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1. Mixed tree plantations provide an opportunity to increase forest productivity. 

 (this thesis) 

 

2. Competitive interactions among trees explain stand overyielding. 

 (this thesis) 

 

3. In science, ideas are more important than equipment.  

 

4. Complementarity rather than competition among scientists increases scientific productivity. 

 

5. A PhD development trajectory resembles the stand volume development of a thinned forest 

with ups and downs in an ultimately upward trend. 

 

6. Dutch people care more about the weather than about the hygiene of their food. 
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European and Dutch forests: history and current situation 

 
Forests provide multiple services to society. In Europe, forest managers have changed their 

focus for different services dramatically over the recent past. Starting from the middle of the 

19th century, forest managers strongly favoured an economic approach to achieve maximum 

and constant annual yield. There was a focus on increasing even-aged coniferous plantations 

by reducing the numbers of broadleaved trees and the area of uneven-aged forests (Agnoletti 

and Anderson, 2000; Johann et al., 2004). However, the coniferous monocultures were often 

negatively affected by insects and natural disturbances, such as wind throw, and they often 

degraded soils and decreased site productivity (Agnoletti, 2006). By the end of the 20th 

century, forest managers started to convert many conifer monoculture plantations into mixed 

species forests, sometimes together with broadleaved species. This transition towards more 

mixed forests became a common practice in many areas of Europe (Agnoletti, 2006), 

including the Netherlands (Bartelink, 1998), and served several purposes, for example, 

increasing the productivity, stability, resistance and resilience of forests (Bravo-Oviedo et al., 

2014; Jucker et al., 2014b; Chamagne et al., 2016; Del Río et al., 2017). 

Currently, European forests (without the Russian Federation) cover about 210 million ha, 

i.e. 32.2% of Europe’s land area by 2010 (Barbati et al., 2011). Most forests in Europe are 

still made up of predominantly coniferous stands (50%) and predominantly broadleaved 

stands (27%). The remaining 23% part is stands that are co-dominated by coniferous and 

broadleaved species. Approximately 73% of European forests are even-aged and many of 

them are of intermediate age, with 43% between 20 and 80 years old. However, uneven-aged 

forests represent a small percentage with less than 20%. In the Netherlands, forests cover a 

relatively small area, with only about 11% (373,480 ha) of total land surface (Schelhaas et al., 

2014). In this forest area, slightly over 21% is dominated by conifers, 21% by broadleaved 

species, and the remaining by mixtures of conifer and broadleaved species. Most Dutch 

forests are even-aged (62%) and are of intermediate age, with an average age of 67 years for 

conifers and 55 years for broadleaved species forests. The share of uneven-aged forests is 

small with 16% and special forest, such as coppice or park forest occupies 24%. In this thesis, 

plot samples of these Dutch forests are analysed, with a strong focus on the impact of mixing 

species on the productivity of even-aged forests.  

 

Definitions of mixed-species forests 

 
Forests may vary from monocultures, a term referring to stands dominated by a single species, 

to mixed-species stands, consisting of two or more tree species. Several methods have been 

developed to define, or quantify the mixing of species in a forest stand. These methods 

include criteria such as the presence of trees from two or more species (Bartelink and 

Olsthoorn, 1999), vertical distributions of different species (Leikola, 1999), and successional 

patterns in species composition (Oliver and Larson, 1996). Recently, a research network 
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focusing on European mixed forests “Integrating Scientific Knowledge in Sustainable 

Management of Mixed Forests” (EuMIXFOR, http://www.mixedforests.eu/) defined a mixed-

species forest as a forest unit where at least two species coexist and share common resources 

(light, water, and nutrients) at any developmental stage. 

Moreover, this network reviewed several alternative criteria for defining species 

proportion. The proportion of each species can be expressed as a percentage (%) for different 

variables: number of stems (Assmann, 1970), basal area (Vallet and Pérot, 2011; Toïgo et al., 

2015), tree volume or biomass (Pretzsch, 2010; Huber et al., 2014), or canopy cover (Sterba, 

1998; Huber et al., 2014). A completely different approach was developed by Reineke 

(Reineke, 1933). He started from the concept of fully stocked even-aged stands, defined by 

self-thinning lines which are a function of average tree diameter and tree number per ha. He 

developed a method that quantified the relative distance of any stand from a fully stocked 

status, the index refers back to the fully stocked stand. The advantage of this method is that it 

expresses the level of competition between species (Weiskittel et al., 2011), and that species 

proportions do not depend on stand development stage or site conditions, at least not 

conceptually. For more details of the characterization of species proportion in mixed-species 

stands, see Table 1.1. In this thesis, measures of species proportion used are basal area per 

species (explained in chapter 2 and 3) as well as the Reineke stand density index (explained in 

chapter 4) to explore the impacts of mixing species on the productivity of forest stands, by 

comparing two-species mixture stands with their corresponding single-species stands. 

 

Table 1.1  Variables for defining species proportion in mixed-species stands, including their units, pros and cons, 

and their applications in literature. 

Variable 

 

Unit 

 

Pros (+) and cons (–)  

 

References 

 

Number of stems trees ha-1 

+ easily estimated and interpreted 

– does not take account for horizontal and vertical spatial 

   patterns and growing space requirements for each species 

(Assmann, 1970) 

    

Stand basal area  m2 ha-1 
+ easy to measure, common use in forest science 

– dependent on site conditions, age and species composition 

(Del Río and Sterba, 2009; Vallet 

and Pérot, 2011; Huber et al., 2014; 

Toïgo et al., 2015; Thurm et al., 

2016b) 

    

Total stem volume  m3 ha-1 
+ of particular interest to forest managers 

– requires species-specific volume equations or tree height 
(Pretzsch, 2010; Huber et al., 2014) 

    

Biomass  Mg ha-1 

+ important measure, e.g. for carbon sequestration 

– requires species-specific allometric equations or tree 

   height, and wood density  

– in mixtures, the species-specific allometric equations 

   may need modification due to inter-specific interactions 

(Pretzsch, 2010; Huber et al., 2014; 

Forrester et al., 2017) 

    

Leaf area index m2 m-2 
+ closely linked to light interception and primary production 

– need detailed measurements or species-specific functions 

(Sterba, 1987, 1998; Sterba et al., 

2014) 

    

Stand density index 

 

stem ha-1 

 

+ the proportion in mixed versus monospecific stands can be 

   compared directly and interpreted 

– strong assumptions on forest structure and development 

(Reineke, 1933; Del Río et al., 

2014a; Condés and Del Río, 2015) 
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Productivity in mixed-species vs monoculture forests 

 
Since several decades, and in many regions of Europe, many conifer forests are being 

transformed such that conifers grow together with broadleaved species, which can contribute 

to a higher biodiversity, higher resilience to disturbances, and which may increase wood 

production (Zerbe, 2002; Felton et al., 2010). When mixed forest plantations use resources 

more efficiently, this may result in higher production compared to their respective 

monocultures. This phenomenon is often referred to as overyielding (Tilman, 1999; see Box 

1.1 for definition). Overyielding may be affected by many factors, including differences in 

species composition, stand developmental phases, environmental conditions, forest 

management practices, and other factors (Hynynen et al., 2011; Forrester, 2014), as shown in 

Figure 1.1. Several studies indeed point out that temperate mixed-species forests are more 

productive than monoculture forests (Zhang et al., 2012; Pretzsch et al., 2015b; Forrester and 

Bauhus, 2016; Ma and Chen, 2016). However, other studies do not show this phenomenon 

(Bouillet et al., 2013; Epron et al., 2013; Forrester, 2014). These divergent findings might be 

attributed to different species combinations or to different stand ages. In addition, many studies 

show that overyielding occurred on poor sites and underyielding (see Box 1.1 for definition) or 

no species mixing effect appeared on richer sites (Del Río and Sterba, 2009; Pretzsch et al., 

2013a; Toïgo et al., 2015). To the contrary, yet other studies document stronger overyielding on 

rich sites, and suggested that this was due to stronger complementarity (Pretzsch et al., 2010; 

Forrester et al., 2013a; Jucker et al., 2014a; Thurm and Pretzsch, 2016; see Box 1.1). These 

contrasting findings may arise from environmental conditions, forest management practices, 

and other factors. 

For temperate European forests, this species mixing effect on productivity has been 

reported for few species combinations only and the effect changes with soil fertility. On the 

poorest soils in Dutch forests, only a limited number of species occurs and the potential for 

productivity gain by mixing species is unsure. In this thesis, I explore how species mixing 

affects productivity and how complementary resource use may contribute to this, by focusing 

on Dutch forests differing in species compositions, stand developmental stages and site 

conditions. Analysing these patterns can advance our understanding when, where and why 

mixed-species forests may have higher productivity compared with monoculture forests. 

 

Resource acquisition in mixed-species forests 

 
The niche complementarity hypothesis (Kelty, 1992; Tilman, 1999; see Box 1.1) states that 

different species in mixed forests can have complementary above and/or belowground 

resource acquisition and use. Species differences in crown architecture, shade tolerance, leaf 

phenology and root distribution may contribute to such complementarity and thus lead to 

higher productivity, i.e. overyielding. These related mechanisms are shown in Figure 1.1, and 

further explained below. 
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Box 1.1:  Glossary with concepts and their explanations used throughout this thesis 

 

Competition: The process in which individuals take away limiting resources from each other, and thus reduce 

the growth of each other (Vandermeer, 1989). 

Competitive reduction: Competition is weaker between trees of different species than between trees of the same 

species, caused by complementary resource use (Vandermeer, 1989). 

Complementarity: When trees of different species grow together, they may partition resources or use resources 

more efficiently than when they grow together with trees of the same species (Larocque et al., 2012). 

Complementarity covers competitive reduction and facilitation, which often occur simultaneously and their 

effects are difficult to separate (Loreau and Hector, 2001). 

Facilitation: The process in which individuals benefit from each other, which results in higher growth when 

they grow together (Vandermeer, 1989). 

Inter-specific competition: Competition between individuals of different species (Harper, 1977).  

Intra-specific competition: Competition between individuals within the same species (Harper, 1977). 

Niche complementarity hypothesis: Different species are complementary in resource acquisition and use, 

which results in higher stand productivity (Kelty, 1992; Tilman, 1999). 

Overyielding: Mixed-species forests grow more rapidly than the corresponding monocultures under the same 

growing conditions (Tilman, 1999). 

Resource-ratio hypothesis: Competition among trees switches predominantly for soil resources on poor soils to 

predominantly for light on fertile soils (Tilman, 1985). 

Size-asymmetric competition: Larger individuals often suppress the growth of smaller neighbours 

disproportionately. This phenomenon is considered common for trees differing in height and competing for light 

(Hara, 1993; Schwinning and Weiner, 1998). 

Size-symmetric competition: Competing individuals, whether large or small, suppress the growth of each other 

proportionally. This situation is considered common for trees competing for soil resources (Hara, 1993; Schwinning 

and Weiner, 1998).  

Stress-gradient hypothesis: The availability of soil resources for one species becomes more pronounced by the 

presence of another species by facilitation or improved complementary use of soil resources from rich to poor 

soils (Bertness and Callaway, 1994). 

Underyielding: Mixed-species forests grow slower than the corresponding monocultures under the same 

growing conditions (Tilman, 1999). 

 

Aboveground complementarity for acquisition of light 

In mixed forest stands, trees of fast-growing light-demanding species capture light more 

efficiently and grow more rapidly than trees of more slow-growing shade-tolerant species. This 

difference in shade tolerance allows light-demanding species to occupy the upper layer of the 

canopy, while shade-tolerance can survive in the lower layers. Consequently, multiple crowns 

of different species better fill the above ground space, and result in higher light absorption and 

light use efficiency (Pretzsch, 2014; Jucker et al., 2015). On top of that, total annual light 

absorption might increase when species differ in leaf phenology. If deciduous species co-occur 
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with other deciduous tree species, those trees compete for light during the summer. However, 

mixing evergreen conifers and deciduous species, trees of evergreen species may capture and 

use light in autumn and early spring when deciduous trees are without leaves. The elongated 

overall leaf life span of the forest through the year may allow for complementary light use and 

result in higher productivity (Kelty, 1989). In addition, plasticity in crown architecture has 

been shown to increase canopy packing (Longuetaud et al., 2013; Pretzsch, 2014; Jucker et al., 

2015), and this complementarity in using space is observed to result in overyielding in 

mixtures by increasing both overall light interception and/or light use efficiency (Williams et 

al., 2017). These studies thus imply a strong potential for aboveground complementary in 

light use in mixed forests. 

 

Belowground complementarity for acquisition of soil resources 

Belowground, differential root distribution is considered an important potential mechanism 

for overyielding. A growing number of studies shows that fine root productivity was higher in 

mixed-species stands compared with their monoculture stands (Brassard et al., 2013; Thurm 

et al., 2016a; Ma and Chen, 2017). Several processes may be associated with explaining this 

higher fine root productivity. First, the soil resources acquisition could be enhanced if mixing 

shallow-rooted species dominating the top soil with deep-rooted species spreading into deeper 

soil layers (Hendriks and Bianchi, 1995; Forrester et al., 2010; Reyer et al., 2010; Brassard et 

al., 2013; Pretzsch et al., 2013b; Thomas et al., 2015). This vertical root stratification can also 

enhance soil resource availability, by hydraulic lift of soil water (Manso et al., 2015). 

Secondly, more evenly distributed roots increase horizontal soil volume filling due to intense 

root interactions to increase resource foraging in mixtures than monoculture stands (Brassard 

et al., 2013; Ma and Chen, 2017). Thirdly, the facilitative effect of nitrogen-fixing species on 

the growth of non-nitrogen-fixing species may cause overyielding, particularly when nitrogen 

is more limiting (Forrester et al., 2006). Lastly, nutrient cycling could be accelerated because 

of the existence of fast nutrient cycling species. Increases in nutrient availability can lead to 

more root growth and the carbon then can be used for stem growth (Poorter et al., 2012). In 

the following chapters, productivity in mixtures versus monocultures are compared on soils 

differing in fertility by considering these possible explanations when overyielding occurs. 

 

Below versus aboveground interactions in complementary resource use 

The belowground complementary resource use may depend on soil fertility. Here, it is 

important to note that two dominant hypotheses depict the changes in species interactions 

with soil fertility, with possible consequences on overyielding. The stress-gradient hypothesis 

suggests that species interactions in plant communities change from competition at high soil 

fertility to facilitation or better belowground complementary resource use at low soil fertility 

(Bertness and Callaway, 1994; see Box 1.1). The resource-ratio hypothesis states that species 

interactions run from competition for light at high soil fertility to competition for soil 

resources at low soil fertility (Tilman, 1985; see Box 1.1). 
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Studies identified the competition for light as size-asymmetric since larger individuals 

take more than their (size-) proportional share of intercepted light compared to smaller 

individuals. Instead, the competition for belowground soil nutrients and water is considered 

size-symmetric for all the individuals, implying that trees take their (size-) proportional share 

of soil resources (Hara, 1993; Schwinning and Weiner, 1998) (see Box 1.1). Across a soil 

fertility gradient, experiment studies observed that competitive interactions generally 

strengthened in a boreal forest (Baribault and Kobe, 2011; Coates et al., 2013). Several studies 

report that complementary soil resource use is stronger at low fertility soil (Del Río and 

Sterba, 2009; Pretzsch et al., 2013a; Toïgo et al., 2015), supporting the stress-gradient 

hypothesis, whereas other studies document that complementary soil resource use is less at 

low soil fertility (Forrester et al., 2013a; Jucker et al., 2014a; Thurm and Pretzsch, 2016), 

confirming the resource-ratio hypothesis. In this thesis, both hypotheses are taken as starting 

points for interpreting overyielding, or lack of overyielding, in mixed stands in relation to soil 

fertility.  

 

 

Figure 1.1  Conceptual framework representing factors and possible mechanisms that could influence 

overyielding. The mechanisms are due to complementarity or reduced competition for light and soils.  

 

Stand development and forest management 

 
The forest productivity in even-aged stands typically changes with stand development, reaching 

a peak at early forest age, followed by a substantial decline, probably due to the increasing 

costs of maintaining living wood or due to hydraulic limitations (Ryan et al., 1997). In mixed 

forest stands, productivity is altered by both intra- and inter-specific interactions, and may 

differ from productivity patterns in monocultures. These interactions between species 

growing in mixed stands may include competition, competitive reduction and facilitation 

(Vandermeer, 1989). Competitive reduction and facilitation often occur simultaneously and 

their effects are difficult to separate, and these two are collectively described as 

complementarity (Loreau and Hector, 2001; see Box 1.1). Moreover, shifts from competition 
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to facilitation over time have been observed in mixed stands, but such shifts varied with species 

composition (Cavard et al., 2011; Del Río et al., 2014b). 

At young stand age, small trees of fast-growing light-demanding species capture light more 

efficiently and grow more rapidly than trees of more slow-growing shade-tolerant species. Once 

fully occupying the growing space and closing their canopy, the competition for light increases. 

The trees of light-demanding species dominating the upper canopy may transmit sufficient light 

for trees of shade-tolerant species to survive and grow (Oliver and Larson, 1996). Several 

studies demonstrate strong competitive interactions in favourable growing seasons and more 

complementarity effects in years of poor growing conditions (Lebourgeois et al., 2013; Pretzsch 

et al., 2013b; Del Río et al., 2014b). Besides, recent studies suggest that species interactions can 

increase temporal stability of productivity in mixed stands by increasing complementarity 

among the neighbouring trees (Jucker et al., 2014b; Del Río et al., 2017). In some studies, it 

was observed that stem and fine root productivity increased with increasing stand age, in both 

temperate and boreal mixed forests (Thurm and Pretzsch, 2016; Ma and Chen, 2017). All 

those studies presented long-term, multiple decades of observations rather than single point, 

or data collected during short periods. The scarcity of long term data is one of the probable 

reasons that studies on species mixing effects on stand productivity with stand development are 

uncommon.  

In this thesis, the species mixing effect on productivity with stand development is 

evaluated by using data from long-term permanent field plots from the Netherlands. In those 

Dutch forests, species interactions are continuously affected by forest management practices, 

both in monocultures and mixtures. Under given environmental conditions and tree species 

compositions, as illustrated in Figure 1.1, forest management aiming at increasing forest 

productivity often use thinning to reduce the stand density (Puettmann et al., 2015), thus 

increasing the availability of light, water, and nutrients for the remaining trees. This situation 

differs from most of the existing studies, which focussed on mixed forests where thinning 

operations were abandoned to assess the mixing effect on productivity (Del Río and Sterba, 

2009; Jucker et al., 2014b; Toïgo et al., 2015). Therefore in the following chapters, I discuss 

the possible consequences of forest management, i.e. thinning operations, on the possible 

mixing effects on productivity.  
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Questions & hypotheses 

 
In this thesis, productivity is compared between mixed forest stands and corresponding 

monoculture stands. Differences in productivity between mixtures and monocultures are 

explained from differences in tree attributes (crown architecture, shade tolerance, leaf 

phenology, and root distribution) between species, which reflect different mechanisms of 

complementarity. In addition, it is discussed how these trends can be affected by stand age, 

soil fertility and forest management (Figure 1.1). The specific research questions are:  

 

1. What is the effect of species mixing on stand productivity with stand development? 

2. How does overyielding depend on the attributes of mixed species along a soil fertility 

gradient? 

3. What is the effect of competitive interactions on tree growth in mixed-species forests 

along a soil fertility gradient? 

 

The hypotheses corresponding to these questions are: 

1. In line with the niche complementarity hypothesis, it is expected that tree species of 

mixed stands that differ in leaf phenology and/or shade tolerance overyield more 

strongly. Second, it is expected that overyielding decreases with stand development 

because fully grown stands take all resources and limit resource partitioning  

(Figure 1.2 a). 

2. It is hypothesised that the faster growing and more light-demanding species would 

dominate the slower growing and more shade-tolerant species in mixed-species stands, 

and that complementary use of light by these two species causes overyielding. Second, 

according to the stress-gradient hypothesis, overyielding by complementary soil 

resource use would be stronger at poor soils than at rich soils. Alternatively, following 

the resource-ratio hypothesis, overyielding would be stronger at rich soils  

(Figure 1.2 b). 

3. First, it is predicted that intra-specific competition is stronger than inter-specific 

competition and the competitive reduction is greater at less fertile soils, in accordance 

with the stress-gradient hypothesis. Second, when light is the most important growth 

limiting factor in Dutch forests, size-asymmetric competition for light is more relevant 

for tree growth than size-symmetric competition for soil resources. Third, given that 

forests develop a denser canopy, size-asymmetric competition will be greater at high 

fertility soils, in accordance with the resource-ratio hypothesis, and this in turn may 

imply a higher probability of complementarity for light than for soil resources  

(Figure 1.2 c).  
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Figure 1.2  Conceptual diagram for the hypotheses in this thesis. (a): productivity expressed as stand volume 

growth in a mixture versus their respective monocultures over time; (b): productivity expressed as volume growth 

of a mixture and their respective monocultures, and in relation to the species proportions within the mixture; (c): 

productivity expressed as tree basal area growth changes with stand density index. In graph (a), the dashed lines 

represent two monoculture stands, and the solid line represents a mixture composed of the two corresponding 

species. In graph (b), dashed lines represent predicted values with null mixing effect, i.e. no overyielding. The solid 

red lines represent predicted values with stronger overyielding on poor soils, and the solid green lines represent the 

less overyielding at richer soils. Note that those predictions differ between the stress-gradient hypothesis and the 

resource-ratio hypothesis. In graph (c), the red and green line represents the tree basal area growth with stand 

density index in mixed stands at poor soils and at rich soils, respectively. The decrease in productivity is larger with 

stand density when soil fertility is richer, meaning stronger competition for light at rich soils. 

 

General approach 

 
In this thesis, data were taken from two datasets of forests across the Netherlands. One dataset 

consists of growth and yield data (GYD) from permanent field plots (Den Ouden and Mohren, 

2016) and the other is the Dutch national forest inventory (NFI) data (Schelhaas et al., 2014). 

The GYD contains information of stand development of 319 plots in monoculture from 1929 

to 2011, and of 91 plots in mixture between 1949 and 2004 (see Table 2.1 in chapter 2). Five 

tree species in monoculture are included: Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), 

common beech (Fagus sylvatica L.), Scots pine (Pinus sylvestris L.), pedunculate oak 

(Quercus robur L.) and silver birch (Betula pendula Roth). In two-species mixtures, they 

occur in the following combinations: Douglas-fir–common beech, Scots pine–pedunculate 

oak, pedunculate oak–common beech, and pedunculate oak–silver birch. The Dutch NFI data 

provide a shorter time series, with one re-census after 2003 in the period between 2011 and 

2013, and thus provide information of stand productivity over a period of maximum 10 years, 

from plots distributed all over the Netherlands (see Methods in chapter 4). From the Dutch 

NFI data, 145 plots with mixed species were selected including three mixtures: pedunculate 

oak–silver birch, Scots pine–pedunculate oak, and Scots pine–silver birch (see Table 4.1 in 

chapter 4). Hereafter throughout this thesis, the five species and monocultures are written as 
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Douglas-fir, beech, pine, oak and birch, and the five mixtures accordingly as Douglas-fir–

beech, pine–oak, oak–beech, oak–birch and pine–birch, respectively. The locations of the 

selected forest plots are shown in Figure 1.3. Photo images of examples of the 5 two-species 

mixed stands studied are shown in Figure 1.4. 

Additionally, these plot data from the two datasets were coupled with soil data using the 

ISRIC-World Soil Information SoilGrids250m database (see Methods in chapter 3 and 4). 

Forest plots from both datasets come mainly from sandy soils areas (Figure 3.1 and 4.1), and 

cover a natural soil fertility gradient on sandy soils within the Netherlands. These plot data 

were used to show how species mixtures influence forest stand productivity during stand 

development (chapter 2). In addition, it was used to show how the productivity of individual 

species in mixtures compared to their monocultures, and how such species-specific 

productivity was affected by soil fertility (chapter 3). The Dutch NFI data was used to show 

the consequences of competitive interactions on growth of trees in forest stands differing in 

stand density and soil fertility (chapter 4). These three analyses and the corresponding 

chapters represent different organization levels, running from stand, species, to individual tree.  
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Figure 1.3  Distribution of the studied plots throughout the Netherlands. Growth and yield data: from long-term 

permanent field plots for study in chapter 2 and 3; NFI data: from Dutch national forest inventory data for study 

in chapter 4.  
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Figure 1.4  Photo images of the two-species mixtures studied in this thesis. a: Douglas-fir (Pseudotsuga 

menziesii (Mirb.) Franco)–common beech (Fagus sylvatica L.) mixture; b: Scots pine (Pinus sylvestris L.)–

pedunculate oak (Quercus robur L.) mixture; c: pedunculate oak–common beech mixture; d: pedunculate oak–

silver birch (Betula pendula Roth) mixture; e: Scots pine–silver birch mixture (Photo: courtesy of Leo 

Goudzwaard). 

 

Thesis outline 

 
This thesis comprises a general introduction (this chapter), three research chapters (chapter 2–

4) and a general discussion (chapter 5). See Figure 1.5 for an overview of the research 

chapters. 

In chapter 2, the productivity in 4 two-species mixtures is compared with their 

corresponding monoculture stands, using the GYD from permanent forest plots in the 

Netherlands. Empirical models at stand level are applied to explore the impacts of mixing 

species on stand productivity for the mixtures. The results are discussed in the light of 

complementarity resulting from differences between species in leaf phenology and shade 

tolerance. 
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In chapter 3, the same data are used to explore how the two species in these mixtures 

contributed to the productivity of the forest stand on different soil fertility. For this purpose, 

empirical models at species level are used to test overyielding effects of the different species 

at different soils. 

