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Chapter 1

Introduction: Metabolic
modeling

It is the year 2009 and I am choosing my Bachelor programme for after the
summer break. The BSc ’molecular life sciences’ is the first I scratch off of my
preselection and the search goes on. My search becomes focused after I stum-
ble on a press article about the 2008 TU Delft student team of the international
Genetically Engineered Machine (iGEM) competition. The article describes
how micro-organisms can be modified to carry out all kinds of useful tasks
for our society, for example, giving bright colors to dog feces so people do
not accidentally step in. A silly example, to be sure. Nonetheless, the un-
derlying concept of ’synthetic biology’ — self-replicating micro-machines that
carry out specific tasks — is fascinating, appears widely applicable, and ties
in with societal goals such as reducing oil and pesticide usage, or performing
bio-remediation. I decide to specifically look for BSc programmes that enable
a future move into synthetic biology. After the summer, I start the BSc Molecu-
lar Life Sciences at Wageningen University "To explore the potential of nature
to improve the quality of life".

In 2011, the second year of my BSc, I decided to join the Wageningen iGEM
team; one of the best decisions I’ve ever made. This was a team full of moti-
vated — and motivating — students who shared my interest in synthetic biol-
ogy and together we created an educationally invaluable experience. I learned
that the key aspect distinguishing synthetic biology from earlier biological
disciplines is the ’engineering mindset’; the ethos to not use trial-and-error,
but rational design. The rational redesign of biological system requires an ex-
tremely thorough and comprehensive understanding of the original system
as there are so many relevant factors. This explains the ’marriage’ between
the fields of synthetic biology and systems biology. Systems biology focuses
on combining all available sources of biological information in mathematical
models in order to understand as much as possible of the biological system.
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Although the mathematical modeling in systems biology is still mostly de-
scriptive, the models could be used to redesign biological systems for specific
purposes. Therefore, I enrolled in the MSc Bioinformatics with the Systems
Biology specialization.

I start my PhD in 2013 on a project entitled "Modeling, refactoring and re-
programming the Pseudomonas putida chassis for biocatalysis à la carte". This
project aligns perfectly with my developed skills and interests: The applica-
tion of systems biology methods to study and model microbial metabolism
with the ultimate goal of redesigning it for the production of compounds of
biotechnological interest. Although I recognize that the identity of the pro-
duced compound is a crucial factor for any industrial exploitation, my own
interests lie in the fundamental ability to rationally and functionally redesign
biological systems using computational models. I strongly suspect that in the
next few decades such efforts will prove a crucial centerpiece of biotechnology
and synthetic biology applications for many organisms. One organism that is
currently at the core of these ongoing developments is P. putida.

P. putida is a gram-negative soil bacterium renowned for its versatile
metabolism [84, 195, 285, 424]. In particular, its ability to degrade aromatic
compounds such as toluene and benzene [424] sparked initial interest in the
potential of this ’oil-eating’ organism. In fact, the first patent ever granted on a
genetically modified organism regards the use of a modified P. putida strain for
the bioremediation of oil spills [210]. P. putida’s rise to fame did not end there,
however, as it is currently regarded as a top synthetic biology chassis [264,
296], as well as industrial workhorse [264, 296, 338], and it stars in two Hori-
zon2020 European Union funded projects (EmPowerPutida, project number
635536; and P4SB, project number 633962). The physiological and metabolic
features underlying these interests are many: It grows fast, has a low nutrient
requirement, promotes plant growth, thrives in a broad pH range, is tolerant
to toxins and organic solvents, and has a high reductive power [72, 293, 296].
In addition, P. putida is genetically accessible, and a Generally Recognised As
Safe (GRAS) status has been granted to strain KT2440. This strain has been
the most thoroughly studied P. putida to date [296] and four genome-scale
metabolic models extensively describe its metabolism [298, 311, 341, 395].

Metabolism is the interplay of all biochemical processes taking place
within an organism. An ideal and comprehensive model of metabolism would
accurately describe the dynamics of all metabolite concentrations and reac-
tion rates over time. However, at any point in time, the rate of each reaction
is determined through a complex interplay of many variables including (i)
temperature, (ii) pH, (iii) concentration of substrates, products, and enzymes,
(iv) enzyme properties, and (v) formation energies of substrates and products.
In addition, metabolism is subject to several layers of regulation including
(i) translational regulation, (ii) transcriptional regulation, (iii) active enzyme
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degradation, and (iv) allosteric control. The aforementioned ideal model of
metabolism would incorporate all these heterogeneous processes and types of
data. Unfortunately, most of the required data is currently unavailable, and
there is no mathematical framework in place to model all these processes si-
multaneously. Fortunately, a solution to both the lack of data and lack of suit-
able mathematical analysis methods is provided by Genome-Scale constraint-
based Metabolic models (GSMs).

Genome-scale metabolic models

The use of GSMs relies on two assumptions that substantially simplify
metabolism. The foremost assumption is that metabolism is in a steady state,
which can experimentally be achieved in a chemostat [182], a turbidostat, and
during the exponential growth phase [137]. Conceptually, this represents that
over a long period of time there can not be a net increase in concentration
of intracellular metabolites due to limited space, nor can there be a net de-
crease in concentration of a metabolite due to limited starting material. Math-
ematically, the steady state assumption removes the need for detailed multi-
parameter differential equations for each reaction and replaces them by rela-
tively simple parameterless constraints for each metabolite. The second major
assumption is that evolution has selected for organisms that optimally use
their metabolic capabilities for a particular metabolic objective. This optimal-
ity assumption implies that the regulatory mechanisms in a cell steer towards
optimal metabolic activities. Therefore, there is no need to explicitly model
regulatory mechanisms as they are implicitly modeled through determining
optimal metabolic behavior.

These simplifications of metabolism have enabled a large range of suc-
cesfull GSM applications, for example: phenotype predictions [39, 284, 341],
drug-target identification [39, 189, 337], metabolic engineering [341, 461],
genome annotation [149, 312], analysis of omics data [69, 87, 473], and or-
ganism comparison [17, 27, 284, 311]. Hence, GSMs have been generated for
hundreds of different organisms during the last few decades, and multiple
GSMs have been generated for organisms of particular societal, industrial, or
scientific interest (see figure 1.1).
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FIGURE 1.1: Published manually curated GSMs. (a) Cumulative numbers of pub-
lished manually curated GSMs (blue) and species for which multiple manually curated
GSMs were published (orange). (b) Histogram of species for which multiple manually

curated GSMs have been published.

GSM generation starts with the construction of a draft model based on
the genome of the organism of interest [418]. The functional genome anno-
tation provides an overview of encoded enzymes and, thereby, an overview
of biochemical reactions the organism can perform; typically in the form of
EC numbers. EC numbers can be used to retrieve their corresponding reac-
tions from a reaction database such as KEGG [200] or Metacyc [66]. These en-
zymatic reactions are further supplemented by spontaneous non-enzymatic
reactions and artificial reactions that are required for the mathematical anal-
ysis. These artificial reactions include: (i) exchange reactions that represent
changes to the growth medium, (ii) maintenance reactions that represent en-
ergy expenditure for unmodelled and unknown processes, and (iii) biomass
reactions that represent growth as the production of a specific biomass com-
position. The biomass composition in GSMs is a rough breakdown of the dry
weight biomass in individual metabolites [31, 129]. Although the biomass
composition is ideally based on species-specific measurements, it is also often
inferred from similar organisms [454]. This list of enzymatic, spontaneous and
artificial reactions forms the draft GSM.

In principle, draft GSMs could be able to predict growth phenotypes: they
contain an overview of the biochemical capabilities of the organism as well
as the biomass reaction. Typically, however, not all biomass components can
be produced in the draft GSM due to missing reactions, commonly referred
to as ’gaps’, even for well-characterised organisms [131, 234]. Reactions may
be missing due to incorrect, non-specific or missing annotations [399], or even
due to missing reactions in reaction databases [414]. In addition, GSM reac-
tions are required to be either bidirectional (reversible) or unidirectional (ir-
reversible), but the determination of reaction directionalities remains uncer-
tain [138, 149]. In other words, a reaction could be present in the draft GSM
but with an incorrect directionality, thereby preventing its proper functioning.
These problems can - mostly - be addressed using gap-filling algorithms [234,
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472]. Gap-filling algorithms add and modify a minimal number of reactions
in a GSM in order to enable biomass production (or any other desired phe-
notype). However, any modification made by such an algorithm will require
manual inspection. In fact, a draft GSM may require years of manual curation
before being finished [418]. This mostly manual process is extensively covered
in a 96-step protocol [418].

The aforementioned separate steps in GSM construction have recently
been combined into fully automatic workflows [3, 176]. For example, the
Model Seed [176] only requires a genome sequence as input to generate a
draft GSM. This draft GSM can then also directly be subjected to gap-filling to
obtain a GSM that can simulate biomass production in a predefined growth
medium. Although automatic GSM generation provides an immense accel-
eration in GSM construction, manual curation of the generated GSM is still
recommended — if not required — to warrant sufficient quality [3, 173, 176].

The quality of a new GSM is typically benchmarked versus previously pub-
lished GSMs, especially if a GSM for the same organism already exists. How-
ever, the quality of a GSM is a somewhat ambiguous - perhaps even controver-
sial - characteristic [309]. They should be comprehensive, should represent our
biological knowledge, and should correctly predict growth phenotypes [320,
363]. Comprehensiveness is easily gauged via the sheer number of reactions,
metabolites and genes included in a GSM; ’more is better’ [320]. The represen-
tation of biological knowledge, on the other hand, is practically inassessible
due to the requirement of substantial manual curation. The assessment of this
criterion is thereby limited to, for example, mentioning the fraction of reac-
tions with gene association [363], or the number of literature references that
were used during GSM construction [10]. Growth phenotype predictions are
qualitative predictions of whether or not the organism - or a mutant strain
- can grow in a large number of defined media varying in carbon, nitrogen,
phoshpor, and sulfur sources [235, 320]. This last criterion, growth phenotype
predictions, is the most commonly used criterion when comparing the qual-
ity of different GSMs [309]. The three aformenetioned criteria are, however,
not independent of one another. In fact, a recent assessment of updates of
the Sacchromyces cerevisiea GSM demonstrated that typically the updates that
increased comprehensiveness reduced accuracy of growth phenotype predic-
tions and vice versa [320]. The evaluation of GSMs is further discussed in chap-
ter 8.
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Analysis of metabolic models

The analysis of GSMs is effectively an analysis of an n-dimensional solution
space; one dimension for each reaction. Each spot in this solution space corre-
sponds to a flux distribution, which may be feasible or infeasible. A feasible
flux distribution is one that does not violate any constraints, and all feasible
flux distributions together make up the feasible solution space; a subspace of
the total solution space. Figure 1.2 depicts a 12-reaction example model and
how its 12-dimensional solution space is affected by the constraints on reac-
tion bounds and steady state, as well as through the objective function.

Lower and upper reaction bounds are predefined for each reaction in a
GSM. These bounds represent (i) thermodynamic feasibility of reaction re-
versibility, (ii) presence of a compound in the medium composition (exchange
reactions only), and (iii) known flux limits such as measured substrate uptake
rates.

The steady state requirement in GSMs dictate that there can be no net ac-
cumulation of intracellular metabolites. A reaction can thus only carry flux
if its substrates can be produced by another reaction and its products can be
consumed by another reaction. Thereby the possible flux values for reactions
are dependent on the flux bounds of other reactions. Together, the flux bounds
and the steady state requirement make up the feasible solution space. GSM
analysis methods operate within this feasible solution space.

The objective function indicates the optimization goal of the metabolic net-
work and, by extent, the hypothesised goal of the modelled organism. The
most commonly used objective function is maximization of growth, which is
modelled as the maximization of biomass production. The biomass objective
function is conceptually based on evolution: The faster growing organism will
outcompete the slower growing organisms, hence maximization of growth is
a natural objective. Other objective functions are, for example, the maximiza-
tion of product yield, or the minimization of ATP expenditure or overall flux
[379]. Mathematically, the objective function is essentially a scoring function
for each point in the feasible solution space. The points in the feasible solution
space that share the highest score thereby form the optimal solution space.
GSM analysis methods such as Flux Balance Analysis (FBA) [318], Flux Vari-
ability Analaysis (FVA) [261], and OptKnock [59] pinpoint a single spot in the
optimal solution space corresponding to their optimization objective.
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Reaction bounds Reaction bounds

and steady state

Flux Balance Analysis

maximize Rp

Flux Balance Analysis

maximize Rg

Flux Variability Analysis

maximize Rg

OptKnock

maximize Rp

a

b

Reaction Lower bound Upper bound

R1 0 5

R2 -10 10

R3 0 10

R4 -10 10

R5 -10 10

R6 -10 10

R7 0 10

R8 -10 10

R9 0 10

R10 0 10

Rg 0 10

Rp 0 10

FIGURE 1.2: An example metabolic network and corresponding solution spaces. (a)
The nodes and edges in the network graph represent metabolites and reactions. Edges
with circular bases represent reversible reactions. The reactions denoted as Rg and Rp
represent growth and the production of a compound of interest. (b) Each wedge repre-
sents possible flux values for the corresponding reaction depending on the employed

constraints and optimization methods.
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FBA, the most common GSM analysis method, determines how an organ-
ism can optimally use its metabolic capabilities to maximize biomass produc-
tion [318]. Specifically, FBA is a linear programming problem that determines
a single spot within the feasible solution space that corresponds to the maxi-
mally achievable biomass production. The FBA linear programming problem
is defined as follows:

Maximize cx
Subject to Sx = 0

lb ≤ x ≤ ub

The vector c (r x 1) is a Boolean vector indicating which reaction is the objec-
tive reaction. The vector x (r x 1) indicates a flux value for each reaction in
the GSM. The matrix S (m x r) represents the relation between reactions and
metabolites; it indicates how much of each metabolite is consumed or pro-
duced for each unit of flux through each reaction. The vector 0 (r x 1) is a
null-vector that only contains zeroes. The vectors lb (r x 1) and ub (r x 1) in-
dicate the lower and upper bounds of possible flux values for each reaction.
FBA will identify a vector x that leads to the highest value of the scalar prod-
uct cx, which equals the biomass production rate. The product Sx is a vector
that indicates the net consumption or accumulation of each metabolite, which
is equaled to the null vector 0 so that a steady state is guaranteed. The last
line, lb ≤ x ≤ ub guarantees that the flux of each reaction is between its lower
and upper bounds. FBA thus determines a single spot in the subspace of the
feasible solution space that corresponds to the maximally attainable biomass
production rate; a single spot in the optimal solution space.

FVA identifies the boundaries of the optimal solution space for each re-
action in the GSM [261]. These boundaries are of interest as they describe
the possible phenotypes of an optimally growing organism. For example, for
microbes it is commonly assumed that the fastest growing microbe has an
evolutionary advantage and will outcompete other microbes. Therefore, the
microbe’s metabolism should assume a flux distribution that is optimal. In
turn, any flux distribution that is suboptimal is evolutionary disadvantageous
and will ultimately not be used. Consequentially, if the optimal solution space
requires the absence of flux for a reaction of biotechnological interest, evo-
lutionary pressure will steer the organism away from the biotechnologically
desired phenotype.

OptKnock, and other GSM-driven strain engineering methods, will there-
fore reshape the optimal solution space [59]. Specifically, OptKnock deter-
mines one or more reaction deletions that alter the optimal solution space
such that a predefined growth rate is maintained, while the maximally pos-
sible flux through a reaction of interest is maximized. It is noteworthy that
this new optimal solution space is a different subspace of the original feasible
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solution space. OptKnock thus designs a knockout strain for which evolution-
ary pressure drives towards the production of a compound of interest.

Metabolic engineering

OptKnock is but one of many GSM-driven strain design algorithms [262] that
vary both in approach to alter the solution space and in their optimization
goal [262, 472]. For example, RobustKnock identifies reaction deletions that
maximize the minimally possible flux rather than the maximally possible flux
of a reaction of interest [411], whereas SimOptStrain maximizes the maximally
possible flux of a reaction through both reaction deletions and reaction addi-
tions from a reference biochemical reaction database [213]. The addition of re-
actions from a biochemical reaction database also enables direct GSM-driven
strain design for non-native compounds.

Biochemical reaction databases are limited to previously characterized re-
actions. Theoretically there are many more possible reactions, either unchar-
acterized or not naturally occuring, which could play important roles for
metabolic engineering. Several algorithms aim to identify theoretically pos-
sible reactions and use these to design novel pathways [62, 63, 78, 169]. These
algorithms infer reaction rules based on reactions in reaction databases, fol-
lowing the assumption that metabolites with similar biochemical properties
can undergo similar biochemical conversions. A target metabolite is then se-
lected, and the reaction rules are applied to predict theoretically possible re-
actions and corresponding metabolites. These metabolites are potential sub-
strates for the production of the target metabolite in a single reaction step.
These potential substrates are then again subject to the reaction rules to iden-
tify metabolites that are two reaction steps away from the original target. This
process is repeated until a metabolite is identified that can already be pro-
duced by an organism of interest. This metabolite is then the starting point
of a, potentially novel, biosynthesis pathway for the metabolite of interest.
Subsequently, GSMs can be expanded with these pathways to evaluate their
suitability in the context of the rest of metabolism. Specifically, GSM-driven
strain design methods can evaluate whether the pathway is part of an opti-
mal solution space, or if it can be made part of an optimal solution space via
reaction deletions or additional reaction additions.
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Outline of this thesis

The goals of this thesis are: To increase the understanding of microbial
metabolism and to functionally redesign microbial systems using metabolic
models. As a case study, I use Pseudomonas putida; a bacterium renowned for
its versatile metabolism.

The foundation of metabolic modelling using Genome-Scale Metabolic
models (GSMs) is a solid genome annotation. Genome annotations are ar-
guably already outdated only days to weeks after they were completed. More
than 10 years have passed, however, since the original P. putida genome an-
notation on which its GSMs were built. Therefore, we revisit and update the
P. putida genome annotation in chapter 2. This update includes general struc-
tural and functional annotation updates, but also has a strong focus on elu-
cidating the metabolism not priorly described in P. putida GSMs. The most
comprehensive GSM to date - iJP962 [311] - was used to identify compounds
that P. putida degrades but for which the degradation pathway remained un-
known. These compounds formed the basis of an iterative cycle of targeted
manual annotation and GSM expansion to identify suitable degradation path-
ways for these compounds in P. putida.

The P. putida GSM used in chapter 2 was only one of the four P. putida GSMs
that were published at the time. These GSMs were made for the same organ-
ism, but by different people, with different expertise, using different parts of
the scientific literature. These GSMs thus contain complementary knowledge
that could be combined into a single, more comprehensive GSM. This situa-
tion of multiple complementary GSMs for one organism is not unique to P.
putida; in fact, there are multiple GSMs for dozens of organisms (see figure
1.1). However, there is no suitable framework to compare and combine infor-
mation from multiple GSMs. The study presented in chapter 3 addresses this
problem with the introduction of a computational tool that semi-automatically
creates a single consensus GSM from multiple independently generated GSMs
of the same species.

The species in the Pseudomonas genus exhibit vastly different lifestyles.
There are plant growth-promoting species as well as plant pathogens, and
soil-inhabiting obligate aerobes as well as lung-inhabiting facultative anaer-
obes. These vastly different lifestyles beckon the question what it is on a
genetic level that defines a Pseudomonas species, and whether these defining
traits are essential for growth and survival. In chapter 4 we explore the link
between the ubiquity of genetic elements in the Pseudomonas genus and their
essentiality for growth. As experimental essentiality data is only available for
few species in few experimental growth conditions, we employ the available
Pseudomonas GSMs to predict the (un-)conditional essentiality of genes in an
experimentally unattainable number of growth conditions. This data, together
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with a high-throughput genetic comparison of 432 Pseudomonas strains, pro-
vides a clear relationship between gene ubiquity and essentiality in the Pseu-
domonas genus.

Among the distinct lifestyles within the Pseudomonas genus, the potential
for anaerobic growth is both fundamentally interesting and industrially rel-
evant. Therefore, several previous experimental studies have attempted to
convey the ability for anaerobic growth found in other Pseudomonas species to
P. putida, mostly focusing on anaerobic energy generation. So far, these ap-
proaches have resulted in increased anaerobic survival, but not in growth.
Chapter 5 describes an in silico approach to determine essential oxygen-
dependent processes in P. putida, and subsequently design an anaerobically
growing P. putida. This in silico approach uses GSMs to describe P. putida
metabolism, as well as comparative genomics to pinpoint the genetic differ-
ences between obligate aerobic and facultative anaerobic Pseudomonas species.
Together, these in silico methods have enabled the theoretical design of anaer-
obic P. putida strains.

Chapter 6 describes the in silico design of species-specific synthetic CO2

fixation pathways. CO2 fixation is a fundamental component of the biobased
economy, but natural CO2 fixation pathways are rather inefficient. This inef-
ficiency has sparked several prior studies where synthetic CO2 fixation path-
ways were designed that are ATP-efficient and have favorable thermodynam-
ics and kinetics. These studies have, however, mostly designed pathways in
isolation rather than in the context of the metabolism of any particular mi-
croorganism. This lack of contextualization typically introduces a requirement
for many non-native enzymes. Therefore, we developed CO2FIX, an in silico
method that uses species-specific GSMs to design tailored CO2 fixation path-
ways that require few non-native reactions. The application of CO2FIX to
eight different organisms has resulted in several novel CO2 fixation pathways
that require less modification of native metabolism than previously described
synthetic pathways, but are similar in terms of ATP-efficiency and thermody-
namic and kinetic favorability.

The previous chapters demonstrate that GSMs for relatively well-
understood microbes such as P. putida can both further increase the under-
standing of microbial metabolism and can be used to functionally redesign
microbial systems. In chapters 7 and 8 we explore how GSMs can contribute
to these same goals for the much more complex microbial systems that are
algae (chapter 7) and gut microbial communities (chapter 8). Although these
systems are starkly different, they face similar issues in terms of cultivation,
annotation, lack of species-specific data, and general difficulties in multicom-
partment and multispecies modeling. These chapters review previous work
to address these issues and provide perspectives on how GSMs will continue
to contribute to the study of these complex microbial systems.
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In chapter 9 I will discuss how the research presented in this thesis con-
tributes to the objectives previously outlined herein, as well as to the current
challenges and opportunities surrounding the use of GSMs.
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Abstract

By the time the complete genome sequence of the soil bacterium Pseudomonas
putida KT2440 was published in 2002 [290] this bacterium was considered a po-
tential agent for environmental bioremediation of industrial waste and a good
colonizer of the rhizosphere. However, neither the annotation tools available
at that time nor the scarcely available omics data –let alone metabolic model-
ing and other nowadays common systems biology approaches- allowed us to
anticipate the astonishing capacities that are encoded in the genetic comple-
ment of this unique microorganism. In this work we have adopted a suite of
state-of-the-art genomic analysis tools to revisit the functional and metabolic
information encoded in the chromosomal sequence of strain KT2440. We iden-
tified 242 new protein-coding genes and reannotated the functions of 1,548
genes, which are linked to almost 4,900 PubMed references. We also pre-
dicted catabolic pathways for 92 compounds (carbon, nitrogen, and phospho-
rus sources) that could not be accommodated by the previously constructed
metabolic models. The resulting examination not only accounts for some of
the known stress tolerance traits known in P. putida but also recognizes the
capacity of this bacterium to perform difficult redox reactions, thereby multi-
plying its value as a platform microorganism for industrial biotechnology.
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Introduction

Pseudomonas putida is a soil bacterium generally recognized as safe (GRAS).
Belonging to a somewhat fuzzy clade of the Pseudomonadales [327], it has been
used for decades as a model environmental organism with activity against
aromatic pollutants. In 2002, in a successful transatlantic collaboration, scien-
tists at The Institute for Genomic Research (USA) and at four research centers
in Germany deciphered and analyzed the genome of strain KT2440 [290]. This
strain, which can be used to dispose of organic pollutants in the soil, promotes
plant growth and fights plant diseases [359]. Regenhardt et al. highlighted the
complex and versatile metabolism that gives P. putida an important role not
only in academic research on soil bacteria but also as an agent for environ-
mental cleanup and other biotechnological uses [359]. Yet, the genome analy-
sis tools available at that time were able to extract only a small portion of the
wealth of biological activities encoded in the chromosome of this bacterium.

In this work we set out to revisit the metabolic and physiological set-
up of this organism by re-analysing the content of its genome using several
approaches. We first re-sequenced the P. putida KT2440 wild-type strain in
parallel with that of a streamlined derivative as a control for possible evolu-
tion in laboratory settings [245] and compared it to the original published se-
quence [290]. Combined with transcriptomics data analysis [145, 214], a com-
plete structural reannotation of the KT2440 genome sequence led us to elimi-
nate original erroneously predicted protein-coding genes, to correct disrupted
genes and to identify potential new genes, some of which encode enzymatic
activities. In a second step, we functionally reannotated these genes based on
recent progress in our knowledge of metabolic pathways [386, 453]. Thirdly,
we used this reannotation to reconcile in silico predictions from Genome-Scale
constraint-based Metabolic models (GSMs) [298, 311, 341, 395] with metabolic
phenotype data obtained with BIOLOG plates[43]. The updated annotation
was then used to extend the GSM iJP962 [311] with newly curated Gene-
Protein-Reaction associations. Finally, this extended GSM was evaluated for
its ability to correctly predict positive/negative phenotypes of wild-type and
mutant strains.

During the curation process, we surveyed metabolic pathways involved
in coping with stressful environments and explored in some details the gen-
eral context of aromatic compounds degradation. In biochemical terms, the
synthesis of aromatic molecules is costly as it requires much energy and re-
ducing power [4]. In genetic terms, the synthesis and degradation of aro-
matic compounds are costly too, because of the fairly large number of genes
involved in these processes. In physico-chemical terms, the degradation of
aromatics is problematic due to the fact that, because of their electronic set
up, they tend to cross membranes when uncharged, often disrupting the lipid
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bilayer of the membrane and leaking in and out of the compartments where
they should be confined [373]. Furthermore, because of this property, they
frequently behave as proton-carriers that shunt the vectorial proton transport
that would be used to build up ATP otherwise (i.e., chemical uncoupling). As
a consequence, catabolic processes must be compartmentalized in a way that
matches proton availability with the propensity of a protonated molecule to
pass through the membrane [99, 205]. This requires an efficient management
of transport processes and control of the electrochemical potential of the cell
as well as osmolarity. For this reason, we explored the metabolic capacity of P.
putida, as indicated by the presence of relevant genes, in the context of control
of osmolarity, control of proton availability and aromatic compounds degra-
dation. Taken together, the novelties and metabolic updates presented in this
work should contribute to the implementation of biocatalysis strategies using
P. putida as a chassis for Synthetic Biology constructs.

The updated P. putida KT2440 genome sequence is deposited at the Interna-
tional Nucleotide Sequence Data Collaboration (identical accession number:
AE015451, version 2). The reannotated data can also be explored and down-
loaded using the MicroScope platform. The curated genome-scale metabolic
network is available at the MicroCyc repository and can be downloaded us-
ing the “Download Data” functionality of the “Search/Export” menu of the
MicroScope platform. Finally, the updated metabolic model is available in the
Supporting Information (SBML file formats).

Results and Discussion

New features of the genome of strain KT2440

P. putida genome sequence and its structural reannotation

The revised P. putida genome has 10 additional nucleotides compared to the
earlier version (6,181,873 bp instead of 6,181,863 bp). We found 140 uncov-
ered regions in the re-sequenced genome (the largest being 5-kb long), encom-
passing regions annotated as rRNAs, tRNAs, transposons, group II intron-
encoding sequences. Since all those genetic elements are repeats, this clearly
indicated that the reference genome has been fully covered. The P. putida
genome displays a GC content of 61.5%. The consensus sequence correc-
tion (see Experimental Procedures) shows that the original sequence was of
outstanding quality [290]. Indeed, among the 83 detected variations, 46 ac-
counted for Single Nucleotide Polymorphisms (SNPs), 23 for short insertions
and 14 for small deletions. It is known that strains kept in laboratories tend
to evolve [26]. In order to substantiate the validity of our re-sequencing of the
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genome we compared the regions of variation with the sequence of a stream-
lined mutant [245]. 96% of the variations were present in both sequences,
showing that they were present at an early stage. A significant part of the
events (54) were found to affect 20 CoDing Sequences (CDSs; see table S1).
In most cases, insertion/deletion (InDel) events restored the reading frame
(i.e., either the new CDS is longer than the published one or two CDSs are
fused in one gene, see table S1). Only PP0253 (encoding phosphoenolpyru-
vate carboxykinase) and PP5662 (encoding two fragments of a conserved gene
of unknown function) remain pseudogenes (see below). Curiously, PP5662
and PP4302 (encoding an urea transporter) gather most of the detected SNPs
(73.3%, either transitions or transversions). The reannotated genome sequence
(see Experimental Procedures) comprises 5,592 CDSs plus 56 fragments of
CDS (versus 5,350 CDS stored in the last release of the NCBI GenBank file,
NC_002947, or in the Pseudomonas.com database [451]), 22 rRNA genes, and
75 tRNA genes (versus 74). The non-coding regions account for 11.5% of the P.
putida genome and contain 7.5% of repeated sequences. Only nine non-coding
regions of more than 1 kb have been identified (table S2). Among the anno-
tated CDSs (complete genes and pseudogenes), we identified (i) common gene
annotations between the original data and the AMIGene predictions: 5,301
genes (94.8%), the original start codon positions of which were automatically
kept, (ii) gene annotation unique to the original GenBank file: 116 genes, and
(iii) gene annotation unique to the AMIGene prediction: 607 potential new
CDSs. Following the manual curation process described in the Experimen-
tal Procedures section, 311 CDSs unique to the present version and 36 CDSs
unique to the original annotation were kept. Moreover, 102 original CDSs
were considered false positive predictions and removed from the final set of
genes (table S3). All of them would encode proteins of unknown function
and 38 (37.2%) were found at a position where a new gene has been anno-
tated, generally on the complementary strand [see [272] for a similar rationale
used for annotation of Helicobacter pylori genes] (tables S3 and S4). As shown
in Supplementary table S4, the validity of most of the 311 newly annotated
genes is supported by transcription expression profiling [145, 214] and/or by
sequence similarity with authentic genes: for example, PP5706 encodes a pro-
tein involved in the Sec translocation complex (SecG subunit), and PP5602 en-
codes the αsubunit of the quinohaemoprotein amine dehydrogenase (the peaA
gene within the peaACB operon) which is known to be involved in the conver-
sion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in P.
putida U [14]. Indeed, 118 newly annotated genes among the 143 novel CDSs
listed in table S2 of the publication by Frank et al. [145], show up in table S4
(the 25 missing ones correspond to predicted genes that were considered as
false positives by our curation process). Forty-five new genes (14.5%) were
assigned a gene product type and a biological process (table S4) whereas the
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remaining genes (266) correspond to functions that remain to be identified.

