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1.1 Global carbon cycle  

Carbon is the major element of all life forms, and it is actively cycled in the biosphere. The carbon 

cycle reflects the flow and exchange of carbon among living organisms and the environment 

through a series of chemical, physical and biological reactions (Figure 1). Inorganic carbon that is 

formed from organic matter or weathered from limestone enters the atmosphere as CO2 or in 

aquatic environments mostly as HCO3
−. Atmospheric CO2 is in equilibrium with the carbonate 

system of the oceans (Takahashi et al., 1997; Fasham et al., 2001). Atmospheric CO2 or CO2/HCO3
− 

in the oceans or lakes can be fixed by autotrophic or photolithotrophic organisms (e.g. plants, 

phytoplankton and marine algae) to synthesize organic carbon. By decay of these organisms, 

organic carbon is converted back to inorganic carbon through hydrolysis, fermentation and 

mineralization by the combined action of different organisms (Canfield, 1993; Kristensen and 

Holmer, 2001).  

 

Figure 1. Global carbon cycle. Figure is adapted from Pidwirny, 2012.  

 

Carbon is stored in our planet (a) as living and dead biomass in the biosphere; (b) as carbon 

dioxide gas in the atmosphere, (c) as organic matter in soils and sediments, (d) in the lithosphere 

as fossil fuels like coal, oil, and natural gas, and as carbonate-based sedimentary rock deposits such 

as limestone and dolomite; and (e) in the oceans as dissolved atmospheric carbon dioxide and as 
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calcium carbonate shells in marine organisms (Figure 1) (Pidwirny, 2012). The majority of the carbon 

is fixed as inorganic carbon in limestone or in fossil organic pools, largely as CO2, whereas organic 

carbon represents only about 0.1% of the total carbon cycles through the active pool on Earth 

(Harvey, 2006). Soils represent the largest pool within this active cycle. This is followed by land 

biota, dissolved organic matter in seawater, and surficial marine sediments with decreasing 

amounts of organic matter. The smallest fraction includes marine biota and particulate pools 

(Harvey, 2006). Although the particulate organic carbon reservoir is small, it is dynamic and plays 

a central role in both amount and composition of organic matter which reaches underlying 

sediments (Harvey, 2006). 

 

1.2 Degradation of organic matter in marine sediments  

Coastal marine ecosystems receive regular inputs of organic matter and nutrients from primary 

production of phytoplankton, rivers, coastal erosion, and the atmosphere (Jørgensen, 1982). 

Mineralization of the particulate organic matter starts already in the water column. On the other 

hand, the organic matter that is not decomposed in the water column rapidly sinks down to the 

sediment in coastal shelf sediments and part of it gets buried in the sediment (Jørgensen, 1983). It 

is shown that 10 – 50 % of carbon from primary production was deposited on the bottom in coastal 

shelf sediments (0-200 m depth), whereas this fraction decreases to about 1% in pelagic sediments 

(5000-6000 m) (Jørgensen, 1983). The coastal shelfs comprise 8.6% of the total area of the oceans, 

and it is estimated that 83% of the mineralization in the sea bottom takes place in these shelf areas 

(Jørgensen, 1983). This reflects the importance of coastal and shelf areas in the carbon cycle.  

High microbial activity in the upper sediment layers leads the formation of distinct 

biogeochemical zones. The depth range of each zone varies strongly depending on the supply of 

organic matter from overlying seawater and the sedimentation rate which have an effect on 

accumulation of organic matter (Jørgensen, 1983). In coastal marine sediments, the oxic surface 

layer constitutes a thin layer due to the rapid consumption of oxygen for aerobic mineralization. 

Therefore, the remaining organic matter will be degraded by anaerobic microbes and part of it will 

be buried in the sediment where mineralization continues albeit slow. In the anoxic part of the 

sediment, nitrate, manganese, iron, sulfate and carbon dioxide serve as terminal electron acceptors 

for the mineralization processes (Figure 2). The depth sequence of electron acceptors reflects a 

gradual decrease in redox potential and thus a decrease in the free energy available by respiration. 
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It is estimated that 25-50% of the organic carbon is mineralized through sulfate reduction, which 

makes sulfate an important electron acceptor in anoxic part of the sediments (Jørgensen, 1982). 

 

Figure 2. Organic carbon degradation pathways in marine sediments and their relation to the 
biological redox zonation. Figure is adapted from Parkes et al., 2014 and Jørgensen, 2006.  

Anaerobic degradation of organic matter in marine sediments is a complex sequential 

process in which a variety of physiologically different microorganisms takes part. The first step is 

an extracellular hydrolysis of polymers (polysaccharides, proteins, nucleic acids and lipids) (Fig 2, 

Fig 3). Primary fermenting bacteria ferment the monomers and oligomers to fatty acids, branched-

chain fatty acids, alcohols, aromatic acids, H2 and CO2. Some of these fermentation products, such 

as acetate, H2, CO2, and other one-carbon compounds, can be converted directly to methane and 

carbon dioxide by methanogens. In methanogenic environments, secondary fermenters or proton 

reducers convert alcohols, long-chain, branched-chain and aromatic fatty acids to acetate, formate, 

H2 and CO2 which are then used by the methanogens (Figure 3b) (Schink and Stams, 2013). The 

conversion of polymers in sulfate-rich anoxic habitats such as marine sediments is slightly different. 

Polymers are degraded by primary fermenting bacteria and fermentation products are formed. 

Different from methanogens, sulfate-reducing bacteria can use all products of primary 

fermentations, and oxidize them to carbon dioxide, while reducing sulfate to sulfide (Figure 3a) 

(Widdel 1988).  
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Figure 3. Mineralization of organic matter in the presence (a) and absence (b) of sulfate in anoxic 
marine sediments. Figure is adapted from Muyzer and Stams, 2008. 
 

Sulfate reduction and methanogenesis are the terminal steps in the degradation process 

(Jørgensen, 1982; Schink and Stams, 2013; Muyzer and Stams, 2008; Stams and Plugge, 2009). They 

are thought to be mutually exclusive in most environmental settings and controlled mainly by the 

amount of available sulfate (Reeburgh and Heggie, 1977; Winfrey and Zeikus, 1977).  

 

1.3 Microbial interactions shaping biogeochemical zonation 

Previous studies on marine sediments have explained the biological redox zonation by competition 

among different physiological groups (Martens and Berner 1974; Lovley and Goodwin 1988; 

Chapelle and Lovley 1992; Hoehler et al., 1998). Accordingly, methanogenesis and sulfate reduction 

were suggested to be temporally or spatially separated (Cappenberg, 1974; Mountfort and Asher, 

1979) and methanogenesis is typically dominant in deeper sulfate-depleted sediment parts that are 

below the active sulfate reduction zone. Thus, when different physiological groups compete for a 

common substrate, the microbes using the energetically most favorable electron acceptor available 

will outcompete the ones using energetically less favorable electron acceptors. For instance, 

methanogenic Archaea do not utilize large organic molecules but can use only a narrow spectrum 

of substrates. Most methanogens produce methane either by reducing CO2, with H2 as the primary 
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electron donor, or by cleaving acetate. However, sulfate reducers outcompete methanogens for the 

common substrates, H2 and acetate, due to their higher affinity and lower threshold values for these 

substrates (Stams, 1994; Hoehler et al., 1998; Muyzer and Stams, 2008) (Table 1). Consequently, 

significant methane generation in marine sediments occurs at deeper sediment zones, after almost 

all sulfate has been reduced to sulfide (Jørgensen and Kasten, 2006). The third substrate group for 

methanogens includes methylated compounds such as methanol, methylated amines (mono-, di-, 

and trimethylamine, and tetramethylammonium), and methylated sulfides (e.g., dimethyl sulfide 

and methanethiol). These compounds are known as non-competitive substrates since they are not 

commonly utilized by sulfate reducers, but mainly by methylotrophic methanogens (Liu and 

Whitman, 2008). The consumption of non-competitive substrates by methanogens allow  

simultaneous methanogenesis and sulfate reduction within sulfate containing anoxic sediments, as 

demonstrated in several investigations (Oremland and Taylor, 1978; Oremland and Polcin, 1982; 

Oremland et al., 1982a, 1982b, 1987; Kiene et al., 1986; Oremland et al., 1988; Wang and Lee, 1995). 

On the other hand, methanogenesis from H2 and acetate was also observed within the sulfate zones 

(Wellsbury et al., 2002; Parkes et al., 2005). Therefore, there is no distinct separation of sulfate 

reducers and methanogens along the sediment, and the absence of methane in sulfate zones might 

indicate the occurrence of active anaerobic oxidation of methane (AOM) (Parkes et al., 2014).  

The sulfate-methane transition zone (SMTZ) corresponds to the sedimentary interval 

characterized by a mutual depletion of methane and sulfate due to the microbial anaerobic 

oxidation of methane (Sultan et al., 2016; Iversen and Jørgensen, 1985). Previously, it was postulated 

that sulfate and methane profiles at this specific part of the sediment were formed due to 

competition of sulfate reducers and methanogens for common substrates (Martens and Berner, 

1974). After several studies, however, it was demonstrated that methane, which diffuses upwards 

from the deeper sediment, is oxidized by anaerobic methanotrophic archaea (ANME) coupled to 

sulfate reduction (Barnes and Goldberg, 1976; Martens and Berner, 1977; Murray et al., 1978; 

Reeburgh, 1980; Alperin et al., 1988; Hinrichs et al., 1999; Krüger et al 2003; Nauhaus et al 2005). 

Later, in vitro studies showed that AOM and sulfate reduction are directly coupled and this is a 

syntrophic processes involving ANME and SRB that are metabolically interdependent on each other 

(Nauhaus et al., 2002; Nauhaus et al., 2005). The depth of the transition zone varies depending on 

the organic matter supply, the depth of the methane production zone, and the transport and 

consumption rates of methane and sulfate (Claypool and Kvenvolden, 1983; Borowski et al., 1999; 

Claypool, 2004; Jørgensen and Kasten, 2006; Knittel and Boetius, 2009). 
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1.4 Syntrophy 

Methanogenic degradation of organic matter in sulfate-depleted marine sediments is carried out 

by the cooperation of physiologically different microorganisms. This relationship is called 

‘syntrophy’ and involves the consumption of degradation end products, usually hydrogen, formate 

and acetate, by the partner organisms. Syntrophic bacteria perform secondary fermentation of 

small organic molecules such as lactate, propionate, butyrate and produce acetate, formate, H2 and 

CO2 (Morris et al., 2013; Schink and Stams, 2013). However, these reactions are endergonic under 

standard conditions and thus not possible unless a H2/formate scavenging partner organism keeps 

the concentration of these intermediates low (Schink and Stams, 2013). Hydrogenotrophic 

methanogens act as syntrophic partners of syntrophs by utilizing H2 and formate to form 

CH4 (Morris et al., 2013; Sieber et al., 2014) (Figure 4). This anaerobic metabolism, especially when 

methanogenesis is the terminal electron accepting process, involves consortia with tightly coupled 

syntrophic partnerships (Schink and Stams, 2013; McInerney et al., 2008). Syntrophic interactions 

are not restricted to the methanogenic environments but also occur in sulfate-reducing 

environments as evidenced by sulfate-reducing consortia involved in anaerobic oxidation of 

methane (AOM) (Nauhaus et al., 2005) (Figure 4).  

                         

 Figure 4. Schematic diagram of interspecies hydrogen transfer between fermenting and respiring 
organism. 

It has also been demonstrated that syntrophic consortia of acetogens and hydrogen-/formate-

consuming sulfate reducers catalyze propionate and butyrate degradation in sulfate-reducing 

environments (Stams et al., 2005; Elferink et al., 1998; Visser et al., 1993). It is not surprising that 

hydrogen-/formate-consuming sulfate reducers are commonly used as the syntrophic partner to 
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isolate syntrophic propionate- and butyrate-converting microorganisms in co-cultures (Dong et al., 

1994; Boone and Bryant, 1980; McInerney et al., 1979). 

Interspecies electron transfer plays a key role in the functioning of methanogenic microbial 

communities, which have a significant impact on the global carbon cycle (Stams and Plugge, 2009; 

Sieber et al., 2012). Therefore, it is crucial to study the syntrophic cooperations to understand 

methanogenic conversions in different environments (McInerney et al., 2008). The most difficult 

step in the methanogenic degradation is the second fermentation step in which short-chain fatty 

acids such as propionate and butyrate are converted. The oxidation of propionate and butyrate to 

H2, formate and acetate are endergonic reactions under standard conditions (PH2 of 1 atm, substrate 

and product concentrations of 1 M, temperature 298°K, pH 7) (Table 1).  

Table 1. Equations and standard free energy changes for acetate and hydrogen producing and 
methanogenic reactions at standard conditions (at 1 M, pH 7.0, 1 atm and T = 25°C). ΔG0’ values 
taken from Thauer et al., 1977.  

 

1.5 Syntrophic butyrate conversion 

All known syntrophic butyrate-degrading bacteria belong to the phyla Firmicutes and 

Proteobacteria (Table 2). Besides oxidation of saturated fatty acids in coculture with methanogens, 

most butyrate degraders can grow axenically only by fermenting unsaturated fatty acids such as 

Equation                           ∆G°' (kJ/reaction)

Sulfate-reducing reactions
Butyrate– + 0.5 SO4

2–  2 Acetate– + 0.5 HS– + 0.5 H+ –27.8

Propionate– + 0.75  Acetate– + 0.75 HS– + HCO3
- + 0.25 H+ –37.8

Acetate– + SO4
2–  2 HCO3

– + HS– –47.6

4 H2 + SO4
2– + H+  HS– + 4 H2O –151.9

Formate– + SO4
2– + H+  4 HCO3

– + HS– –146.7

Hydrogen-producing reactions

Propionate– + 2 H2O  Acetate– + CO2 + 3 H2 +76.0

Propionate– + 2 H2O + 2 CO2  Acetate– + 3 HCOO- + 3 H+ +65.3

Butyrate– + 2 H2O           2 Acetate– + H+ + 2 H2 +48.3

Butyrate– + 2 H2O + 2 CO2  2 Acetate– + 2 HCOO– + 2 H+ +38.5

Acetate– + 4 H2O  4 H2 + 2 HCO3
– + H+ +104.6

Formate– + H2O  HCO3
– + H2 +1.3

Methanogenic reactions

4 H2 + HCO3
– + H+  CH4 + 3 H2O –135.6

Acetate– + H2O  CH4 + HCO3
– –31.0

Formate– + H+ + 3 H2  CH4 + 2 H2O –134.3
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crotonate (Schink, 1997). Butyrate degraders use the beta-oxidation pathway to oxidize butyrate 

(Schink, 1997) (Figure 5A). Thermodynamically the most difficult step in butyrate oxidation is the 

oxidation of butyryl-CoA to crotonyl-CoA. Hydrogen (at 1 Pa H2) and formate (at 1 mM formate) 

(the minimum level that can be maintained by methanogens) production from electrons generated 

in the oxidation of butyryl-CoA to crotonyl-CoA is endergonic. Therefore, a process called ‘reversed 

electron transport’ is required to use part of the gained ATP to drive these redox reactions (Sieber 

et al., 2012; McInerney et al., 2009). Genomic analysis indicates that several different gene clusters 

are involved in syntrophic reverse electron transfer (Sieber et al., 2012). Müller et al. (2009) partially 

purified an NADH:acceptor oxidoreductase from syntrophically grown S. wolfei cells and proposed 

that this enzyme complex is homologue of the Thermotoga maritima bifurcating [FeFe]-

hydrogenase and are involved in the thermodynamically favorable production of hydrogen from 

reduced ferredoxin to drive the unfavorable production of hydrogen from NADH by a process called 

electron confurcation (Müller et al. 2010; Schut and Adams, 2009). Since this enzyme complex has 

subunits predicted to function as an NADH-linked formate dehydrogenase and an NADH-linked 

hydrogenase, interspecies electron transfer may occur via either hydrogen and/or formate, 

depending on the environmental conditions (Müller et al. 2009; Müller et al. 2010). However, it 

needs to be verified if the hydrogenase acts in a bifurcating manner as observed in T. maritima. A 

possible mechanism for reverse electron transfer is electron bifurcation by butyryl-CoA 

dehydrogenase:electron transfer flavoprotein (bcd/etfAB) complex of Clostridium kluyveri (Li et al., 

2008). Syntrophomonas wolfei has a gene cluster homologous to the bcd/etfAB complex from C. 

kluyveri (Sieber et al., 2010). Previous studies showed that bifurcation of electrons from NADH with 

crotonyl-CoA and oxidized ferrodoxin by the bcd/etfAB complex of C. kluyveri is not involved in 

butyrate oxidation by S.wolfei, as Bcd of S. wolfei is not associated with etfAB (Sieber et al., 2012; 

Müller et al. 2010; Müller et al. 2009). Ion gradients can also drive the reverse electron transfer 

during syntrophic metabolism (McInerney et al., 2009). The ferredoxin:NAD+ oxidoreductase may 

function as a reverse electron transfer complex, using the ion gradient to drive the unfavorable 

reduction of ferredoxin with NADH (Sieber et al., 2012). The genome of S. wolfei contains a gene for 

a membrane-bound iron-sulfur (FeS) oxidoreductase that is adjacent to the two genes for electron 

transfer flavoprotein (etfAB) (Callaghan et al., 2011; Sieber et al., 2010; McInerney et al., 2007). The 

FeS complex could funnel electrons from β-oxidation to membrane redox carriers (Sieber et al., 

2010; McInerney et al., 2007). 
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Table 2. Butyrate and propionate degrading syntrophs and the substrates that they utilize in pure 
culture and in syntrophic cultures. Adapted from Schink and Stams, 2013 and Sieber et al., 2012. 

Organism pH range 
Temperature 

range (°C) 
Substrates used Phylogenetic 

affiliation 
References 

Pure culture Syntrophic coculture 

Butyrate degraders 

Syntrophomonas wolfei ND 35-37 Crotonate C4-C8a Firmicutes 
McInerney et al. 
(1979, 1981) 

Syntrophomonas sapovorans 6.3-8.1 25-45 None C4-C18 Firmicutes Roy et al. (1986) 

Syntrophomonas 
(Syntrophospora) bryantii 

6.5–7.5  28-34 Crotonate 
C4–C11, 2-methyl 
valerate  

Firmicutes 
Stieb and Schink 
(1985); Zhao et al. 
(1989) 

Syntrophomonas curvata  6.3–8.4  20–42  Crotonate C4–C18, C18:1  Firmicutes Zhang et al. (2004) 

Syntrophomonas erecta  6.0-8.8 25-47 Crotonate C4-C8 Firmicutes Zhang et al. (2005) 

Syntrophomonas zehnderi  7.0 25-40 None 
C4-C18, C16:1, C18:1, 
C18:2 

Firmicutes 
Sousa et al. 
(2007a) 

Thermosyntropha lipolytica 7.15-9.5 52-70 

Crotonate, yeast 
extract, tryptone, 
casamino acids, 
betaine, 
pyruvate, ribose, 
xylose 

C4–C18, C18:1, C18:2; 
triglycerides 

Firmicutes 
Svetlitshnyi et al. 
(1996) 

Syntrophothermus lipocalidus 5.8-7.5 45-60 Crotonate C4–C10, isobutyrate Firmicutes 
Sekiguchi et al 
(2000) 

Syntrophus aciditrophicus ND 25-42 Crotonate 
Butyrate, benzoate, 
alicyclic compounds, 
fatty acids 

δ-Proteobacteria  
Jackson et al., 
1999 

Algorimarina butyrica 6.2-7.1 10-25 None C4, isobutyrate  δ-Proteobacteria  
Kendall et al. 
(2006) 

Propionate degraders 

Syntrophobacter wolinii ND ND 
Propionate with 
sulfate; fumarate 

Propionate δ-Proteobacteria  

Boone and Bryant 
(1980), 
Wallrabenstein et 
al. (1994) 

Syntrophobacter 
fumaroxidans 

6.0–8.0 20–40 

Propionate, 
formate, 
hydrogen with 
sulfate and 
fumarate; 
Succinate with 
sulfate; fumarate, 
malate, 
aspartate,  
pyruvate,  

Propionate δ-Proteobacteria  Harmsen et al. 
(1998) 

Syntrophobacter pfennigii 6.2–8.0 30–37 

Propionate, 
lactate with 
sulfate, sulfite, 
thiosulfate 

Propionate, lactate, 
propanol δ-Proteobacteria 

Wallrabenstein et 
al. (1995) 

Syntrophobacter 
sulfatireducens 

 6.2–8.8  20–48  

Propionate with 
sulfate or 
thiosulfate; 
pyruvate 

Propionate δ-Proteobacteria Chen et al. (2005) 

Pelotomaculum 
thermopropionicum 

6.7-7.5 45-65 

Pyruvate, 
fumarate; 
propionate, 
ethanol or lactate 
with fumarate 

Propionate, ethanol, 
lactate, ethylene 
glycol, 1-butanol, 1-
propanol, 1-pentanol 
and 1,3-propanediol 

Firmicutes 
Imachi et al. 
(2002) 
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Pelotomaculum schinkii ND ND None Propionate Firmicutes 
de Bok et al. 
(2002a) 

Smithella propionica ND ND Crotonate Propionate δ-Proteobacteria Liu et al. (1999)  

Desulfotomaculum 
thermobenzoicum subsp. 
thermosyntrophicum 

6.0–8.0 45–62 

propionate, 
lactate, pyruvate 
and H2/CO2 with 
sulfate; Pyruvate, 
lactate, fumarate, 
glycine, benzoate 

Propionate Firmicutes 
Plugge et al. 
(2002) 

a The number of carbons in the fatty acid is indicated. When a range is given, this means that the 
organism can use compounds within the indicated range of carbon numbers, but not all possibilities 
were tested. ND = Not determined.  

Recently, Schmidt et al. (2013) confirmed the constitutive expression of a membrane-bound, 

internally oriented iron-sulfur oxidoreductase (DUF224) and electron-transfer flavoproteins 

(etfAB) during syntrophic butyrate oxidation by S. wolfei. According to Schmidt et al. (2013), 

electrons released in the butyryl-CoA dehydrogenase reaction are transferred through a membrane-

bound EtfAB:quinone oxidoreductase (DUF224) to a menaquinone and further via a b-type 

cytochrome to an externally oriented formate dehydrogenase. Hence, an ATP hydrolysis driven 

proton-motive force across the cytoplasmatic membrane would provide the energy input for the 

electron potential shift necessary for formate formation (Schmidt et al., 2013). Thus, formate would 

be the preferential electron carrier in syntrophic butyrate oxidation by S. wolfei, or could be 

exchanged into hydrogen as electron carrier at the hydrogenase/formate dehydrogenase (HYD-

1/FDH-1) complex (Schmidt et al., 2013). In the 3-hydroxybutyryl-CoA dehydrogenase reaction, the 

second reaction that generates electrons (NADH), electrons are transferred to NAD+ to form 

NADH. The NADH can then be used to reduce either protons to molecular hydrogen, or CO2 to 

formate (Schmidt et al., 2013). 
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Figure 5. Metabolic pathways of butyrate (A) and propionate (B) conversion by bacteria that can 
grow in syntrophy with methanogens. 
 
1.6 Syntrophic propionate conversion 

Syntrophic propionate degraders are affiliated with the classes of Deltaproteobacteria and Clostridia 

(Imachi et al., 2002; Plugge et al., 2002) (Table 2). Different from syntrophic butyrate degraders, 

some syntrophic propionate degraders, such as Syntrophobacter sp., can grow in pure culture by 

using sulfate as electron acceptor for propionate oxidation (McInerney et al., 2005). Additionally, 

some can grow by fermenting pyruvate or fumarate in pure culture. Smithella propionica ferments 

propionate via dismutating pathway to acetate and butyrate, and butyrate is subsequently oxidized 

to acetate (de Bok et al., 2001). All other known syntrophic propionate degraders use 

methymalonyl-CoA pathway to oxidize propionate to acetate and CO2 (Figure 5B). The key redox 

reactions are the oxidation of succinate to fumarate, malate to oxaloacetate and the conversion of 

pyruvate to acetyl-CoA and CO2 (Schink, 1997). Oxidation of succinate and malate are highly 

endergonic reactions and thus require an energy input via reverse electron transfer. The reverse 

electron transport for the oxidation of succinate during syntrophic propionate metabolism involves 

coupling menaquinone reduction with the oxidation of succinate to fumarate by succinate 

dehydrogenase. In Syntrophobacter fumaroxidans and Pelotomaculum thermopropionicum, 

menaquinone oxidation is linked to a membrane-bound hydrogenase or formate dehydrogenase 
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(Sieber et al., 2012). S. fumaroxidans has a membrane-bound succinate dehydrogenase, two 

cytoplasmic succinate dehydrogenases, and several periplasmic and cytoplasmic hydrogenases and 

formate dehydrogenases (Müller et al., 2010; Worm et al., 2011; de Bok et al., 2002a, 2003). 

Significantly higher expression of the confurcating hydrogenase, a periplasmic formate 

dehydrogenase, and the hydrogen-formate lyase was observed during syntrophic growth versus 

monoculture growth of S. fumaroxidans (Worm et al, 2011). P. thermopropionicum also contains a 

similar system with a membrane-associated succinate dehydrogenase, which was transcribed 

highly during coculture growth on propionate (Kato et al., 2009). Malate oxidation to oxaloacetate 

and pyruvate to acetyl-CoA and CO2 also generates each two electrons (NADH) (van Kuijk et al., 

1996; Chabrière et al., 1999). Genome analysis suggests that NADH generated from malate oxidation 

and reduced ferredoxin generated from pyruvate oxidation could be coupled to formate or 

hydrogen production by confurcating formate dehydrogenases and hydrogenases (Müller et al. 

2010). Such a mechanism would use the energy that remains from ferredoxin oxidation with protons 

to allow the endergonic coupling of NADH oxidation to proton reduction.  

Among multiple routes that have been suggested for reverse electron transfer mechanism during 

syntrophic metabolism, the presence of confurcating-type hydrogenase genes and a gene for novel 

membrane-bound FeS oxidoreductase and adjacent to etfAB were found to be common in almost 

all microorganisms capable of syntrophic metabolism, despite the distinctly different phylogenetic 

lineages of these organisms (Sieber et al., 2012). 

 

1.7 Do sulfate reducers and syntrophs coexist throughout the sediment? 

In anoxic marine environments where the amount of organic carbon is high, both sulfate reduction 

and methanogenesis were reported to occur simultaneously (Oremland and Taylor, 1978; Oremland 

et al., 1982b; Senior et al., 1982; Holmer et al., 1994). There are several studies supporting the co-

existence of both microbial groups using competitive substrates, H2 and acetate, in sulfate-rich 

sediments (Oremland and Taylor, 1978; Senior et al., 1982).  

The zonation of mineralization processes may be kinetically or energetically controlled 

based on the abilities of the physiological groups to compete for common substrates. The H2 

concentration in anaerobic sedimentary environments is an important factor in determining the 

predominant terminal electron-accepting process and consequently the biological redox zonation 

observed in sediments. According to Lovley and Goodwin (1988), each terminal electron-accepting 

process requires different minimum H2 concentrations in order to conserve energy and to grow. 
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They reported the H2 concentration range for methanogenesis as 7 – 10 nM, for sulfate reduction as 

1 – 1.5 nM, for Fe (III) reduction as 0.2 nM, and for Mn(IV)/nitrate reduction as less than 0.05 nM 

(Lovley and Goodwin, 1988). Hence, sulfate reducers will maintain H2 concentrations at very low 

levels (1 – 1.5 nM) in sulfate zones, and H2-dependent methanogenesis will then be 

thermodynamically unfavorable. The regulation of the ambient H2 by sulfate-reducing bacteria or 

methanogenic archaea at a minimum concentration constitutes a clear example of thermodynamic 

control which still enables these organisms to maintain the required energy yield of ≤−10 to −20 kJ 

mol−1 (Hoehler et al., 2001). Acetate is another important and common substrate for sulfate 

reduction and methanogenesis in marine anoxic sediments. As compared to H2 concentrations, 

measured pore water concentrations of acetate in marine sediments have been reported to be 10 

µM or more. This concentration is enough to support both sulfate reduction and methanogenesis 

8almost all acetate in the sulfate zone is converted to CO2 instead of CH4 (King et al., 1983). This 

phenomenon has been explained by the ability of acetoclastic methanogens to grow in syntrophy 

with sulfate reducers which results in shifting from producing methane from acetate to feeding the 

sulfate reducers with H2 (Finke et al., 2007b). The competitive and potential syntrophic 

relationships between these two phylogenetic groups of microorganisms may therefore be more 

complex than has so far been recognized. 

Similar to the fact that methanogens reside in the upper sulfate-rich sediments, recent data 

on the relative distribution of sulfate-reducing bacteria in Black Sea and Aarhus Bay sediments 

shows that SRB are present within the methane zone at similar high numbers as in the sulfate zone 

(Leloup et al., 2007, 2009). According to the study of Leloup et al. (2007), sulfate- and methane-

rich sediment layers showed the dominance of similar, novel cluster of dsrAB sequences. dsrAB are 

the functional marker genes encoding alpha- and beta-subunits of dissimilatory (bi)sulfite 

reductase that is used by sulfate-reducing microorganisms for energy conservation (Pester et al., 

2012). Considering that the phylogenetic position of the novel dsrAB cluster is in close vicinity of 

some sulfate-reducing microorganisms that have the ability to grow syntrophically (Leloup et al. 

2007), it becomes obvious that the ability of sulfate reducers to perform both sulfidogenic and 

syntrophic lifestyle enables them to thrive in high- and low-sulfate environments in high numbers. 

On the other hand, Holmkvist et al. (2011) proposed that the sulfate reducers inhabiting the 

methane zone of Aarhus Bay live by reducing sulfate. They showed an immediate 10- to 40-fold 

increase in sulfate reduction after addition of both sulfate and organic substrates into the sediment 

and concluded that the low background sulfate concentration in the sediment is generated from 
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the chemical reaction of downwards diffusing sulfide with deeply buried Fe(III) species and perhaps 

to a low diffusive flux of sulfate from above. Despite the occurrence of sulfate reduction in the 

methane zone, Holmkvist et al. (2011) also reported that sulfate reduction in the methane zone was 

only a fraction of ongoing methanogenesis and it corresponded to 0.1% of the total sulfate reduction 

in the sulfate zone. Therefore, it is relevant to understand how sulfate reducers interact with 

methanogenic communities when the sulfate is insufficient for complete oxidation of organic 

compounds. 

 

1.8 Outline of the thesis 

Sulfate reduction and methanogenesis are important terminal electron accepting processes in many 

anaerobic ecosystems including marine sediments, freshwater sediments, digesters, and 

propionate, butyrate, acetate, hydrogen and formate are the major end-products of fermentation 

during organic matter degradation in these ecosystems. Acetate, H2 and formate are key 

intermediates and serve as primary substrates for several terminal processes, such as sulfate 

reduction and methanogenesis. Sørensen et al. (1981) reported that acetate oxidation contributes 

for 40-50 % to sulfate reduction in marine sediments while the contribution of H2 consumption is 

5 – 10 %, propionate and butyrate oxidations are 10 - 20 %, in case of complete oxidation of 

propionate and butyrate. The conversion of propionate and butyrate is critical in deep sulfate-

depleted sediments since they can be converted only by the combined action of several different 

physiological groups of bacteria and archaea. Despite the importance of these compounds in 

sulfate-rich and sulfate-depleted parts of marine sediments, it is often unclear what populations of 

microorganisms are involved in their degradation in the upper and lower parts of the sediment 

column. Therefore, we aimed to gain more insight into the propionate- and butyrate-degrading 

microbial communities residing at different depths of marine sediments and to better understand 

the factors affecting their growth, such as substrate and sulfate availability, and temperature. We 

also targeted to isolate butyrate and propionate-degrading syntrophic communities from different 

parts of the sediment. The sources of organic matter and the degradation of organic matter, the 

biogeochemical zones and the role of microorganisms in shaping these zones are discussed. The 

focus is brought on the butyrate and propionate conversions since they are considered as rate 

limiting steps in anaerobic degradation of organic matter. 

Chapter 2 evaluates interspecies hydrogen transfer between and coexistence of marine 

methanogens and sulfate reducers using acetate as sole electron and carbon source in mixed pure 
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cultures. To test interspecies hydrogen transfer, aceticlastic Methanosaeta (Methanotrix) concilii 

was cocultured with either hydrogenotrophic sulfate reducer, Desulfovibrio vulgaris, or 

hydrogenotrophic methanogen, Methanococcus maripaludis. Coexistence of M. concilii and 

Desulfobacter latus on acetate was investigated under sulfidogenic conditions in mixed pure 

cultures. The concentrations of substrates, intermediates, and electron acceptor were quantified by 

analytical methods at different time intervals. The total number of 16S rRNA gene copies was 

determined regularly by quantitative PCR in order to define the growth curve of each 

microorganism during experiment. Gibbs free energies per reaction were calculated to determine 

the possibility of each reaction to occur under given culture conditions and with partner organism. 

Chapter 3 aims to investigate butyrate-degrading sulfate-reducing and syntrophic communities in 

the sulfate, sulfate-methane transition and methane zone of Aarhus Bay, Denmark. In order to 

enrich for sulfate-reducing, syntrophic bacteria and methanogenic archaea, batch slurry 

incubations were prepared using the sediment retrieved from different zones. Some of these slurries 

were amended with 20 mM sulfate to stimulate growth of sulfate-reducing communities. Some of 

the slurries were amended with 3 mM sulfate to examine the growth behavior of sulfate-reducing 

and syntrophic communities, and some were incubated without sulfate to stimulate syntrophic 

communities. Two different temperatures were used for incubation; one is the in situ temperature 

and the other is a higher temperature to investigate its effect on the conversion rates and the 

possible change in ultimate community structure. The change in the bacterial and archaeal 

community structure was analyzed by DGGE using the genomic DNA sampled at different time 

points. The ultimate microbial community in each batch slurry was determined by pyrosequencing 

and Illumina MiSeq sequencing of the extracted DNA from the samples taken at the last incubation 

day.  

Chapter 4 is similar to Chapter 3 and investigates the propionate-degrading sulfate-reducing and 

syntrophic communities inhabiting different biogeochemical zones of Aarhus Bay. The propionate 

degradation and the product formation was followed by regular gas and liquid sampling. The 

change in the bacterial and archaeal community structure was analyzed by DGGE using the 

genomic DNA sampled at different time points. The ultimate microbial community in each batch 

slurry was determined by pyrosequencing and Illumina MiSeq sequencing of the extracted DNA 

from the samples taken at the last incubation day. The investigations performed in Chapters 3 and 

4 are intended to test the hypothesis that syntrophs are not easily out-competed by sulfate reducers, 



General Introduction 

17 
 

rather both physiological groups can coexist throughout the sediment at different sulfate 

concentrations. Furthermore, the demonstration of simultaneous sulfate reduction and 

methanogenesis during propionate and butyrate conversion throughout the sediment is important 

to understand the capabilities of the microbes involved.  

Chapter 5 monitors intact polar membrane lipids (IPL) content of all the enrichment slurries 

studied in Chapters 3 & 4 and constitutes a complementary tool to the molecular analysis conducted 

in these chapters. IPL analysis was performed by high performance liquid chromatography-

electrospray ionization-mass spectrometry (HPLC/ESI/MS) on the original sediment samples and 

the enrichment slurry samples taken at the end of the incubation period. By comparing the IPL 

composition of both samples, we aimed to understand the factors shaping microbial community 

such as amended substrates, availability of sulfate, incubation temperature and the depth of the 

sediment.  

Chapter 6 presents the further enrichment of propionate- and butyrate-degrading slurries to get 

more defined cultures and aims to take steps further for the isolation of new marine syntrophs. The 

enrichment slurries obtained in Chapters 3 & 4 were subcultured four times and the obtained 

microbial community was identified by cloning of bacterial and archaeal 16S rRNA gene analysis. 

The FISH method was used to visualize the syntrophic interactions and to capture the live microbes.     

In Chapter 7, results obtained in this thesis are summarized and discussed with the knowledge 

presented in the literature. Additionally, future perspectives for research are presented.   
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Methanogenic archaea and sulfate 
reducing bacteria co-cultured on 

acetate: teamwork or coexistence? 
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Abstract 

Acetate is a major product of fermentation processes and an important substrate for sulfate 

reducing bacteria and methanogenic archaea. Most studies on acetate catabolism by sulfate 

reducers and methanogens have used pure cultures. Less is known about acetate conversion by 

mixed pure cultures and the interactions between both groups. We tested interspecies hydrogen 

transfer and coexistence between marine methanogens and sulfate reducers using mixed pure 

cultures of two types of microorganisms. First, Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), a 

hydrogenotrophic sulfate reducer, was cocultured together with the obligate aceticlastic 

methanogen Methanosaeta concilii using acetate as carbon and energy source. Next, 

Methanococcus maripaludis S2, an obligate H2- and formate-utilizing methanogen, was used as a 

partner organism to M. concilii in the presence of acetate. Finally, we performed a coexistence 

experiment between M. concilii and an acetotrophic sulfate reducer Desulfobacter latus AcSR2. Our 

results showed that D. vulgaris was able to reduce sulfate and grow from hydrogen leaked by M. 

concilii. In the other coculture, M. maripaludis was sustained by hydrogen leaked by M. concilii as 

revealed by qPCR. The growth of the two aceticlastic microbes indicated co-existence rather than 

competition. Altogether, our results indicate that H2 leaking from M. concilii could be used by 

efficient H2-scavengers. This metabolic trait, revealed from coculture studies, brings new insight to 

the metabolic flexibility of methanogens and sulfate reducers residing in marine environments in 

response to changing environmental conditions and community compositions. Using dedicated 

physiological studies we were able to unravel the occurrence of less obvious interactions between 

marine methanogens and sulfate-reducing bacteria.  



Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate 

21 
 

2.1 Introduction 

Marine coastal and shelf sediments are important sites for mineralization of organic matter 

deposited from land and from the marine photic zones (Jørgensen 1983). It is well established that 

under anoxic conditions, mineralization of complex organic matter requires cooperation between 

at least three trophic guilds (Schink and Stams, 2013). The first step in the degradation of organic 

matter is the hydrolysis of complex molecules into their oligomers or monomers. This step is 

followed by fermentation involving the degradation of these substrates to reduced organic 

compounds such as short chain fatty acids, and alcohols. In sulfate-rich sediments, sulfate-reducing 

bacteria (SRB) can use the products of primary fermentations and oxidize them to CO2. However, 

in sulfate-depleted methanogenic sediments, short chain fatty acids and alcohols are converted by 

secondary fermenters to acetate, formate, H2 and CO2, which are subsequently utilized by 

methanogenic archaea (MA) to produce CH4 (Muyzer and Stams, 2008; McInerney et al., 2008; 

Stams and Plugge, 2009; Schink and Stams, 2013).  

Acetate is a key intermediate in marine sediments as it is one of the major end-products of 

fermentation and serves as a primary substrate for several terminal electron accepting processes, 

like sulfate reduction and methanogenesis (Thamdrup et al. 2000; Sørensen et al., 1981; Christensen 

1984; Parkes et al., 1989). There are two possible processes for methanogens to produce methane 

from acetate. In the first process acetate is cleaved to CH4 and CO2. This process is called aceticlastic 

methanogenesis and it is an energy-yielding reaction under standard conditions (Table 1, reaction 

2). The second process, syntrophic acetate oxidation, was first proposed by Barker (Barker 1936), 

but attracted attention much later by Zinder and Koch (1984). Syntrophic acetate oxidation is a 

two-step process. It the first step, acetate is oxidized to CO2 by an aceticlastic microorganism with 

the generation of reducing equivalents, often as hydrogen. This step is endergonic and requires a 

hydrogenotrophic microorganism for the consumption of produced hydrogen (Table 1, reaction 1). 

In the second step, hydrogenotrophic methanogens scavenge that hydrogen and the overall 

reaction becomes thermodynamically favorable (Table 1, the sum of reactions 1 and 5). 

Hydrogenotrophic sulfate reducers can also be involved in the second step and in case of SRB as 

the partner organism, the overall reaction is the same as if a sulfate reducer would oxidize acetate 

completely without a syntrophic partner (Table 1, the sum of reactions 1 and 3). It has been shown 

in previous studies that not only aceticlastic bacteria but also aceticlastic methanogens can carry 

out the first step of syntrophic acetate oxidation (Phelps et al., 1985). In a syntrophic relationship, 
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the chemical energy is shared via interspecies hydrogen transfer, so that not only sulfate reducers 

but also the aceticlastic methanogens would be able to grow in the sulfate zone of marine 

sediments. It is noteworthy that the energy yield from syntrophic acetate oxidation to sulfate is 

greater than the energy yield from aceticlastic methanogenesis (Table 1, the sum of reactions 1 and 

3).  

Interspecies H2 transfer has been studied using mixed pure cultures of the aceticlastic 

methanogen Methanosarcina barkeri and the hydrogenotrophic sulfate reducer Desulfovibrio 

vulgaris (Phelphs et al., 1985). Phelphs and colleagues co-cultivated M. barkeri with D. vulgaris and 

reported that CO2 production from acetate increased and CH4 production decreased in cocultures 

compared to pure cultures of M. barkeri, demonstrating interspecies hydrogen transfer. Syntrophic 

acetate oxidation by aceticlastic methanogens and hydrogenotrophic sulfate reducers was 

demonstrated for anoxic paddy soils (Achtnich et al. 1995) but has not been demonstrated for 

marine sediments so far.  

Acetate concentrations in pore water of marine sediments are reported to be relatively high 

(typically >10 µM (Finke et al; 2007a)) and they are likely not under thermodynamic limitation in 

marine sediments, which makes acetate conversion by methanogens thermodynamically feasible 

even in the sulfate zone (Finke et al., 2007b). However, almost all acetate in the sulfate zone is 

converted to CO2, not to CH4 (Jørgensen and Parkes, 2010), suggesting the predominance of 

aceticlastic sulfate reduction. Thermodynamic mechanisms to explain the biogeochemical zonation 

in marine sediments in the presence of acetate are unclear. Finke and colleagues (2007b) suggested 

that acetate oxidation might proceed via interspecies H2 transfer. According to their hypothesis, 

aceticlastic methanogenesis is exergonic as long as acetate concentrations stay above 0.05 µM. 

Many studies have shown the existence of methanogens in sulfate-rich marine sediments (Wilms 

et al. 2007; Beck et al. 2011; Schippers et al. 2012). Methanosaeta sp. have been detected in marine 

sediments (Mori et al., 2012), with unknown identities, and the marine “Methanosaeta pelagica” has 

been recently isolated (Mori et al., 2012). Aceticlastic methanogens, specifically Methanosaeta 

species, may be important in contributing to acetate degradation in marine sediments, in particular 

the tidal flat sediments, which have an abundant supply of organic matter.  

In this study, we investigated interspecies hydrogen transfer between aceticlastic 

Methanosaeta concilii and two hydrogenotrophic microorganisms, either a sulfate reducer, 

Desulfovibrio vulgaris, or a methanogen, Methanococcus maripaludis. We hypothesized that the 

existence of interspecies hydrogen transfer between aceticlastic methanogens and 
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hydrogenotrophic sulfate reducers/methanogens in marine sediments would help to understand 

what controls the distribution of methanogens in sediments. Additionally, we tested coexistence 

between Methanosaetae concilii and Desulfobacter latus on acetate under sulfidogenic conditions 

in mixed pure cultures. 

 

Table 1: Overview of reactions examined in this study. 1: Acetate oxidation, 2: Aceticlastic 
methanogenesis, 3: Hydrogenotrophic sulfate reduction, 4: Acetotrophic sulfate reduction, 5: 
Hydrogenotrophic methanogenesis, the sum of the reactions of 1 and 3 (reaction 4): Syntrophic 
acetate oxidation by an aceticlastic methanogen and a hydrogenotrophic sulfate-reducer, the sum 
of the reactions of 1 and 5 (reaction 2): Syntrophic acetate oxidation by an aceticlastic methanogen 
and a hydrogenotrophic methanogen. The calculations for standard conditions (298K, 1 atm, 1M 
reactants) were done with thermodynamic data from Lever (2012). The ∆Gr° values of the reactions 
shown in this table are different from the ∆Gr° values of the same reactions shown in other chapters. 
The reason is the difference in Gibbs free energies of formation (∆Gf°) values for H2 and CH4 in 
aquous state (used in this chapter) and in the gaseous state (used in other chapters).  

Reaction number Reactions ∆Gr° (kJ mol-1) 

1 CH3COO
-
 + 4H2O   4 H2 + 2 HCO3

- 
+ H

+
 214.70 

2 CH3COO
-
 + H2O  CH4 + HCO3

-
 -14.74 

3 4 H2 + SO4

2-
 + H

+
  HS

-
 + 4 H2O -262.06 

4 CH3COO
-
 + SO4

2-
     HS

-
 + 2 HCO3

-
 -47.36 

5 HCO3

-
 + 4 H2 +  H

+
    CH4  +  3 H2O -229.44 

 

2.2 Materials and methods 

2.2.1 Strains and cultivation   

Methanosaeta concilii strain (DSM 2139) was adapted to 2% NaCl conditions and maintained 

routinely on 10 mM acetate. Desulfovibrio vulgaris subsp. vulgaris (DSM 1744), Desulfobacter latus 

AcRS2 (DSM 3381) and Methanococcus maripaludis S2 (DSM 14266) were obtained from the German 
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Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany) and maintained 

routinely on H2/CO2 (80:20%, v/v) plus 10 mM sulfate, 10 mM acetate plus 10 mM sulfate and 

H2/CO2  (80:20%, v/v) respectively. All strains were grown in the same mineral salts medium 

(described below). Methanogenic archaea and sulfate-reducing bacteria were cultured routinely at 

370C and/or 300C, respectively. 

 

2.2.2 Media and growth conditions  

For the preparation of cocultures and maintaining the pure cultures, a marine, bicarbonate-

buffered mineral salts medium was used. The anoxic medium contained the following components 

(grams/liter): KH2PO4 (0.41), Na2HPO4
.2H2O (0.53), NH4Cl (0.3), NaCl (0.3), CaCl2

.2H2O (0.11), 

MgCl2
.6H2O (0.1), NaHCO3 (4), Na2S.9H2O (0.024) and 0.05% (w/v) yeast extract (YE) (added only 

to the pure and cocultures of D. vulgaris strain). The medium was supplemented with 1 ml/liter of 

acid and alkaline trace element solution (Stams et al., 1992). The medium was boiled and cooled to 

room temperature under an oxygen-free N2 flow. The medium was dispensed into 120 ml serum 

bottles. The bottles were sealed with butyl rubber stoppers and crimp caps and the gas headspace 

was replaced with 1.7 atm. N2/CO2 (80:20% v/v) and autoclaved.  

Acetate from a concentrated sterile stock solution was added to the medium to a final 

concentration of 10 mM. Besides the substrate, vitamins (1 ml/liter) (Stams et al., 1992) were added 

from sterile stock solution to the medium. In order to reach the desired salt concentration (2%, 

w/v), sterile anoxic artificial seawater, containing (in grams/liter) NaCl (40), MgCl2
.6H2O (10.8), KCl 

(0.7), CaCl2
.2H2O (1) was added to serum bottles in same volume as the medium volume. The pH 

of the medium was set to 7. 

 

2.2.3 Experimental design 

Microorganisms were cultivated in duplicate in 120 ml serum vials with a final volume of 50 ml. 

Complete medium (30 ml) was inoculated with 20% (v/v) of each microorganism to prepare 

cocultures. Final concentrations of acetate and sulfate in bacterial-archaeal cocultures were 10 mM, 

whereas archaeal-archaeal coculture contained only 10 mM acetate. The flasks were flushed with 

N2/CO2 immediately after inoculation of each strain to remove residual H2 and CH4, leaving 1.7 bar 

of N2/CO2 (80:20% v/v) as the headspace. All inoculations were done aseptically and all cocultures 

were incubated under static conditions in the dark. Cocultures of methanogenic archaea were 
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incubated at 37oC while bacterial-archaeal cocultures were incubated at 30oC. Incubations lasted 

for 41 days for M. concilii-D. vulgaris and M. concilii-M. maripaludis cocultures and 21 days for M. 

concilii-D. latus cocultures. Gas and liquid samples were taken at different time intervals and 

analyzed for H2, CH4, acetate, sulfate, sulfide, dissolved inorganic carbon and biomass increase.  

Pure cultures of respective microorganisms were cultivated in the presence of the required 

electron donor and acceptor as control. The culture conditions of pure cultures were explained in 

section 2.1. D. vulgaris was incubated at two different conditions in addition to its original culture 

condition; one was without H2/CO2 but with yeast extract addition (0.05%, w/v) and the other was 

without H2/CO2 but with YE (0.05%, w/v) and 10 mM acetate. These controls were made to check 

for the ability of the strain to grow and reduce sulfate with YE and/or acetate in the absence of 

H2/CO2.  

 

2.2.4 Analytical methods 

CH4 was analyzed by gas chromatography with a Shimadzu GC-14B (Shimadzu, Kyoto, Japan) 

equipped with a packed column (Molsieve 13X, 60-80 mesh, 2 m length, 3 mm internal diameter) 

(Varian, Middelburg, The Netherlands) and a thermal conductivity detector set at 70 mA. The 

injection volume was 0.2 ml. The oven temperature and the injector temperatures were both 100oC. 

The detector temperature was 150oC. Argon was the carrier gas at a flow rate of 30 ml/min.  

H2 was measured using a gas chromatograph equipped with pulsed discharge detector 

(PDD) (Trace Analytical, Bester, Amstelveen). The GC had Carboxen 1010 column, 3 m x 0.32 mm 

followed by a Molsieve 5A column, 25 m x 0.32 mm. The injection volume was 0.5 ml. The carrier 

gas was helium with a flow rate of 20 ml/min. The column oven temperature was 90oC, the injection 

oven temperature was 80oC and the detector temperature was 110oC. The pressure was 200 kPa and 

the input range was 64 nA. 

Acetate from centrifuged (10,000 x g, 10 min) samples of the culture media was analyzed by 

Thermo Scientific Spectrasystem HPLC system equipped with a Varian Metacarb 67H 300 x 6.5 mm 

column kept at 30°C and running with 0.005 M sulfuric acid as eluent. The eluent had a flow of 0.8 

ml/min. The detector was a refractive index detector.  

Sulfate concentrations were analyzed by Thermo Scientific Dionex HPLC equipped with an 

AS22 column (Thermo Scientific Dionex, Massachusetts, USA) with eluents of 0.235 g/l NaHCO3 

and 2.576 g/l Na2CO3 at a flow rate of 1.2 ml/min. The column temperature was 30oC and pressure 

was 130-160 bar. 
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Sulfide measurements were done using the methylene blue method (Cline, 1969). Samples 

were diluted 1:1 with 5% ZnAc solution directly after sampling, to precipitate all sulfide. The solution 

was stored at room temperature for at least 20 minutes in order to promote the precipitation of 

zinc sulfide. After color development, the concentration was measured on a MERCK Spectroquant® 

Multy at 670 nm. Demi-water was used as a blank.  

