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General Introduction




1.1 Evolution, what mechanisms facilitate inheritance?

The mechanism of inheritance is a crucial component of the model of evolution.
Inheritance and evolution have been studied for a long time. Charles Darwin made
already many observations on how organisms passed their characters from one
generation to the next, recognizing that evolution occurs through natural selection
on heritable variation that shapes the phenotype, resulting in his “On the origin of
species by means of natural selection” in 1859, laying the foundation for evolutionary
biology. Jean-Baptiste Lamarck published his “Philosophie Zoologique” fifty years
earlier in 1809, in which he detailed his theory of inheritance of acquired
characteristics, called ‘soft inheritance’. Lamarck emphasized that the environment
gives rise to changes in animals, explaining why moles have lost their sight and why
teeth are present in mammals but absent in birds (Osborn 1896). Lamarck’s ideas
were criticized during his lifetime by Lawrence and later by Weismann, who cut off
the tails of 22 subsequent generations of mice, proving that the loss of tail is not
inherited (I. Kovalchuk & 0. Kovalchuk 2012). Darwin speculated on the mechanism
that allowed for the inheritance of acquired characters. Lamarck did not propose an
actual mechanism of inheritance, but suggested selective inheritance, stating that
characters not used would disappear and thus not be transferred whereas important
traits ‘practiced’ during the lifetime would be transferred and even enhanced in
future generations. Darwin proposed the existence of ‘gemmules’, which were
proposed to be minute particles shed by cells of the whole body that could be
carried by the bloodstream to the reproductive organs where they accumulated in
gametes.

1.2 Historic understanding of mechanism of inheritance

Better insight in the actual mechanism of inheritance was provided by the
(rediscovery of the) work of Mendel. Gregor Mendel established the first explicit
laws of heredity, and published his work on invisible “factors”, now called genes, in
1866, creating the modern science of genetics. It took until the turn of the 20t
century before Mendel’s work was rediscovered independently by three botanists
(Bowler 1989). The unification of Darwin’s theory of natural selection and Mendels
laws of genetics by Ronald Fisher and others gave birth to the Modern evolutionary
synthesis, the current paradigm in evolutionary biology (Mayr 2001), reflecting the
consensus on how evolution works (Mayr & Provine 1998). Some of the major tenets
of the this synthesis are that: A) populations have genetic variation that
continuously arises by undirected processed such as mutation and recombination
and B) populations evolve by changes in gene frequencies through drift, gene flow
and natural selection (Futuyma 1986).

1.3 Gene-only model is too narrow and excludes epigenetic inheritance

The discovery of DNA and genes, and mathematical conclusions drawn on shared
ancestry based on the similarity of the DNA sequence between related species led to
the development of a narrow, gene-centered view on inheritance in the extended
modern synthesis that excluded non-genetic inheritance (Jablonka et al. 2014).
Genetic variation is thought to be the product of random mutations produced at a
relatively constant rate that accumulate through positive selection or genetic drift
(Takahata 1996). Although well-founded and mostly accurate, this gene centric
paradigm explicitly excludes mechanisms of non-genetic inheritance such as the
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inheritance of acquired characters: the only relevant information that is passed on
between generations is the information that is encoded in the DNA. However, it has
become clear that this is not always strictly true. Several forms of non-genetic
inheritance are now known to affect heritable traits, also in absence of DNA
sequence differences (Bonduriansky & Day 2009). Among the different pathways of
non-genetic inheritance (Jablonka et al. 2014), epigenetic mechanisms such as DNA
methylation and histone modifications have received increasing interest for their
potential to affect heritable trait variation.

Such epigenetic mechanisms, which are chemical modifications of the DNA that can
have stable but reversible effects on gene expression, have been demonstrated to
generate heritable phenotypic variation that can be independent of the DNA
sequence. In plants, several well-defined examples of epigenetic variation
controlling a phenotype are described. One of the most striking examples of
transgenerationally stable epigenetic variation determining the phenotype is found
in the plant species Linaria vulgaris. Mutant flowers with radial instead of bilateral
symmetry are caused by extensive methylation of the Lcyc gene controlling
dorsoventral symmetry, rendering it transcriptionally silent (Cubas et al. 1999).
Other such epialleles are found in Zea mays in which altered pigmentation patterns
are brought about by altered DNA methylation states resulting from paramutation
(Kalisz & Purugganan 2004), an interaction between two alleles at a single locus,
whereby one allele induces a heritable change in the other allele (Chandler 2007).

In contrast to the tenets of the modern evolutionary synthesis, epigenetic variation
can be rapidly generated in response to environmental stress (C. Jiang et al. 2014;
Wibowo et al. 2016; Bruce et al. 2007), sometimes facilitating (transgenerational)
adaptation (Mirouze & Paszkowski 2011). Environmental stress in parental plants
can result in drastic phenotypic changes in stress-exposed offspring, which can be
adaptive. Drought stressed Polygonum persicaria plants produce offspring with
longer and more rapidly extending roots when grown in dry soil in comparison to
offspring plants from non-stressed parents (Sultan et al. 2009), which is mediated by
DNA methylation (Herman & Sultan 2016). Stress exposed plants face a balancing
act. While stress induced plant responses are essential for survival, continued
expression of stress responses under non-stress conditions might hinder recovery
whereas repeated stress exposure would warrant a longer response (Crisp et al.
2016). These aspects make the study of environment-induced epigenetic variation
very interesting as such heritable variation could affect our understanding of
evolution. However, many important questions remain. The extent to which
epigenetic variation is environmentally induced or simply determined by the
genotype and the transgenerational stability of this epigenetic variation as well as its
impact on adaptation are important open questions in ecological epigenetics
(Verhoeven et al. 2016).

1.4 Epigenetic variation, relevance for transgenerational adaptation

The discovery and detailed characterization of epigenetic mechanisms regulating
gene expression, or even determining the phenotype, by means of modifications on,
and not in, the DNA sequence has fueled excitement on the potential impact of
epigenetic variation on evolution (Jablonka & Lamb 1998; Jablonka et al. 2014).
From an ecological and evolutionary perspective, epigenetic variation is highly



interesting as it could significantly improve our understanding of the mechanisms
underlying natural phenotypic variation and the responses of organisms to
environmental change (Bossdorf et al. 2007). Contrary to the tenets of the modern
synthesis, clear evidence for the transmission of environmentally induced epigenetic
variation is available (Verhoeven, Jansen, et al. 2009; Anway et al. 2005; Wibowo et
al. 2016). Transgenerational phenotypic plasticity mediated by epigenetic variation
is of ecological relevance, as it can increase offspring fitness but it does not
necessarily influence adaptation or evolution. For epigenetic variation to shape the
phenotype over longer periods of time and act as a source of variation upon which
selection can act, it needs to be maintained for more than one generation. Selection
acts on the phenotype, which is influenced by the genotype, epigenotype and
environment (C. Richards & al 2010). Heritable epigenetic variation thus has a
potential role in being subject to selection facilitating adaptation and ultimately
evolution. An evolutionary model that includes the potential of intergenerational
transfer of environment-induced changes is fundamentally different from a model
based on only genetic changes that excludes such epigenetic effects, leading to
different dynamics in simulation studies. Modelling studies that include
epimutations suggest that the dynamics of genetic adaptation are significantly
affected by such epimutations, even if the reversal rate of epimutations are high
(Verhoeven et al. 2016). Heritable and transgenerationally stable epigenetic
variation that is at least partially independent of genetic variation (E. ]. Richards
2006) thus needs to be taken into account as a potential mechanism fueling
(micro)evolution, for which theoretical models predict faster adaptation when
epigenetic variation is included (Klironomos et al. 2013).

1.5 Epigenetic mechanisms

The most important and well-studied mechanisms that allow for changes in gene
expression in the absence of DNA sequence changes are histone protein
modifications, small RNAs and methylation of cytosines in DNA to form 5-
methylcytosine (DNA methylation).

1.5.1 Histone modifications

Histone proteins form the core around which DNA is wrapped. Chemical
modifications of histone proteins can lead to changes in the chromatin structure,
inhibiting or enhancing gene expression (C. L. Peterson & Laniel 2004). The
heritability of such histone modifications through mitotic and meiotic divisions is
the subject of ongoing debate and research (Allis & Jenuwein 2016), mainly because
mechanisms that would allow for such meiotic inheritance are poorly characterized.
Recently, evidence was provided for transmission of H3K9 methylation through
many mitotic but also meiotic divisions in yeast, showing that transgenerational
inheritance of changed chromatin states is possible (Audergon et al. 2015). Similar
results were obtained for repressive chromatin marks (H3K27) in the nematode
Caenorhabditis elegans (Gaydos et al. 2014). Taken together, these results suggest
that a detailed characterization of the molecular machinery involved in the
incorporation of histones during or after DNA replication might provide more
evidence for transgenerational transmission of histone modifications.
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1.5.2 Small RNA

Small RNAs interact with, and presumably direct, chromatin modifying activities to
genomic targets (Allis & Jenuwein 2016). RNA interference, involving sequence-
specific gene regulation by small non-coding RNAs can inhibit the translation of
genes, enabling post transcriptional gene silencing (Kamthan et al. 2015). In plants,
transposable elements are silenced by small interfering RNA (siRNA) directing DNA
methylation, in which small RNAs target the de novo DNA methylation at genomic
loci homologous to the RNA sequence (Xie & Yu 2015). Transgenerational
inheritance of such small RNAs has been demonstrated conclusively in C. elegans,
whereas in plants maternally inherited 24nt small RNAs direct methylation of
transposable elements derived from the pollen in developing plant seeds through an
intriguing mechanism (Sarkies & Miska 2014). During pollen development, some
DNA methylation is lost in the vegetative cells formed adjacent to developing
generative cells within the pollen of angiosperms, triggering small RNA production
that can move towards the germ cells, which is thought to reinforce silencing of TEs
in gametes through RNA directed DNA methylation (Slotkin et al. 2009). Small RNAs
generated during gametophyte development are thus capable of influencing the
epigenetic profile of the developing seeds and as such can constitute a mechanism of
transgenerational epigenetic inheritance in conjunction with other epigenetic marks
such as DNA methylation.

1.5.3 DNA methylation

DNA methylation is the best-studied epigenetic mechanism that has shown high
stability through both mitotic and meiotic divisions in plants. Although DNA
methylation can occur in both adenine and cytosine it commonly refers to 5-
methylcytosines, that can occur in different sequence contexts, CG, CHG and CHH
(where H is any base besides G). Contrary to vertebrates, where DNA methylation
occurs almost exclusively in CG context, plants have more diverse DNA methylation
patterns in CG, CHG and CHH context, which are regulated by different enzymes and
have a sequence-context dependent function (Law & Jacobsen 2010). Centromeric
and pericentromeric regions in plant genomes, as well as other repetitive elements
are heavily methylated (He et al. 2011). DNA methylation plays an important role in
the silencing of transposable elements (TEs), with heavy methylation in all three
sequence context preventing TEs from becoming active, preventing their often
mutagenic activity (Ikeda & Nishimura 2015). High levels of CG methylation are
often found in gene bodies of angiosperms, with moderately transcribed genes being
most likely to be methylated, whereas low or highly expressed genes often lack gene
body methylation (Zilberman et al. 2007). Complete loss of DNA methylation was
observed for Eutrema salsugineum, suggesting it is non-essential or that redundant
mechanisms for controlling gene activity exist (Bewick et al. 2016). In gene bodies,
exons and especially splice sites have higher levels of DNA methylation than flanking
introns and the splicing of about 22% of alternative exons is regulated by DNA
methylation (Lev Maor et al. 2015).

1.6 Why DNA methylation and no other mechanisms in this thesis?

The field of epigenetics is characterized by an ever-increasing number of exciting
new mechanisms that could all contribute to epigenetic inheritance (Plongthongkum
et al. 2014; Allis & Jenuwein 2016). New discoveries point at a highly interconnected
and increasingly complex network of epigenetic mechanisms, that all warrant
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further study (Allis & Jenuwein 2016). Such endeavors however, are dependent on a
high-quality reference genome and detailed knowledge of molecular pathways
regulating such mechanisms. DNA methylation characterization for non-model
systems on the other hand has been enabled by relatively simple techniques, such as
methylation sensitive AFLP (MS-AFLP), that allow for limited characterization of
DNA methylation variation. More detailed characterization of DNA methylation is
enabled by sequencing bisulfite converted DNA. Bisulfite treatment results in
conversion of unmethylated cytosines to uracil, resulting in a T base in sequencing.
Methylated cytosines are however unchanged, resulting in both reads with Cs and
Ts, where the ratio between these two nucleotides represents the average level of
methylation for the cytosine under study from all cells in the tissue(s) from which it
was sampled. Increasingly, bisulfite sequencing of reduced representation libraries
allow for more detailed studies of DNA methylation in non-model systems (van Gurp
et al. 2016; Trucchi et al. 2016; Verhoeven et al. 2016), to which I contribute in this
thesis (see chapter 3 / van Gurp et al. 2016).

1.7 Why are plants an interesting system to study epigenetic variation?

Studying epigenetics in plants is highly interesting for several reasons. Plants are
sessile organisms, which makes them especially vulnerable to environmental stress
such as excessive or inadequate light, water, salt and temperature to which they
need to adapt (Molinier et al. 2006). Generative cells can be formed continuously in
many plants, facilitating transfer of acquired epigenetic changes to the germline,
which unlike that of vertebrates, is not set apart from the soma early in development
but develops from somatic tissue only during flower development. Gametogenesis
and early embryonic development in vertebrates is characterized by two phases of
extensive reprogramming of epigenetic marks (Heard & Martienssen 2014),
resetting most but not all acquired DNA methylation changes. Plants in contrast
have a much more stable inheritance of epigenetic marks, especially DNA
methylation (Schmitz, He, et al. 2013; Becker et al. 2011). As mentioned previously,
DNA methylation in plants is more complex than in vertebrates, with methylation
occurring in three sequence contexts, CG, CHG and CHH (where H is A, C or T)
controlled by different enzymes and carrying out different functions. Experimental
modification of epigenetic patterns such as DNA methylation in plants is not subject
to extensive legislation, as is the case with vertebrates (Lusser et al. 2012).
Combined, these properties make plants attractive models to study epigenetic
variation in the form of DNA methylation, which is easily characterized in non-model
species.

1.8 Epigenetic studies in plants have mainly focused on Arabidopsis thaliana.

To understand the contribution of epigenetic variation to the phenotype, it is
essential to understand the molecular mechanisms that facilitate this process. To
this end, work in model species has taught us a great deal on epigenetic inheritance
in the past decades. In plants, most work in epigenetics has focused on the model
plant Arabidopsis thaliana. Arabidopsis rose to prominence as a model plant species
for research in genetics (Rédei 1992), mainly due to its short generation time, and
small (genome) size, facilitating rapid studies with big cohorts. Research on plant
epigenetics has identified DNA methylation as an important regulator for the control
of transposable elements (Ikeda & Nishimura 2015) and as a mechanism for gene
expression regulation by promotor methylation, although the extent to which DNA
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methylation contributes to gene expression variation appears to be limited
compared to that of genetic variants in A. thaliana (Meng et al. 2016). Micro-array
studies employing probes designed to capture and differentiate the bisulfite
converted product of both methylated and non-methylated DNA allows for detecting
global differences in DNA methylation. It was however not until the advent of whole
genome bisulfite sequencing, allowing for single nucleotide resolution DNA
methylation studies, that the full magnitude of differential DNA methylation and
inheritance were fully understood and appreciated. Many exciting discoveries
characterizing a variety of new epigenetic mechanisms and pathways were made in
A. thaliana over the past decades (A. L. Jones & Sung 2014), but here I only focus on
molecular pathways involved in the regulation of DNA methylation, as this thesis
exclusively deals with this epigenetic mark.

1.9 Epigenetic landscape of Arabidopsis thaliana

Understanding the epigenetic landscape of A. thaliana has been enabled by complete
sequencing of (mutant of) the methylome and the generation of artificial crosses
involving parental plants devoid of DNA methylation. In early 2008, two groups
almost simultaneously published the A. thaliana methylome, the first single
nucleotide resolution plant methylome available (Cokus et al. 2008; Lister & Ecker
2009). Sequencing of both wild-type and mutants for DNA methyltransferases
further elucidated the differential role of the different DNA methyltransferases
DMT1, CMT3 and DRM1/DRM2 in maintaining DNA methylation in different
sequence contexts available (Cokus et al. 2008; Lister & Ecker 2009). Solid evidence
for the impact of epigenetic variation independent of the DNA sequence on plant
phenotype was achieved by creating epigenetic recombinant inbred lines (epiRILs)
in A. thaliana (Johannes et al. 2009). The A. thaliana epiRILs share the same DNA
sequence but have a mosaic pattern of highly modified and wild-type DNA
methylation resulting from a cross between a methylation deficient mutant with a
~70% reduction of overall DNA methylation and a wild type (normal) plant. Theses
artificially induced changes in DNA methylation were (largely) inherited faithfully
over at least 8 generations, and correlated strongly with a wide array of quantitative
phenotypic traits such as flowering time and plant height (Johannes et al. 2009).
Detailed genomic analysis involving both DNA methylation and genetic variation in
these epiRILs indicated that 90% of the variation in flowering time and primary root
length between epiRIL lines was caused by methylation variation (Cortijo et al.
2014). Many of these artificially induced methylation variants were also found in
natural populations, suggesting that epigenetic variation might as well play a role in
natural variation in flowering time (Cortijo et al. 2014).

1.10 Natural epigenetic variation in Arabidopsis thaliana

Natural epigenetic variation in A. thaliana has received considerable attention, with
several studies documenting DNA methylation variation in wild. Overall, these
studies indicate a tight relation between genetic and epigenetic variation, suggesting
that much of the natural epigenetic variation observed in A. thaliana is (at least
partly) determined by genetic variation in cis or trans. In one of the first population
epigenomic studies in plants, Schmitz et al. found that DNA methylation variation in
155 A. thaliana plants with a worldwide distribution resulted in the same clustering
as that obtained for genetic variation (Schmitz, Schultz, et al. 2013). Similarly, whole
genome bisulfite sequencing studies characterizing progeny plants derived from a
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geographically dispersed isogenic A. thaliana line in Northern America that diverged
under natural conditions over at least a century ago, showed DNA methylation
variation that by and large reflected DNA sequence variation. The DNA methylation
differences that occurred overlapped with those that were previously detected in
mutation accumulation lines of the same genotype grown in a greenhouse,
suggesting that environmentally induced changes are only a minor contributor to
heritable genome-wide epigenetic variation (Hagmann et al. 2015). In a different
study, 150 Swedish A. thaliana accessions grown under different temperatures
showed an increased level of methylation in CHH context of transposons at higher
temperatures. Variation in the level of transposon CHH methylation was
considerable, with genetic variation in genes associated with DNA methylation
explaining a large extent of this variation. Differences in the level of gene body
methylation were however found, with plants from more Nordic ancestors showing
higher levels of gene body methylation and expression (Dubin et al. 2015). In the
largest methylome sequencing effort till date, the 1001 epigenomes project
sequenced 1,107 methylomes and 1,203 transcriptomes of A. thaliana derived from
a wide variety of geographic origins. DNA methylation and gene expression variation
was explained to a large extent by epialleles whose presence correlates with
geographic origin. Methylation differences however were mainly found in
transposable elements but not gene bodies, and were often accompanied by
mutations near genes encoding enzymes involved in the methylation of transposable
elements (Kawakatsu et al. 2016).

1.11 Environmental induction of DNA methylation variation

The role of stress and environmental perturbations in causing DNA methylation
changes has long been recognized (Peng & Jing Zhang 2008). Studies in A. thaliana
have indicated specific stress responses in genomic regions associated with
differentially expressed genes. A. thaliana plants exposed to a bacterial pathogen,
avirulent bacteria, or the plant hormone salicylic acid (SA) revealed numerous
stress-induced differentially methylated regions, many of which were intimately
associated with differentially expressed genes (Dowen et al. 2012). Similarly, A.
thaliana plants grown in a high-salinity soil exhibit an increased frequency of
differentially methylated positions (DMPs) in genes (C. Jiang et al. 2014). A more
detailed study employing repeated hyperosmotic stress in 5 subsequent generations
of A. thaliana found improved salt resistance for germinating seedlings of parents
exposed to hyperosmotic stress, which led to distinct DNA methylation changes in
cytosines in CHG and CHH context and some changes in differentially methylated
regions (DMRs) that occurred repeatedly (Wibowo et al. 2016), some of which were
found previously (Becker et al. 2011; Hagmann et al. 2015). Interestingly, the unique
or new salt-specific DMRs found in this study were often found near genes with
functions related to metabolic responses and ion transport (Wibowo et al. 2016),
suggesting a plant stress response that has both stress-specific and non-specific
effects on DNA methylation.

1.12 From model plants to a wider taxonomic diversity

Studies in the model plant A. thaliana have indicated the presence of many exciting
patterns but also indicate a high dependence of epigenetic on genetic variation. The
enormous diversity in plants species, both in number, genome size and life history
traits warrants a further exploration of epigenetic inheritance in a broader context
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to determine the generality of and exceptions to the patterns detected in A. thaliana.
Arabidopsis thaliana is an opportunistic annual weed, characterized by a rather
simple life cycle. It has therefore long been ignored by ecologists and evolutionists,
who deemed the species as ecologically uninteresting and an oddity from an
evolutionary point of view (Pigliucci 2002). Recently, 34 plant methylomes covering
a wide taxonomic variety have been sequenced (Niederhuth, Bewick, Ji, Alabady,
Kim, Li, et al. 2016), uncovering widespread methylome variation, with CHG
methylation levels being positively correlated to genome-size, and substantial
variation in the amount of CHG and CHH methylation variation found in repeat
elements (Gehring 2016). DNA methylation patterns in the Brassicaceae, which
includes A. thaliana, are different from most angiosperms in having reduced CHG
methylation levels and also reduced or lost CG gene body methylation (Niederhuth,
Bewick, Ji, Alabady, Kim, Page, et al. 2016). At this point, the generality of the
epigenetic contribution to phenotypic variation is not well understood, which
warrants further research in a variety of species (Verhoeven et al. 2016). Such
studies are facilitated by the increasing number of available reference genomes
(Niederhuth, Bewick, Ji, Alabady, Kim, Page, et al. 2016) and the availability of
reference-free reduced representation bisulfite sequencing (van Gurp et al. 2016).
Epigenetic variation could be particularly important for asexual species. Although
considered to be an evolutionary dead end (Lynch et al. 1993), clonal plant species
persist and successfully expand in a wide range of different environments
(Verhoeven & Preite 2014). The success of individual asexual lineages can be due to
preadaptation of native genotypes to specific conditions in the new habitat or due to
high phenotypic plasticity (general-purpose genotypes; (Baker 1965)). The
persistence and ecological success of such lineages could be facilitated via epigenetic
variation as a source of phenotypic plasticity (Verhoeven & Preite 2014). Asexual
plant species such as apomictic dandelions therefore offer an interesting model to
study epigenetic variation.

1.13 Ecological epigenetics: state of the field

Knowing to what extent epigenetic processes can explain heritable phenotypic
variation that does not rely on the DNA sequence in natural populations is pivotal to
understand the role of epigenetic variation in evolution. To this end, ecological
epigenetics studies investigate the potential impact of epigenetic variation on
ecology and evolution in an empirical fashion in ecological systems and natural
populations. Ecological epigenetics was loosely defined by (Bossdorf et al. 2007) as
the study of epigenetic processes in an ecological context. Epigenetic inheritance is
particularly interesting for evolutionary biologists, as it offers a potential
explanation for the heritable phenotypic variation observed in natural populations
that cannot be explained by DNA sequence variation. It also could explain instances
of (transgenerational) phenotypic plasticity, allowing organisms to respond to their
environment (Bossdorf et al. 2007). The potential ecological importance of
epigenetic variation is greater for plants reproducing asexually, such as apomictic
dandelions which cannot rely on shuffling of genes allowed by meiotic
recombination (Verhoeven & Preite 2014). Epigenetic variation in asexual plant
species can be important both for enabling transgenerational phenotypic plasticity,
as well as providing a source of heritable variation upon which (natural) selection
can act. Most ecological epigenetics studies are conducted in plants, with the
majority of these studies focusing on DNA methylation (Schrey et al. 2013; Kilvitis et
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al. 2013). Many ecological epigenetics studies found evidence for DNA methylation-
mediated responses to environmental stress (Verhoeven, Jansen, et al. 2009) or
geographic differentiation of DNA methylation patterns (Busconi et al. 2015), which
can be heritable across generations (Kilvitis et al. 2013).

1.14 Technological innovations needed to study DNA methylation variation.

Until recently, most ecological epigenetics studies employed methylation sensitive
AFLPs (MS-AFLP) to determine the extent, structure and stability of DNA
methylation variation in natural populations. MS-AFLP enable the distinction
between presence and absence of DNA methylation in anonymous genomic loci
using a pair of restriction enzymes with differential sensitivity to DNA methylation,
resulting in presence-absence combination of gel bands that reflect the methylation
status of the locus targeted. MS-AFLP studies offer a limited and incomplete estimate
of DNA methylation variation for a number of reasons. First, MS-AFLP studies offer a
very limited resolution of 100-200 markers compared to hundreds of thousands of
polymorphic loci that can be uncovered using sequencing based approaches. Second,
MS-AFLP offer a qualitative measure of what is essentially a quantitative state and
do so in cytosine in CG context only. Third, interpretations of different combinations
of polymorphic banding patterns to be preferentially associated to methylation in
either CG or CHG context are incorrect (van Gurp et al. 2009; Fulnecek & Kovarik
2013), leading to a persistent erroneous interpretation in the literature. Sequencing-
based studies in A. thaliana and other species have uncovered detailed and very
specific insights into differential DNA methylation by virtue of whole genome
bisulfite sequencing and detailed knowledge of the genome architecture. Reduced
representation bisulfite sequencing techniques offering nucleotide level and
quantitative DNA methylation estimation while simultaneously allowing for
functional characterization of the locus under study would offer a huge
improvement over MS-AFLP based studies for non-model systems.

1.15 Research goals in this thesis:

The goal of the research described in this thesis is to empower and perform
comprehensive research in ecologically interesting non-model species; focusing on
the potential role of natural and stress induced epigenetic variation to be subjected
to selection and contribute to adaptation and ultimately evolution. I performed my
research in the triploid apomictic dandelion, Taraxacum officinale, which is
characterized by its asexual reproduction and wide-spread occurrence in diverse
habitats. To enable comprehensive characterization of DNA methylation in this non-
model species, we developed epiGBS, a bisulfite sequencing extension of the flexible
and highly successful genotyping by sequencing (GBS) method. Considerable effort
has been spent on the development and validation of a comprehensive
bioinformatics pipeline that enables the simultaneous interrogation of DNA
methylation and genetic variation using bisulfite sequencing reads only while
recreating the original reference sequence from which the bisulfite converted reads
were derived. To investigate the heritability of DNA methylation variation in
apomictic dandelions and assess the degree to which environmental stress can
induce changes in DNA methylation [ performed a transgenerational study of stress
induced DNA methylation in Dandelion, enabling one of the first comprehensive
bisulfite sequencing based study in a non-model organism that gives insight in the
transgenerational stability of DNA methylation in apomictic dandelions. Finally, I
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perform an artificial selection experiment on early flowering in isogenic apomictic
dandelion lineages using both stressed and non-stressed lines to test if there is a
response to sustained artificial selection on (induced) epigenetic variation.

1.16 Apomictic dandelions as model system for studying natural epigenetic
variation

Apomictic dandelions are characterized by their worldwide distribution in various
habitats, with several apomictic lineages showing widespread geographic
distribution, seemingly in the absence of genetic recombination. Reproduction in
apomictic plant species is characterized by an altered meiosis, which could impact
the degree of resetting of epigenetic marks during gametogenesis (Sailer et al.
2016). Apomicxis in plants exists in many forms, with each form being characterized
by a distinct mode of developmental aberrations during meiosis leading to clonal
offspring. Apomixis in dandelions is the result of a combination of diplospory,
parthenogenesis and autonomous endosperm development of the seed. New
apomictic dandelions are readily generated by crossing a triploid apomict
(contributing diploid pollen) with a sexual diploid. Such crosses are known to give
rise to natural epigenetic variation (Verhoeven, van Dijk, et al. 2009), upon which
selection can act. As such, apomictic dandelions form an excellent model system to
investigate the role of (natural) epigenetic variation in generating phenotypic
variation as well as the way selection can act upon such variation.

1.17 Specific research questions addressed in this thesis per chapter

Chapter 2: Consistent errors in first strand cDNA due to random hexamer mispriming.
Working with Next Generation Sequencing (NGS) data is still relatively new and
therefore not always optimized for specific types of analysis. Here, I focus on one
common error type, that [ characterized in detail. While working on RNAseq data of
a collaborator, a distinct error pattern was discovered in the data that indicated an
artificial source of variation that could be traced back to the way the RNAseq
libraries were constructed. One study stating that these errors were the results of
RNA editing (M. Li et al. 2011), claimed a disruption in the information flow between
a gene and its product, however, this proposal was heavily criticized (Lin et al. 2012;
Pickrell et al. 2012; Kleinman & Majewski 2012) as the positions in the sequencing
reads in which these supposed editing events took place were biased toward the
first nucleotides of the reads. In our publication (van Gurp et al. 2013), we
determined that this bias is caused by mispriming of random DNA hexamers to an
RNA template during library construction (M. Li et al. 2011). Another
misinterpretation, although not regularly leading to such high-profile publications, is
made by many ecological epigeneticists who incorrectly assume the MS-AFLP
variation they encounter to represent CHG methylation, due to an insufficient
understanding of the technique and the DNA methylation profiles commonly found
in plants (Fulnecek & Kovarik 2013). Thorough knowledge of all the potential biases
generated in the protocols that we use to generate (sequencing) data is essential for
arriving at the right conclusions, being an ecologist can never be an excuse for not
making the considerable effort required to (fully) understand the methods used to
generate the data based on which we draw conclusions.
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Chapter 3: epiGBS: reference-free reduced representation bisulfite sequencing

This chapter is the result of the quest for a quantitative bisulfite sequencing based
method for measuring DNA methylation differences in species without a reference
genome. This chapter addresses the challenges that were found and overwon for
performing such research by adapting existing methods and developing new
bioinformatics algorithms. In this publication, 1 describe epiGBS, a reduced
representation bisulfite sequencing method for cost-effective exploration and
comparative analysis of DNA methylation and genetic variation in hundreds of
samples de novo. This method uses genotyping by sequencing of bisulfite converted
DNA followed by reliable de novo reference construction, mapping, variant calling,
and distinction of single-nucleotide polymorphisms (SNPs) versus methylation
variation. The output of the pipeline can be loaded directly into a genome browser
for visualization and into specialized methylation analysis software for analysis of
differential methylation.

Chapter 4: Transgenerational inheritance of (stress-induced) DNA methylation in
apomictic dandelions.

In this chapter I characterize the context-specific levels and transgenerational
stability of DNA methylation variation in various genotypes of apomictic dandelions.
[ also determined the degree to which heritable DNA methylation variation is
impacted by stress treatment with the chemical demethylation agent 5-azacytidine
that will affect the level of DNA methylation and the plant hormone Jasmonic acid
that is involved in plant defense signaling in response to attack by chewing insect
herbivores and is therefore often used as a mimic of herbivory. EpiGBS allows for
cost-effective and comprehensive sequencing-based characterization of DNA
methylation over 6 generations of 4 different lines in 2 different genotypes, covering
178 plants. I only uncover weak patterns on CHG and CHH methylation indicating a
transgenerationally transmitted stress response on DNA methylation, suggesting
that either the stress response was not severe enough or transgenerational
inheritance of such a response is limited. The experimental design allowed for a
characterization of the stability of DNA methylation over generations, providing
evidence for heritability of CHG methylation, which to our knowledge had not been
characterized previously. This study also uncovered several improvement
opportunities in the experimental design of epiGBS, such as switching to
methylation insensitive enzymes, using a reduced number of PCR cycles and control
nucleotides to detect PCR duplicates.
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Chapter 1 General Introduction

Chapter 5: Selection on early flowering in asexually reproducing Dandelions; using
epigenetic variation as a substrate for artificial selection

Selection on a phenotypic trait which is underpinned by heritable DNA methylation
variation should result in a shift towards trait values in the offspring in the direction
that the trait was selected for. Here, I select on early flowering in isogenic lineages of
stress pre-treated and control lineages of apomictic dandelions, which I expect to be
under both genetic and epigenetic control. In this study, I aim to answer the
following questions, (i) Did sufficient heritable variation arise during the three
(treatment) generations to support a response on selection on flowering time? (ii) Is
the response to selection stronger for plants that received a Jasmonic Acid or 5-
azacytidine pre-treatment? And (iii) Is there a difference in the selection response
between the three genotypes? Using parental stress treatments, I show a genotype
and treatment specific stress response, which in some cases enhanced the selection
response. I also uncover differences in the baseline levels of epigenetic variation,
with a recent apomictic lineage showing a stronger response to selection regardless
of treatment. Although some stress-induced epigenetic variation gave rise to an
enhanced selection response this was not a general feature, suggesting that the
stress responses were sufficiently severe enough to induce more heritable
epigenetic variation on which selection can act. The fact that I did observe a
significant shift in mean flowering time suggests that natural epigenetic variation
underpinning phenotypic variation can be subjected to selection leading to a
changed phenotype, giving support to the hypothesis that epigenetic variation can
play a role in adaptation and evolution.
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Abstract

Priming of random hexamers in cDNA synthesis is known to show sequence bias, but
in addition it has been suggested recently that mismatches in random hexamer
priming could be a cause of mismatches between the original RNA fragment and
observed sequence reads. To explore random hexamer mispriming as a potential
source of these errors, we analyzed two independently generated RNA-seq datasets
of synthetic ERCC spikes for which the reference is known. First strand cDNA
synthesized by random hexamer priming on RNA showed consistent position and
nucleotide-specific mismatch errors in the first seven nucleotides. The mismatch
errors found in both datasets are consistent in distribution and thermodynamically
stable mismatches are more common. This strongly indicates that RNA-DNA
mispriming of specific random hexamers causes these errors. Due to their
consistency and specificity, mispriming errors can have profound implications for
downstream applications if not dealt with properly.
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Chapter 2 Consistent errors in first strand cDNA due to random hexamer mispriming

Introduction

RNA-seq is a widely-used tool for transcriptome analysis and gene expression
estimation. Most commonly, mRNA is fragmented followed by reverse transcription
into first strand cDNA primed by random hexamers. Subsequently, second strand
cDNA is synthesized from first strand cDNA by DNA polymerase, again initiated by
random hexamer priming. Bias in hexamer distribution and CG content affects
abundance estimates and several bias correction algorithms have been developed
e.g. (Hansen et al. 2010; W. Zheng et al. 2011; Schwartz et al. 2011; L. Jiang et al.
2011; Benjamini & Speed 2012).

Apart from bias in hexamer priming sites, random hexamer mispriming has recently
been implicated in sequence read to reference mismatches. Because mismatches
mainly occur in the first seven nucleotides of first strand cDNA (L. Jiang et al. 2011;
Pickrell et al. 2012) and are observed in transcriptomic but not genomic sequencing
datasets (Hansen et al. 2010), RNA-DNA mispriming of random hexamers during
first strand cDNA synthesis has been suggested as a likely explanation for the
observed sequence mismatches (L. Jiang et al. 2011; Pickrell et al. 2012; Kleinman &
Majewski 2012). It is important to recognize such technical artifacts because they
might obviate biological interpretation of observed SNP patterns or RNA-editing
(Lin et al. 2012; Pickrell et al. 2012; Kleinman & Majewski 2012; M. Li et al. 2011).

This paper deals with sequence read to reference mismatches commonly observed
in RNA-sequencing data. Mismatches are defined as any position in sequencing
reads that deviate from the reference to which these reads align. Mismatches can
reflect 1) true biological variation, both in genomic DNA or caused by RNA-editing,
or 2) errors in the library preparation process caused by hexamer mispriming or
PCR errors, and finally 3) sequencing errors caused by the erroneous identification
of bases in the sequencing process. We focus on errors that most likely arise in the
library preparation phase. During RNA-seq library preparation, polyA+ RNA is
fragmented and reverse transcribed into first strand cDNA initiated by random
hexamer priming. We refer to mismatches between the reference fragment and the
observed sequence that are caused by RNA-DNA hexamer mispriming during first
strand cDNA synthesis as RD-mismatches. Similarly, we use the term DD-
mismatches to describe errors caused by DNA-DNA hexamer mispriming during
second strand cDNA synthesis.

Errors caused by random hexamer mispriming have thus far received limited
attention. While read trimming to exclude error-rich first stretches of RNA-seq reads
is done in some studies (Matvienko et al. 2013; Ashrafi et al. 2012), there is
currently limited insight into the problem and no general consensus exists on how to
efficiently deal with it in RNA-seq data. Here we perform a detailed analysis of both
RD-mispriming and DD-mispriming in RNA-seq data in order to further our
understanding of the causes and possible consequences of errors associated with
random hexamer binding.
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Materials and Methods

We conducted a RNA-seq experiment of Taraxacum officinale RNA mixed with ERCC
RNA spikes. Twenty-three libraries were multiplexed using [llumina’s multiplex
sequencing assay and pooled with a 2% ERCC spike (Zook et al. 2012). Subsequently
they were sequenced on 2 Hiseq lanes yielding a total of 2.4 million 100bp read
pairs mapping to the ERCC spike set. Adapter trimming and quality filtering was
done using Fastg-mcf v1.0.3-r152 with the following settings (-x 0 -k 0 -q 20).
Mapping was done with BWA 0.6.1-r104 with default settings. Unpaired reads or
reads from pairs with incorrect insert sizes containing adapter remnants at the 3’
end were excluded from this analysis. A custom python script (available at
http://goo.gl/5c9DaZ) was used to identify positional errors in forward and reverse
mapping reads from the bam file, data are deposited in the SRA with reference
number SRR954526. ERCC RNA-seq data described in (L. Jiang et al. 2011);
GSM517062) were mapped and analyzed with the same settings.
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Figure 2.1 Read position effect on sequence mismatches.
Sequence mismatch rates in first (RNA-DNA) and second (DNA-DNA) strand cDNA of
reads mapping to ERCC sequences.
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Figure 2.2 The mismatch rate and distribution for the first, third, 15th and

50th positions of first strand cDNA.

For all 4 nucleotides present in RNA the distribution of mismatching nucleotides is
shown at selected positions. Mismatch rates are highest for first strand cDNA reads
starting with T or A. For position three mismatches are mostly due to RNA-U vs
DNA-G mispriming. Per nucleotide mismatch distributions are highly variable for the
first seven positions, whereas they are consistent from position 7 onwards.
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Figure 2.3 Mismatch error pattern correlation between two independent
datasets. Mismatch error patterns observed in ERCC spike reads are correlated
between independent data sets for read position 1-6 (panel A) but not for
subsequent positions (position 7-20, panel B). For each position the distribution of
errors over the 12 mispriming possibilities was determined (4 nucleotides x 3
mispriming options, summing to 100% per position) and plotted between the
dandelion RNA-seq ERCC-dataset (see Figure 1) and ERCC RNA-seq data described
in (L. Jiang et al. 2011; GSM517062). The correlation in error distributions between
the two data sets shows consistency of specific mismatching errors only in the
hexamer binding region (panel A).
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Results and Discussion

We analyzed two independently generated RNA-seq datasets, focusing on reads
mapping to ERCC spikes which are artificial RNA fragments of known sequence that
are added during library preparation(L. Jiang et al. 2011). Reverse mapping reads
represent first strand cDNA and forward mapping reads represent second strand
cDNA. Because the reference strand is known for all ERCC’s, deviations represent
library preparation or sequencing errors, not true biological variation. For all
positions in reverse and forward reads, substitution errors were calculated by
parsing the sequence and MD tag of all reads in the SAM file. Here, the mismatching
and expected nucleotide as well as position is denoted. Consistent with previous
results (L. Jiang et al. 2011; Pickrell et al. 2012; Lin et al. 2012), we observed that per
position nucleotide mismatch rates are higher for the first seven nucleotides
compared to the rest of the sequence reads. As we can separate first and second
strand synthesis we show that first strand synthesis mismatch rate is higher,
consistent with RNA-DNA hexamer mispriming (Fig. 2.2.1). Of importance, these are
bases called with high quality, and thus do not likely represent sequencing error. A
slight increase in mismatch rate was also detected for initial nucleotides of second
strand cDNA, suggesting that DNA-DNA hexamer binding is not insensitive to
mispriming errors. Sequence to reference mismatches are not limited to the first
nucleotide as commonly observed in Illumina sequencing data (Dohm et al. 2008),
but similar to first strand cDNA, show higher rates in the first seven nucleotides
compared to the rest of the read.

