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On a Branch-and-Bound approach for a Huff-like
Stackelberg location problem*
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José Fernández, Blas Pelegrín
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Modelling the location decision of two competing firms that intend to build a new facility in a planar market
can be done by a Huff-like Stackelberg location problem. In a Huff-like model, the market share captured by
a firm is given by a gravity model determined by distance calculations to facilities. In a Stackelberg model,
the leader is the firm that locates first and takes into account the actions of the competing chain (follower)
locating a new facility after the leader. The follower problem, is known to be a hard global optimization
problem. The leader problem is even harder, since the leader has to decide on location given the optimal
action of the follower. So far, in literature only heuristic approaches have been tested to solve the leader
problem.

Our research question is to solve the leader problem rigorously in the sense of having a guarantee on
the reached accuracy. To answer this question, we develop a Branch-and-Bound approach. Essentially, the
bounding is based on the zero sum concept: what is gain for one chain is loss for the other. We also discuss
several ways of creating bounds for the underlying (follower) sub-problems, and show their performance for
numerical cases.

Key words : Facilities/equipment planning: Location: Continuous; Programming: Nonlinear: Algorithms;
Marketing: Competitive strategy

1. Introduction
Many factors must be taken into account when locating a new facility which provides goods or
a service to the customers of a given area. One of the most important points is the existence of
competitors in the market providing the same goods or service. When no other competitor exists,
the facility to be located will have the monopoly of the market in that area. However, if in the
area there already exist other facilities offering the same goods, then the new facility will have to
compete for the market.

Many competitive location models are available in the literature, see for instance the survey papers
Eiselt and Laporte (1996), Eiselt et al. (1993), Plastria (2001) and the references therein. They vary
in the ingredients which form the model. For instance, the location space may be the plane, a network
or a discrete set. We may want to locate just one or more than one new facility. The competition
may be static, which means that the competitors are already in the market and the owner of the
new facility knows their characteristics, or with foresight, in which the competitors are not in the
market yet but they will be soon after the new facility enters. In this case it is necessary to make
decisions with foresight about this competition, leading to a Stackelberg-type model (competition
model in which a leader firm moves first and then the follower firm moves sequentially). Demand is
usually supposed to be concentrated in a discrete set of points, called demand points.

The patronising behaviour of the customers must also be taken into account, since the market
captured by the facilities depends on it. In some models customers select among the facilities in a

*This work has been supported by the Ministry of Education and Science of Spain through grant
SEJ2005/06273/ECON.
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deterministic way, i.e, the full demand of the customer is served by the facility to which he/she is

attracted most. In other cases, the customer splits his/her demand among more than one facility,

leading to probabilistic patronising behaviour. On the other hand, it is also necessary to specify

what the attraction (or utility) function of a customer towards a given facility is. Usually, the

attraction function depends on the distance between the customer and the facility, as well as on

other characteristics of the facility which determine its quality.

In this paper, we consider a planar facility location problem with foresight, having probabilistic

consumer behaviour, based on an attraction function depending on both the locations and the

qualities of the facilities to be located. The demand quantities are assumed to be known and fixed.

For the current study, also the quality values of the new facilities to be located are assumed to be

given. There are two competitors (chains). First, the leader makes a decision on where to locate its

facility in the plane (the location of the facility is considered the variable of the problem). Second,

the follower makes a decision with full knowledge of the decision of the leader. The objective of the

leader is to maximize its market share after the entrance of the follower.

The follower problem has been studied under deterministic customer behaviour in Drezner (1994a)

and Plastria (1997), using attraction functions of gravity type, and in Plastria and Carrizosa (2004)

using different kinds of attraction functions. For probabilistic customer behaviour, the problem has

been studied in Drezner (1994b), where the location problem is solved for a wide range of quality

values (see also Drezner and Drezner (2004)).

However, due to its difficulty, the literature on the leader problem is rather scarce. To our knowl-

edge, the leader problem with deterministic behaviour on the plane has only been addressed in

Drezner (1982) and Bhadury et al. (2003), and with probabilistic behaviour only in Drezner and

Drezner (1998), where three heuristics are described for a variant of the model considered in this

paper. The question addressed in this paper is whether the leader problem can be solved up to a

guaranteed accuracy. We will show in the current paper that one can make use of the zero-sum

perspective to construct a Branch-and-Bound method that achieves that aim.

In Section 2, the notation is introduced and both the leader and the follower problem are formu-

lated. In Section 3 and 4, a detailed description of the Branch-and-Bound algorithms to solve the

follower and leader problem (respectively) is given. The algorithms are illustrated by instances in

Section 5 and the efficiency is investigated for different parameter settings. Conclusions and future

work are discussed in Section 6.

2. Description of the Problem

The following notation will be used throughout:

Indices
i index of demand points, i = 1, . . . , n
j index of existing facilities, j = 1, . . . ,m (the first k of those m facilities, 0≤ k ≤m, belong to

the leader chain, and the rest to the follower)
l index for the new facilities, l = 1,2

Variables

xl = (xl1, xl2) location of the leader (l = 1) and follower (l = 2)

Data
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αl quality of the leader (l = 1) and follower (l = 2)
pi location of the i-th demand point
wi demand (or buying power) at pi

qj location of the j-th existing facility
dij distance between pi and qj

aj quality of facility j
g(·) a positive non-decreasing function
aj/g(dij) attraction that i feels for facility j
S location space where the leader and the follower will locate the new facility

Miscellaneous
δil distance between pi and xl, l = 1,2
αl/g(δil) attraction that i feels for new facility l
Ml(x1, x2) market capture by the leader (l = 1) and follower (l = 2)

The best location in attraction models is usually situated in the convex hull of the demand points.
In this paper we consider as the feasible location space S a rectangle enclosing that convex hull.
Notice that M1(x1, x2) + M2(x1, x2) =

∑n

i=1 wi. This ‘zero-sum’ character of the model is essential
in the method used to solve it. In the model, the market share captured by the leader chain after
the leader locates in x1 and the follower in x2 is

M1(x1, x2) =
n
∑

i=1

ωi

α1

g(δi1)
+

k
∑

j=1

aj

g(dij)