The pH was measured using Proline B210 pH electrode.  

 

2.2.5 DIC measurements  

For dissolved inorganic carbon (DIC) analysis, a 1 ml glass vial containing glass beads was filled 

with culture sample till the liquid became convex on top and the vial was sealed with a screw cap. 

The vials were stored at 4oC until analysis. Total DIC concentrations were measured as gaseous 

CO2 after acidification of the liquid using a gas chromatograph (SRI 310C GC, SRI Instruments 

Europe GmbH) equipped with a thermal conductivity detector (TCD).  

 

2.2.6 DNA extraction 

Biomass was harvested at selected time points by sampling 1 mL of culture after homogenization 

by vortexing, and centrifugation at 13,000 g for 20 min. Genomic DNA was extracted from the pellet, 

using the PowerSoilR DNA Isolation kit (MoBio), following the manufacturer’s instructions.  

2.2.7 Quantification of 16S rRNA genes by quantitative PCR 

The total number of 16S rRNA gene copies was quantified by SYBR Green assay, on the CFX96 

TouchTM Real-time PCR Detection System (Bio-Rad). The primers used for amplifying bacterial 

16S rRNA genes were Bac8F and Bac338Rabc (Juretschko et al. 1998; Daims et al. 1999). For Archaea, 

Arch806F and Arch958R were used (Takai and Horikoshi, 2000; DeLong, 1992).  For the coculture 

of Methanosaeta concilii and Methanococcus maripaludis, Methanosaeta-specific primers (MS1b 

585F and Sae 835R; Conklin et al. 2006) and Methanococcales-specific primers (MCC495F and 

MCC832R; Yu et al. 2005) were used.  

Prior to qPCR, the primers were tested by end-point PCR (annealing temperature gradient 

from 56°C to 65°C, 40 PCR cycles) on DNA extracts from pure cultures of the respective strains to 

ensure the specificity of the qPCR assays. None of the primer pairs used showed any unspecific 

amplification of non-target groups. All primers are shown in Supplementary Table 1.  
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Per PCR reaction, a total volume of 10 µL mixture contained 5 µL of iQ SYBR Green Supermix 

(Bio-Rad), 10 µM of each primer and 1 µL of ~5 ng/µl template DNA. The amplification program 

consisted of an initial activation step at 95°C for 3 min, 45 cycles of: denaturation at 95 °C for 15 s, 

annealing at 55°C for 30 s and elongation at 72°C for 30 s, and a final extension step at 60°C for 31 s. 

For reactions involving Methanosaeta- and Methanococcales-specific primer sets, the annealing 

temperature was adjusted to 60°C. Melting curves were analyzed using the CFX ManagerTM 

software. The results were expressed as the number of cells per µL of sample, after calculating the 

number of 16S rRNA genes per genome from reference strains with completely sequenced genomes, 

using Genbank (http://www.ncbi.nlm.nih.gov/genbank) and the RNAmmer 1.2 Server 

(http://www.cbs.dtu.dk/services/RNAmmer/) (Lagesen et al., 2007). The calculated number of 16S 

rRNA gene copies and the corresponding reference strains were: 2 for Methanosaeta concilii GP6, 5 

for Desulfovibrio vulgaris subsp. vulgaris HildenboroughT, 4 for Desulfobacter postgatei 2ac9, and 3 

for Methanococcus maripaludis (strains C5, C6, C7, and S2).  

 

2.2.8 Calculation of Gibbs free energy (∆G) 

Gibbs free energies per reaction were calculated for the reactions shown in Table 1. For each 

reaction, the thermodynamic data for ∆Gf°, ∆Hf°, ∆Vf° (Table S2) were used to calculate ∆Gr° 

(standard Gibbs free energy of reaction), ∆Hr° (standard enthalpy of reaction), ∆Vr° (standard 

volume of reaction) (Table S3) by subtracting the sum of products from the sum of reactants. 

∆G values of reactions are dependent on temperature, pressure and chemical concentrations. Thus, 

∆Gr° values were corrected taking into account the temperature, pressure and concentrations of 

reactants and products (Wang et al. 2010).  

Standard Gibbs free energies of reactions were corrected for different temperatures using the 

integrated Gibbs-Helmholz equation: 

(ࢀ)°ࡳ∆ = ࢀ ∗ ቆ
°ࡳ∆

૛ૢૡࡷ
+ ൬

°ࡴ∆
ࢀ

−
°ࡴ∆

૛ૢૡࡷ
൰ቇ 

The effect of pressure on ∆G° value was calculated using the equation:  

(ࡼ)°ࡳ∆ = (ࢀ)°ࡳ∆ + °ࢌࢂ∆ ∗
ࡼ) − ૚)

ૢૡ૟ૢ
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As last, Gibbs free energies per reaction were calculated using the measured products and reactants 

via the equation: 

∆۵ = ∆۵° +  ۹ܖܔ ࢀࡾ

where ΔG° was calculated under standard conditions (Table S3), R is the gas constant (0.008314 kJ 

mol-1 K-1), and T is the absolute temperature (298.15K). The activity coefficient values for 

bicarbonate and acetate (0.532), for water and H+ (1), for H2 and CH4 (1.24), for sulfate (0.104) and 

sulfide (0.41) were taken from Millero and Schreiber (1982) and Lever (2012).  

2.3 Results 

2.3.1 M. concilii in coculture with D. vulgaris 

Methane formation started directly and increased with time (Figure 1A). 10 mM acetate was fully 

converted into CH4. In 41 days, 0.9 mM sulfate was consumed and sulfide accumulated to a 

concentration of 0.8 mM . The bulk of sulfate was reduced in the first 6 days where H2 concentration 

sharply decreased. After that point, there were only slight fluctuations in sulfate concentration. The 

H2 pressure in the cocultures was 3.5 Pa when measured on day 1, presumably as a result of carryover 

from the D. vulgaris inocula. Hydrogen levels sharply decreased to 1.08 Pa in a week and then slowly 

dropped to 0.83 Pa until day 20. Later on, it slowly increased and reached to 1.21 Pa by the last day 

of the experiment. Pure cultures of M. concilii had pressures of 1.03 Pa H2 on average throughout 

the incubation period (Figure S1A, S1B). H2 concentration in pure culture controls of D. vulgaris 

incubated with YE and acetate without H2 addition was 19.5 Pa and was 8 Pa when incubated with 

YE only (Figure S2A, S2B). The pressures dropped to 0.92 Pa in both controls by the end of 8th day 

and remained constant during the rest of the incubation period. H2 concentration in control bottles 

did not change any further and same concentration was observed in cocultures. Thus 0.92 Pa H2 

(equivalent to 7.12 nM) was assumed to be the threshold H2 concentration for the D. vulgaris subsp. 

vulgaris strain. Gibbs free-energy changes in the coculture ranged between -36.2 and -20.9 kJ/mol 

for the conversion of acetate into methane and bicarbonate and between -168.6 and -152.3 kJ/mol 

H2 for hydrogenotrophic sulfate reduction (Figure 1B). These results showed that both reactions 

were favorable throughout the experiment. The most negative Gibbs free-energy values for both 

reactions were obtained in the beginning of experiment where acetate and hydrogen 

concentrations were at the highest levels. The highest Gibbs free-energy value for hydrogenotrophic 
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sulfate reduction was -152.3 kJ/mol, showing that the growth of D. vulgaris was thermodynamically 

feasible at the determined H2 concentrations. 

  

Figure 1. Growth on acetate by coculture of M. concilii and D. vulgaris subsp. vulgaris. (A) Changes 
in acetate, sulfate, sulfide, methane and hydrogen. (B) Actual Gibbs free-energy changes for acetate 
degradation to sulfide and bicarbonate and methane formation from acetate. (C) Growth quantified 
by qPCR in cells/µl. All data is average of 2 replicate incubations.  
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qPCR results showed an increase in cell numbers of both organisms during the experiment 

(Figure 1C). The decrease in the cell numbers of M. concilii in the first 8 days coincided with a lag 

phase of acetate consumption. D. vulgaris cell numbers increased 2-fold in the same period with H2  

consumption coupled to sulfate reduction. Between days 8 and 15, both M. concilii and D. vulgaris 

had the highest increase in their cell numbers with 11- and 3-fold increase, respectively. From day 

15 until day 24, cell numbers of M. concilii increased 2.6-fold whereas D. vulgaris cell numbers 

decreased. In the last period of the incubation, both M. concilii and D. vulgaris showed growth with 

1.8- and 1.5-fold increase in cell numbers, respectively. These results showed that D. vulgaris grew 

after consuming initial hydrogen to the threshold H2 value. 

qPCR analysis of D. vulgaris pure culture controls showed growth during the experiment 

(Figure S3). D. vulgaris with YE and acetate showed the highest increase in cell numbers within the 

first 8 days. However, D. vulgaris in coculture grew to the highest cell density and showed a 5-fold 

increase in numbers after 15 days compared to day 1.  

2.3.2 M. concilii in coculture with M. maripaludis 

Acetate conversion started upon the start of the experiment. CH4 was produced from acetate and 

increased rapidly after 8 days of incubation (Figure 2A). As the first acetate addition was depleted 

by day 22, a second feed of acetate was given to the coculture. During the course of the experiment, 

27 mM acetate was consumed and 28 mM CH4 produced.  

 H2 level increased from 1.4 Pa to a peak concentration of 1.9 Pa during the first 15 days. This 

increase was concomitant to acetate consumption and CH4 production, which suggested H2 leakage 

from M. concilii cells during growth. After H2 reached the highest level, it was consumed by M. 

maripaludis to the lowest level which was 1.17 Pa. During the rest of the experiment, there were 

slight fluctuations in H2 level, apparent changes were not observed. In pure culture controls of M. 

concilii, average H2 levels were around 1.2 Pa and stayed constant throughout the experiment 

(Figure S1).  

Gibbs free energies calculated for the conversion of acetate to methane and bicarbonate 

ranged between -36.2 and -18.4 kJ/mol and Gibbs free energies for hydrogenotrophic 

methanogenesis ranged between -12.7 and -1.5 kJ/mol H2 (Figure 2B). ΔG values showed that 

aceticlastic methanogenesis was favorable throughout the experiment. The Gibbs free energies for 

hydrogenotrophic methanogenesis were close to the biological energy quantum value.  
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Figure 2. Growth on acetate by coculture of M. concilii and M. maripaludis. (A) Changes in acetate, 
methane and hydrogen. (B) Actual Gibbs free-energy changes for acetate degradation to methane 
formation from acetate. (C) Growth quantified by qPCR in cells/µl expressed. All data is average of 
2 replicate incubations. 
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According to the qPCR results, both organisms showed growth during the course of the 

study (Figure 2C). As a result of acetate consumption starting in the beginning of the experiment, 

cell numbers of M. concilii increased 3-fold until 8 days. Similarly, M. maripaludis cell numbers 

increased 3-fold in the first week. A decline was detected in both M. concilii and M. maripaludis cell 

numbers between days 8 and 15, followed by an increase simultaneous to the consumption of 

acetate and hydrogen. Between days 15 and 24, M. concilii and M. maripaludis cell numbers 

increased 36- and 2-fold, respectively. After day 24, only 1-fold increase detected in M. concilii cell 

numbers whereas a decline in M. maripaludis cell numbers was observed.  

2.3.3 M. concilii in coculture with D. latus 

Acetate conversion coupled to sulfate reduction started by the initiation of the experiment while 

CH4 production from acetate conversion was observed after a 2 day lag period (Figure 3A). Both M. 

concilii and D. latus contributed to acetate conversion during the experiment. D. latus reduced 16 

mM sulfate by the oxidation of acetate, whereas M. concilii contributed to the acetate oxidation by 

producing 1.4 mM CH4 on average in 21 days.  

Under these conditions, Gibbs free energies ranged between -44 and -54 kJ/mol for the 

conversion of acetate into sulfide and bicarbonate and Gibbs free energies for acetate-driven 

methanogenesis ranged between -23 and -35 kJ/mol (Figure 3B). ΔG values showed that both 

reactions were favorable during the course of the experiment.  

qPCR results indicate an increase in cell numbers of both organisms during the experiment 

(Figure 3C). Between day 7 and 14, both M. concilii and D. latus increased their cell numbers 3.7- 

and 2.4-fold, respectively. The highest cell increase was observed in the last week of the experiment. 

Increase in cell numbers of M. concilii was 36-fold whereas cell numbers of D. latus increased 14.6-

fold.  

In an additional experiment where we used the same coculture combination, CH4 production 

started after few days of incubation when sulfate reduction was already ongoing (Figure S4). This 

coculture yielded 0.7 mM CH4 until all sulfate was reduced by D. latus, after which M. concilii 

consumed the rest of the acetate coupled to CH4 formation. After 53 days, 6 mM acetate was 

consumed by M. concilii stoichiometrically, which was much slower than D. latus (37 days). 
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Figure 3. Growth on acetate by coculture of M. concilii and D. latus. (A) Changes in acetate, sulfate, 
sulfide and methane. (B) Actual Gibbs free-energy changes for acetate degradation to sulfide and 
bicarbonate and methane formation from acetate. (C) Growth quantified by qPCR in cells/µl. All 
data is average of 2 replicate incubations. 
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2.4 Discussion 

In this study, we tested interspecies hydrogen transfer in two different coculture combinations. We 

cocultured an obligate aceticlastic methanogen, Methanosaeta concilii together with a 

hydrogenotrophic sulfate reducer, Desulfovibrio vulgaris or a hydrogenotrophic methanogen 

Methanococcus maripaludis. We aimed to investigate whether hydrogen leakage from 

Methanosaeta is possible under conditions where the hydrogen is efficiently scavenged by 

hydrogenotrophic sulfate reducers or methanogens and whether such a hydrogen leakage enables 

the growth of the consuming organisms. Additionally, we tested coexistence between 

Methanosaetae concilii and Desulfobacter latus on acetate under sulfidogenic conditions in mixed 

pure cultures. 

 

2.4.1 M. concilii in coculture with D. vulgaris or M. maripaludis 

In the cocultures of M. concilii and D. vulgaris, acetate was converted into CH4 and CO2 in 1:1 

stoichiometry during the incubation period. In case of syntrophic acetate oxidation by an 

aceticlastic methanogen and a hydrogenotrophic sulfate reducer couple, the expected overall 

reaction is exactly the same as if the sulfate reducer oxidized acetate completely without a 

syntrophic partner (Table 1, reaction 4). Taking this into account, our data on the stoichiometry of 

the reaction do not point directly toward such a relationship. 

Sulfate reduction occurred especially in the beginning of the experiment coupled to the 

oxidation of residual hydrogen from the inoculum. As a result of sulfate reduction, sulfide 

production occurred within the same time period. A minor discrepancy between sulfide produced 

and sulfate consumed may be attributed to chemical oxidation of HS- to polysulfide by trace levels 

of oxygen.  

H2 measurements were of critical importance in our study to evaluate whether 

Methanosaeta was leaking hydrogen in coculture with a hydrogenotrophic partner. Results showed 

that D. vulgaris could couple hydrogen consumption to sulfate reduction in the first 8 days of the 

experiment and brought hydrogen levels to threshold concentrations and hydrogen concentrations 

remained at a constant low level similar to the level observed in M. concilii mono cultures (Fig. S1). 

Many H2 measurement studies were performed in different ecosystems and in pure cultures to 

determine threshold H2 concentrations for different terminal electron accepting reactions. (Lovley, 

1985; Cord-Ruwisch et al., 1988; Lovley and Godwin, 1988; Conrad, 1996; Hoehler et al., 1998). 
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According to these studies, threshold H2 concentrations for sulfate reduction were found in range 

between 5-95 nM. Our results show an average of 7 nM hydrogen in mono- and cocultures, which 

was in line with these observations. Taking into account that different threshold concentrations 

exist for growth and substrate degradation, D. vulgaris could benefit from traces of H2 leaked by M. 

concilii and coupled this to its growth. The calculated Gibbs free energy values show that the 

hydrogenotrophic sulfate reduction reaction was thermodynamically feasible with the hydrogen 

concentrations in the cocultures throughout the study (Fig. 1B). Apparently, D. vulgaris was 

extremely efficient, and needed only a very little amount of hydrogen to produce sufficient energy 

for growth (Fig. 1C). Moreover, comparing pure culture with the coculture, hydrogen levels in 

Methaosaeta suggested that cocultivation can deviate electrons towards hydrogen production (Fig. 

1B, Fig. S1).  

Thus, this result supports our hypothesis that a minor part of the acetate was converted via 

the production of hydrogen.  

 

In the other coculture combination, we used Methanococcus maripaludis, a methanogen 

that can use formate and/or H2/CO2 as carbon and energy source (Jones et al., 1983), as partner 

organism with M. concilii. In the presence of the methanogen as partner organism in syntrophic 

acetate oxidation, the net reaction is exactly the same as if acetate was cleaved by an aceticlastic 

methanogen (Table 1, reaction 2). In our study, the overall stoichiometry of the reaction, with 

slightly higher methane production, fits with both possibilities of acetate oxidation.  

The trend in hydrogen concentration was different from that the trend in hydrogen 

concentration in the M. concilii and D. vulgaris coculture. The initial hydrogen concentration in the 

coculture was lower and an increase in hydrogen production was observed between day 3 and day 

15. This increase was concomitant to acetate consumption and CH4 production, which suggests H2 

leakage from M. concilii cells during growth. In the M. concilii control monoculture at 37oC, there 

was no evidence for H2 accumulation as H2 level remained constant around 1.2 Pa throughout the 

experiment (Fig. S1). Therefore we speculated that M. maripaludis induced divergence of electrons 

from M. concilii and scavenged hydrogen leaked by M. concilii.  

Comparing both cocultures, the H2 concentration in M. concilii-M. maripaludis coculture 

was higher than in M. concilii-D. vulgaris coculture, which can be attributed to the ability of D. 

vulgaris to reduce H2 concentrations to lower levels than M. maripaludis. Our data on threshold H2 

concentrations determined for M. maripaludis (~10 nM) fit with the finding of Hoehler and 
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colleagues (1998) where threshold H2 concentrations for methanogens were reported to be around 

13 nM.  

ΔG values showed that aceticlastic methanogenesis was favorable throughout the 

experiment. On the other hand, ΔG values for hydrogenotrophic methanogenesis were close to the 

minimum biological energy quantum that permit organisms to grow (Hoehler et al., 2001). We used 

batch cultures to demonstrate the growth of both organisms. However accumulating methane in 

the bottles had a negative effect on the overall Gibbs free energy. If we calculate the Gibbs free 

energy using 1 mM of methane, a value that is more realistic in marine sediments, the energy ranges 

from – 7 to – 14 kJ/mol. Likewise, it was reported that methanogen yields may be -10 to -15 kJ/mol 

in marine sediments (Hoehler et al., 2001; Finke et al., 2007b; Jørgensen and Parkes, 2010). The 

decline in M. marilaudis cell numbers after day 24 can be explained by the decay rates of M. 

maripaludis. It is known that hydrogenotrophic methanogens have a high decay rate when left 

without substrate and stabilized in iron sulfide precipitates (Stams et al., 1992). 

Taken together, we can speculate that the hydrogenotrophic methanogen benefited from 

the hydrogen leaked during the growth of the aceticlastic methanogen. Our findings on growth 

trend, ΔG values and aforementioned reference studies showed the capability of M. maripaludis to 

metabolize and grow on H2 leaked by M. concilii. In this context it could be speculated that the 

hydrogen scavengers may act as parasites, as they benefit from the leakage of hydrogen by 

Methanosaeta.  

There are several studies that demonstrated interspecies hydrogen transfer in defined 

cocultures (McInerney and Bryant, 1981; Phelps et al., 1985; de Bok et al., 2002b). In one of those 

studies, mixed pure cultures of Methanosarcina barkeri and Desulfovibrio vulgaris were tested for 

interspecies hydrogen transfer under high sulfate conditions using methanol and acetate as carbon 

and energy sources (Phelps et al., 1985). It is known that M. barkeri can produce trace amounts of 

H2 during growth on acetate in pure culture and use some of the substrate for growth (Phelps et 

al., 1985; Valentine et al., 2000). They reported decreased CH4 production and doubled CO2 

formation when acetate was oxidized in coculture. Lower hydrogen concentrations were measured 

in coculture compared to the pure cultures of the methanogen, meaning that D. vulgaris consumed 

hydrogen produced by M. barkeri. The authors claimed that D. vulgaris caused a decrease in 

methanogenesis by means of linking interspecies hydrogen transfer to sulfate reduction.  

Methanosarcina species are known to be generalists, they have low affinity for acetate and 

have a minimum threshold for acetate of around 0.2 – 1.2 mM (Jetten et al., 1992). On the other 
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hand, Methanosaeta species are specialists, they consume only acetate as carbon and energy source 

and their minimum threshold for acetate is 7 – 70 µM (Jetten et al., 1992). As acetate concentrations 

in the pore water of marine sediments are usually less than 20 μM (between 8-45 µM) (Christensen 

and Blackburn 1982; Wellsbury and Parkes 1995; Finke et al. 2007a), conditions appear to be suitable 

for Methanosaeta rather than for Methanosarcina. Many clones closely related to Methanosaeta 

have been detected in marine sediments (Mori et al., 2012), with unknown identities, however 

Methanosaeta pelagica has been recently isolated (Mori et al., 2012). Undoubtedly, Methanosaeta is 

one of the most recalcitrant methanogens and is difficult to enrich and isolate primarily because of 

slow growth. Hydrogen production from Methanosaeta was demonstrated for Methanosaeta 

thermophila when growing on acetate (Valentine et al., 2000), and here we reported for the first 

time hydrogen leakage from a mesophilic halotolerant Methanosaeta.  

 

2.4.2 M. concilii in coculture with D. latus 

M. concilii and D. latus grew well in coculture (Figure 3). Methane production occurred even in the 

presence of high sulfate concentrations (7 mM). In the presence of non-limiting acetate 

concentrations, there was only minor competition for acetate between M. concilii and D. latus, as 

it was indicated by the concomitant sulfate reduction and methane production starting from the 

beginning of the experiment. qPCR data showed that M. concilii had an efficient biomass 

production at the end of the experiment. Additional data showed the same results, with slow, but 

steady production of methane after depletion of sulfate (Figure S4). Taken together, it is obvious 

that acetate conversion by aceticlastic methanogens in the presence of high sulfate and active 

aceticlastic sulfate reducers is possible. The concept of SRB and methanogen predominance in high-

sulfate and low-sulfate environments, respectively, was established through the accumulation of 

results from a vast number of studies since 1980s (Ward and Winfrey, 1985; Widdel, 1988). Later, 

the coexistence of methanogens and SRB was observed in the presence of non-limiting sulfate 

concentrations in different environments (Dar et al., 2008). Coexistence of SRB and MA has been 

determined in organic-rich sediments with methane production rates accounting for <10% of the 

sulfate reduction rates (Crill and Martens, 1986). This provides a possible explanation for the 

coexistence of SRB and MA in this sulfate-rich medium as the concentration of acetate either 

exceeds the competition level or it is used noncompetitively.  
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2.4.3 New insights in metabolic flexibility 

Interspecies hydrogen transfer has been studied in different anoxic environments (e.g., freshwater 

and marine sediments, flooded soil, landfills and sewage digesters) for long time and its importance 

and mechanism in complete mineralization of organic matter has been well documented 

(McInerney et al., 2008; Stams and Plugge, 2009). Moreover, interspecies formate transfer has been 

put forward as an alternative way of syntrophy and equally important for electron transfer between 

microorganisms (Boone et al., 1989; de Bok et al., 2002b; de Bok et al., 2004). Recent studies have 

described a new concept, direct interspecies electron transfer (DIET), where two Geobacter species 

form large, electrically conductive aggregates and establish electrical connections via the pili of 

both species to transfer electrons (Summers et al., 2010). In addition, DIET has been reported to 

occur in coculture of aceticlastic Methanosaeta harundinacea and exoelectrogen Geobacter 

metallireducens. In this coculture, M. harundinacea was found to convert acetate produced from 

ethanol metabolism and accept additional electrons via DIET for the reduction of carbon dioxide 

to methane; thus ethanol was converted to methane stoichiometrically (Rotaru et al., 2014). The 

authors have reported that transcript abundance of the genes for the enzymes necessary for the 

reduction of carbon to methane was high in the aggregates (Rotaru et al., 2014). Similar findings 

were reported previously in comparative genome analysis study of Methanosarcina mazei and 

Methanosaeta thermophila (Smith and Ingram-Smith, 2007). In this study, it was shown that the 

two genera use different enzymes to catalyze the first step of aceticlastic methanogenesis, but the 

majority of the core steps of the pathway were similar, except for the differences in electron transfer 

and energy conservation. Additionally, they identified the genes required for enzymes to catalyze 

CO2 reduction to CH4 in Methanosaeta thermophila genome (Smith and Ingram-Smith, 2007).  

Given that Methanosaeta genus members are unable to use hydrogen directly to reduce 

CO2, these findings become important to exhibit different metabolic capabilities of Methanosaeta 

species to survive under hydrogen and acetate deficient conditions and thrive in methanogenic 

environments.  In another recent study, it was found that both wild type and hydrogenase-deletion 

mutant of Methanococcus maripaludis could produce methane by uptake of cathodic electrons 

from a graphite electrode, which serves another model to direct electron uptake by methanogens 

(Lohner et al., 2014). These newly proposed properties of Methanosaeta and Methanoccocus 

indicate a variety of mechanisms for microbial electron uptake, and suggest that these 

methanogens may thrive in marine sediments in close contact with each other for the ultimate 

metabolism of substrates and that they are capable of responding to changes in environmental 
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conditions. Future experiments on environments with fluctuating sulfate levels could apply 

individual based technologies to reveal the in situ metabolism of the microorganisms present. 

 

2.5 Conclusions 

In conclusion, we show that an obligate aceticlastic methanogen, Methanosaeta concilii, leaked 

sufficient hydrogen to support the growth of a hydrogenotrophic sulfate reducer, D. vulgaris, or a 

hydrogenotrophic methanogen, M. maripaludis, when cultured together. The other important 

outcome of this study was the coexistence of the aceticlastic methanogen and an aceticlastic sulfate 

reducer in the presence of high sulfate concentration. These results bring more insights into the 

metabolic flexibility of methanogens and sulfate reducers residing in marine environments to adapt 

to changing environmental conditions and community.   
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Supplementary data 

Table S1. PCR primers used in the study. 

Primer Name Sequence (5’ – 3’) Reference 
Bac8F AGAGTTTGATYMTGGCTCAG Juretschko et al., 1998 

Bac338Rabc GCWGCCWCCCGTAGGWGT Daims et al., 1999 
Arch806F ATTAGATACCCSBGTAGTCC Takai & Horikoshi, 2000 
Arch958R YCCGGCGTTGAMTCCAATT DeLong, 1992 

MS1b 585F CCGGCCGGATAAGTCTCTT GA Conklin et al., 2006 
Sae 835R GACAACGGTCGCACCGTGGCC Conklin et al., 2006 
MCC495F TAAGG GCTGG GCAAGT Yu et al., 2005 
MCC832R CACCT AGTTC GCAGAGTTTA Yu et al., 2005 

 

Table S2. Thermodynamic data of aqueous educts and products under standard 
conditions. 

Compound ∆Gf° (kJ mol-1) ∆Hf° (kJ mol-1) ∆Vf° (cm3 mol-1) Reference  
CH3COO- -369.4 -486.4 40.5 Shock and Helgeson (1990) 

HCO3
- -586.9 -692.0 24.6 Wagman et al. (1982),  

Shock et al. (1997) 
H2O -237.18 -285.83 18.02 Amend and Shock 2001 

H+  0.0 0.0 0.0 Shock et al. (1997) 
H2 17.6 -4.2 25.2 Wagman et al. (1982),  

Shock and Helgeson (1990) 
CH4 -34.47 -87.96 37.3 Shock and Helgeson (1990) 
SO4

2- -744.96 -910.21 13.88 Shock et al. (1997) 

HS- 11.97 -16.12 20.65 Shock et al. (1997) 
 
Table S3. Standard free energy of reaction (∆Gr°), standard enthalpy of reaction (∆Hr°) and 
standard volume of reaction (∆Vr°) data of aqueous educts and products under standard 
conditions.  
 
Reactions ∆Gr° (kJ mol-1) ∆Hr° (kJ mol-1) ∆Vr° ( mol-1) 

CH3COO- + 4 H2O → 4 H2 + 2 HCO3
- + H+ 214.70 229.12 37.42 

CH3COO- + H2O → CH4 + HCO3
-
  -14.74 -7.70 3.38 

4 H2 + SO4
2- + H+ → HS- + 4 H2O  -262.06 -232.59 -21.95 

CH3COO- + SO4
2- → HS- + 2 HCO3

- -47.36 -3.47 15.47 

HCO3
- + 4 H2 +  H+ → CH4  +  3 H2O -229.44 -236.82 -34.04 
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Figure S1. Monocultures of Methanosaeta concilii at 30oC (A) and 37oC (B).  
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Figure S2. Monocultures of Desulfovibrio vulgaris without addition of H2/CO2, with yeast 
extract only (A), with yeast extract and acetate (B).  

 

 

 

 

0

2

4

6

8

10

12

14

16

18

20

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

H
2

(P
a

)

C
o

n
c

en
tr

a
ti

o
n

 (
m

M
)

Time (d)

Sulphate (mM) Sulfide (mM) H2 (Pa)

0

2

4

6

8

10

12

14

16

18

20

22

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16
H

2
(P

a)

C
o

n
ce

n
tr

at
io

n
 (

m
M

)

Time (d)

Sulphate (mM) Sulfide (mM) Acetate  (mM) H2 (Pa)



Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate 

43 
 

Figure S3. Growth in monocultures of D. vulgaris without addition of H2/CO2 but with yeast 
extract, without H2/CO2,but with yeast extract plus acetate and D. vulgaris in coculture, 
quantified by qPCR.  
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Abstract  

The bacterial and archaeal communities enriched with butyrate in sediment slurries taken from 

different biogeochemical zones of Aarhus Bay, Denmark were analyzed. Sulfate was added at 

different concentrations (0, 3, 20 mM) to the sediment slurries and the slurries were incubated at 

25°C and at 10°C. An immediate start of methanogenesis in sulfate zone slurries and sulfate 

reduction in methane zone slurries was observed. During butyrate conversion, sulfate reduction 

and methanogenesis occurred simultaneously. Desulfobacteraceae, Desulfovibrionaceae, 

Desulfobulbaceae, Syntrophomonadaceae and Clostridiales members involved in sulfate-dependent 

butyrate conversion in 25°C slurries. The obligate syntroph Syntrophomonas was enriched both in 

sulfate-amended and sulfate-free slurries indicating the co-occurrence of sulfate-dependent and 

syntrophic butyrate conversion. The low temperature sulfate-amended slurries contained mainly 

Desulfobacteraceae and uncultured Firmicutes, whereas sulfate-free slurries consisted of sequences 

related to uncultured Firmicutes and Desulfobulbaceae. Archaeal community analysis revealed the 

dominance of Methanomicrobiaceae in the slurries. Methanosaetaceae reached high abundance in 

the absence of sulfate, whereas the presence of Methanosarcinaceae was independent of the sulfate 

concentration, temperature and the origin of sediment. This study shows that sulfate reducers, 

syntrophs and methanogens are present together in the upper and lower parts of marine sediments 

and cooperate in the conversion of butyrate.  
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3.1 Introduction  

Coastal marine ecosystems receive regular input of organic matter and nutrients from primary 

production of plankton, macroalgae and vascular plants, influx of rivers and remineralization of 

organic carbon (Jørgensen, 2006; Canfield et al., 2006). Most particulate organic matter is rapidly 

deposited on the coastal shelf (Jørgensen, 1983). High microbial activity in the sediment layers leads 

to the formation of distinct biogeochemical zones. The depth range of each zone varies strongly 

depending on chemical changes in the sediment pore water, the rates of sediment accumulation 

and replenishment of electron acceptors from overlying seawater (Jørgensen, 1983, Mitterer, 2010). 

In coastal marine sediments, the thickness of the oxic surface layer is can be just a few mm (Canfield 

et al., 2006). Where oxygen is depleted, the sediment becomes anoxic. In the anoxic part of the 

sediment, nitrate, iron, manganese, sulfate and carbon dioxide, in an order of decreasing energy 

gain, serve as terminal electron acceptors for the mineralization processes. In marine sediments, 

sulfate reduction is the predominant pathway, while methanogenesis becomes important in zones 

where sulfate is depleted (Jørgensen, 1982; Holmkvist et al., 2011; Bowles et al., 2014).  

Anaerobic degradation of organic matter in sediments is a complex, sequential process 

involving a variety of physiologically different microorganisms (Jørgensen, 2006). The first step is 

an extracellular hydrolytic conversion of polymers, followed by fermentation of the monomers and 

oligomers to reduced organic compounds such as short chain fatty acids, alcohols, formate, H2 and 

CO2. Organic acids and alcohols are further degraded to acetate, formate, H2 and CO2. In general, 

sulfate reduction and methanogenesis are the terminal steps in the overall anaerobic degradation 

process (Schink and Stams, 2013; Muyzer and Stams, 2008; Stams and Plugge, 2009). Both sulfate 

reduction and methanogenesis are considered to be mutually exclusive in most environmental 

settings and controlled mainly by the amount of available sulfate (Roussel et al., 2015; O’Sullivan et 

al., 2013). When the concentration of sulfate is high, which is the case for marine environments, 

sulfate reducers are the main utilizers of hydrogen, formate and acetate (Hoehler et al., 1998; Bowles 

et al., 2014). They outcompete methanogens due to their higher affinity and lower threshold values 

for common substrates. 

In sulfate-limited or sulfate–depleted sediments, organic matter is degraded through 

methanogenesis. In this case, hydrogen, formate and acetate that are released as end products of 

organic carbon degradation are converted to CH4 and CO2 by methanogens. In this way, a 

syntrophic relationship is established between microorganisms that degrade organic compounds 

and methanogens (Schink and Stams, 2013; McInerney et al., 2008). Syntrophic fatty acids 
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degradation is known as a rate limiting step of organic carbon degradation (Schink and Stams, 

2013).  

In the past, methanogenesis and sulfate reduction were considered to be separated in 

marine sediments based on sulfate availability (Cappenberg, 1974; Mountfort and Asher, 1981). 

Later, both sulfate reduction and methanogenesis were reported to occur simultaneously in anoxic 

marine environments where input of organic carbon is high (Maltby et al., 2016; Mitterer, 2010; 

Jørgensen and Parkes, 2010; Oremland, 1982; Senior et al., 1982; Holmer and Kristensen, 1994). In 

such environments, the use of non-competitive methylated substrates by methanogens was 

suggested to enable co-habitation of both functional groups of microbes (Visscher et al., 2003; 

Oremland and Polcin, 1982). However, several studies demonstrated the consumption of common 

substrates, H2 and acetate, by both microbial groups in sulfate-rich sediments (Oremland and 

Taylor, 1978; Senior et al., 1982; Finke et al., 2007b). Sulfate reducers were detected in the methane 

zone in comparable numbers to the sulfate zone of Black Sea and Aarhus Bay (Leloup et al., 2007, 

2009). The niche differentiation of the two groups of microbes is not fully understood. Thus far, 

syntrophic degradation of fatty acids in marine environments has received little attention. 

Butyrate can be metabolized by direct sulfate reduction to acetate and CO2 (Widdel, 1988; 

Muyzer and Stams, 2008) or by syntrophic associations of butyrate degrading bacteria with H2 

and/or acetate consuming sulfate reducer or methanogen (Table 1). Butyrate degradation coupled 

to sulfate reduction occurs in anaerobic ecosystems containing high sulfate, such as marine 

sediments, anaerobic digesters and aquifers (Jørgensen, 1982; Banat and Nedwell, 1983; Alphenaar 

et al., 1993; Visser et al., 1993; Kleikemper et al., 2002; Roest et al., 2005; Struchtemeyer et al., 2011). 

Syntrophic butyrate degraders were detected in similar quantities in the presence and absence of 

sulfate in anaerobic bioreactors (Roest et al., 2005) and others reported that syntrophic butyrate 

degraders were efficiently able to compete with sulfate reducers even in excess sulfate (Visser et al., 

1993; Rebac et al., 1996). Methanogenesis has been observed in sulfate zones of marine sediments 

(Parkes et al., 1990; Kendall et al., 2006). Kendall and colleagues (2006) detected marine butyrate-

degrading syntrophs in the sulfate zone and suggested that syntrophic interactions constitute an 

enormous methane source in marine sediments. Similarly, high methane concentrations were 

observed under high sulfate conditions in a hydrocarbon-contaminated aquifer where the 

investigators concluded that butyrate was metabolized mainly syntrophically (Kleikemper et al., 

2002). Several other studies reported the existence of Syntrophus and Syntrophomonas genera in 
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different sulfate containing environments as a proof of syntrophic butyrate degradation (Dar et al., 

2005; Winderl et al., 2008).     

 

Table 1. Overview of reactions examined in this study. ΔG values were obtained from Thauer et al., 
1977. 

 

It is obvious that the ability of some sulfate reducers to perform a syntrophic type of lifestyle 

enables them to thrive in high- and low-sulfate environments (Van Kuijk and Stams, 1995; 

McInerney et al., 2008). Thus, it is important to understand how sulfate reducers/syntrophs interact 

with methanogens in the presence and absence of sulfate. 

In this study, we investigated butyrate-degrading communities from sediment of the 

sulfate, sulfate-methane transition and methane zone of Aarhus Bay, Denmark. We established 

batch slurry incubations and applied different sulfate concentrations (0, 3, 20 mM) to see if and 

which methanogens would contribute to butyrate degradation in the presence or absence of sulfate. 

Another objective was to investigate which butyrate-utilizing sulfate reducers/syntrophs become 

dominant in response to different sulfate concentrations in sulfate, sulfate-methane transition and 

methane zone slurries.  

 

 

Reaction Equation ∆G°' (kJ/reaction)*

Acetogenic reactions

1 Butyrate– + 2 H2O → 2 Acetate– + H+ + 2 H2 +48.3 

Sulfate-reducing reactions

2 Butyrate– + 0.5 SO4
2– → 2 Acetate– + 0.5 HS– + 0.5 H+ –27.8 

3 4 H2 + SO4
2– + H+ → HS– + 4 H2O –151.9

4 Acetate– + SO4
2– → 2 HCO3

- + HS– –47.6 

Methanogenic reactions 

5 4 H2 + HCO3
- + H+ → CH4 + 3 H2O –135.6 

6 Acetate– + H2O → CH4 + HCO3
- –31.0 

Syntrophic butyrate conversion

7 Butyrate– + 0.5 HCO3
- + 0.5 H2O → 2 Acetate– + 0.5 CH4 + 0.5 H+ –19.5
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3.2 Materials and methods 

3.2.1 Sediment sampling  

Sediment was collected during a research cruise in May 2011, in Aarhus Bay, Denmark. The studied 

site, Station M1, is located in the central part of the Bay, at position 56°07ʹ066ʺN, 10°20ʹ793ʺE. The 

in situ temperature was ~9°C and the water depth was 15 m. Two 3-m-long gravity cores were 

retrieved; one of them was sectioned in 10 cm depth intervals for physical, chemical and molecular 

analyses and the other one was kept intact in the core liners, in sealed gas-tight plastic bags 

containing AnaeroGen sackets (Oxoid xx) at 4°C until further processed.  

 

3.2.2 Sediment pore water analysis 

Methane, sulfate and sulfide analysis from sediment pore water were performed on the sampling 

day at the laboratories of Center for Geomicrobiology, Aarhus University. Methane concentration 

was determined in a sediment sample of 2.5 cm3. The sample was taken immediately after retrieval 

of the sediment core and transferred to a 25 ml serum vial with 4 ml 2.5% NaOH, immediately 

capped with a butyl rubber stopper, crimp-sealed, shaken vigorously and stored upside down until 

measurement. After equilibration (~an hour), the headspace composition was analyzed on a gas 

chromatograph (5890A, Hewlett Packard) equipped with a packed stainless steel Porapak-Q 

column (6 ft., 0.125 in., 80/100 mesh, Agilent Technology) and a flame ionization detector. Helium 

was used as a carrier gas at a flow rate of 30 ml/min. 

Sulfate and sulfide were quantified in pore water extracted directly from sediment. Rhizon 

samplers (Rhizosphere Research Products, Wageningen, Netherlands) were inserted into the core 

at 10 cm intervals through holes that were drilled in the plastic corer and pore water was collected 

in 5 ml vacuumed plastic syringe connected to Rhizon samplers. For sulfate analysis, subsamples of 

pore water was degassed with oxygen-free CO2 to lower the pH and remove hydrogen sulfide. 

Sulfate measurement was done using Dionex (Sunnyvale, CA) ion chromatography system 50 

equipped with AS18 column. The eluent was 20-32 mM KOH at a flow rate of 1 ml/min. For sulfide 

analysis, subsamples were mixed 1:1 (v/v) with 5% (w/v) zinc acetate. Samples were diluted in MiliQ 

water and diamine reagent was added. After color development, sulfide concentration was 

measured by microplate reader at 670 nm.  
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3.2.3 Sediment slurry incubations 

Sediments from three different biogeochemical zones were used to establish replicate sediment 

slurries. Zones were defined based on sulfate and methane concentrations determined using pore 

water extracted from sediment during sampling cruise. The sulfate concentration decreased from 

18.5 mM at 15 cm of the core to a low background value at 170 cm. Methane increased steeply with 

depth below 120 cm and reached a plateau of 2 mM at 225 cm (Fig S1). The sediment core was 

divided into three pieces representing the sulfate zone (SR) (15-120 cm), the sulfate-methane 

transition zone (SMTZ) (120-170 cm) and the methane zone (MZ) (170-300 cm).  

Stored sediment cores were processed under aseptic and anaerobic conditions in the 

laboratory. Subsamples representing a particular biogeochemical zone were mixed in an anaerobic 

chamber and used as inoculum for sediment slurry enrichments. 100 ml of the homogenized 

sediment from each zone was mixed with 300 ml of anaerobic mineral salts medium in 1L serum 

bottles. The medium composition was as followed (g/L): KH2PO4 (0.41), Na2HPO4.2H2O (0.53), 

NH4Cl (0.3), CaCl2.2H2O (0.11), MgCl2.6H2O (3), NaHCO3 (4), Na2S.9H2O (0.024), KCL (0.5), NaCl 

(25). The medium was supplemented with 1 ml/liter of acid trace element solution (50 mM HCl, 1 

mM H3BO3, 0.5 mM MnCl2, 7.5 mM FeCl2, 0.5 mM CoCl2, 0.1 mM NiCl2, 0.5 mM ZnCl2), 1 ml/liter of 

alkaline trace element solution (10 mM NaOH, 0.1 mM Na2SeO3, 0.1 mM Na2WO4, 0.1 mM Na2MoO4) 

and 10 ml/liter vitamin solution (Biotin 20 mg/l, Nicotinamid 200 mg/l, p-Aminobenzoic acid 100 

mg/l, Thiamin 200 mg/l, Panthotenic acid 100 mg/l, Pyridoxamine 500 mg/l, Cyanocobalamine 100 

mg/l, Riboflavin 100 mg/l). Bottles were closed with butyl rubber stoppers and the headspace was 

exchanged with N2/CO2 (80:20%, v/v). 10 mM butyrate was used as carbon source with and without 

20 mM sulfate in sulfate zone and methane zone slurries, and with 3 mM and 20 mM sulfate for 

sulfate-methane transition zone slurries as electron acceptor. Control bottles were prepared in the 

same manner, without addition of butyrate. One set of the bottles representing each condition in 

duplicate was incubated at 10°C to mimic in situ temperature (Dale et al., 2008) and the other set 

was kept at 25°C statically throughout the experiment. Regular liquid and gas sampling was 

performed to monitor substrate consumption, product formation and to carry out molecular 

analysis. Regular additions of butyrate and/or sulfate were done as soon as they were depleted to 

maintain the slurry conditions same.   
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3.2.4 Analytical methods 

CH4 in the headspace of slurries was analyzed by gas chromatography with a Shimadzu GC-14B 

(Shimadzu, Kyoto, Japan) equipped with a packed column (Molsieve 13X, 60-80 mesh, 2 m length, 

3 mm internal diameter; Varian, Middelburg, The Netherlands) and a thermal conductivity detector 

set at 70mA. The oven temperature and the injector temperatures were both 100oC. The detector 

temperature was 150oC. Argon was the carrier gas at a flow rate of 30 ml min-1.  

Volatile fatty acids from centrifuged (10,000 X g, 10 min) samples of the sediment slurries 

were analyzed by HPLC system equipped with a Varian column (Metacarb 67H 300x6.5 mm, 

Middelburg, The Netherlands) connected to a UV and Refractive Index (RI) detector. 10 mM 

sulfuric acid was used as eluent and sodium crotonate as internal standard. The flow rate was 0.8 

ml min-1 and analyses were carried out at 30°C. Data analyses were performed using ChromQuest 

(Thermo Scientific, Waltham, MA, USA) and Chromeleon software (Thermo Scientific, Waltham, 

MA). 

Sulfate concentrations were analyzed by Ion Chromatography system equipped with an AS22 

column (4x250 mm) and ED 40 electrochemical detector (Dionex, Sunnyvale, CA). The eluents were 

1.7 mM NaHCO3 and 1.8 mM Na2CO3. The analyses were conducted with a flow rate of 1.2 ml min-1 

at 35oC. Sodium bromide was used as internal standard. 

Sulfide measurements were done using methylene blue method (Cline, 1969). Samples were 

1:1 diluted with 5% (w/v) zinc acetate solution, directly after sampling, to precipitate all sulfide. 4.45 

ml of deionized water, 500 µl of reagent A (2 g/l dimethylparaphenylenediamine and 200 ml/l 

H2SO4) and 50 µl of reagent B (1 g/l Fe((NH4)(SO4))2
.12 H2O and 0.2 ml/l H2SO4) was added 

concurrently and mixed. The solution was stored for at least 10 minutes at room temperature. After 

color development, the concentration was measured on a MERCK Spectroquant® Multy colorimeter 

(Merck Millipore, Darmstadt, Germany) at 670nm. Demi-water was used as a blank. 

 

3.2.5 DNA extraction 

Genomic DNA was extracted from the sediment and enrichment slurry samples that were taken at 

different time points using the FastDNA SPIN Kit for Soil (MP Biomedicals, OH) according to 

manufacturer’s protocol. Adaptation of the commercial protocol was carried out to increase the 

DNA yield. 5 ml sediment or slurry sample were suspended in 10 ml of phosphate-buffered saline 

(PBS), sonicated at low power to detach cells from the solid phase and was centrifuged at 4700 g 
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for 20 min. The supernatant was discarded and remaining pellet was re-suspended in 10 ml 0.5 M 

EDTA, pH 8, and incubated overnight at 4°C to dissolve humic substances. After incubation, the 

suspension was centrifuged at 4700 g for 10 min., washed with PBS and DNA extraction procedures 

were applied to the pellet. The DNA was quantified with a Nanodrop ND-1000 spectrophotometer 

(Nanodrop Technologies, Wilmington, DE).  

 

3.2.6 DGGE analysis 

DNA from one replicate of all the slurries was used for DGGE analysis. Amplification of the V6-V8 

region of the bacterial 16S rRNA was performed using the primer pair F-968-GC (5’-

AACGCGAAGAACCTTAC-3’) and R-1401 (5’-CGGTGTGTACAAGACCC-3’) (Nübel et al., 1996). PCR 

was performed using GoTaq DNA Polymerase Kit (Promega, Madison, WI). The 50 μl reaction 

mixture contained 10 μl GoTaq buffer, 10 μM of each primer, 1 μl of dNTP solution and 1 μl of 

genomic DNA. PCR was carried out by using an initial denaturation step at 95ºC for 5 min, followed 

by 35 cycles of denaturation step at 95ºC for 30 s, annealing step at 52ºC for 40 s, elongation step at 

72ºC for 60 s., and a final elongation step at 72ºC for 10 min. The V3 region of the archaeal 16S rRNA 

gene fragments was amplified with primers ARC344f-GC (5’-ACGGGGYGCAGCAGGCGCGA-3’) and 

ARC519r (5’-GWATTACCGCGGCKGCTG-3’) (Yu et al., 2008) using the GoTaq DNA Polymerase Kit 

(Promega, Madison, WI). PCR conditions were as followed: an initial denaturation step at 95ºC for 

5 min; followed by 10 cycles of denaturation step at 95ºC for 30 s, annealing step at 61ºC for 40 s (-

0.5 ºC /cycle), elongation step at 72ºC for 45 s; 25 cycles of denaturation step at 95ºC for 30 s, 

annealing step at 56ºC for 40 s, elongation step at 72ºC for 45 s; and final elongation step at 72ºC for 

10 min. Forward primers had a GC clamp of 40 bp attached to the 5’ end (Yu et al., 2008). The 

presence and sizes of the amplification products were determined by agarose (1%) gel 

electrophoresis using the Smart Ladder (Eurogentec) as molecular weight marker. SYBR Safe®-

stained gel pictures were digitally recorded. 

DGGE was performed as described by Muyzer et al. (1993) using the DCode system (Bio-

Rad Laboratories, Hercules, CA). A denaturing gradient of 30-60% for bacteria and 40-60% for 

archaea were used as recommended by Yu et al (2008). Gels were initially run at 200 V for 10 min 

to facilitate the access of PCR products into the denaturing gradient gel, and then at a constant 

voltage of 100 V for 16 h at 60oC in 1X TAE buffer. After electrophoresis, the gels were stained with 

AgNO3 according to Sanguinetti et al. (1994). DGGE gels were scanned with a BioRad GS-800 

Calibrated Densitometer and analyzed using the BioNumerics® software version 4.6 (Applied 
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Maths, Sint-Martens-Latem, Belgium). The Dice coefficient was used to determine the similarity 

between DGGE fingerprints by calculating the similarity indices of the densitometric curves of the 

profiles and dendrograms for bacterial and archaeal DGGE profiles were created using Unweighted 

Pair Group Method Analysis (UPGMA).   

