance component, H2, PCV, GCV and GA% of measured traits at two contrasting N 

regimes in Injibara 

Trait Treat Mean range G. mean Vp Vg Ve H2 PCV GCV GA% 

 
PH (cm) 

 

LN 

 

9-39.5 

 

15.7 ±5.3 

 

25.3 

 

22.8 

 

2.5 

 

0.9 0.32 0.30 62.4 

 

  

HN 

 

16.2-56.5 

 

27.3 ±8.1 60.8 56.8 

 

4.1 

 

0.9 0.29 0.28 56.7 

 

Vmax (%) 
LN 23.5-53.6 37.1 ±14.4 28.7 9.6 19.1 

 

0.3 0.14 0.08 26.3 

 

 

HN 38.9-92.3 62.0 ±9.4 67.8 47.7 20.1 
 

0.7 0.13 0.11 21.8 

 

AUC(%.td) 
LN 457.4-1474.8 866 ±348.7 28778.0 16434.0 12344.0 0.6 0.20 0.15 47.4 

 

 

HN 717-2481 1366 ±317.4 79930.0 58899 21031.0 

 

0.7 0.21 0.18 35.4 

 

UCC 
LN 32.3-46.9 38.1  ±3.2 8.4 6.7 1.7 0.8 0.08 0.07 14.0 

 

 

HN 36.9-50.6 43.3 ±3.6 9.6 6.1 3.5 0.6 0.07 0.06 11.0 

 

DTM 
LN 62.5-104.5 80.0 ±8.4 48.8 28.6 20.2 0.6 0.09 0.07 12.7 

 

 

HN 59.0-107.0 76.4 ±8.6 60.5 47.7 12.8 0.8 0.10 0.09 18.2 

 

TNPP 
LN 2.50-9.50 4.7 ±1.3 1.5 1.2 0.3 0.8 0.26 0.23 47.9 

 

 

HN 4.0-19.0 7.6 ±2.2 4.0 3.2 0.8 0.8 0.26 0.23 47.4 

 

TYPP (g) 
LN 135-320 219.8 ±47.2 1495.0 789 706.0 0.5 0.18 0.13 23.4 

 

 

HN 235.0-700.0 424.2 ±110.8 7573.0 3970 3603.0 0.5 0.21 0.15 28.0 

 

ATW (g) 
LN 20.9-83.8 49.3 ±14.4 167.7 127.9 39.8 0.8 0.26 0.23 45.9 

 

 

HN 26.8-99.1 58.8 ±18.4 252.2 184.4 67.8 0.7 0.27 0.23 46.9 

 

TDM (%) 
LN 7.7-25.2 14.9 ±4.1 10.7 4.5 6.1 0.4 0.22 0.14 24.1 

 

 

HN 6.8-18.8 11.3 ±3.2 8.2 6.4 1.8 0.8 0.25 0.22 44.9 

 

NUE 
LN 20.2-69.6 40.8 ±12.7 95.3 38.2 57.1 0.4 0.24 0.15 25.6 

 

  
HN 10.7 -40.5 20.0 ±6.5 24.9 9.8 15.1 0.4 0.25 0.16 26.3 

 

LN= low nitrogen (40kg ha-1), HN= high nitrogen (120kg ha-1),   PH= Plant height in cm , SNPP=stem number plant-1, Vmax= Maximum 

canopy cover in %, AUC= Area under the canopy curve in % thermal day (% td), UCC= Upper leaf chlorophyll content (SPAD readings), 

DTM= days to maturity, TNPP= tuber number plant-1, TYPP= tuber yield plant-1 , ATW=average tuber weight in g, TDM(%)= tuber dry 

matter percentage, NUE=nitrogen use efficiency (kg kg-1), G. mean = grand mean, VP = phenotypic variation, Vg = genotypic variation, Ve 

= environmental variation, VgH2 = broad sense heritability, PCV = phenotypic coefficient of variation, GCV = genotypic coefficient of 

variation, GA% = genetic advance as percent of mean 
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Chapter 3 

Supplementary Table 1. Analysis of variance for the influence of fertilizer N rate, cultivars, location  nd their interaction  

over locations 

 

Source of  

Variations 

PH SNPP Vmax AUC LCC DTM TDM ATW TNPP TYPP NUE 

N-lvels ns Ns ns * ns ns ns ns * ns ns 

Genotypes  *** *** ** ** *** *** ** ** *** *** *** 

N x G ns Ns ns ns ns ns ns ** ** ns ns 

Location *** ** *** *** *** *** ns *** *** *** *** 

N x Loc *** *** *** *** *** *** ** *** *** *** *** 

G x Loc *** Ns *** *** ** *** ns *** *** *** *** 

N x G x Loc ns Ns * ns ns ns ns ns ns ns ns 

ns = not significant, *= significant at P≤0.05, **= significant at P≤0.01 and *** = significant at P≤0.001 PH=Plant Height,  SNPP = stem 

number per plant, Vmax=  maximum canopy cover , Total area under the canopy(AUC), LCC= Lower leaves chlorophyll content , DTM= 

days to maturity TDM =Tuber Dry Matter%, ATW= Average Tuber Weight , TNPP=Tuber Number Plant-1, TYPP= Tuber Yield Plant-1,  

NUE= Nitrogen use efficiency 
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Supplementary Table2. Mean performance of parents and progeny, estimates of genetic and non-genetic variance 

components, and heritability in different locations and N-levels 

Trait Treat Locations Performance variance  

 

σ2g           σ2e 

 

parents 

  C                   E 

Progeny 

Min             Max            Mean 

  

  H2 

        

DTE LN Ko 25 23 17 29 22 6.4 3 0.7 

    In 30 28 20 40 27 10.7 6.2 0.6 

    DT 25 24 17 50 26 51.09 6.9 0.9 

  HN Ko 21 18 16 26 21 2.8 3.4 0.5 

    In 28 24 20 36 25 10.4 5.2 0.7 

    DT 25 24 17 49 25 43.2 5.3 0.9 

PH LN Ko 30 43 12 46 28 40.06 7.9 0.8 

    In 26 27 11 40 24 36.8 7.5 0.8 

    DT 35 38 23 46 32 12.5 17.2 0.4 

  HN Ko 33 42 17 52 34 42.3 7.04 0.9 

    In 36 37 16 57 33 51.2 12.5 0.8 

    DT 42 51 24 56 39 28.3 11 0.7 

SNPP LN Ko 2 2 1 3 2 0.06 0.12 0.4 

    In 1 2 1 3 2 0.06 0.12 0.4 

    DT 1 1 1 4 2 0.11 0.2 0.4 

  HN Ko 2 2 1 3 2 0.11 0.08 0.6 

    In 2 2 1 3 2 0.06 0.12 0.3 

    DT 2 3 1 3 2 0.07 0.2 0.3 

UCC LN Ko 45.9 47.2 34.4 58.2 45.5 12.2 7.2 0.6 

    In 47.5 46.9 40.6 54.9 48 0.00 8.9 0.00 

    DT 45.5 46.3 39.7 57.2 47.2 9.6 6.7 0.6 

  HN Ko 46.6 48.5 37.2 63. 6 48.7 5.7 18.8 0.2 

    In 49.4 46 38.5 55.2 47.6 6.8 5 0.6 

    DT 48.10 50.2 37.2 57.6 48.4 8.7 4.8 0.6 

LCC LN Ko 45.7 50 36.8 58.9 47.6 14.9 8.8 0.6 

    In 47 44 37.30 56.4 46.7 0.00 13.2 0.00 

    DT 45.5 45 38.2 57 46.7 9.3 8.4   0.5 

  HN Ko 49.5 50.5 40.3 63.5 60 9.6 15.2 0.4 

    In 47.2 45.3 38.7 55.7 47.4 5.04 7.5 0.4 

    DT 50.5 50.10 38.4 58.7 48.6 10 8.4 0.5 
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Trait Treat Locations Performance variance  

 

σ2g           σ2e 

 

parents 

  C                   E 

Progeny 

Min             Max            Mean 

  

  H2 

        

tm1 LN Ko 23.3 22.3 13.4 47.6 23.5 5.4 11.4 0.3 

    In 6.3 7.8 2.7 13.8 9 2.7 3.7 0.3 

    DT 16.2 16.6 7.5 39.5 15.4 4.2 7.3 0.4 

  HN Ko 23.02 16.04 4.7 26.5 20 4.8 5.3 0.5 

    In 9.5 10 4 13.4 10.2 1.2 1.8 0.4 

    DT 16.9 17.01 8.5 19.9 16.2 3.6 0.9 0.8 

t1 LN Ko 32.7 33.7 20.2 44.6 35 2.9 15.03 0.2 

    In 7.6 8.9 4.12 18.9 12.6 0.6 6.6 0.08 

    DT 20.3 20.4 8.4 23.2 18.9 3.10 2.9 0.5 

  HN Ko 37.04 20 22.10 42.9 33.8 9.6 14.10 0.4 

    In 16 15.7 4.6 21 15.11 2.4 3.3 0.4 

    DT 22.03 20.5 13.9 25.13 20.4 2.2 2.11 0.5 

t2 LN Ko 41.2 44.6 30.6 71.5 44.8 4.9 29.3 0.14 

    In 17.10 18.3 12.2 35.05 18.8 0.4 12.04 0.03 

    DT 21.9 21.3 12.6 27.4 22 2.9 2.14   0.6 

  HN Ko 43.9 413 27.5 53.4 41 6.6 15.5 0.3 

    In 18.9 18.2 13.8 38.4 19.2 0.00 8.7 0.00 

    DT 25 24.6 15.2 29.8 23.2 2.3 3.6 0.4 

Te LN Ko 59.01 52.9 48.01 80.3 56.14 0.00 20.6 0.00 

    In 41.9 29.3 26.13 127.9 34.5 0.00 102.8 0.00 

    DT 43.4 44.2 35 46.08 42.07 3.4 1.8 0.7 

  HN Ko 56.4 57.08 46.4 64.9 56.05 5.2 6.6 0.4 

    In 29.2 33.7 26.5 109.4 34 8.5 67.7 0.11 

    DT 42.7 44.09 35 47.5 42.9 4.3 2 0.7 

Vmax LN Ko 61.6 31.04 5.04 84.2 25.3 112.14 26.9 0.8 

    In 24.6 24.3 11.6 39.7 25.3 9 9.14 0.5 

    DT 35.3 40 17.4 47.3 30.03 4.8 34.6   0.12 

  HN Ko 41.5 36.13 7.7 77.4 32.6 84 50.2 0.6 

    In 54.6 40.7 12.9 71.2 42.4 72.13 31.2 0.7 

    DT 56.8 62.4 20.5 74.02 45.4 51.2 51.5 0.5 
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Trait Treat Sites Performance variance  

 

σ2g           σ2e 

 

parents 

  C                   E 

Progeny 

Min             Max            Mean 

  

  H2 

 

AUC LN Ko 2003.7 941.10 230.8 2946.8 787.2 99060 42172.5 0.7 

  In 651 447.6 287.9 820.5 508.4 5992.5 9304.5 0.4 

  DT 760 863 356 1061 651.5 1667 18553 0.08 

 HN Ko 1292 1241 227 2705 1069.3 103850 58463.5 0.5 

   In 927 790.2 317.6 1405.3 795.05 20410 12644 0.6 

   DT 1303 1387 415 1678 993.10 30506 29473 0.5 

DTM LN Ko 117 114 91 123 115 9.3 9.8 0.5 

    In 66 67 55 77 64 11 10 0.5 

    DT 81 79 53 92 78 37.4 13.6   0.7 

  HN Ko 112 112 91 121 112 12.2 20.8 0.4 

    In 64 66 54 79 64 10.2 10.3 0.5 

    DT 80 78 58 93 77 32.2 11.6 0.7 

NTPP LN Ko 10 8 3 19 9 11.5 2.9 0.8 

    In 8 5 3 16 7 2.5 1.6 0.6 

    DT 7 4 2 18 6 4.4 1.5   0.7 

  HN Ko 16 13 3 30 12 21.2 5.4 0.8 

    In 10 6 3 22 10 8.3 3.5 0.7 

    DT 13 8 3 22 9 6.9 3.4 0.7 

TYPP LN Ko 500 300 70 700 300 0.01 0.00 0.8 

    In 0.13 0.12 0.04 0.3 0.12 0.00 0.00 0.3 

    DT 0.3 0.10 0.04 0.4 0.14 0.00 0.00 0.4 

  HN Ko 0.6 0.5 0.04 0.9 0.4 0.02 0.01 0.7 

    In 0.3 0.2 0.05 0.4 0.2 0.00 0.00 0.7 

    DT 0.4 03 0.05 0.7 0.3 0.01 0.00 0.6 

ATW LN Ko 51 37.6 10.6 56.6 30.5 58.2 34.2 0.6 

    In 16.5 23.11  8.7 31.5 18.4 11 8.8 0.6 

    DT 38.05 25.3 10.9 44.9 22.8 27.09 17.3   0.6 

  HN Ko 41.2 39.3 11.4 77.9 36 64.9 62.10 0.5 

    In 24.2 28.6 11.4 41.7 20.02 25.3 8.9 0.7 

    DT 31.7 34.14 15.4 56.7 31.04 33.4 27.4 0.6 
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Trait Treat Sites Performance variance  