Remaining pseudogenes

The re-sequencing process followed by expert curation of gene fragments and
fusion/fission events using the MicroScope platform [432], identified a total of
71 CDSs as partial genes (14), pseudogenes (54 fragments of CDSs correspond-
ing to 28 pseudogenes, and 1 CDS, PP3752, which contains an internal stop
codon) and one programmed frameshift (2 CDSs corresponding to the pep-
tide chain release factor 2 gene, prfB). Partial genes were essentially grouped
into classes of genes either encoding proteins containing Rhs repeat domains,
transcriptional regulators (LysR family) or transposases (table S5). Two of the
27 pseudogenes are of particular interest:

• The gene PP0253 is split into two fragments that have 100% amino acid
identity with fragments of the pckA gene encoding phosphoenolpyru-
vate carboxykinase (ATP dependent) in P. putida F1 (UniProt entry
A5VX32). This enzyme is involved in gluconeogenesis, where it cat-
alyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate
(PEP). The present UniProt functional annotation is supported by se-
quence similarity using the UniRule annotation procedure [88]. In-
deed, similarity with an experimentally validated phosphoenolpyru-
vate carboxykinase is found with the Staphylococcus aureus PckA pro-
tein (Q2G1W2, 45.4% amino-acid identity) [382]. The underlying reason
for this loss of function in strain KT2440 is unknown, but we note that
this enzyme is a key enzyme required for gluconeogenesis, under con-
ditions where P. putida strains display a tight regulation of the balance
between fluxes going from glucose to pyruvate and from succinate to
pyruvate [236]. In E. coli O157:H7, PckA is important for maintaining
the pathogenic bacteria in competition with the bulk of the microbiome
[38]; inactivation of the gene may contribute to the GRAS phenotype of
strain KT2440. Additionally, the enzyme is allosterically regulated by
Ca2+ in other γ-proteobacteria [402], and this feature might point at a
particular role of the inactivation of this gene in the P. putida KT2440
niche.

• The two fragments of gene PP1919 encode a protein similar to E. coli
K-12 thymidylate kinase (Tmk protein; >50% identity), a key enzyme
for DNA synthesis. This protein catalyzes the phosphorylation of de-
oxythymidine monophosphate (dTMP) to deoxythymidine diphosphate
(dTDP) in the presence of ATP and Mg2+. Tmk is essential for DNA
synthesis and cell growth in E. coli [361] and it would be expected to be
essential in P. putida as well. Interestingly, in strain KT2440, but not in
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other sequenced P. putida strains, the tmk gene has been disrupted by the
integration of a large genomic island of about 65 kb (the 3’-end of the
first part of tmk is found at position 2,162,696 bp, while the 5’-end of the
second part is found at position 2,227,487 bp). This region is obviously
of phage origin (it contains genes for phage integrases, a transcriptional
regulator of the Cro/cI family as well as site-specific recombinases), and
harbors several clusters of metabolic genes (monooxygenases, dehydro-
genases, etc.) together with a cluster of genes involved in arsenic resis-
tance (PP1927-PP1930). Remarkably, PP1964, the prophage gene located
next to the truncated tmk gene, is likely to encode a deoxyribonucleotide
monophosphate kinase [278], that could substitute for the missing es-
sential tmk gene. Alternatively, the two halves of the tmk gene could
be expressed separately and the resulting polypeptides reconstruct the
enzyme activity through protein trans-complementation, a possibility
currently under investigation.

Functional reannotation of protein-coding genes

The outcome of the automatic functional annotation procedure was followed
by manual curation of P. putida genes previously recorded as encoding un-
known functions, while showing significant similarity with one of the protein
and domain resources used in the platform (see Experimental Procedures).
Among those, 197 CDSs were reviewed (table S6). Most of these proteins
were labeled as (putative) enzymes (56%), (putative) transporters (20%) or
(putative) regulators (9%). We further annotated 61 genes encoding proteins
highly similar to proteins with functions experimentally demonstrated either
in Pseudomonas species/genus or in other organisms. This is the case for
genes involved in the catabolism of carnitine (PP0301-PP0305; [28, 439]), in
phenylethylamine degradation (PP3459 and PP3460; [14]), in gallate degrada-
tion (PP2513, PP2514 and PP2515; [300]), and in urate degradation (PP4287;
[351]). In order to provide accurate annotations, the global curation process
was directed by the results of the growth phenotype data obtained in this
work as well as extracted from experimentally based literature (see next sec-
tion).
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TABLE 2.1: Summary of the main P. putida KT2440 features annotation update in com-
parison with the original one.

New Original
annotations annotations

CDS Total number 5592 5350
Unknown functions / hypothetical proteins 1151*1 1505
Pseudogenes 28*2 9*3

Partial genes 14 61*4

Additional genes 311
False positive genes in original annotations 102

rRNA genes Total number 22 22
tRNA genes Total number 75 74
EC numbers CDS associated with an EC number 1250 463

Total unique EC numbers 902 360
Complete EC numbers 811 360
Partial EC numbers 91 0

GPR associations Number of CDSs associated to reactions 1485 0
Number of reactions 1898*5 0
Total number of GPR associations 3185 0

PMID annotations Genes with associated PMID references 1371 18
Number of different PMID references 4837 1

*1 1040 conserved proteins of unknown function + 111 proteins of unknown function.
*2 28 pseudogenes made of 54 fragments of CDSs corresponding to 27 pseudogenes,
and 1 CDS, PP3752, which contains an internal stop codon. *3 9 genes without/product
annotation; note = “This region contains a pseudogene, one or more premature stops,
and is not the result of a sequencing artifact”; following the sequencing and the manual
curation processes these 9 pseudogenes have been reannotated as functional. *4 61
genes without/product annotation; note = “This region contains an authentic frame
shift and is not the result of a sequencing artifact.” The sequence of 10 of these partial
genes has been corrected after the re-sequencing process. *5 1406 MetaCyc reactions

[66] 492 Rhea reactions [286].

Overall, the function of 1,548 genes has been manually reannotated and
linked to updated literature references (4,837 PubMed references in the cur-
rent annotation release). To provide a comprehensive reconstruction of the
global metabolic map of P. putida, the utmost care was taken in the curation of
associations between genes encoding enzymes and the biochemical reactions
they catalyze. A total of 1,485 CDSs has been associated to 1,898 chemical re-
actions (1,406 reactions from MetaCyc [66] and 492 from Rhea [286]) compris-
ing a total of 3,185 gene-reaction associations. In these associations, the role
of 229 genes, displaying a high degree of similarity with their counterparts,
was automatically annotated via transfer of the related E. coli K-12 reactions
(see Experimental Procedures). In the current update of the P. putida KT2440
genome annotation, about 21% of the protein-coding genes still remain of un-
known function. A summary of the main P. putida KT2440 genome annotation
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updates in comparison with the original annotation can be found in table 2.1.

An updated view of strain KT2440 metabolic capabilities
through genome-scale modeling and phenotyping data

The updated genome annotation and corresponding functions were subse-
quently reviewed by computer simulations, assessing their contribution to the
GSM iJP962 [311], which progresses towards a comprehensive model of the
current knowledge of P. putida metabolism. First, we pinpointed knowledge
gaps in the original GSM by comparing its in silico growth predictions to the
output of BIOLOG experiments on carbon, nitrogen and phosphorus sources.
This comparison identified 108 compounds, the in silico growth prediction of
which did not match the BIOLOG outcome. Furthermore, we added an extra
set of 12 aromatic compounds that were not included in the BIOLOG assay
but were known to serve as carbon source to P. putida [216]. Eventually, the
knowledge gap set comprised a total of 120 compounds, among which 43 car-
bon sources, 43 nitrogen sources, 31 phosphorus sources, and 3 compounds
that are both carbon and nitrogen sources (uridine, glycyl-glutamate, alanine-
glycine) (table 2.2).

Initial expansion of the iJP962 model with the automatically reconstructed
metabolic network yielded a disappointing total of only 3 (all nitrogen
sources) out of 120 compounds, the knowledge gap of which could be closed
(i.e., a complete degradation route with reactions connecting the query com-
pound to the central metabolism was present). This observation suggested
that the GSM and the automatic genome reannotation were missing catabolic
pathways for the remaining 117 compounds. This prompted us to include the
full set of 120 compounds as a starting point for a manual metabolic pathway
curation process (further described in Experimental Procedures). The out-
come of this effort allowed us to identify catabolic pathways for 92 of these
compounds (32/43 carbon, 28/43 nitrogen, 29/31 phosphorus, and 3/3 car-
bon and nitrogen sources; see table 2.1). Some of those metabolic routes, ab-
sent from public metabolic pathways databases, are associated to extended
substrate specificity of enzymatic activities experimentally described in other
organisms. This aspect is illustrated for some compounds of general interest:
L-2-hydroxybutyrate degradation, degradation of D-amino acids as nitrogen
sources, and dipeptides degradation (see Supplemental Results and table S7
in the Supporting Information). Detailed information about the update and
novelties in P. putida metabolic competence revealed by the present work can
be found in the Supplemental Results file. In the following sections we pro-
vide an overview of novel features that may have direct relevance to control
and expression of biocatalytic activities, mainly control of osmolarity, man-
agement of proton availability and transformations of aromatic compounds.
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TABLE 2.2: Results of the integration of the updated catabolic pathways into the
metabolic model iJP962.

iJP962 iJP962 iJP962
Carbon sources Pre Cur Nitrogen sources Pre Cur Phosphorus sources Pre Cur
L-Alanyl-Glycine L-Histidine D-Glucosamine-6-P
Glycyl-L-Proline Uracil Trimetaphosphate
Glycyl-L-Glutamic Acid Xanthine b-Glycerol Phosphate
β-Hydroxy-Butyric Acid Allantoin D-Glucose-6-Phosphate
γ-Hydroxy-Butyric Acid Gly-Met Cyclic 3’,5’-CMP
CHEBI:73677 Met-Ala Phosphocreatine
a-D-Glucose L-Cysteine Phosphoryl Choline
Butyric Acid Thymine Phosphoethanolamine
Dihydroxyacetone Ala-Asp D,L-a-Glycerol Phosphate
L-Pyroglutamic Acid Ala-Gln Hypophosphite
Uridine Ala-Glu 2’-AMP
4-Hydroxy-L-Proline L-Alanyl-Glycine 3’-AMP
a-Hydroxy-Butyric Acid Ala-His Cyclic 2’,3’-AMP
D-Galacturonic Acid Ala-Leu 2’-GMP
D-Glucuronic Acid Ala-Thr 3’-GMP
Quinic Acid Gly-Asn Cyclic 2’,3’-GMP
b-Phenylethylamine Gly-Gln 2’-CMP
Bromo-Succinic Acid Glycyl-L-Glutamic Acid O-Phospho-D-Serine
D,L-Carnitine L-Pyroglutamic acid 2’-UMP
D-Ribose Cytidine 3’-UMP
D-Ribono-1,4-Lactone Uridine Cyclic 2’,3’-UMP
L-Alaninamide Inosine O-Phospho-L-Tyrosine
Methyl Pyruvate Xanthosine Thiophosphate
*Gallate Uric acid O-Phospho-L-Threonine
*Glycine Betaine D-Serine Cysteamine-S-Phosphate
*Choline D-Valine Inositol Hexaphosphate
*Sulfate choline AABA 3’-TMP
*Ferulate a-Amino-N-Valeric acid 5’-TMP
*Phenylacetate L-Methionine Phospho-L-Arginine
*Vanilate b-Phenylethylamine
*Vanilline D-Asparagine
*Coniferyl alcohol
*p-Coumarate
*Caffeate
*Nicotinate

All 96 compounds that were part of the initial 120 knowledge gaps and for which
a degradation pathway was ultimately identified are included.These include: 23 BI-
OLOG and 12 literature-based (indicated by *) carbon sources, 31 BIOLOG nitrogen
sources and 29 BIOLOG phosphorus sources. iJP962 was either expanded with the
predicted reaction set (Pre), or with the curated reaction set (Cur). The colors represent
no-growth (red), growth (green) or growth with the addition of an artificial transporter

(orange).
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Mechanisms of control of osmolarity

Living in polluted environments, P. putida needs to cope with highly variable
concentrations of osmolytes. It must therefore build up a matching oppor-
tunity to control osmolarity by shuttling between synthesis, degradation and
transport of osmolytes. This is reflected in its genome sequence by the con-
certed presence of genes involved in these biological processes.

Osmoregulation metabolism and transport of osmolytes

Potassium glutamate is a major regulator of osmolarity in a large panel of
organisms [157]. The Kdp and Trk transport systems mediate osmoregula-
tory K+ uptake in a wide range of Bacteria and Archaea. In contrast to what
was initially published with the sequence of the genome of P. putida KT2440
[290], a complete Kdp system is present in this strain (the kdpCBAF operon;
table S8). It contains a functional high affinity P-type ATPase-K+ transporter
encoded by the kdpB gene, previously annotated as a pseudogene. Further-
more, we have identified and annotated a novel gene which encodes the
small non-essential KdpF subunit (29 amino acids) that binds and stabilizes
the whole protein complex [153]. Expression of this gene is dependent on a
two-component regulatory system, encoded by kdpD (the sensor kinase com-
ponent) and kdpE (the response regulator component), that activates the ex-
pression of the kdpCBAF operon under conditions of severe K+ limitation or
osmotic upshift [20].

In terms of compatible solutes transport, strain KT2440 has a functional
counterpart of the proline/betaine symporter (ProP), a multidrug efflux pro-
tein of the major facilitator superfamily (MFS) that mediates the uptake and
accumulation of either one of these two osmoprotectants in E. coli K-12. ProP
allows for adaptation to increasing osmotic pressure by acting as transporter
and osmosensor [260]. Exploration of the synteny conservation between P.
putida, P. aeruginosa and P. syringae allowed us to identify additional trans-
porters that may operate together to span the whole physiological range of
osmolarity and provide optimal uptake of glycine-betaine and choline osmo-
protectant molecules from the environment (figure 2.1 and table S8). As re-
ported in experiments performed with P. aeruginosa [438], three transporters of
the BBCT family (BetT-I, BetT-II and BetT-III) could transport glycine-betaine
(BetT-II) and choline (BetT-I and BetT-III), and thus confer osmoprotection (as
shown in P. syringae, when they are expressed in a hyperosmotic environment
[73]). Moreover, a complete choline-betaine-carnitine (CBC) ABC transport
system is encoded in the cbcXWV operon. The expression of the operon is
induced by an AraC-family transcriptional activator (encoded by gbdR) in re-
sponse to glycine-betaine and dimethylglycine [74, 438]. In fact, three different
periplasmic substrate-binding proteins in P. putida, encoded by the cbcX, caiX,
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and betX genes (figure 2.1 and table S8), show high specificity for choline,
carnitine, and betaine, respectively [74]. Finally, a small multidrug resistance
(SMR) protein, homolog of the E. coli K-12 EmrE protein, is also present in P.
putida KT2440. It could be associated to choline and glycine-betaine export in
response to intracellular levels of both osmoprotectants [29].

FIGURE 2.1: Schematic representation of the glycine-betaine, carnitine and choline
metabolism in P. putida KT2440. Blue arrows represent transport reactions (dotted
lines) and cytoplasmic reactions (continuous lines) that were present in previous
KT2440 GSMs (Bigg = iJN746, TOBIN = iJP962; different namespaces). Green arrows
show new GPR associations curated during our reannotation process (they were miss-

ing in previous KT2440 GSMs) CoA, coenzyme A.

Glycine-betaine degradation

In addition to the annotation of choline and glycine-betaine transporter genes,
the annotation of genes involved in the aerobic degradation of these com-
pounds has also been updated. The betIBA operon (figure 2.1 and table S8) en-
codes a choline-responsive transcriptional repressor (BetI), and two enzymes,
a choline oxidase (BetA) and a betaine aldehyde dehydrogenase (BetB), re-
sponsible for the two-step conversion of choline to glycine-betaine [366, 434,
468]. As in P. aeruginosa, the genes encoding the choline transporter BetT1
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and the betIBA operon are divergently transcribed in P. putida KT2440, al-
lowing rapid transcriptional response to choline [366]. Finally, comparative
genomics allowed us to identify orthologs of the P. aeruginosa PAO1 genes
involved in the three-steps demethylation of glycine-betaine to glycine, a
metabolic pathway essential for growth with glycine-betaine as the sole car-
bon source [440]. This pathway includes a novel demethylase activity asso-
ciated to the GbcAB enzyme complex that catalyzes the initial demethylation
of glycine-betaine to dimethylglycine and formaldehyde. This operates via a
process involving a dioxygenase and differs from the process mediated by the
betaine-homocysteine S-methyltransferase present in other choline degraders
like Sinorhizobium meliloti [389, 440]. In P. putida KT2440, an heterodimeric
flavin-linked oxidoreductase, encoded by the dgcA and dgcB genes (table S8),
catalyzes the second demethylation reaction of dimethylglycine to sarcosine,
which is further demethylated to glycine in a reaction catalyzed by a heterote-
trameric sarcosine oxidase complex encoded by the gene cluster soxBDAG (fig-
ure 2.1).

Trehalose-glycerol metabolism

Due to its electroneutral nature and its role as a protein stabilizer, the disac-
charide trehalose is a major osmoprotectant in bacterial cells [204, 369]. The
P. putida genome reannotation process revealed a complex metabolic scenario
where trehalose could play a central role both in osmoregulation and in the
metabolism of glycogen (figure 2.2). This differs from the metabolic profile
present in most γ-Proteobacteria where this role is fulfilled by monosaccha-
ride nucleoside diphosphates [67]. P. putida KT2440 lacks the ostAB genes
encoding enzymes involved in the two-step trehalose biosynthesis pathway
from UDP-glucose via a trehalose-6-phosphate intermediate [198]. Rather, it
displays two alternative pathways for trehalose biosynthesis (figure 2.2A and
table S8). The first one involves the PP4053 protein (previously annotated as
a generic glycosyl hydrolase) that is highly similar to the malto-oligosyl tre-
halose synthase (TreY) from other P. putida strains. Together with the malto-
oligosyl trehalose hydrolase (encoded by the treZ gene), TreY catalyzes the
biosynthesis of trehalose from glycogen [100, 223]. The second pathway is as-
sociated to two different trehalose synthases (coded by treSA and treSB genes)
that catalyze the reversible single-step conversion of maltose to trehalose [67,
242, 369]. These enzymes belong to two evolutionary distinct lineages. The
corresponding genes do not display sequence similarity and are involved in
different genomic and metabolic contexts. The treSB gene (PP4059; table S8)
encodes a fused protein (a trehalose synthase belonging to a family widely
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distributed across different bacterial lineages and a maltokinase) and is clus-
tered with genes encoding the glycogen branching enzyme GlgB, and the α-
1,4-glucan:maltose-1-phosphate maltosyltransferase GlgE (figure 2.2B). These
genes form an operon for a novel glycogen biosynthesis pathway similar to the
variant recently discovered in Mycobacteria (figure 2.2C), that uses α-maltose-
1-phosphate instead of UDP-glucose-6-phosphate as the building block to ex-
tend glucan chains [67, 115, 369]. By contrast, the trehalose synthase encoded
by the treSA gene (PP2918; table S8) belongs to a small family of highly active
trehalose synthases. It has been biochemically characterized in P. stutzeri CJ38
as a biocatalyst of biotechnological interest for the production of trehalose
[242]. We propose that this second P. putida trehalose synthase may have a
role in the control of osmolarity.

FIGURE 2.2: Trehalose metabolism in P. putida KT2440. (A) Metabolic pathway of tre-
halose biosynthesis in P. putida KT2440 and E. coli K12. Reactions specific to P. putida
are shown in green and those specific to E. coli are shown in red. Shared reactions are
represented in blue (B) Lineplot showing tblastX similarities between genomic regions
containing genes involved in the trehalose metabolism in P. putida KT2440 and in E. coli
K12 (C) same as (B) between P. putida KT2440 and Mycobacterium tuberculosis H37Rv.
The gene cluster is splitted in three different genomic regions in M. tuberculosis H37Rv.
In this organism, treS and malK genes are not fused. ADP, adenosine diphosphate;

UDP, uridine diphosphate.
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Control of the proton gradient

P. putida KT2440 is an obligate aerobe that uses the EDEMP cycle (composed
by activities from the Entner-Doudoroff, the incomplete Embden-Meyerhof-
Parnas, and the pentose phosphate pathway) to process glucose [295]. Fur-
thermore, it lacks the glucose-specific phosphoenolpyruvate:carbohydrate
phosphotransferase system (PTS) that usually fuels the EMP pathway in
other bacteria, such as E. coli. Yet, apart from sugars its growth envi-
ronment provides a considerable number of compounds that may enter its
metabolism at various points. This, in turn, requires the presence of a large
number of transport systems, as illustrated by the coding capacity of its
genome. The processes encompassing oxygen availability and utilization, car-
bon catabolism and transport suggest that a considerable amount of protons
are involved: they could be channeled during respiration to form ATP and in
proton/metabolite co-transport activities. P. putida KT2440 possesses counter-
parts of the cytochrome bo oxidase and the cytochrome bd-I oxidase found in
many bacteria. However, it does not have a counterpart of E. coli cytochrome
bd-II oxidase (AppCD). The activity of cytochrome oxidases contributes to
build up a proton motive force [40]. The proton gradient thereby generated
is challenged when the pH of the environment varies. We thus wanted to
explore the way the bacterium maintains proton homeostasis through critical
examination of its genome sequence. P. putida is a neutrophilic organism and
harbors a standard version of most of the general processes involving protons
(ATP synthase, assembly of flagellar motor, NADH/NADPH balance, etc.).
It differs, however, from other classes of γ-Proteobacteria such as Enterobac-
teria in the way it manages the acid resistance response and the transport of
protons.
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Acid resistance response

The acid stress response involves many different processes in species having
a periplasm [257], where some enzymes may have an acidic optimum pH for
activity (e.g. AppA in E. coli [155], a gene not found in P. putida). The re-
sults of the functional reannotation shows that P. putida KT2440 has orthologs
of the E. coli K-12 genes encoding the alternative sigma factor RpoS and the
cAMP receptor protein Crp, that constitute the glucose-repressed Acid Resis-
tance system AR1 allowing cell survival at pH 2.5 [143, 279] (table S9). In P.
putida RpoS restores the acid resistance phenotype missing in rpoS-deficient
E. coli mutants. Yet, it seems that in P. putida the role of RpoS is mainly as-
sociated to adaptation to carbon starvation conditions [353]. RpoS and Crp
are global regulators which control expression of multiple genes (regulons)
under conditions when global resource allocation needs to be modified as
the environment changes [184]. However, the regulatory network of both
Crp and RpoS activities is noticeably different in P. putida when compared
to that of E. coli, in line with the widely different niches of the organisms [279,
436]. Expression profiling studies in the KT2440 strain using different car-
bon sources revealed a strong expression of rpoS in cells growing with glycine
and fructose as carbon sources [145, 214]. A further difference can be pointed
out: P. putida KT2440 has neither orthologs of the E. coli decarboxylase-
antiporter systems AR2 (glutamate-decarboxylase isozymes GadA, GadB and
4-aminobutanoate (GABA)-glutamate antiporter GadC), nor of AR3 (degrada-
tive arginine-decarboxylase AdiA and agmatine-arginine antiporter AdiC).
As far as the Acid Resistance system 4 (AR4) is concerned, the PP4140 gene,
previously annotated as a pseudogene, was now found to be complete. It
is similar to the E. coli lysine decarboxylase (ldcC gene, encoding a constitu-
tive form of the lysine decarboxylase). However, there is no signal of neigh-
bor cadaverine-lysine antiporter CadB characteristic of the AR4 system [143].
Overall P. putida lacks most of the acid stress response present in Enterobacte-
ria. This may contribute to its recognized lack of pathogenicity, but it needs
to be taken into account when P. putida is used for biocatalysis in a reactor as
well when the organism is used for in situ or ex situ bioremediation of polluted
environments.

Otherwise, P. putida KT2440 has functional alternative pathways for the
degradation of both L-arginine and GABA, which involve enzymatic activities
induced in high pH conditions in E. coli. The P. putida annotated homologous
genes are listed in table S9.
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Transport of protons

Protons are involved in many transport systems, including vectorial transport
for ATP synthesis, as well as in the mechanical rotation of flagella. P. putida
KT2440 has two counterparts of the Na+/H+ antiporter NhaA (table S9), the
best-understood antiporter which helps maintain the internal pH, protecting
cells from excess sodium at high pH [108, 396]. This species also harbors a
putative multidrug efflux protein MdfA that extends the pH tolerance range
up to pH = 10 in E. coli, taking over when NhaA is deleted [247]. However,
we did not identify a homolog to the positive regulator NhaR, which controls
NhaA activity during exponential growth [64, 349]. This may be compensated
for by a possible activity under the control of the functional RpoS sigma fac-
tor together with genes of the RpoS regulon also involved in pH homeostasis
in the stationary growth phase [108]. The P. putida KT2440 genome also har-
bors a second pH-independent Na+/H+ antiporter, NhaB [325, 335], as well
as five proton-sodium antiporters of the monovalent cation:proton antiporter
(CPA) families CPA1 and CPA2 (nhaB and nhaP genes; table S9). Three ad-
ditional glutathione-gated K+ efflux systems (kef genes) of the CPA2 family
have also been found. They are likely to be important for coping with me-
chanical stress induced by the considerable variations of metabolites charges
and concentrations associated with P. putida metabolism in a chemically pol-
luted environment. In B. subtilis the essential operon mrpABCDEFG encodes
for a transport system of the CPA3 family, which provides Na+/H+ antiport
activity and functions in resistance toward several different compounds and
pH homeostasis [55, 199]. As in bacteria from great many other clades (e.g. in
Bdellovibrio bacteriovorus, Bordetella pertussis, Deinococcus radiodurans, and My-
cobacterimum smegmatis), but not in E. coli, P. putida KT2440 has a complete
operon counterpart of phaABCDEFG (table S9). This system is widely present
in Pseudomonadales, where its organization differs slightly from that of Firmi-
cutes: MrpA counterpart is fused to MrpB (PhaAB protein). Moreover, 22
additional Major Facilitator Superfamily transporters (MFS) were identified
in the P. putida KT2440 proteome; they could contribute to pH homeostasis
through additional Na+/H+ or K+/H+ antiporter activities, as it is the case
for the multidrug efflux protein MdfA in E. coli or the tetracycline resistance
protein TetL in B. subtilis [325] (Padan et al., 2005).

Finally, the annotation of five genes encoding periplasmic and outer-
membrane proteins associated to pH homeostasis has been updated in P.
putida KT2440 (table S9). These genes include the extreme base-induced
membrane-bound redox modulator Alx [396], as well as the peptidyl-prolyl
cis-trans isomerase SurA, which is necessary for proper folding of outer mem-
brane proteins and whose inactivation is lethal in stationary phase under ele-
vated pH conditions [142, 426].
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Aromatic compounds degradation pathways

One of the most relevant metabolic features of P. putida KT2440 is its ability
to break down into central metabolic intermediates a wide range of aromatic
compounds that are present in the rhizosphere and associated to the recy-
cling of plant-derived material prevalent in the environment [290, 327, 372].
This prompted us to explore the gene complement of aromatic degradation
pathways, not only for carbon-only aromatic compounds, but also aromatic
heterocycles, including purines and pyrimidines.

Degradation of carbon-skeleton aromatics

In addition to the outcome of BIOLOG experiments, much experimental ev-
idence has been reported since the first publication of the genome sequence
of P. putida KT2440. This had impacted the annotation of genes involved in
the degradation of aromatic compounds [216, 299, 372, 453]. The present up-
grade includes genes involved in the central aromatic compounds degrada-
tion pathways as well as a variety of connected pathways. A summary of the
new vision of the aromatic catabolism of strain KT2440 is represented in figure
2.3, and detailed in the Supplemental Results file (see table S10 for a complete
description).

We propose a candidate gene for the orphan enzyme (i.e., a defined en-
zyme without assigned sequence) responsible for the first redox step of the
two-step degradation of coniferyl alcohol to ferulate [193, 298]. The PP2426
gene, corresponding to the alcohol dehydrogenase activity CalA (EC 1.1.1.194;
table S10), is likely to encode a coniferyl dehydrogenase, with somewhat
promiscuous activity. This candidate gene shows significant similarity with
cinnamyl-alcohol dehydrogenases of plant origin (about 50% amino acid iden-
tity over the whole protein length), which are also able to act on coniferyl
alcohol (see IUBMB annotation, EC 1.1.1.195). The proposed coniferyl dehy-
drogenase CalA (PP2426) would work together with coniferyl aldehyde de-
hydrogenase CalB (PP5120, EC 1.2.1.68) [193, 323]. However, an experimental
validation is necessary to substantiate this prediction.
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FIGURE 2.3: Schematic representation of the catabolism of aromatic compounds to cen-
tral metabolites in P. putida KT2440 (adapted from [298]). Red compounds correspond
to dead-end metabolites in iJP962 (isolated compounds that are either only consumed
or only produced by the model). Gray compounds represent aromatic compounds ab-
sent in iJP962. Green arrows and green genes represent new GPR associations curated
during the P. putida KT2440 genome reannotation process (they were absent in the orig-
inal iJP962). Flux Balance Analysis (FBA) simulations over the extended iJP962 gave
rise to a functional phenotype in terms of biomass production with all these aromatic
compounds as external carbon sources. OM, outer membrane; IM, inner membrane;

CoA, coenzyme A; and AcCoA, acetyl-coenzyme A.

Degradation of nucleotides and other heterocyclic aromatics

The positive redox phenotypes observed in BIOLOG experiments using uracil
and thymine as nitrogen sources led us to reannotate a gene cluster which
contains all the genes involved in the reductive pathway of pyrimidine nu-
cleotides [378, 445] (table S10). This pathway starts with the reduction of
uracil and thymine to the corresponding 5,6-dehydro-derivatives by a type II
NADPH-dependent dihydropyrimidine dehydrogenase (DPD) enzyme com-
plex PydXA [179, 321]. The dehydropyrimidines are subsequently hydrolyzed
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by a bifunctional D-hydantoinase/dihydropyrimidinase (pydB gene) and a
β-ureidopropionase (hyuC gene) into β-alanine and 3-amino-isobutyrate re-
spectively [378, 445]. The PP4036 gene (pydB), was originally annotated as
a pseudogene (sequencing error), but it is likely to be fully functional as
it encodes a protein highly similar to the experimentally characterized D-
hydrantoinase/dihydropyrimidinase from P. putida (Arthrobacter capsulatus)
[75]. The gene cluster also encodes a permease commonly present in β- and
γ-Proteobacteria (pydP gene), as well as a transcriptional regulator (the PP4039
gene is similar to the E. coli rutR gene) (table S10).