α1

g(δi1)
+

α2

g(δi2)
+

m
∑

j=1

aj

g(dij)

and the corresponding market share captured by the follower chain is

M2(x1, x2) =
n
∑

i=1

ωi

α2

g(δi2)
+

m
∑

j=k+1

aj

g(dij)

α1

g(δi1)
+

α2

g(δi2)
+

m
∑

j=1

aj

g(dij)

(1)

Given x1, problem (FP (x1)) of the follower is the so-called (1|x1)-medianoid problem introduced
by Hakimi (1983)

max
x2∈S

{G(x2) = M2(x1, x2)} (2)

Since M1(x1, x2)+M2(x1, x2) =
∑n

i=1 wi, (FP (x1)) in (2) is equivalent to

min
x2∈S

M1(x1, x2) (3)

Let x∗

2(x1) represent an optimal solution of (FP (x1)). Problem (LP ) for the leader is the (1|1)-
centroid problem (see Hakimi (1983))

max
x1∈S

{F (x1) = M1(x1, x
∗

2(x1))} (4)

In Drezner and Drezner (2004) and Fernández et al. (2007), procedures are given to maximize the
market share captured by a given chain when the facility locations of the competitors are fixed as in
problem (FP (x1)). As studied by Fernández et al. (2007), we are dealing with a Global Optimization
problem; see Figure 1, which shows the multimodal behaviour of problem (FP (x1)).
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Figure 1 Plot of the objective function of a follower problem.

In the solution procedure that we have designed to cope with the leader problem, we are also
interested in solving a similar problem to that of the follower, in which the leader wants to locate
a new facility at x1, given the location and the quality of all the facilities of the competitor (the
follower). In this case, the leader has to solve a medianoid problem in which the roles of leader and
follower are interchanged. We will call this problem a reverse medianoid problem.

The leader problem (LP ) is much more difficult to solve than the follower problem. To the extent
of our knowledge, the leader problem with probabilistic behaviour on the plane has only been
addressed in Drezner and Drezner (1998), where heuristic procedures were presented for a similar
version of the problem considered here. Among others, they applied variants of multistart and grid
search to generate solutions of the leader and follower problems. In Section 3, a Branch-and-Bound
algorithm for the medianoid (follower) and reverse medianoid problems with four different ways
of obtaining an upper bound are introduced. In Section 4, a Branch-and-Bound algorithm for the
(1|1)-centroid problem (leader) is described.

3. A Branch-and-Bound Algorithm for the Medianoid (follower) Problem
In the medianoid problem (FP (x1)), the follower wants to locate a new facility, knowing the location
and the quality of all the facilities of the competitor (the leader). Next we describe the details of the
algorithm for the follower problem. For the reverse medianoid problem of the leader, the algorithm
is similar.

The basic idea in B&B methods consists of a recursive decomposition of the original problem
into smaller disjoint subproblems until the solution is found. The method avoids visiting those
subproblems which are known not to contain a solution. B&B methods can be characterized by
four rules: Branching, Selection, Bounding, and Elimination (see Ibaraki (1976), Mitten (1970)).
For problems where the solution is determined with a desired accuracy, a Termination rule has to
be incorporated. The method works as follows. The initial set C1 = S is subsequently partitioned
in more and more refined subsets (branching) over which upper and lower bounds of the objective
function are determined (bounding). In a maximization problem, subsets with upper bounds lower
than the best lower bound are eliminated for subsequent partitions (pruning), since these subsets
cannot contain the maximum. At every iteration, the B&B method has a list Λ of subsets Ck of
C1. The method stops when the list is empty. For every subset Ck in Λ, upper bounds zkU of the
objective function on Ck are determined. Moreover, a global lower bound zL is updated. Next, we
give a more detailed description of the steps of the algorithm.

3.1. The Algorithm
To take both the medianoid and the reverse medianoid problems into account, we will denote by
M the objective function of the problem at hand and by C its feasible set. The B&B method is
described in Algorithm 1. Its output is the best point found during the process and its corresponding
function value. The best point is guaranteed to differ less than εf in function value from the optimal
solution of the problem (by considering the difference between lower and upper bounds).
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Algorithm 1 : Branch-and-Bound algorithm for the (reverse) medianoid problem.

Funct B&B(M,x,C, εf )
1. Λ := ∅
2. C1 := C
3. Determine an upper bound z1U on C1

4. Compute y1:=midpoint(C1), BestPoint := y1

5. Determine lower bound: z1 := M(y1), zL := z1

6. Put C1 on list Λ, r := 1
7. while ( Λ 6= ∅ )
8. Take a subset C (selection rule) from list Λ and bisect into Cr+1 and Cr+2

9. for t := r +1 to r +2
10. Determine upper bound ztU

11. if ztU > zL + εf

12. Compute yt:=midpoint(Ct) and zt := M(yt)
13. if zt > zL

14. zL := zt, BestPoint := yt and remove all Cr from Λ with zrU < zL

15. if ztU > zL + εf

16. save Ct in Λ
17. r := r +2
18. endwhile
19. OUTPUT: {BestPoint, zL}

3.2. Branching Rule

The branching rule applied uses rectangles and new rectangles are generated by bisecting a subset

C over its longest edge. Two variants are implemented. Either we start with the initial rectangle

S, or we start with an initial partition of it into rectangles such that none of the demand points

is interior with respect to a rectangle. As will be outlined, this may improve the upper bounding

applied, but on the other hand may generate more partition sets than strictly necessary.

3.3. Selection Rule

The selection rule is important in the sense of efficiency measured by computational time and

memory requirements. Within selection rules, one can find: depth-first-search, breadth-first-search

and best-bound-search. In Section 5.1 the effect on efficiency of those rules is measured.

3.4. Lower Bound

The classical lower bound is obtained as the best objective value at a finite set of feasible solutions

{x1
2, . . . , x

r
2}

zL = max{G(x1
2), . . . ,G(xr

2)}.

A good initial lower bound can be obtained by applying the (local search) Weiszfeld-like algorithm

described in Drezner (1994b) from 20 or 50 starting random points.

