


Propositions 

 

1. Traditional pastoral practices to manage resource variability and uncertainty in African 

savannas are maladaptive in the modern era because of increased disease transmission 

risks.  

(this thesis) 

 

2. Bovine Tuberculosis (bTB) infection rate is negatively correlated with mammalian species 

evenness. 

(this thesis) 

 

3. The progress in science and technology during the twentieth century is not accompanied 

by a progress in morality.  

 

4. The negative correlation between economic development and environmental concerns in 

developing countries is evidence of poor national policy. 

 

5. The availability of medical information on the internet is a health threat. 

 

6. Extrapolation of scientific findings without considering the social and cultural practices of 

society is like gathering cow dung where no cow has been.  
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Chapter 1 

General Introduction 

Forty percent of sub-Saharan Africa is arid or semiarid rangeland, home to an estimated 80 

million rural pastoralists (Notenbaert et al., 2009). Pastoralists livelihood depends mainly on the 

raising of domestic animals including cattle, camels, goats, sheep, and donkeys. Livestock plays 

multiple roles in the lifestyle of pastoralists, notably as livelihood sources and socio-cultural 

functions, and asset and security against risks (Guliye et al., 2007). The pastoralist systems 

evolved with practices such as livestock herd mobility, varying herd sizes and livestock exchange 

as adaptive mechanisms for managing resource variability and uncertainty (Alerstam et al., 2003; 

Manzano-Baena and Casas, 2010; Oteros-Rozas et al., 2013). Despite the acknowledged adaptive 

advantages of mobility, large herd sizes and livestock exchanges, these practices were recently 

shown to be a critical risk factor for transmission of zoonotic diseases due to higher chances of 

coming in contact with infected animals (Inangolet et al., 2008; Munyeme et al., 2008; Katale et 

al., 2013). 

In the last half century, zoonotic diseases received significant attention because of the increase in 

Emerging of Infectious Diseases (EIDs) in humans, and wildlife and domestic species 

(Cleaveland et al., 2001). Zoonotic diseases are an important cause of concern for public health, 

veterinary services, livestock productions, and conservationists (Cleaveland et al., 2001). It has 

been estimated that infectious diseases are the most important threat to human health, 

responsible for one-quarter of worldwide mortality (WHO, 1999). For instance, over the last 

decades, about 20,000–30,000 cases of Lyme disease have been reported annually in USA and the 

average annual numbers of cases in Europe and Asia have been estimated at 65,467 and 3,450, 

respectively (Levy, 2013). It has been estimated that the  introduced rinderpest virus rapidly 

reduced the ungulates in African savanna to 20% of their original abundance (Prins and van der 

Jeugd, 1993; Hudson et al., 2006). The outbreak of ebola hemorrhagic fever has been considered 

as a big threat to African ape populations (Nunn et al., 2008). Infectious zoonotic diseases also 

cause severe economic losses in the livestock industry (Thompson et al., 2002). For instance, the 

economic loss of bovine brucellosis in Argentina has been estimated at US$60 million per year 

(Samartino, 2002). Although the epidemiology of human diseases are relatively well-studied 

(Riley, 2007), the eco-epidemiology of animal diseases within the wildlife-livestock interface are 

largely unknown in Africa.  
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Disease at the wildlife-livestock-human interface 

There is a growing recognition of the importance of multi-species interaction for the emergence 

and re-emergence of pathogens in wildlife, livestock and humans (Cleaveland et al., 2001; Daszak 

et al., 2001; Chomel, 2007). With two-thirds of human diseases being multi-host pathogens 

(Cleaveland et al., 2001; Taylor et al., 2001) and three-quarter of emerging human diseases being 

zoonotic (Taylor et al., 2001), there is a strong public health interest in better understanding the 

dynamics of multi-species pathogens (Daszak et al., 2000). For instance, the emergence of Severe 

Acute Respiratory Syndrome (SARS) coronavirus, Hendra virus, hantavirus pulmonary 

syndrome, Lyme disease and Ebola hemorrhagic fever are some of the most recent examples 

illustrating the risk of pathogen transmission at the wildlife-livestock-human interface (Mathews, 

2009). A large proportion (77%) of domestic animal pathogens infect multiple hosts, including 

wildlife species (Cleaveland et al., 2001; Jones et al., 2008). The importance of wildlife as a source 

of avian influenza, foot and mouth disease (FMD), rift valley fever, malignant catarrhal fever, 

bovine tuberculosis and Nipah virus for domestic animal species is well documented (Alexander 

2000; Worthington and Bigalke, 2001; Vosloo et al., 2002; Epstein et al., 2006). In other cases, 

the spill-over of domestic animal pathogens to wildlife caused severe outbreaks with great 

concerns for conservation, such as pasteurellosis and Sierra Nevada outbreak in Bighorn sheep 

(George et al., 2008; Clifford et al., 2009), rabies in Ethiopian wolves (Randall et al., 2006), and 

bovine brucellosis and tuberculosis in bison (Tessaro et al., 1990). Therefore, diseases that arise 

from the livestock–wildlife interface are of paramount importance and must be an area of focus 

for animal and human health authorities (Siembieda et al., 2011). Improving our understanding of 

the biological and anthropogenic processes that promote contact between hosts is critical for 

limiting pathogen transmission at this interface. As a consequence, a new approach to the studies 

on complex multi-host and multi-pathogen systems are needed to better understand the 

transmission of the diseases and from there develop appropriate disease control strategies.  

Bovine tuberculosis 

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is an important zoonotic disease 

affecting many mammal species and human health (de Vos et al., 2001; Skuce et al., 2012). The 

World Health Organisation (WHO, 2012) identified bTB as one of the eight worldwide neglected 

zoonoses needing urgent attention, especially in developing countries. Although control 

programmes have eliminated or nearly eliminated this disease from domestic animals in most 

developed countries, bTB is still widespread in Great Britain, Ireland, New Zealand and many 

developing countries, especially in Africa (Renwick et al., 2007; Shitaye et al., 2007; Humblet et 



Chapter 1 

3 

 

al., 2009). bTB in animals has been reported from 33 of 43 African countries. Nevertheless, 

published information indicate that bTB is probably widespread in cattle at the continental level 

(Ayele et al., 2004; Boukary et al., 2011), whereas the status and risk factors associated with 

transmission of bTB in multi-host communities have only been documented in few countries in 

Africa (Renwick et al., 2007; de Garine-Wichatitsky et al., 2013). 

Host species for M. bovis 

Cattle are considered to be the main hosts for M. bovis, but other domesticated and wild 

mammals can also be infected. Goats, sheep (Paling et al., 1988), camels (Mamo et al., 2011), 

dogs (Gay et al., 2000) and cats (Wilesmith et al., 1994) are also susceptible to an infection with 

M. bovis, but no transmission from these to other animals has been reported so far. Wildlife hosts 

are classified as either maintenance hosts or spill-over hosts or dead-end hosts (Huang et al., 

2013; Barron et al., 2015). The brushtail possum (Trichosurus vulpecula; Coleman et al., 1999), 

European badger (Meles meles; Delahay et al., 2001), bison (Bison bison; Rhyan and  Spraker, 2010), 

African buffalo (Syncerus caffer; de Vos et al., 2001), Kafue lechwe (Kobus leche; Munyeme et al., 

2008), greater kudu (Tragelaphus strepsiceros; Keet et al., 2001), and white-tailed deer (Odocoileus 

virginianus; Quigley et al., 1997), are already identified maintenance hosts for bTB, however, some 

authors now believe these species may only be spillover hosts that maintains the pathogen only 

when their population densities are high (Raghvendra et al., 2010). However, lions (Panthera leo), 

leopards (P. pardus), cheetahs (Acinonyx jubatus) and other carnivore species do not appear to be 

able to maintain infection in the absence of an infected maintenance host in the system (Renwick 

et al., 2007). 

Transmission of bTB 

The transmission of bTB between animals is mainly aerogenic, close contact between animals 

either via aerosol contamination or sharing of feed between infected and non-infected animals 

are major risk factors for transmission of bTB (Cleaveland et al., 2001; Menzies and Neill, 2000; 

Ameni et al., 2007). Ameni et al. (2007) indicated that the severity of bTB prevalence was 

significantly greater in cattle kept indoors together with different livestock species at a higher 

population density than in cattle kept alone on pastures, as close contact facilitates the 

transmission of infective aerosols between animals (Ameni et al., 2007). The disease can be 

transmitted by indirect contact between animals when cattle graze on grass that is contaminated 

by infected animal faeces, urine or wound discharges (Johnston et al., 2005). 
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Economic impact of bTB 

Bovine tuberculosis (bTB) poses an important economic burden to society, linked with losses of 

productivity of infected animals (e.g. reduced milk yields, meat production and fertility), 

international trade of animals and animal products restrictions, control and eradication programs, 

and human health costs (Cosivi et al., 1998; Ayele et al., 2004). Studies found that bTB infection 

in cattle was associated with a 18% decrease in milk production in Bangladesh (Rahman and 

Samad, 2008) and 4% in USA (Hermandez and Baca, 1998). A study in Ireland also reported a 

significant difference in milk yield between bTB positive and negative cattle (Boland et al., 2010). 

In Tanzania a study found a TB reactor cattle provide less milk production than the non-reactor 

(DFID, 1999). The economic impact of bTB to the agriculture and health sector in Turkey has 

been estimated between 15-59 million US$ per year (Barwinek and Taylor, 1996). In UK and 

Ireland, the disease still has a major economic impact, approximately £100 million is spent 

annually in efforts to control the disease (Matthews et al., 2006). The WHO estimated total TB 

control costs in Ethiopia at US$14.2 million per year (WHO, 2004). In most developed countries, 

the disease has almost been eradicated after the implementation of preventive and control 

measures, such as testing, culling or pasteurisation of milk (Humblet et al., 2009). Nevertheless, 

bTB remains a problem in some countries with a well-developed veterinary control system (e.g., 

UK, Ireland, New Zealand, USA; Kaneene et al., 2002; Humblet et al., 2009), and in most 

developing countries, where surveillance and control activities are often inadequate or unavailable 

(Cosivi et al., 1998; Ayele et al., 2004; Renwick et al., 2007). 

Risk factors for transmission of bTB 

In Africa, the evidence suggests that bTB has a wide distribution with a high prevalence in both 

domestic (Figure 1.1a) and wild animals (Figure 1.1b; de Garine-Wichatitsky et al., 2013). The 

disease is endemic in sub-Saharan African cattle (de Garine-Wichatitsky et al., 2013). In multi-

species grazing systems, the transmission of pathogens is influenced by a large number of 

interacting factors, related to the pathogen and host characteristics, the ecology and behaviour of 

hosts, livestock management and land-use. 

Host movement have been repeatedly identified as one of the major risk factor for bTB 

transmission. Gilbert et al. (2005) showed that movement of animals was a critical risk factor for 

transmission of bTB. This specific factor has a major impact if animals are moved from an 

endemic zone to a bTB free one (Gilbert et al., 2005). In Tanzania, a high prevalence of bTB was 

reported in pastoral cattle with high numbers of cattle kept under extensive husbandry practice 
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(Kazwala et al., 2001), whereas in Uganda, the prevalence was higher in agro-pastoral than in 

pastoral production systems, probably because of the closer contact between cattle and the more 

humid conditions in agro-pastoral systems (Faye et al., 2005). When cattle herds move more, the 

probability of sharing water holes and grazing areas with other infected animals increases, and the 

probability of close contact between infected animals also increases. Inhalation of M. bovis is the 

principal route to bovine infection and is facilitated by direct and indirect contact between 

infected and healthy animals. Ingestion of M. bovis directly from contaminated pasture or water is 

a risk factor for transmission of the disease through contamination of the local environment 

(Kaneene et al., 2002). In pastoral areas of Africa, the grazing strategy relies on the movement of 

livestock to follow grazing and water resources over considerable distances following seasonal 

changes, which would increase the likelihood of both direct and indirect transmission of bTB. 

 

Figure 1.1. Distribution map of bTB in Africa during 1996–2011 (large grey lines indicate the 

African sub-regions as referred to in the text: West, Central, East and Southern Africa). (a) Cattle 

status at country level; (b) wildlife status at country level. Asterisk (*) indicates countries (i.e. 

Botswana, Ethiopia, Kenya, Zimbabwe) where suspected and confirmed wildlife bTB cases have 

been detected (de Garine-Wichatitsky et al., 2013). 

Studies identified herd size as one of the major bTB risk factors (Griffin et al., 1996; Cleaveland 

et al., 2001; Munyeme et al., 2008). In East Africa, pastoralists keep multiple species, mainly 

cattle, sheep, goats, camels and donkeys, often in large herd sizes. Large herd sizes are common 

as a kind of “bank account” adaptation to uncertainty in rainfall, disease, and raid losses (Mace 

and Houston, 1989). The more animal there are on a farm, the greater the probability that one of 

them will acquire the infection (Humblet et al., 2009). Large herds generally graze on a larger 

area, with a higher probability to have more contiguous herds, thus increasing the risk of disease 

spread. 
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Introduction of an infected animal (exchange and purchase of animals) in a bTB free herd or area 

is one of the major risk factors for introducing the disease, as suggested by studies carried out in 

the UK, Michigan, Italy, Tanzania and Ethiopia (Marangon et al., 1998; Johnston et al., 2005; 

Gopal et al., 2006; Dejene et al., 2017a). Munroe et al. (1999) showed that either purchased 

animals from positive farms or possible contact with positive animals are large risk factors for 

bTB transmission (Munroe et al., 1999). Exchange of livestock within and between clans is a 

common practice in pastoral areas of east Africa to spread risk and build supportive relationships 

(Getachew, 2001; Davies and Bennet, 2007; Moritz et al., 2011). This relationship also allows 

pastoral nomads to share commonalities for economic relief in times of stress, and is also used 

for intermigration, conflict solving, hospitality and other purposes. Intermarriage within and 

between clans is common in pastoral areas of east Africa. The traditional marriage ceremony 

involves giving livestock to the family of the bride. However, these livestock exchanges may 

increase the risks of introduction of bTB.  

Increasing evidence suggests that wildlife maintenance hosts play an important role in 

transmission bTB to other animals (Humblet et al., 2009; O’Brien et al., 2011; de Garine-

Wichatitsky et al., 2013). Badgers (M. meles) in the UK and Ireland (Griffin et al., 1996; Denny 

and Wilesmith, 1996; Andrew et al., 2014), possum (T. vulpecula) in New Zealand (Julian, 1981; 

Jackson et al., 1995; Ryan et al., 2006; Nugent et al., 2015), white-tailed deer (O. virginianus) in 

USA and Canada (Fitzgerald and Kaneene, 2012), buffalo (S. caffer), kudu (T. strepsiceros) and 

lechwe (K. leche) in Africa (de Vos et al., 2001; Keet et al., 2001; Michel et al., 2006; Munyeme et 

al., 2008; de Garine-Wichatitsky et al., 2013) have been implicated in the transmission of M. bovis 

to cattle. In contrast, in British farmlands Mathews et al. (2006) found that badgers (M. meles) was 

relatively inefficient in transmitting bTB to cattle (Matthews et al., 2006). Study conducted in bTB 

free countries, Germany and Denmark, also showed  that wildlife represents a negligible 

probability of infection for domestic cattle (Moser et al., 2011; Foddai et al., 2015). Mackintosh et 

al. (2004) indicated that the direction for transmission of bTB infection from cattle, badger and 

deer is not yet known. So, their role in spreading of bTB to cattle is still highly debated. In east 

Africa, wildlife species share resources with pastoralist livestock (Prins, 2000), and this may 

influence the prevalence of bTB in cattle by having direct or indirect contact (i.e., ingestion of 

contaminated pastures) with cattle.  

Africa is recognized as a hotspot for biodiversity, but is suffering from rapid and extensive loss of 

that diversity (Myer et al., 2000; Gorenflo et al., 2012; Di Marco et al., 2014). Current theories on 

diversity-disease relationships describe host species diversity as important factor influencing 
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disease risk, either diluting or amplifying disease prevalence in a community. The dilution effect 

predicts that species diversity decreases pathogen prevalence through mechanisms such as 

decreased host density, reduced encounters between hosts, or reduced host survival (Keesing et 

al., 2006; Huang et al., 2013; Johnson et al., 2013). In contrast, the amplification effect predicts 

increased pathogen prevalence with greater species diversity, through increased encounters 

between hosts, or through the presence of secondary hosts (LoGiudice et al., 2003; Keesing et al., 

2006). Despite the fact that the dilution effect occurs far more frequently than the amplification 

effect, our knowledge of which specific systems conform to the dilution effect and the 

mechanisms underlying the effects of diversity, is incomplete (Ostfeld and Keesing, 2012; 

Randolph and Dobson, 2012; Huang et al., 2013; Ostfeld, 2013; Johnson et al., 2013; Miller and 

Huppert, 2013; Huang et al., 2014; Hofmeester et al., 2016). Moreover, most studies that examine 

the diversity–disease relationship focus principally on species richness as a measure of 

biodiversity (Keesing et al., 2006). In fact, biodiversity can be measured in many different ways, 

as species richness, species evenness, or a combination of richness and evenness (Magurran, 

1988; Tucker and Cadotte, 2013). Thus, despite many studies of the relationship between 

diversity and diseases, evaluating the effects of different diversity metrics on disease risk has 

proven to be rare (Chen and Zhou, 2015). Thus, these different metrics of diversity may have 

different predictive powers for predicting disease risk in the target population. 

Changes in land use and associated ecosystem change have been described as one of the casual 

driver in the current emerging and re-emerging of infectious diseases. Land use can be the result 

of the introduction of invasive species, could potentially influence bTB prevalence through direct 

effects on the host community composition, host densities and host contact networks. For 

instance, invasive plant species may increase the risk of infection to tick-borne diseases by 

increasing the density as well as the rate of encounter rate between ticks and their vertebrate 

hosts (Allan et al., 2010; Williams and Ward, 2010). Similarly, land use changes as a result of plant 

species invasions can increase the risk of mosquito-borne diseases by providing favourable 

habitat for vector species (Conley et al., 2011), and providing high-quality nutritional fruits and 

leaves for mosquito larvae (Reiskind and Zarrabi, 2011). Thus, introduction of invasive plant 

species has been associated with a number of ecological complications, resulting in reductions of 

species diversity (Chu et al., 2003; Turner et al., 2003), and this may increase the prevalence and 

transmission of bTB, as non-competent mammalian hosts at higher levels of biodiversity may 

dilute pathogen transmission (Huang et al., 2013; Huang et al., 2014; Dejene et al., 2017b).  
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Most eco-epidemiological studies on bTB were conducted in developed countries, where control 

and/or eradication programmes have been implemented since a long time as well as with 

intensive farming practices. Disease transmission and risk factors associated with host and their 

ecological interactions may vary in space and time, and in relation to management interventions. 

Contacts between animals, and the rate of biodiversity loss and land use change differ 

substantially among developed and developing countries, and the ecological setting is completely 

different. Most ecological studies that analysed the role of host-pathogen systems have largely 

focused on a single host species (Renwick et al., 2007; de Garine-Wichatitsky et al., 2013), but 

more efforts are needed to improve our understanding of the mechanisms underlying the 

prevalence of diseases, like in bTB that infect multiple species of hosts in multi-host communities 

from pastoral livestock production context where interactions between different livestock species 

and with wild animal hosts are very common. Therefore, the aim of this PhD project is to 

quantify the role of ecological and societal factors that determine the prevalence of bTB in cattle 

under the influence of wildlife-livestock interactions. 

Outline of the Thesis 

Bovine tuberculosis (bTB) infection is generally correlated with individual cattle’s age, sex, body 

condition, and with husbandry practices such as herd composition, herd movement, herd size, 

production system and proximity to wildlife - including bTB maintenance hosts. In chapter two, I 

test the correlation between those factors and the prevalence of bTB in Ethiopian cattle in a 

pastoral area where cattle and wildlife species share grazing lands and water sources, and 

quantified the direct and indirect relationships between risk factors using a structural equation 

model.  

Current theories on diversity-disease relationships describe host species diversity and species 

identity as important factors influencing disease risk, either diluting or amplifying disease 

prevalence in a community. Whereas the simple term ‘diversity’ embodies a set of animal 

community characteristics, it is not clear how different measures of species diversity are 

correlated with disease risk. In chapter three, I therefore test the effects of species richness, 

Pielou’s evenness and Shannon’s diversity of wild herbivores on bTB risk in cattle. I also extend 

the analyses and included the study of an identity effect of greater kudu and the effect of host 

habitat use overlap between wildlife maintenance host (greater kudu) and cattle on bTB risk. 

Changes in land use and associated ecosystem changes have been described as one of the casual 

driver in the current emerging and re-emerging of infectious diseases. In chapter four, I test the 
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relation between land use cover - including the invasive woody plant species Prosopis juliflora - and 

bTB prevalence in cattle and examined the potential underlying mechanisms by which ecological 

consequences of land use cover changes, such as an invading woody species, alters the risk of 

bTB infection. 

In East Africa, pastoralists may receive or bestow livestock to create and strengthen social 

relationships. In chapter five, I use network analyses to examine the relative importance of cattle 

transfer action on bTB infection. 

Finally, chapter 6 reviews the key finding of previous chapters and ties them together in a 

discussion to predict changes in pathogen transmission and provide alternative and new insights 

with regard to interventions and disease control measures. 

Description of the study area 

The study was carried out in Awash National Park and in the neighbouring Afar Region, 

Ethiopia. Study sites were selected based on a gradient of wildlife-livestock interactions, livestock 

production systems, concentrations of livestock and wildlife, and the presence of common 

grazing and water resources. In the southern tip of the region, most of the grazing land and 

watering points are shared by livestock and wild animals from the Awash National Park (Figure 

1.2). It is very common to observe livestock grazing in close proximity to wild animals in the 

study area, but wildlife-livestock co-grazing is less frequently observed when moving away from 

the park to the north of the study area. 

 

Figure 1.2. Map of the study area, the Afar Region in Ethiopia (small inset) and 17 districts (larger 

map). The location of Awash National Park in the South is indicated by the cross-hatched area. 
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Awash National Park (ANP) is located in the Ethiopian Rift valley (between 39° 20’ to 40° 65’E 

longitude and 8° 50 to 9° 50’N latitude, 960 to 1050 m above sea level) with a semi-arid savanna 

vegetation grazing areas. The long rainy season is from July to September and the short rainy 

season is from February to April. The long dry period is from October to January and the short 

dry period is from May to June (EMA, 2013). Livestock grazing, crop production and settlement 

construction inside Awash National Park have become common practice in the area. Two thirds 

of the area demarcated as the Awash National Park is inhabited and utilized by local people for 

grazing of livestock in the presence of wildlife species (Franks et al., 2003), such greater kudu 

(Tragelaphus strepsiceros), which are known wildlife hosts of M. bovis (Keet et al., 2001). 

The Afar region is located in the north-eastern part of Ethiopia (between 39° 34’ to 42° 28’E 

longitude and 8° 49’ to 14° 30’N latitude; Figure 1.2) and covers about 70,000 km2 (CSA, 2008). 

It is characterized by an arid and semi-arid climate with low and erratic rainfall. Rainfall is 

bimodal throughout the region, with a mean annual rainfall of 500 mm in the semi-arid western 

escarpments, decreasing to 150 mm in the arid zones to the east. The minimum and maximum 

annual temperature of the area is 20°C and 40°C, respectively (EMA, 2013). The altitude ranges 

from 120 m below sea level in the Danakil depression to 1500 m above sea level. It has an 

estimated population of 1.5 million of which 90% are pastoralists and 10% are agro-pastoralists 

(CSA, 2008). Afar communities traditionally keep herds of cattle, sheep, goats and camels. There 

are about 1.9 million cattle in the Afar region, of which 90% are managed under a pastoral 

production system (ANRS, 2009). Afar pastoralists form a highly traditional society that has 

received less development attention than many comparable societies in Africa where traditional 

practices and institutions remain strong. In Afar society the clan is the most important political 

and social unit. A clan is formed by an extended group of families, and serves as a nucleus for 

administration and cooperation to conduct social activities among clan members. The clan is also 

the lowest social unit which can hold communal property rights over land and other natural 

resources. 
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Chapter 2 

Risk factors for bovine tuberculosis (bTB) in cattle in Ethiopia 

 

Sintayehu W. Dejene, Ignas M.A. Heitkönig, Herbert H.T. Prins, Fitsum A. Lemma, Daniel A. Mekonnen, 

Zelalem E. Alemu, Tessema Z. Kelkay and Willem F. de Boer 

Modified from PLoS One, 2016, 11(7): e0159083 

 

Bovine tuberculosis (bTB) infection is generally correlated with individual cattle’s age, sex, body 

condition, and with husbandry practices such as herd composition, cattle movement, herd size, 

production system and proximity to wildlife - including bTB maintenance hosts. We tested the 

correlation between those factors and the prevalence of bTB, which is endemic in Ethiopia’s 

highland cattle, in the Afar Region and Awash National Park between November 2013 and April 

2015. A total of 2550 cattle from 102 herds were tested for bTB presence using the comparative 

intradermal tuberculin test (CITT). Data on herd structure, herd movement, management and 

production system, livestock transfer, and contact with wildlife were collected using semi-

structured interviews with cattle herders and herd owners. The individual overall prevalence of 

cattle bTB was 5.5%, with a herd prevalence of 46%. Generalized Linear Mixed Models with a 

random herd-effect were used to analyse risk factors of cattle reactors within each herd. The 

older the age of the cattle and the lower the body condition the higher the chance of a positive 

bTB test result, but sex, lactation status and reproductive status were not correlated with bTB 

status. At herd level, Generalized Linear Models showed that pastoral production systems with 

transhumant herds had a higher bTB prevalence than sedentary herds. A model averaging 

analysis identified herd size, contact with wildlife, and the interaction of herd size and contact 

with wildlife as significant risk factors for bTB prevalence in cattle. A subsequent Structural 

Equation Model showed that the probability of contact with wildlife was influenced by herd size, 

through herd movement. Larger herds moved more and grazed in larger areas, hence the 

probability of grazing in an area with wildlife and contact with either infected cattle or infected 

wildlife hosts increased, enhancing the chances for bTB infection. Therefore, future bTB control 

strategies in cattle in pastoral areas should consider herd size and movement as important risk 

factors. 
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Introduction 

Bovine tuberculosis (bTB) caused by Mycobacterium bovis is a zoonotic disease, and remains a cause 

of concern for livestock, wildlife and human health (Cosivi et al., 1998; Humblet et al., 2009; 

Huang et al., 2013). Cattle serve as the main host for M. bovis worldwide (de Lisle et al., 2002; 

Tschopp et al., 2010; Gumi et al., 2011), while other domestic animals such as pigs, cats, dogs, 

horses and sheep are considered to be spill-over hosts. The transmission of bTB between animals 

is mainly aerogenic, and close contact between animals or sharing of feed between infected and 

non-infected animals are major risk factors for transmission of bTB (Cleaveland et al., 2001; 

Menzies and Neill, 2000; Ameni et al., 2007). Ingestion of M. bovis from contaminated pasture or 

water is also a risk factor for transmission of the disease (Kaneene et al., 2002). 