 

3.2.7 16S rRNA gene amplicon pyrosequencing 

Bacterial 16S rRNA gene fragments were amplified using barcoded primers covering the V1-V2 

region of the bacterial 16S rRNA gene. The forward primer consisted of the 27F-DegS primer (5´- 

GTTYGATYMTGGCTCAG- 3´) (van den Bogert et al., 2011) appended with the titanium sequencing 

adaptor A (5´- CCATCTCATCCCTGCGTGTCTCCGACTCAG- 3´) and an 8 nucleotide sample 

specific barcode (Hamady et al., 2008) at the 5´ end. An equimolar mix of two reverse primers was 

used i.e. 338RI (5´- GCWGCCTCCCGTAGGAGT- 3´) and 338RII (5´- GCWGCCACCCGTAGG TGT- 

3´) (Daims et al., 1999) that carried the titanium adaptor B (5´- CCTATCCCCTGTGTGCCTTGGCAG 

TCTCAG- 3´) at the 5´ end. Sequences of both titanium adaptors were purchased from GATC 

Biotech (Konstanz, Germany).  

Genomic DNA was diluted to a concentration of 20 ng/µl based on Qubit® 2.0 fluorometer 

readings. PCR was performed using a GS0001 thermocycler (Gene Technologies, Braintree, United 

Kingdom). 100µl PCR mixture contained 20 μl of 5× HF buffer (Finnzymes, Vantaa, Finland), 2μl 

PCR Grade Nucleotide Mix (Roche Diagnostic GmbH, Mannheim, Germany), 1μl of Phusion hot 

start II High-Fidelity DNA polymerase (2U/μl; Finnzymes), 500 nM of the reverse primer mix and 

the forward primer (Biolegio BV, Nijmegen, The Netherlands), 2 μl (40 ng) template, and 65 μl 

nuclease free water. PCR was performed using the following conditions: 98°C for 30 s to activate 

the polymerase, followed by 30 cycles of denaturation at 98°C for 10 s, annealing at 56°C for 20 s, 

elongation at 72°C for 20 s, and a final extension at 72°C for 10 min. Five μl of the PCR products 

(approximately 450 bp) were analyzed by 1% (w/v) agarose gel electrophoresis, containing 1× SYBR 

Safe (Invitrogen, Carlsbad, CA) to verify the right length of the amplicons. PCR products were 

purified using High Pure PCR Cleanup Micro Kit (Roche Diagnostics, Germany) according to the 

manufacturer’s instructions and DNA concentration of gel-purified amplicons was measured by 

Qubit® 2.0 Fluorometer (Life Technologies, Germany). Purified PCR products were mixed in 

equimolar amounts and run again on an agarose gel. This was followed by excision of bands and 

purification using a DNA gel extraction kit (Millipore, Massachusetts, 01821). DNA concentration 

was measured using Qubit and 1 µl purified equimolar pool of PCR product was analyzed on 1% 
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agarose gel. Samples were analyzed by pyrosequencing using an FLX genome sequencer in 

combination with titanium chemistry (GATC Biotech AG, Konstanz, Germany).    

 

3.2.8 Analysis and interpretation of the pyrosequencing data  

Pyrosequencing data was analyzed using the Quantitative Insights Into Microbial Ecology (QIIME) 

1.8.0 pipeline (Caporaso et al., 2010). Sequence reads were initially filtered using default parameters 

and denoised (Bragg et al., 2012) for removing low quality reads. UCHIME was used to remove 

chimeric sequences from pre-processed data from the dataset (Edgar, 2010). From the remaining 

set of high quality 16S rRNA gene sequences, operational taxonomic units (OTUs) were defined at 

a 97% identity level. A representative sequence from each OTU was aligned using PyNAST 

(DeSantis et al., 2006). The taxonomic affiliation of each OTU was determined at an identity 

threshold of 97% using UCLUST algorithm (Edgar, 2010) and SILVA 111 database as a reference 

(Pruesse et al., 2007). The relative amount of reads of every OTU to the total amount of reads per 

sample was quantified and the average relative amount of reads per representative OTU of each 

slurry sample was calculated.  

 

3.2.9 Illumina MiSeq analysis of archaeal community 

Extracted DNA from the samples taken on the last incubation day from all slurries was used for 

archaeal community analysis. Barcoded amplicons were generated using a two-step PCR method 

that was shown to reduce the impact of barcoded primers on the outcome of microbial profiling 

(Berry et al., 2011). First amplification of archaeal 16S rRNA gene fragments was done using primers 

518F (5′-CAGCMGCCGCGGTAA-3′) (Wang and Qian, 2009) and 905R (5′-

CCCGCCAATTCCTTTAAGTTTC- 3 ′) (Kvist et al., 2007). PCRs were performed using a SensoQuest 

Labcycler (Göttingen, Germany). PCR amplification was performed in a total volume of 50µl 

containing 500 nM of each forward and reverse primer (Biolegio BV), 1 unit of Phusion DNA 

polymerase (Thermo Scientific), 10µl of HF-buffer, 200µM dNTP mix, made to a total volume of 

50µl with nuclease free sterile water. The PCR program was as followed: denaturing at 98°C for 30 

s, followed by 25 cycles of denaturing at 98°C for 10 s, annealing at 60°C for 20 s, extension at 72°C 

for 20 s, followed by a final extension step at 72°C for 10 min. PCR products were confirmed by 

agarose gel electrophoresis containing 1× SYBR Safe (Invitrogen, Carlsbad, CA). A second PCR was 

employed to add an 8 nucleotide sample-specific barcode to the 5’- and 3’-end of PCR products 
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(Ramiro-Garcia et al., 2016). Each PCR reaction with a final volume of 100 μL contained 5μL of the 

first PCR product, 5μL each of 10μM barcoded forward and reverse primers (Biolegio BV), 200 μM 

PCR Grade dNTP mix (Roche Diagnostics), 2 units of Phusion® Hot Start II High-Fidelity DNA 

polymerase (Thermo Scientific) and 20 μL of HF buffer (Finnzymes, Vantaa, Finland). Amplification 

consisted of an initial denaturation at 98 °C for 30 s; 5 cycles of denaturation at 98 °C for 10 s, 

annealing at 52 °C for 20 s, and elongation at 72 °C for 20 s; and a final extension at 72 °C for 10 min. 

PCR products were purified using the HighPrepTM PCR clean-up system (MagBio Genomics Inc., 

Gaithersburg, MD). Amplicons were quantified using Qubit (Invitrogen, Bleiswijk, The 

Netherlands). Afterwards, barcoded samples were pooled in equimolar quantities, purified using 

the MagBio HighPrep PCR- 96 well protocol and then quantified using Qubit. Samples were 

sequenced at GATC Biotech AG (Konstanx, Germany) by Illumina Miseq sequencing. 

16S rRNA gene sequencing data was analysed using NG-Tax, an in-house pipeline (Ramiro-

Garcia et al., 2016). Paired-end libraries were filtered to contain only read pairs with perfectly 

matching barcodes, and those barcodes were used to demultiplex reads by sample. Finally 

operational taxonomic units (OTUs) were defined using an open reference approach, and taxonomy 

was assigned to those OTUs using the SILVA 16S rRNA gene reference database (Quast et al., 2013). 

Microbial composition plots were generated using a workflow based on Quantitative Insights Into 

Microbial Ecology (QIIME) v1.2 (Caporaso et al., 2010).  

 

3.2.10 Statistical analysis 

Redundancy analysis was performed as implemented in the CANOCO 5 software package 

(Biometris, Wageningen, The Netherlands) in order to assess to what extent experimental variables 

influenced the microbial community composition. The experimental variables tested were the 

incubation temperature, total concentrations of sulfate, butyrate, acetate and methane 

consumed/produced by the end of the incubations. A Monte Carlo permutation test based on 499 

random permutations were used to determine which of the experimental variables significantly 

contributed to the observed variance in the composition of microbial communities at the order (for 

Bacteria) and family level (for Archaea). Orders and families of at least 5% relative abundance in 

any sample were included in the analysis. The community structure was visualized via ordination 

triplots with scaling focused on intersample differences. 

Correlations between bacterial and archaeal groups and experimental parameters were 

determined by means of the two-tailed Spearman’s Rank Order Correlation test using the statistical 
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software SPSS Statistics (IBM SPSS Statistics, Version 22, IBM Corp., Armonk, NY). A statistical 

significance level of 5% was applied.   

 

3.3 Results 

3.3.1 Sampling site geochemistry 

Aarhus Bay is a shallow semi-enclosed embayment on the transition between the North Sea and 

Baltic Sea and characterized by elevated primary production during the summer months (Glud et 

al., 2003). Two 3-m-long gravity cores were retrieved and one of the cores was used to carry out 

pore water analysis to measure methane, sulfate and sulfide throughout the core on the same day. 

According to the pore water analysis results, the sulfate zone was determined to be located between 

0 cm and 120 cm, sulfate-methane transition zone (SMTZ) between 120 cm and 170 cm and methane 

zone between 170 cm and 300 cm (Fig S1).     

   

3.3.2 Sediment slurry enrichments 

Sediment slurries consisting of the sediment sample taken from the sulfate, sulfate-methane 

transition and methane zones were analyzed for substrate consumption and product formation at 

different time points throughout the incubation period. Total amounts of the butyrate and sulfate 

consumed and acetate, sulfide and methane produced in all slurries were listed in Table S1.  

 

3.3.2.1 Sulfate zone sediment slurries 

Sulfate zone sediment slurries were incubated for 514 days at 25°C and 10°C (Fig 1). Conversion of 

butyrate in sulfate-containing slurries started after 12 days of incubation (Fig 1B, 1D). Repeated 

additions of butyrate and sulfate caused a steady increase in acetate and sulfide. Methane formation 

was observed after 309 days at 25°C and after 260 days at 10°C, and increased with time (Fig 1B, 1D).   

In the methanogenic slurries, where no additional sulfate was added, about 1 mM sulfate 

was measured at the start of the incubation, which presumably originated from the sediment (Fig 

1A, 1C). In the first 40 days of incubation at 25°C, conversion of butyrate coupled to sulfate reduction 

occurred. Methane formation started on day 50, after sulfate had been depleted, indicating 

syntrophic butyrate conversion. Repeated additions of butyrate yielded high methane and acetate 

accumulation. Acetate was gradually consumed after day 203 at 25°C, and decreased to 2359 
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µmol/bottle from 24752 µmol/bottle on day 430 (Fig 1A). Butyrate conversion in the 10°C slurry was 

rather slow (Fig 1C).  

 

      

Figure 1. Changes in butyrate, sulfate, acetate, sulfide and methane concentrations during 514 days 
of incubation in sediment slurry enrichments constituted of sulfate zone sediment (A) Slurry B4, 
with sulfate addition at 25°C, (B) Slurry B7, with sulfate addition at 10°C, (C) Slurry B1, without 
sulfate addition at 25°C, (D) Slurry B5, without sulfate addition at 10°C. Arrows denote the time 
points for the additions of sulfate (red) and butyrate (black).  

0

500

1000

1500

2000

2500

3000

3500

4000

0

10000

20000

30000

40000

50000

0 100 200 300 400 500 600

C
H

4
(µ

m
o

l)

A
m

o
u

n
t 

(µ
m

o
l) A

0

20

40

60

80

100

0

5000

10000

15000

20000

25000

30000

35000

0 100 200 300 400 500 600

C
H

4
(µ

m
o

l)

A
m

o
u

n
t 

(µ
m

o
l)

B

0

10000

20000

30000

40000

50000

60000

70000

0

5000

10000

15000

20000

25000

30000

0 100 200 300 400 500 600

C
H

4
(µ

m
o

l)

A
m

o
u

n
t 

(µ
m

o
l)

C

0

5000

10000

15000

20000

25000

0

5000

10000

15000

20000

25000

30000

0 100 200 300 400 500 600

C
H

4 
(µ

m
o

l)

A
m

o
u

n
t 

(µ
m

o
l)

Time (d)

D

Acetate (µmol) Butyrate (µmol) Sulfate (µmol) Sulfide (µmol) CH4 (µmol)



Butyrate degradation in anoxic sediments 

59 
 

Trace amounts of sulfate that originated from the sediment depleted within 70 days and methane 

formation started on day 122. The methane concentration measured in the 10°C slurry at the end of 

the incubation period was three times less than in the 25°C slurry. 

 

3.3.2.2 Sulfate-methane transition zone sediment slurries 

Slurries of SMTZ sediments with low (3 mM) and high (20 mM) sulfate were incubated for 571 days 

at 25°C and 10°C (Fig 2). Butyrate was converted in high sulfate slurries similarly at both 

temperatures (Fig 2B, 2D). Acetate and sulfide concentrations increased by repeated butyrate and 

sulfate re-feeds. Methane production started on day 120 at 25°C (Fig 2B) and on day 229 at 10°C (Fig 

2D) and increased slowly. The amount of methane ranged between 8 and 48 µmol/bottle at both 

temperatures until 500 days. However it rapidly reached to 4183 µmol/bottle after 500 days in slurry 

at 25°C.  

Concerning low-sulfate containing slurries, the total butyrate concentration converted in 

the 25°C slurry was slightly higher as in the 10°C slurry (Fig 2A, 2C). Two times higher methane 

amount was measured in the 25°C slurry compared to the 10°C slurry. Acetate accumulated in the 

10°C slurry (Fig 2C), whereas no acetate was observed in the 25°C slurry (Fig 2A), especially after 

300 days of incubation. 

 

3.3.2.3 Methanogenic zone sediment slurries 

Methanogenic zone sediment slurries were incubated for 570 days at 25°C and 10°C with and 

without sulfate (20mM) (Fig 3). In the 25°C slurries, conversion of butyrate started directly (Fig 3A, 

3B). Repeated additions of butyrate and/or sulfate led to a steady increase in acetate and sulfide. 

Methane formation in the sulfidogenic slurry was observed after 90 days at 25°C (Fig 3A) and 

increased with time, whereas no methane was detected at 10°C (Fig 3C) during the whole incubation 

period.  
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Figure 2. Changes in butyrate, sulfate, acetate, sulfide and methane concentrations during 571 days 
of incubation in sediment slurry enrichments constituted of sulfate-methane transition zone 
sediment (A) Slurry B3, with 20mM sulfate addition at 25°C, (B) Slurry B7, with 20mM sulfate 
addition at 10°C, (C) Slurry B1, with 3mM sulfate addition at 25°C, (D) Slurry B6 with 3mM sulfate 
addition at 10°C. Arrows denote the time points for the additions of sulfate (red) and butyrate 
(black). The red arrow in figure 2C indicates the time point that the excess amount of gas was 
exhausted from the headspace. 
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Figure 3. Changes in butyrate, sulfate, acetate, sulfide and methane concentrations during 570 days 
of incubation in sediment slurry enrichments constituted of methane zone sediment (A) Slurry B3, 
with 20mM sulfate addition at 25°C, (B) Slurry B2, with 20mM sulfate addition at 10°C, (C) Slurry 
B5, without sulfate addition at 25°C. (D) Slurry B8, without sulfate addition at 10°C. Arrows denote 
the time points for the additions of sulfate (red) and butyrate (black). The red arrow in figure 3C 
indicates the time point that the excess amount of gas was exhausted from the headspace. 
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Sulfate reduction and methanogenesis co-occurred in the sulfidogenic slurry incubated at 

25°C (Fig 3A). The fastest butyrate conversion was observed in the methanogenic slurry at 25°C (Fig 

3B). Trace amounts of sulfate detected in the slurry at the beginning of incubation were reduced 

during butyrate conversion within the first 40 days. Methane was detected at day 64 and increased 

rapidly due to fast conversion of butyrate. Hence, acetate and methane amounts ascended steeply 

within 200 days. A steady acetate consumption occurred after day 214. Even though produced after 

butyrate feeds, acetate was consumed again almost totally after 500 days of incubation. Since the 

methane pressure in this slurry reached a very high amount at day 277, excess headspace gas was 

exhausted (Fig 3B). Butyrate conversion in the methanogenic slurry at 10°C proceeded much slower. 

Methane production started at day 200 and increased gradually. In total, 11 times less methane was 

produced in the methanogenic slurry incubated at 10°C compared to the one incubated at 25°C 

within 570 days.  

 

3.3.3 Cluster analysis of DGGE banding pattern 

The bacterial DGGE profiles of enrichment slurries revealed that each sample taken at different 

time points harbored a characteristic community, illustrated by the different banding patterns. 

However, archaeal DGGE banding patterns of slurries were mostly similar along the incubation 

period except for some bands which appeared in methanogenic slurries toward the end of 

experiment. These bands possibly represented the dominant archaeal fractions in the enrichment 

slurries. 

Cluster analysis of the DGGE patterns showed that all bacterial profiles corresponding to a 

certain sediment depth were grouped into closely related clusters and were separated from the 

profiles belonging to the other sediment depths (Fig S2). Each cluster representing each depth zone 

had several sub-clusters with less than 90% similarity which revealed that different bacterial groups 

were enriched in slurries incubated under different conditions along the experiment. 

Archaeal DGGE cluster analysis revealed a different clustering pattern compared to the 

bacterial clustering analysis (Fig S3). SZ slurry samples taken within the first 140 days of the 

experiment grouped together with the similarity ranging between 80% and 90%. As the incubation 

continued, the archaeal community changed and several sub-clusters consisting of mostly two 

different time samples were formed, where their similarities to each other were around 70%. SMTZ 

slurry samples grouped together except for the samples taken at the last sampling time indicating 

that the microbial communities in each slurry differentiated by the end of the experiment. MZ 
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slurry samples gathered in several sub-clusters exhibiting variety in community compositions at 

different incubation phases. The samples belonging to the last sampling time of all MZ slurries and 

SMTZ B3 and B6 slurries were grouped in the same sub-cluster, giving an indication that the 

enriched archaeal community in different slurries was similar.   

 

3.3.4 Bacterial community composition and structure 

To get insight into the microbial composition in the original sediment belonging to each zone and 

in slurry samples, PCR amplified partial 16S rRNA gene fragments obtained from the sediment and 

from the slurries at the last incubation day were sequenced. After filtering and trimming, between 

3202 and 18687 high quality sequences were found per sample (Table S2) and these clustered in 62–

133 operational taxonomic units (OTUs; average 95 ± 24) at the family level per sample. 

OTUs were classified into 33 phyla, with 96% of the OTUs belonging to 6 phyla, namely 

Proteobacteria (45.9%), Chloroflexi (23.6%), Firmicutes (17.7%), Bacteroidetes (5.3%), Spirochaetes 

(2.7%) and Candidate division OP9 (1.1%). Different phylotypes were abundant in different zones. 

Sulfate zone sediment contained Gammaproteobacteria (64%), Chloroflexi (9%) and Bacteroidetes 

(4%) and methane zone sediment was composed of sequences belonging to Gammaproteobacteria 

(54%) and Epsilonproteobacteria (27%). On the other hand, SMTZ sediment was dominated by the 

sequences related to Desulfobacteraceae (79%) belonging to the class Deltaproteobacteria (Fig S4). 

Within the Proteobacteria phylum, Desulfobacteraceae was the main family that contained 

61% of the reads, which is followed by Helicobacteraceae and Desulfobulbaceae having 9.4% and 

4.1% of the reads, respectively (Fig S4). A similar dominance of the Anaerolinaceae family with 

89.2% reads was observed in the Chloroflexi phylum. The Syntrophomonadaceae family covered 

39.9% of the reads, while 50.9% of the reads belonged to uncultured Firmicutes. One of the families 

Desulfobacteraceae, Anaerolinaceae, Syntrophomonadaceae and uncultured Clostridiales 

dominated at least one slurry sample. Despite the overall dominance of these families, a high degree 

of variation was seen in relative abundance of them between different slurry samples.   

The most abundant OTUs belonged to Desulfobacterium in the phyla Proteobacteria, 

uncultured Anaerolinaceae in the phylum Chloroflexi, Syntrophomonas in the phyla Firmicutes, 

uncultured Desulfobacteraceae in the phyla Proteobacteria, and uncultured Clostridiales in the 

phylum Firmicutes (Fig 4). 
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Figure 4. The heatmap depicts the relative percentage of the most common (>5 %) bacterial 16S 
rRNA gene sequences across the 12 slurries analyzed. The heatmap colors represent the relative 
percentage of the bacterial assignments within each sample. Colors shifted towards dark green 
indicate higher abundance. Taxonomy is shown at the genus level (unless unassigned) above and 
at the phylum level below the heatmap. 
 

Redundancy analysis separated bacterial orders by their associations to the incubation 

conditions (Fig 5). The order Anaerolineales (OTU 15) had the highest read abundance among all 

bacterial orders and showed a strong positive correlation to the temperature and butyrate (Fig 5, 

S5). Anaerolineales had positive associations with the other environmental parameters sulfate, 

acetate and methane. The slurries in which this order dominated were plotted on the left portion 

of the RDA graph. Another prevalent bacterial order Desulfobacterales (OTU 27) was observed to 

be associated with the slurries SZB7, SMTZB6 and SMTZB7. The order Clostridiales (OTU 22) was 

plotted between the slurries SZB1, SZB5 and MZB2 in which they had the highest read abundance. 

The slurries SZB5 and MZB8 were negatively correlated with temperature and sulfate, and was 
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plotted toward the upper right portion of the RDA triplot. These slurries were associated most 

strongly with the orders Clostridiales (OTU 22), Campylobacterales (OTU 31) and Desulfobacterales 

(OTU 27) (Fig 5). 

      

Figure 5. Redundancy Analysis Triplot showing relationship between Bacterial community 
composition at order level and environmental parameters. Environmental variables are given as red 
vectors. Blue vectors represent bacterial orders. Orders were included with a relative abundance of 
at least 1% in any sample. Vector length gives the variance that can be explained by a particular 
environmental parameter. Perpendicular distance reflects association, with smaller distances 
indicating a larger association. Temp: Temperature. 
OTU numbers and corresponding taxa is as followed: (1)Bacteria–Other, (2)OPB41, (3)BD2-2, 
(4)Bacteroidales, (5)Cytophagales, (6)Flavobacteriales, (7)SB-1, (8)B-5, (9)Sphingobacteriales, 
(10)VC2.1.Bac22, (11)vadinHA17, (12)vadinHA17-uncultured bacterium, (13)Candidate division OP9, 
(14)Anaerolineae, (15)Anaerolineales, (16) GIF9, (17)MSBL5, (18)vadinBA26, (19)Chloroplast, 
(20)LCP-89, (21)Lineage_IV, (22)Clostridiales, (23)Nitrospirales, (24)Burkholderiales, 
(25)Hydrogenophilales, (26)Desulfarculales, (27)Desulfobacterales, (28)Desulfovibrionales, 
(29)Desulfuromonadales, (30)Sva0485, (31)Campylobacterales, (32)Gammaproteobacteria, 
(33)Alteromonadales, (34)Pseudomonadales, (35)Thiotrichales, (36)LK-44f, (37)MSBL2, (38)PBS-18, 
(39)Spirochaetaceae, (40)Acholeplasmatales. A detailed correlation matrix is provided in Table S5. 
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3.3.5 Archaeal community composition and structure 

PCR amplified partial 16S rRNA gene fragments obtained from the last day sampling of all slurries 

and environmental samples were sequenced. After filtering and trimming, between 9120 and 136909 

high quality sequences were found per sample.  

In all slurry samples, the highest average percentage of 16S rRNA reads for Archaea clustered 

within the families Methanomicrobiaceae (60.8%), Methanosarcinaceae (16.3%) and 

Methanosaetaeceae (9.3%) (Fig S6). Methanomicrobiaceae dominated each slurry sample with read 

percentages ranging between 26%-98%, except for one slurry incubated at 10ºC with high sulfate in 

which Methanosarcinaceae became the most dominant family representing 39% of all the reads. 

Methanogenium belonging to the family Methanomicrobiaceae was the most dominant genus 

among the slurries, followed by the genus Methanosarcina from the family Methanosarcinaceae, 

having lower abundance (Fig 6). Methanosaetaeceae was observed only in two slurry samples 

incubated with low and without sulfate at 25ºC, with 43% and 67% of the reads (Fig S6). These reads 

belonged to Methanosaeta and unclassified Methanosaetaceae (Fig 6). The other Archaeal groups 

observed in different slurries were the Marine Benthic Group D/Deep Hydrothermal Vent 

Euryarchaeotal Group 1 (MBG-D and DHVEG-1), Miscellaneous Crenarchaeotic Group (MCG) and 

ANME-1b with read percentages 3.7%, 2.5% and 2.1%, respectively (Fig 6, S6).  
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Figure 6. The heatmap depicts the relative abundance of the most common (>5 %) archaeal 16S 
rRNA gene sequences (unless unclassified) across the 12 slurries analysed. The heatmap colors 
represent the relative percentage of the archaeal assignments within each sample. Colors shifted 
towards bright blue indicate higher abundance.  
 

Archaeal community composition at family level in each slurry was plotted on RDA (Fig 7). 

The slurries which had high methane were plotted toward the upper left quadrant of the graph. An 

efficient acetate consumption was observed in these slurries, SZB1, SMTZB1 and MZB5, which was 

confirmed by the negative association to the acetate. Methanosaetaceae was observed to be 

positively correlated with temperature and negatively correlated with sulfate. The slurries SZB5, 

SZB4, SZB7, MZB3, MZB8, SMTZB3 in which acetate accumulated to very high concentrations 

showed close clustering toward the bottom middle part of the graph and were associated with 

acetate and the family Methanomicrobiaceae (Fig 7, Fig 1, 2, 3). The slurries that represented less 

Archaeal diversity and abundance were together in the bottom right portion of the RDA plot. 
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Methanosarcinaceae was plotted adjacent to the slurries SMTZB6, SMTZB7 and MZB2 in which they 

were enriched (Fig 7, Fig 2, 3).  

    

Figure 7. Redundancy Analysis Triplot showing relationship between Archaeal community 
composition at family level and environmental parameters. Environmental variables are given as 
red vectors. Blue vectors represent Archaeal families. Families were included with a relative 
abundance of at least 1% in any sample. Vector length gives the variance that can be explained by a 
particular environmental parameter. Perpendicular distance reflects association, with smaller 
distances indicating a larger association. Temp: Temperature. 

 

3.3.6 Correlation between the microbial community and between the microbial 
community and environmental parameters 

To investigate the relationship between the microbial community structure and incubation 

conditions, sequence data were correlated to environmental parameters data. Correlation analysis 

of the sequencing data revealed both positive and negative relations between bacterial orders (Fig 

S5). Anaerolineales, the most dominant order in the slurries, was observed to be negatively 

-0.8 0.8

-0
.6

1.
0

Sulfate

Methane

Temp
Butyrate

Acetate

DSEG

Halobacteriales

ANME-1b
C19A

EJ-E01

Methanomicrobiaceae

Methanomicrobiales

Methanosaetaceae

Methanosarcinaseae

19c-33

AMOS1A

ANT06-05

MBG-D&DHVEG-1
Thermoplasmatales

GroupC3

MBG-B

MCG

SZB1

SZB4

SZB5

SZB7

SMTZB1

SMTZB3

SMTZB6

SMTZB7

MZB2

MZB3

MZB5

MZB8



Butyrate degradation in anoxic sediments 

69 
 

correlated to the other two dominant orders Desulfobacterales and Clostridiales, but positively 

correlated to all environmental parameters, with a strong correlation to temperature (P < 0.01), 

butyrate (P < 0.01) and acetate (P < 0.05). Desulfobacterales was negatively correlated to the orders 

Sphingobacteriales (P < 0.01), Desulfovibrionales (P < 0.05), Spirochaetaceae (P < 0.05), Clostridiales 

and all environmental parameters except for sulfate, and positively correlated to candidate division 

OP9 and Thiotrichales. Clostridiales order was observed to be positively correlated to 

Desulfovibrionales (P < 0.05), Sphingobacteriales, GIF9 belonging the phylum Chloroflexi and 

negatively correlated to all environmental parameters except for a weak positive correlation to 

sulfate. The order Campylobacterales was positively correlated to the orders Desulfuromonadales 

(P < 0.01), SB-1 (P < 0.05) and SB-5 (P < 0.05) from the phylum Bacteroidetes and unclassified 

Gammaproteobacteria (P < 0.05) and negatively correlated to Desulfobacterales, PBS-18 from the 

phylum Spirochaetes and to all environmental parameters except for methane. 

The two aceticlastic methanogenic families Methanosaetaceae and Methanosarcinaceae did 

not positively correlated to each other and showed differences in their correlation to the other 

taxonomic groups and environmental parameters, in like manner to the difference in their absolute 

abundances in slurries (Fig S7 and Fig 6). Both families were negatively correlated to the 

hydrogenotrophic methanogenic family Methanomicrobiaceae, among which Methanosarcinaceae 

showed significant negative correlation (P < 0.05). Methanosaetaceae showed positive correlation 

to methane and temperature, whereas Methanosarcinaceae did not show any significant positive 

correlation to any of the environmental parameters. Hydrogenotrophic methanogenic families were 

negatively correlated with most of the other taxonomic groups. Unclassified Methanomicrobiales 

and EJ-E01 were positively correlated to methane, whereas Methanomicrobiaceae was positively 

correlated only to acetate. 

 

3.4 Discussion  

3.4.1 Butyrate conversion in Aarhus Bay sediment 

 Our results show that butyrate conversion in Aarhus Bay sediments is coupled to sulfate reduction 

and methane production. Previous studies indicated that sulfate reduction is an important terminal 

electron-accepting process in marine sediments (Jørgensen, 1982; Holmkvist et al., 2011; Bowles et 

al., 2014). The rapid consumption of added sulfate in sulfate-amended and sediment-originated 

sulfate in sulfate-free slurries suggests that sulfate reduction is the dominant pathway of butyrate 
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conversion in Aarhus Bay sediment (Fig 1B, 2B, 3B). This is most likely due to the fact that sulfate 

reduction is energetically more favourable than methanogenic conversion (Muyzer and Stams, 

2008). The accumulation of acetate in all slurries indicates incomplete butyrate conversion (Fig 1B, 

2A, 2B, 3B). It is remarkable to observe methane production in the presence of sulfate in SZ slurries 

although late in time (Fig 1B). The decrease in acetate coinciding methane production suggests the 

occurrence of methanogenesis in the sulfate zone of Aarhus Bay, even though methanogenesis is 

less favourable in the presence of sulfate (Table 1). Many studies have shown the occurrence of 

methanogenesis in sulfate-rich marine sediments (Mori et al., 2012; Wilms et al., 2007; Beck et al., 

2011; Schippers et al., 2012). Although CH4 concentrations in many sub-seafloor sediments increase 

only when sulfate is depleted with depth, active methanogenesis is often detected in the presence 

of sulfate (e.g. Woodlark Basin, Wellsbury et al., 2002 and Peru Margin, Parkes et al., 2005).   

In the absence of sulfate, conversion of butyrate to acetate plus H2 is an endergonic reaction 

under standard conditions and becomes feasible by methanogenic partners that keep the H2 partial 

pressure low (Table 1) (Schink and Stams, 2013; McInerney et al., 2008). Butyrate conversion trend 

in sulfate-free SZ and MZ slurries incubated at 25°C was similar in terms of early methane 

production and complete acetate consumption (Fig 1A, Fig 3A). (Table 1). Apparently, the 

syntrophic conversion of butyrate under sulfate-free conditions is possible both in the sulfate and 

methane zones of Aarhus Bay sediments. 

 

3.4.2 The effect of sulfate concentration on conversion dynamics 

Significant differences in terms of product formation and consumption in high (20 mM) and low (3 

mM) sulfate amended SMTZ slurries at 25°C suggests that the sulfate concentration is an important 

environmental factor in butyrate conversion in Aarhus Bay sediments. Low and delayed CH4 

production in high sulfate amended slurries indicates possible sulfide inhibition on 

methanogenesis. Inhibitory effect of high sulphide concentrations on methanogens was reported 

previously (Pender et al., 2004; O’Flaherty et al., 1998; Shin et al., 1995). Rapid methane production 

after day 523 in high sulfate containing slurries might be related to the adaptation capacity of 

hydrogenotrophic methanogens to the slurry conditions and involvement in syntrophic butyrate 

conversion which caused simultaneous increase in acetate. This suggests that methanogenesis 

could still occur despite the on-going sulfate-reduction process and sulfide level. On the other 

hand, high methane production with concomitant acetate consumption in low sulfate amended 

SMTZ slurries indicates an efficient syntrophic butyrate conversion involving acetate- and 
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hydrogen-dependent sulfate reduction and methanogenesis processes along the incubation. 

Apparently, low amounts of sulfate enhanced the whole microbiome, resulting in fast and dedicated 

population performing both sulfate reduction and methanogenesis.  

 

3.4.3 The effect of temperature on metabolic processes 

Different temperatures have an impact on conversion of butyrate in Aarhus Bay sediments. Lower 

temperatures caused lower sulfate consumption and higher acetate accumulation in SZ slurries. 

Similarly, below 25°C, reduced sulfate reduction with organic acid accumulation was observed in 

sulfate-amended marine sediments (Weston and Joye, 2005). In contrast, the produced acetate was 

efficiently consumed at 25°C especially in sulfate-free slurries. Roussel and colleagues (2015) 

reported increased aceticlastic methanogenesis with increasing temperatures (from 12°C to 30°C) 

in marine sediment slurries. The high-sulfate amended SMTZ slurry at 10°C exhibited the lowest 

and constantly fluctuating CH4 amounts (Fig 2B). This trend points to the existence of anaerobic 

oxidation of methane (AOM) in sulfate-methane transition zone of Aarhus Bay (Thomsen et al., 

2001; Dale et al., 2008). Almost all the methane produced in marine sediments is consumed with 

concomitant sulfate removal within the SMTZ (Knittel and Boetius, 2009; Boetius et al., 2000). 

Therefore, despite the amounts of substrates and products did not differ significantly, low 

incubation temperature in SMTZ slurry favoured for a different microbial community which causes 

a difference in eventual metabolic process.   

 

3.4.4 Enriched microbial community in the presence of sulfate  

In sulfate amended slurries, enrichment of Desulfobacteraceae, Desulfovibrionaceae, 

Desulfobulbaceae, Syntrophomonadaceae and Clostridiales suggests that the members of these taxa 

are associated with butyrate conversion. Especially, Desulfobacterium, Desulfonema, 

Desulfosarcina, Desulfoarculus belonging to Desulfobacteraceae are known to couple butyrate 

degradation to sulfate reduction (Kuever et al., 2014b). The increase in the relative abundance of 

these genera both in the upper and the lower sediment slurries suggests the existence of sulfate 

reducers both in the sulfate, sulfate-methane transition and methane zones of the sediment. Leloup 

and colleagues (2009) showed that the sulfate-reducing bacteria in Aarhus Bay sediments are 

present and active within the methane zone, and have as high bacterial numbers as in the sulfate 

zone. Similar findings were also reported in coastal marine sediments (Limfjorden, Denmark; 
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Jørgensen, 1978; Aarhus Bay, Station 6; Thomsen et al., 2001) and in deep-sea sediment (Black Sea; 

Leloup et al., 2007). Apparently, the ability of some SRB to grow fermentatively may explain their 

abundant presence in sulfate-depleted sediments and the sudden increase in their relative 

abundance in sulfate-amended MZ slurries. On the other hand, the increased relative abundance 

of Desulfovibrio in sulfate-amended slurries might be linked to the consumption of H2 produced by 

fermentative microorganisms. The ability of Desulfovibrio species to use H2 as electron donor and 

to assimilate acetate and CO2 as carbon sources supports this hypothesis (Kuever et al., 2014a). 

Syntrophomonas is a butyrate-degrading syntrophic specialist that grow in close association with 

methanogens and other hydrogen- and/or formate-using microorganisms (Plugge et al., 2011; Sousa 

et al., 2009; Oude Elferink et al., 1994). Sulfate-reducing bacteria that directly couple butyrate 

oxidation to sulfate reduction grow faster than syntrophic butyrate degraders. However, the growth 

rates of some syntrophic butyrate degraders were reported to be higher than some butyrate-

oxidizing sulfate reducers (Oude Elferink et al., 1994). In contrary, the effect of sulfate absence on 

the microbial community change is the increase in the relative abundance of Syntrophomonas 

especially in the upper sediment slurries. This result clearly shows that sulfate can decelerate the 

abundance of Syntrophomonas species, but does not inhibit the butyrate conversion by 

Syntrophomonas. On the other hand, Desulfobacteraceae and Clostridiales involved in butyrate 

conversion rather in SMTZ slurries. Apparently, methanogenic conditions gives Syntrophomonas a 

competitive advantage in the upper sediment zone over other bacteria whereas in deeper sediments 

niche specific or fast growing bacteria take over butyrate conversion. 

 

3.4.5 The effect of temperature on the enriched bacterial community 

Low temperatures have a negative effect on the relative abundance of Anaerolineaceae in the Aarhus 

Bay sediments. At higher temperatures (25°C), Anaerolineaceae became dominant and limited the 

butyrate conversion due to their ability to degrade dead biomass (Kleinsteuber et al., 2012) and 

acetate in marine sediment slurries (Webster et al., 2011). Considering that the slurries in our study 

were incubated for long period, the Anaerolineaceae might have degraded the dead cells forming 

syntrophic relationship with hydrogenotrophic methanogens (Yamada and Sekiguchi, 2009). The 

higher relative abundance of Anaerolineaceae is known in the organic-rich subsurface marine 

sediments (Webster et al., 2004, 2006; Teske, 2006; Fry et al., 2008; Biddle et al., 2008). 

Lower temperatures (10°C) favours the abundance of Clostridiales. The members of the 

phylum Firmicutes are commonly found in surface and deep marine sediments, soils and 
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methanogenic environments (Fry et al., 2008; Parkes et al., 2014). Sequences related to uncultured 

Firmicutes were previously found in MPN dilution cultures of hydrocarbon-contaminated 

sediments containing butyrate in the presence and absence of sulfate (Struchtemeyer et al., 2011). 

These findings points out that the Firmicutes might have played role in syntrophic butyrate 

conversion in 10°C slurries. 

Although temperature did not have a significant effect on the relative abundance of 

Desulfobacteraceae, they were rather abundant at 10°C. In addition, the members of 

Desulfobacteraceae were abundant in most of the slurries regardless of the sulfate concentration 

and the origin of the sediment. Pyrosequencing of 16S rRNA gene amplicons retrieved from the 

original sediment confirmed the dominance of Desulfobacteraceae in sulfate-methane transition 

zone of Aarhus Bay (Fig S4). This indicates that the bacterial community at the SMTZ is distinct 

from other zones (Wagner et al., 2005) and this might be associated with the syntrophic interaction 

between Desulfobacteraceae members and methane-oxidizing archaea involving in AOM (Fig S6) 

(Knittel and Boetius, 2009; Boetius et al., 2000). As the incubation temperature resembles the in 

situ condition (Dale et al., 2008), Desulfobacteraceae members would be more successful in 

butyrate conversion at 10ºC in the upper sediment slurries. 

 

3.4.6 Archaeal community structure in the slurries 

Methanomicrobiaceae is responsible from the consumption of H2/formate produced by the 

incomplete conversion of butyrate as its members are specialists on H2- and formate-utilization and 

acts as syntrophic partners (Garcia et al., 2006). In our study, Methanogenium, belonging to 

Methanomicrobiaceae, dominated all enrichment slurries regardless of the origin of the sediment 

and the incubation temperature, except for one slurry (SMTZ B7) (Fig 6, S6). This supports the 

finding of Garcia and colleagues (2006) considering that incomplete butyrate conversion occurred 

in all slurries. It is known that hydrogenotrophic methanogenesis is dominated in near-surface 

marine sediments (Parkes et al., 2014; Whiticar, 1999; Kendall and Boone, 2006a; Kendall et al., 

2006) and that SRB and methanogenic archaea may coexist and reach equal rates of H2 

consumption at high hydrogen pressures (Kristjansson et al. 1982; Parkes et al., 1990). Therefore, 

the absence of CH4 in sulfate-containing zones might be due to the anaerobic oxidation of methane 

(AOM) (Knittel and Boetius, 2009) or the adaptive mechanisms of methanogens or persistence at 

extremely low rates of activity even in the presence of sulfate-reducing bacteria.  
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Methanosarcina is known to consume acetate and methylated compounds and some strains 

can reduce CO2 with H2 (Kendall and Boone, 2006b). Methanosarcina is detected in many sulfate-

amended and sulfate-free slurries comprised of the upper and the lower parts of the sediment in 

which acetate consumption occurs. Hence, Methanosarcina might be syntrophic partners of 

incomplete butyrate degraders and responsible for acetate consumption in those slurries. Finke et 

al. (2007b) suggested that acetate oxidation via interspecies H2 transfer might be a possible reason 

for aceticlastic methanogens to occur in sulfate-rich marine sediments. Accordingly, aceticlastic 

methanogens can carry out the first step of syntrophic acetate oxidation where acetate is oxidized 

to 2 moles of CO2 with the generation of reducing equivalents, often as hydrogen (Phelps et al., 

1985). In the second step, hydrogenotrophic methanogens or sulfate reducers scavenge that 

hydrogen and the overall reaction becomes thermodynamically favourable. Hence, not only sulfate 

reducers but also the aceticlastic methanogens could grow in the sulfate zone of marine sediments 

(Ozuolmez et al., 2015).  

The Methanosaetaceae is a specialist that uses only acetate as substrate for methanogenesis 

(Jetten et al., 1992). The possible reason for the predominance of Methanosaetaceae over 

Methanosarcinaceae in the low-sulfate SMTZ and sulfate-free SZ slurries at 25°C might be related 

to higher acetate affinity of Methanosaetaceae over Methanosarcinaceae (Jetten et al., 1992). 

Interestingly, the predominance of Methanosaetaceae in low-sulfate SMTZ slurry can be associated 

with the competition with acetate-degrading Desulfobacteraceae which is highly abundant in the 

original sediment (Fig S4). Although acetate is mainly consumed by sulfate reducers in marine 

sediments (Schönheit et al., 1982), some acetate-degrading sulfate reducers have slightly better 

growth kinetics than Methanosaeta (Stams et al., 2005). Similar observations were reported by 

Struchtemeyer et al., (2005) and speculated that low sulfate level may allow Methanosaetaceae to 

compete with sulfate reducers for acetate.  

ANME-1 sequences have been found to be the dominant ANME type in the SMTZ of Aarhus 

Bay (Fig S6) (Thomsen et al., 2001; Aquilina et al., 2010; Webster et al., 2011). Timmers et al. (2015) 

reported that ANME-1 is more successful in low-methane, low-sulfate and high-sulfide conditions 

in batch incubations of Baltic Sea sediment which also resembles the characteristic of SMT zone. 

Low methane and high sulfide amounts in SMTZ B7 slurry supports the findings of Timmers et al. 

(2015) where ANME-1 was selected over ANME-2 clades under low-sulfate and high-sulfide 

conditions. The enrichment of both ANME-1 and Desulfobacteraceae in low temperature SMTZ 

slurry is in accordance with previous findings documenting that SMTZ sediments are dominated 
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by the members of Desulfobacteraceae and ANME clusters, forming close associations and 

involving in anaerobic oxidation of methane (Fig 4, 6) (Harrison et al., 2009; Knittel and Boetius, 

2009). The other methane-oxidizing archaeal genera enriched in this slurry were Methanococcoides 

and Methanolobus which are defined as ANME-3 Archaea (Fig 6) (Knittel and Boetius 2009, 

Lösekann et al 2007, Niemann et al 2006). Lösekann et al. (2007) reported that ANME-3 cells could 

live syntrophically with Desulfobulbus. Apparently, the incubation condition, inhabiting microbial 

community and the amounts of sulfate, sulfide and methane in the slurry favoured the enrichment 

of ANME-3 group. 

 

3.5 Conclusion 

This study demonstrates that methanogenic archaea and sulfate-reducing bacteria are present and 

active in sulfate, sulfate-methane transition and methane zone sediments of Aarhus Bay and there 

is no vertical separation of both groups in the sediment. Butyrate conversion could occur both 

under sulfate-reducing and methanogenic conditions regardless of the incubation temperature and 

the sediment depth. The conversion of butyrate by syntrophic communities throughout the 

sediment column suggests that continuous supply of available carbon might stimulate syntrophic 

butyrate degraders in the upper sulfate-rich sediment zone. On the other hand, sulfate reducers in 

the deeper sulfate-depleted sediment could contribute to the butyrate conversion even in the 

presence of low concentration of sulfate. We suggest that both groups of microbes can survive at 

very low activity rates in the sediment and both sulfate reduction and methanogenesis with the 

same substrate can proceed simultaneously. The results indicate that H2 and CO2 may be major 

substrates for methanogens, as H2 was never detected throughout the experiments and the 

members of hydrogenotrophic methanogenic family Methanomicrobiaceae were the dominant 

Archaea in the slurries. On the other hand, there is only limited competition between SRB and 

methanogens for acetate, as the aceticlastic methanogens could also be enriched in sulfate-

containing slurries. The enrichment of ANME-1 especially in SMTZ slurries together with ANME-3 

suggests the possibility that these Archaea might take part in AOM interacting with other 

responsible microbial groups. Therefore, butyrate is converted in team work of sulfate reducers, 

syntrophs and methanogens throughout the anoxic marine sediment.  
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Supplementary data 

Table S1. The overview of all the enrichment slurries fed with propionate and the total amounts of 
the reactants consumed and products formed during the enrichment period. The enrichment 
slurries were consisted of sediment either from sulfate zone (SZ), sulfate-methane transition zone 
(SMTZ) or methane zone (MZ) and incubated at 25°C or 10°C, with 3 mM, 20 mM or without (-) 
sulfate amendments along the study. Slurries with * were presented in the propionate conversion 
graphs and used for molecular analysis. 

 

  

Sediment 
zone

Slurry Code Treatment
Incubation 

temperature (°C)

Reactants (µmol/slurry) Products  (µmol/slurry)

Butyrate Sulfate Acetate Sulfide Methane

SZ

B1 - 25 35085 313 37497 717 63347

B2 - 25 38415 312 29386 508 64830

B3 20 mM SO4
2- 25 36896 37342 109911 39836 1030

B4 20 mM SO4
2- 25 36816 35382 74468 33996 3252

B5 - 10 22092 351 24613 460 19853

B6 - 10 24609 319 31487 364 12978

B7 20 mM SO4
2- 10 19587 15551 33563 17064 93

B8 20 mM SO4
2- 10 22414 15282 35718 18012 0

SMTZ

*B1 3 mM SO4
2- 25 33451 5500 10151 7479 73569

B2 3 mM SO4
2- 25 33748 8020 30128 9107 69486

*B3 20 mM SO4
2- 25 40754 45716 45255 38991 4183

B4 20 mM SO4
2- 25 41405 47734 46877 42512 3727

B5 3 mM SO4
2- 10 26272 6463 35148 7321 32045

B6 3 mM SO4
2- 10 28158 6531 37574 7268 32483

B7 20 mM SO4
2- 10 29226 35141 31129 36984 35

B8 20 mM SO4
2- 10 33078 31697 41505 32413 1015

MZ

B1 20 mM SO4
2- 10 26059 18632 35892 14784 2956

B2 20 mM SO4
2- 10 29488 34963 33448 38500 0

B3 20 mM SO4
2- 25 54945 41587 91742 30618 5792

B4 20 mM SO4
2- 25 56743 54643 84195 39675 587

B5 - 25 45588 358 43022 261 105926

B6 - 25 45829 782 29932 487 97903

B7 - 10 18145 610 12727 380 27090

B8 - 10 16225 601 29455 424 8417
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Table S2. The number of reads per sample generated by Pyrosequencing for Bacteria and HiSeq 
Illumina sequencing for Archaea. 

 

Figure S1. Depth profiles of sediment pore water sulfate, sulfide and methane for Station M1, in 
Aarhus Bay, Denmark. Methane-GC1 and Methane-GC2 stands for methane concentrations 
retrieved from two different gravity corers, gravity corer 1 and 2, respectively. SZ; Sulfate zone, 
SMTZ; sulfate-methane transition zone; MZ, methane zone. 

 

Origin Slurry Bacterial reads Archaeal reads

Sulfate zone

ENV 8787 9120

B4 12393 88555

B1 18687 121246

B7 12007 61722
B5 12194 89283

Sulfate-methane 
transition zone

ENV 3202 18696

B1 3758 75708

B3 5167 47520
B6 5443 42599

B7 7198 58464

Methane zone

ENV 10903 30848

B3 15094 39087
B5 11718 136909

B2 11686 52551

B8 10891 94124
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Figure S2. Cluster analysis of bacterial DGGE profiles 
of sediment samples taken at different 
biogeochemical zones and samples of enrichment 
slurries that were taken at different time points. The 
trees were generated using Dice similarity coefficient 
and UPGMA clustering algorithm. SZ: Sulfate zone, 
SMTZ: Sulfate-methane transition zone, MZ: 
Methane zone. 
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Figure S3. Cluster analysis of archaeal DGGE profiles 
of sediment samples taken at different 
biogeochemical zones and samples of enrichment 
slurries that were taken at different time points. The 
trees were generated using Dice similarity coefficient 
and UPGMA clustering algorithm. SZ: Sulfate zone, 
SMTZ: Sulfate-methane transition zone, MZ: 
Methane zone. 
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Figure S4. Relative abundances of the bacterial community in all slurries and environmental samples 
at family level, normalized to 100%. Only those families that were present at an abundance >1% in 
at least one sample were included in the graph. SZ: Sulfate zone, SMTZ: Sulfate-methane transition 
zone; MZ: Methane zone, Env: Sediment sample belonging to the indicated biogeochemical zone. 
S: 20mM sulfate, 3S:3mM sulfate is used as electron acceptor in slurries. Slurries that were not 
labeled with 'S' or '3S' were incubated without sulfate. The number of reads of each sample was 
given in brackets. 
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Deltaproteobacteria - Desulfovibrionaceae
Deltaproteobacteria - Desulfobulbaceae
Deltaproteobacteria - Desulfobacteraceae
Deltaproteobacteria - Desulfobacterales
Deltaproteobacteria - Desulfarculaceae
Betaproteobacteria - Hydrogenophilaceae
Betaproteobacteria - Oxalobacteraceae
Betaproteobacteria - Comamonadaceae
Alphaproteobacteria - Rhodobacteraceae
Proteobacteria
Nitrospirae - OPB95
Nitrospirae - Nitrospirales
Firmicutes - uncultured Clostridiales
Firmicutes - Syntrophomonadaceae
Firmicutes - Ruminococcaceae
Firmicutes - Peptococcaceae
Firmicutes - JTB215
Firmicutes - Gracilibacteraceae
Firmicutes - Family_XII_Incertae_Sedis
Firmicutes - Clostridiaceae
Firmicutes - Clostridiales
Elusimicrobia - Lineage_IV
Deferribacteres - LCP-89
Cyanobacteria
Chloroflexi - vadinBA26
Chloroflexi - MSBL5
Chloroflexi - GIF9
Chloroflexi - Anaerolineaceae
Chloroflexi - Anaerolineae
CandidatedivisionOP9
Bacteroidetes - vadinHA17 - uncultured
Bacteroidetes - vadinHA17
Bacteroidetes - VC2.1_Bac22
Bacteroidetes - WCHB1-69
Bacteroidetes - SB-5
Bacteroidetes - SB-1
Bacteroidetes - Flavobacteriaceae
Bacteroidete - Cytophagaceae
Bacteroidetes - Marinilabiaceae
Bacteroidetes - BD2-2
Actinobacteria - OPB41
Bacteria - Other
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Figure S5. The heatmap depicts the correlation between bacterial orders present at a relative 
abundance >1% of total reads across the 12 slurry samples and experimental parameters. 
Correlations were determined by means of the two tailed Spearman's Rank Order Correlation test. 
The heatmap colors represent the relative percentage of the microbial order assignments. Square 
colors shifted towards bright green indicate strong correlation.  
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Figure S6. Relative abundances of the archaeal community in all slurries and environmental samples 
at family level, normalized to 100%. Only those families that were present at an abundance >1% in 
at least one sample were included in the graph. SZ: Sulfate zone, SMTZ: Sulfate-methane transition 
zone; MZ: Methane zone. Env: Sediment sample belonging to the indicated biogeochemical zone. 
S: 20mM sulfate, 3S:3mM sulfate is used as electron acceptor in slurries. Slurries that were not 
labeled with 'S' or '3S' were incubated without sulfate.  
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Figure S7. The heatmap depicts the correlation between archaeal families present at a relative 
abundance >1% of total reads across the 12 slurry samples analyzed and experimental parameters. 
Correlations were determined by means of the two tailed Spearman's Rank Order Correlation test. 
The heatmap colors represent the relative percentage of the microbial family assignments. Square 
colors shifted towards bright green indicate strong correlation.  
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Abstract  

Propionate conversion was analysed in enrichment slurries containing sediment from different 

biogeochemical zones of Aarhus Bay, Denmark, and the enriched prokaryotic community was 

determined at the end of the incubation period. Sediment slurries were amended with 3, 20 mM 

sulfate and without sulfate at 25°C and 10°C. After 514-571 days of incubation, methanogenesis in 

the sulfate zone and sulfate reduction in the methane zone slurries was observed and both 

processes occurred simultaneously through the whole sediment. Bacterial community analysis 

revealed the dominance of Desulfobacteraceae and Desulfobulbaceae members in sulfidogenic 

slurries incubated both at 25°C and 10°C. Sulfate-free slurries at 25°C were dominated with the 

sequences related to Cryptanaerobacter belonging to Peptococcaceae. Sulfate-free slurries 

incubated at 10°C consisted of sequences related to Desulfobacteraceae. Archaeal community 

analysis revealed the prevalence of different genera of the Methanomicrobiales in slurries incubated 

at different temperatures and with different sulfate concentrations, and the occurrence of 

Methanosarcinaceae was only observed in the absence of sulfate. In summary, our results show that 

Aarhus Bay sediment contains sulfate reducers, syntrophs and methanogens throughout the 

sediment, suggesting teamwork in the conversion of propionate.  