We simply use the best objective function value found of the evaluated points.
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3.5. Upper Bounds for the Follower Problem (FP (x1))
The idea of the upper bound is to overestimate M2 over a rectangle C. The market share captured
by the follower (eq. 1) can be rewritten as

M2(x1, x2) =
n
∑

i=1

ωi

1+
1

α2

(

m
∑

j=k+1

aj

g(dij)

)

g(δi2)

1+
1

α2

(

α1

g(δi1)
+

m
∑

j=1

aj

g(dij)

)

g(δi2)

. (5)

Introducing

hi =
1

α2

m
∑

j=k+1

aj

g(dij)

ki =
1

α2

(

α1

g(δi1)
+

m
∑

j=1

aj

g(dij)

)

and defining

fi(g(δi2)) =
1+hig(δi2)

1+ kig(δi2)
(6)

equation (5) becomes

M2(x1, x2) =
n
∑

i=1

ωifi(g(δi2)).

An upper bound for M2 is

M 2(x1, x2) =
n
∑

i=1

ωiUBi(C)

where UBi(C) is an overestimation of fi(g(δi2)) over rectangle C. Notice that hi < ki and fi is
monotonously decreasing in g(δi2) with a limit of hi

ki
.

We now describe various possible variants of the upper bounding. We will also evaluate numerically
which bound is sharper than the others. The first upper bound is simply based on underestimating
distance. The second and third upper bounds exploit the D.C. structure of the objective function.
The fourth upper bound builds a convex overestimating function based on the third one.

3.5.1. Upper Bound 1
A first upper bound for fi(g(δi2)) over a rectangle C is calculated in the following way. For demand

point pi, the distance to the follower x2 when x2 ∈C is underestimated by assuming that x2 delivers
from the complete rectangle C. In this way the market share of the demand point for the follower
is overestimated. The demand points within rectangle C have a distance ∆i(C) = 0 from C. For
demand points out of rectangle C, pi /∈ C, the shortest distance ∆i(C) of pi to the rectangle is
calculated. An upper bound UB1

i (C) for fi(g(δi2)) over rectangle C for demand point pi is given by

UB1
i (C) =

1+hig(∆i(C))

1+ kig(∆i(C))
(7)

where ∆i(C) is the distance from demand point pi to rectangle C, ∆i(C) = minx∈C d(x,pi). The
distance ∆i(C) can be determined as follows. Rectangle C is defined by two points: lower-left point
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L = (L1,L2) and upper-right point U = (U1,U2). The shortest distance from demand point pi to the
rectangle C = [L,U ] can be computed by:

∆i1 = max{L1 − pi1, pi1 −U1,0}
∆i2 = max{L2 − pi2, pi2 −U2,0} (8)
∆i =

√

∆2
i1 +∆2

i2

Summarising,

∆i(C) =

{

0 if pi ∈C
√

∆2
i1 +∆2

i2 if pi /∈C
(9)

This distance calculation is easily extendible to higher dimensions. A similar description is used in
Plastria (1992). Equation (9) underestimates the distance from demand point pi to facilities in C.
Since the new facility is only located at one point within the rectangle, we obtain an overestimation
(upper bound) of the market capture of the new facility (fi(g(δi2)) is decreasing in δi2).

3.5.2. Upper Bound 2
The second upper bound is more sophisticated and it is based on convexity of the functions fi

and g. From now on, we will use the convex function g(δi2) =
√

δ2
i2 +K2

i that was suggested in
Drezner and Drezner (1997), where Ki is a constant representing demand agglomeration. Equation
(6) can be seen as a composition of functions fi and g. We will define an upper bound by using D.C.
decomposition. A d.c. decomposition of a function s defined on a convex C ⊂R

n can be expressed,
for all x∈C, in the form

s(x) = s1(x)− s2(x)

where s1 and s2 are convex functions on C. The following lemma is adapted from Lemma 1 in Tuy
et al. (1995). Let f ′

+(x) be the right derivative of f(x), x∈R.

Lemma 1. Let g(δ(x)) be a convex function on a convex and compact subset C ⊂ R
2 such that

g(δ(x))≥ 0 for all x ∈C. If f : R+ 7→ R is a convex nonincreasing function such that f ′

+(0) >−∞,
then f(g(δ(x))) is a d.c. function in C and can be expressed as:

f(g(δ(x))) = b(x)−Rg(δ(x)) (10)

where b(x) = f(g(δ(x))) + Rg(δ(x)) is a convex function for each positive constant R satisfying
R≥ |f ′

+(0)|.

By using Lemma 1 we can obtain a d.c. decomposition for each fi. In particular, if g(δi2) =
√

δ2
i2 +K2

i , a d.c. decomposition for fi(g(δi2)) is defined by

fi(g(δi2)) = bi(x)−Rig(δi2) = bi(x)−Ri

√

δ2
i2 +K2

i (11)

where bi(x) = fi(g(δi2)) + Ri

√

δ2
i2 +K2

i and Ri = ki − hi. Market capture for the follower can be
expressed by

G(x) = M2(x1, x) =
n
∑

i=1

ωifi(g(δi2)) =
n
∑

i=1

ωi

[

bi(x)−Ri

√

δ2
i2 +K2

i

]

=
n
∑

i=1

ωi

{

1+hi

√

δ2
i2 +K2

i

1+ ki

√

δ2
i2 +K2

i

+(ki −hi)
√

δ2
i2 +K2

i

}

−
n
∑

i=1

ωi(ki −hi)
√

δ2
i2 +K2

i .