In the same way, the positive redox phenotype observed in BIOLOG ex-
periments when using xanthine, urate or allantoin as nitrogen sources, al-
lowed us to upgrade the annotation of a gene cluster involved in the trans-
port and degradation of purine nucleotides (table S10). It includes the xan-
thine dehydrogenase enzyme complex XdhABC that catalyzes the NAD+-
dependent oxidation of hypoxanthine and xanthine to urate [328], and two
of the three enzymes involved in the degradation of urate to S-allantoin
[351]: the hydroxyisourate hydroxylase (PucM) and the 2-oxo-4-hydroxy-4-
carboxy-5-ureidoimidazoline (OHCU) decarboxylase (PucL). These proteins
belong to two chromosomal clusters and share homologies with eukaryotic
and prokaryotic proteins (COG2351 and COG3195, respectively). They also
display similar co-evolution phylogenetic profiles [117, 432]. This suggests
a common evolutionary gain and loss history, as illustrated in other organ-
isms harboring this pathway [351]. Furthermore, S-allantoin can be degraded
in four steps to glyoxylate via S-ureidoglycine as an intermediate, releasing
ammonia and urea. The first step involves a novel metal-independent allan-
toinase encoded by the puuE gene that differs from the E. coli K-12 allantoinase
(allB gene) [352].

Finally, the annotation of the nic gene cluster (nicPTFEDCXRABS), respon-
sible for the aerobic degradation of nicotinate to fumarate, has also been up-
dated. It allows P. putida KT2440 to grow with nicotinate as both nitrogen and
carbon source [192].

Towards an extended view of the KT2440 metabolic model

The updated genome annotation provided us with a list of functions, e.g.,
chemical conversions, that were not previously identified in P. putida. How-
ever, the effect of an individual function on systems-wide behavior is not
straightforward. For example, a candidate degradation pathway can eventu-
ally be deemed non-functional if its by-products cannot be further processed.
We decided to assess the full impact of the updated annotation by comple-
menting an existing genome-scale metabolic model with the new reactions.
This allowed us to check whether the identified enzymatic conversions could
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truly function in the context of the former knowledge of P. putida metabolism,
and to pinpoint additional knowledge gaps to be addressed in future stud-
ies. Specifically, for 96 out of the 120 defined knowledge gaps, we identi-
fied a probable degradation pathway during the targeted manual annotation
process. Together, these pathways comprised a total of 253 reactions, 234 of
which have been assigned to one or more genes and integrated into Micro-
Scope. Moreover, 43 new ChEBI compounds and 73 new RHEA reactions
were created during this curation process.

To assess whether these reactions indeed coped with the knowledge gaps,
we expanded the iJP962 metabolic model with the degradation pathways and
mimicked in silico the BIOLOG experiment (see Experimental Procedure sec-
tion). Surprisingly, this expansion led to an in silico positive phenotype for
only 20 compounds (out of 96). However, it is important to recall that the
BIOLOG setup does not measure growth per se but the integrated activity of
redox networks [44]. This relatively small improvement prompted us to in-
spect the remaining cases in more detail (table S12). A major issue turned out
to be the difficulty in identifying transport proteins for specific compounds;
our list of curated reactions only contained 23 transporters. To further test
the existence of degradation pathways, we complemented the GSM with ad
hoc transport reactions that behaved as passive diffusion reactions. This im-
proved the outcome of the model, as 72 out of 96 degradation pathways were
now functional. Interestingly, even in the original model the addition of ad hoc
transporters resolved 10 of the knowledge gaps, indicating that for some com-
pounds the lack of a transport reaction was the only functional step prevent-
ing in silico growth. This procedure also led to in silico positive growth phe-
notypes for 14 compounds with a negative BIOLOG phenotype (table S12),
demonstrating that it is essential to get experimental evidence for transport
systems. Although such results require future in vitro confirmation, they sug-
gest that the range of suitable substrates for P. putida may be increased with
the sole identification of the corresponding transporter proteins. This obser-
vation highlights an essential area for future research that will lead to improve
GSMs.

Still, successful in silico metabolite degradation was yet to be achieved for
24 out of the 96 compounds with identified degradation pathways. The un-
derlying causes of these remaining knowledge gaps may be roughly divided
into 4 categories (table S13):

(i) Level of detail. The degradation pathways for 7 compounds in-
volved ill-defined metabolite classes, such as ‘NADPORNOP’, and ‘Oxidized-
cytochromes’. Where possible, we replaced these with specific instances of
these classes, such as NAD and Ferricytochrome.
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(ii) By-product accumulation. The degradation pathways for 6 compounds
resulted in by-products that the in silico cell was unable to dispose of. In par-
ticular, 5 degradation pathways led to an accumulation of sulfur-containing
compounds. We complemented the model with sulfate, hydrogen sulfide,
and sulfite exporters, which allowed successful degradation of 4/5, 1/5 and
5/5 compounds. We show below that P. putida KT2440 has 11 candidate tauE
genes, which may encode a sulfite exporter. The sulfite export reaction and
the 11 corresponding genes were thus added to the curated reaction list.

(iii) Reaction reversibility. The degradation of one compound, D-
glucosamine-6-phosphate, was hampered by a reaction that was irreversible
in the model, but reversible according to external sources such as MetaCyc
[66] and Brenda [70]. We adjusted the reaction accordingly.

(iv) Open issues. Ten out of the degradation pathways led to the production
of dead-end metabolites in the model. Dead-end metabolites are metabolites
that can either only be produced, or only consumed in the model. We were
unable to link possible degradation pathways for these compounds to P. putida
genes. These non-functioning degradation pathways and the corresponding
metabolites highlight a remaining knowledge gap in P. putida metabolism to
be addressed in future studies.

In addition, we assessed how the expanded model performs in a broader
in silico growth analysis including both wild-type and mutant growth predic-
tions. We distinguished between predictions for wild-type growth and for
mutant growth because these reflect different qualities of a GSM. Wild-type
growth predictions indicate whether the GSM includes any pathways that
can convert a specific combination of medium constituents into biomass. In
contrast, mutant growth predictions assess the quality of the Gene-Protein-
Reaction (GPR) associations and the appropriate inclusion or exclusion of al-
ternative pathways. The wild-type growth dataset consisted of the full BI-
OLOG dataset and 12 additional compounds with literature back-up. The
mutant growth dataset was made of a combination of two external datasets:
the original test-set for the iJP815 model [341] and experimental data that was
published later on [11]. As expected, the accuracy of wild-type growth predic-
tions increased marginally when the GSM was expanded with the automati-
cally predicted reaction set (0.59 to 0.66), but increased substantially when ex-
panded with the curated reaction set (0.59 to 0.8) (table 2.3 and table S12). In
contrast, the accuracy of mutant growth predictions decreased considerably
when the model was expanded with the automatically predicted reaction set
(0.78 to 0.67), but remained stable when expanded with the curated reaction
set (0.78 to 0.78), although specificity and sensitivity did change (table 2.3 and
table S12). Overall, these results indicate that the curated reaction set is a solid
expansion of the existing GSM, while the predicted reaction set reveals dis-
crepancies between the updated annotation and the existing GSM.
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TABLE 2.3: Model evaluation. iJP962 as well as the extensions based on predicted
(Pre) and curated (Cur) degradation pathways were tested in terms of phenotype pre-

dictions (growth/no-growth).

iJP962 iJP962 + Pre iJP962 + Cur
Metabolites 980 1375 1122
Reactions 1066 1533 1256
Genes 949 1203 1053
Wild-type predictions
Specificity 0.90 0.86 0.88
Sensitivity 0.42 0.55 0.75
Accuracy 0.59 0.66 0.79
Mutant predictions
Coverage 0.70 0.68 0.70
Specificity 0.74 0.56 0.72
Sensitivity 0.72 0.71 0.80
Accuracy 0.73 0.60 0.75

We used both wild-type and mutant growth data [11, 341]. The experimental mutant
data comprised gene knockout data in defined media as well as experimentally verified

auxotrophies.

We expect future work on P. putida metabolic modeling to use the pre-
dicted reaction list in conjunction with the available GSMs in order to identify
faulty reactions or GPR associations in both our reaction list and the existing
GSMs. Although we used the iJP962 GSM as the current knowledge on P.
putida metabolism in order to contextualize the annotation, it is possible that
there are errors in this GSM that became apparent upon expansion with the
predict reaction set. Using algorithms such as Growmatch [235], reactions can
be selectively included or excluded in a GSM in order to increase the corre-
spondence between in vivo observations and in silico predictions. For example,
the yeast GSM was recently updated to version 6.0 by removing ill-supported
GSM reactions and adding reactions based on updated annotation and exper-
imental literature. This led to a substantial increase in accuracy for predicting
mutant growth phenotypes [170]. We anticipate that the predicted reaction set
for P. putida based on the updated annotation will facilitate a similar improve-
ment of the in silico mutant growth predictions.
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Comparison to other Pseudomonas putida strains

Uduando et al. [431] have recently reported a comparative analysis of the
genomes of nine P. putida strains aimed at determining the core collection of
genes that give identity to this species. Although the number of strains ex-
amined is somewhat limited, the results revealed the lack of pathogenic traits
(e.g. exotoxins and type III secretion systems are absent in all cases) and the
centrality of the Entner-Doudoroff pathway as the key route for consumption
of carbohydrates. Such a core genome (paleome [1, 457]) of P. putida con-
sisted of approximately 3,380 genes, a good share of which encoded trans-
porters, both for nutrients and for electrons, which seemingly enable aero-
bic metabolism under different oxygen regimes. Other genes of the core set
determined the pentoses phosphate cycle, arginine and proline metabolism,
and different routes for degradation of aromatic chemicals. Amino acid
metabolism (synthesis and degradation) was very conserved as well and en-
coded in each case complete sets of transporters, enzymes and regulators.
Flagellar biosynthesis and genes for biofilm formation belong to the P. putida
core genome as well.

Despite a large number of differences between strains, the wealth of infor-
mation on strain KT2440 discussed above makes this specimen the reference
for the whole group. Many of the general traits discussed above that make
special strain KT2440 can be properly extended to other members of the P.
putida group [293], with the caveat that the P. putida group is somewhat fuzzy,
strain 2440 lying slightly distant from the reference type strain DSM291 [460].

Conclusions

In this work we have coupled re-sequencing of the P. putida KT2440 genome
to a complete upgrade of its sequence annotations as means to provide a stan-
dard for use of this organism as a versatile chassis for both fundamental and
biotechnological endeavors. Over the last few years, P. putida strains have
been increasingly recognized for their potential to host bioreactions that other
model bacteria fail to execute (e.g., strongly oxidative biotransformations).
An attractive trait of strain KT2440 that makes it adequate for such appli-
cations is the fact that this bacterium harbours a large number of metabolic
and stress-endurance properties optimal for biotechnological needs. In our
present study, we further highlight the potential of P. putida for biotransfor-
mations and biodegradation by disclosing mechanisms controlling osmolar-
ity and pH homeostasis. While resequencing per se only provided marginal
improvement in the sequence, the update of the annotation allowed us to pro-
pose a consistent picture of P. putida metabolism. Coupled with experimental
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data using the BIOLOG setup this enabled us to considerably improve the out-
come of a systems biology approach where GSM predictions could be matched
with experimental data. The present state of affairs demonstrates that while
there remain some knowledge gaps in the P. putida metabolism, we now have
a clear picture of its overall functioning. Our approach pinpointed a specific
deficiency in our knowledge: we need to considerably improve explicit iden-
tification of transport systems. This should be a major task for the immediate
future of studies with the P. putida chassis, but also for other chassis as well.

In this respect, the present update of the genome sequence of P. putida and
its annotation emphasized considerable differences with the ubiquitous model
organism used as a chassis in many studies, E. coli K-12. Indeed, Enterobacte-
ria and related bacteria differ considerably from Pseudomonadales, and P. putida
may be an excellent reference model of this clade. Beside metabolic differences
that have been outlined in the present article, the way DNA is handled is quite
different in these clades, and this may be of importance for studies involving
DNA constructs meant to provide novel metabolic engineering approaches.
An example of this are the different contingents of DNA polymerase III pro-
teins in different species. In P. putida one finds four different DNA polymerase
III proteins, three variants of DnaE (DnaE1, DnaE2 and DnaE3) and a second
type, PolC [423]. Organisms such as B. subtilis combine DnaE1 and PolC [117].
By contrast, E. coli has only DnaE1. A second DnaE variant appears as a het-
erologous subunit of the enzyme when the length of the genome sequence in-
creases. Furthermore, the presence of DnaE2 together with DnaE1 is linked to
bacteria featuring large GC-rich genomes and living in aerobic environments
[423], as in the case of P. putida (dnaEA: PP1606 and dnaEB: PP3119). Analysis
of the co-evolution of the genes that are present in parallel with DnaE2 will
certainly help identification of functions that are highly relevant both to the
ecological niche of the organism and to its use as a cell factory.

Materials and Methods

P. putida sequencing. The genome of P. putida KT2440 DSM 615 was se-
quenced using Illumina sequencing technology. Paired-end libraries were pre-
pared with fragment size of 300-600 bp and sequenced on HiSeq2000 (100 nt
length). The total of 8,786,896 sequence reads produced were processed to
remove low-quality reads and mapped over the P. putida KT2440 reference
genome sequence.
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SNPs/InDels detection strategy. High Throughput Sequencing (HTS) data
were analyzed using the PALOMA pipeline (Cruveiller S., unpublished) im-
plemented in the Microscope platform [432]. The current pipeline is a “Mas-
ter” shell script that launches the various modules of the analysis (i.e., a
collection of in-house software written in C) and controls for all tasks hav-
ing been completed without errors. In a first step, the HTS data qual-
ity was assessed by including options like reads trimming or merging/split
paired-end/mate-paired reads. In a second step, reads were mapped onto
the original sequence of P. putida KT2440 (Accession Number NC_002947;
AE015451.1) using the SSAHA2 package [297]. Unique matches having an
alignment score equal to at least half of their length were retained as seeds
for full Smith-Waterman realignment [391] keeping at both sides a region
of the reference genome extended by five nucleotides. All computed align-
ments were then screened for discrepancies between read and reference se-
quences and in fine, a score based on coverage, allele frequency, quality of
bases and strand bias was computed for each detected event to assess its
relevance. The results generated are available at the MicroScope platform
(http://www.genoscope.cns.fr/agc/microscope).

Consensus sequence correction. To correct the original sequence of P. putida
KT2440, the PALOMA pipeline was run with stringent parameters for the «
SNP calling » step (allelic frequency set to 0.8 with at least ten reads mapping
the position, a balance of forward reads to reverse reads set to 0.33). This
analysis led to a relatively small amount of variations compared to the orig-
inal one, showing that the 2002 sequence was of excellent quality [290]. An
automated process was subsequently implemented to generate a new version
of the sequence of the P. putida strain KT2440 genome using both the origi-
nal sequence and the list of detected variations as inputs. During the process,
uncovered areas of the reference genome were reported as well, correspond-
ing either to repeats (discarded by default during the reads mapping step) or
potentially large deletions in the re-sequenced genome.

RNA-seq Analysis. The complete transcriptome high-throughput sequenc-
ing data published in [214] was retrieved from the GEO database [25] (ac-
cession no. GSE42491). Data were then analyzed in the MicroScope plat-
form with the workflow TAMARA [432]. The current pipeline is a “Mas-
ter” shell script that launches the various parts of the analysis (i.e. a collec-
tion of Shell/Perl/R scripts) and checks that all tasks are completed with-
out error. Reads pre-processing and mapping steps are performed in the
same way as the PALOMA pipeline (see SNPs/InDels detection strategy sec-
tion for details). After reads were mapped on the newly annotated P. putida
str. KT2440 genome, we minimized the false positive discovery rate using
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SAMtools (v.0.1.8; [250]) to extract reliable alignments from SAM-formatted
files. The number of reads matching each genomic object of the reference
genome was then calculated with the Bioconductor-GenomicFeatures pack-
age [240]. When reads matched several genomic objects, the count number
was weighted so as to keep the total number of reads constant. Finally, the
Bioconductor-DESeq package [9] was used with default parameters for the
analysis of raw count data and to determine whether expression levels dif-
fered between conditions.

Structural reannotation of the P. putida genome. The corrected genome se-
quence was subsequently processed by the MicroScope pipeline for complete
structural and functional annotation [432]. Gene prediction was performed
using the AMIGene software [45] and the microbial gene finding program
Prodigal [185] known for its capability to locate the translation initiation site
with great accuracy. The predicted genes were compared with those listed in
the original annotation (AE015451, version: 05-MAR-2010). Manual curation
was performed on the two sets of unique genes (see Results) by taking into
account transcriptomic information from [145] and [214] experiments, as well
as conservation of sequence similarity and genomic context with homologs in
other genomes. A total of 80 unique GenBank genes, and of 296 unique AMI-
Gene CDSs were considered false positive predictions and discarded from the
final annotations (artifact status). The 309 unique AMIGene predictions con-
sidered as newly predicted P. putida genes are numbered starting from the last
original annotation (PP5420) (i.e., PP5421, table S4). The RNAmmer [237] and
tRNAscan-SE [255] programs were used to predict rRNA and tRNA-encoding
genes respectively, whereas other RNA structures like small RNAs and ri-
boswitches were identified using the RFAM database [60] (n = 65) and from
publications (n = 3) [145]. Finally, intra-chromosomal repeats were detected
using the method described by [2].

Functional automatic annotation. The predicted/annotated genes were sub-
jected to sequence similarity searches using the gapped blastP algorithm
against the UniProtKB protein sequence knowledgebase [88] and several pro-
tein family resources: COG [148], HAMAP [331] and FIGfam [276]. They were
also processed using the InterProScan software to predict potential sequence
motifs, patterns and protein family assignments compiled in InterPro [281]. In
addition, genes encoding enzymes were also classified using the PRIAM pro-
files [85]. In terms of predicted structural features, α-helical transmembrane
regions were searched with the TMHMM program [230] and signal peptides
with SignalP [332]. Finally, to predict probable subcellular localization of the
annotated protein in the cell, PSORTb predictions were also carried out [289].
Using the MicroScope platform, E. coli K-12 expert annotation is already an
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ongoing process since the work described in [427], with a main focus in the
curation of Gene-Protein-Reaction (GPR) associations coming from EcoCyc
[209] and literature data. Then, in order to (re)assign functions to each P.
putida KT2440 annotated genes, bi-directional best-hit (BBH) between P. putida
KT2440 and E. coli K-12 genes were first identified by BLASTP, and annotation
transfer from E. coli K-12 to P. putida KT2440 genes was carried out based on
this BBH relationships and the following similarity thresholds: 50% identity
on 80% of the length of the longest protein, or 40% identity on 80% of the
length of the longest protein in case of shared genomic context or FIGfam pro-
tein families assignments [276]. P. putida KT2440 annotation transfer includes
the transfer of these GPR associations from E. coli K-12 counterpart, a feature
that improves the subsequent genome-scale metabolic network reconstruction
(see below). A total of 706 genes were reannotated using this process. P. putida
genes escaping the E. coli K-12 functional annotation transfer were annotated
following the standard MicroScope procedure [432]. Finally, during the cura-
tion process of gene function, chosen gene names conform to the nomencla-
ture conventions derived from [101].

Automatic genome-scale metabolic network reconstruction. The metabolic
network of P. putida KT2440 was reconstructed from the reannotated genome
sequence stored in PkGDB using the MicroScope automatic reconstruction
pipeline, which is based on the BioCyc pathway reconstruction software [202].
Pathway Tools uses the set of genome annotations as input data to auto-
matically project the set of reference metabolic pathways stored in MetaCyc
database [66], generating a specific Pathway Genome Database (PGDB) in a
two-step process: first, the Reactome projection step, where associations be-
tween genes and metabolic reactions are inferred from gene annotations, and
the Pathway projection step where reference pathways are projected based
on these gene-reaction associations (see [202] for further details on the algo-
rithm). The Reactome projection step in MicroScope is enhanced by imple-
menting an export procedure from MicroScope PkGDB to Pathway Tools in-
put format that directly associates the genes to MetaCyc reaction identifiers
coming from manual validation by MicroScope curators or from automatic re-
action transfer from reference organisms [432]. This allowed minimization of
the over-prediction or missing of relevant enzymatic reactions resulting from
inaccurate or unclear textual annotations. The reconstructed genome scale
metabolic network of P. putida KT2440 is included in the MicroCyc repository
available at http://www.genoscope.cns.fr/agc/microcyc.
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Namespace conversion. To integrate the novel GPRs into the GSM iJP962,
the GSM was first converted into the standardized MNXref namespace [36]
at MetaNetX.org [150] to facilitate integration of reaction sets from external
sources. Subsequently, the novel reaction sets were also converted into the
MNXref namespace using a custom script that takes into account the metabo-
lites that are already included in the converted GSM. This was done in or-
der to account for possible differences in level of detail between the different
sources. For example, the compound glucose can correspond to D-glucose
or L-glucose, which in turn can correspond to α-D-glucose, β-D-glucose, α-
L-glucose, or β-L-glucose. In order to correctly connect new reactions to an
existing GSM, their metabolites thus need to not only be converted into the
same namespace, but also at the correct level of detail. Metabolite names that
had multiple plausible alternatives in the GSM were manually checked fol-
lowing the logic of metabolic reactions [97].

Model extension. For each predicted or curated reaction from the functional
reannotation process (hereafter: new reactions), the GSM iJP962 was first
scanned to search for reactions involving the same set of metabolites as the
new reactions. Only if no such reaction existed was the new reaction added to
the model. Otherwise, the existing and new reactions were compared in terms
of reaction directionalities and associated genes. If the new reaction had been
manually curated, the GSM reaction was updated in terms of both reaction
directionality and gene associations. However, if the new reaction had not
been manually curated the GSM reaction directionality was left unchanged.
In addition, the gene associations of the GSM reaction were only updated if it
was an orphan reaction.
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Growth phenotype data using BIOLOG experiments. P. putida KT2440 DSM
6125 was tested for its ability to utilize different carbon (C), nitrogen (N) and
phosphorus (P) sources, using BIOLOG PM01, PM02A, PM03B and PM04A
MicroPlates [43]. Bacteria were grown overnight on nutrient agar plates
(DSMZ medium 1) at 28◦C. Biolog experiments were performed according
to the modified protocol “PM Procedures for E. coli and other GN Bacteria”
(Biolog, Inc. 16-Jan-06). Subsequently, for PM1 and PM2A experiments cells
were transferred and suspended into 20 ml of Inoculating Fluid IF-0 to achieve
85% T (transmittance) in the BIOLOG Turbidimeter. 240 µl Dye Mix A and
3760 µl H2O were added to a final volume of 24 ml. Each well of PM01 and
PM02A MicroPlates (carbon sources) were inoculated with 100 µl of the 85%
T cell suspension. PM3B and PM4A experiments require an appropriate car-
bon source, and a stock solution of 2 M sodium succinate and 200 µM ferric
citrate was used as an additive as recommended in the PM procedures for
gram-negative bacteria. Initial experiments with 85% T resulted in a strong
metabolic response for both, the different substrates but also the negative con-
trol (PM3B – A1 [nitrogen]; PM4A – A1 [phosphorus], F1 [sulfur]). Accord-
ingly, the amount of cells was successively reduced in a series of test experi-
ments to a turbidity of 98%, which resulted in sufficient signal strength of the
tested substrates combined with a comparably low conversion of the dye in
the negative control. For the nitrogen plate PM3B, the optimized inoculation
fluid contained 10 ml IF-0, 120 µl Dye Mix A, 60 µl additives and 1820 µl H2O,
whereas the inoculation fluid of the phosphorus and sulfur plate PM4A con-
tained 10 ml IF-0, 120 µl Dye Mix A, 120 µl additives and 1760 µl H2O. All PM
plates were sealed with parafilm and inoculated in the OmniLog plate reader
at 28◦C. The conversion of the tetrazolium dye was measured and monitored
all 15 minutes at OD590 for four days (96 h). The read-outs were analyzed
with MicroLog software applying the automatic threshold option. BIOLOG
measures above/below the threshold were considered as positive/negative
phenotypes respectively. The reading of plates involving sulfur compounds
did not provide reliable results, presumably because the BIOLOG set up does
not measure growth per se, but, rather, reflects an integrated view of the redox
network of the cells in a particular environment.

In silico growth simulations. FBA was performed using the Cobra Toolbox
[376] with MatLab [265] and the gurobi solver [163]. The simulations were
performed based on the GSM iJP962 of P. putida KT2440 [311]. Each well of
the BIOLOG Microplates was simulated by adjusting the in silico medium to
the available C-, N-, P- and S-sources. Specifically, the in silico media con-
tained: bicarbonate, CO2, cobalt, dihydrogen, iron, magnesium, nickel, oxy-
gen, potassium, H+, sodium, water, succinate (not in C-source tests), ammo-
nia (not in N-source tests), phosphate (not in P-source tests), sulfate (not in
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S-source tests), and the compound specific to the BIOLOG well (see tables
S12 and S14). We discriminated between growth and non-growth phenotypes
based on a threshold value of 10−6 [gdw gdw−1 h−1].

In silico gene essentiality analysis. The Cobra Toolbox [376] and the Gurobi
solver [163] were used for FBA simulations with Matlab [265] based on the
GSM iJP962 of P. putida KT2440 [311]. We expanded the original gene es-
sentiality test-set of iJP815 [341] by adding new experimental data including
auxotrophies [11]. Each knockout gene was simulated by blocking its asso-
ciated reactions using the ‘deleteModelGenes’ function of the COBRA tool-
box. The in silico media were adjusted to the minimal media described for the
experiments in [341] and [11] (see tables S12 and S14). We discriminated be-
tween growth and non-growth phenotypes of the mutants based on a thresh-
old value equal to 50% of the wild-type growth rate in the same conditions.

Metabolic network curation process. Positive phenotypes in BIOLOG ex-
periments not supported by metabolic model simulations were manually cu-
rated using tools and curation interfaces available in MicroScope [432], in or-
der to find potential catabolic pathways for the corresponding compounds.
This includes the analysis of pre-computed results of several computational
methods used in the functional annotation process (see above). In addition,
genome-context methods available in MicroScope were also used in order to
guide functional annotation curation and pathway hole filling: they are based
on co-evolution of phylogenetic profiles with functionally related genes [117]
and the conservation of genomic and metabolic context through the CANOE
strategy used to find candidate genes for orphan enzymatic activities [388].
The outcome of these methods was further improved by extensive manual
literature searches to add additional support to functional assignments. Bio-
chemical reactions and Gene-Protein-Reaction associations resulting from the
curation process were manually validated in MicroScope using the MetaCyc
[66] and the Rhea [286] reaction databases. Rhea was mainly used to manage
biochemical reactions that are absent from the current MetaCyc repository.
This implies the creation of new reactions directly in the Rhea database, start-
ing with chemical compounds defined in the Chemical Entities of Biological
Interest ontology (ChEBI) [168]; reactions are stoichiometrically balanced for
mass and charge at pH 7.3 [286]. Similarly, in case of missing compounds
in ChEBI with correct 2D structure at pH 7.3, the corresponding compounds
were created de novo in ChEBI using the Marvin suite of tools from ChemAxon
(http://www.chemaxon.com).
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The supplementary files of this work can be online found at http:
//onlinelibrary.wiley.com/doi/10.1111/1462-2920.13230/
abstract.
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Abstract

Understanding cellular function requires accurate, comprehensive represen-
tations of metabolism. Genome-Scale, constraint-based Metabolic models
(GSMs) provide such representations, but their usability is often hampered by
inconsistencies at various levels, in particular for concurrent models. COM-
MGEN, our tool for COnsensus Metabolic Model GENeration, automatically
identifies inconsistencies between concurrent models and semi-automatically
resolves them, thereby contributing to consolidate knowledge of metabolic
function. Tests of COMMGEN for four organisms showed that automati-
cally generated consensus models were predictive and that they substantially
increased coherence of knowledge representation. COMMGEN ought to be
particularly useful for complex scenarios in which manual curation does not
scale, such as for eukaryotic organisms, microbial communities, and host-
pathogen interactions.
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Introduction

Genome-Scale constraint-based Metabolic models (GSMs) are curated species-
specific knowledge repositories [418]. They integrate many distinct
(bio)chemical entities and typically account for thousands of metabolites, re-
actions and genes. When assuming that metabolism is in a steady state, GSMs
also enable metabolic simulations with applications in genome annotation
[149, 312], analysis of omics data [69, 87, 473], phenotype predictions [39, 284,
341], organism comparison [17, 27, 284, 311], drug discovery [39, 189, 337], and
metabolic engineering [341, 461]. GSMs thereby quantitatively reconstruct the
internal metabolic and transport wiring of the modeled organism and thus
increase our systems level understanding.

Genome-scale metabolic reconstructions consist of metabolites, metabolic
reactions (including boundary reactions and a biomass reaction), cellular com-
partments, and genes [47, 418]. The reactions are organized according to
the cellular compartments in which they are active. Enzyme-driven (as op-
posed to spontaneous) reactions are associated with Gene-Protein-Reaction
rules (GPR), which include one or more genes. For multiple genes, the GPR in-
dicates whether alternative isozymes or enzyme complexes catalyze the reac-
tion [358]. A reaction’s equation consists of substrates and products with their
corresponding stoichiometries. A reaction’s reversibility describes whether
the reaction operates forward, backward, or bi-directionally. The reaction flux
bounds specify the reaction’s capacity, that is, the absolute upper and lower
bounds of the reaction flux. Transport reactions transfer metabolites between
cellular compartments, whereas boundary reactions define nutrient uptake
and secretion. The biomass reaction, finally, reflects the molecular composi-
tion of a cell or organism and represents cell or organism growth. Together,
these entities and their encoding in a GSM aim to represent the current knowl-
edge of the organism’s metabolism.

However, even for well-studied organisms such as Saccharomyces cere-
visiae or Bacillus subtilis, many uncertainties remain during GSM construction.
These uncertainties are typically manually addressed based on expert knowl-
edge and scientific literature, which involves a laborious iterative process that
can take several years, for example, for eukaryotes [418]. The main sources
of uncertainties are: (i) incomplete and erroneous information from hetero-
geneous and potentially contradictory data sources such as insufficiently cu-
rated and inconsistent gene annotations [399], alternative naming and spelling
variants of metabolites (different namespaces) [177, 178, 348, 399], and con-
flicting reaction reversibilities [130, 149]; (ii) subjectivity in interpreting litera-
ture sources; (iii) integration of qualitative and quantitative data (e.g., incon-
sistent growth data); and (iv) incompatible levels of detail between and among
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(reference) databases; for example, databases may represent metabolic path-
ways by detailed individual reactions or by a single lumped reaction [399],
and they may use varying structural definitions for metabolite classes such as
lipids and polymers [233, 348].

As a consequence, when several GSMs for the same organism are devel-
oped independently, they are complementary and only partially overlapping
[363, 421]. The extent of variation between models for the same organism
can be dramatic. For example, the well-established human and yeast GSMs
agree only on 3% [399] and 35% [177] of their reactions, respectively, when
ignoring electron, proton, and water imbalances. Differences between GSMs
resulting from different modeling frameworks and model authors can even
be more substantial than biological differences between organisms [283]. Any
GSM-driven analysis, which needs to (somewhat arbitrarily) select one GSM
when several are available, thus, only operates on a subset of the available
information.