 

σ2g           σ2e 

 

parents 

  C                   E 

Progeny 

Min             Max            Mean 

  

  H2 

SG LN Ko 1.06 1.08 1.03 1.10 1.07 0.00 0.00 0.2 

    In 1.08 1.08 1.04 1.08 1.07 0.00 0.00 0.00 

    DT 1.08 1.09 1.04 1.13 1.07 0.00 0.00   0.2 

  HN Ko 1.07 1.07 1.02 1.10 1.07 0.00 0.00 0.2 

    In 1.05 1.08 1.04 1.08 1.07 0.00 0.00 0.2 

    DT 1.06 1.08 1.03 1.10 1.06 0.00 0.00 0.2 

TDM% LN Ko 15.6 20.5 10.3 24.6 18.3 2.8 10.4 0.2 

    In 20.03 20.5 12.07 21.3 19 0.00 3.7 0.00 

    DT 20.91 22.6 11.5 31.01 19.3 1.6 7.5   0.2 

  HN Ko 18.5 18 6.7 24.7 18.14 2.9 9.09 0.2 

    In 14.5 21.2 11.7 21.6 18.4 0.9 4.9 0.2 

    DT 15.7 20.4 9.3 24.6 17.04 2.7 9.01 0.2 

NUE LN Ko 78.9 59.2 12.2 105.2 44.4 178.8 187.7 0.5 

    In 29.11 26.07 7.8 63.09 24.4 15.6 52.9 0.2 

    DT 65.5 28.02 7.6 79.7 34.2 149.6 78.3 0.7 

  HN Ko 39.3 30.75 3.5 55.3 24.6 73.08 34.8 0.7 

    In 13.04 14.6 3.2 34.4 12.5 11.2 11.2 0.5 

    DT 27.6 23.2 4.14 34.3 17.7 17.7 20.8 0.5 

 

DTE= days to emergence, Ph=Plant Height in cm, SNPP = Stem Number Plant-1, UCC= upper  leaves chlorophyll content(SPAD readings), 

LCC= Lower leaves chlorophyll content(SPAD readings) , DTM= days to maturity TNPP=Tuber Number Plant-1, TYPP= Tuber Yield Plant-

1 in g, ATW= Average Tuber Weight in g , SG= Specific Gravity (g g-1, TDM% =Tuber Dry Matter percentage, NUE= Nitrogen use 

efficiency (kg  kg-1), tm1= inflection  point of canopy growth in thermal day  (td), t1= time for maximum canopy in td, t2 = time on set of 

canopy declining in td, te=  time canopy cover zero in td, Vmax=  maximum canopy cover in % , AUC= total area under the canopy % td , 

Locations : KO = Koga, In = Injibara, DT = Debre-Tabor, Min = minimum mean, Max = maximum mean,  σ2g = genotypic variance, σ2e = 

environmental variance, H2 = broad sense heritability LN,= low N level (40kg ha-1 , HN=  high N level (120kg ha-1), Ko=  Koga, In= 

Injibara, DT= Debre-Tabor  
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Chapter 4 

Supplementary Table 1. List of potato cultivars used in the association Panel , their year of release, origin, 

pedigree and market niche 

Variety name Year Origin Parentage Market niche 

Kennebec 1948 USA USDA B 127 x USDA 96-56 ancient cultivar 

Agata 1990 NETH BM 52-72 x Sirco fresh consumption  

Almera 1999 NETH BM 77-2102 x AR 80-31-20 fresh consumption  

Ambition 2007 NETH Adora x Quinta fresh consumption  

Annabelle 2001 NETH Nicola x Monalisa fresh consumption  

Arinda 1993 NETH Vulkano x AR 74-78-1 fresh consumption  

Bafana 2009 NETH Victoria x Felsina fresh consumption  

Bartina 1988 NETH Saturna x ZPC 62-75 fresh consumption  

Bellini 2001 NETH Mondial x Felsina fresh consumption  

Berber 1984 NETH Alcmaria x Ropta P 365 fresh consumption  

Bintje 1910 NETH Munstersen x Jaune d' or(Fransen) fresh consumption  

Charlotte 1981 FRA Hansa x Danae  fresh consumption  

Desiree 1962 NETH Urgenta x Deesche fresh consumption  

Fabula 1997 NETH Monalisa x Hudson fresh consumption  

Hansa 1957 GER Oberarnbacherfruuhe X Flava fresh consumption  

Jaerla 1969 NETH Sirtema x MPI 19268 fresh consumption  

Kastelli 2011 NETH Mondial x Felsina fresh consumption  

Kondor 1984 NETH KONST 61-333 x WILIA fresh consumption  

Kuroda 1998 NETH AR 76-199-3 x KONST 80-1407 fresh consumption  

Lady Christl 1996 NETH WS 73- 3-391 x Mansour fresh consumption  

Liseta 1988 NETH Spunta x VE 66-295 fresh consumption  

Marabel 1993 NETH Nena x MA 75-364 fresh consumption  

Marfona 1977 NETH Primura x Konst 51-123 fresh consumption  

Marilyn 2006 NETH Nicola x Pomfine fresh consumption  

Markies 1997 NETH Fianna x Agria  fresh consumption  

Monalisa 1982 NETH Bierma A1-287 x colmo fresh consumption  

Mondial 1987 NETH Spunta x VE 66-295 fresh consumption  

Nicola 1973 GER Cluvia x 6430/101 fresh consumption  

Orchestra 2007 NETH Maradona x Cupido fresh consumption  

Picasso 1994 NETH Cara x Ausonia fresh consumption  

Ramos 2000 NETH Agria x VK 69-491 fresh consumption  

Red Scarlett 1999 NETH ZPC 80-239 x Impalia fresh consumption  

Sante 1983 NETH Y 66-13-636 x AM 66-42 fresh consumption  

Spunta 1968 NETH Bea x USDA 96-56 fresh consumption  

Timate 1984 NETH Elvira x AM 66-42 fresh consumption  

Canberra 2007 NETH Latona x RedScarlett general purpose 

Mozart 2003 NETH Red Star x Caesar general pupose 

Frisia 1988 NETH ZPC 69 C 160 x AM 66-42 general purpose 

Lucinda 2011 NETH Vivaldi x Carrera general purpose 

Melody 2001 NETH VE 74 -45 x W 72-22 – 496 general purpose 
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Variety name Year Origin Parentage Market niche 

Panther 2011 NETH Innovator x Beets 84-85-32 general purpose 

Rodeo 1999 NETH Mondial x Bimonda general purpose 

Sagitta 2006 NETH Gallia x RZ-86-2918 general purpose 

Sifra 2008 NETH Mondial x Robinta general purpose 

Sylvana 2008 NETH Fabula x Xantia general purpose 

Victoria 1997 NETH Agria x Ropta J 861 general purpose 

Vivaldi 1998 NETH TS 77-148 x Monalisa general purpose 

Agria 1985 GER Quarta x Semio processing  

Asterix 1991 NETH Cardinal x VE- 70-9 processing  

Caesar 1990 NETH Monalisa x Ropta B1178 processing  

Challenger 2008 NETH Aziza x Victoria processing  

Courage 1998 NETH Lady Rosetta x HZ 81 H 202 processing  

Crisps4all 2008 NETH RZ 85-238 x RZ 87-44 processing  

Felsina 1992 NETH Morene x Gloria processing  

Hermes 1973 AUT DDR 5158 x Sw 163/55 processing  

Innovator 1999 NETH Shepody x RZ 84-2580 processing  

Lady Claire 1996 NETH Agria x KW 78-34-470 processing  

LadyRosetta 1988 NETH Cardinal x VTN  62-33-3 processing  

Leonardo 1994 NETH Edzina x Ropta D 540 Processing  

Maris Piper 1963 GB Y 22/6 (Arran cairn x Herald Processing  

Premiere 1979 NETH Civa x Provita Processing  

Russet Burbank 1908 USA Mutant of burbank  Processing  

Santana 1994 NETH Spunta x Vk  69-491 Processing  

Saturna 1964 NETH Maritta x (Re cord x CPC 1673(adg)) Processing  

Shepody 1980 CAN Bake king x F58050 Processing  

Taurus  2008 NETH Panda x RZ 87-44 Processing  

Triplo 2000 NETH Agria x fresco  Processing  

Voyager 2003 NETH RZ 85-238 x Oblelix Processing  

VR 808 2009 NETH Lady Claire x Atlantic Processing  

Kuras 1996 NETH BRDA (= PG 285) x VK 69-491 Starch industry 

Year = year of release, AUT = Austria, CAN = Canada, GB = Great Brtain  , FRA = France, GER = Germnay, NETH = 

Netherlands, USA = United States of America 
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Supplemntary Table 2 Analysis of variance for 22 traits of the association panel at different N levels and 

locations 
Traits N-level Location Genotype N x Loc G x N G x L N x Loc  x G 

DTE ns *** *** ns * ns ns 

PH *** *** *** ns ns ns ns 

SNPP * ** *** ns ns ns ns 

LCC * *** *** *** *** ns ns 

UCC * *** *** ns *** ns ns 

DTM ns *** * ns ns ns ns 

tm1 ns Ns *** ns ns ns ns 

t1 ns *** ns ns ns *** ns 

t2 ns *** *** ns ns ns ns 

te ns *** *** ns ns ns ns 

Vmax *** *** *** *** ns *** ns 

t2-t1 ** *** * * ns ns ns 

te-t2 * *** *** * ns ns ns 

AP1 ** *** *** *** ns ns ns 

AP2 *** *** *** ns ns ns ns 

AP3 ** *** *** ns ns *** ns 

AUC *** *** *** ns ns *** ns 

TYPP  *** *** *** *** ns *** ns 

TNPP *** *** *** ns ns ** ns 

ATW  *** ** *** ns ns ns ns 

TDM% *** *** *** *** ns ns ns 

NUE *** *** ** *** ns ** ns 

        

*=P≤0.05, **=P≤0.01, ***=P≤0.001, DTE = Days to Emergence, PH = Plant height, SNPP = Stem Number plant-1, LCC = Lower leaf 

chlorophyll, UCC= upper leaf chlorophyll, DTM= days to maturity, tml = Inflection point,  t1= time to reach maximum canopy cover, t2= 

Onset of canopy senesced, te=canopy complete senesced, Vmax=Maximum canopy cover, t2-t1= Duration for max canopy, te-t2= Duration 

for senescence, AP1= Area for phase one, AP2 = Area for phase two, AP3 = Area for phase three, AUC= Area under the canopy curve, 

TYPP = tuber yield plant-1 , TNPP = tuber number plant-1, ATW = average tuber weight, TDM% = Tuber dry matter%, NUE = nitrogen use 

efficiency,  
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Supplementary Table 3. Summary statistics of the association mapping panel describing the variance component of  various 

agronomic and physiological traits at each location and each production system under low N (LN) and high N (HN) 

conditions 

 
Traits  Treat Location Variance component (rainfed) Location Variance component (Irrigation) 