M.E. Sáiz et al.: On a Branch-and-Bound approach for a Huff-like Stackelberg location problem

8

Let δ2
i (x) = (‖x− pi‖2)

2 be the squared Euclidean distance between x and demand point pi and
V (C) be the set of vertices v of rectangle C. An upper bound is defined as

UB = max
v∈V (C)

{

n
∑

i=1

ωi

{

1+hi

√

δ2
i (v)+K2

i

1+ ki

√

δ2
i (v)+K2

i

+(ki −hi)
√

δ2
i (v)+K2

i

}}

−min
x∈C

{

n
∑

i=1

ωi(ki −hi)
√

δ2
i2 +K2

i

}

(12)

UB is a valid upper bound of M2 over C. To facilitate computation, one can underestimate

minx∈C

{

∑n

i=1 ωi(ki −hi)
√

δ2
i2 +K2

i

}

by
∑n

i=1 ωi(ki −hi)
√

∆2
i (C)+K2

i . Then, UB2 is defined as

UB2(C) = max
v∈V (C)

{

n
∑

i=1

ωi

{

1+hi

√

δ2
i (v)+K2

i

1+ ki

√

δ2
i (v)+K2

i

+(ki −hi)
√

δ2
i (v)+K2

i

}}

−
n
∑

i=1

ωi(ki −hi)
√

∆2
i (C)+K2

i (13)

3.5.3. Upper Bound 3
For the ease of notation, let zi(x) = g(δi2). In this way, G(x) = M2(x1, x) can be written as

G(x) = M2(x1, x) =
n
∑

i=1

ωifi(zi(x)) =
n
∑

i=1

ωi

1+hizi(x)

1+ kizi(x)

Let x0 be the centre of rectangle C and z0
i = zi(x

0). According to Taylor’s theorem there exist
g(∆i)≤ z̃i such that

G(x) = G(x0)+
n
∑

i=1

ωi

[

hi − ki

(1+ kiz0
i )

2
(zi(x)− z0

i )+
ki(ki −hi)

(1+ kiz̃i)3
(zi(x)− z0

i )
2

]

The first bounding operation is based on replacing z̃i by g(∆i),

G(x) ≤ G(x0)+
n
∑

i=1

ωi

[

hi − ki

(1+ kiz0
i )

2
(zi(x)− z0

i )+
ki(ki −hi)

(1+ kig(∆i))3
(zi(x)− z0

i )
2

]

By introducing

ri = wi

ki −hi

(1+ kiz0
i )

2

si = wi

ki(ki −hi)

(1+ kig(∆i))3

ti = ri +2siz
0
i

and rearranging terms we obtain

G(x)≤G(x0)+
n
∑

i=1

(riz
0
i + si(z

0
i )

2)−
n
∑

i=1

tizi(x)+
n
∑

i=1

sizi(x)2 (14)

Although zi is convex, the function in the right part of (14) is not. However, it is clearly a D.C.
function. Let V (C) be the set of vertices v of rectangle C. Then, one can overestimate (14) by taking

UB = Const1−min
x∈C

n
∑

i=1

tizi(x)+ max
v∈V (C)

n
∑

i=1

sizi(v)2
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where Const1 = G(x0) +
∑n

i=1(riz
0
i + si(z

0
i )

2). As with upper bound UB2, one can underestimate
minx∈C

∑n

i=1 tizi(x) by
∑n

i=1 tig(∆i(C)). Then, UB3 is defined as

UB3(C) = Const1−
n
∑

i=1

tig(∆i(C))+ max
v∈V (C)

n
∑

i=1

sizi(v)2 (15)

3.5.4. Upper Bound 4
In this section, a convex overestimation ΓC(x) of G(x) over a rectangle C is derived starting from

(14). One can linearly overestimate the term −tizi(x) due to convexity of function zi(x) as follows

zi(x)≥ z0
i +∇z0

i (x−x0)

Substitution gives

G(x) ≤ G(x0)+
n
∑

i=1

(riz
0
i + si(z

0
i )

2)−
n
∑

i=1

tiz
0
i −

n
∑

i=1

ti∇z0
i (x−x0)+

n
∑

i=1

sizi(x)2

= G(x0)−
n
∑

i=1

si(z
0
i )

2 −
n
∑

i=1

ti∇z0
i (x−x0)+

n
∑

i=1

sizi(x)2 = ΓC(x)

Function ΓC(x) is convex. An upper bound over rectangle C, UB4(C), can be expressed by

UB4(C) = Const2+ max
v∈V (C)

{

n
∑

i=1

sizi(v)2 −
n
∑

i=1

ti∇z0
i (v−x0)

}

(16)

where Const2 = G(x0)−
∑n

i=1 si(z
0
i )

2.

4. A Branch-and-Bound Algorithm for the Leader Problem
In this section, a new method based on Branch-and-Bound is formulated to generate a solution of
the (1|1)-centroid problem. The final outcome is guaranteed to differ less in function value than a
preset accuracy εl from the optimum solution. Next, we introduce the algorithm and its ingredients.

4.1. The Algorithm
The branching and selection rules used were the same as in Algorithm 1. The output of the B&B
method (see Algorithm 2) is again the best point found during the process and its corresponding
function value, which differs less than εl from the optimum value of the problem.

4.2. Lower Bound
The classical lower bound is obtained as the best objective value at a finite set of feasible solutions
{x1

1, . . . , x
r
1} for the leader problem,

zL = max{F (x1
1), . . . ,F (xr

1)}

One can follow the objective function value F (xp
1) of the iterates, or alternatively define an initial

lower bound zL based on running another algorithm that generates a good approximate solution.

4.3. Upper Bounds
Let C ⊆ R

2 denote a subset of the search region of (LP ), and assume that x2 is given. An upper
bound of F (x1) over C can be obtained by having the leader solve the reverse medianoid problem.

Lemma 2. UB(C,x2) = maxx1∈C M1(x1, x2) is an upper bound of F (x1) over C.
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Algorithm 2 : Branch-and-Bound algorithm for Leader problem.

Funct B&BLeader(εl, εf )
1. Λ := ∅
2. C1 = S
3. Compute x1

1:=midpoint(C1), BestPoint := x1
1

4. Solve the problem for the follower: {x1
2, z} := B&B(M2, x

1
1,C1, εf )

5. Determine an upper bound z1U
1 on C1 solving a reverse medianoid problem: {y, z1U

1 } :=
B&B(M1, x

1
2,C1, εl)

6. Determine lower bound: z1 := F (x1
1) = M1(x

1
1, x

1
2), zL := z1

7. Put C1 on list Λ , r := 1
8. while ( Λ 6= ∅ )
9. Take a subset C (selection rule) from list Λ and bisect into Cr+1 and Cr+2

10. for t := r +1 to r +2
11. Compute xt

1:=midpoint(Ct)
12. Solve the problem for the follower: {xt

2, z} := B&B(M2, x
t
1,C1, εf )

13. Determine upper bound ztU
1 solving a reverse medianoid problem: {y, ztU

1 } :=
B&B(M1, x

t
2,Ct, εl)

14. if ztU
1 > zL + εl

15. Determine zt := F (xt
1) = M1(x

t
1, x

t
2)

16. if zt > zL

17. zL := zt, BestPoint := xt
1, and remove all Cr from Λ with zrU

1 < zL

18. if ztU
1 > zL + εl

19. save Ct in Λ
20. r := r +2
21. endwhile
22. OUTPUT: {BestPoint, zL}

According to (3), F (x1) = M1(x1, x
∗

2(x1))≤M1(x1, x2) such that

max
x1∈C

F (x1)≤max
x1∈C

M1(x1, x2) = UB(C,x2).