First strand cDNA mismatches in the first seven base pairs corresponding to the
hexamer binding site and the base immediately downstream of this show position-
dependent and nucleotide-dependent mismatch patterns (Fig. 2.2). These specific
mismatch patterns differ markedly from the mismatch rates and distribution
observed downstream of base seven caused by sequencing or PCR errors (Fig. 2.3).
RNA-seq reads derived from first strand cDNA that that start with A or T misprime
in 20% of the cases, in which rA-dC and rU-dC mispriming are most common. In
positions 2-6 ~65% of mispriming events consist of rU-dG and rG-dT, which are
most stable among all 12 possible RNA-DNA misprimed pairs (Sugimoto et al. 2000).
Overall, hexamer mispriming occurs most commonly at RNA binding sites with
uracil, whereas cytosine in RNA prevents most hexamers from mispriming (Fig. 2.2).

Thus, we conclude that mispriming is non-random and can be heavily biased, as RNA
binding sites with a U at positions three and four (relative to the hexamers 5’ end)
misprime with hexamers having a G at that position in ~88% of the mispriming
cases. These specific mismatch patterns were observed consistently in two
independent data sets (Fig. 2.3). The distribution, type and repeatability of
mismatch patterns demonstrate that not all mispriming events have the same
likelihood and RNA-DNA hexamer mispriming is the main source of error in the first
seven nucleotides.

Consistent mismatch patterns observed in the first seven nucleotides of first strand
cDNA will affect downstream applications such as de novo assembly, SNP calling and
RNA-editing analysis. For instance, consistent and high (20%) mismatch rates can be
problematic for k-mer assembly strategies, as these erroneous k-mers cannot be
effectively combined with “true” k-mers. Because mispriming rates are not random
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Chapter 2 Consistent errors in first strand cDNA due to random hexamer mispriming

and for some positions heavily biased (Fig. 2.2) they can contribute to false positive
variants that might not be detected based on filtering criteria such as read count or
quality thresholds. Indeed, mismatches between human RNA-seq reads and the
human reference genome have been interpreted as evidence for widespread RNA-
editing (M. Li et al. 2011). Several reports highlight the overrepresentation of
mismatches in the first six positions of first strand cDNA(Kleinman & Majewski
2012; Pickrell et al. 2012; Lin et al. 2012), suggesting hexamer mispriming on RNA
as an explanation for the observed mismatches. Our study confirms the generality
and specificity of hexamer mispriming, thus providing further support to this
explanation. In fact, there are examples of filtering and preprocessing steps that
counter the effect of random hexamer mispriming induced mismatches, however,
their origin is not described. For example, empirically derived filtering parameters
for putative somatic mutations used in Varscan2 exclude the first ten bases of reads
(Koboldt et al. 2012), and 5’ trimming has been applied to [llumina RNA-seq reads
showing an increased N50, average and maximum contig length (Matvienko et al.
2013).

Identification of the hexamers that are most commonly involved in mispriming as
well as the type and position of the mismatches this generates can aid in the design
of strategies to counter the effects that these errors can have in downstream
applications. Our results suggest that it could be useful to explore less aggressive
approaches than trimming. Such approaches could include post-mapping correction
of 5" mismatches, modifications to random hexamer design to exclude commonly
mispriming hexamers and specific bias correction models that mask or remove the
observed mismatches in the first seven bases of reads.

Conclusion

Our analyses show strong and consistent bias in sequence errors in 5’ ends of RNA-
seq reads, which (1) strongly supports the hypothesis that random hexamer
mispriming during first strand cDNA synthesis causes the errors, and (2) highlights
the risk of errors in downstream applications as well as suboptimal data use. We
conclude that technical artifacts in sequencing data are insufficiently described.
Further research on random hexamer mispriming will inform optimized strategies
to mitigate their negative effect on downstream analysis.
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Abstract

We describe epiGBS, a reduced representation bisulfite sequencing method for cost-
effective exploration and comparative analysis of DNA methylation and genetic
variation in hundreds of samples de novo, without the need for a reference genome.
This method uses genotyping by sequencing of bisulfite-converted DNA followed by
reliable de novo reference construction, mapping, variant calling, and distinction of
single-nucleotide polymorphisms (SNPs) versus methylation variation (software is
available at https://github.com/thomasvangurp/epiGBS). The output can be loaded
directly into a genome browser for visualization and into RnBeads for analysis of
differential methylation.
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Chapter 3 epiGBS: reference-free reduced representation bisulfite sequencing

Introduction

Epigenetic control by DNA methylation at cytosines (5mC) is of paramount
importance for cell regulation, differentiation and transposable element control
(Suzuki & Bird 2008). Analysis of DNA methylation is enabled by bisulfite treatment,
which converts unmethylated (but not methylated) cytosines to uracil. Subsequent
sequencing of bisulfite-converted DNA allows for quantitative estimation of DNA
methylation. Various methods enable bisulfite sequencing of specific subsets of, or
all genomic DNA (Beck 2010). Reduced representation bisulfite sequencing (RRBS)
focuses on a defined subset of genomic DNA combining restriction enzyme digestion
with size selection. It was designed to target CpG islands (Gu et al. 2011), which are
a common feature in mammalian, but not plant genomes, making it non-ideal for
non-vertebrate systems. Currently published RRBS methods limit the researcher in
terms of enzyme choice (J. Wang et al. 2013)and multiplexing level (Boyle et al.
2012) while requiring a reference genome for efficient mapping and variant calling
(Gu et al. 2011). Here we present epiGBS, a method that allows for straightforward,
cost-effective and reference-free RRBS of highly multiplexed libraries in an accurate
and versatile way. The method calls both DNA methylation polymorphisms and
SNPs from the same bisulfite-converted samples while reconstructing the consensus
sequence of the targeted genomic loci.

a 1) Ligation adapter A-B Nlsprarh 2) Nick translation 3) Bisulphite conversion

s Adapter B

Adapter

— — — Nick

—— lr Bisulphite conversion
— DNA polymerase | .

N , m
3= -5’

57- _3r m
3r- SALLLLLLULLLL LI L =
—— [N 5.3 exonuclease 6 ¥
activity &

™% Elongation of the
3" hydroxyl terminus

)

b EpiGBS fragment : adapters (5,,C-dNTP’s) ligated to a dsDNA fragment
Watson : ["BC1"| S [CTECA BC2 |
Crick : BC1 ACGTC GACGT BC2 |
Y Bs- o - (Seguencing)
BSW: BC1 1 G ETCeR BC.
PCR-FW :
PCR-R:
SEQ-FW : read 1» BCl-TGCAG........ (©connoaannoo T...»
dccooo €cconoocoonoo Ascooooooa AACAT-BC2 «read 2
— BCT ACGTC g [CAC 5C2
PCR-FW :
PCR-R:
SEQ-FW: read 1» BCl-TACAA......... (650 00 g ooaikoo A..»
o coooo (Ccooocoo0000 T oco0000 GACGT-BC2 dread 2

)

Figure 3.1 Method design and results. (a) Genomic DNA is digested with the
selected restriction enzyme for sample 1-N. After ligation of barcoded adaptors A
and B (1), fragments are pooled, PCR purified and subjected to 0.8x SPRI size
selection. Nick translation (2) is used to repair the nicks between the adaptor
and the restriction fragment (Supplementary Fig. 3.9). Fragments are bisulfite
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converted (3) and PCR amplified to yield a sequencing library. (b) Unmethylated
cytosines are bisulfite converted to uracil, whereas methylated cytosines remain
intact. As only unmethylated Pstl restriction sites result in digestion, the cytosines in
enzyme-recognition sites (green) are converted. The cytosine in the adaptor is
methylated (red) and thus remains unchanged. Eighteen cycles of PCR yield a
sequencing library. Sequenced fragments contain a converted and an unconverted
recognition site. The orientation of these sites is reversed for Watson and Crick
reads; fragments with unconverted recognition sites on barcoded adaptor B are
arbitrarily defined as Watson. BS, bisulfite sequencing; FW, forward; R, reverse.

Results and Discussion

Common protocols for RRBS call for Mspl digestion of genomic DNA followed by end
repair, A-tailing, adaptor ligation and several purification and gel-extraction steps
(Gu et al. 2011). EpiGBS extends genotyping by sequencing (GBS) (Elshire et al.
2011) with bisulfite treatment, which allows for a much simpler protocol and
substantial reductions in per-sample costs. Like GBS, our protocol involves
enzymatic digestion of individual samples followed by barcoded adaptor ligation
and pooling of samples. Subsequently, SPRI (solid-phase reversible immobilization)-
based size selection, nick translation (Rigby et al. 1977), bisulfite treatment and PCR
amplification are applied (Fig. 3.1a). We use nonphosphorylated adaptors to
minimize adaptor dimerization. Nicks caused by the absence of 5’ phosphate groups
in adaptors are repaired using nick translation, which sequentially replaces adaptor
nucleotides from 5’-3’ using DNA polymerase I (Fig. 3.1a). By combining forward
and reverse in-line barcoded adaptors compatible with Illumina sequencing
primers, one can accomplish a 96-plex design with only 12 forward and 8 reverse
adaptors containing 5-methylcytosines (Supplementary Fig. 3.1). Forward adaptors
contain 4-6-base barcodes optimized for equal representation of per-cycle
nucleotides during sequencing, thus minimizing phasing errors while maximizing
signal intensity in Illumina sequencing (Elshire et al. 2011), allowing for high-quality
epiGBS libraries.

We created Pstl-epiGBS libraries for several species that were pooled in a 96-plex
sequencing library (Supplementary Fig. 3.1e). Average per-species inserts ranged
from 134 to 193 bases (Supplementary Fig. 3.1e). Included were four Arabidopsis
thaliana (Arabidopsis) samples derived from lineages with known DNA methylation
from a previous whole-genome bisulfite sequencing (WGBS) study (Becker et al.
2011). We carried out paired-end sequencing of these long fragments to facilitate
efficient de novo clustering, reference reconstruction and BLAST-enabled functional
classification.

Using the bisulfite-converted libraries only, we built a reference-free de novo
bioinformatics pipeline by designing custom algorithms
(https://github.com/thomasvangurp/epiGBS) aimed at clustering Watson and Crick
reads derived from the same genomic location (same origin) (Fig. 3.1b). As bisulfite
conversion targets only cytosines, unmodified guanines from the opposite strand
provide the correct reference base after alignment (Fig. 3.1b). By aligning same-
origin Watson and Crick reads, one can reconstruct the reference sequence de novo
from bisulfite-converted reads (Supplementary Fig. 3.2). De novo reference
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Chapter 3 epiGBS: reference-free reduced representation bisulfite sequencing

reconstruction for inserts larger than 240 nucleotides (nt) is limited to the ~120 nt
at the start and end of the locus (Supplementary Fig. 3.3).

To validate our clustering approach, we mapped de novo-obtained reference
sequences for four Arabidopsis epiGBS samples to the Arabidopsis reference genome
(TAIR10). On the basis of an in silico digest of TAIR10 with Pstl, we expected 2,094
fragments of 11-300 nt, from which 1,862 loci (89%) could be mapped by de novo-
obtained clusters. To assess the technical performance of our de novo approach, we
focused on a smaller subset of 1,691 genomic loci covered by at least ten Watson
and ten Crick reads. An efficient de novo approach would produce the 1,691 clusters
corresponding to the subset of genomic loci with sufficient mapped Watson and
Crick reads. Clusters were mapped to 1,626 out of 1,691 loci (96%). Of these 1,626
loci, 5 were missed, 1,571 (97%) were covered once and only 50 (3%) were covered
twice by the de novo generated clusters with a 0.1% rate of mismatch to the genomic
reference sequence, confirming the sensitivity and accuracy of the de novo approach.
The de novo clustering yielded 1,194 additional clusters larger than 300 nt that
mapped back to the TAIR10 reference, as well as 16,498 clusters that mapped to
microbial genomes or were unknown, which typically showed low coverage. In total,
96% of all mappable reads mapped to 3,056 de novo-obtained Arabidopsis clusters.
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Figure 3.2 | Insert size and coverage in Arabidopsis thaliana and context-
specific methylation distribution for seven species. (a) Insert size and coverage
for Arabidopsis. The blue shading indicates the average percentage of sites covered
per size bin of 10 nt for all four Arabidopsis samples sequenced, with
coverage defined as present per individual per site if at least ten Watson and Crick
reads are present. Approximately 90% of genomic loci with insert sizes between
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170 and 220 were fully covered. The average coverage was maximal for fragments
of 200 nt.
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(b) The percentage of symmetrically methylated cytosines for seven species in CG
and CHG contexts for gene-related and non-gene-related clusters. Per species, we
chose four representative untreated individual specimens with the highest sequence
coverage, except for Mimulus guttatus, Daucus carota and Fallopia x bohemica, for
which we used only two specimens (Materials and Methods). Results for Homo
sapiens, Allium porrum and phage A are not shown because of insufficient coverage
(Materials and Methods).

We use BWA-METH for mapping, as it provides accurate and reliable results and
allows for the transfer of sample-identification information directly from FASTQ to
BAM files (Pedersen et al. 2014). After mapping, the resulting BAM files are split into
Watson and Crick strand-mapping reads, after which variant calling is done with
Freebayes (Garrison & Marth 2012). Combining variant calls from both Watson and
Crick strand allows one to distinguish genetic from epigenetic variation (Liu et al.
2012). This is possible because methylation polymorphisms show as C/T (on the
Watson strand) or A/G (on the Crick strand) but are nonvariable in the opposite
strand, whereas genetic polymorphisms are variable on both strands. Genetic
variations such as mutations in the enzyme-recognition site can lead to missing data
for mutant samples. Likewise, mutant reads with structural variation can give rise to
additional clusters to which only mutant reads will map, again leading to missing
data. For a de novo analysis, samples should thus be genetically similar in order for
epiGBS to find sufficient clusters with coverage for all samples. We estimated
nonconversion rates on the basis of nonmethylated DNA of phage A (Materials and
Methods). Resulting methylation polymorphisms were converted into sample-
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specific methylation BED files allowing for subsequent analysis with RnBeads
(Assenov et al. 2014) or similar packages.

Comparisons between existing RRBS studies and WGBS (Lister et al. 2008; Cokus et
al. 2008), the current gold standard, have shown that Mspl RRBS provides results
that benchmark very well against WGBS data, demonstrating the accuracy and
sensitivity of RRBS (Beck 2010; Harris et al. 2010). To validate epiGBS, we compared
epiGBS methylation calls for four Arabidopsis samples to WGBS-based methylation
information on previous-generation plants from an earlier study (Becker et al.
2011). We compared methylation of cytosines with at least ten informative reads in
WGBS data with positions covered by at least ten forward and ten reverse
informative epiGBS reads (Supplementary Fig. 3.4). We obtained a Pearson R? of
0.95 for methylation levels at 12,389 cytosines in the CG context (Supplementary
Fig. 3.4b). This is almost identical to the R? of 0.96 obtained for comparisons of
intergenerational WGBS (Becker et al. 2011) values for CG methylation at the same
genomic locations (Supplementary Fig. 3.4a). Correlations for cytosines in non-CG
context were lower and showed a slight bias that is attributable to the CHG
methylation sensitivity of Pstl (Supplementary Fig. 3.4b). (This slight bias can be
completely avoided if a methylation-insensitive restriction enzyme such as Csp6l is
used.). Given sufficient coverage, this approach results in intergenerational cytosine
methylation correlations for epiGBS data that are as strong as intergenerational
WGBS-WGBS comparisons (Supplementary Fig. 3.4d). Also, the detection of
differentially methylated positions (DMPs) on the basis of Pstl-epiGBS data
produced results nearly identical to those obtained via DMP calling using WGBS data
(Supplementary Fig. 3.5). In epiGBS, the number and type of targeted loci vary with
genome size and restriction-site distribution; the average coverage is typically
highest for fragments of around 200 nt (Fig. 3.2a). Like GBS, epiGBS is flexible with
respect to the use of different restriction enzymes, and this can be exploited to bias
sequencing toward (or away from) specific genomic features. Using Pstl in
Arabidopsis, we targeted 2,260 loci with coverage of >100, representing ~0.37% of
genomic DNA. As Pstl is sensitive to CHG methylation, repetitive DNA in Arabidopsis
is largely avoided (Supplementary Fig. 3.6), allowing the sequencing effort to focus
on coding regions where most differentially methylated regions in Arabidopsis are
located (Becker et al. 2011). Investigating a biased subset of the genome also means
that Pstl-based epiGBS methylation characterization is not necessarily
representative of genome-wide methylation patterns, but such biases can be
overcome easily with the use of a different (methylation-insensitive) enzyme, as we
demonstrated using Csp6I (Supplementary Fig. 3.4c).

Our bioinformatics pipeline produces methylation and SNP variant call files as well
as methylation-level tabular files suitable for visualization in a genome browser
such as IGV (Supplementary Fig. 3.7) or the recently published RnBeads pipeline
(Assenov et al. 2014), providing seamless integration and analysis of DMPs (see
Material and Methods).

Our analysis confirms a prior observation in model species: cytosine methylation in
the CG context is higher in genes than in non-gene clusters (Fig. 3.2b). We detected
DMPs in all species. Strikingly, we detected more CHG DMPs in nonmodel plant
species than in Arabidopsis (Supplementary Fig. 3.8). Our analysis of Daphnia
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magna, an important ecotoxicological model species, provides compelling evidence
for the occurrence of DNA methylation in the CG context in this aquatic species
(Vandegehuchte et al. 2009)(Fig. 3.2b). Our method can thus be used to expand
knowledge on the presence of DNA methylation in population or evolutionary
studies of nonmodel species lacking a reference genome. Thus epiGBS provides a
significant improvement over existing marker-based methylation screening tools
such as MS-AFLP (Schrey et al. 2013), allowing for much more comprehensive
studies on differences in DNA methylation in nonmodel species.

Materials and Methods

Description of Samples

DNA from individuals of several species was collected to showcase the versatility of
the epiGBS method. For several species, samples treated with 5-azacytidine,
genistein or other stressors were included. In the per species DNA methylation
analysis as presented in Figure 2b and Supplementary Figure 8, only untreated
control samples were included. Details for the individual treatments per species are
presented here to facilitate further analysis on the data presented here (see
Supplementary Data 1).

Scabiosa columbaria samples originated from an earlier experiment (Vergeer et al.
2012). For this experiment, seeds were collected in a large French calcareous
grassland after which plants were grown in the greenhouse of Radboud University
Nijmegen. Plants were crossed and F1 seeds were germinated on filter paper
saturated with water or 50 pM 5-azacytidine (Vergeer et al. 2012). Seedlings were
transferred to either a soil mixture resembling calcareous soils (pH 7.5-8.0) or a soil
mixture resembling acidic soil (pH 6.0-6.5). After 3 months, young leaves/plant were
sampled for DNA extraction using the Macherey-Nagel nucleospin plant II kit for
individual tubes. 400 ng gDNA was used for the epiGBS analysis. Plants that were
included in the epiGBS analysis all originated from the same maternal line.

Mimulus guttatus seeds were collected in a large Dutch population in the vicinity of
Arnhem, the Netherlands. The seeds were germinated and grown under controlled
conditions in the greenhouse of Radboud University Nijmegen. Juvenile plants were
divided over 4 experimental treatments: control, drought, water-logged or
submerged. After 4 weeks, young leaves were sampled for DNA extraction using the
Macherey-Nagel nucleospin plant I kit for individual tubes. Eight samples (2 control,
2 drought, 2 waterlogged and 2 submerged) were included in the epiGBS analysis
(400 ng gDNA of each sample).

Allium porrum and Daucus carota seeds were provided by Nunhems Netherlands BV
- Bayer CropScience. Of each crop, seeds of an inbred and hybrid line were
germinated and grown under controlled conditions in the greenhouse of Radboud
University Nijmegen. Seeds were germinated on filter paper saturated with water
(control) or 40 uM genistein solution (genistein). After 4 weeks, young leaf tissue
was sampled for DNA extraction using the Macherey-Nagel nucleospin plant II kit for
individual tubes. Per sample, 400 ng gDNA was used for the epiGBS analysis.

Daphnia magna samples were provided by Prof. De Meester, University of Leuven,

Belgium. Inbred families were obtained through clonal selfing within clones that
were isolated from fish pond LangeRodevijver near Leuven in Belgium. Outbred
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families were derived from resting eggs, collected from the dormant egg bank in fish
pond LangeRodevijver, that were hatched in the laboratory. For more detailed
information, see (Swillen et al. 2015). Six samples (3 outbred and 3 inbred
individuals from the second clutch) were used in the epiGBS analysis (400 ng gDNA
of each sample).

Fallopia japonica and Fallopia x bohemica samples were provided by Prof. Christina
Richards, University of South Florida, Tampa USA. Rhizomes were collected from
field sites in Long Island, NY, USA which were subsequently propagated in the
greenhouse to obtain fresh leaf tissue. DNA was extracted from the third uppermost
fully expanded fresh leaf using Qiagen DNeasy Plant Mini kit. All samples were used
to create a de novo reference but only two samples (301 and 314) of of F x bohemica
(both from roadside habitat) were included in the epiGBS analysis (400 ng gDNA of
each sample).

Taraxacum offinale line A68 and A34 are clonal apomictic Dandelion lines
(Verhoeven, van Dijk, et al. 2009), maintained under greenhouse conditions for
several generations, of which leaf material of several individuals from an ongoing
experiment were collected over the course of several years. Leaf material was stored
at -80 °C for 1-2 years. DNA isolation was performed for all samples simultaneously
as described for the other samples. Plants were grown for until flowering was
completed under controlled conditions in a greenhouse (day/night temperatures of
21°C/17°C, 16 h photoperiod).

Arabidopsis thaliana seeds were provided by C. Becker (Max Planck institute for
developmental biology, Tiibingen, Germany) via F. Johannes (Department of Plant
Science, Technical University of Munich, Germany). Plants from the previous
generation of the same lineage were subjected to Whole Genome Bisulfite
Sequencing (WGBS) 8. For each lineage, up to 5 individual plants were grown for 4
weeks under controlled conditions in a greenhouse (day/night temperatures of
21°C/17°C, 16 h photoperiod). Per line, a single plant was used for DNA isolation.

Human DNA was bought from Promega (Human, Female, order nr. G1521)

Phage lambda DNA was bought from Promega (A DNA, cl857 Sam7, order nr.
D1521). Phage lambda cl857 Sam7 DNA was isolated from infected GM119, an E. coli
strain lacking both the dam and dcm methylase activities (Promega).

Further sample details are available as a Supplementary Data 1 in which for all
species per-sample genotypes, treatments, tissue, age and barcodes used are
specified.

DNA Extraction

Plant material was homogenized by bead-beating frozen leaf tissue in a 2 mL
eppendorf tube with 2-3 mm stainless steel beads. No more than 100 mg of fresh
tissue was used per sample. Samples with beads were taken from the freezer and
stored in liquid nitrogen. Per batch of 12 samples the tubes were put in a tissuelyzer
24 adapter set block, which was partially submerged in liquid nitrogen to avoid
thawing during sample placement. After 30 seconds of shaking at 30 hz / 1800

37



oscillations per minute the tubes were submerged in liquid nitrogen after which a
second round of 30 second shaking was performed.

For most plant species mentioned, we isolated DNA using the Macherey-Nagel
nucleospin plant II kit (for details see Supplementary Data 1) for individual tubes.
We followed the manufacturer’s protocol with the following modifications. Cell lysis
was performed using Cell lysis buffer PL1 for 30 instead of 10 minutes. After
filtration through the pink nucleospin filter the flow-through is carefully pipetted to
a fresh 1.5 mL tube, avoiding the pellet, which is often formed at this stage. An
additional centrifugation step was used to avoid a small pellet; the clear supernatant
was used in the following steps according to the manufacturer’s protocol. As
restriction enzymes are very sensitive to proteins and other contamination we only
selected samples with high purity, specifically 260/280 and 260/230 ratios of at
least 1.8 and 1.5 respectively). DNA concentration was determined using Qubit® 2.0
Fluorometric dsDNA HS Assay Kit (Q32851 Life technologies).

Restriction digestion

Per individual, 400 ng of genomic DNA (gDNA) was digested overnight (17hrs) at
37°C in a volume of 40 pL containing 1x NEBuffer 3.1, 125 ug BSA (NEB, B9000S)
and 2 pL / 40 units of Pstl (NEB, R0140S). Following digestion, barcoded adapters
were ligated to the fragments.

Adapter ligation

To minimize the possibility of misidentifying samples as a result of sequencing or
adapter synthesis errors, all pair-wise combinations of barcodes differed by a
minimum of three mutational steps, barcode lengths were modulated from 4 to 6 bp
to maximize the nucleotide balance of the bases at each position in the overall set of
sequencing reads (Supplementary Fig. 3.1d). Samples were pooled and processed
per species after ligation. For the ligation 1200 pg of both forward and reverse
barcoded adapters (Supplementary Table 1b) were combined in a 60 pL reaction
containing 40 pL gDNA digest, 1x T4 DNA ligase buffer and 4000 units T4 DNA ligase
(NEB, M0202M/L) and ligated for 3hrs at 22°C followed by 4°C overnight, no
inactivation afterward.

Cleanup and size selection

In order to assess the quality of libraries the pooling was performed per species.
When pooled, the total library volume was reduced by Qiaquick PCR cleanup
(Qiagen, 28104) to 60 pL. The libraries were size selected by a 0.8x Agencourt
AMPure XP (Beckman coulter, A63880) purification favoring >200 bp DNA
fragments and eluted in a total volume of 24 pL.

Nick translation

Due to the use of non-phosphorylated adapters, epiGBS libraries contain nicks
between the 3’ fragment overhang and the 5’ non-phosphorylated adapter
nucleotide. To prevent the loss of ssDNA adapter strands (at the nicked position)
during bisulfite treatment the nick was repaired (see Supplementary Fig. 3.9) by a 1-
hour nick translation reaction at 15°C in a reaction of 25 pL containing 18 pL of the
purified library, 2.5 uL of 10 mM 5-methylcytosine dNTP Mix (Zymo research,
D1030), 1x NEBuffer 2 and 7.5 units DNA polymerase I (NEB, M0209S).

38



Chapter 3 epiGBS: reference-free reduced representation bisulfite sequencing

Optional GBS PCR

At this stage, an optional GBS PCR was performed to check the library quality. GBS
PCR was performed using the epiGBS PCR protocol (see below). The average size of
the amplified GBS library was expected to be bigger than the amplified epiGBS
library. The quality of these PCR-libraries was assessed by analyzing 1 pL of the PCR
product on a High Sensitivity DNA chip on a 2100 Bioanalyzer system (Agilent).

Bisulphite treatment and purification

For bisulfite treatment 20 pL of the nick-translated library was used. Bisulfite
treatment was performed using the EZ DNA Methylation-Lightning™ Kit (Zymo
Research) with the following program: 8 minutes 98°C, 1 hour at 54 °C followed by
up to 20h at 4°C, all according to the manufacturer’s protocol.

EpiGBS PCR

Library amplification was performed per species in four individual 10 pL reactions
containing 1 pL ssDNA template, 5 pL. KAPA HiFi HotStart Uracil+ ReadyMix (Kapa
Biosystems), 3 pmol of each illumina PE PCR Primer (Supplementary Table 1b).
Temperature cycling consisted of 95°C for 3 min followed by 18 cycles of 98°C for 10
s, 65°C for 15 s, 72°C for 15 s with a final extension step at 72°C for 5 min. Replicate
PCR products were pooled and quantified using a Qubit® dsDNA HS Assay Kit (Life
Technologies). The quality of the Libraries was assessed by analyzing 1 pL on a High
Sensitivity DNA chip on a 2100 Bioanalyzer system (Agilent). Libraries were
considered suitable for sequencing if the majority of DNA fragments were between
150-400 bp and no adapter dimers were found. Typically, epiGBS PCR reactions of
18 cycles of a non-pooled plant sample yield 3-12 ng/pL of PCR-product.

When the ‘per species’ pooled libraries passed quality control they were further
pooled according to concentration and number of samples in the species pool so that
each individual sample was expected to yield an equal number of clusters on the
[llumina flowcell. A ‘nano run’ was performed on the Illumina MiSeq to quantify per-
sample read count. Based on the read counts obtained from this run, the individual
nick-translated digestion-ligations were pooled in such a manner that an equal
number of reads would be expected per individual. Finally, Rapid Run Mode Paired-
End sequencing was performed on an Illumina HiSeq2500 sequencer using the
HiSeq v4 reagents and the latest version of the HiSeq Control Software (v2.2.38),
which optimizes the sequencing of low-diversity libraries
(http://res.illumina.com/documents/products/technotes/technote-hiseq-low-
diversity.pdf). As the first five cycles of a sequencing run are used to calculate the
color matrix, our barcode design achieves almost perfect balance of the first 5
nucleotides when equal numbers of sequences are obtained per forward read or “A”
barcode. The reverse read or “B” barcodes do not have this requirement, hence only
barcodes of four nucleotides were used (see Supplementary Table 1a).

Methods Csp6l Laboratory work

The Csp6l epiGBS libraries were constructed in similar fashion as the Pstl epiGBS
libraries with the following modifications: The restriction digestion reaction
contained 1x FD buffer and 4 uL / 40 units of Csp6l (ThermoFisher Scientific,
FD0214). The ligation reaction contained 2400 pg of both A and B adapters (both
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adjusted for the Csp6l sticky end). While in the Pstl protocol we used fully
methylated adapters (both strand I and II methylated) for the Csp6I protocol we
used hemi-methylated adapters. The adapter strands that were resynthesized
(incorporating 5mC dNTP’s) by nick translation were not methylated as all cytosines
are replaced by methylated 5mC (see Supplementary Fig. 3.9). Final amplification
for the Csp6l library yielded 4 - 8 ng / uL product for an epiGBS PCR of 18 cycles of a
library only containing Arabidopsis sample A29.

Bioinformatics Analysis

All  custom python scripts mentioned are available on github
(https://github.com/thomasvangurp/epiGBS). Raw reads are deposited at the NCBI
short read archive (http://www.ncbinlm.nih.gov/sra) under Dbioproject
PRJNA287755. Processed data is available at genomespace
(https://gsui.genomespace.org/jsui/gsui.html?pathOrUrl=/Home/thomasvangurp/
epiGBS Nature Methods). The bioinformatics pipeline design is visualized in
Supplementary Fig. 3.10.

Demultiplexing

Paired-end reads for both the Pstl-based titration miseq nano run as well as the
Hiseq2500 run were demultiplexed using the custom python script demultiplex.py
with an appropriate barcode to sample file. Up to two mismatches were allowed in
the barcode and enzyme recognition site on both forward and reverse reads. During
demultiplexing read group attributes specifying the sample name were added to the
read name whereas the barcode was stripped from both forward and reverse reads.
Additionally, a sample type tag (ST:Z:watson or ST:Z:crick) was added based on the
orientation of the enzyme recognition sites in the paired reads (see Fig. 3.1b).

De novo reference construction

The paired end reads were split per species using unix grep. De novo reference
construction was carried out on a per species level. Reads were merged using PEAR
v0.9.5 (Jiajie Zhang et al. 2014) with the following settings (minimum p-value for
accepting an overlap 0.001, minimum overlap 10, no trimming, minimum assembly
length 0). This results in merged and non-merged reads. Non-merged reads were
concatenated with 10 N nucleotides between the forward and reverse read
(Supplementary Fig. 3.3). Both merged and non-merged reads were split in Watson
and Crick reads using custom unix grep queries. Methylation polymorphisms in
Watson and Crick reads were removed using unix sed, replacing all C’s with T in
Watson and all G’s with A in Crick reads. Computationally derived “demethylated”
sequences were dereplicated using usearch (http://www.drive5.com/usearch/)
with the dereplication command. Only clusters consisting of 2 or more reads were
retained. To enable pairing of same-origin Watson and Crick reads C’s are converted
to T’s in Watson reads while G’s are converted to A’s in Crick reads; rendering a
binary AT only sequence output, which is identical for same origin Watson and Crick
reads (Supplementary Fig. 3.2). The reference sequence per pair is called for both
Watson and Crick reads using combined bash piped queries using samtools mpileup
and  bcftools for variant calling followed by  vcfutils.pl vcf2fq
(https://github.com/lh3/samtools/blob/master/bcftools/vcfutils.pl) for creating
the Watson and Crick consensus sequence. Watson and Crick consensus sequences
are used to recreate the original sequence from which the bisulfite converted reads

40



Chapter 3 epiGBS: reference-free reduced representation bisulfite sequencing

were derived. Bases from both Watson and Crick consensus sequence are processed
simultaneously per position with create_consensus.py. In case of Watson:T / Crick:C
a C is added to the reference sequence output, whereas in case of Watson:G / Crick:A
a G is added. If paired nucleotides match, that nucleotide is added. In all other cases
where paired nucleotides do not match an ambiguous nucleotide (N) is added
(Supplementary Fig. 3.11).

Trimming

Part of the read sequence in both Watson and Crick reads originates from fully
methylated adapters (Supplementary Fig. 3.1c). To exclude these adapter
nucleotides the first four nucleotides corresponding to adapter sequence ligated to
the enzyme recognition site are trimmed. To achieve this, Watson reads were
trimmed on forward (/1) reads whereas Crick reads were trimmed on reverse (/2)
reads. In merged Watson reads the first four nucleotides were removed whereas in
merged Crick reads the last four nucleotides were removed.

Mapping

Per species, merged and unmerged reads were mapped using a modified version of
bwameth.py (see https://github.com/thomasvangurp/epiGBS) with default settings.
The resulting bam files of both merged and unmerged reads were sorted and
merged. Read group identifiers corresponding to the sample name identifiers
present in the mapped reads were added using the samtools command reheader.
Both Watson and Crick bam files were indexed using samtools.

Strand specific variant calling

Variant calling was done with Freebayes (Garrison & Marth 2012) per species on
both Watson and Crick bam file separately using a custom Python script
(map_reads.py module runFreebayes). This module runs Freebayes in parallel with
settings that forces variants to be called on all positions (freebayes -f
consensus_cluster.renamed.fa -F 0 -E 1 -C 0 -G 0 --haplotype-length 1 --report-all-
haplotype-alleles  --report-monomorphic --report-genotype-likelihood-max -
haplotype-length 1 -KkXuiwaq 21). The resulting vcf files from the parallel runs
done for both the Watson and Crick bam file were merged, compressed with bgzip,
and indexed using samtools module “tabix” (http://www.htslib.org/doc/tabix.html)
resulting in a VCF file for both the Watson and Crick strand.

Methylation calling

A custom python script methylation_calling.py uses the “walktogether” method of
the PyVCF package (see https://github.com/jamescasbon/PyVCF) to simultaneously
iterate over both Watson and Crick VCF files. By doing so, SNPs and methylation
polymorphisms were distinguished and split. C/T polymorphisms in Watson
combined with C on the Crick strand indicate a methylation polymorphism on the
Watson strand whereas a G/A polymorphism on Crick combined with a G on the
Watson strand indicates a methylation polymorphism on the Crick strand. Where
combined SNP and methylation lead to a C/T or G/A polymorphism on both Watson
and Crick strand only the SNP is called, as the methylation ratio cannot be reliably
determined. Per site per individual methylation levels are available in various
output formats, such as .VCF, .IGV and .BED files to provide for analysis and
visualization of the methylation variation.
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Methylation summary statistics calculation supplementary Table 3.1e

Per species, similarity searches for reference sequences of the clusters with an
appropriate proteome were done with usearch ublast 23. A gene hit for a plant
species was defined as a cluster having an e-value < le-5 after mapping to the
reference proteome (refseq) of all eudicot plant species. For Daphnia magna, all
Daphnia related proteins(NCBI) were used as a reference. Per species, each cluster
was labeled “gene” or “non-gene” based on the results of usearch ublast. Methylation
is summarized for cytosines in symmetric CG and CHG context for both gene and
non-gene related clusters.

The following criteria were used for positions to be considered (methylated):

1. Per position minimum read coverage for forward and reverse informative
reads> 10

2. For cytosines on the top strand only reads from the Watson pool are
informative, whereas for cytosines on the bottom strand only Crick reads
are informative. Positions with SNPs or ambiguous contexts due to
neighboring SNPs are excluded from this analysis.

3. Minimum methylation ratio for both forward and reverse informative reads >
0.05, otherwise the position is considered non-methylated

4. Only symmetric positions in CG and CHG context with sufficient coverage
according to criterion 1 are taken into account. For these symmetric
positions, for both Watson and Crick strand nucleotides criterion 3 needs
to apply, otherwise the symmetric pair is considered non-methylated.

5. Methylation is summarized for symmetric pairs for all positions meeting
above criteria in up to four non-treated / control samples having the
highest coverage per species. For Mimulus guttatus, Daucus carota and
Fallopia x bohemia only two individuals could be included.

6. Methylation summary statistics calculation were performed for all species
included with sufficient coverage. Allium porrum and Homo sapiens were
excluded from the analysis due to insufficient sequence coverage.
Statistics are computed in the submodule “summary_methylation” of the
same python script used for DMP detection in all species
“all DMP_detection.py”.

Methods Csp6l Bioinformatics

For the Csp6l library we mapped all merged paired-end reads to the Arabidopsis
TAIR10 genome. As the origin (Watson or Crick) of the merged reads could not be
established due to the absence of a methylation sensitive restriction enzyme
recognitions site as present for Pstl, we have adjusted the procedure for mapping
the reads. All merged reads were computationally demethylated using unix sed in
two different ways, creating a C to T copy and a G to A copy for each read. These two
different computationally derived copies were subsequently mapped with bwa-mem
to a C to T converted and G to A converted genome (also created using unix sed).
Only one of these four mapped copies has a meaningful and high-scoring match. To
find that hit the four resultant bam files were sorted on name, were the highest
scoring match was retained if it was matching over 80% of it's length. This
procedure mimics what bwa-meth normally does internally, but could not do given
our Csp6l-based epiGBS data.
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A Watson and Crick bam file were produced by adding the original non-converted
sequence in its proper orientation to the appropriate bam file. Methylation calling
was done using samtools mpileup through a custom python script (available on
github repository https://github.com/thomasvangurp/epiGBS under
Arabidopsis_extra/Arabidopsis_Csp6i_analysis.py). Comparisons between Csp6l
Methylation estimates obtained for Arabidopsis generation 32 line 29 and
corresponding generation 31 WGBS estimates from Becker et al 2011 were obtained
in the same way as for the Pstl-epiGBS data described above. Bam files with mapped
reads for Cspé6l are available on Genomespace
(https://gsui.genomespace.org/jsui/gsui.html?pathOrUrl=/Home/thomasvangurp/
epiGBS Nature Methods/Csp6i).

DMP detection in all species

DMPs were detected in up to six pairwise comparisons per species for up to four
individuals of non-treated samples (see Supplementary data 2 available online at
http://www.nature.com/nmeth/journal/v13/n4/extref/nmeth.3763-S3.xlsx)
having the highest sequence coverage (see materials and methods) in similar
fashion as the detection carried out for Arabidopsis (Supplementary Fig. 3.5) with
the exception being that for this analysis we did not require a minimum ratio
difference of 70% or higher, as we also included the CHG context in which
differences are typically smaller. DMP frequency was established for cytosines in CG
and CHG context in the gene related and non-gene related (other) clusters
separately (see materials and methods). We limited DMP detection to cytosines
being either methylated or non-methylated symmetrically (on both Watson and
Crick strand both below or both higher than 5%) in CG or CHG context. For positions
to be considered in the DMP analysis we applied the same criteria as used for
detection of methylation (see Materials and methods “Methylation summary
statistics figure 2b”). All calculations were done with the custom python script
“all_ DMP_detection.py” available in the github repository
(https://github.com/thomasvangurp/epiGBS).