To represent metabolism more comprehensively, and thereby improve our
understanding of a target organism, alternative GSMs of a target organism
can be integrated into a so-called consensus model of the respective organism,
one per organism. Consensus models have an increased scope (by combining
unique parts of initial GSMs) and they are more consolidated (by identifying
shared parts of initial GSMs that are likely to be reliable). When discrepancies
exist between GSMs, these must be carefully examined to select the most ap-
propriate modeling alternative. However, while consensus models have been
generated successfully for several (model) organisms such as budding yeast
and human, this required extensive manual curation by communities of do-
main experts [177, 311, 363, 420, 421]. To alleviate this bottleneck and render
GSMs truly useful for the understanding of cellular function and evolution,
community function, and host-pathogen interactions, semi-automatic consen-
sus model generation approaches have been proposed. It has been shown
that the combination of complementary GSMs of the same organism reduces
existing gaps in individually reconstructed GSMs [15, 76].These approaches
focused mainly on reconciling namespaces (a particularly important challenge
for matching metabolites) or on curating the underlying databases [348, 399].
Thereby, existing methods address only a small subset of the problems in con-
sensus model generation described above. For example, they do not identify
and curate cases when two initial GSMs represent the same metabolic process
at different levels of granularity [400].

Here, we present COMMGEN, a tool for COnsensus Metabolic Model
GENeration that reconciles two or more distinct GSMs of the same organism
beyond a common namespace. COMMGEN automatically identifies similar-
ities, dissimilarities, and complements of the metabolic networks based on
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an extensive classification of problems that typically arise during GSM inte-
gration and on novel algorithms to resolve these problem classes. For sev-
eral model organisms, we show that semi-automatically created consensus
GSMs in a standardized namespace [36] are substantially more consolidated
than achievable by a common namespace alone, and that they retain or even
improve on the initial GSMs’ predictive capabilities. Because the consensus
GSMs contain the information from each initial GSM, they comprehensively
represent our best understanding of the organisms’ metabolic networks.

Results

Our analyses addressed model building, testing and refinement in a stepwise
fashion. We started by identifying the classes of inconsistencies that exist be-
tween models for four widely different albeit representative microbes. We
subsequently set up the framework for COnsensus Metabolic Model GENera-
tion, and tested it on the four case studies for functionality and predictability.

Inconsistency classes arising in model merging

To systematically resolve inconsistencies between two or more Initial GSMs
(IGSMs) to be integrated, we defined three main (coupled) inconsistency cate-
gories: metabolites, reactions, and compartments. We explain these categories
and the inconsistency classes they contain using examples from four sets of
IGSMs that cover gram-positive and gram-negative bacteria as well as yeast
(figure 3.1a).

Metabolites

IGMs often represent a specific chemical compound differently because
metabolite identifiers are ambiguous and they reside in different namespaces
[36]. When one simply merges IGSMs, that is, adds the IGSMs’ contents, this
leads to redundant pathways (figure 3.1b) that may differ in metabolites, gene
associations, stoichiometries, and reversibilities. The essential step of identify-
ing and merging different metabolites that represent the same chemical com-
pound in different namespaces has been emphasized previously [36, 76, 400].
However, more complicated situations exist when different metabolites actu-
ally represent different chemical compounds, but these compounds have the
same function in their network context. This typically arises when metabo-
lites are modeled at different granularity, for example, as ‘iron’ and ‘Fe2+’,
or ‘glucose’ and ‘alpha-D-glucose’. Common metabolites may also have dif-
ferent chemical sum formulas in different IGSMs, for example, depending on
whether functional groups are specified or not (figure 3.1c), or when polymers
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are modeled with a different numbers of subunits (figure 3.1d). In such cases,
the merging of metabolites has to prevent stoichiometric inconsistencies in the
consensus model: if a merged polymer can be produced from fewer subunits
than result from its degradation, mass conservation is violated. Hence, a com-
mon namespace is not sufficient to identify common metabolites in IGSMs.

Reactions

A particular biological process is often represented differently in two models
because of uncertainties, disagreements, errors, and modeling decisions, re-
sulting in alternative representations of a single reaction or of reaction sets.
These alternatives need to be identified and matched to avoid reaction re-
dundancies (figure 3.1b) and violations of mass balances due to inconsistent
stoichiometries (figure 3.1c and 3.1d). However, inconsistencies may extend
beyond namespaces and stoichiometries. They often result from modeling
decisions, both in capturing individual reactions, and in the granularity of
representation for metabolic processes. Nested reactions, where one reaction
is a perfect subset of another reaction with respect to metabolites, are possi-
ble consequences. In the example in figure 3.1e, the cofactor NADH may be
used, but it is not required — for a consensus model, a decision between these
alternatives eventually has to be made. Alternative modeling decisions on
cofactor usage are common in IGSMs as shown in figure 3.1f with a ‘choice’
between using NADH and NADPH and in figure 3.1g, where the same chem-
ical conversion can either yield NADP from NADPH or NADPH from NADP.
More complex cases to resolve are partially overlapping reactions and lumped
reactions, where multiple reactions are artificially represented by fewer reac-
tions. Figure 3.1h shows an example of two alternative reactions that gener-
ate triphosphate or pyrophosphate and monophosphate, respectively; simply
merging the two IGSMs would feed the side-products into different pathways
because no reaction exists that interconverts these metabolites directly. Such
inconsistencies are not only found between IGSMs, where they are expected,
but also within IGSMs, as demonstrated in figure 3.1i. Hence, it is important
to consider the network context of the IGSMs and of the merged GSM.

Compartments

IGSMs of the same organism may consider different subcellular compart-
ments (figure 3.1a), affecting the localization and multiplicity of reactions as
well as the incorporated transport reactions. For example, in figure 3.1j, the
two IGSMs for a gram-negative bacterium have the same net reaction for the



3

Chapter 3. Consensus metabolic model generation 51

import of cysteine into the cytoplasm. In one IGSM this requires one reac-
tion because the periplasm is not explicitly modeled, whereas the more de-
tailed transport in the other IGSM requires two reactions. After identifying
this class of inconsistencies, a consensus model can either replace the trans-
porter connecting the extracellular space with the cytoplasm by two reactions,
or remove the entire periplasm and retain a single transport reaction. Because
transporters and transport reactions are notoriously difficult to identify and
characterize [418], IGSMs are often inconsistent in transport reactions. Fig-
ure 3.1k shows an extreme example: a single merging artifact effectively de-
stroys the model of the proton gradient because protons can be transported
across the membrane in either direction by simultaneous import and export
of putrescine. Inconsistencies in transport reactions can also lead to thermo-
dynamically infeasible cycles [418] such as ATP generation resulting from cy-
cling glycine over the membrane (figure 3.1l). Finally, boundary reactions,
which are not mass-balanced because they exchange material with the envi-
ronment, are sometimes lumped with transport reactions for the same chem-
ical compound and thus first require standardization (figure 3.1m). Overall,
therefore, a broad spectrum of unrelated but interconnected inconsistencies
at the metabolite, reaction, and compartment levels need to be identified and
resolved for consensus model generation.

The COMMGEN framework

COMMGEN is a software tool that is designed to address the above problems
in consensus model generation, leading to a semi-automatic reconciliation of
two or more GSMs for a given organism. In terms of software architecture,
COMMGEN operates on GSMs in SBML format [183], the standard model-
ing language for systems biology (figure 3.2a). The IGSMs are first converted
into a common chemical naming system using the MNXref namespace [36].
Next, COMMGEN combines all reactions of the IGSMs into a Basic Consensus
Model (BCM). The BCM is used to identify and reconcile inconsistencies be-
tween and within the IGSMs, ultimately yielding a Refined Consensus Model
(RCM) in SBML format. Because many inconsistencies are interconnected, it is
difficult to identify a consensus between IGSMs, to distinguish between con-
flicting and complementary model parts, and to resolve all inconsistencies au-
tomatically. COMMGEN therefore resolves all unambiguous cases automat-
ically, and it guides the user to decide on the remaining cases. COMMGEN
records all changes such that the user can automatically repeat the procedure
with minimal effort, including manual alterations of previously made choices.
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FIGURE 3.1: Models used in this study and classification of inconsistencies. (a)
Overview of the used initial GSMs. (b) Instances of identical metabolites with different
MNXref identifiers. (c) Non-identical metabolites that perform identical functions in
the network context. (d) Alternative modeling of polymers. (e) Nested and encom-
passing reactions. (f) Alternative usage of redox pairs. (g) Alternative reactions with
consequences for redox metabolism. Circles represent chemical species, arrows chem-
ical reactions, and grey boxes different compartments. Red nodes indicate instances
of identical species within the network context whose alternative names are separated
by horizontal lines. Rectangular boxes contain the original reaction names, rounded
rectangles their corresponding GPRs, where ’&’ represents a logical AND, and ’|’ a

logical OR. Continued on next page.
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FIGURE 3.1 CONT.: (h) Partially overlapping reactions differing in phosphate products.
(i) Lumped vs. non-lumped representation of a pathway. (j) Invalid transport reaction
(IR08663). (k) Alternative transport reactions for putrescine. (l) Alternative transport
reactions for glycine. (m) Invalid boundary reaction (R841). Edges with filled circles
represent reversible reactions. Stoichiometric coefficients unequal to one are indicated
at their respective arrows. The shown reactions originate from GSMs of four different
organisms: B. subtilis (d), as represented in iYO844 [312] (blue) and iBSu1103 [175]
(orange); M. tuberculosis (m), as represented in iNJ661 [189] (blue) and GSMN_TB [39]
(orange); P. putida (b,c,e,f,h,I,j,k), as represented in iJN746 [298] (blue) and iJP962 [311]
(orange); and S. cerevisiae (g,l), as represented in iIN800 [303] (blue) and iMM904 [282,

400] (orange) and iND750 [111] (pink).
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To identify and address all the different inconsistency classes described
above, COMMGEN iteratively applies a set of independent methods (figure
3.2b). All methods automatically identify instances of their respective incon-
sistency classes. Metabolite matching is a core element of model merging. We
developed a novel algorithm to identify sets of metabolites that represent the
same chemical compound based on their network context, that is, their neigh-
boring metabolites and reactions, thereby addressing the issue of different
granularity in IGSMs for metabolites (see Methods for details). Performance
tests for P. putida networks revealed very high sensitivity and specificity of the
algorithm, even when only a minority of the network is used to infer matching
metabolite sets (figure 3.2c). Metabolite matching allows COMMGEN subse-
quently to reconcile the associated reactions: metabolites are merged, through
which novel pathways and branching points can be formed, and alternative
representations of biochemical reactions become apparent. Specifically, COM-
MGEN matches sets of reactions in the following categories (see Methods for
the respective algorithms): (i) reactions with identical metabolites but differ-
ent stoichiometries; (ii) nested reactions; (iii) reactions that differ only in redox
pairs; (iv) partially overlapping reactions; and (v) lumped reactions. Further-
more, it deals with differences in subcellular compartmentalization by (i) fa-
cilitating the removal of transporters; (ii) enabling the removal of entire com-
partments; (iii) resolving differences in the modeling of boundary reactions;
(iv) identifying different transport reactions for the same metabolite across
the same membrane; and (v) identifying identical biochemical conversions in
different compartments.

COMMGEN’s methods differ in the extent to which identified inconsis-
tencies can be resolved automatically (figure 3.2b). For some categories, the
user can choose to automatically handle inconsistencies, for example, to deal
with differences in reaction ality. Conditionally automatic refers to inconsis-
tency classes where some instances can be addressed automatically, but oth-
ers cannot: if two matched reactions differ only in stoichiometric coefficients,
COMMGEN can automatically select the elementally balanced reaction, but
only when exactly one reaction is balanced. Manual intervention is always
possible, and it is required when inconsistencies are too complex and diverse
for a well-performing heuristic for automation. Manual curation is also advis-
able when an erroneous choice may substantially impact model performance.
For example, a single incorrect match between two metabolites with differ-
ent chemical sum formulas can have severe consequences for the correctness
of model predictions. Hence, although the COMMGEN method for network-
based metabolite matching performs extremely well (figure 3.2c), we recom-
mend manual confirmation of predicted matches.
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FIGURE 3.2: COMMGEN framework. (a,b) Overview of COMMGEN workflow and
available methods. The COMMGEN methods are either fully automatic (+), condition-
ally or optionally automatic (+/-), or they always require manual intervention (-). (c)
Performance of the metabolite matching methods if run without manual intervention,
leading to ROC-curves of the classification of metabolites as identical or non-identical
based on their network context. Lines correspond to different fractions of the network
information being randomly discarded: black, 0%; red, 30%; green, 60%; blue, 90%.
The shades indicate the standard deviations in the classification. The data presented
here was obtained using the Pseudomonas putida GSMs iJP962 [311] and iJN746 [298];
analysis results for the other sets of GSMs and additional information can be found in

S5 Protocol.
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Model generation with COMMGEN: Case study for P. putida

To describe COMMGEN operation in detail and to evaluate the framework’s
performance, we focus on consensus model generation for Pseudomonas putida,
for which the two GSMs iJP962 [311, 341] and iJN746 [298] have been de-
veloped independently (figure 3.1a). The initial overlap between these two
models is surprisingly low: they only have 58% of their genes, 33% of their
metabolites and 2% of their reactions in common. Conversion into the MNXref
namespace [36] only increases the common part to 44% for metabolites and
11% for reactions.

To quantitatively determine the occurrences of inconsistencies and their
resolution, we classify reactions as consensus reactions (shared between the
GSMs) and unique reactions. We further categorize unique reactions accord-
ing to whether they are unrelated to any inconsistency, related to a single in-
consistency, or related to multiple inconsistencies (a reaction may appear in
the last category because COMMGEN methods are not mutually exclusive in
the inconsistencies they identify). Because the identified inconsistencies ul-
timately depend on namespace consistency, user-defined settings, and user
choices, we quantified the resolution of inconsistencies by automatic process-
ing to remove user bias as much as possible. After creating the BCM from the
IGSMs and merging the identical reactions, the fraction of consensus reactions
was low (11%) and approximately half of the unique reactions were associated
with at least one inconsistency (figure 3.3a; S1 Protocol). The inconsistencies
exemplified in figure 3.1 are, thus, not isolated cases; they merely illustrate the
main problems in consensus model generation.

Next, we employed a four-step automatic process to reconcile inconsisten-
cies between the IGSMs and to converge to an automatically generated RCM
(figure 3.3a). First, COMMGEN increased the namespace consistency through
our network context-based metabolite matching method (note that we man-
ually confirmed the proposed matches such that subsequently identified in-
consistencies were not overestimated). This increased the overlap to 53% for
metabolites and 16% for reactions. In the second step, COMMGEN addressed
the difference in cellular compartments in the P. putida GSMs (figure 3.1a). In
particular, transport reactions from iJP962 that immediately take up metabo-
lites from the extracellular space into the cytoplasm were split such that they
match the transport processes from iJN746, and periplasmic instances of the
involved metabolites were added. Next, COMMGEN identified and merged
sets of reactions with practically (ignoring protons and water) identical net
formula. These sets include reactions that have different GPR rules or differ-
ent reaction directionalities, or that did not have identical net formulas prior
to the splitting of transport reactions or the COMMGEN-based metabolite
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matching. In this step, we processed inconsistent reaction reversibilities us-
ing our previously published method to predict reaction directionalities based
on metabolite patterns [149], and we processed inconsistent gene associations
by combining the GPR rules with a ‘strict’ heuristic (see S2 Protocol). Finally,
COMMGEN identified and merged reactions that involve the same metabo-
lites, but differ in stoichiometric coefficients; directionality and GPR inconsis-
tencies were handled as above.

The detailed data shown in figure 3.3a emphasize the interdependencies
of inconsistencies that may arise in model merging, in particular, that resolv-
ing inconsistencies may facilitate subsequent identification of more inconsis-
tencies, resulting in an increased number of identified inconsistent reactions.
The four automated steps increased the share of reactions that are consen-
sus reactions originating from both IGSMs from 11% (in the BCM) to 39% (in
the RCM), while also substantially reducing the number of reactions associ-
ated with inconsistencies (figure 3.3a). We evaluated the significance of the
metabolite matching step by re-running the process without it, which lead to
only 23% consensus reactions (figure 3.3b). In addition, we used the auto-
matically generated RCM as the starting point for manual curation guided by
COMMGEN methods. This allowed us to reconcile most of the remaining in-
consistencies and to obtain a consensus for 50% of the reactions (figure 3.3c).
In summary, our detailed case study for P. putida therefore provides evidence
for the efficiency of the COMMGEN framework, and in particular of its novel
methods such as network context-based metabolite matching.
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FIGURE 3.3: Application of COMMGEN to P. putida GSMs. (a) Automatic inconsis-
tency identification and reconciliation substantially increases consensus and reduces
inconsistencies. Reactions are classified into consensus reactions (green) and unique
reactions involving no (blue), a single (orange), or multiple (red) inconsistencies. (b,
c) Characteristics of the refined consensus model as in (a) without network-based
metabolite matching (b), or after manually addressing the remaining inconsistencies
(c). (d) Numbers of reversible (‘+’) and irreversible (‘-‘) reactions in the RCM, grouped
by the four possible combinations of reversibilities in the IGSMs. (e) Numbers of active
and inactive reactions in the RCM, grouped by being active (‘+’) or inactive (‘-‘) in the

IGSMs.

Automatically generated consensus models are functional and
predictive

We next asked, to what extent automated consensus model generation pre-
served or even extended functionality of the IGSMs, initially focusing on the
P. putida models. Our automated method involved the probabilistic prediction
of reaction directionalities [149] to resolve reaction inconsistencies, instead
of simply setting all reactions with conflicting directionalities to reversible,
which would tend to overestimate the organism’s metabolic capabilities. It
maintained reaction directions in case of consensus between the IGSMs, al-
though the prediction method is agnostic to matches between models; it con-
strained directions in many cases when such constraints existed in only one
IGSM (figure 3.3d). The benefits of this approach are best exemplified with a
concrete example (figure 3.4a). The P. putida BCM contains a small set of re-
actions that together allow for non-physiological CO2 fixation. This incorrect
CO2 fixation cycle was automatically removed when inconsistent directional-
ities of a reaction present in both IGSMs were processed, thereby preventing
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a major error in the RCM. Note that direction prediction also identified a re-
action assigned with a direction that is not consistent with the remainder of
the network (see also figure 3.1i), namely a directed lumped reaction common
to both IGSMs, and a bidirectional non-lumped reaction set present in only
one model. Another important aspect of model consolidation is the extent to
which active reactions in the IGSMs (that is, reactions that can carry metabolic
flux in principle) are preserved. As shown in figure 3.3e, essentially all active
reactions in one of the networks remained active in the RCM, and only reac-
tions that were non-functional in both IGSMs remained inactive. In growth
phenotype predictions, the RCM occasionally disagreed with all IGSMs, sug-
gesting ‘new’ metabolic functions. For example, while neither of the IGSMs
captured that P. putida can grow on L-quinate as sole carbon source, comple-
mentation of reactions in the RCM enabled a biologically consistent model
behavior (figure 3.4b). These aspects together indicate overall functionality of
the automatically generated consensus model.

The performance of GSMs as mathematical models for cellular metabolism
is typically evaluated by assessing their ability to correctly predict wild type
and mutant growth phenotypes across different growth conditions [235]. We
performed corresponding simulations for automatically refined consensus
models as well as for their ancestors (IGSMs and BCM) for each of the four
evaluated organisms (figure 3.1a). Specifically, we computed sensitivity, speci-
ficity, accuracy, and Matthew’s Correlation Coefficient (MCC; unlike accuracy
it takes the total numbers of true and false test cases into account) [266] for
growth phenotype predictions (see S3 Protocol for details). figure 3.5a shows
the performance indicators for the IGSMs, the BCMs, and the automatically
refined consensus models for each organism. In nearly all metrics, the IGSMs
outperformed the BCM (except for P. putida), and they were outperformed
by the RCM (except for B. subtilis). For B. subtilis, resolving inconsistencies
in the BCM decreased all scores except sensitivity. This can be explained by
one IGSM (iBSu1103) being largely based on a predecessor (iYO844); in ad-
dition, iBSu1103 was optimized for correct growth predictions using Grow-
Match [175, 235]. Information from iYO844 can thus include errors that were
deliberately removed from iBSu1103 and it can reverse changes made by the
performance optimization. Thus, although the prediction profiles of the RCMs
largely resemble the IGSM profiles, RCMs on average outperform both the
IGSMs and the BCMs, indicating efficiency of the automated consensus model
generation methods in COMMGEN even in terms of prediction capabilities.
Notably, user choices of the biomass reaction do not influence the performance
substantially (figure 3.5a), pointing to robustness of the methods as well.
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FIGURE 3.4: Subnetwork analysis for P. putida. (a) Example error of ‘naïve’ iGSM merg-
ing where the initial P. putida BCM contains a biologically inaccurate carbon dioxide
fixation cycle due to incorrect directionalities in the IGSMs. This error is automatically
resolved as COMMGEN assigns reaction directionalities opposite to those shown with
dashed reaction arrows. (b) Example for a new metabolic function in the consensus
model. P. putida can grow on L-quinate as its sole carbon source. Neither of the initial
models captures this behavior, whereas the consensus model provides the necessary,

complementary reactions.

Automatic reconciliation is comparable to manual consensus
model generation

Finally, we wanted to evaluate how automatic consensus model generation
compares to its (largely) manual counterpart. We focused on the commu-
nity approach to establish a yeast consensus model [177] based on the IGSMs
iMM904 [282] and iLL672 [232] because this first model reconciliation effort
is especially well documented. Figure 3.5b shows that transfer of the IGSMs
into a standardized namespace alone identifies only small subsets of common
metabolites and reactions. COMMGEN’s automated reconciliation method, in
contrast, achieves nearly the same extent of matching between the IGSMs as
reported for the manual curation. The automatically generated RCM showed
good performance in mutant phenotype predictions (sensitivity = 0.98, speci-
ficity = 0.28, accuracy = 0.87 and MCC = 0.42; note that a comparison to the
manual consensus model is impossible because the community effort did not
aim at establishing a model suitable for FBA). In addition, COMMGEN di-
rectly identifies many inconsistencies between model reactions that result,
for example, from different numbers of compartments in the IGSMs (figure
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3.5c). These would be clear starting points for domain experts for subsequent
COMMGEN-assisted manual curation. We believe that the combination of au-
tomated procedures with close-to-manual quality and of support for targeted
manual curations would substantially enhance future community efforts.

Discussion

Genome-scale constraint-based metabolic models are both integrated knowl-
edge repositories and predictive mathematical models. In terms of knowledge
representation, a consensus model should be more consolidated than individ-
ual GSMs due to shared parts, more comprehensive due to unique parts, and
more accurate due to reconciliation of inconsistencies in similar parts. A con-
sensus model, however, can propagate errors in the initial models’ unique
parts, and it may be less consistent than the initial models, especially when
inconsistencies in similar model parts were not identified or reconciled.

Inconsistencies in GSMs are typically nested, not mutually exclusive, and
therefore difficult to address, which so far prevented the development of
methods for the automated generation of consensus models [400]. Manual
network reconciliation, the predominant approach applied today, is difficult
and cumbersome because the number of inconsistencies between just two
or three IGSMs already runs in the thousands. Based on a systematic clas-
sification of inconsistencies, COMMGEN automatically identifies and semi-
automatically reconciles inconsistencies between and within two or more
IGSMs. The inconsistencies could theoretically be reconciled fully automat-
ically, but automated resolution depends on the used reference databases,
which vary to a large extent [399]. Therefore, COMMGEN does not entirely
remove the need for manual inspection and curation. For example, our frame-
work relies on network similarity between alternative realizations of metabo-
lites and reactions in order to match them. Because the reactions surrounding
biomass formation are often implemented very differently in different GSMs,
they are not matched. While our implementation lets the user choose one
of the IGSM biomass reactions, a manual update seems necessary as long as
COMMGEN does not automatically fetch external information that would en-
able an automatic reconciliation of the biomass reaction. In addition, there
exists a trade-off between sensitivity and specificity for the identification of
inconsistent reactions, which limits the detection of lumped and non-lumped
pathway representations with a different net reaction. Also, the identification
of similar or identical reactions in different cellular compartments is difficult
to achieve automatically (but an extension of the current framework could
progress in this direction by combining the information from metabolite in-
stances in different compartments prior to metabolite matching). COMMGEN



3

62 Chapter 3. Consensus metabolic model generation

thus forms a necessary bridge between full automation and high-quality man-
ual curation for consensus metabolic model generation.

FIGURE 3.5: Performance evaluation of COMMGEN. (a) Evaluation of GSM ability to
predict growth phenotypes. Predictive ability of initial GSMs (blue), basic consensus
models (red), and automatically created refined consensus model (green) according to
the metrics defined in the text. The test data comprised gene knockout data (B. subtilis
[175, 312], P. putida [11, 341], M. tuberculosis [374], S. cerevisiae [111]), biolog data (B.
subtilis [175, 312], P. putida [298, 341]) and auxotrophies (P. putida [11]). See S3 Proto-
col for details. (b,c) Comparison of manual yeast consensus model [177] based on the
IGSMs iMM904 [282] and iLL672 [232]) with automatic consensus model generation
with namespace matching only, or with COMMGEN. (b) Numbers of common reac-
tions and metabolites for manual curation, namespace conversion, and automatically
created refined consensus model. (c) Number of incidences of inconsistent reaction

classes identified by COMMGEN.
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Regarding a GSM’s predictive mathematical model character, it is impor-
tant to note that remaining inconsistencies in a consensus model can have
severe effects, for example, when inconsistencies resulting from model merg-
ing are not adequately addressed. As a consequence, individual GSMs may
outperform a consensus model in terms of predictive ability even though the
latter is more representative of the available information. COMMGEN’s aim
(and design) is to compare and reconcile IGSMs in order to obtain a high-
quality representation of the IGSMs’ combined information. In contrast to
model optimization methods such as GrowMatch [235], COMMGEN does
not create a model optimized for predictive ability, and it does not use cor-
responding experimental information. However, our example applications
also demonstrated that automatically generated consensus models almost al-
ways have higher predictive power than the manually curated IGSMs and that
these models can be comparable to manually constructed consensus models
as shown for yeast. COMMGEN increases coherence with the actual biolog-
ical system while maintaining predictive power. This balance is of utmost
importance for the usability and reliability of GSMs to elucidate cell function
interactions.

As demonstrated by our case study for P. putida, we argue that (semi-
)automatically generated consensus models provide the basis for additional
improvements due to their comprehensiveness and standardized naming sys-
tem. Gap-filling methods [149, 419] may be able to close gaps that are not
apparent in the IGSMs. One can use existing methods [149, 304] to re-evaluate
reaction directionalities, especially for reactions that differed in the IGSMs.
Compartment assignment methods [280] can resolve remaining compartmen-
talization issues and optimization methods [109, 235] may alter the model to
increase its predictive ability. Finally, a good consensus model is a solid foun-
dation for new models by providing a basis for GSMs of similar organisms,
and via its integration into multi-scale whole-cell or tissue models [175].

More generally, the systematic integration of heterogeneous information is
an essentially unsolved challenge in (post-)genomic biology. For metabolism,
consensus GSMs are formalized means for complementing incomplete infor-
mation, and for identifying and addressing errors through the comparison of
independently generated GSMs for the same organism. COMMGEN auto-
matically identifies and semi-automatically resolves widespread and highly
interlinked inconsistencies between initial GSMs, thereby moving beyond ex-
isting approaches for manual and computer-aided consensus model genera-
tion. It can therefore facilitate the construction of new models by comparing
and combining information from automatic model construction tools such as
the Model SEED [176] and manual model construction efforts, and facilitate
GSM updates using a reference — both tasks are analogous to consensus GSM
generation.
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While we focus here on the reconciliation of multiple GSMs for the same
species, we argue that COMMGEN’s methods and standardization are more
widely applicable. The identification of similar, yet distinct, biochemical en-
tities can help to compare metabolic capabilities of organisms in detail via
their GSMs, or even to compare entire pathway databases. However, deal-
ing with different species will require new, systematic preprocessing steps
to map gene sets in different organisms functionally to each other (e.g., via
orthology or enzyme classification numbers), which is a topic of future re-
search. In addition, COMMGEN’s methods for identifying redundancies and
hierarchical relationships in networks can be used to further advance stan-
dardization of terms and ontologies. We therefore expect COMMGEN to be
of substantial aid in future integration of knowledge for metabolic networks,
to greatly accelerate model-building processes and to thereby improve sub-
sequent high-throughput model-based network analyses. Although COMM-
GEN will not directly address the domain-specific problems, these capabili-
ties will lay a solid foundation for the systematic, genome-scale comparison
of metabolic spaces within and across genera and will have substantial im-
pact for large-scale evolutionary analyses, design of microbial communities,
and understanding of host-microbe (pathogen, microbiome) interactions.

Materials and Methods

Genome-scale metabolic models. iJN746 and iJP962 were requested from and
received by email from the first authors of the corresponding papers. GSMN-
TB was downloaded from http://sysbio3.fhms.surrey.ac.uk/. iNJ661 was ob-
tained from the supplementary files of the corresponding paper. The remain-
ing models were taken from the model repository at www.metanetx.org. See
S1 Dataset for details.