  



Propionate conversion under sulfidogenic and methanogenic conditions 

87 
 

4.1 Introduction  

The mineralization of organic matter in anoxic marine sediments is a sequential process, in which 

several intermediates are produced by fermentative bacteria. These intermediates, including 

acetate, propionate, butyrate, are eventually degraded to carbon dioxide and/or methane. Sulfate 

reduction and methanogenesis are important terminal electron-accepting processes and controlled 

mainly by the amount of available sulfate (Jørgensen, 1982; Reeburgh and Heggie, 1977; Winfrey 

and Zeikus, 1977). In marine sediments, sulfate reduction is considered to be dominant over 

methanogenesis as the primary terminal electron accepting step in the degradation of organic 

matter (Kristjansson et al., 1982; Lovley et al., 1982). Propionate is one of the important 

intermediates in anaerobic degradation process and can be oxidized by several marine sulfate-

reducing bacteria either completely to carbon dioxide or incompletely to acetate (Table 1). These 

SRB belong to the families Desulfobacteraceae, Desulfobulbaceae, Syntrophobacteraceae and 

Peptococcaceae (Rabus et al., 2013; Kuever, 2014b, 2014c; Leloup et al., 2007 and 2009). Incomplete-

oxidizing sulfate reducers, such as Desulfobulbus spp., convert propionate to acetate and carbon 

dioxide (Kuever, 2014c). The end-product acetate is subsequently consumed by other sulfate 

reducers such as Desulfobacter spp. in the presence of sulfate.  

In the absence of sulfate, complete propionate conversion to CH4 takes place and is only 

possible by cooperation of syntrophic bacteria with methanogens (Schink and Stams, 2013; Stams, 

1994) (Table 1). Syntrophic fatty acid metabolism is the rate limiting step of organic carbon 

degradation, but contributes to the carbon flux significantly in methanogenic environments 

(Schink, 1997; Schink and Stams, 2013). Despite previous studies, claiming that sulfate reduction 

and methanogenesis are temporally or spatially separated depending on sulfate concentration 

(Cappenberg, 1974; Mountfort and Asher, 1979), both processes co-occur in anoxic marine 

environments in the presence of high organic carbon (Oremland and Taylor, 1978; Oremland et al., 

1982; Senior et al., 1982). Therefore, an excessive amount of available organic carbon may lead 

methanogenic archaea inhabit the habitats rich in sulfate and contribute to organic matter 

degradation together with syntrophic bacteria.  

The relative distribution of sulfate-reducing bacteria in Black Sea and Aarhus Bay sediments 

shows that SRB are present in the methane zone with a similar high abundance as in the sulfate 

zone (Leloup et al., 2007 and 2009). It is speculated that SRB and methanogens cooperate for the 

mineralization of organic matter in Black Sea and Aarhus Bay sediments. Similarly, Kendall and 

colleagues (2006) described marine propionate- and butyrate-degrading syntrophs and suggested 
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that syntrophic associations have a great role in the methane reserves in marine sediments. Krylova 

and Conrad (1998) demonstrated that there are yet uncultured propionate-converting bacteria 

which act either as SRB or syntrophs depending on sulfate availability. Therefore, it is crucial to 

understand how sulfate-reducers, syntrophs and methanogens interact during propionate 

conversion under high and low sulfate conditions in marine sediments. 

 

Table 1. Overview of reactions examined in this study. ΔG values were obtained from Thauer et al., 
1977. 

 

 

In this study, we aimed to identify the propionate conversion process and the responsible 

microorganisms in the sulfate, sulfate-methane transition and methane zones of Aarhus Bay, 

Denmark. We set up batch slurries with and without sulfate additions and incubated them at 10°C 

and 25°C. In this way, we examined the effect of sulfate concentration, sediment depth and 

temperature on the ultimate enriched bacterial and archaeal community.  

 

4.2 Materials and methods 

The materials and methods section of this chapter is exactly the same as the materials and 

methods section of the chapter 3. Therefore, please consult Chapter 3. 

 

No. Equation ∆G°' (kJ/reaction)*

Acetogenic reactions

1 Propionate– + 3 H2O  Acetate– + HCO3
- + 3 H2 + H+ +76.1

Sulfate-reducing reactions

2 Propionate– + 0.75 SO4
2–  Acetate– + 0.75 HS– + HCO3

– + 0.25 H+ –37.8

3 4 H2 + SO4
2– + H+  HS– + 4 H2O –151.9

4 Acetate– + SO4
2–  2 HCO3

– + HS– –47.6

Methanogenic reactions

5 4 H2 + HCO3
– + H+  CH4 + 3 H2O –135.6

6 Acetate– + H2O  CH4 + HCO3
– –31.0

Syntrophic propionate conversion

1+5 Propionate– + 0.75 H2O  Acetate– + 0.75 CH4 + 0.25 HCO3
– + 0.25 H+ –25.6

Complete propionate conversion by SRB

2+4 Propionate– + 1.75 SO4
2–  1.75 HS–+ 3 HCO3

– + 0.25 H+ –85.4

Complete propionate conversion by syntrophs and methanogens

1+5+6 Propionate– + 1.75 H2O  1.75 CH4 + 1.25 HCO3
– + 0.25 H+ –56.6
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4.3 Results 

4.3.1 Sampling site geochemistry 

The geochemistry of the Aarhus Bay sediment was revealed by pore water analysis and 

biogeochemical zones were defined as sulfate zone between 0 cm and 120 cm, sulfate-methane 

transition zone (SMTZ) between 120 cm and 170 cm and methane zone between 170 cm and 300 cm 

(Fig S1).       

 

4.3.2 Sediment slurry enrichments 

4.3.2.1 Sulfate zone sediment slurries 

Sulfate zone sediment slurries were incubated for 514 days at 25°C and 10°C. In sulfate-amended 

slurries, propionate conversion started immediately. Acetate and sulfide steadily increased as a 

result of repeated additions of propionate and sulfate. Slight changes were detected in acetate 

concentration between days 220 and 430 at 25°C, which is followed by a decrease. After propionate 

addition, acetate concentration increased again in response to propionate conversion (Fig 1A). In 

contrast, propionate conversion in 10°C slurries started after 50 days of incubation and was slower 

along the incubation period (Fig 1B). Several additions of propionate and sulfate yielded acetate and 

sulfide. Methane formation in sulfidogenic slurries was observed after 309 days at 25°C (Fig 1A), 

while no methane was detected in slurries incubated at 10°C (Fig 1B) throughout the study.  

In sulfate-free sediment slurries, ~1 mM sulfate was detected at the beginning of the 

incubation, which originated from the sediment (Fig 1C, 1D). In the first 50 days of incubation at 

25°C, conversion of propionate was coupled to sulfate reduction (Fig 1C). Several feeds of propionate 

led to the formation of methane and acetate until day 238. After that day, the acetate concentration 

fluctuated. Propionate conversion at 10°C was slow. Trace amounts of sulfate were depleted in 70 

days and methane formation started after 260 days of incubation (Fig 1D). The total methane 

produced in 10°C slurries was half the amount of methane that was produced in 25°C slurries in the 

end of the experiment.   
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Figure 1. Changes in propionate, sulfate, acetate, sulfide and methane concentrations during 514 
days of incubation in sediment slurry enrichments constituted of sulfate zone sediment (A) Slurry 
P4, with 20mM sulfate addition at 25°C, (B) Slurry P8, with 20mM sulfate addition at 10°C, (C) 
Slurry P1, without sulfate addition at 25°C, (D) Slurry P6, without sulfate addition at 10°C.  Arrows 
denote the time points for the additions of sulfate (red) and propionate (black).  
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4.3.2.2 Sulfate-methane transition zone sediment slurries 

SMTZ sediments were treated with low (3 mM) and high (20 mM) concentrations of sulfate for 571 

days at 25°C and 10°C. Several re-feeds of propionate and sulfate were performed over the course of 

the experiment (Fig 2).  

      

Figure 2. Changes in propionate, sulfate, acetate, sulfide and methane concentrations during 571 
days of incubation in sediment slurry enrichments constituted of sulfate-methane transition zone 
sediment (A) Slurry P3, with 20mM sulfate addition at 25°C, (B) Slurry P7, with 20mM sulfate 
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addition at 10°C (C) Slurry P2, with 3mM sulfate addition at 25°C, (D) Slurry P5, with 3mM sulfate 
addition at 10°C. Arrows denote the time points for the additions of sulfate (red) and propionate 
(black). 
 

In high sulfate treatments, the amount of consumed propionate was similar at both 

temperatures (Fig 2A, 2B). Propionate conversion coupled to sulfate reduction occurred and 

consequently the sulfide concentration increased. Acetate accumulated slowly in 25°C slurries (Fig 

2A) whereas a steady increase in acetate was observed in 10°C slurries (Fig 2B). Methane in 25°C 

slurries was first observed on day 220, slightly increased until day 523, and a sudden rise was 

measured between days 523 and 571. On the other hand, methane formation in 10°C slurries was 

detected on day 359 and reached to 17 µmol/bottle by the end of the experiment which was 20 times 

less than the methane that was produced in 25°C slurries.  

The concentrations of propionate consumed and acetate accumulated in low sulfate 

amended slurries were two times higher at 25°C (Fig 2C) as compared to the slurries incubated at 

10°C (Fig 2D). Methane formation started on day 85 at 25°C, gradually increased and reached to a 

concentration which was more than five times higher than that was measured in 10°C slurries.  

 

4.3.2.3 Methane zone sediment slurries 

The fastest propionate conversion in the methane zone slurries occurred under sulfate-amended 

conditions at 25°C (Fig 3A). Propionate conversion via sulfate reduction started in the beginning of 

the experiment and continued during the course of the study. Methane formation was observed on 

day 294 and boosted after day 414. However, the conversion of propionate at 10°C was slow and no 

methane production occurred during the experiment (Fig 3B).  

The highest methane concentration was observed in the sulfate-free slurry at 25°C (Fig 3C). 

Approximately 1.1 mM sulfate was measured in the slurry at the beginning of the experiment, and 

propionate conversion coupled to sulfate reduction occurred within the first 50 days. The depletion 

of sulfate in the slurry was followed by a lag phase where almost no change was observed in 

propionate and acetate levels. After day 107, propionate conversion started rapidly with 

concomitant acetate and methane production. Acetate accumulated until day 259 and then was 

almost completely consumed. Propionate conversion in methanogenic slurries at 10°C occurred via 

sulfate reduction until the trace amount of sulfate had depleted (Fig 3D). Thereafter a lag phase of 

226 days was observed which was followed by rapid propionate conversion accompanied by steep 
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increase in acetate and methane. In total, 9 times less methane was produced at 10°C as compared 

to 25°C in sulfate-free slurries.  

      

Figure 3. Changes in propionate, sulfate, acetate, sulfide and methane concentrations during 570 
days of incubation in sediment slurry enrichments constituted of methane zone sediment (A) Slurry 
P6, with 20mM sulfate addition at 25°C, (B) Slurry P8, with 20mM sulfate addition at 10°C (C) Slurry 
P3, without sulfate addition at 25°C, (D) Slurry P1, without sulfate addition at 10°C. Arrows denote 
the time points for the additions of sulfate (red) and propionate (black). 
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4.3.3 Distribution of bacterial and archaeal community through PCR-DGGE 
analysis 

Changes in the community structure over time in all slurries were visualized by denaturing gradient 

gel electrophoresis (DGGE). Bacterial DGGE gels harboured more bands in general compared to 

the archaeal gels. Some bands were present at all times with the same intensity, some of them 

disappeared or became fainter and some appeared and get intensified in time; revealing a dynamic 

bacterial community. In archaeal DGGE gels, most of the bands kept their position throughout the 

incubation period. Some bands became fainted while new bands appeared in methanogenic slurries 

especially after 100 days of incubation and thickened (data not shown). These banding patterns 

were organized in dendrograms by UPGMA clustering analysis (Fig S2, S3).  

Clustering analysis of bacterial DGGE banding patterns gave separate clusters for each 

depth zone (i.e. SZ, SMTZ, MZ) except for the sample SZ P1 and SZ P8 which differed from all other 

samples (Fig S2). Methane zone slurries formed 4 sub-clusters; each slurry under different 

incubation condition formed a separate sub-cluster. Sulfate zone slurries formed 2 sub-clusters for 

each slurry, one representing the earlier incubation time samples and the other representing the 

later incubation time samples. SMTZ slurries formed two main sub-clusters, one representing the 

25°C and the other 10°C slurries. 

For the Archaeal communities, slurries belonging to each geochemical zone were grouped 

as one cluster similar to what was observed for Bacteria, except for the sub-clusters of three slurries 

belonging to the methane zone, MZ P3, P6, P8 (Fig S3). SMTZ slurries grouped based on incubation 

temperature, and one sub-cluster representing the samples of the last sampling time of each slurry 

differed from all other SMTZ samples. On the other hand, SZ slurries clustered depending on the 

sampling time. The slurries formed different sub-clusters as the community in the slurries differed 

by the enrichment of some metabolic groups.      

 

4.3.4 Bacterial community composition after long-term incubation 

PCR amplified partial 16S rRNA gene fragments obtained from the last sampling time of all slurries 

were sequenced. After filtering and trimming, between 1888 and 27196 high quality reads were 

found per sample (Table S2) and clustered into 64–131 operational taxonomic units (OTUs) per 

sample.  
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OTUs classified into 33 phyla, with 95% of the OTUs belonging to Proteobacteria (61.3%), 

Firmicutes (17.5%), Chloroflexi (9.8%), Bacteroidetes (3.4%), Spirochaetes (2.5%) and Candidate 

division OP9 (1%). The Desulfobacteraceae and Desulfobulbaceae were the two dominant families 

in the phylum Proteobacteria, having 38.6% and 29.2% of the reads, respectively (Fig S4).The 

Firmicutes phylum was dominated by the Peptococcaceae family comprising 86.8% of the reads. 

Similarly, the Anaerolinaceae family dominated the Chloroflexi phylum containing 78.1% of the 

reads (Fig S4). Above mentioned four families were the most dominant in all samples. Despite the 

overall dominance of these families, a high degree of variation was observed in their relative 

abundances between different slurries.   

The most abundant OTUs in different slurries belonged to the genera Cryptanaerobacter 

(76%) in the phylum Firmicutes, Desulfobulbus (59%), Desulfosarcina (52%), SEEP-SRB1 (45%) and 

Desulforhopalus (44%) in the phylum Proteobacteria (Fig 4). Additionally, the most abundant 

OTUs (85%) in one slurry (SZ P6) belonged to the family Desulfobacteraceae which could not be 

assigned to any genus (Fig 4).  
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Figure 4. The heatmap depicts the relative percentage of the most common (>5 %) bacterial 16S 
rRNA gene sequences across the 12 slurries fed with propionate.The heatmap colors represent the 
relative percentage of the bacterial assignments within each sample. Colors shifted towards dark 
green indicate higher abundance. Taxonomy is shown at the genus level (unless unclassified) above 
and at the phylum level below the heatmap. 
 

The microbial community was analysed using redundancy analysis (RDA) (Fig 5). The 

bacterial community composition in RDA was plotted on the basis of the relative read abundance 

of OTUs in each sample. The highest read abundance, in decreasing order, belonged to the bacterial 

orders Desulfobacterales, Clostridiales and Anaerolineales with OTU numbers 26, 19 and 15, 

respectively (Fig 5).  
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Figure 5. Redundancy analysis triplot showing relationship between bacterial community 
composition at order level and environmental parameters. Environmental variables are given as red 
vectors. Blue vectors represent bacterial orders. Orders were included with a relative abundance of 
at least 1% in any sample. Vector length gives the variance that can be explained by a particular 
environmental parameter. Perpendicular distance reflects association, with smaller distances 
indicating a larger association. Temp: Temperature, Propiont: Propionate. 

OTU numbers and corresponding taxa are as followed: (1)Bacteria-Other; (2)Actinobacteria-OPB41; 
(3)Bacteroidetes; (4)Bacteroidetes-BD2-2; (5)Bacteroidetes-Bacteroidales; (6)Bacteroidetes-
Flavobacteriales; (7)Bacteroidetes-SB-1; (8)Bacteroidetes-SB-5; (9)Bacteroidetes-
Sphingobacteriales; (10)Bacteroidetes-VC2.1.Bac22; (11)Bacteroidetes-vadinHA17; (12)Bacteroidetes-
vadinHA17-uncultured bacterium; (13)Candidate division OP9; (14)Chloroflexi-Anaerolineae; 
(15)Chloroflexi-Anaerolineales; (16)Chloroflexi-GIF9; (17)Cyanobacteria-Chloroplast; 
(18)Elusimicrobia-Lineage_IV; (19)Firmicutes-Clostridiales; (20)Nitrospirae-Nitrospirales; 
(21)Planctomycetes-Planctomycetales; (22)Proteobacteria-Rhizobiales; (23)Proteobacteria-
Burkholderiales; (24)Proteobacteria-Deltaproteobacteria; (25)Proteobacteria-Desulfarculales; 
(26)Proteobacteria-Desulfobacterales; (27)Proteobacteria-Desulfovibrionales; (28)Proteobacteria-
Desulfuromonadales; (29)Proteobacteria-Sva0485; (30)Proteobacteria-Campylobacterales; 
(31)Proteobacteria-Gammaproteobacteria; (32)Proteobacteria-Alteromonadales; 
(33)Proteobacteria-Chromatiales; (34)Proteobacteria-Thiotrichales; (35)RF3; (36)RF3-uncultured 
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bacterium; (37)Spirochaetes-LK-44f; (38)Spirochaetes-PBS-18; (39)Spirochaetes-Spirochaetaceae; 
(40)TM6; (41)Tenericutes-Acholeplasmatales. 

 

The OTUs affiliating with the order Desulfobacterales were associated with the slurries 

incubated at 10°C in which they were dominant. These slurries showed close clustering towards the 

bottom left part of the RDA triplot and they were negatively correlated with the temperature. The 

second most abundant order, Clostridiales, showed strong association with methane and was 

plotted between the slurries SZP1, SMTZP2 and MZP3 in which the highest methane concentration 

was measured. These three slurries were incubated at 25°C and without or low sulfate which was 

supported by a negative association to sulfate and a positive association to temperature. Another 

abundant order, Anaerolineales, associated with high sulfate and high temperature conditions 

clustering in the upper right portion of the graph between temperature and sulfate, adjacent to the 

slurries SZP4, MZP6, SMTZP3 incubated under these conditions (Fig 5, S4). 

 

4.3.5 Archaeal community composition and structure 

PCR amplified partial 16S rRNA gene fragments obtained from the slurries on the last sampling day 

were sequenced. After filtering and trimming, between 5547 and 108810 high quality reads were 

found per sample.  

The highest percentage of 16S rRNA reads for Archaea clustered within the families 

Methanomicrobiaceae (39.8%), an unclassified Methanomicrobiales clone (EJ-E01) (21.4%) 

belonging to Methanomicrobiales, Marine Benthic Group D (MBG-D) and DHVEG-1 (10.7%), 

Methanosarcinaceae (10.4%) and unclassified Methanomicrobiales (9.7%) (Fig S6). Methanoculleus 

and Methanogenium from the family Methanomicrobiaceae dominated different slurries (Fig 6). 

The unclassified Methanomicrobiales clone (EJ-E01) dominated three slurries where the relative 

abundances of Methanoculleus and Methanogenium were low.  Methanosarcina was observed to be 

the dominant genus being present in four slurries with read percentages ranging between 14-30%, 

whereas Methanoccoides had less reads in seven slurries. Marine Benthic Group D (MBG-D) and 

DHVEG-1 from the order Thermoplasmatales dominated two methane zone slurries containing 

sulfate with read percentages 45% and 47% (Fig 6). 
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Figure 6. The heatmap depicts the relative abundance of the most common (>5 %) archaeal 16S 
rRNA gene sequences (unless unclassified) across the 12 slurries fed with propionate.The heatmap 
colors represent the relative percentage of the archaeal assignments within each sample. Colors 
shifted towards bright blue indicate higher abundance.  

 

Archaeal RDA triplots showed that the slurries originating from the same biogeochemical 

zone were not clustered closely which indicated that the community composition changed upon 

incubation (Fig 7). A strong association was observed between methane and the families 

Methanomicrobiaceae, unclassified Methanomicrobiales and Methanosarcinaceae, and negative 

association between sulfate and these taxa. The slurries SZP6, MZP1, SMTZP2 and SMTZP5, which 

were dominated with Methanomicrobiaceae, showed close clustering (Fig 7, S6). The other two 

slurries, SZP1 and MZP3, were strongly associated with methane and showed close association with 

other two methanogenic families Methanosarcinaceae and unclassified Methanomicrobiales. The 

unclassified Methanomicrobiales clone (EJ-E01) was prevalent in the slurries containing sulfate and 

was plotted between the sulfidogenic slurries SMTZP3, SZP4 and MZP6 (Fig 7, Fig S6). MBG-D and 
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DHVEG-1 showed a close relation to sulfate and was plotted close to the sulfidogenic slurries MZP6 

and MZP8 in which they were dominantly present. 

      

Figure 7. Redundancy Analysis Triplot showing relationship between Archaeal community 
composition at family level and environmental parameters. Environmental variables are given as 
red vectors. Blue vectors represent Archaeal families. Families were included with a relative 
abundance of at least 1% in any sample. Vector length gives the variance that can be explained by a 
particular environmental parameter. Perpendicular distance reflects association, with smaller 
distances indicating a larger association. Full names of the phylotypes in the plot are as followed: 
M.sarcinanaceae: Methanosarcinaceae; M.microbiales: Methanomicrobiales; M.microbiaceae: 
Methanomicrobiaceae; Halobac: Halobacteriales; Thermop: Thermoplasmatales. 
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4.3.6 Correlation within the microbial community and between the microbial 
community and environmental parameters 

Correlation analysis of the sequencing data revealed both positive and negative relations between 

34 bacterial orders that were present in different slurries (Fig S5). Clostridiales had a strong negative 

correlation to Desulfobacterales order (P < 0.05) and to sulfate and sulfide, however showed a 

positive correlation to temperature and methane. An overall negative correlation was observed 

between Desulfobacterales and the orders Clostridiales (P < 0.05), Anaerolineales (P < 0.05), 

candidate division OP9 (P < 0.05), and the incubation temperature (P < 0.01). Strong positive 

correlations were observed between Anaerolineales and temperature (P < 0.01), VFA (P < 0.01), 

propionate (P < 0.01). Unclassified Deltaproteobacteria showed positive correlation to the orders 

SB-1 (P < 0.01), Flavobacteriales, Anaerolineales, candidate division OP9 and to all environmental 

parameters except for methane (Fig S5).  

The hydrogenotrophic methanogenic family Methanomicrobiaceae and unclassified 

Methanomicrobiales order showed similar trend in their correlation to other taxa and 

environmental parameters except for few differences (Fig S7). Methanomicrobiaceae family was the 

only family showing positive correlation to the ANME-1b and strong positive correlation to methane 

production (P < 0.05). On the other hand, unclassified Methanomicrobiales was positively 

correlated to Methanosarcinaceae. Differently from other methanogenic groups, the unclassified 

Methanomicrobiales (EJ-E01 clone) showed positive correlations to some families belonging to 

Thermoplasmata and Thaumarchaeota phyla and all environmental parameters except for methane. 

MBG-D and DHVEG-1 was positively correlated to most of the taxonomic groups and 

environmental parameters, whereas strong negative correlations were observed to methane and the 

methanogenic taxa (P < 0.05), except for the unclassified Methanomicrobiales (Fig S7). 

 

4.4 Discussion  

4.4.1 Sulfate-dependent propionate conversion 

Propionate is an important substrate for sulfate reducers in marine sediments, providing about 10% 

of the reducing equivalents for sulfate reduction (Sørensen et al., 1981). The propionate conversions 

in sulfate amended SZ and MZ slurries at 25°C were similar in terms of immediate start and 

conversion rate of propionate (Fig 1A, 3A). The stoichiometry of the propionate conversion in MZ 

slurries was determined as CH3CH2COO- + 0.9 SO4
2-  CH3COO- + 0.8 HS-, and this pointed to 
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incomplete propionate oxidation (Table 1, reaction 2). On the other hand, the ratio of reduced 

sulfate to the consumed propionate in SZ slurry (CH3CH2COO- + 1.6 SO4
2-  CH3COO- + 1.5 HS-) is 

close to the theoretical values of complete propionate conversion (Table 1, reactions 2+4) (Table 

S1). Especially between the days 220 and 430, propionate was completely converted coupled to 

sulfate reduction and no net acetate increase was observed (Fig 1A). The high concentration of 

acetate detected at the end of the incubation period might have originated from the metabolism of 

fermentative bacteria. Yet, simultaneous increase in acetate and methane between the days 457 and 

514 suggests syntrophic conversion of propionate by fermentative bacteria and hydrogenotrophic 

methanogenic archaea, in addition to the ongoing sulfate-dependent propionate conversion (Fig 

1A). It was striking to detect rapidly increasing methane in MZ as well as SZ slurry after 414 and 309 

days of incubation, respectively (Fig 1A, 3A). The late methane production might be linked to the 

sulfide inhibition of methanogens which was reported in previous studies (Pender et al., 2004; 

O’Flaherty et al., 1998; Shin et al., 1995). Despite high sulfidogenic activity, methanogenic archaea 

might have adapted to the slurry conditions and be involved in the consumption of conversion 

products.  

The ratio of consumed propionate and sulfate in high-sulfate amended SMTZ slurry at 25°C 

(CH3CH2COO- + 1.3 SO4
2-  0.3 CH3COO- + 1.2 HS-) points to the combination of incomplete and 

complete propionate oxidation via sulfate reduction. The acetate that was formed as primary 

product from incomplete conversion was further oxidized by aceticlastic SRB (Table S1, Fig 2A). 

Propionate in the low sulfate-amended slurry at 25°C was converted by both sulfate reducers and 

syntrophs in cooperation with methanogens (CH3CH2COO- + 0.3 SO4
2-  1.1 CH3COO- + 0.3 HS- + 

0.5 CH4) (Table S1, Fig 2C). The low levels of sulfate were not sufficient to support complete 

propionate conversion through sulfate reduction and consequently syntrophic propionate-

degrading communities became active (Muyzer and Stams, 2008). 

 

4.4.2 Sulfate-independent propionate conversion 

Propionate conversion in sulfate-free SZ and MZ slurries at 25°C started with the reduction of 

sulfate originating from the sediment (Fig 1C, 3C). This conversion indicated the existence of 

metabolically active sulfate-reducing microorganisms in sulfate zone as well as in methane zone. 

Previous studies reported the presence of active SRB with similar cell numbers in the upper and 

lower parts of the coastal marine sediments of Limfjorden and Aarhus Bay, Denmark (Jørgensen, 

1978; Thomsen et al., 2001; Leloup et al., 2009) and deep-sea sediment (Leloup et al., 2007). The 
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high abundance of SRB in sulfate-depleted sediments might be due to the acetogenic and 

fermentative growth characteristics of some SRB in the absence of sulfate (Plugge et al., 2011; 

Muyzer and Stams, 2008). The fast propionate conversion with concomitant acetate and methane 

production in both SZ and MZ slurries suggests the activity of syntrophic propionate-converting 

consortia (Fig 1C, 3C). Under methanogenic conditions, the degradation of propionate to acetate, 

CO2, and 3H2 is highly endergonic process (ΔG°`=76.1 kJ/mol) (Table 1), but it can be accomplished 

by syntrophic cooperation of propionate-oxidizing bacteria and H2- or formate-consuming 

methanogens (Boone and Bryant, 1980; McInerney et al., 2008). Acetate rapidly accumulated in the 

slurries as a result of propionate conversion, and was utilized only after propionate became depleted 

(Fig 1C, 3C). Similar conversion dynamics were reported for both methanogenic (Viggi et al., 2014; 

Stams et al., 1992) and sulfidogenic batch cultures (Laanbroek and Pfennig, 1981). Apparently, 

acetoclastic methanogens contributed to the conversion process by consuming accumulated 

acetate after propionate amount became low in both slurries (Fig 1C, 3C). Archaeal DGGE profiles 

of SZ slurry reflected appearance of new bands on day 138 and 358 (data not shown) after methane 

production and acetate consumption started, respectively (Fig 1C). Clustering analysis placed these 

two time samples in different sub-clusters indicating the change in archaeal community structure 

along the incubation (Fig S3). In MZ slurry, acetate was consumed down to near zero value, showing 

efficient cooperation of syntrophic bacteria, hydrogenotrophic and acetoclastic methanogenic 

archaea.  

 

4.4.3 The effect of temperature on propionate conversion  

Low incubation temperature have an impact on propionate conversion both in the presence and 

absence of sulfate in Aarhus Bay sediments. Propionate conversion at 10°C occurred overall slower 

and methane was not detected in sulfate amended SZ and MZ slurries (Fig 1B, 3B). More acetate 

accumulated in high-sulfate SMTZ slurry at 10°C as compared to its replicate at 25°C. This might be 

linked to the low activity of acetoclastic microorganisms. Previous experiments performed with 

marine sediments in sulfate-amended slurries showed that the rate of sulfate reduction decreased 

and as a result, organic acid concentration increased at temperatures below 25°C (Weston and Joye, 

2005).  

In sulfate-free MZ slurry at 10°C, a long lag phase was observed between the consumption of 

trace amount of sulfate and the start of propionate conversion (Fig 3D). It is known that 

microorganisms in subsurface environments have low metabolic and growth rate, and can persist 
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in a dormant state (Jørgensen and Marshall, 2016). On the other hand, the distance between 

hydrogen-producing and hydrogen-consuming microorganisms during syntrophic degradation of 

a compound is important (Stams, 1994). Grotenhuis et al. (1991) observed µm range between 

propionate-oxidizing bacteria and methanogens in propionate-adapted methanogenic granules. 

Therefore, the slow growth and the establishment of the microbial clusters might have led to a late 

start of the syntrophic conversion of propionate at low temperature.  

 

4.4.4 Bacteria enriched in sulfate-amended slurries 

The most abundant sulfate-reducing genera in sulfate-amended SZ and MZ slurries at 25°C were 

Desulfosarcina belonging to Desulfobacteraceae and Desulfobulbus belonging to Desulfobulbaceae 

(Fig 4, 4S). The Desulfobacteraceae family mainly consist of sulfate reducers that completely oxidize 

organic substrates (Kuever, 2014b) and is commonly found as the dominant SRB in anoxic marine 

sediments (Dhillon et al. 2003; Llobet-Brossa et al. 2002; Leloup et al. 2007 and 2009; Jørgensen and 

Bak, 1991). Leloup et al. (2009) reported that the upper sulfate-rich sediment of Station M1, Aarhus 

Bay was dominated by Desulfosarcina species. Similar findings on the predominance of 

Desulfosarcina-like dsrAB sequences were observed at Station 6 in Aarhus Bay (Sahm et al., 1999), 

in Kysing Fjord, Denmark, (Thomsen et al., 2001) and Mariager Fjord, Denmark (Wagner et al., 

2005). Desulfosarcina species are able to use propionate as electron donor (Widdel, 1980). Thus 

they participated in propionate conversion in sulfate-amended sediment slurry enrichments at 

25°C. 

Sulfate-amended slurries at 10°C were dominated by Desulfobulbus and Desulforhopalus 

(Fig 4, 4S). The relative abundance of Desulfobulbus decreased, whereas Desulforhopalus increased 

with increasing depth. Low temperature SMTZ slurries also contained Desulfofaba, belonging to 

Desulfobacteraceae. Desulfofaba species are known as obligately psychrophilic marine sulfate-

reducers capable of propionate oxidation (Kuever, 2014b). Most members of Desulfobulbaceae are 

incomplete oxidizers and specialized in the oxidation of organic acids, including propionate, to 

acetate (Kuever, 2014c; Muyzer and Stams; 2008; Devereux et al., 1989; Widdel and Bak, 1992). This 

is in agreement with the observed acetate accumulation in the Desulfobulbaceae containing 

slurries. The higher relative abundance of Desulfobulbaceae and some Desulfobacteraceae members 

in low temperature slurries is in line with the statistical analysis showing the negative correlation 

between the order Desulfobacterales and the incubation temperature (Fig S5). Apparently, the 
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Desulfobulbaceae members had the competitive advantage and dominated over Desulfobacteraceae 

in low temperature slurries.  

All sulfidogenic slurries incubated at 25°C contained uncultured Anaerolineaceae belonging 

to the phylum Chloroflexi (Fig 4, S4). The cultured representatives of this lineage are known as 

filamentous, slow-growing and strictly anaerobic chemoorganotrophs decomposing carbohydrates 

and amino acids (Yamada and Sekiguchi, 2009). It was reported that Anaerolineaceae members act 

as secondary degraders and degrade dead biomass together with acetate and H2-consuming 

methanogens (Kleinsteuber et al., 2012). Therefore, the uncultured Anaerolineaceae in our study 

might have formed a syntrophic relationship with hydrogenotrophic and/or acetoclastic 

methanogens and took part in the degradation of organic content and/or dead biomass.  

 

4.4.5 Bacteria enriched in sulfate-free slurries 

Sulfate-free and low-sulfate amended slurries composed of sediment from each biogeochemical 

zone and incubated at 25°C are dominated by Cryptanaerobacter and also contain Pelotomaculum 

both of which belong to the family Peptococcaceae (Fig 4, Fig S4). Currently known propionate-

oxidizing syntrophic species of the genus Pelotomaculum are P. schinkii, P. thermopropionicum, and 

P. propionicicum (de Bok et al., 2005; Imachi et al., 2002, 2007). The Pelotomaculum enriched in our 

study apparently takes part in propionate conversion. On the other hand, there is only one cultured 

species of the genus Cryptanaerobacter, namely C. phenolicus, and it transforms phenol and 4-

hydroxybenzoate (4-OHB) into benzoate (Juteau et al., 2005). Its closest cultured relative is 

Pelotomaculum thermopropionicum. Propionate utilization in the presence of a hydrogenotrophic 

methanogen by this genus has not been reported. We hypothesize that, Cryptanaerobacter might 

have the capability to convert propionate in syntrophy with hydrogenotrophic methanogens. The 

idea behind this hypothesis is based on ; i) the isolation of C. phenolicus from a methanogenic 

consortium, ii) the syntrophic lifestyle of its closest cultured relatives and iii) the presence of 

propionate as a sole carbon source in the slurries. Additionally, the hypothesis is supported with 

the statistical analysis showing positive correlation of the order Clostridiales with methane and 

temperature (Fig S5).  
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4.4.6 Sulfate-reducing bacteria enriched in sulfate-free slurries 

Bacterial community analysis revealed the dominance of unclassified Desulfobacteraceae 

members constituting 85% of the total reads in low-temperature sulfate-free SZ slurry (Fig 4, S4). 

Although it was surprising to observe a sulfate-reducing family representing the substantial part of 

the reads in sulfate-free slurry, there are non-sulfate reducing members of this family, such as the 

butyrate-utilizing marine syntroph Algorimarina butyrica (Kendall et al., 2006). In addition, Ulrich 

and Edwards (2003) enriched benzene-degrading cultures which were dominated by a phylotype 

affiliated to Desulfobacteraceae, and which were capable of switching from sulfate-reducing to 

methanogenic life style. Raskin et al. (1996) also reported the presence of Desulfovibrio spp. and 

Desulfobacterium spp. in a methanogenic reactor and explained this occurrence by their ability to 

function as proton-reducing acetogens and/or fermenters. These results illustrate the significance 

of metabolic flexibility of microorganism under changing conditions such as temperature, electron 

acceptor availability, the presence/absence of partner organisms. 

Similar to the above mentioned SZ slurry, sulfate-free MZ slurry incubated at 10°C contained 

high numbers of Desulfobacteraceae-related reads (Fig 4). These reads were assigned as SEEP-SRB1, 

defining Desulfosarcina/Desulfococcus branch of Desulfobacteraceae. SEEP-SRB1 clade has been 

shown to live together with ANME-2 and ANME-1 in a syntrophic consortium in AOM-mediating 

environments and enrichments (Harrison et al., 2009; Vigneron et al., 2013; Timmers et al., 2015). 

The members of this group have been reported to have low sequence similarity to the cultivated 

species which points to new species or genera with unknown physiological properties (Knittel et 

al., 2003). As this slurry contains ANME-1b related reads, SEEP-SRB1 might have formed consortia 

with this archaeal cluster and involved in anaerobic oxidation of methane (Fig 3D, Fig 6).  

 

4.4.7 Archaea involved in propionate conversion 

Archaeal community analyses revealed the dominance of the order Methanomicrobiales in almost 

all slurries. The members of Methanomicrobiales utilize H2+CO2 and most members also use 

formate as substrate for methanogenesis (Garcia et al., 2006). This suggests that H2+CO2 and/or 

formate was the main substrate used by methanogenic Archaea in the slurries (Fig 6, S6). 

Hydrogenotrophic methanogenesis has been detected in near-surface marine sediments (Parkes et 

al., 2007; Webster et al., 2009; Sørensen et al. 1981; Blair and Carter 1992). Different genera or groups 

of Methanomicrobiales increased in relative abundance in the slurries based on incubation 
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temperature and sulfate availability. Methanoculleus was observed in the low sulfate-amended 

SMTZ and sulfate-free MZ slurries incubated at 25°C, whereas Methanogenium comprised most of 

the sequences in SZ, SMTZ and MZ slurries incubated at 10°C without or with low sulfate 

amendment (Fig 6). The optimum growth temperature of Methanoculleus ranges between 25°C and 

60°C, whereas Methanogenium species grow best between 15-35°C. Therefore, temperature might 

have been a determining factor for the dominance of different genera. On the other hand, high 

sulfate-amended slurries incubated at 25°C contained predominantly unclassified 

Methanomicrobiales sequences, termed as EJ-E01 (Fig 6, Fig S6). It is obvious that the increased 

relative abundance of this unclassified hydrogenotrophic methanogenic group was closely related 

to the presence of sulfate, as was approved by its positive correlation with sulfate and temperature 

(Fig S7). Hydrogenotrophic methanogenesis in high sulfate containing sediments has also 

previously been detected in marine sediments (Kendall and Boone, 2006a; Parkes et al., 1990).  

Methanosarcina belonging to the Methanosarcinaceae that utilize acetate, methylated 

compounds and H2 + CO2 detected (Kendall and Boone, 2006b). Since Methanosarcina was 

detected in sulfate-free SZ and MZ slurries, it constituted close relationships with incomplete 

propionate converters, and carried out acetate consumption (Fig 6, Fig S6). Methanococcoides 

(ANME-3 Archaea) increased its relative abundance in the SMTZ and MZ slurries (Fig 6). Lösekann 

et al. (2007) reported that ANME-3 live syntrophically with Desulfobulbus spp., which were present 

in the slurries that the relative abundance of Methanococcoides increased (Fig 4). The other 

anaerobic methanotrophic group that increased its relative abundance was ANME-1 (Fig 6). Most 

probably, anaerobic oxidation of methane occurred not only in the slurries comprised of SMTZ 

sediment, which was considered as the most common ANME habitat on earth (Thomsen et al., 

2001; Niemann et al., 2006; Parkes et al., 2007), but also in SZ and MZ sediment slurries. 

Non-methanogenic Archaea detected in the slurries included the MBG-D and DHVEG-1 

belonging to Euryarchaeota and MCG belonging to Thaumarchaeota (Fig 6). These groups were 

previously reported as dominant archaeal groups in deep subsurface sediments in addition to 

coastal marine surface sediments and that their relative abundance is independent from the major 

biogeochemical zones, indicating their diverse metabolism (Fry et al., 2008; Teske and Sørenson, 

2008; Lloyd et al., 2013; Parkes et al., 2014; Roussel et al., 2009). Webster et al. (2010) detected MCG 

and MBG-D in sulfate zone sediment slurry enrichments within the active archaeal community 

incorporating 13C-acetate. As a result, MBG-D were stimulated in acetate-amended slurries. These 

findings are in line with our observations where both of MCG and MBG-D increased in relative 
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abundances in slurries containing sulfate and their relative abundances were positively correlated 

with sulfate and acetate concentrations (Fig 6, S7).  

 

4.5 Conclusions  

In this research, we found clear changes in the bacterial and archaeal community in the long-term 

enrichment slurries depending on the presence/absence of sulfate, incubation temperature and, in 

some cases the biogeochemical zone. Propionate was converted by both sulfate-reducing and 

syntrophic communities in the presence of sulfate at all depth zones. The presence of defined 

microbial communities indicates that syntrophs are not simply out-competed by high sulfidogenic 

activity, rather they can stay in a dormant state with a low metabolic activity and take part in the 

conversion as they constitute close relationship with partner organism(s). Members of 

Desulfobacteraceae and Desulfobulbaceae were observed in sulfate-amended slurries as well as in 

sulfate-free slurries at low temperature. This indicates that changing to a syntrophic lifestyle allows 

sulfate reducers to remain in sulfate-depleted/limited environments and this explains the high 

relative abundance of SRB in deep marine sediments. The dominance of Cryptanaerobacter, 

without a known propionate-converting metabolism, in sulfate-free slurries at high temperature 

throughout the sediment brought the possibility that yet uncultured species of Cryptanaerobacter, 

in addition to Pelotomaculum sp., utilize propionate as a substrate in syntrophy with 

hydrogenotrophic methanogens. The dominant syntrophic partners belonged to the 

hydrogenotrophic methanogenic order Methanomicrobiales that enriched in all slurries with 

different representative genera and unclassified group under different incubation conditions. The 

Methanosarcina enriched only in the absence of sulfate, suggesting a potential competition with 

acetate-degrading sulfate reducers. Further cultivation studies are currently ongoing to identify the 

uncultured microorganisms involved in propionate conversion as well as to determine their 

interaction with other bacterial and archaeal groups during conversion process.  
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Supplementary data 

Table S1. The overview of all the enrichment slurries fed with propionate and the total amounts of 
the reactants consumed and products formed during the enrichment period. The enrichment 
slurries were consisted of sediment either from sulfate zone (SZ), sulfate-methane transition zone 
(SMTZ) or methane zone (MZ) and incubated at 25°C or 10°C, with 3 mM, 20 mM or without (-) 
sulfate amendments along the study. Slurries with * were presented in the propionate conversion 
graphs and used for molecular analysis. 

 
  

Sediment zone Slurry Code Treatment
Incubation 

temperature (°C)

Reactants (µmol/slurry) Products  (µmol/slurry)

Propionate Sulfate Acetate Sulfide Methane

SZ

*P1 - 25 26157 336 17905 881 37464

P2 - 25 2726 159 1183 284 0

P3 20 mM SO4
2- 25 20623 29592 19126 29062 33

*P4 20 mM SO4
2- 25 26681 42456 25677 39089 1038

P5 - 10 17190 354 13170 151 9083

*P6 - 10 18414 125 9558 207 14959

P7 20 mM SO4
2- 10 15491 13410 18442 18296 0

*P8 20 mM SO4
2- 10 17679 18592 21716 21495 0

SMTZ

P1 3 mM SO4
2- 25 27494 9343 25160 6993 29829

*P2 3 mM SO4
2- 25 32207 9330 34093 8892 15509

*P3 20 mM SO4
2- 25 27819 37381 9246 34439 339

P4 20 mM SO4
2- 25 28694 40125 11250 35587 74

*P5 3 mM SO4
2- 10 18465 6638 16996 7316 2797

P6 3 mM SO4
2- 10 17365 6839 17427 7642 2197

*P7 20 mM SO4
2- 10 26008 33660 27709 34299 17

P8 20 mM SO4
2- 10 27162 35346 26523 36833 34

MZ

*P1 - 10 7204 932 7346 552 3909

P2 - 10 3897 809 1575 673 926

*P3 - 25 27472 825 13791 563 38473

P4 - 25 34576 604 20771 509 43969

P5 20 mM SO4
2- 25 39414 33244 30817 32821 1670

*P6 20 mM SO4
2- 25 49211 45738 49783 40572 418

P7 20 mM SO4
2- 10 16577 20444 15542 15184 0

*P8 20 mM SO4
2- 10 11366 16233 11913 12356 0
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Table S2. The number of reads per sample generated by pyrosequencing for Bacteria and HiSeq 
Illumina sequencing for Archaea. 
 

 
 

Figure S1. Depth profiles of sediment pore water sulfate, sulfide and methane for Station M1, in 
Aarhus Bay, Denmark. Methane-GC1 and Methane-GC2 stands for methane concentrations 
retrieved from two different gravity corers, gravity corer 1 and 2, respectively. SZ; Sulfate zone, 
SMTZ; sulfate-methane transition zone; MZ, methane zone. 

 

Origin Slurry Bacterial reads Archaeal reads

Sulfate zone

ENV 8733 9120

P1 9903 13481

P4 12305 74345

P6 27196 67941

P8 15062 16472 

Sulfate-methane 
transition zone 

ENV 3186 18696

P2 8730 33641

P3 5653 30858

P5 5949 79958

P7 3934 21631 

Methane zone

ENV 10824 30848 

P1 14192 78094

P3 14752 108810

P6 14171 25156

P8 1888 5547
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Figure S2. Cluster analysis of bacterial DGGE 
profiles of sediment samples taken at different 
biogeochemical zones and samples of 
enrichment slurries that were taken at different 
time points. The trees were generated using Dice 
similarity coefficient and UPGMA clustering 
algorithm. SZ: Sulfate zone, SMTZ: Sulfate-
methane transition zone, MZ: Methane zone. 
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Figure S3. Cluster analysis of archaeal DGGE 
profiles of sediment samples taken at different 
biogeochemical zones and samples of 
enrichment slurries that were taken at different 
time points. The trees were generated using Dice 
similarity coefficient and UPGMA clustering 
algorithm. SZ: Sulfate zone, SMTZ: Sulfate-
methane transition zone, MZ: Methane zone. 
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Figure S4. Relative abundances of the bacterial community in all slurries and environmental samples 
at family level, normalized to 100%. Only those families that were present at an abundance >1% in 
at least one sample were included in the graph. SZ: Sulfate zone, SMTZ: Sulfate-methane transition 
zone; MZ: Methane zone. Env: Sediment sample belonging to the indicated biogeochemical zone. 
S: 20mM sulfate, 3S: 3mM sulfate is used as electron acceptor in slurries. Slurries that were not 
labeled with 'S' or '3S' were incubated without sulfate. The number of reads of each sample was 
given in brackets. 
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Figure S5. The heatmap depicts the correlation between bacterial orders present at a relative 
abundance >1% of total reads across the 12 slurry samples analyzed and experimental parameters. 
Correlations were determined by means of the two tailed Spearman's Rank Order Correlation test. 
The heatmap colors represent the relative percentage of the microbial order assignments. Square 
colors shifted towards bright green indicate strong correlation. 
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Figure S6. Relative abundances of the archaeal community in all slurries and environmental samples 
at family level, normalized to 100%. Only those families that were present at an abundance >1% in 
at least one sample were included in the graph. SZ: Sulfate zone, SMTZ: Sulfate-methane transition 
zone; MZ: Methane zone. Env: Sediment sample belonging to the indicated biogeochemical zone. 
S: 20mM sulfate, 3S: 3mM sulfate is used as electron acceptor in slurries. Slurries that were not 
labeled with 'S' or '3S' were incubated without sulfate.  
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Figure S7. The heatmap depicts the correlation between archaeal families present at a relative 
abundance >1% of total reads across the 12 slurry samples analyzed and experimental parameters. 
Correlations were determined by means of the two tailed Spearman's Rank Order Correlation test. 
The heatmap colors represent the relative percentage of the microbial family assignments. Square 
colors shifted towards bright green indicate strong correlation. 
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Abstract 

 Sulfate reduction and methanogenesis are important terminal electron accepting processes 

contributing to the organic matter (OM) degradation under anoxic conditions in coastal marine 

sediments. It is not well known which metabolic strategies are used by sulfate reducing bacteria 

(SRB) in the methane zone and methanogenic archaea in the sulfate zone, or which physiological 

adaptations are utilized under different metabolic regimes. To understand how the microbial 

community responds to different growth conditions and substrates, enrichment slurries were 

developed using sediment taken from sulfate, sulfate-methane transition and methane zones of 

Aarhus Bay, Denmark. Enrichment slurries were amended with different sulfate concentrations (0, 

3, 20 mM) and carbon substrates (propionate and butyrate) and were incubated at two different 

temperatures (10°C and 25°C). Intact polar membrane lipid (IPL) analysis and next generation 

sequencing of the 16S rRNA gene were performed on the enrichment slurries at the end of the 

incubation period. Overall, the distribution of IPLs and microbial community shifted between 

different sediment zones and growth conditions, with greater IPL diversity found in butyrate-

amended cultures as compared to the propionate-amended enrichment slurries. Recently 

discovered trimethylornithine lipids (TMOs) were identified in three butyrate-amended methane 

zone slurries. The presence of TMO lipids in these slurries could be linked with the enrichment of 

methanogenic microbial communities, as TMOs were observed only in methanogenic 

environments to date. Multivariate analysis showed that Bacteroidetes and Methanomicrobiales 

taxa, and sulfate amendments were closely clustered with many IPLs indicating that these taxa 

contributed to the IPL variation among the enrichment slurries. 
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5.1 Introduction   

Organic matter (OM) degradation in coastal marine sediments is an important process in the global 

carbon cycle (Henrichs, 1992; Hedges and Keil, 1995; Burdige, 2007). In oxic sediments, OM is 

degraded ultimately to carbon dioxide and water, whereas under anoxic conditions organic matter 

is degraded by physiologically different microorganisms employing fermentation or terminal 

electron accepting processes. In marine sediments, where sulfate concentration is high, sulfate 

reduction is the predominant pathway for OM degradation, while methanogenesis becomes 

important in zones where sulfate is low or depleted (Jørgensen, 1982; Holmkvist et al., 2011; Bowles 

et al., 2014). Yet the diversity and metabolic capabilities of marine anaerobic microbes are largely 

unexplored (Jørgensen and Boetius, 2007). The characterization of microbial communities involved 

in sulfate reduction and methanogenesis is essential to understand OM decomposition in coastal 

marine sediments. 