In chapter 4, to examine the mechanism of stand and species level overyielding, the 

Dutch NFI data are used to explore how the growth of trees in mixtures is influenced by inter- 

and intra-specific competition, both for size-symmetric competition for soil resources and 

size-asymmetric competition for light on different soils.  

In chapter 5, the strengths and limitations of the research are discussed, and the results of 

the individual chapters are integrated to understand how species mixing effect depends on 

stand developmental stage and soil fertility. Finally, conclusions are drawn based on the 

empirical studies of species mixing and recommendations are given for forests management 

practice. 

 

 
 

Figure 1.5  Graphical overview of the structure of this thesis. The coloured boxes show the main topics per 

research chapter. Chapter 2 focuses on mixture effects on stand productivity during stand development (green). 

Chapter 3 explores the mixture effects on the productivity of individual species on soils differing in fertility 

(orange). Chapter 4 explores the consequences of competitive tree-tree interactions for soil resources and light 

for the growth of trees (red). The solid downwards arrows indicate from higher to lower organization levels to 

understand patterns of species interactions in mixed stands. The dashed arrows represent upscaling from lower to 

higher organizations levels, but they are not directly linked. 
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Abstract 

 

Recent studies show that mixed species forests sometimes have higher stand productivity than 

monospecific forests, which we refer to as overyielding. Yet, results for temperate forests are 

ambiguous, possibly because forests differ in local site conditions, thinning history and forest 

age. In line with the niche complementarity hypothesis, we expect stronger overyielding for 

forests with species differing in both leaf phenology (evergreen or deciduous) and shade 

tolerance. We also hypothesise that overyielding will decrease with stand development 

because of decreasing resource availability. We compared 4 two-species mixtures with their 

corresponding monospecific stands from long-term field measurements in the Netherlands. 

The mixtures were Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)–common beech 

(Fagus sylvatica L.), Scots pine (Pinus sylvestris L.)–pedunculate oak (Quercus robur L.), 

pedunculate oak–common beech, and pedunculate oak–silver birch (Betula pendula Roth). 

Overyielding was observed in 2 of the 4 mixtures: Douglas-fir–common beech mixtures had 

35.9% and 36.7% higher volume growth relative to Douglas-fir and common beech 

monocultures, respectively; Scots pine–pedunculate oak mixtures had 20.3% and 31.2% 

higher volume growth relative to Scots pine and pedunculate oak monocultures, respectively, 

on average over time. Furthermore, overyielding was relatively constant for the two mixtures 

through stand development. This result was robust after accounting for possible effects of site 

quality and thinning history, where site quality contributed independently to stand 

productivity and thinning history had no effect. No significant overyielding effects were 

observed for the two deciduous mixed stands, i.e. pedunculate oak–common beech and 

pedunculate oak–silver birch. Mixing tree species in temperate forests resulted in overyielding 

for evergreen–deciduous species mixtures, but not for deciduous–deciduous species mixtures. 

This indicates that leaf phenology contributes to overyielding effects. Overyielding was 

higher in the Douglas-fir–common beech mixtures than the Scots pine–pedunculate oak 

mixtures, which coincides with a stronger contrast in shade tolerance between Douglas-fir and 

common beech and thus stronger complementarity. Our results support the complementarity 

hypothesis and imply that such mechanisms are maintained with stand development. It 

therefore appears that mixing evergreen with deciduous species with contrasting shade 

tolerance is a valid management strategy for increasing diversity and productivity of 

temperate forests in the Netherlands.  

 

Keywords: Mixture; Monoculture; Niche complementarity; Productivity; Stand 

development; Volume growth 
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Introduction 

 
Over the past decade, forest stands dominated by single species (monospecific stands or 

monocultures) have been converted to stands co-dominated by multiple species (mixed stands, 

or mixtures) in Europe, as mixed stands are considered more resistant and resilient to 

disturbances than monocultures (Bravo-Oviedo et al., 2014; Gazol and Camarero, 2016) and 

may provide higher levels of multiple ecosystem services (Gamfeldt et al., 2013). Both theory 

and data suggest that mixed stands can be more productive than monocultures, which is also 

referred to as overyielding (Morin et al., 2011; Zhang et al., 2012; Vilà et al., 2013; Jucker et 

al., 2014b; Zhang and Chen, 2015); however, the evidence for overyielding is mixed since 

other studies document that mixtures are not more productive than monospecific stands 

(Bouillet et al., 2013; Epron et al., 2013; Forrester and Albrecht, 2014). It could be that 

overyielding effects in existent forests are masked by other factors, such as variable soil 

conditions, forest management history and competitive interactions (Pretzsch et al., 2015a), 

which all vary across plots and change with stand age.  

A possible key mechanism contributing to overyielding is complementary resource use in 

which divergent crown architectures, crown phenology and root distributions may play a main 

role (Forrester and Albrecht, 2014; Pretzsch et al., 2014; Pretzsch et al., 2015b). In mixtures, 

tree species with divergent architectures may occupy different spaces and partition light 

capture. When young growing stands close their canopy, trees of light-demanding species 

may transmit sufficient light through their canopy, so that trees of shade-tolerant species can 

survive and grow in their shade, leading to greater use of a limited resource such as light 

(complementarity). Several studies have reported mixtures where species differ in shade 

tolerance were more productive than monocultures (Morin et al., 2011; Jucker et al., 2014a; 

de-Dios-García et al., 2015; Toïgo et al., 2015). Such overyielding may even be strengthened 

when tree species in mixtures also differ in their crown phenology, such as deciduous and 

evergreen species, and thus in their light capture over a year. Another frequently mentioned 

mechanism underlying overyielding is mixing species with shallow roots and those with deep 

roots, which enhances the acquisition of nutrients and water (Forrester et al., 2010; Reyer et 

al., 2010; Brassard et al., 2013; Pretzsch et al., 2013b). Yet, there is still little evidence that 

mixtures where species differ in shade tolerance, leaf phenology, or root distributions will 

overyield (Forrester and Pretzsch, 2015). Moreover, most of existing studies compared the 

effect of species mixing on overyielding under different site quality and climatic conditions 

(the spatial mixture effect), and some studies documented that overyielding happened on poor 

soils and underyielding on rich soils because of complementarity effect (Pretzsch et al., 2013a; 

Pretzsch et al., 2015b; Toïgo et al., 2015). Little information is available for long-term 

mixture effect (the temporal mixture effect) in forests, as most previous studies did not 

account for stand age.  

Stand productivity decreases after canopy closure when leaf area index peaks, probably 

because the increasing costs of maintaining living wood and hydraulic limitations reduce the 



Chapter 2 

24 
 

net primary productivity (Ryan et al., 1997). When trees grow taller and gradually occupy 

more space, both below-ground and above-ground, mixing effect may shift and overyielding 

may become weaker which might result from changes in resource capture and interspecific 

interactions among species with stand development (Cavard et al., 2011). Long-term repeated 

measurements from the same plots to study the effect of species mixing provide information 

about how species interactions change as stands develop (Forrester and Pretzsch, 2015). 

Previous findings show that aboveground wood production is more stable through time in 

mixed-species stands than pure stands (Cardinale et al., 2007; Jucker et al., 2014b; Drössler et 

al., 2015). However, mixing effect with stand development on productivity is still hardly 

known because most studies used protocols that removed possible stand age impacts, using 

for example dominant height and quadratic mean diameter or quadratic mean diameter at age 

of 50 and 100 years from yield table as surrogates of age (Pretzsch et al., 2010; Condés et al., 

2013; Pretzsch et al., 2015b). This approach masks possible age effects on overyielding, 

which might result from changes in resource capture and interspecific interactions among 

species with stand development. A further complication to testing and understanding of 

overyielding in mixed forests is forest management history such as thinning. Yet, in the 

European context, species interactions are continuously affected by forest management 

practices. Apart from stand age, forest management history is thus considered a key factor, 

and accounted for by using protocols that calculated productivity either in fully stocked stands 

(Pretzsch et al., 2013a; Pretzsch et al., 2015b), or by removing stands that were managed in 

the last five years from the analysis to minimize possible management effects (Jucker et al., 

2014b; Toïgo et al., 2015). Therefore, by using these protocols to remove impacts of stand 

age and forest management, these studies may mask possible trends in age effects and 

thinning regime on productivity and, indirectly, possible overyielding. 

In this study, we asked what is the effect of species mixture on stand productivity and 

dynamics over time. First, in line with the niche complementarity hypothesis (Kelty, 1992; 

Tilman et al., 2001), we expect that mixing tree species that differ in both leaf phenology and 

shade tolerance would overyield most strongly because of complementary resource use by the 

different species. Everything else being equal, evergreen–deciduous species mixed stands 

may thus be more productive than deciduous–deciduous species mixed stands, and 

overyielding impacts are expected to increase with increasing differences in shade tolerance 

(or light requirements) between the species in the mixed forest. Second, we expect 

overyielding to decrease with stand development because fully growing stands take all 

resource and limit resource partitioning. However, in thinned stands, resource partition may 

maintain with age and thus offset trends in overyielding. We evaluated our hypotheses by 

comparing 4 two-species mixtures (Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)–

common beech (Fagus sylvatica L.), Scots pine (Pinus sylvestris L.)–pedunculate oak 

(Quercus robur L.), pedunculate oak–common beech, and pedunculate oak–silver birch 

(Betula pendula Roth)) with the respective monocultures of the same species from 410 

permanent field plots in Dutch forests. In this study, we use the term overyielding to refer to 
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higher production in mixed stands relative to the corresponding pure stands, without taking 

the species proportions explicitly into account. This definition of overyielding is in agreement 

with some studies (Jucker et al., 2014b), but not with studies that account for species 

proportions in mixed stands (Kelty, 1992; Condés et al., 2013; Pretzsch et al., 2013a).  

 

Methods 

 

Study site and species 

We used the growth and yield data, maintained by the Forest Ecology and Forest 

Management Group of Wageningen University (FEM), which are derived from permanent 

field plots in the Netherlands, to investigate the effect of species mixing on stand productivity 

and dynamics with stand development. The database includes 135 mixed-species and 1311 

monospecific stands all over the Netherlands (see Appendix 2.1 for a description of FEM 

growth and yield database from permanent field plots). The Netherlands has a moderate 

maritime climate created by predominant southwest winds, and the mean annual temperature 

is 10.8 °C with cool winter (average temperature in December–February is 2.5 °C) and mild 

summer (average temperature in June–August is 15.9 °C). The mean annual rainfall is around 

800 mm and is evenly distributed throughout the year (KNMI, 2015).  

In this study, we compared the productivity in Douglas-fir (Pseudotsuga menziesii (Mirb.) 

Franco)–common beech (Fagus sylvatica L.), Scots pine (Pinus sylvestris L.)–pedunculate 

oak (Quercus robur L.), pedunculate oak–common beech, and pedunculate oak–silver birch 

(Betula pendula Roth) mixtures with their corresponding monospecific stands. The stands 

comprised plots surveyed up to 15 times. The oldest records date back to 1929 and the most 

recent one to 2011. Stand ages ranged from 6 to 265 years. The measurement intervals varied 

from 1 to 16 years, depending on the age of the trees (Table 2.1). All trees with sufficient 

height (circa>1.3 m) were measured for their diameter at breast height (dbh). Tree variables, 

e.g. dbh and height, were measured for almost all trees in each survey. For the few missing 

trees, we used models to estimate dbh and height (see Appendix 2.1).  

 



 

 
 

C
h
a
p
te

r 2
 

2
6
 

 

 

 

Table 2.1  Stand and plot characteristics for this study. 

Species 
Number 

of plots  
Plot size (ha) 

Survey interval 

(years) 

Number of 

surveys  

Age span  

(years) 

Survey 

duration 

(years) 

Stand density 

(trees/ha) 

Thinning history 

(%/years) 

Leaf  

phenology 

Difference of two species studied 

in shade tolerance (Niinemets and 

Valladares, 2006) 

Pure stands           

Douglas-fir 114 0.008–0.290 1–16 3–17 6–130 1929–2011 63–5781 2.294 E  

Common beech 39 0.008–0.198 2–7 3–9 16–176 1960–1999 60–3671 1.452 D  

Scots pine 72 0.008–0.156 3–6 3–8 16–150 1954–1999 129–14450 1.625 E  

Pedunculate oak 72 0.008–0.255 2–8 3–16 9–150 1947–2004 80–13356 1.555 D  

Silver birch 22 0.008–0.090 2–8 3–4 7–125 1984–1999 224–2927 1.040 D  

           

Mixed stands           

Douglas-fir–Beech 17 0.032–0.315 2–10  1–6 11–108 1984–2003 84–6012 0.908 E–D 1.78 

Pine–Oak 30 0.016–0.400 2–8 1–15 12–160 1949–2004 152–13789 1.854 E–D 0.78 

Oak–Beech 18 0.008–0.198 4–7 3–4 19–265 1984–1999 106–2753 0.702 D–D 2.11 

Oak–Birch 26 0.008–0.072 4–7 3–4 10–86 1984–1999 293–2195 0.757 D–D 0.42 

Data are from minimum to maximum. Thinning history (mean value) was described as the average volume percentage that is removed from the stand on an annual basis, see Appendix 2.6. E: evergreen;  

D: deciduous 
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Plot selection 

In order to compare productivity in pure and mixed stands, we selected pure stands among 

permanent field plots where the corresponding species represented 90% of the stand basal 

area. Mixed stands are defined as stands in which the two species of interest together 

represented at least 80% of the total stand basal area, and the sum of the basal area of other 

species was lower than that of each of the two species studied (see Appendix 2.4 for a 

description of species basal area proportion per survey of per plot in mixed stands). Finally, 

we obtained 319 plots for pure stands and 91 plots for mixed stands and the plots were 

distributed all over the Netherlands (Figure 2.1). More plots were on poor sandy soil and 

relatively deep groundwater tables than on rich or wet soils according to the existing Dutch 

soil classification systems (Bose et al., 2014) . 

 

Statistical analysis  

Mixing effect on stand productivity  

We tested whether the productivity of the mixed stands differs from each of the corresponding 

monocultures by using linear mixed-effects models (Eq.(1)). 

 

ln(PAIV) = 0 + 1 × age + 2 × stand + 3 × age × stand + 4 × Hdom + 5 × thinning history  

                  + 6 × plot +                                                                                                          (1) 

 

where PAIV is the periodic annual volume increment (m3 ha-1 year-1) (log-transformed); age is 

the stand age (years); stand is the dummy variable for mixed stands and the corresponding 2 

pure stands; Hdom is the dominant height (m), using as a proxy for site quality; thinning history 

is the average volume percentage that is removed from the stand on an annual basis 

(Appendix 2.6, Thinning history in mixtures and corresponding monocultures);  is the model 

residuals. We used volume growth as a measure of productivity, since it accounts for tree 

basal area and height which could change after species mixing because of different light 

requirement. We considered age, stand, Hdom, and thinning history as fixed factors and plot as 

random factor to account for the repetitive measurement in the plots. 

In order to compare stand productivity, we selected the same time span for every species 

combination in mixtures and their corresponding monocultures. All analyses were performed 

in R 3.2.0 (R Core Team, 2015). We used the lmer() function of the lme4 package (Bates et 

al., 2013) to analyse the relationship between PAIV and stand age in mixtures and 

monocultures. The default behaviour of lmer() to optimise the maximum likelihood criterion 

(ML) was used (Pinheiro and Bates, 2000). Normality and homogeneity of the model 

residuals were checked by visual inspections of diagnostic plots of residuals against fitted 

values (Figure. B2) (Zuur et al., 2009). All linear mixed-effects models were tested with 

random intercept, and with random intercept and slope to see whether stand age had a 

significant effect on PAIV. For each test, the model giving the lowest Akaike Information 

Criteria (AIC) was chosen, and we computed estimated p-values. We used r.squaredGLMM() 
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function of the MuMIn package (Barton, 2013) to compare R2 (conditional) in logarithmic 

transformation models. 

 

 
 
Figure 2.1  Distribution of the study plots from permanent fields in the Netherlands. Black dots are 

monocultures, grey triangles are mixtures. 
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Table 2.2  Coefficients (Est.), standard errors (SE) and P-values (P) of Eq.1 for log-transformed periodic annual volume increment (PAIV) in monocultures and mixtures, and 

possible factors site quality (expressed by Hdom) and thinning history. We used mixtures as a reference when we ran the linear mixed-effects models. 

Douglas-fir–common beech Scots pine–pedunculate oak Pedunculate oak–common beech Pedunculate oak–silver birch 

Fixed effects Est. SE P  Fixed effects Est. SE P  Fixed effects Est. SE P  Fixed effects Est. SE P  

Douglas-fir–Beech 3.0023 0.1564 <10-3 Pine–Oak 2.0311 0.1245 <10-3 Oak–Beech 2.4949 0.1920 <10-3 Oak–Birch 1.4050 0.2137 <10-3 

Age -0.0123 0.0027 <10-3 Age -0.0118 0.0016 <10-3 Age -0.0084 0.0022 <10-3 Age -0.0167 0.0040 <10-3 

Douglas-fir -0.3827 0.1574 0.0156 Scots pine -0.0541 0.1266 0.6695 Pedunculate oak -0.6307 0.1825 <10-3 Pedunculate oak 0.2839 0.2084 0.1761 

Common beech -0.5950 0.1784 <10-3 Pedunculate oak -0.4140 0.1253 0.0011 Common beech -0.0855 0.2042 0.6760 Silver birch 0.0021 0.2447 0.9931 

Hdom 0.0096 0.0063 0.1251 Hdom 0.0253 0.0063 <10-3 Hdom -0.0037 0.0074 0.6202 Hdom 0.0442 0.0105 <10-3 

Thinning history 0.0018 0.0081 0.8255 Thinning history -0.0109 0.0077 0.1584 Thinning history -0.0041 0.0134 0.7601 Thinning history -0.0150 0.0127 0.2393 

Age×Douglas-fir 0.0011 0.0026 0.6645 Age×Scots pine -0.0024 0.0018 0.1799 Age×pedunculate oak 0.0025 0.0020 0.2213 Age×pedunculate oak -0.0004 0.0041 0.9146 

Age×common beech 0.0061 0.0030 0.0427 Age×pedunculate oak 0.0020 0.0017 0.2283 Age×common beech 0.0057 0.0024 0.0183 Age×silver birch  -0.0094 0.0055 0.0863 

 
 

Random effects Random effects Random effects Random effects  

Name Variance Std. dev.  Name Variance Std. dev.  Name Variance Std. dev.  Name Variance Std. dev. 

plot (Intercept) 0.0597 0.2444 plot (Intercept) 0.0286 0.1691 plot (Intercept) 0.0794 0.2818 plot (Intercept) 0.0762 0.2759 

Residual 0.1616 0.4020 Residual 0.1473 0.3837 Residual 0.1557 0.3947 Residual 0.1231 0.3508  

Hdom:  dominant height. 
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Table 2.3  Coefficients (Est.), standard errors (SE) and P-values (P) of final models for log-transformed periodic annual volume increment (PAIV) in different monocultures 

and mixtures. We used mixtures as a reference when we ran the linear mixed-effects models. 

Douglas-fir–common beech Scots pine–pedunculate oak Pedunculate oak–common beech Pedunculate oak–silver birch 

Fixed effects Est. SE P  Fixed effects Est. SE P  Fixed effects Est. SE P  Fixed effects Est. SE P 

Douglas-fir–Beech 2.9651 0.0906 <10-3 Pine–Oak 1.9500 0.0934 <10-3 Oak–Beech 2.4585 0.1732 <10-3 Oak–Birch 1.4540 0.1417 <10-3 

Age -0.0072 0.0010 <10-3 Age -0.0120 0.0009 <10-3 Age -0.0090 0.0019 <10-3 Age -0.0178 0.0023 <10-3 

Douglas-fir -0.3070 0.0780 <10-3 Scots pine -0.1850 0.0566 0.0012 Pedunculate oak -0.6319 0.1796 <10-3 Pedunculate oak 0.2557 0.0805 0.0022 

Common beech -0.3126 0.0758 <10-3 Pedunculate oak -0.2711 0.0496 <10-3 Common beech -0.0879 0.2009 0.6620 Silver birch -0.3532 0.1026 <10-3 

    Hdom 0.0298 0.0061 <10-3     Hdom 0.0438 0.0104 <10-3 

                Age × pedunculate oak  0.0026 0.0020 0.1981     

                Age × common beech  0.0057 0.0024 0.0175     

 

Random effects Random effects Random effects Random effects 

Name Variance Std. dev.  Name Variance Std. dev.  Name Variance Std. dev.  Name Variance Std. dev. 

plot (Intercept) 0.0614 0.2478 plot (Intercept) 0.0253   0.1588   plot (Intercept) 0.0714 0.2672 plot (Intercept) 0.0662   0.2572   

Residual 0.1615 0.4020 Residual 0.1509   0.3884 Residual 0.1550 0.3937 Residual 0.1234   0.3513 

Hdom:  dominant height. 
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Results 

 
In line with our first hypothesis, the two evergreen–deciduous mixtures showed overyielding 

over the time period studied. The Douglas-fir–beech mixtures produced between 35.9% and 

36.7% more stem volume per hectare per year compared to Douglas-fir and beech 

monocultures, respectively (Figure 2.2a, Table 2.3), and the pine–oak mixtures produced 

between 20.3% and 31.2% more stem volume per hectare per year compared to pine and oak 

monocultures, respectively (Figure 2.2b, Table 2.3). However, the other two deciduous–

deciduous mixtures, oak–beech and oak–birch, did not show any significant overyielding 

(Figure 2.2c,d and Table 2.3). 

Moreover, oak–beech mixtures were more productive than oak monocultures, but they 

did not differ in stand productivity (i.e. PAIV) from beech monocultures in the young stands 

(Table 2.3), and their production was in-between the two monocultures at later ages. Oak–

birch mixtures had a higher PAIV than birch monocultures, and they also had a lower PAIV 

than oak monocultures (Table 2.3). These results were robust for possible effects of site 

quality and thinning history: site quality contributed positively to PAIV and thinning history 

had no significant effect on PAIV, but did not affect possible overyielding effects (Table 2.2 

and Table 2.3). 

In contrast to our second hypothesis, the observed overyielding was constant with stand 

development (Figure 2.2) and did not result in divergent patterns in standing volume over 

time (Figure 2.3). Changes in overyielding with age were similar across mixed-species stands 

and corresponding pure stands, as illustrated by lack of significant age × stand interaction 

effects (Table 2.3). 

Age trends in stand productivity did not run parallel to age trends in standing volume. 

Overall, individual forest stands developed faster in volume per year than expressed by long-

term based trends in volume increment, but faced drops in volume in years of thinning (Figure 

2.3). Apparently, the drops in standing volume were compensated later by higher volume 

increment rates in-between thinnings.  
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Figure 2.2  Periodic annual volume increment (PAIV) in mixtures and corresponding monocultures over time.  

(a) PAIV in Douglas-fir and beech monocultures and Douglas-fir–beech mixtures, respectively. (b) PAIV in pine 

and oak monocultures and pine–oak mixtures, respectively. (c) PAIV in oak and beech monocultures and oak–

beech mixtures, respectively. (d) PAIV in oak and birch monocultures and oak–birch mixtures, respectively. The 

dots connected by same colour, solid thin lines are PAIV from one permanent field plot, which was repeatedly 

measured. The solid bold lines are regression lines with fitted final linear mixed-effects models without 

dominant height effect from Table 2.3. 
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Figure 2.3  Standing volume over time in mixed stands and corresponding monocultures.  

(a) Standing volume in Douglas-fir and beech monocultures and Douglas-fir–beech mixtures, respectively.  

(b) Standing volume in pine and oak monocultures and pine–oak mixtures, respectively. (c) Standing volume in 

oak and beech monocultures and oak–beech mixtures, respectively. (d) Standing volume in oak and birch 

monocultures and oak–birch mixtures, respectively. The dots connected by same colour, solid lines are 

observations before and after thinning from one permanent field plot, which was repeatedly measured.  

 

Discussion 

 
We studied the effect of species mixing on stand productivity of permanent field plots in 

temperate forests in the Netherlands. We showed that stand productivity consistently 

decreased with age, and that mixing species led to overyielding in evergreen–deciduous 

species mixtures across all stand ages but not in deciduous–deciduous mixtures. Moreover, 

these results were robust as they were not affected by possible effects of site conditions and 

thinning histories. Next, we compare our results with the reported results on other evergreen–
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deciduous and deciduous–deciduous mixtures in other conditions, and speculate on different 

possible mechanisms underlying overyielding. 

We expected that tree species mixtures that consist of evergreen and deciduous species 

and of species that differ in shade tolerance would show overyielding because of 

complementary resource use by the two different species. As expected, the evergreen–

deciduous species mixtures showed overyielding, relative to the respective monospecific 

stands. The stronger overyielding in Douglas-fir–beech relative to pine–oak mixtures may be 

attributed to the greater difference in shade tolerance. Both deciduous–deciduous species 

mixtures did not significantly overyield, probably because complementary resource use was 

limited by synchronization in leaf phenology. Second, we hypothesised that overyielding 

through complementary resource use would decrease with stand development. This 

hypothesis, however, was not confirmed by our results: overyielding was constant over the 

whole studied stand ages. This contradicts a previous simulation study in which overyielding 

occurred only in the first 10 years (Bartelink, 2000). Instead, the lack of age × stand 

interaction effects suggests that the same level of overyielding was maintained in the two 

evergreen–deciduous mixtures over the whole range of observed stand ages (~6–150 years). 

Possibly, the intensive thinning regimes in Dutch forests (Appendix 2.7) maintain the 

available resource levels relatively high at any forest age, and may thus enhance the 

possibilities for complementary resource use over the whole range of stand ages studied. 