Evaluation of model performance. For comparison to experimental data, the
models were loaded into the COBRA toolbox [376]. The bounds of the bound-
ary reactions were adjusted based on the medium composition and, where
necessary, additional flexibility was provided to individual models. Gene
knockout strains were simulated by removing the reactions requiring the en-
coded protein. To discriminate growth from no growth for wild type strains
a default cut-off value (106) was used whereas a minimal relative growth rate
(30%) to the wild type was used for mutant strains. See S3 Protocol for details.
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Matching metabolites based on network context. In a metabolic network,
reaction nodes are only connected to the metabolite and gene nodes that are
involved in the corresponding reaction. Similarly, metabolite and gene nodes
are only connected to reaction nodes. However, reaction nodes are not in-
formative for the identity of metabolites as two metabolites representing the
same chemical compound are non-overlapping in their connected reaction
nodes. Therefore, we characterize metabolites by the other metabolite and
gene nodes that are connected to the same reactions. We use this information
to quantify how similar metabolites from different models are based on their
network context. These similarity scores are then compared to the scores of
metabolites that are known to match because they are present in both mod-
els: pairs of metabolites that score comparable to these shared metabolites
may consist of functionally equivalent chemical compounds. We use a user-
defined percentile of shared metabolite scores as a threshold to identify similar
metabolites. The method is described in the following:

i We create a Boolean metabolite-to-metabolite matrix Mm (m x m) where a
1 indicates that the two metabolites share a reaction.

ii We create a Boolean gene-to-metabolite matrix Mg (g x m) where a 1 indi-
cates that the metabolite and gene share a reaction.

iii We create an attribute matrix Ma ((m + g) x m) by vertically concatenating
Mm and Mg .

iv We normalize Ma by dividing each row by its sum such that the numbers
in each row sum up to 1. Thereby, the values in Ma reflect both that a
metabolite is connected to a metabolite or gene and how rare (defining)
this connection is.

v We discard rows from Ma that correspond to metabolites and genes that
are not included in both models for these cannot aid in the identification
of common metabolites between the models.

vi We discard the columns from Ma that correspond to metabolites that are
identified to be the same in both GSMs.

vii We create a scoring matrix Ms (m x m) where the number at position i,j
corresponds to the Pearson’s correlation coefficient between columns i and
j of Ma.

viii We distinguish between similar and non-similar metabolites in Ms using
a minimal score. The minimal score equals a user-defined percentile of
scores for metabolites that are present in both models.
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Identification of lumped reactions A lumped reaction is an artificial reaction
that represents the net effect of multiple individual reactions. Therefore, if
the lumped and non-lumped representations carry flux in opposite directions,
steady state is maintained as they cancel each other out. We use this property
to identify lumped reactions by linear programming. The method is described
in the following:

i We determine the directionality for each reaction as forward, backward,
or reversible.

ii We transform each reaction such that it only runs in the forward direction;
backward reactions are reversed and reversible reactions are split into two
reactions.

iii We update the stoichiometric matrix S (m x r) accordingly.

iv We remove the boundary reactions from S as these reflect exchanges of
metabolites between the organism and the medium.

v We define the linear programming (LP) problem:

Maximize c’x
Subject to Sirrx = b

lb ≤ x ≤ ub

vi We initiate the variables of the LP problem
c: Vector (1 x r) containing the objective coefficient for each reaction. We
set each value to -1 to penalize flux through each reaction; this ensures
that the total flux in the network is minimized.
lb: Vector (1 x r) containing the lower bounds of each reaction. As all
reactions are forward reactions, every value is set to 0.
ub: Vector (1 x r) containing the upper bounds of each reaction. As all
reactions are forward reactions, every value is set to 1000.
b: Vector (m x 1) containing the desired accumulation or dissipation
of each metabolite. Each value in this vector is set to 0 to ensure a
steady-state flux distribution.

vii We select a reaction LR with index iLR to be considered as a lumped re-
action. We set: c(iLR) = −1000 lb(iLR) = −1 LR is thus now allowed to
carry flux in the backward direction, which results in a positive contribu-
tion to the objective value.
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viii We run the LP problem as defined under step v. The LP problem returns
a flux distribution x that either only contains zeros (no non-lumped rep-
resentation available), or contains a flux distribution such that the flux
through LR is maximized in the reverse direction while having a minimal
flux through the rest of the network. In the first case, we skip steps ix and
x. In the latter case, we identified a set NL1 of corresponding non-lumped
reactions.

ix We save the set NL1 for future reference.

x We modify the LP problem such that any alternative sets NLx may be iden-
tified. c(NL1) = 3c(NL1) This effectively further penalizes flux through
the reactions of NL1 such that it becomes more ‘rewarding’ to use other
reactions.

xi We repeat steps viii-x (replace NL1 by NL2, NL3, . . . ) until: No non-zero
solution to the problem exists, or The number of reactions in NLx exceeds
a user-defined threshold (default: 5), or There is a recurring set NLx.

xii We filter the different sets NLx such that only sets remain that overlap to
a pre-defined extent in gene associations with LR.

xiii We repeat steps v-xi such that we obtain sets NL for each reaction in the
model.

Identification of alternative transport. Alternative transport reactions result
in the transport of a metabolite between two compartments with a different
net reaction. We identify metabolites with alternative transport reactions one
metabolite at a time. If a metabolite is present in two or more compartments,
we identify all transport reactions for this metabolite by selecting reactions
where the metabolite is on both sides of the equation. If two of these reactions
transport the metabolite between the same two compartments, these reactions
are alternative transport reactions.

Identification of invalid transport. Invalid transport reactions are reactions
that transport metabolites between two unconnected compartments. We iden-
tify these by forming a list of all compartments that are directly connected
through transport reactions in the IGSMs and asking the user to indicate if
any of these are invalid. For any of the invalid compartment connections, we
identify reactions that contain metabolites from both compartments; these re-
actions are invalid transport reactions.
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Identification of alternative compartmentalization. We create a separate
stoichiometric matrix Scmp (m x r) for each compartment. These matrices
only contain reactions of which all metabolites are in the same compartment.
Columns (reactions) that are identical between these matrices represent iden-
tical reactions with an alternative compartmentalization.

Identification of unknown compartment. In the MNXref namespace,
metabolites with an unclear compartmentalization are placed in the com-
partment UNK_COMP. For each reaction that contains a metabolite in
UNK_COMP, we identify reactions from the other IGSM(s) that involve all
metabolites with known compartmentalization similarly to the identification
of alternative stoichiometries. These reactions are then filtered for reactions
that also involve the metabolite with the unknown compartmentalization.

Identification of invalid boundary reactions. Boundary (exchange) reactions
are artificial reactions that represent the exchange of metabolites with the
medium. They only involve a single metabolite, and have no metabolites on
the other side of the equation. In some models these reactions are lumped
together with transport reactions that import metabolites from the extracellu-
lar compartment. After the MNXref namespace conversion these reactions are
still annotated as boundary reactions, and are thus easily identified in COMM-
GEN by searching for boundary reactions with non-extracellular metabolites.

Removing a compartment. To combine GSMs with an alternative compart-
mentalization, it is sometimes most straightforward to remove a compart-
ment ‘RC’ from a GSM and move its reactions to a different target compart-
ment ‘TC’. We defined four categories of reactions in RC, which are treated
differently when RC is removed: (i) Reactions that only involve metabolites
from RC are moved to TC; (ii) Multi-compartment reactions that transport a
metabolite between RC and TC are removed; (iii) Multi-compartment reac-
tions involving RC and TC that involve a chemical conversion are kept, but
all metabolites from RC are placed in TC; (iv) Multi-compartment reactions
involving RC and a metabolite other than TC are kept, and all metabolites
from RC are placed in TC.

Identification of identical net reactions. Identical net reactions are reactions
that involve the same set of metabolites in the same stoichiometries, but they
may be defined in opposing directions. Therefore, we create a double stoichio-
metric matrix Sdbl (m x 2r) that contains the normal stoichiometric matrix S (m
x r), as well as its negative -S (m x r). We then identify columns (reactions) in
Sdbl that are identical.
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Identification of alternative stoichiometries. We convert the S (m x r) ma-
trix to a Boolean (0/1) representation Slog (m x r). We then identify columns
in Slog that are identical; these correspond to reactions involving the same
metabolites, but in different stoichiometries.

Identification of alternative redox pairs. GSMs often differ in their involve-
ment of redox pairs in any particular reaction. The first step in identifying
these inconsistencies is the creation of a list of redox pairs. COMMGEN comes
with a list of commonly used redox pairs in the MNXref namespace, and this
list can be expanded by the user. COMMGEN can suggest expansions for this
list by selecting metabolite pairs that co-occur frequently (≥ 80% of reactions).
We identify reactions that are identical except for their redox pairs by expand-
ing the stoichiometric matrix S (m x r) to Srdx (m+1 x r) by adding an artificial
metabolite ‘redox pair’. Then, for each reaction that involves a redox pair, we
put the stoichiometric coefficients of the redox metabolites in Srdx to ‘0’, and
add a ‘1’ in the ‘redox pair’ row instead. We then use the same approach as for
the identification of alternative stoichiometries to identify reactions that only
differ in stoichiometries and redox pairs.

Identification of nested reactions. We convert the S (m x r) matrix to a
Boolean (0/1) representation Slog (m x r). For each column (reaction) we then
identify other columns that contain nonzero elements on each row where the
respective column has a nonzero element. These sets of columns (reactions)
are potentially nested reactions. We then confirm these sets by detecting sets
where two or more metabolites that are on the same side of the equation for
one reaction, are on the same side of the equation for the other reaction.

Identification of similar reactions. Similar reactions are reactions from differ-
ent IGSMs that share a predefined number of genes, substrates and products.
We identify similar reactions by constructing three sets of pairs of reactions:
(i) reactions that originate from different IGSMs, (ii) reactions that share the
required number of substrates and products, and (iii) reactions that share the
required number of genes. All combinations of two reactions in each of these
three sets are considered similar reactions.

Implementation and simulation. All computational simulations and analy-
ses were performed using MATLAB [265]. Gurobi [163] was used as linear
programming solver for flux balance analysis.
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Namespace conversion. COMMGEN uploads SBML files to MetaNetX.org
[150], where the namespace conversion into MNXref [36] is performed, and
downloads the resulting model. Because errors may be introduced at this
stage (incorrect namespace conversion of individual metabolites) the mapping
is presented to the user who can reject incorrect matches. See S4 Protocol for
details.

File formats and accessibility. The COMMGEN version used for this paper is
freely available as MATLAB code as S6 Protocol. A current version of COM-
MGEN can be found at https://gitlab.com/Rubenvanheck/COMMGEN.
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Supplementary files

The supplementary files of this work can be found online at http:
//journals.plos.org/ploscompbiol/article?id=10.1371/
journal.pcbi.1005085#sec031.
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Abstract

Pseudomonas is a highly versatile genus containing species that can be harm-
ful to humans and plants while others are widely used for bioengineer-
ing and bioremediation. We analyzed 432 sequenced Pseudomonas strains
by integrating results from a large scale functional comparison using pro-
tein domains with data from six metabolic models, nearly a thousand tran-
scriptome measurements and four large scale transposon mutagenesis exper-
iments. Through heterogeneous data integration we linked gene essential-
ity, persistence and expression variability. The pan-genome of Pseudomonas is
closed indicating a limited role of horizontal gene transfer in the evolutionary
history of this genus. A large fraction of essential genes are highly persistent,
still non essential genes represent a considerable fraction of the core-genome.
Our results emphasize the power of integrating large scale comparative func-
tional genomics with heterogeneous data for exploring bacterial diversity and
versatility.
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Introduction

The Pseudomonas genus exhibits a broad spectrum of traits and Pseudomonas
species show a remarkable adaptability to the biochemical nature of the large
variety of environments, often extreme, they thrive in [424, 453]. The genus
currently includes almost 200 recognized species, which have been clustered
into seven groups and into lineages on the basis of a limited set of loci [253].
Some species are well-studied because they are human or plant pathogens,
like P. aeruginosa or P. syringae, or because they are considered harmless and
possess interesting biodegradation properties while others can produce a va-
riety of extraordinary secondary metabolites with anti-microbial properties
[159]. P. putida KT2440 is even Generally Recognized as Safe (GRAS-certified)
for expression of heterologous genes and has been transformed into a geneti-
cally accessible laboratory and industrial workhorse [290].

A number of comparative genomics studies have been performed in the
past [21, 253, 453] but the number of available Pseudomonas genomes quadru-
pled in the last five years due to the widespread use and the advancement of
high-throughput sequencing technologies. As of December 2015, the complete
and draft genomes of 432 strains distributed over 33 species are publicly avail-
able (see Supplementary figure S1). This plethora of data entitles an in-depth
comparative re-analysis of Pseudomonas genomes to explore their metabolic
and ecological diversity.

Large scale functional comparison based on sequence similarity is chal-
lenged by methodological problems, such as the need of of defining arbitrarily
generalized minimal alignment length and similarity cut-off for all sequence
to be analyzed, and it is hampered by the high computational cost, since time
and memory requirements scale quadratically with the number of genome se-
quences to be compared[225]. Many bacterial proteins consist of two or more
domains and fusion/fission events are the major drivers of modular evolution
of multi-domain bacterial proteins [329]. Interspecies domain variation can
thus give rise to an annotation transfer problem: sequence based functional
annotation methods use a consecutive alignment to identify common ances-
try and therefore may miss domain insertion/deletion, exchange or repetition
events, which may lead to functional shifts and promiscuity. Comparisons at
protein sequence level should therefore be complemented with comparisons
at the protein domain level [225]. In addition, in order to avoid technical bi-
ases a biologically meaningful functional comparison requires consistent and
up-to-date annotations. Instead, the biological information available in public
databases varies in quality due to the use of different databases and annota-
tion pipelines that include different methods and may assign different names,
acronyms and aliases to the same protein. Re-interpretation of these predic-
tions in most cases requires reverse engineering as data provenance is usually
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not available.
In this paper 432 Pseudomonas genome sequences were de novo reannotated

and the generated annotation information was integrated through a seman-
tic platform with data from six metabolic models, nearly a thousand tran-
scriptome measurements and four large scale transposon mutagenesis exper-
iments. We identified phylogenetic relationships among different species us-
ing protein domains and performed extensive analysis of the core- and pan-
genomes of the Pseudomonas genus and considered the habitat factor while an-
alyzing the pan/core-genome. Finally, we linked domain content and domain
variability of persistent and essential genes and their transcriptional regula-
tion.

Results

De novo annotation of P. putida KT2440 as a minimal working
example

P. putida KT2440 [290] is one of the best-characterized Pseudomonas strains. A
de novo annotation obtained using an in-house annotation pipeline, the an-
notation deposited in GenBank (NC_002947) and an alternative annotation
obtained using RAST [16] were compared, see Table 4.1. The total number
of genes identified using three gene calling methods, Prodigal 2.6 (in our
pipeline), Glimmer3 (RAST), and Glimmer (GenBank) are very similar, dif-
fering less than 4%. However, as each of these algorithms have an intrinsic
false discovery rate in start-site prediction, significant differences in the start
position of the identified genes were found. The number of exact matches
in gene start-sites is only 73% (4073 genes) confirming previous observations
[429]. These 5’ variations in gene identification can result in a putative gain or
loss of biological functions; however, since different naming conventions are
used in the different annotation protocols applied, a direct functional compar-
ison to spot possible differences is not possible (figure 4.1).

TABLE 4.1: Annotation results for P. putida KT2440. GenBank refers to the original
deposited annotation (available at NCBI), whereas RAST and SAPP refer respectively

to their annotation.

#Genes #Unique start/ #Unique #Unique #Unique
end positions GO domains EC

GenBank 5350 170 0 3574 443
RAST 5531 62 726 3631 447
SAPP 5555 252 1403 3636 447
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FIGURE 4.1: Alternatives for functional genome comparison: (A) Direct comparison of
genome potential using existing annotation is often hampered by lack of standardiza-
tion of gene calling and annotation tools, mixed and unknown data provenance and
inconsistent naming of function. (B) Sequence similarity clustering bypasses inconsis-
tent functional annotations. Computational time scales quadratically with the number
of genome sequences and gene fusion/fission events might be overlooked. (C) Usage
of standardized annotation tools ensures uniform genome annotation prior to compar-

ison; annotation provenance is stored for all steps.
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The use of controlled vocabularies overcomes this issue, so that functional
comparison can be performed using gene ontology (GO) terms, Enzyme Com-
mission (EC) numbers and InterPro identifiers. For the GenBank deposited
annotation no GO information was available but the difference observed be-
tween the RAST and the de novo annotation is striking. This minimal work-
ing example shows that even for a single genome a comparative analysis of
functional annotations derived from three work-flows is almost impossible
by computational means due to lack of standardization and data provenance.
This example further emphasizes that comparative genomic analysis requires
homogeneous annotation.

Comparison of the genomic potential of Pseudomonas species

Since for a comparative genomics study a consistent and standardized
genome annotation is a prerequisite, we evaluated the impact by comparing
the functional annotations of 432 Pseudomonas genomes with a de novo anno-
tation. We used both complete and draft genomes. According to the quality
metric defined by Cook and Ussery, almost 30% of the available draft genomes
were of low quality [90]. This was mostly due to a high number of contigs and
not to the quality of the assemblies in itself, so they were included in the anal-
ysis.

GenBank files were converted into RDF, extracting genome sequences and
gene-calls. Genomes were structurally and functionally reannotated. The
originally deposited gene-calls were functionally reannotated as well and a
pairwise comparison of GO terms, and EC identifiers assigned to the origi-
nally deposited and the de novo gene-calls was performed at gene and protein
domain level. Figure 4.2 summarizes the results for the available 58 complete
genomes. Differences in annotations were observed at all functional levels.
Per genome on average 38 new genes were predicted while a functional re-
annotation of the set of complete genomes yielded 838 additional GO-terms
and 146 additional domains (For a more detailed overview see Supplementary
data S2). Considering the full set of 432 genomes, on average a difference of
153 genes per genome was detected. The results advocate for routine imple-
mentation of consistent gene-calling methods combined with an up-to-date
functional annotation before performing comparative genomic analyses, as
many of these differences will results in gain or loss of biological functions.



4

Chapter 4. Modeling essentials: The Pseudomonas genus 79

FIGURE 4.2: De novo annotation of Pseudomonas genomes. Comparison between the
original and de novo annotations of 58 completely sequenced Pseudomonas genome
sequences. Barplots indicate differences in the number of retrieved genome features
terms between the de novo annotations and the original deposited annotations. A: gene
abundance; B: protein domains; C: GO terms, and D: EC identifiers. The genomes
are ordered from left to right by deposition date in the NCBI database (from oldest to

newest).
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Sequence and function based comparative genomics of Pseu-
domonas

Genome-wide comparative analysis usually relies on sequence similarity clus-
tering based on a blast-based all-against-all bidirectional best hit (BBH) heuris-
tic approach. There are several limitations to this approach. Firstly, the run-
time increases quadratically with the number and complexity of the species in-
volved. Secondly, clustering is strongly context-dependent as it dramatically
depends on chosen cut-off values to define statistical significance of sequence
similarity. Problems may arise with in-paralogous sequences that evolve at
very similar rates resulting from recent duplication events[307]. Thirdly, pro-
tein fusion and fission events are difficult to detect using alignments and thus
critical information might be lost.

An alternative approach, already employed in a comparative genomics
study of Escherichia coli [394], consists of grouping of proteins on the base of
domain architectures with a fixed N-C terminal order [241]. Clustering based
on domain order is highly scalable and moreover, most protein domains rep-
resent structural folds that can be directly linked to function. Here, both ap-
proaches were compared. Protein sequence similarity clusters were identified
in a BBH approach using orthAgogue [113]. Due to runtime constraints, pro-
tein clustering was limited to the analysis of the 58 complete genomes leading
to the identification of 14757 protein clusters. For each protein found within
a cluster the domain content and N-C terminal domain order ranked by the
position of the first detected amino acid of the domain (domain start) in the
protein sequence (domain architectures) was analyzed and is summarized in
figure 4.3A. 5515 sequence based protein clusters (37%) present a one-to-one
correspondence to domain architectures, whereas 3134 (21%) can be associ-
ated to two distinct domain architectures. Overall, 93% of the identified clus-
ters can be associated to 4 or less distinct domain architectures. Figure 4.3A
also shows the number of proteins in each orthologous cluster. 3162 clus-
ters (21%) contain proteins lacking established domains and almost 75% of
them contain less than 10 sequences. These clusters correspond, in their vast
majority, to hypothetical proteins. Regarding the core genome, 1618 clusters
(11%) were found to be present in all 58 genomes. From these 1618 protein
clusters, 242 contained duplication events leaving 1376 distinct single copy
gene protein clusters common to all 58 genomes. 543 of those clusters showed
a single domain architecture whereas the rest contained domain architecture
variations as summarized in figure 4.3B. We noted that such variability was
mainly due to swapping or inversion in domains order. In a sequence based
approach domain order variation can potentially lead to false negatives, bro-
ken clusters and even reduction of the core genome when more genomes are
added to the analysis.
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FIGURE 4.3: Domain architectures in sequence based clusters of orthologous proteins.
(A) Number of distinct domain architectures per cluster (B) Variability in domain ar-
chitectures per gene cluster in core-genome. Complete agreement indicates a unique
domain architecture shared by all members of the cluster; For the cases where multi-
ple domain architectures were found in a sequence cluster, the number of cases corre-
sponding to domain duplications, additions and shuffles are indicated. (For A and B
only 58 complete genome sequences considered). (C) Persistence analysis within the
Pseudomonas genus. The curves indicate the persistence of each of the cluster. Clusters
have been arranged by decreasing persistence values and the x-axis has been scaled to
0-1 range, in this way the cluster with the highest persistence have an x value of 0 and
the cluster with the lowest persistence has an x value of 1. The y-axis indicates the per-
sistence of a given cluster (see Equation 1): for instance a persistence of 0.8 indicates
that 80% of the analyzed genomes contain sequences in that given cluster. SB-58 refers
to the use of sequence based cluster considering the 58 complete genomes; DA-58 and
DA-432 refers to the use of protein domains, for 58 and 432 genomes respectively;
Single-432 reproduces the analysis for single domain proteins found in the full set 432

genome sequences.

The analysis of 58 complete genome sequences showed that domain ar-
chitectures retain enough information for functional characterization and that
they can be used as a fingerprint for a functional cluster. Since the compu-
tational cost for obtaining protein domain identification scales linearly with
number of genomes and can be easily distributed over multiple machines, we
used these functional fingerprints to extend the analysis to all 432 Pseudomonas
genomes. Over two million (2,704,339) genes were identified coding for over
one million (1,196,884) unique protein sequences of which 85.6% (1,024,877)
contain known protein domains. Figure 4.3C shows the results of persistence
analysis, reporting the fraction of the total number of analysed genomes in
which the corresponding cluster/protein domain/domain architecture was
found; 40% the protein domains are persistent in the genus, showing that the
functional information at domain level is preserved.
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FIGURE 4.4: Domain based distance tree of 58 Pseudomonas strains. The tree was built
considering the pattern of presence/absence of protein domains using an average clus-
tering approach. Only completely sequenced genomes are considered. The phyloge-
netic clusters corresponding to the most abundant species (P. stutzeri, P. mendocina, P.

aeruginosa and P.putida) are color-shadowed.
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Classification of Pseudomonas strains based on genome poten-
tial

Patterns of protein domain presence/absence can provide an alternative and
complementary way for assessing strain diversity [5, 458]. There are still many
unclassified Pseudomonas strains and there is a continuous development on
assessing the phylogeny using various approaches [37]. Figure 4.4 shows a
distance tree of genome potential based on presence/absence of protein do-
mains for the 58 complete Pseudomonas genomes. We found excellent agree-
ment between this distance tree and the taxonomic classification based on 16S
sequences indicating that binary patterns of protein domains retain enough in-
formation to reconstruct evolutionary history. The positioning of Pseudomonas
sp. UW4 within the clade of P. fluorescence, confirms a previous observation
based on 16S and three housekeeping genes (gyrB, rpoB and rpoD) [110]. P.
aeruginosa and P. stutzeri clades are conserved while P. putida and P. fluores-
cence clades shows the addition of different species.

We further extended the domain based distance analysis to include all 432
Pseudomonas strains (see Supplementary figure S3). The majority of the strains
cluster in accord with their taxonomic classification. Many of the unclassified
strains could be classified either in P. aeruginosa (4) or P. putida (13).

Exploring the pan- and core-genome of Pseudomonas at protein
domain level

The core-genome of a taxon level is defined as the genes persistently present
in the population, while the pan-genome is essentially the amount of differ-
ent genes found within a population at the specified taxonomic level [392].
The currently available genomes allow to measure the pan- and core-genome
sizes, however these sizes change upon the addition of new sequences. The
core-genome is usually reduced and the pan-genome increases mostly due
to the discovery of novel accessory genes that accumulate by lateral transfer,
forming new trait combinations until saturation has been reached. Saturated
pan-genomes with a stable core-genome are called closed. From the currently
available genomes an estimation can be made, using mathematical modelling
[392], of the size of the pan- and core- genomes that are expected if the se-
quences of every existing strain were to be included in the analysis. We refer
to these estimations as estimated pan- and core- genome sizes.

Genome potential of the genus Pseudomonas is reflected in its metabolic
diversity which allows individual species to inhabit a wide variety of envi-
ronments. With the current set of 432 (draft) genomes we studied whether
the observed diversity in genome potential reflects a closed pan-genome. We
initially considered the 58 complete genomes. Observed core-genome of 2687
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protein domains was to be confronted with an estimated size of 2681. For
the pan-genome we found 6472 protein domains (observed) versus 6541 (esti-
mated). Since these measures depend on the number of genomes considered,
we explored how these measures vary by using a different number of genomes
(from 5 to 58). This was achieved by applying a 10-fold random re-sampling
from the 58 genomes to obtain an indication of the possible variability (figure
4.5). As expected the size of the core-genome of the genus decreases with the
number of genomes considered while that of the pan-genome increases. The
observed and estimated sizes of both the pan- and core-genome are rather sta-
ble with respect to the number of genomes used in the calculation, except for
small sample size (< 15).

FIGURE 4.5: Pseudomonas pan- and core-genome defined on the base of protein do-
mains. (A) Complete overview of the distribution of the size of the pan- and core-
distribution of protein domains. Error bars correspond to standard deviations based
on 10 measured random realizations of the indicated number of genomes whereas the
shadowed area is the estimated standard deviation using the same approach. (B) Pan-
genome of the 58 fully circular genomes. (C) Core-genome of the 58 fully circular

genomes.
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Including draft genomes in the calculations resulted in a dramatic reduc-
tion, up to the 73%, of the size of the core-genome both observed and esti-
mated, which dropped to 726 and 720 protein domains architectures, respec-
tively. Interestingly, this reduction does not lead to a loss of functional infor-
mation since single domains are highly persistent as previously stated (40%).

We observed a large variability for both measures. The reduction of the
core size and its variability can be partly explained due to the inclusion of draft
genomes with a high number of gaps containing non-sequenced genes. The
difference between observed and estimated sizes reduced to only one protein
domain for both the pan- and core-genome, indicating saturation. Addition of
new genome sequences to the analysis will most likely not lead to the identi-
fication of a significant set of new domains within this genus. This saturation
effect does not depend on the particular estimation model used. Saturation of
the pan-genome was also seen through a heap model (α = 1.30 ± 0.05). In this
analysis values > 1 indicate a closed pan-genome [413].

Essentiality analysis of domains in the core-genome

From a functional point of view, the core-genome of a genus is most likely
enriched in essential genes necessary for (long term) viability and adaptation
to ever changing environmental conditions. Since persistence can be used to
identify genes required for survival [1, 273], a positive correlation between
persistence (the number of genomes sharing a given gene) and essentiality
can be hypothesized. To verify this hypothesis we combined gene essentiality
measures with gene persistence in the genus. Gene essentiality was defined
from experimental results available for two P. aeruginosa strains (PAO1 and
PA14)[243, 251] and from in silico predictions. For the latter, we considered 6
genome-scale constraint-based metabolic models which rely on functional an-
notation to uncover the metabolic potential of biological systems and are able
to accurately predict gene essentiality in a large variety of growth conditions
[318].

We observed that essential genes show higher persistence values than non
essential ones: this relationship is conserved when persistence is computed ei-
ther using a sequence similarity based approach on 58 completely sequenced
genomes or for 432 genomes by using a domain architecture approach as
shown in figure 4.6A.
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FIGURE 4.6: Persistence of (non-)essential genes. (A) Persistence of essential and non-
essential genes as derived by experimental investigations. (B) Persistence of essential
and non-essential genes as derived by in silico modeling using genome based con-
strained metabolic modeling. Results shown pertain the use of the iMO1086 model
for P. aeruginosa PAO1. In both cases persistence is calculated using the 58 completely
sequenced Pseudomonas genomes and the complete set of 432 genomes sequences. Ma-

genta (circle) dots indicate outliers.

A comparison of gene persistence and essentiality for the two strains
showed that 65% of genes found to be essential for PA14 growth on LB are also
essential for growth of PAO1 on either LB, minimal with pyruvate or sputum
agar, but only 39% of genes reported to be essential for PAO1 growth were
found to be essential for PA14 (see Supplementary figure S4). This difference
could be due to the smaller set of tested conditions. We used a less stringent
cut-off for persistence: 0.95 instead of 1 to allow for non-sequenced genes due
to incomplete draft genomes. Therefore, we observed that a small fraction of
persistent genes is present in only one of the two strains (0.016% and 0.025%
for PA14 and PAO1, corresponding to 75 and 47 genes respectively) which are
likely to have been lost through evolution.

Analysis of the complete pan-genome revealed that 1252 single copy genes
are persistent. Of these, almost one third (404) were found to be essential in
vivo under three growth conditions (LB, minimal-pyruvate or sputum agar)
for P. aeruginosa PAO1 strain [243]. Similar ratios were observed for strain
PA14.

1112 unique domains were identified in the 404 essential persistent genes
and 1340 unique domains in the non-essential but persistent genes. 203 do-
mains were shared between essential and non-essential persistent genes. Es-
sential genes contain a larger repertoire of unique, single copy domains: 404
essential persistent genes contained, on average, 1.53 single copy domains
whereas for non essential persistent genes, the average was 0.82.
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In vivo essentiallity analysis were limited to four conditions. Using
metabolic models a wider range of conditions can be explored albeit the analy-
sis is restricted to metabolic genes. We considered six genome scale constraint
based metabolic models describing the metabolism of P. aeruginosa PAO1
(models iMO1056[310] and iMO1086 [311]), P. fluorescens SBW25 (iSB1139 [49])
and P. putida KT2440 (iJN746 [298], iJP815 [341], and iJP962 [311]).

We explored a wide range of growth conditions with varying carbon, nitro-
gen, phosphorus and sulphur sources and for each medium composition, gene
essentiality predictions were performed using Flux Balance Analysis (FBA)
and are summarized in Table 4.2. Figure 4.6B shows results for P. aeruginosa
model iMO1086, confirming what was observed for experimental data. Of the
750 essential metabolic genes that were identified under 3366 media composi-
tions for iMO1086, 169 genes were identified to be essential under experimen-
tal conditions whereas 42 genes were essential but not in silico (25%). Average
persistence over the 58 complete genomes was 0.96±0.14 for predicted essen-
tial genes and 0.85±0.24 for non-essential, which we found to be significant (p-
value < 0.01 for a Wilcoxon test). When considering the 432 genomes, we still
observed difference in the persistence of predicted essential and non essential
genes 0.95±0.12 versus 0.89±0.21, p-value < 0.01). Similar results were also
obtained when using essentiality predictions for the other metabolic models.

TABLE 4.2: Conditional gene essentiality predictions using six metabolic models from
three Pseudomonas species.

Organism P. aeruginosa P. putida P. fluorescens
Model iMO1056 iMO1086 iJN746 iJP815 iJP962 iSB1139

Medium sources
#Carbon 49 51 60 40 43 44

#Nitrogen 32 33 22 25 27 19
#Sulfur 4 1 10 1 1 6

#Phosphor 2 2 1 1 1 2
Genes

#Essential/persistent* 115/106 149/132 118/104 112/100 162/148 117/95
#Conditional/persistent* 591/278 601/278 389/170 113/64 495/252 615/290

#Non-essential 348 336 253 593 305 407
#Overlapping genes 95 68
*Persistence was computed for each essential and conditional essential genes over the 58 Pseudomonas genomes
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Using metabolic models to simulate media compositions we identified ad-
ditional genes that were essential in a number of conditions, retrieving on av-
erage 1.47 single copy domains per gene, consistently with what observed for
essentiality experiments. We further combined the models’ predictions and
we inspected genes predicted to be essential in all the tested conditions. For
P. putida, the three models showed an overlap of 68 essential genes. Interest-
ingly, these genes contained 2.53 single copy domains on average, underpin-
ning previous results. Non-essential genes contain domains that are shared
with other genes. This can result in the presence of isozymes or of potentially
moonlighting enzymes which can step in for essential functions in the case of
deletions or mutations.