Non-conversion and false methylation rate estimate

We computed non-conversion rates based on non-methylated phage lambda DNA. A
total of 8,475 cytosines of the Phage Lambda genome were covered with 100 or
more reads. On average, 0.39% of cytosines per position were non-converted. This
non-conversion rate is not expected to have an impact on our methylation estimates
as in our analysis we require coverage to be higher than 10 and methylation rates to
be higher than 5% in read pools of both forward and reverse informative reads (see
description Methylation summary statistics figure 2b). Using this criterion, not a
single cytosine in phage lambda was found to be methylated at a rate above 5%.

Code availability
All  custom python scripts mentioned are available on  github
(https://github.com/thomasvangurp/epiGBS).

Accession codes

Raw reads have been deposited at the NCBI short read archive under accession
PRJNA287755.
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Supporting information

a Forward inline barcodes Reverse inline barcodes
Barcode A1 AACT Barcode B1 AACT
Barcode A2 CCAG Barcode B2 CCAG
Barcode A3 TTGA Barcode B3 TTGA
Barcode A4 GGTA Barcode B4 GGTA
Barcode A5 AACCA Barcode B5 ATTG
Barcode A6 CCACG  Barcode B6 CGGT
Barcode A7 TTGTA Barcode B7 TGCG
Barcode A8 GGTGG Barcode B8 GTAT
Barcode A9 AATGCA
Barcode A10 CCGTCA
Barcode A11 TTACGA
Barcode A12 TGCACA

b Barcoded adapter A top 5'- ACACTCTTTCCCTACACGACGCTCTTCCGATCTxxxXxXTGCA -3'
Barcoded adapter Abottom 5'- yyyYAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT -3'
Barcoded adapter B top 5'- xxxXAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG -3'

Barcoded adapterbottom ~ 5'~ CTCGGCATTCCTGCTGAACCGCTCTTCCGATCTyyyyTGCA -3

5’ - AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT -

3 ’

L

llumina PE-PCR primer2 ~ CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT -
3 ’

lllumina PE-PCR primer 1

C Methylated barcoded Adapters DNA  Pstloverhang
insert
57 = ACACTCT TTCCCTACACGACGCT CTTCCGAT CTxx XXTGCAGNN . . NNETC CAxxX XXAGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG- 3"
3’ - TGT GAGAARGGGATGTGCT GCGAGAAGGCTAGAYy yyACGICNN . . NNGACGTyy yyTCTAGCCTTC TCGCCAAG TCGT CCTTACGGCTC- 57

Barcode Barcode
C = 5-methyl-cytosine Sequence A Sequence B
Pstl overhang

expected nucleotide
distribution of PE Read 1

100%

80%
60% T
40% “6
20% mc
0% A

i 2 3] 4 5 6 b | 8
Position in read 1 bp
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¥ Species Samples | Total reads % merrgee:js #clusters | CG content | Average size | Gene hits

Allium porrum 4 708,107 89% 7,291 40% 138 920
Arabidopsis thaliana 4 6,350,721 63% 19,318 57% 193 2,274
Homo sapiens 4. 365,612 86% 2,641 49% 161 231
::l’,"‘)’,i’,,’:i":;h”eifn”ii 4| 2886907  90% 13,745  45% 134 1,122
Daucus carota 4( 2,471,270 92% 6,663 40% 144 1,487
Daphnia magna 6 890,587 82% 3,464 51% 185 583
Scabiosa columbaria 29| 22,724,129 96% 33,604 59% 141 2,867
Mimulus guttatus 7 7,167,990 85% 63,184 58% 139 3,239
Taraxacum officinale 35| 27,647,929 71% 33,517 55% 138 2,260

Phage lambda 1| 1,289,004 87% 159 57% 237

96| 72,502,256

Supplementary Figure 3.1 Barcodes, barcoded adaptors and resulting
expected nucleotide distributions and epiGBS clusters.

(@) The following forward and reverse inline barcodes were used to generate
barcoded forward and reverse adapters (Supplementary Table 1b), (b) Barcoded
adapter design is identical to the adapters used in Genotyping by Sequencing
(Elshire et al. 2011) with the exception of the use of the B adapter barcode which is
not present in GBS. Barcoded adapter sequences of both A and B adapters were
generated using http://www.deenabio.com/services/gbs-adapters with 12 4-6
nucleotides barcodes for the A adapter and a subset of 8 4-nucleotide barcoded
adapters were used for the B adapter. The sequence of Illumina PE-PCR primers 1
and 2 used to amplify the libraries are also listed. (c) Complimentary
oligonucleotides with 5-methylcytosines instead of cytosines are annealed to form
adapters. The four base 5’-3’ overhang complements the restriction site overhang
generated by Pstl but can be modified depending on the specific enzyme used.
Adapter A is identical to the barcoded adapter used in GBS. 4-6 nucleotide barcodes
are designed to maximize diversity over the first cycles of the reads. Adapter B is
identical to the common adapter used in GBS, with the exception that a barcoded
sequence is placed before the enzyme overhang. For Csp6l we used 5-CCTA-3’ as
forward and 5’-CTGG-3’ as reverse barcode. The overhang of both Csp6l adapters
was modified with respect to Pstl, instead of 5’-TGCA-3" we designed adapters with
5’-AT-3’ complementary to the overhang generated by Csp6l digestion. (d) Given
equal representation of all 12 forward barcodes the expected per cycle nucleotide
composition of the forward read is depicted. Up to position 5 the composition is
mostly unbiased, aiding the calculation of proper run-specific parameters during
[llumina sequencing and thus preventing phasing and pre-phasing detection errors
that can lead to low quality sequencing libraries. (e) Per species the total number of
paired-end sequencing reads, individuals per species, percentage of merged reads,
number of de novo discovered clusters, CG content, average size and number of
clusters having gene hits (see Materials and methods) is shown.
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[1, ‘merged and r[ 2, In silico }[ 3 H 4, bi H 5, pairing }[ 6, H 7. ]
reads l 7y b
| %1 3+ 2
( Watson ( Crick ( 2\ (C B\ v ; ; &\
(201 2 n] 8] (22 E12q] [B B B = olo | (ENEND
gz gz e g 3 A
£l B R i
g g 2 Q )
VVYyYVYVYV VIV A A AA A AA|A V A VAY vyvyyvyy
AAAAAANAIA AAAAAAANA A-A AAA AAAA
e GIT T T|TI|T CCClC C ClCc|T = T C}C cTC|C
GGGIGGG|IG|A AGAAAAIANA A-A GAG G GGG
SRR T T T MVDETIT T T T = TET|T T T T
TENUS T T T T TETETIT T TIT|T T-T T T|T T T T[T
EFCHCIT T Ti[TIT cccC|ccccic|T = T CiC CiCi=I|C
GGG|IGGG|G|A GAAAAAIANA A-A GAG GTGG
NG T T T[T T cccjcccicit =Y T C|C cccic
BT T T T T T T T T (TN T = T T|T g R
T T T T[T T cccicccc|Cc|T =T T C|C ccCcCic
GGGIGGG|G|A GAGAAA|IAA A-A GAG G GGG
AAAAAANAA AAAAAAANA A-A AAA AATA
GGGIGGG|IG|A AGGAAAIAA A-A GAG GGGG
\VVV)\VVVJVV kAAA)\AAAJAA V A JA'J \'"f'/

Supplementary figure 3.2 De novo reference creation.
De novo reference creation was performed at the species level. (1) paired-end reads are
either merged using PEAR (Jiajie Zhang et al. 2014) or concatenated (See Supplementary
Figure 3.3), after which Watson and Crick reads are split. For concatenated pairs only the
~120 nucleotides corresponding to the read length minus the barcode on both ends can be
recovered. (2) Methylation variation is removed in silico by C to T conversion in Watson and
G to A conversion in Crick reads. (3) Dereplication merges identical reads. (4) For each
remaining Watson and Crick read a binary AT only representation is created by
simultaneous C to T and G to A conversion (binarization). (5) Identical binary
representative sequences are paired, yielding AT-only pairs containing both Watson and
Crick reads. (6) The original Watson and Crick reads are paired using the AT-only pairs as
template. Based on the aligned Watson Crick read-pair the original non-converted sequence
is reconstructed. A and T are identical in the alignment, Watson G / Crick A yields a G
whereas Watson T / Crick C yields a C. (7) Finally, consensus sequences are clustered with
95% identity to yield reference sequences, allowing for insertions, substitutions and partial

matches.
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Supplementary Figure 3.3 Creation of merged and concatenated reads.

(a) A typical epiGBS library shows a peak on a Bioanalyzer image corresponding to
fragments of ~300 basepairs (bp), although larger fragments are also obtained. A
300 bp fragment corresponds to an epiGBS fragment (insert) of 163 bp, as adapters
are not sequenced. (b) Barcoded adapters A and B can be ligated on both ends of
each fragment, so for any given genomic locus both forward and reverse oriented
inserts exist. Fragments derive from either Watson or Crick strand. (c, d)
Overlapping paired-end reads are merged whereas non-overlapping paired-end
reads are concatenated to facilitate de novo reference reconstruction. Concatenation
is performed by adding 10 N’s between the forward and reverse read. Concatenated
reads can be used to determine the sequence on both ends of inserts larger than
~1,9x the read length.
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Chapter 3 epiGBS: reference-free reduced representation bisulfite sequencing

Supplementary Figure 3.4: Intergenerational methylation rate comparisons for
different sequence contexts in epiGBS and WGBS.

Methylation rates are compared for CG, CHG and CHH context between generation 31
and 32 for WGBS vs WGBS data and WGBS vs epiGBS data. Only positions with 10 or
more informative reads in both datasets were taken into account. (a) In the (Becker et
al. 2011) WGBS data for line 49 we selected the subset of loci covered by Pstl.
Methylation rates between cytosines in generation 31 and 32 plants are well correlated.
CG and CHG contexts have Pearson R2 values of respectively 0.94 and 0.92 whereas rates
in CHH context show a lower R? of 0.80. Heatmap legends on the right-hand side of all
figures in panel a-c indicate the number of data points per 0.25*0.25 block in each
scatter plot. (b) Methylation rates are compared in all sequence contexts between Pstl-
epiGBS data for line 29 generation 32 with the Becker et al WGBS data for generation 31.
Compared to the WGBS vs WGBS correlations shown in panel a, the CG methylation
correlates are equally good, whereas CHG and CHH correlations are slightly lower, with
R2 values of 0.74 and 0.59 respectively. The methylation sensitivity of Pstl in CHG
context could be causing this lower correlation, as CHG methylation in Arabidopsis is
spatially auto-correlated (Cokus et al. 2008). Given partial methylation of CHG sites non-
digestion of methylated Pstl-sites could give rise to underestimating true methylation
rates of cytosines inside these fragments as internal CHG and CHH methylation rates
could be spatially correlated to methylation rates of the two CHG positions present in
the Pstl recognition site (‘5- C_TGCA”G-3’). (c) To assess whether the methylation
sensitivity of Pstl contributed to the lower methylation estimates and lower R? for CHG
and CHH context we have generated one additional epiGBS library with the methylation
insensitive enzyme Csp6l for Arabidopsis line 29. Given the same coverage threshold
(more than 10 informative reads) as used for the WGBS-WGBS and WGBS-Pstl-epiGBS
comparison shown in panel (a) and (b) we have obtained fewer positions with lower
median coverage. This in turn leads to R? values for CG, CHG and CHH context of 0.89,
0.76 and 0.61. (d) To test whether the lower coverage of the Csp6l epiGBS library
contributed to the lower R? values obtained compared to the WGBS data we calculated
R? values between WGBS generation 31 and subsets of the generation 32 Csp6l epiGBS
data with increasingly stringent minimum read coverage criteria. R? values increase
asymptotically to the same levels as obtained for the WGBS vs WGBS comparisons made
in panel a. Thus, given sufficient coverage, epiGBS estimates of methylation ratios with
methylation insensitive enzymes are as accurate as WGBS based estimates. (e) Median
coverage for positions in CHG context for WGBS data in line 49 gen 31 and for epiGBS
data in line 29 gen 32 for Pstl and Csp6l. Median coverage for other contexts was
comparable to that of CHG. Median coverage was 151 in the epiGBS Pstl library, whereas
median coverage was 17 for the Csp6l data. (f) For positions having unequal inter-
generational methylation rates we divided the positions in two groups per sequence
context, one having a higher methylation estimate in epiGBS compared to WGBS
whereas the other group shows the opposite pattern. For Pstl, the group with positions
showing a lower epiGBS rate is overrepresented for the CHG and CHH context. For Csp6I
the groups are more or less of equal size, suggesting that the methylation sensitivity of
Pstl contributed to the overall lower methylation estimates obtained for CHG and CHH
context.
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Chapter 3 epiGBS: reference-free reduced representation bisulfite sequencing

Supplementary Figure 3.5: Venn diagrams of DMPs detected in pairwise between-
line comparisons of Pstl-epiGBS versus WGBS data and of WGBS versus WGBS
data.

Venn diagrams of DMPs detected in pairwise between-line comparisons (a) Pair-wise
comparisons show the overlap and differences between DMPs detected between four
genotypes using both WGBS generation 31 and epiGBS generation 32 data. Per diagram,
only positions having sufficient informative read coverage in both WGBS and epiGBS
data were taken into account. (b) Pair-wise comparisons show the overlap and
differences between DMPs detected between the Arabidopsis line 39 and 49 using both
WGBS generation 31 and WGBS generation 32 data. Per diagram, only positions having
sufficient informative read coverage in both WGBS generation 31 and WGBS generation
32 data were taken into account.
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Adapter
a 14 E 14
57 - .CTAACGTGCAJGNN -3
[ L O R B
37— . GATTG ACGTCNN =57
I
Nick O O
HH
b I
5’—...CTAACGTGCAJGNN. =37
I T e e Y O B O 8
3’—...GATI?|ACGTCNN. =57 )
c HR 3
5'-3' exonuclease 0 0 DNA polymerase I s
activity H H 5
.‘::
C ' 3
57—, CTAACGTGCAJGNN =37 &
=
T e O 10 1 e e I O
cLES GATTGCIACGTCNN -57
[
NewNick (O O Elongation of the 3' hydroxyl
H H terminus with 5mC dNTP’s

Supplementary Figure 3.9: Nick translation. (a) Due to the use of non-
phosphorylated adapters, epiGBS libraries contain nicks between the 3’ fragment
overhang and the 5’ non-phosphorylated adapter nucleotide (on the bottom strand in
this Figure). To prevent the partial loss of adapter sequence during bisulfite treatment
the nick was repaired by DNA polymerase 1. DNA polymerase I is able to repair single
stranded nicks in dsDNA in two steps. (b) first it removes the nucleotide (in this case C)
at the 5’ side of the nick by 5’-3’ exonuclease activity after which (c) the 3’ hydroxyl
terminus is elongated with a single dNTP (in this case 5mC) using the nucleotide from
the opposite strand (here G) as template. DNA polymerase I moves one nucleotide
downstream towards the 3’ end of the bottom adapter strand. Steps (b) and (c) are
repeated until the 3’ end of the adapter is reached, leaving no nicks in the adapter
sequence.
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A) Mapping

(1) Because part of the sequenced fragment originates from the methylated adapter
sequence, this part needs to be excluded from the analysis. Therefore, the first 4 bases of
merged and forward Watson reads as well as the last 4 of merged and first four of
reverse Crick reads are removed.

(2) Reads are mapped against either de novo obtained or existing reference using BWA-
METH (Pedersen et al. 2014) as it is more sensitive / accurate compared to similar
bisulfite sequence-aligners and allows for easy transfer or read group tags from the
sequence name to the bam output file (Pedersen et al. 2014).

B) Variant calling

(3) Variant calling is done using Freebayes (Garrison & Marth 2012) separately for both
Watson and Crick reads for all samples simultaneously. The settings force every position
to be called for all samples. Freebayes is used because it allows for indel realignment
and sensitive variant calling.

(4) By simultaneously iterating over both Watson and Crick variant call files (VCF) SNPs
and methylation polymorphisms can be distinguished. C/T polymorphisms in Watson
combined with C on the Crick strand indicate a methylation polymorphism on the
Watson strand whereas a G/A polymorphism on Crick combined with a G on the Watson
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strand indicates a methylation polymorphism on the Crick strand. Where combined SNP
and methylation lead to a C/T or G/A polymorphism on both Watson and Crick strand
only the SNP is called as the methylation ratio cannot be determined.

C) Visualization

(5) SNPs and methylation polymorphisms are exported in VCF format. Furthermore,
methylation ratios are calculated and exported in a tab separated IGV specific format
(IGV) including the context (CG, CHG or CHH). Datasets for all species studied are
available on genomespace (see
https://gsui.genomespace.org/jsui/gsui.html?pathOrUrl=/Home/thomasvangurp/epiG

BS%20Nature%20Methods/).

D) Annotation

(6) Usearch blastx (Edgar 2010) is performed against reference protein sequences
related to the species sequenced.

(7) Resulting blastx reads are imported into blast2go for mapping to gene ontology
terms and enzyme codes. A list of all annotated genes is exported. Optionally, a list of
contigs mapping to specific genes or with specific GO terms can be exported allowing for
a focused analysis in RnBeads (Assenov et al. 2014).

E) Analysis

(8) A pipeline for processing the sample specific methylation bed files and experimental
details like treatment and/or sample groups allows for comparing differential
methylation between combinations of treatments, including all possible 2-way
interactions between treatment groups using RnBeads (Assenov et al. 2014) or other
methylation analysis tools.
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Supplementary Figure 11: De novo
clustering algorithm.

1)
a) Paired-end reads contain in-line
barcodes in both forward and reverse
reads. Barcodes are removed while
sample specific tags are added to the
read name. The original strand, Watson
or Crick, is determined based on the
(non)conversion of the enzyme
recognition site at both reads (Fig.
3.1b).

b) Overlapping paired-end reads are
merged using Pear (Jiajie Zhang et al.
2014) to (i) avoid adapter remnants for
reads derived from fragment with an
insert size shorter than the number of
read cycles as they can lead to false
polymorphisms or mapping errors, (ii)
avoid double calling of bases from the
same molecule in the overlapping
region of the pair, and (iii) lowering the
error rate by selecting the highest
quality base from the two reads in the
overlapping region. Non-overlapping
reads are concatenated to allow for
matching Watson and Crick pairs
(Supplementary Fig. 3.3).

2) Methylation polymorphisms are
removed by converting all C’s in Watson
to T and all G’s in Crick to A to allow for
clustering of same-origin reads with
methylation polymorphisms.

3) Identical Watson and Crick reads are
dereplicated using wusearch (Edgar
2010). Only Watson and Crick reads
that occur twice or more are retained to
avoid sequencing errors.

4) Binarization: To aid pairing of same-
origin Watson and Crick reads all C’s are
converted to T’s in Watson reads while
G’s are converted to A’s in Crick reads
rendering a binary AT only sequence
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output, that is identical for same origin Watson and Crick reads (see Fig. 3.1b).
5) Using usearch dereplication binary AT only watson and crick reads are paired.

6) Based on the alignment and orientation of the binary Watson and Crick reads the
original unconverted Watson and Crick reads are aligned in a bam file. The reference
sequence of each pair is called using combined bash piped queries using the following
components of samtools (H. Li et al. 2009): mpileup and bcftools (H. Li et al. 2009) for
variant calling followed by vcfutils.pl vcf2fq for creating the Watson and Crick consensus
sequence. These consensus sequences are used to recreate the original sequence. In case
of Watson:T / Crick:C a C is added, whereas in case of Watson:G / Crick:A a G is added. In
all other cases where nucleotides do not match an ambiguous nucleotide (N) is added.

7) Consensus sequences with 95 % ore higher identity are clustered, leading to the final
reference sequence.
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Transgenerational inheritance of (stress-induced) DNA methylation
in apomictic dandelions.
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Abstract

Environmental perturbation or biotic stress by insect herbivory can result in DNA
methylation changes in plants. Such stress-induced DNA methylation changes can induce a
plant defense response against the herbivore and as such provide a mechanism for a
systemic response by which gene activity is altered. DNA methylation patterns show
random changes between generations, but both specific (targeted) and non-specific
(random) changes that are environmentally induced can add to this baseline level. The
stability of induced DNA methylation changes has hitherto not been studied in detail
outside of the model plant species Arabidopsis thaliana. Apomictic dandelions are an
interesting system to investigate the extent and stability of (induced) DNA methylation
changes that are transmitted transgenerationally. As part of the DNA methylation changes
can result from genetic changes that occur in sexual plant after meiosis, the apomictic
reproduction mode in the dandelions used avoids this complication. Here, I aim to establish
the extent to which heritable DNA methylation changes are the result of random processes
or of 5-Azacytidine and Jasmonic acid treatment. [ do this by tracking DNA methylation on a
subset of positions covered by bisulfite sequencing reads on restriction-site associated set
of DNA fragments using epiGBS. I find limited but clear evidence for environmental
induction of heritable DNA methylation changes after JA application. Also, I characterize the
stability of overall levels of DNA methylation of cytosines in CHG (where H is A, C or T) and
CG sequence context over generational time. [ find a significant negative relation between
the similarity of DNA methylation levels and intergenerational distance. I conclude that
DNA methylation in both CG and CHG context are heritable and that environmental
perturbation can result in heritable DNA methylation changes which are not widespread.
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Chapter 4 Transgenerational inheritance of (stress-induced) DNA methylation in apomictic
dandelions.

4.1 Introduction

DNA methylation in the form of 5-methyl cysotine (5mC) is a well-studied epigenetic
modification which is implicated in cell differentiation and gene regulation in eukaryotes.
Mitotically heritable changes in DNA methylation have been observed in plants after
exposure to stress. In some cases, these changes can also be transmitted meiotically, which
hereafter I will refer to as environment-induced epigenetic inheritance. Epigenetic
inheritance has received much interest for its potential role in rapid and reversible
adaptation to changing environments experienced by species. As such, studying epigenetic
variation is highly relevant in the study of ecology and evolution (Bossdorf et al. 2007).
Currently, important open questions about the role of DNA methylation in ecology and
evolution concern the extent of variation observed in natural plant methylomes, how this
variation effects phenotypic variation, the degree of dependence of methylation variation
on the genotype and if it contributes to evolutionary processes (Niederhuth & Schmitz
2014). So far, the number of studies focusing on the transgenerational inheritance of DNA
methylation in plants at single nucleotide resolution are almost exclusively limited to A.
thaliana and Zea mais (Regulski et al. 2013), often in (artificial epigenetic) recombinant
Inbred lines (Schmitz, He, et al. 2013).

To understand the scope of epigenetics in ecology and evolution, further study of
transgenerational inheritance of DNA methylation in a broader range of species is relevant
for several reasons. First, DNA methylation levels are highly variable in different plant
species, which to some extent can be explained by differences in genomic repeat content,
which positively impact the methylation rate (Niederhuth, Bewick, Ji, Alabady, Kim, Li, et al.
2016). Many examples of phenotypic variation caused by heritable DNA methylation
variants are found in non-model species, but they are poorly characterized (Verhoeven et
al. 2016) which initially requires establishing their transgenerational stability. Second, the
potential relevance of epigenetic variation may be different for species with different life
history characteristics. For instance, relevance of epigenetic variation may be higher for
asexual compared to sexual plant species, as asexual plants cannot generate genetic
variation through recombination. Asexual reproduction also allows for bypassing
epigenetic reprogramming mechanisms during meiosis, which could affect the stability of
(induced) DNA methylation variation (Verhoeven & Preite 2014). Asexually reproducing
plants like the apomictic dandelion Taraxaxum officinale therefore offer an interesting
system, allowing the study of epigenetic variation in a natural system devoid of interference
by genetic variation.

DNA methylation in plants occurs in three different sequence contexts, CG, CHG and CHH
(where H is A, C or T) which are controlled by different enzymes. Symmetric CG
methylation is maintained faithfully during mitosis and often meiosis (Dalakouras et al.
2012). The relationship between epigenetic variation and underlying DNA sequence
variation varies; often epigenetic variants are under direct genetic control (obligatory) or
can only arise given a certain genotype (facilitated). Only pure epigenetic variation is truly
independent on genetic variation, which may arise for instance due to imperfect copying of
methylation patterns during cell divisions (E. ]. Richards 2006). Assessing the degree of
independence of epigenetic from genetic variation is important, as obligatory epigenetic
variation only reflects genotypic variation. To understand the potential additional role in
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ecology and evolution of epigenetic variation compared to genetic variation, researchers
often try to focus on (partially) independent facilitated or pure epigenetic variation
(Hauben et al. 2009; Cortijo et al. 2014; Johannes et al. 2009). For this purpose researchers
often use inbred lines, or even inbred lines with artificially altered DNA methylation
(Cortijo et al. 2014; Johannes et al. 2009). For example, epigenetic recombinant inbred lines
(epiRILs) were created in A. thaliana, in which only the DNA methylation is different
between genetically uniform individuals of the epiRIL population (Johannes et al. 2009;
Cortijo et al. 2014). Absence of genetic differences permits observed epigenetic differences
to be interpreted as ‘pure’. Arabidopsis thaliana epiRILs show variation and high heritability
for a number of quantitative traits as well as stable inheritance of a considerable part of the
parental DNA methylation variants (epialleles) over at least eight generations (Johannes et
al. 2009). These studies provide some of the best evidence that heritable, pure epigenetic
variation can cause heritable phenotypic differences (Cortijo et al. 2014).

If epigenetic variation is heritable and impacts the phenotype of both current and
subsequent generations, then there is potential for heritable epigenetic variation to be
subject to natural selection and to drive differentiation. The reversible nature and lower
stability of epigenetic variation limits the potential of epigenetic variation to contribute to a
sustained selection response. However, modeling studies show that even under relatively
high reversion rates there is a considerable impact of epigenetic variation on the dynamics
of adaptation (Kronholm & Collins 2016). Multi-generation stability of naturally arising
DNA methylation variation has been demonstrated for A. thaliana using isogenic
(epi)mutation accumulation lines, with estimates for epimutation rates for methylation in
CG context of 2.56 - 10 for forward and 6.30 - 10-4 for backward mutation rates (van der
Graaf et al. 2015). Simple modelling studies indicate that these rates are high enough to
rapidly uncouple genetic from epigenetic variation, but low enough for new epialleles to
sustain long-term selection responses (van der Graaf et al. 2015). This suggests that
heritable DNA methylation variation of cytosines in CG context can underpin selective
phenotypic divergence.

DNA methylation differences do not only define different cellular types and functions
(Widman et al. 2014), but it can also change on an organism-wide scale as the result of
environmental perturbations or stress (Secco et al. 2015). These changes can impact the
phenotype or stress response later in life (same-generation) or even be transgenerationally
transmitted to subsequent generations. For instance, cold stress in maize can induce
specific demethylation of the DNA associated with the nucleosome (part of the chromatin
structure) of ZmMI1, inducing altered expression of this retrotransposon related gene by
changing the chromatin structure. This hypomethylated state remained for up to seven days
under normal temperatures (Steward et al. 2002), suggesting that the effect maintained for
some time in the absence of cold-stress. In tobacco it was shown that several types of
environmental stressors such as aluminium, salt, cold and oxidative stresses can induce
DNA demethylation of the promotor region of a glycerophosphodiesterase gene (NtGPDL),
correlating with increased NtGPDL expression(Choi & Sano 2007). Environmentally
induced epigenetic changes can sometimes also be passed transgenerationally and as such
constitute a potential mechanism for transgenerational phenotypic plasticity (Holeski et al.
2016). In A. thaliana, hyperosmotic stress was shown to target (de)methylation of distinct
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regions that are conditionally inherited through the female line. These changes result in an
adaptive phenotype for both the stressed parent and offspring plants. Reversal of the
induced DNA methylation changes over the course of subsequent unstressed generations
was observed, indicative of a transient short-term stress-dependent memory of the
acquired changes (Wibowo et al. 2016). Although several examples of stress-induced
heritable epigenetic changes are reported in plants (Steward et al. 2002; Verhoeven, Jansen,
et al. 2009; Latzel et al. 2012), it is unclear how common such changes are (Heard &
Martienssen 2014) and whether they persist for more than one unexposed offspring
generation.

In non-model species lacking a reference genome studies aimed at understanding
transgenerational inheritance of DNA methylation have largely relied on methylation
sensitive AFLPs (MS-AFLP) (Verhoeven, Jansen, et al. 2009). MS-AFLP studies are limited to
qualitative methylation estimates on few anonymous CCGG sites (Schrey et al. 2013). MS-
AFLP results are difficult to interpret and often ambiguous (Fulnecek & Kovarik 2013) and
most versions of the protocol do not allow for distinction between hemimethylation on the
external cytosines from the internal cytosine. Bisulfite sequencing based studies offer
advantages in being able to detect DNA methylation variation in all sequence contexts in a
quantitative fashion. Studying transgenerational methylome dynamics on a whole genome
scale using sequencing requires a reference genome combined with whole genome bisulfite
sequencing (WGBS), which to date is available for approximately 33 plant species
(http://schmitzlab.genetics.uga.edu/plantmethylomes) that are mostly species of
agronomic interest. Although the number of plants with a sequenced reference genome is
increasing rapidly (Niederhuth, Bewick, Ji, Alabady, Kim, Page, et al. 2016), many
ecologically interesting species do not yet have a sequenced reference genome. Even if they
do, the costs associated with WGBS are substantial, especially for species with large
genomes, limiting applicability to small experimental designs.

In the absence of a reference genome, epigenetic Genotyping By Sequencing (epiGBS) and
bsRadseq, both modified Reduced Representation Bisulfite sequencing (RRBS) techniques,
offers sequencing-based alternatives for studying DNA methylation variation in non-model
species (van Gurp et al. 2016; Trucchi et al. 2016). EpiGBS allows for reference free reduced
representation sequencing on a restriction site-associated and replicable subset of genomic
DNA of hundreds of individuals simultaneously for a low cost. This enables methylome
characterization in transgenerational experiments involving non-model species. Here, | use
epiGBS to study the transgenerational dynamics of DNA methylation variation, and its
genotype-specificity, in a six-generation experiment with apomictic dandelions (Taraxacum
officinale). 1 also evaluate how heritable methylation variation is affected by an
environmental perturbation, specifically jasmonic acid treatment. Jasmonic acid (JA) is a
plant hormone involved in regulating plant responses to abiotic and biotic stresses as well
as plant growth and development (Delker et al. 2006). Jasmonic acid has been used widely
as an artificial agent applied to induce systemic plant defense pathways typically associated
with insect herbivory (Tytgat et al. 2013). Previous work in dandelion has shown that in
some genotypes offspring of JA-exposed plants is avoided in a choice feeding experiment
featuring the generalist herbivore Spodoptera exigua (Verhoeven & van Gurp 2012),
suggesting that parental JA-exposure can alter the physiology of offspring plants. This
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altered physiological state could be controlled by epigenetic mechanisms, such as altered
DNA methylation patterns. Consistent with this idea, JA treatment was previously reported
to show inherited DNA methylation changes in a MS-AFLP study (Verhoeven, Jansen, et al.
2009). My specific objectives are (1) to characterize context-specific DNA methylation
levels in Apomictic dandelions, as well as (2) to examine the transgenerational stability of
DNA methylation in CG and CHG context. Furthermore, I (3) investigate if JA exposure
induces heritable changes in DNA methylation up to several offspring generations after
exposure. [ hypothesize that (1) DNA methylation patterns of Dandelion, like many other
plant species (Niederhuth & Schmitz 2016), show higher values for DNA methylation in CG
and CHG context compared to Arabidopsis thaliana and (2) high stability of DNA
methylation only in CG context and (3) that JA exposure results in in increased number of
DNA methylation changes that are transmitted transgenerationally. I have tested the
hypothesis by measuring DNA methylation using the epiGBS method (van Gurp et al. 2016)
in the offspring of apomictic dandelions derived from a multi-generational experiment with
JA-treated and control lineages. Inter-generational comparisons of the same subset of
(methylated) cytosines allow for assessing the transgenerational stability of DNA
methylation patterns, whereas the treatment effect of JA can be determined by comparing
DNA methylation patterns between the pre-treated and non-treated lineages.
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4.2 Material and Methods

Control lineage

DNA methylation
screening
common control
environment

JAline 1-8  \@
— JAlineage

Gl G2 G3 G4 G5 G6

Figure 4.1. Experimental design. For both genotypes A34 and H72, two single-seed descent
lineages with eight lines each (lines 1-8) were initiated. One lineage received a Jasmonic
acid (JA) treatment lineage whereas the control (CO) lineage did not. Both lineages
combined are referred to as “treatment” lineages. Descendants from all individuals of these
treatment lineages were grown simultaneously in a common control environment for DNA
methylation screening. I will refer to these plant as the DNA isolation lineage. As DNA
methylation screening is performed in the offspring of the treatment lineages, the
intergenerational distance between DNA methylation-screened plants from subsequent
generations in the multigenerational experiment is augmented by two. For instance, the
intergenerational distance between G1 and G2 plants of the same line in the treatment
lineage is one generation, but as the DNA methylation is measured in the offspring of both
G1 and G2 individuals a “distance” of two generations is added, resulting in a minimum
intergenerational distance of three generations. Likewise, the intergenerational distance
between the offspring of G1 and G6 of the same line, which are five generations apart, is
seven generations.

4.2.1 Multi-generation experiment

Single seed-propagated lines of apomictic dandelions were established for the genotypes
A34 and H72. A34 is a recent apomict that was produced in an experimental cross between
a sexual diploid mother and diploid pollen from a triploid father (Tas & Van Dijk 1999;
Verhoeven, van Dijk, et al. 2009). H72 is an established apomict collected from the field and
lab-propagated for several generations prior to the experiment (Verhoeven & van Gurp
2012). Per genotype, two lineages with 8 lines each were established and propagated for 6
generations via single-seed descent (Fig. 4.1). During the first 3 generations of the
experiment (G1-G3) the 8 lines of the JA lineage received a Jasmonic Acid (JA) treatment
(see Fig. 4.1). In the rest of this chapter I refer to the lines that received JA in G1-G3 as ‘JA
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lines’ and the other lines are called ‘control lines’. Note that plants from the JA lines did not
receive JA treatment during generations G4-G6. In each JA line in generation G1-G3, JA was
applied twice, when plants were 5 and 7 weeks old; 0.25 ml (week 5) and 0.75 ml (week 7)
of a 10 mM JA solution (Sigma J-2500, dissolved in ethanol and diluted to the desired
concentration with a 0.1% Triton X-100 surfactant solution) was applied and manually
distributed over the surface of two leaves (week 5) or four leaves (week 7). Per genotype,
all lines from both lineages were founded by a single ancestor individual (GO). In each
generation of the experiment, all plants were grown in a common greenhouse environment.
For all generations, seeds were germinated for 10-11 days (10 h dark: 14 h light; 14°C:
18°C) in a growth chamber. Seedlings were individually transplanted into 9cm pots
containing a mixture of 80% potting soil and 20% pumice, and per genotype pots were fully
randomized over a table in a greenhouse with (10 h dark : 14 h light; 16°C : 21°C). Plants
were watered every ~2 days as required, and twice per week the table was flooded with
half-strength Hoagland nutrient solution. Cohorts were grown until >95% of plants
produced flowers and seed heads.

4.2.2 DNA methylation screening experiment

Apomictic seeds were collected from all individual plants from the multi-generation
experiment described above and stored at 15°C in a seed storage cabinet with 30%
humidity in the absence of light. After completion of the multi-generation experiment, a
single offspring individual from each of the experimental plants was grown together in a
common environment for DNA extraction and DNA methylation analysis. This DNA
methylation screening experiment was designed for 192 plants (2 genotypes x 16 lines x 6
generations) but because some seeds were lost, the experiment was realized with 2
genotypes x 15 lines x 6 generations, for a total of 178 plants (two lines had germinating
seeds for 5 instead of 6 generations). Seeds were sterilized using 0,05% bleach and
germinated on 2% agar in petri dishes sealed with parafilm in a growth cabinet for 7 days
(10 h dark: 14 h light; 14°C : 18°C). Seedlings were individually transplanted into 9cm pots
containing a mixture of 80% potting soil and 20% pumice and were grown in a fully
randomized design in a climate chamber (10 h dark: 14 h light; 15°C : 20°C). Plants were
watered every two days, and twice per week the carts were flooded with half-strength
Hoagland nutrient solution. Leaf samples were harvested after 30-36 days for DNA
isolation. Per plant, 6 leaf punches were taken from the sixth leaf, avoiding the latex-rich
mid-vein. Leaf punches were flash frozen in liquid nitrogen and stored at -80°C after
sampling. Note that because the plants grown for DNA methylation screening did not
receive any treatment, I can only detect Jasmonic acid effects on DNA methylation that are
transmitted transgenerationally and not direct JA effects on the treated plants themselves.

4.2.3 DNA isolation and epiGBS library preparation

For DNA extraction leaf discs were homogenized by bead-beating the frozen leaf tissue in a
2-mL Eppendorf tube with 2-3mm stainless steel beads. No more than 100 mg of fresh
tissue was used per sample. Samples with beads were taken from the freezer and stored in
liquid nitrogen. For each batch of 12 samples, the tubes were put in a TissueLyser 24
adaptor set block that was partially submerged in liquid nitrogen to prevent thawing during
sample placement. After 30 seconds of shaking at 30 Hz at 1,800 oscillations per minute, the
tubes were submerged in liquid nitrogen, after which a second 30 second round of shaking
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was performed at the same settings. DNA was isolated using the Macherey-Nagel
Nucleospin Plant II kit. I followed the manufacturer’s protocol with the following
modifications. For cell lysis, I used cell lysis buffer PL1 for 30 min instead of 10 min. After
filtration through the pink nucleospin filter, I carefully pipetted the flow-through into a
fresh 1.5-mL tube, avoiding the pellet that is often formed at this stage. I used an additional
centrifugation step to avoid a small pellet; the clear supernatant was used in the following
steps according to the manufacturer’s protocol. As restriction enzymes are very sensitive to
proteins and other contamination, I selected only samples with high purity according to
Nanodrop 2000 measurements (specifically, 260/280 and 260/230 ratios of at least 1.8 and
1.5, respectively). Based on Nanodrop measurements, per individual 400 nanogram of DNA
was used. EpiGBS libraries were prepared as described previously (van Gurp et al. 2016)
using Pstl as enzyme. Pstl (recognition site C_TGCA”G) is a frequently used restriction
enzyme in Genotyping By Sequencing (GBS) (Elshire et al. 2011), however it is methylation
sensitive for CHG methylation, for which two sites are present in the enzyme recognition
site. As such, a bias against CHG methylation was detected previously (van Gurp et al. 2016),
making this enzyme better at unbiased quantification of CG methylation than of CHG
methylation. In addition to the Pstl epiGBS libraries, standard GBS libraries were prepared
from the unconverted digestion ligation mixture. For both epiGBS and GBS libraries, 5 pL
out of a total of 60 pL was used per sample. Pools of all samples for both the epiGBS and
GBS libraries were cleaned up using Qiaquick PCR cleanup (Qiagen; 28104), elution was
performed in the Qiagen elution buffer (EB) in a volume of 40 pL. 0.8x SPRI size selection
was applied, elution was done using Qiagen EB in a volume of 24 pL. For the standard GBS
libraries, nick repair and bisulfite conversion were skipped. 2 pL of the size selected
digestion ligation mixture was used as a template for the final PCR according to (van Gurp
etal. 2016).