We also found that stand productivity decreased with stand age in all studied forest stands 

(Figure 2.2). At first sight, this result seems to differ from findings that emphasize that stand 

productivity generally peaks at low stand ages after stand closure (e.g. 10 years), and then 

goes down gradually (Ryan et al., 1997). Yield tables also show such an intermediate peak in 

productivity (Jansen et al., 1996). Our dataset, however, was strongly biased towards stand 

ages after full stand closure, with most plots older than 15 years and some more than 150 

years (Table 2.1). Over this age range, the different monocultures and mixtures decreased in 

stand productivity with increasing stand age (Figure 2.2).  

In our analysis, we tested whether the trends in stand productivity and overyielding could 

partially be attributed to two possible factors. First, the large variation in productivity across 

forest sites may be attributed to differences in site quality, e.g. poor versus rich soils. As the 

stress-gradient hypothesis addresses, there is a transition from competition in favourable 

environments to facilitation in harsh environments (Bertness and Callaway, 1994). Therefore, 

stand productivity and overyielding may be dependent on the different species interactions. 

Soil fertility is known to be related to soil texture and access to soil water (De Kovel et al., 

2000), but is complex to quantify because soils are notoriously heterogeneous and the role of 

limited resources is still debated and largely hypothetical. For this reason, foresters use 

dominant height (the height of the largest tree for a given stand age) as a proxy for site quality 

(Condés et al., 2013; Forrester et al., 2013b). Our analyses showed, as expected, positive 

effects of site quality on stand productivity, when using dominant height as a proxy for site 

quality (Table 2.3). However, site quality did not explain the observed overyielding in the two 
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evergreen–deciduous species mixtures. Second, through thinning, forest managers keep the 

increase in standing volume at low levels and forest stands therefore never reached the 

expected equilibrium state of low net productivity. The variation in thinning history across 

plots did not significantly influence the stand productivity in the years after thinning (Table 

2.2). Overall, the observed overyielding in 2 of the 4 mixtures was unaffected by site quality 

and thinning history, and was maintained over the full range of observed stand ages.  

Our observation that overyielding occurs in evergreen–deciduous species mixtures but 

not in deciduous–deciduous species mixtures is partially supported in the literature. For 

example, Toigo et al. (2015) showed that most evergreen–deciduous species mixtures tended 

towards overyielding (but not always significant), but not deciduous–deciduous species 

mixtures (sessile oak–common beech). However, some studies did show overyielding 

(Condés et al., 2013; Dirnberger and Sterba, 2014; Pretzsch et al., 2015b) for evergreen–

deciduous species mixtures while other findings are not in line with this (Del Río and Sterba, 

2009; Toïgo et al., 2015), thus also contrasting our result. Douglas-fir–beech overyielding was 

confirmed by one study in the Netherlands (Hendriks and Bianchi, 1995), which supports the 

idea that differences in leaf phenology and shade tolerance (Table 2.1 and Appendix 2.3) may 

contribute to overyielding of this mixture. Moreover, overyielding of the mixture was 

explained by more hidden causes of complementary resource use by, e.g. differential roots 

distributions (Hendriks and Bianchi, 1995; Reyer et al., 2010). However, whether 

overyielding for this species combination is maintained over broader climate gradients is not 

clear, since all of these studies referred to the temperate forests of the Netherlands. Pine–oak 

overyielding is in line with a modelling approach study for only one site of France (Perot and 

Picard, 2012), but is not consistent with an empirical study from French inventory data (Toïgo 

et al., 2015). Possibly, the small overyielding effects in this species combination (our results) 

are confounded when comparing forests over broad climate gradient, as done by Toigo et al. 

(2015). In our and Perot & Picard’s study (Perot and Picard, 2012), climate variation was 

rather limited, which may allow for showing actual overyielding in those forests. Most of 

other evergreen–deciduous species mixtures showed overyielding, e.g. Scots pine–common 

beech (Condés et al., 2013; Pretzsch et al., 2015b), Norway spruce–common beech (Pretzsch 

and Schütze, 2009; Dirnberger and Sterba, 2014; Toïgo et al., 2015) and silver fir–common 

beech (Toïgo et al., 2015). However, combinations of different pine with oak species showed 

very contrasting results: from lack of overyielding in central-north Spanish and French forests 

(Del Río and Sterba, 2009; Toïgo et al., 2015) to 48% overyielding in central Spanish forests 

(Jucker et al., 2014a). However, conclusions on mechanisms remain speculative because there 

might be more mechanisms operating than differences in leaf phenology or shade tolerance. 

For instance, evergreen–deciduous species mixtures may benefit from increased atmospheric 

deposition of limited nutrients (André et al., 2008; Pretzsch et al., 2013a), more litter fall and 

accelerated nutrient turnover (Richards et al., 2010) and have more stable growth over time 

(Jucker et al., 2014b), which has been mentioned as alternative mechanisms contributing to 

overyielding. It appears that we cannot easily generalize overyielding resulting from mixing 
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evergreen–deciduous species, partially because of interaction effects of climate or soil or due 

to differences in thinning history. But we can conclude that overyielding probably occurs in 

evergreen–deciduous species mixtures at a local scale. 

With respect to deciduous–deciduous species mixtures, some studies did not find 

overyielding (Toïgo et al., 2015), which agrees with our results. However, others reported 

overyielding in oak–beech mixtures (Pretzsch et al., 2013a), but only in relatively poor site 

conditions (dominant height below 25 m at age 100 years) whereas underyielding occurred in 

relatively rich sites (dominant height between 25 m and 35 m at age 100 years). They argue 

that the overyielding on poor soils resulted from effective complementary resource use, e.g. 

differences in root distributions or shade tolerance (Pretzsch et al., 2013a), whereas such 

complementary resource use is less likely to occur on richer soils. Since the dominant height 

of our oak–beech mixed stands is in-between these forests on relatively poor and rich sites 

(Appendix 2.5), the lack of any significant overyielding seems in line with the site quality of 

our study stands. As documented from previous findings, beech may be a more successful 

competitor for aboveground and belowground resources than oak (Rewald and Leuschner, 

2009; Longuetaud et al., 2013); therefore, overyielding of beech could be balanced by 

underyielding of oak in our study. Another explanation is that the dominant height differences 

between the species explain the lack of overyielding. Beech is more shade tolerant, but it was 

dominant (taller trees) over oak (shorter trees) in most of our oak–beech mixtures, so that 

shade tolerance differences, with the more light demanding oak in the understory, cannot 

directly contribute to overyielding. The other deciduous–deciduous species mixtures, oak–

birch, did not show any overyielding either. This agrees with those species being rather 

similar in leaf phenology and shade tolerance (Table 2.1 and Appendix 2.3). Yet, the results 

on overyielding in deciduous–deciduous species mixtures are scarce, still ambiguous and 

context–dependent. 

 

Conclusions 

 
We can conclude that our results imply strong contributions of differences in leaf phenology 

in combination with contrasting shade tolerance to overyielding. Remarkably, overyielding in 

evergreen–deciduous species mixtures was maintained with stand development. Overall, our 

studies suggest that, relative to monospecific stands, mixtures of evergreen–deciduous tree 

species that differ in shade tolerance can be a good option for increasing diversity and 

productivity of temperate forests.  
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DOI for Common beech monocultures: http://dx.doi.org/10.17026/dans-zfh-yght. 
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Appendix 

 

Appendix 2.1  Permanent field sites and data collection 

 

Stand history 

The data used in this study are part of FEM growth and yield database, which belongs to Forest Ecology and 

Forest Management Group, Wageningen University. The dataset is a collection of growth and yield data from 

even-aged monocultures, even-aged mixed-species forest plots. They were established from saplings at earliest 

1920 year and had been repeatedly measured for several times since then. In total, there are 1311 pure stand plots 

and 135 mixed-species stand plots. 

 

Missing tree diameter and height calculation  

Most of diameter at breast height (dbh) (91.3%) and height (65.3%) of trees were measured. Some trees were not 

measured, probably omitted or marked for harvesting (but was not harvested during measurements). We used 

models to estimate tree dbh and height for unmeasured trees (for details, see Data Accessibility). 

 

Dominant height 

Each plot was divided into one or more subplots. The mean height of the thickest trees in the subplots was 

dominant height for monocultures. For mixed stands, the dominant height depended on the larger dominant 

height of mixing species. 

 

Individual tree volume calculation 

We used Eq.(A1) to estimate tree volume (over stem bark) for the trees which both dbh and height were 

measured. 

v = ec3 * dbhc1 * hc2                                                                                                                                               (A1) 

with dbh in cm, h in m and v in dm3. 

 

Then we got the relationship between tree volume and dbh (for calculation details, see online data in Data 

Accessibility). We applied this to estimate volume for all the trees of this study. For the parameters c1, c2, c3, 

they are species-specific and we list here (Appendix 2.2) the main species we studied, cited from Jansen (Jansen 

et al., 1996). 

 

Appendix 2.2  Species-specific parameters for individual tree volume calculation based on Eq.(A1). 

  
Parameter 

Species  Common name c1 c2 c3 

Pseudotsuga menziesii      Douglas-fir 1.90053 0.80762 -2.43151 

Fagus sylvatica            Common beech 1.86116 1.04313 -3.05257 

Pinus sylvestris             Scots pine 1.82075 1.07427 -2.88085 

Quercus robur             Pedunculate oak  1.82628 1.11342 -3.04885 

Betula pendula             Silver birch 1.54291 1.24235 -2.66506 
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Appendix 2.3  Shade and drought tolerance indices (Niinemets and Valladares, 2006) for species studied.  

Species            Common name Shade tolerance index Drought tolerance index 

Pseudotsuga menziesii      Douglas-fir    2.78±0.18 2.62±0.41  

Fagus sylvatica            Common beech  4.56±0.11  2.40±0.43  

Pinus sylvestris             Scots pine  1.67±0.33 4.34±0.47            

Quercus robur             Pedunculate oak     2.45±0.28 2.95±0.31  

Betula pendula             Silver birch               2.03±0.09            1.85±0.21      

 

Appendix 2.4  Species basal area proportion per survey of per plot in mixed stands. The dots represent the plot 

selection criteria used. Dots that are and are not on the grey diagonal line stand for where the two species studied 

represent 100% and 80–100% of the basal area, respectively.  
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Appendix 2.5  Dominant height over time in oak–beech mixtures and their corresponding monocultures. 

Vertical dashed red line means dominant height at 100 years. 

 

 

 

Appendix 2.6:  Thinning history in mixtures and respective monocultures. 

 
In this study, thinning was considered a potential factor influencing the standing volume. We used the following 

equations (Eq.(A2), Eq.(A3), Eq.(A4), and Eq.(A5)) to calculate the percent of volume removed and thinning 

interval. 

Volume removed percent = volume of thinned / standing volume before thinning                                            (A2) 

Thinning frequency = times of thinning / times of measurement × mean measurement interval                       (A3) 

Thinning interval = 1 / thinning frequency                                                                                                          (A4) 

Thinning history = Volume removed percent / Thinning interval                                                                       (A5) 

We used Kruskal-Wallis and Scheffe's test for volume removed percent and thinning interval. 

 

Appendix 2.7  Volume removed percent and thinning intervals in monocultures and mixtures. (a) Volume 

removed percent. (b) Thinning intervals. Values with the different letters denote significant difference among 

stands at a = 0.05 based on Scheffe's test.  
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For each of the four species combinations, there was no significant difference in volume removed percent in 

monocultures in comparison to mixtures. With respect to thinning intervals, all the four species combinations 

differed significantly between monocultures and mixtures (P<0.05).  

 

Appendix 2.8  Residuals vs. predicted log-transformed PAIV over time for different species combinations 

based on final models in Table 2.3. (a) Douglas-fir and beech monocultures and Douglas-fir–beech mixtures. (b) 

Pine and oak monocultures and pine–oak mixtures. (c) Oak and beech monocultures and oak–beech mixtures. (d) 

Oak and birch monocultures and oak–birch mixtures.  
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Abstract 

A growing number of studies provide evidence that mixed-species forests often have higher 

stand productivity than monospecific forests, which is referred to as overyielding. In this 

study, we explored how the combination of species and soil conditions affect overyielding in 

mixed Dutch forests. Firstly, we hypothesised that the fast-growing light-demanding species 

dominates the slow-growing shade-tolerant species in mixed-species stands, and that the 

overyielding is caused by higher exposure of fast-growing species, in combination with 

complementary light use of the suppressed slow-growing species. Secondly, we expected that 

this overyielding will be stronger at poor soils than at rich soils, since facilitation or 

complementary soil resource use is often favoured at poor soils as suggested by the stress-

gradient hypothesis. Alternatively, overyielding would be stronger at rich soils, because the 

species interactions result in a reduction in competition for light and thus higher 

complementarity. We evaluated our hypotheses by analysing five species: Douglas-fir 

(Pseudotsuga menziesii (Mirb.) Franco), common beech (Fagus sylvatica L.), Scots pine 

(Pinus sylvestris L.), pedunculate oak (Quercus robur L.), and silver birch (Betula pendula 

Roth) growing in Douglas-fir–common beech, Scots pine–pedunculate oak , pedunculate oak–

common beech, and pedunculate oak–silver birch mixtures from 398 permanent field plots all 

over the Netherlands. We found that the Douglas-fir–common beech and Scots pine–

pedunculate oak mixtures always showed overyielding. This overyielding was largely 

attributed to the fast-growing Douglas-fir in the former mixture and to the slow-growing 

shade-tolerant pedunculate oak in the latter mixture, respectively. In both cases, overyielding 

was stronger at poor soils than at rich soils. The pedunculate oak–common beech mixtures 

overyielded at poor soils and underyielded at rich soils, which was attributed to the response 

of the common beech. Overyielding was not observed for the pedunculate oak–silver birch 

mixtures, irrespective of soil conditions. The results do not support our first hypothesis since 

overyielding was not always driven by fast-growing light-demanding species. Overyielding 

was stronger for evergreen–deciduous species combinations, suggesting that differences in 

leaf phenology are a major driver of overyielding. Secondly, our results imply that 

overyielding is much stronger at poor soils than at rich soils, which is in line with the 

prediction of the stress-gradient hypothesis. We conclude that the growth of one species 

benefits from the admixture species, particularly in evergreen–deciduous species mixtures and 

that soils affect the extent of overyielding as studied in the Netherlands.  

 

Keywords: Species mixture effect; Niche complementarity; Productivity; Soil;  

Volume growth. 
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Introduction 

 
Forest management practices often have turned traditional monospecific stands into mixed 

stands in Europe over the last decades (Bravo-Oviedo et al., 2014), not only because mixed 

stands increase biodiversity and ecosystem services of forests (van der Plas et al., 2016), but 

also because they can be more stable, resilient and productive than monospecific stands (Vilà 

et al., 2013; Jucker et al., 2014b; Lu et al., 2016; Thurm et al., 2016b; Del Río et al., 2017). 

The phenomenon of a higher production in mixed stands compared to pure stands is also 

referred to as overyielding.  

A mechanism that is often proposed for explaining overyielding is niche complementarity 

in resource use by the different species. Divergence in shade tolerance, crown architecture, 

crown phenology and root distribution may play a main role in this (Kelty, 1992; Tilman et al., 

2001; Forrester and Albrecht, 2014; Pretzsch et al., 2014; Pretzsch et al., 2015b). If two 

species in the mixture differ both in shade tolerance and in leaf phenology, trees of fast-

growing, light-demanding species may transmit sufficient light through their canopy to allow 

shade-tolerant species to grow underneath, and total leaf life span may be elongated, leading 

to greater light use over a whole year. Such overyielding would be stronger if the two species 

also differ in root depths, for example shallow-rooted species mixed with deep-rooted species. 

In this case, the total acquisition of soil water and nutrients in a forest could be raised 

(Forrester et al., 2010; Reyer et al., 2010; Brassard et al., 2013; Pretzsch et al., 2013b). 

However, complementary resource use may decline over time when trees of both species 

grow taller and occupy more space, both aboveground (Cavard et al., 2011) and belowground 

(Ma and Chen, 2017). Such a decline was however not observed in temperate Dutch forests, 

probably because forest management (notably thinning) keeps stands below a maximum stand 

basal area and density, and reduces competition and allows for complementary resource use 

(Lu et al., 2016). Yet, it remains largely unclear how different tree species contribute to 

overyielding of mixed forest stands, and whether such overyielding is affected by soil fertility. 

Some studies found that in two-species mixed stands, both species contributed to 

overyielding (Del Río and Sterba, 2009; Condés et al., 2013; Pretzsch et al., 2013a) while 

others reported that only one species was responsible for overyielding (Vallet and Pérot, 2011; 

Huber et al., 2014; Toïgo et al., 2015; Thurm and Pretzsch, 2016). These contrasting results 

may be due to differences in species composition, with different or similar traits between the 

species, and to other factors affecting species interactions, such as site conditions with 

different growth-limiting factors. In a previous study, we found that differences in the leaf 

phenology between evergreen and deciduous species and, to a lesser extent, shade tolerance 

are important factors for overyielding (Lu et al., 2016). In general, more shade-tolerant 

species tend to be slower growing than light-demanding species, leading to a stand with 

different canopy layers. Owing to size-asymmetric competition for light, trees of fast-growing 

species will rapidly win the height growth competition with trees of slow-growing species, 

but the slow-growing species may persist in the understory because they are more shade 
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tolerant (Oliver and Larson, 1996; Jucker et al., 2014a). Since trees of slower growing species 

remain shorter, trees of faster growing species  encounter more free space aboveground, their 

crowns occupy more space and full growth rates that may exceed those of trees in 

monospecific stands, where more individuals of the same fast-growing species compete for 

the same space. In contrast, the trees of the slow-growing species are shaded by the 

individuals of the fast-growing species in the mixtures, and will therefore show slower growth 

rates than trees in monospecific stands. In other words, the overyielding is not only because 

trees of slow-growing species occupy space that cannot be occupied by trees of the fast-

growing species, but also because trees of fast-growing species show higher growth rates in 

mixtures than in monocultures of the same species. We therefore expect that dominant, fast-

growing species will overyield, and that suppressed, more slowly growing species will 

actually underyield when comparing to single species stands.  

This overyielding effect may vary on different site conditions. There are two dominant 

viewpoints describes this changes. The stress-gradient hypothesis states that species 

interactions shift from competition in favourable environments to facilitation in harsh 

environments (Bertness and Callaway, 1994). Following this, overyielding would be stronger 

on poor sites than on rich sites, because species facilitate each other to improve the soil 

resource availability. Several studies found overyielding on poor sites and underyielding on 

rich sites (Pretzsch et al., 2013a; Pretzsch et al., 2015b; Toïgo et al., 2015). However, the 

resource-ratio hypothesis states that competition for light on rich soils switches to competition 

for soil resources on poor soils (Tilman, 1985). On rich soils where soil water and nutrients 

supplies are adequate, stands can develop large leaf areas but competition for light will also 

increase, so overyielding would be stronger if the mixed species have complementary light 

use (Forrester, 2014). On poor soils, limited availability of nutrients or water will limit growth 

and trees in mixtures are then expected to compete more fiercely for belowground resources. 

Yet, when this results in less leaf production and lower light interception, this may leave less 

room for light complementarity and positive mixture effects would lessen (Tilman, 1985; 

Jucker et al., 2014a). Indeed, several studies report that overyielding increased under better 

site conditions (Forrester et al., 2013a; Jucker et al., 2014a; Sterba et al., 2014; Thurm and 

Pretzsch, 2016), because trees in mixtures invested more into stem growth (Thurm et al., 

2016a) and crown development (Dieler and Pretzsch, 2013; Jucker et al., 2014a; Williams et 

al., 2017) than in monocultures. Thus, the impact of soil on overyielding is still ambiguous 

and debated.  

In this study, we investigated how overyielding depends on the combination of mixed 

species and on the type of soils in Dutch forests. First, We hypothesized that the faster 

growing and more light-demanding species would dominate the slower growing and more 

shade-tolerant species in mixed-species stands, and that the resulting stratified canopies and 

the subsequent partitioning of the light gradient would cause overyielding by complementary 

light use. Second, we expected that this overyielding effect would be stronger on poor soils 

than on rich soils, according to the stress-gradient hypothesis, because one species improves 
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the soil resource availability for the other species or allows for complementary soil resource 

use. Alternatively, following the resource-ratio hypothesis, the overyielding would be stronger 

on rich soils, owing to that rich soils allow for a denser forest canopy with possibilities for 

complementary light use, particularly when species differ in shade tolerance or leaf phenology. 

We evaluated our hypotheses by analysing five species (Douglas-fir (Pseudotsuga menziesii 

(Mirb.) Franco), common beech (Fagus sylvatica L.), Scots pine (Pinus sylvestris L.), 

pedunculate oak (Quercus robur L.), and silver birch (Betula pendula Roth)) growing in 

Douglas-fir–common beech, Scots pine–pedunculate oak, pedunculate oak–common beech, 

and pedunculate oak–silver birch mixtures and their respective monocultures from 398 

permanent field plots all over forest area of the Netherlands.  

 

Methods 

 
Study site and species 

We compared the growth of the species in mixtures with their respective monocultures using 

long-term measurements from permanent field plots in the Netherlands, maintained by the 

Forest Ecology and Forest Management Group of Wageningen University. In this study, we 

analysed the species mixture effect on stand productivity on different soils for five tree 

species: Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), common beech (Fagus sylvatica 

L.), Scots pine (Pinus sylvestris L.), pedunculate oak (Quercus robur L.), and silver birch 

(Betula pendula Roth) growing in monocultures and mixtures of Douglas-fir–common beech, 

Scots pine–pedunculate oak, pedunculate oak–common beech, and pedunculate oak–silver 

birch. Hereafter, the five species and monocultures are written as Douglas-fir, beech, pine, 

oak and birch, and the four mixtures accordingly as Douglas-fir–beech, pine–oak, oak–beech 

and oak–birch, respectively. There are 314 plots of pure stands and 84 plots of mixed stands 

with stand ages ranging from 10 to 150 years. Most plots were regularly thinned. For 

information on plot distributions and thinning history, see Lu et al (2016).  

The study plots were located throughout the Netherlands. Dutch climate is moderate 

maritime with a mean annual temperature of 10.8 °C with cool winters (average temperature 

in December–February of 2.5 °C) and mild summers (average temperature in June–August of 

15.9 °C). The mean annual rainfall is around 800 mm and is evenly distributed throughout the 

year (KNMI, 2015). Plot characteristics and stand variables for monocultures and mixtures 

are shown in Table 3.1. For more detailed data and stand description, see Lu et al. (2016).  

 

Plot soil information 

Soil data were taken from the ISRIC-World Soil Information SoilGrids250m database 

(http://www.isric.org/explore/soilgrids). SoilGrids250m provides global predictions for 

standard soil properties at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm) at 250 m 

resolution. The soil properties include sand content, silt content, clay content, pH (in H2O), 

soil organic carbon (ORC), cation-exchange capacity (CEC), bulk density and coarse 
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fragments (Hengl et al., 2016). First, we calculated the average value by taking the average of 

the predictions at the upper and lower boundary of the depth intervals (0–5 cm, 5–15 cm, 15–

30 cm, 30–60 cm, 60–100 cm, 100–200 cm), resulting in values for 6 layers for each soil 

property. For the pH, all average values were very similar to the first layer value (0–5 cm) 

since pH was highly correlated among all over the 6 layers, therefore we simply used the 

value of the first layer in our analysis. For soil property characteristics in the studied plots, see 

Appendix 3.1. Second, we calculated weighted averages according to layer thickness for sand 

content, silt content, clay content, bulk density and coarse fragments over the 6 layers, 

assuming that this represents average soil properties as experienced by the tree roots. For 

ORC and CEC, we took the weighted average from the top 2 layers since most of soil organic 

matter is in these layers. Since we expected the soil properties to be strongly correlated (see 

Appendix 3.2), we did a principal component analysis (PCA) based on the weighted averaged 

values of the 7 soil properties and first layer value of pH to determine the major soil gradients 

in our dataset. In the end, we linked the first and second principal components (PC1 and PC2) 

from the PCA with species growth efficiency (see Model framework for further details) in our 

study plots to evaluate the impact of soils on overyielding in different mixtures.  
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Table 3.1  Stand variables by species for this study.  