Variability of gene expression and its association to persistence
and essentiality in Pseudomonas

Associations between gene essentiality and low variation in protein abun-
dance have been observed in E. coli [407]. We hypothesized the existence of
an association between gene persistence and expression level variation. We
analysed gene expression variability in P. aeruginosa using a gene expression
compendium containing over 900 samples and 100 datasets regarding P. aerug-
inosa PAO1 genes [406]. Each gene was assigned a score, Variability, for tran-
scriptional variation. Persistent genes tend to show significantly lower degree
of variation in expression level than non persistent ones (p-value < 0.01);
this holds true also for essential genes (figure 4.7). Similar results are ob-
tained when analysing a more limited dataset containing RNAseq measure-
ments of P. aeruginosa PA14 in 14 growth conditions [106] (see Supplementary
methods S5) This association between low expression variability and persis-
tence/essentiality could indicate that expression of genes in the core-genome
is likely to be buffered and independent from environmental growth condi-
tions. To the best of our knowledge such associations have never been es-
tablished on such large scale due to the limitations associated to comparing
hundreds of genome sequences.
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FIGURE 4.7: Variability of gene expression levels and its association with persistence
and essentiality. (A) Distribution of variability score for (non) persistent genes (genes
with persistence lower or higher than 0.95, respectively). Box plots show variability
values for both groups. Difference between mean values is significant (p-val < 0.01).
(B) Distribution of variability score for essential and non-essential genes with gene
essentiality derived experimentally [243]. Box plots show variability values for both

groups. Difference between mean values is significant (p-val < 0.01).

Discussion

For our analysis we did not rely on previously existing annotations, but we
performed a consistent reannotation of all the sequences using a standard-
ized approach that ensured coherence and uniformity. A sequenced based
approach was used for a prior comparative analysis to define clusters of or-
thologous proteins in the smaller dataset of 58 complete genomes. Due to
polynomial growth of computational time, this approach is not feasible for
large data sets. Mining a gene sequence for domain occurrences is less com-
putationally demanding, which provides an effective scalable approach.

Sequence based approaches are used to identify clusters of orthologous
proteins, however the analysis of domain architectures is targeted towards
the identification of groups of functionally equivalent proteins. Protein do-
mains provide a standardized way to assess sequence variation and its impact
in function, since every amino acid has a characteristic weight in the domain
model. Protein domains are more strongly associated to protein structure
than protein sequences, thereby providing a closer link to function that can
bridge over larger evolutionary distances, which is essential to comparative
functional analysis. Still there is a need for improving how protein domain
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are defined to accommodate similar models arising from, possibly different,
databases and to take into account positional variations that might lead to
spurious domain inversions.

When applied to the inferred proteomes of the 58 complete genomes, both
clustering methods yield similar results. The same clusters were obtained
in 40% of the cases meaning that each of these clusters contained an equal
number of proteins, captured the same strains and shared the same domain
architectures. In 20% of the cases, very similar but numerically distinct clus-
ters were obtained, as a given sequence similarity cluster had captured two
distinct domain architectures. In most of these cases variability in domain ar-
chitecture were caused by changes in domain order due to small variations in
the start position of overlapping domains. Approximately, 20% of identified
proteins have no recognizable functional domains. As most of these proteins
are hypothetical they were not considered for functional analysis. When only
proteins containing domains are considered, over 90% of the clusters identi-
fied using sequence comparisons contain 4 or less distinct architectures.

The differences in the persistence curves shown in Fig. 3C show that the
way the clusters are defined, either using sequence similarity or protein do-
mains, impacts the calculation of gene persistence: this has repercussions on
the definition of the core genome and its size. We found these differences to
be larger when more genomes are considered. This is more likely linked to
the broader range of phylogenetic distances among considered genomes: this
is explored in more detail in Koehorst et al.[225]

Our analysis resulted in the identification of the pan- and core-domainome
of 432 Pseudomonas which is closed according to the heap model as also re-
cently noted for the P. aeruginosa species [288]. This suggests that sequencing
additional strains will fail to add new genes to the pan-genome: however,
this is likely an oversimplification. Here, we understand closeness of the pan-
genome as measure of the genus ability to acquire exogenous genes and as
a proxy for the ratio between vertical and horizontal gene transfer indicat-
ing that horizontal gene transfer has not played a major role in shaping the
genome content of the genus.

Key characteristics of Pseudomonas must be located in the genus core-
genome, however comparison with metabolic models shows that identified
core is not autonomously functional. Not all the genes in the core-genome
seem to be essential (under given tested conditions), however essential genes
represent ≈ 40% of the core-genome, in agreement with previously reported
ratios for other species/genus [459]. The remaining 60% contain unique fea-
tures defining the genus.

We found a strong association between gene essentiality and protein do-
main properties. We observe an inverse correlation between the number of
proteins in the genome containing the considered domain and essentiality,
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with average number of domains uniquely present in the considered protein
going from 1.5 to 0.8 when non essential/essential genes in the core-genome
are considered. The average number of single copy domains per gene further
increases when stricter criteria for gene essentiality are applied, namely that
genes should be essential in all the simulated media.

Accurate algorithms to predict gene essentiality from genomic features
have been also developed and domain enrichment score has been shown to
have a high predictive power [102] which is computed based on the ratio of
occurring frequencies of a particular domain between essential genes and the
total genes in the whole genome of already characterized species. Here we
have established a link between the number of copies of a domain in a genome
and gene essentiality that can be used to complement essentiality predictions.

The extensive use of metabolic reconstructions allowed us to identify con-
ditionally essential genes, and a large number of single copy domains is also
observed in these genes. This supports the idea that protein domains are the
driving force behind gene essentiality which is preserved through protein do-
mains rather than through the conservation of entire genes [103].

We have shown that lower fluctuations in gene expression are associated
to essential and/or persistent genes. Further work is required to clarify the
overlap and intertwining between both gene categories (essential/persistent)
and to clarify the (possibly different) regulatory mechanisms stabilizing their
expression levels.

Materials and Methods

Genome retrieval. Genbank files containing genome sequences and existing
annotations for 58 circular genomes and 374 draft genomes of the Pseudomonas
genus were downloaded from the GenBank database in June 2015. Annota-
tion of Pseudomonas KT2440 was also downloaded from RAST [16]. A detailed
list of the included strains is available (see Supplementary figure S1 and Sup-
plementary data S2).

Genome de novo annotation. To perform the re-analysis of the 432 gemomes
sequences we used an in-house pipeline for annotation and data storage[225].
Similar to existing annotation pipelines such Prokka [383], it relies on exter-
nal feature prediction tools to identify the coordinates of genomic features
within genome sequences. The pipeline consists of a number of python mod-
ules that execute annotation applications and convert results and provenance
directly into the RDF data model with a self defined ontology (the complete
description of the implemented ontology can be obtained using RDF2Graph
[96]) using the RDFLib library. For genetic elements determination a variety
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of tools is implemented such as Prodigal [185] for gene prediction. The main
difference is that results are stored as Turtle files [32] containing an RDF model
which allows simultaneous exploration of annotation data of multiple genome
sequences, greatly facilitation multiple comparison and the integration of het-
erogeneous source of information. Since it deploys semantic features allowing
the storage of data provenance, we refer to it as SAPP (Semantic Annotation
Pipeline with Provenance). Annotation can be exported to other formats for
downstream processing with other tools such as Roary [326]. Each genome
sequence was converted to the RDF data model using the EMBL/GBK to RDF
module. The FASTA2RDF, GeneCaller (a semantic wrapper for Prodigal 2.6
[185]) and InterPro (a wrapper for InterProScan [194]) modules were used
to handle and annotate the genome sequences. Results were retrieved with
SPARQL queries.

Protein domain presence and phylogenetic analysis. A SPARQL query was
used to extract the presence of protein domains for all 432 genomes. Data
were stored in a 432 (genomes) by 7608 (protein domains) binary matrix (0/1
for absence/presence). Protein domains were identified by their INTERPRO
identifiers. Phylogenetic trees based on protein domains were created tak-
ing as input the domain presence/absence matrix. The R package pvclust
was implemented in R (version 3.3.1)[410] with a binary distance and average
clustering approach with a bootstrap value of 10 [404].

Protein domain architecture based clustering. The positions (start and end
on the protein sequence) of domains having InterPro [194] identifiers were
used to extract domain architectures (i.e. combinations of protein domains).
Protein domains were retrieved for each protein individually. The domain
starting positions were used to assess relative position in the case of overlap-
ping domains; alphabetic ordering was used in the case of domains with the
same starting position. Labels indicating N-C terminal order of identified do-
mains were assigned to each protein so that the same labels were assigned to
proteins sharing the same domain architecture. Here we have followed a strict
approach and two domain architectures were considered different whenever
they had different domains or they appeared in different order. For more de-
tails see Koehorst et al.[225].

Estimation of pan- and core-genome size. The estimated number of do-
mains in the pan- and core-genomes expected if the sequences of every ex-
isting strain were to be included in the analysis were computed using bino-
mial mixture models as implemented in the micropan R package [393] using
the domain presence/absence matrix previously defined and default values
for the parameters. Pan- and core- analysis was initially performed on the



4

Chapter 4. Modeling essentials: The Pseudomonas genus 93

87 genomes with a maximum of 3 contigs to avoid bias due to incomplete
genome sequences. Analysis was extended to the remaining 374 draft genome
sequences available. To obtain an indication of the variability of these mea-
sures as function of the number of sequences used, these were calculated by a
10 fold random sampling from the full set. Heap analysis as implemented in
the micropan R package was used to estimate openness or closeness of the
pan-genome [413] using 500 genome permutations and repeating the calcula-
tion 10 times. Final measure is given as the mean ± standard error.

Orthologous gene detection. Orthologous genes were calculated initially for
the set of 58 completely sequenced genomes. Protein sequences predicted us-
ing Prodigal 2.6 were extracted using a SPARQL query and used in a Best
Bidirectional Hit approach [409]: using an all-versus-all BLASTP comparison
and an E-value threshold of 10−5 and a maximum target sequence of 105. Or-
thAgogue [113] was used to convert BLAST results into a weighted graph.
The MCL [119] clustering algorithm was applied, using an inflation value of
1.5, on the graph to define protein clusters. The results were then extrapo-
lated to the full set of 432 genomes using cluster specific domain fingerprints.
Specifically, the sequence clusters obtained through MCL clustering on the 58
complete genomes were used to define sets of protein domains (each sequence
cluster was mapped to a set of domains). The remaining genomes were then
looked for any given domain set defined on the 58 genomes to define their
presence/absence in the draft genomes.

Comparison of gene expression profiles. A publicly available gene expres-
sion compendium for P. aeruginosa was retrieved [406]. Briefly, this dataset
contains a collection of gene expression datasets (950 individual samples per-
taining 109 distinct datasets) measured using Affymetrix platform GPL84 and
processed using a common normalization and background correction proto-
col. The final dataset contains expression measurements (in a log2 scale) for
5549 genes from P. aeruginosa PAO1. For every gene we considered its expres-
sion profile in this compendium and a Variability value was calculated as the
ratio between the standard deviation and the mean.
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Persistence and essentiality analysis. The persistence of a gene can be de-
fined as

Persistence =
N(orth)

N
(4.1)

where N(orth) is the number of genomes carrying a given orthologue and N
is the number of genomes searched [125]. For the 58 completely sequenced
genomes, orthologous genes were inferred using a BBH approach. For the full
set of 432 sequenced genomes orthologous genes were inferred by making use
of protein domain arrangements.Locus tags for predicted proteins were in-
ferred from the original annotation through SPARQL. Locus tags were linked
to gene essentiality as defined in experimental studies available for P. aerug-
inosa PAO1 [243] and PA14 [251]. For each of the predicted proteins with in-
ferred locus tag the corresponding protein cluster was initially calculated for
the 58 genomes. The domain architecture corresponding to each cluster was
extracted and subsequently scanned against all 432 available sequences. We
used the MCL clusters as a reference set for the identification of domain archi-
tecture variations which were then extrapolated over the 432 genomes. The
persistence for each locus tag was calculated and compared against the essen-
tiality score obtained from two experimental studies.

Metabolic model essentiality analysis. We considered six genome scale con-
straint based metabolic models describing the metabolism of P. putida KT2440
(models iJN746 [298], iJP815 [341], and iJP962 [311]), P. aeruginosa PAO1 (mod-
els iMO1056[310] and iMO1086 [311]) and P. fluorescens SBW25 (model iSB1139
[49]). For each genome-scale metabolic model we performed a single gene es-
sentiality analysis in a large number of growth media varying in carbon (C),
nitrogen (N), phosphorus (P) and sulphur (S) source. To define the growth
media we first identified candidate C, N, P, and S sources in each model in-
dependently. Because chemical sum formulas were not always available, we
considered each compound for which an exchange reaction was present as a
candidate C, N, P and S sources. We changed the in silico medium composi-
tion to a minimal salts medium containing glucose as C source, ammonia as
N source, phosphate as P source, sulphate as S source, in addition to oxygen,
water, H+, and a variety of salts depending on the particular model consid-
ered. The potential of each candidate C, N, P, and S source was then evalu-
ated by adding it to the in silico medium while omitting the default C, N, P,
or S sources. Growth predictions were performed using Flux Balance Analy-
sis [318] as implemented in the Matlab COBRA Toolbox [376]. This provided
4 lists of compounds that were suitable as C, N, P or S sources which were
then combined into a single list of growth media by taking all combinations
of compounds from the 4 lists. For each medium, we then used the single-
GeneDeletion function from the COBRA toolbox to determine the growth rate
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of the mutant strains. If a gene knock-out reduced the in silico growth rate
below 10−6 we considered the gene as essential. Models and Matlab scripts
used in this analysis are available in Supplementary data S6.

Availability of Data and Materials. The annotation pipeline framework is
distributed under the MIT license. The pipeline all genomic data, data prove-
nance and computational results associated with this study are freely avail-
able at http://semantics.systemsbiology.nl. Additionally, the data
associated to this study are provided in turtle format as an RDF serialized
dump. This dataset is made available under the Open Database License:
http://opendatacommons.org/licenses/odbl/1.0/.



4

96 Chapter 4. Modeling essentials: The Pseudomonas genus

Supplementary files

The supplementary files of this work can be found online at https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC5138606/.
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Abstract

Pseudomonas putida is a metabolically versatile bacterium long attracting
widespread interest for bioremediation and biotechnology. Underlying this
interest are many physiological features including its large reducing power,
tolerance to toxins and solvents, and genetic accessibility. However, unlike
many other Pseudomonas species, P. putida is not able to grow anaerobically
which limits its potential applications. The obligate aerobic nature of P. putida
has been attributed to its inability to produce sufficient ATP and maintain
redox balance without molecular oxygen. These bottlenecks have been exper-
imentally addressed in P. putida, but anaerobic growth was not observed. In
this work, we used a combination of genome-scale metabolic modeling and
comparative genomics to determine why P. putida does not grow in the ab-
sence of O2. We pinpointed several essential O2-dependent processes that
prevent anaerobic growth. Following a model-driven approach we designed
P. putida strains that can theoretically grow anaerobically via either fermenta-
tion or alternative respiration.
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Introduction

The Pseudomonas genus of gram-negative bacteria is renowned for its
metabolic versatility, large reducing power, and tolerance to toxins and sol-
vents [84, 285]. In particular, P. putida KT2440 (hereafter: P. putida) has a GRAS
status, is genetically accessible, has been extensively modeled [33, 171, 298,
311, 341, 395], and has been successfully engineered to produce various com-
pounds of industrial interest [252, 338]. Therefore, P. putida is a recognized
synthetic biology and industrial workhorse [33, 252, 264, 293, 338]. However,
P. putida also has a major drawback for industrial processes in its obligate aero-
bic nature [292, 395]. The requirement for O2 in large-scale cultivations results
in increased expenses and reduced homogeneity due to aeration and stirring,
and excludes the use and production of O2-sensitive enzymes, pathway inter-
mediates, and products. The obligate aerobic nature of P. putida is not shared
with several other species in the Pseudomonas genus, suggesting that P. putida
can be redesigned as an anaerobe with a limited number of genetic modifi-
cations. This has been experimentally attempted several times by either en-
abling anaerobic fermentation [292, 395] or anaerobic respiration [238, 377,
398].

The first attempt to obtain an anaerobically fermenting P. putida was by
Sohn et al. in 2010. They created a Genome-Scale Metabolic model (GSM) of P.
putida KT2440, from which they concluded that P. putida can not grow anaer-
obically due to insufficient anaerobic ATP generation. Anaerobic ATP gener-
ation was then enhanced by heterologously expressing acetate kinase, which
resulted in increased anaerobic survival of P. putida, but not in growth [395].
In a later study, Nikel et al. reasoned that in the absence of respiration there
is not only a lack of ATP generation, but also an accumulation of NADH that
can not be oxidized to NAD via the electron transfer chain. Therefore, they
expressed acetate kinase, pyruvate decarboxylase and alcohol dehydrogenase
II to facilitate both energy generation and redox rebalancing. This approach
further increased anaerobic survival, but still did not enable growth [292].

The approaches to create an anaerobically respiring P. putida began with
the introduction of nitrate and nitrite respiration machinery in P. putida in
2013. Nitrate and nitrite respiration are common anaerobic alternatives to
O2 respiration in other Pseudomonas species [147], but the machinery is com-
pletely absent in P. putida. Therefore, Steen et al. separately expressed the
nar and nir-nor operons from P. aeruginosa in P. putida to enable nitrate and
nitrite respiration. Both led to increased anaerobic survival in P. putida, but
growth was not observed [398]. Another approach for anaerobic respiration
in P. putida was the use of phenazines to transfer electrons from the cell to
an electrode. Schmitz et al. expressed a phenazine biosynthesis cluster from
P. aeruginosa in P. putida and observed that the phenazines facilitate electron
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discharge to the electrode, although the wild type P. putida unexpectedly also
showed a limited ability to interact with the electrode [377]. Similarly, Lai et al.
showed that several redox mediators can be added to the culture medium to
enable wild-type P. putida F1 to discharge electrons to an electrode. Nonethe-
less, the use of redox mediators and an electrode did not enable P. putida to
grow anaerobically [238, 377].

The aforementioned studies focused on anaerobic energy generation and
redox balancing in P. putida. These efforts consistently resulted in increased
anaerobic survival but anaerobic growth was not observed. This suggests an
additional role for O2 in essential cellular processes.

In this study, we set out (i) to re-evaluate previous designs for an anaerobic
P. putida in silico, and (ii) to identify additional limitations to anaerobic growth,
with the ultimate goal (iii) to design an anaerobically growing P. putida. In our
pursuit of this goal we took advantage of both the extensive knowledge on
P. putida metabolism, as well as of the wealth of genomic data on P. putida
and other Pseudomonas species [224]. Specifically, we used a GSM to probe
P. putida metabolism, and we used comparative genomics to pinpoint the dis-
tinct genetic features of Pseudomonas species capable of growing anaerobically.
These in silico approaches elucidated several limitations to anaerobic growth
in P. putida, and thereby enabled the design of both fermenting and respiring
anaerobic P. putida strains.

Results

No anaerobic in silico growth for WT P. putida and previous
designs of anaerobic P. putida strains

The previous designs of anaerobic P. putida strains were conceptually based on
insufficient anaerobic energy generation and redox balancing [238, 292, 377,
395, 398]. Although the designs tackled these problems, they were mostly de-
veloped independently from the rest of P. putida metabolism [238, 292, 377,
398]. Therefore, we first re-evaluated them in the context of the P. putida
GMSs iJP962 [311] and iJN746 [298]. iJP962 and iJN746 describe the known
metabolism of P. putida, as well as its requirements for survival and growth.
When analysed with Flux Balance Analysis (FBA) [318], these GSMs can pre-
dict whether or not P. putida grows in various conditions [298, 311]. The anal-
ysis of the two GSMs led to similar results and hereafter we will specifically
report those obtained with iJP962.

iJP962 was first confirmed to correctly predict the obligate aerobic nature of
wildtype P. putida via FBA. FBA was used to predict the maximally achievable
anaerobic growth rate of P. putida in both a minimal glucose medium and a
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rich medium. In both media iJP962 predicted the complete absence of growth.
It thus correctly describes the obligate aerobic nature of wildtype P. putida.

iJP962 was then used to contextualize the previous anaerobic P. putida de-
signs. The GSM was expanded with reactions corresponding to the heterol-
ogously expressed genes for each previous experimental design. These ex-
panded GSMs still predicted that anaerobic growth was not possible in neither
the minimal glucose nor the rich medium. These predictions are consistent
with the experimental observations that none of the previous designs enabled
P. putida to grow anaerobically. In addition, these predictions imply that iJP962
captures one or more previously undescribed limitations to anaerobic growth
in P. putida.

Identification of limitations to anaerobic growth

To identify these additional limitations, we performed two independent in
silico approaches: Genome-scale metabolic modeling and comparative ge-
nomics. The metabolic modeling approach focused on identifying the es-
sential O2-dependent metabolic reactions in iJP962, whereas the comparative
genomics approach focused on pinpointing the genetic differences between
obligate aerobic P. putida strains and other facultative anaerobic Pseudomonas
species (see figure 5.1).

The obligate aerobic in silico phenotype in iJP962 suggests that there are
one or more reactions in the GSM that involve O2 and are essential for growth.
To identify these reactions, we first set the in silico growth medium to an aer-
obic minimal glucose medium. Then, we iteratively deleted each reaction
that involves O2 and predicted whether or not in silico growth was possi-
ble. In silico growth was no longer possible upon the deletion of either (i)
protoporphyrinogen oxidase, (ii) L-aspartate oxidase, or (iii) dihydroorotate
dehydrogenase. These reactions are required for the biosynthesis of heme,
NAD/NADP, and pyrimidines respectively.

Next, we evaluated whether the lack of anaerobic alternatives to these
three reactions is the only limitation to in silico anaerobic growth. We ex-
panded iJP962 with anaerobic alternatives for L-asparate oxidase, dihydrooro-
tate dehydrogenase, and protoporphyrinogen oxidase and again optimized
for growth using FBA. iJP962 now predicted anaerobic growth of the modified
P. putida in the glucose minimal medium, suggesting that the lack of anaero-
bic alternatives to the aforementioned three reactions is the only limitation to
anaerobic growth.
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FIGURE 5.1: Overview of in silico approaches to identify limitations to anaerobic
growth in P. putida. (a) Genome-scale metabolic modeling. The colors indicate no-
growth (orange), poor growth (blue), and growth (green) predictions of iJP962 [311]
given an (an-)aerobic environment and expansion with indicated reaction sets. (b)
Comparative genomics. All genomes of the P. putida group and the anaerobic Pseu-
domonas group were annotated using SAPP [224], the annotated protein domains were
extracted, and the domains common to all anaerobic Pseudomonas species (the core do-

mains) were selected.

The predicted anaerobic growth rate was, however, very low (0.007 [h−1])
compared to the aerobic growth rate (0.450 [h−1]). This difference suggests
that the anaerobic ATP generation is extremely inefficient. Therefore, we ex-
panded iJP962 with both the complementary reactions to the newly identified
limitations, as well as the reactions corresponding to the previous anaerobic
P. putida designs that deal with anaerobic ATP generation [238, 292, 377, 395,
398]. Indeed, anaerobic ATP generation proved a limiting factor as the com-
bined designs resulted in predicted growth rates from 0.014 [h−1] with the
addition of acetate kinase, and up to 0.171 [h−1] with the addition of nitrate
respiration machinery.

Although the GSM-based approach successfully identified several limi-
tations to anaerobic growth in P. putida, this identification is restricted to
metabolism as described in iJP962. Other cellular processes that may rely on
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O2 are not described. Therefore, we also used comparative genomics to pin-
point genetic differences between select groups of obligate aerobic P. putida
strains and facultative anaerobic Pseudomonas species. The P. putida group
consisted of the P. putida strains KT2440, F1, S16, W619, GB1, and BIRD1,
and the facultative anaerobic group consisted of P. aeruginosa PAO1 and M18,
P. stutzeri DSM10701 and A1501, P. denitrificans ATCC13867 and P. fluorescens
F113.

The genomes of the aforementioned Pseudomonas strains were de novo an-
notated to avoid artifacts from differences in the annotation procedures. The
annotated protein domains were extracted from each genome to compare the
presence of functional protein domains. The domains of the anaerobic Pseu-
domonas group were then further filtered for those domains that are shared by
all members of the group; the core domains. These core domains were con-
trasted to the domains present in any P. putida to identify those domains that
are common to all selected anaerobic Pseudomonas species and absent from
all selected P. putida strains. This resulted in a shortlist of 47 anaerobic-only
protein domains (see figure 5.1 and table 5.1).

The 47 anaerobic-only protein domains represent the biological functions
that are both common and exclusive to the members of the anaerobic Pseu-
domonas group. These domains thereby pinpoint the genetic makeup of the
anaerobic lifestyle. They can roughly be divided in three categories: (i) do-
mains of unknown function (13), (ii) domains related to nitrate and nitrite
respiration (16), and (iii) remaining domains (18).

The remaining domains can be further separated as (i) domains spe-
cific to several enzymes such as acetate kinase (IPR000890), aspartate de-
carboxylase (IPR003190), a restriction enzyme (IPR007409), phosphoserine
phosphate and homoserine phosphotransferase (IPR011863), ribonucleotide-
triphosphate reductase (IPR012833, IPR012840), and molybdenum cofactor
sulfurase (IPR015808); (ii) siderophore transport (IPR003538), (iii) structural
domains (IPR004443, IPR023218), (iv) iron-sulfur cluster domains (IPR007202,
IPR018298), (v) pilus assembly domains (IPR008707, IPR013362, IPR013374,
IPR025746), and (vi) a protein kinase domain (IPR017441), as well as (vii) a
zinc finger domain (IPR020460).

All domains have been manually inspected using the information on them
at Uniprot [89], as well as using scientific articles regarding their encompass-
ing genes. A large fraction of the domains relates to nitrate respiration (see
table 5.1), or ATP generation via acetate kinase (IPR000890). For the majority
of the remaining domains, it is not directly clear how they would contribute to
the desired anaerobic lifestyle. For example, several domains associated with
siderophore transport (IPR003538) and pilus assembly (IPR008707, IPR013362,
IPR013374, IPR025746) have been related to virulence in P. aeruginosa [164],
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which is part of its anaerobic pathogenic lifestlye. Other domains may be ben-
eficial but not essential for anaerobic growth. For example, iron-sulfur clusters
(IPR007202, IPR018298) are typically O2-sensitive, which explains their ab-
sence in the obligate aerobic P. putida strains. Nonetheless, the identification
of the two domains that are related to ribonucleotide-triphosphate reductase
(IPR012833, IPR012840) has been crucial for this work, as discussed further
below.
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TABLE 5.1: Overview of identified anaerobic-only protein domains.

Interpro ID Interpro ID description Additional comment
Domains of Unknown Function (DUF)
IPR000952 Uncharacterised protein family UPF0017,

hydrolase-like, conserved site
IPR001602 Uncharacterised protein family UPF0047
IPR002798 Protein of unknown function DUF95, transmembrane
IPR007156 LemA Protein function unknown.
IPR008523 Protein of unknown function DUF805
IPR010879 Domain of unknown function DUF1508
IPR014958 DGC Probably Zinc-binding
IPR018706 Protein of unknown function DUF2214, membrane
IPR021268 Protein of unknown function DUF2845
IPR023353 LemA-like domain Protein function unknown.
IPR024612 Domain of unknown function DUF3749
IPR025403 Domain of unknown function DUF4129
IPR025646 Domain of unknown function DUF4350
Nitrate and Nitrite respiration machinery
IPR002324 Cytochrome c, class ID
IPR003143 Cytochrome cd1-nitrite reductase, C-terminal domain
IPR003765 Nitrate reductase chaperone, NarJ
IPR003816 Nitrate reductase, gamma subunit
IPR005346 RnfH protein Electron transport chain.
IPR006468 Nitrate reductase, alpha subunit
IPR006547 Nitrate reductase, beta subunit
IPR008719 Nitrous oxide reductase accessory protein NosL
IPR010207 Electron transport complex, RnfB
IPR013615 CbbQ/NirQ/NorQ C-terminal
IPR020945 DMSO/Nitrate reductase chaperone
IPR023644 Nitrous-oxide reductase
IPR023992 Heme D1 biosynthesis, radical SAM protein NirJ
IPR026464 Nitrous oxide reductase family maturation protein NosD
IPR028189 Nitrate reductase, alpha subunit, N-terminal
IPR029263 Respiratory nitrate reductase beta, C-terminal
Other
IPR000890 Aliphatic acid kinase, short-chain Domain of acetate kinase
IPR003190 Aspartate decarboxylase
IPR003538 Gram-negative bacterial TonB protein Siderophore transport/binding
IPR004443 YjeF N-terminal domain
IPR007202 4Fe-4S domain Potentially O2-sensitive
IPR007409 Restriction endonuclease, type I, HsdR, N-terminal
IPR008707 PilC beta-propeller domain Virulence-related [164]
IPR011863 Phosphoserine phosphatase/homoserine

phosphotransferase bifunctional protein
IPR012833 Ribonucleoside-triphosphate reductase, anaerobic
IPR012840 Ribonucleoside-triphosphate reductase, anaerobic-like
IPR013362 Pilus modification type IV, PilV Virulence-related [164]
IPR013374 ATPase, type IV, pilus assembly, PilB Virulence-related [164]
IPR015808 Molybdenum cofactor sulfurase, C-terminal-like
IPR017441 Protein kinase, ATP binding site
IPR018298 Adrenodoxin, iron-sulphur binding site Potentially O2-sensitive
IPR020460 Zinc finger, DksA/TraR C4-type, bacteria Virulence-related [197]
IPR023218 UPF0291 structural domain
IPR025746 Type 4 fimbrial biogenesis protein PilX, N-terminal do-

main
Virulence-related [164]
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Analysis of limitations to anaerobic growth

Together, the in silico approaches provide a holistic view on the cellular
processes to consider in order to design an anaerobic P. putida (see table
5.1 and figure 5.2). These include: (i) anaerobic energy generation, (ii) L-
aspartate oxidase (nadB), (iii) protoporphyrinogen oxidase (hemY), (iv) dihy-
droorotate dehydrogenase (pyrD), and (v) ribonucleotide-triphosphate reduc-
tase (IPR012833,IPR012840).

The requirement for increased anaerobic energy generation was previously
identified [395] and reconfirmed here via both metabolic modelling and com-
parative genomics. In particular, ATP generation is seen to be growth-limiting
according to iJP962, and the comparative genomics pinpointed anaerobic-only
protein domains for both acetate kinase (IPR000890) and nitrate/nitrite respi-
ration machinery (see table 5.1). Acetate kinase and nitrate/nitrite respiration
machinery have both been successfully expressed in P. putida in earlier efforts
to enable fermentation or anaerobic respiration [292, 395, 398]. Both fermen-
tation and anaerobic respiration are attainable anaerobic lifestyles in P. putida
according to our results with iJP962 (see figure 5.1).

L-aspartate oxidase (nadB) catalyzes the conversion of L-aspartate to imi-
noaspartate, a precursor in NAD/NADP biosynthesis. In iJP962 this con-
version requires O2 as electron acceptor. However, in other organisms nadB
is known to use both O2 and fumarate as possible electron acceptors [227].
Therefore, we have experimentally assessed the O2-dependence of P. putida
nadB through heterologous expression in a nadB-deficient E. coli strain. We
have determined that P. putida nadB functions anaerobically, although we have
not confirmed that fumarate is the used electron acceptor [data not shown].