      σg2 σe2 H2   σg2 σe2 H2 

PH LN DT 8.3 18.3 0.31 Koga 27.3 16.04 0.6 

  INJ 3.7 4.7 0.44 INJ 32.9 24.4 0.6 

 HN DT 13.7 20 0.41 Koga 43.03 23.7 0.7 

  INJ 13.6 6.7 0.7 INJ 48.6 24.2 0.7 

SNPP LN DT 0.6 0.5 0.5 Koga 0.08 0.6 0.1 

  INJ 0.7 0.5 0.6 INJ 0.2 0.3 0.4 

 HN DT 0.5 0.4 0.6 Koga 0.13 0.5 0.2 

  INJ 0.8 0.5 0.6 INJ 0.2 0.3 0.3 

LCC LN DT 7.8 2.9 0.7 Koga 3.4 25.5 0.1 

  INJ 5.34 5.8 0.5 INJ 8.7 19.7 0.3 

 HN DT 16.21 1.7 0.9 Koga 8.3 15.7 0.4 

  INJ 7.32 7.5 0.5 INJ 6.08 25 0.2 

UCC LN DT 6.24 2.6 0.7 Koga 4 16.7 0.2 

  INJ 6.04 3.4 0.6 INJ 4.34 10.1 0.3 

 HN DT 18.6 1.4 0.9 Koga 6.3 8.3 0.4 

  INJ 6.6 6.4 0.5 INJ 3.9 14.3 0.2 

DTM LN DT 14.6 43.8 0.3 Koga 22.8 23.9 0.5 

  INJ 2.6 40.3 0.06 INJ 8.4 179.2 0.05 

 HN DT 16.02 26.8 0.4 Koga 12.2 31.4 0.3 

  INJ 17 22 0.44 INJ 12.7 170.1 0.07 

TYPP LN DT 0.003 0.003 0.5 Koga 0.01 0.03 0.2 

  INJ 0.001 0.001 0.4 INJ 0.005 0.004 0.7 

 HN DT 0.01 0.005 0.6 Koga 0.01 0.1 0.1 

  INJ 0.01 0.004 0.6 INJ 0.01 0.005 0.6 

TNPP LN DT 2.8 1.2 0.7 Koga 2.2 3 0.4 

  INJ 1 0.5 0.7 INJ 0.9 0.42 0.7 

 HN DT 3.6 1.8 0.7 Koga 1.3 13.5 0.1 

  INJ 2.02 1.12 0.6 INJ 0.9 1 0.5 

ATW LN DT 106.9 90.4 0.5 Koga 472.05 609.4 0.4 

  INJ 113.5 82.08 0.6 INJ 406.3 430.9 0.5 
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Traits  Treat Location Variance component (rainfed) Location Variance component (Irrigation) 

      σg2 σe2 H2   σg2 σe2 H2 

 HN DT 411.6 126 0.8 Koga 95 1116 0.1 

  INJ 182.5 128.9 0.6 INJ 444.4 376.8 0.5 

SG LN DT 0.0001 0.0002 0.4 Koga 6.32E-05 0.0003 0.2 

  INJ 0.0001 0.0003 0.2 INJ 0.000023 0.0003 0.08 

 HN DT 0.0001 0.00012 0.43 Koga 0.000016 0.0002 0.1 

  INJ 0.0001 0.00007 0.6 INJ 0.000043 0.0003 0.2 

TDM% LN DT 5.3 7.4 0.4 Koga 3.01 14 0.2 

  INJ 3 15.9 0.2 INJ 1.08 11.7 0.08 

 HN DT 4.2 5.5 0.43 Koga 0.8 10.7 0.1 

  INJ 5.7 3.5 0.6 INJ 2.05 11.7 0.15 

NUE LN DT 72 93.43 0.44 Koga 250.5 1723 0.13 

  INJ 43 108.5 0.3 INJ 121.9 194.4 0.4 

 HN DT 9.3 19 0.33 Koga 1.5 566.9 0.003 

  INJ 8.8 17.2 0.34 INJ 24.4 34.9 0.4 

tm1 LN DT 0.7 4.6 0.12 Koga 3.04 7.6 0.3 

  INJ 0.2 4.5 0.03 INJ 2.5 16.6 0.13 

 HN DT 0.7 1.7 0.3 Koga 1 11.8 0.1 

  INJ 0.8 2.4 0.3 INJ 0.9 45.9 0.02 

t1 LN DT 0.6 3.2 0.2 Koga 0.6 12.24 0.05 

  INJ 0.4 5.7 0.07 INJ 4.3 19.8 0.2 

 HN DT 0.4 3.2 0.1 Koga 3.22 11.02 0.2 

  INJ 0.9 2.6 0.3 INJ 0.7 45.5 0.02 

t2 LN DT 0.7 5.6 0.1 Koga 2.5 13.4 0.2 

  INJ 1.5 9.2 0.14 INJ 0.11 13.21 0.01 

 HN DT 0.5 4.04 0.1 Koga 0.8 18.7 0.04 

  INJ 0.7 4.2 0.14 INJ 7.9 10.01 0.4 

te LN DT 0.9 4.8 0.2 Koga 4 4.21 0.5 

  INJ 2.8 5.7 0.33 INJ 0.02 3.6 0.01 

 HN DT 0.5 6.32 0.08 Koga 2.21 6.8 0.3 

  INJ 1.8 6.6 0.22 INJ 0.8 4.08 0.2 

Vmax LN DT 18 103.3 0.15 Koga 45.6 129.2 0.3 

  INJ 8.6 34.5 0.2 INJ 82.33 50.14 0.6 
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Traits  Treat Location Variance component (rainfed) Location Variance component (Irrigation) 

      σg2 σe2 H2   σg2 σe2 H2 

 HN DT 62.5 91.01 0.4 Koga 67.3 163.2 0.3 

  INJ 29.7 34.01 0.5 INJ 98.8 127.2 0.4 

t2-t1 LN DT 1.6 8.2 0.2 Koga 0.7 13.23 0.05 

  INJ 2.9 9.8 0.23 INJ 8.9 23.22 0.3 

 HN DT 0.05 5.7 0.01 Koga 2.2 14.6 0.1 

  INJ 0.6 5.2 0.11 INJ 1.2 48.01 0.02 

te-t2 LN DT 2.4 11.06 0.2 Koga 6.16 18.5 0.3 

  INJ 0.8 17.7 0.04 INJ 2.5 8.7 0.2 

 HN DT 0.3 9.4 0.03 Koga 4.94 27.3 0.2 

  INJ 2.8 10.8 0.2 INJ 6.9 8.4 0.5 

AP1 LN DT 2488.5 14791 0.14 Koga 14667.5 46811 0.2 

  INJ 918.5 13508 0.06 INJ 8328 7350 0.5 

 HN DT 4475 17360 0.21 Koga 18257 92252 0.2 

  INJ 5302 11435 0.31 INJ 12731 15188 0.5 

AP2 LN DT 1997.5 17164 0.1 Koga 1764.5 35533 0.05 

  INJ 4863.5 11999 0.3 INJ 22534 27658 0.5 

 HN DT 1471 23405 0.06 Koga 5899.5 48249 0.11 

  INJ 3218.5 16968 0.2 INJ 18723 78112 0.2 

AP3 LN DT 3371.5 27805 0.11 Koga 13189 57013 0.2 

  INJ 472 15449 0.03 INJ 5437.5 11730 0.3 

 HN DT 4415 32181 0.12 Koga 25015.5 83525 0.2 

  INJ 7478 23366 0.24 INJ 12993 13695 0.5 

AUC LN DT 13902 37029 0.3 Koga 46107 116844 0.2 

  INJ 7314 24053 0.23 INJ 64742 48676 0.6 

 HN DT 31673.5 49773 0.4 Koga 65638 165774 0.3 

  INJ 22312 31675 0.4 INJ 67995.5 118484 0.4 

DT = Debre-Tabor, INJ = Injibara, PH = Plant height, SNPP = Stem Number plant-1, LCC = Lower leaf chlorophyll, UCC= upper leaf 
chlorophyll, DTM = days to maturity, TYPP = tuber yield plant-1 , TNPP = tuber number plant-1, ATW = average tuber weight, SG= specific 

gravity, TDM% = Tuber dry matter %,  NUE = nitrogen use efficiency, tml = Inflection point,  t1= time to reach maximum canopy cover, t2 

= Onset of canopy senesced, te = canopy complete senesced, Vmax = Maximum canopy cover, t2-t1= Duration for max canopy, te-t2= 
Duration for senescence, AP1= Area for phase one,  AP2 = Area for phase two, AP3 = Area for phase three, AUC = Area under the canopy 

curve, LN = low N (40kg ha-1, HN = high N (120kg ha-1), DT = Debre-Tabor, INJ = Injibara  σg2 = genotypic variance , σe2 = environmental 

variance, H2 = broad sense heritability  
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Supplementary Table 4. Summary statistics of the association mapping panel describing the variance component of  location combined  agronomic and physiological traits at each production 

system under low N (LN) and high N (HN) conditions 

Traits  Treat Variance component (rainfed) Variance component (irrigation) 

    σg2 σge2 σe2 H2 σg2 σge2 σe2 H2 

PH LN 20.02 0.5 11.2 0.6 116.5 4.8 21.5 0.8 

 HN 53 -0.6 13.3 0.8 126.4 6.2 22.5 0.8 

SNPP LN 3.7 -0.3 0.6 0.9 0.5 0.0 0.5 0.5 

 HN 3.6 -0.2 0.5 0.9 0.5 0.03 0.4 0.6 

LCC LN 15.4 2.34 4.5 0.8 31.7 -3.6 25.7 0.6 

 HN 9.7 8.7 4.2 0.6 28.9 -0.11 20.4 0.6 

UCC LN 14.9 2.5 3.33 0.8 21.5 -1.6 14.5 0.6 

 HN 7.5 9 3.7 0.6 20.44 1.3 10.9 0.6 

DTM LN 38.5 0.9 33.3 0.5 22.4 4.4 103.8 0.2 

 HN 60.3 2.31 22.5 0.7 58.9 2 104.3 0.4 

TYPP LN 5104 289.5 2281 0.7 23279 383 17861 0.6 

 HN 21362 361 4358 0.7 22315 2056 52994 0.3 

TNPP LN 5.3 0.4 0.9 0.8 5.6 0.1 1.9 0.7 

 HN 8.31 0.5 1.4 0.8 2.64 -0.8 6.3 0.31 

ATW LN 420.8 -2.9 78.05 0.8 1586.7 19.6 548.7 0.7 

 HN 637.6 8.9 106.9 0.9 337.2 118.5 777.9 0.3 

SG LN 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.13 

 HN 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.08 

TDM% LN 17.7 -1.44 12.02 0.6 2.14 1 14.4 0.13 

 HN 19.9 0.14 3.9 0.8 1.3 -1.8 15.6 0.08 

NUE LN 165.6 2.4 105.8 0.6 367.0 -143.5 1388 0.22 

 HN 41.5 0.7 17.6 0.7 20.0 -27.5 351.9 0.06 

tm1 LN 2.5 -1.23 8.5 0.24 1.27 1.13 7.4 0.14 

 HN 0.6 1.4 2.12 0.2 1.9 -3.9 23.5 0.08 
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Traits  Treat Variance component (rainfed) Variance component (irrigation) 

    σg2 σge2 σe2 H2 σg2 σge2 σe2 H2 

t1 LN 1.6 -0.3 4.22 0.3 2.8 -0.64 11.7 0.2 

 HN 1 0.43 3.02 0.24 6.4 -1.8 17.43 0.3 

t2 LN 4.6 -0.4 6.7 0.41 5.6 0.05 12.33 0.3 

 HN 0.7 0.5 3.9 0.2 5.8 2.3 12.5 0.3 

Te LN 4.8 0.6 5.4 0.5 5.07 1.2 3.8 0.5 

 HN 4.8 -0.07 6.7 0.42 3.0 0.42 5.02 0.4 

Vmax LN 55.1 -9.24 83.34 0.4 212 17.8 96 0.7 

 HN 307.2 4000.7 60.7 0.7 367.5 -2.6 163.4 0.7 

t2-t1 LN 2.8 -0.04 8.9 0.24 3.9 1.32 11.5 0.24 

 HN 1.5 0.3 5.21 0.22 3.4 2.2 15.8 0.2 

te-t2 LN 4.5 -1.4 13.5 0.3 6.7 2.7 14.2 0.3 

 HN 1 0.98 10.6 0.08 8.42 3.60 14.7 0.3 

AP1 LN 8204 -1324.5 143950 0.4 19221 7015.5 26995 0.4 

 HN 3295 3513.5 146960 0.18 20518 10538 48180 0.3 

AP2 LN 6164 163.5 14575 0.42 14025 7510 28433 0.3 

 HN 2433 2794 19697 0.11 30430 10957.5 53654 0.3 

AP3 LN 9036 -4519.5 23214 0.5 31802 2922 35243 0.5 

 HN 24742 298.5 28703 0.5 47678 13293.5 42419 0.5 

AUC LN 32332 1262.5 31924 0.5 203150 16425.5 86607 0.7 

 HN 101040 478 387170 0.7 314597 8451.5 143815 0.7 

PH = Plant height, SNPP = Stem Number per plant, LCC = Lower leaf chlorophyll, UCC= upper leaf chlorophyll, DTM= days to maturity, TYPP=tuber yield per plant , TNPP= tuber number per plant, ATW = 

average tuber weight, SG= specific gravity, TDM%= Tuber dry matter%, NUE= nitrogen use efficiency, tml = Inflection point,  t1= time to reach maximum canopy cover, t2= Onset of canopy senesced, te=canopy 

complete senesced, Vmax=Maximum canopy cover, t2-t1= Duration for max canopy, te-t2= Duration for senescence, AP1= Area for phase one, AP2= Area for phase two, AP3= Area for phase three, AUC= Area 

under the canopy curve, LN = low N (40kg ha-1 ), HN = high N (120kg ha-1), σg2 = genotypic variance , σge2 = genotype x environement interaction variance, σe2 = environmental variance, H2 = broad sense 

heritability 
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Supplementary Table 5. Marker trait associations significant at –log10(P) =0.05 for NUE and NUE related agronomic and physiological traits measured in 15 environments 