Variables Value 
Pure stands 

 Mixed stands 

 Douglas-fir–Beech  Pine–Oak  Oak–Beech  Oak–Birch 

Douglas-fir Beech Pine  Oak Birch  Total Douglas-fir Beech  Total Pine Oak   Total Oak Beech   Total Oak Birch  

No. plots 
 

110 38 72 72 22  16 16 16  28 28 28  14 14 14  26 26 26 

                       

Survey duration (years) Min 1937 1960 1954 1947 1984  1984 1984 1984  1949 1949 1949  1984 1984 1984  1984 1984 1984 
Max 2000 1994 1994 1999 1994  2000 2000 2000  2000 2000 2000  1994 1994 1994  1994 1994 1994 

                       

Age span (years) Mean 36 64 58 67 51  55 55 55  66 66 66  83 83 83  45 46 45 
SD 15 35 31 27 32  31 31 31  30 30 30  37 37 37  16 16 16 

Min 12 16 16 16 10  11 11 11  12 12 12  19 19 19  11 11 11 

Max 113 149 144 144 145  104 104 104  149 149 149  143 143 143  81 81 81 
                       

Stand density (trees ha-1) Mean 1146 899 822 579 845  998 505 483  914 491 409  579 236 337  905 490 377 

SD 889 955 883 646 561  1126 611 523  1334 654 835  654 236 434  458 307 281 
Min 64 110 104 80 196  84 42 28  152 22 65  116 46 11  294 56 42 

Max 4570 4528 7675 5810 2683  3523 1716 1874  7134 2613 5000  2735 1026 1710  2195 1282 1098 

                       
Dg  

(cm) 

Mean 21 26.5 21.7 25.1 18.5  31 38 24.7  24.8 27.4 24.2  32 29.1 35.9  18.5 18.8 21 

SD 11 13.2 8.2 9.7 8.7  16.3 19.7 15  9.2 11.4 9.2  13.5 12.6 18.3  6.1 7.3 7.6 

Min 1.9 8.2 5.1 4.5 6.6  5.9 8 2.8  3.3 3.1 2.6  7.5 6.2 8.8  8.7 8.2 7.6 
Max 72.1 52 43.7 57.7 42.9  58 64.3 51.4  39.6 57.2 42.7  52.9 47 91  32.2 35.2 38.1 

                       

Hdom  
(m) 

Mean 18.2 21 15 18.6 15.7  24.2 24.5 20  18 18 16.8  21.8 20.1 21.4  17.7 16.1 18 
SD 6.5 6.3 3.6 4.3 4.7  9.6 9.8 9.1  5 4.9 5  5.9 6.6 5.7  3.9 3.8 4.3 

Min 4.2 9 5 8.4 6.3  6.2 6.2 4.1  6.5 6.2 5  10 5 10  7 6 7 

Max 40.1 34.9 26.5 31 24  39.1 39.1 32  27.4 26.7 25.5  31.2 29.2 31.2  26 23 26 
                       

SDI  

(stem ha-1) 

Mean 551 507 439 383 371  529 341 188  453 262 191  433 179 254  464 251 213 

SD 112 150 142 74 128  164 132 109  118 112 82  95 77 112  174 140 100 
Min 72 227 187 169 137  179 150 30  164 45 71  239 78 87  182 74 50 

Max 1026 974 809 595 726  920 619 543  748 468 396  655 338 491  1125 664 553 

                       
PAIV 

(m3 ha-1 year-1) 

Mean 12.1 10.1 5.2 4.8 3.3  14.4 11.3 2.9  6 3.5 2.4  6.7 2 4.6  4.8 3.1 1.6 

SD 4.7 5 2.7 2 2  6.1 6.4 1.8  2.6 2.5 1.2  3.7 1.3 3.2  2.3 1.8 1.1 

Min 1.2 1.7 0.9 0.1 0.7  2.9 1.5 0.5  1.7 0.2 0.6  1.3 0.3 0.6  1 0.4 0.1 
Max 30.5 32.1 17.6 14.4 8.5  25.4 24.3 9.1  13.9 9.1 7.7  17.6 4.8 13.1  10.8 8.4 4.8 

                       

Species proportion Mean        0.7 0.3   0.6 0.4   0.4 0.6   0.5 0.5 
Min        0.3 0.1   0.2 0.2   0.2 0.2   0.2 0.1 

Max        0.9 0.7   0.8 0.8   0.8 0.8   0.9 0.8 

Dg: quadratic mean diameter; Hdom: dominant height; SDI: Reineke stand density index; PAIV: periodic annual volume increment; Species proportion: proportion in basal area (the species basal area/the total stand basal 

area).  
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Model framework 

To explore the influence of admixture species on productivity at different soil fertilities, we 

developed a model framework as shown in the following equations which were earlier applied 

by Condés et al. (Condés et al., 2013). We used the species growth efficiency as dependent 

variable in order to compare the tree species growth in monospecific and mixed stands. The 

species growth efficiency IVPi was defined as the periodic annual volume increment of the 

species i in m3 ha-1 divided by the species proportion Pi using Eq. (1), that is up-scaled to the 

hectare. 

 

IVPi = PAIVi / Pi                                                                                                                        (1) 

 

where IVPi is the growth efficiency of species i (m3 ha-1 year-1); PAIVi is the periodic annual 

volume increment of species i (m3 ha-1 year-1); Pi is the proportion of species i 

(dimensionless). Species proportion Pi was derived from the absolute stand density index 

(SDI) by species using Eq. (2). 

 

Pi = SDIi / (SDIi + SDIj)                                                                                                             (2) 

 

where Pi is the proportion of species i in mixed stands, j is the admixture species; species 

proportion Pi equals 1 in monocultures.  

Tree species growth in a pure and mixed stand depends on stand density expressing the 

amount of resources used by trees in relation to the resource availability of a site (Dean and 

Baldwin, 1996). As species can have different capacities to occupy the site, i.e. different 

maximum or potential densities, species proportion should be estimated by using relative 

densities (proportion of the maximum density) in order to correct this difference (Del Río et 

al., 2015). Since species-specific maximum density boundary lines are not available in the 

Netherlands, and considering that there was frequent thinning in the plots and stands were 

never fully stocked (Lu et al., 2016), we used absolute SDI by species by Eq. (3) (Reineke, 

1933) instead of relative SDI to estimate species proportion and stand density. 

 

SDI = N * (25/dg) 
E                                                                                                                   (3) 

 

where SDI is the stand density index (stem ha-1); N is the number of trees per hectare; dg is the 

quadratic mean diameter (cm); E is the generic value proposed by Reineke E = -1.605 for all 

studied species because, as abovementioned, no species-specific boundary line values are 

given in the Netherlands. The SDI thus increases with N and dg and reflects the increasing 

competition when trees grow bigger.  

The developed growth models predict the growth efficiency of one species in pure and 

mixed stands and is an expression of stand age, quadratic mean diameter, dominant height, 
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absolute SDI, the species proportion of the admixture species in mixed stands (1 for pure 

stands), and soil type and its interactions with species proportion as in Eq. (4).  

 

log(𝐼𝑉𝑝𝑖) = 𝑎0 + 𝑎1 × log(𝑎𝑔𝑒𝑖) + 𝑎2 × log(𝑑𝑔𝑖) + 𝑎3 × log(𝐻𝑑𝑜𝑚𝑖) + 𝑎4 × log(𝑆𝐷𝐼)

+  𝑎5 × 𝑃𝐶1 + 𝑎6 × 𝑃𝐶2 + ∑ 𝑏1𝑗 × 𝑃𝑗

𝑗

+ ∑ 𝑏2𝑗 × 𝑃𝑗 × 𝑃𝐶1

𝑗

+ ∑ 𝑏3𝑗 × 𝑃𝑗 × 𝑃𝐶2

𝑗

+ 𝜀𝑖 

                                                                                                                                                  (4) 

 

where IVPi is the growth efficiency (m3 ha-1 year-1) (log-transformed) of species i; age is the 

stand age (years); dg is the quadratic mean diameter (cm); Hdom is the dominant height (m); 

SDI is the stand density index (stem ha-1); Pj is the species proportion of the admixture species 

j in the mixed stands; PC1 and PC2 are the first and second principal components from the 

PCA of soil properties; i is the model residuals. In the equation, age and Hdom were included 

to explain the influence of age and site quality on growth. SDI explained the stand density 

effect on growth. dg might reflect the silvicultural history of the stand for a given age, Hdom 

and SDI. In order to study the influence of soils on overyielding, we included PC1 and PC2 

from the PCA of soil properties as a co-variable in Eq. (4) for each species in pure and mixed 

stands and its interaction with species proportion. In addition, considering stronger species 

interactions could be found in more dense stands (Condés et al., 2013), we did not consider 

the interaction between stand density index and species proportion, since most of the plots 

were regularly thinned and the stand density was low. 

All analyses were performed in R 3.2.0 (R Core Team, 2015). For the Eq. (4), we used 

Generalized Least Squares (the gls() function) of the nlme package (Bates et al., 2013) to 

analyse the growth efficiency for each species in mixtures and monocultures. The model of 

gls() includes autocorrelation considering the time-series data. We applied each individual 

“plot” in the autocorrelation since each plot was repeatedly measured over time (Lu et al., 

2016) and the previous growth was correlated with the next period. We applied a mix of 

procedures of stepwise regression and manual insertion and/or deletion of variables in the 

model (Condés and Sterba, 2008). We inspected the variance inflation factors (VIF) by using 

vif() function of the car package (Fox and Weisberg, 2010) to check collinearity among the 

variables, and manually removed variables with VIF larger than 10 (Zuur et al., 2010). The 

default behaviour of gls() to optimise the maximum likelihood criterion (ML) was used 

(Pinheiro and Bates, 2000). Normality and homogeneity of the model residuals were checked 

by visual inspections of diagnostic plots of residuals against fitted values (Zuur et al., 2009). 

For each test, the model selection was based on the lowest Akaike Information Criteria (AIC) 

and biological plausibility of the results, and contained only independent variables that are 

significant (p < 0.05). McFadden pseudo R2 was used for gls() to get R2 (McFadden, 1974) for 

the final model of each species. 
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Results 

 
A principle component analysis shows that eight soil properties strongly covary (Figure 3.1), 

and that the first principal component PC1 explains 42% of the variance and the second 

principal component PC2 30%. PC1 was positively associated with silt, clay content and pH, 

but negatively with sand content. The negative correlation with bulk density was low, but this 

soil property was not significantly correlated with any of the other soil properties (Appendix 

3.2). The correlations between sand, silt, clay and pH were in line with their projection on 

PC1. Here we interpret PC1 with a gradient of increasing nutrient and water availability as 

driven by soil texture over the whole soil profile (0-200 cm). PC2 was positively correlated 

with coarse fragments, soil organic carbon (ORC) and cation-exchange capacity (CEC), with 

the latter two soil properties measured over the top layers (depth 0-15 cm). PC2 reflects the 

accumulation of soil organic matter, which was strongly linked to CEC. Here PC2 is 

interpreted as a gradient of increasing nutrient availability (CEC as an indicator), increased 

released nutrients from decomposition of ORC, and increased water availability, given that 

ORC increases water retention. In short, PC1 is thus interpreted as a parent material driven 

fertility gradient, and PC2 as an organic material driven fertility gradient. 

 

Figure 3.1  Principal component analysis of soil properties used in this study. Clay, sand and silt represent clay 

content, sand content and silt content, respectively; ORC: soil organic carbon; CEC: cation-exchange capacity; 

CRF: coarse fragments; BLD: bulk density. Dots are individual plots in this study. 

 

Species growth efficiency was estimated using the mean values of stand variables 

observed in the plots (Table 3.1) and for difference proportions of the different species 

(Figure 3.2) or a proportion of 50% for each species in the mixtures (Figure 3.3). Based on 

our assumption for the first and second PC axes, growth efficiencies for poor sites were 
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simulated using PC1 = -0.3 and PC2 = -0.3 and for rich sites using PC1 = 0.3 and PC2 = 0.3, 

which was within the range of predicted values for the different plots (Figure 3.1). See 

Appendix 3.4 and Appendix 3.5 for poor and rich soils for each axis separately Mixture 

effects on yield and growth efficiency varied in some cases between poor and rich sites 

(Figure 3.2 and 3.3). Particularly in the Douglas-fir–beech mixtures, Douglas-fir overyielded 

more strongly on poor sites than on rich sites (Figure 3.2a,b, Figure 3.3a,b). In the same 

mixtures, beech overyielded on the poor soils but underyielded on the rich soils (Figure 

3.2a,b, Figure 3.3c,d). Yet the responses of beech were inferior to those of Douglas-fir. 

Douglas-fir–beech mixed stands thus achieved overall higher production than pure stands, 

with a stronger on poor soils. Qualitatively, a similar pattern was observed for pine–oak 

mixtures, but this overyielding effect was in general weaker compared to the Douglas-fir–

beech mixtures. In these mixtures, oak overyielded rather similarly on poor and rich soils 

(Figure 3.2c,d, Figure 3.3g,h), whereas pine overyielded on poor sites but underyielded on 

rich soils (Figure 3.2c,d, Figure 3.3e,f). The responses of oak were superior to those of pine, 

and overall mixed stands achieved higher levels of productivity than pure stands. 

Interestingly, oak–beech mixtures exhibited overyielding on poor soils due to a positive 

mixture effect on beech, and underyielding on rich soils because of a negative mixture effect 

on beech (Figure 3.2e,f, Figure 3.3c,d). However, oak was not affected by the admixture 

species beech and had similar growth efficiency with that in pure stands (Figure 3.2e,f, Figure 

3.3g,h). No overyielding was observed in oak–birch mixtures since there was null mixture 

effect on both species, regardless of poor and rich soils (Figure 3.2g,h, Figure 3.3g,h,i,j). 
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Table 3.2  Coefficients (Est.), standard errors (SE) and P-values (P) of final models a for all species based on first and second principal component PC1 and PC2 from 

principal component analysis only significant variables were shown. 

 Douglas-fir  Common beech  Scots pine  Pedunculate oak   Silver birch 

 Est. SE P  Est. SE P  Est. SE P  Est. SE P  Est. SE P 

(Intercept) 1.6791 0.4869 0.0000  0.8675 0.7884 0.2723  0.0355 0.6457 0.9561  -0.0684 0.5430 0.8999  -0.6097 1.2163 0.6169 

ln(age) -0.4062 0.1372 0.0032  -0.4594 0.1199 0.0000  -0.5570 0.1303 0.0000  -0.4022 0.0916 0.0000  -0.5455 0.1701 0.0016 

ln(dg) -0.4796 0.1508 0.0015  n.s    -0.8537 0.1866 0.0000  -0.5545 0.1212 0.0000  n.s   

ln(Hdom) 0.5601 0.2138 0.0090  0.3689 0.1623 0.0239  1.1095 0.2031 0.0000  1.0552 0.1588 0.0000  n.s   

ln(SDI) 0.3128 0.0679 0.0000  0.3244 0.1182 0.0065  0.5388 0.0942 0.0000  0.3092 0.0831 0.0000  0.6141 0.2191 0.0057 

Pbeech 1.1421 0.2481 0.0000          n.s       

Ppine             0.5725 0.0988 0.0000     

PDouglas-fir     n.s               

Poak     n.s    n.s        n.s   

Pbirch             n.s       

PC1     0.2036 0.0971 0.037             

PC2 0.1864 0.0693 0.0073          -0.1570 0.0627 0.0126     

Pbeech:PC1 -2.1742 0.7072 0.0022                 

Poak:PC1         -0.8753 0.2994 0.0037         

PDouglas-fir:PC2     -0.8018 0.3031 0.0087             

Poak:PC2     -2.4702 0.6119 0.0000             

a Eq. (4): ln(IVPi) = a0 + a1 × ln(agei) + a2 × ln(dgi) + a3 × ln(Hdomi) + a4 × ln(SDIijk) + a5 × Pijk + a6 × PC1 + a7 × PC2 + a8 × Pijk × PC1 + a9 × Pijk × PC2 + i, where IVPi is the growth efficiency of species i expressed by 

the periodic annual volume increment of one species up-scaled to the hectare; age is the stand age (years); dg is the quadratic mean diameter  (cm); Hdom is the dominant height (m); SDI is the stand density index (stem 

ha-1); Pijk is the species proportion of the admixture species j or k in the mixed stands; soil is the PC1 and PC2 values shown in Figure  3.1. n.s: not significant. 
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Figure 3.2  Periodic annual volume increment (PAIV) in mixed and pure stands at poor (left panel) and rich 

soils (right panel), given the admixture proportion, mean values of quadratic mean diameter (dg), dominant 

height (Hdom), age, stand density index (SDI). Poor soils where defined as PC1=-0.3 and PC2=-0.3, and rich soils 

as PC1=0.3 and PC2=0.3. (a) Douglas-fir and beech growing in pure and Douglas-fir–beech mixed stands. (b) 

Pine and oak growing in pure and pine–oak mixed stands. (c) Oak and beech growing in pure and oak–beech 

mixed stands. (d) Oak and birch growing in pure and oak–birch mixed stands.  
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These results for the different mixtures were largely in line with the results for the 

different species in those mixtures (Figure 3.2), and were supported by the statistical models 

where the growth efficiency of Douglas-fir, beech and pine were influenced by soils and the 

interactions of the admixed species proportion with soils (Table 3.2). The negative impact of 

PC1:Pbeech supported the conclusion that overyielding of Douglas-fir in mixed stands with 

beech increased with lower fertility as driven by the texture of the parent material (Table 3.2, 

Figures 3.2, 3.3). For beech, the interaction effect of PC2:Poak had a stronger negative effect 

than the interaction effect of PC2:PDouglas-fir. This was in line with stronger overyielding and 

underyielding impacts of beech in mixtures with oak than with Douglas-fir, and implies that 

this overyielding is particularly related to the organic material in the top soil layers. For pine, 

the negative effect of Poak:PC1 confirmed that overyielding of pine increased with lower 

fertility in pine–oak mixtures (Table 3.2; Figures 3.2 and 3.3). PC1 had a positive effect on 

the growth efficiency of beech, while PC2 had a negative effect on the growth efficiency of 

oak. In addition, both stand age and quadratic mean diameter had negative effects on species 

growth efficiency, whereas dominant height and stand density index had positive effects 

(Table 3.2). The fitting statistics and the graphs for residuals vs. predicted of the final model 

of each species are shown in Table 3.3 and in Appendix 3.3, respectively. There was no bias 

of the models for the studied species, but the accuracy of predictions was better for pine than 

for other species. 

 

Table 3.3  n: number of trees; ME: mean error; MAE: mean absolute error; RMSE: root mean standard error and 

adjusted coefficients of determination R2 for the final growth models of the five species studied. 

Species  n ME MAE RMSE R2 

Douglas-fir 790 -0.0060 0.3093 0.1694 0.3096 

Common beech 248 -0.0022 0.3553 0.0645 0.2746 

Scots pine 320 0.0004 0.3275 0.0171 0.4283 

Pedunculate oak  631 0.0046 0.3133 0.1296 0.1906 

Silver birch 160 -0.0031 0.5665 0.0880 0.2034 
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Figure 3.3  Growth efficiency (IVP) of one species in mixed versus pure stands changes with stand density index 

(SDI) on poor soils where PC1=-0.3 and PC2=-0.3 (left panel), and on rich soils where PC1=0.3 and PC2=0.3 

(right panel), depending on quadratic mean diameter (dg), dominant height (Hdom) and age. (a-b) Douglas-fir in 

pure and Douglas-fir–beech mixed stands. (c-d) Beech in pure, Douglas-fir–beech and oak–beech mixed stands. 

(e-f) Pine in pure and pine–oak mixed stands. (g-h) Oak in pure, pine–oak, oak–beech and oak–birch mixed 

stands. (i-j) Birch in pure and oak–birch mixed stands. A proportion of 50% has been used for each species in the 

mixed stands. 
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Discussion 

 
We studied how soil fertility influenced the species mixture effect on species-specific 

productivity in four two-species mixed stands. In a previous study based on the same plots, 

we reported that there was overyielding for Douglas-fir–beech and pine–oak mixtures (Lu et 

al., 2016), but not for oak–beech and oak–birch mixtures. Here, we show what species 

actually contributed to overyielding, and how this overyielding changed with soil fertility. 

The principal component analysis (PCA) on eight soil properties indicated two major axes of 

soil fertility, explaining 72% of the variance amongst soil variables. The first PCA axis is 

interpreted as a soil fertility axis driven by the parent material, and the second PCA axis 

interpreted as a soil fertility axis driven by organic matter. We use these two major axes of 

soil fertility in our dataset to discuss our hypotheses on species and soil impacts on 

overyielding in mixtures.  

In the first hypothesis, we expected that the faster growing and more light-demanding 

species would dominate the slower growing and more shade-tolerant species in mixed-species 

stands, and that the resulting stratified canopies and the subsequent partitioning of the light 

gradient would cause overyielding by complementary light use. We found that mainly more 

fast-growing Douglas-fir caused overyielding in Douglas-fir–beech mixtures, and that 

generally more slower growing light-demanding oak and beech contributed to overyielding of 

pine–oak and oak–beech mixtures, respectively. Surprisingly, fast-growing light-demanding 

birch did not cause overyielding in oak–birch mixtures. The results led us to reject the first 

hypothesis because it was not always the fast-growing light-demanding species that caused 

overyielding. Overall, large differences in leaf phenology and shade tolerance between the 

two species in the two evergreen-deciduous species mixtures might explain the strong 

overyielding, as hypothesised and observed in an earlier study (Lu et al., 2016). This is also 

consistent with one long-standing observation that mixing fast-growing light-demanding 

species with slow-growing shade-tolerant species enhanced forest productivity (Kelty, 1989). 

Second, in accordance with the stress-gradient hypothesis, we expected that the overyielding 

effect would be stronger on poor soils than on rich soils, as poor soils are supposed to allow 

for complementarity because of a reduction in competition for soil resource. Alternatively, 

following the resource-ratio hypothesis, overyielding might be stronger on rich soils because 

of a reduction in competition for light. Overall, the overyielding was stronger on poor soils 

than on rich soils for all the species and mixtures. Therefore, our results are in line with the 

prediction from the stress-gradient hypothesis but not with those from the resource-ratio 

hypothesis. The general pattern of higher overyielding on poor than rich soils was suggested 

to arise from species interactions that reduced competition for, or improved the availability of 

soil nutrients and water. Next, we discuss each mixture at poor and rich soils. 

For Douglas-fir–beech mixtures, on poor soils, the overyielding of Douglas-fir was 

stronger and accompanied by some overyielding of beech, thus leading to higher total 

overyielding of the mixtures. On rich soils, Douglas-fir overyielded to a smaller degree and 
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beech even showed underyielding, thereby reducing overyielding of the mixtures (Figure 

3.2a,b; Figure. 3.3a,b,c,d). Overall, these findings are in agreement with the previous findings 

that reported that Douglas-fir–beech mixtures showed overyielding and the overyielding was 

driven by an increase in Douglas-fir growth in Germany (Thomas et al., 2015; Thurm and 

Pretzsch, 2016; Thurm et al., 2016b). However, in contrast with their findings of stronger 

overyielding on better sites, we found less overyielding on richer soils due to a negative effect 

of Douglas-fir on beech growth. Possible mechanisms for the higher overyielding on poor 

soils might result from partitioning resources above or belowground, or both. With respect to 

aboveground complementary, Douglas-fir, which is the evergreen and more light-demanding 

species, wins the height battle from beech, a deciduous species which is considered more 

shade-tolerant. The differences in phenology and the formation multiple layers of canopy may 

lead to greater crown complementarity in mixtures than in monospecific stands (Williams et 

al., 2017). This is supported by results showing height stratification with a dominant Douglas-

fir and a suppressed beech in our mixed stands (Appendix 3.6), as well as in previous studies 

(Thomas et al., 2015; Thurm and Pretzsch, 2016). Second, belowground complementarity in 

soil resource acquisition may occur when species differ in root distributions. It is supposed 

that Douglas-fir has shallow roots dominating the top soil and beech has deep roots spreading 

into deeper soil layers in the Netherlands (Hendriks and Bianchi, 1995), as well as that 

Douglas-fir is capable of sending roots deep into the soil and even into rock crevices (Thomas 

et al., 2015). The complementary use of rooting space and soil water in the mixtures 

highlights the importance of mixed forest in adapting forest management to climate change 

(Reyer et al., 2010). 

On poor soils, tree growth is expected to be more limited by belowground resources than 

light, as suggested by the resource-ratio hypothesis (Tilman, 1985). Due to the contrasting 

rooting systems of the two species, there is probably a reduction in competition for soil 

resources. First, this may promote Douglas-fir growth by better access to soil nutrients 

because the uppermost soil layer is the dominant area of decomposition and mineralization of 

organic matter on poor soils (Thomas et al., 2015), which was supported by the positive effect 

of the second PCA soil fertility axis PC2 driven by organic matter on Douglas-fir growth 

efficiency (Table 3.2). Second, there could also be a hydraulic lift of water by deeper rooting 

beech in favour of Douglas-fir (Bolte and Villanueva, 2006), as confirmed by the positive 

effect of first PCA soil fertility axis PC1 driven by parent material on beech growth efficiency. 

Third, intrinsic water use efficiency of Douglas-fir is larger than beech and Douglas-fir can 

translate into a higher carbon gain of the needles per unit water than beech (Thomas et al., 

2015), which is an advantage for Douglas-fir during drought. In the end, the soil resources 

might be better exploited. This consequence would in turn allow for some aboveground light 

complementarity, given that poor site conditions were not harsh enough to limit tree growth in 

Dutch climate context. Therefore, complementary in the use of both soil resources and light 

could explain stronger overyielding on poor soils than on rich soils. This suggests not only 
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complementarity in soil resource use as described by the stress-gradient hypothesis, but also 

implies complementarity in light use on low fertility soils. 

On rich soils, the increased nutrient and water availability enables trees to develop high 

leaf areas and light is considered a major limiting resource. Douglas-fir had similar growth on 

rich soils as on poor soils and led to total stand overyielding. The underyielding for beech 

could be attributed to Douglas-fir suppressing beech stronger on rich soils by producing a 

more and denser leaf area. Additionally, there could be strong intra-specific competition for 

beech at below-ground, as detected during beech seedling stage (Fruleux et al., 2016). These 

results are opposite to the findings that stronger overyielding occurs on more favourable 

conditions (Thurm et al., 2016a; Thurm and Pretzsch, 2016). In these studies, it is argued that 

trees allocate more carbon to height growth to keep their crown in the canopy to reduce the 

increased light competition on benign conditions, while trees invest more carbon to root 

growth due to higher competition for soil resources under harsher conditions, supporting the 

resource-ratio hypothesis. Yet, our results imply that Douglas-fir and beech have stronger 

complementary use of both soil resources and light on poor soils, and that the two species face 

stronger competition for light on rich soils. To better test those ideas, we call for studies that 

actually present root and leaf distribution data for mixed stands on poor and rich soils.  