4.2.4 Sequencing and bioinformatics

4.2.4.1 Library quantification

For accurate quantification of the sequencing libraries, a miseq Nano run was performed on
178 pooled libraries from 178 samples of which 82 were GBS and 96 were epiGBS libraries,
pooled in equal ratios. By combining GBS and epiGBS libraries in a single pool I only needed
one sequencing run for quantification. As I have 12 barcoded adapters for the forward read
and 8 for the reverse reads, a maximum of 8x12 = 96 samples could be multiplexed per
lane. However, epiGBS and GBS libraries can be distinguished due to differential conversion
of the cytosines in the unmethylated enzyme recognition site (see (van Gurp et al. 2016)),
which is what allowed us to pool epiGBS and GBS beyond the 96-sample limitation.
Sequencing reads were demultiplexed using demultiplex.py (see
https://github.com/thomasvangurp/epiGBS /tree/epiGBS-Nature methods) which was
edited to allow for distinction between epiGBS and GBS reads. Read counts for GBS and
epiGBS reads were made based on the forward and reverse barcoded tag present in the
read names using the following bash commands for epiGBS (pigz -cd
R1lsamplecode123_000000000-DOBJK_s_1_fastq.txt.gz|grep "watson\|crick" | tr ' " "\t'|cut -
£2,3]tr "\t' '_'| awk "{count[$1]++} END {for (word in count) print word, count[word]}'|sed
's/BC:Z://g'|pbcopy) and GBS (pigz -cd R1samplecode123_000000000-
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DOBJK_s_1_fastq.txt.gz|grep "gbs" | tr ' ' "\t'|cut -f2,3|tr "\t' '_"| awk '{count[$1]++} END {for
(word in count) print word, count[word]}'|sed 's/BC:Z://g'|pbcopy). Observed counts for
barcodes were matched to the original samples. Per sample counts were used to adjust the
sample pooling ratio for subsequent epiGBS library sequencing (see below) to correct for
over- and underrepresented samples by adding less or more DNA from the digestion-

ligation mixture to the final PCR.

4.2.4.2 epiGBS library sequencing

Two lanes of sequencing were performed on an Illumina Hiseq2500 (125-cycles paired-end
reads) using a randomly distributed 96-plex (R1-R96) and 82-plex (R97-R178) epiGBS
library for a total of 178 samples. The 96-plex library yielded 130,529,265 reads whereas
the 82-plex library yielded 124,968,262 reads. Demultiplexing discards reads that cannot
be assigned reliably due a high rate of mismatches in the barcode, yielding 103,400,923
usable reads for the 96-plex and 82,132,633 reads for the 82-plex library. Such reads are
not filtered out here as such low-quality reads are discarded during the mapping process.
Details of demultiplexing and mapping settings are described previously (van Gurp et al.
2016).

4.2.4.3 Methylation and SNP calling strategy

Reads were mapped against the Pstl-based dandelion epiGBS pseudo-reference sequence
published previously in (van Gurp et al. 2016). Variant calling was based on samtools
mpileup version 1.3 combined with a custom python script for methylation and SNP calling
(https://github.com/thomasvangurp/epiGBS/blob/master/mapping varcall/methylation
calling samtools.py). This script follows the same logic as the methylation calling script
based on Freebayes (van Gurp et al. 2016). However, compared to that script, the new
version is more sensitive, runs faster and contains an improved methylation and SNP
detection algorithm. Variant calls in gzipped VCF files were generated for the Watson and
Crick strand separately using samtools mpileup v1.3 with the following command
(samtools mpileup --reference ../output_denovo/consensus_cluster.renamed.fa -gt DP, AD,
INFO/AD, ADF, INFO/ADF, ADR, INFO/ADR -d 10000000 -q 0 -Q O -v (watson.bam or
crick.bam) > (watson.vcf.gz or crick.vcf.gz). For every non-reference allele called on all 178
samples, only alleles with a frequency of at least 5 percent of the reads were preserved to
avoid potential sequencing errors. As presented in (van Gurp et al. 2016), Crick strand
reads are converted to the reverse complement, to allow for representing (methylation)
variants of both the Watson and Crick strand based on the same (Watson) reference
sequence. On both strands, unmethylated cytosines are transformed into thymine, but given
the reverse complement representation of the crick strand, methylation polymorphisms on
the crick strand are denoted as G / A whereas on the Watson strand they are C/T.
Methylation calling based on Watson and Crick allele observations follows the procedure
described in (van Gurp et al. 2016). Briefly, the Python script methylation_calling.py uses
the ‘walktogether’ method of the PyVCF package (https://github.com/jamescasbon/PyVCF)
to simultaneously iterate over both Watson and Crick VCFs. In this way, SNPs and
methylation polymorphisms were distinguished and split. C/T polymorphisms in the
Watson strand combined with C on the Crick strand indicate a methylation polymorphism
on the Watson strand, whereas a G/A polymorphism on the Crick strand combined with a G
on the Watson strand indicates a methylation polymorphism on the Crick strand. Where
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combined SNP and methylation lead to the same polymorphism (C/T or G/A) on both
Watson and Crick strands, only the SNP is called, as the methylation ratio cannot be reliably
determined. SNP variant calling was refined by writing a new algorithm according to a set
of rules aimed at minimizing false positive SNPs. As a basic rule, SNP variants that are not
obscured by bisulfite conversion, such as for example A/T SNPs, are required to be present
on both strand in order for them to be called. Furthermore, SNPs containing a C or G are
subject to rule 2 and 3:

1. Per sample SNP variant observations in Watson and Crick strand should match, e.g. if
the reference is T and an A variant is observed on the Watson strand, that A should
also be present as a variant on the Crick strand. Variants not meeting this criterion
are not called

2. C/T and G/A SNPs can only be called based on respectively Crick or Watson strand
as these genotype calls can only be interpreted as genetic variation with reads from
one strand, as methylation variation can cause the same genotype call on the Watson
strand (C/T) or Crick strand (G/A) after bisulfite conversion.

3. SNPs containing a C or T allele are called on both strands whenever possible. For
example, a C/A SNP can be T/A on the Watson strand only if a T allele is absent from
the Crick strand. In this case, the Watson T allele is interpreted as evidence for a C
(which was bisulfite converted) and is used in conjunction with the C allele count
from the Crick strand.

4.2.4.4 SNP filtering and sample exclusion
To assess whether all samples were genotyped correctly and no samples were accidentally
swapped between genotypes I selected a number of high quality SNPs according to the
following criteria:
1. Number of called samples is higher than 150
2. The number of samples (out of 178) called as homozygous reference, homozygous
alternate or heterozygous are all below 100 in order to exclude spurious SNPs that
are only found in a few individuals.

This filtering procedure resulted in 125 SNPs that together differentiate the A34 from the
H72 genotype. Subsequently, the resulting filtered variant call file was used as an input to a
custom R script
(https://github.com/thomasvangurp/epiGBS/blob/master/mapping _varcall/SNP_tree.R)

to make a dendrogram using the snpgdsHCluster, snpgdsIBS and snpgdsCutTree function
from the SNPRelate library (X. Zheng et al. 2012). Based on evaluation of this dendrogram
all samples from JA line 7 of A34 (A34_]JA_7) were excluded, as three samples from this line
(G4-G6) were clustered in the H72 group, which is most likely the result of an incorrectly
labeled sample in G4 during the execution of the multi-generational greenhouse
experiment. All individual samples clustering separately with a node height (Euclidean
distance between samples) above 0.1 were excluded from the analysis (see Fig. 4.2), as the
genetic dissimilarity of these samples compared to the other observed samples could
indicate a problem with the genotyping quality. Even though I applied strict filtering on
SNPs, technical artefacts due to for example excessive PCR-duplicates can occur. Samples
A34_C0_5_g3 and H72_C0O_7_g1, were discarded based on a low read count of respectively
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11961 and 54.201 reads.
H72_JA_6_g3, H72_JA_1_gl1 and
A34_CO_6_g2 were excluded
from the analysis based on
having a node h score > 0.1.
The final analysis thus
contained 167 samples (see
Fig. 4.2). Principal component
analysis on the DNA
methylation of all individuals
shows clear separation of the
two genotypes (see
Supplementary Fig. 4.2).

Figure 4.2. Clustering based on
genetic distances based on the
identity by state proportion
between all 178 samples based
on 125 SNPs. The Y axis shows
the individual dissimilarity in
the identity by state (see (X
Zheng et al. 2012)). Samples
A34_CO_5_g3, H72.C0_7_g1l,
H72_JA_6_g3, H72_JA_1 g1,
A34 CO_6.g2 and all six
samples belonging to JA-line 7
in A34 (A34_JA_7.X) were
excluded from the analysis
(lines shown in red), leaving a
total of 167 samples. The left
(main) branch of the tree with
the black dotted samples
contain the H72 samples
whereas the right (main)
branch of the tree contains the
A34 individuals.
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4.2.4.5 Filtering of methylation calls

A custom Python script was written to analyze the methylation.bed file output of the
methylation calling pipeline. I focused the analysis on CHG and CG sites, as CHH methylation
is very low to absent and thus called with the least accuracy; CHH methylation was only
assessed in describing the DNA methylation landscape. Only CG and CHG positions called in
at least 134 out of 167 samples (>80%) were considered for comparative analysis. Per
cytosine methylation ratios are calculated by dividing the unconverted read count by the
total read count, resulting in a ratio of 0 (no evidence of methylation) to 1 (full
methylation). For some downstream analyses a further minimum read coverage criterion
was specified (see results) which restricts those analysis to a small subset of high-
confidence methylation calls.

4.2.4.6 Calculating corrected correlation coefficients of inter-individual DNA methylation

One way of looking at transgenerational dynamics in DNA methylation is to determine the
correlation of methylation levels (across all cytosines called) between samples of different
generations. This was done separately for cytosines in CG and CHG context. As many loci are
not called in all 167 samples, pairwise comparisons between individuals are based on
different subsets of loci. In preliminary analysis, I observed that the number of loci called
and the sequence coverage of these loci are important confounding factors, leading to a bias
in the inter-individual Pearson R? for the methylation ratios. The number of loci called and
the inter-individual Pearson R? statistic are positively correlated (see Fig. 4.3); comparisons
between two samples with high sequencing coverage have a higher number of loci called
with good coverage, making the individual estimates of the methylation level of these loci
more accurate. Conversely, samples with low sequencing coverage have a lower number of
loci called, each with lower coverage with methylation estimates that are less accurate.
Initially, I tried to correct for this by including only loci with minimum 15X coverage in
>80% of the samples. This filtering did not sufficiently remove the observed bias, which
prompted us to design a more elaborate correction strategy. This strategy consists of (1)
excluding correlations between individuals having less than 2,800 cytosines in CG context
covered; and (2) statistically correcting the inter-individual Pearson correlation coefficients
for the number of loci included in the pairwise comparison. The threshold of 2,800
cytosines in CG context was determined based on visual inspection of the distribution of the
scatter plot (Fig. 4.3). The first filter discards inter-individual comparisons of individuals
that have less than 2,800 cytosines in CG context in common, which also raises the
minimum number of cytosines in CHG context to around 5,300. Based on this filter, 253 out
of 1,526 comparisons for A34 (17%) and 388 out of 1,834 comparisons for H72 (21%) were
discarded. The second filter corrects statistically for a coverage-dependent bias that I
detected. Using Microsoft excel for Mac, trend lines were fitted using both linear and
exponential equations. In case of exponential equations, excel reports the Pearson R? of a
linear approximation of the (x, In(y)) values. The relation between the number of available
positions and uncorrected Pearson R? is best described with exponential equations (see Fig.
4.3), which gave higher R? scores (based on the aforementioned linear approximation)
compared to a simple linear regression (data not shown). The difference between the
expected R2 score (based on the regression line) and observed (uncorrected) R? score is
added to an arbitrarily defined baseline value to yield a corrected Pearson R? score that is
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independent of the number of loci available. The baseline value for the derived (corrected)
R? statistic was determined by calculating the outcome of the derived equations (Table 1)
for a number of cytosines close to the maximum of the range; 3,000 for CG and 5,800 for
CHG. Although the baseline choice is arbitrary, I believe that the observed inter-individual
correlations are most accurate in comparisons with these maximum number of loci
included, making the R? values at this end of the scale a natural baseline choice. This leads
to the baseline values listed in Table 1. Corrected Pearson R? coefficients were subsequently
determined per genotype-treatment combination (A34 CO, A34 JA, H72 CO and H72 JA) for
all pair-wise comparisons within and between the 7 to 8 lines of each genotype-treatment
group. | suspect that especially for cytosines in CHG context these corrected Pearson R?
coefficients likely underestimate the ‘true’ correlation coefficient and absolute R? values
should thus be interpreted with caution. This is because the methylation sensitivity of the
enzyme Pstl I used, as well as PCR duplicates, have a negative impact on the accuracy of the
correlation estimates (van Gurp et al. 2016). The corrected Pearson R? scores in this study
are used to discern patterns in DNA methylation changes occurring over generations. For
this purpose, it does not matter that these scores likely underestimate the true correlations
as the technical issues that lead to this bias are constant. For between-line comparison the
maximum inter-generational distance is 14 between offspring of the G4 individuals (see Fig.
4.1). The minimum inter-generational distance is 4, for the offspring of G1 individuals from
different lines. Intra-line comparisons range in inter-generational distance from 3 (between
offspring of subsequent generations) to 7 (from offspring of G1 to offspring of G6).
Comparisons were made on 3,137 CG and 5,898 CHG positions distributed over 546 contigs.
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Figure 4.3. Number of cytosines available in inter-individual comparison vs corrected and
uncorrected Pearson R2in both the JA and control lineage for H72 (A, B) as well as A34 (C,
D). Exponential equations (see Table 4.1) explain 61%-71% of the observed variation
between number of cytosines available for comparison and uncorrected Pearson R?2
between individuals sharing more than 2,800 cytosines in CG context. The uncorrected
Pearson R? values are shown in green whereas the corrected Pearson R? are shown in blue.
Regression lines are based on comparisons between individuals with at least 2,800
cytosines in CG context. A) Uncorrected and corrected Pearson R? for cytosines in CHG
context in H72. B) Uncorrected and corrected Pearson R? for cytosines in CG context in H72.
C) Uncorrected and corrected Pearson R? for cytosines in CHG context in A34. D)
Uncorrected and corrected Pearson R? for cytosines in CG context in A34. The R? scores
shown in the figure for the exponential fit are derived using MS Excel and represent the
Pearson R? coefficient for a linear approximation of the (X, In(Y)) values where X is the
number of cytosines and Y is the corresponding R? score.

Table 4.1. Exponential equations derived for the corrected Pearson R? score.

genotype Sequence Equation Baseline Explained
context value variance R?

A34 CG Y(x) =903 + 0.000133-0-00425 - 0.948 0.71

A34 CHG Y(x) = 262 + 3.79e-11-€0-00505 -x 0.461 0.67

H72 CG Y(x) =887 + 0.00221-g0:00339-x 0.945 0.69

H72 CHG Y(x) = 288 + 7.73e-11 -e0.00425-x 0.479 0.61

4.2.4.7 Annotation of clusters

Contigs of the pseudo-reference were evaluated for similarity to Gene and TE annotations
using USEARCH UBLAST (Edgar 2010). A gene hit was defined for contigs with an e-value of
< le-5 after mapping to the reference proteome (RefSeq) of all eudicot plant species. TE-
related clusters were discovered using usearch blastx against a composite database, with
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sequences derived from the plant repeat databases for all taxa for all repeat classes from
Michigan state university downloaded in November 2015
(http://plantrepeats.plantbiology.msu.edu/downloads.html).

4.2.4.8 Detecting effects of JA treatment in previous generations on DNA methylation

In order to test whether parental Jasmonic acid application resulted in heritable DNA
methylation changes, I performed both univariate and multivariate analysis, contrasting JA
and control lines of both genotypes separately. In the univariate analysis, I aim to find
differentially methylated cytosines between JA and control lines on a per generation per
genotype basis. In the multivariate analysis, I visualized the DNA methylation distribution
using principal component analysis (PCA) for an exploratory data analysis. I subsequently
perform a redundancy analysis (RDA) to test for the statistical significance of the parental
pre-treatment history (control or JA) on the methylation patterns for both cytosines in CG
and CHG context per genotype.

4.2.4.8.1 univariate analysis to detect differentially methylated cytosines

For the univariate analysis, only positions with coverage of at least fifteen reads that are
present in >80% of the 167 samples are considered. Furthermore, [ subject only those
cytosines to a statistical test that have at least 3 samples in each of the 2 experimental
groups (JA or control) after the above filtering step. The total dataset subjected to
univariate (and multivariate) analysis has 167 samples x 28,809 cytosines in the reference,
which equals 4,811,103 data points. I used a logistic regression approach, testing the
‘experimental group’ effect on DNA methylation level using Wald Chi Square tests. If model
fit was poor, as judged by significant Pearson or Deviance goodness of fit test, | repeated the
logistic regression with the Williams scaling option to account for overdispersion.
Overdispersion, or too much variability around the mean, which is often found in count and
ratio data as the mean increases, was considered the most likely cause of poor model fit. I
retained the p values from these models only if Williams scaling resulted in good model fit
(non-significant Pearson and Deviance goodness of fit test). For those cytosines for which
also the Williams scaling option did not result in models with good model fit I do not
present p values. All retained p values were subjected to a false discovery rate correction,
which was applied per genotype x context on all tests performed. Analyses were done using
SAS 9.2 (SAS Institute, Cary, NC).

4.2.4.8.2 multivariate analysis to detect JA pretreatment effects on DNA methylation

For the multivariate analysis, [ added two other filtering criteria to the ones defined for the
univariate analysis, excluding non-variable sites and sites with missing data. The first
criterion follows (Gugger et al. 2016) and aims to exclude loci that contribute noise but not
signal for distinguishing between groups. Following (Gugger et al. 2016), cytosines were
included in the analysis if the range of methylation levels across all samples (of that
genotype and context) is higher than 0.1 (10%) (so for example: if all samples have
methylation levels between 0 and 0.1 for a given cytosine, then that cytosine is excluded
from the analysis, but if methylation levels range between 0 and 0.11 then the cytosine is
included in the analysis). Secondly, I excluded positions that were not called in all samples
for a given genotype (no missing data is allowed). For exploratory analysis and
visualization, I used principal component analysis (PCA), coloring sample by lineage (JA or
CO). To test for statistical significance of lineage (JA-treated or control) on the methylation
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patterns, I used a redundancy analysis (RDA). Methylation levels were arcsin-transformed
and centered (by cytosine) to make the data better suitable for RDA. For each combination
of genotype and sequence context I fitted two models to test if treatment effects (lineage)
methylation. First, I fitted a full model with treatment (lineage), generation, and the
treatment (lineage) x generation interaction. If this model was significant, I proceeded with
testing the main effect of treatment, and subsequently I fitted this model to subsets of the
data that represent a single generation each. This is an attempt to tease out if treatment has
an effect, and if so, in which generations this is expressed. Analysis were done using
CANOCO v5.03.

4.2.5 Statistical analysis of decreasing correlation over generational distance

To determine if the negative trend for the corrected Pearson R? distance as a function of
intergenerational distance as shown in Figure 4.5-4.7 is statistically significant, [ performed
one-way ANOVAs for cytosines in CG and CHG context for both lineages of the genotypes
A34 and H72. Per lineage, I performed both analysis within individual lines and analysis
between lines (excluding intra-line comparisons). Although the inter-line comparisons have
a greater inter-generational distance, comparisons between individuals from different lines
are not linear through time and as such can induce a bias, whereas intra-line comparisons
are devoid of this bias (e.g. G6 was always grown at a different point in time than G4). Per
lineage, all corrected Pearson R? distances are taken into account as individual data points.
Analysis were performed using SPSS v24.

4.3 Results

4.3.1 Dandelion DNA methylation landscape

Depending on the genomic classification of the epiGBS cluster between 18% (in TE-related
clusters) and 34% (in gene related clusters) of cytosines in CG context are methylated (>
10% methylation) (see Fig. 4.4). Only 4% of cytosines in CHG context are methylated (>
10% methylation). CHH methylation levels in dandelion are also low, with only 3% of
cytosines in CHH context showing methylation above 10%. Gene-annotated clusters have
higher level of CG methylation and lower levels of CHG and CHH methylation compared to
non-annotated clusters, indicative of gene-body methylation (Takuno & Gaut 2013; H. Wang
et al. 2015) , whereas TE-related clusters have higher levels of CHG and CHH methylation,
consistent with previous reports (Cokus et al. 2008; Song et al. 2013; X. Li et al. 2012; H.
Wang et al. 2015) (Fig. 4.4).
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Figure 4.4. DNA methylation level distribution for cytosines in CG, CHG and CHH context in
gene-related, TE-related or other clusters. Methylation levels are recorded for cytosines in
contigs with >80% of the samples being called with a minimum coverage of 20 reads.

4.3.2 Transgenerational stability of DNA methylation variants

If DNA methylation is largely under genetic control and no mutations occur I would expect
high correlations of DNA methylation ratios between generations. Similarly, DNA
methylation variants that are not under genetic control but that are epigenetically inherited
in a very stable way would lead to the same result. Unstable and non-heritable DNA
methylation changes would lead to a lower intergenerational correlation, as would
technical noise in the methylation scores (e.g. due to PCR duplicates, low coverage, or
enzyme methylation sensitivity (van Gurp et al. 2016) (see discussion). Only novel but
heritable epimutations should lead to a decrease of the correlation (Pearson R?) over
generational distance. In that case, the correlation of DNA methylation between closely
related individuals should be higher than that of more distant relatives due to epigenetic
divergence over generations. The slope of this declining correlation coefficient over
generational distance provides an indication of the rate and the stability of heritable DNA
methylation changes.

Overall, I observed a negative trend in the intergenerational correlation of DNA methylation
between individuals over generational distance, for cytosines in CG and CHG context (see
Fig. 4.5 and 6). I found considerable variation in the intergenerational methylation value
correlations (Pearson R?) for individual lines, showing weak or even absent patterns when
considering some lines in isolation (see Supplementary Fig. 4.1), possibly related to
technical noise in the Pstl-based epiGBS methylation calls. Combined however, the average
corrected Pearson R? values for all panels in Fig. 4.5 and panel A,C and D in Fig. 4.6 show a
clear trend, with a negative regression coefficient that was significant for most inter-line
comparisons in CG context and for most intra and inter line comparisons in CHG context
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(see Supplementary Table 4.5). The correlation coefficients for CHG are markedly lower for
cytosines in CHG context compared to cytosines in CG context, which could be explained by
technical errors or a higher sensitivity to environmental changes (see discussion). The
slope for the regression lines based on CHG methylation in control lines (Fig. 4.6) is 10-fold
higher compared to the regression based on CG methylation in control lines (Fig. 4.5),
indicating a higher rate of heritable methylation changes in CHG context than in CG context.
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Figure 4.5. Generational distance versus average corrected Pearson R? for the JA and Control
lineage for cytosines in CG context, both within (A, C) and between lines within a lineage (B, D).
Error bars show standard deviations for average corrected Pearson R2 scores. Linear regression
lines are plotted for the control lineage. A) A34 CG context within line. B) A34 CG context between
lines only. C) H72 CG context within line. D) H72 CG context between lines only. Asterisks next to
the lines in all panels indicate a significant relation between the corrected Pearson R? score and
intergenerational distance (see Supplementary Table 4.5)
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lineages. A) A34 CHG context within line. B) A34 CHG context between lines only. C) H72 CHG
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indicate a significant relation between the corrected Pearson R? score and intergenerational
distance (see Supplementary Table 4.5)
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4.3.3 Is there an effect of Jasmonic acid (JA) pre-treatment on DNA methylation in
dandelions.

We assessed whether JA pre-treatment had an impact on intergenerational DNA
methylation stability by comparing corrected Pearson R2 scores of JA-treated (offspring)
plants with control plants. I also investigated if JA treatment resulted in specific DNA
methylation changes using both univariate and multivariate analysis of DNA methylation
variation in both CG and CHG context.

4.3.3.1 (parental) JA treatment effect on intergenerational DNA methylation correlation

In principle, JA exposure could lead to heritable changes in DNA methylation in two
different ways. First, JA exposure could trigger targeted modifications (shared between
replicate plants). Second, JA exposure could enhance the rate of non-targeted methylation
changes. From the literature, there is evidence for the occurrence of both random and
targeted DNA methylation polymorphisms after stress exposure

(C. Jiang et al. 2014; Wibowo et al. 2016), which gradually disappear after the stress is
relieved. Targeted changes are expected to reduce the Pearson correlation coefficient after
a shift in the environment. Nontargeted changes also reduce the correlation after each JA
exposure. Thus, I expect an overall reduction in the intergenerational correlation in the JA
lines compared to the control lines. Corrected Pearson R? scores for intergenerational
comparisons in the JA lineage are indeed slightly lower across the board for H72 in both
contexts and for A34 in CHG context. However, (almost) no significant differences in
intergenerational correlations could be detected between JA and control lines based on a t-
test (Supplementary Table 4.3), indicating that the data do not provide evidence for an
overall increase in transgenerationally stable JA-induced epimutations.

Following the same argumentation, I expect that the average corrected Pearson R? scores
for comparisons made between offspring plants from G1-G3 of the JA lineage to show a
lower correlation compared to those from generation G4-G6 or the control lineage,
assuming that the JA treatment effects on the (random) epimutation rate are transient and
fade in the post-treatment generations. I therefore compared intra-line correlations of
cytosine methylation ratios between subsequent generations (with an intergenerational
distance of 3, see Fig. 4.7) between offspring of treated individuals (g1-g3) in the JA-lineage
to the corresponding generations of the control lineage. I found a significant JA effect for the
intra-line inter-generational average corrected Pearson R? score between g2 and g3 for H72
CG methylation, in which the six available JA lines showed an average corrected Pearson R?
score of 0.952 compared to 0.940 of the six available control lines (t=2.95 p=0.014, see
Supplementary Table 4.3). One marginally significant test results in H72 for cytosines in CG
context was found for the average Pearson R? score between g1 and g2 (t=0.75 p=0.07),
whereas no significant results were detected for cytosines CG context in A34 and cytosines
in CHG context in either A34 or H72. The emerging patterns hint at a JA induced effect on
CG methylation in H72, although this did not result in significant values for all comparisons
that include offspring of JA treated plants (Supplementary Table 4.3).
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Figure 4.7. Corrected Pearson R2 for offspring from adjacent generations
(intergenerational distance of 3) for the JA and Control lineage for cytosines in CG and CHG
context. Error bars show standard deviations for average corrected Pearson R? scores.

4.3.3.2 JA-treatment induced DNA methylation changes

To test if specific (targeted) changes occurred due to JA treatment I used logistic
regressions to test whether there are individual cytosines that show a consistent difference
in DNA methylation in the offspring of JA-treated plants compared to control plants of the
same generation. [ found only few positions with statistically significant differences in
methylation rate between the JA-treated and control plants (see Table 4.2).
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Table 4.2. Cytosines with significant JA-CO differences per genotype, differentiated per
generation and sequence context.

Tested Significant
genotype context generation . JA-CO
cytosines .
difference
A34 CG G1 2,532 0
G2 2,327 0
G3 2,695 2
G4 2,458 0
G5 2,337 1
G6 2,536 0
A34 CHG G1 4,547 2
G2 3,944 0
G3 4,943 8
G4 4,262 0
G5 4,094 0
G6 4,580 0
H72 CG G1 2,228 0
G2 2,533 1
G3 2,337 0
G4 2,495 0
G5 2,291 0
G6 2,223 0
H72 CHG G1 3,812 0
G2 4,542 0
G3 4,018 0
G4 4,355 0
G5 3,862 0
G6 3,672 1

Per genotype, context and generation the number of cytosines in the filtered data set and
the number of cytosines with a significant JA-CO difference after controlling for multiple
testing are shown.

Out of the total of 15 contigs that include a significantly differentially methylated position
(data not shown), 3 have significant blast hits to genes (see Supplementary Table 4.4)
whereas no TE-related contigs were found. Out of the total of 546 contigs included in the
analysis that contained positions with sufficient sequencing coverage, 96 had significant
blast hits to genes and 13 to transposable elements. Gene related contigs are thus
significantly over-represented in the set of contigs in which I found differential methylation
(Chi square 6.85 p=0.01), whereas the absence of TE-related contigs in this set was not
significant (Chi square 0.713 p=0.40). The very few detected JA-induced DNA methylation
differences were thus biased to occur in genes, not in transposable elements. However, this
may be biased because genes are usually more easily annotated than transposable
elements.
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To check if the JA and control lines differ in DNA overall methylation profiles (evaluated
across all positions simultaneously) I performed PCA on cytosines in CG and CHG contexts
for both genotypes (see Fig. 4.8). In all cases, the amount of variation explained by the first
2 PCA axes is small. But, especially for CHG methylation in A34, the CO and JA sample
distribution seem not random, a significant separation due to parental JA-treatment is
present (see Fig. 4.8).
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Figure 4.8. Principal component analysis (PCA) based on sites with variable DNA
methylation, performed for CG and CHG context separately for both genotypes, including
offspring from all six generation. A) A34 CG B) A34 CHG C) H72 CG D) H72 CHG
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Table 4.3. Results of redundancy analysis tests of the effects of Treatment (lineage: JA or
control) and Generation on DNA methylation profiles

Factors in Efficiency of
Sequence model explained y
genotype . - constrained Test P-value
context  (G=generation variation! axis?
, T=treatment)

CG GTGxT 14.3% Full model 0.178

GT,GxT 14.8% Hmote o015

G 6.5% Generation 0.294

T 2.5% 31.9% 0.001

A34 T, G1 only 7.9% 41.7% 0.322
CHG T, G2 only 9.3% 51.1% Treatment 0.008

T, G3 only 9.1% 38.3% 0.147

T, G4 only 11.1% 53.8% 0.014

T, G5 only 8.1% 33.4% 0.656

T, G6 only 8.4% 40.6% 0.15

CG GTGxT 12.5% 0.761

H72 CHG G T,GxXT 12.9% Fullmodel 535

1% variation in the methylation data that is explained by the factors in the model

2 efficiency of the first RDA axis is calculated by comparing two values of %explained
variation in the methylation data: (1) %explained variation by the RDA axis (which is a
constrained axis, meaning that it maximizes the variation that is associated with the factors
in the model), compared to (2) %explained variation by the axis from the unconstrained
method PCA (which maximizes the variation between samples irrespective of any
association with factors in the model). This helps interpreting the strength of the effect of
the model factors on methylation: the overall %explained variation may be small (often
<10%) but a multivariate summary of the data along the levels of the model factors explains
~30-50% of a multivariate summary of the data that is blind to the model factors. So the
model factors (treatment, specifically) is a nontrivial source of the variation in the
methylation data.

To determine statistical significance of the JA pre-treatment effect on overall DNA
methylation profiles I performed a redundancy analysis (RDA) on the methylation ratios of
cytosines in CG and CHG context for both genotypes. I found no evidence for an effect of
treatment or generation for cytosines in CG context in either A34 or H72. A significant full
model test was observed for genotype A34 for cytosines in CHG context (p=0.015; see Table
4.3), indicating that for this genotype the CHG methylation profile differed between
generations and/or treatment groups. For A34 CHG, I thus proceeded with testing the effect
of treatment within each of the generations separately. I found a significant effect for
treatment across all generations simultaneously, and individually in generation 2 (p=0.008)
and generation 4 (p=0.014). JA-treatment effects are thus significant, but they are not
consistently detected in all generations. The difference also is not preferentially found in
the offspring of treatment generations G1-G3, as no significant effects were detected for G1
and G3 (see Table 4.3).
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4.4 Discussion

This study is the first to use epiGBS in an experiment designed to track transgenerational
stability of DNA methylation. The aim of this study was to i) characterize DNA methylation
in apomictic dandelions in detail using epiGBS, ii) determine the stability of DNA
methylation over generations and iii) determine the impact of Jasmonic acid treatment on
heritable DNA methylation changes. I performed this study using a recently established
apomict A34 as well as the naturally occurring (and evolutionarily older) apomict H72, to
evaluate whether the age of an apomictic lineage has an influence on the DNA methylation
transmission and stability. Compared to other plant species (Niederhuth, Bewick, Ji,
Alabady, Kim, Li, et al. 2016) , the DNA methylation patterns reported on here fall in line
with previously described species, except for the somewhat lower levels of CHG
methylation, which could well be attributed to technical artifact related to the methylation
sensitive enzyme Pstl used (as described in the methods section). I have found a significant
JA treatment effect in a multivariate analysis on cytosines in CHG context for the recent
apomictic genotype A34. [ also found evidence of a few significantly differentially
methylated loci using univariate analysis. The latter were over-represented in gene-related
contigs. It thus appears that Jasmonic acid application results in some heritable DNA
methylation changes, but this effect is not consistently observed in all genotypes or in all
sequence contexts.

4.4.1 dandelion DNA methylation landscape

DNA methylation patterns are often distinct between plant families, with CHG methylation
for instance being reduced in the Brassicaceae and reduced heterochromatic CHH
methylation as characteristic of the Poaceae (Niederhuth, Bewick, Ji, Alabady, Kim, Li, et al.
2016). Although the number of fully sequenced plant methylomes is rapidly increasing, in
the Asteraceae family to which T. officinale belongs no methylomes are yet available. I found
most DNA methylation in CG context, consistent with observations in all other plant species
(Niederhuth, Bewick, Ji, Alabady, Kim, Li, et al. 2016). The levels of CHG methylation I found
were low compared to most other plant species, but this could be the consequence of a
technical artefact (see materials and methods).

4.4.2 Transgenerational stability of DNA methylation variants

Stable DNA methylation, which is either genetically determined or pure (independent from
genetic variation), is expected to result in a constant and high correlation coefficient over
generational time when comparing the methylation profiles of ancestors with their
offspring. Very unstable but non-heritable DNA methylation, which changes every
generation, should contribute to a constant but lower correlation coefficient over
generational time. In this study, I observed a declining correlation coefficient over
generational time, regardless of the constant positive impact of stable variants and negative
impact of unstable non-heritable methylation variants. This steady DNA methylation
divergence over generations suggests the presence of novel methylation variants in each
generation that are stably inherited. Besides these novel variants, existing variants can also
revert to the original (non-methylated) state, such as observed in several studies (Becker et
al. 2011; van der Graaf et al. 2015). I observed this negative trend in the corrected Pearson
R? scores comparing DNA methylation in both CG and CHG contexts.
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Correlations for cytosines in CHG context were lower than those in CG context while the
decline in correlation over generational distance was stronger for cytosines in CHG context
compared to cytosines in CG context. On average, closely related individuals with an
intergenerational distance of three had a corrected Pearson R? for cytosines in CG context of
0.95 whereas that of cytosines in CHG context was 0.54. There are several potential
contributing factors to this difference. First, as mentioned before, is the use of the enzyme
Pstl, which is blocked by methylation in CHG context. As methylation in CHG context is
spatially auto-correlated (Cokus et al. 2008), sequences with a methylated restriction site
are more likely to contain CHG methylated sites. As the enzyme is blocked, such
observations would be missed, leading to an underestimate of the DNA methylation of
cytosines in CHG context. Second, the distribution of DNA methylation in CG context is
bimodal, whereas CHG and CHH methylation in plants have a unimodal continuous
distribution (Cokus et al. 2008; Lister et al. 2008; van der Graaf et al. 2015). Changes in CG
methylation are from very low to very high, or vice versa, making such events easily
detectable, even with limited read coverage or severe PCR bias. CHG and CHH methylation
ratios in plants on the other hand are not bimodally distributed, making detection of subtle
changes in these ratios more challenging. These limitations on the accuracy of our estimates
for methylation of cytosines in CHG context may contribute to a lower inter-individual
correlation for methylation in CHG context. But they are not expected to be a cause of the
negative trend in correlation over generational time that I observed, as they represent a
technical artefact that should have a similar effect in each generation. The slope of the
negative trend observed for intergenerational DNA methylation correlations was 10-fold
higher for cytosines in CHG context compared to cytosines in CG context, suggesting more
changes in DNA methylation. From our data, it is however not clear if this is due to a higher
proportion of variable sites in CHG compared to CG context or a higher reversal rate (lower
stability) of DNA methylation variants in CHG context than CG context.

Previous studies (van der Graaf et al. 2015; Becker et al. 2011) have not characterized
heritability of DNA methylation in CHG context, which could be explained by the way
heritability of DNA methylation variants was determined. The transgenerational stability of
DNA methylation variants in these studies is typically assessed by calculating the number of
differentially methylated positions that arise per generation. The statistical power for the
detection of differentially methylated positions (DMPs) is higher for cytosines in CG context,
as bimodal CG methylation typically switches from ~0% to ~100% or vice versa, which is
thought to be a major contributor to their over-representation compared to differentially
methylated positions in other contexts (Becker et al. 2011). Most transgenerational studies
ignore non-CG DMPs, as these only represent a very small fraction of the total DMPs that
can be detected (Schmitz et al. 2011; C. Jiang et al. 2014). A detailed study on the
transgenerational stability of DNA methylation in A. thaliana did not find changes in CHG
methylation between generations (van der Graaf et al. 2015). However, the present-absent
statistic used for DNA methylation is suitable for cytosines in CG but not CHG context.
Where methylation of cytosines in CG context is bimodally distributed, methylation in CHG
context in A. thaliana is nearly normally distributed, with average methylation around 55%
(Becker et al. 2011). I suspect that by using the presence-absence metric subtle changes in
the quantitative ratio of DNA methylation of cytosines in CHG context are missed, and
therefore heritability of DNA methylation in CHG context has not been detected.
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4.4.3 Stress induced DNA methylation variation (JA-effect)

We found subtle effects of parental jasmonic acid treatment on DNA methylation patterns
that was distinct between the two genotypes A34 and H72. In the young apomict A34
parental JA treatment resulted in altered DNA methylation cytosines in CHG but not CG
context (Fig. 4.8). In the established apomict H72 I did not find clustering reflecting
parental (JA) treatment or significant model results from RDA, but I found a significantly
lower intergenerational correlation for cytosines in CG context between offspring of JA-
treated plants compared to offspring of non-treated plants. Using univariate analysis, |
detected significant differentially methylated polymorphisms between the offspring of JA-
treated plants and plants from the control line for corresponding generations. These
changes were mainly found in CHG context and were overrepresented in contigs mapping
to genes, indicating that cytosines in gene-related sequences are more likely to be impacted
by stress induced DNA methylation changes.

Other studies focusing on the transgenerational stability of stress induced DNA methylation
changes in A. thaliana found both similar and different results. (C. Jiang et al. 2014) exposed
A. thaliana to high-salinity soil, which resulted in increased levels of differentially
methylated positions (DMPs), mainly in CG context. Up to ~75% of these stress-induced
DNA methylation changes were faithfully transmitted for up to two generations in plants
grown in control environment. Clearly, these result contrast with our findings. I found
almost no DMPs in CG context and the CG-DMPs that I found were not stably inherited in
the absence of stress, as I detected hardly any CG-DMPs between the offspring of JA G4-G6
and the control line. A more detailed study on the transgenerational stability of repeated
salt-stress-induced DNA methylation changes in A. thaliana uncovered that distinct
epigenetically labile regions in the A. thaliana genome show extensive changes in DNA
methylation (Wibowo et al. 2016). (Wibowo et al. 2016) found on average 6,866 DMPs
(40% CG, 15% CHG and 45% CHH), detected per generation using pairwise comparisons
between the offspring of salt-stressed and control plants, which represent 0.17% of the
average number of methylated cytosines that could be detected. In Wibowo'’s results, in
contrast with the findings described by (C. Jiang et al. 2014), second generation offspring of
stressed plants did not show that these stress-induced DMPs were maintained, suggesting
that these are transient. I do not find DMPs that are maintained for multiple generations,
but [ do find a few DMPs between the JA and control lineage in generation G4-G6 in both
A34 and H72, suggesting that a minor proportion of stress-related differential methylation
could have longer lasting effect.