Bovine tuberculosis (bTB) outbreaks can trigger large economic costs to society since it can 

affect international trade of animals and animal products, create productivity losses (e.g., reduced 

milk yields and meat production, reduced fertility), call for expensive animal market restriction 

measures, trigger large control and eradication programs, and increase human health costs (Cosivi 

et al., 1998; Ayele et al., 2004). Studies found that bTB infection in cattle was associated with a 

18% decrease in milk production in Bangladesh (Rahman and Samad, 2008) and 4% in USA 

(Hermandez and Baca, 1998). A study in Ireland also reported a significant difference in milk 

yield between bTB positive and negative cattle (Boland et al., 2010). In developed countries, it is 

controlled through a test-and-slaughter policy. Nevertheless, bTB remains a problem in some 

countries with a well-developed veterinary control system (e.g., UK, Ireland, New Zealand, USA; 

Kaneene et al., 2002; Humblet et al., 2009), and in most developing countries, where surveillance 

and control activities are often inadequate or unavailable (Cosivi et al., 1998; Ayele et al., 2004; 

Renwick et al., 2007). 

In Africa, the evidence suggests that bTB has a wide distribution with a high prevalence in both 

domestic and wild animals. The disease is endemic in sub-Saharan African cattle (de Garine-

Wichatitsky et al., 2013). Strikingly, risk factors for bTB transmission are not well known in most 

developing countries, as most studies were conducted in developed countries where farming 

practices are more intensive and control and/or eradication programmes have been implemented 

since decades. In Africa, most comprehensive epidemiological studies have been done in Zambia 

(Cook et al., 1996; Munyeme et al., 2008; Munyeme et al., 2009; Munyeme et al., 2010), Tanzania 

(Kazwala et al., 2001; Mfinanga et al., 2004; Cleaveland et al., 2007; Bugwesa et al., 2013) and 

Uganda (Oloya et al., 2007). These studies have identified various risk factors for bTB 
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transmission at different levels. At individual animal level, the prevalence of tuberculosis-like 

lesions increased with age and decreased with increasing body condition (Caron et al., 2003; 

Ameni et al., 2007; Cleaveland et al., 2007). At herd level, herd size and movement have been 

identified as risk factors increasing bTB transmission. In Tanzania, a high prevalence of bTB was 

reported in pastoral cattle with high numbers of cattle kept under intensive husbandry practice 

(Kazwala et al., 2001), whereas in Uganda, the prevalence was higher in agro-pastoral than in 

pastoral production systems, probably because of the closer contact between cattle and the more 

humid conditions in agro-pastoral systems (Faye et al., 2005). Introduction of infected animals 

into the herd could also increase bTB transmission (Humblet et al., 2009). Considering the 

introduced animals, Reilly and Courtenay (2007) demonstrated that the risk of bTB spread can be 

reduced by introduction of animals from a non-endemic area, minimising the number of animals 

introduced, and introducing more calves and yearlings than adults. In East Africa, pastoralists 

keep multiple species, mainly cattle, sheep, goats, camels and donkeys, often in large herd sizes. 

The grazing strategy in the area relies on the movement of livestock to follow grazing and water 

resources over considerable distances following seasonal changes. Most studies focusing on risk 

factors associated with pathogens that infect multiple host species involved single species and 

neglected the effect of multiple hosts (Renwick et al., 2007; de Garine-Wichatitsky et al., 2013). It 

is therefore necessary to explore the relation between pastoral livestock production system with 

transmission of bTB in a multiple host community.  

Previous studies have been carried out to investigate the roles that wildlife species play on the 

dynamics of bTB transmission (Corner, 2006; Renwick et al., 2007). Wildlife hosts are classified 

as either spill-over hosts or maintenance hosts (Humblet et al., 2009). Spill-over hosts can be 

infected by bTB, and do not transmit the pathogen to other animals efficiently (Corner, 2006; 

Renwick et al., 2007; Huang et al., 2013). Increasing evidence suggests that wildlife maintenance 

hosts play an important role in transmission bTB to other animals (O’Brien et al., 2011; de 

Garine-Wichatitsky et al., 2013), however, some authors now believe they may be a spill-over 

host that maintains the organism only when its population density is high (Raghvendra et al., 

2010). So, their role in spreading of bTB to cattle is still highly debated. In East Africa, humans 

encroach into wildlife habitats with their livestock in search of grazing areas and water, 

particularly during the dry season. Wildlife species that share resources with pastoralist livestock 

(Prins, 2000; Sitters et al., 2009) may influence the prevalence of bTB in cattle by having direct or 

indirect contact (i.e., ingestion of contaminated pastures) with cattle. More studies are required to 

better understand the effects of interactions between ecological and animal management risk 

factors in multi-host communities.  
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Most studies focusing on ecological risk factors associated with pathogens that infect multiple 

host species tend to concentrate on industrialized countries, whereas the epidemiology of bTB in 

the developing world, especially in Africa, remains largely unknown (Humblet et al., 2009). 

Moreover, livestock production systems and contacts between livestock and wildlife also differ 

substantially between developed and developing countries (Keet et al., 2001). bTB has been 

shown to be endemic in cattle from Ethiopia (Ameni et al., 2003; Asseged et al., 2004; Teklul et 

al., 2004).  Given the complexity of factors affecting bTB at the individual and herd level, a study 

is required that quantifies the effects of multiple independent variables in a single analysis, 

distinguishing among the direct and indirect effects. This study therefore aimed to test which risk 

factors were associated with bTB prevalence in Ethiopian cattle in a pastoral area where cattle 

and wildlife species share grazing lands and water sources, and quantified the direct and indirect 

relationships between risk factors using a structural equation model. 

Materials and Methods 

Study Area 

The study was carried out in Awash National Park and in the neighbouring Afar Region, Ethiopia 

(Figure 1.2). Study sites were selected based on a gradient of wildlife-livestock interactions, 

livestock production systems, concentrations of livestock and wildlife, and the presence of 

common grazing and water resources. In the southern tip of the region, most of the grazing land 

and watering points are shared by livestock and wild animals from the Awash National Park. It is 

very common to observe livestock grazing in close proximity to wild animals in the study area, 

but wildlife-livestock co-grazing is less frequently observed when moving away from the park to 

the north of the study area. 

Livestock production systems 

In the Afar region two types of pastoralism are recognized: resident or agro-pastoralists, in which 

animals are grazed within village perimeters without migration in search of pasture, while 

transhumance is the most common grazing system in the region, which involves the seasonal 

movements of livestock to follow suitable grazing and water resources over considerable 

distances in the dry season, coming back to the villages in the rainy season (Kassa et al., 2005). In 

the wet season, animals are kraaled at night, and in most cases herds owned by two to five close 

relatives or clan members are joined. The animals are released in the morning and the herds graze 

separately during the day in rangelands around the homesteads. In the dry season, some herds 

remain sedentary, whereas transhumant herds often migrate together, sharing grazing areas and 
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watering sources along the way. Migratory distances vary from 3 to 55 km and the routes follow 

rivers or water sources.  

Livestock transfer  

Afar pastoralists have adapted to their harsh environment through customized social 

organisation. An important element of this social organisation is livestock transfer by which 

pastoralists may receive or bestow livestock to create and strengthen social relationships and 

establish trust through gifts, loans and herding contracts (Moritz, 2013). Livestock animals are 

transferred in many ways in Afar society (Getachew, 2001; Davies and Bennett, 2007). The most 

important livestock transfer mechanism for post-crisis herd recovery is called “iribu”. A second 

important mechanism of livestock transfer is “ala” which is a system of bond-friendship entailing 

gifts of livestock. Beyond iribu and ala, animals are transferred on many other occasions, such as 

during a marriage, on other celebrations and ceremonies, or as compensation for injured parties.  

Study design  

A cross sectional multi-stage sampling with ‘sub-region’ as the highest stage followed by ‘district’ 

(n=17), and ‘sub-district’ (n=34) as lowest sampling stages was used to select study villages. Study 

animals were obtained using a three-stage random sampling procedure. The ‘village’ within the 

sub-district was regarded as the primary unit, the ‘herd’ as secondary unit and ‘individual animal’ 

as tertiary unit. Herds of livestock in each sub-district were stratified into three groups based on 

herd size (large, medium and small) after calculating the average herd size of the sub-district. 

Herds (one herd from each stratum) and individual animals were selected randomly. A total of 

102 livestock herds from 34 sub-districts (3 in each sub-district, one large, medium and small 

herd) were selected. Informed consent was sought verbally from all livestock herders and herd 

owners. 

Sample size determination 

The sample size was determined by assuming that the average expected prevalence of bTB was 

11% (Mamo et al., 2013). The desired sample size was calculated using the 95% confidence 

interval and at 5% absolute precision following the method of Thrusfield (Thrusfield, 1995). The 

total sample size per district was calculated, which gave us a total number of required animals of 

2550 for all 17 districts, or 75 animals for each of the 34 sub-districts. A complete list of sub-

districts and villages within the sub-district was obtained from each district pastoral and agro-

pastoral office. Sub-district within the district and villages within sub-district were selected using 
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random numbers. We excluded animals younger than 1 year, since they are herded around the 

home-base; cows at a late stage of gestation, because they are difficult to handle, and clinically 

sick animals which, at late stages of the disease showed false negative responses.  

Single comparative intradermal tuberculin test 

Tuberculin skin testing was performed using aliquots of 0.1 ml of 2500 IU/ml bovine purified 

protein derivative (PPD) and 0.1 ml of 2500 IU/ml avian PPD (Prionics Lelystad B.V, Lelystad, 

The Netherland). Bovine and avian PPDs were injected by veterinary staff intradermally at two 

sites approximately 12 centimetres apart at the border of the anterior and middle thirds of one 

side of the neck. This was done after shaving the two sites using a razor blade. The skin thickness 

was measured with digital callipers prior to and 72 h after PPD injection. An animal was 

considered bTB positive if the reaction at the bovine site minus the reaction at the avium site ≥ 4 

mm cut-off, according to the recommendations of the World Animal Health Organization (OIE, 

2009). In this study, livestock owned by one owner and/or his close relatives, in which the 

animals shared common grazing sites, watering points, kept at night at a common site and moved 

together during migration, was considered as a single herd in the calculation of the herd 

prevalence. A herd was considered bTB positive if it had at least one tuberculin reactor animal 

(Ameni et al., 2007; OIE, 2009; Tschopp et al., 2009). In addition to the comparative intradermal 

tuberculin test, information was collected for each tested animal: sex, age, lactation and 

reproduction status, parity number and body condition score. Animals were categorized into 

three age groups: juveniles between one and three years, reproductive animals between three and 

ten years and animals older than ten years. Body condition of the animals was scored on a 1 (thin) 

to 3 (fat) scales. 

Questionnaire survey 

To identify risk factors associated with bTB prevalence, semi-structured interviews with the 

herders and herd owners were conducted, gathering information on general herd management 

practices, livestock movement and transfer, introduction of animals into the herd, pastoral 

production system, other livestock species kept, types and levels of herd contacts, water sources 

(during the wet and dry season) and contact with wild animals (Table 2.1). Local agricultural 

officers, knowledgeable on local farming practices and who had received prior training on the 

administration and the scope of the questions, assisted us during the interviews. All herd owners 

and herders of tuberculin tested cattle were interviewed by means of pre-tested questionnaires. 

Information on contacts between cattle herds and wildlife species was obtained from 
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questionnaires to herders. The wildlife-livestock interaction section of the questionnaires 

included questions on the observation of wildlife in the grazing land and/or watering areas of 

cattle herds. ‘Contact with wildlife’ was defined as wildlife species being visible to the herders in 

the grazing and/or watering areas of cattle herds.   

Table 2.1. Descriptions, predicted effect and units of the predictors used in the analysis. 

Description of data sets Predicted effect Unit 

Average herd movement in a day positive  km (7.3km) 

Herd size  Positive Number 

Number of all new animal introduced into the herd Positive Number 

Number of animals transferred  Positive Number 

Number of sheep and goats Positive Number 

Number of camels Positive Number 

Number of donkeys Positive Number 

Wild animals 

• Contact with wild animals  

• No contact with wild animals 

 

Positive 

Negative 

Class 

Livestock production system 

• Pastoral production system 

• Agro-pastoral production system 

 

positive  

negative 

Class 

 

Other stock 

• Presence  

• Absence 

 

positive 

negative  

Class 

Interaction terms   

Herd size and contact with wildlife  Positive  

Herd movement and livestock transfer 

The interviewer estimated the maximum movement distance of the livestock herd by tracing the 

herd movement in the area based on interview-derived information, bound by roads, streams, 

rivers or hills, village, district, sub-district, or region, wildlife habitat or park, or other physical 

indicators, which were located on a georeferenced map. Subsequently, the maximum daily 

distance was calculated for sedentary and for the transhumance herds. For each herd, the total 

number of animals introduced into the herd and transferred was estimated. It is likely that herds 

that graze close together have similar bTB prevalence, due to mixing of animals. At larger 

distances, herd bTB prevalence might be different, either higher or lower, due to spatial variation 

in bTB prevalence. To assess the impact of scale on the effect of livestock transfer on herd bTB 

prevalence, the effect of the number of animals transferred to strengthen social relationships was 

analysed separately for herds within and for herds outside the average daily herd movement 

radius of 7.3 km (Table 2.1). Livestock transfer included all animals received or bestowed to 

create and strengthen social relationships. Some of the Afar pastoralist kept multiple species 

(cattle, sheep, goat, donkey and camel), so we also considered the presence or absence of stocks 
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other than cattle as a risk factor. Geographic coordinates and altitude were registered at the 

central point of each village by a global positioning system (GPS, GPSMAP 64). 

Ethical Statements  

This study was approved by Haramaya University, Ethiopia  (Reference number 

HUP14/559/15). 

Statistical analysis 

Generalized Linear Mixed Models (GLMM) were used to examine the effects of predictors on 

the bTB infection probability for each animal using herd as random factor, with a binary 

response as a dependent variable (bTB positive/negative). Different approaches were used to 

study the strength and the relative importance of the risk factors on bTB prevalence at herd level. 

Prior to developing our candidate models for the herd-level analysis, one-by-one univariate 

analyses were performed to identify potential risk factors, using the bTB prevalence as dependent 

variable in a Generalized Linear Model (GLM) (family=binomial). The number of bTB positive 

as well as the numbers of bTB negative cattle were specified in a two vector response variable by 

combining two vectors into a single object as dependent variable, comprising the bTB positive 

and negative cattle in a herd. Predictor variables with p<0.25 were recognized as potential risk 

factors, and were subsequently used to construct multiple regression models. For highly 

correlated independent variables, only the one causing the largest change in the log-likelihood 

function was added to the final global model to avoid multi-collinearity, which was assessed by 

checking the variance inflation factors (VIFs); the final VIF-results confirmed the absence of 

collinearity among explanatory variables (all VIFs< 5). In addition, to investigate the effect of 

wildlife-livestock interactions on the prevalence of bTB, we included the interaction term 

between herd size and contact with wildlife after including all main factors. From the global 

model, candidate models were selected using ∆AIC (< 5), with the best approximating candidate 

model having the highest w, as described in Burnham and Anderson (Burnham and Anderson, 

2002). Model averaging was used to construct the final model using the Akaike weights of the 

different candidate models (Anderson et al., 2000). Furthermore, structural equation modelling 

(SEM) was conducted using the lavaan package (Preston et al., 2012; Rosseel, 2012) to study the 

relative direct and indirect importance of each risk factors on the bTB prevalence. All analysis 

were done using R v3.2.0. 
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Results  

Animal level risk factors for bTB prevalence  

The individual animal prevalence of bTB was 5.5%, whereas the herd level prevalence was 46% 

(47 out of 102 herds).  

Risk of bTB infection increased with increasing age, as animals older than ten years had a 

significantly higher probability of bTB infection. There was also a strong association between 

having a poor body condition score and bTB infection, but sex, lactation status and reproductive 

status were not related with bTB status (Table 2.2). 

Table 2.2. Summary of risk factors associated with bovine tuberculosis (bTB) in traditional Afar 

cattle in November 2013 to April 2015 (n=2550). 

Risk factor  Levels Number of 

cattle tested 

bTB reactor 

animals (%)  

OR (95% CI) χ²  p-value 

Sex Male  272 14 (5.1) 1.0 0.1 0.770 

Female  2278 127 (5.6) 1.1 (0.62-1.92)   

Age Juveniles  423 14 (3.3) 1.0 8.2 0.017* 

Reproductive  1776 99 (5.6) 1.7 (0.98-3.05)    

Aged 351 28 (8.0) 2.5 (1.31-4.89)   

Lactation  Lactating 1095 54 (4.9) 1.0 1.67 0.197 

Non lactating 1183 73 (6.2) 1.3 (0.88-1.82)   

Reproduction  Gravid 821 54 (6.2) 1.0 0.95 0.377 

Non gravid 1330 73 (5.2) 1.2 (0.83-1.72)   

Body condition Thin  414 42 (10.1) 1.0 17.6 < 0.001*** 

Normal 2021 95 (4.7) 0.4 (0.30-0.64)   

Fat 115 4 (3.5) 0.3 (0.11-0.91)   

OR= Odds Ratio, CI=95% confidence intervals; * P< 0.05; ** p < 0.01; *** p < 0.001 

Herd level risk factors for bTB prevalence  

Based on the results of the one-by-one GLM analyses, seven out of 10 variables were identified 

as potential bTB risk factors, namely, herd size, the average herd movement in a day, number of 

animals introduced into the herd, number of animals transferred between herds, number of 

camels, pastoral production system, and contact with wildlife. These were all positively associated 

with bTB prevalence (Table 2.3). However, the number of sheep and goats, the number of 

donkeys, and the presence of other livestock were not correlated with bTB prevalence in cattle 

(Table 2.3).  

Spearman's correlation matrix showed that herd movement and introduction of animals into the 

herd were strongly correlated with herd size and number of animals transferred, respectively 

(r>0.7; Table S2.1), and therefore only the latter variables were included in the multiple variable 

model to avoid collinearity.  
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Variables included in the multiple linear regression analyses were herd size, number of animals 

transferred, number of camels, production system and contact with wildlife (Table S2.2). All of 

these variables had a significant association with bTB prevalence in the GLM analyses (Table 

2.3). 

Table 2.3. Results of the one-by-one GLM analysis of risk factors and summary statistics for all 

predictors against herd bTB prevalence (n=102). 

                                                bTB prevalence  

Variables  b (95% CI) OR(95% CI)  χ² p-value 

Herd size 0.08 (0.05-0.7) 1.1 (1.04-10.6) 76.8 < 0.001*** 

Herd movement  0.06 (0.01-0.30) 1.2 (1.17-1.30) 63.6 < 0.001*** 

Number of animals introduced 0.05 (0.007-0.11) 1.1 (1.05-1.10) 36.2 < 0.001*** 

Number of animal transferred 0.05 (0.03-0.06) 1.0 (-1.03-1.06)  24.4 < 0.001*** 

Number of sheep and goats 0.01 (0.01-0.02) 1.0 (0.99-1.01)   2.3    0.264 

Number of donkeys 0.00 (-0.09-0.11) 1.0 (0.93-1.13)   0.2    0.646 

Number of camels 0.03 (0.03-0.06) 1.0 (1.0-1.06) 27.2 < 0.001*** 

Production system 0.06 (-1.04-5.42) 11.4 (1.58-81.6) 14.7    0.016* 

Contact with wildlife 0.02 (-0.46-1.25) 2.0 (1.29-2.81)   9.5 <0.001*** 

Presence of other livestock 0.00 (-0.78-1.65) 1.8 (0.57-5.79)   1.3    0.309 

b=standardized regression coefficient with 95% confidence intervals, OR=Odds Ratio with 95% confidence 

intervals; * P< 0.05; ** p < 0.01; *** p < 0.001 

The results of model averaging showed that, herd size and contact with wildlife were positively 

correlated to bTB prevalence (Table 2.4; Figure S2.1). The model also showed that the interaction 

of herd size and contact with wildlife had a positive effect on the prevalence of herd bTB.  

Table 2.4. Summary statistics of the final model, with standardized regression coefficient (b with 

95% confidence interval), Odds Ratio (OR) with 95% confidence interval, and p-value from the 

GLMs for the predictors correlated with herd bTB prevalence as obtained through model 

averaging (n=102). 

                                                                           bTB prevalence 

Variables  b (95% CI) OR (95% CI) p-value 

Herd size 0.94 (0.56-1.28) 1.1 (1.04-10.9) < 0.001*** 

Number of animals transferred 0.00 (0.00-0.17) 1.0 (0.96-1.01) 0.171 

Number of camels -0.11 (-0.20-0.08) 1.0 (-0.97-1.02) 0.246 

Contact with wildlife 0.19 (0.05-0.33) 11.8 (1.43-96.4) 0.007** 

Production system 0.28 (-0.42-0.98) 2.3 (0.29-17.48) 0.442 

Herd size and contact with wildlife 0.15 (0.02-0.40) 1.0 (0.93-1.00) 0.008** 

b=standardized regression coefficient with 95% confidence intervals, OR= Odds Ratio, CI=95% confidence 

intervals; *p<0.05; ** p<0.01; *** p<0.001 

The structural equation model showed that the probability of contact with wildlife, as an 

important risk factor for bTB infection, was mainly influenced by herd size (b=0.9, p<0.001), 

through herd movement (b=0.59, p<0.01; Figure 2.1).    
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Figure 2.1. Structural equation modelling graph of the direct and indirect effects of risk factors on 

bTB prevalence (% bTB). The arrows indicate supported path coefficients. * p<0.05; ** p<0.01; 

*** p<0.001. Variables are herd size (size), the average herd movement in a day (movement), 

number of animal transferred (transfer), number of camels (camel), production system 

(production), and contact with wildlife (wildlife). The proportion of variance explained (R2) 

appears above every response variable in the model. 

The analysis of the impact of spatial scale on the effect of livestock transfer on herd bTB 

prevalence showed that exchange of animals among the herd from outside the average daily herd 

movement radius of 7.3 km (Table 2.1) reduced bTB prevalence (b=-0.11; OR=0.89; 95% 

CI=0.79-0.99; p<0.05) compared to an animal exchanged among the herd that was obtained from 

a transfer within the daily herd movement radius (b=0.04; OR= 0.96; 95% CI=0.91-1.03; 

p>0.05).   

Discussion 

The overall individual bTB prevalence was 5.5%, comparable with other results reported from 

Ethiopia (Ameni et al., 2003; Ameni et al., 2007; Fetene and Kebede, 2009; Gumi et al., 2011), 

Uganda (Bernard et al., 2005), Zambia (Munyeme et al., 2008; Munyeme et al., 2009; Munyeme et 

al., 2010) and Tanzania (Katale et al., 2013). Our risk factor analyses identified the age of animals 

and body condition scores as significant factors associated with bTB infection at individual 

animal level. Herd size, contact with wildlife and their interaction were identified as risk factors at 

herd level. 

In line with previous studies (Ameni et al., 2007; Inangolet et al., 2008; Regassa et al., 2008; Gumi 

et al., 2011; Katale et al., 2013; Mamo et al., 2013), bTB prevalence increased with the age of the 

animals, probably because of the longer exposure to the agent over time of older animals. Results 

also showed that a poor body condition score was associated with bTB infection. Cause and 
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effect are not clear, however animals in poor body condition are likely more susceptible to 

tuberculosis infection, or  tuberculosis positive animals develop a poor body condition score as a 

result of being infected, i.e., a clinical sign that typically follows an active infection with M. bovis 

(Kazwala et al., 2001). 

Similar to what Cleaveland et al. (2007) and Ameni et al. (2003) found, herd size was positively 

correlated with the probability of bTB infection in the herd (Cleaveland et al., 2007; Ameni et al., 

2003). Transmission of bTB, which is mainly through aerosols transmission (Renwick et al., 2007; 

Skuce et al., 2012) described as a density-dependent (Huang et al., 2013). Increasing herd size can 

lead to higher encounter rates of susceptible and infectious hosts, thereby promoting the spread 

of the pathogen within the herd. Our results support the hypothesis that herd size is a risk factor 

for the transmission of bTB.  