 Anaerobic degradation of organic matter in marine sediments is a complex process 

involving physiologically different microorganisms (Schink and Stams, 2013). The first step is an 

extracellular hydrolytic conversion of polymers to oligomers and monomers which is followed by 

fermentation of these compounds to reduced organic compounds such as short chain fatty acids, 

alcohols, formate, H2 and CO2. Organic acids and alcohols are further degraded to acetate, formate, 

H2 and CO2. When sulfate concentration is high, SRB can use all fermentation products, and oxidize 

them to CO2 by reducing sulfate to sulfide (Schink and Stams, 2013). Sulfate-depleted marine 

sediments are major sources of biogenic methane. In the absence of sulfate, complex organic 

material is mineralized exclusively to CO2 and methane by physiologically diverse microorganisms 

that are co-operating, including fermentative, acetogenic bacteria, and methanogenic archaea (de 

Bok et al., 2005; Stams et al., 2005; Dolfing et al., 2008; Plugge et al., 2009; Müller et al., 2010). 

Propionate and butyrate are important intermediates in anaerobic methanogenic food chain since 

their complete conversion can be accomplished only by syntrophically (Schink and Stams, 2013; 

McInerney et al., 2008). The studies showing the presence of sulfate reducers in the methane and 

methanogens in sulfate zones of marine sediments indicates the importance of hydrogen, that is 

produced during organic matter mineralization, on the metabolism of methanogenic and the 

sulfate-reducing microbial populations (Plugge et al., 2011; Finke et al., 2007b; Leloup et al., 2009; 

Leloup et al., 2007). Further research is needed to determine what type of metabolism sulfate 

reducers use in the methane zone, and methanogenic archaea in the sulfate zone. 
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 Intact polar membrane lipids (IPL) are the building blocks of cell membranes and 

representative of living biomass as they rapidly hydrolyze upon cell lysis (White et al., 1979; Harvey 

et al., 1986). IPLs can also be structurally specific to microbial taxa or may differ depending on the 

habitat characteristics, thus providing information of the biogeochemistry of an environment (Sturt 

et al., 2004; Schubotz et al., 2009). Analysis of IPLs by high performance liquid chromatography-

electrospray ionization-mass spectrometry (HPLC/ESI/MS) can provide information on the 

physiological status of microbial communities as the structural composition of lipid membranes is 

influenced by environmental conditions such as growth temperature, pH, and nutrient limitation 

(Shimada et al., 2008; Van Mooy et al., 2009; Vences-Guzmán et al., 2011; Moore et al., 2015a). IPL 

distributions in marine sediments have also been observed to change in accordance with habitat 

characteristics and inhabiting microbial community (Schubotz et al., 2009; Rossel et al., 2011). In 

this study, enrichment slurries were established using sulfate zone (SZ), sulfate-methane transition 

zone (SMTZ) and methane zone (MZ) sediments of Aarhus Bay, Denmark. Propionate and butyrate 

were used as carbon sources, different sulfate concentrations were applied, and incubated at 10oC 

and 25oC. IPL analysis and next generation sequencing of the 16S rRNA gene were performed on the 

last incubation day samples of enrichment slurries and the original sediment to understand the 

microbial responses to different incubation conditions. 

 

5.2 Materials and Methods 

5.2.1 Sediment sampling and enrichment slurry incubations 

Sediment cores were collected in May 2011 in Aarhus Bay, Denmark (56°07’066”N, 

10°20’793”E). Subsamples representing sulfate zone (SZ, 15-120 cm), sulfate-methane transition zone 

(SMTZ, 120-170 cm) and methane zone (MZ, 170-300 cm) were mixed in an anaerobic chamber and 

used as inoculum for sediment slurry enrichments. 100 ml of the homogenized sediment from each 

zone was mixed with 300 ml of anaerobic mineral salts medium in 1L serum bottles. Media was 

prepared as was described in Chapter 2. 10 mM propionate or butyrate was used as carbon sources 

with and without 20 mM sulfate in sulfate zone and methane zone slurries, and with 3 mM and 20 

mM sulfate for sulfate-methane transition zone slurries as electron acceptor. One set of the bottles 

representing each condition in duplicate was incubated at 10°C as in situ temperature (Dale et al., 

2008) and the other set was kept at 25°C statically throughout the experiment. The overview of 

enrichment slurries and incubation conditions is given in chapters 3 and 4. At the end of the 
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enrichment period (514 days for SZ, 571 days for SMTZ, and 570 days for MZ), 1 ml of liquid slurry 

samples were collected for IPL analysis, freeze dried and stored at -80°C before IPL extraction. 

 

5.2.2 Intact polar lipid extraction 

The slurry samples which were used for molecular analysis were used for lipid analysis. 

Additionally, methane zone slurry samples which were not analysed for molecular analysis were 

also extracted and analyzed in order to confirm the presence or absence of trimethylornithine lipids 

(TMOs). Lipids were extracted from ~o.1 g freeze-dried powdered enrichment cultures using a 

method adapted from Bligh and Dyer (1959) (Rütters et al., 2002a). A solvent mixture 

(approximately 5 ml g-1 dry weight, dw of methanol (MeOH):dichloromethane (DCM): potassium 

phosphate buffer at pH 7.4 (2:1:0.8, v/v/v) was added to approximately  0.3−1.3 g dry weight of 

powdered enrichment culture in a centrifuge tube and placed in an ultrasonic bath for 10 min. After 

sonication, the powdered enrichment culture-solvent mixture was centrifuged at 2,500 rpm for 2 

min and the overlying solvent extract was pipetted off. The extraction was repeated twice and the 

replicate extracts were combined with the first extract for each sample. DCM and phosphate buffer 

were added to the combined extracts to yield a ratio of 1:1:0.9 (v/v/v) and achieve separation of a 

DCM phase and an aqueous MeOH/phosphate buffer phase by centrifugation at 2,500 rpm for 2 

min. The DCM phase, containing the IPLs, was pipetted off and passed over extracted cotton wool 

to remove any remaining particles and collected in a glass tube. The aqueous phase was rinsed twice 

with DCM, and each DCM rinse also passed over extracted cotton wool and combined with the 

original DCM phase. The combined DCM samples were dried under a N2 flow and stored at -20C 

until analysis.  

 

5.2.3 HPLC-ESI/IT/MS analysis of IPLs 

Extracted IPLs from the sediment enrichment slurries were analyzed by high-performance liquid 

chromatography–electrospray ionization-ion trap mass spectrometry (HPLC-ESI/IT/MS) according 

to Sturt et al. (2004), with some modifications (Moore et al., 2013). An Agilent 1200 series high-

performance liquid chromatograph (Agilent, San Jose, CA), with thermostatted autoinjector was 

coupled to a Thermo LTQ XL linear ion trap mass spectrometer with an Ion Max source and ESI 

probe (Thermo Scientific, Waltham, MA). Chromatographic separation was performed on a 

Lichrosphere diol column (250 mm by 2.1 mm; 5-µm particles; Grace Alltech Associates Inc., 
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Deerfield, IL). The MS scanning mass range of m/z 400 to 2,000 in positive-ion mode, followed by 

data dependent dual-stage tandem MS (MS2), in which the four most abundant masses in the mass 

spectrum were fragmented successively. Each MS2 was followed by data-dependent, triple-stage 

tandem MS (MS3), wherein the base peak of the MS2 spectrum was fragmented. IPL abundance was 

assessed by integrating the HPLC-ESI/IT/MS base peak chromatogram area per gram of peat, dry 

weight. Performance of the HPLC-ESI/IT/MS was monitored by regular injections of platelet-

activating factor (PAF) standard (1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine).  

 

5.2.4 Statistical analyses 

Multivariate canonical correspondence analysis (CCA) (McGarigal et al., 2000) was performed to 

compare the microbial taxa identified in chapters 3 and 4 with the associated distribution of IPLs 

in each enrichment slurry in order to find phylogenetic groups and IPLs which could correlate with 

each other or with particular incubation conditions. CCA was executed using R statistical analysis 

software. 

 

5.3 Results 

5.3.1 Microbial community analysis 

The microbial diversity varied much between different sediment zones and different incubation 

conditions as described in chapters 3 and 4. These results are described here briefly for comparison 

with IPL results. Bacterial taxa Thiomicrospira, GIF9 from the phylum Chloroflexi, and Arcobacter 

were the most abundant microbial taxa in sediment of the SZ, SMTZ and MZ, respectively. As 

compared to the original sediment, all three taxa were relatively minor in abundance in both 

propionate- and butyrate-amended sediment slurries which originated from the corresponding 

sediment zones. The microbial composition in enrichment slurries representing each sediment 

zone changed considerably under different incubation conditions. Cryptanaerobacter belonging to 

Peptococcaceae was the most abundant phylotype in low or no sulfate-containing propionate-

amended enrichment slurries from each sediment zone at 25°C. In butyrate-amended sediment 

slurries, Anaerolineaceae was abundant at 25°C under both high and low sulfate conditions. Other 

taxa were highly abundant only in one particular enrichment slurry, such as Desulfobacteraceae in 

the 10°C low sulfate propionate-amended sulfate zone slurry, or Desulfobacterium in the 10°C high 

sulfate butyrate-amended sulfate zone slurry. Sulfate zone sediment slurries were dominated by 
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one phylotype. Five out of eight SZ slurries contained one phylotype accounting for over 50% 

relative abundance and two other slurries contained one taxa accounting for over 45% relative 

abundance. Unassigned taxa were generally low in relative abundance. 

The archaeal taxa were not as diverse as the bacterial taxa, and it was more common for one 

phylogenetic group to make up a large majority of the total Archaea than for Bacteria. In 

propionate-amended sediment slurries, uncultured Methanomicrobiales (EJ-E01) was highly 

abundant in 25°C high sulfate slurries of each sediment zone, and Methanomicrobiaceae was highly 

abundant in all low/no sulfate slurries of each sediment zone at both 10°C and 25°C. In propionate-

amended sulfate-containing methane zone slurries, MBG-D and DHVEG-1 belonging to 

Thermoplasmatales was highly abundant. Methanomicrobiaceae was the most abundant taxon in 

all butyrate-amended sediment slurries except for the SMTZ slurries incubated with high sulfate at 

10°C and with low sulfate at 25°C. Methanosarcinaceae was the second most abundant archaeal 

taxon in butyrate-amended slurries with Methanosaetaceae having high relative abundance in two 

slurries.   

The overall diversity was greater for bacterial and archaeal taxa compared to the diversity 

of IPL head group classes. There were 380 different bacterial and 17 archaeal taxa identified in 

propionate-amended sediment slurries, versus 7 different IPL head group classes and 29 different 

IPL head group core lipid combinations identified in the propionate-amended sediment slurries. 

Similarly, there were 384 bacterial and 17 archaeal taxa identified in butyrate-amended sediment 

slurries, versus 14 different IPL head group classes and 55 different IPL head group core lipid 

combinations identified in the butyrate-amended sediment slurries.   

 

5.3.2 Dominant IPLs in enrichment slurries and original sediment 

The most abundant classes of IPLs identified in most of the sediment enrichment slurries were 

phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), lyso-PC 

(LPC; PC containing one fatty acid), and dihexose (DH) containing lipids (Fig. 1, 2, Table S1). Other 

identified IPLs (MH, PA, OL, TMO, PI, DMPE, Betaine, MMPE, GlcA) were found in some 

enrichment slurries, although some had relatively high abundances in certain slurries, such as 

monomethylphosphatidylethanolamine (MMPE) in slurry SZP8 (30425552 peak area/g dry weight) 

or glucuronic acid (GlcA) in culture SMTZB1 (35097613 peak area/g dry weight). Tetraether lipids, 

which are known to be attributed to archaea (De Rosa and Gambacorta, 1988; Kates, 1993; Koga et 

al., 1993; Hoefs et al., 1997; Hopmans et al., 2000), were not detected in the sediment slurries. IPL 
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abundance (per gram dry weight) and diversity were much lower in the original sediment core 

extracts compared to the enrichment slurries (Fig. 1, 2, Table S1). The IPLs identified in the original 

sediment extracts were PA, PE, and phosphatidylinositol (PI) with PA and PE being identified in all 

sediment zones analyzed, and PI was only identified in the SZ (Table S1). The IPL distributions and 

microbial communities of the enrichment slurries composed of various biogeochemical zones (SZ, 

SMTZ, MZ) responded differently to different incubation conditions, particularly when they are 

compared to the IPL distributions and microbial communities in the corresponding sediment 

zones. 

 

5.3.3 IPL distributions in enrichment slurries 

5.3.3.1 Sulfate zone enrichment slurries  

PE was identified in all sulfate zone enrichment slurries occurring in moderately high abundances 

(between 2125058-11455795 peak area/g dry weight) in two 10°C cultures amended with different 

substrates and sulfate concentrations (Fig. 1, 2, Table S1).  PG was detected in 10°C butyrate-

amended slurries in the presence of sulfate and 10°C propionate-amended slurries in the presence 

and absence of sulfate. In propionate-amended sulfate zone slurries, DH was observed only in the 

absence of sulfate at both temperatures, whereas in butyrate-amended sulfate zone slurries DH 

occurred both in the absence of sulfate at both temperatures and in the presence of sulfate at 25°C. 

PC was detected in two butyrate-amended slurries in the presence of sulfate at both temperatures, 

and LPC was detected in all but one of the sulfate containing slurries amended with butyrate and 

incubated at 10°C. MMPE was detected only in one slurry which was fed with propionate and sulfate 

and incubated at 10°C. 
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Figure 1: Relative abundance of intact polar lipids (IPLs) in butyrate-amended enrichment slurries. 
Env = environmental samples, B = slurry code (listed in Table S1 in chapters 3 and 4), S20 = 20 mM 
sulfate added, S0 = 0 mM sulfate added, S3 = 3 mM sulfate added, °C indicates incubation 
temperature, SZ = sulfate zone, SMTZ = sulfate-methane transition zone, MZ = methane zone.  IPL 
key: MH = monohexose, PA = phosphatidic acid, DH = dihexose, DMPE = 
dimethylphosphatidylethanolamine, PE = phosphatidylethanolamine, PG = phosphatidylglycerol, 
OL = ornithine, GlcA =glucuronic acid, PC = phosphatidylcholine, TMO = trimethylornithine, 
MMPE = monomethylphosphatidylethanolamine, PI = phosphatidylinositol, LPC = lyso-
phosphatidylcholine. 
 

5.3.3.2 Sulfate-methane transition zone slurries 

PG was identified in all SMTZ slurries except for the one that contained high sulfate and propionate 

at 25°C and had higher abundance in butyrate-amended slurries (22801451 peak area/g dry weight 

on average) than propionate-amended slurries (4355003 peak area/g dry weight on average) (Figs. 

1, 2, Table S1). PE occurred in all SMTZ slurries except for the 10°C low sulfate propionate-amended 

slurry and higher PE abundances were detected on average in butyrate-amended slurries. DH was 

identified in one propionate-amended slurry (25°C, low sulfate) and three butyrate-amended 

slurries, with higher abundance than in the propionate-amended slurry. PC was detected only in 

three butyrate-amended slurries with higher abundance in two 10°C slurries, and LPC was detected 

in one propionate- and two butyrate-amended slurries all at low abundances (520065-711956 peak 

area/g dry weight). PI was identified only in three propionate-amended slurries having different 

sulfate concentrations and incubated at different temperatures. Monohexose (MH), GlcA, and 
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ornithine lipid (OL) were all detected in two butyrate-amended slurries incubated at 25ºC, with 

MH and GlcA both at low and high sulfate and OL only under high sulfate conditions.  

 

Figure 2: Relative abundance of intact polar lipids (IPLs) in propionate-amended enrichment 
slurries. Env = environmental samples, B = slurry code (listed in Table S1 in chapters 3 and 4), S20 
= 20 mM sulfate added, S0 = 0 mM sulfate added, S3 = 3 mM sulfate added, °C indicates incubation 
temperature, SZ = sulfate zone, SMTZ = sulfate-methane transition zone, MZ = methane zone.  IPL 
key: PA = phosphatidic acid, DH = dihexose, PE = phosphatidylethanolamine, PG = 
phosphatidylglycerol, MMPE = monomethylphosphatidylethanolamine, PI = phosphatidylinositol, 
LPC = lyso-phosphatidylcholine. 
 

5.3.3.3 Methane zone slurries 

PC was identified only in three butyrate-amended enrichment slurries, having high abundance in 

two of them (293717847 peak area/g dry weight on average), which contained sulfate (Fig. 1, 2, 3, 

Table S1). Trimethylornithine lipid (TMO) was identified in three butyrate slurries in which PC was 

identified, but at moderate to low abundances (11454294 peak area/g dry weight on average), and 

was not detected in any of the propionate-amended slurries (Fig. 3). LPC was detected in most of 

the butyrate- and propionate-amended slurries. The highest LPC abundances were detected in two 

sulfate containing slurries (23535905 peak area/g dry weight) in which PC and TMO reached to the 

highest abundance. PE was identified in most of the slurries with higher average abundances in the 

propionate slurries. DH was identified at moderate to low abundances (between 485170-21381687) 

in three propionate- and five butyrate-amended slurries incubated at different temperatures with 

or without sulfate. PG was detected in one propionate- and four butyrate-amended slurries, all five 
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of which contained sulfate. PI was identified at relatively low abundances (between 101628-801746) 

in two propionate- and two butyrate-amended slurries, all incubated at 10°C with and without 

sulfate. MH, betaine, and dimethylphosphatidylethanolamine (DMPE) were all detected at 

relatively low abundances (737203, 11195317, 2801118 peak area/g dry weight, respectively) in one 

methane zone slurry that was amended with butyrate and incubated at 25°C without sulfate. 

 

Figure 3: Relative abundance of intact polar lipids (IPLs) in all methane zone enrichment slurries 
amended with butyrate (A) and propionate (B). IPL relative abundances for cultures B2, B3, B5, B8 
from Fig. 1 and P1, P3, P6, P8 from Fig.2 are combined to show full comparison between all methane 
zone slurries. IPL key: Mhex = monohexose, PA = phosphatidic acid, DH = dihexose, DMPE = 
dimethylphosphatidylethanolamine, PE = phosphatidylethanolamine, PG = phosphatidylglycerol, 
PC = phosphatidylcholine, TMO = trimethylornithine, PI = phosphatidylinositol, LPC = lyso-
phosphatidylcholine. ND: not determined. 
 

5.3.4 Multivariate analysis 

Canonical correspondence analysis components 1 and 2 explained 30% and 23% of variation, 

respectively, for Bacteria in butyrate-amended slurries; 37% and 28% of variation, respectively, for 

Archaea in butyrate-amended slurries; 42% and 21% of variation, respectively, for Bacteria in 

propionate-amended slurries; and 53% and 22% for Archaea in propionate-amended slurries.  

In butyrate-amended slurries, the observed bacteria and IPLs clustered into three groups 

(Fig. 4A). These groups are as followed: [1] PE, PA, OL, PG, and PI clustered more closely with 

Flavobacteriaceae (BBF), Cytophagaceae (BBC1), Bacteriodetes-SB-5 (BBS5), Marinilabiaceae (BBM), 

Actinobacteria-OPB41 (BAO), Bacteroidetes-BD2-2 (BBB), Bacteroidetes-VC2.1_Bac22 (BBV), and 

high sulfate conditions; [2] MH and GlcA clustered more closely with Anaerolineaceae (BCA2), 

Candidate division OP9 (BCO), Other Bacteria (BO), and low sulfate conditions; [3] PC, LPC, DH, 

TMO, Betaine, and DMPE clustered more closely with Bacteroidetes-SB-1 (BBS), Bacteroidetes-

WCHB1-69 (BBW), Bacteroidetes-vadinHA1 (BBVH), Chloroflexi-GIF9 (BCG), and low sulfate 
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conditions. Other than Actinobacteria-OPB41, the rest of the taxa in cluster 1 belonged to 

Bacteroidetes. Cluster 3 also contained almost exclusively Bacteroidetes with one Actinobacteria 

taxon, whereas cluster 2 contained three diverse taxa. The observed archaeal taxa in butyrate-

amended slurries were Methanomicrobia-ANME-1b (EMA), Methanosarcinaceae (EMMM3), 

Thermoplasmatales-AMOS1A-4113-D04 (ETTA1), Thermoplasmatales–MBG-D and DHVEG-1 

(ETTM), Halobacteriales (EHH), and Miscellaneous Crenarchaeotic Group (TMC). These archaea 

clustered with group 1 bacteria and IPLs; Methanosaetaceae (EMMM1) clustered with group 2; 

Methanomicrobiales-(EMM), Methanomicrobiales-C19A (EMMC), Methanomicrobiales-EJ-E01 

(EMME) clustered with group 3 (Fig. 4B).   
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 Figure 
4: (A) Canonical correspondence analysis of intact polar lipid (IPL) distribution, bacterial taxa 
distribution, and growth conditions for butyrate-amended enrichment slurries. (B) Canonical 
correspondence analysis of intact polar lipid (IPL) distribution, archaeal taxa distribution, and 
growth conditions for butyrate-amended enrichment slurries.   
Black text, culture condition key: S = sulfate zone, SM = sulfate-methane transition zone, M = 
methane zone, S = high sulfate amendment, s = low sulfate amendment, 25 = 25°C, 10 = 10°C.   
Green text, IPL key: MH = monohexose, PA = phosphatidic acid, DH = dihexose, DMPE = 
dimethylphosphatidylethanolamine, PE = phosphatidylethanolamine, PG = phosphatidylglycerol, 
OL = ornithine, GlcA =glucuronic acid, PC = phosphatidylcholine, TMO = trimethylornithine, 
MMPE = monomethylphosphatidylethanolamine, PI = phosphatidylinositol, LPC = lyso-
phosphatidylcholine.   
Blue text, bacterial taxa key: BAO = Bacteria - Actinobacteria - OPB41; BBB = Bacteria - Bacteroidetes 
- BD2-2; BBC1 = Bacteria - Bacteroidetes - Cytophagaceae; BBF = Bacteria - Bacteroidetes - 
Flavobacteriaceae; BBM = Bacteria - Bacteroidetes - Marinilabiaceae; BBS = Bacteria - Bacteroidetes 
- SB-1; BBS5 = Bacteria - Bacteroidetes - SB-5; BBV = Bacteria - Bacteroidetes - VC2.1_Bac22; BBVH = 
Bacteria - Bacteroidetes - vadinHA17; BBW = Bacteria - Bacteroidetes - WCHB1-69; BCA2 = Bacteria 
- Chloroflexi - Anaerolineaceae; BCG = Bacteria - Chloroflexi - GIF9; BCO = Bacteria - Candidate 
division OP9; BO = Bacteria other.   
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Blue text, archaeal taxa key: EHH = Euryarchaeota - Halobacteria - Halobacteriales; EMA = 
Euryarchaeota - Methanomicrobia - ANME-1b; EMM = Euryarchaeota - Methanomicrobia - 
Methanomicrobiales; EMMC = Euryarchaeota - Methanomicrobia - Methanomicrobiales - C19A; 
EMME = Euryarchaeota - Methanomicrobia - Methanomicrobiales - EJ-E01; EMMM1 = 
Euryarchaeota - Methanomicrobia - Methanosarcinales - Methanosaetaceae; EMMM2 = 
Euryarchaeota - Methanomicrobia - Methanomicrobiales - Methanomicrobiaceae; EMMM3 = 
Euryarchaeota - Methanomicrobia - Methanosarcinales - Methanosarcinaceae; ETTA1 = 
Euryarchaeota - Thermoplasmata - Thermoplasmatales - AMOS1A-4113-D04; ETTM = Euryarchaeota 
- Thermoplasmata - Thermoplasmatales - Marine Benthic Group D and DHVEG-1; TMC = 
Thaumarchaeota - Miscellaneous Crenarchaeotic Group. 
 

In propionate-amended slurries, bacterial taxa and IPLs were spread out among more 

groups as compared to the butyrate cultures. PG and MMPE group were positioned closely to 

Bacteroidetes-BD2-2 (BBB), Marinilabiaceae (BBM), and 10°C culture conditions; PI was positioned 

closely to Chloroflexi-MSBL5 (BCM); PA was positioned close to Bacteroidetes (BB) and 

Actinobacteria-OPB41 (BAO); DH was close to Bacteroidetes-SB-1 (BBS); PE and LPC were not 

positioned near any particular taxon, but clustered closely to low sulfate culture conditions (Fig. 

5A). Among archaeal taxa in propionate-amended slurries, PI clustered with Methanomicrobiaceae 

(EMMM2) and Thermoplasmatales-TMEG; PA with Thermoplasmatales-CCA47 (ETTC); LPC with 

Methanomicrobiales (EMM); PE with Methanomicrobiales-EJ-E01 (EMME) and low sulfate culture 

conditions (Fig. 5B). 
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Figure 5: (A) Canonical correspondence analysis of intact polar lipid (IPL) distribution, bacterial 
taxa distribution, and growth conditions for propionate-amended enrichment slurries.  (B) 
Canonical correspondence analysis of intact polar lipid (IPL) distribution, archaeal taxa 
distribution, and growth conditions for propionate-amended enrichment slurries.   
Black text, culture condition key: S = sulfate zone, SM = sulfate-methane transition zone, M = 
methane zone, S = high amended sulfur, s = low amended sulfur, 25 = 25°C, 10 = 10°C.   
Green text, IPL key: PI = phosphatidylinositol, PA = phosphatidic acid, PE = 
phosphatidylethanolamine, PG = phosphatidylglycerol, MMPE = 
monomethylphosphatidylethanolamine, DH = dihexose, LPC = lyso-phosphatidylcholine. 
Blue text, bacterial taxa key: BAO = Bacteria - Actinobacteria - OPB41; BB = Bacteria – Bacteroidetes; 
BBB = Bacteria - Bacteroidetes - BD2-2; BBF = Bacteria - Bacteroidetes - Flavobacteriaceae; BBM = 
Bacteria - Bacteroidetes - Marinilabiaceae; BBS = Bacteria - Bacteroidetes - SB-1; BBS2 = Bacteria - 
Bacteroidetes – Sphingobacteriales; BCA1 = Bacteria - Chloroflexi - Anaerolineae; BCA2 = Bacteria - 
Chloroflexi - Anaerolineaceae; BCG = Bacteria - Chloroflexi - GIF9; BCM = Bacteria - Chloroflexi - 
MSBL5; BCO = Bacteria - Candidate division OP9; BEL = Bacteria - Elusimicrobia - Lineage_IV; BO 
= Bacteria other. 
Blue text, archaeal taxa key: EMA = Euryarchaeota - Methanomicrobia - ANME-1b; EMM = 
Euryarchaeota - Methanomicrobia - Methanomicrobiales; EMME = Euryarchaeota - 
Methanomicrobia - Methanomicrobiales - EJ-E01; EMMM2 = Euryarchaeota - Methanomicrobia - 
Methanomicrobiales - Methanomicrobiaceae; EMMM3 = Euryarchaeota - Methanomicrobia - 
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Methanosarcinales - Methanosarcinaceae; ETK = Euryarchaeota - Thermoplasmata - Kazan-3A-21; 
ET1 = Euryarchaeota - Thermoplasmata - 19c-33; ETTC = Euryarchaeota - Thermoplasmata - 
Thermoplasmatales - CCA47; ETTTM = Euryarchaeota - Thermoplasmata - Thermoplasmatales - 
Terrestrial Miscellaneous Gp (TMEG). 
 
5.4 Discussion 

The greater diversity of microbial taxa versus IPLs agrees with consistent findings that many IPLs 

with the same head group and/or core lipid structures are produced by a wide range of microbial 

species (Fang and Barcelona, 1998; Fang et al., 2000; Schouten et al., 2000; Rütters et al. 2002a; 

2002b; Sturt et al., 2004; Lipp et al., 2008; Schubotz et al., 2009). The higher concentrations of 

bacterial IPLs in samples are generally consistent with higher concentrations of sedimentary 

organic carbon which likely serves as major substrate (Lipp et al., 2008). Both the microbial 

community and IPL distribution changed much from the sediment samples compared to the 

sediment slurries inoculated with corresponding sediment samples, indicating that incubation 

conditions (temperature, sulfate concentration, carbon source) have an impact on the cell 

membrane composition of different microbial communities. Twice as many IPL head group 

structures were observed in butyrate-amended sediment slurries than propionate-amended 

sediment slurries showing that the butyrate degrading community has more diverse membrane 

composition.  

The most abundant IPLs identified in most of the sediment enrichment slurries are 

phosphatidylethanolamine (PE), which are often find in aquatic environments and sediments and 

are attributed to sulfate-reducing bacteria (Rossel et al., 2008). The high abundance of SRB in 

enrichment slurries (Chapters 3 and 4) and the positive correlation between PE and high sulfate 

condition (Fig 4A) indicates that the occurrence of PE can be linked to the presence of SRB in 

enrichment slurries. Other IPLs that showed high relative abundance among sediment slurries were 

PG and PC. PG has been identified as the second most abundant lipid in bacterial membranes 

(Dowhan, 1997) including cultured representatives of the deep biosphere (Schubotz, 2005). PC has 

been identified in more than 10% of all bacteria (Sohlenkamp et al., 2003). The higher relative 

abundance of PC in only butyrate-amended enrichment slurries therefore suggests a specific 

bacterial group involving in butyrate conversion might posses PC. 

The identification of TMO lipids in three butyrate-amended methane zone enrichment 

slurries (Fig. 3, Table S1) was surprising since these lipids were originally identified in 

planctomycete isolates from ombrotrophic northern wetlands (Moore et al., 2013), and peaked in 
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abundance at the oxic-anoxic interface (Moore et al., 2015b). These ombrotrophic wetlands are 

methanogenic, suggesting TMOs could be linked to the methanogenic microbial communities in 

different environments. The TMOs identified in the butyrate-amended methane zone sediment 

slurries contained core lipids C18:0/βOH-C18:0, C18:1/βOH-C18:0, C16:0/βOH-C18:0, and 

C19:1/βOH-C18:0. TMOs with core lipids C18:1/βOH-C18:0, C16:0/βOH-C18:0, and C19:1/βOH-C18:0 

were also identified in northern wetland planctomycete isolates (Moore et al., 2013), and TMOs 

with core lipids C18:1/βOH-C18:0 and C16:0/βOH-C18:0 were also identified in northern wetland 

peats (Moore et al., 2015b). No planctomycete phylotypes were identified using pyrosequencing 

analysis in any of the butyrate-amended methane zone sediment slurries indicating that the 

observed TMOs were produced by other microbial groups or the relative abundance of the 

responsible organisms very low. TMOs have also recently been identified in meso-oligotrophic 

lakes of Minnesota and Iowa, possibly as a response to low phosphorus concentrations (Bale et al., 

2016). 

Multivariate analysis showed that the Bacteroidetes phylum, and to a lesser extent, 

Methanomicrobiales order contributed to the variation in IPL distribution compared to other 

abundant phylogenetic groups in butyrate-amended slurries. In propionate-amended slurries, 

Bacteriodetes and Methanomicrobiales had also greater contributions than various other microbial 

groups. The sulfate concentrations in butyrate-amended sediment slurries and 10°C as incubation 

temperature in the propionate-amended slurries contributed to the microbial composition and IPL 

variation (Fig. 4 and 5). Various Bacteriodetes species have been observed to produce a wide range 

of IPLs including PEs, ornithine lipids, and lysine lipids (LLs) (Moore et al., 2015a; 2016; Singh et al., 

2015). Recently, many marine and estuarine Flavobacteriaceae related species, were found to 

produce PEs and amino lipids as their most abundant membrane lipid structures (Yoon and Kasai, 

2016; Jung et al., 2016; Liu et al., 2016; Wang et al., 2016; Park et al., 2016; Liu et al., 2016; Song et al., 

2015). The Flavobacteriaceae family belong to the Bacteriodetes phylum and is clustered closely with 

PEs and OLs (Fig. 4A). This indicates that Flavobacteriaceae contributed to the variation in PEs and 

OLs in cluster 1 (Fig. 4A). Marine sediment and seawater members of Halobacteriales have been 

reported to produce PGs and PEs (Wang et al., 2010a; Yim et al., 2014) indicating that these taxa 

contributed to the variation of these IPLs in cluster 1.  

This study shows that the membrane structures of microbes inhabiting sulfate, sulfate-

methane transition and methane zones of marine sediments can be highly variable among different 

taxa and depending on different incubation conditions, such as temperature, substrate, and 
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electron acceptor availability. The presence of trimethylornithine lipids (TMOs) in methane zone 

slurries indicates that these IPLs can be found in a wider range of ecosystems than previously 

observed. Further study is needed to shed light on how microbial communities in coastal marine 

sediment respond to changes in environmental and incubation conditions. Such studies will be 

extremely important given the high level of human impact on coastal ecosystems (Syvitski et al., 

2005; Talaue-McManus L. 2010; Deegan et al., 2012; Halpern et al., 2015). 
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Supplementary data 

Table S1. Relative abundance (HPLC/MS base peak area/g sediment dw [dry weight]) of all IPLs 
identified in Aarhus Bay sediment and the enrichment slurries inoculated with this sediment. 120 
cm = sulfate zone, 135-165 cm = sulfate-methane transition zone, 180-300 cm = methane zone. 
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Abstract 

Degradation of propionate and butyrate in marine sediments is carried out predominantly by 

sulfate-reducing bacteria. However in sulfate-depleted zones, these compounds are degraded by 

methanogenic communities, which have been poorly studied. Here, we studied anaerobic 

conversion of propionate and butyrate under sulfate-free and low-sulfate conditions by syntrophic 

communities enriched from different biogeochemical zones of Aarhus Bay. Several transfers from 

previously enriched sediment slurries were performed. Butyrate conversion after four transfers 

occurred rapidly and acetate and methane and/or sulfide accumulated in the cultures. On the other 

hand, propionate conversion proceeded slow enabling enrichment of acetoclastic methanogens and 

hence the complete conversion of propionate. The addition of low amounts of sulfate to the cultures 

did not inhibit syntrophic conversion, instead, both sulfate reduction and methanogenesis 

proceeded concomitantly. The butyrate-converting cultures were dominated by Syntrophomonas 

bryantii and an uncultured Syntrophomonas species. The propionate-converting cultures were 

dominated by bacteria that are phylogenetically similar to Cryptanaerobacter phenolicus and 

different Pelotomaculum species (95-96%, 16S rRNA gene based), indicating presence of possible 

novel species of propionate-converting syntrophs. Low sulfate amended butyrate- and propionate-

converting cultures contained Desulfobacteraceae members together with uncultured 

Syntrophomonas sp. and Cryptanaerobacter sp., respectively. Hydrogenotrophic methanogens were 

present in all enrichment cultures, whereas aceticlastic methanogens were abundant in sulfate-free 

cultures but had low abundance in sulfate-amended cultures. 
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6.1 Introduction  

Propionate and butyrate are important intermediates in anaerobic degradation of organic matter 

in marine sediments. These compounds can be oxidized by a variety of marine sulfate-reducing 

bacteria (SRB) either completely to CO2 or incompletely to acetate (Widdel, 1988; Muyzer and 

Stams, 2008). Bacteria that can couple propionate and butyrate oxidation to sulfate reduction 

include members of the families Desulfobacteraceae, Desulfobulbaceae, Syntrophobacteraceae, 

Peptococcaceae (Kuever et al., 2014b; Stackebrandt, 2014). In sulfate-depleted sediments, organic 

matter is degraded through syntrophic interactions of acetogenic bacteria and methanogens. In 

sulfate-depleted sediments, methanogens consume hydrogen, formate and acetate that are formed 

as products of organic carbon degradation. Hydrogen and formate consumption allows propionate 

and butyrate conversion to be energetically favorable (McInerney et al., 1979; Boone and Bryant, 

1980). In this way, a syntrophic relationship is established between bacteria and methanogens 

(Schink and Stams, 2013; McInerney et al., 2008).  

Syntrophic propionate-oxidizing bacteria are affiliated with two phylogenetic groups of 

bacteria. The first group contains Gram-negative genera Syntrophobacter and Smithella, belonging 

to the Deltaproteobacteria. The second group contains Gram-positive bacteria affiliated to genera 

Pelotomaculum and Desulfotomaculum, belonging to the phylum Firmicutes (Boone and Bryant, 

1980; Harmsen et al., 1998; Wallrabenstein et al., 1995; Imachi et al. 2002; Plugge et al. 2002; de Bok 

et al. 2005; Chen et al., 2005; Stams et al., 1993). These genera are phylogenetically associated to 

sulfate-reducing bacteria and some of these syntrophs can couple propionate oxidation to sulfate 

reduction. On the other hand, there are few species that are obligately syntrophic and hence unable 

to reduce sulfate; these are Pelotomaculum schinkii (de Bok et al., 2005) and Pelotomaculum 

propionicicum (Imachi et al., 2007). 

Most syntrophic butyrate-degrading bacteria are classified as low GC Gram-positive 

bacteria. Organisms capable of syntrophic butyrate metabolism include all species of 

Syntrophomonas (Stieb and Schink, 1985; Zhao et al., 1990; McInerney et al. 1981; Lorowitz et al. 

1989; Zhang et al. 2004; Zhang et al. 2005; Roy et al., 1986; Sousa et al. 2007a; Wu et al. 2006a; Wu 

et al. 2006b; Wu et al. 2007), Thermosyntropha lipolytica (Svetlitshnyi et al. 1996), 

Syntrophothermus lipocalidus (Sekiguchi et al. 2000) and the Gram-negative Syntrophus 

aciditrophicus (Jackson et al, 1999). The majority of the Syntromonadaceae family members are not 

obligate syntrophs as they can dismutate crotonate without a syntrophic partner (McInerney et al., 
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1979, 1981; Stieb and Schink, 1985; Beaty and McInerney, 1987; Lorowitz et al., 1989; Zhao et al., 1990, 

1993; Svetlitshnyi et al., 1996; Sekiguchi et al., 2000; Zhang et al., 2004; Hatamoto et al., 2007). The 

exceptions to this are Syntrophomonas sapovorans and S. zehnderi, which degrade all linear 

saturated fatty acids with 4 to 18 carbon atoms only in coculture with methanogens (Roy et al., 1986; 

Sousa et al., 2007a). A syntrophic butyrate-degrading bacterium, Algorimarina butyrica, was 

isolated from marine sediments (Kendall et al., 2006). This bacterium is phylogenetically affiliated 

to Deltaproteobacteria and closely related to the sulfate-reducing Desulfonema magnum. Yet, it 

cannot couple butyrate oxidation to sulfate reduction (Kendall et al., 2006). A. butyrica is the first 

and the only marine syntrophic butyrate degrader isolated. 

The main goal of this study was to establish marine propionate- and butyrate-degrading 

syntrophic consortia in enrichment cultures using the sediment slurry enrichments obtained in 

chapters 3 and 4. Based on this previous research, we proposed that 

Cryptanaerobacter/Pelotomaculum phylotype converts propionate and Syntrophomonas and 

Desulfobacteraceae family members convert butyrate in syntrophy with methanogens in Aarhus 

Bay sediment. In order to further enrich these microorganisms and to confirm the results of our 

previous study, the enrichment slurries were sub-cultured for four times. Here, propionate and 

butyrate degradation and product formation was quantified, and the eventual microbial 

community composition in the fourth sub-cultures was analyzed.   

 

6.2 Materials and Methods 

6.2.1 Source of inocula and preparation of sub-cultures 

Propionate and butyrate degrading sediment slurries were set up using sediment taken from sulfate 

zone (SZ), sulfate-methane transition zone (SMTZ) and methane zone (MZ) of Station M1 in Aarhus 

Bay, Denmark. 1 L glass bottles were used to mix the sediment with marine anoxic mineral salt 

medium (see Chapter 3) containing 10 mM propionate or butyrate as carbon sources with and 

without 20 mM sulfate in sulfate zone and methane zone slurries, and with 3 mM and 20 mM sulfate 

for sulfate-methane transition zone slurries. The overview of all butyrate- and propionate-amended 

sediment slurries is given in chapter 3 and 4. The slurries were regularly monitored for substrate 

consumption and product formation and regular additions of propionate, butyrate and/or sulfate 

were performed. These enrichment slurries have been maintained for 514-571 days. Subsequently, 

sediment-free transfers were performed from original slurries into culture bottles containing the 
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same medium as was used to prepare enrichment slurries. The medium content and preparation 

was described in chapter 3. After three transfers, the culture bottles were without sediment particles 

and the fourth transfer was used to quantify propionate and butyrate conversion and to analyze the 

microbial composition of the enrichment cultures. 

Enrichment cultures were inoculated in triplicate with 20 ml of original slurry into 250 ml 

serum vials with 134 ml of anoxic mineral salts medium (including carbon source, reductant, and 

vitamin solution). 10 mM butyrate or propionate was used as carbon source with 3 mM sulfate as 

electron acceptor for SMTZ and without sulfate for SZ and MZ cultures. The enrichment cultures 

were incubated statically in the dark at 25°C with a gas composition of N2/CO2 (80:20 v/v) at 1,7 atm 

pressure.  

 

6.2.2 Analytical methods 

Methane in the headspace of the culture bottles was analyzed by gas chromatography with a 

Shimadzu GC-14B (Shimadzu, Kyoto, Japan) equipped with a packed column (Molsieve 13X, 60-80 

mesh, 2 m length, 3 mm internal diameter; Varian, Middelburg, The Netherlands) and a thermal 

conductivity detector set at 70mA. The oven and the injector temperatures were both 100oC. The 

detector temperature was 150oC. Argon was the carrier gas at a flow rate of 30 ml min-1.  

Propionate, butyrate and acetate were quantified using a Thermo Scientific Spectrasystem 

HPLC system (Thermo Scientific, Waltham, MA) equipped with a Varian Metacarb 67H 300x6.5 

mm column (Agilent, Santa Clara, MA) connected to a UV and Refractive Index (RI) detector. 0.005 

M sulfuric acid was used as eluent and 10 mM sodium crotonate as internal standard. The flow rate 

was 0.8 ml min-1 and analyses were carried out at 30°C. Data analyses were performed using 

ChromQuest (Thermo Scientific, Waltham, MA) and Chromeleon software (Thermo Scientific, 

Waltham, MA). 

Sulfate and sulfide in SMTZ cultures were measured as described in Chapter 3. 

 

6.2.3 DNA extraction 

Genomic DNA was extracted from the propionate and butyrate-amended cultures using Fast DNA 

Kit for Soil (MP Biomedicals, Santa Ana, CA) according to the manufacturer’s instructions. Two 45-

second beat beating steps were applied using a Fastprep Instrument (MP Biomedicals, Santa Ana, 
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CA). The DNA quality was examined on 1% (w/v) agarose gel and the DNA quantity was determined 

using Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE). 

 

6.2.4 Clone library construction 

Extracted DNA was used for a clone library construction. Almost full-length 16S rRNA genes were 

amplified using primers 27F (5’-AGAGTTTGGATCMTGGCTCAG-3’) (Lane, 1991) and 1369R (5’-

GCCCGGGAACGTATTCACCG-3’) (Iwamoto et al., 2000) for Bacteria, and the primers 25F (5’-

CYGGTTGATCCTGCCRG-3’) (Dojka et al., 1998) and 1386R (5’-GCGGTGTGTGCAAGGAGC-3’) 

(Skillmann et al., 2004) for Archaea. PCR amplification was carried out using GoTaq DNA 

Polymerase kit (Promega, Madison, WI, USA). Bacterial 16S rRNA amplification was carried out as 

described in Sousa et al. (2007b), while archaeal amplicons were obtained following the protocol of 

Borrel et al. (2012). 16S rRNA gene amplicons’ integrity and length was checked on agarose gel and 

subsequently purified with Zymoclean Gel DNA Recovery Kit (Zymo Research, Orange, CA, USA). 

Ligation and cloning of the PCR products were performed with the use of a pGEM®-T Easy Vector 

kit (Promega, Madison, WI, USA) and E. coli XL blue competent cells (Agilent Technologies, Santa 

Clara, USA). White colonies were randomly selected and transferred to a 96 well Masterblock® plate 

(Greiner Bio-One, the Netherlands). Nearly full-length 16S rRNA genes were sequenced by GATC 

Biotech (Konstanz, Germany) using the primers T7 and SP6. Sequences were manually trimmed 

and checked for chimeras using VecScreen (http://www.ncbi.nlm.nih.gov/tools/vecscreen/) and 

Decipher (http://decipher.cee.wisc.edu/FindChimeras.html). Sequence similarity was checked 

using NCBI MegaBlast (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Data analysis of amplicons was 

carried out with the SilvaNGS software pipeline (https://www.arb-silva.de/ngs).  

 

6.2.5 Fluorescence in situ hybridization (FISH) 

FISH analysis was performed on paraformaldehyde-fixed biomass samples taken from the 

enrichment cultures, according to the procedure described in Amann et al. (1995). Three samples 

per each culture condition were analyzed to ensure the complete analysis of the microbial 

dynamics. Oligonucleotide probes were specific for Bacteria (EUB338mix probes) and Archaea 

(ARC915 probe) domains. Details of the employed oligonucleotide probes are available at probeBase 

(Greuter et al., 2016). Probes were labelled with Cy3 or FITC fluorophores. All the hybridizations 

with specific probes were carried out in combination with DAPI staining, to highlight the probe 



Marine propionate- and butyrate-converting syntrophic cultures 

145 
 

coverage versus the total community. Samples were examined by epifluorescence microscopy 

(Olympus BX41) equipped with Infinity Camera (Lumenera corporation, Canada). FISH images 

were further modified using the ImageJ software package (version1.37v, Wayne Rasband, National 

Institute of Health, Bethesda, MD, USA, available in the public domain at http://rsb. 

info.nih.gov/ij/index.html).  

 

6.3 Results and discussion 

6.3.1 Butyrate conversion 

The conversion of butyrate was studied under sulfate-reducing and methanogenic conditions in 

enrichment cultures that were derived from three enrichment slurries prepared with SZ, SMTZ and 

MZ sediment (Figure ͱ). Butyrate was completely metabolized within ͱͱ days in all enrichment 

cultures. In the SZ culture, ͱ͸.Ͱ ± ͱ.ͳͷ mM butyrate was converted to Ͳͷ.ͳ ± Ͱ.Ͷ mM acetate and ͸.͸ 

± Ͱ.ͳ mM methane (Table ͱ, Figure ͱa). Acetate and methane were produced in the MZ culture 

(Figure ͱc). The ratios of consumed butyrate to produced acetate and methane in SZ and MZ 

cultures are ͱ : ͱ.͵ : Ͱ.͵ and ͱ : ͱ.Ͷ : Ͱ.ʹ, respectively. These values are close to the predicted 

stoichiometric values of syntrophic butyrate degradation (Butyrate + Ͱ.͵ HCOͳ
- + Ͱ.͵ HͲO  Ͳ 

CHͳCOO- + Ͱ.͵ CHʹ + Ͱ.͵ H+) (Chapter ͳ-Table ͱ, reaction ͷ).  

In low-sulfate amended SMTZ cultures, butyrate conversion was coupled to both sulfate 

reduction and methanogenesis (Fig ͱb, ͱe). ͱ͵.͸ ± Ͱ.ʹ mM butyrate was degraded and ʹ.Ͳ ± Ͱ.͵ mM 

sulfate was reduced. Here, Ͳͷ.ͳ ± Ͱ.͹ mM acetate, ͵.ͱ ± Ͱ.ͱ mM sulfide and ͵.͹ ± Ͱ.͵ mM methane 

were produced (Table ͱ). Two possible routes for butyrate conversion in these enrichments could 

have occurred: (ͱ) Butyrate oxidation via sulfate reduction (Chapter ͳ-Table ͱ, reaction Ͳ) plus 

concurrent syntrophic butyrate conversion with acetate- and hydrogen-dependent sulfate 

reduction and/or methanogenesis (Chapter ͳ-Table ͱ, reactions ͱ + ͳ, ʹ, ͵ and/or Ͷ), (Ͳ) Syntrophic 

butyrate conversion with acetate- and hydrogen-dependent sulfate reduction and/or 

methanogenesis (Chapter ͳ-Table ͱ, reactions ͱ + ͳ, ʹ, ͵ and/or Ͷ). In case of the first route, both a 

sulfate reducer and an acetogen convert butyrate. 
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Table ͱ. The overview of substrate consumption and product formation in the enrichment cultures. 
The values represented in the table are the total amounts of the reactants consumed and the 
products formed along the study. All cultures were prepared in triplicate. The values are the mean 
of triplicates for butyrate SMTZ and MZ cultures, duplicates for butyrate SZ and propionate SMTZ 
and MZ. The two replicates of propionate SZ culture did grow slower, thus the values from only one 
replicate of this culture is presented here. NA: not applicable, NM: not measured. Hydrogen or 
formate were not detected in any of the incubations.    

        

 

In the second, butyrate is converted only by an acetogen to acetate and hydrogen and hydrogen is 

consumed by a methanogen and part of the acetate is oxidized by a sulfate reducer (Fig ͱe).   