Traits Environments  Model  Marker Chrom Position  Allele.freq -log10(P) Effect 

AP2 DTLN13 2-dom-ref solcap_snp_c2_9172 VI 58844975 0.31 5.58 162.2 

 HN combined 1-dom-ref solcap_snp_c2_45179 VII 46814225 0.63 4.62 120.07 

 HN combined15 1-dom-ref solcap_snp_c2_45567 IX 48735918 0.77 4.54 174.82 

 IBLN13 General solcap_snp_c1_10144 XI 10767532 0.24 5.39 NA 

 LN combined Additive solcap_snp_c2_5078 I 80591939 0.48 5.26 35.43 

 Over combined 1-dom-ref solcap_snp_c2_45179 VII 46814225 0.63 4.52 89.78 

AP3 IBHN13 2-dom-alt PotVar0087318 IV 66212305 0.61 5.31 178.08 

AUC IBHN13 2-dom-ref PotVar0010985 IX 57166420 0.80 5.55 -245.89 

 IBLN13 1-dom-alt solcap_snp_c2_33517 V 1413732 0.18 5.78 -153.08 

 LN combined 2-dom-alt PotVar0019456 III 2742393 0.28 6.88 -202.9 

 LN combined15 2-dom-alt PotVar0019456 III 2742393 0.28 5.36 -349.06 

DTE DTHN13 1-dom-ref PotVar0127165 VI 42867728 0.59 4.84 2.56 

 IBHN13 Additive PotVar0060758 I 82029061 0.46 5.36 0.85 

 LN combined13 1-dom-ref solcap_snp_c2_23929 XI 6098398 0.82 5.08 1.64 

 IBHN15 General PotVar0064473 XI 787383 0.54 5.69 NA 

DTM DTLN13 2-dom-alt PotVar0043347 I 69910940 0.75 5.29 10.54 

 DTLN13 General PotVar0075255 IV 67807068 0.55 6.25 NA 

 IBHN13 2-dom-ref PotVar0010985 IX 57166420 0.80 4.97 -7.09 

 IBLN13 General solcap_snp_c1_7132 III 54314873 0.36 7.28 NA 

NUE DTHN13 2-dom-alt PotVar0040680 VI 52929083 0.21 5.12 5.68 

 LN combined13 2-dom-alt PotVar0019302 III 2235688 0.13 5.41 15.39 

 LN combined13 2-dom-alt PotVar0026355 V 4335324 0.10 5.15 17.72 

SNPP DTHN13 2-dom-ref PotVar0116800 X 1910636 0.45 5.01 1.09 

 HN combined Additive PotVar0014376 V 12237074 0.17 5.49 -0.39 

 HN combined 2-dom-ref PotVar0116800 X 1910636 0.46 5.75 0.71 

 HN combined13 2-dom-ref PotVar0041871 I 75179906 0.36 5.94 1.48 
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Traits Environments  Model  Marker Chrom Position  Allele.freq -log10(P) Effect 

 IBHN13 General PotVar0090060 II 41787809 0.09 5.54 NA 

 IBHN13 2-dom-ref PotVar0116800 X 1910636 0.45 4.86 1.21 

 KOLN15 1-dom-ref PotVar0097439 VIII 53835553 0.76 4.74 -0.71 

 Over combined 2-dom-ref PotVar0116817 X 1912160 0.42 5.22 0.64 

t1 DTHN13 2-dom-ref PotVar0110053 VIII 3214131 0.36 4.98 1.97 

 HN combined13 2-dom-alt PotVar0046416 II 36845853 0.54 7.07 -1.53 

 LN combined13 1-dom-alt PotVar0134786 VIII 41088438 0.31 6.49 -1.84 

t2 HN combined13 2-dom-alt solcap_snp_c2_2721 I 58197448 0.60 6.22 -1.46 

 HN combined15 1-dom-ref PotVar0034950 V 50863328 0.75 4.77 -2.75 

 IBLN13 General solcap_snp_c2_57254 III 53433832 0.39 5.96 NA 

t2-t1 HN combined13 2-dom-alt PotVar0046416 II 36845853 0.54 5.4 1.44 

 IBLN13 2-dom-ref solcap_snp_c2_26015 VI 50155639 0.79 5.09 -3.52 

 KOHN15 Additive PotVar0056273 III 50890271 0.36 5.26 1.89 

 KOHN15 2-dom-ref PotVar0087064 IV 66147380 0.78 5.65 -4.52 

 KOHN15 2-dom-ref solcap_snp_c2_55553 VI 2182330 0.30 5.21 6.52 

 LN combined 1-dom-ref PotVar0014354 V 12658442 0.82 4.75 -1.24 

TDM% DTHN13 General PotVar0109750 II 11294543 0.12 5.35 NA 

 HN combined 2-dom-alt PotVar0030875 III 55659310 0.13 5.4 2.77 

 IBHN15 2-dom-ref PotVar0091938 V 9824216 0.86 5.05 -4.31 

 IBLN13 1-dom-alt PotVar0023375 VIII 56624935 0.10 5.14 3.56 

te DTLN13 2-dom-ref PotVar0101916 IX 52407969 0.87 4.95 2.95 

 LN combined 1-dom-ref PotVar0034688 V 51682609 0.62 4.95 -2.05 

 Over combined General solcap_snp_c2_23596 IV 641790 0.42 5.25 NA 

te-t2 IBLN15 1-dom-alt solcap_snp_c2_38643 VII 44288221 0.23 5.87 -2.92 

tm1 HN combined 2-dom-ref PotVar0024747 V 2964094 0.86 5.18 2.19 

 IBLN13 2-dom-alt PotVar0127400 VII 9119537 0.39 5.76 1.7 

 KOLN15 2-dom-ref solcap_snp_c2_36941 0 0 0.42 5.19 -5.17 

 KOLN15 2-dom-alt solcap_snp_c2_53708 I 44890251 0.71 5.18 4.33 

 LN combined General solcap_snp_c2_39499 IX 49977704 0.62 5.36 NA 
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Traits Environments  Model  Marker Chrom Position  Allele.freq -log10(P) Effect 

 LN combined General PotVar0008106 XI 40967802 0.41 5.42 NA 

TNPP DTHN13 1-dom-alt PotVar0130496 XI 44430446 0.43 5.19 -4.21 

 HN combined Additive solcap_snp_c2_25261 VII 47674858 0.24 6.14 0.76 

 HN combined13 2-dom-alt PotVar0009411 II 40336749 0.11 5.42 3.65 

 IBLN15 1-dom-ref solcap_snp_c2_50570 II 35399277 0.78 4.54 1.11 

 IBHN15 2-dom-alt PotVar0040353 VI 53752438 0.15 5.19 2.15 

 HN combined13 1-dom-ref solcap_snp_c2_5286 III 8564142 0.60 5.45 3.04 

 HN combined13 2-dom-ref PotVar0052570 XII 59793350 0.88 6.17 -3.22 

 Over combined Additive solcap_snp_c2_25261 VII 47674858 0.24 5.99 0.65 

TYPP KOHN15 2-dom-ref PotVar0121097 IV 12333285 0.35 5.27 402.84 

 KOLN15 1-dom-ref solcap_snp_c2_26796 IV 9524541 0.59 6.31 296.66 

 KOLN15 1-dom-ref PotVar0060022 XI 9377347 0.59 6.13 325.02 

 KOLN15 2-dom-ref PotVar0052374 XI 59957211 0.89 4.9 -284 

 LN combined15 2-dom-ref PotVar0102235 I 51293720 0.39 5.06 143.68 

 LN combined15 1-dom-ref solcap_snp_c2_26796 IV 9524541 0.59 5.65 188.47 

 LN combined15 General PotVar0060022 XI 9377347 0.59 5.75 NA 

UCC DTHN13 1-dom-ref solcap_snp_c2_12216 I 72051529 0.64 4.78 5.26 

 HN combined 2-dom-alt PotVar0011708 IX 2144492 0.25 5.09 2.42 

 HN combined13 2-dom-ref PotVar0011173 IX 57422879 0.85 5.8 4.54 

 IBHN13 Additive PotVar0127625 VI 55908088 0.06 5.51 -3.78 

Vmax DTLN13 1-dom-ref PotVar0089284 II 26584179 0.69 4.91 -9.9 

 IBLN13 Additive PotVar0048670 V 351772 0.78 5.43 -3.33 

DTHN13=Debre-Tabor high N 2013, DTLN13= Debre-Tabor low N 2013, IBHN13= Injibara high N 2013, IBLN13= Injibara low N 2013, HN combined13= high N combined  data across locations in 2013, LN 

combined13= low N combined data across locations in 2013, IBHN15= Injibara high N 2015, IBLN15= Injibara low N 2015, KOHN15= Koga high N 2015, KOLN15= Koga low N 2015, HN combined15= High N 

combined data across location  in 2015, LN combined15= Low N combined data across locations in 2015, HN combined= High N combined data across locations  and years , LN combined= Low N combined data 

across locations and years, Over combined= combined data across environments. AP2= Area for phase two, AP3 = Area for phase three, AUC = Area under the canopy curve, DTE = days to emergence,  DTM = days 

to maturity, NUE = nitrogen use efficiency, SNPP = Stem Number per plant, t1= time to reach maximum canopy cover, t2 = Onset of canopy senesced,  t2-t1= Duration for max canopy, TDM% = Tuber dry matter%, 

te = canopy complete senesced, te-t2= Duration for senescence,  tml = Inflection point,  TNPP = tuber number per plant, TYPP = tuber yield per plant, UCC= upper leaf chlorophyll, Vmax = Maximum canopy cover  
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 Chaptar 5:  Supplementary data 

Supplementary Table 1. List of potato cultivars with release year, origin and purpose 

Cultivar name Year Origion Purpose 

Adora 1990 NETH fresh consumption  

Agata 1990 NETH fresh consumption  

Agria 1985 GER Processing Industry 

Almera 1999 NETH fresh consumption  

Ambition 2007 NETH fresh consumption  

Annabelle 2001 NETH fresh consumption  

Arinda 1993 NETH fresh consumption  

 Arizona 2009 NETH fresh consumption  

Asterix 1991 NETH Processing Industry 

Bafana 2009 NETH fresh consumption  

Baraka 1971 NETH fresh consumption  

Bartina 1988 NETH fresh consumption  

Bellini 2001 NETH fresh consumption  

Berber 1984 NETH fresh consumption  

 Bintje 1910 NETH fresh consumption  

 Caesar 1990 NETH Processing Industry 

Canberra 2007 NETH General 

Carlita 1991 NETH General 

 Carrera 1999 NETH General 

 Challenger 2008 NETH Processing Industry 

 Charlotte 1981 FRA fresh consumption  

Cleopatra 1980 NETH General 

Colomba 2011 NETH fresh consumption  

 Compass 2011 NETH General 

Courage 1998 NETH Processing Industry 

 Crisp4all 2008 NETH Processing Industry 

Desiree 1962 NETH fresh consumption  

Evora 2011 NETH General 

Fabula 1997 NETH fresh consumption  

Faluka 2006 NETH fresh consumption  

 Felsina 1992 NETH Processing Industry 
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Cultivar name Year Origion Purpose 