Several wildlife species have been found bTB positive to serological rapid tests in Ethiopia 

(Tschopp et al., 2010; de Garine-Wichatitsky et al., 2013). Kafue lechwe (Kobus leche), greater kudu 

(T. strepsiceros), and African buffalo (Syncerus caffer) are known as wild maintenance hosts, 

implicated in the transmission of M. bovis to cattle in Africa (de Vos et al., 2001; Keet et al., 2001; 

de Lisle et al., 2002; Munyeme et al., 2009). In Zambia and Tanzania high prevalence rates of 

bTB in cattle have been recorded within and around the wildlife area, where contact between 

wild maintenance hosts, particularly the lechwe and buffalo, and domestic animals were high 

(Munyeme et al., 2009; Katale et al., 2013). Transmission of bTB between animals is due to direct 

contact when sharing forage or water resource, and/or indirect contact when grass is 

contaminated by infected faeces, or urine (Nolan and Wilesmith, 1994; Cleaveland et al., 2001; 

Johnston et al., 2005). We also found that contact with wildlife was a risk factor for bTB 

prevalence in cattle. In the north and north eastern part of Awash National Park, it is common to 

observe livestock grazing in close proximity to wild animals during the dry season. In Africa, 

species such as greater kudu are less affected by livestock presence in their habitat use (Prins, 

2000). This large habitat overlap between cattle and greater kudu could play a role, and cattle 

could acquire bTB through grazing contaminated pastures.  However, the structural equation 

model showed that the probability of contact with wildlife was partly confounded with herd size, 

through herd movement (Figure 2.1; 2.2). Pastoralists with larger herds move more during the 

dry season searching for water and pasture, and graze a larger area. These practices may 

predispose more cattle to bTB infection due to the higher chances of coming in contact with 

contaminated pastures or infected wild and domestic animal hosts. So, the correlation of contact 

with wildlife and bTB infection might not tell the whole story, as the underlying reasons for this 
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contact is probably the herd size and the herd movements, which are probably more important 

risk factors. Moreover, we do not know to what extent wildlife is directly or indirectly infected 

with bTB from cattle. These uncertainties need more detailed ecological and epidemiological 

research.  

 

Figure 2.2. Illustration of the GLM results showing the effect of the interaction of herd size and 

contact with wildlife on the herd bTB prevalence (log odds scale; with 95% CLs). 

The transfer of livestock, within and between clans, is a common practice in the area to spread 

risks, especially during periods of drought and/or conflicts. We found that transfer of animals 

was not positively correlated with bTB prevalence. Introduction of an infected animal into a bTB 

free herd or area is one of the major risk factors for introducing the disease (Marangon et al., 

1998; Johnston et al., 2005; Gopal et al., 2006). We found that the number of animals exchanged 

outside the average daily herd movement radius (7.3 km, Table 2.1) reduced bTB prevalence. 

This could be due to the fact that, within a village, cattle herds share water holes and grazing 

areas with each other, and come in close contact with one another; this homogenizes the 

infection prevalence of bTB among cattle, resulting in a similar herd infection prevalence across 

village herds. Similarly, others found that introduction of animals from non-endemic area, or 

minimizing the number of animals being introduced, and introducing juveniles lowered the risk 

of bTB spread (Reilly and Courtenay, 2007). Therefore, we conclude that whether the transfer of 

livestock either positively or negatively affects bTB prevalence depends on the status of the 

transferred animals, the number and type (receiving or bestowing) of transferred, the age of the 

animal, the distances between receivers and donors, and the spatial variation of the bTB 

prevalence of the herds from which animals are received. 

Two types of production and grazing system are practiced in the area, i.e., village resident herds 

with an agro-pastoral production system, and transhumant herds, following a pastoral production 

system. bTB prevalence in Uganda was higher in agro-pastoral production systems of Uganda 

(Faye et al., 2005). However, other studies indicated that a transhumant grazing system is a risk 

factor for infectious disease transmission (Bugwesa et al., 2013), as the pastoral production 

system relies on movement of livestock following grazing and water resources over considerable 
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distances under seasonal changes. Other studies showed that bTB occurs on both agro-pastoral 

and pastoral farming systems with no distinct differences in prevalence (Kazwala et al., 2001; 

Munyeme et al., 2010). In line with these latter studies, our study showed that cattle under a 

pastoral production system showed a slightly higher, but not significant, bTB prevalence than 

under an agro-pastoral system. This might be explained by the interactions of the two cattle 

husbandry systems in the area. Transhumant movements are more intensive during the dry 

season, when transhumant herds graze in farmlands or on cotton farms. During these moments 

there is a lot of interaction between agro-pastoral and the pastoral cattle on these grazing lands, 

possibly resulting in a similar infection prevalence.  

In conclusion, this study identified that bTB prevalence increased with increasing age of cattle 

and with decreasing body condition at individual animal level. Herd size is an important risk 

factor contributing to the prevalence of bTB in cattle, because larger herds have the need to 

move more to look for more pastures and thus end up in the wildlife conservation area where the 

probability of contact with wildlife maintenance hosts harbouring bTB is higher. Thus, based on 

the study, it is impossible to indicate the contribution of wildlife species in the transmission of 

bTB to cattle, and the direction of the spread of the pathogen between wildlife and cattle. 

Findings from this study add useful epidemiological information regarding bTB infection at the 

livestock-wildlife interface in Ethiopia. In order to improve this understanding, further 

surveillance and research on the disease ecology,  including habitat use among different wildlife 

species with cattle, migration ecology, and population monitoring are needed.  
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Supporting information 

Table S2.1. Spearman's correlation matrix among variables (n=102) 

Variable Size  Movement  Introduction  Transfer  Camels  Production  Wildlife 

Size 1       

Movement 0.89 1      

Introduction  0.77 0.79 1     

Transfer  0.69 0.66 0.84 1    

Camels 0.67 0.69 0.70 0.62 1   

Production  0.36 0.30 0.30 0.29 0.32 1  

Wildlife  0.38 0.34 0.33 0.28 0.23 0.13 1 

Variables are herd size (size), the average herd movement in a day (movement), number of animals introduced into 

the herd (introduction), number of animal transferred (transfer), number of camels (camel), production system 

(production) and contact with wildlife (wildlife) 

Table S2.2. Summary of the global model (top) and selected candidate models (δ AIC < 5 and 

weight >0.05) and the variables included in the model (+ indicates the inclusion of the variable in 

the model). 

Model b Wildlife  Size Transfer Camel Production Wildlife*Size AIC δ AIC weight 

Global model  -7.3 + + + + + + 178.5 4.23 0.03 

Model 1 -6.5 + +    + 174.3 0.00 0.24 

Model 2 -6.7 + + +   + 174.8 0.55 0.18 

Model 3 -7.1 + +   + + 175.8 1.53 0.11 

Model 4 -6.1  + +    176.3 2.01 0.09 

Model 5 -6.5 + +  +  + 176.3 2.03 0.09 

Model 6 -7.3 + + +  + + 176.5 2.17 0.08 

Model 7 -6.7 + + + +  + 176.9 2.61 0.06 

Model 8 -6.9  + +  +  177.1 2.79 0.06 

Model 9 -5.8  +     177.1 2.82 0.06 

Variables are herd size (size), number of animal transferred (transfer), number of camels (camel), production system 

(production), contact with wildlife (wildlife), and the interaction of contact with wildlife and herd size (wildlife*size) 
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Figure S2.1. Visualization of GLM results of the effects of explanatory variables on herd bTB 

prevalence (log odds scale with 95% CLs) in relation to herd size (A), the number of livestock 

transferred (B), the number of camels (C), production system (D), and contact with wildlife (E). 
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Chapter 3 

Effect of host diversity and species assemblage composition on bovine tuberculosis 

(bTB) risk in Ethiopian cattle 

 

Sintayehu W. Dejene, Ignas M.A. Heitkönig, Herbert H.T. Prins, Zewdu K. Tessema and Willem F. de Boer 

Parasitology, 2017, 144: 783–792 

 

Current theories on diversity-disease relationships describe host species diversity and species 

identity as important factors influencing disease risk, either diluting or amplifying disease 

prevalence in a community. Whereas the simple term ‘diversity’ embodies a set of animal 

community characteristics, it is not clear how different measures of species diversity are 

correlated with disease risk. We therefore tested the effects of species richness, Pielou’s evenness 

and Shannon’s diversity on bTB risk in cattle in the Afar Region and Awash National Park 

between November 2013 and April 2015. We also analysed the identity effect of a particular 

species and the effect of host habitat use overlap on bTB risk. We used the comparative 

intradermal tuberculin test to assess the number of bTB infected cattle. Our results suggested a 

dilution effect through species evenness. We found that the identity effect of greater kudu - a 

maintenance host – confounded the dilution effect of species diversity on bTB risk. bTB 

infection was positively correlated with habitat use overlap between greater kudu and cattle. 

Different diversity indices have to be considered together for assessing diversity-disease 

relationships, for understanding the underlying causal mechanisms. We posit that unpacking 

diversity metrics is also relevant for formulating disease control strategies to manage cattle in 

ecosystems characterized by seasonally limited resources and intense wildlife-livestock 

interactions.  
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Introduction  

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is an important zoonotic disease 

affecting many mammal species, and mainly spreads via aerosol transmission (Skuce et al., 2012). 

The World Health Organisation (WHO, 2012) identified bTB as one of the eight worldwide 

neglected zoonoses needing urgent attention, especially in developing countries. The disease is 

endemic in sub-Saharan African cattle (de Garine-Wichatitsky et al., 2013), and cattle are the main 

host for M. bovis (Cosivi et al., 1998). A wide range of domestic and wildlife mammals, but also 

humans can be infected with bTB (Munyeme et al., 2008). Although control programmes have 

eliminated or nearly eliminated this disease from domestic animals in most developed countries, 

bTB is still widespread in Great Britain, Ireland, New Zealand and many developing countries, 

especially in Africa (Renwick et al., 2007; Humblet et al., 2009). In fact, bTB is an important 

public concern, and can cause economic losses due to livestock deaths, product reduction and 

trade restrictions (Humblet et al., 2009). 

Africa is recognized as a hotspot for biodiversity, but is suffering from rapid and extensive loss of 

that diversity (Myer et al., 2000; Olff et al., 2002; Gorenflo et al., 2012; Di Marco et al., 2014). 

The continent is also a hotspot for emerging infectious diseases as illustrated by emergence of 

Ebola, HIV/AIDS, MERS, among others (Morens et al., 2004). As biodiversity loss is thought to 

be a major explanatory factor of the increase in emergence of infectious diseases (Keesing et al., 

2010; Ostfeld and Keesing, 2012; Huang et al., 2013), it is key to investigate the links between 

biodiversity, and biodiversity loss on the patterns of infectious diseases in Africa. Recently, 

several studies have shown that a reduction in biodiversity may increase the prevalence and 

transmission of diseases (Keesing et al., 2010; Cardinale et al., 2012; Johnson et al., 2013; Myers 

et al., 2013; Civitello et al., 2015). The two alternative hypotheses are the dilution and the 

amplification effect (Keesing et al., 2006; Huang et al., 2013; Hofmeester et al., 2016). The 

dilution effect predicts that species diversity decreases pathogen prevalence through mechanisms 

such as decreased host density, reduced encounters between hosts, or reduced host survival 

(Keesing et al., 2006; Huang et al., 2013; Johnson et al., 2013). In contrast, the amplification 

effect predicts increased pathogen prevalence with greater species diversity, through increased 

encounters between hosts, or through the presence of secondary hosts (LoGiudice et al., 2003; 

Keesing et al., 2006). A recent review of the relationships between species diversity and diseases 

reported dilution effects in up to 80% of the studies examined, and amplification effects in 12% 

of the studies (Cardinale et al., 2012; Ostfeld and Keesing, 2012). Despite the fact that the 

dilution effect occurs far more frequently than the amplification effect, our knowledge of which 
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specific systems conform to the dilution effect and the mechanisms underlying the effects of 

diversity, is incomplete (Ostfeld and Keesing, 2012; Randolph and Dobson, 2012; Huang et al., 

2013; Ostfeld, 2013; Johnson et al., 2013; Miller and Huppert, 2013; Huang et al., 2013; 

Hofmeester et al., 2016). Understanding the underlying mechanisms how the risk of disease 

relates to the level of biodiversity is important, both for predicting disease dynamics in the 

context of global biodiversity decline, and to provide valuable insights into successful control 

measures. 

Most studies that examine the diversity–disease relationship focus principally on species richness 

as a measure of biodiversity (Keesing et al., 2006). In fact, biodiversity can be measured in many 

different ways, as the number of species (species richness), the distribution of individuals over 

species (species evenness), or a combination of richness and evenness, as represented by diversity 

indices such as the Shannon index (Magurran, 1988; Tucker and Cadotte, 2013). Many studies 

have argued that species richness and evenness are two independent indices (Sheldon, 1969; 

Smith and Wilson, 1996; Gosselin, 2006; Symonds and Johnson, 2008), and suggest treating them 

separately (Magurran, 1988; Legendre and Legendre, 1998). Ostfeld and Keesing (2000) stated 

that encounter rate is proportional to the distribution of hosts. Thus, evenness which measure 

how evenly the individuals are distributed in the community among different species may be 

most appropriate measure of biodiversity to explain disease risk, because of power to detect the 

probability of encounter between pathogens and each host species. Thus, despite many studies of 

the relationship between diversity and diseases, evaluating the effects of different diversity 

metrics on disease risk has proven to be rare (Chen and Zhou, 2015). Thus, these different 

metrics of diversity may have different predictive powers for predicting disease risk in the target 

population. Here we tested for the effect of different diversity metrics on bTB risk in cattle.  

Several recent studies suggest that the occurrence of particular species in the animal community 

may play an important role in disease risk, and in determining whether biodiversity amplifies or 

dilutes the infectious disease (Fenton and Pedersen, 2005; Keesing et al., 2010; Hamer et al., 

2011; Johnson et al., 2013; Oda et al., 2014; Johnson et al., 2015). This effect of a particular 

species on pathogen transmission is known as the identity effect (Hantsch et al., 2013; Huang et 

al., 2014; Huang et al., 2016). Generally, the identity effect on pathogen transmission can be 

observed in two different situations (Huang et al., 2016). One is that a key species with 

particularly high or low reservoir competence may be present in communities when species 

diversity increases. The other situation is where a species can affect vector abundance (either 

positively or negatively) (Huang et al., 2016). To our knowledge, the generality of this pattern for 
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directly transmitted or aerosol-borne diseases, such as bTB, has not been established. Thus, 

understanding the identity effect is an important step in being able to understand the expected 

impacts of biodiversity loss on disease dynamics. In Africa, buffalo (Syncerus caffer), greater kudu 

(Tragelaphus strepsiceros) and lechwe (Kobus leche; Cosivi et al., 1995; de Garine-Wichatitsky et al., 

2013) have been identified as maintenance hosts and implicated in the transmission of M. bovis. 

Warthog (Phacochoerus africanus) are also thought to be a potential reservoir for this bacteria in 

Africa (Tschopp, 2015). The presence of species like the greater kudu and warthog are likely to 

affect the type of encounters with cattle, which could then alter the relation between biodiversity 

and disease risk. We thus tested for the existence of an identity effect of greater kudu and 

warthog. We predict that bTB risk increased with the occurrence of maintenance host species. 

Currently, livestock and wild herbivores graze together in many arid and semi-arid rangelands of 

Africa, with much resource use overlap, as livestock species are ecologically similar, with similar 

resource requirements as several wild herbivore species (Prins, 2000; Sitters et al., 2009). 

Overlapping space use can lead to interspecific interactions, and stimulate the spread and 

prevalence of many diseases (Riley et al., 1998), as most pathogens are able to cross-infect 

multiple host species. Hence, in areas where wildlife and livestock co-occur, pathogens can 

emerge and establish in these sympatric host populations (Gortazar et al., 2007). For example, 

foot and mouth disease, rabies, anthrax, brucellosis and bovine tuberculosis (bTB) have all been 

shown to be reciprocally transmissible between livestock and wildlife (Frolich et al., 2002; Artois, 

2003; Ward et al., 2006; Cooper et al., 2010; Proffitt et al., 2011). In this context, resource use 

overlap between host species can play an important role in pathogen transmission by increasing 

contact rates and environmental exposure to the agent (Roper et al., 2003; Böhm et al., 2009). 

How habitat use by hosts affects direct and indirect interactions among hosts is fundamental in 

understanding multi-host disease transmission (Cooper et al., 2010), and is critical for designing 

scientifically sound disease control strategies (Hudson et al., 2002). Nevertheless, the role that 

spatial interactions between livestock and wildlife host play in disease transmission remains 

mostly unknown (Böhm et al., 2009; Martin et al., 2011; Tschopp, 2015). For instance, habitat 

and water resources use overlap may stimulate bTB transmission through increasing wildlife 

maintenance host-cattle contact, such as observed in and around Awash National Park, Ethiopia, 

where large numbers of livestock share their habitat with wildlife particularly during the dry 

season when resources are scarce. We therefore also tested whether habitat use overlap between 

wildlife maintenance host (greater kudu and warthog) and cattle increased bTB incidence. Beside 

the role of host community composition and resource overlap, a positive effect of host (e.g., 
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cattle) densities (Humblet et al., 2009) has also been associated with bTB transmission risk. We 

also tested whether cattle densities were positively correlated with bTB incidence in cattle.  

Materials and Methods 

Study area 

We carried out a cross-sectional study in Awash National Park and in the neighbouring Afar 

Region, Ethiopia (Figure 1.2). Awash National Park is situated in the Ethiopian Rift valley and 

had an elevation of 960 to 1050 m above sea level. It is covered in semi-arid savanna. The Afar 

region is found in the north-eastern part of Ethiopia with an area of about 70,000 km2 (CSA, 

2008). It is characterized by an arid and semi-arid climate with low and erratic rainfall, with a 

mean annual rainfall of 500 mm in the semi-arid western escarpments, decreasing to 150 mm in 

the arid zones to the east. Study sites were included due consideration of variation in wildlife-

livestock interactions, concentrations of livestock and wildlife, and the presence of common 

grazing and water resources.  

Study Design  

A cross sectional multi-stage sampling was used to select study villages with ‘sub-region’ as the 

highest level followed by ‘district’ (n=17; Figure 1.2), and ‘sub-district’ (n=34) at the lowest level. 

Study animals were obtained using a three-stage random sampling procedure. The village within 

the sub-district was regarded as the primary unit, the herd as secondary unit and individual animal 

as tertiary unit, following the method of chapter 2. The desired sample size, which gave us a total 

of 2550 animals, was calculated following the method of Dejene et al. (2016). Tuberculin skin 

testing was performed using Purified Protein Derivative (PPD, supplied by Prionics Lelystad B.V, 

Lelystad, The Netherlands) to identify bTB positive animals following the method of chapter 2. 

Dung counts 

Plots for dung counts were established using stratified random sampling. First, sub-districts were 

stratified according to vegetation type. 204 plots (6 in each of the 34 sub-districts) of 100 x 100 m 

were laid out randomly in these vegetation types and were GPS geo-referenced. In each plot, we 

surveyed 50 transects of 100 m length and 2 m wide, and counted dung piles. Each pile of dung 

was attributed to a locally available wildlife species based on the size, shape and form of the 

pellets by using Stuart and Stuart (2000), and with the help of experienced local trackers. The 

relative abundances of wild herbivores were estimated based on the frequency of faecal 

droppings found in the plot transects following Vicente et al. (2004). We divided each 100 m 
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transect into 10 sectors of 10 m length. We defined sign frequency as the average number of 10 

m sectors with the presence of wild herbivores droppings. Based on these frequencies, we 

calculated for each of the species the frequency-based indirect index (FBII): 

FBII = 1
n�s	




	��
 

Where si is the number of sign-positive sectors in the ith 100 m transect (i.e., Si varies between 0 

and 10), and n is the number of 100 m transects considered (i.e., n=50 for each plot; Vicente et 

al., 2004). 

Ethical Statements  

This study was approved by Haramaya University, Ethiopia (Reference number HUP14/559/15). 

Statistical analysis 

For each sub-district Pianka's Niche Overlap, mammalian species richness (S), mammalian 

species diversity (H’) and mammalian species evenness (J’) were calculated. Habitat use overlap 

between cattle and greater kudu was calculated according to Pianka's Niche Overlap (Pianka, 

1973). This index varies from 0, no overlap, to 1, complete overlap.  


�� = ∑������
�∑���� ∑����

 

where Ojk is the overlapping index between species j and k, and pij and pik being the proportions 

of use of habitat i by the species j and k. 

Shannon's diversity index (H’) was used to estimate mammalian species diversity as; 

H′ = −�p	lnp	
�

	��
	 

where pi is the proportion of species i, and S is the number of species (Hill, 1973).  

Pielou’s index was used to estimate mammalian species evenness (Hill, 1973), which is most 

widely used in ecology (Zhang et al., 2012).  

J′ = H′
ln	(S) 	 

where H’ represents the Shannon diversity index, and S is the total number of species observed. 

Biodiversity metrics were calculated using package vegan of R v3.2.0 (Oksanen, 2016).  
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Generalized Linear Mixed Models (GLMM, family=Poisson) using package lme4 were used to 

examine the effects of predictors (Table SI 3.1) on the sub-district bTB incidence. Prior to 

developing our candidate models, we performed one-by-one univariate analyses to identify 

potential spatial risk factors, using the number of bTB infected animals as dependent variable. 

Predictor variables with p<0.25 recognized as potential spatial risk factors (Huang et al., 2013), 

and subsequently used to construct multiple regression models. For highly correlated 

independent variables, only the one causing the largest change in the Log-Likelihood added to 

the final global model to avoid multi-collinearity, which was assessed by using variance inflation 

factors. The final variance inflation factor values were all <5 and confirmed the absence of 

collinearity among variables. From the global model, candidate models constructed using delta 

∆AIC (<5), with the best approximating candidate model having the lowest delta AIC, as 

described in Burnham and Anderson (2002). Model averaging was used to construct the final 

model based on the lowest Akaike weights of the different candidate models (Anderson et al., 

2000). In this analysis, we treated district as a random effect to account for repeated sampling. 

We carried out all analyses in R v3.2.2 (R Core Team, 2015). 

Results  

Pielou’s species evenness (J’) and Shannon's species diversity (H’) varied between 0.46-0.90, and 

0.72-2.05, respectively. Habitat use overlap between cattle and kudu varied from 0, no overlap to 

0.95, high overlap. The highest Pianka's Niche Overlap index between warthog and cattle was 

0.84. Relative abundances of kudu and warthog ranged from 0-0.93 and 0-0.79, respectively 

(Table SI 3.2).  

Univariate analyses 

Based on the results of the univariate analyses, we identified seven out of eight variables as 

potential risk factors, namely, mammalian species richness, Pielou’s species evenness (J’), 

Shannon's species diversity (H’), habitat use overlap between cattle and greater kudu, habitat use 

overlap between cattle and warthog, relative density of greater kudu, and relative density of 

warthog (Table 3.1). Surprisingly, density of cattle dung was not associated with the number of 

bTB infected cattle in the sub-district (Table 3.1). 

Communities that contained greater kudu had a significantly higher bTB incidence than 

communities without greater kudu (Table 3.1; Figure 3.1; b=0.9, 95% CI=0.5-1.2; OR=2.4, 95% 

CI=1.6-3.5; p<0.001).  
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Table 3.1. Results of the one-by-one GLMM analysis of all variables and summary statistics 

(regression coefficient b with 95% confidence intervals, Odds Ratio (OR) with 95% confidence 

intervals, χ² and p-value) for all predictors against sub-district (n=34) number of bTB positive 

animals from the likelihood ratio test (logLik = log likelihood) and AIC value. 

   Number of bTB positive animals  

Variables  b (95%CI) OR(95%CI) χ² p-value 

Habitat use overlap with kudu 1.2(0.6-1.7) 3.3(1.9-5.5) 19.6 

20.9 

18.9 

19.6 

14.3 

7.63 

9.74 

0.15 

17.21 

< 0.001*** 

Habitat use overlap with warthog 1.4(0.7-1.9) 3.9(2.1-6.9) < 0.001*** 

Relative density of kudu 1.3(0.6-1.8) 3.5(1.9-6.0) < 0.001*** 

Relative density of warthog 1.4(0.8-2.0) 4.1(2.1-7.5) < 0.001*** 

Species diversity (H’)  0.7(0.2-1.1) 2.0(1.3-3.1)  0.002** 

Species evenness (J’) -2.3(-4- 0.6) 0.9(0.2-1.5)  0.006** 

Species richness 0.1(0.01-0.2) 1.1(1.0-1.2)  0.001** 

Density of cattle dung 0.2(0.1-0.3) 1.0(0.9-1.1)  0.693 

Presence of Kudu 0.9 (0.5-1.2) 2.4 (1.6-3.5) < 0.001*** 

Kudu=greater kudu; * P< 0.05; ** p < 0.01; *** p < 0.001 

 

Figure 3.1. Effects of the presence of a particular host species, greater kudu, on the number bTB 

positive animals at sub-district level (n=34). Data shown are means with the 95% confidence 

intervals  

The Spearman's correlation matrix showed that species richness was strongly correlated with 

Shannon's species diversity index. Habitat use overlap between cattle and warthog, relative 

density of greater kudu, and relative density of warthog were strongly correlated with habitat use 

overlap between cattle and greater kudu (r>0.7; Table SI 3.3). Therefore, we only included the 

latter two variables and species evenness in the multiple variable model to avoid collinearity. 