A previous MS-AFLP based study on the impact of environmental stressors on changes in
DNA methylation and transmission in apomictic dandelions found that i) more polymorphic
MS-AFLP loci were found in plants subjected to stress treatment compared to control plants
and ii) most of the changed loci were transmitted faithfully to the next generation
(Verhoeven, Jansen, et al. 2009). Using our current dataset, I cannot determine if more
changes in DNA methylation occurred in plant subjected to direct JA-treatment, as I did not
collect DNA from these plants. Here, I only measure DNA methylation in the offspring of JA-
treated plants. Based on the high heritability found of the stress-induced DNA methylation
changes in the previous MS-AFLP based study, I can however say that the stress induced
DNA methylation variants I find here appear much weaker than those found in Verhoeven
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2010. Verhoeven subjected a single generation of A34, the same apomictic dandelion
genotype used here, to the same Jasmonic acid treatment I used here. JA treatment resulted
in a 10% increase (from 7.5 to 17.8%) in the number of polymorphic MS-AFLP loci
compared to spontaneously occurring DNA methylation changes in control lines. These
analyses were based on a small subset of labile MS-AFLP loci which were often polymorphic
among replicates in multiple environments. Changes in DNA methylation detected using
MS-AFLP are almost exclusively found in the CG context (Fulnec¢ek & Kovarik 2013). In most
of the analyses I focused on all scorable loci, except for PCA and RDA analysis which
required at least one difference in DNA methylation ratio higher than 0.1. This makes it
difficult to compare the results between the two studies. Compared to MS-AFLP, epiGBS
offers a higher resolution (more loci) a quantitative instead of a qualitative signal and
information on all sequence contexts which should lead to more reliable results.

Stress-induced DNA methylation changes were distinct between A34 and H72. Specific
stress induced changes in CHG DNA methylation were observed in the young apomict A34
and not in the established apomict H72 (based on the RDA analysis). Genotypic differences
in the sensitivity to environmental stress have been found before. For instance, drought
stress in Persicaria maculosa can lead to and adaptive transgenerational response in
offspring growing under dry conditions, which develop a bigger root system compared to
offspring of parents grown under control conditions (Herman & Sultan 2016). This adaptive
transgenerational effect is underpinned by DNA methylation, as zebularine treatment which
removes DNA methylation also removed the adaptive transgenerational effects. In
comparing different genotypes of P. maculosa, the authors found substantial variationin the
degree of both the adaptive transgenerational effect as well as the effect of zebularine
treatment, suggesting that there is substantial diversity in the degree of sensitivity of
environment induced DNA methylation between genotypes. This is consistent with the
different response that I observed between A34 and H72, suggesting that the sensitivity of
both genotypes to environmental stress might be different.

We uncovered specific stress induced changes in DNA methylation in the young apomict
A34 using multivariate analysis in CHG and not CG context. The observed changes were
variable between offspring plants from JA generations G1-G6, with a significant effect only
in G2 and G4 and a low but non-significant effect in G3 (p=0.147; see Table 4.3). The impact
of stress treatment on transgenerational DNA methylation changes is often stronger after
multiple consecutive treatments. For instance, Wibowo et al. found no transgenerational
effects on DNA methylation after the first stress generations, but did found such effects in
the offspring of from a linage with 3 and 5 subsequent generations of stress-exposure
(Wibowo et al. 2016). This might explain why I did not find significant changes in DNA
methylation in the offspring of the first JA treatment generation (G1). The indication of an
effect in generations G2-G4, but not in later generations, suggests that induced effects are
heritable but revert rapidly within 1-2 offspring generations, consistent with findings in A.
thaliana (Wibowo et al. 2016). For genotype H72 I did not obtain significant results from
the RDA analysis. Interestingly, the only sub-significant value (0.064) was obtained for
cytosines in CHG context, suggesting that also in H72 cytosines in CHG context are more
likely to be affected by JA treatment. The fact that I found specific effects in CHG and not CG
context is corroborated by (Wibowo et al. 2016). Reanalysis by Wibowo et al. of the data of
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Jiang et al. focusing on differentially methylated regions showed that CHH and CHG
methylation in salt stressed plants correlated well with stress treatment (Wibowo et al.
2016), whereas changes in CG methylation did not, which is consistent with the JA-induced
specific changes in CHG methylation I observed in A34.

4.4.4 Measuring DNA methylation in non-model organisms and epiGBS caveats
Measuring DNA methylation in species without a reference genome has hitherto mostly
relied on global quantitative methods such as high-performance liquid chromatography
(HPLC) or gel-based MS-AFLPs; but see (Platt et al. 2015) for semi-quantitative and
quantitative (Gugger et al. 2016) bisulfite sequencing based approaches. The local sequence
context (gene, TE, etc.) as well as the quantitative level of DNA methylation in a region can
differ, which cannot be picked up by MS-AFLP. For species with a reference genome whole
genome bisulfite sequencing (WGBS) has been used successfully to determine single base
resolution quantitative DNA methylation profiles. In absence of a T. officinale reference
genome, WGBS cannot be employed. Even with a reference genome available, applying
WGBS on a large number of individuals would be prohibitively expensive. Reduced
representation bisulfite sequencing (RRBS) allows focusing the sequencing effort on a
random but defined subset of genomic DNA, allowing to study more individuals
simultaneously with a limited sequencing effort. As the present study shows, the epi-
genotyping by sequencing (epiGBS) method that we developed (van Gurp et al. 2016) is an
efficient technique that enables researchers to study quantitative DNA methylation in
species without a reference genome, simultaneously allowing the detection of DNA
methylation and SNP polymorphisms while on a computationally derived pseudo-reference
sequence from bisulfite converted reads. Our study showcases the potential of epiGBS to
perform sequencing based studies in non-model organisms on a scale and level of details
that were hitherto impossible.

4.4.5 Conclusion and future perspectives

We provide the first bisulfite sequencing-based study on the transgenerational stability of
DNA methylation in an asexual plant without a reference genome, providing evidence for
heritable divergence over generations in DNA methylation in both CG and CHG contexts. I
found few and subtle effects of stress-induced DNA methylation changes that are consistent
with recent studies using whole genome bisulfite sequencing in A. thaliana. Studies on
stress-induced DNA methylation in the model species A. thaliana paint an increasingly
complex picture, which makes it difficult to assess the functional relevance of DNA
methylation variation uncovered in most ecological epigenetics studies. Although stress can
induce changes in the DNA methylation status of individual cytosines (DMPs), the functional
significance of such changes are unclear (Hagmann et al. 2015). This is apparent when
considering cytosines in CG context, which are strongly associated with constitutively
expressed genes. (C. Jiang et al. 2014) found many CG DMPs, but their differentiation was
not specifically associated with stress, in contrast to those found in CHH and CHG context
(Wibowo et al. 2016). The relevance of differential DNA methylation patterns detection
using MS-AFLPs, which focus on DNA methylation in CG and nog CHG context (Fulnecek &
Kovarik 2013) is therefore questionable. Future work assessing the suitability of the
algorithms currently used to detect DMRs in WGBS data for epiGBS data are however
required. Benchmarking studies like we have done developing epiGBS comparing DMR
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detection in WGBS data and epiGBS data from the same source can help to guide
developments in custom algorithm development. Likewise, targeted GBS approaches
employing oligonucleotide baits for specific genomic regions have been developed for
genotyping by sequencing (Uitdewilligen et al. 2013). Similar targeted approaches can be
easily envisioned to be applicable to epiGBS, allowing for targeted bisulfite sequencing. This

approach could be useful even in model organisms, as it could be used to target promotors
or other sequences of interest.

Supporting information
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Supplementary Figure 4.1. Intergenerational correlation for CHG methylation for both
A34 and H72 for all lines in both the control as well as the Jasmonic Acid treatment lineage.
In general, a negative trend is clearly visible, although exceptions occur, most prominently

in the control lineage of A34 for cytosines in CHG context, in which for Line 1 and 7 the
negative trend is not at all clear.
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Supplementary Table 4.2. Cytosines Included in multivariate analysis; without missing
observations (called with at least 15 reads in all samples).

Genotype Sequence Total positions Called in all Called in all
context samples samples and
With coverage variable
>15 across
samples
A34 ‘ CG 3,137 787 554
A34 CHG 5,898 1,546 848
H72 ‘ CG 3,137 838 606
H72 CHG 5,898 1,682 978
PCA A34 and H72 CG PCA A34 and H72 CHG

PCA Axis 2
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3
.
.
|
)
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o

PCA Axis 1 PCA Axis 1

Supplementary Figure 4.2. PCA using all samples, results indicate that for cytosines in CG
and CHG context, methylation is different between the genotypes; showing clear separation
of individuals from both genotypes on the First PCA Axis. Genotype H72 shows more
variation in for both CG and CHG context compared to A34.
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Supplementary Table 4.3. Independent sample t tests for corrected Pearson R? scores of
intergenerational DNA methylation ratios obtained within lines, comparing the scores
obtained within JA and control lines.

generations intergenerationa

Genotype context included 1 distance t-statistic p-value Levene's test
A34 CG All 3-7 -0.94 0.35 0.59
A34 CHG All 3-7 0.97 0.33 0.53
A34 CG All 3 -0.45 0.66 0.02
A34 CHG All 3 0.62 0.54 0.41
A34 CG All 4 -0.068 0.946 0.496
A34 CHG All 4 0.222 0.825 0.798
A34 CG All 5 -0.319 0.751 0.445
A34 CHG All 5 0.558 0.581 0.809
A34 CG All 6 -1.099 0.283 0.299
A34 CHG All 6 0.488 0.63 0.493
A34 CG All 7 -0.242 0.814 0.738
A34 CHG All 7 1.14 0.279 0.187
A34 CG glvsg2 3 0.30 0.77 0.59
A34 CHG glvsg2 3 0.60 0.56 0.33
A34 CG g2 vs g3 3 0.31 0.77 0.41
A34 CHG g2vs g3 3 0.34 0.74 0.62
A34 CG g3 vs g4 3 0.56 0.59 0.10
A34 CHG g3 vs g4 3 1.03 0.33 0.04
A34 CG g4 vs g5 3 -1.70 0.13 0.34
A34 CHG g4 vs g5 3 -0.93 0.38 0.71
A34 CG g5 vs gb 3 -1.53 0.16 0.10
A34 CHG g5 vs gb 3 0.30 0.77 0.09
H72 CG All 37 1.93 0.06 0.33
H72 CHG All 3-7 1.14 0.26 0.55
H72 CG All 3 1.28 0.21 0.69
H72 CHG All 3 0.73 0.47 0.56
H72 CG All 4 0.17 0.87 0.44
H72 CHG All 4 0.22 0.83 0.02
H72 CG All 5 0.50 0.62 0.46
H72 CHG All 5 -0.03 0.98 0.06
H72 CG All 6 1.56 0.13 0.45
H72 CHG All 6 0.64 0.53 0.54
H72 CG All 7 1.01 0.33 0.82
H72 CHG All 7 1.47 0.17 0.78
H72 CG glvsg2 3 2.00 0.07 0.41
H72 CHG glvsg2 3 1.11 0.29 0.22
H72 CG g2 vs g3 3 2.95 0.01 0.98
H72 CHG g2vs g3 3 -0.29 0.78 0.31
H72 CG g3 vs g4 3 0.75 0.47 0.07
H72 CHG g3 vs g4 3 -0.66 0.53 0.98
H72 CG g4 vs g5 3 -1.10 0.29 0.07
H72 CHG g4 vs g5 3 1.37 0.20 0.17
H72 CG g5 vs gb 3 -0.52 0.61 0.73
H72 CHG g5 vs gb 3 0.17 0.87 0.93
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Supplementary Table 4.4. Blast2go results for 3 gene-related contigs with differentially
methylated positions (DMPs) in CHG and CG context.

Co.ntig Description Contig # . Min sim
id length blastHits e-Value mean
129 tetraspanin-3-like 136 20 3.37E-23 81.2%
419 E3 ubiquitin- ligase PRT6 242 20 3.35E-17 96%
466 nucleoporin (DUF3414) 251 20 6.69E-9 68.1%

Description shows the name of the top blast hit, length shows the sequence length of the
contigs, min e-value is the e-value of the top blast hit. “Sim mean” is the average similarity
of the translated contig sequence compared to that of the top blast hit protein sequence.

Supplementary Table 4.5. Regression results of corrected Pearson R? scores (dependent
variable) on intergenerational distance (independent variable) for cytosines in CG and CHG
sequence context for comparisons made within lines (intra-line) and between lines of the
same lineage (inter-line).

Context line genotype lineage F-statistic p-value
Cco 4.494 0.038
[ntrali A34 JA 4156 0.045
ntra-iine
H72 co 1.502 0.224
CG JA 4.663 0.034
A34 co 87.028 <0.000
Inter-line JA 17.331 <0.000
H72 Co 90.686 <0.000
JA 25.929 <0.000
A34 co 15.016 <0.000
Intra-line JA 21.028 <0.000
H72 Co 11.102 0.001
CHG JA 10.051 0.002
A34 Co 56.052 <0.000
Inter-lin JA 5.047 0.025
© ‘ H72 Cco 77.299 <0.000
JA 145.476 <0.000
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Abstract

Phenotypic variation in plants is essential for adaptation to adverse or changing
environments. Phenotypic variation is determined by the complex interplay of genetic,
epigenetic and environmental variation; however, the role of epigenetic variation remains
poorly understood. I used apomictic dandelions that occur in a wide range of temperate
environments and feature a world-wide distribution to determine the potential role of
epigenetic variation in shaping the phenotype. Many dandelion lineages have an asexual
reproductive mode and lack recombination which is typical for sexually reproducing
organisms. Their asexual reproduction might imply that epigenetic variation is more
important in such systems than in sexuals as a source of phenotypic variation, as new
genetic variation cannot arise through recombination. Epigenetic variation can be caused
by environmental stress and can cause phenotypic variation in traits that can be inherited
by subsequent generations. To test if selection on epigenetic variants can drive heritable
divergence, 1 performed artificial selection on an arbitrary yet important and easily
identifiable phenotypic trait, flowering time, within genetically uniform apomictic
dandelion lineages. I subjected three genotypes of apomictic dandelions to multi-generation
stress-pretreatment with the phytohormone Jasmonic acid or single generation treatment
with 5-azacytidine which disrupts DNA methylation. I hypothesized that these
environmental treatments create additional epigenetic variation that is heritable, so that a
selection response is expected to be stronger after these treatments. After exposure, I
created selection lines for fast flowering as well as random lines and compared their
flowering time for two generations. I found evidence for induction of (epi)genetic variation
influencing flowering time in one of the genotypes, as well as clear indications for the
presence of standing (epi)genetic variation wupon which selection can act.
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5.1 Introduction

Phenotypic variation in plants arises as the result of a three-way interaction between the
genotype, the epi-genotype and the environment (Bossdorf & Yuanye Zhang 2011). The epi-
genotype is defined by epigenetic marks on or associated with the DNA sequence, such as
histone modifications or DNA methylation, which can influence DNA structure and gene
expression. Part of this epigenetic variation is determined by genetic variation, which has
been coined dependent epigenetic variation, whereas facilitated and pure epigenetic
variation are respectively partly and completely independent on genetic variation (E. J.
Richards 2006). Epigenetic marks serve an important role in, for instance, silencing
transposable elements (TE), thus contributing to preserving genome integrity (Slotkin &
Martienssen 2007). DNA methylation variation is of particular interest to ecologists and
evolutionary biologists as, in contrast to histone modifications, DNA methylation changes
can be transgenerationally heritable (Verhoeven et al. 2016). In plants, DNA methylation
occurs at cytosines in CG, CHG and CHH context, where H is A, C or T. Differentially
Methylated Positions (DMPs) are often heritable. The functional significance of DMPs is
often low, whereas regional differences in DNA methylation (differentially methylation
regions, DMRs) are often implicated in differential gene expression (Weigel & Colot 2012).

Contrary to genetic changes, epigenetic changes can occur rapidly and in response to
environmental perturbations, which might allow plants to adapt to diverse environments
without any genetic change which takes a very long time to accumulate in asexual plants.
Genetically uniform Arabidopsis thaliana epigenetic recombinant inbred lines (epiRILs)
with recombined genomes that are mosaics of artificially unmethylated and normally
methylated chromosomes show a wide distribution in complex traits such as flowering
time, plant height and primary root length. Variation in these traits was linked to stably
transmitted DNA methylation variants which were detected as epigenetic quantitative trait
loci (Johannes et al. 2009; Cortijo et al. 2014) accounting for 60% to 90% of the heritability
of flowering time and primary root length (Cortijo et al. 2014). (Dubin et al. 2015) surveyed
epigenetic and genetic variation in a natural A. thaliana population and found a strong
association between epigenetic and genetic variation, suggesting that the genetic variation
determines the epigenetic variation. However, also pure (uncoupled) epigenetic variants
occur. Sophisticated analysis of genetic variation and differentially methylated regions
(DMRs) associated with gene expression changes in naturally occurring A. thaliana
accessions indicate the presence of DMRs that are not linked to genetic variation,
suggesting that epigenetic variation independent of the DNA sequence can play a role in
adaptation of plant populations (Schmitz, Schultz, et al. 2013).

Epigenetic variation that is heritable but uncoupled from genetic variation has the potential
to contribute to selection responses in the absence of any genetic variation. Even when no
permanent epigenetic adaptation may be produced because heritable epigenetic mutations
are metastable and revert, selection acting on metastable epimutations has significant
effects on the dynamics of adaptation even when reversal rates are high (Klironomos et al.
2013). Selection for improved energy use efficiency and drought tolerance in isogenic
doubled haploid canola (Brassica napus) over three subsequent generations resulted in
epilines with enhanced energy use efficiency (Hauben et al. 2009), drought tolerance and
nitrogen use efficiency (Verkest et al. 2015). The selected lines showed differentially
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expressed stress-tolerance regulating genes, which was accompanied by increased
trimethylation of the permissive histone mark (H3K4me3) in these genes (Verkest et al.
2015), indicating that epigenetic variation was associated with, and presumably
responsible for, the enhanced stress tolerance. Because of the limited scope for de novo
genetic mutations as a basis for trait variation in these experiments (Verkest et al. 2015),
strong evidence for the potential of epigenetic variation to effect phenotypic changes in
plants is thus provided, as well as the ability to select on it. Because these studies in Canola
(Brassica napus) used doubled haploid lines (Verkest et al. 2015; Hauben et al. 2009), and
haploidization has been shown to impact DNA methylation (S. C. A. F. Chen 2014), it
remains to be demonstrated to what extent natural heritable epigenetic variation can be a
target of selection in genetically uniform wild-type plants.

Stressful environments can lead to both enhanced spontaneous genetic mutation rates as
well as an enhanced epimutation rates in plants (Rapp & Wendel 2005; C. Jiang et al. 2014).
A study tracking both spontaneous genetic mutations and epimutations in a mutation
accumulation lineage of A. thaliana grown for ten successive generations under salt stress
resulted in an increase of ~45% in intergenerational differentially methylated positions
and a ~100% higher genetic mutation rate compared to rates observed for control plants
grown in normal soil (C. Jiang et al. 2014). Even though this study resulted in a 2-fold higher
increase in the mutation rate compared to the epimutation rate, the absolute increase in the
number of epimutations per generation is much higher than the increase in number of
mutations per generation as the mutation rate for A. thaliana is estimated at 7 - 10-°
(Ossowski et al. 2010) whereas the epimutation rate in A. thaliana is estimated to be 4 - 104
(van der Graaf et al. 2015), a difference of five orders of magnitude. Although the stress-
induced genetic changes found in the salt stress mutation accumulation study showed a
distinct pattern, with a specific increase in relative frequency of transversions and insertion
/ deletions, the stress-associated CG-DMPs were significantly overrepresented in genic
regions. This suggests a specific response in DNA methylation changes that could
potentially lead to heritable DNA methylation-induced gene expression changes (C. Jiang et
al. 2014), although genic methylation in plants does not always have functional
consequences (Niederhuth & Schmitz 2016).

Many more examples of induced DNA methylation changes are known (Peng & Jing Zhang
2008). Chemical alteration of DNA with 5-azacytidine, a cytidine analog that inhibits DNA
methylation, has proven effective in changing genome-wide DNA methylation patterns
(Christman 2002). 5-azacytidine can be incorporated in DNA during replication, thereby
inhibiting methyltransferases and causing partial demethylation (P. A. Jones 1985; Burn et
al. 1993; Fieldes & Amyot 2000; Bossdorf et al. 2010). Treatment with chemicals such as
Jasmonic Acid (JA) of salicylic acid (SA), both signaling moleculs involved in plant defense
response pathways, can result in large and specific effects on DNA methylation patterns.
Jasmonic acid is a natural plant hormone used as a signaling hormone to initiate a stress
response (Pieterse & Dicke 2007) which can be used to experimentally mimic biotic attack
and to induce defense pathways (Verhoeven & van Gurp 2012). SA application on cell
cultures of Vitis amurensis induces specific changes in the DNA methylation in genes
involved in secondary metabolite production, changing their expression (Kiselev et al.
2014). JA and SA-treated dandelions, Taraxacum officinale showed a significant increase in
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polymorphic MS-AFLP bands compared to control plants. Such polymorphisms were by and
large transmitted to the next generation, indicating that the treatment had caused heritable
DNA methylation changes (Verhoeven, Jansen, et al. 2009), but see also chapter 4 of the
present thesis. Stress can thus induce heritable DNA methylation variation, which can
underpin (specific) stress related responses. However, the majority of stress-induced DNA
methylation modifications may not be heritable (Grossniklaus et al. 2013; Hagmann et al.
2015) and little is known about the potential role of this induced DNA methylation variation
to facilitate selection.

Few studies in plants have explored the potential of selection on phenotypic traits by means
of stress-induced changes in DNA methylation (Xu 2016), whereas this could offer valuable
insights in the role epigenetic variation can play in adaptation or plant breeding (Jaligot &
Rival 2015; Peng & Jing Zhang 2008). Here, I select on early flowering in the genetically
uniform offspring of apomictic dandelion populations, and I test if a selection response is
facilitated after exposure to Jasmonic acid (JA) or 5-azacytidine. I hypothesize that
flowering time in apomictic dandelion can be influenced by changes in DNA methylation. I
expect that 5-azacytidine and JA treatment will trigger more heritable DNA methylation
changes, which should result in a stronger selection response in these lineages. I performed
the selection experiment on three different genotypes of apomictic dandelions, with two
established and one recent triploid apomict to assess whether genotypic differences exist in
selection response. In this study, I aim to answer the following questions: (1) Does
sufficient heritable variation arise within a few generations to support a response on
selection on flowering time? (2) Is the response to selection stronger for plants that
received a Jasmonic Acid or 5-azacytidine pre-treatment? And (3) Is there a difference in
the selection response among the three genotypes?

I hypothesize that (1) Artificial selection on early flowering can lead to a shift in flowering
time in subsequent generations as (epi)genetic variants responsible for this early flowering
phenotype are selected upon. Furthermore, (2) I expect that stress treatments with 5-
azacytidine and Jasmonic Acid create more heritable epigenetic variation influencing
flowering time that will results in a stronger selection response for pre-treated lines. Finally
(3) I hypothesize that genetic and epigenetic differences between the three genotypes will
lead to differences in the response to treatment, and the efficacy of selection on both stress
treated and untreated lines. I expect a higher level of genomic instability for the recent
apomictic line A34, which could facilitate a stronger selection response independent of pre-
treatment based on natural (epi)genetic variation. Even though the trait that [ select upon is
chosen mainly due to the ease with which it can be scored, flowering time is an important
phenotypic trait under strong selection in sexual plant populations (Ehrlén & Miinzbergova
2009). For outcrossing plants, synchronous flowering is important as plants need to
exchange pollen to reproduce. Early flowering plants have a demonstrated advantage over
later germinating conspecifics (Collier & Rogstad 2004) and references therein, suggesting
that selection for early flowering might occur in apomictic Dandelions. Flowering time is a
tightly regulated process, controlled by complex independently developed multi-gene
pathways incorporating sensitivity to both day length and temperature (vernalization) as
parameters to adjust flowering time (Andrés & Coupland 2012). In dandelion, previous
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work demonstrated that natural, heritable divergence in flowering time within an apomictic
lineage is mediated by DNA methylation (Wilschut et al. 2016).

5.2 Materials and Method

5.2.1 General experimental set-up

For each of the three genotypes (A34, A68 and H72) used in this experiment, offspring from
a single founding individual was exposed for three consecutive generations (without
conscious selection) to either control conditions or Jasmonic acid treatment. Jasmonic acid
was applied for three subsequent generations as repeated exposure to the same stress is
thought to induce ‘priming’ or ‘acclimation’ via epigenetic changes ((Wibowo et al. 2016)
and references therein). For the first two generations (T1 and T2, see Fig. 5.1), 8 replicate
lines per group were maintained using single-seed descent. To maximize the potential for
JA-induced epigenetic changes with an impact on flowering time, the cohort size was
increased from 8 to 64 plants in T3 (8 offspring from each of 8 T2 individuals per group).
From T3, single-seed derived offspring formed the base populations SO from which I started
the selection experiment. In addition to a ‘control’ and a ‘JA’ pre-treated base population, a
third ‘azacytidine’ pre-treated base population was generated by exposing an additional
group of 64 T3 plants from the control lineages to a 5-azacytidine treatment. I initially used
two different azacytidine concentrations but I proceeded the selection generations with
only one of these (described below). From each base population, I derived two selection
lines: one selected for early flowering (selection line), and one selected randomly (random
line). Per genotype, the different lines are denoted by the first letter of their parental
treatment (“A” for 5-azacytidine,”]” for Jasmonic acid and “C” for Control) combined with
“R” for random and “S” for the selection line respectively, resulting in six lines per genotype
(AR, AS, JR, JS, CR and CS). In the SO and S1 generations, I selected the 16 (25%) fastest
flowering plants (selection line) and 16 random plants (random line) to each contribute
four apomictic offspring individuals to the next generation for these two lines, respectively.
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Experimental design selection lines

Pre 2011 2011 2012 2013 2013

Select 16 fastest
flowering plants;
4 offspring each

Select 16 random
plants with
4 offspring each

\ = Treatment

Treatment generations Selection generations

Figure 5.2 Experimental design for treatment generations and subsequent selection.

5.2.2 Plant material

[ subjected three genotypes of the asexual apomictic common Dandelion, Taraxacum
officinale Weber ex Wigg., A34, A68 and H72, to the selection experiment described above
to evaluate whether selection results are genotype dependent. A34 is a recent synthetic
apomict which was produced in an experimental cross between a sexual diploid mother and
diploid pollen from a triploid apomictic father (Tas & Van Dijk 1999; Verhoeven, van Dijk, et
al. 2009). A68 and H72 are established apomicts collected from the field (Verhoeven & van
Gurp 2012). Asexual dandelions are polyploid (usually triploid, 3N=24) obligate apomicts
that produce clonal seeds in a process that involves unreduced egg cell formation
(diplospory), parthenogenic embryo development and autonomous endosperm formation
(Van Dijk et al. 1999).

5.2.3 Treatment generation T1 to T3

For all plants in the JA lines in the three treatment generations T1-T3, JA was applied twice,
when plants were 5 and 7 weeks old. Applications were dosed at 0.25 ml (week 5) and 0.75
ml (week 7) of a 10 mM JA solution (Sigma J-2500, dissolved in ethanol and diluted to the
desired concentration with a 0.1% Triton X-100 surfactant solution) which was applied and
manually distributed over the surface of two leaves (week 5) or four leaves (week 7). T3
‘azacytidine’ seedlings were germinated on agar containing either 0.1 pM or 1.0 uM of 5-
azacytidine (AZA). A 8,000 uM stock solution was made by dissolving 100 mg of 5-
azacytidine in 51.2 mL of sterile water. Appropriate dillutions were made by mixing this
stock solution with 0.8% agar, which was poured in petri-dishes that were sealed with
parafilm after seeds were put in. Seeds were germinated for 10-11 days (10 h dark: 14 h
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light; 14°C: 18°C) after which seedlings were transplanted individually to pots. In T3, per
experimental group 64 seedlings were individually transplanted into 9 cm pots containing a
mixture of 80% potting soil and 20% pumice. T3 plants were placed together in blocks of
64 individuals per genotype-treatment combination on a single table. For each of the three
genotypes, four different lines for the pre-treatments exist (control, JA, AZA 0.1 and 1.0 pM).
These four lines with 64 plants each result in a total of 768 plants (64 plants x 4 lines x 3
genotypes) which were put on a single large table in a greenhouse with (10 h dark: 14 h
light; 16°C: 21°C). Plants were watered every ~2 days, twice per week the table was flooded
with Hoagland nutrient solution. Plants were grown until the large majority of plants
produced flowers and seed heads. Flowering time was noted daily. Flowering time was
defined as the number of days it took until the first flower head had opened and showed
emerging yellow petals for more than half of the flower-head, with the seedling
transplantation in the pot as day 1. Per plant, one seed-head was collected and stored in a
seed storage chamber at 15 °C at 30% relative humidity (RH).
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5.2.4 Base population SO

The base-population for selection was obtained using single-seed descent from T3. The
expected number of plants for this generation is 768 (3 genotypes - 4 pre-treatments - 64
plants). Per line, between 79% - 96% of the parental plants produced seeds that
germinated. 12 seeds per parent plant were germinated on 0.8% agar for 7 days. 82 parent
plants did not produce germinating seeds or had failed to flower before termination of the
T3 generation, leaving a total of 686 parent plants with seeds that could be included in SO.
These 686 seedlings were transferred to 9cm pots containing a mixture of 80% potting soil
and 20% pumice and put in a greenhouse under the same conditions as described for T3. In
contrast to T3, plants from all lines were fully randomized per genotype on a single table.
Pots were labeled with a barcode linked to a unique identifier to facilitate fast and accurate
recording of flowering time per plant. A downey mildew infection occurred during growth
in the greenhouse on several tables, for which treatment with Baycor Flow 1.0 ml/] (active
ingredient Bitertanol) with Agral 1.0ml/l was given several times. Flowering time was
recorded daily using a barcode-scanner. After seed-set, complete seed-heads were collected
in a barcoded paper bag, after which the plant was discarded. Seeds were stored under seed
storage conditions as described previously.

5.2.5 Correcting flowering time for spatial effects

A clear position effect was observed for flowering time: flowering varied with pot position
on the greenhouse tables (see Fig. 5.2). I corrected for this environmental variation and
used the corrected flowering time for subsequent analysis and selection (for details see Fig
5.2).
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Figure 5.2 Correcting flowering time for table positions effects. (a) A positive trend is
observed for flowering time dependent on the table row position for A34 and H72. Each
table had 39 rows and 10 columns, providing space for 390 plants. A correction is applied
per table (each with one genotype) by adding the difference between the average (per
table) flowering time with the outcome of the equation derived from linear regression of
flowering time on table row. Written as a formula this results in: Corrected flowering time =
Observed flowering time + per table average flowering time (= 82 for H72) - position
predicted flowering time. Predicted flowering time is calculated based on the equation
derived from linear regression of table position (row) (independent variable) on flowering
time (dependent variable). For H72 this relation is described as predicted flowering time =
0.1574 - row_position + 78.94; for A68 an equation was derived in identical fashion. (b)
Position effects were also observed over the width of the tables, these effects were however
not always linear, for A68 plants on both edges flowered earlier then central plants. A per-
column correction was thus applied. Per genotype, the difference between the average per-
column flowering time with the average flowering time of the whole table was added to the
flowering time for every plant in that column (see c), leading to an average per column
flowering time that is corrected for the observed table column effect (see d). Written as a
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formula this results in: Corrected flowering time = Observed flowering time + per table
average flowering time (= 82) - per column average flowering time.

5.2.6 Phenotypic selection

Based on the flowering time distribution analysis of T3 (data not shown), which showed
that many AZA 1 pM plants for all genotypes flowered very late, I decided to discard plants
with AZA 1 pM pre-treatment, leaving a control, JA and AZA 0.1 pM pre-treatment from
which I started selection in SO with 64 plants each, making for a total of six lines per
genotype in subsequent generations S1-S2 (see Fig. 5.1b). As discarding the AZA 1 pM line
leaves us with only the AZA 0.1 uM line I refer to this line as “AZA” from here on. As in
earlier (treatment) generations fungal infections were sometimes present on germinating
seeds, I proceeded to surface-sterilize seeds starting from SO onwards. 20 seeds per plant
were surface-sterilized for 5 minutes with 0.5% sodium hypochlorite including 0.05%
Tween20 (Sigma-Aldrich, Zwijndrecht, The Netherlands) and afterwards washed with
demineralized water. Sterilized seeds were germinated in individual petridishes sealed
with parafilm on moist filter paper. Seeds were germinated for 10-11 days (10 h dark: 14 h
light; 14°C : 18°C). Per petridish, four seedlings were individually transplanted into 9cm
pots containing a mixture of 80% potting soil and 20% pumice. Plants were assigned a
random number generated using random.org. Per genotype, 384 plants (3 pre-treatments x
2 selection lines x 64 plants) were put on a single table in ascending order according to the
random number generated per plant. Plants were watered as described previously in a
greenhouse maintained at the same conditions as described for previous generations.
Selection was applied as described above for two consecutive generations in SO and S1. A
final evaluation of flowering time was done in S2, under common greenhouse conditions as
described for the previous generations.

Data analysis

Position-corrected flowering time for all individuals from S0, S1 and S2 were imported in
SPSS v24 for Mac OSX. To test whether pre-treatments resulted in an altered mean
flowering time, I tested per genotype whether the mean position-corrected flowering time
of the SO plants that received a AZA 0.1 uM, AZA 1 pM or JA pre-treatment differed
significantly from plants with a control pre-treatment using a one-way ANOVA (see
Supplementary table 4). The distribution of the dependent variable position-corrected
flowering time was not normal. I thus tested the difference on position-corrected flowering
time on a LN-transformed position-corrected flowering time using a one-way ANOVA using
pre-treatment (control, AZA 0.1 pM, AZA 1 pM or JA) as the independent and LN-
transformed position-corrected flowering time as the dependent variable. I tested for
equality of variance using Levene’s test on LN-transformed corrected flowering time, which
did not result in any significant p-values. Standardized residuals were plotted to assess the
normality of the distribution. Although slight deviations from normality were detected all
distributions approximately followed a normal distribution, which improved after LN-
transformation (data not shown).

[ performed a two-way ANOVA with pre-treatment (control, AZA or JA) and selection

regime (selection or random) as the independent variables and LN-transformed position-
corrected flowering time as the dependent variable. Per genotype and generation, I begin by
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describing the main selection effect detected using this two-way ANOVA. Subsequently, I
pinpoint the pre-treatment in which a significant response to selection for early flowering
was detected between the selection and random line using a one-way ANOVA; comparing
the random and selection line within each pre-treatment group. For these one-way
ANOVA’s I tested for equality of variance between the random and control line using
Levene’s test. In some cases, significant deviations from variance equality were observed.
For these cases, I performed tests with a robust ANOVA model that allows for such
differences in variance, deriving p-values for both a Welch and Brown-Forsythe test. None
of the statistically significant p-values changed after these corrections, likewise I did not
observe statistically significant p-values from these tests that did not confirm p-values
obtained from a standard ANOVA. I thus report Welch/Forsythe p-values (which were
always equal) in case of significant Levene’s test indicating unequal variance and report p-
values on standard ANOVAs otherwise. Furthermore, I also explore whether there is a
significant difference between the selection lines of the JA and AZA pre-treatment group (JS
and AS) compared to the random line of the control pre-treatment group using one-way
ANOVAs (Supplementary Table 5.2). This provides additional information on the coherence
of the response observed within a pre-treatment group. In principle, when a significant
selection effect is evident between the selection and random line of the JA or AZA pre-
treatment group this should also give rise to a significant difference between the selection
line of this pre-treatment group and the random line of the control group. Finally, I evaluate
whether pre-treatment has a significant impact on the response to selection for early
flowering by looking at the p-value of the interaction term pre-treatment x selection regime
in the two-way ANOVA. In case the pre-treatment has an impact on the selection response,
the interaction term pre-treatment x selection regime is expected to be significant. In
contrast to the previous tests, the two-way ANOVAs were performed using SAS 9.2 as SPSS
does not allow for defining a priori contrast tests of the selection response. I used a-priori
defined contrast test to evaluate if the difference in mean position-corrected flowering time
between the selection and random group (selection response) is different in the JA and AZA
pre-treatment groups compared to the control group, which would indicate a dependence
of the selection response on (stress) pre-treatment.
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5.3 Results

5.3.1 Treatment effects on seed germination in T3

I observed a negative effect of 5-azacytidine treatment on germination. The percentage of
1.0 uM AZA seedlings failing to germinate was significantly higher than for control plants in
both A68 (Chi-square 7.34 p=0.007) and H72 (Chi-square 9.3 p=0.002), whereas it did not
affect germination in A34 (Chi-square 0.49 p=0.49). JA pre-treatment resulted in a 2- and 3-
fold higher germination failure in A34 and H72, respectively (see Table 1) whereas it did
not have any impact on the germination rate in A68. Overall, the germination failure rate of
control plants without treatment was 3 times higher for the young apomict A34, potentially
indicating genomic instability in this recent apomict.

Table 1) Pre-treatment dependent non-germination rates per genotype-treatment in T3.

Genotype AZA 0.1uM AZA 1uM CONTROL JA
A34 11% 13% 10% 21%
A68 14% 18% 3% 4%
H72 10% 20% 3% 9%

Percentages indicate the fraction of the 64 parental plants of T3 did not have any
successfully germinating seeds.

5.3.2 Treatment induced transgenerational effects on flowering.

If 5-azacytidine or JA treatment would successfully alter heritable DNA methylation
patterns influencing flowering time, this should result in a change in either the mean or
variance of flowering time of the pre-treated plants (JA or AZA), for which the strongest
response is expected in S0. I did not observe any effect of pre-treatment on either the mean
or variance of position-corrected flowering time for A34 SO. For A68 SO I found no
difference in mean flowering time, but variance was significantly affected (p=0.041
Supplementary table 4). Subsequent pairwise one-way ANOVAs between control and pre-
treatment groups AZA 0.1, AZA 1.0 and ]JA did however not result in a significant p-value for
Levene’s test. Comparing AZA 0.1 vs JA and AZA 0.1 vs AZA 1.0 in A68 SO did however result
in significant p-values (see Supplementary table 4), suggesting that contrasting parental
effects due to line pre-treatments with JA and 0.1 uM 5-azacytidine could be picked up in
the test including all pre-treatment lines, as the JA pre-treatment group showed a slightly
increased variance whereas the AZA 0.1 pre-treatment group showed a decrease of the
variance in flowering time distribution (Fig. 5.3 and Supplementary table 4). For H72 in the
SO generation, I found a significant delay of ~5 days in flowering for the offspring of 5-
azacytidine treated plants for both the 1 uM (p<0.001) and 0.1 uM (p<0.001) 5-azacytidine
concentrations (see Supplementary table 4 and Fig. 5.3). Levene’s tests for one-way
ANOVAs comparing variances of mean position-corrected flowering time between control
and both 5-azacytidine concentrations used resulted in non-significant p-values (0.375 for
AZA 1 pM and 0.403 for AZA 0.1 uM) indicating that the variance in flowering time was not
affected. For the JA pre-treatment however, the ANOVA result was non-significant but the
Levene’s test for equality of variance was marginally significant (p=0.06), with a higher
variance found for the JA pre-treatment group in SO (see Supplementary table 4).
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Table 5.2) Effects of pre-treatment and selection on flowering time in S1 and S2 generations.