Flamenco 2013 NETH General 

 Frisia 1988 NETH General 

Hansa 1957 GER fresh consumption  

Hermes 1973 AUT Processing Industry 

Innovator 1999 NETH Processing Industry 

 Ivory Russet 2011 NETH Processing Industry 

 Jaerla 1969 NETH fresh consumption  

 Jazzy 2010 NETH Processing Industry 

Kastelli 2011 NETH fresh consumption  

Kennebec 1948 USA ancient cultivar 

Kondor 1984 NETH fresh consumption  

Kuras 1996 NETH Starch industry 

Kuroda 1998 NETH fresh consumption  

 Lady Christl 1996 NETH fresh consumption  

 Lady Claire 1996 NETH Processing Industry 

 Lady Rosetta 1988 NETH Processing Industry 

Leonardo 1994 NETH Processing Industry 

 Liseta 1988 NETH fresh consumption  

Lucinda 2011 NETH General 

Marabel 1993 NETH fresh consumption  

 Marfona 1977 NETH fresh consumption  

 Marilyn 2006 NETH fresh consumption  

 Maris Piper 1963 GB Processing Industry 

 Markies 1997 NETH fresh consumption  

 Melody 2001 NETH General 

Memphis 2012 NETH General 

Monalisa 1982 NETH fresh consumption  

Mondial 1987 NETH fresh consumption  

Mozart 2003 NETH General 

 Navigator 2013 NETH Processing Industry 

 Nicola 1973 GER fresh consumption  

Orchestra 2007 NETH fresh consumption  

 Panther 2011 NETH General 
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Cultivar name Year Origion Purpose 

Picasso 1994 NETH fresh consumption  

Red Scarlett 1999 NETH fresh consumption  

Rodeo 1999 NETH General 

Ronaldo 2011 NETH General 

Sagitta 2006 NETH General 

Sifra 2008 NETH General 

 Spunta 1968 NETH fresh consumption  

Sylvana 2008 NETH General 

Taurus 2008 NETH Processing Industry 

Timate 1984 NETH fresh consumption  

 Triplo 2000 NETH Processing Industry 

Victoria 1997 NETH General 

Vivaldi 1998 NETH General 

Volumia 2004 NETH General 

Voyager 2003 NETH Processing Industry 

VR 808 2009 NETH Processing Industry 

 Zina Red 2013 NETH fresh consumption  

Year = year of release, AUT = Austria, CAN = Canada, GB = Great Brtain  , FRA = France, GER = Germnay, NETH = 

Netherlands, USA = United States of America 
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Supplementary Table 2. Mean TYPP (kg/ha) of 81 potato cultivars (G1to G81) tested across the test environments (E1 to E8)  

Code Cultivar E1 E2 E3 E4 E5 E6 E7 E8 Mean 

G1 Adora 0.34 0.49 0.22 0.46 0.25 0.30 0.41 1.38 0.5 

G2 Agata 0.18 0.28 0.10 0.28 0.30 0.38 0.65 0.62 0.4 

G3 Agria 0.30 0.42 0.22 0.43 0.37 0.44 0.67 0.58 0.4 

G4 Almera 0.28 0.38 0.18 0.37 0.37 0.46 0.72 1.25 0.5 

G5 Ambition 0.37 0.51 0.28 0.50 0.35 0.40 0.56 0.76 0.5 

G6 Annabelle 0.20 0.34 0.12 0.33 0.24 0.30 0.50 0.51 0.3 

G7 Arinda 0.32 0.45 0.24 0.45 0.35 0.41 0.61 0.76 0.5 

G8  Arizona 0.37 0.51 0.28 0.50 0.37 0.42 0.60 0.71 0.5 

G9 Asterix 0.36 0.53 0.27 0.52 0.28 0.31 0.42 0.69 0.4 

G10 Bafana 0.29 0.39 0.19 0.38 0.39 0.47 0.73 1.04 0.5 

G11 Baraka 0.29 0.44 0.21 0.43 0.29 0.34 0.51 0.58 0.4 

G12 Bartina 0.30 0.45 0.22 0.44 0.28 0.33 0.48 0.63 0.4 

G13 Bellini 0.29 0.44 0.20 0.43 0.26 0.31 0.46 0.73 0.4 

G14 Berber 0.23 0.37 0.13 0.36 0.21 0.27 0.43 0.94 0.4 

G15  Bintje 0.26 0.37 0.17 0.36 0.35 0.43 0.68 0.92 0.4 

G16  Caesar 0.34 0.46 0.22 0.43 0.35 0.42 0.61 1.58 0.6 

G17 Canberra 0.31 0.45 0.22 0.45 0.29 0.34 0.50 0.61 0.4 

G18 Carlita 0.31 0.44 0.21 0.43 0.32 0.39 0.58 0.85 0.4 

G19  Carrera 0.27 0.40 0.18 0.40 0.28 0.34 0.53 0.56 0.4 

G20  Challenger 0.32 0.46 0.24 0.46 0.32 0.37 0.55 0.54 0.4 

G21  Charlotte 0.32 0.45 0.24 0.45 0.36 0.42 0.63 0.61 0.4 

G22 Cleopatra 0.25 0.40 0.16 0.39 0.20 0.25 0.39 0.71 0.4 

G23 Colomba 0.33 0.46 0.24 0.46 0.35 0.41 0.61 0.70 0.4 

G24  Compass 0.35 0.49 0.27 0.49 0.37 0.43 0.62 0.67 0.5 

G25 Courage 0.28 0.43 0.20 0.43 0.26 0.30 0.46 0.57 0.4 

G26  Crisp4all 0.25 0.35 0.17 0.36 0.37 0.45 0.73 0.72 0.4 

G27 Desiree 0.37 0.49 0.25 0.47 0.37 0.45 0.63 1.56 0.6 

G28 Evora 0.35 0.48 0.28 0.48 0.41 0.47 0.68 0.53 0.5 

G29 Fabula 0.43 0.61 0.32 0.59 0.26 0.28 0.32 0.83 0.5 

G30 Faluka 0.40 0.52 0.30 0.50 0.44 0.51 0.73 1.14 0.6 

G31  Felsina 0.31 0.43 0.22 0.42 0.35 0.41 0.63 0.84 0.5 

G32 Flamenco 0.33 0.46 0.22 0.45 0.30 0.36 0.51 1.10 0.5 

G33  Frisia 0.22 0.31 0.13 0.31 0.36 0.45 0.74 0.80 0.4 

G34 Hansa 0.33 0.41 0.24 0.41 0.50 0.60 0.92 1.04 0.6 

G35 Hermes 0.29 0.34 0.20 0.35 0.55 0.67 1.06 1.20 0.6 

G36 Innovator 0.24 0.35 0.13 0.34 0.29 0.36 0.58 1.00 0.4 

G37  Ivory Russet 0.20 0.31 0.10 0.30 0.28 0.35 0.60 0.86 0.4 

G38  Jaerla 0.34 0.48 0.25 0.48 0.33 0.38 0.55 0.77 0.5 

G39  Jazzy 0.30 0.42 0.20 0.41 0.34 0.41 0.62 0.95 0.5 

G40 Kastelli 0.36 0.48 0.26 0.47 0.41 0.48 0.70 1.04 0.5 



196 

 

Code Cultivar E1 E2 E3 E4 E5 E6 E7 E8 Mean 

G41 Kennebec 0.35 0.46 0.25 0.45 0.43 0.51 0.76 1.00 0.5 

G42 Kondor 0.34 0.44 0.25 0.44 0.44 0.52 0.78 0.86 0.5 

G43 Kuras 0.33 0.47 0.24 0.46 0.32 0.38 0.54 0.82 0.5 

G44 Kuroda 0.34 0.47 0.25 0.46 0.37 0.43 0.63 0.88 0.5 

G45  Lady Christl 0.24 0.34 0.16 0.34 0.39 0.48 0.77 0.80 0.4 

G46  Lady Claire 0.24 0.34 0.16 0.35 0.38 0.46 0.76 0.68 0.4 

G47  Lady Rosetta 0.28 0.40 0.17 0.38 0.31 0.38 0.59 1.13 0.5 

G48 Leonardo 0.32 0.46 0.22 0.45 0.28 0.33 0.48 0.90 0.4 

G49  Liseta 0.31 0.46 0.22 0.45 0.29 0.34 0.49 0.60 0.4 

G50 Lucinda 0.36 0.50 0.26 0.49 0.32 0.37 0.51 0.92 0.5 

G51 Marabel 0.28 0.39 0.17 0.38 0.31 0.38 0.59 1.16 0.5 

G52  Marfona 0.28 0.39 0.18 0.38 0.33 0.40 0.62 1.07 0.5 

G53  Marilyn 0.35 0.46 0.23 0.44 0.38 0.45 0.66 1.46 0.6 

G54  Maris Piper 0.28 0.37 0.17 0.36 0.36 0.44 0.70 1.32 0.5 

G55  Markies 0.30 0.41 0.22 0.41 0.43 0.51 0.80 0.76 0.5 

G56  Melody 0.28 0.37 0.19 0.37 0.42 0.51 0.81 0.87 0.5 

G57 Memphis 0.39 0.52 0.29 0.51 0.40 0.46 0.64 1.02 0.5 

G58 Monalisa 0.30 0.43 0.21 0.42 0.34 0.40 0.61 0.80 0.4 

G59 Mondial 0.46 0.62 0.36 0.61 0.38 0.42 0.53 0.80 0.5 

G60 Mozart 0.36 0.47 0.27 0.47 0.45 0.53 0.78 0.76 0.5 

G62  Nicola 0.31 0.36 0.22 0.37 0.57 0.68 1.08 1.12 0.6 

G63 Orchestra 0.34 0.46 0.25 0.46 0.39 0.46 0.68 0.76 0.5 

G64  Panther 0.29 0.41 0.20 0.41 0.34 0.41 0.63 0.74 0.4 

G65 Picasso 0.42 0.54 0.33 0.54 0.48 0.55 0.78 0.87 0.6 

G66 Red Scarlett 0.33 0.47 0.23 0.46 0.32 0.37 0.54 0.84 0.4 

G67 Rodeo 0.34 0.48 0.24 0.46 0.33 0.39 0.56 1.07 0.5 

G68 Ronaldo 0.38 0.52 0.29 0.51 0.35 0.41 0.56 0.84 0.5 

G69 Sagitta 0.31 0.46 0.22 0.45 0.29 0.34 0.49 0.60 0.4 

G70 Sifra 0.34 0.48 0.26 0.48 0.34 0.39 0.57 0.67 0.4 

G71  Spunta 0.35 0.48 0.26 0.47 0.40 0.46 0.67 0.91 0.5 

G72 Sylvana 0.30 0.40 0.20 0.39 0.38 0.46 0.71 1.00 0.5 

G73 Taurus 0.28 0.41 0.19 0.40 0.29 0.35 0.54 0.78 0.4 

G74 Timate 0.32 0.44 0.23 0.43 0.39 0.46 0.70 0.92 0.5 

G75  Triplo 0.29 0.43 0.20 0.42 0.30 0.35 0.53 0.82 0.4 

G76 Victoria 0.29 0.40 0.19 0.39 0.35 0.42 0.65 0.99 0.5 

G77 Vivaldi 0.31 0.44 0.23 0.44 0.35 0.41 0.61 0.62 0.4 

G78 Volumia 0.35 0.50 0.25 0.49 0.29 0.34 0.47 0.91 0.5 

G79 Voyager 0.36 0.48 0.26 0.47 0.40 0.46 0.67 0.93 0.5 

G80 VR 808 0.20 0.27 0.11 0.27 0.40 0.50 0.84 1.18 0.5 

G81  Zina Red 0.33 0.42 0.23 0.42 0.44 0.53 0.80 1.00 0.5 

 Mean 0.31 0.44 0.22 0.43 0.35 0.42 0.63 0.89  

Code = Genotype code,  E1= Debre-Tabor low N Rainfed, E2= Debre-Tabor high N Rainfed, E3= Injbara low N Rainfed, E4=Injbara high N 

Rainfed, E5=Injbara low N irrigation, E6= Injbara high N irrigation, E7= Koga low N irrigation, E8=Koga high N irrigation  



197 

 

 

Supplementary Table 3. Mean NUE (kg/kg) of 81 potato cultivars (G1to G81) tested across the test 

environments within the two mega environments, rainfed (E1 to E4) and irrigation mega  environment (E5 to 

E8)  