Previous studies have reported the existence of syntrophic butyrate degradation in sulfate 

containing ecosystems, such as marine sediments, anaerobic digesters and batch cultures (Kendall 

et al., ͲͰͰͶ; Visser et al., ͱ͹͹ͳ; Struchtemeyer et al., ͲͰͱͱ).  The results of our study support previous 

findings and show that under low sulfate concentrations syntrophic butyrate degradation can occur 

simultaneously with sulfate reduction (Fig ͱb, ͱe). Methanogenesis can be the dominant pathway 

for the utilization of the products HͲ and/or formate, whereas acetate is probably utilized via sulfate 

reduction (Fig ͱe, Table ͱ). This is supported by the absence of aceticlastic methanogens in SMTZ 

culture as revealed by community analysis (Fig Ͳe, Table SͲ). 

 

Substrate Origin Time (d)
Reactants (mM) Products (mM)

Butyrate Propionate Sulfate Acetate Methane Sulfide

Butyrate

SZ 11 18.0 ± 1.4 NA NA 27.3 ± 0.6 8.8 ± 0.3 NM

SMTZ 11 15.8 ± 0.4 NA 4.2 ± 0.5 27.3 ± 0.9 5.9 ± 0.5 5.1 ± 0.1

MZ 11 15.8 ± 0.4 NA NA 25.8 ± 0.5 6.2 ± 0.3 NM

Propionate

SZ 70 NA 18.2 NA 0.78 24.5 NM

SMTZ 297 NA 17.7 ± 0.7 NM 15.1 ± 1.0 10.3 ± 0.4 NM

MZ 297 NA 17.9 ± 0.0 NA 1.5 ± 0.0 26.4 ± 1.6 NM
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Figure ͱ. Butyrate conversions (SZ (a), SMTZ (b) and MZ (c)) and proposed butyrate conversion 
routes (SZ (d), SMTZ (e) and MZ (f)) in the cultures. Butyrate conversion routes are proposed based 
on microorganisms with high relative abundance and observed butyrate conversion 
stoichiometries. Values are mean of biological duplicates for SZ and triplicates for SMTZ and MZ. 
Error bars indicate the standard deviations. 
 

 

6.3.2 Microbial communities in butyrate enrichments 

Bacterial ͱͶS rRNA based clone libraries of butyrate-degrading enrichment cultures after ͱͱ days of 

incubation revealed dominance of Syntrophomonas (Figure Ͳa, Ͳb, Ͳc and Table Sͱ). Within the 

clone library, ͱͶ clones derived from the SZ culture (͵ͳ%) and Ͳͳ clones derived from the MZ culture 

(ͷͷ%) showed ͹͹% similarity to Syntrophomonas bryantii (Figures Ͳa and Ͳc). S. bryantii is a Gram-

positive, spore-forming, butyrate degrading syntroph isolated from marine mud (Stieb and Schink, 

ͱ͹͸͵). The ability of S. bryantii to form spores can be an advantage to survive under unfavorable 

conditions in marine sediments. This ability might explain the dominance of S. bryantii, a marine 
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isolate, in both sulfate and methane zone enrichment cultures. ʹͲ% of the clones derived from the 

SMTZ culture affiliated with an uncultured Syntrophomonas sp. (͹͵% similarity) (Figure Ͳb and 

Table Sͱ). Low sulfate concentration in SMTZ culture might have stimulated Syntrophomonas to 

reach as high relative abundance as in the SZ and MZ cultures. Sulfate-reducing bacteria that 

directly couple butyrate oxidation to sulfate reduction grow faster than syntrophic butyrate 

degraders. On the other hand, the growth rates of some syntrophic butyrate degraders were 

reported to be higher than some butyrate-oxidizing sulfate-reducers (Oude Elferink et al., ͱ͹͹ʹ). 

This might be due to their similar kinetic properties rather than thermodynamic factors since Gibbs 

free energy changes for the complete oxidation of butyrate coupled to sulfate reduction (ΔG°’ of –

Ͷ.ͱkJ per electron transferred) or to methane production (ΔG°’ of –ʹ.ͱkJ per electron transferred) 

are in the same range (Chapter ͳ, Table ͱ) (McInerney and Beaty, ͱ͹͸͸). These reasons may allow 

syntrophic butyrate degraders to exist in sulfate-reducing ecosystems such as marine sediments 

and aquifers (Kendall et al., ͲͰͰͶ; Struchtemeyer et al., ͲͰͱͱ). Similarly, Syntrophomonas in our 

study could take part in butyrate degradation in the presence of sulfate, with both sulfate reducers 

and methanogens as partner organisms (Fig ͱe). The second most abundant phylotype (ͲͶ%) in the 

SMTZ culture was affiliated to Deltaproteobacteria (͹͹%) and had ͹͸% similarity to Desulfobacter 

latus (Figure Ͳb and Table Sͱ). A D. latus related bacterium was the dominant acetate-degrading 

organism after several sub-culturing period in low-sulfate amended SMTZ culture (Kuever et al., 

ͲͰͱʹb) and probably was the syntrophic partner of Syntrophomonas. Despite the higher free-energy 

change associated with acetate oxidation by sulfate (ΔG°’ of -ʹͷ.Ͷ kJ/mol) as compared to acetate 

cleavage to CHʹ and COͲ (ΔG°’ of - ͳͱ kJ/mol), Schönheit et al. (1982) has explained that the 

difference in substrate affinities can account for the inhibition of methanogenesis from acetate in 

sulfate-rich environments. In Chapter 2, we report minor competition between acetate-consuming 

D. latus and Methanosaeta concilii for acetate in a mixed coculture. Butyrate in the SMTZ culture 

was converted solely by Syntrophomonas and ~ʹ mM acetate was consumed (Table ͱ) by D. latus 

while hydrogen was utilized by Methanogenium cariaci, a marine methanogen (Romesser et al., 

ͱ͹ͷ͹) to produce methane (Fig ͱe, Ͳe). This observation was further supported by FISH analysis on 

SMTZ culture fixed after ͱͶ days of cultivation, highlighting the presence of one morphotype 

positive to the ARC͹ͱ͵ probe (Fig SͲ), which is in agreement with the clone library results (Fig Ͳe). 

Two morphologies were detected with the bacterial EUBͳͳ͸ probe. These morphotypes most likely 

correspond to Syntrophomonas sp. and D. latus. As visible in Figure SͲa, there is an association 

between the bacterial and archaeal morphotypes, in particular between Syntrophomonas and 



Marine propionate- and butyrate-converting syntrophic cultures 

149 
 

Methanogenium, while Desulfobacter clusters were less frequent in all the samples analyzed. DAPI 

staining observations underline that these three microorganisms are the key players and almost all 

the cells are active in the SMTZ enrichment culture (Figure SͲb). Overall, we can speculate about 

a syntrophic relationship between these three microorganisms, in which Syntrophomonas converts 

ͱ͵.͸ mM butyrate to ~ͳͲ mM acetate and ͳͰ mM HͲ, and D. latus consumes ~ʹ mM acetate coupled 

to reduction of ~͵ mM sulfate and M. cariaci consumes ~Ͳʹ mM HͲ to produce Ͷ mM CHʹ (Table 

ͱ).   

The remaining bacterial phylotypes affiliated with Bacteroidetes, Sulfurovum, Synergistetes, 

Anaerolineae (Figure Ͳ and Table Sͱ). These phylotypes are commonly found in marine sediments 

(Parkes et al., ͲͰͱʹ; Webster et al., ͲͰͱͱ; Webster et al., ͲͰͱͰ; Fry et al., ͲͰͰ͸) and are associated 

with the decomposition of carbohydrates and proteinaceous substrates (Yamada and Sekiguchi, 

ͲͰͰ͹; Kleinsteuber et al., ͲͰͱͲ; Godon et al., ͲͰͰ͵). Therefore, the existence of non-butyrate-

converting bacteria in all cultures suggests that they either are involved in the degradation of dead 

biomass or consumption of intermediates of butyrate degradation. FISH with specific probes or 

DAPI staining didn’t highlight any other morphotype within the Bacteria domain. 
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Figure Ͳ. Distribution of bacteria (a, b, c) and archaea (d, e, f) detected in ͱͶS rRNA gene clone 
libraries derived from butyrate-amended SZ (a, d), SMTZ (b, e) and MZ (c, f) cultures, respectively. 
Un: Uncultured.  
 

Archaeal clone libraries of the SZ, SMTZ and MZ enrichment cultures show that most of the 

sequences affiliated with different Methanomicrobiaceae species, members of which are specialists 

in HͲ- and formate-utilization (Garcia et al., ͲͰͰͶ) (Figure Ͳd, Ͳe, Ͳf and Table SͲ). 

Hydrogenotrophic methanogens are commonly found in near-surface marine sediments (Parkes et 

al., ͲͰͰͷ; Sørensen et al. ͱ͹͸ͱ; Blair and Carter, ͱ͹͹Ͳ). In the SMTZ, most clones (ͱͱͰ clones, ͹͸%) 
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representing Methanomicrobiaceae affiliated with Methanogenium cariaci (Fig Ͳe, Table SͲ). SZ and 

MZ cultures were dominated by clones affiliated with Methanogenium marinum (͵ʹ%). The other 

methanogenic phylotype found both in SZ and MZ cultures was an uncultured Methanoculleus sp., 

showing ͹Ͳ-͹͵% similarity to its closest cultured species Methanoculleus taiwanensis (Table SͲ). 

The fact that this phylotype has low similarity to any cultured species, suggests that it may represent 

a novel species within the family Methanomicrobiaceae. Both Methanogenium and Methanoculleus 

species use HͲ and formate for methane production and were isolated from marine sediments 

(Romesser et al. ͱ͹ͷ͹; Chong et al., ͲͰͰͲ; Weng et al., ͲͰͱ͵). Methanogenium sp. and 

Methanoculleus sp. consumed HͲ/formate that was produced by the conversion of butyrate and 

acted as syntrophic partners of Syntrophomonas in the MZ and SZ enrichments (Fig ͱd, ͱf). This is 

supported by the amount of methane produced which is close to the stoichiometric values of 

syntrophic butyrate degradation in SZ and MZ cultures (Table ͱ). The relationship of 

Methanogenium sp. and Methanoculleus sp. with Syntrophomonas was reflected in FISH 

micrographs of SZ and MZ cultures (Figures Sͱ and Sͳ). Archaeal cells are more abundant than 

bacterial cells in the SZ culture (Fig Sͱ). The other methanogenic species detected in all butyrate-

converting enrichment cultures was Methanosarcina sp. with ͲͶ%, Ͳ% and ͳͱ% of the clones in the 

SZ, SMTZ and MZ clone libraries, respectively (Figure Ͳ and Table SͲ). The closest cultured relative 

of Methanosarcina sp. was M. semesiae in the SZ culture, M. lacustris in the SMTZ culture and M. 

subterranea in the MZ culture (Table SͲ). Methanosarcina species are metabolically diverse and 

able to consume methylated compounds, acetate and HͲ/COͲ (Kendall and Boone, ͲͰͰͶb). M. 

semesiae and M. subterranea species grow only on methyl compounds, but not on acetate, HͲ/COͲ 

or formate (Lyimo et al., ͲͰͰͰ; Shimizu et al., ͲͰͱ͵). However, the enrichment cultures did not 

contain any methyl group substrates, instead acetate, HͲ/COͲ or formate were the only possible 

methanogenic substrates. Therefore, Methanosarcina-related phylotypes found in these cultures 

might have consumed these intermediates (Fig ͱd, ͱf). FISH micrograph of MZ culture showed that 

Methanosarcina sp. cells were clustered with Syntrophomonas sp. cells, suggesting that 

Methanosarcina sp. may be syntrophic partners of Syntrophomonas sp. (Figure Sͳ). However, this 

should be clarified with further research employing specific probes. 

The initial sediment slurries from which SZ and SMTZ enrichment cultures were derived 

were dominated by sequences related to Methanosaetaceae and contained much less sequences 

affiliated to Methanosarcina (Chapter ͳ). After ʹ sub-culturing steps Methanosaetaceae-related 

sequences were lost and Methanosarcinaceae-related methanogens were further enriched in the SZ 
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culture (Figure Ͳ and Table SͲ). In the SMTZ enrichment culture the aceticlastic methanogens were 

not enriched (Table SͲ). Instead, an acetotrophic sulfate-reducer (Desulfobacter) became the 

dominant acetate-consuming microorganism. 

 

6.3.3 Propionate conversion 

Propionate conversion was studied under methanogenic conditions in a similar manner as butyrate 

conversion (Table ͱ, Figure ͳ). Maintenance of activity in the propionate-converting enrichment 

cultures was more difficult compared to the butyrate-converting cultures. After each transfer, 

propionate conversion started after a long lag phase. The only culture in which propionate 

conversion started immediately was the SZ culture and propionate was consumed faster as 

compared to the SMTZ and MZ cultures (Figure ͳ). In the SZ culture, ͱ͸.Ͳ mM propionate was 

completely converted to Ͳʹ.͵ mM methane in ͷͰ days (Table ͱ). The acetate originating from the 

inoculum (ͱ.͸ mM) was consumed completely by day ͳ͵. Thereafter, Ͱ.͸ mM acetate was produced 

at the end of the incubation period and consumed by day ͷͰ (Table ͱ). Propionate conversion in 

the MZ cultures was considerably slower than propionate conversion in the SZ culture (Figure ͳc). 

ͱͷ.͹ ± Ͱ.Ͱͱ mM propionate was completely, but slowly converted to ͲͶ.ʹ ± ͱ.Ͷ mM methane within 

Ͳ͹ͷ days. The acetate detected in the beginning of the incubation was consumed within the first ͳͶ 

days. Thereafter, ͱ.͵ ± Ͱ.Ͱ mM acetate was produced and consumed at the end of the incubation 

period (Table ͱ). The amount of methane ultimately produced from propionate in the SZ (ͱ.ͳ mol 

of methane/propionate) and in the MZ cultures (ͱ.͵ mol of methane/propionate) was close to the 

value predicted from the stoichiometry of the methanogenic propionate conversion pathway 

(CHͳCHͲCOO- + ͱ.ͷ͵ HͲO  ͱ.ͷ͵ CHʹ + ͱ.Ͳ͵ HCOͳ
- + Ͱ.Ͳ͵ H+) (Chapter ʹ-Table ͱ, reactions ͱ+͵+Ͷ).  

During the incubation, HͲ and formate were not detected and only traces of acetate were 

intermediately found. Propionate conversion in methanogenic environments is a rate limiting step 

and complete propionate conversion can be accomplished only if products are consumed by partner 

organisms (Schink and Stams, 2013; McInerney et al., 2008). The stoichiometry of propionate 

conversions in SZ and MZ cultures shows that the formation of the products is in pace with their 

formation from propionate (Fig ͳd, ͳf).  
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Figure ͳ. Propionate conversions (SZ (a), SMTZ (b) and MZ (c)) and proposed propionate 
conversion routes (SZ (d), SMTZ (e) and MZ (f)) in the cultures. Propionate conversion routes are 
proposed based on microorganisms with high relative abundance and observed propionate 
conversion stoichiometries. Values are mean of biological duplicates for SMTZ and MZ. As the 
replicate cultures of SZ grew slow, the values from only one replicate is used in the graph. Error 
bars indicate the standard deviations. Desulfobact. = Desulfobacterium.  
 

The propionate conversion rate in SMTZ culture was similar to that in the MZ culture (Ͱ.ͰͶ 

mM/day). The conversion dynamics in SMTZ culture differed significantly from the SZ and MZ 

cultures (Figure ͳ). After a lag phase of more than ͵Ͷ days propionate conversion proceeded by 

concomitant acetate and methane production. Here, ͱͷ.ͷ ± Ͱ.ͷͰ mM propionate was converted to 

ͱͰ.ͳ ± Ͱ.ͳ͵ mM methane and ͱ͵.ͱ ± Ͱ.͹͵ mM acetate (Figure ͳb and Table ͱ). This indicated that the 

conversion of propionate occurred by coupling of acetogenesis and hydrogenotrophic 

methanogenesis processes (Fig ͳe). The ratio of consumed propionate to the produced acetate and 

methane in the SMTZ cultures is ͱ : Ͱ.͹ : Ͱ.Ͷ.  As the theoretical ratio is ͱ: ͱ: Ͱ.ͷ͵, this suggests that 
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aceticlastic methanogenesis did not occur, and a minor part of the hydrogen/formate may have 

been used by sulfate reducers (Fig ͳe).  

 

6.3.4 Microbial community in propionate-degrading enrichments 

Bacterial clone library analysis of propionate-amended enrichment cultures carried out on samples 

taken after ͷͰ days for the SZ culture and Ͳ͹ͷ days for the SMTZ and MZ cultures, revealed 

dominance of  clones related to Cryptanaerobacter sp. in the SZ (͵ʹ% of all sequences) and MZ 

(ͳ͵% of all sequences) cultures (Figure ʹa, ʹc). C. phenolicus is the only cultured species of the 

genus Cryptanaerobacter and it degrades phenol in syntrophic association with hydrogenotrophic 

methanogens (Juteau et al., ͲͰͰ͵). The closest cultured relatives of two clones in the SZ culture 

affiliated with Pelotomaculum isophthalicicum (͹Ͷ%), and Pelotomaculum terephthalicicum (͹͵%), 

which are phylogenetically closely related to each other and to C. phenolicus (Ezaki, ͲͰͰ͹). P. 

terephthalicicum and P. isophthalicicum are known syntrophs that metabolize a variety of phthalate 

isomers and other aromatic compounds (McInerney et al., ͲͰͰ͸; Qiu et al., ͲͰͰͶ). As the sequence 

similarities of Cryptanaerobacter sp. and Pelotomaculum sp. with their closest cultured relatives 

detected in our study are below the threshold value of novel species status (͹͸.Ͷ͵%) (Kim et al., 

ͲͰͱʹ), these phylotypes seem to be novel species of propionate-converting bacteria within the 

family Peptococcaceae. A recent study suggested that Cryptanaerobacter sp. and Pelotomaculum sp. 

were the propionate-oxidizing species in enrichment cultures inoculated with sludge from 

agricultural biogas plants (Ahlert et al., ͲͰͱͶ). Therefore, further research is needed to test the 

ability of Cryptanaerobacter sp. to consume propionate. 

The majority of the clones (ʹͷ% of all sequences) obtained from the SMTZ enrichment 

culture related to Desulfobacterium indolicum (͹ͳ% similarity) (Figure ʹb and Table Sͳ). 

Additionally, Ͳ clones in this culture are distantly related to Desulfosarcina variabilis (͹ͳ% 

similarity). As this value is below the suggested threshold (͹ʹ.͵% ͱͶS rRNA based) for delineating 

a novel genus (Yarza et al., ͲͰͱʹ), this phylotype might be a novel genus with members utilizing 

propionate and/or acetate within the family Desulfobacteraceae. The other phylotype that is 

affiliated with the Desulfobacteraceae family in this culture was assigned as Desulfobacterium 

catecholicum (ͱͳ% of all sequences) (Table Sͳ). This sulfate-reducing bacterium can utilize HͲ+COͲ, 

formate, acetate and propionate as well as aromatic compounds and alcohols as carbon sources 

(Szewzyk and Pfennig, ͱ͹͸ͷ).  
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Figure ʹ. Distribution of bacteria (a, b, c) and archaea (d, e, f) detected in ͱͶS rRNA gene clone 
libraries derived from propionate-amended SZ (a, d), SMTZ (b, e) and MZ (c, f) cultures, 
respectively. Un: Uncultured. 
 

Therefore, D. catecholium in the SMTZ enrichment may have degraded propionate and/or 

contributed to the utilization of HͲ/COͲ, formate or acetate that are formed during incomplete 

propionate conversion (Fig ͳe). The phylotype related to Cryptanaerobacter phenolicus comprised 
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of ͱͱ% of all sequences in SMTZ culture. Its existence after several sub-culturing steps suggests that 

this bacterium is possibly involved in syntrophic propionate conversion (Fig ͳe). 

The majority of the bacterial clones retrieved from MZ enrichment culture showed ͹Ͷ-͹ͷ% 

similarity (ͱͶS rRNA based) to Sulfurovum aggregans, belonging to Epsilonproteobacteria. This is 

followed by uncultured Cryptanaerobacter sp., representing ͳ͵% of the clones (Figure ʹc and Table 

Sͳ). S. aggregans is a mesophilic chemolithoautotrophic bacterium isolated from a deep-sea 

hydrothermal vent (Mino et al., ͲͰͱʹ). This bacterium uses hydrogen as electron donor, COͲ as 

carbon source and sulfur, thiosulfate or nitrate as electron acceptors, the ability to use sulfate as an 

electron acceptor has not been reported. Epsilonproteobacteria have been shown to be widely 

present in marine and terrestrial environments (Campbell et al., ͲͰͰͶ) and detected in anoxic 

saline sediment incubations fed with different electron donors (Koizumi et al., ͲͰͰ͵), suggesting 

that they can use a wide range of electron donors and acceptors and/or constitute relationships 

with other metabolic groups of bacteria (Campbell et al., ͲͰͰͶ). The function of the Sulfurovum sp. 

in SZ and MZ cultures is hard to define based on the physiological characterization of the closest 

relative of this phylotype. Nevertheless, we cannot rule out the possibility that the 

Epsilonproteobacteria in our culture might have used hydrogen and acetate as electron donor. 

Starke et al (ͲͰͱͶ) have reported that an epsilonproteobacterial Campylobacterales member 

featured the fastest and highest acetate incorporation in the microbial consortium containing 

benzene-degrading Cryptanaerobacter, Pelotomaculum species. Similarly, Sulfurovum-like species 

were suggested to be the hydrogen- or acetate-consuming syntrophic partners of Pelotomaculum, 

Cryptanaerobacter phylotypes during the degradation of benzene under sulfate-reducing 

conditions (Kleinsteuber et al., ͲͰͰ͸; Hermann et al., ͲͰͱͰ). Epsilonproteobacterial species have 

also been observed in phenol-degrading methanogenic reactors, however their role remained 

unexplored (Ju and Zhang, ͲͰͱʹ; Zhang et al., ͲͰͰ͵; Fang et al., ͲͰͰʹ). Therefore, Sulfurovum sp. 

in our culture might be responsible for hydrogen and/or acetate consumption. As sulfate reduction 

by Sulfurovum sp. has not been reported, the possible electron acceptor for Sulfurovum sp. in MZ 

culture may be oxidized sulfur compounds (e.g. sulfur, thiosulfate). These compounds might have 

been formed by the reaction of hydrogen sulfide and traces of oxygen that were possibly introduced 

into the bottle during sampling.  

The majority of all archaeal clones obtained from ͳ propionate-amended cultures (ͱͲ͵ out 

of ͱ͸ʹ) affiliated with an uncultured Methanoculleus. ͱͰͶ clones derived from the SZ and SMTZ 

cultures have ͹͵-͹Ͷ% ͱͶS rRNA based similarity to M. taiwanensis (Figure ʹd, ʹe and Table Sʹ). 
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This uncultured Methanoculleus phylotype constituted Ͷʹ% and ͹͵% of the SZ and SMTZ clones, 

respectively. The MZ culture yielded ͱͶ clones (Ͳ͹% of the MZ archaeal clones) highly related to 

Methanoculleus marisinigri (͹͸% ͱͶS rRNA based). This indicates that Methanoculleus formed close 

relationship with the propionate-converting bacteria in the cultures and consumed HͲ produced 

during incomplete propionate conversion (Fig ͳd, ͳe, ͳf). The second most prevalent sequences (ʹͰ 

out of ͱ͸ʹ) in the archaeal clone libraries affiliated with Methanosarcina sp. (ͳͲ clones) and 

Methanosarcina subterranea (Figure ʹ and Table Sʹ). These clones were dominant in the MZ 

culture (ͳ͸ out of ͵Ͷ) and in the minority in SMTZ culture (Ͳ out of ͸ʹ clones). The observed 

complete propionate conversion to methane and COͲ in the MZ culture strongly suggests that 

Methanosarcina sp. has been involved in acetate utilization in the cultures (Fig ͳf). 

Samples for FISH were collected at the beginning of the incubation period (day ͱͶ) only 

from MZ cultures. In Fig. Sʹ, fluorescence micrographs of samples hybridized with probes specific 

for Archaea (red) and Bacteria (green) reveal cells with morphology resembling Methanosarcina 

and Methanculleus. For the bacteria, no distinct morphotype could be recognized due to a lack of 

cultured representatives (Fig ͳ, Table ͱ). 

 

6.4 Conclusions 

Long term slurry incubations and sub-culturing resulted in highly enriched syntrophic cultures 

converting propionate and butyrate to methane. Propionate was converted completely by 

syntrophs, aceticlastic and hydrogenotrophic methanogens under methanogenic conditions, 

whereas acetate accumulation occurred during butyrate conversion and aceticlasts were not 

present in the enrichments. Microbial diversity analysis revealed dominance of Syntrophomonas 

sp. in butyrate-amended and Cryptanaerobacter sp. in propionate-amended enrichment cultures. 

The detected Cryptanaerobacter sp. may be a novel propionate-converting syntroph within the 

family Peptococcaceae, as it is only distantly related to its closest relatives. Low sulfate-amended 

butyrate- and propionate-converting SMTZ cultures contained sequences related to 

Desulfobacteraceae family members besides presumed syntrophs. Hydrogenotrophic methanogens 

Methanogenium and Methaoculleus acted as the main syntrophic partners in butyrate- and 

propionate-converting cultures, respectively, and aceticlastic methanogens consumed acetate 

especially in propionate-converting cultures. Acetate in the sulfate-amended cultures was 

consumed by sulfate reducers, pointing to a competitive advantage of sulfate reducers over 

methanogens in the presence of sulfate. Overall, the results of our study indicated the presence of 
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a functionally competent syntrophic community in the coastal marine sediment of Aarhus Bay, 

capable to degrade propionate and butyrate to methane under methanogenic conditions at 

different biogeochemical zones. Further attempts to obtain the novel marine propionate- and 

butyrate-converting syntrophs, Syntrophomonas sp. and Cryptanaerobacter sp., in defined cultures 

are in progress.   
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Supplementary materials 

Table S1. Overview of bacterial clones sequenced and their similarity with their closest relatives in 
butyrate-amended SZ, SMTZ and MZ cultures. 
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Table S2. Overview of archaeal clones sequenced and their similarity with their closest relatives in 
butyrate-amended SZ, SMTZ and MZ cultures. 
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Table S3. Overview of bacterial clones sequenced and their similarity with their closest relatives in 
propionate-amended SZ, SMTZ and MZ cultures. 
 

 

  

# of clones % Affiliation Closest relative (accession no.) Similarity 
(%) Closest cultured relative (accession no.) Similarity 

(%)

SZ P1

10 22
Uncultured

Cryptanaerobacter Uncultured bacterium clone PLAB4 (AB701662.1) 98
Cryptanaerobacter phenolicus strain LR7.2 16S 

(NR_025757.1) 96

6 13
Uncultured

Cryptanaerobacter Uncultured bacterium clone ARWH-BF05 (AB546032.1) 98
Cryptanaerobacter phenolicus strain LR7.2 16S 

(NR_025757.1) 92-96

4 9
Uncultured

Cryptanaerobacter Uncultured bacterium clone A_Lac-1_35 (EU307089.1) 98
Cryptanaerobacter phenolicus strain LR7.2 16S 

(NR_025757.1) 95

5 11
Uncultured

Cryptanaerobacter Uncultured Firmicutes bacterium clone NPA01 (AB853918.1) 98
Cryptanaerobacter phenolicus strain LR7.2 16S 

(NR_025757.1) 96

3 7 Uncultured Sulfurovum Uncultured bacterium clone B7_10.3_1 (FJ717139.1) 99
Sulfurovum aggregans strain Monchim33 

(NR_126188.1) 97

3 7
Uncultured Synergistetes

Uncultured organism clone SBXZ_3880 (JN433166.1) 91
Aminobacterium colombiense strain DSM 12261 

(NR_074624.1) 91

3 7
Uncultured

Desulfuromonadales Desulfuromusa bakii strain Gyprop (NR_026175.1) 99 Desulfuromusa bakii strain Gyprop (NR_026175.1) 99

2 4 Uncultured Bacteroidetes Uncultured bacterium clone b49 (KJ578036.1) 99
Cytophaga fermentans strain ATCC 19072 

(NR_044696.1) 90

2 4 Uncultured Bacteroidetes Uncultured bacterium clone Er-MLAYS-71 (EU542481.1) 99
Prolixibacter bellariivorans strain JCM 13498 

(NR_113041.1) 89

1 2 Uncultured Firmicutes Uncultured Gracilibacter sp. clone 2_100_B10_b (JQ087078.1) 97
Gracilibacter thermotolerans strain JW/YJL-S1 

(NR_115692.1) 97
1 2 Uncultured Firmicutes Uncultured bacterium clone B19CH1_61_65 (HF558553.1) 97 Proteiniborus ethanoligenes strain GW (NR_044093.1) 87
1 2 Uncultured Firmicutes Uncultured bacterium clone HS006 (JX391342.1) 99 Tissierella creatinini strain BN11 (NR_104805.1) 94

1 2 Uncultured Pelotomaculum Uncultured bacterium clone 347_TC26_111 (KM251003.1) 99
Pelotomaculum terephthalicicum strain JT 

(NR_040948.1) 95

1 2 Uncultured Pelotomaculum Uncultured bacterium clone JI (AB091325.1) 96 Pelotomaculum isophthalicicum strain JI (NR_041320.1) 96

1 2 Uncultured Ignavibacteriales
Uncultured Ignavibacteriales bacterium clone HYIII51_Bac16s_AQDS01_01_B01 

(KU324269.1) 96 Melioribacter roseus strain P3M-2 (NR_074796.1) 84

1 2 Uncultured Ignavibacteriales Uncultured Chlorobi bacterium clone FII-AN013 1 (JQ579954.1) 99 Melioribacter roseus strain P3M-2 (NR_074796.1) 0.9
1 2 Syntrophomonas bryantii Syntrophomonas bryantii strain CuCal (NR_104881.1) 99 Syntrophomonas bryantii strain CuCal (NR_104881.1) 99

SMTZ P2

22 47
Uncultured 

Desulfobacterium Uncultured Desulfobacteraceae clone TDNP_USbc97_20_4_80 (FJ516922.1) 99 Desulfobacterium indolicum strain In04 (NR_028897.1) 93-94
7 15 Uncultured Anaerolineae Uncultured Chloroflexi bacterium clone RII-AN021 (JQ580400.1) 99 Leptolinea tardivitalis strain YMTK-2 (NR_040971.1) 91

6 13
Desulfobacterium 

catecholicum [Desulfobacterium] catecholicum strain NZva20 (NR_028895.1) 99
[Desulfobacterium] catecholicum strain NZva20 

(NR_028895.1) 99

5 11
Uncultured

Cryptanaerobacter Uncultured bacterium clone A_Lac-1_35 (EU307089.1) 98
Cryptanaerobacter phenolicus strain LR7.2 

(NR_025757.1) 95

2 4 Uncultured Bacteroidetes Uncultured bacterium clone Er-MLAYS-71 (EU542481.1) 99 Prolixibacter denitrificans strain MIC1-1 (NR_137212.1) 89

1 2 Uncultured Desulfosarcina Uncultured delta proteobacterium clone 81 EDB3 (AM882635.1) 99
Desulfosarcina variabilis strain Montpellier 

(NR_044680.1) 93

1 2 Uncultured Desulfosarcina Uncultured delta proteobacterium clone 19 EDB1 (AM882602.1) 99
Desulfosarcina variabilis strain Montpellier 

(NR_044680.1) 98
1 2 Uncultured Anaerolineae Uncultured Chloroflexi bacterium clone RII-AN043 (JQ580422.1) 99 Leptolinea tardivitalis strain YMTK-2 (NR_040971.1) 91

1 2
Uncultured

Desulfuromonadales Pelobacter sp. SFB93, complete genome (CP015519.1) 96 Pelobacter sp. SFB93, complete genome (CP015519.1) 96
1 2 Uncultured Ralstonia Uncultured Ralstonia sp. clone AtlantisII_d (HQ530524.1) 99 Ralstonia insidiosa strain ATCC 49129 (CP016023.1) 99

MZ P3

14 41 Uncultured Sulfurovum Uncultured bacterium clone B7_10.3_1 (FJ717139.1) 99
Sulfurovum aggregans strain Monchim33 

(NR_126188.1) 96-97

7 21
Uncultured

Cryptanaerobacter Uncultured bacterium clone A_Lac-1_35 (EU307089.1) 98
Cryptanaerobacter phenolicus strain LR7.2 

(NR_025757.1) 95

3 9
Uncultured

Cryptanaerobacter Uncultured bacterium clone: PLAB4 (AB701662.1) 98
Cryptanaerobacter phenolicus strain LR7.2 

(NR_025757.1) 96

2 6 Uncultured Clostridiales Uncultured bacterium clone 300_TC38_31 (KM250983.1) 98
Gracilibacter thermotolerans strain JW/YJL-S1 

(NR_115692.1) 97

2 6
Uncultured

Cryptanaerobacter Uncultured bacterium clone: ARWH-BF05 (AB546032.1) 98
Cryptanaerobacter phenolicus strain LR7.2 

(NR_025757.1) 96

1 3 Uncultured Sulfurovum Uncultured bacterium clone B1_10.3_2 (FJ717148.1) 99
Sulfurovum aggregans strain Monchim33 

(NR_126188.1) 97

1 3 Uncultured Sulfurovum Uncultured bacterium clone T3-1_246 (KX097819.1) 99
Sulfurovum aggregans strain Monchim33 

(NR_126188.1) 98

1 3 Uncultured Bacteroidetes Uncultured bacterium clone N0047 (JX391483.1) 94 Tangfeifania diversioriginum strain G22 (NR_134211.1) 93

1 3
Uncultured 

Desulfobacterales Uncultured bacterium zdt-33i5 clone zdt-33i5 (AC150251.1) 96
Desulfatiferula olefinivorans strain LM2801 

(NR_043971.1) 86

1 3 Uncultured Clostridiales Uncultured bacterium clone B19CH1_61_65 (HF558553.1) 97
Acetomicrobium faecale strain DSM 20678 

(NR_117173.1) 87
1 3 Uncultured Clostridiales Uncultured bacterium clone Ll142-3I10 (FJ672228.1) 98 Garciella nitratireducens strain Met 79 (NR_025688.1) 91
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Table S4. Overview of archaeal clones sequenced and their similarity with their closest relatives in 
propionate-amended SZ, SMTZ and MZ cultures. 
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Figure S1. FISH images with probes EUB338 mix (green, Bacteria) and ARC915 (red, Archaea), from 
the butyrate-amended SZ culture after 16 days of cultivation. In (a), arrows indicate the 
morphologies possibly related with the clonal analysis data. Cells of Methanoculleus sp. are little 
coccoids, Methanogenium sp. are big irregular cocci and Synthophomonas sp. are rods. In (b) DAPI 
staining of the same microscopic field demonstrates the probes coverage of total cells. Scale bar is 
5 µm.  
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Figure S2. FISH images with probes EUB338 mix (green, Bacteria) and ARC915 (red, Archaea), from 
the butyrate-amended SMTZ culture after 16 days of cultivation. In (a), arrows indicate 
morphologies possibly related with the clonal analysis data. In (b), DAPI staining of the same 
microscopic field demonstrates the probes coverage of total cells. Scale bar is 5 µm.  
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Figure S3. FISH images with probes EUB338 mix (green, Bacteria) and ARC915 (red, Archaea), from 
the butyrate-amended MZ culture after 16 days of cultivation. In all the images, arrows indicate the 
morphologies possibly related with the clonal analysis data. In (a) a general overview of the culture, 
(b) a cluster of Syntrophomonas and Methanosarcina cells, (c) close association between 
Syntrophomonas and Methanogenium cells, (d) DAPI staining of the same microscopic field shown 
in figure S3c. Scale bar 5 µm. 
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Figure S4. FISH images with probes EUB338 mix (green, Bacteria) and ARC915 (red, Archaea), from 
the propionate-amended MZ culture after 16 days of cultivation.  Scale bar 5 µm. 
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Coastal marine ecosystems receive regular inputs of organic matter and nutrients from primary 

production of phytoplanktons, rivers, coastal erosion, and the atmosphere (Jørgensen, 1982). In 

coastal marine sediments, the oxic zone is a thin layer (few mm or cm) due to the rapid aerobic 

mineralization and therefore oxygen is limited. Because of that the major part of the organic matter 

is degraded in the anoxic part of the sediment involving physiologically different microbes. 

Decomposition of organic matter is carried out by combined action of different metabolic groups 

of bacteria, including primary fermenters, secondary fermenters, bacteria that reduce different 

electron acceptors such as nitrate, iron, sulfate or carbon dioxide and at least two types of 

methanogenic archaea. Major intermediates of anaerobic decomposition of organic matter such as 

acetate, propionate, butyrate and H2 are the most important electron donors for sulfate-reduction 

in marine environments. Thus sulfate-reducing bacteria (SRB) contribute significantly to the 

mineralization of organic matter as well as to the Earth’s sulfur cycle (Jørgensen, 1982; Sørensen et 

al., 1981). It is estimated that 25-50% of the organic carbon is mineralized through sulfate reduction, 

which makes sulfate an important electron acceptor in anoxic part of the marine sediments 

(Jørgensen, 1982). The conversion of propionate and butyrate in deep sulfate-depleted sediments is 

critical due to the lack of electron acceptors other than CO2. For complete degradation of 

propionate or butyrate, syntrophic cooperation of one acetogenic bacteria and two methanogenic 

archaea is required (Schink and Stams, 2013) (Chapter 1). Syntrophic associations between 

propionate- or butyrate-degrading bacteria and methanogens contribute substantially to methane 

production in marine sediments (Kendall et al., 2006). Previous studies have shown SRB 

predominance in high-sulfate and methanogen predominance in low-sulfate environments (Ward 

and Winfrey, 1985; Widdel, 1988; Cappenberg, 1974; Mountfort and Asher, 1979). However, several 

other studies demonstrated that methanogenesis occurs simultaneously with sulfate reduction in 

sulfate-containing anoxic sediments (Oremland and Taylor, 1978; Oremland and Polcin, 1982; 

Oremland et al., 1982a, 1982b, 1987; Kiene et al., 1986; Oremland et al., 1988; Wang and Lee, 1995) 

and active SRB in methane-rich anoxic sediments (Jørgensen, 1978; Thomsen et al., 2001; Leloup et 

al., 2007, 2009). 

 

7.1 Conversion of propionate and butyrate in marine sediments 

7.1.1 Propionate and butyrate conversion coupled to sulfate reduction 

The effect of sulfate on butyrate and propionate conversion was studied in chapter 3 and 4. The 

sulfate in all slurries was rapidly consumed showing that sulfate reduction is a dominant process 
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for butyrate and propionate conversion in Aarhus Bay sediments. Rapid sulfate reduction in 

methane zone sediment slurries indicates an active sulfate-reducing community in the sulfate-

depleted sediments (Jørgensen, 1978; Thomsen et al., 2001; Leloup et al., 2007, 2009). These findings 

confirm findings of previous studies showing the presence of active SRB at similar cell numbers in 

the upper and lower parts of the coastal marine sediments of Limfjorden and Aarhus Bay, Denmark 

(Leloup et al., 2009; Thomsen et al., 2001; Jørgensen, 1978) and deep-sea sediment (Leloup et al., 

2007). 

Butyrate and propionate can only be metabolized by syntrophic associations of acetogenic 

bacteria and hydrogen- and acetate-consuming methanogens in the absence of sulfate (Muyzer and 

Stams, 2008). The results obtained in the chapter 3 and 4 show that the absence of sulfate causes 

a delay in butyrate and propionate conversion, which requires cooperation of different 

microorganisms (McInerney et al., 2008). Acetate, which was accumulated by syntrophic 

conversion of propionate and butyrate, was consumed rapidly and methane was produced 

concomitantly. This suggests the presence of active syntrophic propionate- and butyrate-

converting microorganisms and their ability to form consortia with hydrogen and acetate utilizing 

methanogens throughout the sediment column. Our results are consistent with previous studies 

that showed evidence of butyrate- and propionate-converting syntrophs in sulfate-containing 

marine sediments (Kendall et al., 2006; Kendall and Boone, 2006a). 

The trend of product formation and consumption during butyrate and propionate conversions 

was considerably different in high (20 mM) and low (3 mM) sulfate amended SMTZ slurries at 25°C. 

High concentration of sulfate caused low and stable methane yields despite a sudden methane 

increase at the end of the incubation period (Chapter 3 and 4). Lower methane concentrations 

(339-4183 µmol/slurry) in high sulfate amended slurries as compared to low sulfate amended 

slurries (15509-73569 µmol/slurry) along slurry incubations indicates possible sulfide inhibition on 

methanogenesis (Pender et al., 2004; O’Flaherty et al., 1998; Shin et al., 1995). Under low sulfate 

condition, however, methane concentrations were relatively high, especially during butyrate 

conversion. The results obtained from the chapters 3 and 4 indicate that low sulfate concentration 

stimulates the whole microbiome; both sulfate reduction and methanogenesis occur in Aarhus Bay 

sediments.  
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7.1.2 The effect of temperature on propionate and butyrate conversion 

Different temperatures have an impact on butyrate and propionate conversion in Aarhus Bay 

sediments. The results of chapter 3 and 4 show that at low incubation temperature (10°C) butyrate 

and propionate conversion is very slow, with low sulfate consumption and high acetate 

accumulation. This result is in line with previous experiments showing decreased sulfate reduction 

rates at temperatures below 25°C in sulfate-amended sediment slurries (Weston and Joye, 2005). 

On the other hand, efficient acetate consumption with simultaneous methane production in 

sulfate-free slurries at 25°C has also been shown by Roussel et al (2015).   

Sulfate-methane transition zone is located between sulfate and methane zones and 

characterized by low sulfate and methane concentrations. In this sediment zone, methane and 

sulfate are mutually depleted by the microbial anaerobic oxidation of methane (AOM) (Sultan et 

al., 2016; Iversen and Jørgensen, 1985). Methanogenesis during butyrate and propionate conversion 

at 10°C in high-sulfate amended SMTZ slurries was relatively low and fluctuating (Chapter 3 and 

4). Although high sulfate and sulfide concentrations can be the reason of low methane yields, the 

fluctuating methane production during butyrate conversion and total methane consumption 

during propionate conversion can be related to anaerobic oxidation of methane (AOM). AOM has 

been reported to occur in SMT zone of Aarhus Bay (Webster et al., 2011; Aquilina et al., 2010; 

Thomsen et al., 2001; Dale et al., 2008). Since the incubation temperature (10°C) resembles the in 

situ temperature of Aarhus Bay (Dale et al., 2008) the microbial communities residing in SMTZ 

might be involved in oxidation of the produced methane. 

  

7.2 Microbial community dynamics in propionate and butyrate conversion 

Microbial communities in the butyrate and propionate converting enrichment slurries show 

different dynamics throughout the several biogeochemical zones (SZ, SMTZ, MZ).  

 

7.2.1 Bacterial community at different sulfate concentrations 

The sulfate concentrations caused a variation of presence of intact polar membrane lipids (IPL), 

which are the building blocks of cell membranes and representative of living biomass, in butyrate-

converting slurries (Chapter 5), although the microbial composition changed considerably both in 

propionate and butyrate-converting slurries (Chapter 3 and 4). The enriched bacteria in the 

incubations with sulfate were similar when butyrate and propionate were used as substrate. These 
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were mainly the sulfate reducers belonging to Desulfobacteraceae and Desulfobulbaceae (Figure 1 

and 2). Desulfosarcina and Desulfobacterium dominated the butyrate-converting slurries, whereas 

Desulfosarcina, Desulfobulbus and Desulforhopalus were the main SRB in propionate-converting 

slurries. The increase in the relative abundance of Desulfobacteraceae and Desulfobulbaceae in SZ, 

SMTZ and MZ sediment slurries suggests the presence of sulfate reducers throughout the anoxic 

sediment column. Our findings confirm the reports showing the abundance and the activity of 

sulfate-reducing bacteria in Aarhus Bay sediments at Station 1 (Leloup et al. 2009) and Station 6 

(Sahm et al., 1999), in Kysing Fjord, Denmark, (Thomsen et al., 2001) and Mariager Fjord, Denmark 

(Wagner et al., 2005). The ability of some SRB to grow fermentatively may explain their abundance 

in sulfate-depleted sediments and the sudden increase in their relative abundance in sulfate-

amended methane zone slurries.  

The absence of sulfate causes a change in the enriched microbial community. Syntrophomonas 

increased in relative abundance in the butyrate-converting sediment slurries, whereas 

Cryptanaerobacter dominated the propionate-converting sediment slurries. Syntrophomonas is a 

known butyrate-degrading syntrophic specialist that grows in close association with methanogens 

and other hydrogen- and/or formate-utilizing microorganisms (Plugge et al., 2011; Sousa et al., 2009; 

Oude Elferink et al., 1994). The fact that the relative abundance of Syntrophomonas was also high 

in some sulfate-containing slurries and kept the high abundance after several transfers (Chapter 

6), lead us to speculate that the presence of sulfate can prevent Syntrophomonas species to be the 

dominant bacterial group, but does not inhibit their involvement in butyrate conversion, 

suggesting a role of syntrophic butyrate conversion even in the presence of sulfate. Coexistence of 

Syntrophomonas spp. and sulfate reducers were reported during butyrate (Struchtemeyer et al., 

2011; Visser et al., 1993) and oleate and palmitate (Sousa et al., 2009) degradation in the presence of 

sulfate. 

The genus Cryptanaerobacter belongs to the family Peptococcaceae. As Cryptanaerobacter 

dominated the slurries that contain low or no sulfate (Chapter 4) (Figure 7.2) and the enrichment 

cultures after subculturing process (Chapter 6), we hypothesize that a novel species of this 

bacterium might have the capability to convert propionate in syntrophy with hydrogenotrophic 

methanogens. The idea behind this hypothesis is based on ; i) the isolation of C. phenolicus from a 

methanogenic consortium, ii) the syntrophic lifestyle of its closest cultured relatives and iii) the 

presence of propionate as a sole carbon source in the slurries.  
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Figure 1. Overview of butyrate conversion and the proposed responsible microbial community at different 
temperatures and sulfate concentrations in enrichment slurries of sulfate, sulfate-methane transition and 
methane zone sediment of Aarhus Bay. Possible butyrate conversion pathways are shown with different 
coloured arrows; red arrows represent incomplete butyrate conversion coupled to sulfate reduction, 
green arrows represent complete butyrate conversion coupled to sulfate reduction, yellow arrows 
represent syntrophic butyrate conversion. Horizontal arrow represents the substrates originate from 
fermentation, decomposition of dead biomass and/or metabolites. 
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Additionally, the hypothesis is supported with the statistical analysis showing positive correlation 

of the order Clostridiales with methane production and temperature. Desulfobacteraceae was 

dominant under sulfate-free and low-sulfate conditions during butyrate and propionate conversion 

(Chapter 4). This result agrees with the previous studies reporting that non-sulfate reducing, 

syntrophic members of Desulfobacteraceae involve in butyrate (Kendall et al., 2006) and benzene 

degradation (Ulrich and Edwards, 2003). Despite the importance of Syntrophobacter in syntrophic 

propionate conversion (Plugge et al., 2011) in shallow methanogenic sediments (Lloyd et al., 2006; 

McInerney et al., 2008), we did not detect Syntrophobacter in Aarhus Bay sediment or in the 

sediment slurries. Similarly, Leloup et al. (2009) reported only very low abundance of 

Syntrophobacter-like sequences at Station 1 in Aarhus Bay. The results of this thesis illustrate the 

significance of metabolic flexibility of microorganisms under changing conditions such as 

temperature, electron acceptor availability, the presence/absence of partner organisms. 

 

7.2.2 Bacterial community at different temperatures 

The most obvious difference in the microbial community composition at high and low temperature 

is the dominance of Cryptanaerobacter at 25°C, and Desulfobacteraceae (Desulfofaba), especially 

Desulfobulbaceae members (Desulfobulbus, Desulforhopalus) at 10°C during propionate conversion. 

Likewise, Desulfobulbaceae and some Desulfobacteraceae members are negatively correlated with 

temperature (Chapter 4). Incubation at low temperature had also an impact on IPL composition 

in propionate-converting slurries (Chapter 5). In butyrate-converting slurries, there is no clear 

difference in microbial community between different temperatures. However, Clostridiales had 

higher relative abundance at 10°C regardless of the sulfate concentration and the sediment depth. 

Clostridiales are commonly found in surface and deep marine sediments, soils and methanogenic 

environments (Fry et al., 2008; Parkes et al., 2014). As 10°C resembles the in situ temperature, our 

results provide support for possible involvement of Clostridiales in butyrate conversion in marine 

sediments.  

 

7.2.3 Bacterial community at different sediment depth 

Pyrosequencing of 16S rRNA gene amplicons of Aarhus Bay sediment revealed the dominance of 

the Desulfobacteraceae in the SMTZ, accounting for 79% of the sequences (Chapter 3 and 4) in the 

original sediment. This result shows that the microbial community in the SMTZ is distinct from the 
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microbial community in the SZ and MZ. This is in accordance with previous studies documenting 

the high abundance of Desulfobacteraceae in SMTZ of marine sediments (Wagner et al., 2005).  

Figure 2. Overview of propionate conversion and the proposed responsible microbial community at 
different temperatures and sulfate concentrations in enrichment slurries of sulfate, sulfate-methane 
transition and methane zone sediment of Aarhus Bay. Possible propionate conversion pathways are 
shown with different coloured arrows; red arrows represent incomplete propionate conversion coupled 
to sulfate reduction, green arrows represent complete propionate conversion coupled to sulfate 
reduction, yellow arrows represent syntrophic propionate conversion. Horizontal arrow represents the 
substrates originate from fermentation, decomposition of dead biomass and/or metabolites.  
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Pyrosequencing showed that Desulfobacteraceae was still present in the SMTZ enrichment slurries 

after long term incubation and therefore might have involved in propionate and butyrate 

conversion at high and low sulfate concentrations. In Chapter 6, Syntrophomonas became 

dominant in the low sulfate containing SMTZ slurry at 25°C after several transfers, and 

Desulfobacter latus, belonging to Desulfobacteraceae, was the syntrophic partner of 

Syntrophomonas. On the other hand, the dominant propionate-converting organism at the same 

incubation condition was still a member of Desulfobacteraceae (Chapter 6). This suggests that 

Syntrophomonas can effectively compete with sulfate reducers for butyrate in the presence of 

sulfate.  