Q.E.D.
Given a finite set {x1

2, . . . , x
r
2} of feasible solutions for the follower, then

min{UB(C,x1
2), . . . ,UB(C,xr

2)}

is an upper bound of F (x1) over C.
For a specific rectangle C, the choice of x2 for the upper bound calculation is done as follows. We

take xC=midpont(C) as the midpoint of the rectangle. Now one solves (FP (xC)) obtaining x̂2. An
upper bound is determined by solving the problem

ub1(C) = UB(C, x̂2) = max
x1∈C

{M1(x1, x̂2)} (17)

Another easy possibility is to set x2 equal to x1 (that is, to assume co-location). In that way, one
obtains the following upper bound.

Lemma 3. ub2(C) = UB(C,x1) = maxx1∈C M1(x1, x1) is an upper bound of F (x1) over C.

In the next two sections, we use numerical cases to illustrate the outcomes and efficiency of the
algorithm.
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5. Numerical Examples
The effectiveness and efficiency of the algorithms are investigated with the aid of numerical cases.
In a first case, we experiment with algorithm settings (variants of the algorithm) and study the
performance. In the following cases, the performance is studied with a good algorithm setting. The
effectiveness question concerns the algorithms and several ways of upper bounding. Performance
indicators of the efficiency are the number of iterations used by the algorithms and the memory
requirement. In general, Branch-and-Bound algorithms deliver a guarantee of detecting the global
optimum up to a pre-set accuracy, but the cost of the memory requirement may be high if the
dimension is going up or the accuracy is increasing, see e.g. Casado et al. (2006). In the first study,
we will vary carefully the selection rule and the accuracy and inspect values of the performance
indicators and effectiveness of the different bounds. Moreover, we evaluate a variant where an initial
partition is generated to improve bound number 4. The second case is an illustration from literature.
In the last case, we generate many instances at random where the size of the problem is varied
to validate the viability of the approach with increasing number of demand points and existing
facilities.

5.1. Case I, Varying Algorithm Setting
This case has been generated randomly with n = 10 of demand points, m = 4 existing facilities and
a varying number k of those facilities belonging to the leader’s chain, k = 0, . . . ,4. The generated
demand points can be found in Appendix A. The other parameters are chosen as follows:
• buying power: wi = 100, i = 1, . . . ,10
• quality of existing facilities: aj = 5.5, j = 1, . . . ,4
• quality of new facilities: αl = 5, l = 1,2
• g(dij) =

√

(qj1 − pi1)2 +(qj2 − pi2)2 +(10−5)2, i = 1, . . . ,10, j = 1, . . . ,4
• g(δil) =

√

(xl1 − pi1)2 +(xl2 − pi2)2 +(10−5)2, l = 1,2
• accuracy for leader and follower: εl = εf = 10−2

The resulting optimal locations are shown in Table 1, which also gives the market capture of both
chains, when the number k of existing facilities of the leader chain is increasing. One can observe a
characteristic of the model, where leader and follower tend to co-locate when the number of existing
facilities of the leader is low. In fact, the follower by locating at the same position, mitigates the
effect of the relatively newcomer in the market who is going to concur market capture. Notice also
that when the leader is dominant in the market (it owns k = 3 of the m = 4 existing facilities, or
all of them, k = 4) then the leader suffers a decrease in market share after the location of the two
new facilities (see the negative values in the last line of Table 1). This is because in those cases the
follower increases its market share more than the leader.

Table 1 Optimal locations and market capture for different number of leader facilities, k = 0, . . . ,4.
Parameter z∗

l = market capture for the leader after locating facility, Mbl before; locations and
market captures are rounded to two decimals.

k = 0 k = 1 k = 2 k = 3 k = 4

Leader

�
2.44

3.97

� �
5.03

0.69

� �
5.33

4.34

� �
5.33

4.34

� �
5.03

0.69

�
Optimal Location

Follower

�
2.44

3.97

� �
5.03

0.69

� �
1.41

4.65

� �
1.75

3.79

� �
1.75

3.79

�
Leader 186.29 367.87 497.70 611.07 773.44

Market Capture
Follower 813.71 632.13 502.30 388.93 226.56

z∗

l −Mbl (gain or loss for the leader) 186.29 100.67 14.17 -72.46 -226.56
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Figure 2 Generated partition by the algorithm. Cases with k = 1 (left) and k = 3 (right)

Figure 2 illustrates how the algorithm proceeds. It gives: location of the demand points (squares);
location of the existing facilities (triangle up, belongs to the follower, triangle down, belongs to the
leader); the optimum for the locations of leader (diamond) and the follower (circle) and the final
partition of the search space for the leader for the cases when the number of existing facilities of
the leader are k = 1 and k = 3. Each of the boxes has been evaluated and it has been proven by
bounding that the optimum location of the leader cannot be there.

Table 2 Efficiency of base case algorithm. Iterations.