 
 Rainfed mega  environment    Irrigation mega environment   

Code Cultivars E1 E2 E3 E4 mean E5 E6 E7 E8 mean 

G1 Adora 43.63 8.66 38.75 21.18 28.06 21.12 4.88 56.73 47.11 32.5 

G2 Agata 29.7 8.52 23.07 10.72 18.00 18.42 12.13 143.26 52.94 56.7 

G3 Agria 28.36 11.72 40.95 15.71 24.19 84.23 31.18 165.45 40.13 80.3 

G4 Almera 23.3 8.73 35.85 14.27 20.54 35.74 16.15 141.23 75.49 67.2 

G5 Ambition 43.12 17.68 44.34 15.39 30.13 39.14 15.32 91.52 53.65 49.9 

G6 Annabelle 23.31 8.16 31.69 15.35 19.63 29.8 13.68 82.57 31.91 39.5 

G7 Arinda 58.64 18.41 38.6 19.66 33.83 35.34 12.58 134.94 46.14 57.3 

G8  Arizona 28.35 16.01 35.92 12.7 23.25 54.8 13.31 113.86 41.83 56.0 

G9 Asterix 57.8 27.37 68.49 22.84 44.13 20.57 9.84 86.07 35.03 37.9 

G10 Bafana 46.92 12.96 35.96 18.36 28.55 48.48 22.09 102.49 63.01 59.0 

G11 Baraka 66.23 16.62 47.05 20.97 37.72 20.1 7.27 72.65 39.56 34.9 

G12 Bartina 31.83 13.17 45.56 14.48 26.26 15.19 9.34 55.69 38.47 29.7 

G13 Bellini 24.24 17.4 58.08 14.89 28.65 25.9 12.05 92.14 37.96 42.0 

G14 Berber 20.44 8.8 36.48 11.67 19.35 15.21 7.58 79.87 66.8 42.4 

G15  Bintje 41.07 16.46 39.74 22.32 29.90 39.17 11.47 113.67 63.96 57.1 

G16  Caesar 45.83 20.48 52.57 22.07 35.24 23.64 13.6 94.49 31.14 40.7 

G17 Canberra 26.09 16.21 32.97 19.14 23.60 24.04 5.05 66.29 33.97 32.3 

G18 Carlita 31.32 11.58 69.57 16.71 32.30 28.29 7.87 65.4 66.8 42.1 

G19  Carrera 17.03 10.17 34.5 16.18 19.47 35.53 12.7 69.78 34.95 38.2 

G20  Challenger 43.13 14.45 47.49 24.22 32.32 31.91 12.41 82.25 44.77 42.8 

G21  Charlotte 41.42 13.42 54.81 19.65 32.33 52.71 20.43 127.55 38.05 59.7 

G22 Cleopatra 32.93 10.69 40.61 21.93 26.54 33.86 7.54 60.47 23.23 31.3 

G23 Colomba 26.3 10.72 50.93 16.73 26.17 17.87 10.79 164.95 49.35 60.7 

G24  Compass 54.61 18.84 46.32 23.41 35.80 38.9 10.77 97.84 41.56 47.3 

G25 Courage 44.41 20.65 55.15 25.06 36.32 29.44 9 94.58 29.66 40.7 

G26  Crisp4all 40.21 13.07 30.14 22.57 26.50 32.42 13.64 97.13 41.32 46.1 

G27 Desiree 45.51 23.34 53.45 22.02 36.08 29.23 13.24 112.19 48.95 50.9 

G28 Evora 26.96 13.94 41.76 18.04 25.18 22.28 8.75 111.38 39.63 45.5 

G29 Fabula 31.94 15.09 39.76 21.48 27.07 26.96 9.25 61.45 57.84 38.9 

G30 Faluka 29.76 10.33 28.1 18.53 21.68 51.22 16.76 123.5 90.23 70.4 

G31  Felsina 32.58 14.6 48.25 25.76 30.30 58.84 19.12 100.04 48.15 56.5 

G32 Flamenco 25.62 12.82 42.29 18.58 24.83 31.89 16.79 50.37 29.9 32.2 

G33  Frisia 35.01 9.63 46.97 21.65 28.32 33.48 6.52 100.75 54.79 48.9 

G34 Hansa 32.76 24.62 36.23 21.3 28.73 45.34 28.77 109.82 63.56 61.9 

G35 Hermes 42.97 16.21 43.1 16.11 29.60 53.76 25.33 145.12 75.19 74.9 

G36 Innovator 32.53 9.28 46.61 23.05 27.87 30.29 10.87 87.69 52.1 45.2 

G37  Ivory Russet 32.93 10.9 20.24 14.24 19.58 46.61 16.52 114.75 50.72 57.2 

G38  Jaerla 45.04 13.95 37.94 17.59 28.63 74.14 22.99 71.02 48.1 54.1 

G39  Jazzy 49.72 13.94 21.16 15.75 25.14 64.19 24.12 116.31 63.38 67.0 
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 Rainfed mega  environment    Irrigation mega environment   

Code Cultivars E1 E2 E3 E4 mean E5 E6 E7 E8 mean 

G40 Kastelli 34.94 12.44 44.59 21.85 28.46 43.77 18.21 140.23 71.4 68.4 

G41 Kennebec 31.64 18.92 41.38 25.88 29.46 55.6 16.37 88.91 64.98 56.5 

G42 Kondor 38.93 15.52 32.3 19.34 26.52 56.22 16.9 96.67 62.13 58.0 

G43 Kuras 70.17 28.27 67.02 33.31 49.69 40.58 18.19 66.74 48.31 43.5 

G44 Kuroda 38.97 18.28 41.93 20.52 29.93 48.76 19.4 140.5 58.61 66.8 

G45  Lady Christl 18.68 16.18 39.19 13.16 21.80 34.12 16.87 144.89 45.65 60.4 

G46  Lady Claire 43.13 15.25 47.07 24.81 32.57 53.93 18.79 139.39 44.15 64.1 

G47  Lady Rosetta 56.37 24.91 37.2 23.22 35.43 46.95 13.12 140.48 71.29 68.0 

G48 Leonardo 39.81 10.79 43.49 17.09 27.80 38.33 13.41 94.65 47.65 48.5 

G49  Liseta 26.42 17.19 37.2 16.08 24.22 37.34 12.02 54.63 36.83 35.2 

G50 Lucinda 22.06 10.77 32.34 16.45 20.41 54.39 16.09 73.12 32.73 44.1 

G51 Marabel 39.24 10.5 22.6 15.78 22.03 19.53 6.83 119.65 70.76 54.2 

G52  Marfona 27.27 9 26.68 11.22 18.54 48.7 27.99 113.48 45.62 59.0 

G53  Marilyn 34.62 18.87 51.25 19.79 31.13 40.97 14.87 138.03 89.02 70.7 

G54  Maris Piper 54.77 13.33 34.39 12.26 28.69 38.1 13.46 98.18 57.61 51.8 

G55  Markies 53.28 14.32 45.98 20.18 33.44 53.54 24.24 124.18 51.05 63.3 

G56  Melody 27.95 14.06 30.66 21.99 23.67 43.27 19.03 116.59 54.19 58.3 

G57 Memphis 21.76 14.16 32.93 16.6 21.36 54.66 17.87 124.4 73.02 67.5 

G58 Monalisa 34.46 9.71 26.29 15.29 21.44 47.37 20.92 96.81 57.59 55.7 

G59 Mondial 54.59 18.9 52.09 23.28 37.22 69.86 14.67 84.7 43.68 53.2 

G60 Mozart 29.59 15.02 31.53 18.3 23.61 52.59 10.35 105.07 46.35 53.6 

G61  Navigator 39.74 16.07 48.85 20.46 31.28 49.6 16.54 92.2 34.48 48.2 

G62  Nicola 44.43 13.72 43.84 20.74 30.68 76.82 26.54 114.91 35.07 63.3 

G63 Orchestra 25.67 9.69 35.72 25.56 24.16 76.29 23.83 102.9 43.13 61.5 

G64  Panther 30.2 9.59 34.07 16.91 22.69 36.99 15.71 104.18 51.41 52.1 

G65 Picasso 40.66 19.6 38.65 23.35 30.57 39.02 21.19 123.14 48.67 58.0 

G66 Red Scarlett 24.9 11.67 32.42 18.62 21.90 40.29 16.72 116.38 71.05 61.1 

G67 Rodeo 30.25 16.58 42.97 30.24 30.01 32.75 15.04 66.14 40.76 38.7 

G68 Ronaldo 26.97 13.62 20.36 18.21 19.79 28.59 12.65 110.22 66.28 54.4 

G69 Sagitta 35.36 17.34 55.49 19.15 31.84 36.46 10.22 63.17 37.8 36.9 

G70 Sifra 34.6 14.4 42.47 12.88 26.09 43.23 18.5 82.44 47.66       48.0 

G71  Spunta 32.49 19.22 35.75 20.52 27.00 44.77 26.2 84.89 76.9 58.2 

G72 Sylvana 32.05 10.61 31.81 16.65 22.78 57.39 12.03 134.21 72.01 68.9 

G73 Taurus 46.57 16.17 48.91 19.12 32.69 37.48 17.03 93.89 43.26 47.9 

G74 Timate 43.96 17.36 51.56 17.54 32.61 45.19 16.34 117.91 53.23 58.2 

G75  Triplo 30.8 9.76 44.97 21.59 26.78 47.07 15.25 70.01 46.55 44.7 

G76 Victoria 37.06 11.44 30.88 18.24 24.41 51 19.55 102.02 77.44 62.5 

G77 Vivaldi 34.39 12.22 38.42 14.65 24.92 30.75 19.57 70.29 36.34 39.2 

G78 Volumia 40.41 7.42 37.5 17.23 25.64 38.96 19.58 76.69 40.29 43.9 

G79 Voyager 53.57 18.01 38.96 17.49 32.01 51.95 18.46 105.58 61.67 59.4 

G80 VR 808 36.05 14.69 41.12 22.98 28.71 27.96 14.78 100.43 48.44 47.9 

G81  Zina Red 49.64 17.34 41.49 21.93 32.60 47.13 19.14 116.36 43.55 56.6 

Mean 
 

37.06 14.60 40.69 19.17 27.88 41.21 15.63 101.32 51.11 52.3 

Code = genotype code, E1= Debre-Tabor low N Rainfed, E2= Debre-Tabor high N Rainfed, E3= Injbara low N Rainfed, E4=Injbara high N 

Rainfed, E5=Injbara low N irrigation, E6= Injbara high N irrigation, E7= Koga low N irrigation, E8=Koga high N irrigation  
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Supplementary Table 4.  Numerical values for the genotypes based on the mean vs instability view of the GGE 

biplot for NUE of potato cultivars in rainfed mega environment (Figure 5).  