Dihydroorotate dehydrogenase (pyrD) produces orotate, which is required
for pyrimidine biosynthesis, and thus ultimately for the synthesis of RNA and
DNA. In iJP962 this enzyme interacts directly with O2. However, P. putida
pyrD encodes a membrane-bound class II dihydroorotate dehydrogenase [33],
which interacts with quinones rather than directly with O2 [306]. The re-
oxidation of the quinones requires the flow of electrons towards the terminal
electron acceptor O2. Thereby, P. putida pyrD is still indirectly dependent on
O2 via the electron transfer chain. To circumvent the need of the electron trans-
fer chain, a class I dihydroorotate dehydrogenase that uses fumarate, FAD, or
NAD [306] can be introduced in P. putida.

Protoporphyrinogen oxidase (hemY) converts protoporphyrinogen IX to
protoporphyrin IX, which is further converted to heme. Heme is involved in
many cellular processes – including respiration – and is essential for most or-
ganisms, excluding some anaerobic fermenters [79, 95]. It is unclear whether
heme is essential for an anaerobically fermenting P. putida, but it is most likely
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required for anaerobic respiration. There are two known alternative protopor-
phyrinogen oxidases to hemY among gram negative bacteria: hemG and hemJ.
The gene hemG is quinone-dependent instead of O2-dependent, but is not
found in other Pseudomonas species. The gene hemJ is found in Pseudomonas
species, including P. aeruginosa [54] and P. putida, but it has only recently been
identified and its exact mechanism, including whether or not it relies on O2,
is currently unknown [79].

Ribonucleotide-triphosphate reductases (RNRs) are required for the
biosynthesis of nucleotides and, thus, DNA. There are three classes of RNRs:
Class I is strictly aerobic, class II is O2-independent, and class III is O2-
sensitive [93, 387]. P. putida only has a class I RNR and is not able to pro-
duce DNA in anaerobic conditions. In contrast, P. aeruginosa has access to all
three RNR classes [387]. RNR knockout experiments in P. aeruginosa revealed
that the class II enzyme contributes most to anaerobic dNTP production in P.
aeruginosa [387], and, in a different study, the class II RNR was reported to be
essential for anaerobic growth in P. aeruginosa [135]. Therefore, a class II RNR
seems the most promising candidate to enable anaerobic nucleotide produc-
tion in P. putida.

Designs of anaerobic P. putida

The identified limitations and alternative options enable the theoretical design
of anaerobically growing P. putida strains. Here we present two possible de-
signs of an anaerobically growing P. putida. These designs are based on the
previously successfully expressed acetate kinase for fermentation [292, 395]
and nitrate respiratory machinery for respiration [398]. Note that L-aspartate
oxidase does not need to be replaced in either design as the endogeneous
enzyme was experimentally determined to function anaerobically [data not
shown].

The designed anaerobically fermenting P. putida is not capable of re-
oxidising its quinones. Therefore, it employs: (i) a quinone-independent class
I dihydroorotate dehydrogenase, which can be found in most gram-positive
bacteria [229], (ii) the class II ribonucleotide-triphosphate reductase (RNR)
from the closely related P. aeruginosa, and (iii) acetate kinase also from P. aerug-
inosa (see figure 5.3). We have not included an alternative biosynthesis gene
for the heme precursor protoporphyrin IX. It is likely that protoporphyrin IX
can be synthesized by the endogeneous P. putida hemJ, although it is currently
unknown whether this directly or indirectly depends on O2. In addition, heme
is not required for all anaerobic fermenters [79, 95].
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FIGURE 5.2: Computationally identified limitations to anaerobic growth in P. putida. Pi:
Phosphate; QH2: quinol; Q: quinone; T-(SH)2: thioredoxin; T-S2: thioredoxin disulfide;
NTP: nucleoside triphosphate; dNTP: deoxynucleoside triphosphate; UMP: uridine

monophosphate

The designed anaerobically respiring P. putida is capable of re-oxidising its
quinones, and thus does not need an alternative enzyme for the biosynthe-
sis of orotate or protoporphyrin IX. This designed consists of: (i) the class II
ribonucleotide-triphosphate reductase (RNR) from the closely related P. aerug-
inosa, and (ii) the nitrate respiration machinery from P. aeruginosa (see figure
5.4).
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FIGURE 5.3: Design of anaerobically fermenting P. putida. *The endogeneous L-
aspartate oxidase has been experimentally determined to function anaerobically, but
the proposed co-factor has not been confirmed. Pi: Phosphate; QH2: quinol; Q:
quinone; T-(SH)2: thioredoxin; T-S2: thioredoxin disulfide; NTP: nucleoside triphos-

phate; dNTP: deoxynucleoside triphosphate; UMP: uridine monophosphate
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FIGURE 5.4: Design of anaerobically respiring P. putida. *The endogeneous L-aspartate
oxidase has been experimentally determined to function anaerobically, but the pro-
posed co-factor has not been confirmed. Pi: Phosphate; QH2: quinol; Q: quinone; T-
(SH)2: thioredoxin; T-S2: thioredoxin disulfide; NTP: nucleoside triphosphate; dNTP:

deoxynucleoside triphosphate; UMP: uridine monophosphate
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Discussion

Previous efforts to design an anaerobically growing P. putida [238, 292, 377,
395, 398] were based on intuitive differences between aerobic and anaerobic
conditions. The prime consideration was that without access to aerobic respi-
ration, P. putida could not generate sufficient energy or fully balance its redox
state. The various approaches to complement these processes with anaero-
bic alternatives resulted in increased anaerobic survival, but not in anaerobic
growth [238, 292, 377, 395, 398]. This prompted us to explore whether these
designs should have worked based on the current theoretical understanding
of P. putida metabolism as represented in iJP962 [311]. Consistent with the pre-
vious experimental results, iJP962 predicted that the previous designs do not
enable anaerobic growth, thereby implying that additional limitations exist.

We identified these limitations in silico using a combination of genome-
scale metabolic modeling and functional comparative genomics. iJP962 was
used to identify the essential reactions of P. putida metabolism that rely on
O2 to function, and to evaluate the inclusion of alternative reactions. Com-
parative genomics was used to pinpoint the genetic elements that distinguish
the facultative anaerobic Pseudomonas species from P. putida. Together, these
in silico approaches provided a holistic view on the limitations for anaerobic
growth in wildtype P. putida.

We have used these newly identified limitations to design both respirative
and fermentative anaerobic P. putida strains. In either case, the class I RNR
has to be complemented by a class II or class III RNR. Anaerobic growth via
respiration can then be obtained via the expression of, for example, nitrate res-
piration machinery. Instead, anaerobic growth via fermentation requires the
expression of a class I dihydroorotate dehydrogenase and a fermentative ATP-
generating enzyme such as acetate kinase. According to the understanding of
P. putida metabolism as represented in iJP962, both of these designs enable
anaerobic growth in P. putida.

The respirative design appears easier to realise than the fermentative de-
sign for several reasons: (i) The sheer number of limitations to complement
is lower. One of the two respirative design complementations does regard
the expression of the 10-gene nar operon, but this operon has succesfully been
expressed in P. putida before [398]. (ii) There is little documentation on fermen-
tative anaerobic growth of other Pseudomonas species, although fermentation
using arginine [135, 433] and pyruvate [122, 135] have been described for P.
aeruginosa. (iii) Not all electron transfer chain-dependent processes may be
identified. iJP962 might be missing or misrepresenting these processes as it
is certainly incomplete [33], and redox metabolism is typically inconsistently
represented in GSMs [171]. In addition, the comparative genomics analysis
would only pick up alternative processes if they are shared by all members
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of the anaerobic Pseudomonas group. However, some of these may only be
capable of anaerobic respiration, implying they have no need for these alter-
native processes. (iv) Replacing one type of respirative growth with another
will require a less drastic adaptation of native P. putida metabolism.

The more drastic adaptation towards fermentative growth is, however,
more interesting to entertain from a theoretical and synthetic biology view-
point. The current theoretical understanding of P. putida metabolism as de-
scribed in iJP962 supports fermentative growth in P. putida following but a
small number of heterologously expressed genes. The fermentative design of
P. putida as detailed in figure 5.3 is currently being experimentally evaluated
in our laboratory with very promising preliminary results [data not shown].

Conclusions

The results of this study demonstrate the benefit, or even necessity, of com-
putationally exploring the requirements and challenges in synthetic biology.
This computational exploration revealed that previous approaches on en-
abling anaerobic growth in P. putida [238, 292, 377, 395, 398] did not address
all limitations to anaerobic growth. It is well-recognized that aerobic energy
generation needs to be replaced with an anaerobic alternative, but other less
intuitive limitations to anaerobic growth in P. putida were not previously iden-
tified and, thus, not addressed. We expect that our approach of combining
metabolic modelling and comparative genomics can find widespread use as
the methods are inherently complementary. GSMs, already available for many
organisms [456], describe one organism in high detail; whereas comparative
genomics pinpoints the genetic elements underlying the differences between
organisms.

The newly identified limitations to anaerobic growth in P. putida provide
clear directions towards the creation of an anaerobically growing P. putida.
Wildtype P. putida requires O2 not only for energy generation, but also for the
biosynthesis of heme, pyrimidines, and nucleotides. Once these processes are
complemented by anaerobic alternatives, P. putida theoretically has all the re-
quired tools for an anaerobic lifestyle. This anaerobic lifestyle opens up novel
biotechnological applications for P. putida, which may be exploited in future
work. Regardless, the model-driven redesign of an obligate aerobe into a fac-
ultative anaerobe constitutes an important fundamental step in the rational
redesign of biological systems.
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Materials and Methods

Genome-scale metabolic models. In this study we used the P. putida genome-
scale metabolic model iJP962 [311]. iJP962 was previously constructed in our
group and directly obtained from the authors.

Metabolic modelling. iJP962 was analyzed using Flux Balance Analysis
(FBA) [318] in the CobraPy toolbox [112]. The minimal glucose medium con-
ditions were set by allowing ’unlimited’ (-1000 [mmol gdw−1 h−1]) uptake
of copper, cobalt, iron, protons, water, sodium, nickel, ammonia, phosphate,
sulfate, and nitrate. In addition, the glucose uptake rate was set to be max-
imally 6.14 [mmol gdw−1 h−1], based on experimentally measured uptake
rates in [295]. The rich medium conditions were set by allowing unlimited
([mmol gdw−1 h−1]) uptake of all compounds for which exchange reactions
are present in the GSM. In aerobic conditions, the O2 uptake rate was set to
maximally 18.5 [mmol gdw−1 h−1]. Reactions for previous designs or to com-
plement the newly identified issues were added using the CobraPy ’addReac-
tion’ function.

Genome annotation. We selected 6 genomes of facultative anaerobic organ-
isms from the Pseudomonas genus (P. aeruginosa PAO1 and M18, P. stutzeri
DSM10701 and A1501, P. denitrificans ATCC13867 and P. fluorescens F113) and
6 genomes of obligate aerobic P. putida strains (KT2440, F1, S16, W619, GB1,
and BIRD1). All genomes were obtained from the EnsemblBacteria [208]
repository on March 2015 and annotated in SAPP [224] using Prodigal (ver-
sion 2.6)[185]. The annotated genomes were run using InterProScan version
5.4-47.0 [194] with the selected applications: TIGRFAM, ProDom, SMART,
PROSITE Pattern, PfamA, PRINTS, SUPERFAMILY, Coils, Gene3d.
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Abstract

Carbon fixation refers to the conversion of inorganic CO2 into organic com-
pounds. Microbial CO2 fixation followed by bioproduction of chemicals is
a promising alternative to the fossil-based industry. However, CO2 fixa-
tion pathways found in nature are relatively inefficient, thereby limiting au-
totrophic growth and production. Efforts have been made to design more
efficient synthetic CO2 fixation pathways and transplant them in model or-
ganisms. However, these pathway designs often overlook the metabolic con-
text of the production organism, leading to pathways requiring a too large
number of heterologous enzymes to be expressed. Here, we present CO2FIX,
an algorithm to design CO2 fixation pathways optimally tuned to the native
metabolic capabilities of the target organism. Genome-Scale Metabolic mod-
els are used as a representation of the organisms metabolic capabilities. We
deployed CO2FIX to design species-specific CO2 fixation pathways in eight
microbes. Design specifications include a limited number of non-native reac-
tions, ATP efficiency, thermodynamic feasibility and kinetic efficiency. For
each of the investigated organisms, CO2 fixation pathways were designed
with five or less non-native reactions while resulting in a high predicted
growth rate on CO2. Analysis of the designed pathways showed them to be
more efficient, within the target organism, than both naturally occurring CO2

fixation pathways and recently described synthetic pathways. We highlight
three newly identified CO2 fixation pathways with particularly promising fea-
tures.
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Introduction

Carbon fixation is the metabolic process converting inorganic CO2 into or-
ganic compounds; a key process for the global ecosystem, agricultural pro-
duction, and with great potential for the biobased production of fuels and
chemicals. Direct conversion of CO2 into chemical compounds of interest by
autotrophic microorganisms is an important avenue to explore for sustain-
able production. In nature, a wide variety of chemoautotrophic and photoau-
totrophic microorganisms is available, but their potential for biobased pro-
duction remains limited, partly due to limitations in genetic accessibility and
genetic toolboxes for most microbial autotrophs [83].

Additionally, autotrophic growth and production is often hampered by
the limited availability of external energy inputs and the inefficiency of their
energy-harvesting systems, such as light and photosystems for photoau-
totrophs, and hydrogen and hydrogenases for chemoautotrophs [83]. Those
energy-harvesting systems provide energy carriers (e.g. ATP) and electron
donors (e.g. NADP(P)H or ferredoxin), primarily to drive CO2 fixation.

The naturally dominant autotrophic CO2 fixation pathway, the Calvin
cycle, requires a relatively high ATP input, while relying on a notoriously
slow carboxylase: RuBisCO [120]. Apart from the ubiquitous Calvin cy-
cle, only five autotrophic pathways for CO2 fixation have been discov-
ered in nature: the Wood-Ljungdahl pathway (WL), the reductive tricar-
boxylic acid cycle (rTCA), the 3-hydroxpropionate-4-hydroxybutyrate cycle
(3HP-4HB), the dicarboxylate-4-hydroxybutyrate cycle (DC-4HB) and the 3-
hydroxypropionate bi-cycle (3-HP) [35]. Some of these pathways have advan-
tageous features relative to the Calvin cycle such as lower ATP-requirements
and faster kinetics.

In addition to these natural pathways, there have been synthetic biol-
ogy efforts to design novel pathways by exploiting the repertoire of char-
acterized enzymes [53, 82]. By mixing and matching either natural or engi-
neered enzymes attractive synthetic CO2 fixation pathways can be designed
and realized [23, 121, 380]. An extensive exploration of the known reper-
toire of natural enzyme reactions by Bar-Even et al. [23] led to the iden-
tification of a large number of potential synthetic CO2 fixation pathways.
Promising pathways were further selected based on energetic efficiency, fa-
vorable thermodynamics, predicted pathway kinetics and the number of
enzymes involved. Pathways identified in this work include the oxygen-
tolerant malonyl-CoA-oxaloacetate-glyoxylate (MOG) pathways, such as the
C4-glyoxylate pathway involving the kinetically fast phosphoenol pyruvate
carboxylase (PEPC). A few more ATP-efficient, but oxygen-sensitive, ferro-
doxin oxidoreductase-based pathways were identified in this study as well,
such as the pyruvate synthase - pyruvate carboxylase - glyoxylate bi-cycle
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(PyrS-PyrC-glx). Another promising synthetic pathway based on the fast
crotonyl-CoA-carboxylase, the CETCH-cycle was recently designed and re-
alized in vitro [380].

These synthetic and alternative natural CO2 fixation pathways may prove
advantageous for industrial biobased production due to their advantageous
features compared to the Calvin cycle. By replacing the Calvin cycle, the na-
tive CO2 fixation can be enhanced in autotrophs. However, metabolic engi-
neering usually has an extensive list of requirements and often biotechno-
logical applications favor well-characterized heterotrophs over autotrophs.
The efficient exploitation of alternative CO2 fixation pathways may thus re-
quire these pathways to be introduced into biotechnologically relevant het-
erotrophs. This arduous task also requires the challenging transplantation of
energy-harvesting systems such as photosystems or inorganic electron uptake
mechanisms [83, 422].

The performance of alternative natural and synthetic pathways will de-
pend on the metabolic context of the used organism. Furthermore, functional
engineering of synthetic pathways in vivo, designed without considering the
metabolic context, will often require the introduction of a large number of
non-native enzymes in most microbial hosts. Heterologous expression and
optimization of a large number of non-native enzymes for a functional CO2

fixation pathway has been demonstrated to be challenging [267]. In contrast,
the successful engineering of a functional Calvin cycle in Escherichia coli, re-
quiring only the expression of three non-native enzymes and subsequent ex-
perimental evolution, has recently been demonstrated [13].

Efficient design of synthetic pathways for CO2 fixation in biotechnologi-
cally relevant microbes would greatly benefit from a holistic systems biology
approach able to explicitly account for the native metabolic context of the host.
This holistic approach has the potential to identify the best suited non-native
enzymatic reactions and combine those into efficient CO2 fixation pathways
for efficient autotrophic growth and production.

Here, we present CO2FIX, an algorithm to design species-specific CO2

fixation pathways requiring the expression of a limited number of non-
native genes to enable efficient CO2 fixation. CO2FIX uses (i) Genome-Scale
Metabolic models (GSMs) to describe the metabolism of the target organism,
(ii) Mixed-Integer Linear Programming and parsimonious Flux Balance Anal-
ysis (pFBA) [249] to identify energy-efficient and species-specific candidate
CO2 fixation pathways, (iii) Max-min Driving Force (MDF) [305] to assess
the thermodynamic feasibility of those candidate pathways, and (iv) Pathway
Specific Activity (PSA) [23] to evaluate the kinetic feasibility of those candi-
date pathways.

We have deployed CO2FIX to design pathways for eight biotechnologi-
cally relevant microorganisms, including heterotrophs and autotrophs, as well
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as aerobes and anaerobes. For all organisms we identified several not-yet-
described synthetic CO2FIX pathways that satisfy all design requirements.
Several of these pathways are ATP-efficient, thermodynamically feasible, and
kinetically attractive, while requiring the introduction of surprisingly few
non-native enzymes.

Results

CO2FIX

We developed CO2FIX, a computational method to design species-specific
metabolic pathways endowing the target organism with CO2 fixation capa-
bilities or improving existing capabilities. The metabolism of an organism
is represented by a Genome-Scale Metabolic model (GSM). Within CO2FIX a
CO2 fixation pathway is defined as the set of reactions required to produce 1
pyruvate from 3 CO2, excluding reactions representing ATP generation, cofac-
tor regeneration, cross-membrane transport, and exchange with the medium.
CO2FIX consists of four distinct phases, namely: (i) GSM expansion, (ii) Can-
didate pathway elucidation, (iii) Thermodynamic evaluation, and (iv) Kinetic
evaluation (see figure 6.1).

In the GSM expansion phase, reactions are added to the GSM in order to
enable or improve CO2 fixation. Autotrophic growth requires a mechanism
to generate ATP from either light or an inorganic electron donor and a mech-
anism to generate reducing equivalents (NAD(P)H and reduced ferrodoxin)
using an external inorganic electron donor. Therefore, in the initial step of this
phase, reactions representing an anoxygenic photosystem and hydrogenases
are added to the GSM if such systems are not already natively present. Then,
a reference reaction database compatible with the metabolite naming system
in the model (see materials and methods) is mined to identify a predefined
number of reaction additions enabling the highest possible growth rate. Opti-
mal database exploration is ensured by a Mixed-Integer Linear Programming
(MILP) approach. Iteration of this phase, excluding previously identified re-
action sets, leads to identification of additional reactions sets.

Candidate synthetic CO2 fixation pathways are formed by some native
GSM reactions and the newly added reactions. In the second phase, reac-
tions in the candidate CO2 fixation pathway and their pathway coefficients
are determined. To this task CO2FIX uses parsimonious FBA (pFBA) [249],
but instead of the original approach (maximal flux through biomass reaction),
a flux of 1 [mmol gdw−1 h−1] is set for pyruvate production. Reactions re-
quired to carry flux for pyruvate production and not associated to transport,
cofactor regeneration, or ATP generation, constitute the candidate CO2 fixa-
tion pathway.
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FIGURE 6.1: The CO2FIX process.
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The third phase represents the thermodynamic evaluation of the candidate
pathways. Thermodynamic feasibility of a biological pathway implies a neg-
ative Gibbs free energy change, or a positive thermodynamic driving force for
each reaction under physiological conditions, defined as -∆rG’. Feasibility of
all individual reactions in a pathway is preferably evaluated in the context of
a pathway in the cellular environment, as product and substrate concentra-
tions of all reactions determine actual Gibbs free energies and driving forces.
Such an analysis can identify the bottleneck reaction in a pathway, i.e. the spe-
cific reaction that has the minimal thermodynamic driving force of a complete
pathway. CO2FIX evaluates candidate pathways using the Max-min Driving
Force (MDF) method [305], which optimizes the concentrations of involved
metabolites throughout the pathway, within physiological ranges, in order to
maximize the minimal driving force. Pathways for which no positive MDF
can be obtained are deemed not feasible and discarded.

In the last phase, kinetics of the candidate pathways are evaluated using
Pathway Specific Activity (PSA) [23]. PSA is defined as the maximal path-
way flux attainable by 1 mg of total pathway protein. In other words, PSA
is a weighted average of the specific activities of the involved enzymes. The
higher the PSA is, the faster the pathway is expected to operate given the same
amount of enzymes.

CO2 fixation requires few non-native reactions

The CO2FIX algorithm is employed to identify promising CO2 fixation path-
ways for eight microorganisms with biotechnological relevance; each repre-
sented by a species-specific GSM. Our selection includes the most common
facultative anaerobic heterotrophic workhorses E. coli (GSM: iJO1366 [319]),
Bacillus subtilis (iYO844 [312]), and Saccharomyces cerevisiae (iMM904 [282]).
In addition, we included the obligate aerobic heterotrophic biotechnologi-
cal workhorse Pseudomonas putida (iJN746 [298]). Furthermore the strictly
anaerobic heterotrophic thermophilic bacterium Thermotoga maritima (iLK478
[466]) is included, as thermophilic cell factories are desired for several biotech-
nological applications. Potential autotrophic cell factories included are the
strictly aerobic photosynthetic cyanobacterium Synechocistis sp. PCC6803
(hereafter: Synechocystis) (iJN678 [301]) and Rhodobacter sphaeroides (iRsp1095
[187]), which can grow both phototrophically with hydrogen in anaerobic
conditions and chemolithoautotrophically with hydrogen in aerobic condi-
tions. The last organism included is the strict anaerobic facultative autotrophic
Geobacter metallireducens (iAF987 [132]), which can also respire using iron as an
electron acceptor and formate as an electron donor.
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FIGURE 6.2: Growth rate predictions aerobic conditions.

CO2FIX is employed to design, for those organisms, CO2 fixation path-
ways requiring few non-native reactions. Features of these newly identified
pathways are compared to a set of reference pathways, including all known
natural CO2 fixation pathways and earlier proposed promising synthetic CO2

fixation pathways [23] (see figures 6.2 and 6.3).
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FIGURE 6.3: Growth rate predictions anaerobic conditions.

The heterotrophs require remarkably few reaction additions for CO2 fixa-
tion, irrespective of aerobic (see figure 6.2) or anaerobic (see figure 6.3) condi-
tions. Only two reaction additions are required for B. subtilis, and P. putida and
S. cerevisiae require only a single reaction addition each. The other organisms
are already predicted to be capable of CO2 fixation. Surprisingly, this includes
E coli and T. maritima. These organisms are not capable of CO2 fixation, but
candidate CO2 fixation pathways are nonetheless present in their respective
GSMs.
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The autotrophs present a more varied profile with regards to reaction ad-
ditions enhancing their growth rate on CO2, and the dependence thereof on
oxygen. In anaerobic conditions, a considerable improvement for G. metal-
lireducens and R. sphaeroides can be obtained with two reaction additions. R.
sphaeroides has a low anaerobic grow rate, four reaction additions double the
predicted growth rate. In contrast, the predicted aerobic growth rate of R.
sphaeroides shows only a modest improvement with each added reaction, and
the predicted aerobic growth rate of Synechocystis barely improves after the
first reaction addition.

Generally, more reaction additions are required to introduce the reference
pathways than that are required to obtain an equal growth rate via CO2FIX.
The only exceptions are: (i) the introduction of the rTCA cycle in R. sphaeroides;
the four added reactions enable a slightly higher growth rate than the CO2FIX
solution for three reactions, and (ii) the Calvin cycle (assuming no oxygena-
tion) being or coinciding with the optimal reaction set in all aerobic scenarios.
In addition, regardless of organism and oxygen availability, a higher predicted
growth rate is obtained with five reaction additions than with any reference
pathway.

Candidate pathways

We elucidated the candidate CO2 fixation pathways consisting of both native
and non-native reactions for each organism for each number of added reac-
tions. In total, this led to the elucidation of 165 pathways differing by at least
one reaction. Surprisingly, within the exactly identical pathways, only eight
pathways were found for two organisms, two pathways for three organisms,
and only a single pathway was found for four organisms. In addition, there
is a large variation in the number of pathways identified for different organ-
isms, and for aerobic versus anaerobic conditions. For instance, we find 49 and
14 pathways for E. coli under aerobic and anaerobic conditions respectively
whereas only 6 under aerobic conditions were found for Synechocystis and 5
under anaerobic conditions for G. metallireducens (see table 6.1).

Candidate CO2 fixation pathways have been selected for their efficient sto-
ichiometric conversion of CO2 to biomass. This has mostly led to the iden-
tification of ATP-efficient pathways. Additional characteristics for CO2FIX
pathways are thermodynamic favorability and fast kinetics. The thermody-
namic favorability of the candidate pathways has been assessed using MDF
[305] for both atmospheric CO2 concentrations (355 ppm) and those attain-
able in industrial gas streams (10,000 ppm). The pathway kinetics have been
determined using PSA [23] based on available experimental measurements of
enzyme specific activities in BRENDA [336].
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TABLE 6.1: Number of identified candidate CO2 fixation pathways per organism and
number of added reactions. Values equal to 0 are not shown. *The CO2 fixation path-
way in the T. maritima GSM does not convert 3 CO2 to 1 pyruvate. *2The B. subtilis

GSM does not support anaerobic growth.

Number of added reactions
Organism 00 01 02 03 04 05 06 07 08

Aerobic Synechocystis 1 2 1 2
R. sphaeroides 2 1 1 1 2 4 1 1 2
E. coli 2 7 8 7 13 5 1 3 3
P. putida 2 12 3 2 1 2
S. cerevisiae 2 5 1 4 1 1 1
B. subtilis 4 4 4 1 3

Anaerobic*2 G. metallireducens 1 1 1 2
R. sphaeroides 1 1 3 4 1 1
E. coli 1 3 7 1 1 1
S. cerevisiae 4 5 1 2 1
T. maritima * 6 5 1 2

Scoring the pathways relative to one another is complicated due to the
interdependence of ATP-efficiency, MDF and PSA. In short, a pathway that
’wastes’ a lot of ATP is thermodynamically favorable and typically faster,
and in contrast an ATP-efficient pathway typically has thermodynamic bot-
tlenecks. Nonetheless, some CO2FIX pathways compare favorably to the ref-
erence pathways on these metrics (see table 6.2) and are discussed further be-
low.

Highlighted newly identified synthetic pathways

From the large pool of identified pathways several, often species-specific,
pathways were identified. Those thermodynamically feasible pathways en-
able in silico growth, are ATP-efficient, and have attractive kinetics. Some
promising novel identified pathways for CO2 fixation are discussed here in
more detail.
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FIGURE 6.4: The lactate aldolase pathway. The enzymes are 1: acetaldehyde de-
hydrogenase, 2: acetyl-CoA carboxylase, 3: malonyl-CoA reductase, 4: beta-alanine-
pyruvate transaminase, 5: alanine racemase, 6: lactate dehydrogenase, 7: lactate al-
dolase, 8: formate-THF ligase, 9: methenyl-THF cyclohydrolase, 10: methylene-THF
dehydrogenase, 11: glycine cleavage system, 12: glycine hydroxymethyltransferase,

and 13: serine deaminase.

The novel lactate aldolase pathway was identified for several organisms:
E. coli, B. subtilis, P. putida, Synechocystis and S. cerevisiae. This relatively
ATP-efficient and O2-insensitive pathway only required 3-5 reactions in the
prokaryotic models and 7 for S. cerevisiae. The key non-native enzyme in this
pathway, lactate aldolase, splits lactate into formate and acetaldehyde. The
lactate aldolase enzyme is only described in one literature report from 1986
[161], however, the enzymatic mechanism is theoretically sound and it can
probably be engineered if it is not naturally available [22]. The cycle prod-
uct formate can be efficiently assimilated to pyruvate via a linear reductive
glycine pathway.
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reduced thioredoxin, FdxO/FdxR: Oxidized and reduced ferredoxin.

Variants of the O2-sensitive reductive glycine pathway are found for E.
coli, S. cerevisiae and T. maritima (see figure 6.5). These variants require one to
three non-native enzymes and have three distinct parts: (i) CO2 is converted to
formate by formate dehydrogenase, or by a cycle of pyruvate synthase (PyrS)
and pyruvate formate lyase (PFL). This PyrS-PFL cycle was recently described
as part of a non-autotrophic CO2 fixation pathway in Clostridium thermocellum
[455]. (ii) Formate is converted to glycine via a common pathway segment.
The glycine cleavage system typically operates in the opposite direction, but
both directions are possible [22]. (iii) Glycine is converted to pyruvate via the
glycine reductase or the serine branch. The reductive glycine pathway has
been previously mentioned for formate assimilation [22, 24], but not for CO2

fixation.
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FIGURE 6.6: The alanine-glyoxylate transaminase pathway. The enzymes are 1: pyru-
vate carboxylase, 2: malate dehydrogenase, 3: malate thiokinase, 4: malyl-CoA lyase, 5:
alanine-glyoxylate transaminase, 6: L-alanine dehydrogenase, 7: glycine reductase, 8:
phosphotransacetylase, and 9: pyruvate synthase. TrxO/TrxR: Oxidized and reduced

thioredoxin, FdxO/FdxR: Oxidized and reduced ferredoxin.

A promising CO2 fixation pathway was identified solely for R. sphaeroides.
This pathway, termed the alanine-glyoxylate transaminase pathway, is ATP-
efficient, and has the highest MDF and PSA values of all identified and ref-
erence pathways (see table 6.2). In addition, it only requires three non-native
reactions in R. sphaeroides.