Multiple variable analyses 

Variables included in the multiple variable analysis were Pielou’s species evenness, Shannon's 

species diversity and habitat use overlap between cattle and greater kudu.  
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The results of model averaging showed always a negative relationship between Pielou’s species 

evenness and the number of bTB positive cattle, but we did not find a significant relationship 

between Shannon's species diversity and the number of bTB positive cattle, although the effect 

of species diversity was always positive in the models. In addition, our analysis also identified 

habitat use overlap between cattle and greater kudu as a significant risk factor for the number 

bTB positive cattle in the sub-districts (Table 3.2; Figure 3.1). 

Table 3.2. Summary statistics of the final model, obtained through model averaging, with 

regression coefficient (b ± SE), Odds Ratio (OR, 95% confidence interval) and p-value from the 

likelihood ratio test for the effect of species evenness (J’), species diversity (H’) and cattle-greater 

kudu habitat use overlap on the number of bTB infected Ethiopian cattle in the sub-districts 

(n=34). 

                                                                  Number of bTB positive animal 

Variables  b (95%CI) OR (95%CI) p-value 

Pielou’s species evenness -2.01(-3.9-0.1) 0.2(0.02-0.82) 0.036* 

Shannon's species diversity 0.46(0.3-1.2) 1.6(0.77-3.30) 0.221 

Habitat use overlap with kudu 1.14(0.3-1.8) 2.8(1.35-5.94) 0.008** 

Kudu=greater kudu; * P< 0.05; ** p < 0.01; *** p < 0.001 

 

Figure 3.2. GLMM results of the effects of explanatory variables on the number of bTB positive 

cattle at sub-district level (log odds scale) in relation to Pielou’s species evenness (A), Shannon's 

species diversity (B) and resource overlap between greater kudu and cattle (C).  

Discussion 

Our study showed that bTB infection rate was negatively associated with mammalian species 

evenness (J’), in line with our predictions derived from the dilution effect hypothesis. However, 

contrary to our expectation we did not find a significant relationship between mammalian species 
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diversity (H’) and the number of bTB infected cattle. There was also a positive effect of habitat 

use overlap between cattle and greater kudu on bTB incidence in cattle. As proposed by Ostfeld 

and Keesing (2000), if the encounter rate is proportional to the distribution of the host species, 

species evenness would seem most appropriate for disease risk, because evenness, not richness, 

would capture the probability of encounter between pathogens and each host species (Ostfeld 

and Keesing, 2000; Chen and Zhou, 2015). Our study detected a dilution effect of Pielou’s 

species evenness on the risk of bTB incidence, an influential aerosol-borne disease. This dilution 

effect is possibly explained by encounter reduction, in that the addition of alternative hosts may 

decrease the risk of pathogen transmission by reducing encounter rates between susceptible and 

infected hosts (Keesing et al., 2006; Chen and Zhou, 2015). In pastoral areas of East Africa, the 

distribution and abundance of large grazers is negatively associated with the presence of cattle 

(Voeten and Prins, 1999; de Leeuw et al., 2001; Bonnington et al., 2007). For instance, de Leeuw 

et al. (2001) observed a significant reduction of species like Oryx, gerenuk, and gazelle in the 

presence of cattle in Kenya (de Leeuw et al., 2001), and Odadi et al. (2007) found that the 

preference of foraging habitat for cattle was lower in the presence of wild grazers (Odadi et al., 

2007). Many mammal species that can be infected by bTB are spill-over or dead-end hosts and do 

not transmit the pathogen efficiently (Corner, 2006; Renwick et al., 2007). The presence of these 

non-competent or spill-over mammalian species might act as barriers to cattle herd movement 

and distribution, and reduce encounter rates among cattle herds by changing the grazing 

behaviour and habitat preference (e.g., avoidance of sites contaminated by faeces or different 

preferences for feeding patches). Such an “encounter reduction” (Keesing et al., 2006) might lead 

to decreased probabilities of bTB infection risk, although the exact mechanism behind these 

correlations needs more attention. Similarly other studies demonstrated that the presence of non-

competent species can have profound effects on the behaviour of deer mice, that is shift 

microhabitat use to avoid encounters with other species and reduce encounter rates among deer 

mice, thereby reducing the prevalence of Sin Nombre virus in deer mice (Clay et al., 2009; Dizney 

and Ruedas, 2009). 

We did not detect significant effects of host species diversity (H’) on the bTB infection level. The 

lack of a significant association between host species diversity and disease risk might occur 

because the index we chose, the Shannon index, stresses the number of species and presence of 

rare species (McGarigal and Marks, 1994; Haines-Young and Chopping, 1996; Riitters et al., 

2000; Magurran et al., 2004). Thus, this metric might fail to weigh in the specific importance of 

particular species that are not rare, which might be addressed better by focusing on the effects of 

host identity (Hamer et al., 2011). Moreover, studies also criticizing the dilution effect argued that 
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pathogen transmission might increase in high-diversity communities (Randolph and Dobson 

2012; Wood and Lafferty, 2013; Huang et al., 2016) due to the increased chance of including a 

particular species that has a positive effect on pathogen transmission (Hantsch et al., 2013; 

Huang et al., 2014). For instance, a recent study on bTB suggested that the presence of buffalo 

increased disease risk due to its high bTB competence (Huang et al., 2016). Power and Mitchell 

(2004) also demonstrated how the identity effect of particular host species influence the 

diversity–disease relationship, and found that more diverse systems had higher rates of infection 

(i.e., amplification effect), because these species rich (high richness) assemblages contained highly 

competent reservoir hosts (Power and Mitchell, 2004). Bouchard et al. (2013) found that the 

occurrence of white-tailed deer (Odocoileus virginianus), an important host for adult ticks, increase 

the abundance tick and thus increased the risk of tick-borne diseases (Bouchard et al., 2013). 

Similarly, we found that the presence of greater kudu and habitat use overlap between cattle and 

greater kudu was positively associated with the number of bTB infection. In Africa, species 

habitat use such as of greater kudu is not strongly affected by cattle presence (Prins, 2000), 

because kudus are almost exclusively browsers and the kudu-cattle dietary niche overlap is 

relatively small (Fritz et al., 1996). High habitat use overlap between cattle and kudu could 

increase encounter rates between them and create a positive identity effect of kudu on 

transmission of bTB, as a known wildlife bTB reservoir host. On the contrary, the presence of 

opossums created a negative identity effect on tick abundance (Keesing et al., 2009). Thus, high 

species diversity (high Shannon's species diversity and species richness) may amplify or dilute 

pathogen prevalence depending on the occurrence of a particular species. If the occurrence of the 

particular species had a negative identity effect, it may enhance the strength of the negative 

diversity-disease relationship; when the identity effect is positive, it may weaken the negative 

diversity-disease relationship and lead to a dilution effect (Huang et al., 2016). Another example is 

the influence of warthogs, which are predominantly grazers and compete with cattle for high-

quality food in African savannas (Treydte et al., 2006). The species is also recognized as a hosts 

for ticks, which are vectors of various diseases including African Swine Fever in eastern Africa 

(Osofsky et al., 2005). Thus livestock keepers tend to avoid the areas that are used by warthog for 

fear of diseases (Maleko et al., 2012). This could decrease the encounter rate between cattle and 

warthog, and lead to a non-significant identity effect on bTB transmission. This might be the 

reason for a non-significant negative diversity–disease relationship. We recognize that our 

conclusions are based on correlative studies and that further studies with experimental 

manipulation including host behaviour change and contact rates among hosts are required to 

thoroughly test this hypothesis. However, our results are a necessary first step towards 
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understanding the role of community structure on bTB risk and identifying the underlying 

mechanisms.  

In addition to direct transmission, which requires close contact between host species, indirect 

transmission via environmental contamination is also possibility for bTB transmission. In the 

north and north eastern part of Awash National Park, particularly in the northern part of the 

Park at the hot spring and kudu valley areas, it is common to observe livestock grazing in close 

proximity with kudu during the dry season. M. bovis has been detected in environmental samples 

in East Africa (Roug et al., 2014), and experimental studies have confirmed that the bacteria can 

survive for multiple days outside hosts (Fine et al., 2011). Kelly and Collins (1978) suggested that 

the major factors influencing survival of the bacteria in soil is soil temperature and moisture, as 

high temperature causes desiccation, and negatively influence survival of the bacteria. 

Environmental persistence of M. bovis has been proposed to play a role in the transmission of 

bTB in the UK (Courtenay et al., 2006). Wetlands or humid areas are also potential risk factors, 

and areas around pounds are generally moister, with greater amounts of shade, which are 

favourable conditions for M. bovis survival (Jackson et al., 1995). In Africa, flooding or soil 

humidity have also been suggested as propagating factors for M. bovis in the environment, as 

demonstrated in Tanzania (Cleaveland et al., 2007) and Zambia (Munyeme et al., 2009) by 

creating favourable conditions for M. bovis survival. The humid marsh-shrub wetland habitat near 

the hot-spring and kudu valley of Awash National Park and the surrounding water holes may act 

as potentially high risk areas for M. bovis infection, as these areas are generally moist, with greater 

amounts of shade. So, the correlation of habitat use overlap between greater kudu and cattle with 

bTB infection in the GLMM analyses might not tell the whole story, as the underlying reasons 

for this correlation is that it is possible that environmental transmission occurs among African 

wildlife and livestock. These uncertainty and complex eco-epidemiological scenarios and possible 

confounding factors require further investigation of the transmission network. 

Our results highlight aspects of mammalian species evenness and spatial differences in species 

assemblage that are likely to affect the risk of disease. Our results support the idea that a greater 

mammalian species evenness acts as a buffer against disease outbreaks. Our findings also 

demonstrate that the presence of a particular reservoir hosts can affect the diversity-disease 

relationship. Hence it is a prerequisite to understand the identity effect, and predict future 

outbreaks and minimize the risk of disease transmission. Ecologists, epidemiologists and policy 

makers need to understand the complex interactions among potential host species to identify risk 

factors for disease transmission and identify efficient management actions. In order to improve 



Chapter 3 

39 

 

this understanding, further ecological and epidemiological research on disease transmission and 

contact networks is required. 
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Supporting information   

Table SI 3.1. Descriptions, predicted effects, variable and units of the predictors used in the 

analysis. 

Predictor Predicted effect Variable Units 

Habitat overlap with kudu  positive  Pianka's index - 

Habitat overlap with warthog  Positive Pianka's index - 

Relative density of kudu  Positive FBII - 

Relative density of warthog Positive FBII - 

Mammalian species richness Negative Species richness N 

Mammalian species evenness Negative Pielou’s index - 

Mammalian species diversity Negative Shannon's index - 

Density of cattle dung Positive Density of cattle N/km2 
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Table SI 3.2. Summary statistics per sub-district in the Afar Region, Ethiopia, of cattle habitat use 

overlap with greater kudu and warthog (Pianka's Niche Overlap), relative abundance of greater 

kudu and warthog (FBII), and species richness, evenness (Pielou’s species evenness, J’) and 

diversity (Shannon's diversity index, H’). 

Sub-district Cattle habitat overlap Relative abundance Species Cattle dung 

density /km2 Kudu Warthog Kudu Warthog Richness Evenness Diversity 

Abosena A 0 0 0 0 5 0.79 1.28 6.0 X 103 

Adalalita 0 0 0 0 5 0.70 1.13 5.7 X 103 

Adalil 0 0 0 0 5 0.69 1.12 4.8 X 103 

Ade Ar Ena  0 0 0 0 5 0.78 1.26 6.4 X 103 

Adibaro 0 0 0 0 5 0.69 1.11 6.5 X 103 

Askomana  0 0 0 0 3 0.90 1.03 4.7 X 103 

Beri 0 0 0 0 5 0.71 1.15 6.8 X 103 

Bilu 0 0 0 0 5 0.72 1.16 4.8 X 103 

Bira Eforo 0 0 0 0 5 0.64 1.03 4.7 X 103 

Bolhamo 0 0 0 0 5 0.68 1.09 4.8 X 103 

Buri 0.3 0.47 0.29 0.18 18 0.69 1.98 9.3 X 103 

Daleti 0 0 0 0 5 0.74 1.19 4.2 X 103 

Deaka 0 0 0 0 5 0.76 1.23 6.8 X 103 

Debel Na H 0 0 0 0 5 0.84 1.35 8.2 X 103 

Diduba 0.95 0.84 0.93 0.79 17 0.72 2.05 5.3 X 103 

Dikikana B 0 0 0 0 4 0.52 0.72 3.6 X 103 

Gahertu 0 0 0 0 5 0.76 1.23 5.4 X 103 

Geberoch 0 0 0 0 4 0.79 1.11 6.7 X 103 

Halbina Wale 0 0 0 0 5 0.63 1.02 7.2 X 103 

Haresa 0 0 0 0 5 0.81 1.30 6.7 X 103 

Hintmegetana  0 0 0 0 5 0.72 1.17 6.9 X 103 

Hotemerona  0 0 0 0 5 0.81 1.3 4.0 X 103 

Kahrtuna T 0 0 0 0 4 0.63 0.87 6.9 X 103 

Kailuna A K 0 0.21 0 0.31 12 0.75 1.79 4.6 X 103 

Rumaytu 0 0 0 0 4 0.60 0.84 4.3 X 103 

Sabure 0.75 0.65 0.67 0.52 12 0.69 1.66 7.2 X 103 

Sebulina W 0 0 0 0 4 0.52 0.72 5.6 X 103 

Seganto 0 0 0 0 5 0.76 1.22 4.9 X 103 

Sehana M 0 0 0 0 4 0.73 1.02 3.2 X 103 

Sergat 0 0 0 0 4 0.79 0.96 3.7 X 103 

Serkamo 0.41 0.47 0.29 0.61 16 0.52 1.99 6.0 X 103 

Wantuna F 0 0 0 0 4 0.78 1.08 5.5 X 103 

Weydelelina  0 0 0 0 5 0.46 0.73 5.5 X 103 

Wiena A 0 0 0 0 5 0.6 0.97 5.2 X 103 
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Table SI 3.3. Spearman's correlation (rs) matrix among independent variables 

 Species 

evenness 

(J’) 

Species 

diversity 

(H’) 

Habitat 

overlap with 

warthog 

Relative 

density of 

kudu 

Relative 

density of 

warthog 

Species 

richness 

Habitat 

overlap 

with kudu 

Species evenness (J’) 1.0       

Species diversity (H’) 0.4 1.0      

Habitat overlap with warthog -0.2 0.6 1.0     

Relative density of kudu -0.3 0.5 0.9 1.0    

Relative density of warthog -0.2 0.6 0.9 0.8 1.0   

Species richness -0.1 0.8 0.6 0.6 0.4 1.0  

Habitat overlap with kudu -0.3 0.5 0.9 0.9 0.8 0.7 1.0 
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Chapter 4 

Beyond invasion: land use influencing bovine tuberculosis (bTB) infection 

Sintayehu W. Dejene, Ignas M.A. Heitkönig, Herbert H.T. Prins, E. van Elburg, H. Bartholomeus and 

Willem F. de Boer 

 

Changes in land use and associated ecosystem change have been described as one of the causal 

drivers in current emerging and re-emerging of infectious diseases, but there is a notable scarcity 

of scientific knowledge to show whether, and how, land use changes play this role. Land use 

change can be the result of the introduction of the non-native Prosopis juliflora, a most powerful 

invasive woody species, threatening biodiversity and mammalian host community structure. We 

hypothesized that higher proportion of P. juliflora  cover may increase bTB risk by changing the 

composition of the host community. We tested the relation between land use - including the 

invasive woody plant species P. juliflora - and bovine tuberculosis (bTB) prevalence in cattle in the 

Afar Region, Ethiopia between November 2013 and April 2015. We examined the potential 

underlying mechanisms by which ecological consequences of land use/cover, such as an invading 

woody species, alters the risk of bTB transmission. A total of 2550 cattle from 102 herds were 

investigated for the presence of bTB using the comparative intradermal tuberculin test (CITT). 

Landsat images from 2014 were used to quantify the proportion of different land cover by 

applying a k-means unsupervised classification, and analyzing this within a buffer of 16km from 

the location of each cattle herd. A generalized linear model was used to quantify the relationship 

between bTB prevalence and the proportion of land use classes. Then, multiple regression tree 

analyses were used to identify the most important land use predictor accounting for the variation 

in bTB prevalence. A model averaging analysis identified the proportion of P. juliflora cover, as a 

significant risk factor for increasing bTB prevalence in cattle (b=12.2, 95%CI=8.9-15.5, 

p<0.001). Multiple regression tree analysis also identified the proportion of Prosopis as the most 

important land use predictor. This could explain the variation in bTB prevalence by altering the 

mammalian species evenness and movement of livestock herds, which can change contact rates 

and hence disease transmission risk between hosts. Given the projected spread of Prosopis, land 

use/cover changes and associated changes in host community composition could affect the risk 

of infectious diseases, which is important for decision makers when formulating disease control 

strategies.  
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Introduction 

Emerging infectious diseases (EID) have increased significantly over time, and most EIDs over 

the past 70 years were zoonoses (Jones et al., 2008). In recent years, evidence suggest that land 

use practices drive emerging, re-emerging and further spreading of zoonotic diseases (Patz et al., 

2000; OIE, 2004; Nicole et al., 2014). For instance, high percentages of forest edges nearby 

herbaceous cover increased exposure to tick vectors (Hernandez et al., 2007). Vittor et al. (2006) 

also found that the conversion of rain forests for agriculture has led to a re-emergence and 

increased incidence of malaria. Cleared land creates areas where water can become stagnant, 

providing breeding sites for mosquito species capable of parasite transmission (Vittor et al., 

2006). A low proportion of riparian forest has been identified as an important predictor of 

whirling disease, due to increase stream sedimentation, thus, increasing habitat for oligochaetes 

(McGinnis and Kerans, 2013). Increased forest fragmentation was also associated with an 

increased risk of Lyme disease by creating suitable habitats for hosts (Jackson et al., 2006). 

Therefore, understanding the underlying mechanisms how the risk of disease relates to the land 

use is important, both for predicting disease dynamics, and to provide valuable insights into 

successful control measures. Despite growing awareness that disease emergence may be related, 

at least in part, to land use (Woolhouse and Gowtage-Sequeria, 2005), these studies usually focus 

on vector-borne diseases, while there is a notable scarcity of scientific knowledge to show 

whether, and how, ecological change plays this role on aerosol-borne animal diseases. Here, we 

examined the relation between land use/cover and bovine tuberculosis (bTB) prevalence in 

cattle, and explored the underlying mechanisms accounting for these observations. 

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is a zoonotic disease of human, livestock 

and wildlife (O’Reilly and Daborn, 1995; Humblet et al., 2009), and cattle serve as the main host 

for the bacteria (de Garine-Wichatitsky et al., 2013). It is an important case of concern with 

potential public health, conservation and economic importance, since it can affect international 

trade of animals and animal products (Ayele et al., 2004). Inhalation of M. bovis is the principal 

route to bTB transmission and is facilitated by direct or indirect contact between infected and 

healthy animals. The direct or indirect interactions between hosts has several points at which 

alteration of the landscape could influence disease dynamics. Land use/cover could potentially 

influence bTB prevalence through direct effects on the host community composition, host 

densities and host contact networks. For instance, low proportion of forest, grassland, and other 

natural habitat due to anthropogenic influence has been associated with a number of ecological 
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complications, resulting in reductions of biodiversity (Chu et al., 2003; Turner et al., 2003). 

Recent studies have shown that a reduction in biodiversity may increase the prevalence and 

transmission of bTB, as non-competent mammalian hosts at higher levels of biodiversity may 

dilute pathogen transmission, a mechanism termed the dilution effect (Huang et al., 2013; Huang 

et al., 2014; Dejene et al., 2017b). Thus, it is important to distinguish between these processes, to 

understand how changes in land use indirectly affect pathogen transmission, and to be able to 

formulate control actions that minimize future disease outbreaks. 

One of the other important pathways by which land use changes alter ecosystem is by the 

introduction of non-native species into novel landscapes (Hobbs and Humphries, 1995; Crooks, 

2002). Incursion of non-native species is one of the most serious threats to natural ecosystems 

worldwide (Sharma et al., 2005; Butchart et al., 2010; Simberloff et al., 2013). Recent evidence 

showed that land use changes due to invasion by invasive plant species affect the risk of exposure 

to diseases. For example, invasive plant species may increase the risk of infection to tick-borne 

diseases by increasing the density as well as the rate of encounter rate between ticks and their 

vertebrate hosts (Allan et al., 2010; Williams and Ward, 2010). Similarly, land use changes as a 

result of plant species invasions increase the risk of mosquito-borne diseases by providing 

favourable habitat for vector species (Conley et al., 2011), and providing a high-quality nutritional 

fruits and leaves for mosquito larvae (Reiskind and Zarrabi, 2011). Prosopis juliflora (further 

referred to as Prosopis) is among the most extremely invasive plants species globally, infesting 

over four million hectares of lands in arid and semi-arid part of Africa (Pasiecznik et al., 2001; 

Gallahar and Merlin, 2010; Wakie et al., 2014).  It was  introduced in Ethiopia in the 1970s 

(Zollner, 1986; Coppock et al., 2005) as a control mechanism to combat desertification 

(Haregeweyn et al., 2013; Mehari, 2015). Around Awash in the Afar Region, about 30,000 ha of 

grassland, rangelands, water points and open acacia woodland were estimated to be occupied by 

Prosopis (Mehari, 2015). By 2020, approximately 31% of the area is projected to be covered by 

Prosopis (Haregeweyn et al., 2013). Currently, the species is a most powerful invasive species, 

threatening biodiversity and mammalian host community structure because of its weedy and 

invasive nature (Mehari, 2015). As biodiversity loss is a predictor for the increase in bTB 

outbreaks (Huang et al., 2013; Huang et al., 2014; Dejene et al., 2017b), we expected that invasion 

of Prosopis might increase the bTB prevalence through loss of non-competent or spillover 

mammalian hosts. The invasion by Prosopis reduces availability of palatable herbaceous species 

(Mehari, 2015) which could increase the movement of cattle herds in search for pasture and 

increase the probability of contact with infected hosts. Moreover, areas that are currently invaded 

by Prosopis were important sources of forage for livestock in the dry season, leading to shrinkage 
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of the range- and grasslands, and altering local host densities, and contact among cattle herds. For 

instance, host movement and herd size have been repeatedly identified as one of the major risk 

factor for bTB infection in African cattle populations (Oloya, et al., 2007; Boukary et al., 2011; 

Dejene et al., 2016). We, therefore, hypothesize that increasing Prosopis invasion can increase the 

risk of bTB infection by increasing contact among cattle herds. However, no study, to our 

knowledge, examined the effect of Prosopis invasion on the risk of disease transmission. Here, 

we explore the impacts of Prosopis invasion on bTB prevalence in cattle, and how these 

invasions may influence the key parameters of this host–pathogen interaction, leading to changes 

in bTB prevalence.   

Materials and Methods 

Study area 

The field study was conducted in the Afar Region, Ethiopia, from November 2013 to April 2015, 

located in the Horn of Africa between 39°34’ to 42°28’E longitude and 8°49’ to 14°30’ N latitude 

(Figure 1.2). The region has an area of 70,000 km2, divided into five sub-regions administratively, 

each of them comprising of several districts. The area has a bimodal rainfall pattern, with a long 

rainy season from July-September and a short rainy season from February-April. The mean 

annual rainfall ranges from 500 mm in the western escarpment to 150 mm in the lowlands. The 

minimum and maximum annual temperature is 20°C and 40°C, respectively. The altitude ranges 

from 120 m below sea level to 1500 m above sea level (EMA, 2013). 

Study design and sample size determination  

A cross sectional multi-stage sampling was used to select study ‘sub-region’ as the highest level 

followed by ‘district’ (n=17; Figure 1.2), and ‘sub-district’ (n=34) at the lowest level. Study 

animals were obtained using a three-stage random sampling procedure following. The ‘villages’ 

within the sub-district were regarded as the primary unit, the ‘herd’ as secondary unit and 

‘individual animals’ as tertiary unit, following the method of chapter 2. A total of 102 livestock 

herds from 34 sub-districts (3 in each sub-district, one large, medium and small herd) were 

selected to identify bTB positive animals following the method described in chapter 2. The total 

sample size per district was calculated using a 95% confidence interval at a 5% absolute precision 

following the method of Thrusfield (1995), which gave a total number of required animals of 

2550. Herds (one herd from each stratum) and individual animals within herds were selected 

randomly.  
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Tuberculin testing of cattle 

To identify bTB positive animals, tuberculin skin testing was performed using Purified Protein 

Derivative (PPD, supplied by Prionics Lelystad B.V, Lelystad, The Netherlands). PPD was 

administered in two shaved sites, 12 cm apart from each other in the middle neck region, after 

having recorded skin thickness with a calliper following the method of chapter 2. Skin thickness 

was measured again at both injection sites after 72 h. The reaction at each site was derived by 

measuring the difference of the skin thickness before and 72 h after the injection. An animal was 

considered bTB positive if the reaction at the bovine site minus the reaction at the avium site was 

≥ 4 mm, according to the recommendations of the World Animal Health Organization (OIE, 

2009). 