Genotype generation ANOVA type Factor / comparison F-value p-value E:S\iene s
CSvsCR 0 0.318
One-way JSvs]R 0.139 0.868
ASvs AR 0.004 0.07
51 Pre-treatment 13.66 <.0001
Selection regime 9.51 0.0022
2-way Pre. treatm. X sel. Reg. 8.00 0.0004
Sel Cvs AZA 0.97 0.3263
A34 SelCvsJA 14.60 0.0002
CSvsCR 0.012* 0.014
One-way JSvs]R 0.001* 0.01
AS vs AR 0.078* 0.048
52 Pre-treatment 2.43 0.0892
Selection regime 19.31 <.0001
2-way Pre. treatm. X sel. Reg. 0.61 0.5450
Sel Cvs AZA 1.13 0.2879
SelCvs]JA 0.08 0.7736
CSvs CR 0.855 0.924
One-way JSvs]JR 0.048 0.089
AS vs AR 0.374 0.966
s1 Pre-treatment 2.44 0.0884
Selection regime 0.10 0.7556
2-way Pre. treatm. X sel. Reg. 1.40 0.2488
Sel Cvs AZA 0.72 0.3974
A68 SelCvsJA 0.60 0.4392
CSvsCR 0.031 0.504
One-way JSvs]R 0.001 0.643
ASvs AR 0.671 0.498
$2 Pre-treatment 3.36 0.0359
Selection regime 0.06 0.8074
2-way Pre. treatm. X sel. Reg. 8.25 0.0003
Sel Cvs AZA 2.07 0.1510
SelCvsJA 16.07 <.0001
CSvsCR 0.599 0.233
One-way JSvs]R 0.695 0.258
AS vs AR 0.024* 0.002
1 Pre-treatment 0.81 0.4440
Selection regime 1.51 0.2206
2-way Pre. treatm. X sel. Reg. 1.99 0.1382
Sel Cvs AZA 3.85 0.0506
H72 SelCvsJA 0.44 0.5071
CSvs CR 0.644 0.256
One-way JSvsJR 0.475 0.244
AS vs AR 0.250 0.146
52 Pre-treatment 4.51 0.0117
Selection regime 1.82 0.1777
2-way Pre. treatm. X sel. Reg. 0.14 0.8724
Sel Cvs AZA 0.27 0.6069
SelCvsJA 0.11 0.7401
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One-way and two-way ANOVA results on position corrected LN-transformed flowering time
are presented per genotype and generation in Table 5.2. One-way ANOVA results are tests
of the selection effect (comparing random versus selected lines) within each pre-treatment
group. Significant p-values (<0.05) are shown in bold. In case of a significant result for
Levene’s test for equality of variance the Welch test p-value based for unequal variance is
shown (*). Two-way ANOVAs are performed with independent variables pre-treatment
group (control, AZA 0.1 or JA), selection regime (random or selection line) and the
interaction term pre-treatment x selection regime. For two-way ANOVAs the results are
also shown of a priori defined contrast tests that compare the selection response after AZA
or JA pre-treatment to the selection response after control pre-treatment.

5.3.3 Response to selection in A34 S1

The main effect of selection regime in the two-way ANOVA was highly significant (F=9.5
p=0.002, Table 5.2 and Fig. 5.5), indicating a significant positive response to selection for
early flowering. One-way ANOVAs performed between the random and selection line within
each of the pre-treatment groups shows that selection resulted in significantly earlier
flowering in plants from the control (6.5 days p<0.0001) and AZA pre-treatment group (4.2
days p=0.005), but not in the JA pre-treatment group (see Fig. 5.5). P-values for Levene’s
test for equality of variance were not significant for any of the one-way ANOVAs comparing
selection and random line per pre-treatment group, indicating that the first selection round
did not result in a significant change of the variation in flowering time. The differences in
selection response among pre-treatment groups resulted in a significant pre-treatment x
selection regime interaction for the 2-way ANOVA (F=8.0 p<0.001, Table 5.2). A priori
contrast test comparing the selection response in the control group (CS-CR) with that of the
AZA and JA group indicated a significantly different selection response in the control group
compared to the JA group (F=14.6, p<0.001, Table 5.2) and no difference in selection
response between the control and AZA group (F=1.0, p=0.326, Table 5.2), suggesting that
pre-treatment with azacytidine did not lead to a stronger selection response. All A34 lines
flowered earlier in S1 compared to SO (Supplementary Table 5.3), except for CR which
flowered 4.5 days later in S1 compared to SO, a significant delay (1-way ANOVA with Welch
test for unequal variance p=0.013) suggesting that the significant interaction term pre-
treatment - selection regime observed in the two-way ANOVA might reflect an unexpected
delay in flowering in the CR group in S1 rather than a strong selection response in the AZA
or JA pre-treatment groups. Both the random and selection line of the JA group (JS and JR)
flowered significantly earlier than the random line of the control group (CR)
(Supplementary Table 5.2). The AS line flowered significantly earlier than the CR line and so
did all other lines, indicating a delayed flowering of the CR line compared to all other lines.

5.3.4 Response to selection in A34 S2

Consistent with the results obtained in S1, the main effect of selection regime in the two-
way ANOVA was highly significant (F=19.3 p<0.001, Table 5.2) with selection lines
flowering earlier than random lines in all but the AZA pre-treatment group (Fig. 5.5),
indicating a significant positive response to selection for early flowering. In the control and
the JA group, selection resulted in a significant 3.9 and 3.1 days earlier flowering,
respectively. In the AZA group, selection only resulted in a marginally significant, 2 days
earlier flowering (p=0.076). However, the interaction term pre-treatment x selection
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regime of the two-way ANOVA was not significant (F=0.61 p=0.55, Table 5.2), indicating
that the selection response was comparable in all three pre-treatment groups. The p-values
for Levene’s test for equality of variance of the one-way ANOVAs comparing the selection
and random line per pre-treatment group were significant for all groups (see Table 5.2).
Standard errors for the flowering time distribution of selection lines of all pre-treatment
groups were significantly lower compared to both the random lines of S2 as well as the
selection lines of the previous generation S1 (Supplementary Fig. 5.2), indicating that two
subsequent rounds of selection on early flowering resulted in a significant decrease of
variance in flowering time, irrespective of pre-treatment. The selection line of the AZA
group (AS) flowered 4.6 days earlier than the random line of the control group (CR), a
highly significant difference (p<0.001) (See Fig. 5.5 and Supplementary Table 5.2). ]S also
flowered significantly earlier than CR. In both generation S1 and S2 I find a pre-treatment
group for which no significant difference in flowering time is detected between the
selection and random line (JA for S1 and AZA for S2). In both cases these selection lines do
flower earlier compared to the random group of the control line.

5.3.5 Response to selection in A68 S1

The main effect of selection regime in the two-way ANOVA was not significant (F=0.10
p=0.76), indicating that no clear overall response to selection for early flowering was
achieved. Nevertheless, one-way ANOVA indicated a significant response to selection after
JA pre-treatment. P-values for Levene’s test for equality of variance of per pre-treatment
group one-way ANOVAs were non-significant for all groups (see Table 5.2). The p-value for
the interaction term pre-treatment * selection regime of the two-way ANOVA was not
significant (F=1.40 p=0.25), indicating no significant difference in the selection response
due to pre-treatment occurred. Likewise, no significant differences were detected between
AS vs CR and ]S vs CR (see Supplementary Table 5.2).

5.3.6 Response to selection in A68 S2

Consistent with the results obtained in S1, the main effect of selection regime in the two-
way ANOVA was not significant (F=0.06 p=0.81, Table 5.2), indicating that no clear overall
response to selection for early flowering was achieved. The absence of an overall effect was
due to the large differences in selection response among pre-treatment groups. Per-group
one-way ANOVAs revealed that in the control group, selection resulted in significant, 2.3
days, earlier flowering (p=0.016, Table 5.2). By contrast, in the JA group I observed a
reverse trend; selection resulted in a significant (p=0.001, Table 5.2) three-day delay in
flowering, whereas no response to selection was observed in the AZA group. The reverse
trend in the JA group seemed to be caused by unexpected early flowering in the JR line,
which flowered 2.3 days earlier than CR, a significant difference (p=0.037, Supplementary
Table 5.2). This observation cannot be explained by a biased sampling of mother plants of
S2 JR towards fast flowering plants, as the mean position corrected flowering time of the 16
randomly selected mother plants from JR S1 was 76 days whereas that for the 16 randomly
selected mother plants from CR S1 was 74 days (data not shown). AS flowered 2.3 days
earlier compared to CR, a significant difference (p=0.019, Supplementary Table 5.2). The
differences in response resulted in a significant pre-treatment x selection regime
interaction for the two-way ANOVA (F=8.25 p<0.001, Table 5.2). A priori contrast test
comparing the selection response in the control group (CS-CR) with that of the AZA and JA
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groups indicated a significant difference in the selection response between the control and
JA group (F=16.1 p=<0.0001, Table 5.2), which is to be expected given the reverse trend
(negative selection response) observed in the JA group (see Fig. 5.5). Pre-treatment did not
result in a significant increase in the selection response towards earlier flowering. P-values
for Levene’s test for equality of variance for one-way ANOVAs were non-significant for all
groups (see Table 5.2), indicating that selection on early flowering did not result in a
decreased variance as observed for A34 S2.

5.3.7 Response to selection in H72 S1

The main effect of selection regime in the two-way ANOVA was not significant (F=1.51
p=0.22, Table 5.2), indicating the absence of an overall significant positive response to
selection for early flowering. Per-group one-way ANOVAs revealed that selection
significantly affected flowering time for the AZA pre-treatment group only; plants within
this group that had been subjected to selection (AS) flowered on average 5 days earlier than
plants from the corresponding random line AR (p=0.026, Table 5.2 and Fig. 5.5). This
difference was also significant when comparing AS to CR (p=0.036, supplementary Table
5.2). However, the interaction term pre-treatment x selection regime of the 2-way ANOVA
was non-significant (F=1.99 p=0.14, Table 5.2), indicating that the observed differences in
the selection response among pre-treatment groups were not statistically significant,
although the contrast specifically testing difference in the strength of the selection response
between control and AZA group was close to significance (P=0.051, Table 5.2 ), indicating
that AZA pre-treatment tended to result in a stronger response to selection, consistent with
pre-treatment induced epigenetic variation influencing flowering time. Levene’s test for
equality of variances showed a highly significant (p=0.002, Table 5.2) difference between
plants from the AZA group that had been subject to selection (AS) compared to their
randomly selected counterparts (AR), with plants from the selection line showing a lower
standard error (see Supplementary Fig. 5.2). No differences in standard error were
detected between the random and selection line of the control and JA group.

5.3.8 Response to selection in H72 S2

Consistent with the results obtained in S1, the main effect of selection regime in the two-
way ANOVA was not significant (F=1.82 p=0.18, Table 5.2), indicating that no significant
overall response to selection for early flowering was achieved. Also, one-way ANOVA'’s
contrasting random and selection lines within each group did not show any significant
difference, indicating that no selection effects were expressed in this generation. For the
AZA group however, AS flowered ~2,3 days faster than CR, which was significant (p=0.023,
Supplementary Table 5.2). The p-value for the interaction term pre-treatment x selection
regime of the two-way ANOVA was non-significant (F=0.14 p=0.87, Table 5.2), indicating no
significant difference in the selection response due to pre-treatment. The pretreatment
term was however significant (p=0.012, Table 5.2). P-values for Levene’s test for equality of
variance for one-way ANOVAs were non-significant for all groups (see Table 5.2), indicating
that selection on early flowering did not result in a decreased variance.
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Figure 5.5: Mean difference of position-corrected flowering time compared to the control
pre-treatment group (SO) or the random line of the control group (CR in S1 and S2) per
genotype for SO, S1 and S2. Error bars indicate standard errors. Statistically significant
differences in position-corrected LN-transformed mean flowering time between selection
and control line within a group are indicated with the symbol “>” or “<”, depending on the
direction of the difference. In case no significant difference could be detected between lines
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within a group this is indicated with the symbol “=". Position corrected flowering time of
both random and control lines in all groups are compared to that of the random line of the
control group. Statistically significant differences compared to the (random line of) the
control group are indicated with a star (*) on top of the bar representing the mean
difference in position-corrected flowering time per group.

5.4 Discussion.

I have demonstrated that selection on early flowering is possible in isogenic apomictic
dandelions, suggesting that epigenetic variation can fuel adaptation. The results suggest
that pre-treatment with azacytidine can result in heritable (DNA methylation) variation,
leading to significant selection results on early flowering. This effect is, however, genotype
specific. Only in H72, pre-treatment with 5-azacytidine resulted in a significant response to
selection on early flowering, consistent with broadening the opportunities for selection
through stress-induced epigenetic variation. I did not find strong evidence for an enhanced
early-flowering response to selection due to variation induced by parental Jasmonic acid
treatment in any of the genotypes, suggesting little or no heritable epigenetic variation
having an impact on flowering time was generated. Compared to A68 and H72, A34 showed
the strongest selection response, suggesting that this young apomictic lineage contains
more heritable (epigenetic) variation upon which (artificial) selection can act, without any
evidence for an enhanced selection response due to 5-azacytidine or Jasmonic acid pre-
treatment.

Pre-treatment with 5-azacytidine did impact the flowering time distribution in H72 SO as
well as the selection response in H72 S1, suggesting that this exposure lead to heritable
(epigenetic) variation impacting flowering time. The same concentration of 5-azacytidine
treatment did not result in phenotypic differences in the SO generation of A34 or A68,
suggesting that if it indeed effected the (epigenetic) variation in H72, the effective
concentration for generating heritable epigenetic variation influencing flowering time
differences might be genotype dependent. Alternatively, genetic differences between the
genotypes, such as the presence of a transposable element in the vicinity of genes
influencing flowering time, might explain these results, as the silencing by DNA methylation
of transposable elements can also affect the expression of nearby genes.

Finally, the response to selection is variable between S1 and S2 within pre-treatment
groups and there are significant changes in the variance (standard error) of flowering time
distribution. These changes show pre-treatment and selection regime specific patterns,
indicating both parental treatment effects and selection effects.

5.4.1 Selection on early flowering

Previous selection studies on energy use efficiency in isogenic canola (Brassica napus) used
artificially generated doubled haploid lines (Hauben et al. 2009), whereas selection on early
flowering in Fragaria vesca was only achieved after 5-azacytidine treatment (Xu 2016). My
results in A34 provide the first indication that selection on natural (not stress-induced)
epigenetic variation is possible. Contrary to my expectation, AZA and JA pre-treatments did
not result in a significantly increased variance in the base population SO, suggesting that
pre-treatments were not effective in generating enhanced levels of heritable epigenetic
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variation influencing flowering time. I did find evidence of a negative impact of pre-
treatment on flowering time for H72, in which both AZA groups flowered significantly later
compared to the control group. Pre-treatment also had an impact on selection results in
H72 S1, where the selection line in the AZA group flowered significantly faster compared to
the random line of that group.

Stress treatments in plants have been shown to readily induce heritable epigenetic
variation that can impact the phenotype (Molinier et al. 2006). Here, I used 5-azacytidine
and Jasmonic acid to generate DNA methylation variation. For A34, I did not detect any
difference in either the mean or the standard deviation of flowering time between the
different pre-treatment groups, which suggests that the treatments were not effective in
generating abundant epigenetic variation impacting the flowering time for this genotype.
For A68 I found evidence for subtle pre-treatment dependent difference in the standard
deviation of flowering time distribution, with JA and 0.1 uM AZA pre-treatment showing
minor but opposing effects on the flowering time distribution. These differences were not
detectable when compared to the control pre-treatment group. For H72, 1 observed a
treatment induced delay in flowering, which suggests that the 5-azacytidine treatments
influenced DNA methylation, resulting in a delayed flowering time, but also DNA
methylation variants upon which selection can act. I did not find evidence for an effect of
pre-treatment on the variance of the flowering time distribution in H72.

It is possible that my test of azacytidine-induced, selectable epigenetic variation was not
successful in two of the three genotypes because of the relatively low concentrations of 5-
azacytidine that I used compared to other studies. In a similar selection study on flowering
time in Fragaria vesca, 5-azacytidine treatments with 3-4 orders of magnitude higher
concentrations were used to generate phenotypic variation. Higher concentrations (50mM
of 5-azacytidine) had a stronger effect on both DNA methylation as well as phenotypic
variation (Xu 2016), although no statistical tests on flowering time distribution differences
were employed, more outliers in flowering time distribution were found in plants treated
with higher 5-azacytidine concentrations compared to those treated with mild
concentrations. The 5-azacytidine concentrations applied in the Fragaria vesca study
suggest that higher concentrations of 5-azacytidine might be required to generate sufficient
DNA methylation variation to allow for fast and stable selection on phenotypic variation.

For A34 1 obtained significant selection results regardless of pre-treatment. Given the
genomic instability in young apomicts, I cannot exclude that besides epigenetic variation,
genetic variation might have been subjected to my successful selection effort. For H72 this
is less likely. In H72 I found a strong selection response in S1 and a weak non-significant
response in S2, which is consistent with metastable induced epigenetic variation, as also in
SO there was evidence for a transgenerational effect of parental AZA exposure. Future
(bisulfite-based) sequencing studies can aid in determining the type of heritable variation
upon which selection acted.

To my knowledge, this study is among the first to select on phenotypic variation in asexual

plants species, where a large the role of epigenetic variation is expected to play a large role
in determining the phenotypic variation selected upon. Previous studies have demonstrated
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that epigenetic variation in apomictic dandelions can be generated easily ((Verhoeven,
Jansen, et al. 2009) and chapter 4 of this thesis). Although I did not measure DNA
methylation in the present experiment, a large body of literature supports a causal link
between changes in heritable DNA methylation and the phenotype (Cortijo et al. 2014;
Johannes et al. 2009; Trerotola et al. 2015; Schmitz et al. 2011). Changes in DNA
methylation can be generated using mutants for methyl-transferases involved in generating
or maintaining DNA methylation or MSH1, a gene involved in mitochondrial genome re-
arrangements. It can also be generated by 5-azacytidine application or environmental
stress. In some cases, environmental stress can result in a (transgenerational) adaptive
response to the stress applied. Mutants for either DNA methyltransferases or a single gene
(such as MSH1) show genome-wide changes in DNA methylation, often with large effects on
phenotypic variation. In A. thaliana, epigenetic recombinant inbred lines (epiRILS) were
created by crossing a methyltransferase mutant (ddm1) with a wild-type parent, resulting
in offspring that differ in DNA methylation but not in their genomic sequence (Johannes et
al. 2009). Substantial variation in quantitative traits such as flowering time and plant height
were observed for epiRIL populations that were initiated from such mutant individuals,
suggesting that epigenetic variation can control for variation in these important phenotypic
characteristics (Johannes et al. 2009). In Brassica rapa, a hypomethylated isogenic (doubled
haploid) plant population was created by 5-azacytidine treatment. Heritable variation for
several quantitative traits including seed yield was generated as well as substantial DNA
methylation variation (Amoah et al. 2012). Likewise, 5-azacytidine application to several A.
thaliana genotypes resulted in strongly reduced growth and fitness of plants, delayed
flowering and more phenotypic variation, but the degree of this response varied
significantly among genotypes. These differences in response between genotypes were
however only weakly related to their genetic relatedness suggesting (some) independence
of epigenetic from genetic variation (Bossdorf et al. 2010). For the Fragaria vesca study
mentioned before, selection on early and late flowering resulted in a significant deviation
from the average flowering time of control plants (Xu 2016), suggesting that 5-azacytidine
can cause heritable changes in DNA methylation that cause changes in the phenotype upon
which selection can act. Adaptive transgenerational stress-responses linked to DNA
methylation changes have also been found in non-model plant species, for which the
implied relation to DNA methylation was established due to the fact that these responses
disappeared after 5-azacytidine in the offspring; suggesting involvement of DNA
methylation in transmitting the response between generations (see discussion in chapter
4).

5.4.2 Response to selection

If I disregard treatment-induced epigenetic variation in the JA and AZA pre-treatment
groups and only compare the selection results between selection and random lines in the
control group between the three genotypes, I observe a significantly faster position-
corrected flowering time for the selection line of the control group (CS) compared to the
random line of that group (CR) in the young apomict A34 in both generation S1 and S2 (see
Fig. 5.5). In A68, I observe significantly faster flowering for the selection line CS compared
to the random line CR in S2 but not S1, suggesting that multiple selection rounds are
required for achieving a significant selection result in this genotype. In H72 I did not
observe any significant selection effects in the control group of either S1 or S2. I can
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interpret these different observations as evidence for genotype-specific differences in the
baseline level of heritable epigenetic variation controlling flowering time. Alternatively,
such differences could be caused by an interplay between genetic and epigenetic variation
by, for example, a transposable element nearby a gene involved in the onset of flowering,
for which the methylation status change could induce changes in flowering time.

I hypothesize that A34 has a higher baseline of epigenetic variation compared to both A68
and H72, whereas based on these limited observations I would expect A68 to have higher
level of DNA methylation variation compared to H72. Higher levels of DNA methylation
variation were previously shown for the recent apomict A34 compared to the established
apomictic genotype A68 in an MS-AFLP study in which 4/122 markers were polymorphic
for A34 instead of only 1/122 for A68 (Verhoeven, van Dijk, et al. 2009). New apomictic
dandelions lineages arise through hybridization resulting from a cross between polyploid
apomictic fathers and sexual diploid mothers. Hybridization has been shown to result in
epigenetic changes (Greaves et al. 2012; Z. ]. Chen 2013). I hypothesize that recent apomicts
harbor a greater epigenetic diversity as well as a less stable epigenome. Increased levels of
epigenetic variation in A34 could therefore contribute to the stronger selection response
observed for this genotype. Alternatively, it could mean that the hybridization event leading
to a new apomictic lineage causes changes in DNA methylation, which could trigger
reactivation of previously silenced transposable elements (Verhoeven, van Dijk, et al. 2009;
Salmon et al. 2005), resulting also in enhanced levels of within-lineage genetic variation due
to transposition. Genotypic differences in the transgenerational stability of several
phenotypic traits were found previously in the apomictic plant Hieracium pilosella. In a
study comparing 12 newly generated apomictic H. pilosella lines, derived by crossing
existing apomictic lineages with sexual lineages (Sailer et al. 2016) the stability of several
phenotypic traits was assessed. The transgenerational stability of these traits was evaluated
by comparing means across two subsequent generations. Most phenotypic traits (18/20)
where stably inherited over two apomictic generations, grown simultaneously in a common
control environment. However, one apomict showed different measures for most
phenotypic traits in subsequent generations. Interestingly, among the transgenerationally
labile phenotypic traits found for H. pilosella was age at flowering (flowering time), which
did not show phenotypic stability across generations. This observation is in contrast with
the transgenerationally stable mean flowering time I found for the three dandelion
genotypes in the present study. Further studies using epiGBS or WGBS aimed at comparing
DNA methylation variant in the selection lines of the recent apomict A34 and the more
established apomict A68 and H72 should be done to assess whether differences in DNA
methylation variation support the different outcome of the selection in these lines.

5.4.3 Variability in response by pre-treatment and selection regime

Our results indicate that the selection response can differ between S1 and S2, with some
selection responses being genotype and / or pre-treatment specific. To systematically
evaluate potential drivers of these differences I evaluate several flowering-time related
statistics for the three genotypes separately on a per generation basis. Mean flowering time
in random lines is not expected to change between generations because of selection.
Nevertheless, minor and (often) non-significant changes in the flowering time of these
random lines between generations do occur, for instance where random lines of treatment
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groups flower earlier than the random line of the control group. Such events could indicate
pretreatment, not selection, effects on flowering time.

A34: 1 found no evidence for any significant parental effects on mean or variance of
flowering time due to pre-treatment in A34 for the S1 or S2 generation. The significant two-
way ANOVA results for A34 S1 indicating a higher selection response in the control pre-
treatment group could be explained by the significant delay in flowering of the CR group
(see results). Selection was effective in both S1 and S2 for 2 out of 3 groups. I found
evidence for a continued effect of selection on the flowering time distribution, as the
variance (standard error) of all selection lines in S2 was significantly lower compared to
that of the selection lines from S1 (Supplementary Fig. 5.2) as well as the random lines from
S2 (Supplementary Table 5.2). Overall, the response to selection observed in S2 seemed
lower than that of S1 in all pre-treatment groups except for JA. This pattern coincides with
the slightly lower variation observed in S2 compared to S1 (Supplementary Fig. 5.2).

A68: 1 observed a reduction of variance in flowering time in the JA group from SO to S1,
irrespective of selection regime (both JS and ]JR have a significantly lower variance in S1
compared to SO) whereas for both random and selection line of the AZA and control group
this variance was actually higher in S1 compared to SO (see supplementary Fig. 5.2). The
only positive result of selection in S1 was observed in the JA group. It is not clear what this
implies. If JA treatment would have resulted in enhanced levels of epigenetic variation upon
which successful selection took place in S1 I would have expected to observe treatment
induced variation in SO like I observed for H72. It is also difficult to explain the negative
response to selection in the JA group for S2, although JS did not flower significantly later
than the CR group it had the slowest flowering time on average (Fig. 5.5). My observations
in A68 for the JA group suggest drift in mean flowering time in the random group, rather
than a significant positive response to selection. Random changes in flowering time or
negative responses to selection on flowering time have been reported previously (Burgess
et al. 2007), suggesting that this might have been the case here.

H72: 1 suspect that H72 has lower baseline levels of epigenetic variation influencing
flowering time compared to A34 and A68, as I did not observe positive selection results in
the control pre-treatment group of H72 in either S1 or S2. The fact that the only significant
selection result was obtained in the AZA group in S1 (H72 S1 AS vs H72 S1 AR) indicates
that treatment induced heritable epigenetic variation can lead to successful selection. In
contrast to the other genotypes, I found a significant difference in the standard error of
most flowering time distribution between SO, S1 and S2, indicating that H72 is more
sensitive to environmental conditions during growth compared to A34 and A68. The
significant difference obtained for both two-way ANOVA and 1-way ANOVA in S2, showing
that both lines of the AZA group flowered significantly earlier compared to both the control
and JA group indicate that flowering time of the AZA group in S2 could still be influenced by
the grand-parental pre-treatment, but this did not lead to a significant difference within the
AZA group in the same generation (S2 AS vs S2 AR).
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5.4.4 Summary for all genotypes

[ observed no significant increase in the response to selection for A34 and A68 because of
pre-treatment with 5-azacytidine or Jasmonic acid. In H72 I found a significant response to
selection in S1, but I failed to maintain a clear difference in the subsequent selection
generation S2, which I think might be attributed to reversal of azacytidine-induced DNA
methylation changes two generations after treatment. I assume that the pre-treatments
with 0.1 puM of 5-azacytidine and the JA-treatments did not alter heritable DNA methylation
variation sufficiently to alter the selection response in A34 and A68. This is consistent with
the absence of any significant treatment effect on the mean flowering time in SO for both
A34 and A68 (see Supplementary table 4). In H72 [ have evidence for a 5-azacytidine pre-
treatment effect on the selection response, but heterogeneous environmental conditions
between the different generations and a relatively weak effect make it hard to evaluate
whether stress-induced enhanced levels of epigenetic variation can lead to more effective
selection in apomictic dandelions generally.

If I would have selected for both slow and fast flowering plants, [ might have been able to
observe a significant effect on flowering time distribution more easily by contrasting
selection on early flowering with selection on late flowering. The contrasting responses to
selection found between S1 and S2 of the JA group in A68 might be attributed to stochastic
variation in the selection line, leading to a reverse response to selection, which was
observed in a previous selection experiment on flowering time (Burgess et al. 2007). It is
unclear if multiple successive rounds of selection on the offspring of individuals treated
with a higher concentration of 5-azacytidine would increase the selection response
observed.

Heritable epigenetic variation has a demonstrated capacity to determine phenotypic
variation in many quantitative traits in a major way (Johannes et al. 2009). DNA
methylation variation can be generated artificially, either through mutants or by applying
chemicals. However, DNA methylation can also change naturally as the result of
environmental perturbations or stress. It remains unclear to what extent stress-exposure in
nature triggers more epigenetic variation in plants. Future epigenetic selection experiments
should focus on selecting both adaptive phenotypic traits in response to an environmental
stress as well as more neutral quantitative traits to assess whether stresses induce specific
changes in DNA methylation allowing for selection on adaptive traits or if the induced
changes are non-targeted, in which case the selection experiment on the neutral
quantitative traits should work equally well. Of course, such selection experiments should
be accompanied by DNA methylation profiling using epiGBS or WGBS and DNA
demethylation treatments using 5-azacytidine in effective concentrations to ascertain
whether DNA methylation variation or genetic variation can explain the observed
phenotypic changes.

Besides (artificial) induction of epigenetic variation in plants by means of mutations or
environmental stress, several studies have demonstrated successful artificial selection on
epigenetic variation, resulting in changed phenotypes associated with DNA methylation
variation (Xu 2016; Verkest et al. 2015). My study provides the first indication that natural
heritable (epigenetic) variation (not generated due to haploidization or treatment)
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provides for variation upon which (artificial) selection can act. So, although stress or
chemical treatments of plants can increase the amount of epigenetic variation, such
treatments are not a requirement, as baseline levels of epigenetic variation in plants can
provide sufficient variation to allow for selection on deviant phenotypes as I have
demonstrated in the present study.

Triploid apomictic dandelions can only accumulate genetic variation through somatic
mutations or transposable element activity, as reproduction within a lineage is entirely
asexual (Tas & Van Dijk 1999). This makes heritable epigenetic variation an intriguing
potential resource for rapid adaptation to changing environmental conditions for apomictic
lineages occurring in isolation of sexual lines, as meiotic recombination and segregation are
not available (Verhoeven, van Dijk, et al. 2009). Although many studies have demonstrated
transgenerational epigenetic inheritance in sexual plant species, this potential has received
limited attention in asexual plant species (Verhoeven & Preite 2014). Successful
colonization of asexual plant species is thought to occur due to high phenotypic plasticity,
the so called “general purpose” genotype (Baker et al. 1965). This is also found in a north-
south transect study with apomictic dandelions across Europe that expand northward
(Preite 2016). Plants from the southern part of the range showed larger differences in
biomass between test environments, which was mainly driven by a high performance in the
optimal (southern) environment. Plants from central and northern European latitudes
showed little variation in performance in different environments, consistent with a general
purpose genotype (Oplaat & Verhoeven 2015). Besides phenotypic plasticity, local
adaptation could also play a role in the successful invasion of novel environments by T.
officinale (Molina-Montenegro et al. 2011). It is therefore important to consider and study
both the potential role of transgenerationally stable epigenetic and genetic variation in
apomictic dandelions in adaptation. Future studies focusing on tracking (selection on)
epigenetic changes and evaluating fitness of apomictic dandelions from the same line in
alien environments could help to further elucidate the mechanisms that cause local
adaptation in asexual plant species.
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Supporting information

Supplementary table 1) Descriptive statistics for position corrected flowering time S1 and
S2 for all genotypes

genoty generati grou Mean corrected flowering Std. Std.
pe on p N time [days] Deviation  Error
AR 60 82.79 8.93 115

AS 63 78.60 6.89 0.87

CR 46 89.10 9.69 143

51 CS 64 82.61 9.73 122

JR_ 52 79.56 7.92 110

A4 jS 59 81.69 8.12 1.06
AR 62 81.63 7.65 0.97

AS 63 79.63 431 0.54

s _CR 57 84.27 10.64 141

cS 62 80.41 485 0.62

JR_56 8237 6.39 0.85

s 61 79.25 3.8 0.42

AR 63 77.33 7.03 0.89

AS 59 78.45 8.22 1.07

¢, _CR 58 76.69 8.07 1.06

cS 53 76.34 6.14 0.84

JR_ 63 76.94 431 0.54

IS 64 75.54 3.63 0.45

A68 AR 63 78.35 5.03 0.63
AS 63 77.96 455 057

CR_ 62 80.52 7.50 0.95

52 cS 62 78.17 462 0.59

R 62 78.26 439 0.56

S 60 81.25 5.10 0.66

AR 58 83.77 13.99 184

AS 63 78.73 7.76 0.98

o _CR 59 82.35 10.56 137

CS 64 83.66 1291 161

R 61 82.10 11.38 1.46

IS 63 81.55 13.17 1.66

H72 AR 60 84.44 5.64 0.73
AS 60 83.30 6.14 0.79

CR_ 62 85.68 5.64 0.72

52 cS 62 85.20 450 0.57

R 61 86.65 713 0.91

IS 62 85.83 8.67 110
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Chapter 5 Selection on early flowering in asexually reproducing Dandelions

Supplementary Table 5.2) One-way ANOVA results for generation S1 and S2 comparing
both the selection and random line of the AZA and JA pre-treatment group (AS, AR, JS and
JR) with the random line of the control pre-treatment group (CR).

Genotype (Generati compariso p-value Levene’s  Welch Outcome
on n test p-value

A34 S1 JSvs CR <0.001 0.055 JS<CR
A34 S1 ASvs CR 0.002 <0.001 AS<CR
A34 S2 JSvs CR 0.001 <0.001 JS<CR
A34 S2 ASvs CR 0.002 0.002 AS<CR
A34 S1 JRvs CR <0.001 0.055 JR<CR
A34 S1 ARvs CR 0.001 0.186 AR<CR
A34 S2 JRvs CR 0.281 0.139 No diff
A34 S2 ARvs CR 0.107 0.181 No diff
A68 S1 JSvs CR 0.374 0.015 0.389 No diff
A68 S1 ASvs CR 0.169 0.169 No diff
A68 S2 JS vs CR 0.412 0.507 No diff
A68 S2 ASvs CR 0.516 0.019 AS<CR
A68 S1 JRvs CR 0.644 0.154 No diff
A68 S1 AR vs CR 0.552 0.739 No diff
A68 S2 JRvs CR 0.037 0.299 JR<CR
A68 S2 ARvs CR 0.050 0.877 No diff
H72 S1 JSvs CR 0.585 0.197 0.583 No diff
H72 S1 ASvs CR 0.036 0.058 AS<CR
H72 S2 JSvs CR 0.972 0.98 No diff
H72 S2 ASvs CR 0.023 0.603 AS<CR
H72 S1 JRvs CR 0.868 0.866 No diff
H72 S1 ARvs CR 0.634 0.150 No diff
H72 S2 JRvs CR 0.416 0.684 No diff
H72 S2 AR vs CR 0.209 0.290 No diff
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Supplementary table 5.3) ANOVA results for comparing per generation per group average
position-corrected flowering time between generations SO vs S1 and S1 vs S2.

Genotype Generati group p-value Levene’s  Welch Outcome
on test p-value
A34 SO0 vs S1 CR 0.011 0.012 0.013 S0<S1
A34 SO vsS1 CS 0.164 0.174 No diff
A34 SOvsS1 AR 0.587 0.456 No diff
A34 SOvsS1  AS <0.001 0.295 S0>S1
A34 SOvsS1 JR 0.014 0.698 S0>S1
A34 SOvsS1 ]S 0.275 0.554 No diff
A34 S1vsS2 CR 0.011 0.137 S1>S2
A34 S1vsS2 CS 0.149 <0.001 No diff
A34 S1vsS2 AR 0.461 0.055 No diff
A34 S1vsS2 AS 0.223 0.031 No diff
A34 S1vsS2 JR 0.026 0.133 S1<S2
A34 S1vsS2 ]S 0.042 <0.001 0.045 S1>S2
A68 S0 vs S1 CR 0.578 0.754 No diff
A68 S0 vs S1 CS 0.694 0.789 No diff
A68 SOvsS1 AR 0.304 0.299 No diff
A68 SOvs S1 AS 0.054 0.323 No diff
A68 SOvsS1 JR 0.491 0.010 0.495 No diff
A68 SOvsS1 JS 0.422 <0.001 0.430 No diff
A68 S1vsS2 CR 0.002 0.581 S1<S2
A68 S1vsS2 CS 0.049 0.152 S1<S2
A68 S1vsS2 AR 0.264 0.638 No diff
A68 S1vsS2  AS 0.782 0.345 No diff
A68 S1vsS2 ]JR 0.086 0.733 No diff
A68 S1vsS2 ]S 0.000 0.094 S1<S2
H72 S0 vs S1 CR 0.006 <0.001 0.007 S0<S1
H72 SOvsS1 CS 0.002 <0.001 0.002 S0<S1
H72 SOvsS1 AR 0.818 <0.001 0.813 No diff
H72 S0 vs S1 AS 0.002 0.175 S0>S1
H72 SOvsS1 JR 0.076 0.020 0.073 No diff
H72 SOvsS1 ]S 0.245 0.001 0.235 No diff
H72 S1vsS2 CR 0.012 <0.001 0.014 S$1<S2
H72 S1vsS2 CS 0.158 <0.001 0.155 S1<S2
H72 S1vsS2 AR 0.396 <0.001 0.403 No diff
H72 S1vsS2 AS 0.000 0.110 S1<S2
H72 S1vsS2 JR 0.002 0.001 0.002 S1<S2
H72 S1vsS2 JS 0.009 0.001 0.009 S1<S2
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Supplementary Fig. 5.1. Cumulative flowering time S0. In all three genotypes the fraction

of non-flowering plants is highest for the offspring of parent plants treated with 5-
azacytidine.
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Supplementary Figure 5.2). Standard errors for the flowering time distribution of both
random and selection line per pre-treatment group from generation SO - S1 are shown. For
S0, values for the random and selection line are identical as no selection was yet made.
Asterisks (*) indicate a significant value (p < 0.05 see Supplementary Table 5.3) for the
Levene’s test for equality of variance, derived from intergenerational ANOVA’s on a per
group per line basis (e.g. A34 S1 CS vs A34 S2 CS).
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Supplementary table 4) 1-way ANOVA results for within between line comparisons of
position-corrected flowering time in SO.

Genotype Generation comparison p-value Levene’s Outcome
test
A34 S0 All 0.289 0.986 No diff.
A34 S0 AZA0.1vsC 0.491 0.764 No diff.
A34 S0 AZA1.0vsC 0.311 0.967 No diff.
A34 SO JAvsC 0.373 0.975 No diff.
A68 SO All 0.941 0.041 Diff. var.
A68 S0 AZAO0.1vs]JA  0.882 0.023 Diff. var.
A68 SO AZA 01 vs 0.678 0.011 Diff. var.
AZA1

A68 SO AZAO0.1vsC 0.723 0.170 No diff
A68 S0 AZA1.0vsC 0.567 0.157 No diff
A68 S0 JAvs C 0.652 0.303 No diff
H72 SO All <0.001 0.289 Diff mean
H72 SO AZA0.1vsC <0.001 0.403 Diff mean
H72 SO AZA10vsC <0.001 0.357 Diff mean
H72 S0 JAvs C 0.484 0.060 No diff.

Per genotype, an initial ANOVA is conducted on all lines simultaneously. Treatment lines
are compared to the control line. For A68, significant p-values for Levene’s test were also
acquired for the comparison of AZA 0.1 vs JA and AZA 0.1 vs AZA 1.0, but not for any of the
treatment vs control line comparison.
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6.1 Aim and motivation for the research done in this thesis

The aim of my PhD research was to investigate the stability of (stress induced) DNA
methylation variation in apomictic dandelions and the potential of phenotypic variation
underpinned by DNA methylation variation to be subjected to selection. I therefore studied
the transgenerational stability of both stress induced and natural DNA methylation
variation in different genotypes of apomictic dandelions in a six-generation experiment,
comparing DNA methylation patterns between generations and tracking changes in them.
Apomictic dandelions reproduce asexually, which means that genetic changes between
generations can only arise sporadically due to random mutations (including copy number
variants and novel transposable element inserts). In contrast, heritable DNA methylation
variation occur much more frequently (van der Graaf et al. 2015) and can also underpin
phenotypic variation (Cortijo et al. 2014). A prerequisite for epigenetic variation to
contribute to adaptation is that epigenetic variants that affect the phenotype are heritable.
To test whether an epigenetics-based selection response is possible, at least over the time
course of a few generations, I selected early flowering for two subsequent generations in
three genotypes of apomictic dandelions. This selection effort included lines that received a
stress pre-treatment with either Jasmonic Acid or 5-azacytidine, in order to determine if
stress-induced DNA methylation variation would increase the capacity to respond to
selection. The selection experiment on flowering time (chapter 5) resulted in a shift in
flowering time for all lines in a young apomict, suggesting that natural and heritable
epigenetic variation underpins quantitative traits such as flowering time. This pattern was
not found for established apomicts A68 and H72, and a selection response was also not
facilitated by Jasmonic Acid stress pretreatment. In one apomict, I obtained a positive
selection result on early flowering for the first-generation offspring of the 5-azacytidine
pre-treatment line, indicating that artificially induced DNA methylation variation can lead
to changes in phenotypic traits upon which selection can act successfully.