Medianoid problems
Leader problem Follower M. problems Reverse M. problems

k Max Avg Max Avg

0 1325 503 308.62 3645 215.48
1 1017 427 313.98 3107 248.09
2 1161 545 439.71 2709 166.13
3 209 501 447.42 2421 296.95
4 131 675 515.11 1009 190.15

Upper bound UB1 in Algorithm 1, selection rule: breadth-first-
search in both algorithms

In Tables 2 and 3 we focus on the efficiency of the algorithm and the different ways of bounding.
Table 2 concerns the base case, where only UB1 is used as upper bound in Algorithm 1, and
breadth-first-search is used as selection rule in both Algorithms 1 and 2. It shows the number of
iterations for the leader problem and the maximum and average number of iterations for Algorithm
1 when it is called at each iteration of Algorithm 2 to solve the corresponding (reverse) medianoid
problems. First of all, one can observe from the number of iterations, that it is relatively easier for
the algorithm to detect what is the global optimum for the leader when it has already many existing
facilities. The intuition is as follows. When the leader is a newcomer, it has many options to gain
market capture by going close to existing facilities of the competitor; there are many local optima.
The result is that it is harder for the algorithm (requires more splitting) to verify that an already
found location is the best one. Typically, this is easier when the leader has already several facilities.
The global optimum is far more pronounced and defined by staying away from its own facilities.
Accordingly, the number of iterations required for solving the follower medianoid problems increases
with k.

In Table 3, we focus on the effectiveness of the upper bounds of Algorithm 1. At each iteration,
it computes the four upper bounds described in Section 3.5 and chooses the minimum of the upper
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bounds. In all the cases, upper bounds UB1 and UB4 were used. Upper bounds UB2 and UB3

which are based on the d.c. concept appeared not to be efficient since they were never lower than
UB1 or UB4. Observing the computations during the process, we found that UB4 mainly improves
the bounding of UB1 when the partition sets get small. In this way, it contributes to speeding up
the algorithm compared to only using UB1. As in the previous table, the first two columns of Table
3 give the maximum and average number of iterations for Algorithm 1 when it is called at each
iteration of Algorithm 2 to solve the corresponding (reverse) medianoid problems . The next four
columns show the maximum and average number of iterations that the bounds UB1 and UB4 were
the ones giving the minimum upper bound when solving the medianoid problems, whereas the last
four columns give similar values when solving the reverse medianoid problems. Comparing Tables
2 and 3 we can see that the use of the both bounds reduces the number of iterations required for
solving the corresponding (reverse) medianoid problems.

Table 3 Number of iterations and upper bounds used. Selection rule: breadth-first-search in
both algorithms.

Upper bounds used
Iterations Follower medianoid Reverse medianoid

Follower med. Reverse med. problems problems
problems problems UB1 UB4 UB1 UB4

k Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg

0 497 295.70 3645 218.32 479 278.62 49 17.08 3645 208.39 695 9.93
1 411 302.16 3107 241.31 392 280.92 40 21.24 3107 222.89 1471 18.42
2 527 414.59 2709 164.11 496 390.28 58 24.31 2709 160.59 241 3.52
3 467 410.79 2421 291.36 418 367.99 60 42.80 2398 275.37 328 15.99
4 571 471.90 1009 190.91 495 412.98 91 58.92 1009 184.93 172 5.98

In a next computational analysis we vary two rules of the algorithm. First of all, we compare
the efficiency of the selection rule changing from breadth-first-search to best-bound-search, i.e., the
rectangle with the lowest value of zL is selected to be split next in Step 8 of Algorithm 1 and Step 9
of Algorithm 2. Secondly, we evaluate the performance when initially a partition is generated such
that none of the demand points is interior as illustrated in Figure 3. The idea is that the upper
bounds UB4 get sharper.
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Figure 3 Initial partition generated for the follower medianoid problem.
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Table 4 Efficiency changing to best bound selection. Iterations.

Medianoid problems
Leader problem Follower M. problems Reverse M. problems

k Max Avg Max Avg

0 689 613 184.25 2945 115.70
1 675 497 241.24 2893 71.21
2 1739 539 299.91 2519 58.59
3 463 401 362.57 8363 120.87
4 85 561 434.12 3871 140.64

Upper bound UB1 in Algorithm 1, selection rule: best-bound-
search in both algorithms

Table 5 Efficiency, best upper bound used, selection rule: best-bound-search.

Upper bounds used
Iterations Follower medianoid Reverse medianoid

Follower med. Reverse med. problems problems
problems problems UB1 UB4 UB1 UB4

k Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg

No initial partition
0 589 184.13 2943 116.72 537 163.97 81 20.16 2943 105.41 234 11.31
1 479 209.67 2891 70.07 466 192.50 54 17.17 2891 64.05 80 6.02
2 389 249.43 2517 50.95 325 226.04 76 23.39 2517 49.36 106 1.59
3 277 236.35 8363 116.47 233 214.83 44 21.52 8363 112.45 221 4.02
4 471 282.69 3871 141.90 390 249.48 84 33.20 3871 138.23 29 3.67

With initial partition
0 495 308.14 2856 146.22 473 269.90 101 38.24 2856 134.96 233 11.26
1 517 356.47 2938 76.81 415 297.37 115 59.10 2938 70.88 80 5.93
2 707 492.82 2578 53.54 617 407.77 148 85.05 2578 51.94 77 1.60
3 525 443.36 8363 126.74 480 392.15 79 51.21 8363 123.50 221 3.24
4 647 455.16 3871 143.81 525 391.40 142 63.76 3871 137.94 30 5.87

Comparing Tables 2 and 4, one can observe that Algorithm 1 clearly improves over the thousands
of problems solved with the selection rule best-bound-search. Algorithm 2 for the leader problem
does not always improve for this particular case. For the algorithm variant where the best upper
bound is used, comparison of Tables 3 and 5 confirms that best-bound-search is better for Algorithm
1 than breadth-best-search.

Comparing efficiency between generating an initial partition or not, Table 5 shows that the case
“No initial partition” is better for the medianoid problems. This effect is less for the reverse medianoid
problems, because for this problem Algorithm 1 is applied to smaller rectangles.

We now focus on the memory requirement as performance indicator. As said, Branch-and-Bound
algorithms are usually hindered by huge search trees that need to be stored in memory. This part of
complexity usually increases rapidly with dimension and with accuracy. Table 6 shows the memory
requirements when the best of the four upper bounds is used. Selection rule applied is best-bound-
search for both algorithms and the accuracies are εl = 0.01 and εf = 0.01. The second column
shows the number of rectangles required by Algorithm 2 as the maximum number stored during the
iterations. In the columns 3 to 6 the maximum and average number (over the solved problems) are
given of memory requirement for the medianoid and reverse medianoid problems, respectively.