Dung counts 

Dung count was used to calculate Shannon's diversity and Pielou’s species evenness index 

following the method of Dejene et al. (2017b). Plots for dung counts were established using 

stratified random sampling. First, sub-districts were stratified according to vegetation type. 204 

plots (6 in each of the 34 sub-districts) of 100 x 100 m were laid out randomly in these vegetation 

types and were GPS geo-referenced. In each plot, we surveyed 50 transects of 100 m length and 2 

m wide, and counted dung piles. Each pile of dung was attributed to a locally available wildlife 

species based on the size, shape and form of the pellets by using Stuart and Stuart (2000), and 

with the help of experienced local trackers. The relative abundances of wild herbivores were 

estimated based on the frequency of faecal droppings found in the plot transects following 

Vicente et al. (2004) and Dejene et al. (2017b).  

Questionnaire survey 

Semi-structured interviews with the herders and herd owners were conducted, gathering 

information on general herd management practices, livestock movement and herd size. Local 

agricultural officers, knowledgeable on local farming practices and who had received prior 

training on the administration and the scope of the questions, assisted us during the interviews. 

The interviewer estimated the maximum movement distance of the livestock herd by tracing the 

herd movement in the area based on interview-derived information, bound by roads, streams, 

rivers or hills, village, district, sub-district, or region, wildlife habitat or park, or other physical 

indicators, which were located on a georeferenced map. Subsequently, the maximum daily 

distance was calculated for sedentary and for the transhumance herds. 
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Land cover classification 

A land cover map was derived from six Landsat 8 images (December 2014) with no cloud cover 

in the area of interest, obtained via the Centre Science Processing Architecture ordering interface 

(espa.cr.usgs.gov). The description of the land cover classes was based on the standard classes 

defined by the US Geological Survey (Mohan et al. 2011). Accordingly, eight classes were 

identified, namely, farmland, acacia woodland, bushland, grassland, area covered by Prosopis, 

wetland, water bodies, and bare land (Table 4.1).  

Table 4.1. The description of the land use land cover (LULC) classes used classification in the 

Afar Region, Ethiopia. 

LULC classes General description 

Farmland  Areas of land ploughed or prepared for crop growing (i.e., both areas identifiably under crop 

agriculture and land under preparation). 

Bushland  Areas with shrubs, bush and small trees in which multiple stems and branches are produced 

from the base of the main stem. 

Grassland  Areas covered primarily with different grass and with herbaceous plant species, which are 

used as a natural grazing land, with scattered shrubs, bushes and trees.  

Prosopis  Areas covered with P. juliflora, an invasive plant species with dark evergreen leaves and closed 

canopy cover throughout the year.  

Acacia woodland  Areas dominated by Acacia species found along the major perennial rivers, mainly the Mile 

and Awash River. The vegetation is usually evergreen (due to continuous water supply from 

the rivers) and serves as a dry season feed for livestock. 

Wetland Areas covered with swamps and wetlands 

Water bodies Areas with water bodies 

Bare land Areas with essentially no vegetative cover 

The images were classified by means of a k-means unsupervised classification, using Erdas 

Imagine. Initially, 36 clusters were requested, for which the maximum number of iterations was 

set to 20, and the convergence threshold to 0.950. Subsequently, each of the 36 clusters was given 

one of the eight class labels, based on Google Earth imagery, resulting in a map with eight 

classes. 

Farmland and Prosopis were often grouped together, and therefore a principal component 

analysis (PCA) was performed using Landsat 8 bands 3 and 4 to separate these two classes. After 

the PCA, another unsupervised classification was applied to the first component. The appropriate 

classes were then labelled as Prosopis. Farmland was difficult to classify, as different crops are in 

different developmental stages and have different spectral information. Therefore, the large 

commercial irrigation farms present in the area were traced manually via Google Earth, and 

added to the classification. 
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A reference set of 61 points was constructed, using Google Earth images. These reference points 

served as ‘ground truth data’ to define the accuracy of the classified map, and calculate the kappa 

coefficient of agreement. The proportions of the land cover classes within a buffer of 16 km 

around each of the 102 study herds, which is the daily average distance of herd movement 

(Dejene et al., 2016), was determined using ArcGIS.  

Statistical analysis 

Shannon's diversity index (H’) and Pielou’s index were callculated following the method of 

Dejene et al. (2017b). Relationships between bTB prevalence and proportion of land use / cover 

were quantified in two separate analyses. First, a Generalized Linear Model was used to examine 

the effects of the proportion of land use on bTB prevalence as a binary response. From the 

global model, candidate models were constructed using ∆AIC < 5, with the best approximating 

model having the lowest ∆AIC (Burnham and Anderson, 2002). Model averaging was used to 

construct the final model based on the lowest Akaike weights of the different candidate models 

(Anderson et al., 2000). So, we analysed differences in host community composition as function 

of land use / cover type to examine the possible underlying mechanisms through which land use 

/ cover type altered bTB prevalence. Second, regression tree analyses were used to identify the 

most important land use / cover predictors accounting for the variation in bTB prevalence. 

Regression tree analysis was used because of its ability to deal with non-normal data, numerical 

and categorical data, as well as its ability to automatically consider the interactions among 

explanatory variables (De’ath and Fabricus, 2000). We carried out all analyses in R v3.2.2 (R Core 

Team, 2015). 

Results 

The proportion of grassland was by far the dominant land cover followed by the proportion of 

bushland (Figure 4.1). Proportion of farmland, Prosopis and acacia woodland were often minor 

components of the landscape, but the major proportion of the main dry season grazing land, 

which is found in the Awash River basin, was covered by Prosopis, followed by acacia woodland 

(Figure 4.1). The overall map accuracy of classification was 70.2%, and the kappa coefficient was 

0.63. 
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Figure 4.1. Classification of land cover types in the Afar Region, Ethiopia, on the basis of 2014 

Landsat images.   

Land use and bTB prevalence 

There was a significant positive relationship between the proportion of Prosopis cover and bTB 

prevalence, but bTB prevalence tended to be relatively lower in areas with a higher proportion of 

bushland (Table 4.2). 

Table 4.2. Summary statistics of the final model, obtained through model averaging, with 

regression coefficient (b, 95% CI), Odds Ratio (OR, 95% CI) and p-value from the likelihood 

ratio test for the effect of proportion of land use on bTB prevalence in Ethiopian cattle. 

Land use type b (95% CI) OR(95% CI) p-value 

Prosopis 12.2 (8.9-15.5) 20.4(7.9-52.7) <0.001* 

Bushland -0.06 (-1.2-0.6) 0.7(0.3-1.8) 0.279 

Grassland -0.01(-1.1-0.9) 0.9(0.5-2.5) 0.958 

Acacia woodland 0.01(-2.8-6.8) 1.2(0.6-6.7) 0.935 

Farmland  0.48 (-5.2-6.6) 7.2(6.3-8.2) 0.447 

OR= Odds Ratio, CI=95% confidence intervals; * P< 0.05; ** p < 0.01; *** p < 0.001 

The multivariate regression tree (MRT) analysis indicated that the proportion of Prosopis and 

bushland in the landscape were correlated with bTB prevalence (Figure 4.2), with a higher bTB 

prevalence in cattle in areas with a higher Prosopis cover. The first split of the multivariate 

regression tree was determined by the proportion of Prosopis, grouping 67 herds (average bTB 
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prevalence was 1.7%) that had less than or equal to 1.3% Prosopis cover. The second split was 

determined by proportion of bushland, grouping 12 herds (average bTB prevalence: 2.1%) that 

were located in areas with a bushland cover <26.6% (Figure 4.2).  

 

Figure 4.2: Pruned regression tree for predicting the prevalence of bTB prevalence with 

explanatory land use / cover variables. Each partition is labelled with the splitting rule and its 

value. Splitting statements are true to the left and false to the right. Terminal nodes are labelled 

with the predicted (mean) bTB prevalence value of the observations in the terminal group and 

the number of observations (n). 

The regression tree analyses confirmed that the variable ranking first, i.e. the proportion of 

Prosopis cover, was also the variable that had a significant association with the bTB prevalence in 

the GLM. The regression tree analysis also included bushland as the second important predictor 

variable after Prosopis, similar to the GLM. 

Land use and host community 

Regression tree models also identified Prosopis cover as the most important land use/cover 

predictor accounting for the variation in species evenness (Figure 4.3A) and livestock herd 

movement (Figure 4.4A). We found that the mean species evenness (Pielou’s species evenness, 

J’=0.76) was the lowest recorded in the area with the highest Prosopis cover (proportion of 

Prosopis >7%), indicating that Prosopis cover was correlated with a low species evenness in the 

landscape. When a Prosopis cover <7%, species evenness was positively correlated with acacia 

woodland cover (Figure 3A).  

The best explanatory variable correlated with Shannon’s species diversity index was grassland 

cover. When grass cover was ≥55% the predicted mean species diversity was relatively high at 1.8 

(Figure 4.3B).  
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Figure 4.3. Pruned regression tree using land use / cover type as a predictor for predicting A) 

species evenness, J’ and B) Shannon’s diversity, H’. Each partition is labelled with the splitting 

rule and its value. Splitting statements are true to the left and false to the right. Terminal nodes 

are labelled with the predicted (mean) value of the observations in the terminal group and the 

number of observations (n). 

The movement of cattle herd was also correlated to Prosopis cover, with the greatest herd 

movement in areas with a higher Prosopis cover (Figure 4.4A). Herds in areas with a Prosopis 

cover <1.3% had the lowest mean herd movement (5.8 km/day). The regression tree showed 

that the proportion of bushland cover was the primary predictor differentiating herd size, 

eventually splitting into five groups of herd size, with smaller herds in areas with relatively more 

bushland (i.e. ≥47%; Figure 4.4B). 

 

Figure 4.4. Pruned regression tree using land use / cover type as a predictor for predicting A) 

herd movement and B) herd size. Each partition is labelled with the splitting rule and its value. 

Splitting statements are true to the left and false to the right. Terminal nodes are labelled with the 

predicted (mean) value of the observations in the terminal group and the number of observations 

(n). 
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Discussion 

Measures of land use may be useful predictors of bTB risk at various spatial scales. Our study 

showed that bTB prevalence was positively associated with the invasion of Prosopis. Similarly, a 

regression tree model identified the proportion of Prosopis as important land use predictor for 

the prevalence of bTB. The invasive Prosopis, although only a minor proportion of the total area 

of the landscape, has invaded the majority of the dry season pastureland of the Awash River 

Basin and causes significant environmental damage and habitat destruction (Haregeweyn et al., 

2013), and thereby indirectly regulates host community composition. The loss in host species 

evenness and the increase in cattle movement as a consequence of the loss of palatable grasses in 

Prosopis areas could be potential mechanisms accounting for the observed higher bTB 

prevalence in these areas.  

Invasive species have the ability to change ecosystem processes (Ehrenfeld, 2010), decrease the 

abundance, structure and diversity of native species through predation, competition, 

hybridization as well as indirect effects (Blackburn et al., 2004; Gaertner, et al., 2009). Similarly, 

invasion of Prosopis has been shown to suppress the growth of grasses and other herbaceous 

species and reduce species diversity (Getachew et al., 2012; El-Keblawy and Al-Rawai, 2007; 

Haregeweyn et al., 2013). The low diversity of herbaceous plant species observed under the dense 

Prosopis canopy is associated with a lower light intensity and shorter light period received by the 

understorey native plant species as well through competition for soil moisture (Getachew et al., 

2012). The influence of Prosopis on the palatable herbaceous species in highly invaded areas may 

contribute to the reduction in mammal species evenness that we observed, as abundance and 

distribution of mammal species is partly determined by the availability and quality of palatable 

plant species (Treydte et al., 2013; Young et al., 2013). Haregeweyn et al. (2013) also reported 

negative impacts of Prosopis invasion on biodiversity in the Afar Region, as the invasion of 

Prosopis reduced the densities of wild animal species, such as Oryx gazelle, Equus grevyi, Madoqua 

saltiana, and Kobus ellipsiprymnus in response to a reduction of palatable plant species (Haregeweyn 

et al., 2013). As biodiversity loss is an explanatory factor of the increase in the bTB risk (Huang 

et al., 2013; Huang et al., 2014; Dejene et al., 2017b), bTB prevalence might increase through 

losses of non-competent or spillover mammalian host species. In pastoral areas of East Africa, 

the distribution and abundance of large grazers is negatively associated with the presence of cattle 

(Voeten and Prins, 1999; de Leeuw et al., 2001; Bonnington et al., 2007). Odadi et al. (2007) 

found that the preference of foraging habitat for cattle was lower in the presence of wild grazers 

(Odadi et al., 2007). Loss of wild grazers due to Prosopis invasion might increase encounter rates 
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between susceptible and infected cattle herds. Such an “encounter increase” (Keesing et al., 2006) 

might increase bTB infection risk. 

Another pathway by which Prosopis may influence the prevalence of bTB is through livestock 

herd movement. Invasion of Prosopis species have been observed to suppress grass growth and 

reduce availability of herbaceous plant species (Brown and Archer, 1989). The low herbaceous 

plant species richness observed under high densities of Prosopis could be attributed to the dense 

Prosopis canopy, negatively affecting the intensity and duration of light received by understorey 

plant species. Areas that are currently invaded by Prosopis were important sources of dry season 

forage area for cattle in the Afar people. The invasion by Prosopis reduces availability of palatable 

herbaceous species (Mehari, 2015). Several useful palatable plant species such as Chrysopogon 

plumulosus, Cymbopogon schoenanthus, C. pospischilii, Andropogon canaliculatus, Eragrostis cylindriflore and 

Terapogon cenchriformis are now on the verge of local extinction in areas due to Prosopis invasion 

(Haregeweyn et al., 2013; Mehari, 2015), which could increase the movement of cattle herd in 

search for pasture. Our study also showed that high proportion of Prosopis cover increased the 

movement of livestock herd. The herd moved more and grazed in larger areas, hence the 

probability of grazing and contact with either infected domestic or infected wildlife hosts 

increased, amplifying the chances for bTB infection (Dejene et al., 2016). Furthermore, Prosopis 

forms dense thorny thickets, which creates landscape barriers for host movement and decreases 

the permeability of the landscape. This could increase the encounter rates between susceptible 

and infected hosts, and thereby increase bTB transmission rates. 

The dense canopies of Prosopis creates a soil that better retains humidity than surrounding non-

Prosopis areas. Empirical studies conducted in Sudan showed that wind speed inside Prosopis 

plantation was reduced by 14%, while potential evaporation was reduced by 22% (El Fadl, 1997). 

M. bovis has been detected in soil samples in East Africa (Roug et al., 2014), and experimental 

studies have confirmed that the bacteria can survive for multiple days outside hosts (Fine et al., 

2011). Kelly and Collins (1978) suggested that the major factors influencing survival of the 

bacteria in soil is soil temperature and moisture, as high temperature causes desiccation, and 

negatively influence survival of the bacteria. Environmental persistence of M. bovis has been 

proposed to play a role in the transmission of bTB in the UK (Courtenay et al., 2006). Humid 

areas are also potential risk factors, and soils with higher levels of moisture and shade offer 

favourable conditions for M. bovis survival as demonstrated in Tanzania (Cleaveland et al., 2007) 

and Zambia (Munyeme et al., 2010). The moist and shaded conditions created by Prosopis could 
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also serve as propagating factors for M. bovis, by creating favourable conditions for the survival of 

the bacteria.  

Our findings contribute to a growing body of literature that illustrates how land use / cover 

change can alter the prevalence of diseases through altering the host species community 

composition, and density and mobility of hosts. The loss of biological diversity and the 

homogenization of host communities have the potential to increase the prevalence of and risk of 

exposure to zoonotic diseases. Removal of the invader could mitigate disease risk, coupled with 

the benefits of invasive plant removal to wildlife communities, suggesting a potential win-win 

scenario for biodiversity conservation and disease control. However, our results are a necessary 

first step towards understanding the role of invasive species on bTB risk and identifying the 

underlying mechanisms. More experiment studies including surveys of host communities in 

invaded and uninvaded areas by Prosopis, coupled with a Prosopis removal experiment are 

needed to distinguish between these pathways. 
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Disease transmission in animal transfer networks 
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Infectious diseases transmission is strongly determined by who contacts whom. Bovine 

tuberculosis (bTB) caused by Mycobacterium bovis is a worldwide burden for animal populations 

One of the major transmission mechanism between herd is the transfer of infectious animal. In 

East Africa, pastoralists may receive or bestow livestock to create and strengthen social 

relationships. Here, we used a network approach to examine the relative importance of such 

cattle transfer in the transmission of bTB. First, a total of 2550 cattle from 102 herds were tested 

using the comparative intradermal tuberculin test to assess the presence of bTB infected cattle in 

the herd. A herd was considered bTB positive if it had at least one tuberculin reactor animal. 

Next, we calculated the centrality of each herd in the cattle transfer network using four 

established measures of social network centralization: degree, betweenness, closeness and 

fragmentation. The relationships between the network centrality measures and bTB infection 

were examined using generalized linear mixed models (GLMM). We found that a herd’s in-degree 

in the social network was positively correlated with the risk of being infected with bTB (b=4.2, 

95%CI=2.1-5.7; p<0.001). A herd that was close to many others (i.e., had a higher closeness 

index) had a larger chance of acquiring bTB infection (b=2.1, 95%CI=1.4-2.8; p<0.001). 

Betweenness centrality was also positively associated with the presence of bTB infection. There 

was a negative relationship between the fragmentation index and bTB infection (b=-2.7, 

95%CI=-4.9-1.3; p<0.001). The study clearly demonstrated that the extent to which a herd is 

connected within a network has significant implications for its probability of being infected. 

Further, the results are in accordance with our expectation that connectivity and the probability 

that a herd will transmit the disease to other herds in the network are related.  
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Introduction  

In recent years, contact patterns among hosts have received increasing attention to better 

understand the dynamics of diseases (Ribbens et al., 2009; Volkova et al., 2010; Lindstrom et al., 

2011). These investigations are vital for improved predictions about pathogen dynamics, disease 

transmission, and associated risks (Kao et al., 2007) as well as to design effective disease control 

strategies. Recent studies demonstrated that infected animals often have more connections in a 

contact network (Corner et al., 2003; Godfrey et al., 2010), and that animals are at greater risk of 

becoming infected if they are associated to infected individuals in different ways (Drewe et al., 

2009; Porphyre et al., 2011; MacIntosh et al., 2012). In humans, significant progress has been 

made to predict how diseases spread using network analyses (Gupta et al., 1989; Rothenberg et 

al., 1998; Eames and Keeling, 2002; Pourbohloul et al., 2005; Meyers et al., 2005).  

Despite this, the role of contact networks in pathogen transmission dynamics has never been 

quantified in pastoral production systems. Most disease transmission models focused on 

theoretical assumptions of the influence of host ecology on disease transmission dynamics 

(Keeling, 2005; Lloyd-Smith et al., 2005). Yet, contact networks can play a pivotal role in the 

transmission of infectious diseases among domestic animals in pastoral areas, where social 

organisation is highly dependent on livestock transfer between herds to strengthen social 

relationships. Hence, understanding the role of livestock transfer networks in disease 

transmission is crucial to predict which herds might be more susceptible to pathogen infection as 

well as to develop effective disease control strategies in pastoral area of Africa.  

Bovine tuberculosis (bTB), caused by M. bovis, is an important zoonotic disease affecting many 

mammal species, and mainly spreads via aerosol transmission (Skuce et al., 2012). The disease is 

endemic in sub-Saharan African cattle (de Garine-Wichatitsky et al., 2013), and cattle are the main 

host for M. bovis (Cosivi et al., 1998). In fact, bTB is an important public concern, and can cause 

economic losses due to livestock deaths, production reduction and trade restrictions (Munyeme 

et al., 2008; Humblet et al., 2009). Recent studies showed that the introduction of a diseased 

animal into a bTB free herd through purchase is one of the risk factors for bTB transmission 

(Johnston et al., 2005; Gopal et al., 2006). Exchange of livestock within and between clans is a 

common practice in pastoral areas of East Africa to build supportive relationships and spread 

risks (Getachew, 2001; Davies, 2006; Davies and Bennet, 2007). Although transfer of livestock 

may increase the risk of disease transmission, the impact of cattle exchange on transmission risks 

of bTB in a pastoral production system has not been studied thus far. Given the large number of 

cattle involved in traditional economies in Africa, there is a need to integrate information on herd 



Chapter 5 

58 

 

contact structures and the risk of M. bovis transmission for effective bTB control strategies. We 

investigated the relationships between cattle transfer networks and the risk of bTB infection in 

north-eastern Ethiopia using network analysis.  

Network analysis has become increasingly popular to examine relationships between host contact 

patterns and disease transmission dynamics (Lindstrom et al., 2012; Makagon et al., 2012; 

VanderWaal et al., 2013b; Nunn et al., 2015). The centrality metrics are most commonly used to 

evaluate the relative importance of a node in the network, and measures the interaction intensity 

of a given node in comparison with other nodes in the network (Newman, 2003; Gómez et al., 

2013). In disease transmission networks, herd centrality is correlated with the risk of pathogen 

infection (Drewe et al., 2009; Alvarez et al., 2011; Gomez et al., 2013; VanderWaal et al., 2013b). 

Thus, quantifying the centrality of nodes in a network is an appropriate measure to identify 

pathogen sources as well as pathogen sinks (Canright and Engoe-Monsen, 2006; Craft et al., 

2009; Bordes and Morand, 2011). The present study quantifies the relationships between 

different centrality metrics in an animal transfer network and the risk of bTB infection. This 

information could also be valuable to formulate evidence-based intervention strategies to 

minimize disease transmission among cattle herds. In this study, in-degree, density, betweenness, 

closeness and fragmentation index of network centrality measures were calculated to investigate 

the centrality of nodes in the network. We expect that the risk of being infected with bTB 

increases with a higher in-degree, closeness and betweenness, and decreases with an increasing 

fragmentation index of a node in the network.  

Materials and Methods 

Study area 

The study was carried out in the Afar Region, Ethiopia (8° 49’ to 14° 30’ N latitude and 39° 34’ 

to 42° 28’E longitude), an area of about 70,000 km2 (Figure 1.2). The altitude ranges from 120 m 

below sea level in the Danakil depression to 1500 m above sea level. The area is characterized by 

an arid and semi-arid climate with low and erratic rainfall. Rainfall is bimodal, with a mean annual 

rainfall of 500 mm in the semi-arid western escarpments, decreasing to 150 mm in the arid zones 

to the east. Temperature ranges from 20°C to 40°C. Afar communities traditionally keep herds of 

cattle, sheep, goats and camels. There are about 1.9 million cattle in the Afar region, of which 

90% are managed under a pastoral production system (CSA, 2008).  
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Livestock production systems  

Two types of pastoralism are recognised in the area, namely agro-pastoralists, in which cattle are 

grazed within village perimeters without migration, and transhumance, the most common grazing 

system, which involves the seasonal movements of livestock to following suitable grazing and 

water resources over considerable distances (Kassa et al., 2005). In the wet season, animals are 

kraaled at night, and in most cases herds owned by two to five close relatives or clan members 

are joined. The animals are released in the morning and the herds graze separately during the day 

in rangelands around the homesteads. In the dry season, some herds remain sedentary, whereas 

transhumant herds often migrate together, sharing grazing areas. 

Types of livestock transfer  

Afar pastoralists have adapted to their harsh environment through their social organisation. An 

important element of this social organisation is livestock transfer by which pastoralists may 

receive or bestow livestock to create and strengthen social relationships, spread risks and 

establish trust through gifts, loans and herding contracts (Getachew, 2001; Davies, 2006; Davies 

and Bennet, 2007). The most important livestock transfer mechanism is called “iribu”, through 

which any kind of species of either sex is given as a permanent gift. It is commonly practiced 

between close relatives, but can also be sought from non-relatives that live entirely separately of 

the clan. Another important mechanism of livestock transfer is “ala”, which is a system of bond-

friendship entailing gifts of livestock. Ala enables the recipient to increase a particular species 

during good times and is not related to recovery after crisis. Either clan, lineage affiliation, or 

geographical location influence ala, and gifts are generally reciprocated over time (Getachew, 

2001; Davies, 2006; Davies and Bennet, 2007). 

Study design  

A cross sectional multi-stage sampling with sub-region as the highest level followed by district 

(n=17), and sub-district (n=34) as lowest sampling levels was used to select study villages. Study 

animals were obtained using a three-stage random sampling procedure. The village within the 

sub-district was regarded as the primary unit, the herd as secondary unit and individual animal as 

tertiary unit. Herds of livestock in each sub-district were stratified into three groups based on 

herd size (large, medium and small), after calculating the average herd size of the sub-district. 

Herds (one herd from each stratum) and individual animals were selected randomly. A total of 

102 livestock herds from 34 sub-districts (3 in each sub-district, one large, medium and small 

herd) were selected. In this study, cattle owned by one owner and/or his close relatives, shared 
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common grazing area, watering points, kept at night at a common site and moved together 

during migration, was considered as a single herd. 

Sample size determination 

The sample size was determined by assuming that the average expected prevalence of bTB was 

11% (Mamo et al., 2013). The desired sample size was calculated using the 95% confidence 

interval and at 5% absolute precision following the method of Thrusfield (1995). The desired 

samples size of 2550 animals was calculated for all 17 districts, or 75 animals for each of the 34 

sub-districts.  

Single comparative intradermal tuberculin test 

Tuberculin skin testing was performed using purified protein derivative (PPD) (Prionics Lelystad 

B.V, Lelystad, The Netherlands) to identify bTB positive animals following the method of 

chapter 2. A herd was considered bTB positive if it had at least one tuberculin reactor animal 

(Ameni et al., 2007). 