Much has been learned on the dynamics and role of DNA methylation using the model plant
species Arabidopsis thaliana, with whole genome bisulfite sequencing being key to uncover
the complex and subtle patterns that govern (stress induced) DNA methylation variation
and its transgenerational stability. Currently, it is not clear what the relevance of the DNA
methylation variation uncovered using methylation sensitive AFLPs (MS-AFLP) in non-
model species is, due to its quantitative and low resolution, the anonymous nature and the
exclusion of non-CG methylation. Studying DNA methylation in a detailed and
comprehensive manner in non-model organisms using bisulfite sequencing was not
possible before this thesis. An important goal of my research was therefore to develop a
bisulfite-sequencing based technique for non-model organisms. We have thus developed
epiGBS, a reduced representation bisulfite sequencing technique based on the highly
flexible and popular genotyping-by-sequencing technique (Elshire et al. 2011). It allows for
single-nucleotide resolution bisulfite sequencing in non-model organisms, with an
advanced bioinformatics pipeline that enables simultaneous interrogation of both DNA
methylation and genetic variation.

Finally, a side-result of my research was the accidental discovery of highly irregular

patterns in sequencing-mismatches in RNA sequencing data, which I confirmed to arise due
to random hexamer mispriming. Such technical oddities are important to understand as
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they have previously led to high profile papers claiming wide-spread RNA editing (M. Li et
al. 2011), which is better explained by the random hexamer priming I discovered (van Gurp
etal. 2013).

6.2 How do our research results contribute to answering open research questions in
ecological epigenetics?

The field of ecological epigenetics, which primarily focuses on studying epigenetic
inheritance in natural systems, is expanding rapidly. Although a wealth of knowledge has
emerged from studying epigenetics in model species like Arabidopsis thaliana,
understanding the importance of epigenetic variation for ecology and evolution requires
extending this research to non-model organisms (Verhoeven et al. 2016). At this point,
many basic questions remain open, in part due to technological limitations that limited the
way epigenetic variation was measured in non-model systems. In this section, [ review my
results in the light of some of the open questions to which this research provides some
answers, discussing them in the context of results of various studies in both model and non-
model systems that addressed these issues. These questions are (i) How does epigenetic
variation shape the phenotype? (ii) How much epigenetic variation is environmentally
induced? And finally, (iii) Is environment-induced epigenetic variation transgenerationally
stable?

6.2.1 How does epigenetic variation shape the phenotype?

Phenotypic variation is the product of genetic, epigenetic and environmental variation, with
potential complex interaction terms between these components. When looking for an
epigenetic contribution to adaptation that cannot already be explained by underlying
genetic variation, only heritable epigenetic variation that is at least to some extent
independent of genetic variation is relevant. In plants, several well defined examples of
phenotypic variants that rely on epigenetic variation are known, such as the altered floral
symmetry in Linaria vulgaris (Cubas et al. 1999), the methylation mutant colorless non-
ripening in tomato (Manning et al. 2006) and the clark kent (clk) epiallele in Arabidopsis,
resulting in increased numbers of stamens and carpels (Jacobsen & Meyerowitz 1997).
Artificial induction of genome-wide changes in DNA methylation in Arabidopsis by crossing
methylation deficient mutant lines with wild-type lines results in wild-type plants with
aberrant DNA methylation patterns (Johannes et al. 2009; Cortijo et al. 2014). Importantly,
these heritable DNA methylation changes determined variation in many important
quantitative traits, such as flowering time and root length (Johannes et al. 2009; Cortijo et
al. 2014). Environmental stress can induce changes in DNA methylation, which in some
cases causes adaptive transgenerational responses in offspring of stressed parents (Sultan
et al. 2009; Sultan 2011; Agrawal & al 1999). Such effects have been demonstrated also in
non-model species, for which the dependence of such effects on DNA methylation is often
established by erasing DNA methylation using the demethylating agents 5-azacytine or
zebularine which removes these effects (Bossdorf et al. 2010; Xu 2016; Herman 2016). In
our selection experiment (chapter 5), [ obtained faster flowering plants, which most likely
rely on epigenetic variation. I did not measure DNA methylation in the selection lines
experiment, but multiple observations suggest that the phenotypic variation I selected on
was caused by epigenetic and not genetic variation. First, I observed a significant positive
selection response in the established apomict H72 in the first but not second generation
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offspring of parental plants exposed to 5-azacytidine treatment. 5-azacytidine affects DNA
methylation and not genetic changes (Christman 2002), proving that heritable epigenetic
variation generated by 5-azacytidine can alter flowering time. Whereas stress-induced
epigenetic changes are reversible, this is not the case for genetic changes. The patterns
observed for the 5-azacytidine pre-treated H72 lines are thus consistent with epigenetic
and not genetic changes. Second, genetic changes occur at a much lower frequency (1 x 10-°
in Arabidopsis (Becker et al. 2011) ) compared to DNA methylation changes (4 x 10-4 (van
der Graaf et al. 2015; Becker et al. 2011)), a difference of five orders of magnitude. If the
changes in flowering time would be driven by rare genetic changes, these would most likely
be limited to one or a few individuals, which are expected to reliably transmit the mutation
to the four offspring individuals, which should also show a reduced flowering time. In the
flowering time selection lines, I took seeds of the 25% fastest flowering plants which
contribute four offspring individuals each. In none of the selection lines I found indications
that showed a difference driven by four offspring individuals from one mother, which I
would expect if genetic changes would underlie the change in flowering time, suggesting
that epigenetic and not genetic changes were the driving force behind the shift in
population mean observed for flowering time. Third, in a similar selection experiment on
early flowering in highly inbred Fragaria vesca lines subjected to high concentrations of 5-
azacytidine where DNA methylation patterns were measured using MS-AFLPs, researchers
found distinct DNA methylation patterns for selection lines using principal component
analysis (PCA) (Xu 2016), suggesting that heritable DNA methylation variation is an
important epigenetic component determining flowering time.

Epigenetic variation thus has the capacity to influence the phenotype in a major way.
Appreciating the importance of epigenetic variation compared to genetic and
environmental variation is difficult, as controlling for each of the factors independently is
needed. Apomictic dandelions provide an elegant model system that isolates epigenetic
from genetic variation. (environment induced) epigenetic variation can result in changes in
the phenotype, but the extent to which this epigenetic variation is transmitted
transgenerationally determines the relevance of such variants for adaptation by selection.
Epigenetic variants that exert an influence on the phenotype but are not transmitted
transgenerationally contribute to phenotypic plasticity whereas variants that are
transgenerationally transmitted contribute to heritable phenotypic variation upon which
selection can act. Here, I demonstrate successful selection on early flowering in both
stressed and non-stressed lineages of apomictic dandelions, which suggests that natural
epigenetic variation can contribute to phenotypic changes in populations under selection.
The relative importance of both heritable and non-heritable epigenetic variation in
generating phenotypic changes that can be selected upon or contributing to phenotypic
plasticity within a generation is not known for many species and should be investigated
more thoroughly.

6.2.2 How much epigenetic variation is environmentally induced and how stable is it?

An important and distinguishing feature of epigenetic compared to genetic variation is the
ease with which epigenetic but not genetic variation can be induced by the environment.
Environmental induction of heritable epigenetic changes allows for rapid and reversible
phenotypic changes in response to stress, which can support transgenerational phenotypic
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plasticity. Many of these transgenerational effects which trigger changes in either gene
expression, stress sensitivity or phenotypes are described, some of which are adaptive
(Sultan 2011). Stress-induced changes can be divided in detection-based responses (Shea et
al. 2011) that lead to targeted epigenetic changes in genes involved in a specific stress
response, or random changes that increase the overall phenotypic variation in many traits,
as a bet-hedging strategy (Simons 2011; O’Dea et al. 2016). Several studies on ecological
epigenetics describe parental effects of stress exposure that are dependent on DNA
methylation, but most of these studies fail to characterize the type and extent of the changes
in epigenetic variation such as DNA methylation (Sultan 2011; Herman & Sultan 2016).
Sophisticated studies in Arabidopsis thaliana have investigated the degree to which and
where DNA methylation changes occur due to repeated salt-stress exposure (C. Jiang et al.
2014; Wibowo et al. 2016). These studies suggest that only 0.17% (6,866 out of 4.1 million)
of all methylated positions are differentially methylated due to salt-stress (Wibowo et al.
2016). Stress-associated DNA methylation changes often occur in cytosines on contiguous
stretches simultaneously, leading to differentially methylated regions (DMRs) which occur
in different regions than and do not overlap with sparsely distributed differentially
methylated positions (DMPs). Stress-induced DMRs, and not DMPs, were involved in the
downregulation of genes implicated in stress tolerance (Wibowo et al. 2016). So, even
though stress-induced DMPs can be detected, their functional significance is unknown
(Hagmann et al. 2015). This makes it difficult to assess the relevance of ecological
epigenetics studies employing MS-AFLP, focusing on few cytosines in CG context, that show
heritable DNA methylation changes (in CG context) due to stress. My multivariate analyses
results on JA-induced DNA methylation changes are in line with Wibowo et al 2016, in the
sense that at least two rounds of consecutive stress application were needed to detect a
significant effect, that subsequently disappeared over unexposed generations. I find some
evidence for environment induced DNA methylation variation using epiGBS, but most
patterns are subtle and limited to certain genotypes or to cytosines in CHG and not CG
context. Detailed characterization of the type of epigenetic changes that result after
multiple types of (natural) stress exposure as well as determining their transgenerational
stability is needed to understand the role and importance of environment induced DNA
methylation changes in nature.

The transgenerational stability of DNA methylation has hitherto only been studied in detail
for a handful of plant species (using bisulfite sequencing) (Q. Li et al. 2014; Ou et al. 2012),
with most studies focusing on the model plants Arabidopsis thaliana (Becker et al. 2011;
van der Graaf et al. 2015). DNA methylation is very variable between plant species, with
genome size and repeat content showing a positive correlation with DNA methylation
(Niederhuth, Bewick, Ji, Alabady, Kim, Li, et al. 2016). The mode of reproduction of asexual
plants potentially allows for less resetting of epigenetic variation between generations,
depending on the type of asexual reproduction, as some steps are skipped in meiosis
(Verhoeven & Preite 2014). The relevance of such variation might also be higher for asexual
than sexual plants (Verhoeven & Preite 2014). My thesis contains the first high-resolution
bisulfite sequencing based study that examines the transgenerational stability of DNA
methylation in an asexual plant species, opening the frontier for ecological epigeneticist to
start detailed exploration of such variation in a wide array of ecologically interesting non-
model species. We employed epiGBS (chapter 3) to study stress induced DNA methylation
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changes and the transgenerational stability of both natural and stress-induced DNA
methylation variation (chapter 4). We found subtle and genotype-specific effects of parental
stress treatment on DNA methylation for cytosines in CHG context. | demonstrated high
stability of DNA methylation in CG sequence context in apomictic dandelions as evidenced
by high intergenerational correlations of DNA methylation, which is consistent with
previous reports (Becker et al. 2011; van der Graaf et al. 2015). Transgenerational
correlations for cytosines in CHG context are lower, suggesting that these are less stably
inherited compared to those in CG context. This pattern of lower transgenerational
correlation, however, may (in part) also be caused by technical factors in the design of the
epiGBS methods, which can be easily corrected in future applications (see section 3 below).
I found evidence for the existence of de novo DNA methylation mutations that are inherited
transgenerationally. The evidence for this is provided by the negative trend over
intergenerational distance for correlations of DNA methylation between individuals (that is:
gradually increasing divergence over generational time), which cannot be explained by
technical artefacts. This trend is apparent for cytosines in both CG and CHG context;
whereas previous studies have emphasized heritability of cytosines in CG and not CHG
context (Becker et al. 2011; van der Graaf et al. 2015). This apparent discrepancy can be
explained by the different approach (not based on DMPs) I took compared to previous
studies. The stability of DNA methylation is typically assessed by counting the number of
differentially methylated positions (DMPs) that arise per generation. Due to differences in
the distribution of DNA methylation between cytosines with a different sequence context,
detection is skewed in favor of those in CG context, which has led to a focus on cytosines in
CG context in studies looking at intergenerational stability of DNA methylation (Becker et
al. 2011). I took a different approach; by looking at the correlation of DNA methylation
ratios of cytosines in CG and CHG context, I avoided this bias which helped us to uncover the
negative trend for cytosines in CHG and CG context described earlier. Our study thus
suggest that a more careful consideration of statistical methods is needed to appreciate the
heritability of DNA methylation patterns.

6.3 Putting epiGBS into context compared to MS-AFLP and existing bisulfite sequencing
methods

A persistent problem hampering many ecological epigenetics studies has been the difficulty
in discerning epigenetic from genetic variation. MS-AFLP and AFLP based studies can
provide insight into the level of genetic and epigenetic diversity; but (substantial) genetic
variation goes undetected, given the low coverage of anonymous AFLP loci on plants
genomes, which often have a large genome size. Similarly, MS-AFLP studies can miss many
patterns of DNA methylation, especially if they do not occur in CG-context (Fulnecek &
Kovarik 2013; Trucchi et al. 2016; van Gurp et al. 2016). Another issue plaguing MS-AFLP
studies is ambiguous if not downright incorrect interpretation of banding patterns. Mspl
and Hpall, two frequently used isoschizomers which differ in their sensitivity to DNA
methylation in their recognition site are the most frequently used enzymes in MS-AFLPs.
Mspl and Hpall both cut unmethylated CCGG sites, but they show different activity for
methylated CCGG sites. Whereas Mspl can digest CCGG sites with internal (CG) methylation
(C5mCGG), Hpall is able to digest hemi-methylated S»CCGG sites but not CCGG sites with
internal CG methylation. Banding patterns showing a Hpall fragment but not an Mspl
fragment have thus been interpreted as evidence for CHG methylation, often analyzed
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separately in MS-AFLP analysis. Whereas technically this could indeed be due to >™CCGG
hemimethylation of the external cytosine(s), this can also occur due to variable methylation
at an internal CSmCGG site within the MS-AFLP fragment, resulting in Mspl to cut this
fragment into two pieces, whereas Hpall does not (van Gurp et al. 2009). This was
demonstrated in studies where the different bands were sequenced (Fulnecek & Kovarik
2013) and references therein. Methylation of the external cytosines in plant methylomes in
CCGG context almost always is accompanied by methylation of the internal cytosines

(van Gurp et al. 2009; Fulnecek & Kovarik 2013). As such, most studies interpreting single
Hpall bands as evidence for CHG methylation, theorizing about its potential importance are
most likely incorrect. Although improvements have been suggested for the MS-AFLP
method, including a lane in which digestion with both Mspl and Hpall simultaneously
(Fulnecek & Kovarik 2013) or using different enzymes sensitive to CHG methylation (Xu
2016; Bednarek et al. 2007); recent studies continue to incorrectly distinguish supposed
CHG from CG methylation (Schulz et al. 2013), going as far as suggesting to analyze
Mspl/Hpall 0/1 and Mspl/Hpall 1/0 patterns separately, as this would improve the
understanding of the analysis outcome (Alonso et al. 2015). To resolve these issues, new
sequencing-based techniques such as epiGBS are required to provide an improved
resolution, functional annotation of the loci targeted, and unanimous quantitative DNA
methylation estimates at a single nucleotide resolution. Here, I compare epiGBS to MS-
AFLP, reduced representation and whole genome bisulfite sequencing (RRBS and WGBS
respectively), exploring the strengths, weaknesses and improvement opportunities of
epiGBS compared to these established methods.

6.3.1 epiGBS vs MS-AFLP

Compared to MS-AFLP, epiGBS offers various advantages such as a higher resolution (more
markers), DNA methylation estimates in all sequence contexts (CG, CHG and CHH),
quantitative instead of qualitative assessment of DNA methylation polymorphisms and
functional annotation of sequenced regions, which are required in ecological epigenetics
studies as described above. A potential disadvantage is the higher complexity of analysis
methods that need to consider quantitative differences in DNA methylation ratios of
individual cytosines, as compared to the simple presence-absence metric provided by MS-
AFLP. Basic bioinformatics skills are required to use and implement the scripts required for
analyzing epiGBS data whereas MS-AFLP data analysis is simpler.

6.3.2 epiGBS vs RRBS

Compared to the standard RRBS implementation (Meissner et al. 2005), epiGBS offers
several advantages. Existing analysis methods for RRBS data require the presence of a
reference genome. Using an advanced bioinformatics pipeline which can reconstruct the
reference of the fragments targeted, epiGBS avoids this requirement. Second, existing RRBS
protocols do not allow for cost-efficient multiplexing of multiple samples for sequencing. All
existing RRBS techniques require 5-methylcytosines in the adapters, which are very
expensive compared to normal cytosines. By using barcoded adapters combined with
paired-end reads, a 96-plex design is enabled with only 12 forward and 8 reverse barcodes.
DNA methylation variation is often determined by genetic variation. So, to understand the
nature and contribution of the DNA methylation variation, genetic variation should also be
measured. Simultaneous detection of both genetic and DNA methylation variation therefore
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offers a more economical experimental design. The advanced epiGBS bioinformatics
pipeline separates DNA methylation from genetic variation on a per sample bias, which also
significantly improves the quality of DNA methylation calls, as SNPs that cause a sequence
context to change from CG to CHH often cause a change in the DNA methylation status,
which would be missed if these genetic variants would not be considered. Existing RRBS
analysis pipelines lack this detection capacity. An advantage of RRBS over epiGBS is that
RRBS data can also be produced by a single-end sequencing run, whereas epiGBS data
require paired-end sequencing data for demultiplexing and de novo reference construction.
This makes RRBS more flexible compared to epiGBS.

6.3.3 epiGBS vs WGBS

Compared to whole-genome bisulfite sequencing (WGBS), which is only available for
species with a reference genome, epiGBS is only able to assess DNA methylation variation in
a restriction site-associated and replicable subset of the genome, whereas whole genome
bisulfite sequencing determines DNA methylation over the full genomic sequence. Although
uneven coverage is a problem in most WGBS studies, this problem is much stronger in
epiGBS, in which short fragments often get a 10 to 100 fold higher coverage compared to
longer fragments (van Gurp et al. 2016). In the analysis, I proposed to eliminate fragments
shorter than 100 bases, but even so, the PCR preference for shorter fragments cannot be
completely avoided. Another issue that hampers all GBS-based sequencing technique is that
it is not possible to eliminate PCR duplicates, which in WGBS are recognized by their
identical beginning and end position on the reference genome. GBS-based methods lead to
sequencing reads that always start and end in the same position regardless of their origin,
making coordinate-based PCR duplicate removal impossible. The methylation sensitivity of
the restriction enzyme used in epiGBS can lead to a bias in the detection of DNA
methylation. I observed such a bias in DNA methylation estimates for cytosines in CHG
context, for which I consequently detected a lower intergenerational correlation in both our
dandelion epiGBS study (Chapter 4), as well as for epiGBS data in Arabidopsis (van Gurp et
al. 2016), which I benchmarked against WGBS data from an intergenerational study on
Arabidopsis (Becker et al. 2011). The CHG-methylation sensitivity of Pstl blocks digestion of
methylated restriction sites, leading to a bias in the restriction fragments obtained for
bisulfite treatment and sequencing. As DNA methylation in CHG context is spatially auto-
correlated, meaning that CHG methylation in the restriction site is often coupled with CHG
methylation in the fragment, the CHG-methylation sensitivity of Pstl can lead to an
underestimation of the genome-wide levels of CHG methylation. Using the methylation
insensitive enzyme Csp6l, the bias was largely avoided, leading to better intergenerational
correlations for cytosines in CHG context at high sequencing depth (van Gurp et al. 2016).
Finally, the efficiency with which epiGBS reads can be mapped is dependent on the
heterozygosity of the fragments that result from digestion with the restriction enzyme
employed. If a restriction enzyme targets repetitive regions, these regions will not be
assembled or will be incorrectly grouped. Therefore, care should be taken in choosing an
appropriate restriction enzyme for the species studied, as an incorrect choice can lead to a
waste of sequencing data or worse, incorrect estimates of DNA methylation for repetitive
regions based on improper merging of paralogous regions. Despite the drawbacks listed
above, epiGBS allows for screening a defined subset of cytosines at an accuracy that is
almost as high as WGBS for a fraction of the cost.
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6.3.4 epiGBS improvement opportunities

Based on the comparisons against various existing techniques described in the previous
paragraphs, several opportunities have become apparent for further improvement of the
epiGBS technique. Controlling for PCR duplicates can be achieved by reducing the number
of PCR cycles (Andrews et al. 2016; Boyle et al. 2012) or by using degenerate nucleotides in
the adapters (Casbon et al. 2011; Schweyen et al. 2014; Tin et al. 2015), which help
distinguish unique read (pairs) from PCR duplicates that map to the same locus. Another
future improvement could be to enrich the epiGBS targets to specific loci of interest. For
instance, in Arabidopsis epigenetic labile regions which are more prone to change are
recognized (Wibowo et al. 2016), and functionally relevant DNA methylation changes often
occur in differentially methylated regions (DMRs), which vary in size. In some studies, more
economical epiGBS approaches could replace WGBS, if it could be modified to target those
regions of interest. Implementing targeted sequencing in the epiGBS protocol seems
feasible, as previous GBS and Radseq based techniques have achieved this with relative ease
using oligonucleotide baits (Uitdewilligen et al. 2013), padlock probes (Deng et al. 2009)
and other techniques as reviewed in (M. R. Jones & Good 2016) and (Hancock-Hanser et al.
2013). On the bioinformatics side, the detection of differentially methylated regions instead
of only DMPs would improve the usability of the method. GBS (Elshire et al. 2011) and
Radseq (Davey & Blaxter 2010) have seen high use and the development of several derived
techniques (S. Wang et al. 2012; B. K. Peterson et al. 2012) as well as data analysis methods
(https://omictools.com/rad-seq-category ) greatly increase the use of both methods
(Andrews et al. 2016). I expect that similar efforts for epiGBS will contribute to a more
refined protocol, facilitating analysis with data similar in quality to WGBS.

6.4 Forward looking statement

Ecological epigenetics is an interesting and rapidly evolving field that so far has yielded
intriguing observations that fuel speculation on the role and relevance of epigenetic
variation in natural systems (Verhoeven et al. 2016). However, we still have more questions
than answers. Compared to most non-model organisms, studies in the model plant A.
thaliana offer more detailed insights in the complex patterns of DNA methylation dynamics
and its relation to phenotypic variation. By removing technical limitations of MS-AFLPs and
embracing bisulfite sequencing-based methods the field of ecological epigenetics can move
forward in answering many of the outstanding questions. The studies conducted in this
thesis have pioneered the use of epiGBS, allowing for high-resolution analysis of both stress
induced and natural DNA methylation variation which hitherto where not possible in non-
model organisms. Below, I propose how assaying more and diverse organisms and using
advanced techniques such as epiGBS as well as established techniques can be used for
conducting experiments that address some of the open questions in the field.

Comparative methylome studies in plants indicate a great variation in the level of DNA
methylation in different sequence contexts, which to some extent are explained by repeat
content and genome size (Niederhuth & Schmitz 2014). As such, appreciating the role that
DNA methylation might play in shaping phenotypic diversity in different species will
require studies in a variety of taxonomic groups. Besides these quantitative differences in
DNA methylation ratios, the reproductive mode of the organism could affect the
transgenerational transmission efficiency, as modified meiosis observed in asexual plant
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species could lead to reduced resetting of epigenetic marks, increasing the transmission
efficiency (Verhoeven & Preite 2014). The importance of epigenetic variation can also be
influenced by life history traits such as the presence of negative biotic or abiotic
interactions or generation time. Studies employing mutants for DNA methyltransferases in
Arabidopsis have resulted in better insights in the dynamics and heritability of DNA
methylation (Bartee et al. 2001; Law & Jacobsen 2010; Niederhuth & Schmitz 2014). Some
enzymes are not present in all plant families, or are less effective. Plants in the Brassicaceae
family have lower CHG methylation levels compared to other plants, whereas members of
the Poaceae family show reduced CHH methylation levels (Niederhuth & Schmitz 2014).
DNA methylation mutants exist in nature; E. salsugineum for example has no functional
CMT3 enzyme, leading to almost complete absence of CHG methylation. Bisulfite
sequencing based studies in such natural mutants or asexual plants, hitherto not yet done,
can aid in determining the (diversity of) the role(s) that DNA methylation variation plays in
shaping phenotypic variation, adaptation and ultimately (micro)evolution. Such studies are
enabled by the epiGBS technique that we developed, even for species without a reference
genome. Most published studies in ecological epigenetics have hitherto relied on MS-AFLPs.
At this point, it is not clear what the relevance of the results of these studies is, given that
they mostly target CG-DMPs which are not known to have a functional significance outside
of transposons and promoters. Benchmarking such MS-AFLP based studies using epiGBS
with the same enzymes used in MS-AFLP or even WGBS could shed light on what MS-AFLP
does and does not detect. My epiGBS results do not provide evidence of heritable DNA
methylation changes for cytosines in CG context, which is in contrast with the findings of a
previous MS-AFLP based study, in which JA-stress application resulted in a significant
increase in the number of polymorphic loci (Verhoeven, Jansen, et al. 2009). Unfortunately,
although our epiGBS study used the same genotype, the genomic loci targeted are different
and the results were obtained from a different experiment, making it difficult to compare
both studies.

Bisulfite sequencing-based studies enabled by epiGBS offer many advantages over MS-
AFLP, but the usefulness of the results can be increased significantly by knowing the local
sequence context of the fragments obtained, for which an annotated reference genome is
required. Even though the price of sequencing has exponentially declined over the past
years (https://www.genome.gov/sequencingcosts/), assembling plant genomes has
remained difficult, mainly due to their large genome size and high repeat content which
make assembly difficult. Third generation sequencing techniques such as smart sequencing
of pacific biosciences and the most recently developed nanopore sequencing offered by
oxford nanopore can alleviate these problems by generating ultra-long (>100KB)
sequencing reads (Lee et al. 2016). Additionally, whole genome bisulfite sequencing can be
used to pinpoint DMRs and DMPs, based on which (targeted) epiGBS studies could be
designed.

Understanding the role that natural epigenetic variation plays in shaping phenotypic
variation is of great importance for understanding invasive species dynamics, response and
adaptation to climate change but also for more applied fields such as plant breeding.
Genetically identical Fallopia japonica plants, an invasive species in Europe and elsewhere,
have different leaf shapes and grow to different heights depending on where they live,
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which correlates with epigenetic variation that distinguishes these plants from different
habitats (C. L. Richards et al. 2012). The role that epigenetic variation plays in adaptation to
stressful conditions in natural populations is not yet clear (Bossdorf et al. 2007), but the
reversible nature and rapid changes that can result from epigenetic changes coupled with
the high number of documented cases of adaptive transgenerational stress responses
suggest that epigenetic variation could play an important role in plant response to stress
induced by climate change. Selection for phenotypic variation is the main goal of plant
breeders, which aim for uniform traits and high yield. In Brassica napus, artificial selection
on energy efficiency in isogenic population resulted in higher efficiency offspring which
lead to a 5% yield increase (Hauben et al. 2009). Future studies addressing the role of
epigenetic variation in shaping phenotypic diversity are thus important for understanding
both natural events as well as artificial selection employed in breeding.

147



References

Agrawal, A. & al, E., 1999. Transgenerational induction of defences in animals and plants.
Nature.

Allis, C.D. & Jenuwein, T., 2016. The molecular hallmarks of epigenetic control. Nature
reviews. Genetics, 17(8), pp-487-500.

Alonso, C. et al,, 2015. MSAP markers and global cytosine methylation in plants: a literature
survey and comparative analysis for a wild-growing species. Molecular Ecology
Resources, 16(1), pp.80-90.

Amoabh, S. etal,, 2012. A Hypomethylated population of Brassica rapa for forward and
reverse Epi-genetics. BMC plant biology, 12.

Andrews, K.R. et al,, 2016. Harnessing the power of RADseq for ecological and evolutionary
genomics. Nature reviews. Genetics, 17(2), pp.81-92.

Andrés, F. & Coupland, G., 2012. The genetic basis of flowering responses to seasonal cues.
Nature reviews. Genetics, 13(9), pp.627-639.

Anway, M.D. et al., 2005. Epigenetic transgenerational actions of endocrine disruptors and
male fertility. Science, 308(5727), pp.1466-1469.

Ashrafi, H. et al., 2012. De novo assembly of the pepper transcriptome (Capsicum annuum):
a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC genomics,
13, p.571.

Assenov, Y. et al,, 2014. Comprehensive analysis of DNA methylation data with RnBeads.
Nature methods, 11(11), pp.1138-1140.

Audergon, P.N.C.B. et al,, 2015. Epigenetics. Restricted epigenetic inheritance of H3K9
methylation. Science, 348(6230), pp.132-135.

Baker, H.G., 1965. Characteristics and Modes of Origin of Weeds,

Baker, H.G., Baker, H.G. & Stebbins, G.L., 1965. Characteristics and modes of origin of weeds.
The genetics of colonizing species., pp.147-168.

Bartee, L., Malagnac, F. & Bender, ].T.A.C.C.M.B.N.-C.M.A.S.0.A.E.G., 2001. Arabidopsis cmt3
chromomethylase mutations block non-CG methylation and silencing of an endogenous
gene. Genes & development, 15(14), pp.1753-1758.

Beck, S., 2010. Taking the measure of the methylome. Nature Biotechnology, 28(10),
pp.1026-1028.

Becker, C. et al,, 2011. Spontaneous epigenetic variation in the Arabidopsis thaliana
methylome. Nature, 480(7376), pp.245-249.

148



References

Bednarek, P.T. et al.,, 2007. Quantification of the tissue-culture induced variation in barley
(Hordeum vulgare L.). BMC plant biology, 7, p.10.

Benjaminj, Y. & Speed, T.P., 2012. Summarizing and correcting the GC content bias in high-
throughput sequencing. Nucleic acids research, 40(10), p.e72.

Bewick, A.J. et al,, 2016. On the origin and evolutionary consequences of gene body DNA
methylation. Proceedings of the National Academy of Sciences, 113(32), pp.9111-9116.

Bonduriansky, R. & Day, T., 2009. Nongenetic inheritance and its evolutionary implications.
Annual Review of Ecology, Evolution, and Systematics, 40, pp.103-125.

Bossdorf, 0. & Zhang, Yuanye, 2011. A truly ecological epigenetics study. Molecular Ecology,
20(8), pp.1572-1574.

Bossdorf, O. et al.,, 2010. Experimental alteration of DNA methylation affects the phenotypic
plasticity of ecologically relevant traits in Arabidopsis thaliana. Evolutionary Ecology,
24(3), pp.541-553. Available at:
http://www.springerlink.com/index/C847255UR67W2487.pdf.

Bossdorf, 0., Richards, C.L. & Pigliucci, M., 2007. Epigenetics for ecologists. Ecology Letters,
0(0), pp.106-115.

Bowler, P.J., 1989. Evolution: the history of an idea, Univ of California Press.

Boyle, P. et al,, 2012. Gel-free multiplexed reduced representation bisulfite sequencing for
large-scale DNA methylation profiling. Genome biology, 13(10), p.R92.

Bruce, T.J.A. et al., 2007. Stressful “memories” of plants: Evidence and possible mechanisms.
Plant Science, 173(6), pp.603-608.

Burgess, K.S., Etterson, ].R. & Galloway, L.F., 2007. Artificial selection shifts flowering
phenology and other correlated traits in an autotetraploid herb. Heredity, 99(6),
pp.641-648.

Burn, J.E. et al,, 1993. DNA methylation, vernalization, and the initiation of flowering.
Proceedings of the National Academy of Sciences of the United States of America, 90(1),
pp.287-291.

Busconi, M. et al,, 2015. AFLP and MS-AFLP Analysis of the Variation within Saffron Crocus
(Crocus sativus L.) Germplasm M. Gijzen, ed. PLoS One, 10(4), p.e0123434.

Casbon, J.A. et al,, 2011. A method for counting PCR template molecules with application to
next-generation sequencing. Nucleic acids research, 39(12), p.e81.

Chandler, V.L., 2007. Paramutation: from maize to mice. Cell, 128(4), pp.641-645.

149



Chen, S.C.A.F., 2014. Characterization of in vitro haploid and doubled haploid
Chrysanthemum morifolium plants via unfertilized ovule culture for phenotypical traits
and DNA methylation pattern. pp.1-10.

Chen, Z.]., 2013. Genomic and epigenetic insights into the molecular bases of heterosis.
Nature reviews. Genetics, 14(7), pp.471-482.

Choi, C.-S. & Sano, H., 2007. Abiotic-stress induces demethylation and transcriptional
activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants.
Molecular genetics and genomics : MGG, 277(5), pp.589-600.

Christman, J.K., 2002. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA
methylation: mechanistic studies and their implications for cancer therapy. Oncogene,
21(35), pp-5483-5495.

Cokus, S.J. et al., 2008. Shotgun bisulphite sequencing of the Arabidopsis genome reveals
DNA methylation patterning. Nature, 452(7184), pp.215-219.

Collier, M.H. & Rogstad, S.H., 2004. Clonal variation in floral stage timing in the common
dandelion Taraxacum officinale (Asteraceae). American journal of botany, 91(11),
pp.1828-1833.

Cortijo, S. et al,, 2014. Mapping the Epigenetic Basis of Complex Traits. Science, 343(6175),
pp.1145-1148.

Crisp, P.A. et al,, 2016. Reconsidering plant memory: Intersections between stress recovery,
RNA turnover, and epigenetics. Science advances, 2(2), p.e1501340.

Cubas, P., Vincent, C. & Coen, E., 1999. An epigenetic mutation responsible for natural
variation in floral symmetry. Nature, 401(6749), pp.157-161.

Dalakouras, A. et al.,, 2012. Transgenerational maintenance of transgene body CG but not
CHG and CHH methylation. Epigenetics : official journal of the DNA Methylation Society,
7(9), pp.1071-1078.

Davey, ].L. & Blaxter, M.W.,, 2010. RADSeq: next-generation population genetics. Briefings In
Functional Genomics, 9(5-6), pp.416-423.

Delker, C. et al., 2006. Jasmonate Biosynthesis in Arabidopsis thaliana - Enzymes, Products,
Regulation. Plant biology (Stuttgart, Germany), 8(03), pp.297-306-306.

Deng, J. et al.,, 2009. Targeted bisulfite sequencing reveals changes in DNA methylation
associated with nuclear reprogramming. Nature Biotechnology, 27(4), pp.353-360.

Dohm, J.C. et al., 2008. Substantial biases in ultra-short read data sets from high-throughput
DNA sequencing. Nucleic acids research, 36(16), pp.e105-e105.

150



References

Dowen, R.H. et al., 2012. Widespread dynamic DNA methylation in response to biotic stress.
Proceedings of the National Academy of Sciences of the United States of America, 109(32),
pp.E2183-E2191.

Dubin, M.J. et al,, 2015. DNA methylation in Arabidopsis has a genetic basis and shows
evidence of local adaptation. eLife, 4, p.e05255.

Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics, 26(19), pp.2460-2461.

Ehrlén, ]. & Miinzbergova, Z., 2009. Timing of flowering: opposed selection on different
fitness components and trait covariation. The American naturalist, 173(6), pp.819-830.

Elshire, R.J. et al,, 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high
diversity species. PLoS One, 6(5), p.e19379.

Fieldes, M.A. & Amyot, L.M., 2000. Evaluating the potential of using 5-azacytidine as an
epimutagen. Canadian Journal of Botany, 77(11), pp.1617-1622.

Fulnecek, J. & Kovarik, A., 2013. How to interpret methylation sensitive amplified
polymorphism (MSAP) profiles? BMC Genetics, 15(1), pp.2-2.

Futuyma, D.]., 1986. The evolution of interactions among species. Evolutionary Biology,
Sinauer Associates, Inc., Sunderland, MA, pp.482-504.

Garrison, E. & Marth, G., 2012. Haplotype-based variant detection from short-read
sequencing. arXiv:1207.3907v2, q-bio.GN.

Gaydos, L.J., Wang, W. & Strome, S., 2014. Gene repression. H3K27me and PRC2 transmit a
memory of repression across generations and during development. Science, 345(6203),
pp.1515-1518.

Gehring, M., 2016. Prodigious plant methylomes. Genome biology, pp.1-3.

Greaves, LK. et al,, 2012. Trans Chromosomal Methylation in Arabidopsis hybrids.
Proceedings of the National Academy of Sciences, 109(9), pp.3570-3575.

Grossniklaus, U. et al,, 2013. Transgenerational epigenetic inheritance: how important is it?
Nature reviews. Genetics, 14(3), pp.228-235.

Gu, H. et al,, 2011. Preparation of reduced representation bisulfite sequencing libraries for
genome-scale DNA methylation profiling. Nature Protocols, 6(4), pp-468-481.

Gugger, P.F. etal., 2016. Species-wide patterns of DNA methylation variation in Quercus
lobata and their association with climate gradients. Molecular Ecology, 25(8), pp.1665-
1680.

151



Hagmann, J. et al,, 2015. Century-scale Methylome Stability in a Recently Diverged
Arabidopsis thaliana Lineage T. Kakutani, ed. PLoS Genetics, 11(1), p.e1004920.

Hancock-Hanser, B.L. et al., 2013. Targeted multiplex next-generation sequencing: advances
in techniques of mitochondrial and nuclear DNA sequencing for population genomics.
Molecular Ecology Resources, 13(2), pp-254-268.

Hansen, K.D., Brenner, S.E. & Dudoit, S., 2010. Biases in [llumina transcriptome sequencing
caused by random hexamer priming. Nucleic acids research, 38(12), pp.e131-e131.

Harris, R.A. et al., 2010. Comparison of sequencing-based methods to profile DNA
methylation and identification of monoallelic epigenetic modifications. Nature
Biotechnology, 28(10), pp.1097-1105.

Hauben, M. et al,, 2009. Energy use efficiency is characterized by an epigenetic component
that can be directed through artificial selection to increase yield. Proceedings of the
National Academy of Sciences, 106(47), pp.20109-20114.

He, X.-]., Chen, T. & Zhu, ].-K., 2011. Regulation and function of DNA methylation in plants
and animals. Cell research, 21(3), pp.442-465.

Heard, E. & Martienssen, R.A., 2014. Transgenerational Epigenetic Inheritance: Myths and
Mechanisms. Cell, 157(1), pp.95-109.

Herman, ].J., 2016. Epigenetics of Adaptive Plasticity: An Investigation of Plant Responses to
Environmental Stress Within and Across Generations, Available at:
http://wesscholar.wesleyan.edu/etd_diss/70.

Herman, ].J. & Sultan, S.E., 2016. DNA methylation mediates genetic variation for adaptive
transgenerational plasticity. Proceedings. Biological sciences, 283(1838).

Holeski, L.M., Jander, G. & Agrawal, A.A., 2016. Transgenerational defense induction and
epigenetic inheritance in plants. Trends in Ecology & Evolution, pp.1-9.

Ikeda, Y. & Nishimura, T., 2015. The Role of DNA Methylation in Transposable Element
Silencing and Genomic Imprinting. In Nuclear Functions in Plant Transcription, Signaling
and Development. New York, NY: Springer, pp. 13-29. Available at:
http://link.springer.com/10.1007/978-1-4939-2386-1_2.

Jablonka, E. & Lamb, M.].,, 1998. Epigenetic inheritance in evolution. Journal of Evolutionary
Biology, 11(2), pp.159-183.

Jablonka, E., Lamb, M.]. & Zeligowski, A., 2014. Evolution in four dimensions, revised edition:
Genetic, epigenetic, behavioral, and symbolic variation in the history of life, MIT press.

Jacobsen, S.E. & Meyerowitz, E.M., 1997. Hypermethylated SUPERMAN epigenetic alleles in
arabidopsis. Science, 277(5329), pp.1100-1103.

152



References

Jaligot, E. & Rival, A., 2015. Applying Epigenetics in Plant Breeding: Balancing Genome
Stability and Phenotypic Plasticity. In Cham: Springer International Publishing, pp. 159-
192.

Jiang, C. et al., 2014. Environmentally responsive genome-wide accumulation of de novo
Arabidopsis thaliana mutations and epimutations. Genome Research.