One can observe that the memory requirement of the Branch-and-Bound approach for these
continuous location problems is not dramatic for the used accuracy; there are never more than
30 subsets in the storage tree. Is this still the case if we increase accuracy? Notice that to have
valid upper and lower bounds of the leader problem, the follower problem (giving lower bounds)
and reverse medianoid (giving upper bounds) should be solved with an accuracy that is at least as
tight as that of the leader problem. We evaluate the number of iterations as well as the memory
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Table 6 Memory requirement.

Leader Follower med. Reverse med.
problem problems problems

k No. Rec. Max Avg Max Avg

0 15 22 9.92 26 7.43
1 20 15 11.84 24 6.23
2 23 30 13.04 27 5.08
3 17 15 14.00 26 9.10
4 5 22 14.56 22 8.38

The best of upper bounds is used, selec-
tion rule: best-bound-search and εl = 0.01

and εf = 0.01.

Table 7 Efficiency when accuracy is increasing. Case with k = 4. Selection rule: best-bound-search.

Accuracy of the leader.
εl = 0.01 εl = 0.001 εl = 0.0001

Accuracy of the medianoid and reverse medianoid problems.
εf = 0.01 εf = 0.001 εf = 0.0001 εf = 0.001 εf = 0.0001 εf = 0.0001

Leader 85 95 95 143 151 219
Iterations Follower med.(Avg) 282.69 314.6 416.54 305.10 397.19 386.20

Reverse med.(Avg) 141.90 433.55 1186.64 296.20 784.34 549.65

Leader 5 6 6 8 9 9
Memory Follower med.(Avg) 14.56 15.54 18.6 15.36 18.38 18.26

Reverse med.(Avg) 8.38 11.21 14.44 9.02 12.01 9.71

requirement if the accuracy is tightened for the case where the number of existing facilities is taken
as k = 4. The results in Table 7 show that the number of iterations of the algorithms increases
less than linear with the used accuracy in terms of 1/ε. The memory requirement hardly goes up,
showing that the best bound selection rule is efficient.

Given the evaluations of different variants of the algorithm on this case, in the next cases we
apply a best-bound selection rule, the best upper bound at each iteration and no initial partitioning
of the domain is generated.
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Figure 4 Generated partition by the algorithm. Case from Drezner and Drezner (1998): k = 1 (left), k = 3 (right)
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5.2. Case II, From Literature
In the second case where n = 16 and m = 6, data have been taken from Drezner and Drezner (1998).
In that paper, the existing facilities all belong to other chains different from the leader or follower.
Thus, to adjust the data to our model, we have assigned the first k exiting facilities to the leader and
the rest to the follower. The data is different from randomly generated examples, as many points
are situated along co-ordinate lines as can be observed from Figure 4. The exact location of demand
points and other facilities can be found in Appendix B. Table 8 shows the results of the algorithm
for k = 0, . . . ,m. The optimal locations and resulting market capture for both chains are given.

One can observe the co-location effect when the number of existing facilities is low. Notice that
this effect can also be observed when the leader is a newcomer with less facilities than the follower.
Co-location of the new facilities does not occur when the follower is a newcomer, albeit co-location
occurs with an existing facility of the competitor. Figure 4 gives an impression of the final partition
generated by the Branch-and-Bound algorithm for the leader (cases with k = 1 and k = 3), together
with the locations of demand points, existing facilities and new facilities.

Table 8 Optimal locations Case II, market capture and number of iterations for both chains. Parameter z∗

l =

market capture after locating facility, Mbl before; locations and market captures are rounded to two
decimals.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Leader

�
1.99

1.99

� �
1.99

1.99

� �
1.99

1.99

� �
1.99

1.99

� �
2.00

2.00

� �
2.00

2.00

� �
2.00

2.00

�
Optimal location

Follower

�
1.99

1.99

� �
1.99

1.99

� �
1.99

1.99

� �
3.00

5.00

� �
3.00

5.00

� �
3.00

5.00

� �
3.00

4.99

�
Leader 203.36 368.82 455.09 661.24 872.68 1037.21 1087.25

Market Capture
Follower 1143.14 977.68 891.41 685.26 473.82 309.29 259.25

z∗

l −Mbl (gain or loss) 203.36 157.31 129.67 48.31 -140.26 -234.34 -259.25

Table 9 shows the number of iterations and the use of the 4 upper bounds. As in Case I, only
upper bounds UB1 and UB4 were used.

Table 9 Number of iterations when the best of the 4 upper bounds are considered. Selection rule: best-
bound-search in Algorithm 1 and Algorithm 2.

Upper bounds used
Iterations Follower medianoid Reverse medianoid

Follower med. Reverse med. problems problems
Iterations problems problems UB1 UB4 UB1 UB4

k Leader Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg

0 1417 913 450.32 4633 165.23 839 413.93 119 36.39 4633 128.21 2107 37.02
1 1127 297 232.14 1517 54.40 288 222.85 25 9.29 1517 48.00 121 6.40
2 715 277 217.93 2001 82.97 269 209.05 19 8.88 2001 81.62 117 1.35
3 249 261 174.36 1513 118.04 243 160.58 20 13.78 1513 107.06 315 10.98
4 177 239 183.17 573 83.25 214 153.96 33 29.21 573 75.65 103 7.60
5 181 249 190.83 405 63.19 219 155.67 38 35.16 405 59.58 37 3.61
6 125 389 248.33 557 61.77 345 215.78 44 32.55 557 56.76 29 5.01

Finally, Table 10 shows the memory requirements for Case II. The second column shows the
maximum number of rectangles stored during the iterations by Algorithm 2. Columns 3 to 6 show
the maximum and average number of rectangles stored for the follower medianoid and reverse
medianoid, respectively.
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Table 10 Memory requirement Case II.
Max number of stored rectan-
gles.

Leader Follower M. Reverse M.
k Problem Max. Avg. Max. Avg.