Livestock transfer between herds  

Cattle transfer network data were collected from 102 herds located in the Afar Region, Ethiopia 

using semi-structured interviews with herd owners. From the field data two types of cattle 

exchange were distinguished: 1) off-herd or bestowing cattle to others, 2) import or receiving 

cattle from others. Transfer of livestock into the herd can be regarded as risky contacts due to 

possible transmission of bTB, in contrast to bestowing livestock to others. In this study, only 

transfer of cattle into the herd to create and strengthen social relationships were drawn and 

selected for the analyses, which, constitutes the majority of the livestock transfers in the area and 

that other types of cattle exchange were hardly important for disease transmission. The mean 

number of cattle received into the herd per year was determined to quantify the contacts between 

herds over a 10-year period, from December 2004 to November 2013. 

Network components  

The livestock exchange was studied using graph theory, for which ‘nodes’ and ‘edges’ are defined. 

‘Nodes’ were defined as study herds, and ‘edges’ to be  livestock transfer by which pastoralists 

receive cattle, which could potentially result in bTB transmission from one herd to another.  
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Social network measures 

‘Density’ quantifies the amount of edges through which a node interacts with all others nodes 

within the network compared to the maximum number of edges possible. The measure varies 

from 0 to 1, where 0 means that there is no links and 1 means that all theoretically possible links 

are present (Wasserman and Faust, 1994; Martínez-Lopez et al., 2009). We calculated the 

importance, i.e., centrality, of each herd in the transmission network using seven established 

measures of social network centralization: degree, clustering coefficient, density, betweenness, 

closeness, eigenvector and fragmentation index (Borgatti, 2003; Table 5.1). Many of these metrics 

are highly correlated with each other, so only degree, betweenness, closeness and fragmentation 

were used in this study, which are four of the most common and easily interpretable metrics 

(Makagon et al., 2012; VanderWaal et al., 2013b; Nunn et al., 2015). These measures are 

explained further below. 

Table 5.1. Predicted effects of the four network centrality indices. 

Index Expected effect 

In-degree Positive 

Closeness Positive 

Betweenness Positive 

Fragmentation  Negative 

 

Degree measures the importance of a node according to the number of direct contacts a node 

has with other nodes within a network (Wasserman and Faust, 1994; Nunn et al., 2015). The in-

degree is defined as the number of edges coming in to the node by receiving animals from other 

nodes (Makagon et al., 2012; VanderWaal et al., 2013b). In this study, we consider receiving of an 

animal into the herd as a risk factor for introducing bTB, thus in-degree was used to analyse the 

bTB transmission networks. A herd with a high in-degree makes more contact with other herds 

by receiving animals in the network and runs a larger chance to become infected with a disease.  

Closeness describes the relative distance from a particular node to all other nodes in the network 

(Makagon et al., 2012; Gómez et al., 2013; VanderWaal et al., 2013b). It provides an index how 

close a given node is from the rest of the nodes in the network. Unlike degree, closeness takes 

into account both direct and indirect links that a node has in the network (Makagon et al., 2012). 

Thus, from a disease transmission point of view, herds with a higher closeness value are more 

susceptible to become infected (Borgatti, 2005; VanderWaal et al., 2013a; VanderWaal et al., 

2013b; Nunn et al., 2015) and facilitate an epidemic through a network (Borgatti, 2005; Fournie 

et al., 2013). 
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Betweenness is the number of shortest paths from one node to another pass through a given 

node in the network, calculated from the number of direct and indirect connections (Borgatti, 

2003; Hanneman and Riddle, 2005; VanderWaal et al., 2013b). Thus, in the context of pathogen 

transmission, herds with a high betweenness index in the network act as bridges for the spread of 

diseases between two nodes that are indirectly linked (Borgatti, 1995; Borgatti, 2005; Fournie et 

al., 2013; VanderWaal et al., 2013b) and potentially  spread the pathogen in the network (Salathe 

and Jones, 2010). It has been suggested that a node with a high betweenness value plays a pivotal 

role in the regulation of the information flow (i.e., disease transmission) between two indirectly 

linked nodes within the network (Borgatti, 2005;  Makagon et al., 2012; Fournie et al., 2013; 

Gómez et al., 2013). Fragmentation centrality is an inverse measure of the amount of 

connectedness or number of different connections in a network (Nöremark et al., 2009; Makagon 

et al., 2012). A node with greater fragmentation index means that it is more isolated from other 

nodes in the network (Borgatti, 2003; Nöremark et al., 2009). The network was constructed using 

weighted data (that is, we considered the number of animals transferred rather than simply 

recording the presence or absence of animal exchange). For infections such as bTB, which can be 

transmitted through direct and indirect contact, both the frequency of encounters and the weight 

of the interactions among hosts are important (Read et al., 2008).  

Statistical analysis 

UCInet (Analytic Technologies; http://www.analytictech.com) was used to generate social 

network metrics and visualize the network pattern that exist between herds. Network graphs 

were created using NetDraw (Analytic Technologies). To examine whether herd network 

characteristics (i.e., in-degree, betweenness, closeness, and fragmentation index) are a significant 

predictor of bTB infection status, the data were analysed using generalized linear mixed models. 

Sub-district was included as a random effect in order to control for potentially correlated data 

due to repeated sampling. Earlier to developing our candidate models, one-by-one univariate 

analyses were used to recognize a potential risk factors. Predictor variables with p<0.25 were 

recognized as potential risk factors, and were then used to construct multiple regression models. 

For highly correlated independent variables (SI-Table 1), only the one causing the largest change 

in the Log-Likelihood (LL) was added to the final global model to avoid multi-collinearity. From 

the global model, candidate models were selected using ∆AIC (< 5) and Akaike weights 

(w>0.05), with the best approximating candidate model having the highest w, as described in 

Burnham and Anderson (Burnham and Anderson, 2002). The final model was constructed using 
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model averaging (Anderson et al., 2000). Regression analyses were performed using R v3.2.2 (R 

Core Team, 2015).  

Ethical Statements  

This study was approved by Haramaya University, Ethiopia  (Reference number 

HUP14/559/15). 

Results  

Bovine tuberculosis (bTB) was detected in 47 herds out of 102 (46% herd level prevalence). The 

network contact density was 0.028, so each node was, on average, connected to 2.8% of all other 

nodes. The network graph showed that herds that had more numerous connections via transfers 

of animals had a larger likelihood of being infected with bTB (Figure 5.1). 

 

Figure 5.1. Herd network and herd bTB presence in a network of cattle herds linked through 

animal transfer. Each node (square) represents a herd. Arrowhead size is proportional to the 

node’s strength, i.e., the number of cattle transferred, thus the sum of arrowheads around each 

node gives an indication of its in-degree centrality (i.e., the relative number of animal received by 

that herd). Black nodes indicate herds that tested bTB positive.  
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The analysis of model averaging showed that three network centrality measures (in-degree, 

closeness and betweenness) were positively correlated with the risk of being infected with bTB 

(Table 5.2; Figure 5.2).  

Table 5.2. Effects of social network position on herd bTB infection (n=102) and summary 

statistics (standardized regression coefficient b with 95% confidence intervals,  χ² and p-value) as 

obtained through GLMMs. 

Centrality Measures  b (95% CI) χ² p-value 

In-degree 4.2 (2.14-5.67) 3.8 < 0.001*** 

Closeness 2.1 (1.4-2.77) 5.8 < 0.001*** 

Betweenness 0.18 (0.01-0.3) 3.7  0.002** 

Fragmentation  -2.7(-4.9-1.3) 4.5 < 0.001*** 

CI=95% confidence intervals; * P< 0.05; ** p < 0.01; *** p < 0.001 

A herd’s in-degree in the network was positively correlated with the risk of being infected with 

bTB (Table 5.2; Figure 5.2A). Herds that had a higher in-degree were more likely to be part of 

the bTB transmission chain, characterized by a higher likelihood of being bTB infected.  

 

Figure 5.2. Fitted logistic regressions with the presence or absence of bTB in cattle herds as a 

function of in-degree (B), closeness (B), betweenness (C) and fragmentation index (D).  

Increasing closeness was strongly positively correlated with the presence of bTB in the herd 

within the network (Table 5.2; Figure 5.2B). Social betweenness was also positively correlated 
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with the risk of bTB infection, likely because herds that were well connected in the animal 

transfer network were positioned ideally to connect the disease transmission network (Table 5.2; 

Figure 5.2C). As expected, fragmentation index was negatively associated with the risk of being 

infected with bTB (Table 5.2; Figure 5.2D). The result of the study showed that the risk of being 

bTB infected was more likely to occur between herds that were strongly linked in the social 

network (Figure 5.1; Figure 5.2; Table 5.2). 

Discussion  

One of the major intrinsic expenses of socialization is the increased risk of being infected with 

socially transmitted disease (Corner et al., 2003; Godfrey et al., 2010; Drewe et al., 2009; 

VanderWaal et al., 2013a). The risk of pathogen transmission is expected to increase with the 

exposure of a susceptible animal to infected animals. This encounter can arise from direct or 

indirect interactions, under influence of, e.g., animal movements. Our results demonstrated that 

the livestock transfer network patterns played a significant role in the risk of pathogen 

transmission. Our network analysis showed that a greater level of network contacts was strongly 

correlated with the occurrence of bTB in a herd. Moreover, our analysis showed that the position 

of each herd within the network can serve as a predictor for the risk of becoming infected. 

In recent studies, direct network connectivity was identified as a risk factor for disease infection, 

and individuals with a greater in-degree were more likely to be infected with a pathogen in a 

social network (Godfrey et al., 2009; Drewe et al., 2011; Porphyre et al., 2011; Fournie et al., 

2013; Gómez et al., 2013; VanderWaal et al., 2013b; Nunn et al., 2015). We found that herds with 

a greater in-degree (direct social connections) were positively correlated with the risk of being 

infected with bTB, indicating that greater network in-degree herds tended to have more 

connections in the disease transmission network, increasing the probability of becoming infected. 

From a bTB transmission point of view, introduction of an infected animal (exchange and 

purchase of animals) is one of the major risk factors for introducing a disease, as suggested by 

studies carried out in the UK, Michigan, Italy and Tanzania (Johnston et al., 2005; Gopal et al., 

2006; Cleaveland et al., 2007; Humblet et al., 2009). Those studies showed that purchasing 

animals from positive farms and contacts with positive animals are large risk factors for the 

transmission of a disease (Munroe et al., 1999). In-degree (introduction in to the herd or receiving 

animals from others during livestock exchange) led to a higher risk of bTB infection. 

Herds that fall close to the centre of the network (i.e., with higher closeness centrality scores), can 

strongly influence other herds in the network (Nöremark et al., 2011; Makagon et al., 2012; 
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Gómez et al., 2013). Nodes (that is, herds) with the highest closeness centrality are not only more 

susceptible to becoming infected with a disease but also facilitate diseases transmission through 

networks (Borgatti, 2005; Christley et al., 2005), potentially triggering disease epidemics. Similarly, 

we found that a high closeness centrality score was positively associated with the risk of 

becoming infected with bTB, as these herds were tightly connected to the rest of the herds in the 

network. 

The betweenness index represents the extent to which a node (thus, a herd in our study) 

facilitates transmission of a disease among members of a network (Borgatti, 1995; VanderWaal  et 

al., 2013b). Nodes with high betweenness played a pivotal role in the FMD transmission in 

England (Ortiz-Pelaez et al., 2006). In this study we found that a herd’s bTB infection status was 

positively associated with its network betweenness; we think this can be explained  because herds 

that were well-connected in the social network might have a higher probability of becoming 

infected with a disease. If one disconnects a herd which possesses a high betweenness centrality 

from the livestock exchange network, the speed of transmission between networked nodes will 

decrease, and the transmission of bTB within the network as a whole will be reduced. 

Furthermore, herds with a high betweenness score connect distinct herds (Makagon et al., 2012; 

VanderWaal et al., 2013b), thus some herds tend to serve as bridges in the bTB transmission 

network by occupying positions of high flow (high transmission betweenness). When herds with 

a high betweenness become infected, the pathogen may spread to new regions of the network 

(Salathe and Jones, 2010; Gómez et al., 2013). Thus, betweenness is an effective measure to 

identify high risk herds in the disease transmission network, which supposedly are ideally 

connected for control interventions, as, e.g., vaccination of these herds might limit disease spread 

over the network. 

Theoretical models showed that high fragmentation generally reduces the risk of a disease to 

spread through a network (Nöremark et al., 2011; Makagon et al., 2012). We found that the 

probability of bTB infection was inhibited in more fragmented networks, likely because a high 

fragmentation index was related to decreased number of contacts with other nodes in the 

network. In the context of bTB transmission, a herd which has a low fragmentation index makes 

more contacts with another herds in the network, and there is greater chance that it becomes 

infected with bTB. If a network becomes more fragmented the opportunity of infected animals 

to encounter susceptible individuals decreases, limiting a wider dissemination of an infection.  

In conclusion, the identification of connected and disconnected components within a network is 

important in terms of disease transmission. Infection of a node within a larger connected 
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network section would have a larger effect on the spread of diseases throughout the network 

than if the infected node is part of a disconnected network section. Our findings demonstrated 

that network centrality measures or a herd’s social network position is predictive for its position 

in the disease transmission network. This has implications for identifying herds that function as 

super-spreaders or disease transmission bottlenecks in the network. It is also useful to detect and 

predict the risks of disease transmission which is important knowledge for formulating zoonotic 

disease control measures. Importantly, a simplification of the herd contact structure without 

considering all other possible connections (e.g., contact at water points, commercial contacts) can 

undermine our understanding of the transmission events at herd level, and result in a misuse of 

resources in seeking to prevent disease spread. More sophisticated methods are therefore 

required to assess the role of different network relationships in pathogen spread, such as the 

network analysis presented here. 
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Chapter 6 

Synthesis 

Uncovering the ecological and social drivers of bovine tuberculosis (bTB) risk  

 

Introduction 

With increasing emergence and re-emergence of infectious diseases, there has been a growing 

interest for a better understanding of the dynamics of multi-host pathogens at the wildlife-

livestock-human interface (Daszak et al., 2000; Jones et al., 2008; Perry et al., 2013; Wiethoelter et 

al., 2015). Multi-host pathogens cause two-thirds of human diseases and three-quarter of 

emerging human diseases are zoonotic (Cleaveland et al., 2001; Taylor et al., 2001; Engering et al., 

2013). Similarly, three-quarter of livestock diseases are shared with other hosts (Cleaveland et al., 

2001). So livestock diseases such as bovine tuberculosis (bTB) are shared between multiple 

species and represent a potential burden, including direct losses to the livestock production 

sector through increased mortality and reduced productivity, and indirect losses associated with 

cost of control, loss of trade, decreased market values, and food insecurity (Perry and Grace, 

2009). Thus, improving our understanding of the biological and anthropogenic factors that 

promote contact between hosts is critical for limiting bTB transmission in multi-host 

communities.  

As many answers as I have attempted to find, explain, and present in chapter 2, 3, 4 and 5 of this 

thesis, there are still a number of questions to follow. The complexity of this study site, the social 

practices and its themes are at once fascinating and challenging. I gained a better understanding 

of eco-epidemiology of bTB in cattle at different levels: at the animal, herd and area or landscape 

level on the basis of a large cross-sectional study. In this thesis, first I investigated the role of 

herd movements, production system, herd size and contact with wildlife on the prevalence of 

bTB in cattle (Chapter 2). Then, I tested the dilution and identity effect (Chapter 3) and the effect 

of land use, invasive plant species and underlying mechanisms (Chapter 4) on bTB prevalence. In 

Chapter 5 the effect of livestock transfer on disease risk was studied using a network analysis. In 

part I of this synthesis, I discuss and relate these results to previous studies in order to gain a 

better understanding of the mechanisms and generality of the ecological and social risk factors 

associated with bTB prevalence at animal, herd and area or landscape level in Ethiopian cattle.  

Ecosystem changes, including changes in landscape characteristics, invasive species spread, 

biodiversity loss and changes in communities of hosts and vectors, have all been described as 
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major factors potentially involved in transmission of zoonotic diseases (Midgley and Thuiller, 

2005; Hong and Lee, 2006; Chapter 3; 4). Such ecological changes are thought to threaten animal 

and public health (Daszak et al., 2001; Patz, 2001; Patz et al., 2004). Despite growing awareness 

that disease emergence may be related to ecological changes, there is a notable scarcity of 

scientific knowledge to show whether, and how, ecological changes play this role. In part II of 

the synthesis, I discuss the evidence on the effect of land use as a result of the introduction of the 

non-native Prosopis juliflora, a most powerful invasive woody species on disease risk to provide 

new insights for interventions and disease control measures. 

Common social or cultural practices of traditional African pastoralists, e.g., large herd size, long 

distance herd mobility and exchange of livestock (among others) are strategies used to efficiently 

utilize available resources and adapt to uncertainties in rainfall, disease incidence, and raid losses 

(Getachew, 2001; Davies and Bennet, 2007; Moritz et al., 2011). Recent studies identified herd 

size, herd mobility and exchange of livestock as major risk factors for transmission of bTB 

(Munyeme et al., 2008; Humblet et al., 2009; de Garine-Wichatitsky et al., 2013; Katale et al., 

2013; Mamo et al., 2013; Atehmengo and Nnagbo, 2014; Chapters 2 and 5). In part III of this 

thesis’ synthesis, I discuss the dilemma between common social practices and scientifically 

supported actions to reduce disease risks, which is vital in formulating disease control strategies 

across African pastoral communities. In all three parts of this synthesis, I draw several 

conclusions and suggest a focus for management of infectious diseases and future studies. 

Part I. Bovine tuberculosis risk factors  

Individual animal level 

At individual animal level, I found that the older the age of the cattle and the lower the body 

condition, the higher the chance of a positive bTB test result in the pastoral area of Afar (Chapter 

2). Similarly, the prevalence of bTB increased with age and decreased with increasing body 

condition in other areas too (Caron et al., 2003; Ameni et al., 2007; Cleaveland et al., 2007; 

Inangolet et al., 2008; Regassa et al., 2008; Gumi et al., 2011; Katale et al., 2013; Mamo et al., 

2013). This suggests that bTB prevalence increased with age, as the duration of exposure to the 

agent increases with age. Tuberculosis-positive animals are more likely develop a poor body 

condition score as a result of being infected, i.e., a clinical sign that typically follows an active 

infection with Mycobacterium bovis, explaining as such the relation between poor body condition 

and bTB prevalence.   
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Herd level 

The result of this study corroborates other past studies that herd size, herd movement, pastoral 

production type, contact with wildlife and introduction of infected animal into the herd have 

been identified as risk factors increasing bTB transmission at the herd level (Kazwala et al., 2001; 

Faye et al., 2005; Cleaveland et al., 2007; Ameni et al., 2003; Tschoop et al., 2009; Mamo et al., 

2013). Further to what is already known from the past studies, this study indicates that the 

probability of contact with wildlife was confounded with herd size, through herd movement. 

Pastoralists with larger herds moved more and grazed in larger areas, hence the probability of 

grazing in an area with bTB wildlife maintenance host and contact with either infected cattle or 

infected wildlife hosts increased, in turn enhancing the chances for bTB infection. However, I did 

not study the prevalence of bTB in wildlife and sampling of wildlife often presents difficulties for 

practical and ethical reasons. As a result, data on prevalence of infection in wildlife are often 

scarce and estimates based on convenience sampling (such as road-kills or hunter-harvest) are 

subject to biases (Conner et al., 2000; Courchamp et al., 2000; Nusser et al., 2008). The current 

knowledge about inter-species disease transmission at wildlife/livestock interface is still scarce 

and my results presented here also do not offer proof of bTB transmission between cattle and 

wildlife. These uncertainties need more detailed ecological and epidemiological research, such as 

molecular studies, to quantify bTB transmission routes between cattle and wildlife. However, this 

type of observational data and correlative study is a necessary first step towards understanding 

the role of host community on bTB risk and identifying the underlying mechanisms in multi-host 

systems. From this study, I suggests that herd size and herd movements are important risk factors 

in pastoral areas of Africa.  

Exchange of livestock within and between clans is a common practice in pastoral areas of east 

Africa (Getachew, 2001; Davies and Bennet, 2007; Moritz et al., 2011) to spread risks and build 

supportive relationships. Although transfer of livestock may increase the risk of disease 

transmission, the impact of cattle exchange on transmission risk of bTB in a pastoral production 

system has not been studied thus far. For the first time, my network analysis showed that herds 

near the centre of a livestock transfer network by receiving cattle from other herd identified as an 

important risk for introduction of bTB, than those at the periphery (Chapter 5). The traditional 

adaptation strategies by receiving cattle to create and strengthen social relationships become 

maladapted to risks associated with bTB transmission and increased the risk of being infected 

with the disease. This suggests that identification of connected and disconnected components 

within the livestock transfer network is useful to detect and predict the risks of disease 
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transmission which is important for formulating disease control measures. In fact, the 

identification of central players in such a livestock exchange network can act as an early warning 

signal, and improve efficiency of control measures, in line with the results presented by Christakis 

and Fowler (2010). 

Area or landscape level  

Many pathogens are maintained by multiple host species in natural systems (Woolhouse et al., 

2001), where the addition or loss of a host species in an area can influence disease risk, either 

diluting or amplifying disease prevalence (Dobson, 2004). The dilution effect predicts that species 

diversity decreases pathogen prevalence through mechanisms, such as decreased host density, 

reduced encounters between hosts, or reduced host survival (Keesing et al., 2006; Huang et al., 

2013; Johnson et al., 2013). In contrast, the amplification effect predicts increased pathogen 

prevalence with greater species diversity, through increased encounters between hosts, or through 

the presence of secondary hosts (LoGiudice et al., 2003; Keesing et al., 2006). In fact, biodiversity 

can be measured in many different ways, i.e., as species richness, species evenness, or a 

combination of richness and evenness (Magurran, 1988; Tucker and Cadotte, 2013), and these 

different metrics of biodiversity may have different predictive powers for predicting disease risk. 

I found that bTB infection rate was negatively associated with mammalian species evenness (J’), 

which is in support of the dilution effect hypothesis (Chapter 3), but the underlying causal 

mechanism is hard to deduct from these results. The presence of these non-competent or spill-

over mammalian species might act as barriers to cattle herd movement, and reduce encounter 

rates among cattle. The presence other host species in the community that are less competent 

reservoirs for bTB i.e., transmitting the pathogen ineffectively might decrease the contact 

between bTB wildlife reservoir hosts and cattle. Such an “encounter reduction” (Keesing et al., 

2006) might lead to decreased probabilities of bTB infection risk. Species evenness can be an 

appropriate measure of biodiversity to explain disease risk, because the encounter rate is 

proportional to the distribution of the host species, thus, evenness would capture the probability 

of encounter between pathogens and each host species. Chen and Zhou (2015) also found that 

species evenness outperforms species richness as a single variable in explaining the relation 

between biodiversity and disease risk. This suggests that measurements of biodiversity itself play 

an important role to evaluate the generality of the biodiversity-disease relationship. 

Land use changes as a result of plant species invasions and associated changes in the composition 

of the host community have been described as one of the causal drivers in current emergence and 

re-emergence of infectious diseases. For instance, in semi-arid African Savana, bTB prevalence 
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was positively associated with the invasion of Prosopis (Chapter 4). Allan et al. (2010) and 

Williams and Ward (2010) found that invasive plant species increased the risk of infection to tick-

borne diseases by increasing the density as well as the encounter rate between ticks and their 

vertebrate hosts. Similarly, land use and land use changes as a result of plant species invasions 

increased the risk of mosquito-borne diseases by providing favourable habitat for vector species 

(Conley et al., 2011), and by providing high-quality nutritional fruits and leaves for mosquito 

larvae (Reiskind and Zarrabi, 2011). In this study I found that the loss in host species evenness 

and the increase in cattle movement as a consequence of the loss of palatable grasses in Prosopis 

areas could be potential mechanisms accounting for the observed higher bTB prevalence in these 

Prosopis areas (Chapter 4). Another study demonstrated that survival of lone star and American 

dog ticks was reduced by Japanese stiltgrass (Microstegium vimineum), an exotic annual grass 

invasive to eastern North America by lower densities of host and therefore reduced human 

disease risk (Civitello et al., 2008). Malmstrom et al. (2005) found that that the presence of Avena 

fatua, exotic annual grasses,  increase incidence of infection by barley and cereal yellow dwarf 

viruses in native perennial bunchgrasses such as Elymus glaucus, as aphids consistently preferred 

exotic annuals as hosts. Hence, land use as a result of the introduction of the non-native plant 

species can alter the prevalence of both directly transmitted and vector-borne diseases through 

altering the host species community composition, density and mobility of hosts, but its net effect 

on disease risk depends on the species of invasive plant, the disease, and its interactions with 

hosts, vectors and pathogens. 