Jiang, L. et al., 2011. Synthetic spike-in standards for RNA-seq experiments. Genome
Research, 21(9), pp.1543-1551.

Johannes, F. et al., 2009. Assessing the Impact of Transgenerational Epigenetic Variation on
Complex Traits. PLoS Genetics, 5(6).

Jones, A.L. & Sung, S., 2014. Mechanisms Underlying Epigenetic Regulation in Arabidopsis
thaliana. Integrative and Comparative Biology, 54(1), pp.61-67.

Jones, M.R. & Good, ].M., 2016. Targeted capture in evolutionary and ecological genomics.
Molecular Ecology, 25(1), pp.185-202.

Jones, P.A., 1985. Altering gene expression with 5-azacytidine. Cell, 40(3), pp.485-486.

Kalisz, S. & Purugganan, M.D., 2004. Epialleles via DNA methylation: consequences for plant
evolution. Trends in Ecology & Evolution, 19(6), pp.309-314.

Kamthan, A. et al,, 2015. Small RNAs in plants: recent development and application for crop
improvement. Frontiers in Plant Science, 6, p.208.

Kawakatsu, T. et al.,, 2016. Epigenomic Diversity in a Global Collection of Arabidopsis
thaliana Accessions. Cell, 166(2), pp.492-505.

Kilvitis, H.J. et al., 2013. Ecological Epigenetics. In C. R. Landry & N. Aubin-Horth, eds.
Ecological Genomics: Ecology and the Evolution of Genes and Genomes. Ecological
Genomics: Ecology and the Evolution of Genes and Genomes. Dordrecht: Springer
Netherlands, pp. 191-210.

Kiselev, K.V, Tyunin, A.P. & Karetin, Y.A., 2014. Salicylic acid induces alterations in the
methylation pattern of the VaSTS1, VaSTS2, and VaSTS10 genes in Vitis amurensis Rupr.
cell cultures. Plant Cell Reports, 34(2), pp.311-320.

Kleinman, C.L. & MajewskKi, J., 2012. Comment on “Widespread RNA and DNA Sequence
Differences in the Human Transcriptome.” Science, 335(6074), pp.1302-1302.

Klironomos, F.D., Berg, ]. & Collins, S., 2013. How epigenetic mutations can affect genetic
evolution: model and mechanism. BioEssays : news and reviews in molecular, cellular and
developmental biology, 35(6), pp.571-578.

Koboldt, D.C. et al,, 2012. VarScan 2: somatic mutation and copy number alteration
discovery in cancer by exome sequencing. Genome Research, 22(3), pp.568-576.

153



Kovalchuk, I. & Kovalchuk, 0., 2012. Epigenetics in health and disease, FT Press.

Kronholm, I. & Collins, S., 2016. Epigenetic mutations can both help and hinder adaptive
evolution. Molecular Ecology, 25(8), pp.1856-1868.

Latzel, V. et al,, 2012. Epigenetic variation in plant responses to defence hormones. Annals
of botany.

Law, J.A. & Jacobsen, S.E., 2010. Establishing, maintaining and modifying DNA methylation
patterns in plants and animals. Nature reviews. Genetics, 11(3), pp.204-220.

Lee, H. et al., 2016. Third-generation sequencing and the future of genomics. Biorxiv,
p.048603.

Lev Maor, G., Yearim, A. & Ast, G., 2015. The alternative role of DNA methylation in splicing
regulation. Trends In Genetics, 31(5), pp.274-280.

Li, H. etal, 2009. The Sequence Alignment/Map format and SAMtools. ....

Li, M. etal,, 2011. Widespread RNA and DNA sequence differences in the human
transcriptome. Science, 333(6038), pp.53-58.

Li, Q. et al,, 2014. Inheritance patterns and stability of DNA methylation variation in maize
near-isogenic lines. Genetics, 196(3), pp.667-676.

Li, X. et al,, 2012. Single-base resolution maps of cultivated and wild rice methylomes and
regulatory roles of DNA methylation in plant gene expression. BMC genomics, 13, p.300.

Lin, W. etal., 2012. Comment on “Widespread RNA and DNA Sequence Differences in the
Human Transcriptome.” Science, 335(6074), pp.1302-1302.

Lister, R. & Ecker, ].R., 2009. Finding the fifth base: Genome-wide sequencing of cytosine
methylation. Genome Research, 19(6), pp.959-966.

Lister, R. et al., 2008. Highly integrated single-base resolution maps of the epigenome in
Arabidopsis. Cell, 133(3), pp.523-536.

Liu, Y. et al.,, 2012. Bis-SNP: Combined DNA methylation and SNP calling for Bisulfite-seq
data. Genome biology, 13(7), p.R61.

Lusser, M. et al,, 2012. Deployment of new biotechnologies in plant breeding. Nature
Biotechnology, 30(3), pp.231-239.

Lynch, M. et al., 1993. The mutational meltdown in asexual populations. Journal Of Heredity,
84(5), pp.339-344.

154



References

Manning, K. et al., 2006. A naturally occurring epigenetic mutation in a gene encoding an
SBP-box transcription factor inhibits tomato fruit ripening. Nature genetics, 38(8),
pp.948-952.

Matvienko, M. et al., 2013. Consequences of Normalizing Transcriptomic and Genomic
Libraries of Plant Genomes Using a Duplex-Specific Nuclease and
Tetramethylammonium Chloride. PLoS One, 8(2), p.e55913.

Mayr, E., 2001. What evolution is, Basic books.

Mayr, E. & Provine, W.B., 1998. The evolutionary synthesis: perspectives on the unification of
biology, Harvard University Press.

Meissner, A. et al., 2005. Reduced representation bisulfite sequencing for comparative high-
resolution DNA methylation analysis. Nucleic acids research, 33(18), pp.5868-5877.

Meng, D. et al,, 2016. Limited Contribution of DNA Methylation Variation to Expression
Regulation in Arabidopsis thaliana B. S. Gaut, ed. PLoS Genetics, 12(7), p.e1006141.

Mirouze, M. & Paszkowski, ]., 2011. Epigenetic contribution to stress adaptation in plants.
Current opinion in plant biology, 14(3), pp.267-274.

Molina-Montenegro, M.A. et al., 2011. Functional differences in response to drought in the
invasive Taraxacum officinale from native and introduced alpine habitat ranges. Plant
Ecology & Diversity, 4(1), pp.37-44.

Molinier, J. et al., 2006. Transgeneration memory of stress in plants. Nature, 442(7106),
pp.1046-1049.

Niederhuth, C.E. & Schmitz, R.J., 2014. Covering your bases: inheritance of DNA methylation
in plant genomes. Molecular plant, 7(3), pp.472-480.

Niederhuth, C.E. & Schmitz, R.J., 2016. Putting DNA methylation in context: from genomes to
gene expression in plants. Biochimica et biophysica acta.

Niederhuth, C.E., Bewick, A, Ji, L., Alabady, M., Kim, K.D., Page, ].T., et al., 2016. Widespread
natural variation of DNA methylation within angiosperms,

Niederhuth, C.E., Bewick, A, Ji, L., Alabady, M.S., Kim, K.D., Li, Q., et al., 2016. Widespread
natural variation of DNA methylation within angiosperms. Genome biology, 17(1), p.194.

Oplaat, C. & Verhoeven, K.J.F., 2015. Range expansion in asexual dandelions: selection for
general-purpose genotypes? N. Rafferty, ed. Journal of Ecology, 103(1), pp.261-268.

Osborn, H.F., 1896. From the Greeks to Darwin: an outline of the development of the evolution
idea, Macmillan.

155



OssowskKi, S. et al., 2010. The rate and molecular spectrum of spontaneous mutations in
Arabidopsis thaliana. Science, 327(5961), pp.92-94.

Ou, X. et al,, 2012. Transgenerational Inheritance of Modified DNA Methylation Patterns and
Enhanced Tolerance Induced by Heavy Metal Stress in Rice (Oryza sativa L.) K. Wuy, ed.
PLoS One, 7(9), p.e41143.

O’Dea, R.E. et al,, 2016. The role of non-genetic inheritance in evolutionary rescue:
epigenetic buffering, heritable bet hedging and epigenetic traps. Environmental
Epigenetics, 2(1), p.dvv014.

Pedersen, B.S. et al,, 2014. Fast and accurate alignment of long bisulfite-seq reads.
arXiv:1401.1129v2.

Peng, H. & Zhang, Jing, 2008. Plant genomic DNA methylation in response to stresses:
Potential applications and challenges in plant breeding. ..., 19(9), pp.1037-1045.

Peterson, B.K. et al, 2012. Double digest RADseq: an inexpensive method for de novo SNP
discovery and genotyping in model and non-model species. PLoS One, 7(5), p.e37135.

Peterson, C.L. & Laniel, M.-A., 2004. Histones and histone modifications. Current biology,
14(14), pp.R546-51.

Pickrell, ].K,, Gilad, Y. & Pritchard, J.K., 2012. Comment on "Widespread RNA and DNA
sequence differences in the human transcriptome". Science, 335(6074), pp.1302-author
reply 1302.

Pieterse, C.M. & Dicke, M., 2007. Plant interactions with microbes and insects: from
molecular mechanisms to ecology. Trends in Plant Science, 12(12), pp.564-569.

Pigliucci, M., 2002. Ecology and evolutionary biology of Arabidopsis. The Arabidopsis book,
1, p-e0003.

Platt, A. et al,, 2015. Genome-wide signature of local adaptation linked to variable CpG
methylation in oak populations. Molecular Ecology, 24(15), pp.3823-3830.

Plongthongkum, N., Diep, D.H. & Zhang, K., 2014. Advances in the profiling of DNA
modifications: cytosine methylation and beyond. Nature reviews. Genetics, 15(10),
pp.647-661.

Preite, V., 2016. Epigenetic inheritance in apomictic dandelions: stress-induced and heritable
modifications in DNA methylation and small RNA. Wageningen: Wageningen University.

Rapp, R.A. & Wendel, ].F., 2005. Epigenetics and plant evolution. The New phytologist,
168(1), pp.81-91.

156



References

Regulski, M. et al., 2013. The maize methylome influences mRNA splice sites and reveals
widespread paramutation-like switches guided by small RNA. Genome Research, 23(10),
pp.1651-1662.

Rédei, G.P., 1992. A heuristic glance at the past of Arabidopsis genetics. Methods in
Arabidopsis research, pp.1-15.

Richards, C. & al, E., 2010. What Role Does Heritable Epigenetic Variation Play in Phenotypic
Evolution? BioScience.

Richards, C.L. et al., 2012. Invasion of diverse habitats by few Japanese knotweed genotypes
is correlated with epigenetic differentiation. C. L. Richards, A. W. Schrey, & M. Pigliucci,
eds. Ecology Letters, 15(9), pp.1016-1025.

Richards, E.J., 2006. Inherited epigenetic variation--revisiting soft inheritance. Nature
reviews. Genetics, 7(5), pp-395-401.

Rigby, P.W.]. et al,, 1977. Labeling deoxyribonucleic acid to high specific activity in vitro by
nick translation with DNA polymerase I. Journal of molecular biology, 113(1), pp.237-
251.

Sailer, C,, Schmid, B. & Grossniklaus, U., 2016. Apomixis Allows the Transgenerational
Fixation of Phenotypes in Hybrid Plants. Current biology, 26(3), pp-331-337.

Salmon, A, Ainouche, M.L. & Wendel, ].F., 2005. Genetic and epigenetic consequences of
recent hybridization and polyploidy in Spartina (Poaceae). Molecular Ecology, 14(4),
pp.1163-1175.

Sarkies, P. & Miska, E.A., 2014. Small RNAs break out: the molecular cell biology of mobile
small RNAs. Nature reviews. Molecular cell biology, 15(8), pp.525-535.

Schmitz, R.J. etal., 2011. Transgenerational Epigenetic Instability Is a Source of Novel
Methylation Variants. Science, 334(6054), pp.369-373.

Schmitz, R, He, Y., et al,, 2013. Epigenome-wide inheritance of cytosine methylation
variants in a recombinant inbred population. Genome Research, 23(10), pp.1663-1674.

Schmitz, R.J., Schultz, M.D., et al., 2013. Patterns of population epigenomic diversity. Nature,
495(7440), pp.193-198.

Schrey, AW. etal, 2013. Ecological Epigenetics: Beyond MS-AFLP. Integrative and
Comparative Biology, 53, pp.340-350.

Schulz, B., Eckstein, R.L. & Durka, W., 2013. Scoring and analysis of methylation-sensitive

amplification polymorphisms for epigenetic population studies. Molecular Ecology
Resources, 13(4), pp.642-653.

157



Schwartz, S., Oren, R. & Ast, G., 2011. Detection and Removal of Biases in the Analysis of
Next-Generation Sequencing Reads P. Lopez-Garcia, ed. PLoS One, 6(1), p.e16685.

Schweyen, H., Rozenberg, A. & Leese, F., 2014. Detection and removal of PCR duplicates in
population genomic ddRAD studies by addition of a degenerate base region (DBR) in
sequencing adapters. The Biological bulletin, 227(2), pp-146-160.

Secco, D. et al,, 2015. Stress induced gene expression drives transient DNA methylation
changes at adjacent repetitive elements. eLife, 4.

Shea, N,, Pen, I. & Uller, T., 2011. Three epigenetic information channels and their different
roles in evolution. Journal of Evolutionary Biology, 24(6), pp.1178-1187.

Simons, A.M., 2011. Modes of response to environmental change and the elusive empirical
evidence for bet hedging. Proceedings. Biological sciences, 278(1712), pp.1601-1609.

Slotkin, R.K. & Martienssen, R., 2007. Transposable elements and the epigenetic regulation
of the genome. Nature reviews. Genetics, 8(4), pp.272-285.

Slotkin, R.K. et al.,, 2009. Epigenetic reprogramming and small RNA silencing of
transposable elements in pollen. Cell, 136(3), pp.461-472.

Song, Q.-X. et al., 2013. Genome-wide analysis of DNA methylation in soybean. Molecular
plant, 6(6), pp.1961-1974.

Steward, N. et al.,, 2002. Periodic DNA methylation in maize nucleosomes and demethylation
by environmental stress. The Journal of biological chemistry, 277(40), pp.37741-37746.

Sugimoto, N., Nakano, M. & Nakano, S., 2000. Thermodynamics-structure relationship of
single mismatches in RNA/DNA duplexes. Biochemistry, 39(37), pp.11270-11281.

Sultan, S.E., 2011. Adaptive transgenerational plasticity in plants: case studies, mechanisms,
and implications for natural populations. pp.1-10.

Sultan, S.E., Barton, K. & Wilczek, A.M., 2009. Contrasting patterns of transgenerational
plasticity in ecologically distinct congeners. Ecology, 90(7), pp.1831-1839.

Suzuki, M.M. & Bird, A., 2008. DNA methylation landscapes: provocative insights from
epigenomics. Nature reviews. Genetics, 9(6), pp.-465-476.

Swillen, L., Vanoverbeke, ]. & De Meester, L., 2015. Inbreeding and adaptive plasticity: an
experimental analysis on predator-induced responses in the water flea Daphnia.
Ecology and evolution, 5(13), pp.2712-2721.

Takahata, N., 1996. Neutral theory of molecular evolution. Current Opinion in Genetics &
Development, 6(6), pp.767-772.

158



References

Takuno, S. & Gaut, B.S., 2013. Gene body methylation is conserved between plant orthologs
and is of evolutionary consequence. Proceedings of the National Academy of Sciences,
110(5), pp.1797-1802.

Tas, I.C. & Van Dijk, P.J., 1999. Crosses between sexual and apomictic dandelions
(Taraxacum). I. The inheritance of apomixis. Heredity, 83 ( Pt 6), pp.707-714.

Tin, M.M.Y. et al., 2015. Degenerate adaptor sequences for detecting PCR duplicates in
reduced representation sequencing data improve genotype calling accuracy. Molecular
Ecology Resources, 15(2), pp.329-336.

Trerotola, M. et al., 2015. Epigenetic inheritance and the missing heritability. Human
genomics, 9, p.17.

Trucchi, E. et al, 2016. BsRADseq: screening DNA methylation in natural populations of
non-model species. Molecular Ecology, 25(8), pp.1697-1713.

Tytgat, T.0.G. et al,, 2013. Plants Know Where It Hurts: Root and Shoot Jasmonic Acid
Induction Elicit Differential Responses in Brassica oleracea G. Bonaventure, ed. PLoS
One, 8(6), p.e65502.

Uitdewilligen, ].G.A.M.L. et al., 2013. A Next-Generation Sequencing Method for Genotyping-
by-Sequencing of Highly Heterozygous Autotetraploid Potato L. Lukens, ed. PLoS One,
8(5), p-e62355.

van der Graaf, A. et al.,, 2015. Rate, spectrum, and evolutionary dynamics of spontaneous
epimutations. Proceedings of the National Academy of Sciences, 112(21), pp.6676-6681.

Van Dijk, P.J. et al.,, 1999. Crosses between sexual and apomictic dandelions (Taraxacum). II.
The breakdown of apomixis. Heredity, 83 ( Pt 6), pp.715-721.

van Gurp, T.P. et al.,, 2016. epiGBS: reference-free reduced representation bisulfite
sequencing. Nature methods.

van Gurp, T.P., McIntyre, L.M. & Verhoeven, KJ.F., 2013. Consistent errors in first strand
cDNA due to random hexamer mispriming. PLoS One, 8(12), p.e85583.

van Gurp, T.P.,, Wagemaker, N. & Bakker, F., 2009. Measuring the Arabidopsis methylome
using secondary digest MSAP:

an in vitro & in silico approach. Wageningen University.

Vandegehuchte, M.B. et al,, 2009. Occurrence of DNA methylation in Daphnia magna and
influence of multigeneration Cd exposure. Environment International, 35(4), pp.700-
706.

Vergeer, P., Wagemaker, N.C.A.M. & Ouborg, N.J., 2012. Evidence for an epigenetic role in
inbreeding depression. Biology letters, 8(5), pp.798-801.

159



Verhoeven, K.J.F. & Preite, V., 2014. Epigenetic variation in asexually reproducing
organisms. Evolution, 68(3), pp.644-655.

Verhoeven, K.J.F. & van Gurp, T.P., 2012. Transgenerational Effects of Stress Exposure on
Offspring Phenotypes in Apomictic Dandelion. PLoS One, 7(6), p.e38605.

Verhoeven, KJ.F., Jansen, ].]., et al., 2009. Stress-induced DNA methylation changes and their
heritability in asexual dandelions. New Phytologist, 185(4), pp.1108-1118. Available at:
http://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2009.03121.x/full.

Verhoeven, K.J.F., van Dijk, P.J. & Biere, A., 2009. Changes in genomic methylation patterns
during the formation of triploid asexual dandelion lineages. Molecular Ecology, 19(2),
pp.315-324.

Verhoeven, K.J.F., vonHoldt, B.M. & Sork, V.L., 2016. Epigenetics in ecology and evolution:
what we know and what we need to know. Molecular Ecology, 25(8), pp.1631-1638.

Verkest, A. et al,, 2015. Selection for Improved Energy Use Efficiency and Drought Tolerance
in Canola Results in Distinct Transcriptome and Epigenome Changes. Plant physiology,
168(4), pp.1338-1350.

Wang, H. et al,, 2015. CG gene body DNA methylation changes and evolution of duplicated
genes in cassava. Proceedings of the National Academy of Sciences, 112(44), pp.13729-
13734.

Wang, |. et al,, 2013. Double restriction-enzyme digestion improves the coverage and
accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite
sequencing. BMC genomics, 14(1), pp.1-1.

Wang, S. et al,, 2012. 2b-RAD: a simple and flexible method for genome-wide genotyping.
Nature Publishing Group.

Weigel, D. & Colot, V., 2012. Epialleles in plant evolution. Genome biology, 13(10), p.249.

Wibowo, A. et al., 2016. Hyperosmotic stress memory in Arabidopsis is mediated by distinct
epigenetically labile sites in the genome and is restricted in the male germline by DNA
glycosylase activity. eLife, 5.

Widman, N. et al., 2014. Epigenetic differences between shoots and roots in Arabidopsis
reveals tissue-specific regulation. Epigenetics : official journal of the DNA Methylation
Society, 9(2), pp-236-242.

Wilschut, R.A. et al., 2016. Natural epigenetic variation contributes to heritable flowering
divergence in a widespread asexual dandelion lineage. Molecular Ecology, 25(8),
pp.1759-1768.

Xie, M. & Yu, B., 2015. siRNA-directed DNA Methylation in Plants. Current genomics, 16(1),
pp.23-31.

160



References

Xu, ], 2016. DEVELOPING A NOVEL HYPOMETHYLATED POPULATION AND
CHARACTERIZING A STABLE EARLY FLOWERING EPIMUTANT IN STRAWBERRY
(FRAGARIA VESCA). pp.1-178.

Zhang, Jiajie et al,, 2014. PEAR: a fast and accurate Illumina Paired-End reAd mergeR.
Bioinformatics, 30(5), pp.614-620.

Zheng, W., Chung, L.M. & Zhao, H., 2011. Bias detection and correction in RNA-Sequencing
data. Bmc Bioinformatics, 12(1), p.290.

Zheng, X. et al., 2012. A high-performance computing toolset for relatedness and principal
component analysis of SNP data. Bioinformatics, 28(24), pp.3326-3328.

Zilberman, D. et al., 2007. Genome-wide analysis of Arabidopsis thaliana DNA methylation
uncovers an interdependence between methylation and transcription. Nature genetics,
39(1), pp.61-69.

Zook, ].M. et al,, 2012. Synthetic spike-in standards improve run-specific systematic error
analysis for DNA and RNA sequencing. ]. M. Zook et al., eds. PLoS One, 7(7), p.e41356.

161



Summary

The success or continuous existence of species requires continuous adaptation to changes
in the environment to survive and contribute offspring to the next generation. Selection acts
on the phenotype, which is in turn determined by the complex interplay of genetic,
epigenetic and environmental variation. (Natural) selection leads to ‘survival of the fittest’
or best-adapted individuals to their local environment, ultimately determining which
individuals contribute offspring to the next generation. Understanding the mechanisms by
which epigenetic and genetic variation can arise and get passed on through generations
determines our understanding of inheritance and evolution. Hitherto, the mechanistic
understanding of genetics has shaped the scientific view of inheritance and evolution,
leading to the gene-centered paradigm of Neo-Darwinism. However, recent studies indicate
that besides genetic (DNA sequence) variation, epigenetic variation can also be transmitted
between generations. Further studies on the properties and transgenerational dynamics of
epigenetic variation are needed to enhance our understanding of heritability and evolution.

Epigenetic variation has distinct properties and different transgenerational dynamics
compared to genetic variation. Epigenetic variation helps to regulate gene expression and
determines the different cell types and function in eukaryotes. The main function of DNA
methylation, an important part of the epigenetic code, is to prevent the spread of selfish
genetic elements in the genome and to establish the different cellular profiles observed in
multicellular organisms. One differentiating feature of epigenetic variation compared to
genetic variation is that (specific) epigenetic variation can arise under the influence of
stress. This can enable a trans-generational stress-response of organisms which can have a
positive influence on the phenotype and (natural) selection on either the (enhanced level
of) transgenerational phenotypic plasticity or the epigenetic variation itself, potentially
influencing natural selection and ultimately evolution. Where genetic variation can be
characterized as hard-inheritance, the inheritance of epigenetic variation is often referred
to as ‘soft-inheritance’ due to the lower transgenerational stability and resetting that occurs
in the intergenerational transfer of epigenetic variation. Epigenetic variation is also often
dependent on, or a downstream consequence, of genetic variation, suggesting that it is (in
part) determined by genetic variation.

Mechanistic studies in model species have contributed greatly to the understanding of the
molecular mechanisms that control the dynamics of different epigenetic marks present in
multicellular organisms. In plants, studies in the model plant Arabidopsis thaliana have
resulted in deciphering the most important molecular mechanisms and actors, giving an
ever-increasing insight into the dynamics of epigenetic regulation of cells and organisms. A
key feature of model systems is the ability to ‘switch’ off certain genes or molecular
pathways, for instance via the experimental use of mutants, enabling the study of their role
in the heritability of epigenetic marks. DNA methylation is a well-studied epigenetic mark,
which has shown high stability even in transgenerational experiments.

From the perspective of studying epigenetic variation, plants are particularly interesting for

several reasons, most importantly: 1) The separation between soma and germline, the
Weismann barrier, is less strict in plants compared to other eukaryotes, as in higher plants
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germline cells are formed during floral development from somatic cells (which can occur
throughout the life of the plant), whereas in most eukaryotes germline cell development is
restricted to a defined point (early) in the organismal development. 2) The sessile nature of
plants makes an adaptive plastic response to changing environments an important feature,
a plant cannot just walk away when the going gets tough. 3) The transgenerational stability
of DNA methylation is higher in plants compared to other eukaryotes such as mammals, in
which epigenetic information is erased during germline reprogramming. These factors
combined suggest that the potential importance of epigenetic variation in plants might be
high.

In this thesis, I focus on studying DNA methylation in apomictic Dandelions, applying Next
Generation Sequencing (NGS) approaches to the study of this non-model plant species.
Apomictic dandelions produce seeds that are genetically identical to the ‘mother’ plant,
which makes it easier to study the influence of epigenetic variation without confounding
effects of genetic variation. Working with Next Generation Sequencing data is still relatively
new and therefore not always optimized for specific types of analysis. I discovered a distinct
error pattern in RNAseq data that indicated an artificial source of variation that could be
traced back to the way the RNAseq libraries were constructed. The first publication of this
thesis contains a technical analysis of such artefacts present in RNAseq data, suggesting that
these errors are related to random hexamer mispriming during library construction
(Chapter 2).

The main goal of my work is to better understand the role of epigenetic variation in
adaptation and plasticity of plants. This role remains poorly understood. This is in part due
to the lack of high-resolution techniques that allow for the detailed study of epigenetic
marks such as DNA methylation in non-model organisms. Existing techniques for measuring
DNA methylation such as methylation sensitive AFLPs offer only information on DNA
methylation variation in an anonymous and limited fashion. The plummeting costs of
sequencing techniques have enabled large-scale genotyping efforts (focusing on genetic
variation only) for a wide variety of non-model organisms. Here, I extended this popular
genotyping by sequencing technique, to allow for sequencing-based epigenotyping or
epiGBS (chapter 3), which allows for measuring DNA methylation and genetic variation in
hundreds of samples simultaneously. I have extensively validated the approach, providing
evidence that with the right design, the accuracy of the DNA methylation measurements
with epiGBS are as high as those with the gold standard Whole Genome Bisulfite
Sequencing.

An important aim of my PhD research was to investigate the stability of (stress induced)
DNA methylation variation in apomictic dandelions and the potential of phenotypic
variation underpinned by DNA methylation variation to be subjected to selection. I
therefore studied the transgenerational stability of both stress induced and natural DNA
methylation variation in different genotypes of apomictic dandelions in a six-generation
experiment, comparing DNA methylation patterns between generations and tracking
changes in them (chapter 4) using epiGBS. I found clear but limited evidence for
environmental induction of heritable DNA methylation changes after application of
Jasmonic Acid. Furthermore, I found a significant negative relation between the similarity of

163



DNA methylation patterns and intergenerational distance, indicating epigenetic divergence
over generations. I conclude that DNA methylation in both CG and CHG (where H can be any
nucleotide except for G) sequence context are heritable and that environmental
perturbation can result in heritable DNA methylation changes which are however not
widespread.

A prerequisite for epigenetic variation to contribute to adaptation is that epigenetic
variants that affect the phenotype are heritable. To test whether an epigenetics-based
selection response is possible, at least over the time course of a few generations, I selected
early flowering for two subsequent generations in three genotypes of apomictic dandelions.
This selection effort included lines that received a stress pre-treatment with either
Jasmonic Acid or 5-azacytidine, to determine if stress-induced DNA methylation variation
would increase the capacity to respond to selection. The selection experiment on flowering
time (chapter 5) resulted in a shift in flowering time for all treatments in a young apomict,
suggesting that natural and heritable epigenetic variation can underpin quantitative traits
such as flowering time. I also found evidence for treatment induced (epi)genetic variation
leading to a stronger selection response in one out of 3 genotypes. This suggests that stress-
induced heritable epigenetic variation can lead to a selection response. Further study is
however required to rule out genetic variants and to study the long-term stability of the
variation selected upon.

Finally, in the General Discussion I summarize the findings, putting them in context with
recently published studies. I reflect on the state of the field of ecological epigenetics and in
what sense the epiGBS technique that I developed and other emerging techniques can
contribute to a better understanding of the role of epigenetic variation in ecology and
evolution. I reflect on the place of epiGBS compared to other techniques. I point out that
with the growing evidence of the inadequacy and misinterpretation of MS-AFLP results a
systematic review of such results by replicating the studies employing sequencing based
techniques such as epiGBS instead of MS-AFLP is in order.
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Samenvatting

Samenvatting

Het succes of blijven voortbestaan van soorten vereist continue aanpassing aan veranderende
milieuomstandigheden om te overleven en nageslacht te produceren. Selectie vindt plaats op
fenotypische eigenschappen, welke worden bepaald door een complex samenspel van
genetische en epigenetische variatie en omgevingsfactoren. (Natuurlijke) selectie leidt tot
‘survival of the fittest’ die het beste zijn aangepast aan hun lokale omgeving. Alleen deze goed
aangepaste individuen kunnen nageslacht doorgeven aan de volgende generatie. Kennis over de
mechanismen waarmee epigenetische en genetische variatie kunnen worden gegenereerd en
doorgegeven bepalen ons inzicht in erfelijkheid en evolutie. Tot nu toe is de mechanistische
kennis van de moleculaire genetica bepalend geweest voor de wetenschappelijk inzichten in
erfelijkheid en evolutie, uitmondend in het gen-centristische paradigma van het Neo-
darwinisme. Nieuwe studies laten echter zien dat naaste genetische variatie (in het DNA),
epigenetische variatie ook erfelijk kan zijn. Verdere studies naar de eigenschappen en de
transgenerationele dynamiek van epigenetische variatie is nodig om ons begrip van erfelijkheid
en evolutie te verbreden en verdiepen.

Epigenetische variatie heeft, vergeleken met genetische variatie, andere eigenschappen en
vertoond een andere transgenerationele dynamiek. Epigenetische variatie helpt onder andere
bij de regulatie van genexpressie en het bepalen van de verschillende typen cellen in
eukaryoten. De belangrijkste functie van DNA methylatie, welke een belangrijk onderdeel vormt
van de ons bekende epigenetische variatie, is het onderdrukken van mobiele genetische
elementen zoals transposons, die het genoom kunnen ontregelen door zichzelf veelvuldig te
kopiéren. Daarnaast bepaald epigenetische variatie de vorm en functie van verschillende
celtypen in meercellige organismen (zoals bijvoorbeeld een haar of zenuwcel). Een
onderscheidend kenmerk van epigenetische variatie ten opzichte van genetische variatie is dat
onder invloed van stress (specifieke) epigenetische veranderingen kunnen optreden. Dit maakt
een transgenerationele stress-respons mogelijk die mogelijk adaptief is. Daarnaast kan er
(natuurlijke) selectie plaatsvinden op de mate waarin stress-geinduceerde epigenetische
variatie wordt doorgegeven of op de doorgegeven variatie zelf in het nageslacht, wat invloed
kan hebben op natuurlijke selectie en uiteindelijk evolutie. Waar genetische variatie veelal
onveranderd wordt doorgegeven tussen generaties is dit bij epigenetische variatie niet het
geval; veel nieuw gegenereerde variatie valt weer terug. Epigenetische erfelijkheid wordt
daarom ook wel ‘softe’ erfelijkheid genoemd. Epigenetische variatie is ook vaak afhankelijk van
of direct bepaald door genetische variatie.

Mechanistische studies in modelsoorten hebben een belangrijke bijdrage geleverd aan ons
begrip van de moleculaire mechanismen die de dynamiek en erfelijkheid van verschillende
typen van epigenetische variatie bepalen in meercellige organismen. Studies in de modelplant
Arabidopsis thaliana hebben inzicht gegeven in de belangrijkste moleculaire mechanismen,
welke leiden tot een steeds ingewikkelder plaatje van de dynamische epigenetische regulatie
van cel tot systemisch niveau. Een belangrijke eigenschap van modelsystemen is dat het
mogelijk is om bepaalde genen of moleculaire pathways uit te schakelen met mutanten, wat de
studie naar hun rol in de erfelijkheid van epigenetische variatie mogelijk maakt. DNA methylatie
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is een van de best-bestudeerde epigenetische merkers, die een hoge mate van stabiliteit heeft
laten zien in transgenerationele experimenten.

Voor de studie van epigenetische variatie zijn planten bijzonder geschikt voor een aantal
redenen, waaronder: 1) De scheiding tussen soma en kiembaan (cellen betrokken bij productie
van zaad en eicellen), de Weismann barriére, is minder strikt in planten vergeleken met andere
eukaryoten, omdat in hogere planten de geslachtscellen worden gevormd uit somatische cellen
gedurende de bloemontwikkeling (die gedurende het hele leven van de plant kan plaatsvinden).
In andere eukaryoten is de ontwikkeling van cellen in de kiembaan beperkt tot een
gedefinieerde en vaak korte periode in de ontwikkeling. 2) De sessiele levenswijze van planten
stelt hoge eisen aan hun adaptief vermogen; een plant kan niet weglopen als de
omstandigheden verslechteren. 3) De transgenerationele stabiliteit van DNA methylatie is hoog
in planten vergeleken met andere eukaryoten zoals zoogdieren, waarbij gedurende de
ontwikkeling het merendeel van de epigenetische merkers wordt gereset. Gecombineerd,
suggereren deze factoren dat het potentiele belang van erfelijke epigenetische variatie in
planten hoog zou kunnen zijn.

In dit proefschrift focus ik op de studie van DNA methylatie in apomicte paardenbloemen;
waarbij ik Next Generation Sequencing (NGS) methoden toepas en ontwikkel die geschikt zijn
voor zowel model als niet-model planten. Apomicte paardenbloemen produceren zaad dat
genetisch identiek is aan dat van de moederplant, wat het makkelijk maakt om de rol van
epigenetische variatie in isolatie te bestuderen, omdat genetische variatie in principe geen rol
speelt. Het werken met Next Generation Sequencing (NGS) data is nog relatief nieuw en
daardoor nog niet altijd geoptimaliseerd voor specifieke analyses. Zo heb ik een specifiek
foutpatroon in RNAseq data ontdekt dat beruste op de manier waarop de sequencing-libraries
worden gemaakt. De eerste publicatie in dit proefschrift (hoofdstuk 2) omvat een technische
analyse van dergelijke artefacten in RNAseq data, waarbij ik suggereer dat deze fouten worden
veroorzaakt door het misprimen van random hexameren gedurende de library constructie.

Het hoofddoel van mijn werk in dit proefschrift is om de rol van epigenetische variatie in de
plasticiteit en adaptatie van planten beter te leren begrijpen. Van deze rol is nog niet veel
bekend. Dit komt onder andere door een gebrek aan geschikte technieken waarmee
epigenetische merkers zoals DNA methylatie in detail kunnen worden bestudeerd in niet-model
organismen waarin een rol voor deze variatie ecologisch voor de hand ligt. Bestaande
technieken zoals methylatie sensitieve AFLPs geven slechts gelimiteerde en ‘anonieme’
informatie waarbij de kennis over de genomische locatie van de aanwezige variatie ontbreekt.
De snel dalende kosten van sequencing-data hebben geleid tot een snelle adoptie van
genotyperingstechnieken die het mogelijk maken op grote schaal genetische variatie te meten
in niet-model organismen. In dit proefschrift beschrijf ik de ontwikkeling van een aanpassing op
de populaire genotyping by sequencing techniek die het mogelijk maakt om DNA methylatie en
genetische variatie gelijktijdig te meten. Deze epigenotyping by sequencing techniek (epiGBS
hoofdstuk 3) maakt het mogelijk om in honderden samples voor soorten zonder
referentiegenoom bisulfiet-sequencing data te genereren die inzicht verschaft in zowel
genetische als DNA-methylatie (epigenetische) variatie. Ik heb epiGBS uitgebreid gevalideerd en
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getoetst aan bestaande methodes. Met de juiste experimentele opzet is de nauwkeurigheid van
de bepaling van DNA-methylatie net zo groot als die van de huidige standaard, Whole Genome
bisulfite sequencing (WGBS).

Een ander belangrijk doel van mijn promotieonderzoek was het bestuderen van de stabiliteit
van (stress-geinduceerde) DNA methylatievariatie in apomicte paardenbloemen en het
potentieel van het uitvoeren van (artificiéle) selectie op fenotypische variatie gebaseerd op
DNA-methylatie variatie. Ik heb hiervoor de transgenerationele stabiliteit van zowel stress-
geinduceerde als natuurlijke DNA methylatievariatie bepaald in een zes-generatie experiment,
waarbij ik de veranderingen in DNA methylatie in opvolgende generaties bepaalde met behulp
van epiGBS. Ik heb duidelijke aanwijzingen voor subtiele veranderingen in DNA methylatie na
toepassing van jasmonzuur. Hiernaast vond ik een significante negatieve relatie tussen de
similariteit van DNA methylatiepatronen en intergenerationele afstand, wat duidt op
epigenetische divergentie over generaties. Ik concludeer dat DNA methylatie in zowel CG als
CHG (waar H elke nucleotide kan zijn behalve G) sequence context erfelijk is; en dat milieu-
invloeden kunnen resulteren in (erfelijke) veranderingen in DNA methylatie, hoewel de schaal
waarop deze variatie transgenerationeel wordt doorgegeven relatief beperkt is.

Een vereiste voor een mogelijke bijdrage van epigenetische variatie aan adaptatie is dat
epigenetische variatie die een afwijkend fenotype bepaald erfelijk is. Om te bepalen of het
mogelijk is te selecteren op basis van epigenetische variatie, voor tenminste enkele generaties,
heb ik snel-bloeiende paardenbloemen voor twee opeenvolgende generaties geselecteerd in
drie verschillende genotypes van apomicte paardenbloemen. Dit selectie-experiment bevatte
lijnen die een stress voorbehandeling met jasmonzuur ofwel 5-azacytidine hadden ontvangen,
om te bepalen of stress-geinduceerde DNA methylatievariatie de selectierespons zou verhogen.
Het selectie-experiment op bloeitijd (hoofdstuk 5) resulteerde in een verschuiving in bloeitijd
voor zowel controle als stress-voorbehandelingslijnen, wat suggereert dat natuurlijke, erfelijke
epigenetische variatie kwantitatieve eigenschappen zoals bloeitijd kan beinvloeden. Daarnaast
vond ik in een van de genotypes een sterkere selectierespons in een lijn met stress-
voorbehandeling ten opzichte van de controle-lijn. Dit suggereert dat stress-geinduceerde,
erfelijke epigenetische variatie aan de basis kan liggen voor (artificiéle) selectie op een
veranderd fenotype. Diepgravende studies zijn echter nodig om genetische variatie uit te sluiten
en om inzicht te verkrijgen in de stabiliteit van de variatie waarop geselecteerd is.

Tot slot vat ik mijn bevindingen samen in de general discussion, waarbij ik mijn resultaten aan
de hand van de recente literatuur bediscussieer en in context plaats. Ik reflecteer op de status
van het vakgebied van de ecologische epigenetica en in welke mate de epiGBS techniek die ik
ontwikkeld heb en andere opkomende technieken kunnen bijdragen aan een beter begrip van
de rol van epigenetische variatie in een ecologische en evolutionaire context. |k reflecteer op de
mogelijke inzet van epiGBS naast of in plaats van andere technieken. Verder beschrijf ik dat in
het licht van de groeiende bewijslast die de ontoereikendheid en misinterpretatie van MS-AFLP
resultaten aantoont een systematische review en revisie van deze resultaten middels het
repliceren van (enkele van) deze studies met op sequencing gebaseerde technieken zoals
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epiGBS nodig is om de relevantie van de tot nu toe opgedane kennis in de ecologische
epigenetica te staven.
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