The presence of Desulfobacteraceae, including acetate-degrading sulfate reducers, at 10°C might 

be associated with their syntrophic interaction with methane-oxidizing archaea, similar to the in 

situ condition (Knittel and Boetius, 2009; Boetius et al., 2000). This result is consistent with low 

and fluctuating methane concentrations in high sulfate-amended butyrate- and propionate-

converting SMTZ slurries in which the abundance of ANME-1b (methane oxidizing archaea, ANME) 

is relatively high (Chapter 3 and 4).  

 

7.2.4 Archaea as syntrophic partners  

Methanomicrobiales was the dominant archaeal order in both butyrate- and propionate-converting 

slurries regardless of the origin of the sediment, the incubation temperature and the sulfate 

concentration (Chapter 3 and 4). This finding is supported by the statistical analysis showing that 

Methanomicrobiales clustered with various IPLs that were abundant at different temperatures and 

sulfate concentrations in the butyrate- and propionate-converting slurries (Chapter 5). Similarly, 

different genera of Methanomicrobiaceae were dominant in the enrichment cultures after several 

transfers (Chapter 6). They were the main syntrophic partners of butyrate and propionate 

degraders responsible for H2 and/or formate consumption. In addition, the FISH micrographs of 

butyrate-converting enrichment cultures visualize the close relationship of syntrophic bacteria and 

methanogenic archaea (Chapter 6). The predominance of hydrogenotrophic methanogens has 

been observed in near-surface and sulfate-rich marine sediments (Webster et al., 2009; Parkes et 

al., 2007; Kendall and Boone, 2006a; Parkes et al., 1990; Blair and Carter 1992; Sørensen et al. 1981) 

which explains the high abundance of Methanomicrobiales under sulfidogenic as well as 

methanogenic conditions in our incubations. 
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The other syntrophic partner organisms belonged to the aceticlastic methanogenic families, 

Methanosarcinaceae and Methanosaetaeceae. Methanosarcina, belonging to Methanosarcinaceae, 

was present in sulfate-amended and sulfate-free slurries whereas Methanosaetaceae was enriched 

only in slurries with low or free of sulfate (Chapter 3). After subculturing, however, 

Methanosaetaceae-related methanogens were replaced by Methanosarcinaceae-related 

methanogens in SZ and by Desulfobacter latus in SMTZ cultures (Chapter 6).  

In addition to the methane-producing archaea, methane-oxidizing archaea (ANME-1b) were 

also detected in propionate and butyrate slurries (Chapter 3 and 4), but they were not enriched 

further, due to their slow growth (Chapter 6). Low methane and high sulfide amounts in SMTZ 

slurries support the findings of Timmers et al. (2015) where ANME-1b was enriched in batch 

incubations with Baltic Sea sediments. The enrichment of both ANME-1 and Desulfobacteraceae in 

SMTZ slurries at low temperature is in accordance with previous findings documenting that SMTZ 

sediments are dominated by the members of Desulfobacteraceae and ANME clusters, forming close 

associations and involving in anaerobic oxidation of methane (Harrison et al., 2009; Knittel and 

Boetius, 2009). The other methane-oxidizing archaeal genera detected in the same slurries with 

ANME-1b were Methanococcoides and Methanolobus which are defined as ANME-3 Archaea 

(Knittel and Boetius, 2009, Lösekann et al., 2007, Niemann et al., 2006). Apparently, the incubation 

condition, inhabiting microbial community and the amounts of sulfate, sulfide and methane in the 

slurries favoured the enrichment of ANME-3 group. 

 

7.3 H2 and acetate: substrates for syntrophy or competition?  

The competition mechanism of sulfate reducers and methanogens for hydrogen has been explained 

by Hoehler et al. (1998). SRB can consume as low as 1-2 nM H2, while hydrogenotrophic 

methanogens require a minimum of 10-20 nM H2. However, methanogens can coexist with sulfate 

reducers in sulfate zone of marine sediments by utilizing methylated compounds such as methanol, 

methylated amines and methylated sulfides. Nanomolar concentrations of H2 may leak from 

methanogens which can subsequently be scavenged by sulfate reducers in the methane zone 

sediments (Finke et al., 2007b). The leaked H2 controls the metabolic processes between different 

physiological types of organisms.  

Energy yields from acetate in sulfate-reducing marine sediment are often sufficiently high to 

allow several potentially competing microbial processes to co-occur. The main reason is that acetate 

exists in much higher concentrations than H2, in micromolar concentrations compared to 
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nanomolar concentrations of H2 (Albert and Martens 1997; Jørgensen and Parkes 2010), making it 

theoretically possible for aceticlastic methanogens to co-occur with energetically more favourable 

acetate-oxidizing sulfate reduction in the sulfate zone (Finke et al., 2007b; Wang et al. 2010b). 

However, almost all acetate in the sulfate zone is converted to CO2, not to CH4 (Jørgensen and 

Parkes, 2010), suggesting the predominance of aceticlastic sulfate reduction. Finke et al. (2007b) 

reported increasing sulfate and decreasing H2 concentrations in marine sediments incubated with 

methylamine and methanol. They concluded that the H2 production from methanogens becomes 

favorable under sulfate-reducing conditions and interspecies transfer of leaked H2 during acetate 

oxidation might occur which provides a mechanism for survival of aceticlastic methanogens in 

sulfate-reducing sediments (Finke et al., 2007b). The importance of H2 leakage was described for 

the first time by Phelps et al. (1985) using mixed pure cultures grown on acetate or methanol. They 

showed sulfate-dependent H2 transfer from Methanosarcina barkeri to Desulfovibrio vulgaris, 

resulting in less methane production and more CO2 and sulfide production. The methanogens 

started to produce H2/CO2 instead of CH4 upon sulfate addition and the sulfate-reducing partner 

scavenged the produced hydrogen efficiently and kept the concentration low enough for the 

methanogens to continue producing H2/CO2. Achtnich et al. (1995) showed that hydrogen-utilizing 

sulfate reducers influence aceticlastic methanogenesis in anoxic paddy soils leading to oxidation of 

the methyl carbon. King et al. (1983) reported a decreasing %CO2 after inhibition of sulfate 

reduction, thus inhibition of the H2 scavenging partner in marine sediments for non-competitive 

substrates such as methylamine and trimethylamine. We performed a similar experiment to the 

study of Phelps et al. (1985) and showed interspecies hydrogen transfer between aceticlastic 

Methanosaeta concilii and hydrogenotrophic microorganisms, Desulfovibrio vulgaris or 

Methanococcus maripaludis, using acetate as electron donor (Chapter 2). Our results showed that 

D. vulgaris could reduce sulfate and grow on leaked hydrogen from M. concilii, and the cell increase 

of M. maripaludis was synchronized with the growth of M. concilii. The switch from methanogenesis 

to hydrogen production shows cooperation rather than competition between methanogens and 

sulfate reducers. Hydrogen production from Methanosaeta was demonstrated for Methanosaeta 

thermophila when growing on acetate (Valentine et al., 2000), and we reported for the first time 

hydrogen leakage from a mesophilic halotolerant Methanosaeta. In addition to hydrogen leakage, 

we tested coexistence of M. concilii with Desulfobacter latus on acetate under sulfidogenic 

conditions in mixed pure cultures (Chapter 2). The results showed that acetate conversion by 

aceticlastic methanogens in the presence of high sulfate and active aceticlastic sulfate reducers is 
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possible. Butyrate and propionate conversion at high sulfate concentration occurred by syntrophic 

interactions of acetogenic bacteria with acetate- and hydrogen-consuming sulfate reducers and 

methanogens. This was revealed by consumption of accumulated acetate with simultaneous 

methane production both in sulfate and methane zone slurries (Chapter 3 and 4). Despite 

cooperative interactions of sulfate reducers and methanogens, we still observed competition 

between them for acetate. Methanosaetaceae, which was dominant aceticlastic methanogen in 

enrichment slurries (Chapter 3), was washed out after several transfers and replaced by 

Methanosarcinaceae in sulfate zone (SZ) cultures and by acetate-consuming D. latus in sulfate-

methane transition zone (SMTZ) cultures (Chapter 6). High acetate concentration resulting from 

incomplete butyrate conversion during sub-culturing process can be the reason of high relative 

abundance of Methanosarcinaceae, whose members are known to be more successful at high 

acetate concentrations (Jetten et al., ͱ͹͹Ͳ). Additionally, D. latus grew faster in SMTZ cultures, thus 

gained competitive advantage over methanogens (Muyzer and Stams, ͲͰͰ͸). 

 

7.4 Concluding remarks and future perspectives 

Sulfate reduction and methanogenesis are important terminal electron-accepting processes in 

coastal marine sediments, and propionate, butyrate, acetate, and H2/formate are major end-

products of organic matter degradation in these ecosystems. Since the conversion of propionate 

and butyrate is critical in sulfate-depleted sediments and acetate and H2/formate play an important 

role during their degradation, it is important to know which populations of microorganisms are 

involved in their degradation in the upper and lower parts of the marine sediments and how they 

interact with each other during degradation.  

In this thesis, we demonstrated that sulfate reducers were more competitive than 

methanogens in high-sulfate environments and thus sulfate reduction is the dominant pathway for 

butyrate and propionate conversions in Aarhus Bay sediment. Desulfosarcina and Desulfobacterium 

are involved in butyrate conversion, whereas Desulfosarcina, Desulfobulbus and Desulforhopalus 

are involved in propionate conversion. We also determined that the presence of SRB, especially 

Desulfobacteraceae and Desulfobulbaceae, was independent of the presence of sulfate. We observed 

that Desulforhopalus, SEEP-SRB1 group, unclassified Desulfobacteraceae were more competitive in 

environments without sulfate and Desulfobulbaceae were more successful at low temperature as 

compared to Desulfobacteraceae. The fact that many sulfate reducers have both sulfidogenic and 

acetogenic type of metabolism, increases the chance of survival in environments lacking sulfate. 
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The syntrophic butyrate-converting genus Syntrophomonas was detected under sulfate-free as well 

as low-sulfate conditions, whereas syntrophic conversion of propionate was likely performed by an 

unknown species of Cryptanaerobacter throughout the sediment. Methanomicrobiales were the 

major competitors for hydrogen in high and low-sulfate environments. In the presence of sulfate, 

Methanosarcinaceae and Desulfobacteraceae became the most competitive acetate consumers, 

whereas Methanosaetaceae could outcompete these groups at low acetate and sulfate 

concentartions. On the other hand, mixed pure cultures of Methanosaeta concilii with 

hydrogenotrophic D. vulgaris and M. maripaludis indicated hydrogen leakage from M. concilii, 

which allowed D. vulgaris to grow and M. maripaludis to sustain itself. Hydrogen leakage provides 

an explanation for biogeochemical zonation for non-competitive and competitive substrates in 

marine sediments. This thesis provided insight into the relationship between sulfidogenic and 

methanogenic propionate and butyrate conversion at different depths of marine sediments, the role 

of H2/formate and acetate during conversion and the responsible microbial community. It is 

apparent that several factors influence the interspecies interactions and conversion dynamics, such 

as temperature, sulfate availability, sulfide and methane concentrations, sediment depth and the 

syntrophic microbial community. Novel Syntrophomonas and Cryptanaerobacter species detected 

by 16S rRNA gene sequencing analysis are likely involved in butyrate and propionate conversions, 

respectively, at different depths in marine sediments. Further attempts are necessary to isolate and 

characterize these microorganisms. As it is difficult to obtain syntrophs in pure or defined mixed 

cultures, different incubation conditions should be applied. These can include different substrates 

and substrate concentration, electron acceptor concentration, incubation temperatures and 

prolonged incubation time. The isolates can further be co-cultured with the organisms that are 

competitive or cooperative to get insight about interspecies interactions and their role in 

propionate and butyrate conversions in marine sediments.  

While it is advantageous to monitor metabolic products and identify the metabolic 

pathways during incubation in batch systems, homogenization of sediment destroys the spatial 

structure of the microbial community. Continuous flow-through reactors can be used to cultivate 

microorganisms while maintaining low substrate concentrations comparable to in situ or to 

measure reaction rates without disrupting the porous structure in the sediment or spatial 

arrangements of microorganisms. However, long-term incubation is difficult with continuous flow-

through reactors as it is laborious to maintain the system steady for long periods. Intact sediment 

core incubation is another method that is used to mimic in situ conditions. Here, only the 
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concentrations of carbon based substrates can be controlled while the pore-water constituents can 

be kept similar to in situ concentrations. Incubation with 13C-labelled substrates (e.g. acetate, 

propionate and butyrate) and subsequent 13C-labelled RNA/DNA/PLFA analysis can give 

information on the microorganisms using the labeled substrate, hence involving in the cycling of 

these substrates.  

As the numerically rare community members may have important ecological and metabolic 

functions within marine sediments, the combination of single-cell methodologies with different 

FISH techniques can be applied for the analysis of less-abundant and more informative target 

microorganisms and their interactions within mixed populations. In this respect, after incubation 

with labeled substrates under in situ or near in situ conditions, subsamples can be chemically fixed 

for FISH and the cells can subsequently be visualized by nanoSIMS (Secondary Ion Mass 

Spectrometry). Simultaneous imaging of identity and the quantification of metabolic activity by 

nanoSIMS will provide insights into the physiology of microorganisms obtained both in axenic 

cultures and enrichments, as well as the ecophysiology in their natural environment. Proteins may 

also be considered as suitable targets for the direct identification of key enzymes involved in the 

uptake of particular labeled compounds. 



 

 



 

 
 

 

Appendices 

 

 



 

 

 

 

 

 

 

 



Appendices 

184 
 

References 

Achtnich C, Schuhmann A, Wind T, Conrad R (1995) Role of interspecies H2 transfer to sulfate and 
ferric iron-reducing bacteria in acetate consumption in anoxic paddy soil. FEMS Microbiol 
Ecol 16:61–69.  

Ahlert S, Zimmermann R, Ebling J, König H (2016) Analysis of propionate-degrading consortia from 
agricultural biogas plants. Microbiologyopen 5: 1027-1037.  

Albert DB, Martens CS (1997) Determination of low-molecular-weight organic acid concentrations 
in seawater and pore-water samples via HPLC. Mar Chem 56:27–37.  

Alperin MJ, Reeburgh WS, Whitaker MJ (1988) Carbon and hydrogen isotope fractionation resulting 
from anaerobic methane oxidation. Glob Biochem Cycles 2: 279-288. 

Alphenaar PA, Visser A, Lettinga G (1993) The effect of liquid upward velocity and hydraulic 
retention time on granulation in UASB reactors treating wastewater with a high sulphate 
content. Bioresource Technol 43(3):249–258. 

Amann RI, Ludwig W, Schleifer KH, Amann RI, Ludwig W (1995) Phylogenetic identification and 
in situ detection of individual microbial cells without cultivation . Microbiol Rev 59:143–169. 

Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and 
hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25:175–243.  

Aquilina A, Knab NJ, Knittel K, Kaur G, Geissler A, Kelly SP, Fossing H, Boot CS, Parkes RJ, Mills 
RA, Boetius A, Lloyd JR, Pancost RD (2010) Biomarker indicators for anaerobic oxidizers of 
methane in brackish-marine sediments with diffusive methane fluxes. Org Geochem 41:414–
426.  

Bale NJ, Hopmans EC, Schoon PL, de Kluijver A, Downing JA, Middelburg JJ, Sinninghe Damsté JS, 
Schouten S (2016) Impact of trophic state on the distribution of intact polar lipids in surface 
waters of lakes. Limnol Oceanogr 61:1065–1077. 

Banat IM, Nedwell DB (1983) Mechanisms of turnover of C2-C4 fatty acids in high-sulphate and 
low-sulphate anaerobic sediments. FEMS Microbiol Lett 17:107–110. 

Barker HA (1936) On the biochemistry of the methane fermentation. Arch Mikrobiol 7:404–419.  

Barnes RO, Goldberg ED (1976) Methane production and consumption in anoxic marine sediments. 
Geology 4:297–300.  

Beaty PS, McInerney MJ (1987) Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch 
Microbiol 147:389–393.  



References 

185 
 

Beck M, Riedel T, Graue J, Köster J, Kowalski N, Wu CS, Wegener G, Lipsewers Y, Freund H, 
Böttcher ME, Brumsack HJ, Cypionka H, Rullkötter J, Engelen B (2011) Imprint of past and 
present environmental conditions on microbiology and biogeochemistry of coastal 
Quaternary sediments. Biogeosciences 8:55–68.  

Berry D, Mahfoudh K Ben, Wagner M, Loy A (2011) Barcoded primers used in multiplex amplicon 
pyrosequencing bias amplification. Appl Environ Microbiol 77:7846–7849.  

Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008) Metagenomic signatures of 
the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl 
Acad Sci 105:10583–10588.  

Blair NE, Carter WD (1992) The carbon isotope biogeochemistry of acetate from a methanogenic 
marine sediment. Geochim Cosmochim Acta 56:1247–1258.  

Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Canad J of 
Biochem and Physiol 37:911–917. 

Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen BB, 
Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating 
anaerobic oxidation of methane. Nature 407:623–626.  

Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate 
in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate 
uptake. Appl Environ Microbiol 55:1735–1741.  

Boonet DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. 
gen. nov., from methanogenic ecosystems. 40:626–632. 

Borowski WS, Paull CK, Ussler W (1999) Global and local variations of interstitial sulphate gradients 
in the deep-water, continental margin sediments: Sensitivity to underlying methane and gas 
hydrates. Mar Geol 159:131–154. 

Borrel G, Lehours AC, Crouzet O, Jézéquel D, Rockne K, Kulczak A, Duffaud E, Joblin K, Fonty G 
(2012) Stratification of Archaea in the deep sediments of a freshwater meromictic lake: vertical 
shift from methanogenic to uncultured Archaeal lineages. PLoS One. 7:e43346. 

Bowles MW, Mogollon JM, Kasten S, Zabel M, Hinrichs K-U (2014) Global rates of marine sulfate 
reduction and implications for sub-sea-floor metabolic activities. Science 344:889–891. 

Bragg L, Stone G, Imelfort M, Hugenholtz P, Tyson GW (2012) Fast, accurate error-correction of 
amplicon pyrosequences using Acacia. Nat Methods 9:425–426.  

Burdige DJ (2007) Preservation of organic matter in marine sediments : controls, mechanisms, and 
an imbalance in sediment organic carbon budgets? Chem Rev 107:467–485.  



Appendices 

186 
 

Callaghan AV, Morris BEL, Pereira IAC, McInerney MJ, Austin RN, Groves JT, Kukor JJ, Suflita JM, 
Young LY, Zylstra GJ, Wawrik B (2012) The genome sequence of Desulfatibacillum alkenivorans 
AK-01: a blueprint for anaerobic alkane oxidation. Environ Microbiol 14:101–113. 

Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile ϵ-proteobacteria: key players in 
sulphidic habitats. Nat Rev Microbiol 4:458–468.  

Canfield DE (1993) Organic matter oxidation in marine sediments. In: Interactions of C, N, P, and 
S biogeochemical cycles and global change. Wollast, R, Chou, L, and Mackenzie, F, (eds) 
Springer-Verlag, Berlin Heidelberg pp 333–363. 

Canfield D, Thamdrup B, Kristensen E (2005) Heterotrophic carbon metabolism. In: Aquatic 
Geomicrobiology. Southward, A., Tyler, P., Young, C., and Fuiman, L. (eds). Elsevier, Academic 
Press, pp 129–166. 

Canfield DE, Thamdrup B, Kristensen E. (2006) Heterotrophic carbon metabolism. In: Aquatic 
geomicrobiology. Southward A. Tyler P, Young C, Fuiman, L, (eds) Elsevier, Academic Press, 
pp 129–166. F 

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, 
Goodrich JK, Gordon JI, Huttley G, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone C, 
Mcdonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters W, 
Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-
throughput community sequencing data. Nat Methods 7:335–336.  

Cappenberg, TE (1974) Interrelations between sulfate-reducing and methane-producing bacteria in 
bottom deposits of a fresh-water lake. I. Field observations. Antonie Van Leeuwenhoek 
40:285–295. 

Cappenberg TE, Prins RA (1974) Interrelations between sulfate-reducing and methane-producing 
bacteria in bottom deposits of a fresh-water lake. III. Experiments with 14C-labeled substrates. 
Antonie Van Leeuwenhoek 40:457–469. 

Chabrière E, Charon MH, Volbeda A, Pieulle L, Hatchikian EC, Fontecilla-Camps JC (1999) Crystal 
structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in 
complex with pyruvate. Nat Struct Biol 6:182–190. 

Chapelle F, Lovley D. (1992) Competitive exclusion of sulfate reduction by Fe (III)-reducing 
bacteria: a mechanism for producing discrete zones of high-iron ground water. Ground Water 
30: 29–36. 

Chen S, Liu X, Dong X (2005) Syntrophobacter sulfatireducens sp. nov., a novel syntrophic, 
propionate-oxidizing bacterium isolated from UASB reactors. Int J Syst Evol Microbiol 55:1319–
1324. 

Chong SC, Liu Y, Cummins M, Valentine DL, Boone DR (2002) Methanogenium marium sp. nov., a 
H2-using methanogen from Skan Bay, Alaska, and kinetics of H2 utilization. Antonie van 
Leeuwenhoek 81:263–270.  



References 

187 
 

Christensen D, Blackburn TH (1982) Turnover of 14C-labelled acetate in marine sediments. Mar Biol 
71:113–119.  

Christensen D (1984) Determination of substrates oxidized by sulfate reduction in intact cores of 
marine sediments. Limnol Oceanogr 29, 189-192. 

Claypool GE, Kvenvolden KA (1983) Methane and other hydrocarbon gases in marine sediment. 
Annu Rev Earth Planet Sci 11:299–327.  

Claypool GE (2004) Ventilation of marine sediments indicated by depth profiles of pore water 
sulfate and  δ34 S. Geochemical Soc Spec Publ 9:59–65.  

Claypool GE, Kvenvolden KA (1983) Methane and other hydrocarbon gases in marine 
sediment. Annu Rev Earth Pl Sc 11(1): 299-327. 

Cline JJD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters1. Limnol 
Oceanogr 14:454–458.  

Conklin A, Stensel HD, Ferguson J (2006) Growth kinetics and competition between 
Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environ Res 
78:486–496.  

Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, 
N2O, and NO). Microbiol Rev 60:609–640. 

Cord-Ruwisch R, Seitz HJ, Conrad R (1988) The capacity of hydrogenotrophic anaerobic bacteria to 
compete for traces of hydrogen depends on the redox potential of the terminal electron 
acceptor. Arch Microbiol 149:350–357.  

Crill PM, Martens CS (1986) Methane production from bicarbonate and acetate in an anoxic marine 
sediment. Geochim. Cosmochim. Acta 50:2089-2097.  

Daims H, Brühl A, Amann R, Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 
is insufficient for the detection of all Bacteria: Development and evaluation of a more 
comprehensive probe set. Syst Appl Microbiol 22:434–444.  

Dale AW, Aguilera DR, Regnier P, Fossing H, Knab NJ, Jørgensen BB (2008) Seasonal dynamics of 
the depth and rate of anaerobic oxidation of methane in Aarhus Bay (Denmark) sediments. J 
Mar Res 66:127–155. 

Dar SA, Kleerebezem R, Stams AJM, Kuenen JG, Muyzer G (2008) Competition and coexistence of 
sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as 
affected by changing substrate to sulfate ratio. Appl Microbiol Biotechnol 78:1045–1055.  

Dar SA, Kuenen JG, Muyzer G (2005) Nested PCR-denaturing gradient gel electrophoresis approach 
to determine the diversity of sulfate-reducing bacteria in complex microbial communities. 
Appl Environ Microbiol 71:2325–2330. de Bok FAM, Stams AJM, Dijkema C, Boone DR (2001) 



Appendices 

188 
 

Pathway of propionate oxidation by a syntrophic culture of Smithella propionica and 
Methanospirillum hungatei. Appl Environ Microbiol 67: 1800-1804. 

de Bok FA, Roze EHA, Stams AJM (2002a) Hydrogenases and formate dehydrogenases of 
Syntrophobacter fumaroxidans. Antonie van Leeuwenhoek 81:283-291. 

de Bok FAM, Luijten MLGC, Stams AJM (2002b) Biochemical evidence for formate transfer in 
syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and 
Methanospirillum hungatei. Appl Environ Microbiol 68:4247–4252. 

de Bok FAM, Hagedoorn PL, Silva PJ, Hagen WR, Schiltz E, Fritsche K, Stams AJM (2003) Two W-
containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate 
oxidation by Syntrophobacter fumaroxidans. Eur J Biochem 270:2476–2485.  

de Bok FAM, Plugge CM, Stams AJM (2004) Interspecies electron transfer in methanogenic 
propionate degrading consortia. Water Res 38:1368–1375.  

de Bok FAM, Harmsen HJM, Plugge CM, de Vries MC, Akkermans ADL, de Vos WM, Stams AJM 
(2005) The first true obligately syntrophic propionate-oxidizing bacterium, Pelotomaculum 
schinkii sp. nov., co-cultured with Methanospirillum hungatei, and emended description of the 
genus Pelotomaculum. Int J Syst Evol Microbiol 55:1697–1703.  

De Rosa M and Gambacorta A (1988) The lipids of archaebacteria. Prog Lipid Res 27:153-75. 

Deegan LA, Johnson DS, Warren RS, Peterson BJ, Fleeger JW, Fagherazzi S, Wollheim WM (2012) 
Coastal eutrophication as a driver of salt marsh loss. Nature 490:388–392. 

Delong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689. 

DeSantis TZ, Hugenholtz P, Keller K, Brodie EL, Larsen N, Piceno YM, Phan R, Andersen GL (2006) 
NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. 
Nucleic Acids Res 34:394–399.  

Devereux R, Delaney M, Widdel F, Stahl DA (1989) Natural relationships among sulfate-reducing 
Eubacteria. J Bacteriol 171:6689–6695. 

Dojka MA, Hugenholtz P, Haack SK, Pace NR (1998) Microbial diversity in a hydrocarbon-and 
chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ 
Microbiol 64:3869–3877. 

Dolfing J, Jiang B, Henstra AM, Stams AJM, Plugge CM (2008) Syntrophic growth on formate: a new 
microbial niche in anoxic environments. Appl Environ Microbiol 74:6126–6131. 

Dong X, Plugge CM, Stams AJM (1994) Anaerobic degradation of propionate by a mesophilic 
acetogenic bacterium in coculture and triculture with different methanogens. Appl Environ 
Microbiol 60:2834–2838.  



References 

189 
 

Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many 
lipids? Ann Rev Biochem 66(1):199-232. 

Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 
26:2460–2461. 

Ezaki T (2009) Peptococcaceae. In: Bergey’s Manual of Systematic Bacteriology. De Vos P, Garrity 
G, Jones D, Krieg N, Ludwig W, Rainey F, Schleifer K.-H, Whitman W (eds). Springer-Verlag 
New York, USA pp 969–971. 

Fang J, Barcelona MJ (1998) Structural determination and quantitative analysis of bacterial 
phospholipids using liquid chromatography/electrospray ionization/mass spectrometry. J 
Microbiol Methods 33:23–35.  

Fang J, Barcelona MJ, Alvarez PJJ (2000) A direct comparison between fatty acid analysis and intact 
phospholipid profiling for microbial identification. Org Geochem 31:881–887. 

Fang HHP, Liu Y, Ke SZ, Zhang T (2004) Anaerobic degradation of phenol in wastewater at ambient 
temperature. Water Sci Technol 49:95–102. 

Fasham MJR, Balino BM, Bowles MC, Anderson R, Archer D, Bathmann U, Boyd P, Buesseler K, 
Burkil P, Bychkov A, Carlson C, Chen CTA, Doney S, Ducklow H, Emerson S, Feely R, Feldman 
G, Garcon V, Hansell D, Hanson R, Harrison P, Honjo S, Jeandel C, Karl D, Le Borgne R, Liu 
KK, Lochte K, Louanchi F, Lowry R, Michaels A, Monfray P, Murray J, Oschlies A, Platt T, 
Priddle J, Quinones R, Ruiz-Pino D, Saino T, Sakshaug E, Shimmield G, Smith S, Smith W, 
Takahashi T, Treguer P, Wallace D, Wanninkhof R, Watson A, Willebrand J, Wong CS (2001) 
A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study 
(JGOFS). Ambio 10: 4–31. 

Finke N, Vandieken V, Jørgensen BB (2007a) Acetate, lactate, propionate, and isobutyrate as 
electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS 
Microbiol Ecol 59:10–22.  

Finke N, Hoehler TM, Jørgensen BB (2007b) Hydrogen ‘leakage’ during methanogenesis from 
methanol and methylamine: Implications for anaerobic carbon degradation pathways in 
aquatic sediments. Environ Microbiol 9:1060–1071.  

Fry JC, Parkes RJ, Cragg BA, Weightman AJ, Webster G (2008) Prokaryotic biodiversity and activity 
in the deep subseafloor biosphere. FEMS Microbiol Ecol 66:181–196.  

Garcia J-L, Ollivier B, Whitman WB (2006) The Order Methanomicrobiales. In: The Prokaryotes. 
Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt H (eds) Springer-Verlag, New 
York pp 208–230.  

Glud RN, Gundersen JK, Røy H, Jørgensen BB (2003) Seasonal dynamics of benthic O2 uptake in a 
semienclosed bay: Importance of diffusion and faunal activity. Limnol Oceanogr 48:1265–1276.  



Appendices 

190 
 

Godon JJ, Morinière J, Moletta M, Gaillac M, Bru V, Delgènes JP (2005) Rarity associated with 
specific ecological niches in the bacterial world: the “Synergistes” example. Environ Microbiol 
7:213–224.  

Greuter D, Loy A, Horn M, Rattei T (2016) ProbeBase-an online resource for rRNA-targeted 
oligonucleotide probes and primers: new features 2016. Nucleic Acids Res 44:586–589.  

Grotenhuis JTC, Smit M, Plugge CM, Xu YS, van Lammeren AA, Stams AJM, Zehnder AJ (1991) 
Bacteriological composition and structure of granular sludge adapted to different substrates. 
Appl Environ Microbiol 57:1942–1949. 

Gustafson WG, Feinberg BA, McFarland JT (1986) Energetics of beta-oxidation. Reduction 
potentials of general fatty acyl-CoA dehydrogenase, electron transfer flavoprotein, and fatty 
acyl-CoA substrates. J Biol Chem 261:7733–7741. 

Halpern BS, Frazier M, Potapenko J, Casey KS, Koenig K, Longo C, Lowndes JS, Rockwood RC, Selig 
ER, Selkoe KA, Walbridge S (2015) Spatial and temporal changes in cumulative human impacts 
on the world’s ocean. Nat Commun 6:7615. 

Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting barcoded primers for 
pyrosequencing hundreds of samples in multiplex. Nat Methods 5(3): 235-237.  

Harmsen HJM, van Kuijk BLM, Plugge CM, Akkermans ADL, de Vos WM, Stams AJM (1998) 
Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing 
bacterium Int J Syst Bacteriol 1383–1388. 

Harrison BK, Zhang H, Berelson W, Orphan VJ (2009) Variations in archaeal and bacterial diversity 
associated with the sulfate-methane transition zone in continental margin sediments (Santa 
Barbara Basin, California). Appl Environ Microbiol 75:1487–1499.  

Harvey HR, Fallon RD, Patton JS (1986) The effect of organic matter and oxygen on the degradation 
of bacterial membrane lipids in marine sediments. Geochim Cosmochim Acta 50:795–804. 

Harvey HR (2006) Sources and cycling of organic matter in the marine water column. In: Marine 
Organic Matter: Biomarkers, Isotopes and DNA. Volkman JK (ed) Springer Heidelberg, Berlin, 
pp 1-25. 

Hatamoto M, Imachi H, Fukayo S, Ohashi A, Harada H (2007) Syntrophomonas palmitatica sp. nov., 
an anaerobic syntrophic, long-chain fatty-acid-oxidizing bacterium isolated from 
methanogenic sludge. Int J Syst Evol Microbiol 57:2137–2142.  

Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov., sp. nov., 
a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol 
Micr 50(4): 1601-1609. 

Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative 
synthesis. Mar Chem 49:81–115.  



References 

191 
 

Henrichs SM (1992) Early diagenesis of organic matter in marine sediments: progress and 
perplexity. Mar Chem 39:119–149.  

Herrmann S, Kleinsteuber S, Chatzinotas A, Kuppardt S, Lueders T, Richnow HH, Vogt C (2010) 
Functional characterization of an anaerobic benzene-degrading enrichment culture by DNA 
stable isotope probing. Environ Microbiol 12:401–411.  

Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming 
archaebacteria in marine sediments. Nature 398:802–805.  

Hoefs M, Schouten S, De Leeuw JW, King LL, Wakeham SG, Sinninghe Damsté JS (1997) Ether lipids 
of planktonic archaea in the marine water column. Appl Environ Microbiol 63:3090-3095. 

Hoehler T, Alperin M, Albert D, Martens C (1998) Thermodynamic control on hydrogen 
concentrations in anoxic sediments. Geochim Cosmochim Acta 62: 1745–1756. 

Hoehler TM, Alperin MJ, Albert DB, Martens CS (2001) Apparent minimum free energy 
requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine 
sediment. FEMS Microbiol Ecol 38:33–41.  

Holmer M, Kristensen E (1994) Coexistence of sulfate reduction and methane production in an 
organic-rich sediment. Mar Ecol Prog Ser 107:177–184. 

Holmkvist L, Kamyshny A, Vogt C, Vamvakopoulos K, Ferdelman TG, Jørgensen BB (2011) Sulfate 
reduction below the sulfate-methane transition in Black Sea sediments. Deep Sea Res Part I 
Oceanogr Res Pap 58:493–504.  

Hopmans EC, Schouten S, Pancost RD, van der Meer MTJ, Sinninghe Damsté JS (2000) Analysis of 
intact tetraether lipids in archaeal cell material and sediments by high performance liquid 
chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid 
Commun Mass Spectrom 14:585–589. 

Imachi H, Sakai S, Ohashi A, Harada H, Hanada S, Kamagata Y, Sekiguchi Y (2007) Pelotomaculum 
propionicicum sp. nov., an anaerobic, mesophilic, obligately syntrophic, propionate-oxidizing 
bacterium. Int J Syst Evol Microbiol 57:1487–1492.  

Imachi H, Sekiguchi Y, Kamagata Y, Hanada S, Ohashi A, Harada H (2002) Pelotomaculum 
thermopropionicum gen. nov., an anaerobic, thermophilic, syntrophic propionate-oxidizing 
bacterium. Int J Syst Evol Microbiol 52: 1729–1735. 

Iversen N, Jorgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition 
in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30:944–955. 

Iwamoto TK, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M (2000) Monitoring 
impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. 
FEMS Microbiol Ecol 32:129–141.  



Appendices 

192 
 

Jackson BE, Bhupathiraju VK, Tanner RS, Woese CR, McInerney MJ (1999) Syntrophus 
aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in 
syntrophic association with hydrogen- using microorganisms. Arch Microbiol 171:107–114.  

Jetten MSM, Stams AJM, Zehnder AJB (1992) Methanogenesis from acetate: a comparison of the 
acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol Lett 
88:181–197.  

Jones WJ, Paynter M, Gupta R (1983) Characterization of Methanococcus maripaludis sp. nov., a 
new methanogen isolated from salt marsh sediment. Arch Microbiol 135:91-97. 

Jørgensen BB (1978) A comparison of methods for the quantification of bacterial sulfate reduction 
in coastal marine sediments. I. Measurement with radiotracer techniques. Geomicrobiol J 1: 11-
28. 

Jørgensen BB (1982) Mineralization of organic matter in the sea bed – the role of sulphate reduction. 
Nature 296:643–645. 

Jørgensen BB (1983) Processes at the sediment water interface. In: The major biogeochemical cycles 
and their interactions. Bolin B, Cook R (eds.) pp 477–515.  

Jørgensen BB, Bak F (1991) Pathways and microbiology of thiosulphate transformations and sulfate 
reduction in a marine sediment (Kattegat, Denmark). Appl Environ Microbiol 57:847–856. 

Jørgensen BB (2006) Bacteria and marine biogeochemistry. In: Marine Geochemistry. Schulz H, 
Zabel M (eds) (Vol. 2) Springer, Berlin pp 169–206.  

 Jørgensen BB, Kasten S (2006) Sulfur cycling and methane oxidation. In: Marine Geochemistry. 
Springer Heidelberg, Berlin pp 271–309. 

Jørgensen BB, Boetius A (2007) Feast and famine — microbial life in the deep-sea bed. Nat Rev 
Microbiol 5:770–781.  

Jørgensen BB, Parkes RJ (2010) Role of sulfate reduction and methane production by organic carbon 
degradation in eutrophic fjord sediments (Limfjorden, Denmark). Limnol Oceanogr 55:1338–
1352.  

Jørgensen BB, Marshall IPG (2016) Slow microbial life in the seabed. Ann Rev Mar Sci 8:311–332.  

Jung YT, Lee JS, Yoon JH (2016) Gaetbulibacter aquiaggeris sp nov., a member of the 
Flavobacteriaceae isolated from seawater. Int J Syst Evol Micr 66:1131-1137. 

Juretschko S, Timmermann G, Schmid M, Schleifer KH, Pommerening-Röser A, Koops HP, Wagner 
M (1998) Combined molecular and conventional analyses of nitrifying bacterium diversity in 
activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. 
Appl Environ Microbiol 64:3042–3051.  



References 

193 
 

Juteau P, Côté V, Duckett MF, Beaudet R, Lépine F, Villemur R, Bisaillon JG (2005) 
Cryptanaerobacter phenolicus gen. nov., sp. nov., an anaerobe that transforms phenol into 
benzoate via 4-hydroxybenzoate. Int J Syst Evol Microbiol 55:245–250. 

Kate M (1993) Membrane lipids of Archaea. In: The Biochemistry of Archaea (Archaeabacteria). 
Kates M, Kushner DJ, Matheson AT (eds) Elsevier Science, Amsterdam pp 261-295.  

Kato S, Kosaka T, Watanabe K (2009) Substrate-dependent transcriptomic shifts in Pelotomaculum 
thermopropionicum grown in syntrophic co-culture with Methanothermobacter 
thermautotrophicus. Microb Biotechnol 2:575–584.  

Kendall MM, Liu Y, Boone DR (2006) Butyrate- and propionate-degrading syntrophs from 
permanently cold marine sediments in Skan Bay, Alaska, and description of Algorimarina 
butyrica gen. nov., sp. nov. FEMS Microbiol Lett 262:107–114. 

Kendall MM, Boone DR (2006a) Cultivation of methanogens from shallow marine sediments at 
Hydrate Ridge, Oregon. Archaea 2:31–38.  

Kendall MM, Boone DR (2006b) The Order Methanosarcinales. In: The Prokaryotes. Dworkin M, 
Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt H (eds) Springer-Verlag, New York pp 
244–256.  

Kiene RP, Oremland RS, Catena A, Miller LG, Capone DG (1986) Metabolism of reduced methylated 
sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. 
Appl Environ Microbiol 52:1037–1045. 

Kim M, Oh HS, Park SC, Chun J (2014) Towards a taxonomic coherence between average nucleotide 
identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J 
Syst Evol Microbiol 64:346–351.  

King GM, Klug MJ, Lovley DR (1983) Metabolism of acetate, methanol, and methylated amines in 
intertidal sediments of Lowes Cove, Maine. Appl Environ Microbiol 45:1848–1853. 

Kleikemper J, Schroth MH, Sigler W V., Schmucki M, Bernasconi SM, Zeyer J (2002) Activity and 
diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl 
Environ Microbiol 68:1516–1523.  

Kleinsteuber S, Schleinitz KM, Breitfeld J, Harms H, Richnow HH, Vogt C (2008) Molecular 
characterization of bacterial communities mineralizing benzene under sulfate-reducing 
conditions. FEMS Microbiol Ecol 66:143–157.  

Kleinsteuber S, Schleinitz KM, Vogt C (2012) Key players and team play: anaerobic microbial 
communities in hydrocarbon-contaminated aquifers. Appl Microbiol Biotechnol 94:851–873. 

Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. 
Annu Rev Microbiol 63:311–334.  



Appendices 

194 
 

Knittel K, Boetius A, Lemke A, Eilers H, Lochte K, Pfannkuche O, Linke P, Amann R (2003) Activity, 
distribution, and diversity of sulfate reducers and other bacteria in sediments above gas 
hydrate (Cascadia Margin, Oregon). Geomicrobiol J 20:269–294.  

Koga Y, Nishihara M, Morii H, Akagawa-Matsushita M (1993) Ether polar lipids of methanogenic 
bacteria: structures, comparative aspects, and biosyntheses. Microbiol Rev 57:164–182. 

Koizumi Y, Kojima H, Fukui M (2005) Potential sulfur metabolisms and associated bacteria within 
anoxic surface sediment from saline meromictic Lake Kaiike (Japan). FEMS Microbiol Ecol 
52:297–305.  

Kristensen E, Holmer M (2001) Decomposition of plant materials in marine sediment exposed to 
different electron acceptors (O2, NO3

- and SO4
2-), with emphasis on substrate origin, 

degradation kinetics, and the role of bioturbation. Geochim Cosmochim Acta 65:419–433.  

Kristjansson JK, Schönheit P, Thauer RK (1982) Different Ks values for hydrogen of methanogenic 
bacteria and sulfate reducing bacteria: an explanation for the apparent inhibition of 
methanogenesis by sulfate. Arch Microbiol 131: 278–282. 

Krylova NI, Conrad R (1998) Thermodynamics of propionate degradation in methanogenic paddy 
soil. FEMS Microbiol Ecol 26:281–288.  

Kuever J (2014a) The family Desulfovibrionaceae. In: The Prokaryotes. Rosenberg E, DeLong EF, 
Lory S, Stackebrandt E, Thompson F (eds). Springer Berlin-Heidelberg Verlag, Berlin pp 107–
133 

Kuever J (2014b) The family Desulfobacteraceae. In: The Prokaryotes. Rosenberg E, DeLong EF, Lory 
S, Stackebrandt E, Thompson F (eds). Springer Berlin-Heidelberg Verlag, Berlin pp 45-73. 

Kuever, J. (2014c) The Family Desulfobulbaceae. In: The Prokaryotes. Rosenberg E, DeLong EF, Lory 
S, Stackebrandt E, Thompson F (eds). Springer Berlin-Heidelberg Verlag, Berlin pp 75-86. 

Kvist T, Ahring BK, Westermann P (2007) Archaeal diversity in Icelandic hot springs. FEMS 
Microbiol Ecol 59:71–80.  

Laanbroek HJ, Pfennig N (1981) Oxidation of short-chain fatty acids by sulfate-reducing bacteria in 
freshwater and in marine sediments. Arch Microbiol 128(3): 330-335. 

Lagesen K, Hallin P, Rødland EA, Stærfeldt HH, Rognes T, Ussery DW (2007) RNAmmer: consistent 
and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. 

Lane DJ (1991) 16S/23S rRNA sequencing. In: Nucleic acid techniques in bacterial systematics. 
Stackebrandt E, Goodfellow M (eds). Wiley & Sons, Chichester, United Kingdom pp 115-175. 

Leloup J, Fossing H, Kohls K, Holmkvist L, Borowski C, Jørgensen BB (2009) Sulfate-reducing 
bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to 
geochemical zonation. Environ Microbiol 11:1278–1291.  



References 

195 
 

Leloup J, Loy A, Knab NJ, Borowski C, Wagner M, Jørgensen BB (2007) Diversity and abundance of 
sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, 
Black Sea. Environ Microbiol 9:131–142.  

Lever MA (2012) Acetogenesis in the energy-starved deep biosphere-a paradox? Front Microbiol 2:1–
18.  

Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer RK (2008) Coupled ferredoxin and 
crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA 
dehydrogenase/Etf complex from Clostridium kluyveri. J Bacteriol 190:843–850.  

Lipp JS, Morono Y, Inagaki F, Hinrichs K-U (2008) Significant contribution of Archaea to extant 
biomass in marine subsurface sediments. Nature 454:991–994.  

Liu C, Zhang XY, Wen XR, Shi M, Chen XL, Su HN (2016) Arcticiflavibacter luteus gen. nov.,  nov., 
sp. nov., a member of the family Flavobacteriaceae isolated from intertidal sand. Int J Syst Evol 
Microbiol 66:144–149.  

Liu Q, Li J, Wei B, Zhang X, Zhang L, Zhang Y, Fang J (2016) Leeuwenhoekiella nanhaiensis sp. nov., 
isolated from deep-sea water. Int J Syst Evol Microbiol 66:1352–1357. 

Liu Y, Balkwill DL, Aldrich HC, Drake GR, Boone DR (1999) Characterization of the anaerobic 
propionate- degrading syntrophs Smithella propionica gen. nov., sp. nov. and Syntrophobacter 
wolinii. Int J Syst Bacteriol 49:545–556.  

Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic 
archaea. Ann N Y Acad Sci 1125:171–189. 

Llobet-Brossa E, Rabus R, Böttcher ME, Könneke M, Finke N, Schramm A, Meyer RL, Grötzschel S, 
Rosselló-Mora R, Amann R (2002) Community structure and activity of sulfate-reducing 
bacteria in an intertidal surface sediment: a multi-method approach. Aquat Microb Ecol 
29:211–226.  

Lloyd KG, Lapham L, Teske A (2006) An anaerobic methane-oxidizing community of ANME-1b 
archaea in hypersaline gulf of Mexico sediments. Appl Environ Microbiol 72:7218–7230.  

Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, Stepanauskas R, Richter M, 
Kleindienst S, Lenk S, Schramm A, Jørgensen BB (2013) Predominant archaea in marine 
sediments degrade detrital proteins. Nature 496:215–218.  

Lohner ST, Deutzmann JS, Logan BE, Leigh J, Spormann AM (2014) Hydrogenase-independent 
uptake and metabolism of electrons by the archaeon Methanococcus maripaludis. ISME J 
8:1673–1681.  

Lorowitz WH, Zhao H, Bryant MP (1989) Syntrophomonas wolfei subsp. saponavida subsp. nov., a 
long-chain fatty-acid degrading, anaerobic, syntrophic bacterium; Syntrophomonas wolfei 



Appendices 

196 
 

subsp. wolfei supsp. nov.; and emended descriptions of the genus and species. Int J Syst 
Bacteriol 39:122–126. 

Lösekann T, Knittel K, Nadalig T, Fuchs B, Niemann H, Boetius A, Amann R (2007) Diversity and 
abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, 
Barents Sea. Appl Environ Microbiol 73:3348–3362.  

Lovley DR, Ferry JG (1985) Production and consumption of hydrogen during growth of 
Methanosarcina spp. on acetate. Appl Environ Microbiol 49:247–249. 

Lovley DR (1985) Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl 
Environ Microbiol 49:1530–1531. 

Lovley DR, Dwyer DF, Klug MJ (1982) Kinetic analysis of competition between sulfate reducters and 
methanogens for hydrogen in sediments. Appl Environ Microbiol 43:1373–1379. 

Lovley D, Goodwin S (1988) Hydrogen concentrations as an indicator of the predominant terminal 
electron-accepting reactions in aquatic sediments. Geochim Cosmochim Acta 52: 2993–3003. 

Lyimo TJ, Pol A, Op den Camp HJM, Harhangi HR, Vogels GD (2000) Methanosarcina semesiae sp. 
nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. Int J Syst Evol 
Microbiol 50:171–178.  

Maltby J, Sommer S, Dale AW, Treude T (2016) Microbial methanogenesis in the sulfate-reducing 
zone of surface sediments traversing the Peruvian margin. Biogeosciences 13:283–299.  

Martens CS, Berner RA (1977) Interstitial water chemistry of anoxic Long Island Sound sediments 
1. Dissolved-gases. Limnol Oceanogr 22:10–25. 

Martens CS, Berner RA (1974) Methane production in the interstitial waters of sulfate-depleted 
marine sediments. Science (80- ) 185:1167–1169.  

McGarigal K, Cushman S, Stafford S (2000) Multivariate statistics for wildlife and ecology research. 
New York, New York, USA: Springer. 

McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in 
syntrophic association with methanogens. Arch Microbiol 122:129–135.  

McInerney MJ, Bryant MP, Hespell RB, Costerton JW (1981) Syntrophomonas wolfei gen. nov. sp. 
nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 
41:1029–39. 

McInerney MJ, Bryant MP (1981) Anaerobic degradation of lactate by syntrophic associations of 
Methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation. 
Appl Environ Microbiol 41:346–354. 



References 

197 
 

McInerney MJ, Beaty PS (1988) Anaerobic community structure from a nonequilibrium 
thermodynamic perspective. Can J Microbiol 34:487–493.  

McInerney MJ, Stams AJM, Boone DR (2005) Genus Syntrophobacter. In: Bergey’s Manual of 
Systematic Bacteriology, second edition, vol 2. Staley JT, Boone DR, Brenner DJ, de Vos P, 
Garrity GM, Goodfellow M, Krieg NR, Rainey FA, Schleifer KH (eds). Springer, New York pp 
1021-1027. 

McInerney MJ, Rohlin L, Mouttaki H, Kim U, Krupp RS, Rios-Hernandez L, Sieber J, Struchtemeyer 
CG, Bhattacharyya A, Campbell JW, Gunsalus RP (2007) The genome of Syntrophus 
aciditrophicus: Life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci USA 
104:7600–7605.  

McInerney MJ, Struchtemeyer CG, Sieber J, Mouttaki H, Stams AJM, Schink B, Rholin L, Gunsalus 
RP (2008) Physiology, ecology, phylogeny, and genomics of microorganisms capable of 
syntrophic metabolism. Ann NY Acad Sci 1125: 58–72. 

McInerney MJ, Sieber JR, Gunsalus RP (2009) Syntrophy in anaerobic global carbon cycles. Curr 
Opin Biotechnol 20: 623–32. 

Millero FJ, Schreiber DR (1982) Use of the ion pairing model to estimate activity coefficients of the 
ionic components of natural waters. Am. J. Sci. 282:1508-1540. 

Mino S, Kudo H, Arai T, Sawabe T, Takai K, Nakagawa S (2014) Sulfurovum aggregans sp. nov., a 
hydrogen-oxidizing, thiosulfate-reducing chemolithoautotroph within the 
Epsilonproteobacteria isolated from a deep-sea hydrothermal vent chimney, and an emended 
description of the genus Sulfurovum. Int J Syst Evol Microbiol 64:3195–3201.  

Mitterer RM (2010) Methanogenesis and sulfate reduction in marine sediments: a new model. Earth 
Planet Sci Lett 295:358–366.  

Moore EK, Hopmans EC, Rijpstra WIC, Villanueva L, Sinninghe Damsté JS (2016) Elucidation and 
identification of amino acid containing membrane lipids using liquid chromatography/high-
resolution mass spectrometry. Rapid Commun Mass Spectrom 30:739–750. 