Geographical distribution of bTB over the study area 

There was a large geographical variation in prevalence of bTB from 0-13%. High prevalence of 

bTB occurred in the southern parts of the study area. The prevalence of bTB was generally lower 

in the far western part of the region, where agro-pastoralism is the dominant production system 

(Figure 6.1). A high prevalence of bTB was reported in pastoral cattle, where high numbers of 

cattle are kept under traditional husbandry practices (Kazwala et al., 2001; Bugwesa et al., 2013), 

relying on movement of livestock following grazing and water resources over considerable 

distances under seasonal changes. In Uganda, bTB prevalence was higher in agro-pastoral 

production systems (Faye et al., 2005). Other studies showed that bTB occurs in both agro-

pastoral and pastoral farming systems with no distinct differences in prevalence (Kazwala et al., 

2001; Munyeme et al., 2010). In line with these latter studies, my study showed that the 

prevalence of bTB in cattle was not significantly different among pastoral production and agro-

pastoral production system (Chapter 2). Transhumant movements are more intensive during the 
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dry season, during these moments there is a lot of interaction between agro-pastoral and the 

pastoral cattle when transhumant herds graze in farmlands or on cotton farms, might resulting in 

a similar infection prevalence. Areas with high prevalence of bTB (Figure 6.1) were associated 

with Prosopis invasion (Figure 4.1), which have caused a decrease in host species evenness and 

an increase in cattle movement (Chapter 4). This suggests that the spatial distribution of bTB is 

determined by a combination of social and biological factors. 

 

Figure 6.1. Geographical distribution of number of bTB positive cattle over the study area, 

results from the cross-sectional surveys conducted on bTB. Different colour indicate the number 

of bTB positive cattle (n=75) in the sub-district.  

Part II. Land use as ecological driver of disease risk 

As the human population increases worldwide, landscapes are changing at an unprecedented rate. 

Even though land use changes are common in many areas of sub-Saharan Africa, the rate of 

conversion is more rapid in arid and semi-arid pastoral areas, where vast rangelands are being 

transformed into irrigated agricultural lands (Barrett et al., 2001; Reid et al., 2004). Land use 

changes include deforestation, introduction of invasive species, large scale agricultural 

encroachment, and urbanization, which leads not only to habitat fragmentation and loss of 

biodiversity (Fahrig, 2003; Foley et al., 2005; Tischendorf et al., 2005; Devictor et al., 2008), but 

also to alteration of ecological processes (Ryall and Fahrig, 2006; Malanson et al., 2007), including 

the interaction between hosts and parasites. For instance, McGinnis and Kerans (2013) found 

that a low proportion of riparian forest likely increases stream sedimentation, creates more 

favourable habitat for Tubifex tubifex, and influences the interaction between hosts and parasite. 

Those changes can potentially influence the transmission of diseases depending on the availability 
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of their host, and in some cases facilitate the introduction of novel pathogens to these changing 

environments (Patz et al., 2000). There are different mechanisms through which land use changes 

can affect transmission of zoonotic diseases. For instance, a recent study found that habitat 

modification reduces mammalian species diversity, and thereby increases hantavirus prevalence in 

deer mice (Peromyscus maniculatus) by increasing intraspecific and decreasing interspecific contact 

rates (Dearing and Dizney, 2010). Therefore, analysing the role of land use change and 

identifying the underlying mechanisms in pathogen transmission is critical for predicting disease 

dynamics in the context of global land use change, and may provide valuable insights into disease 

interventions and control measures. Hereunder I discuss the evidence on how the changes in 

land use, caused by invasive species, can influence disease transmission. 

Invasive species as land use change driver and its impact on host community 

composition 

Land use changes due to the introduction of non-native plant species may have profound effects 

on the host community structure these systems hold (Ehrenfeld, 2010). Prosopis spp. are one of 

the most highly invasive plant species in the world (Gallahar and Merlin, 2010; Wakie et al., 

2014). The species are rapidly invading several parts of southern and eastern African countries. 

Over four million hectares of land has been invaded by the species, threatening crop and range 

production, reducing water resources, and causing loss of native fauna and flora (Witt, 2010; 

Schachtschneider and February, 2013). The species are having dramatic ecological impacts at 

multiple spatial scales and levels of organization, such as the loss of native species 

(Schachtschneider and February, 2013). P. juliflora was introduced in the study area during the 

1970s as a measure to control desertification (Haregeweyn et al., 2013; Wakie et al., 2014). 

Currently, the species is widely considered as a powerful invader and is becoming a problematic 

weed, invading rangelands and riverbanks (Haregeweyn et al., 2013; Mehari, 2015). The invasion 

of ecosystems by non-indigenous species is one of the greatest threats to biodiversity, with major 

impacts on community structure (Gurevitch and Padilla, 2004; Vitousek, et al., 1996). Invasions 

of Prosopis suppress the growth of grass and other herbaceous species and reduce species 

diversity (Getachew et al., 2012; El-Keblawy and Al-Rawai, 2007; Haregeweyn et al., 2013). The 

influence of Prosopis on the palatable herbaceous species in highly invaded areas may contribute 

to the reduction in mammal species evenness that I observed, as abundance and distribution of 

mammal species is partly determined by the availability and quality of palatable plant species 

(Haregeweyn et al., 2013; Treydte et al., 2013; Young et al., 2013; Mehari, 2015). To the best of 
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our knowledge, these correlation findings are the first demonstration that land use caused by 

Prosopis invasion can indirectly influence pathogen transmission. 

Implication for control of invasive species as a disease management strategy  

The invasion of ecosystems by Prosopis species is one of the greatest threats to biodiversity and 

community structure. Currently, Prosopis poses a threat to indigenous biodiversity in the study 

area in particular because of its weedy and invasive nature (Mehari, 2015), causing a loss of wild 

animal species (Haregeweyn et al., 2013). I did not found species like Oryx beisa, Gazella 

soemmeringi, Equus grevyi and Tragelaphus scriptus in Prosopis infested areas. Haregeweyn et al. (2013) 

noticed that O. gazelle, E. grevyi, Madoqua saltiana and Kobus ellipsiprymnus were more abundant in 

other areas because of the dense thicket of P. juliflora. Thus, I argue that control or removal of 

Prosopis could decrease the loss of mammalian host species evenness, and thereby increases the 

diversity of mammalian hosts (Figure 6.2), which could have the potential to decrease 

transmission and risk of exposure to zoonotic diseases, as mammalian species diversity is thought 

to be an explanatory factor to decrease the risk of bTB transmission (Chapter 3;4). In pastoral 

areas of Africa, Odadi et al. (2007) found that the preference of foraging habitat for cattle was 

lower in the presence of wild grazers (Odadi et al., 2007). The presence of non-competent or 

spillover mammalian species might act as barriers to cattle herd movement and distribution, and 

reduce encounter rates among cattle herds by changing the grazing behaviour and habitat 

preference (e.g., avoidance of sites contaminated by faeces or different preferences for feeding 

patches). Such an “encounter reduction” (Keesing et al., 2006) might lead to reduce the 

probabilities of bTB transmission. Similarly other studies demonstrated that the presence of non-

competent species can have profound effects on the behaviour of deer mice, reduce encounter 

rates among deer mice by shifting microhabitat use, thereby reducing the prevalence of Sin 

Nombre virus in deer mice (Clay et al., 2009; Dizney and Ruedas, 2009). It is also possible that 

the presence of other host species in the community that are less competent reservoirs for bTB 

i.e., transmitting the pathogen ineffectively, and their encounters with cattle may not result in 

successful transmission events and decreasing bTB transmission rates among competent hosts 

through encounter reduction as described by Keesing et al. (2006). Due to the presence of those 

less competent reservoirs host,  contacts between bTB wildlife reservoir hosts and cattle might 

also become infrequent, which would decrease the prevalence of bTB. Similarly, rodent hosts on 

more diverse area are more likely to come in contact with hetero-specific mammals and less likely 

to come in contact with conspecifics, reducing the probability of transmission of hantavirus (Clay 

et al., 2009). On the other hand, control or removal of Prosopis may increase species evenness 
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with a high reservoir competence, transmitting the pathogen efficiently, such that contacts 

between hosts become more frequent and bTB prevalence subsequently increases. However, a 

recent study showed that spillback of bTB from a wildlife maintenance host to a domestic host is 

also possible (Munyeme and Munangandu, 2011; Musoke et al., 2013), but seems to be rare in 

Africa (de Garine-Wichatitksy et al., 2013). My study was a field study on free-ranging animals, 

and it is hard to differentiate among the underlying causal mechanisms by which control or 

removal of Prosopis modulates bTB transmission from these results. More experimental studies 

including for instance surveys of host communities, host behaviour change and contact rates 

among hosts in relation to invasive species, coupled with a Prosopis removal experiment are 

needed to test the underlying mechanisms by which host-environmental interactions influence 

disease risk. I argue that removal or control of the invader in Africa could mitigate disease risk by 

increases the diversity of non-competent or spill-over mammalian hosts, coupled with the 

benefits of invasive plant removal to wildlife communities, suggesting a potential win-win 

scenario for wildlife conservation and disease control at the wildlife–livestock interface. 

 

Figure 6.2. Schematic diagram showing control or removal of invasive species as a disease control 

strategy. Arrows indicate the direction of the paths and the signs indicate (+) increase or (-) 

decrease associated with the factor.  

The invasion by Prosopis reduces availability of palatable herbaceous species (Mehari, 2015), 

which could increase the movement of cattle herds in search for pasture. The cattle herds moved 

more and grazed in larger areas, hence the probability of contact with either infected domestic or 

infected wildlife hosts increased (Chapter 4). Such high encounter rates might lead to an increase 

in the probability of pathogen transmission. Ndhlovu et al. (2016) experiment showed that 

canopy cover was significantly different in Prosopis cleared and uninvaded sites for the annual 

and perennial grasses. Hence, control or removal of Prosopis invasion might increase availability 

of palatable plant species, and thereby decrease long distance herd mobility, which might reduce 

encounter rate between livestock herds (Figure 6.2), which could serve as bTB control strategy. 

Part III. Conflict of social practices and disease risk 

Pastoral communities in arid and semi-arid lands of Africa depend on livestock for their 

livelihood. The area is are characterized by high temporal and spatial climatic variation, creating 

an uneven distribution of the availability of resources. There are two contrasting, but often co-
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existing, interpretations of key problems in disease control strategies in this pastoral area of 

Africa. Common social practices, such as having a large herd size, with large herd mobility and 

using livestock transfers, are key production methods used by pastoralists to efficiently utilize 

available resources and to adapt to uncertainties in rainfall, diseases, and raid losses (Getachew, 

2001; Davies and Bennet, 2007; Moritz et al., 2011). However, I identified herd movement, herd 

size and animal exchange as a risk factor for transmission of bTB (Chapter 2;5; Figure 6.3). Thus, 

the traditional social practices to cope with the production risks in arid and semi-arid areas might 

become a maladaptation in the modern era with larger risks associated with disease transmission. 

From a bTB point of view, these two narratives are both vital in formulating workable disease 

control strategies across African pastoral communities. In this part of the synthesis I attempt to 

synthesize the debate by highlighting key pastoral practices to manage resource variability and 

uncertainty and maladaptation of those traditional adaptation practices in relation with the risks 

of bTB transmission. First I review discussions around social practices among African 

pastoralists, and then highlight the important tensions between those practices and the risk of 

disease transmission. Then I discuss the debates to bring these tensions, trade-offs and choices 

together, to balance costs against the benefits of minimizing those risks. 

 
Figure 6.3. Schematic diagram showing social practices among African pastoralists as a risk factor 

for transmission of bTB. Arrows indicate the direction of the paths and the signs indicate (+) 

increase or (-) decrease associated with the factor.  

Diseases in context: epidemiological realities and scientific uncertainties 

Over the past several decades, the pastoral area of eastern Africa has experienced tremendous 

changes and transformations. In the area, the distribution of grazing resources is uneven, with 

many pastoralists concentrated in key areas along rivers or on hilltops, and grazing resources are 

highly variable, determined by episodic and uncertain rainfall (Kaimba et al., 2011). The region’s 

pastoralist systems evolved to incorporate adaptive mechanisms for managing resource variability 

and uncertainty. Livestock herd mobility is critical for making efficient use of grazing and water 

resources (Alerstam et al., 2003, Manzano-Baena and Casas, 2010; Oteros-Rozas et al., 2013) by 

daily and weekly changes in grazing ranges, including seasonal migrations over large landscapes. 

Movement of cattle herds for searching for water and pasture was recently shown to be a critical 
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risk factor for transmission of bTB due to higher chances of coming in contact with infected 

animals (Chapter 2).  

Large herd sizes are common in pastoral areas of Africa as a kind of “bank account” adaptation 

to uncertainty in rainfall, diseases, and raid losses (Mace and Houston, 1989). Moreover, wealth 

and status in pastoral societies are typically dependent on the size of one’s herd, to help ensure a 

reliable flow of livestock products (Livingstone, 1991; Sivakumar et al., 2005; Moritz, 2008). 

Traditionally, pastoralists keeping extra animals as insurance for when conditions deteriorated 

(Livingstone, 1991). However, in African pastoral areas herd size has an influence on the 

prevalence of bTB (Chapter 2). The more cattle there are on a farm, the greater the probability 

that one of them will acquire an infection. Large herds generally graze on a larger area, with a 

higher probability to have more contiguous herds, thus increasing the risk of disease spread 

(Chapter 2).  

Exchange of livestock within and between clans is a common practice in pastoral areas of east 

Africa (Getachew, 2001; Davies and Bennet, 2007; Moritz et al., 2011) to spread risks and build 

supportive relationships. My network analysis showed that a greater level of livestock transfer 

network contacts by receiving cattle from others was identified as an important risk for positive 

herd tuberculin reactivity (Chapter 5). However, the current scientific knowledge and status of 

disease control efforts in this part of Africa is not clearly defined and illustrates a dilemma 

between existing social practices and scientifically identified risk factor for disease transmission.  

The need for disease control 

Nowadays, rangeland fragmentation, through processes of large scale agricultural expansion, 

colonization, nation formation, population growth, social and economic modernization, and the 

imposition of statutory land tenure systems have frequently impinged on the current pastoralist 

ways of life (Galaty 2013; Nunow, 2013; Tache, 2013). These factors have tended to decrease 

pastoralists’ capacity for customary governance and grazing management and to affect their 

traditional strategies for coping with disturbances such as drought (Fratkin and Mearns, 2003; 

Catley et al., 2013), failing to meet households’ livelihood needs and maintain ecological resources 

(Galvin 2008; Kaye-Zwiebel and King, 2014). For instance, in 2009-2010, the Maasai in Kenya 

suffered due to drought, in which pastoralists lost 64% of cattle herds and 62% of sheep 

(Zwaagstra et al., 2010). Today, the traditional pastoralism activities are still based on large herd 

size, long distance movements and maintaining a network of bond friendships through which to 

exchange livestock as the basis for mitigating production risks. In arid and semi-arid rangelands 
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of Africa, those activities have been practiced more than ever before as key resource areas are 

fenced and set aside for non-livestock uses (Homann et al., 2008). However, those traditional 

adaptation practices become maladapted to risks associated with current zoonotic disease 

transmission.  

The World organisation for animal health (OIE) estimates that morbidity and mortality due to 

animal diseases causes the loss of at least 20% of livestock production globally. This represents at 

least 60 million tonnes of meat and 150 million tonnes of milk with a value of approximately 

USD 300 billion per year (OIE, 2015). Animal diseases are widespread and endemic in many 

pastoralist areas of Africa, and have been identified as limiting factors to pastoralist livestock 

production (Racloz et al., 2013; Gustafson et al., 2015). The loss of livestock production due to 

zoonotic disease infection is significant in pastoralist herds, and restricts possible export of 

livestock and livestock products (Pearson 2006; Rushton, 2009; Thornton, 2010). Tanzania in 

1999 quantified the impact of bTB and found a significant difference in milk production between 

TB reactor and non-reactor cattle (DFID, 1999). Studies conducted in other countries showed 

that bTB infection in cattle was associated with a 18% decrease in milk production in Bangladesh 

(Rahman and Samad, 2008) and 4% in USA (Hermandez and Baca, 1998). bTB is also an 

economical and financial burden to society (Zinsstag et al., 2006) but its cost is largely unknown 

for Africa. In sub-Saharan Africa nearly 2 million human TB cases occur each year. As a zoonotic 

disease, there is substantive evidence of incidence of human TB due to M. bovis in pastoral 

communities (Ayele et al., 2004). In Nigeria, Idigbe et al. (1986) found M. bovis in 4% of patients 

with lower respiratory tract symptoms. Hoffner et al. (1993) reported isolation and biochemical 

characterisation of M. tuberculosis and M. bovis in humans in Guinea-Bissau. Rigouts et al. (1996) 

isolated M. bovis in 38% of clinically suspected bovines. In Madagascar, a proportion of M. bovis 

(1.25%) was observed among human TB positive patients (Rasolofo-Razanamparany et al., 1999). 

Kazwala et al. (1998) also isolated mycobacterial species from the raw milk of pastoral cattle in 

the Southern Highlands of Tanzania. Thus, consumption of raw animal products from infected 

cows and close human-to-livestock contact are the main factors that expose the pastoralists to 

different zoonotic diseases (Zinsstag et al., 2006). Therefore, due to the risk of infection to the 

human population, loss in productivity due to infected animals and animal market restrictions, 

controlling disease transmission risks in pastoralists livestock should be a priority for improving 

pastoral livelihood, as a key to moving out of poverty.  

Despite the increased challenges to pastoralist communities, there are a number of factors that 

may promote improvement of their livelihoods. The demand for meat and other livestock 
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products is increasing rapidly due to population growth and rising incomes, particularly in 

developing countries, leading some to label the trend a ‘livestock revolution’ (Delgado et al., 

2001; Rosegrant et al., 2001). Yet, ironically, there is a widening gap between production and 

consumption of animal products. Existing and projected market demands create opportunities 

for pastoralists to meet this demand by supplying products of animal origin to the region’s 

expanding urban populations and support their livelihood through involving in to the markets 

(Cartín-Rojas, 2012). Access to trade in livestock and their products is increasingly accepted as an 

important contribution to a strategy to mitigate and reduce poverty, and support the livelihood of 

the poorest communities (Moll, 2005; Rushton 2009; Cartín-Rojas, 2012). Surprisingly, while 

there has been considerable research in pastoral areas during the past three decades, much of it 

highlighted poverty as a key issue, but systematic analyses on the application of disease control 

strategies as a key to moving out of poverty in pastoral area of Africa are limited.  

Implication for development of disease control strategies 

Currently, control of livestock diseases in these pastoralist communities is challenging not only 

because of the number and complexity of risk factors involved, but also because these risk 

factors are tightly linked and often inherent to the farming and social practices and lack of 

knowledge about transmission of bTB and other zoonotic and livestock diseases. The effective 

control and eradication of bTB in livestock depend on identifying and isolating potential sources 

and risk factors of infection (Ayele et al., 2004). Pastoral practices have been identified as risk 

factor for diseases transmission (Chapter 2;5), which can have devastating impacts on the 

livelihood of pastoralists as the disease compromises their sustainable food supply and income. 

However, disease control measures that focus only on herd movement, herd size and livestock 

transfer schemes to control disease in cattle populations might not be acceptable due to cultural 

practises and hard to change. For examples of such cultural practices include the belief that 

vaccination causes livestock abortion, and prevents the acceptance of brucellosis control activities 

in pastoral area (Smits, 2013). Rather than neat win-win solutions, there are always trade-offs and 

so the costs and benefits of control strategies of diseases in pastoral areas of Africa should be 

considered to come up with strategies to minimize risks associated with disease transmission 

which are accepted by the society. Models of livestock systems in northern Tanzania suggest that 

diseases may limit livestock populations more than forage availability (Boone et al., 2002). For 

that reason, minimizing risks associated with disease transmission to improve the health of 

pastoralists and their livestock’s health should be top priority. In addition to increasing livestock 

mortality, disease can reduce pastoralists’ income due to lower market prices for sick animals, 
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quarantines, and loss of public trust in animal products (Barrett et al., 2003; Morton, 2007). Thus, 

I argue that benefits to human health, livestock productivity and expected positive impact on 

pastoral livelihood through trade of livestock and livestock products would outweigh the costs of 

practicing maladapted traditional adaptation strategies which are risks for bTB transmission .  

The eradication of bTB from livestock is expensive since it requires intensive surveillance of the 

livestock, the slaughter of the infected animals that are detected, and the compensation of those 

who owned each slaughtered, infected animal. In industrialised countries, regular tuberculin skin 

testing and the elimination of infected animals have been successful in eradicating, or significantly 

reducing bTB from cattle herds. However, these control measures are not affordable and may 

not be practical in the traditional pastoral production systems of Africa. Therefore, complete 

elimination of the disease in this society is far more complex, necessitates greater commitment 

and more financial investment, and is probably not feasible in the immediate future. This is the 

virtue of the large numbers of livestock involved, the mobility of animals (pastoral production), 

lack of animal identification, lack of surveillance, weak veterinary services, limitations of 

diagnostic tests (concerning both sensitivity and specificity), and the social and economic factors 

involved (Ayele et al., 2004; Humblet et al., 2009). The need for implementing complex multi-

species surveillance and control efforts using limited resources are other factors that limit the 

eradication of bTB. Therefore, I suggests that integrated bTB control approaches through 

identifying and isolating potential sources and risk factors of infection is needed to address those 

major obstacles.  

Collection of detailed epidemiological data on bTB is a prerequisite before starting any large scale 

control program, as most African countries have little information on the prevalence of bTB, its 

geographical distribution, the major risk factors involved in transmission, circulation patterns 

among hosts, and the knowledge, attitudes and practices of livestock keepers. Based on the 

results of the epidemiological study, infection or disease free areas or landscapes can be identified 

and mapped (Figure 6.4). The concept of disease control based around geographical zones and 

compartments remain the key fundamentals to control bTB (Marcotty et al., 2009). In bTB free 

area, risk reduction based bTB control strategies such as livestock movement and exchange 

restriction from bTB presence area, as well as improving sanitary and hygienic standards is 

suggested to prevent the spread of bTB from an infected area to areas free of the disease. 

However in pastoral area, livestock movement controls may not be feasible. In this case, 

restriction of introduction of livestock, sharing of common grazing areas, and movement of 
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animals from bTB endemic areas to bTB free area should be implemented as a control strategy 

(Figure 6.4).  

 

Figure 6.4. Decision making tree for controlling bTB. 

Prevalence at herd level is the requisites  to decide on the strategy once the presence of bTB in 

the area has been established. Under conditions of high prevalence, I suggests mass vaccination 

of all animals as a tool for reducing the level of infection. When vaccination used exhaustively in 

the whole herd, the incidence greatly decreases.  Daborn and Grange (1996) and Ayele et al. 

(2004) have also suggested vaccination of susceptible domestic animals in endemic areas as a 

feasible bTB control option for Africa, which is acceptable and practical measure. Skinner et al. 

(2003) reported that vaccination could potentially be used to control bTB in countries where 

wildlife reservoirs exist and in those that cannot afford conventional control procedures. I argue 

that mass vaccination as an initial approach might be more appropriate and practical to reduce 

the prevalence of bTB.  

Once the herd prevalence has been reduced, more effective control of the disease may be 

achieved through vaccination of young replacement animals combined with test-and-slaughter of 

infected adults. A final step under very favourable conditions would be implementation of risk 

reduction based bTB control strategies (Figure 6.4).  In the meantime, control or removal of 

Prosopis invasion is needed as a control strategy which might be important to increase availability 
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of palatable plant species and increase diversity of non-competent mammalian hosts, which 

might reduce encounter rate between livestock herds and reducing the probability of transmission 

of bTB. bTB wildlife reservoir hosts should be kept away to minimise contact between wildlife 

and livestock if it is suspected that contact may introduce infection. 

From successful experience in many developed countries, bTB can be controlled only and 

effective implementation of these activities would be possible when there is a strong political and 

producer support, and an appropriate legal framework to enforce control measures. Moreover, 

control of bTB provides an ideal platform for the One Health approach, which can be 

operationalized through adapted approaches for reducing risks of disease transmission, 

improving surveillance and meat inspection, enhancing community awareness, promoting milk 

pasteurization at the community level, and strengthening inter-sectoral collaboration.  

Nevertheless, control and eradication of bTB is a desirable objective, which could be possible, if 

movement of cattle is controlled, if there is regular compulsory testing of and removal or 

slaughter of positive reactors cattle, if compensation is provided to owners for all positive 

reactors, if compulsory identification is done, and if disease free area is established and 

maintained, and if sufficient resources to fulfil these tasks are provided.  
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Summary 

Bovine tuberculosis (bTB), caused by Mycobacterium bovis, is an important zoonotic disease 

affecting many mammal species, and mainly spreads via aerosol transmission. Zoonotic 

tuberculosis is an important cause of concern for public health, veterinary services and 

conservationists, especially in developing countries, because of deficiencies in preventive and 

control measures. The disease is shared between multiple species and represent a potential 

burden, including direct losses to the livestock production sector through increased mortality and 

reduced productivity, and indirect losses associated with cost of control, loss of trade, decreased 

market values, and food insecurity. In Africa, the disease has a wide distribution with a high 

prevalence in both wild and domestic animals. Strikingly, risk factors for bTB transmission are 

not well known in developing countries, as most studies were conducted in developed countries 

where farming practices are more intensive, and control and eradication programmes have been 

implemented since decades. It is therefore necessary to explore the relationships between pastoral 

livestock production systems and bTB prevalence in a multiple host community to better 

understand the effects of interactions between ecological, social practices and animal 

management risk factors. Knowledge derived from these analyses can contribute to formulate 

disease control strategies to manage cattle in ecosystems characterized by seasonally limited 

resources and intense wildlife-livestock interactions. 