Overyielding was also observed in pine–oak mixtures and was mainly driven by slow-

growing shade tolerant oak. Overyielding was rather weak on rich soils compared with the 

one on poor soils, which is in line with the stress-gradient hypothesis. The positive mixture 

effect on oak was similar on poor and rich soils, but pine overyielded on poor soils while it 

underyielded on rich soils (Fig.2c,d; Fig.3e,f,g,h). This underyielding of pine on rich soils was 

supported by the decreased pine growth with the interactions of increasing first PCA soil 

fertility axis (Poak:PC1) with oak. The overyielding at the whole stand level is in agreement 

with the results reported in an earlier study for the same stands (Lu et al., 2016), and the 

results of similar pine–oak mixed stands from other areas in Europe (Brown, 1992; Del Río 

and Sterba, 2009; Perot and Picard, 2012). Literature also shows that oak often drives the 

overyielding in this mixture, and not Scots pine (Toïgo et al., 2015). On poor soils, the two 

species may benefit from complementary soil resource use. Relative deep-rooted oak is more 

likely to “pump” water to shallow-rooted pine (Brown, 1992), resulting in high water use 

efficiency in the mixtures. This enhanced soil water availability could enable the 

complementary light use of these two species differing in light requirements, causing greater 

overyielding on poor soils. On rich soils, the lower overyielding, caused by underyielding of 

pine, could be explained by low complementarity of light use, as suggested by the similar 

heights of both species in the mixtures (Appendix 3.6). Improvement of oak height and 

absence of suppression by pine was also observed in experiment by Brown, 1992 (1992).  

While oak–beech mixtures did not show any overyielding when soil variation was not 

accounted for (Lu et al., 2016), our analysis revealed that these mixtures overyielded on poor 

soils and underyielded on rich soils (Figure 3.3e,f). These trends were fully attributed to 

beech, as oak performed similar in mixed and pure stands (Figure 3.2e,f; Figure 3.3c,d,g,h). 
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These results contrast with our first hypothesis, given that beech is the slow-growing shade-

tolerant species in the understory and the more slower growing light-demanding oak in the 

overstory. However, in reality, beech trees grew faster than oak trees and occupied the upper 

layer (Appendix 3.4c). Our results confirm our second hypothesis, which predicted that 

overyielding would be stronger on a poorer soil and are in line with some earlier studies on 

this mixture (Pretzsch et al., 2013a). Possibly the overyielding on poor soils results from 

hydraulic redistribution by deep-rooted oak, which thus increases water availability for 

relatively high proportion of superficial roots of beech. A more efficient use of below-ground 

resources was speculated for the oak–beech mixtures, which allows for a better exploration of 

the soil profile (Manso et al., 2015). This was also detected in a seedling experiment where 

oak facilitated beech seedlings under water limiting sites (Fruleux et al., 2016). However, on 

rich soils, trees of these two species may not benefit from complementarity effect in light 

because they had similar dominant heights, suggesting that their crowns are at similar vertical 

positions and may not effectively partition the light environment (Appendix 3.4c). Another 

reason, as reported in previous studies, is that beech may be a more successful competitor for 

above and belowground resources than oak (Rewald and Leuschner, 2009; Lebourgeois et al., 

2013). Thus strong intra-specific competition for beech led to underyielding of beech and 

even caused underyielding of the total stand (Fruleux et al., 2016). 

Overyielding was not observed in oak–birch mixtures and the neutral mixture effect of 

both oak and birch was similar, irrespective of site conditions (Table 3.2; Figure 3.2g,h; 

Figure 3.3g,h,i,j). The results do not support our first hypothesis, since the fast-growing light-

demanding birch did not overyield. These results are in accordance with our previous study 

that no significant overyielding was observed for this mixture as the two species are rather 

similar in leaf phenology and shade tolerance (Lu et al., 2016). The result is also in line with 

the study that birch was unaffected by mixture effect and soils (Göransson et al., 2016). The 

neutral mixture effect on both poor and rich soils indicates that soils are not the limiting factor 

for this mixture. Birch is a light-demanding, early successional species with fast juvenile 

growth (Fischer et al., 2002) and dominates the upper tree layer (Appendix 4.4d). Therefore, 

the two species in the mixture mainly compete light. Apparently, birch and oak did not benefit 

from complementary use of resource on poor and rich soils, which may partly be attributed to 

their similar phenology and shade tolerance. 

  



Chapter 3 

62 
 

Conclusions 

 
Our results show that mixing species sometimes led to overyielding, but this overyielding was 

attributed to one or two species and not always driven by fast-growing light-demanding 

species. Differences in leaf phenology are a major driver for overyielding. Overyielding was 

stronger on poor soils than on rich soils in the Netherlands, probably because of stronger 

complementarity use of resources both below and aboveground.  
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Appendix 

 
Appendix 3.1  Soil properties of SoilGrids250m used in this study.  

Soil variable name Units Range Mean 

Sand content (gravimetric) kg / kg 38.2-89.5 80.0 

Silt content (gravimetric) kg / kg 6.1-48.5 13.1 

Clay content (gravimetric) kg / kg 2.7-21.7 7.0 

pH (H2O solution)  4.7-6.3 5.2 

Soil organic carbon (dry combustion) g / kg 28.0-179.0 86.9 

Cation-exchange capacity (fine earth fraction) cmol+ / kg 8.5-28 17.6 

Bulk density (fine earth fraction) kg / m3 1215-1506 1435 

Coarse fragments (volumetric) cm3/ cm3 2.0-16.4 7.2 

 

 

Appendix 3.2  Results of the correlation analysis based on the 8 soil properties used in this study and 

eigenvalues of the soil properties on the two main principal components. Clay, sand, silt, pH, bulk density and 

coarse fragments took weighted average value over 6 soil layers, while ORC and CEC took from weighted 

average value from top 2 soil layers. Clay, sand and silt represent clay content, sand content and silt content, 

respectively; BLD: bulk density; CRF: coarse fragments; ORC: soil organic carbon; CEC: cation-exchange 

capacity. Pearson pairwise correlation coefficients are given (*P<0.05; ** P<0.01; *** P<0.001). 

 
clay sand silt pH BLD CRF ORC CEC 

PC1 

(42%) 

PC2 

(30%) 

clay         2.487 -0.33089 

sand -0.8506***        -2.5209 -0.28529 

silt 0.6706** -0.9589***       2.2377 0.60158 

pH 0.8022*** -0.5554** 0.3526      2.0138 -1.07832 

BLD -0.3453 0.2048 -0.1082 -0.4396     -1.0964 0.02202 

CRF -0.0507 -0.2817 0.4339 -0.3418 0.0396    0.3774 2.2949 

ORC -0.2045 0.1499 -0.0954 -0.3487 -0.0551 0.5307 
  

-0.4925 2.25184 

CEC 0.1526 -0.1808 0.1791 -0.0193 -0.1810 0.5898* 0.7261* 
 

0.5403 2.21378 
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Appendix 3.3  Residuals vs. predicted values for the final model of each species. 

 

 

  



Mixture effects on species productivity on different soils 

65 
 

Appendix 3.4  Periodic annual volume increment (PAIV) in mixed and pure stands changes with one 

admixture proportion, depending on mean values of quadratic mean diameter (dg), dominant height (Hdom), age, 

stand density index (SDI) on poor soils where PC1=0, PC2=-0.3 and PC2=0, PC1=-0.3, and on rich soils where 

PC1=0, PC2=0.3 and PC2=0, PC1=0.3. (a-d) Douglas-fir and beech growing in pure and Douglas-fir–beech 

mixed stands. (e-h) Pine and oak growing in pure and pine–oak mixed stands. (i-l) Oak and beech growing in 

pure and oak–beech mixed stands. (m-p) Oak and birch growing in pure and oak–birch mixed stands. 
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Appendix 3.5  Growth efficiency (IVP) of one species in mixed versus pure stands changes with stand density 

index (SDI), depending on quadratic mean diameter (dg), dominant height (Hdom) and age on poor soils where 

PC1=0, PC2=-0.3 and PC2=0, PC1=-0.3 on rich soils where PC1=0, PC2=0.3 and PC2=0, PC1=0.3.  

(a-d) Douglas-fir in pure, Douglas-fir–beech mixed stands. (e-h) Beech in pure, Douglas-fir–beech and oak–

beech mixed stands. (i-l) Pine in pure, pine–oak mixed stands. (m-p) Oak in pure, pine–oak, oak–beech and oak–

birch mixed stands. (q-t) Birch in pure, oak–birch mixed stands. A proportion of 50% has been used for each 

species in the mixture. 
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Appendix 3.6  Dominant height of total stand and by each species in mixtures. (a) Douglas-fir–beech mixed 

stands. (b) pine–oak mixed stands. (c) oak–beech mixed stands. (d) oak–birch mixed stands. Solid lines are 

moving average for dominant height of the total mixed-species stands and each species. 

 

 

 

 



 

68 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

有则改之，无则加勉 

−中国俗语 

 

Correct mistakes if you have committed them and guard against them if you have not. 

                                                                              −Chinese proverb 
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Abstract 

 

Intra-specific competition is acknowledged to frequently have a more pronounced effect on 

tree growth than inter-specific competition, particularly when niche complementarity results 

in competitive reduction. This positive species interaction can happen both above and 

belowground. The aboveground competition for light is often considered size-asymmetric, 

while the belowground competition for soil resources is mainly size-symmetric. We 

hypothesised that (1) intra-specific competition is stronger than inter-specific competition and 

competitive reduction is larger at less fertile soils, in accordance with the stress-gradient 

hypothesis; (2) when light is the most important growth limiting factor in Dutch forests, size-

asymmetric competition is more relevant for tree growth than size-symmetric competition; (3) 

given that forests develop a denser canopy at high fertility soils, size-asymmetric competition 

will be greater at high fertility soils, in accordance with the resource-ratio hypothesis, and this 

in turn may imply a higher probability of complementarity for light than for soil resources. To 

test the hypotheses, we used individual tree models to understand the effect of competitive 

interactions on tree basal area growth along a soil fertility gradient. To examine whether 

individual tree growth is better explained by size-asymmetric or size-symmetric competition, 

the models considered competition with all individuals (as a proxy of size-symmetry, 

expressed by Reineke’s stand density index, SDI) or only larger individuals (as a proxy of 

size-asymmetry, SDI of large trees). We applied the models to three tree species: pedunculate 

oak (Quercus robur L.), silver birch (Betula pendula Roth) and Scots pine (Pinus sylvestris L.) 

in three two-species mixtures from Dutch national forest inventory data. In pedunculate oak–

silver birch mixtures, both oak and birch growth benefitted from the presence of the other 

species, and this positive effect was not influenced by soils. In Scots pine–pedunculate oak 

mixtures, neither pine nor oak growth were influenced by the presence of the other species, 

regardless of the low and high soil fertility. Finally, in Scots pine–silver birch mixtures, birch 

always benefited from the presence of pine in larger size classes, although the benefit was 

greater on rich soils. We conclude that intra-specific competition was not necessarily stronger 

than inter-specific competition and this competitive reduction was less seen at lower soil 

fertility and dependent on species mixtures, which is not in line with the stress-gradient 

hypothesis. Moreover, size-asymmetric competition for light was more associated with tree 

basal area growth than size-symmetric competition for soil resources, suggesting that light is 

the most limiting resource. Competition for light was generally much stronger at high fertility 

soils, supporting the resource-ratio hypothesis. Our analysis revealed that species mixing can 

increase tree growth by alleviating competition for light between neighbouring species, 

thereby driving species and stand overyielding. 

 

Keywords: Individual tree model; Intra- and inter-specific competition; Size-asymmetric 

and size-symmetric competition; Species interactions; Tree basal area growth. 
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Introduction 
 

Mixed-species forests are often more productive than monoculture forests, a phenomenon 

which is often referred to as overyielding. One key mechanism that may explain such 

overyielding is niche complementarity (Kelty, 1992; Tilman, 1999). This means that two 

species take resources from different locations or time, thus reducing competition. This is 

often referred to as competitive reduction. This competitive reduction can apply to light or to 

soil resources, and in both cases can be affected by soil fertility.  

Individual tree growth in mixed-species stands is determined by light and soil resources, 

as well as by species composition and interactions between trees of the same and different 

species. Interactions between species growing in mixtures are often described in terms of 

competition, competitive reduction and facilitation (Vandermeer, 1989). Competitive 

reduction and facilitation often occur simultaneously and their effects are difficult to separate, 

and these two are collectively described as complementarity (Loreau and Hector, 2001) and 

usually result in overyielding of mixtures (Forrester, 2014). The species interactions are 

linked to the intra- and inter-specific competition (Harper, 1977). Existing studies show that 

inter-specific competition is often lower than intra-specific competition because of niche 

complementarity (Loreau, 2004; Pretzsch et al., 2013b; Del Río et al., 2014a). Moreover, the 

larger intra- than inter-specific competition can occur both aboveground and belowground. 

The intra- and inter-specific competition can be identified related to the mode of 

competition: size-asymmetric or size-symmetric. Size-asymmetric competition takes place 

when trees compete for light, as larger individuals often benefit disproportionately and 

suppress the growth of their smaller neighbours accordingly. Size-symmetric competition is 

generally linked to belowground competition for mineral nutrients and water (Hara, 1993; 

Schwinning and Weiner, 1998). In temperate forests, competition for light is often more 

relevant for tree growth than competition for soil resources, and species complementarity 

leads to more tree growth because inter-specific is lower than intra-specific competition (Del 

Río et al., 2014a; Condés and Del Río, 2015). This may however depend on the site, stand age 

and species composition (Cavard et al., 2011; Coates et al., 2013; Toïgo et al., 2015). As a 

stand develops, complementary resource use may decline as the trees of both species grow 

taller and occupy more space, both aboveground and belowground. This is in line with the 

observation that competition increases with increasing stand development (Cavard et al., 2011; 

Del Río et al., 2014b). However, this increased competition over time may not be apparent in 

Dutch forests, where frequent forest management (thinning) keeps stands below a maximum 

stand basal area and density, therefore possibly reducing competition and allowing for 

complementary resource use (Lu et al., 2016).  

Across a soil fertility gradient, two dominant hypotheses address possible changes in the 

strength of species interactions. The stress-gradient hypothesis predicts that facilitation or 

complementary resource use is more frequent at less fertile soils whereas competition occurs 

at more fertile soils (Bertness and Callaway, 1994). As a consequence, competitive reduction 
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should be greater with decreasing soil fertility through facilitation or complementary resource 

use by which one species may effectively improve the soil resource availability for the other. 

However, the resource-ratio hypothesis states that competition for light is more prevalent at 

high fertility soils, while competition for soil resources is predominant at low fertility soils. 

According to the resource-ratio hypothesis, competition for light should be stronger when soil 

fertility is higher. Size-symmetric competition is more common and stronger on poor sites 

where nutrients or water limit growth, so that trees in mixtures compete more fiercely for 

below-ground resources (Forrester, 2014; Jucker et al., 2014a). One study identified a 

transition from size-asymmetric to size-symmetric competition along the gradient from fertile 

to poor sites (Pretzsch and Biber, 2010). Other studies show that inter-specific competition 

had a positive effect on tree growth at dryer sites relative to intra-specific competition 

(Condés and Del Río, 2015). One study found that competition for soil resources increased in 

one experiment on poor soils (Baribault and Kobe, 2011), while another found that it 

decreased (Trinder et al., 2012). Our study shows stronger competition for soil resources on 

low fertile soils (chapter 3). Yet other studies have shown that competitive interactions varied 

across a soil fertility gradient, depending on the species composition and the main type of 

competition: above or belowground competition in a sub-boreal forest (Coates et al., 2013). 

Therefore, the relationships between mode of competition, inter-specific competition and 

environmental conditions in terms of their influence on tree growth are still poorly understood. 

To gain a deeper understanding of the relationship between stand density and productivity, 

Harry et al. (1964) introduced the idea of ‘crowding’. However, crowding changes with tree 

size and the average distance between trees (Assmann, 1970; Zeide, 2005). A meaningful 

alternative to crowding is Reineke’s stand density index (SDI) (Reineke, 1933). This index 

relates the actual stand density to a theoretical maximum stocking density and is independent 

of age, diameter, site quality, and other variables (Zeide, 2005). Tree species mixing can 

increase the maximum stand density (Pretzsch and Biber, 2016), and changes in stand density 

often modify the way in which species interact on growth (Condés et al., 2013; Forrester et al., 

2013a). Stand density should therefore usually be taken into account when interpreting the 

mixing effect. The SDI is usually applied to express competition for belowground resources, 

while for the SDI of larger trees than the target tree is used to express competition for 

aboveground resources. Both have often been used in growth models to express size-

symmetric and size-asymmetric competition (Weiskittel et al., 2011; Del Río et al., 2014a). 

Individual tree growth models consider tree competition, taking into account resource 

partitioning, and are more site-sensitive (Pretzsch and Biber, 2010), therefore providing a 

sound approach for studying species competition in mixed-species stands. 

In our previous studies, we showed that inter-specific differences in leaf phenology and 

shade tolerance are important drivers of overyielding in mixed forests (in chapter 2, Lu et al., 

2016), and that overyielding in these forests is stronger at low fertility soils (chapter 3), 

providing evidence in favour of the stress-gradient hypothesis. These results were obtained for 

a relatively small dataset of well-controlled research plots. In this study, we expanded the 
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analysis to the overall Dutch forest to see if the same patterns occur in practical forestry. We 

used the Dutch national forest inventory data, which are representative for the Dutch forests 

as a whole and contain a larger number of mixed plots. In this study, we considered the 

underlying tree-tree interactions and explored whether reduced competition for light or soil 

resources contributed to overyielding. We therefore addressed the following questions: (1) Is 

inter-specific competition smaller than intra-specific competition and is this competitive 

interaction influenced by soils? (2) Which mode of competition is more associated with tree 

growth: size-asymmetric or size-symmetric competition? and (3) Is the mode of competition 

influenced by soils? We hypothesised that (1) intra-specific competition is stronger than inter-

specific competition, with more competitive reduction on poor soils, in accordance with the 

stress-gradient hypothesis, (2) when light is the most important growth limiting factor in 

Dutch forests, size-asymmetric competition (for light) is more relevant for tree growth than 

size-symmetric competition (for soil resources), and (3) given that forests develop a denser 

canopy on rich soils, the resource-ratio hypothesis would predict that size-asymmetric 

competition is greater on rich soils than on poor soils, and in turn this may allow for more 

complementary light use than soil resource use. To deepen our understanding of how 

competitive interactions between trees vary with soil fertility, we combined the effects of 

competition that depends on site conditions in individual tree models for mixtures of 

pedunculate oak (Quercus robur L.)–silver birch (Betula pendula Roth), Scots pine (Pinus 

sylvestris L.)–pedunculate oak, and Scots pine–silver birch, using Dutch national forest 

inventory data. We analysed which mode of competition is more relevant for tree growth by 

incorporating into the approach the effects of site condition variables, size-asymmetric and 

size-symmetric competition, intra- and inter-specific competition, as well as the interactions 

among them.  

 

Methods 

 
Study area 

The study was conducted in the Netherlands, where only about 11% of the land area is 

occupied by forest (Schelhaas et al., 2014). The Netherlands has a moderate maritime climate 

created by predominant southwestern winds, with a mean annual temperature of 10.8°C. It has 

cool winters (average temperature in December–February is 2.5°C) and mild summers 

(average temperature in June–August is 15.9°C). The mean annual rainfall is around 800 mm 

and is evenly distributed throughout the year (KNMI, 2015). 

 

Dutch National Forest Inventory data 

Data from the 5th and 6th Dutch National Forest Inventory (NFI) (Dirkse et al., 2007; 

Schelhaas et al., 2014) were used. The 5th inventory was carried out between 2001 and 2005, 

and the 6th between 2012 and 2013. Applying a 1×1 km grid system across the Netherlands, 

one sample point was randomly chosen per grid cell. If the plot centre was marked as forest 
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on the map, a circular sample plot was set for that location. The plot radius was chosen to 

include about 20 trees per plot, with a minimum of 5 metres and a maximum of 20 metres. 

Within each plot, all trees were measured that had a diameter at breast height (DBH) of at 

least 5 cm, and their species identity and status (standing, lying or hanging, dead or alive) 

were recorded. The age of the plot was obtained from forest databases or maps.  

 

Plot selection 

To understand the interaction between species and to disentangle possible causes of inter-

specific competition in mixed stands, we studied three two-species mixtures using Dutch NFI 

data. The mixtures were pedunculate oak (Quercus robur L.)–silver birch (Betula pendula 

Roth), Scots pine (Pinus sylvestris L.)–pedunculate oak, and Scots pine–silver birch. 

Henceforth, the three species and three mixtures are written as oak, birch and pine, and oak–

birch, pine–oak and pine–birch, respectively. Mixed stands were defined as stands in which 

the proportion of the two species of interest together represented more than 90% of the total 

plot basal area, and in which the proportion of each species was greater than 5%. Moreover, to 

avoid possible thinning effects on species interactions, mixed stands were further selected 

using the criteria that the proportion of harvested basal area between the two surveys was less 

than 5% of the total plot basal area at the start of the studied growth period. As a result, we 

obtained 145 plots with two-species stands (Table 4.1). A description of the individual tree 

data at the beginning of the studied growth period (the 5th survey) for different species in each 

mixture is given in Table 4.2. 

 

Soil data 

Soil data were taken from the ISRIC-World Soil Information SoilGrids250m database 

(http://www.isric.org/explore/soilgrids). SoilGrids250m provides global predictions for 

standard numeric soil properties at seven standard depths (0, 5, 15, 30, 60, 100 and 200 cm) at 

a 250 m resolution across the Netherlands. The soil properties include sand content, silt 

content, clay content, pH (in H2O), soil organic carbon (ORC), cation-exchange capacity 

(CEC), bulk density and coarse fragments (Hengl et al., 2016). First, we calculated the 

average value by taking the average of the predictions for the upper and lower boundaries of 

the depth intervals (0–5 cm, 5–15 cm, 15–30 cm, 30–60 cm, 60–100 cm, 100–200 cm), 

resulting in values for six layers for each soil property. For pH, the average value was very 

similar to the first layer value (0–5 cm), since pH was highly correlated in all six layers (see 

Appendix 4.2 for soil property characteristics in the studied plots). Second, we calculated 

weighted averages according to the layer thickness for sand content, silt content, clay content, 

bulk density and coarse fragments over the six layers. For ORC and CEC, we took the 

weighted average from the top two layers since most of the soil organic matter is found in 

these layers. Since we expected the soil properties to be strongly correlated (see Appendix 

4.3), we carried out principal component analysis (PCA) based on the weighted averaged 

values of the seven soil properties and the first layer value of pH to determine the major soil 
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gradients in our dataset. Finally, we combined the first and second principal components (PC1 

and PC2) from the PCA with tree growth data in our study plots to assess the impact of soils 

on competitive interactions in different mixtures. 

 

Tree growth models 

We modelled the basal area growth of individual trees in three two-species mixed stand plots 

in relation to neighbouring trees using a similar approach to that taken in the study by Del Río 

et al (2014a). The dependent variable in this study was the annual basal area growth of 

individual trees (cm2 year-1) obtained in two continuous inventories. Other studies have 

applied tree basal area growth, height growth and diameter growth models for individual tree 

growth. In our study, given the lack of height data for individual trees, we used tree basal area 

growth as a response variable since this considers the cross-section of the stem and is much 

more directly related to competition effects than diameter growth (Assmann, 1970). We 

included tree basal area as a predictor to account for possible size effects in the growth model. 

In addition, interactions between site descriptors and competition indices were included in the 

model to account for varying site conditions. An exploratory analysis indicated that negative 

and zero basal area increments were mainly due to random measurement errors and the 

dynamics of the tree bark. We therefore decided not to remove them from the data in order 

not to encounter biased results in the model.  

Tree species growth in mixed stands depends on the stand density, which depends on the 

amount of resources used by trees in relation to the resource availability at a site (Dean and 

Baldwin, 1996). As different species can vary in their capacity to occupy a site, in other words 

different potential or maximum densities, species proportion should be estimated using 

relative densities (the proportion of the maximum density) in order to correct for this 

difference (Del Río et al., 2015). Since species-specific maximum density boundary lines are 

not available in the Netherlands, and considering that frequent thinning took place in the plots 

studied and stands were never fully stocked (Lu et al., 2016), we used absolute SDI and SDIL 

per species from Eq. (1) and Eq. (2) (Reineke, 1933; Condés and Del Río, 2015). The SDIL 

was derived by combining the concepts of SDI and the basal area of larger trees (Wykoff, 

1990). Both the SDI and the SDIL have often been used in growth models to express size-

symmetric competition (SC) and size-asymmetric competition (AC) (Weiskittel et al., 2011). 

We selected indices based on the stand density index concept (SDI and SDIL) rather than 

indices based on basal area, as used in some studies (Manso et al., 2015). This is because 

basal area is more influenced by stand development and environmental conditions.  

 

SDI = N * (25/dg) 
E                                                                                                                   (1) 

SDIL = NL * (25/dgL) E                                                                                                             (2) 

 

where SDI is the stand density index (stem ha-1); N is the number of trees per hectare; dg is the 

quadratic mean diameter (cm); SDIL is the stand density index of trees larger than the target 
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tree (stem ha-1); NL the number of trees larger than the target tree; dgL the quadratic mean 

diameter of these larger trees. E is the generic value proposed by Reineke and E = -1.605 for 

all studied species because, as mentioned above, no species-specific boundary line values are 

given in the Netherlands.  

The following basic model (Eq. (3)) was then fitted to the data. To test whether the basal 

area growth of a given tree species was better explained by size-symmetric or size-

asymmetric competition, these models were run separately to compare their results. 