Moore EK, Hopmans EC, Rijpstra WIC, Sánchez-Andrea I, Villanueva L, Wienk H, Schoutsen F, 
Stams AJM, Sinninghe Damsté JS (2015a) Lysine and novel hydroxylysine lipids in soil bacteria: 
amino acid membrane lipid response to temperature and pH in Pseudopedobacter saltans. 
Front Microbiol 6:637.  

Moore EK, Villanueva L, Hopmans EC, Rijpstra WIC, Mets A, Dedysh SN, Sinninghe Damsté JS 
(2015b) Abundant trimethylornithine lipids and specific gene sequences are indicative of 
Planctomycete importance at the oxic/anoxic interface in Sphagnum-dominated northern 
wetlands. Appl Environ Microbiol 81:6333–6344.  

Moore EK, Hopmans EC, Rijpstra WIC, Villanueva L, Dedysh SN, Kulichevskaya IS, Wienk H, 
Schoutsen F, Sinninghe Damsté JS (2013) Novel mono-, di-, and trimethylornithine membrane 
lipids in northern wetland Planctomycetes. Appl Environ Microbiol 79:6874–6884. 



Appendices 

198 
 

Mori K, Iino T, Suzuki KI, Yamaguchi K, Kamagata Y (2012) Aceticlastic and NaCl-requiring 
methanogen “Methanosaeta pelagica” sp. nov., isolated from marine tidal flat sediment. Appl 
Environ Microbiol 78:3416–3423.  

Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C (2013) Microbial syntrophy: interaction 
for the common good. FEMS Microbiol Rev 37:384–406.  

Mountfort DO, Asher RA (1979) Effect of inorganic sulfide on the growth and metabolism of 
Methanosarcina barkeri strain DM. Appl Environ Microbiol 37:670–675. 

Mountfort DO, Asher RA (1981) Role of sulfate reduction versus methanogenesis in terminal carbon 
flow in polluted intertidal sediment of Waimea Inlet, Nelson, New Zealand. Appl Environ 
Microbiol 42:252–258. 

Müller N, Schleheck D, Schink B (2009) Involvement of NADH:acceptor oxidoreductase and butyryl 
coenzymeA dehydrogenase in reversed electron transport during syntrophic butyrate 
oxidation by Syntrophomonas wolfei. J Bacteriol 191:6167–6177.  

Müller N, Worm P, Schink B, Stams AJM, Plugge CM (2010) Syntrophic butyrate and propionate 
oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2:489–
499. 

Murray JW, Grundmanis V, Smethie WM (1978) Interstitial water chemistry in the sediments of 
Saanich Inlet. Geochim Cosmochim Acta 42:1011–1026. 

Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by 
denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes 
coding for 16S rRNA. Appl Environ Microbiol 59: 695-700. 

Muyzer G, Stams AJM (2008) The ecology and biotechnology of sulphate-reducing bacteria. Nat 
Rev Microbiol 6:441–454.  

Nauhaus K, Boetius a, Kruger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of 
methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ 
Microbiol 4:296–305. 

Nauhaus K, Treude T, Boetius A, Krüger M (2005) Environmental regulation of the anaerobic 
oxidation of methane: a comparison of ANME-I and ANME-II communities. Environ Microbiol 
7:98–106. 

Niemann H, Losekann T, de Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter EJ, Schluter 
M, Klages M, Foucher JP, Boetius A (2006) Novel microbial communities of the Haakon Mosby 
mud volcano and their role as a methane sink. Nature 443:854–858. 

Nübel U, Engelen B, Felske A, Snaidr J, Wieshuber A, Amann RI, Ludwig W, Backhaus H (1996) 
Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by 
temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643. 



References 

199 
 

O’Flaherty V, Mahony T, O’Kennedy R, Colleran E (1998) Effect of pH on growth kinetics and 
sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing 
bacteria. Process Biochem 33:555–569.  

O’Sullivan LA, Sass AM, Webster G, Fry JC, Parkes RJ, Weightman AJ (2013) Contrasting 
relationships between biogeochemistry and prokaryotic diversity depth profiles along an 
estuarine sediment gradient. FEMS Microbiol Ecol 85:143–157.  

Oremland RS, Taylor BF (1978) Sulfate reduction and methanogenesis in marine sediments. 
Geochim Cosmochim Acta 42:209–214. 

Oremland RS, Marsh L, DesMarais DJ (1982a) Methanogenesis in Big Soda Lake, Nevada: an 
alkaline, moderately hypersaline desert lake. Appl Environ Microbiol 43:462–468. 

Oremland RS, Marsh LM, Polcin S (1982b) Methane production and simultaneous sulphate 
reduction in anoxic, salt marsh sediments. Nature 296:143–145. 

Oremland RS, Polcin S (1982) Methanogenesis and sulfate reduction: competitive and 
noncompetitive substrates in estuarine sediments. Appl Environ Microbiol 44:1270–1276. 

Oremland RS, Miller LG, Whiticar MJ (1987) Sources and flux of natural gasses from Mono Lake, 
California. Geochim Cosmochim Acta 51:2915–2929. 

Oremland RS, Whiticar MJ, Strohmaier FE, Kiene RP (1988) Bacterial ethane formation from 
reduced, ethylated sulfur compounds in anoxic sediments. Geochim Cosmochim Acta 52:1895–
1904.  

Oude Elferink SJWH, Visser A, Hulshoff Pol LW, Stams AJM (1994) Sulfate reduction in 
methanogenic bioreactors. FEMS Microbiol Rev 15:119-136. 

Oude Elferink SJWH, Vorstman WJC, Sopjes A, Stams AJM (1998) Characterization of the sulfate-
reducing and syntrophic population in granular sludge from a full-scale anaerobic reactor 
treating papermill wastewater. FEMS Microbiol Ecol 27:185–194.  

Ozuolmez D, Na H, Lever MA, Kjeldsen KU, Jørgensen BB, Plugge CM (2015) Methanogenic archaea 
and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence? Front 
Microbiol 6:1–12.  

Park S, Kim S, Jung YT, Park JM, Yoon JH (2016) Confluentibacter lentus gen. nov., sp. nov., isolated 
from the junction between the ocean and a freshwater lake. Int J Syst Evol Microbiol 66:868–
873.  

Parkes RJ, Gibson GR, Mueller-Harvey I, Buckingham WJ, Herbert RA (1989) Determination of the 
substrates for sulphate-reducing bacteria within marine and estuarine sediments with 
different rates of sulphate reduction. J Gen Microbiol 135:175–187. 



Appendices 

200 
 

Parkes RJ, Cragg BA, Fry JC, Herbert RA, Wimpenny JWT, Allen JA, Whitfield M (1990) Bacterial 
biomass and activity in deep sediment layers from the Peru Margin. Philos Trans R Soc London 
Ser A, Math Phys Sci 331:139–153.  

Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman TG, Kallmeyer J, 
Jørgensen BB, Aiello IW, Fry JC (2005) Deep sub-seafloor prokaryotes stimulated at interfaces 
over geological time. Nature 436:390–394.  

Parkes RJ, Cragg BA, Banning N, Brock F, Webster G, Fry JC, Hornibrook E, Pancost RD, Kelly S, 
Knab N, Jørgensen BB, Rinna J, Weightman AJ (2007) Biogeochemistry and biodiversity of 
methane cycling in subsurface marine sediments (Skagerrak, Denmark). Environ Microbiol 
9:1146–1161.  

Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H (2014) A review of prokaryotic 
populations and processes in sub-seafloor sediments, including biosphere:geosphere 
interactions. Mar Geol 352:409–425.  

Pender S, Toomey M, Carton M, Eardly D, Patching JW, Colleran E, O’Flaherty V (2004) Long-term 
effects of operating temperature and sulphate addition on the methanogenic community 
structure of anaerobic hybrid reactors. Water Res 38:619–630.  

Phelps TJ, Conrad R, Zeikus JG (1985) Sulfate-dependent interspecies H2 transfer between 
Methnosarcina barkeri and Desulfovibrio vulgaris during coculture metabolism of acetate or 
methanol. Appl Environ Microbiol 50:589–594. 

Pidwirny M (2012) Carbon cycle. In: Encyclopedia of Earth. Gulledge J (ed) (Washington D.C., 
Environmental information coaliation, national council for science and the environment). 
http://editors.eol.org/eoearth/wiki/Carbon_cycle  

Plugge CM, Jiang B, de Bok FAM, Tsai C, Stams AJM (2009) Effect of tungsten and molybdenum on 
growth of a syntrophic coculture of Syntrophobacter fumaroxidans and Methanospirillum 
hungatei. Arch Microbiol 191:55–61.  

Plugge CM, Zhang W, Scholten JCM, Stams AJM (2011) Metabolic flexibility of sulfate-reducing 
bacteria. Front Microbiol 2:81.  

Plugge CM, Balk M, Stams AJM (2002) Desulfotomaculum thermobenzoicum subsp. 
thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-
forming bacterium. Int J Syst Evol Micr 52:391-399.  

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO (2007) SILVA: a 
comprehensive online resource for quality checked and aligned ribosomal RNA sequence data 
compatible with ARB. Nucleic Acids Res 35:7188–7196.  

Qiu YL, Sekiguchi Y, Hanada S, Imachi H, Tseng I-C, Cheng S-S, Ohashi A, Harada H, Kamagata Y 
(2006) Pelotomaculum terephthalicum sp. nov. and Pelotomaculum isophthalicum sp. nov.: 



References 

201 
 

two anaerobic bacteria that degrade phthalate isomers in syntrophic association with 
hydrogenotrophic methanogens. Arch Microbiol 185:172–182.  

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA 
ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic 
Acids Res 41:590–596.  

Rabus R, Hansen TA Widdel F (2013) Dissimilatory sulfate- and sulfur-reducing prokaryotes. In: The 
Prokaryotes – Prokaryotic Physiology and Biochemistry. Rosenberg E, DeLong EF, Lory S, 
Stackebrandt E, Thompson F (eds). Springer-Verlag Heidelberg, Berlin pp 309-404. 

Ramiro-Garcia J, Hermes GDA, Giatsis C, Sipkema D, Zoetendal EG, Schaap PJ, Smidt H (2016) NG-
Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex 
biomes. F1000Research 5:1791.  

Raskin L, Rittmann BE, Stahl DA (1996) Competition and coexistence of sulfate-reducing and 
methanogenic populations in anaerobic biofilms. Appl Environ Microbiol 62:3847–3857. 

Rasmussen H, Jørgensen BB (1992) Microelectrode studies of seasonal oxygen uptake in a coastal 
sediment: Role of molecular diffusion. Mar Ecol Prog Ser 81:289–303.  

Rebac S, Visser A, Gerbens S, van Lier JB, Stams AJM, Lettinga G (1996) The Effect of sulphate on 
propionate and butyrate degradation in a psychrophilic anaerobic expanded granular sludge 
bed (EGSB) reactor. Environ Technol 17:997–1005.  

Reeburgh WS (1980) Anaerobic methane oxidation: rate depth distributions in Skan Bay sediments. 
Earth Planet Sci Lett 47:345–352.  

Reeburgh, W.S., Heggie, D.T. (1977) Microbial methane consumption reactions and their effects on 
methane distributions on freshwater and marine environments. Limnol Oceanogr 22: 1–9. 

Roest K, Heilig HGHJ, Smidt H, de Vos WM, Stams AJM, Akkermans ADL (2005) Community 
analysis of a full-scale anaerobic bioreactor treating paper mill wastewater. Syst Appl 
Microbiol 28:175–185.  

Romesser JA, Wolfe RS, Mayer F, Spiess E, Walther-Mauruschat A (1979) Methanogenium, a new 
genus of marine methanogenic bacteria and characterization of Methanogenium cariaci sp. 
nov. and Methanogenium marisnigri sp. nov. Arch Microbiol 121:147–153.  

Rossel PE, Elvert M, Ramette A, Boetius A, Hinrichs KU (2011) Factors controlling the distribution 
of anaerobic methanotrophic communities in marine environments: evidence from intact 
polar membrane lipids. Geochim Cosmochim Acta 75:164–184.  

Rossel PE, Lipp JS, Fredricks HF, Arnds J, Boetius A, Elvert M, Hinrichs KU (2008) Intact polar lipids 
of anaerobic methanotrophic archaea and associated bacteria. Org Geochem 39:992–999.  



Appendices 

202 
 

Rotaru A-E, Shrestha PM, Liu F, Shrestha M, Shrestha D, Embree M, Zengler K, Wardman C, Nevin 
KP, Lovley DR (2014) A new model for electron flow during anaerobic digestion: direct 
interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. 
Energy Environ Sci 7:408–415.  

Roussel EG, Cragg BA, Webster G, Sass H, Tang X, Williams AS, Gorra R, Weightman AJ, Parkes RJ 
(2015) Complex coupled metabolic and prokaryotic community responses to increasing 
temperatures in anaerobic marine sediments: critical temperatures and substrate changes. 
FEMS Microbiol Ecol 91:1–16.  

Roussel EG, Sauvadet A-L, Allard J, Chaduteau C, Richard P, Bonavita M-AC, Chaumillon E (2009) 
Archaeal methane cycling communities associated with gassy subsurface sediments of 
Marennes-Oléron Bay (France). Geomicrobiol J 26:31–43.  

Roy F, Samain E, Dubourguier HC, Albagnac G (1986) Synthrophomonas sapovorans sp. nov., a new 
obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty 
acids. Arch Microbiol 145:142–147.  

Rütters H, Sass H, Cypionka H, Rullkötter J (2002a) Phospholipid analysis as a tool to study complex 
microbial communities in marine sediments. J Microbiol Methods 48:149–160. 

Rütters H, Sass H, Cypionka H, Rullkötter J (2002b) Microbial communities in a Wadden Sea 
sediment core - clues from analyses of intact glyceride lipids, and related fatty acids. Org 
Geochem 33:803–816. 

Sahm K, MacGregor BJ, Jørgensen BB, Stahl DA (1999) Sulphate reduction and vertical distribution 
of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine 
sediment. Environ Microbiol 1:65–74.  

Sanguinetti CJ, Dias Neto E, Simpson AJG (1994) Rapid silver staining and recovery of PCR products 
separated on polyacrylamide gels. Biotechniques 17:915-919. 

Schink B (1997) Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol 
Biol Rev 61:262–280.  

Schink B, Stams AJM (2013) Syntrophism among prokaryotes. In: The Prokaryotes. Rosenberg E, 
DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) Springer Berlin-Heidelberg Verlag, 
Berlin pp 309–335. 

Schippers A, Kock D, Höft C, Köweker G, Siegert M (2012) Quantification of microbial communities 
in subsurface marine sediments of the Black Sea and off Namibia. Front Microbiol 3:1–11.  

Schirawski J, Unden G (1998) Menaquinone-dependent succinate dehydrogenase of bacteria 
catalyzes reversed electron transport driven by the proton potential. Eur J Biochem 257:210–
215.  



References 

203 
 

Schnurer A, Schink B, Svensson BH (1996) Clostridium ultunense sp. nov., a mesophilic bacterium 
oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. 
Int J Syst Bacteriol 46:1145–1152.  

Schönheit P, Kristjansson JK, Thauer RK (1982) Kinetic mechanism for the ability of sulfate reducers 
to out-compete methanogens for acetate. Arch Microbiol 132:285–288. 

Schouten S, Hopmans EC, Pancost RD, Sinninghe Damste JS (2000) Widespread occurrence of 
structurally diverse tetraether membrane lipids: Evidence for the ubiquitous presence of low-
temperature relatives of hyperthermophiles. Proc Natl Acad Sci 97:14421–14426.  

Schubotz F, Wakeham SG, Lipp JS, Fredricks HF, Hinrichs KU (2009) Detection of microbial 
biomass by intact polar membrane lipid analysis in the water column and surface sediments 
of the Black Sea. Environ Microbiol 11:2720–2734. 

Schubotz, F (2005) Investigation of intact polar lipids of bacteria isolated from deep marine 
subsurface (MSc Thesis. University of Bremen, Bremen, Germany). 

Schut GJ, Adams MWW (2009) The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin 
and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 
191:4451–4457.  

Sekiguchi Y, Kamagata Y, Nakamura K, Ohashi A, Harada H (2000) Syntrophothermus lipocalidus 
gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which 
utilizes isobutyrate. Int J Syst Evol Micr 50:771–779. 

Senior E, Lindström EB, Banat IM, Nedwell DB (1982) Sulfate reduction and methanogenesis in the 
sediment of a saltmarsh on the East coast of the United Kingdom. Appl Environ Microbiol 
43:987–996. 

Shaw DG, McIntosh DJ (1990) Acetate in recent anoxic sediments: direct and indirect 
measurements of concentration and turnover rates. Estuar Coast Shelf Sci 31:775–788.  

Shimada H, Nemoto N, Shida Y, Oshima T, Yamagishi A (2008) Effects of pH and temperature on 
the composition of polar lipids in Thermoplasma acidophilum HO-62. J Bacteriol 190:5404–
5411.  

Shimizu S, Ueno A, Naganuma T, Kaneko K (2015) Methanosarcina subterranea sp. nov., a 
methanogenic archaeon isolated from a deep subsurface diatomaceous shale formation. Int J 
Syst Evol Microbiol 65:1167–1171.  

Shin HS, Jung JY, Bae BU, Paik BC (1995) Phase-separated anaerobic toxicity assays for sulfate and 
sulfide. Water Environ Res 67:802–806.  

Shock EL, Helgeson HC (1990) Calculation of the thermodynamic and transport properties of 
aqueous species at high pressures and temperatures: standard partial molal properties of 
organic species. Geochim Cosmochim Acta 54:915-945.  



Appendices 

204 
 

Shock EL, Sassani DC, Willis M, Sverjensky DA (1997) Inorganic species in geologic fluids: 
correlations among standard molal thermodynamic properties of aqueous ions and 
hydroxide complexes. Geochim Cosmochim Acta 61:907-950.  

Sieber JR, Le HM, Mcinerney MJ (2014) The importance of hydrogen and formate transfer for 
syntrophic fatty, aromatic and alicyclic metabolism. Environ Microbiol 16:177–188. 

Sieber JR, McInerney MJ, Gunsalus RP (2012) Genomic insights into syntrophy: the paradigm for 
anaerobic metabolic cooperation. Annu Rev Microbiol 66:429–452.  

Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, McDonnald E, Rohlin L, Culley DE, 
Gunsalus R, McInerney MJ (2010) The genome of Syntrophomonas wolfei: new insights into 
syntrophic metabolism and biohydrogen production. Environ Microbiol 12:2289–2301.  

Singh H, Du J, Ngo HTT, Won KH, Kim KY, Yi TH (2015) Pedobacter edaphicus sp. nov. isolated 
from forest soil in South Korea. Arch Microbiol 197:781–787.  

Skillman LC, Evans PN, Naylor GE, Morvan B, Jarvis GN, Joblin KN (2004) 16S ribosomal DNA-
directed PCR primers for ruminal methanogens and identification of methanogens colonising 
young lambs. Anaerobe 10:277–285.  

Smith KS, Ingram-Smith C (2007) Methanosaeta, the forgotten methanogen? Trends Microbiol 
15:150–155.  

Sohlenkamp C, López-Lara IM, Geiger O (2003) Biosynthesis of phosphatidylcholine in bacteria. 
Prog Lipid Res 42:115–162.  

Song J, Choi A, Im M, Joung Y, Yoshizawa S, Cho JC, Kogure K (2015) Aurantivirga profunda gen. 
nov., sp nov., isolated from deep-seawater, a novel member of the family Flavobacteriaceae. 
Int J Syst Evol Micr 65:144-149. 

Sørensen J, Christensen D, Jørgensen BB (1981) Volatile fatty acids and hydrogen as substrates for 
sulfate-reducing bacteria in anaerobic marine sediment. Appl Environ Microbiol 42:5–11. 

Sousa DZ, Smidt H, Alves MM, Stams AJM (2007a) Syntrophomonas zehnderi sp. nov., an anaerobe 
that degrades long-chain fatty acids in co-culture with Methanobacterium formicicum. Int J 
Syst Evol Microbiol 57:609–615. 

Sousa DZ, Pereira MA, Smidt H, Stams AJM, Alves MM (2007b) Molecular assessment of complex 
microbial communities degrading long chain fatty acids in methanogenic bioreactors. FEMS 
Microbiol Ecol 60:252–265.  

Sousa DZ, Alves JI, Alves MM, Smidt H, Stams AJM (2009) Effect of sulfate on methanogenic 
communities that degrade unsaturated and saturated long-chain fatty acids (LCFA). Environ 
Microbiol 11:68–80.  



References 

205 
 

Stackebrandt E (2014) The emended family Peptococcaceae and description of the families 
Desulfitobacteriaceae, Desulfotomaculaceae, and Thermincolaceae. In: The Prokaryotes. 
Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). Springer-Verlag 
Heidelberg, Berlin pp 285-290. 

Stams AJM, Grolle KCF, Frijters CTM, Van Lier JB (1992) Enrichment of thermophilic propionate-
oxidizing bacteria in syntrophy with Methanobacterium thermoautotrophicum or 
Methanobacterium thermoformicicum. Appl Environ Microbiol 58:346–352. 

Stams AJM, Van Dijk JB, Dijkema C, Plugge CM (1993) Growth of syntrophic propionate-oxidizing 
bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 
59:1114–1119. 

Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic 
environments. Antonie Van Leeuwenhoek 66:271–294. 

Stams AJM, Oude Elferink SWJH, Westermann P (2003) Metabolic interactions between 
methanogenic consortia and anaerobic respiring bacteria. In: Biomethanation I. T Scheper 
(eds.) Springer Berlin Heidelberg pp 31-56.  

Stams AJM, Plugge CM, de Bok FAM, van Houten BHGW, Lens P, Dijkman H, Weijma J (2005) 
Metabolic interactions in methanogenic and sulfate-reducing bioreactors. Water Sci Technol 
52:13–20. 

Stams AJM, Plugge CM (2009) Electron transfer in syntrophic communities of anaerobic bacteria 
and archaea. Nat Rev Microbiol 7:568–577.  

Starke R, Keller A, Jehmlich N, Vogt C, Richnow HH, Kleinsteuber S, von Bergen M, Seifert J (2016) 
Pulsed 13C2-acetate protein-SIP unveils Epsilonproteobacteria as dominant acetate utilizers in 
a sulfate-reducing microbial community mineralizing benzene. Microb Ecol 71:901–911. 

Stieb M, Schink B (1985) Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a spore-
forming, obligately syntrophic bacterium. Arch Microbiol 140:387-390. 

Struchtemeyer CG, Elshahed MS, Duncan KE, McInerney MJ (2005) Evidence for aceticlastic 
methanogenesis in the presence of sulfate in a gas condensate-contaminated aquifer. Appl 
Environ Microbiol 71:5348–5353.  

Struchtemeyer CG, Duncan KE, Mcinerney MJ (2011) Evidence for syntrophic butyrate metabolism 
under sulfate-reducing conditions in a hydrocarbon-contaminated aquifer. FEMS Microbiol 
Ecol 76:289–300.  

Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs K-U (2004) Intact polar membrane lipids in 
prokaryotes and sediments deciphered by high-performance liquid 
chromatography/electrospray ionization multistage mass spectrometry—new biomarkers for 
biogeochemistry and microbial ecology. Rapid Commun Mass Spectrom 18:617–628.  



Appendices 

206 
 

Suess E (1980) Particulate organic carbon flux in the oceans-surface productivity and oxygen 
utilization. Nature 288:260–263. 

Sultan N, Garziglia S, Ruffine L (2016) New insights into the transport processes controlling the 
sulfate-methane-transition-zone near methane vents. Sci Rep 6:26701.  

Summers ZM, Fogarty HE, Leang C, Franks AE, Malvankar NS, Lovley DR (2010) Direct exchange 
of electrons within aggregates of an evolved syntrophic coculture of anaerobic bacteria. 
Science 330:1413-1415.  

Svetlitshny V, Rainey F, Wiegel J (1996) Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, 
anaerobic, alkalitolerant, thermophilic bacterium utilizing short-and long-chain fatty acids in 
syntrophic coculture with a methanogenic archaeum. Int J Syst Evol Micr 46(4): 1131-1137.  

Syvitski JPM, Vorosmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial 
sediment to the global coastal ocean. Science 308: 376-380. 

Szewzyk R, Pfennig N (1987) Complete oxidation of catechol by the strictly anaerobic sulfate-
reducing Desulfobacterium catecholicum sp. nov. Arch Microbiol 147:163–168.  

Takahashi T, Feely R a, Weiss RF, Wanninkhof RH, Chipman DW, Sutherland SC, Takahashi TT 
(1997) Global air-sea flux of CO2: an estimate based on measurements of sea-air pCO2 
difference. Proc Natl Acad Sci U S A 94:8292–8299.  

Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal 
community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66:5066–
5072.  

Talaue-McManus L (2010) Examining human impacts on global biogeochemical cycling via the 
coastal zone and ocean margins. In: Carbon and nutrient fluxes in continental margins: A 
global synthesis. Liu KK, Atkinson L, Quinones R, Talaue-McManus L (eds) Springer-Verlag 
Berlin Heidelberg  pp 497-514. 

Teske AP (2006) Microbial community composition in deep marine subsurface sediments of ODP 
Leg 201: sequencing surveys and cultivations. In: Proc Ocean Drill Prog, Sci Res. Jørgensen BB, 
D’Hondt SL, Miller DJ (eds). Ocean Drilling Program, College Station, TX. 201: 1-19. 

Teske A, Sørensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we 
caught them all? ISME J 2:3–18.  

Thamdrup B, Rossello-Mora R, Amann R (2000) Microbial manganese and sulfate reduction in 
Black Sea shelf sediments. Appl Environ Microbiol 66:2888–2897.  

Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic 
bacteria. Bacteriol Rev 41:100–180.  

Thomsen T (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a 
marine sediment. Appl Environ Microbiol 67:1646–1656.  



References 

207 
 

Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic 
methane oxidation in a marine sediment. Appl Environ Microbiol 67(4): 1646-1656. 

Timmers PHA, Widjaja-Greefkes HCA, Ramiro-Garcia J, Plugge CM, Stams AJM (2015) Growth and 
activity of ANME clades with different sulfate and sulfide concentrations in the presence of 
methane. Front Microbiol.  

Timmers PH, Suarez-Zuluaga DA, van Rossem M, Diender M, Stams AJM, Plugge CM (2016) 
Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas 
source. ISME J 10:1400–1412.  

Ulrich AC, Edwards EA (2003) Physiological and molecular characterization of anaerobic benzene-
degrading mixed cultures. Environ Microbiol 5(2): 92-102. 

Valentine DL, Blanton DC, Reeburgh WS (2000) Hydrogen production by methanogens under low-
hydrogen conditions. Arch Microbiol 174:415–421.  

van den Bogert B, de Vos WM, Zoetendal EG, Kleerebezem M (2011) Microarray analysis and 
barcoded pyrosequencing provide consistent microbial profiles depending on the source of 
human intestinal samples. Appl Environ Microbiol 77:2071–2080.  

van Kuijk BLM, Stams AJM (1996) Purification and characterization of malate dehydrogenase from 
the syntrophic propionate-oxidizing bacterium strain MPOB. FEMS Microbiol Lett 144:141–
144.  

van Kuijk BLM, Stams AJM (1995) Sulfate reduction by a syntrophic propionate-oxidizing 
bacterium. Antonie van Leeuwenhoek 68:293–296.  

van Mooy BAS, Fredricks HF, Pedler BE, Dyhrman ST, Karl DM, Koblížek M, Lomas MW, Mincer 
TJ, Moore LR, Moutin T, Rappé MS, Webb EA (2009) Phytoplankton in the ocean use non-
phosphorus lipids in response to phosphorus scarcity. Nature 458:69–72. 

Vences-Guzmán MÁ, Guan Z, Ormeño-Orrillo E, González-Silva N, López-Lara IM, Martínez-
Romero E, Geiger O, Sohlenkamp C (2011) Hydroxylated ornithine lipids increase stress 
tolerance in Rhizobium tropici CIAT899. Mol Microbiol 79:1496–1514.  

Viggi C, Rossetti S, Fazi S, Paiano P, Majone M, Aulenta F (2014) Magnetite particles triggering a 
faster and more robust syntrophic pathway of methanogenic propionate degradation. Environ 
Sci Technol 48(13): 7536-7543. 

Vigneron A, Cruaud P, Pignet P, Caprais JC, Gayet N, Cambon-Bonavita MA, Godfroy A, Toffin L 
(2014) Bacterial communities and syntrophic associations involved in anaerobic oxidation of 
methane process of the sonora margin cold seeps, Guaymas basin. Environ Microbiol 16:2777–
2790.  



Appendices 

208 
 

Visscher PT, Baumgartner LK, Buckley DH, Rogers DR, Hogan ME, Raleigh CD, Turk KA, Des 
Marais DJ (2003) Dimethyl sulphide and methanethiol formation in microbial mats: potential 
pathways for biogenic signatures. Environ Microbiol 5:296–308.  

Visser A, Beeksma I, van der Zee F, Stams AJM, Lettinga G (1993) Anaerobic degradation of volatile 
fatty acids at different sulphate concentrations. Appl Microbiol Biotechnol 40(4): 549-556. 

Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL 
(1982) The NBS tables of chemical thermodynamic properties: selected values for inorganic 
and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11:392. 

Wagner M, Loy A, Klein M, Lee N, Ramsing NB, Stahl DA, Friedrich MW (2005) Functional marker 
genes for identification of sulfate-reducing prokaryotes. Methods Enzymol 397:469–489. 

Wallrabenstein C, Hauschild E, Schink B (1994) Pure culture and cytological properties of 
‘Syntrophobacter wolinii’. FEMS Microbiol Lett 123:249–254. 

Wallrabenstein C, Hauschild E, Schink B (1995) Syntrophobacter pfennigii sp. nov., new 
syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and 
sulfate. Arch Microbiol 164:346–352.  

Wang G, Spivack AJ, D’Hondt S (2010) Gibbs energies of reaction and microbial mutualism in 
anaerobic deep subseafloor sediments of ODP Site 1226. Geochim Cosmochim Acta 74:3938–
3947.  

Wang XC, Lee C (1995) Decomposition of aliphatic amines and amino acids in anoxic salt marsh 
sediment. Geochim Cosmochim Acta 59:1787–1797.  

Wang Y, Wang H, Liu JW, Lai QL, Shao ZZ, Austin B, Zhang XH (2010) Aestuariibacter aggregatus 
sp. nov., a moderately halophilic bacterium isolated from seawater of the Yellow Sea. FEMS 
Microbiol Lett 309:48–54.  

Wang Y, Zhou CY, Ming H, Kang J, Chen HL, Jing CQ, Feng H, Chang Y, Guo Z, Wang L (2016) 
Pseudofulvibacter marinus sp. nov., isolated from seawater. Int J Syst Evol Microbiol 66:1301–
1305.  

Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 
16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4(10): p.e7401. 

Ward DM, Winfrey MR (1985) Interactions between methanogenic and sulfate-reducing bacteria 
in sediments. In: Advances in microbial ecology. Jannasch HW and Williams PJL (eds.) Plenum 
Press, New York pp 219-286. 

Webster G, Parkes RJ, Fry JC, Weightman J, Weightman AJ (2004) Widespread occurrence of a 
novel division of bacteria identified by 16S rRNA gene sequences originally found in deep 
marine sediments. Appl Environ Microbiol 70:5708-5713. 



References 

209 
 

Webster G, Parkes RJ, Cragg BA, Newberry CJ, Weightman AJ, Fry JC (2006) Prokaryotic community 
composition and biogeochemical processes in deep subseafloor sediments from the Peru 
Margin. FEMS Microbiol Ecol 58(1): 65-85. 

Webster G, Blazejak A, Cragg BA, Schippers A, Sass H, Rinna J, Tang X, Mathes F, Ferdelman TG, 
Fry JC, Weightman AJ, Parkes RJ (2009) Subsurface microbiology and biogeochemistry of a 
deep, cold-water carbonate mound from the Porcupine Seabight (IODP Expedition 307). 
Environ Microbiol 11:239–257.  

Webster G, Rinna J, Roussel EG, Fry JC, Weightman AJ, Parkes RJ (2010) Prokaryotic functional 
diversity in different biogeochemical depth zones in tidal sediments of the Severn Estuary, UK, 
revealed by stable-isotope probing. FEMS Microbiol Ecol 72:179–197.  

Webster G, Sass H, Cragg BA, Gorra R, Knab NJ, Green CJ, Mathes F, Fry JC, Weightman AJ, Parkes 
RJ (2011) Enrichment and cultivation of prokaryotes associated with the sulphate-methane 
transition zone of diffusion-controlled sediments of Aarhus Bay, Denmark, under 
heterotrophic conditions. FEMS Microbiol Ecol 77:248–263.  

Wellsbury P, Mather I, Parkes RJ (2002) Geomicrobiology of deep, low organic carbon sediments in 
the Woodlark Basin, Pacific Ocean. FEMS Microbiol Ecol 42:59–70.  

Wellsbury P, Parkes RJ (1995) Acetate bioavailability and turnover in an estuarine sediment. FEMS 
Microbiol Ecol 17:85–94.  

Weng CY, Chen SC, Lai MC, Wu SY, Lin S, Yang TF, Chen PC (2015) Methanoculleus taiwanensis sp. 
nov., a methanogen isolated from deep marine sediment at the deformation front area near 
Taiwan. Int J Syst Evol Microbiol 65:1044–1049.  

Weston NB, Joye SB (2005) Temperature-driven decoupling of key phases of organic matter 
degradation in marine sediments. Proc Natl Acad Sci U S A 102:17036–17040. 

White DC, Davis WM, Nickels JS, King JD, Bobbie RJ (1979) Determination of the sedimentary 
microbial biomass by extractible lipid phosphate. Oecologia 40:51–62.  

Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation 
of methane. Chem Geol 161:291–314. 

Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten 
sulfatreduziernder Bakterien. Thesis, Göttingen Univ.  

Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Biology of 
Anaerobic Microorganisms. Zehnder AJB (ed). John Wiley and Sons Inc. New York pp 469–
585. 

Widdel F, Bak F (1992) Gram-negative mesophilic sulfate-reducing bacteria. In: The prokaryotes. A 
handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. 2nd 



Appendices 

210 
 

edn. Balows A, Truper HG, Dworkin M, Harder W, Schleifer K-H (eds) Springer Verlag, New 
York, USA pp 3353–3378.  

Wilms R, Sass H, Köpke B, Cypionka H, Engelen B (2007) Methane and sulfate profiles within the 
subsurface of a tidal flat are reflected by the distribution of sulfate-reducing bacteria and 
methanogenic archaea. FEMS Microbiol Ecol 59:611–621.  

Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved 
quantification of anaerobic toluene degraders and aquifer microbial community patterns in 
distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801.  

Winfrey MR, Zeikus JG (1977) Effect of sulfate on carbon and electron flow during microbial 
methanogenesis in freshwater sediments. Appl Environ Microbiol 33:275–281. 

Wofford NQ, Beaty PS, McInerney MJ (1986) Preparation of cell-free-extracts and the enzymes 
involved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol 167:179–185. 

Worm P, Stams AJM, Cheng X, Plugge CM (2011) Growth- and substrate-dependent transcription 
of formate dehydrogenase and hydrogenase coding genes in Syntrophobacter fumaroxidans 
and Methanospirillum hungatei. Microbiology 157:280–289.  

Wu C, Dong X, Liu X (2007) Syntrophomonas wolfei subsp. methylbutyratica subsp. nov., and 
assignment of Syntrophomonas wolfei subsp. saponavida to Syntrophomonas saponavida sp. 
nov. comb. nov. Syst Appl Microbiol 30:376–380.  

Wu C, Liu X, Dong X (2006a) Syntrophomonas cellicola sp. nov., a spore-forming syntrophic 
bacterium isolated from a distilled-spirit-fermenting cellar, and assignment of Syntrophospora 
bryantii to Syntrophomonas bryantii comb. nov. Int J Syst Evol Microbiol 56:2331–2335.  

Wu C, Liu X, Dong X (2006b) Syntrophomonas erecta subsp. sporosyntropha subsp. nov., a spore-
forming bacterium that degrades short chain fatty acids in co-culture with methanogens. Syst 
Appl Microbiol 29:457–462.  

Yamada T, Sekiguchi Y (2009) Cultivation of uncultured Chloroflexi subphyla: significance and 
ecophysiology of formerly uncultured Chloroflexi “subphylum I” with natural and 
biotechnological relevance. Microbes Environ 24:205–216.  

Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, Whitman WB, Euzéby J, 
Amann R, Rosselló-Móra R (2014) Uniting the classification of cultured and uncultured 
bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 12:635–645.  

Yim KJ, Cha I-T, Whon TW, Lee H-W, Song HS, Kim K-N, Nam Y-D, Lee S-J, Bae J-W, Rhee S-K, 
Choi J-S, Seo M-J, Roh SW, Kim D (2014) Halococcus sediminicola sp. nov., an extremely 
halophilic archaeon isolated from a marine sediment. Antonie Van Leeuwenhoek 105:73–79.  

Yoon J, Kasai H (2016) Wenyingzhuangia aestuarii sp. nov., a marine bacterium of the family 
Flavobacteriaceae isolated from an estuary. Curr Microbiol 72:397–403.  



References 

211 
 

Yu Y, Lee C, Kim J, Hwang S (2005) Group-specific primer and probe sets to detect methanogenic 
communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 
89:670–679.  

Yu ZT, García-González R, Schanbacher FL, Morrison M (2008) Evaluations of different 
hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by Archaea-
specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 74:889–893. 

Zhang C, Liu X, Dong X (2004) Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty 
acids in co-culture with methanogens. Int J Syst Evol Microbiol 54:969–973. 

Zhang C, Liu X, Dong X (2005) Syntrophomonas erecta sp. nov., a novel anaerobe that syntrophically 
degrades short-chain fatty acids. Int J Syst Evol Microbiol 55:799–803.  

Zhang T, Ke SZ, Liu Y, Fang HP (2005) Microbial characteristics of a methanogenic phenol-
degrading sludge. Water Sci Technol 52:73–78. 

Zhao H, Yang D, Woese CR, Bryant MP (1990) Assignment of Clostridium bryantii to 
Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of 
its crotonate-grown pure culture. Int J Syst Evol Micr 40:40-44. 

Zhao H, Yang D, Woese CR, Bryant MP (1993) Assignment of fatty acid-β-oxidizing syntrophic 
bacteria to Syntrophomonadaceae fam. nov. on the basis of 165 rRNA sequence analyses. Int J 
Syst Bacteriol 43:278–286. 

Zhao H, Yang D, Woese CR, Bryant MP (1990) Assignment of Clostridium bryantii to 
Syntrophospora bryantii gen. nov., com. nov. on the basis of a 16s rRNA sequence analysis of 
its crotonate-grown pure culture. Int J Syst Bacteriol 40: 40–44. 

Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a 
thermophilic syntrophic coculture. Arch Microbiol 138:263–272.  

 

 



Appendices 

212 
 

Summary 

Propionate, butyrate, acetate, hydrogen and formate are the major intermediates of organic matter 

degradation. Sulfate-reducing bacteria (SRB) contribute significantly to the consumption of these 

substrates in sulfate-rich marine sediments. In sulfate-depleted sediments, however, complete 

degradation of propionate or butyrate is only possible via syntrophic cooperation of acetogenic 

bacteria and methanogenic archaea. Despite that the predominance of SRB in sulfate-rich and 

methanogens in sulfate-depleted sediments was reported, recent studies showed that both types of 

microorganism could be present in upper and lower parts of marine sediments. In this thesis, 

propionate and butyrate conversions and the involved microbial community in sulfate, sulfate-

methane transition and methane zone sediment of Aarhus Bay, Denmark were studied using 

sediment slurry incubations. Interspecies hydrogen transfer and coexistence during acetate 

degradation were investigated in mixed pure cultures.   

In Chapter 2, interspecies hydrogen transfer between aceticlastic Methanosaeta concilii and 

hydrogenotrophic microorganisms, Desulfovibrio vulgaris or Methanococcus maripaludis, was 

investigated. Additionally, coexistence of M. concilii and Desulfobacter latus growing on acetate 

under sulfidogenic conditions was studied. The results of Chapter 2 showed that D. vulgaris could 

reduce sulfate and grow on leaked hydrogen from M. concilii. Hydrogen leakage from M. concilii 

provides an explanation for biogeochemical zonation both for competitive (e.g. acetate) and non-

competitive substrates (methyl compounds), and this indicates the possible coexistence of SRB and 

methanogens in sulfate-rich environments.  

In chapter 3 and 4, long term incubations were examined focusing on butyrate and 

propionate conversion and the microbial community dynamics in sediment slurry enrichments at 

different sulfate (o, 3 and 20 mM) concentrations and incubation temperatures (10°C and 25°C). 

Sulfate reduction is the dominant process for butyrate and propionate conversion in Aarhus Bay 

sediments. In the absence of sulfate, both propionate and butyrate can be converted efficiently, 

indicating the presence of syntrophic communities throughout the sediment. The fluctuating 

methane concentrations and the enrichment of anaerobic methanotrophic archaea (ANME) in 

butyrate and propionate slurries at 10°C suggest the occurrence of anaerobic oxidation of methane 

(AOM) in sulfate-methane transition zone (SMTZ) of Aarhus Bay.  

The microbial community involved in butyrate and propionate conversion was investigated 

using next generation sequencing (NGS) 16S rRNA amplicon sequencing. The enriched sulfate-

reducing bacteria at high sulfate concentration (20 mM) were different when butyrate and 
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propionate were used as substrate: Desulfosarcina and Desulfobacterium dominate the butyrate-

converting slurries (Chapter 3), whereas Desulfosarcina, Desulfobulbus and Desulforhopalus are 

the main SRB in propionate-converting slurries (Chapter 4). The increase in the relative abundance 

of Desulfobacteraceae and Desulfobulbaceae in SZ, SMTZ and MZ sediment slurries suggests the 

presence of sulfate reducers throughout the anoxic sediment column. In the absence of sulfate, 

Syntrophomonas and Cyrptanaerobacter become dominant which suggests their role in syntrophic 

butyrate and propionate conversion, respectively. These results were further supported in Chapter 

6. The increase in the relative abundance of Syntrophomonas in the presence of sulfate (Chapter 

3) and some members of Desulfobacteraceae (Chapter 4) in the absence of sulfate shows the 

metabolic flexibility of the microorganisms at different sulfate concentrations. Temperature has an 

impact on the microbial community (Chapter 4) and IPL composition (Chapter 5) in enrichment 

slurries. Cryptanaerobacter is dominant at 25°C, and, Desulfobacteraceae (Desulfofaba), especially 

Desulfobulbaceae members (Desulfobulbus, Desulforhopalus) become dominant at 10°C at 0 and 3 

mM sulfate concentrations in propionate-amended enrichment slurries. In butyrate-amended 

slurries, Clostridiales have higher relative abundance at 10°C regardless of the sulfate concentration 

and the sediment depth which supports important role of Clostridiales in butyrate conversion in 

marine sediments. Archaeal community analyses revealed the dominance of hydrogenotrophic 

methanogens belonging to Methanomicrobiales in both butyrate- and propionate-converting 

slurries (Chapter 3 and 4) and enrichment cultures (Chapter 6) regardless of the sediment depth, 

the incubation temperature and the presence of sulfate, which indicate that they are the main 

syntrophic partners of butyrate and propionate degraders. The other syntrophic partner organisms 

are the aceticlastic methanogenic families: Methanosarcinaceae and Methanosaetaeceae. The 

presence of methane-oxidizing archaea (ANME-1b) in low temperature SMTZ slurries together with 

Desulfobacteraceae (Chapter 3 and 4) suggests the occurrence of anaerobic oxidation of methane 

(AOM) in SMTZ of Aarhus Bay. 

In conclusion, this thesis confirms the presence and activity of methanogens in sulfate-rich, 

and SRB in sulfate-depleted marine sediments and their involvement in butyrate, propionate and 

acetate conversion. Novel bacterial and archaeal members enriched in the sediment slurries are 

likely involved in propionate, butyrate and acetate conversions at different depths of marine 

sediments in addition to known the cultured species.  
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Samenvatting 

Propionaat, butyraat, acetaat, waterstof en formiaat zijn de voornaamste tussenproducten van 

afbraak van organisch materiaal. Sulfaat reducerende bacteriën (SRB) dragen significant bij aan de 

consumptie van deze substraten in sulfaat-rijke marine sedimenten. Echter, in sulfaat-arme 

sedimenten is complete afbraak van propionaat en butyraat alleen mogelijk via syntrofe interactie 

met acetogene bacteriën of methanogene archaea. Ondanks dat literatuur de dominantie van SRB 

in sulfaat-rijke, en methanogenen in sulfaat-arme sedimenten beschrijft, tonen recente studies aan 

dat beide typen micro-organismen aanwezig zijn in beide soorten sediment. In deze thesis worden 

propionaat en butyraat omzetting en de daarbij betrokken microbiële groepen in sulfaat-rijke zone 

(SZ), sulfaat-arme zone (MZ) en de sulfaat-methaan transitie zone (SMTZ) in het sediment van de 

Baai van Aarhus, Denemarken besproken aan de hand van sediment slurrie incubaties. Uitwisseling 

van waterstof en samenleving van micro-organismen gedurende acetaat afbraak zijn onderzocht 

gebruikmakende van gemixte pure cultures.  

 

In hoofdstuk 2 wordt waterstof overdracht tussen de aceticlastische methanogeen Methanosaeta 

concilii en hydrotrofe microorganismen, Desulfovibrio vulgaris of Methanococcus maripaludis 

besproken. Ook de samenwerking tussen M. concilii en Desulfobacter latus groeiend op acetaat in 

sulfaat reducerende condities is bestudeerd. De resultaten van hoofdstuk 2 laten zien dat D. 

vulgaris sulfaat kan reduceren en groeien met waterstof gelekt uit M. concilii. Waterstof lekkage 

van M. concilii kan verklaren waarom er biogeochemisch een zonatie is van competitieve (b.v. 

acetaat) en niet-competitieve (b.v. gemethyleerde stoffen) substraten, en geeft indicatie dat SRB en 

methanogenen mogelijk samenleven in sulfaat-rijke omgeving.  

 

In hoofdstuk 3 en 4 worden lange termijn incubaties besproken met focus op butyraat en 

propionaat omzetting, en de populatie dynamiek daarachter, bij sediment incubaties met 

verschillende sulfaat concentraties (0, 3 en 20 mM) en incubatie temperatuur (10 ○C en 20 ○C). 

Sulfaatreductie is het overheersende proces voor butyraat en propionaat omzetting in sedimenten 

van de Baai van Aarhus. In afwezigheid van sulfaat worden beide substraten efficiënt omgezet, wat 

aangeeft dat er syntrofe groepen aanwezig zijn in het sediment. Fluctuerende gehaltes van methaan 

en de verrijking van anaerobe methaan oxiderende archaea (ANME) gedurende butyraat en 

propionaat omzetting bij 10 ○C suggereren dat er anaerobe oxidatie van methaan (AOM) plaatsvind 

in de sulfaat-methaan transitie zone van de Baai van Aarhus.  
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De microben betrokken bij butyraat en propionaat omzetting zijn bestudeerd met next-generation 

sequencing (NGS) van het 16S rRNA amplicon. De verrijkte sulfaat-reducerende bacteriën bij hoge 

sulfaat concentraties (20 mM) verschilde wanneer butyraat of propionaat werden gebruikt als 

substraat. Desulfosarcina en Desulfobacterium domineerde de butyraat-consumerende slurries 

(hoofdstuk 3), terwijl Desulfosarcina, Desulfobulbus en Desulforhopalus de voornaamste SRB zijn 

in propionaat-verbruikende slurries (Hoofdstuk 4). De toename in relatieve aanwezigheid van 

Desulfobacteraceae en Desulfobulbaceae in de SZ, SMTZ en MZ  sediment incubaties suggereert de 

aanwezigheid van sulfaat reduceerders door de gehele anoxische sediment kolom. In de 

afwezigheid van sulfaat worden Synhrophomonas en Cyrptanaerobacter de dominante organismen, 

wat hun syntrofe rol in respectievelijk butyraat en propionaat omzetting suggereert. Deze 

resultaten zijn verder onderbouwt in Hoofdstuk 6. De toename in relatieve aanwezigheid van 

Syntrophomonas in de aanwezigheid van sulfaat (Hoofdstuk 3) en sommige leden van de 

Desulfobacteraceae (hoofdstuk 4) in afwezigheid van sulfaat laat de metabole flexibiliteit van 

micro-organismen bij verschillende sulfaat concentraties zien.  

 

Temperatuur had effect op de samenstelling (hoofdstuk 4) en IPL compositie (hoofdstuk 5) van 

de microbiële groepen in de incubaties. Cryptanaerobacter is dominant bij 25 graden Celsius. 

Desulfobacteraceae (Desulfofaba), vooral Desulfobulbaceaea (Desulfobulbus, Desulforhopalus), 

worden dominant bij 10 graden Celsius bij 0 en 3 mM sulfaat in propionaat-verrijkte slurries. In 

incubaties met butyraat zijn Clostridiales relatief meer aanwezig bij 10 ○C ongeacht de 

sulfaatconcentratie en de sedimentdiepte, wat de belangrijke rol van Clostridiales in butyraat 

omzetting in marine sedimenten benadrukt. Analyse op de samenstelling van Archaea liet de 

dominatie zien van hydrogenotrofe methanogenen behorend tot de Methanomicrobiales in zowel 

butyraat en propionaat omzettende incubaties (hoofdstuk 3 en 4) als in verrijkte cultures 

(hoofdstuk 6) ongeacht sedimentdiepte, incubatietemperatuur en aanwezigheid van sulfaat. Dit 

geeft aan dat zij de voornaamste syntrofe partners zijn van butyraat en propionaat afbrekende 

micro-organismen. Andere syntrofe partner organismen zijn de aceticlastische methanogene 

families: Methanosarcinaceae en de Methanosaetaeceae. De aanwezigheid van methaan-oxiderende 

archaea (ANME-1b) bij lage temperatuur SMTZ incubaties, samen met de aanwezigheid van 

Desulfobacteraceae (hoofdstuk 3 en 4), suggereren dat anaerobe oxidatie van methaan in SMTZ 

van de Baai van Aarhus plaatsvind.  
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Deze thesis bevestigt de aanwezigheid en activiteit van methanogenen in sulfaat-rijke, en SRB in 

de sulfaat-arme marine sedimenten; en hun betrokkenheid bij butyraat, propionaat en acetaat 

omzetting. Nieuwe bacteriële en archaea soorten zijn opgehoopt in de sediment slurrie incubaties 

en zijn waarschijnlijk betrokken bij propionaat, butyraat en acetaat omzetting in verschillende 

dieptes van het marine sedimenten en zijn een additie aan de al bekende soorten.  
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