The individual overall prevalence of bTB in cattle in the Afar Region, Ethiopia was 5.5%, with a 

herd prevalence of 46%. The older the age of the cattle and the lower the body condition the 

higher the chance of a positive bTB test result, but sex, lactation status and reproductive status 

were not correlated with bTB status at individual animal level (Chapter 2). Herd size, contact with 

wildlife, and the interaction of herd size and contact with wildlife were identified as significant 

risk factors for bTB prevalence in cattle. In a structural equation model I showed that the 

probability of contact with wildlife was influenced by herd size, through herd movement. As 

larger herds moved more and grazed in larger areas, the probability of grazing in an area with 

wildlife and contact with either infected cattle or infected wildlife hosts increased, and thereby 

also increased the chances for bTB infection (Chapter 2).  

I detected a possible dilution effect in bTB, where higher mammal species evenness reduced the 

probability of bTB occurrence (Chapter 3). This dilution effect might be caused by an encounter 

reduction, in which the distribution of non-competent mammal species might act as barriers to 

herd movement of cattle and reduce encounter rates among herds, which leads to a decreased 

probability of bTB outbreaks. Besides, I demonstrated that the presence of greater kudu 
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(Tragelaphus strepsiceros), as a maintenance host for M. bovis, had a positive identity effect on the 

incidence of bTB.  

I showed that bTB prevalence was positively associated with the invasion of the plant Prosopis 

(Prosopis juliflora). Similarly, in a regression tree model I identified the proportion of Prosopis in an 

area as an important land use predictor for the prevalence of bTB, with higher bTB prevalence 

values in areas with higher Prosopis cover. The invasive Prosopis, although only a minor 

proportion of the total area of the landscape, has invaded the majority of the dry season 

pastureland in the Awash River Basin, and thereby indirectly regulates host community 

composition, and other aspects of the pastoral production system. The loss in host species 

evenness and the increase in cattle herd movement as a consequence of the loss of palatable grass 

in Prosopis areas could be potential mechanisms accounting for the observed higher bTB 

prevalence in these areas (Chapter 4).  

In chapter 5, I carried out a network analyses, studying the connections between herds, through 

the exchange of cattle. In such an analysis, a herd is defined as a nod, and the exchange of cattle 

is defined as the connection between two herd, the so-called edge. I found that herds with a 

greater in-degree (direct connections through cattle exchange) were positively correlated with the 

risk of being infected with bTB. Herds with a greater number of edges had more connections in 

the livestock transfer network, increasing the probability of becoming infected with bTB. Herds 

that fall close to the centre of the network (i.e., with higher closeness centrality scores) was 

positively associated with the risk of becoming infected with bTB. A herd with higher closeness 

centrality scores is not only more susceptible to becoming infected with bTB but also facilitate 

diseases transmission through networks, as these herds were tightly connected to the rest of the 

herds in the network. Betweenness centrality, the number of edges that pass from one herd to 

another, was also positively associated with the presence of bTB infection. There was a negative 

relationship between the fragmentation index and bTB infection, likely because a high 

fragmentation index was related to a decreased number of contacts with other nodes in the 

network (Chapter 5). The study clearly demonstrated that the extent to which a herd is connected 

within a network has significant implications both for its risk of becoming infected and, if 

infected, the probability that it will transmit the disease to other herds in the network. 

Finally, I combined these findings and reviewed the evidence in order to gain a better 

understanding of the mechanisms and generality of the ecological risk factors associated with 

zoonotic disease transmission, to provide new insights with regard to interventions and disease 

control measures. I discuss the conflicts between common social practices in pastoral areas of 
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Africa to manage resource variability and uncertainty, and the potential maladaptations of those 

traditional adaptation practices in relation with risk reduction of bTB transmission. I conclude by 

formulating socially acceptable and workable disease control strategies across African pastoral 

communities (Chapter 6).  
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Samenvatting 

Rundertuberculose (TBC), veroorzaakt door de bacterie Mycobacterium bovis, is een belangrijke 

ziekte die kan worden overgedragen van dieren naar mensen, een zogenaamde zoönose. TBC 

wordt vooral via de lucht verspreid en kan vele zoogdiersoorten, inclusief de mens, infecteren. 

Daarom is TBC een belangrijke ziekte voor zowel de mens als landbouwhuisdieren en wilde 

dieren, vooral in ontwikkelingslanden waar problemen vaak worden veroorzaakt door het 

ontbreken van efficiënte preventie- en controlemaatregelen. De ziekte heeft zowel directe als 

indirecte gevolgen voor boeren, zoals sterfte en een verlaagde productiviteit van vee (direct) en 

kosten van controlemaatregelen, verminderde handel in dieren, lagere marktwaarde voor dieren 

en een verlaagde voedselzekerheid (indirect). 

TBC komt in heel Afrika voor en zowel wilde als landbouwhuisdieren kunnen een hoge 

besmettingsgraad bereiken. Opvallend genoeg is er weinig bekend over de risicofactoren voor 

TBC transmissie in ontwikkelingslanden, omdat veel onderzoek is gedaan in ontwikkelde landen 

waar de veehouderij veel meer is geïntensiveerd en waar al decennia lang controle- en 

uitroeiingsprogramma’s worden uitgevoerd. Het is daarom noodzakelijk om de relatie tussen 

weideveeteelt en het voorkomen van TBC te onderzoeken in een diverse gastheergemeenschap 

om een beter inzicht te krijgen in de rol van ecologie, sociale structuur en diermanagement in het 

bepalen van het TBC risico in ontwikkelingslanden. De kennis die voortkomt uit een dergelijke 

analyse zal bijdragen aan de ontwikkeling van ziektebestrijdingsstrategieën voor rundvee in 

ecosystemen die worden gekarakteriseerd door voedselbeperking in droge seizoenen en 

veelvoudig contact tussen wilde dieren en vee. In mijn proefschrift heb ik een dergelijke analyse 

gedaan voor de Afar regio in Ethiopië. 

5.5% van de individuele runderen en 46% van de rundveekuddes in de Afar regio in Ethiopië was 

geïnfecteerd met TBC. Oudere runderen en runderen met een lage conditie score waren vaker 

geïnfecteerd dan jongere dieren of dieren in goede conditie. Er was geen correlatie tussen TBC 

infectie en geslacht, lactatie-status of reproductieve van het individu (Hoofdstuk 2). De grootte 

van de kudde, contact met wilde dieren en de interactie tussen deze twee factoren waren ook 

gecorreleerd met infectiestatus voor TBC. Met een structural equation model vond ik dat de kans 

op contact met wilde dieren indirect gecorreleerd was met kuddegrootte, via de ruimtelijke 

bewegingen van de kuddes. Omdat grotere kuddes grotere afstanden afleggen en in grotere 

gebieden graasden was de kans op contact tussen vee en geïnfecteerde wilde dieren of 

geïnfecteerd vee waarschijnlijk groter, waardoor de infectiegraad met TBC hoger is in grotere 

kuddes (Hoofdstuk 2). 
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Ik vond bewijs voor een mogelijk verdunningseffect van soortenrijkdom op TBC omdat een 

hogere gelijkheid in de soortensamenstelling van wilde zoogdieren in het gebied negatief 

gecorreleerd was met de aanwezigheid van TBC (Hoofdstuk 3). Dit verdunningseffect wordt 

mogelijk veroorzaakt door een vermindering in contact tussen geïnfecteerde en niet geïnfecteerde 

dieren. Zoogdieren die TBC niet kunnen overdragen zouden kunnen werken als een barrière 

voor kuddes, waardoor de kuddes minder grote afstanden afleggen en ze minder met elkaar in 

contact komen. Hierdoor wordt de kans op een TBC uitbraak kleiner. Daarnaast vond ik een 

positief identiteitseffect van de grote koedoe (Tragelaphus strepsiceros), as belangrijke gastheer voor 

M. bovis, op het voorkomen van TBC in rundveekuddes. 

Ik vond een positieve correlatie tussen de invasie van de plant Prosopis (Prosopis juliflora) en het 

voorkomen van TBC. In een regressiemodel vond ik dat de bedekkingsgraad met Prosopis in een 

gebied een belangrijke factor was die het voorkomen van TBC in dat gebied bepaalde, waarbij er 

vaker TBC werd gevonden in gebieden met meer Prosopis. De invasieve Prosopis boom groeit 

maar op een klein deel van het totale landoppervlakte, in het stroomgebied van de Awash rivier. 

Toch heeft het een grote invloed op het weideveeteeltsysteem omdat het belangrijke graslanden 

die worden gebruikt voor beweiding met vee in het droge seizoen heeft overwoekerd. De hoge 

prevalentie van TBC in deze gebieden zou kunnen worden verklaard door een verlies in de 

gelijkheid van de soortensamenstelling van wilde zoogdieren, of door een toename in de 

afstanden die rundveekuddes afleggen als gevolg van een verlies aan gebieden met geschikte 

grassoorten (Hoofdstuk 4). 

In hoofdstuk 5 heb ik een netwerkanalyse uitgevoerd om te onderzoeken hoe connecties tussen 

kuddes invloed hebben op het voorkomen van TBC, via de uitwisseling van vee. Ik vond dat 

kuddes met meer directe connecties een hogere kans hadden om geïnfecteerd te zijn met TBC. 

Kuddes waar meer dieren binnenkomen via uitwisseling van vee hadden meer connecties en 

daardoor een grotere kans hadden om geïnfecteerd te zijn. Ook kuddes die in het midden van het 

sociale netwerk stonden hadden een hogere kans om geïnfecteerd te zijn met TBC. Deze kuddes 

hebben niet alleen een hogere kans om een infectie binnen te krijgen, maar ze zijn ook van belang 

voor de verdere verspreiding van TBC omdat ze in contact staan met een groot deel van de 

andere kuddes. Kuddes die tussen veel verschillende andere kuddes inlagen hadden ook een 

grotere kans om besmet te zijn met TBC. Kuddes met een laag aantal uitwisselingen van vee met 

andere kuddes hadden echter een lagere kans om besmet te zijn met TBC (Hoofdstuk 5). Uit 

deze resultaten concludeer ik dat de plaats van een kudde in het sociale netwerk heel erg 
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belangrijk is in het beïnvloeden van de kans dat een kudde geïnfecteerd wordt met TBC, en de 

kans dat de TBC infectie daarna wordt overgedragen naar andere kuddes. 

In het laatste hoofdstuk combineer ik deze resultaten om beter te begrijpen hoe verschillende 

ecologische risico-factoren invloed hebben op de ziektetransmissie van TBC. Sociale praktijken 

en productiemethodes van deze veehouders zijn misschien in eerste instantie gericht op het 

omgaan met de hoge onzekerheid van voedsel en water in deze relatief droge gebieden van 

Afrika, maar het kan zijn dat deze praktijken niet zijn aangepast om de transmissie van TBC te 

verminderen of voorkomen. Uiteindelijk presenteer ik sociaal accepteerbare en werkbare 

strategieën om het ziekterisico voor TBC te verminderen in de Afrikaanse weideveeteelt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

111 

 

Affiliation of Co-authors 

Prof. Dr H.H.T. Prins  

Resource Ecology Group, Wageningen University  

Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands. 

Dr W.F. de Boer 

Resource Ecology Group, Wageningen University  

Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands. 

Dr I.M.A. Heitkönig 
Resource Ecology Group, Wageningen University  

Droevendaalsesteeg 3a, 6708 PB Wageningen, The Netherlands. 

Dr K.T. Zewdu 

College of Agriculture and Environmental Sciences, Haramaya University, P.O.Box: 138, Dire 

Dawa, Ethiopia. 

E.Z. Alemu 

College of Agriculture and Environmental Sciences, Haramaya University, P.O.Box: 138, Dire 

Dawa, Ethiopia. 

Dr A.D. Mekonnen 

College of Veterinary Medicine, Haramaya University, P.O.Box: 138, Dire Dawa, Ethiopia. 

Dr A.F. Lemma 

College of Veterinary Medicine, Haramaya University, P.O.Box: 138, Dire Dawa, Ethiopia. 

Dr H. Bartholomeus 

Laboratory of Geo-Information Science and Remote Sensing, Wageningen University  

Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands. 

E. van Elburg  

Laboratory of Geo-Information Science and Remote Sensing, Wageningen University  

Droevendaalsesteeg 3, 6708 PB Wageningen, the Netherlands.



 

112 

 

Acknowledgements 

PhD journey is an adventure. It would have not been possible without the support and 

involvement of many individuals and institutions. Here, I would like to express my thanks to all 

of them. 

First and for most, I would like to acknowledge the School of Animal and Range Science at 

Haramaya University of Ethiopia and the Resource Ecology Group of Wageningen University 

for giving me the chance to study my PhD. NUFFIC provided me financial support through 

Wageningen University to pursue this PhD. In addition Haramaya University provided the 

necessary facilities during my field and laboratory work in Ethiopia. I extend my thanks to the 

Awash National Park through the Ethiopian Wildlife Conservation Authority and the Afar 

National State of Agriculture and Natural Resource office in Ethiopia for allowing me to conduct 

my field research. 

I am very grateful to my promotor, Prof. Dr Herbert H.T. Prins, for accepting me as a PhD 

student and promoting my study. You really gave me lots of encouragement on both my research 

and my ideals. I thank you Herbert for your wonderful feedbacks, comments and suggestions for 

my proposals, manuscripts and thesis, and returned faster with very insightful comments and 

ideas. I would like to extend my gratitude and appreciation to my co-supervisor Dr Willem F. de 

Boer, for your responsible supervision and unreserved scientific guidance. Besides my PhD study, 

I greatly appreciate your helps on my adaptation to the new life abroad. I was always coming to 

your office whenever I faced difficulties but I never seen any kind of inconveniency from you. 

You are an amazing supervisor! I also would like to thank my second co-supervisor, Dr Ignas 

M.A. Heitkönig for your unreserved guidance and supervision from the inception of the proposal 

writing until visiting the PhD research in the field in Ethiopia, as well as write-up of the 

manuscripts and final thesis. I also appreciate your kindness. I always enjoyed the conversation 

and discussion with you. Other than the supervisors, I also thank the other co-authors of the 

chapters in this thesis. They include; Dr Tessema Z., Dr Fistum A., Dr Danel A., Dr Harm B., 

Mr. Zelelem E. and Mss.  Eline van Elburg. Your contributions towards this thesis are very much 

appreciated. 

 

PhD study is indeed a cooperative work. As much as it trains one to be an independent scientist, 

it also trains one to be a cooperative scientist. I would like to extend my thanks and appreciations 

to all other family members from REG who were always willing to help me out. Thank you 

David, Frank, Herman, Kevin, Milena, Ron, Patrick, Pim and Sip for your scientific comments 



 

113 

 

and suggestions! More specifically, I would like to appreciate Herman for your honest, willingness 

and assistance in every aspect of my request. Special thanks should go to Patricia, Gerda, Joke 

and Marion for the quality administrative and financial service including organising my travel 

back to the Netherlands and provided me with all the assistance I needed and ensured I am 

comfortable during my frequent visits to Resource Ecology Group – from providing office space 

to stationary and answering to any query from the beginning to the end of my PhD study. Thank 

you to all dear REG PhD students and postdocs: Audrie, Benson, Daniel, Edson, Eduardo, 

Helen, Henjo, Iris, Jasper, Jente, Joost, Kyle, Lennart, Martijn, Mikhail, Mina, Ntuthuko, Priya, 

Rafael, Robert, Shyam, Tim (in translating the summary of this thesis to Dutch), Vincent, Yanjie, 

Yin, Yingying, Yorick, Yussuf, Zhang and Zheng: for sharing ideas and individual stories, as well 

as for your support, encouragements and funs during coffee breaks and lunch time throughout 

my stay in The Netherlands. A special thank goes to Zheng who helps to let me quickly adapt to 

the new life here. I had the opportunity to supervise two MSc students during their thesis. 

Pauline and Rogier, thank you for being my students. 

I wish to express my deepest appreciation to Prof. Dr Nigussie Dechassa, Vice- President for 

Academic Affairs of Haramaya University of Ethiopia for providing me the necessary facilities 

during my field and laboratory work in Ethiopia and his encouragement. My special thanks 

should go to Assefa Nigussu (driver) for your genuine support during my field work. I was very 

happy for the time that I spent with Ethiopian family members in Wageningen during holidays 

and in various occasions. The following people were of great help while I was conducting the 

various experiments in laboratory in Ethiopia: Solomon, Jenber, Tsige, Kebede and Meseret. 

Specifically, I would like to thank Shelemew, Wendimagen, Abiyot, Getachew, Kunte, Bekele, 

Ahemedin and Ahemed for their hard work during data collection in the harsh and very hot 

weather conditions in Awash National Park and Afar Regional State of Ethiopia for several 

months.  I would also like to thank Dr Sisay M., Dr Firew M., Dr Kibebew K., Dr Mengistu U., 

Dr Bobe B., Dr Mengistu K., Dr Yosef T., Yonas H., Yonas M., Dawit T., Hiruit Y., Biazen A., 

Anteneh B., Araya S., Siferaw Y., Tessema T., Kiros, Bruh, Takele, Dr Mitku and Dr Mohammed 

for all their assistance and moral support during my study. 

I would like to extend my appreciation and thanks to my family, more specifically to Mrs. 

Aberash Abebe and her family, supported me throughout the four years of my study.  

To my Dad, Workeneh and Mom, Hageritu, special thanks go to you for consistently supporting 

me throughout my academic life. My brothers: Demeke and Wubshet, my sister: Kalkidan and 



 

114 

 

my entire extended family and friends provided unwavering support and constantly kept tab of 

my progress. To all I say, thank you! 

And finally, I come to my wife Mesay Tekeste, my daughter: Bethelihem and my son: Eyoel, for 

your patience and strengthen during my absence while I was fully engaged in my PhD study in 

the field and abroad for the last four years. You were all my sources of inspiration, strength and 

hope during my PhD study. Thank you very much, I love you! 

Last but not least, my apology should go to the unintentional omission of individuals and 

institutions, who have directly or indirectly contributed during my research and write-up of this 

thesis in particular and for successful completion of my PhD study in general. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

115 

 

Curriculum Vitae 

 

Sintayehu Workeneh Dejene was born on 27 September 1983 in Tepi, Ethiopia. After completing 

high school, he joined the Jimma University in 2002. He received his Becholar’s degree in Biology 

in 2005, after which he stayed at Addis Ababa University and started his MSc degree in Dryland 

Biodiversity, which was completed in 2009. He did his MSc thesis research on “Ecology of small 

mammals and the impact of human interference on their abundance and diversity in Nechisar 

National Park, Ethiopia”. After his MSc degree, Sintayehu was employed as a lecturer in the 

School of Animal and Range Sciences at Haramaya University of Ethiopia. Sintayehu has been 

worked as lecturer in the School of Animal and Range Sciences at Haramaya University of 

Ethiopia from June 2009 until he joined Wageningen University of the Netherlands for his PhD 

study in May 2013. Sintayehu has been teaching different courses for undergraduate students. 

Moreover, he has supervised several BSc thesis research in biodiversity assessment, wildlife 

ecology and conservation, and ecotourism at Haramaya University. Furthermore, Sintayehu has 

conducted and leaded several research project at Haramaya University of Ethiopia.  

 
In May 2013, he joined the Resource Ecology Group of Wageningen University for a PhD study 

through NUFFIC Scholarship under the supervision of Prof. Dr H.H.T. Prins and co-

supervision of Dr W.F. de Boer and Dr I.M.A. Heitkönig.  His study focussed on the role of 

ecological and societal risk factors on the prevalence of bTB under the influence of wildlife-

livestock interactions. The results of this research culminated to this Thesis. 

 

 

 

 



 

116 

 

List of Publications 

Dejene, WS., Heitkönig, IMA., Prins, HHT., Kelkay, ZT. and de Boer, WF. (2017b). Effect of 

host diversity and species assemblage composition on bovine tuberculosis (bTB) risk in 

Ethiopian cattle. Parasitology: 144: 783–792. 

Dejene, WS., Heitkönig, IMA., Prins, HHT. and de Boer WF. (2017a). Disease transmission in 

animal transfer networks. Preventive Veterinary Medicine, 137: 36–42.  

Dejene, WS., Heitkönig, IMA, Prins, HHT, Fitsum, A., Daniel, A., Zelalem, E., Kelkay, ZT. and 

de Boer, WF. (2016). Risk factors for bovine tuberculosis (bTB) in cattle in Ethiopia. PLoS 

One, 11: e0159083. doi:10.1371. 

Dejene, WS. and R.Uttama Reddy (2016). Species Composition and Habitat Association of Small 

Mammals in Nechisar National Park, Ethiopia. International Journal of Sciences: Basic and 

Applied Research, 26: 62-71. 

Dejene, WS. (2016). The African Elephant (Loxodonta africana) in Ethiopia: A Review. European 

Journal of Biological Sciences 8: 8-13. 

Dejene, WS., Henock Seyoum and Uttama RR. (2014). Ecotourism potential and its role for 

sustainable development and livelihood in Awash National Park, Ethiopia. International 

Journal of Science and Research, 3: 792-796. 

Dejene, WS., Nigussie Dechassa and R. Uttama Reddy (2016). Coexistence of human and hyena 

and associated impacts in Haramaya district of eastern Ethiopia. International Journal of 

Biodiversity Conservation 8: 1-7. 

Dejene, WS., Afework, B. and Balakrishnan, M. (2012). Species diversity and abundance of small 

mammals in Nechisar National Park, Ethiopia. African Journal of Ecology 50: 102–108. 

R.Uttama Reddy and Dejene, WS. (2014). Conflicts between the conservation of Elephant and 

Human activities: in the case of Babile Elephant Sanctuary (BES), Ethiopia. European 

Academic Research, 2: 1280-1292. 

Chase, MJ., Schlossberg, S., Griffin, CR., Bouche, PJC., Dejene WS., Paul W. Elkan, Sam Ferreira, 

Falk Grossman, Edward Mtarima Kohi, Kelly Landen, Patrick Omondi, Alexis Peltier, SA. 

Jeanetta Selier  and Robert Sutcliffe (2016).  Continent-wide survey reveals massive decline 

in African savannah elephants. PeerJ, 4: e2354; DOI 10.7717/peerj.2354. 

 

 

 

 

 

 

 

 

 



 

117 

 

 

PE&RC Training and Education Statement 

 

With the training and education activities 

listed below the PhD candidate has 

complied with the requirements set by the 

C.T. de Wit Graduate School for Production 

Ecology and Resource Conservation 

(PE&RC) which comprises of a minimum 

total of 32 ECTS (= 22 weeks of activities) 

Review of literature (6 ECTS) 

- Eco-epidemiology of Bovine 

Tuberculosis (bTB)  

Writing of project proposal (4.5 ECTS) 

- Eco-epidemiology of Bovine 

Tuberculosis (bTB) at  the wildlife-

livestock interface  

 

 

Post-graduate courses (5.1 ECTS) 

- Linear Models; PE&RC (2013) 

- Introduction to R for statistical analysis; PE&RC (2013) 

- Generalized Linear Models; PE&RC (2013) 

- Mixed Linear Models; PE&RC (2013) 

- Bioinformatics - A User's Approach; PE&RC (2013) 

Laboratory training and working visits (1.5 ECTS) 

- Application of GIS for Agriculture and related sciences  

Invited review of (unpublished) journal manuscript (3 ECTS) 

- African Journal of Ecology; AFJE-16-165 - Lion (Panthera leo) and spotted hyena (Crocuta 

crocuta) abundance in Bouba Ndjida National Park, Cameroon; trends over the last decade 

(2016) 

- African Journal of Ecology; Diversity, Distribution and Relative abundance of Medium 

and Large sized Mammals in Kuni Muktar Mountain Nyala Sanctuary West Hararghe 

Zone, Eastern Ethiopia 

- PLos One; PONE-D-16-39705 - A social-economic assessment of the impact of 

Prosopis Julifora on livestock production in the Afar region, Ethiopia 

Deficiency, refresh, brush-up courses (3 ECTS)  

- Ecological Methods; PE&RC (2014)  



 

118 

 

Competence strengthening / skills courses (1.9 ECTS) 

- Data Management; PE&RC (2013) 

- Project and Time Management; PE&RC (2016)  

PE&RC Annual meetings, seminars and the PE&RC weekend (0.9 ECTS)  

- PE&RC Day (2016)  

- PE&RC weekend (2016)  

Discussion groups / local seminars / other scientific meetings (6.5 ECTS) 

- Wageningen Evolution and Ecology Seminars (2013-2016) 

- Movement Ecology (2013-2016) 

- Ecological Theory and Application (2013-2016) 

- R Group (2013-2016) 

- Conference on Camel Dairy Technologies (2016) 

- 26th Ethiopian Biological Society meeting (2016) 

-  27th Ethiopian Biological Society meeting (2017) 

- Enhancing Pastoralists Livelihood and Resilience through Market expansion (2017) 

International symposia, workshops and conferences (3 ECTS) 

- 2016 African ESP Conference 

- The Impact of El Niño on Biodiversity, Agriculture, and Food Security 

Lecturing / supervision of practicals / tutorials (3 ECTS) 

- Ecological Methods  and Design; Haramaya University (2014-2016) 

- Wildlife Ecology and Management; Haramaya University (2014-2016) 

Supervision of a MSc student (3 ECTS) 

- Abundance of parasites in dung in combination with the wildlife/cattle interaction in 

Awash National Park, Ethiopia 

- Resource use overlap of between wildlife and cattle in Awash National Park, Ethiopia 

 

 

 

 

 

 

 

 

 



 

119 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The research described in this thesis was financially supported by Netherlands Fellowship 

Programme (NUFFIC) and Haramaya University.  

 

 

Cover design, layout and photo: Sintayehu Workeneh Dejene  

 

Printed by Digiforce B.V. 