 

ln(Igi) = a0 + a1 × ln(gi) + a2 ×Ci + i                                                                                        (3) 

 

where Igi is the basal area increment per year (cm2 year-1) (log-transformed) of tree i with a 

given basal area gi (cm2) (log-transformed) at breast height; Ci is the different inclusion of 

competition factor C for tree i according to the competition structure for each species in the 

mixture (Table 4.2); i is the model residuals. Since the data were hierarchical (trees were 

measured on the same plot), plot was used as a random factor in the linear mixed-effects 

models. 
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Table 4.1  Descriptive stand variables of the selected plots at the beginning of the studied growth period. 

Species 
N (trees ha-1)  Dg (cm)   Hdom (m)  Age (years)  SDI (stem ha-1) 

Mean SD Min Max  Mean SD Min Max  Mean SD Min Max  Mean SD Min Max  Mean SD Min Max 

Pedunculate 

oak–silver birch  

(n = 37) 

Total 872 669 96 3056  20.6 7 6.8 36.4  18.1 4.9 5.0 26.0  54 28 5 105  493.1 248.2 113.8 1554.3 

Oak 413 438 24 2419  24.3 10 5.4 51.8            289.3 209.9 25.0 1078.2 

Birch 446 420 26 1783  17.5 6.5 7.6 32.7            190.8 125.7 20.4 476.0 

                          

Scots pine– 

pedunculate oak  

(n = 53) 

Total 692 405 167 2674  24.2 6.1 8 41.6  18.2 3.9 9.0 27.0  74 24 14 124  573.5 194.4 283.8 1235.7 

Pine 299 355 22 2292  31.1 9.3 8.4 59.6            319.0 206.8 28.5 1142.4 

Oak 290 229 32 1045  21.5 10.1 5.6 48.5            202.4 169.8 26.5 786.5 

                          

Scots pine– 

silver birch  

(n = 55) 

Total 854 650 210 3311  19.6 5.6 7.7 38.4  16.5 4.8 2.0 25.0  65 28 9 121  478.4 191.3 136.8 1077 

Pine 433 571 53 2929  27.1 8.6 7.0 42.7            334.9 179.9 30.3 826.8 

Birch 376 377 16 2165  13.7 5.5 6.8 39.1            109.9 82.5 25.8 429.2 

n: number of plots; Dg: quadratic mean diameter; Hdom: dominant height; SDI: Reineke’s stand density index. SD: standard deviation; Min: minimum value; Max: maximum value.  
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Table 4.2  Tree characteristics and competitive status for each of the selected species in each mixture at the beginning of the studied growth period. 

Species   d (cm) 
g 

(cm2) 

Ig 

(cm2 year-1) 

SDILintra  

(stem ha-1) 

SDILinter  

(stem ha-1) 

SDIL  

(stem ha-1) 

SDIintra  

(stem ha-1) 

SDIinter  

(stem ha-1) 

SDI 

(stem ha-1) 

Pedunculate oak–silver birch Oak (n=293) Mean 23.8 553.2 13.6 189.9 76.5 269.1 344.7 154.4 509.7 

SD 11.8 562.7 17.5 177.2 104 229.9 229.6 125.7 279.2 

Min 5.2 21.2 -5 0 0 0 39.8 20.4 113.8 

Max 70.3 3881.5 131.9 939.3 476 1415.6 1078.2 476 1554.3 

           

Birch (n=289) Mean 16.3 267.4 5.4 113.5 183.5 304.3 212.2 241.1 467.2 

SD 8.6 274.9 7.2 93.9 151.3 187.9 119.4 183.2 224.9 

Min 5 19.6 -8.3 0 0 0 20.4 25 113.8 

Max 42.7 1432 43.1 407.8 815.5 1223.9 476 1078.2 1554.3 

            

Scots pine–pedunculate oak Pine (n=409) Mean 28.2 720.9 11.8 207.3 48.2 259 393.3 129.5 564.6 

SD 11 520.5 10.2 175.7 78.5 190.3 214.9 106.4 206.2 

Min 5 19.6 -11.9 0 0 0 35.3 26.5 283.8 

Max 61.8 2999.6 59.1 1091.9 468.4 1170.5 1142.4 786.5 1235.7 

           

Oak (n=424) Mean 20.9 460.8 9.7 149.2 215.3 383.4 263.4 246.9 560 

SD 12.2 545 11.7 147.5 173.3 199.9 183.7 173.4 185.2 

Min 5 19.6 -17.5 0 0 0 26.5 28.5 283.8 

Max 68.8 3717.6 77.8 755.9 1142.4 1220.7 786.5 1142.4 1235.7 

            

Scots pine–silver birch Pine (n=482) Mean 24.1 558.2 13.1 211.7 27.2 240.4 384.7 81.4 488.3 

SD 11.5 471.7 11.6 154.8 42.6 170.4 179.6 55 190.4 

Min 5 19.6 -11.2 0 0 0 30.3 25.8 136.8 

Max 62.7 3087.6 61.7 718.4 402.4 787.2 826.8 429.2 1077 

           

Birch (n=441) Mean 11.9 142.3 4.3 77.3 236 333.8 138.6 261.8 437.3 

SD 6.4 192.3 5.4 73 147.3 168.1 97 154.5 179.5 

Min 5 19.6 -8.3 0 0 0 25.8 30.3 136.8 

Max 56.7 2525 33.5 416 744 1043.5 429.2 826.8 1077 

n: number of trees; d: diameter at breast height; g: basal area of each individual tree; Ig: annual basal area increment of each individual tree; SD: standard deviation; Min: minimum value; 

Max: maximum value. 
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Size-symmetric and size-asymmetric competition 

To test whether the basal area growth of a given tree species was better explained by size-

symmetric and/or size-asymmetric competition, both SC (expressed by the SDI) and AC 

(expressed by the SDIL) were included in different growth models to compare their results 

(Eq. (4)).  

 

Ci = SCi  + AC i                                                                                                                          (4) 

 

where Ci is the inclusion of both SCi and ACi for tree i for each species in the mixture. 

 

Intra- and inter-specific competition 

To understand the relative importance of species interactions on different soils and in different 

combinations of species, we compared the impacts of intra-specific versus inter-specific 

competition on tree growth. As a null model, we assumed that intra- and inter-specific 

competition had equal effects. Alternatively, we hypothesised that inter-specific competition 

is weaker than intra-specific competition and therefore leads to higher growth rates. The 

models were tested for size-symmetric and size-asymmetric competition by separating intra- 

and inter-specific competition components and considering their different effects. 

Correspondingly, the model structures included SDIintra + SDIinter, SDILintra + SDILinter and a 

combination of the two (Eq. (5)). Akaike Information Criterion (AIC) was applied to compare 

the model structure. If the goodness of fit of models that separate intra- and inter-specific 

competition is equal or worse in terms of AIC than models that do not separate them, this 

means that the effect of intra- and inter-specific competition is similar on tree basal area 

growth.  

 

Ci = SCinter + SCintra + ACinter + ACintra                                                                                       (5) 

 

where Ci is the inclusion of both SCi and ACi for tree I, but separated by intra and inter-

specific competition for each species in the mixture. 

 

Soil effect 

To examine the effect of soil on species interactions, the final model included the soil effect, 

expressed by PC1 and PC2: the first and second principal components from the PCA. The 

following model (Eq. (6)) was fitted to the data: 

 

ln(Igi) = a0 + a1 × ln(gi) + a2 ×Ci + a3 × PC1 + a4 × PC2 

              + a5 × Ci × PC1 + a6 × Ci × PC2 + i                                                                          (6) 

 

where Igi is the basal area increment per year (cm2 year-1) (log-transformed) of tree i with a 

given basal area gi (cm2) (log-transformed) at breast height; Ci is the different inclusion of 
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competition factor C for tree i according to the competition structure, in other words the intra- 

and inter-specific, and size-symmetric and size-asymmetric competition indices for each 

species in the mixture (Table 4.2); PC1 and PC2 are the first and second principal 

components from the PCA of soil properties; i is the model residuals. Since the data were 

hierarchical (trees were measured on the same plot), plot was used as a random factor in the 

linear mixed-effects models. 

All analyses were performed in R 3.2.0 (R Core Team, 2015). We used linear mixed-

effects models (the lme() function) of the nlme package (Bates et al., 2013) to analyse 

individual tree growth for each species in the mixture. The default behaviour of lme(), which 

is to optimise the maximum likelihood criterion (ML), was used (Pinheiro and Bates, 2000). 

Normality and homogeneity of the model residuals were checked by visual inspections of 

diagnostic plots of residuals against fitted values (Zuur et al., 2009). For each test, the 

goodness of fit of the models was analysed, the lowest Akaike Information Criteria (AIC) 

chosen, and estimated p-values computed. We used the r.squaredGLMM() function of the 

MuMIn package (Barton, 2013) to compare R2 (conditional and marginal) in logarithmic 

transformation models for the final model of each species. A significance level of p < 0.05 

was considered. 

 

Results 

 
Soil fertility gradient 

The PCA shows that eight soil properties strongly covary, and that the first principal 

component (PC1) explains 41% of the variance and the second principal component (PC2) 

32%. PC1 was negatively associated with silt, clay content and pH, but positively associated 

with sand content and bulk density, while bulk density was not significantly correlated with 

any of the other soil properties (Figure 4.1). The correlations between the other soil properties 

(sand, silt, clay and pH) were indeed in line with their projection on PC1 (Appendix 4.3). 

Here we interpret PC1 as a gradient of decreasing nutrient and water availability, driven by 

the soil texture over the whole soil profile (0–200 cm). PC2 was positively correlated with 

coarse fragments, ORC and CEC, and CEC was measured over the top layers (depths 0–15 

cm). PC2 reflects the accumulation of soil organic matter, which was strongly linked to CEC 

(Appendix 4.3). PC2 is interpreted here as a gradient of increasing nutrient availability 

(indicated by CEC), driven by decomposition of the organic layer (expressed by ORC). In 

short, PC1 is thus interpreted as a parent material-driven fertility gradient, and PC2 as an 

organic material-driven fertility gradient. 
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Figure 4.1  Principal component analysis of soil properties used in this study. ORC: soil organic carbon content; 

CEC: cation-exchange capacity; CRF: coarse fragments; BLD: bulk density. Dots are individual plots in this 

study. 

 

Competition effects on tree growth 

Competition effects on tree basal area growth were first explored without considering soils. In 

general, when competition was not split into intra- and inter-specific competition and when 

different competition effects were considered as a whole (models SC and AC), models with 

AC were always more significant and had lower AIC values than models with SC. In most 

cases, models with AC produced a lower AIC than models with SC, both when analysing 

competition as a whole and when splitting it into intra- and inter-specific competition. 

Nevertheless, the effects of both SC and AC significantly reduced growth for birch mixed 

with oak and pine, and for oak mixed with pine.  

Considering the AIC values, separating intra- and inter-specific competition did not 

always improve the model fit. Moreover, intra-specific competition was generally stronger in 

reducing tree growth than inter-specific competition, both when analysed for size-symmetric 

and size-asymmetric competition (Table 4.3). 
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Table 4.3  Comparison of Akaike Information Criterion (AIC) of growth models including the stand density index (SDI) and the stand density index 

of trees larger than the target tree (SDIL), calculated for size-symmetric competition (SC) and size-asymmetric competition (AC) for impacts of 

intra- and inter-specific competition on the three tree species in three different mixtures. The best model in each row when comparing AIC is 

shown in bold. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Species All competitors together Separated into intra and inter-specific competition 

 SDI SDIL AIC SDIintra SDIinter  SDILintra SDILinter  AIC 

Pedunculate oak–silver birch Oak  

 

SC -0.00087  721.3505 -0.00123 n.s   719.6259 

AC  -0.00191 684.4810   -0.00242 n.s 683.7938 

          

Birch 

  

SC -0.00096  603.5370 -0.00160 -0.00072   603.5796 

AC  -0.00129 595.4829   -0.00167 -0.00111 596.5782 

           

Scots pine–pedunculate oak  Pine  

 

SC n.s  818.9598 n.s n.s   818.9598 

AC  -0.00062 813.5976   -0.00064 n.s 814.4787 

          

Oak 

  

SC n.s  720.4019 n.s n.s   720.4019 

AC  -0.00074 706.6598   -0.00102 -0.00055 704.9248 

           

Scots pine–silver birch Pine  

 

SC -0.00084  966.1029 -0.00086 n.s   967.4326 

AC  -0.00080 967.4506   -0.00081 n.s 967.5057 

          

Birch SC n.s  778.2724 n.s n.s   778.2724 

AC  -0.00130 765.0896   -0.00263 -0.00088 763.2409 
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Soil and competition impacts on tree growth 

When incorporating both the soil and competition effect on the basal area growth in the final 

model, the interaction between soil and competition effect was much stronger in pine–oak and 

pine–birch mixtures than in oak–birch mixtures. All models showed that R2 was higher than 

0.45 when random and fixed effects were considered (R2 conditional), with the exception of 

the pine models, and that R2 was only more than 0.40 for oak models when only fixed effects 

were included (R2 marginal) (Table 4.4). 

More specifically, for birch in the oak–birch mixtures, significant size-symmetric, intra-

specific competition (SCintra) and the lack of significance of the size-symmetric, inter-specific 

competition (SCinter) indicated that birch clearly benefited from the presence of oak, as birch 

growth increased with an increase in the proportion of oak in the SDI (higher oak proportion 

in the stand). However, the slightly negative effect of larger oaks and birches on birch basal 

area growth may balance these positive effects, and together they may explain the neutral 

effect of the two species (Figure 4.2). For oak, only size-asymmetric, intra-specific 

competition (ACintra) was significant (Table 4.4), showing that the basal area growth of oak 

was explained by competition with larger oaks. Size-asymmetric, inter-specific competition 

(ACinter) was not significant, which suggested that oak was subjected to less competition with 

large birch trees. This competitive reduction effect was greater when the proportion of birch 

in the larger trees increased, as this increased oak growth (Figure 4.3a,b). Moreover, there was 

no soil effect on the tree growth of the two species in this mixture. 

 

 

Figure 4.2  Oak and birch tree basal area growth (Ig) in oak–birch mixtures depending on birch proportion in 

stand density index (SDIbirch/SDI) for an oak tree of diameter 23.8 cm with SDIL=190 stem ha-1. 

 

In the pine–oak mixtures, both pine and oak were significantly influenced by AC and the 

interactions between AC and soils (Table 4.4). This AC effect was stronger and led to greater 

basal area growth reduction at rich sites compared with poor sites (Figure 4.3c,d). Similarly, 

pine in pine–birch mixtures was also significantly influenced by AC and the interactions 

between AC and soils (Table 4.4), and this AC effect was much greater at rich sites compared 
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with poor sites (Figure 4.3e,f). In the case of birch, ACintra was greater than ACinter and the 

former one was even greater with improving site conditions (Table 4.4), resulting in a slightly 

positive effect of pine on birch basal area growth, although the benefit was greater at better 

site conditions.  

In the case of birch, ACintra was greater than ACinter and increased with improving site 

conditions (Table 4.4), resulting in a slightly positive effect of pine on birch basal area growth, 

although the benefit increased with better site conditions.  
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Table 4.4  Parameter estimations (standard errors in parentheses) for the final model of each of the three species 

in each of the three mixtures. The stand density index (SDI) and the stand density index of trees larger than the 

target tree (SDIL) are calculated for size-symmetric competition (SC) and size-asymmetric competition (AC) for 

impacts of intra- and inter-specific competition. Only significant variables are shown. 

Species Pedunculate oak–silver birch  Scots pine–pedunculate oak   Scots pine–silver birch 

Oak Birch  Pine Oak  Pine Birch 

Intercept -0.1864 

(0.3592) 

0.3669 

(0.3112) 

 1.1175 

(0.3858) 

1.1342 

(0.2186) 

 1.5763 

(0.2787) 

1.3922 

(0.2942) 

ln(g) 0.4874 

(0.0552) 

0.3709 

(0.0509) 

 0.2564 

(0.0545) 

0.2943 

(0.0301) 

 0.2035 

(0.0394) 

0.1617 

(0.0459) 

SDIintra  -0.0012 

(0.0006) 

      

SDILintra -0.0024 

(0.0004) 

      -0.0036 

(0.0008) 

SDILinter        -0.0009 

(0.0004) 

SDIL  -0.0012 

(0.0003) 

 -0.0008 

(0.0002) 

-0.0008 

(0.0002) 

 -0.0006 

(0.0003) 

 

PC1     -0.5390 

(0.1552) 

   

PC2       0.4742 

(0.1171) 

 

PC1:SDIL    0.0008 

(0.0003) 

0.0011 

(0.0004) 

   

PC2:SDIL       -0.0009 

(0.0003) 

 

PC2:SDILintra        0.0024 

(0.0009) 

AIC 683.7938 593.4861  810.1101 697.4806  955.7140 757.8123 

 

R2 (marginal) 0.4430 0.3449  0.1879 0.4355  0.2427 0.2115 

 

R2 

(conditional) 

0.5813 0.4774  0.3192 0.4625  0.3461 0.5123 

 

         

Random effects standard deviation 

 

Plot 

(Intercept) 

0.4097 0.3131  0.2619 0.1179  0.2399 0.3975 

 

Residual 0.7130 0.6219  0.5961 0.5259  0.6034 0.5061 
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Figure 4.3  Tree basal area growth (Ig) changes with stand density index of large trees (SDIL) on poor soil (left 

panel) and rich soil (right panel). (a-b) Oak and birch in oak–birch mixtures depending on oak proportion in 

stand density index of large trees (SDILoak/SDIL) for an oak tree of diameter 23.8 cm with SDIL=190 stem ha-1. 

(c-d) Pine and oak in pine–oak mixtures at poor site with PC1=0.5 and at rich site with PC1=-0.5 according to 

PC1 values in Appendix 4.1. (e-f) Pine and birch in pine–birch mixtures depending on birch proportion in stand 

density index of large trees (SDILbirch/SDIL) at poor site with PC2=-0.5 and at rich site with PC2=0.8 according 

to PC2 values in Appendix 4.1. 
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Discussion 

 
In this study, we explored tree-tree interactions that can drive overyielding in mixed-species 

forests. We tested three hypotheses. First, we evaluated whether intra-specific competition is 

stronger than inter-specific competition and whether this is influenced by soil fertility, which 

would support species mixing benefits from niche complementarity. Second, we tested 

whether competition for light or soil resources is more important for reducing tree growth, by 

separating the impacts of size-asymmetric competition (AC) for light from size-symmetric 

competition (SC) for soil resources (Schwinning and Weiner, 1998). Third, we tested whether 

competition for light increased with increasing soil fertility, as predicted by the resource-ratio 

hypothesis. In the following, we discuss the hypotheses for each mixture separately, and then 

draw general conclusions on these hypotheses. 

 

Oak–birch mixtures 

For this mixture, inter-specific competition was weaker than intra-specific competition, but 

the competitive reduction was irrespective of soil fertility. Yet, we cannot exclude that the 

lack of significant soil fertility effects resulted from the limited soil fertility gradient across 

plots of this mixture (Appendix 4.3), or the low number of plots compared to the other two 

mixtures (Table 4.1). The results suggest that both oak and birch were affected by AC. For 

oak, the lack of SDILinter effects (Table 4.4) suggest that the growth of oaks is mainly 

decreased by larger oaks, and hardly by larger birch trees (Figure 4.3a,b). This is because the 

larger trees in these mixtures were mostly pines, as suggested by the low mean value of 

SDILinter for oak (Table 4.2). Birch in this mixture is the only species showing impacts of both 

AC and SC. The competitive reduction by SC increased when birch trees were mixed with 

more oaks at higher stand density index (Figure 4.2). These results might have different 

impacts on possible overyielding in this mixture. In fact, in chapter 2 and 3, we showed that 

there was no empirical support for overyielding in this mixture at the stand level (chapter 2) 

or species level (chapter 3). We speculate that this is because the possible positive effects by 

competition for soil resources are offset by negative effects from size-asymmetric competition 

for light. 

 

Pine–oak mixtures 

For this mixture, the best model (with the lowest AIC value) suggests that intra- and inter-

specific competition were not significantly different, both for poor and rich soils, which is not 

supportive of the first hypothesis. However, when in a slightly weaker model (AIC value, 

Table 4.3) soil effects were not considered, it was suggested that intra-specific competition 

was stronger than inter-specific competition for oak (Table 4.3). This implies that the 

presence of pine to some extent reduced released the growth limitations for oak. This result is 

consistent with our previous study on stand level, which found that oak overyielded in this 

mixture on both poor and rich soils (chapter 3). Differences in crown architecture would allow 
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pine to develop larger crowns in the mixture to receive more light, but allow for sufficient 

transmitted light for the oak at lower height (Jucker et al., 2014a). The larger mean values of 

SDILintra than SDILinter (Table 4.2) indeed indicate that pines occupy the upper canopy layer, 

and we speculate that the influence of larger trees on pines could be mostly or even always 

due to other, larger, pines. One experiment observed that pine enhanced oak height growth, 

and that oak was not suppressed by pine (Brown, 1992). In addition to these height and crown 

architecture related factors, the differences in leaf phenology and shade tolerance of pine and 

oak could further contribute to complementarity in light use (Lu et al., 2016).  

In line with the last two hypotheses, asymmetric competition for light was more 

associated with tree basal area growth than symmetric competition for soil resources and this 

effect was much greater at rich soils (Table 4.4, Figure 4.3c,d). For both pine and oak, this led 

to a greater reduction in basal area growth with stand density of larger trees on rich soils 

compared with poor soils (Figure 4.3c, d), as proposed by the resource-ratio hypothesis. 

Therefore, the main growth limiting factor might be light, and complementary light use may 

be expected as a driving factor of higher tree basal area growth. When considering soil effects 

on the asymmetric competition for light, the influence of soil fertility gradient was mainly 

driven by parent material (PC1, Figure 4.1) and not organic matter in the upper soil layer. 

Thus, in line with the resource-ratio hypothesis, it was observed that the larger basal area 

growth reduction on richer soils, resulted from stronger competition for light in mixed stands 

that can develop large basal areas due to the high nutrients and water availability (Forrester, 

2014). 

 

Pine–birch mixtures 

For birch in this mixture, inter-specific competition was smaller than intra-specific 

competition, and this competitive reduction was stronger on less fertile soils (Table 4.4), 

which is in line with the first hypothesis and the predictions from the stress-gradient 

hypothesis. A positive effect of pine on birch was observed and this positive effect increased 

with the proportion of pine in the stand density index of larger trees (Figure 4.3e,f). For pine, 

intra- and inter-specific competition were not significantly different, which did not support the 

first hypothesis. Considering the higher mean value of SDILintra than SDILinter for pine and the 

opposite for birch (Table 4.2), it suggests that pines outgrow birches and occupy the upper 

layer of the canopy, and that pines are also mainly influenced by the larger pines.  

The basal area growth of pine and birch were influenced by asymmetric competition and 

not symmetric competition, supporting the idea that competition for light is important. For 

pine, this effect of AC was much stronger on rich soils than on poor soils (Table 4.4, Figure 

4.3e,f), suggesting that such competition for light becomes stronger on richer soils, in line 

with the second hypothesis and the resource-ratio hypothesis. For birch, however, this AC 

effect decreased with improving soil fertility, suggesting that for this species competition for 

light was strongest on poorer soils (Table 4.4, Figure 4.3e,f). Remarkably, ACintra decreased 

for birch with improving soil fertility driven by organic matter and the high CEC associated 
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with this organic matter (PC2, Figure 4.1). Possibly, the competition for soil nutrients and 

water becomes more severe owing to slower litter decomposition rate and nutrient cycling 

after mixing with the litter of pine, known for high lignin contents, as observed in one leaf 

litter experiment in Belgium (Setiawan et al., 2016). This latter trend is in line with the stress-

gradient hypothesis, which predicts facilitation or complementary resource use in harsh 

conditions. Both pine and birch are light-demanding species that grow fast in the early stand 

development with the relatively smaller of shade tolerance of pine than birch (Fischer et al., 

2002; Niinemets and Valladares, 2006; Dekker et al., 2007), but pines generally overtopped 

birch trees in open high-light environments (Dekker et al., 2007). The resultant height 

stratification may allow such two-species mixed forests to exploit canopy space more 

efficiently and this could be even stronger under improved site conditions in which soil is not 

a limiting factor (Forrester, 2014).  

 

Conclusions 

 
 
For the studied species and mixtures, intra-specific competition was larger than inter-specific 

competition for the oak–birch and pine–birch mixtures, supporting the existence of niche 

complementarity when mixing species together. The competitive reduction was greater at low 

soil fertility for birch in pine–birch mixtures, which is in line with the stress-gradient 

hypothesis. However, no difference between inter- and intra-specific competition was 

observed for pine–oak mixtures. Size-asymmetric competition for light was shown to be more 

associated with tree growth than size-symmetric competition for soil resources, suggesting 

that light is the most limiting resource. This effect was stronger at high fertility soil for pine 

and oak in pine–oak mixtures, which supports the resource-ratio hypothesis, but there was no 

such empirical support from the oak–birch mixtures. This study thus shows that mixing 

different tree species reduced particularly the competition for light, both on rich and poor soils, 

and even stronger on poor soils for one of the mixtures. This competitive reduction by light is 

considered a potential key driver of higher productivity of mixed forests. 
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Appendix 

 

Appendix 4.1  Soil properties of SoilGrids250m used in this study.  