0 22 29 18.32 27 9.80
1 24 12 11.15 26 6.11
2 16 11 10.92 28 6.18
3 10 12 11.16 28 7.15
4 10 12 11.77 17 6.58
5 10 12 12.00 21 6.14
6 10 15 12.73 22 6.45

5.3. Case III, Varying Problem Dimension
In this section, numerical results of the evaluation of the Algorithms 1 and 2 are discussed. The
wider question is whether the algorithms are able to solve larger problems in reasonable time. To
study the performance of the algorithms, we have generated different types of problems, varying
the number n of demand points, the number m of existing facilities and the number k of facilities
belonging to the leader chain. For every type of setting, ten problems were randomly generated.
The settings are defined by choosing:
• n = 20,30, . . . ,110
• m = 5,10,15
• k = m/2

For each n,m-combination parameter values of ten problems were uniformly chosen within the
following intervals:
• pi, qj ∈ ([0,10], [0,10]), i = 1, . . . , n, j = 1, . . . ,m
• wi ∈ [1,10], i = 1, . . . , n
• aj ∈ [0.5,5], j = 1, . . . ,m
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Figure 5 Average number of iterations and memory requirement (rectangles) over 10 random cases varying number of
demand points n = 20, . . . ,110, existing facilities m = 5,10,15 and k = m/2. Selection rule: best-bound-search
and εl = εf = 0.01.

From Figure 5, one can observe that an increasing number of demand points does not make
the problem more complex in terms of the memory requirement for the Branch-and-Bound. The
leader problem neither needs more iterations. The follower problem however, needs more iterations
on average to reach the predefined accuracy. The experiment suggests that no exponential effort is
required to solve the problems with increasing number of demand points. This confirms the viability
of the approach.
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6. Conclusions and Future work
In this paper, we described a competitive Huff-like Stackelberg location model for market share
maximization. There are two competitors (chains); first the leader locates and then the follower
makes a decision with full knowledge of choices of the leader. We consider competition with foresight
and probabilistic behaviour. Attraction of a customer is depending on the location and the quality of
the facility. The location of the leader facility is the variable of the problem. The problem is known
to be a Global Optimization problem. In order to solve it, we have constructed a Branch-and-Bound
algorithm for the follower problem and for the leader problem. The Branch-and-Bound algorithms
guarantee a global optimum within a given accuracy (gap between lower and upper bound). The
introduced bound of the leader problem is based on the zero sum concept where gain of one chain
is loss for its competitor. We have developed and compared four different upper bounds for the
algorithm of the (reverse) medianoid problem.

The algorithms were illustrated with several cases. In a first case, the algorithm settings and
performance were studied. The selection rule and accuracy were varied to study the performance
and effectiveness of the different bounds. A variant where an initial partition is generated was also
studied. In a second case taken from literature, good algorithm settings from the first case were
used. In the last case, many instances were generated at random where the size and the number of
existing facilities is varied to validate the viability of the approach.

Looking at effectiveness, one can observe the co-location behaviour of the optimum strategy as one
can expect. Also the difficulty on multimodal behaviour is reflected when measuring the efficiency
as the number of iterations to solve the problem up to desired accuracy ε. Efficiency has been
measured computationally. Comparing bounds and several variants with respect to selection rule
and generating an initial partition to improve bounds, we found the following. More sophisticated
bounds are not necessarily more effective than simple bounds based on distance comparison over the
complete run of the algorithm. One can best focus on measuring the quality of the bound during the
run and take the sharpest one. For the selection rule, the focus on the best bound (most promising)
selection of the next subset to be split has the tendency to result in minimum effort on number of
function evaluations. However, one always has to keep in mind that a depth first search may lead to
less memory requirement of a Branch-and-Bound algorithm. Where memory requirement is usually
a problem for higher dimensions, it is not necessarily a focus point for the location problem in two
dimensional space.

Future research will include the quality of the leader and follower as variables of the problem.
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Appendix A: Test Problems

Table 11 Locations and distances from demand points to facilities

Demand points 1 2 3 4 5 6 7 8 9 10

X axis 2,44 5,33 0,57 5,03 4,66 5,72 5,41 1,75 4,93 5,45
Facility Y axis 3,97 4,34 5,27 0,69 5,75 0,25 1,65 3,79 1,44 3,59

1 2 5 1,12 3,40 1,45 5,27 2,76 6,04 4,78 1,24 4,61 3,72
2 3 2 2,05 3,30 4,07 2,42 4,10 3,24 2,43 2,18 2,01 2,92
3 1 3 1,73 4,53 2,31 4,65 4,58 5,47 4,61 1,09 4,23 4,49
4 5 4 2,56 0,47 4,61 3,31 1,79 3,82 2,39 3,25 2,56 0,61

Appendix B: Input Data for Example from Drezner and Drezner (1998)

Table 12 Locations and distances from demand points to facilities

Demand Points
Facilities 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1.82 0.36 1.06 4.81 2.48 0.85 2.82 4.85 5.32 7.22 5.94 3.09 1.53 4.02 4.44 3.40
2 1.03 2.66 2.42 2.66 2.94 1.75 1.03 3.14 2.73 4.68 3.50 0.51 1.50 1.50 1.86 2.58
3 1.00 2.86 2.41 2.28 2.72 1.90 0.63 2.72 2.61 4.67 3.22 0.45 1.84 1.26 1.84 3.00
4 2.81 4.80 3.98 0.28 3.56 3.81 1.81 1.22 1.81 3.98 1.44 1.97 3.88 1.13 1.97 4.72
5 3.64 5.59 4.92 1.12 4.61 4.61 2.69 2.06 1.12 3.04 0.50 2.50 4.50 1.50 1.80 4.92
6 4.90 6.58 6.31 3.20 6.36 5.71 4.18 4.18 1.36 0.92 2.11 3.50 5.24 2.77 2.11 4.80

Table 13 Location and buying power for demand
points and location and attractiveness
for existing facilities

Facility points Demand points
Number q1 q2 aj Number p1 p2 wi

1 2.7 6.8 7 1 3 5 163.8
2 3.9 4.5 3 2 3 7 28.8
3 3.6 4.2 7 3 2 6 39.0
4 3.2 2.2 10 4 3 2 77.4
5 4.0 1.5 7 5 1 5 42.0
6 6.1 1.2 3 6 3 6 107.0

7 3 4 64.5
8 2 2 250.6
9 5 2 101.4
10 7 1 57.6
11 4 1 132.0
12 4 4 77.6
13 4 6 29.6
14 4 3 67.5
15 5 3 50.7
16 6 6 57.0
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