Code Genotypes Mean Instability Rank on closeness  

to ideal genotype 

Distance to  

ideal genotype 

 

G43 Kuras 3.022 0.066 1 1.1 

G9 Asterix 2.1 -0.047 2 1.8 

G25 Courage 1.219 -0.206 3 2.5 

G27 Desiree 1.172 -0.031 4 2.5 

G59 Mondial 1.169 0.127 5 2.5 

G47 Lady Rosetta 1.178 0.612 6 2.6 

G24 Compass 1.031 0.26 7 2.6 

G16 Caesar 0.999 -0.046 8 2.7 

G11 Baraka 1.04 0.545 9 2.7 

G46 Lady Claire 0.67 -0.12 10 2.9 

G67 Rodeo 0.677 -0.437 11 2.9 

G7 Arinda 0.683 0.617 12 2.9 

G81 Zina Red 0.625 0.264 13 2.9 

G65 Picasso 0.565 0.116 14 3 

G20 Challenger 0.6 -0.129 15 3 

G34 Hansa 0.488 0.103 16 3 

G41 Kennebec 0.541 -0.233 17 3 

G55 Markies 0.543 0.24 18 3 

G73 Taurus 0.505 0.06 19 3 

G74 Timate 0.484 -0.013 20 3.1 

G53 Marilyn 0.485 -0.259 21 3.1 

G69 Sagitta 0.481 -0.35 22 3.1 

G61 Navigator 0.423 -0.135 23 3.1 

G31 Felsina 0.48 -0.434 24 3.1 

G79 Voyage 0.424 0.528 25 3.1 

G44 Kuroda 0.363 0.041 26 3.1 

G15 Bintje 0.361 0.077 27 3.1 

G21 Charlotte 0.41 -0.257 28 3.1 

G62 Nicola 0.289 0.056 29 3.2 

G80 VR 808 0.221 -0.118 30 3.2 

G5 Ambition 0.176 0.191 31 3.3 

G71 Spunta 0.117 0.045 32 3.3 

G35 Hermes 0.101 0.178 33 3.3 

G18 Carlita 0.265 -0.811 34 3.4 

G40 Kastelli 0.087 -0.236 35 3.4 

G29 Fabula 0.027 -0.146 36 3.4 

G13 Bellini 0.041 -0.584 37 3.4 

G38 Jaerla -0.018 0.284 38 3.4 

G10 Bafana -0.035 0.344 39 3.5 

G33 Frisia -0.024 -0.327 40 3.5 

G26 Crisp4all -0.072 0.227 41 3.5 

G36 Innovator -0.025 -0.415 42 3.5 
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Code Genotypes Mean Instability Rank on closeness  

to ideal genotype 

Distance to  

ideal genotype 
 

G42 Kondor -0.102 0.253 43 3.5 

G1 Adora -0.115 0.071 44 3.5 

G22 Cleopatra -0.152 -0.218 45 3.6 

G75 Triplo -0.165 -0.379 46 3.6 

G48 Leonardo -0.209 -0.01 47 3.6 

G56 Melody -0.316 -0.054 48 3.6 

G28 Evora -0.307 -0.254 49 3.7 

G17 Canberra -0.35 -0.058 50 3.7 

G63 Orchestra -0.276 -0.374 51 3.7 

G54 Maris Piper -0.24 0.713 52 3.7 

G49 Liseta -0.366 -0.067 53 3.7 

G12 Bartina -0.36 -0.158 54 3.7 

G32 Flamenco -0.356 -0.328 55 3.7 

G70 Sifra -0.4 0.036 56 3.7 

G60 Mozart -0.424 0.061 57 3.7 

G23 Colomba -0.357 -0.506 58 3.7 

G76 Victoria -0.477 0.206 59 3.8 

G77 Vivaldi -0.522 0.055 60 3.8 

G39 Jazzy -0.438 0.834 61 3.8 

G78 Volumia -0.526 0.093 62 3.8 

G3 Agria -0.561 -0.182 63 3.8 

G8 Arizona -0.623 0.068 64 3.9 

G66 Red Scarlett -0.679 -0.13 65 3.9 

G57 Memphis -0.717 -0.136 66 3.9 

G45 Lady Christl -0.724 -0.251 67 4 

G72 Sylvana -0.71 0.086 68 4 

G64 Panther -0.738 -0.034 69 4 

G30 Faluka -0.756 0.072 70 4 

G68 Ronaldo -0.844 0.243 71 4 

G51 Marabel -0.833 0.495 72 4.1 

G50 Lucinda -0.926 -0.162 73 4.1 

G58 Monalisa -0.924 0.291 74 4.1 

G19 Carrera -1.037 -0.337 75 4.2 

G4 Almera -1.057 -0.196 76 4.2 

G37 Ivory Russet -1.103 0.438 77 4.2 

G6 Annabelle -1.127 -0.13 78 4.3 

G14 Berber -1.258 -0.221 79 4.4 

G52 Marfona -1.361 0.189 80 4.4 

G2 Agata -1.452 0.337 81 4.5 

Code = genotype code  
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Supplementary table 5.  Numerical values for the genotypes based on the mean vs instability view of the GGE biplot for NUE 

of potato cultivars in rainfed mega environment in Figure 6. 

Code  Genotypes Mean Instability Rank on closeness 

 to ideal genotype 

Distance to ideal 

 genotype 

G35 Hermes 1.465 0.16 1 1.6 

G3 Agria 1.824 -1.013 2 1.6 

G39 Jazzy 1.118 -0.324 3 1.9 

G30 Faluka 1.103 0.646 4 2 

G34 Hansa 0.945 -0.239 5 2 

G57 Memphis 0.921 0.25 6 2.1 

G40 Kastelli 0.87 0.456 7 2.1 

G44 Kuroda 0.788 0.111 8 2.1 

G71 Spunta 0.822 -0.037 9 2.2 

G55 Markies 0.801 -0.352 10 2.2 

G76 Victoria 0.802 0.203 11 2.2 

G53 Marilyn 0.959 0.919 12 2.2 

G72 Sylvana 0.783 0.445 13 2.2 

G47 Lady Rosetta 0.699 0.583 14 2.3 

G52 Marfona 0.691 -0.567 15 2.3 

G4 Almera 0.722 0.724 16 2.3 

G10 Bafana 0.626 -0.106 17 2.3 

G46 Lady Claire 0.588 -0.213 18 2.3 

G62 Nicola 0.936 -1.113 19 2.3 

G63 Orchestra 0.836 -0.932 20 2.3 

G79 Voyager 0.53 -0.04 21 2.4 

G66 Red Scarlett 0.517 0.421 22 2.4 

G42 Kondor 0.459 -0.089 23 2.4 

G21 Charlotte 0.425 -0.426 24 2.5 

G65 Picasso 0.368 -0.083 25 2.5 

G56 Melody 0.38 -0.007 26 2.5 

G58 Monalisa 0.409 -0.179 27 2.5 

G41 Kennebec 0.403 -0.053 28 2.5 

G31 Felsina 0.391 -0.439 29 2.5 

G74 Timate 0.29 0.047 30 2.6 

G45 Lady Christl 0.243 0.202 31 2.6 

G38 Jaerla 0.553 -0.957 32 2.6 
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Code  Genotypes Mean Instability Rank on closeness 

 to ideal genotype 

Distance to ideal 

 genotype 

G81 Zina Red 0.264 -0.262 33 2.6 

G37 Ivory Russet 0.249 -0.043 34 2.6 

G8 Arizona 0.084 -0.22 35 2.7 

G15 Bintje 0.118 0.474 36 2.7 

G59 Mondial 0.163 -0.614 37 2.8 

G7 Arinda -0.009 0.285 38 2.8 

G64 Panther -0.037 0.081 39 2.8 

G68 Ronaldo -0.001 0.612 40 2.9 

G54 Maris Piper -0.065 0.221 41 2.9 

G60 Mozart -0.087 -0.052 42 2.9 

G5 Ambition -0.096 0.034 43 2.9 

G23 Colomba -0.052 0.826 44 2.9 

G70 Sifra -0.074 -0.294 45 2.9 

G2 Agata -0.122 0.718 46 2.9 

G73 Taurus -0.207 -0.176 47 3 

G27 Desiree -0.246 0.278 48 3 

G61 Navigator -0.19 -0.506 49 3 

G48 Leonardo -0.269 0.019 50 3 

G80 VR 808 -0.318 0.171 51 3.1 

G43 Kuras -0.267 -0.319 52 3.1 

G78 Volumia -0.28 -0.434 53 3.1 

G75 Triplo -0.286 -0.327 54 3.1 

G26 Crisp4all -0.446 -0.003 55 3.2 

G24 Compass -0.452 0.008 56 3.2 

G51 Marabel -0.248 1.077 57 3.2 

G50 Lucinda -0.335 -0.697 58 3.2 

G33 Frisia -0.476 0.49 59 3.2 

G36 Innovator -0.505 0.267 60 3.2 

G77 Vivaldi -0.548 -0.419 61 3.3 

G20 Challenger -0.587 0.028 62 3.3 

G67 Rodeo -0.676 -0.236 63 3.4 

G18 Carlita -0.624 0.544 64 3.4 

G13 Bellini -0.732 0.059 65 3.4 

G28 Evora -0.732 0.361 66 3.4 
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Code  Genotypes Mean Instability Rank on closeness 

 to ideal genotype 

Distance to ideal 

 genotype 

G16 Caesar -0.798 -0.072 67 3.4 

G6 Evora -0.787 -0.217 68 3.5 

G19 Carrera -0.798 -0.282 69 3.5 

G29 Fabula -0.778 0.332 70 3.5 

G14 Berber -0.726 0.825 71 3.5 

G25 Courage -0.927 -0.026 72 3.6 

G69 Sagitta -0.904 -0.195 73 3.6 

G49 Liseta -0.906 -0.334 74 3.6 

G9 Asterix -1.027 0.127 75 3.6 

G32 Flamenco -0.947 -0.567 76 3.7 

G11 Baraka -1.195 0.23 77 3.8 

G1 Adora -1.3 0.347 78 3.9 

G22 Cleopatra -1.344 -0.344 79 3.9 

G12 Bartina -1.363 0.119 80 4 

G17 Canberra -1.381 0.112 81 4 

Code = genotype code 
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Summary 

Nitrogen use efficiency (NUE) improvement in agricultural crops basically has two main 

goals; economic gain and N pollution reduction. However, breeding for NUE is not an easy 

task, as NUE is a complex trait. Dissecting the complexity of such quantitative traits into 

component loci and identify the genetic factors that influence quantitative traits will 

significantly increase the success of breeding for NUE.  

Potato is the most important non-grain food crop in the world; however it is poor in nutrient 

use efficiency. As a first step towards understanding the genetic basis for NUE and NUE-

related agronomic and physiological traits in potato, we make use of the CxE experimental 

population and commercial potato (Ethiopian and European) cultivars. Our experimental 

population was extensively evaluated under low and high Nitrogen conditions at two locations 

(Debre-Tabor and Injibara) in 2013, and the data collected from these experiments were used 

for a diversity study. The analysis of variance revealed that, the effect of N level on most 

traits was significant at each location. Low N availability caused a significant (P ≤ 0.01) 

reduction (23% in Debre-Tabor and 40% in Injibara) in potato maximum canopy cover. The 

area under the canopy curve for the entire crop growth cycle (AUC), representing the total 

light intercepted by a cultivar during the growth cycle, was significantly ((P ≤ 0.01) affected 

(28% reduction at Debre-Tabor and 37% at Injibara) by low N availability. Similarly, the 

reduction due to N shortage was significant for tuber yield and yield related traits at both 

locations. The tuber yield was reduced by 30% in Debre-Tabor and 48% in Injibara. Of the 

two tuber yield components, tuber number was reduced by 16% in Debre-Tabor and 38% in 

Injibara, while average tuber weight was reduced by 17% in Debre-tabor and 16% in Injibara. 

This higher tuber yield and tuber number reduction at Injibara may be related to the low pH 

(acidic property) of the soil. 

The variation among cultivars was significant for all traits at both locations. In potato, genetic 

variation of NUE is largely explained by maturity type. Based on the maturity data collected 

in our experiment, we have classified our cultivars into an early, intermediate and late 

maturity group. The variation between the late maturity group and the intermediate and early 

maturity group was visible for most traits (including tuber yield, tuber dry matter % and area 

under the canopy curve) under low and high N conditions in Debre-Tabor. The late maturity 

group cultivars had higher values of area under the canopy curve as well as tuber yield at both 

N levels in Debre-Tabor. In Injibara however, the variation among these maturity groups was 



205 

 

lower, and even negligible for tuber yield per plant (TYPP) at both N levels, even the late 

maturity group had higher values for AUC compared to the early and intermediate maturity 

group. Most Dutch cultivars were classified in the early and intermediate maturity group 

while most Ethiopian cultivars clustered in the late maturity group at both locations, 

suggesting that maturity is the main factor for the variation between the Ethiopian and the 

Dutch cultivars.  Our results suggest   irrespective of the locations and N levels that some of 

the late maturing  potato cultivars, such as Kuras and Asterix from Europe, and most 

Ethiopian varieties showed relatively a better NUE performance compared to the other 

European cultivars indicating the persistent inherent potential of the cultivars for NUE at both 

low and high N conditions.  

For the genetic diversity study, clustering was carried out based on the generalized D
2
 

distances by average linkage method of hierarchical clustering called Unweighted Pair Group 

Methods with Arithmetic-average (UPGMA). Genetic distance within and between clusters 

was calculated using the generalized Mahalanobis's D
2
 statistics. These enable us to visualize 

genetic relationships of cultivar phenotypes at low and high N conditions across locations. 