Soil variable name Units Range Mean 

Sand content (gravimetric) kg / kg 23.5–90.1 80.3 

Silt content (gravimetric) kg / kg 6.4–52.7 13.1 

Clay content (gravimetric) kg / kg 3.3–23.3 6.7 

pH (H2O solution)  4.7–6.7 5.2 

Soil organic carbon (dry combustion) g / kg 17.5–191.7 81.7 

Cation-exchange capacity (fine earth fraction) cmol+ / kg 11.2–28.2 17.0 

Bulk density (fine earth fraction) kg / m3 1234–1498 1428 

Coarse fragments (volumetric) cm3/ cm3 1.3–18.0 7.3 

 

 

 

Appendix 4.2  Results of the correlation analysis based on the eight soil properties used in this study and 

eigenvalues of the soil properties on the two main principal components. For clay, sand, silt, pH, bulk density 

and coarse fragments, weighted average values were taken over six soil layers, while ORC and CEC took 

weighted average values from the top two soil layers. Clay, sand and silt represent clay content, sand content and 

silt content respectively; BLD: bulk density; CRF: coarse fragments; ORC: soil organic carbon; CEC: cation-

exchange capacity. Pearson pairwise correlation coefficients are given (*P<0.05; ** P<0.01; *** P<0.001). 

 
clay sand silt pH BLD CRF ORC CEC 

PC1 

(41%) 

PC2 

(32%) 

clay 
        

-1.9115 0.2377 

sand -0.8553*** 
       

1.8217 -0.8431 

silt 0.6925** -0.9646*** 
      

-1.5729 1.0754 

pH 0.6967** -0.4437 0.2580 
     

-1.5731 -0.7076 

BLD -0.2737 0.2192 -0.1708 -0.2997 
    

0.6483 -0.4871 

CRF -0.1128 -0.2625 0.4296 -0.4762 -0.0862 
   

0.2712 1.8039 

ORC -0.3241 0.2143 -0.1248 -0.5035* -0.0926 0.5100* 
  

1.0856 1.4312 

CEC -0.0397 -0.0682 0.1199 -0.2867 -0.1474 0.6170** 0.7661** 
 

0.494 1.7041 
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Appendix 4.3  First and second principal components PC1 and PC2 in the three mixtures in this study. 
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十年树木，百年树人 

−管子 

 

It takes ten years to grow trees but a hundred years to rear people. 

                                               −Chinese proverb 
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Species mixing effects on forest productivity 

 
In Europe, monoculture forests have often been converted to mixed species forests to increase 

resilience, and to provide higher timber production as well as other ecosystem services (Vilà 

et al., 2013; Jucker et al., 2014b; van der Plas et al., 2016). The forest productivity typically 

changes as a stand develops, reaching a peak relatively soon followed by a substantial decline, 

probably due to aboveground and belowground allocation changes or hydraulic limitations 

(Ryan et al., 1997). Yield tables also show this productivity pattern in even-aged monocultures 

in the Netherlands, and it is well understood that this pattern varies with site conditions (Jansen 

et al., 1996). However, the productivity of mixed-species forests and their responses to 

different site conditions have been explored less, and recent studies on mixed forests showed 

divergent results. Some studies found overyielding of mixed-species stands at poor sites 

(Pretzsch et al., 2013a; Toïgo et al., 2015), while others reported overyielding at rich sites 

(Forrester et al., 2013a; Jucker et al., 2014a; Thurm and Pretzsch, 2016). Moreover, the same 

species mixture may show different growth patterns on different locations, possibly due to 

differences in climate, soil conditions and stand age. A better understanding of species mixing 

effects on forest productivity in relation to those factors is needed for improving the 

management of mixed forests.  

This thesis addresses the question of species mixing effects on forest productivity, using 

two large datasets from the Netherlands. The general question was split into three specific 

questions (see also Figure 1.5). First, we evaluated the effects of species mixing on stand 

productivity during stand development (chapter 2), using an empirical model at stand level, 

based on growth and yield data (GYD) from long-term permanent field plots (Den Ouden and 

Mohren, 2016). Secondly, we analysed how each tree species in mixtures contributed to 

productivity on soils differing in fertility (chapter 3). For this, an empirical model at species 

level was applied to analyse the species-specific effects on overyielding by considering soil 

effects, using the same data (GYD) as used in chapter 2. Lastly, we examined competitive 

tree-tree interactions for light or soil resources (chapter 4). In order to analyse the 

consequences of inter-specific competitive interactions on different soils, an empirical model 

at tree level was applied using the Dutch national forest inventory (NFI) data (Schelhaas et al., 

2014). 

This thesis describes general productivity patterns in mixtures versus monocultures and 

shows the influences of stand development and soil fertility, and speculates on possible 

mechanisms responsible for the higher productivity of stands, species and or individual trees 

in mixed forest stands. As illustrated in Figure 5.1, in line with niche complementarity 

hypothesis (Kelty, 1992; Tilman, 1999), mixed tree species differing in leaf phenology and 

shade tolerance were expected to contribute to overyielding due to complementary light use. 

Differential crown architecture might also play a role in overyielding, but the two datasets 

used in this thesis did not include such information. Yet, tree height differences between 

species imply canopy stratification and hint to architectural differences between species. In 
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addition, different root distributions may result in complementary soil resource use and hence 

explain overyielding, but direct measurements of roots were not available. Yet, in addition to 

complementary resource use, other mechanisms may lead to overyielding, such as effects of 

mixed litter on nutrient cycling (Dawud et al., 2017), litter decomposition (Setiawan et al., 

2016) or mycorrhizal linkages (Kelty, 1992), and on pathogens (Hantsch et al., 2014), but 

such interactions are still little understood for mixed forests. Since there is lack of information 

on those processes, conclusions on such mechanisms remain speculative. In this thesis, the 

working hypothesis is that complementary resource use leads to higher productivity when 

mixing different species, and empirical data from Dutch NFI and permanent growth and yield 

plots are used to address this issue. In the following, the main results of this thesis are 

discussed in relation to stand age, species composition and soil fertility and mechanisms 

potentially leading to overyielding (see Figure 5.1). 

In this general discussion, first the merits and limitations of field data and empirical 

approaches applied are discussed. Then the effect of species mixing on productivity is 

characterised by comparing original expectations and observations in last three chapters 

(chapter 2–4), and the implications for forest management are presented. Further, the general 

pattern of productivity in Dutch mixed-species forests is linked to the ecological theories. A 

new hypothesis is addressed for overyielding based on the results from Dutch forests 

presented in this thesis. Finally, an outlook is provided for future research challenges and the 

major conclusions from this thesis are drawn. 

 

 
 

Figure 5.1  Diagram of the impacts of different factors and mechanisms on productivity discussed in this thesis. 

The discussed mechanisms refer to differences in species characteristics that can allow for complementarity or 

reduced competition for light and soil resources. The signs along the arrows represent the presence (+ or ++) or 

absence (–) of significant effects detected by the results in this thesis, but in some cases we lack direct data. ++: 

strong effect; +: weak effect; –: no effect. 
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An empirical approach based on field data  

 
In this thesis, species mixing effects on productivity were studied for forests in the 

Netherlands. Patterns of such mixing effects were explored for forest plots from the GYD of 

long-term dataset and Dutch NFI data, using empirical models at stand (chapter 2), species 

(chapter 3) and tree (chapter 4) level. At stand level, forest productivity patterns in mixtures 

and monocultures during stand development were compared for four different species 

combinations from the GYD (Table 5.1). At species level, the same GYD were analysed to 

show how each of the two species in a mixture contributed to productivity (and overyielding), 

and how such contributions varied between soils differing in fertility. At tree level, it was 

investigated how the individual tree growth was influenced by neighbouring trees in three 

mixed-species stands (Table 5.1) along a soil fertility gradient, using the Dutch NFI data. 

Size-asymmetric competition for light and size-symmetric competition for soil resources were 

separated in the analysis to show possible complementary impacts on productivity in mixed 

forests. The combination of stand-, species- and tree-level analyses allows for better 

understanding of mixing effects on forest productivity and forest functioning (Forrester and 

Pretzsch, 2015), and can indicate potential sources of error (Pretzsch et al., 2015a).  

There are limitations in these data and approaches. The complementarity mechanisms 

(Figure 5.1) are not measured directly, but taken as a starting point for interpreting patterns in 

productivity of mixed forests. Other factors are also potentially relevant, but cannot be 

distinguished from these field data. For instance, root distributions and pathogen diversity 

were not measured but may influence the competition among individual trees (Hantsch et al., 

2014). Moreover, forest management is a confounding factor when comparing productivity in 

mixed versus monoculture stands, as thinning aims to interfere with competition to favour one 

species over the other. Besides, the different species compositions in the two datasets (Table 

5.1; also see chapter 1 description) limit generalising the results, since the missing mixtures at 

stand level analysis cannot be further explored at the tree level. The three organisation levels 

studied (stand, species and tree) allow to show how changes at one level influence patterns at 

another level (Pretzsch et al., 2015a), but such links remain indirect (dashed arrows in Figure 

1.5). Keeping in mind these limitations, this study shows impacts of species mixing on 

productivity patterns in forests, and several hypotheses are considered to discuss underlying 

mechanisms. 
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Table 5.1  Overview of the use of monocultures of five species and mixtures composed with those five species 

in this thesis. Upper-right triangle: the chapter number is indicated in which these stands were studied. Bottom 

left triangle: empirical support for overyielding of each species: ++/+, +/++, –/+, +/–, –/– where the first symbol 

refers to the species in the row, and the second symbol to the species in the column. ++: relatively strong 

overyielding; +: relatively weak overyielding; –: no overyielding effect; n.a. = not applicable; potential in 

parenthesis means higher tree growth of both species. 

 
Douglas-fir Common beech Scots pine Pedunculate oak Silver birch 

Douglas-fir chapter 2, 3 chapter 2, 3 n.a. n.a. n.a. 

Common beech +/++ chapter 2, 3 n.a. chapter 2, 3 n.a. 

Scots pine n.a. n.a. chapter 2, 3 chapter 2, 3, 4 chapter 4 

Pedunculate oak n.a. –/+ ++/+ chapter 2, 3 chapter 2, 3, 4 

Silver birch n.a. n.a. +/– (potential) –/– chapter 2, 3 

 

Stand development and forest management 

 
In chapter 2, overyielding was observed for the Douglas-fir–common beech and Scots pine–

pedunculate oak mixed stands, but not for pedunculate oak–common beech, and pedunculate 

oak–silver birch stands. We expected that overyielding decreases with stand development 

because fully growing stands take all available limiting resources and limit resource 

partitioning between different species. In contrast with our hypothesis, stand age had no 

significant effect on the overyielding in the two evergreen–deciduous species mixtures 

(Figure 2.1 and 5.2). It can be argued that forest management by thinning may keep stands 

relatively open, as indicated by the relatively low basal areas (Figure 2.3). The forest stands 

studied here, may therefore never close completely and may have resources and growing 

space available for complementary use by the other species. Another study has even shown 

that overyielding in mixtures of Douglas-fir and beech increased with stand development 

(Thurm and Pretzsch, 2016). These authors argued that there was a shift of competition 

strength between the two species along the age gradient. After 15 years, Douglas-fir 

outcompeted beech and the difference in height triggered larger diameter growth of Douglas-

fir, thereby resulting in increasing overyielding during stand development (Thomas et al., 

2015; Thurm and Pretzsch, 2016). These studies imply that overyielding occurs especially 

later during stand development. We argue that the thinning regime is responsible for this in 

both cases. Our constant overyielding over time could be partially explained by the lack of 

data for young forest stand in our data base (< 15 years old were absent). Moreover, in our 

analysis, we kept the possible forest management effects on overyielding, rather than 

removing the plots that had been managed during the last five years (Del Río and Sterba, 2009; 

Jucker et al., 2014b; Toïgo et al., 2015). In conclusion, overyielding appears to be maintained 

or even increased with stand age in the heavily managed forests stands in the Netherlands and 

elsewhere in Europe, and the management of forests by thinning is likely to play a key role in 

this.  
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Complementary resource use 

 
Complementarity in light use 

In chapter 2, we explored the effect of species differences on productivity in mixed stands. In 

line with the niche complementarity hypothesis (Kelty, 1992; Tilman et al., 2001), we 

expected that mixing tree species that differ in leaf phenology and/or shade tolerance would 

overyield more strongly because of complementary light use. In line with this hypothesis, 

evergreen–deciduous species mixtures (Douglas-fir–beech and pine–oak) indeed showed 

overyielding whereas the deciduous–deciduous species mixtures (oak–beech and oak–birch) 

did not (Figure 2.1 and 5.2). In chapter 3, we explored how the individual species in these 

two-species mixtures contributed to overyielding. We hypothesized that the faster growing 

and more light-demanding species would dominate the slower growing and more shade-

tolerant species in mixed-species stands, and that the resulting stratified canopies and the 

subsequent partitioning of the light gradient would cause overyielding by complementary 

light use. Yet, the results show that both faster growing species (Douglas-fir in Douglas-fir–

beech) and slower growing species (oak in pine–oak) contributed to overyielding (Figure 3.2). 

 

 
 
Figure 5.2  Conceptual diagram of stand volume growth over time for the (a) expected and (b) observed results in 

chapter 2 in this thesis. Two dashed lines represent light-demanding and shade-tolerant species monoculture stands. 

Solid lines represent mixtures composed of those two species in monoculture stands. 

 

The observation that overyielding occurred in both evergreen-deciduous stands, but not in 

the deciduous-deciduous stands, suggests that differences in leaf phenology between the 

mixed species can contribute to higher productivity, or overyielding. Moreover, the 

overyielding was even stronger for the evergreen–deciduous species mixture with the largest 

difference in shade tolerance (Douglas-fir–beech), implying that differences in shade 

tolerance may be important too. Trees of fast-growing species grow rapidly and may establish 

a more favourable position in the canopy compared to trees of slow-growing species which 

are often more shade tolerant (Dekker et al., 2007; Janse et al., 2007). Such differences in 

height growth allow light-demanding species to occupy the upper layer of the canopy and 
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may leave the shade-tolerant species in a lower layer, thus creating a canopy with multiple 

crown layers (Figure 5.3). Such a multi-layered canopy may be more effective in light 

absorption and hence in light use efficiency (Pretzsch, 2014; Jucker et al., 2015). 

 

 
 
Figure 5.3  Tree height over time in 4 two-species mixtures derived from growth and yield data from permanent 

field plots in chapter 2 and 3. (a) mixed stands of Douglas-fir and common beech; (b) mixed stands of Scots pine 

and pedunculate oak; (c) mixed stands of pedunculate oak and common beech; (d) mixed stands of pedunculate 

oak and silver birch. Solid lines indicate the average height for each of the species over time. 

 

In addition, the improved light interception and/or light use efficiency might be further 

supported by differences in species crown architecture. Crown complementarity has been 

shown to increase canopy packing and thus contribute to overyielding (Longuetaud et al., 

2013; Pretzsch, 2014; Jucker et al., 2015; Williams et al., 2017). We did not have data 

describing crown properties, but used tree height in the mixed forest as an indicator for 

canopy stratification. The vertical distribution in tree height might change over time through 

tree growth, regular mortality, natural disturbances and forest management (Latham et al., 

1998; Oliver et al., 1999). Our data show two distinct species layers in the two evergreen–

deciduous species mixtures across the studied ages (Figure 5.3a,b), while such stratification 

was much weaker for deciduous–deciduous forests (Figure 5.3c,d). These distinct canopy 

layers of the two evergreen–deciduous species mixtures over time might explain the 
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overyielding over different stand ages. In conclusion, our results are in line with the niche 

complementarity hypothesis and imply effective complementary light use in evergreen–

deciduous species stands, particularly when the two species differ in shade tolerance.  

 

Soil impact 

Complementary light use between species can be altered by soil fertility. In chapter 3, we 

explored how soil fertility influenced the species mixing effects on the productivity of each 

species in the mixed stands. The stress-gradient hypothesis and the resource-ratio hypothesis 

give different arguments for possible soil effects on species interactions and productivity, as 

illustrated in Figure 5.4. The stress-gradient hypothesis describes a transition from facilitation 

or strong complementary resource use on low fertility soils, to competition on high fertility 

soils (Bertness and Callaway, 1994). As a consequence, competition for soil resources is 

modified with decreasing soil fertility through facilitation by which one species may 

effectively improve the soil resource availability for the other species or allows for 

complementary soil resource use, compared to the corresponding monoculture under the same 

soil conditions. The resource-ratio hypothesis argues that competition for light at high soil 

fertility switches to competition for soil resources at low soil fertility (Tilman, 1985), based 

on the argument that rich soils allow for a denser forest canopy with complementary light use 

(Forrester, 2014). Therefore, the species interactions result in a reduction in competition and 

more pronounced complementary use for light at high soil fertility. 

 

 
 
Figure 5.4  A conceptual model showing the relative complementarity of a given species growing in a mixture, 

which depends on a soil fertility gradient. The resource-ratio hypothesis predicts that complementarity increases 

with increasing soil fertility as competition for light becomes more intense in accordance with the resource-ratio 

hypothesis (thick line). The stress-gradient hypothesis predicts that complementarity increases and competition for 

soil resources decreases relatively with decreasing soil fertility, because one species improves the soil resource 

availability for the other species or allows for complementary soil resource use (thin line). Diagram adapted from 

Forrester (2014).  
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Thus, while the stress-gradient hypothesis predicts that overyielding is stronger on poor 

soils than rich soils, the resource-ratio hypothesis predicts that overyielding is stronger on rich 

soils. We found stronger overyielding in Douglas-fir–beech and pine–oak stands on low 

fertility soils (Figure 3.2 and 5.5). Hence, our results support the stress-gradient hypothesis 

and not the resource-ratio hypothesis at first sight, suggesting there was complementary soil 

resource use at low soil fertility. This complementarity may be due to different root 

distributions in mixed-species stands and several mechanisms associated with explaining this 

overyielding were described in chapter 1. Previous empirical studies have reported that 

overyielding increased (Forrester et al., 2013a; Jucker et al., 2014a; Thurm and Pretzsch, 2016) 

or decreased (Pretzsch et al., 2013a; Pretzsch et al., 2015b; Toïgo et al., 2015) with improving 

site conditions. This divergent finding may arise from different growth-limiting factors. In our 

study, low fertility soil of Dutch forest might still allow for sufficient stand productivity and 

dense canopies. Therefore low fertility soil allows for complementary soil resource use, but 

can also allow for complementary light use, and both may promote aboveground stem growth. 

With canopy being less dense at low soil fertility, the competition for light may be less and 

maybe allow trees of different species to partition light more effectively than in the crowded, 

more dense, canopies on rich soils. This implies that complementary use of both light and soil 

resource can act as potential drivers underlying the stronger overyielding in stands on lower 

fertility soils. 

More importantly, mixing effects on root growth could also be modified by soil fertility, 

and mixing effects may influence soil fertility by affecting litter decomposition. One study 

found that root growth was reduced at the benefit of stem growth in temperate mixed stands 

when growing conditions improved (Thurm et al., 2016a), but in this study the amount of 

roots in the mixed-species stands was unknown, and it was assumed that tree species mixing 

did not lead to significantly differences in the amount of roots. Another experimental study 

showed stronger complementarity in root productivity for soil resources in nutrient poor soils 

in a boreal mixed forest (Ma and Chen, 2017). So far, experiments about species mixing on 

root distributions in temperate forests remain scarce, and are almost absent for soil fertility 

gradients. In addition, studies have reported that mixing litter from different tree species 

increased litter decomposition rates through synergistic effects (Hättenschwiler et al., 2005), 

and one study suggests that admixing tree species with high-quality litter in post-agricultural 

plantations in Belgium increases the litter decomposition rate at early stand stage in 2 to 4 

species mixtures (Setiawan et al., 2016). However, as far as we know, long-term litter 

decomposition experiment are still absent for mixed-species stands. We call for further study 

on this aspect to uncover the species mixing effect on root distribution and litter 

decomposition, and in turn, possible impacts on overyielding. 

To conclude, our results of stronger overyielding at low fertility soils are in line with the 

prediction of the stress-gradient hypothesis, but not the resource-ratio hypothesis. Yet, we 

argue that better complementarity for both soil resources and light can both be responsible for 

the stronger overyielding on poor soils, but we cannot exclude other possible mechanisms. 
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Our conclusions here are therefore restricted to tree-tree interactions, exploring whether 

reduced competition for light or soil resources contributed to overyielding in mixed forests 

stands. 

 

 
 
Figure 5.5  Conceptual diagram of volume growth of the total forest stand and each of the two species at different 

levels of mixtures, expressed by the proportion of one species. Predictions (a) and results (b, see also chapter 3) are 

shown for the impacts of low and high fertility soils on productivity. Dashed lines represent predicted values with 

null mixing effect, i.e. no overyielding, while red lines represent predicted and observed values with stronger 

overyielding at poor soils and green lines represent less overyielding and even (observed) underyielding on rich 

soils. 

 

Learning from tree-tree interactions 

 

Intraspecific competition stronger than interspecific competition? 

Intra-specific competition is frequently considered to have a more pronounced negative effect 

on tree growth than inter-specific competition, particularly when niche complementarity 

would decrease competition. The phenomenon of lower inter-specific competition as 

compared to intra-specific competition is often referred to as competitive reduction, which 

would result in less growth reduction relative to reduction due to intra-specific competition. In 

chapter 4, we examined the competitive interactions in mixed stands, on individual tree 

growth growing on soils differing in fertility. We hypothesized that intra-specific competition 

is stronger than inter-specific competition and that the competitive reduction is more 

pronounced at low fertility soils, in accordance with our results from chapter 3, which means 

that the decrease in tree basal area growth resulting from competition is smaller at lower soil 

fertility (Figure 5.6a). We showed that for the studied species in the three mixtures in the 

study, intra-specific competition was larger than inter-specific competition for birch in oak–

birch and pine–birch mixtures, as well as for oak in oak–birch mixtures. Yet, no significant 

differences were found between the impact of intra- versus inter-specific competition for pine 

in pine–oak and pine–birch mixtures, and neither for oak in pine–oak mixtures. The effect of 
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competitive reduction was smaller with improving soil fertility for birch in pine–birch 

mixtures, but independent of soil fertility for oak and birch in oak–birch mixtures (different 

directions arrows in Figure 5.6b). The results were thus different for different stands and 

species mixtures, and we therefore did not find evidence for general support for either the 

stress-gradient hypothesis or resource-ratio hypothesis. Other studies found that the species 

complementarity led to more tree growth because of lower inter- compared to intra-specific 

competition (Del Río et al., 2014a; Condés and Del Río, 2015), but also concluded that this 

might depend on soil fertility, stand age and species composition (Cavard et al., 2011; Coates 

et al., 2013; Toïgo et al., 2015). In short, intra-specific competition is not necessarily stronger 

than inter-specific competition in mixed forests, and may depend on the species compositions 

of the mixtures under study. 

 

 
 
Figure 5.6  Conceptual diagram of tree basal area growth changes with stand density index for the (a) expectations 

and (b) results, as presented in chapter 4. (a) It was expected that growth reduction is smaller at poor soils (red line) 

and greater at rich soils (green line) with increasing stand density. (b) It was observed that growth reduction could 

be smaller or larger on poorer soils compared with rich soils, where two black bold arrows indicate the divergent 

trends.  

 

Competition for light or for soil resources? 

As illustrated in Figure 5.4, competition for soil resources varied with soil fertility. We 

expected that when light is the most important growth limiting factor, size-asymmetric 

competition for light is more relevant for tree growth than size-symmetric competition for soil 

resources. As expected, size-asymmetric competition for light was shown to be more 

associated with tree growth than size-symmetric competition for soil resources, suggesting 

that light is the most limiting resource. We further expected that since forests may establish a 

denser canopy at rich soils, size-asymmetric competition is larger at rich soils compared to 

poor soils following the resource-ratio hypothesis, and in turn this may allow for 

complementary light use rather than for more efficient soil resource use. We found that this 

effect was stronger at high soil fertility for pine in pine–oak and pine–birch mixtures, and for 

oak in pine–oak mixtures, which supports the resource-ratio hypothesis. However, this effect 
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was not observed for birch in pine–birch mixtures since this species showed a smaller effect 

of competition for light at high soil fertility, and the effect was independent of soil fertility for 

oak and birch in oak–birch mixtures.  

Our results are in line with some studies in temperate forests that found that competition 

for light was more relevant for tree growth than competition for soil resources (Forrester, 

2014; Jucker et al., 2014a). However, other studies revealed that in terms of tree growth, the 

effects of competition for light or for soil resources differ depending on the competing species 

(Coates et al., 2009; Coates et al., 2013; Del Río et al., 2014a). Rich soils allow for a denser 

forest canopy with possibilities for complementary light use, particularly when species differ 

in shade tolerance or leaf phenology. Our results were consistent with studies that found 

stronger competition for light at rich soils (Baribault and Kobe, 2011; Forrester, 2014; Jucker 

et al., 2014a), but weaker competition for light on high fertility soils was also reported in the 

literature (Trinder et al., 2012; Coates et al., 2013). In the end, this complementary light use at 

tree level might improve individual tree growth and drive higher stand productivity in mixed 

forests stands, i.e. lead to overyielding. However, the tree level cannot always be directly 

extrapolated to stand level (Perot and Picard, 2012), and future research should clarify the 

dynamic process of species interaction in various types of mixtures along soil fertility 

gradients.  

 

Species mixing effects on productivity in Dutch forests 

 
Revisiting the stress-gradient hypothesis and the resource-ratio hypothesis 

The stress-gradient hypothesis and the resource-ratio hypothesis state that species interactions 

vary along a soil fertility gradient. Figure 5.7 illustrates the species interactions on 

productivity and overyielding on poor and rich soils for the stress-gradient hypothesis, 

resource-ratio hypothesis, and our own hypothesis based on the results reported in this thesis, 

see ++, +, –, n.a. and ? in Figure 5.7. The stress-gradient hypothesis essentially only refers to 

belowground soil resource use and does not explain the aboveground light use along the soil 

fertility gradient (n.a.). In short, the stress-gradient hypothesis predicts that complementary 

resource use belowground would be stronger on poor soils (++) than on rich soils (–). 

Alternatively, the resource-ratio hypothesis predicts that complementary resource use for 

aboveground is stronger and the key driver of higher overyielding on richer soils, thus 

overruling possible complementary for belowground resources on poor soils. Our results, 

however, suggest that overyielding of mixed forests is stronger on poor soils than on rich soils, 

as predicted by stress-gradient hypothesis but not by resource-ratio hypothesis (Figures 3.2, 

3.3). Yet, our results also imply that there is stronger aboveground complementary use for 

light on poor soils (++) than on rich soils (+), but the role of complementary use of below 

ground resources remains actually largely unknown (?). 
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Figure 5.7  Schemes to illustrate the expectations and results of overyielding effects on soils contrasting in fertility 

(poor and rich soils) according to the concept of competition and complementarity from the stress-gradient 

hypothesis and resource-ratio hypothesis, and a newly formulated hypothesis based on the results of this thesis. 

Number of trees indicates the canopy density: more trees, denser canopy. The signs ++/+/–/ n.a./? refer to above 

and belowground complementary effects; ++: stronger complementary; +: weaker complementarity; –: no 

complementarity ; n.a.: not applicable; ?: unknown. Soil sketch adapted from Weemstra (2017). 

 

When improving soil fertility, the stress-gradient hypothesis posits a transition from 

facilitation or complementary resource use to competition, whereas the resource-ratio 

hypothesis comprises a transition from competition predominantly for belowground (soil) 

resources to competition predominantly for aboveground resources (light). However, our 

results in chapter 3 at stand level and species level suggest that the mechanisms for 

complementary soil resource use are stronger on poor soils. More specifically, the competitive 

reduction by inter-specific competition was larger for pine–oak mixtures on lower soil fertility 

soils. Yet, the competition for light was stronger on high fertility soils (Figures 4.2, 4.3). 

Thus, our studies of competition among tree species do not support either of the two dominant 

hypotheses. Under Dutch climatic conditions, the soil conditions and climate still allow for 

sufficient stand productivity and dense canopies on poor soils that may better allow for 

complementary use of light than the denser canopies on rich soils. On higher fertility soils, 

trees face stronger competition for light but with reduced potential for partitioning light, 
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which thus results in weaker overyielding than on lower fertility soils. Our results and 

speculations thus shed new light on the stress-gradient and resource-ratio hypotheses. For 

mixed stands in the Netherlands, the greatest productivity gain is achieved on the poorer soils, 

and we argued that this is driven by complementary use of light, but with an unknown 

contribution of complementary use of soil resources. 

 

Suggestions for management of mixed forests 

The proportion of mixed forest stands was recently still increasing in the Netherlands, as 

suggested by the inventories of 2003 and 2013 in the Dutch NFI (Schelhaas et al., 2014). In 

total, 695 plots of the 3547 plots in the NFI data of 2013 are mixed species plots according to 

the mixed stand definition (based on proportion of basal area) presented in chapter 2 and 3. 

These mixed stands include 596 of the five mixtures studied in this thesis (Table 5.1). Three 

of those five mixed stands were predicted to show overyielding: Douglas-fir–beech and pine–

oak as shown in chapter 2 and 3, and pine–birch as shown in chapter 4. In the NFI data, there 

are 629 corresponding monoculture stands of the species in those three mixtures, i.e. Douglas-

fir, common beech, Scots pine, pedunculate oak and silver birch. The highest productivity 

gain is predicted for Douglas-fir mixed with beech: for stands younger than 150 years, 

Douglas-fir–beech mixtures are predicted to produce up to 3.5 m3 ha-1 year-1 more relative to 

Douglas-fir and beech monocultures (Figure 2.2a), and the relative increase in increment is 

highest on poor soils (Figure 3.2a,b). Remarkably, the most promising mixture, i.e. Douglas-

fir–beech mixture, currently comprises only 16 out of the 3547 plots (Schelhaas et al., 2014, 

Figure 5.8). The gains in pine–oak mixtures are lower, as they reach approximately 1 m3 ha-1 

year-1 (Figure 2.2b), and again the relative gain is higher for this mixtures on poor soils 

(Figure 3.2c,d). For the third overyielding mixture, pine–birch, we have no volume gain 

values, as we only carried out tree-tree relationships (chapter 4). Overall, these studies suggest 

great potential for increasing productivity of Dutch forests, particularly when mixing results 

in evergreen–deciduous species stands on the poorer soils. This potential is indicated by the 

great number of monocultures that are predicted to increase in productivity after mixing, 

particularly across the sandy soils in the Netherlands (Figure 5.8).  
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Figure 5.8  Stand locations that show overyielding or potential overyielding based on data analysis of chapter 2–

4. Stands on the Dutch soil map are from the Dutch national forest inventory data. Douglas-fir–common beech 

and Scots pine–pedunculate oak are the mixtures that show overyielding in chapter 2 and 3 at stand and species 

level. Scots pine–silver birch is the mixture that shows potential overyielding in chapter 4 at tree-level. Common 

beech, Douglas-fir, Scots pine, pedunculate oak are monoculture stands that are predicted to show overyielding 

if mixing with Douglas-fir, common beech, pedunculate oak, and Scots pine, respectively. 
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Concluding remarks: benefits of mixed-species forests 

 
The increasing importance of mixed-species forests is a reflection of the increasing 

complexity of societal demands upon forest ecosystems, where mixed-species forests are 

expected to have higher productivity, and higher levels of stability and biodiversity, amongst 

other ecosystem services. Also, the increased relevance of mixed forests results from the 

increasing emphasis on the use of spontaneous processes in forest management, as in close-to-

nature forestry. This thesis addresses the question how species mixing influences forest 

productivity, and addresses this question at stand, species and tree level. This study shows that 

higher productivity, i.e. overyielding, occurred notably in stands with mixtures of evergreen 

and deciduous species. Moreover, this overyielding was maintained with stand development 

due to forest management (thinning) aiming at maintaining species mixtures, and was stronger 

for stands on low fertility soils compared with high fertility soils. It is suggested that 

differences in leaf phenology in mixed stands are a major determinant of overyielding, but 

also shade tolerance plays an important role. Yet, experimental studies will be required for 

understanding mixing effects on overyielding, and those studies should not only include 

mechanisms of complementary, but also others, including the role of litter mixing, pathogens, 

and other factors. Finally, this thesis identifies the competitive interactions on individual tree 

growth in mixed stands and shows that intra-specific competition is not necessarily stronger 

than inter-specific competition. Besides, our results imply that light is the most limiting 

resource for tree growth on most sites in the Netherlands, and that species mixing may 

alleviate competition for light among neighbouring trees on soils differing in fertility, but 

especially on poor soils. We conclude that mixing species, differing in resource acquiring 

strategies, contributes to a higher productivity in forests, and that complementary mechanisms 

are even more successful and leading to higher overyielding on poorer soils. Based on this, we 

call for developing forest management strategies that consider the complementarity in 

resource acquisition of tree species to convert monospecific forests to more productive mixed-

species forests. 
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失之毫厘，差以千里 

−孔子 

 

A little error may lead to a large discrepancy. 

                           −Confucius 
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Many monoculture forests (dominated by a single tree species) have been converted to mixed-

species forests (dominated by more than one tree species) in Europe over the last decades. 

The main reason for this conversion was to increase productivity, including timber production, 

and enhance other ecosystem services, such as conservation of biodiversity and other nature 

values. In addition, it has been suggested that mixed-species forests are more resistant, 

resilient and stable to disturbances.  

In line with the niche complementarity hypothesis, inter-specific differences in crown 

architecture, leaf phenology, shade tolerance and root distribution may allow tree species to 

partition resources in mixed forests. Such mechanisms may lead to a higher productivity of 

mixed forests versus monoculture forests, a phenomenon often referred to as overyielding. 

Interestingly, the stress-gradient hypothesis and the resource-ratio hypothesis suggests that 

such inter-specific interactions vary along a soil fertility gradient, but in different ways. The 

stress-gradient hypothesis emphasizes that more efficient partitioning increases overyielding 

at low fertility soils, whereas the resource ratio hypothesis considers that the denser packing 

of crowns on fertile soils allows for partitioning of light and overyielding on high fertility 

soils. Several studies have been carried out about species mixing effects on forest productivity, 

but so far their findings are ambiguous. Probably, this ambiguity comes from the sites that 

they studied, which differ in species, age, management history, and/or environmental 

conditions.  

This thesis analyses the mixing effect on productivity in relation to the combination of 

species, stand age and soil fertility, and discusses possible consequences of forest 

management, for five two-species mixtures in the Netherlands: Douglas-fir (Pseudotsuga 

menziesii (Mirb.) Franco)–beech (Fagus sylvatica L.), pine (Pinus sylvestris L.)–oak 

(Quercus robur L.), oak–beech, oak–birch (Betula pendula Roth) and pine–birch. These 

mixtures and their corresponding monoculture stands were studied using long-term permanent 

forest plots over multiple decades, but also using two inventories (around 2003 and 2013) 

across the entire Netherlands. These forest plots data were used together with empirical 

models at total stand level (chapter 2), species level (chapter 3) and tree level (chapter 4) to 

evaluate the mixing effect on forest productivity.  

In chapter 2, four two-species mixtures and their corresponding monospecific stands 

were compared for productivity (volume stem wood in m3 ha-1 year-1). It was explored 

whether mixing species differing in leaf phenology and shade tolerance would lead to 

overyielding of mixed forest stands, and whether overyielding changes with stand 

development. In line with the niche complementarity hypothesis, the two evergreen–

deciduous species mixtures (Douglas-fir–beech and pine–oak) showed overyielding whereas 

deciduous–deciduous species mixtures (oak–beech and oak–birch) did not. The overyielding 

was strongest for the Douglas-fir–beech mixture than the pine–oak mixture, which can be 

attributed to the greater difference in shade tolerance in the former mixture. Overyielding did 

not significantly change with stand development. It is argued that the regular thinning 

maintained the ability of species to partition resources, i.e. the complementary resource use in 

those mixed stands over all stand ages. 
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In chapter 3, it was analysed which of the two species in these four mixtures contributed 

to overyielding, and whether this overyielding changed along a soil fertility gradient. It was 

discovered that both the fast-growing and the slow-growing species could contribute to 

overyielding. Yet, it was mainly the fast-growing Douglas-fir that contributed to higher 

productivity in the Douglas-fir–beech mixtures, and the slow-growing oak that did so in the 

pine–oak mixtures. For both mixtures, the greatest relative productivity gain was achieved by 

mixtures on the poorer soils. At first sight, these results seem in line with the stress-gradient 

hypothesis and not the resource-ratio hypothesis. Yet, it was argued that not only 

complementary use of soil resources, but also use of light, may contribute to the higher 

productivity of mixed stands on the poorer soils. 

In chapter 4, it was assessed how the growth of individual trees in mixtures was 

influenced by inter- and intra-specific competition, and whether this competition was mainly 

size-symmetric for soil resources or size-asymmetric for light on soils differing in fertility. 

This chapter focussed on three mixtures, i.e. oak–birch, pine–oak and pine–birch, which were 

available at sufficient numbers in the Dutch national forest inventory data. It was concluded 

that intra-specific competition was not necessarily stronger than inter-specific competition 

and this competitive reduction was less seen at lower soil fertility and dependent on species 

mixtures, which is not in line with the stress-gradient hypothesis. Moreover, size-asymmetric 

competition for light was more associated with tree basal area growth than size-symmetric 

competition for soil resources, suggesting that light is the most limiting resource. Competition 

for light was generally much stronger at high fertility soils, supporting the resource-ratio 

hypothesis. These results suggest that light is the most limiting resource for tree basal area 

growth and that reduced competition for light can be explained to some degree by 

complementarity in light use to increase tree growth in mixed forests.  

This thesis thus described the productivity patterns when mixing tree species and 

explored possible mechanisms of higher productivity in mixed stands compared with 

monoculture stands in the Netherlands. Complementary use of aboveground and belowground 

resources probably contributes to the higher productivity in mixed stands, but other factors 

including pathogens, nutrient cycling and litter decomposition were not addressed but cannot 

be excluded. Overyielding in Douglas-fir–beech and pine–oak mixtures was maintained over 

time, probably owing to the intensive thinning in Dutch forests. The results shed new light on 

the stress-gradient and resource-ratio hypotheses. For mixtures in Dutch forest, the greatest 

productivity gain in Douglas-fir–beech and pine–oak mixtures was achieved on the poorer 

soils, and it was argued that this is at least partially driven by complementary use of light, 

while the role of complementarity in use of soil resources is more obscure. Overall, this thesis 

suggest a substantial potential of species mixing for increasing productivity, which may run in 

parallel with enhancing other ecosystem services such as conservation of diversity and other 

nature values. Yet, more experimental studies on productivity in mixed stands are required to 

better unravel alternative mechanisms. Such understanding is required to manage the forests 

effectively in a century of unpreceded human driven changes in environmental conditions.  
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精诚所至，金石为开 

−庄子 

 

Nothing is impossible for a willing heart. 

                                   −Zhuangzi 
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Four years ago, it was my first flight to go abroad. On the plane, I was worried and I did not 

know what was like on the other side of the planet and what I would find on my arrival. I 

burst into tears when I arrived at the Schiphol Airport. Loneliness and fear together difficult 

to imagine even now. During the PhD, the effort required was much much more than I 

thought, both physically and mentally. Suffering, struggling and fury from work, but I still 

managed to finish within four years, and that is the thing I feel most proud of. This was my 

original goal when I came to FEM, but more importantly, I have learnt and grown a lot over 

the last four years. Making this period a valuable and unforgettable experience in my life. 

During this time, I stayed mostly in Wageningen, although I spent some time also in Madrid 

and Lausanne. It seems so long ago since I left China and arrived at Wageningen on 20th 

September, 2013, but it has also been so fast. I have met so many nice people and I have been 

so lucky to get their support and help. During my studies, I really had peace of mind enjoying 

the peaceful and quiet life of Wageningen. Although, without the support from colleagues, 

friends and family, I could have not managed to finish my PhD thesis on time. Thereby, I 

would like to reflect on these last four years and express my sincere gratitude to the people 

who helped me.  

Frits: Firstly, thanks to you, my promotor. Thank you for all your thoughtful care and support 

since February 2013 when you first gave me the invitation letter for my scholarship 

application from China Scholarship Council, when we met in Yangling, China, and when you 

picked me up at Schiphol Airport on the first time I went abroad. You supported me through 

all administrative matters and small grant applications. Once you told me I was stubborn, and 

I know I am, although I would say that you are too. It was so difficult to convince you of my 

work, but that forced me to grow and now I am sure that was what you were looking for. I 

also know I can still grow even more.  

Frank: to be honest, it would have not been possible for me to finish my PhD without your 

support and help! You joined my PhD supervision during my second year when my original 

project did not work out. You came up with ideas for my PhD proposal and helped a lot with 

the writing. Your commitment, responsibility and patience really impress me! You always 

supported me and gave me lots of prompt feedback on every file I sent to you. Especially 

during the last three months before I handed in my thesis, your encouragement and your 

timely comments on every version helped me meet the deadline. Over the past three years, I 

do not know how much I managed to understand my topic, or you learned how to help me 

improve my understanding, or if we both learned at the same time. I know I was sometimes a 

“knotty” PhD student because of my troubles inside or outside work, but no matter what the 

troubles were, you were always there supporting me. We spent so many times together sitting 

behind the computer editing manuscripts even until the building was closed. 

Sonia and Miren: Muchas gracias! Since I first wrote to Sonia in 2015 about R codes, or 

when I spoke to Miren in one course in February 2016 in Palencia, Spain and she invited me 
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to apply for a travel grant to discuss my study and apply your models, you were always 

willing to help. Once I got my first grant from COST Action, and went to Madrid for a one 

week scientific short stay. I knew I wanted to return and work together and that is why I kept 

applying and getting grants from the European Forest Institute and COST Action returning to 

Madrid four times for the collaboration. I had a great time and it was extremely productive. In 

total, I stayed there in April, June, July, October and November of 2016 and March of 2017 

for more than two months. Your kind-hearted, support and hospitality really impressed me 

and I will remember you two respectful ladies my entire life. I really appreciate that you 

treated me with very nice typical Spanish sweets and bread every time I left Madrid. Gracias! 

You are my “right people”. 

Mart-Jan: I would like to express my gratitude to you. Since you started to explain the Dutch 

National Forest Inventory data and translated the data from Dutch to English for me, every 

time I went to your office with or without appointment, you explained to me everything in 

detail and spent more time than you had planned. I learned a lot about Dutch forests from you. 

You are a very nice collaborator, a nice colleague and I personally consider as a friend. 

FEM group: I thank the group for providing me with a relaxing work environment, where the 

hierarchy between staff and students is not that marked. I could talk about everything during 

coffee/tee and lunch breaks and ate the most various and delicious sweets in my life so far and 

probably in my whole life. At the FEM corridor, the atmosphere is so lovely. I have learned 

from everyone and from very different aspects of life. 

Especially thanks go to the FEM staff  

Lourens: when I was so troubled during my first year of PhD, you always lent a hand and 

helped me out. You did your best and in the end you succeeded. After that, my PhD went well. 

Your kindness, humour, big smile and enthusiasm for science have earned my admiration and 

respect! In work, you are a really responsible supervisor. It was so impressive to see your 

timely, careful, and extensive comments on the work of your PhD students. In life, you take 

good care of your family. It seems to me that you are the best at handling work and family so 

perfectly.  

Leo: thanks for organising trips for me to the Dutch forests. I work only with data from Dutch 

forests, but it was you that showed me the real forests where the data came from. Your 

passion for forests, wood and nature really impresses me. You are very kind to invite my 

husband, Yang and I to your place for lunch and showed us around near the Rhine River. The 

apple pie became my husband’s favourite sweet since he ate the home-made one at your 

house.  

Marielos: I really appreciate your sweet heart, especially the last months during towards the 

end of my thesis writing. You sent me messages to encourage me before you left for holidays 

and even brought me a red fortune gift when you returned from your holidays in Italy. You 
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told me that you remembered that once during a coffee break I said: “red means good luck in 

China”. It was very touching. I cannot forget all the international dinners you organised at 

your place. I was always longing for the enjoyable evenings, the chatting, eating, looking 

around the decoration in your house and playing games with your daughter Franka. Your 

house and your warm sweet family (with Lourens and Franka) is a dream for my future. 

Frans: your enthusiasm for science and your knowledge makes you forever young. I can still 

remember all the jokes and laughs with you during breaks or in the corridor. Pieter: thank 

you for organising the FEM Journal Club, and I learned a lot from it. I really appreciate your 

comments on my group presentations! Ute: when I arrived in the Netherlands, your house was 

the first one that I visited. Your passion for wood and your energetic and hard work really 

amazes me. Thanks for your encouragement every now and then in the corridor. 

Ellen: you are one of the female power in FEM. Your elegance and wisdom inspired me a lot. 

Every time, during international dinner or parties at your houses, I was so joyful with the 

warm atmosphere and your hospitality. Thanks for your ice cream during hot summer days in 

the office and in “our” garden in Lumen. Joke: you always supported me with administrative 

things although I did not have a contract here. Thanks for the documents you made for me. 

You are a very conscientious secretary! 

Jan: thank you for the collaboration! Your critical comments on my work made me more 

precise and specific, which improved my language and writing abilities. It always felt very 

warm to me when you said “ni hao (你好)”! Feeling lovely! 

Gert-Jan and Koen: although you do not stay in FEM corridor so much due to the special 

appointment, thank you professors for inviting me for cake or parties. Geerten, thanks for 

inviting me to the global forest biodiversity network, I have learned a lot by now! Rein: you 

are the soil expert and who introduced to me by Mart-Jan. Thanks for every discussion and 

help with my soil research. 

Next I will express my gratitude to several “M” PhD colleagues. It may be a coincidence that 

so many “M” ladies are in FEM during my stay, but it is not a coincidence that they have all 

been very kind and willing to help me. 

Masha and Monique: you are the two colleagues and friends that I should acknowledge first. 

Especially, during the last two months before I submitted my thesis, you revised my 

propositions and gave me feedback promptly, you cared about my progress and situation. You 

two are the best peer support while finalizing my thesis. Your great heart made me feel 

accompanied even when I was alone abroad. 

Monique, you organised a nice trip to Giethoorn when my husband was here and Hans took 

so nice pictures for us. Your encouragement was always accompanying me when you were or 

not in the group. Thanks for your trust in choosing me as one of your paranymphs, it brought 
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me more confidence! Masha, you introduced me to Zumba and we danced together for 

almost 2 years. Over there, I gave you a nickname saying “you are a monkey” and you 

remember well. After you left FEM, I hardly went back to Zumba. We gave massages for 

each other, at your place, Marlene place and my place. And I still remember you were like an 

angel when you wore my wedding dress, it was a pity that I did not attend your wedding 

ceremony.  

Marlene: I would also like to express my best gratitude to you. You helped me out when I 

was suffering from neck and back pain. We shared many nice times taking massages and 

sauna together. Banana, apple and pear had a great time in Wageningen, and we are all finally 

a DOCTOR! I hope we would meet again somewhere in the world.  

Meike: thank you for being there with me in Palencia, Madrid and Prague. Traveling with 

you was so relaxing with your translating and arranging everything for me. You were like an 

elder sister looking after me while travelling and working. Moreover, it was even nicer that 

we travelled to Sweden and Freiburg, where we had a great time together visiting the cities, 

forests and had awesome food. I hope that you can manage your teaching, your PhD and your 

family ever better. I appreciate you being one of my paranymphs and helped me through all 

the arrangements before and after my defence.  

Madelon: you sold your bike to me at a very low price when I first arrived in Wageningen. I 

rode it for four years and I enjoyed it a lot. You helped me raise above my problems and face 

them bravely, especially during my second year. You are a very talented young female 

scientist and have achieved a lot. I hope your science career will be smoother and you manage 

to accomplish much more. I also hope that Bas will get his PhD quite soon. 

Merel: you helped me with R, from codes to the interpretation of model output. You were 

always helpful and patient during your explanations. Although I still cannot pronounce your 

name well, I will remember your kind help. 

Thanks also to other previous FEM colleagues. Danae, I appreciate a lot the R codes you 

shared with me and you teaching me how to do some specific analysis. Catarina, you 

brought me a number of laughs and happy moments when we were at the parties, drinks and 

travelling in the Netherlands, and even in the WhatsApp group.  

Lan: as the other Chinese PhD student in our group in recent years, it seems that we are 

“attracting” more Chinese girls to do their PhDs here and make the Chinese FEM community 

even larger. It has been pleasant with you around, sharing life and work, since we have 

similar ages and personalities. Kathelyn, it had been very nice with you around in the FEM 

corridor, on the sailing boat, at our places and many more locations. “If you are blossoming, 

the butterfly will visit you” was once the motto you like. You have attracted a “butterfly” and 

I am sure that you have had a great time with him... 
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Next, some of my male colleagues with whom I could not have grown so much. Thanks for 

your help and joyful moments in your company. 

Federico: thank you for making me “tough” by always being “mean” to me. I had to defend 

myself. For a while I was your “psychologist” and helped you with your cravings for Chinese 

food. I still remember that you complained about having never tried my dumplings, but you 

did eat a lot of them during the last two months. But you should believe that my “saint” 

husband is not invisible and you met him in person already. I enjoyed a lot every time you 

were in Wageningen, especially in 2017! Helping me through everything, and playing your 

role as my paranymph… Well done! 

Linar: you Russian strong guy. Thanks for your frequent visits when I was locked inside the 

office, especially since it was only few of us PhD students around at that time. I still 

remember the great Russian dinner that you and your wife cooked for us on your birthday 

party. It was the first party where I arrived at home the latest, 4 am! Thanks for all the talks 

and nice moments! With you there is always laughter! You are a tough guy always making 

fun of me, but we were also always making fun of other colleagues together, especially 

Federico. That was so much fun! 

Mathieu: thanks a lot for sharing with me so many good movies, these improved my English 

enormously. Thanks for inviting me to your place for a very nice Belgian stew, sharing your 

traveling experiences and tips with me. I really appreciate that you and Sarah allow my family 

and me to stay in your place for two months. We had a good time living there.  

Peter Groenendijk: I really appreciate your patience and kindness. You were like a teacher 

and taught me statistics and R programming. Peter van de Sleen: when you were in FEM, 

three tall Dutch guys (you, Peter and Mart), it made a very nice team. I had so many joyful 

moments with you during coffee and lunch breaks in Lumen and anywhere we were together. 

Mart: you are the best organiser at FEM. Thank you for making everything happen!  

Peter Schippers: thank you for organising and driving me through so many nice trips to 

Elburg, Kinderdijk, Gouda, Enkhuizen, Zuiderzee, and Muiden. I could not have visited so 

many places in the Netherlands without you. Paul: thank you for being my two-year 

officemate during my first two years. You cared about my progress, answered my doubts and 

helped me out when I was stuck. You are a very helpful person. Thanks for inviting me for 

Christmas dinner at your place!  

Juan: thanks for accompanying me during my last two years at the office. We talked a lot 

about Dutch forests and shared some nice food. I still remember the day that you, Arildo and I 

went climbing together, my first rock climbing was so hard. Jose: you are the other 

Ecuadorian PhD who shared the office with me. When you were here during your first year, 

we had so much fun together and with other guys. Your famous drawing is still in our office 

and I do hope that your career is like lianas, growing fast, higher and deeper. Arildo: although 
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you were a post-doc visitor in FEM and we shared office for only one year, we chatted a lot 

about everything. You made me laugh a lot after you left Wageningen when I remembered 

you talking a lot of “Chinese Wisdom”. 

Jente: you are very humorous. Your cartoons on the Friday After Work Drinks (FRAWD) 

emails really amazed me. Although your jokes were not so funny sometimes and I even had to 
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