Subsequently, the 97 cultivars were clustered into 9 and 11 genetically distinct classes at low 

and high N respectively. Most of the cultivars grouped in a single cluster (cluster I) at both N 

levels; 87% at low N and 65% at high N. The Ethiopian cultivars Ater-Ababa, Awash and 

Gudenie were included in the largest cluster (cluster-I) at low N level, the rest were Dutch 

cultivars. Most Dutch cultivars were clustered in cluster-I, while the Ethiopian cultivars were 

distinctly grouped in cluster-IV and V at low N and in cluster-IV, VI and VII at high N level, 

suggesting the presence of significant genetic distance between the European and the 

Ethiopian potato cultivars. The highest inter-cluster genetic distance was observed between 

two single cultivars, Zengena and Orchestra, with a genetic distance of 296.14 at low N, and 

between cluster-V and a single cultivar, Agerie with a genetic distance of 520.06 at high N. 

Days to maturity, plant height, area under the canopy curve, tuber yield and NUE were the 

traits that contributed most to the difference between the European and the Ethiopian set of 

cultivars at both N levels. In general, we found most contrasting cluster means with 

significant inter cluster genetic distance at both low and high N level for our targeted traits 

such as days to maturity, NUE, tuber yield and area under the canopy curve, which indicates 

the presence of wider genetic variation in our population and suggesting the possibility to use 

cultivars in different clusters as parents for hybridization at the respective N levels.  
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We classified the observed variation in the potato cultivars into heritable and non-heritable 

components, and values for broad sense heritability (H
2
), coefficient of phenotypic variation 

(PCV) and genotypic variation (GCV), and genetic advance as percent of mean (GA%) 

obtained under low and high N level. Heritability varied over treatments and locations 

between 0.33 and 0.95, as an example NUE has high heritability
 
values in Debre-Tabor at low 

and high N levels (0.80 and 0.72 respectively), but only 0.4 at both N levels in Injibara, 

indicating the contribution of the environment to the total NUE variation was high in Injibara 

compared to Debre-Tabor.  The results revealed that estimates of phenotypic coefficient of 

variation were quite close to the estimates of genotypic coefficient of variation for most 

measured traits over treatments at each location, indicating negligible environmental effect on 

the variance of traits.  

We identified the association of agronomic and physiological traits with NUE using person 

correlation and path coefficient analysis, and important traits that contribute to the indirect 

selection of N use efficient cultivars. Consequently, strong phenotypic correlations were 

detected between NUE and tuber number per plant, days to maturity, tuber dry matter %, 

maximum canopy cover (Vmax) and area under the canopy curve (AUC) under both low and 

high N conditions. Some traits which have strong correlation with NUE did not have a strong 

direct effect on NUE, however they had a strong indirect effect via the other traits. As an 

example, the correlation coefficient value between NUE and area under the canopy curve was 

high (0.6 and 0.8) under low and high N condition respectively. However, area under the 

canopy curve (AUC) had a negligible direct effect on NUE, while its high indirect effect was 

via tuber dry matter % and tuber number, counterbalanced the negligible direct effect on the 

observed variation of NUE.  Overall, the path coefficient analysis revealed that, the largest 

direct contributions to the variation observed in NUE under low and high N condition was via 

tuber dry matter % and tuber number. In general we propose that, potato cultivars can be 

exploited for NUE improvement through improving and pyramiding of component traits at 

both low and high N levels. 

The C x E bi-parental diploid population was evaluated for NUE in 2014 at Koga under 

irrigation, and Injibara and Debre-Tabor, under rain fed production systems. The data were 

used for QTL mapping, and QTL analysis was performed using Interval mapping. 

Subsequently, Multiple QTL Mapping (MQM) was performed with cofactors selected as the 

markers nearest to the QTLs detected by interval mapping. For this analysis 534 SNP, SSR 

and AFLP markers with a total genetic map distance of 1326cM were employed, equivalent to 
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an average distance between markers of 2.5cM, assuming that the markers are evenly 

distributed.  

The NUE evaluation of the C x E population at field conditions under rain fed and irrigation 

production systems comprised traits, such as chlorophyll content, days to maturity, maximum 

canopy cover (Vmax), area under the canopy curve (AUC), tuber number, tuber yield, and 

NUE. Significant genetic variation was observed for most traits considered in this study under 

both low and high N conditions. The genetic variation and heritability estimates were medium 

to high for most measured traits under both N conditions. A total of 52 putative QTLs were 

identified for the ten traits distributed in 13 QTL regions on seven linkage groups, of which 

28 QTLs were detected under low N while 24 QTLs were detected under high N condition. 

The QTLs for area under the canopy curve, plant height, maximum canopy cover (Vmax), 

days to maturity, tuber number, tuber yield and NUE were co-localized on linkage group-V in 

the 21 to 38cM region. This co-localization of QTLs of different traits in the same 

chromosomal region suggests the existence of genetic and functional relationship between 

traits. Of the identified QTLs in this study, 11 repeatable QTLs that contained 29 individual 

QTLs were generated under low or high N specific condition or under both N conditions, at 

least over two experimental locations. The occurrence of these N level and location specific 

QTLs revealed the presence of QTL x environment interaction (QEI), reflected by the 

differential expression of genes at different N environments. Among the QTL regions, 

chromosome V harboured QTLs for multiple traits under low and or high N conditions. The 

region may be enriched with key Nitrogen metabolism genes, however the presence of the 

CDF1 (or earliness) gene in the region may be the main hurdle to use the QTLs on this 

linkage group for NUE improvement in potato. To that end uncoupling of the earliness gene 

with QTLs for NUE improvement would have to be achieved.  

Commercial potato cultivars evaluated under rain fed production system in 2013 were once 

more evaluated under irrigation production system in 2015, and the data were used for 

association mapping. The association panel was genotyped using SNP array markers. 

Genome-wide association mapping study (GWAS) was deployed to identify markers 

associated with NUE and NUE related agronomic and physiological traits under low and high 

N environments. The over-location combined analysis of variance revealed that the variation 

due to N levels, genotypes and locations were highly significant for almost all of the traits 

measured. Various genotypes reacted differently to varying locations as indicated by the 

highly significant (P≤0.01and 0.001) interaction effect of genotype (G) x location (L) on most 
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physiological and agronomic traits including NUE, while interaction of genotype(G) x N level 

(N) was not significant for most traits compared to the interaction of Genotype x Location. 

The estimates of genotypic variance (σ
2
g) were low compared to estimates of environmental 

variance (σ
2
e) and Genotype x Environment interaction variance (σ

2
ge) for all measured traits 

in both N levels, suggesting the presence of high Genotype x Environment interaction. 

Consequently, due to the noise of the environment most traits had low to medium estimates of 

broad sense heritability (H
2
) under both N levels. In particular, the genotype-by-location 

interaction, which includes production season, had larger contributions to the total genotype-

by-environment interaction than the genotype-by-N level interaction, indicating a significant 

effect of experimental locations as well as production seasons on the performance of potato 

cultivars. 

A total of 77 marker- trait associations (MTAs) were detected under both low and high N 

conditions.  Different gene models were deployed to identify the marker trait associations, 

and most of the MTAs were identified using dominant genetic models. Similar as in linkage 

mapping, the disturbing effect of CDF1 locus on NUE and NUE related traits was observed. 

Environment dependent and independent QTLs or MTAs were identified in our panel 

population, indicating the presence of genotype by environment interaction and effect of 

growing conditions on the expression of various sets of genes or QTLs.  

We compared the QTL positions in the segregating backcross population (identified using 

linkage analysis) and the cultivar set (using genome wide association analysis, GWAS). Most 

QTLs did not co-localize between the two populations, however the SNP marker 

PotVar0026355 on chromosome V positioned at 4335324bp associated with NUE in the 

cultivar set, and the PotSNP573 marker positioned at 507660bp which was associated with 

NUE and the SSR marker Mando located at 4.67Mb which was associated with days to 

maturity in the backcross population are some of the QTLs which co-localized in the same 

genomic region on chromosome V. The co-localization of these QTLs in both a biparental 

and an association mapping population validates the detected QTLs. AUC on chromosome III 

and TNPP and AP2 on chromosome VI co-located with QTLs for NUE. These two genomic 

regions may be useful for NUE improvement in potato other than chromosome V, and these 

are independent of maturity type. 

Trait-specific constitutive QTLs (QTLs for one specific trait observed in more than one 

environment) were detected for various NUE related traits in different environments. 

Constitutive QTLs for TYPP with peak markers solcap_snp_c2_26796 on chromosome IV 
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and marker PotVar0060022 on chromosome XI were observed in two low N level 

environments under irrigation production system, indicating the QTLs may be low N as well 

as irrigation season dependent. This suggests the presence of QTL x environment interaction. 

However, the overall identified number of QTLs difference between low and high N level is 

lower than the QTL number difference between the two production seasons, suggesting QTL 

x N level interaction was lower than the QTL x production season interaction, in line with the 

stronger contribution of production system to the total genotype x environment interaction 

compared to N levels, as already discussed. To identify QTLs, various gene models were used 

in different association studies. In this study, we use additive, simplex and duplex dominance 

as well as general models, and most of the MTAs (including MTAs identified for NUE, AUC, 

TNPP, and TYPP) were detected using dominant genetic models. This indicates that the 

source of heritable variation for the identified MTAs is mostly due to dominant gene action or 

due to the interaction of alleles at a single locus, and that dominant gene effects are important 

in controlling potato NUE and NUE related traits. Overall our result demonstrated that the 

effect of production season was greater than the effect of N levels on NUE and NUE related 

traits under our experimental conditions. 

The commercial potato cultivars evaluated in 2013 and 2015 were once again used for G x E 

interaction analysis. The study was conducted at three different locations in North-western 

Ethiopia: at Injibara and  Debre-Tabor, under rain fed production conditions, and at Koga and 

Injibara in the dry season under irrigation at low and high N conditions. Each location 

combined with the production condition/season and N-levels was considered as a separate 

target environment making a total of eight test environments for this study. NUE was used as 

a target trait to evaluate the suitability of the test environments and the superiority of the 

cultivars in each environment in the G x E interaction study. Considering N level as part of 

environment and NUE as a target trait helps for exploiting genetic and environmental 

resources efficiently and identify ideal test environments and superior genotypes for NUE 

improvement at low and high N levels in rain fed and irrigation production systems. Data 

were subjected to analysis of variance using Genstat 18.1 statistical software, and the G x E 

interaction was analysed using the genotype, and the genotype and environment (GGE) biplot 

model by GGE software. 

The pooled analysis of variance over environments revealed that potato NUE is significantly 

(P<0.001) affected by the environment (E), genotype (G) and genotype-by-environment 

interaction (GE). The environment accounted for 79.6% of the total sum of square (SS) of (G 
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+E+GE) variation which is the largest share of the variations. The genotype and genotype-by-

environment interaction respectively accounted for only 4.1% and 16.3% of the total sum of 

square variation. The significant effect of the G x E interaction in the combined analysis of 

variance suggested that the genotypes had variable performance in the tested environments.  

In the GGE analysis, the percentage of GGE explained by PC1 and PC2 were 31.38% and 

25.83% respectively, and the biplot explained 57.2% of the total SS variation relative to G 

and GE using environment standardized model.  Although, multi-year data is required to use 

G x E interaction results, we found valuable information which suggests that an independent 

potato varietal selection program is required for each production system in north-western 

Ethiopia. The GGE analysis delimited the test environments into two mega-environments 

helpful in targeted evaluation of genotypes for NUE improvement. Regardless of the locations 

and N levels, the two mega-environments are rain fed mega-environment and irrigation mega-

environment. Testing environments were also identified within the mega-environment for 

proper selection of genotypes based on the basis of their representativeness and discriminating 

ability. Consequently, the high N level environments (E2 and E4) at both Debre-Tabor and 

Injibara were the most suitable environments in discriminating the potato cultivars and being 

representative test environments for NUE evaluation in rain fed mega-environments. 

Conversely, low N environment at Koga (E7) was the most suitable environment in 

discriminating the genotypes and as a representative of the irrigation mega-environment.  

We identified three promising cultivars, Kuras, Asterix and Desiree in the basis of superior 

mean performance and stability across the test environments of  rain fed mega-environment, 

and  cultivars Hermes and Kuroda were identified as promising cultivars in the irrigation 

mega-environment. Characterization of potato germplasm for N use efficiency involves field 

evaluation for tuber yield and other NUE related traits under low and high N conditions. This 

thesis delivers an initial evidence of field screening potato for NUE improvement and 

identified important traits and their QTLs that help for the indirect selection in potato 

breeding for NUE. The QTLs identified in this thesis are potential interesting targets for 

potato breeding to improve NUE of the potato crop. Moreover, delineation of the test 

environments into two mega-environments proved to be helpful in targeted evaluation of 

genotypes for NUE improvement. 
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