In contrast, the aforementioned commonly identified lactate aldolase and
reductive glycine pathways were not identified for R. sphaeroides. Although
this may be related to different metabolic contexts of these organisms, it can
not be ruled out that this distinction is due to a modelling artifact; the R.
sphaeroides GSM is the only GSM not obtained from the BiGG model repos-
itory [217].
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TABLE 6.2: Characteristics of selected CO2FIX and reference pathways. *Oxygen
causes photorespiration. *2 Ignoring energy-conserving electron bifurcation systems.
*3 One or more enzyme specific activities unavailable. *4 A thioredoxin-involving re-
action was lumped with a thioredoxin-regenerating transhydrogenase as formation

energies for thioredoxin can not be accurately computed.

Pathway O2 MDF MDF ATP PSA
Sensitive atm CO2 1% CO2

CO2FIX pathways
reductive glycine (PyrS/PFL,serine) yes -0.2- 2.4 2 0.75
reductive glycine (FDH,serine) yes 2.9 5.4 2 0.82
reductive glycine (PyrS/PFL,glycine reductase) yes *21.2*4 *24.0*4 1 0.88
reductive glycine (FDH,glycine reductase) yes *21.4*4 *24.5*4 1 0.93
alanine-glyoxylate transaminase pathway yes 2.7 6.8 2 2.18
lactate aldolase pathway no *24.2*4 *24.8*4 4 NA*3

Reference pathways
Wood-Ljungdahl pathway yes 1.6 5.1 *21*2 NA*3

rTCA cycle yes -1.7- 2.7 2 2.28
PyrS-PyrC-glx cycle yes 3.9 6.5 3 1.42
PyrS-PEPC-glx cycle yes 4.6 6.5 4 1.21
Calvin cycle (no oxygenation) *yes* 7.2 7.2 7 0,54
Calvin cycle (20% oxygenation) no 4.5 6.5 10.9 0.37
3HP/4HB thaumarchaea no 7.9 8.3 6 0.52
C4 glyoxylate cycle no 5.6 5.6 8 0.90

Discussion

CO2FIX pathways are optimally tuned to the native metabolism of a chosen
organism, as represented by a GSM. The designed pathways are weighed by
the number of required non-native reactions, so that designs requiring fewer
genetic modifications and optimizations for non-native enzymes, are favored.
Moreover, the pathways are evaluated on their potential to sustain growth in
the absence of other carbon sources; on their ATP efficiency; on their thermo-
dynamic feasibility; and on their kinetic properties. These features impact the
autotrophic growth rate of the organism as well as its potential productivity in
an industrial setting. These characteristics have also been the main evaluation
criteria in previous work on the design and selection of synthetic and natural
CO2 fixation pathways for biotechnological applications [23, 52, 128, 437].

The distinguishing feature of CO2FIX is the embedding of a CO2 fixation
pathway in the native metabolism of an organism. This has enabled the iden-
tification of CO2 fixation pathways that require the metabolic network of an
organism to be expanded by only a few reactions. Furthermore, CO2FIX has
identified pathways for each considered organism that require at most five
non-native reactions and enable higher predicted growth rates than all ref-
erence pathways (see figures 6.2 and 6.3). Although we find many pathway
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variants across organisms (see figure 6.5), only eleven indistinguishable path-
ways were found in multiple organisms. The high fraction of identified path-
ways that differ between organisms strongly supports our species-specific ap-
proach.

However, this high fraction of species-specific pathways probably origi-
nates not only from biological differences which constitutes our prime inter-
est, but also from modelling artifacts due to non-standardized naming con-
ventions and inconsistent representations of biological processes in manu-
ally generated GSMs [171]. In principle, these modelling artifacts could be
avoided through the use of GSMs that were automatically generated accord-
ing to a well-defined procedure such as Model SEED GSMs [176]. However,
in our experience the available automatically generated GSMs still require ex-
tensive manual curation for their practical application in this context [data
not shown]. Nonetheless, the ongoing developments in the field of automatic
GSM generation will ultimately enable comparisons devoid of GSM genera-
tion artifacts.

Similarly, future improvements to CO2FIX can be expected in the realms of
thermodynamic and kinetic evaluations. To the best of our knowledge, MDF
and PSA are the best methods currently available for theoretical determina-
tions of thermodynamic feasibility and kinetics on a pathway level, but they
rely on several assumptions that may or may not hold true. If improved or
alternative methods become available, these can be easily incorporated in the
modular framework of CO2FIX.

CO2FIX expansion possibilities

There are several opportunities for further expansions of the CO2FIX algo-
rithm: (i) weights for reaction additions, (ii) direct inclusion of biotechnologi-
cal production objectives, (iii) expansion of reference reaction database based
on synthetic and promiscuous enzyme activities, and (iv) explicit exploitation
of pathways in compartments.

CO2FIX identifies CO2 fixation pathways that are embedded in native
metabolism by adding a small predefined number of reactions to a species-
specific GSM. Expansion of metabolism based on number of reactions is, how-
ever, somewhat oversimplified. Some reactions require large enzyme com-
plexes and will require the expression of several non-native genes, whereas in
other cases a single enzyme performs multiple steps in a pathway. In addition,
the difficulty of expressing a non-native gene is not universal. For example,
genes from closely related organisms are easier to functionally express. These
pathway design considerations can, in principle, be easily incorporated into
CO2FIX. In Phase 1, the MILP can be modified to not add a predefined num-
ber of reactions, but rather to spend a predefined number of ’points’, where
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each reaction in the reference reaction database is assigned a ’cost’ depending
on the expected difficulty in realizing it in the target organism.

Similarly, phase 1 of CO2FIX can be modified to not maximize the growth
rate of an organism, but rather the yield of a biotechnologically interesting
product. In our experience, this does not directly lead to major differences
in the identified pathways as ATP-efficiency typically remains a crucial fac-
tor [data not shown]. However, the MILP in phase 1 could be replaced by
a GSM-driven strain design algorithms such as OptStrain [334], which both
adds reactions from a reference reaction database and deletes native reactions
from a GSM in order to design a production strain.

The reference reaction database used for this work contains reactions from
the BiGG [217] and Metacyc [66] reaction databases. These databases provide
a comprehensive overview of characterised biochemical reactions. However,
promiscuous enzyme activities - i.e., side reactions - may not be extensively
described in these databases, and there are many more theoretically possible
reactions for which natural enzymes either do not exist or have not yet been
found [121]. If a database were constructed encompassing ’plausible’ or ’en-
gineerable’ enzyme activities, CO2FIX could pinpoint those activities that are
promising for CO2 fixation, which could in turn steer the rational design of
enzymes.

Another way in which novel or improved CO2 fixation pathways can be
designed is through the explicit inclusion of eukaryotic compartments or bac-
terial microcompartments in the design. In the current implementation of
CO2FIX, all reactions in the reference reaction database are cytoplasmic. In
principle, the existence of compartments enables a cell to maintain distinct
metabolite pools and even the co-existence of anaerobic and aerobic condi-
tions. In other words, the pathway thermodynamics - and by extent kinetics
- can benefit from the compartmentalization in the cell. This will require an
explicit specification in the reference reaction database of the compartments in
which reactions can be realized, and a modified thermodynamics evaluation
method that handles compartmentalization and transport processes.

Ongoing work.

At the time of the writing of this thesis chapter, the development of CO2FIX
is still ongoing. We are evaluating our current design choices and are in the
process of fully automating the various phases of CO2FIX. In particular, the
MDF calculations [305] have so far relied on manual uploading of specifically
generated SBtab [256] files to the online version of Equilibrator [138] due to
inconsistent results with the offline version. This manual step is part of a
time-intensive iterative cycle of prediction, evaluation, and curation of the
reference reaction database based on recurring thermodynamically infeasible
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cycles. Ideally, all CO2FIX phases are fully automated such that any pathway
not satisfying predefined requirements are directly filtered out. In contrast, for
example, the optimal growth rates that are currently presented in figures 6.2
and 6.3 correspond to all candidate pathways, rather than only to the promis-
ing CO2FIX pathways.

The CO2FIX pathways contain a wealth of diversity in both truly dis-
tinct pathways, as well as variations on the same pathway. This diversity of
CO2FIX pathways has not yet been fully explored, and even more promising
pathways may remain unexposed. In addition, our current pathway identifi-
cation procedure focuses on pathways that convert exactly 3 units of CO2 to
1 unit of pyruvate, effectively ignoring pathways with obligate by-products.
Although CO2 fixation pathways with by-products are most likely not indus-
trially relevant, there may be surprisingly interesting pathways omitted by the
current procedure.

Conclusions

The herein developed method, CO2FIX, designs species-specific CO2 fixation
pathways that require a limited extension of native metabolism, while be-
ing ATP-efficient, thermodynamically feasible, and kinetically attractive. Our
prime design directive, embedding in native metabolism, is in line with the
attained, recent, in vivo experimental success on realizing a synthetic CO2 fix-
ation pathway in E. coli [13]. Therefore, we expect CO2FIX designs to con-
tribute to ongoing efforts aimed at enabling CO2 fixation in heterotrophs and
enhancing CO2 fixation in autotrophs. These efforts will ultimately culminate
in biochemical production processes that are both green and efficient.
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Materials and Methods

Genome-scale metabolic models. iJO1366 (E. coli)[319], iMM904 (S. cerevisiae)
[282], iJN678 (Synechocystis) [301], iJN746 (P. putida) [298], iYO844 (B. subtilis)
[312], iAF987 (G. metallireducens) [132], and iLK478 (T. maritima) [466] were
downloaded from the BiGG model database [217]. iRsp1095 (R. sphaeroides)
[187] was obtained from the supplementary files of the corresponding paper.

In silico media conditions. The lower flux bound of all exchange reactions
for carbon sources except for CO2 were set to 0 [mmol/gdw/h]. The lower
bound of the CO2 exchange reaction was set to -1000 [mmol gdw−1 h−1]. All
other lower and upper bounds of exchange reactions were left to their default
values.

Addition of anoxygenic photosystem. Autotrophic growth requires a mech-
anism to generate ATP from either light or an inorganic electron donor.
Therefore, a reaction representing an anoxygenic photosystem (H+

cytoplasm →
H+

extracellular) was added to the GSMs iJO1366, iMM904, iJN746, iYO844,
iLJ478. The upper bound of this reaction was set to 100 [mmol gdw−1 h−1],
which corresponds to a photon uptake rate of 50 [mmol gdw−1 h−1] assum-
ing two transported protons per absorbed photon. These values lie within the
capabilities of the anoyxgenic photosystem of R. sphaeroides [188].

Addition of H2 hydrogenases. Autotrophic growth requires a mechanism to
generate reducing equivalents (NAD(P) and reduced ferredoxin) using an ex-
ternal electron donor. Therefore, three H2 hydrogenase reactions were added
to the GSMs that did not yet contain these:

• 2.0 H2 + NADP + oxidized_ferredoxin → 3.0 H+ + NADPH +
reduced_ferredoxin

• NADP +H2 → NADPH +H+

• NAD +H2 → NADH +H+

In addition, transport and exchange reactions for H2 were added to the GSMs
not having these reactions. The lower bound of the exchange reaction was set
to -100 [mmol gdw−1 h−1].
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CO2FIX. CO2FIX consists of four separate parts: (i) a Mixed-Integer Linear
Programming (MILP) algorithm adds a pre-defined number of reactions to
a GSM from a reference reaction database to maximize the biomass produc-
tion using CO2 as a carbon source. (ii) a Linear Programming (LP) algorithm
is used to identify all newly added and native reactions that are part of the
candidate CO2 fixation pathway. (iii) The CO2 candidate fixation pathway is
subjected to a thermodynamic feasibility test using Max-min Driving Force
(MDF) [305]. (iv) The candidate CO2 fixation pathway is subjected to a kinetic
feasibility test using Pathway Specific Activity (PSA) [23]. The separate steps
are discussed in more detail below.

Construction of reference reaction database The construction of the reference
reaction database consists of nine steps:

i All reactions from GSMs originating from BiGG [217]: iJO1366 [319],
iMM904 [282], iJN678 [301], iJN746 [298], iYO844 [312], iAF987 [132], and
iLK478 [466] are combined in a model Mref .

ii Mref is expanded by adding all MetaCyc [66] reactions as available from
MetaNetX.org [150].

iii Mref is further expanded by addition of all reactions corresponding to the
reference CO2 fixation pathways.

iv Reactions inMref were converted to the MNXref namespace [36] via direct
mapping of metabolite identifiers (see Namespace conversion).

v Reactions from Mref that contain metabolites that can not be converted
into the KEGG namespace are deleted, as conversion of all metabolites to
the KEGG namespace is crucial for the thermodynamics calculations via
EQuillibrator [138].

vi Reactions representing biomass production, cross-membrane transport,
and respiration, as well as elementally unbalanced reactions are removed
from Mref

vii The compartmentalization of all metabolites in all reactions in Mref is set
to cytoplasmic.

viii Mref is curated by identifying sets of duplicate reactions and removing all
but one.

ix Directionality of all non-BiGG reactions in Mref is set according to their
∆rG

′0 values as calculated via EQuillibrator:

• ∆rG
′0 ≤ −20: Reaction is irreversible; forward direction
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• −20 ≤ ∆rG
′0 ≤ 20: Reaction is reversible

• 20 ≤ ∆rG
′0: Reaction is irreversible; backwards direction

Reactions from BiGG are specifically curated for their application in GSMs.
Therefore, we assume their pre-set directionalities are appropriate.

CO2FIX phase 1 - Generating CO2 fixation pathways. A MILP is used to
add a predefined number of reactions from the reference reaction database to
a GSM to maximize the biomass production using CO2 as a carbon source:

Maximize xbiomass

Subject to Sx = 0
lbj ≤ xj ≤ ubj ∀j ∈Model
lbjyj ≤ xj ≤ ubjyj ∀j ∈ Database
yj ∈ {0, 1} ∀j ∈ Database∑
yj = N ∀j ∈ Database

where xbiomass is the flux through the biomass synthesis reaction, x is
the flux vector, S is the stoichiometric matrix covering both the model and
database reactions, 0 is a null vector, lb and ub are the lower and upper bound
vectors respectively, y is a boolean vector indicating the reactions added from
the reference reaction database, and N indicates the number of reactions to be
added from the reference reaction database. Integer cuts were added to the
algorithm in order to find additional solutions. For each N we determined
the five best solutions. Subsequently, we ensured that the best solutions were
identified by the MILP by setting the lower bound of xbiomass to the highest
biomass production found for the selectedN and repeating the procedure; oc-
casionally better solutions were identified. All solutions corresponding to at
least 40% of the maximally found growth rate for the selected N were stored.
The implementation of CO2FIX phase 1 was based on the Growmatch [235]
implementation as available as part of the CobraPy Toolbox [112].

CO2FIX phase 2 - Isolating CO2 fixation pathways. The reactions that were
added in CO2FIX phase 1 have combined with native reactions to form a CO2

fixation pathway. In this step, all reactions that are part of the pathway are
identified along with their relative stoichiometric coefficients, which are re-
quired for CO2FIX phases 3 and 4. We define a CO2 fixation pathway as the
set of reactions that converts 3 units of CO2 to 1 unit of pyruvate, while exclud-
ing reactions related to transport, cofactor regeneration, and ATP generation.
CO2FIX phase 2 constitutes of 4 steps:
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i Five reactions are added to the GSM to provide an unlimited ability to
generate ATP and to regenerate the cofactors NADPH, NADH, ubiquinol,
and reduced ferredoxin. These reactions are:

• ADP + Pi+H+ → ATP +H2O

• NADP +H+ → NADPH

• NAD +H+ → NADH

• quinone+H+ → quinol

• oxidized_ferredoxin→ reduced_ferredoxin

ii Each reaction in the GSM and the reference reaction database is modified
so that flux is only carried in the forward direction. Backward reactions
are reversed, and reversible reactions are split in two.

iii We use pFBA [249] to identify all reactions and corresponding fluxes
that are required for the conversion of 3 [mmol gdw−1 h−1] CO2 into 1
[mmol gdw−1 h−1] pyruvate:

Minimize
∑

j xj ∀j ∈Model

Subject to Sx = 0
lb ≤ x ≤ ub
xpyruvate = 1
xCO2

= −3

where x is the flux vector, S is the stoichiometric matrix, 0 is a null vec-
tor, lb and ub are the lower and upper bound vectors respectively, and
xpyruvate and xCO2 are the fluxes through the pyruvate and CO2 exchange
reactions.

iv Reactions with positive flux values (positive components of x) are selected.
Reactions corresponding to transport, cofactor regeneration, and ATP gen-
eration are filtered out. These reactions constitute the candidate CO2 fixa-
tion pathway and the values in x are their stoichiometric pathway coeffi-
cients.

CO2FIX phase 3 - Thermodynamic feasibility. CO2FIX generates SBtab
[256] pathway files which can be directly used for Max-min Driving Force
(MDF) [305] calculations using the online implementation of EQuillibrator
[138] as available at http://equilibrator.weizmann.ac.il/pathway.
For several metabolites and metabolite pairs we have fixed the concentra-
tions or concentration ratios: [Pi] = 10 mM, [PPi] = 1 mM, [ATP]/[ADP] =
10, [ADP]/[AMP] = 1, [NADPH]/[NADP+] = 10, [NADH]/[NAD+] = 0.1,
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[ferredoxinred]/[ferredoxinox] = 10, based on [23, 437]. Different from [23,
437], we varied the CoA concentrations between 0.1-5 mM based on the uncer-
tainty in CoA concentrations measured in E. coli [34, 162]. Concentrations for
CO2 and HCO3− were fixed at 0.012 mM and 1.6 mM to simulate atmospheric
(355 ppm) CO2 concentrations, and at 0.34 mM and 4.5 mM to simulate an
industrial gas sparged setting with 1% CO2. The concentrations of all other
metabolites were allowed to vary between 1 µM and 10 mM, representing a
physiological range [305]. All MDF calculations were performed based on a
pH of 7.5 and an ionic strength of 0.1 M.

CO2FIX phase 4 - Kinetic feasibility. The calculation of the Pathway Specific
Activity (PSA) [23] for a pathway involves a 4-step process:

i EC numbers of all pathway reactions are obtained via the mapping avail-
able from MNXref [36] and BiGG [217] if possible. All remaining reactions
are manually assigned the appropriate EC number.

ii Available experimentally measured specific activities for each EC number
are obtained from BRENDA [336] via the SOAP API.

iii Enzyme specific activity is calculated for each enzyme in the pathway by
discarding the lowest 50% and highest 10% of the specific activities for
each EC number and averaging the remaining values, as in [23, 437].

iv PSA is calculated according to the formula:

PSA = 1/

m∑
i=1

wi

Vi

where m is the number of enzymes in the pathway, Vi is the specific activ-
ity of enzyme i [µmol min−1 mg−1], and Wi is the required flux through
enzyme i to produce 1 µmol of pyruvate.

Namespace conversion Metabolites and reactions were converted to the
MNXref [36] namespace from the BiGG [217], MetaCyc [66] and KEGG [201]
namespaces, as well as from the MNXref namespace to the KEGG names-
pace. The MNXref namespace is a specifically designed reference namespace
with direct links to other commonly used namespaces. We downloaded the
MNXref namespace from http://www.metanetx.org/mnxdoc/mnxref.html
[150] on 16 September 2016. We converted the metabolites from one names-
pace to another via the direct mapping between metabolite identifiers avail-
able for the MNXref namespace.
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Manual curation of GSMs and reference reaction database. The GSMs and
reference reaction database were manually curated to circumvent several re-
curring issues. These issues include, for example, unlimited energy genera-
tion, biologically inaccurate redox regeneration, and the inability of EQuilli-
brator to perform a ∆G estimation. These reactions were manually removed
or made irreversible in the GSMs and reference reaction database.

Updating reaction directionalities in GSMs Reaction directionalities of all
reactions in each GSMs were updated according to the directionalities in the
reference reaction database. Specifically, if a GSM reaction was present in the
reference reaction database, but with a different directionality, the directional-
ity in the GSM was changed to that of the reference reaction database.

Aerobic simulations: Blocking oxygen-sensitive reactions. Several cellu-
lar processes are oxygen-sensitive and must thus be blocked during aerobic
simulations. We manually looked up reported oxygen sensitivity/tolerance
of all enzymes involving the oxygen-sensitive metabolites ferredoxin, flavo-
doxin, thioredoxin, and ’corronoid iron sulfur protein’. Unless such an en-
zyme is specifically reported to be oxygen-tolerant, the corresponding reac-
tions were blocked for aerobic simulations. In addition, reactions correspond-
ing to pyruvate formate lyase and the proton-translocating Rnf complex were
also blocked.

Implementation and simulation. All computational simulations and analy-
ses were performed in Python. The GSMs were loaded and analysed using
the CobraPy Toolbox [112]. The IBM CPLEX solver [92] was used for all linear
and mixed-integer linear programming problems. The online implementa-
tion of EQuillibrator [138] at http://equilibrator.weizmann.ac.il/
pathway was used for the MDF calculations.
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Abstract

Many species of microalgae produce hydrocarbons, polysaccharides, and
other valuable products in significant amounts. However, large-scale produc-
tion of algal products is not yet competitive against non-renewable alterna-
tives from fossil fuel. Metabolic engineering approaches will help to improve
productivity, but the exact metabolic pathways and the identities of the major-
ity of the genes involved remain unknown. Recent advances in bioinformat-
ics and systems-biology modeling coupled with increasing numbers of algal
genome-sequencing projects are providing the means to address this. A mul-
tidisciplinary integration of methods will provide synergy for a systems-level
understanding of microalgae, and thereby accelerate the improvement of in-
dustrially valuable strains. In this review we highlight recent advances and
challenges to microalgal research and discuss future potential.
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Diversity of microalgae and their biotechnological
potential

Microalgae are simple photosynthetic eukaryotes that are among the most di-
verse of all organisms. Microalgae inhabit all aquatic ecosystems, from oceans,
lakes, and rivers to even snow and glaciers, as well as terrestrial systems in-
cluding rocks and other hard surfaces. Microalgae exhibit significant vari-
ation in physiology and metabolism, a reflection of the high level of genetic
diversity that exists between different phyla owing to multiple endosymbiotic
events, horizontal gene transfer, and subsequent evolutionary processes, pro-
ducing a polyphyletic collection of organisms [105, 274]. Given this diversity,
mining the genomes of these organisms provides a great opportunity to iden-
tify novel pathways of biotechnological importance. In particular, microalgae
are of considerable interest for the synthesis of a range of industrially useful
products, such as hydrocarbons and polysaccharides [50, 381], owing to rapid
growth rates, amenability to large-scale fermentation, and the potential for
sustainable process development [450].

Algae as a source of biofuel molecules, such as triacylglycerides (TAGs),
the precursor for biodiesel [275], have been a focus in recent years, with po-
tential yields an order of magnitude greater than competing agricultural pro-
cesses [258]. Evaluations of current technologies demonstrate that microal-
gae are commercially feasible for biofuel production, but are not yet cost-
competitive with petroleum products [196, 330], the metric upon which com-
mercial success ultimately lies. For example, the net energy input versus out-
put for large-scale algae biodiesel production was estimated to be 1.37, com-
pared to 0.18 for conventional/low-sulfur diesel [330]. Currently, for microal-
gae to synthesize TAG it is necessary to expose them to stress conditions such
as nutrient limitation, which reduces growth and increases energy dissipa-
tion. The trade-off between biosynthesis of TAG and cell growth is therefore
a severely limiting factor [222]. If a better understanding of the metabolic and
regulatory networks were available, they could be rewired for increased TAG
synthesis, with fewer drawbacks than for existing algal cells.

The production of other interesting algal products will also benefit from a
better understanding of microalgae at a systems level. For example, polysac-
charides such as starch and cell wall materials can be used for biotechnolog-
ical applications [61]. These carbohydrates can be degraded to fermentable
sugars for bioethanol production [181], or serve as chemical building blocks
for renewable materials, but the composition and proportions of the differ-
ent sugar components require optimization. Similarly, various valuable sec-
ondary metabolites produced by microalgae are of interest in the food, nu-
trition, and cosmetics industries [50], but often they are produced in trace
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amounts, or only under conditions that are not amenable to industrial cul-
tivation.

Over 30 microalgal genomes have been sequenced, and numerous tran-
scriptomics, proteomics, and other systems-biology studies have been per-
formed. Nevertheless, our understanding of metabolic pathways within these
microalgae remains limited [180]. Significant knowledge gaps need to be
filled between omics data, the annotation thereof, and our systems-level un-
derstanding. This will allow the conversion of these resources into usable
Genome-Scale Metabolic models (GSM) and provide the basis for effective
metabolic engineering, synthetic biology and biotechnology. We consider here
the potential application of advanced methods to improve the functional an-
notation of algal omics data, to increase the resolution of GSMs, and ways
to integrate available computational methods for effective exploitation of mi-
croalgae in biotechnology.

Annotation challenges for microalgae

The nuclear genome of the green alga Chlamydomonas reinhardtii, sequenced
in 2007 [274], is approximately 120 Mb and comprises some 15 000 genes. Al-
though C. reinhardtii is commonly used as a reference for the annotation of
other microalgae, only a subset of ∼50 proteins have an experimentally vali-
dated function according to the UniProt database (http://www.uniprot.org),
compared to 6800 proteins for the model plant Arabidopsis thaliana. Conse-
quently, most C. reinhardtii genes have been computationally annotated by in-
ferred homology with A. thaliana, and other plant species and microbes [274],
using BLAST (Basic Local Alignment Search Tool) or family-wise alignment
methods such as HMMER and InterProScan (table 7.1). BLAST-based meth-
ods often use the principle of one-to-one recognition, meaning that annotation
of a query gene is based on the annotation of a single known gene. This lim-
its the success rate for recognition and correct functional annotation of the
more distantly related C. reinhardtii genes, but becomes even more problem-
atic when the in silico-derived functional annotation of C. reinhardtii is sub-
sequently used for annotation of other algal species. This is because, owing
to a lack of common ancestry, two algal species can be more diverse than, for
example, any two plant species. Therefore, these methods, which are highly
suitable for high-throughput analysis because of their simplicity, are less ap-
propriate for accurate in-depth annotation of algal genomes. In the CAFA
(Critical Assessment of protein Function Annotation) experiment [347], the
accuracy of more advanced functional annotation algorithms was assessed.
The CAFA concluded that 33 of 54 tested functional annotation algorithms
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outperformed the standard BLAST-based method (table 7.1). The substan-
tial improvement can be explained by the fact that these second-generation
methods do not apply the one-to-one recognition principle but, to increase
their success rate, use instead a one-to-many recognition strategy and/or in-
clude context-aware principles for annotation. An example is Argot2 (Box 1)
[124], which applies the one-to-many recognition strategy by calculating the
statistical significance of all candidate homologous genes found by BLAST
[7] and HMMER [136], combined with an assessment of semantic similari-
ties of associated GO terms. In a context-aware multilevel approach, anno-
tation is not merely based on sequence similarity, but other factors such as
protein–protein interactions [228], transcript expression patterns [228], phylo-
genetic trees [118], compartmentalization information [91], and literature [452]
are also taken into account. FFPred2 from UCL–Jones [91] is the prime exam-
ple of such a homology-independent functional annotation algorithm.

TABLE 7.1: Features of commonly used functional annotation tools

Methods Success rate* Speed Availability Additional notes Refs
BLAST Limited Fast Online/offline Dependent on global sequence similarity for

success. Suitable for high-throughput analy-
sis

[7]

HMMER Moderate Fast Online/offline Family-wise alignment method. Suitable for
high-throughput analysis

[136]

InterProScan Moderate Slow Online/offline Family-wise alignment method. Uses pre-
computed protein domains

[194]

FFPred2 High Slow Limited online/offline Algorithms currently trained on non-algal
datasets. Not suitable for high-throughput
analysis

[57, 91]

Argot2 High Moderate Limited online Initial selection is dependent on BLAST and
HMMER output. Additionally predicts com-
partmentalization. User-friendly interface

[124]

*For distantly related sequences.

Advanced multilevel annotation methods effectively increase the recall of
function prediction while maintaining an acceptable precision. The challenge
in genomic annotation for microalgae lies in the small number of experimen-
tally validated algal genes and the lack of algae-specific contextual data such
as protein interaction and compartmentalization data. This results in a rel-
atively low number of genes that are predicted to have a specific biological
function. To overcome this, multiple annotation methods and data sources
should be combined. The combined result increases the number of annotated
genes, while a consensus prediction among the different methods improves
the accuracy of the annotation [360]. Owing to their simplicity and speed,
first-generation methods can be used for initial high-throughput analysis of a
large set of genes. Second-generation methods can then be used for a refined
analysis of these genes. However, to utilize these advanced methods fully, a
significant amount of experimentally determined contextual data is required.
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Although increasing amounts of gene expression data are being generated, lit-
tle structural and protein interaction data are being generated for algae. In the
absence of such experimental facts it is still possible to generate this contextual
information by in silico prediction methods [57, 367], but whilst studies have
shown that this is a feasible option [144], caution is necessary because there is
a high risk of error propagation.

Apart from functional annotation it is also important to establish the cel-
lular location of a protein. For this there are several tools available, includ-
ing Argot2 (Box 1) [124], TargetP [116], SignalP [332], PSORTb [289], and
PredAlgo [408]. The last is a tailor-made multi-subcellular localization predic-
tion tool dedicated to three compartments of green algae: the mitochondrion,
the chloroplast, and the secretory pathway. However, owing to the limited
number of algal proteins with a known cellular localization, which can be
seen for example from the quantitative subcellular localization of roughly 80
proteins [448], or the collection of roughly 1000 chloroplast-localized proteins
from C. reinhardtii [412], the algorithm is trained with a relatively small C. rein-
hardtii dataset [408]. This raises questions regarding reliability for other algal
species because the polyphyletic nature of different microalgae means some
algal species are distantly or not related, and this can result in a different sub-
cellular localization of homologs. Therefore it is advisable to use PredAlgo
in combination with non-algal-specific tools in a similar way as for functional
annotation.

To support large-scale annotation of algal sequence data, up-to-date
databases and readily available supporting tools are required. Online
databases provide the means to share data easily such that the scientific com-
munity can profit as a whole. Supporting tools can assist in annotating genes,
pathways, and performing statistical analysis. While genomic data for var-
ious algae are available in NCBI and UniProt, the amount of public data is
lagging behind in comparison to plant and bacterial species. In addition, tools
and databases that do more than storing the available sequencing data are
needed. A small number of tools are available, although these are often lim-
ited to C. reinhardtii. One such tool is ChlamyCyc [270], a C. reinhardtii-specific
pathway/genome database of the MetaCyc [66] facility for metabolic pathway
analysis. A peptide database, ProMEX, is available that contains over 2000 C.
reinhardtii peptides which are usable for proteomics analysis [449]. In addi-
tion, the Augustus tool, which is commonly used for prediction of eukary-
otic genes [206], has a tailor-made section for C. reinhardtii. Finally, the Algal
Functional Annotation Tool [254] incorporates annotation data for a few mi-
croalgal species from several pathway databases, ontologies, and protein fam-
ilies. Broadening the scope of these annotation tools for a range of microalgae
would allow comparative analysis, which is useful for easy mapping of var-
ious differences between microalgae. In this context, a useful tool which has
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been applied to plant research is Phytozome (http://www.phytozome.net)
[156], a comparative hub for analysis of plant genomes and gene families.
It acts as a reference for the key data of many plant species, and provides
click-to-go features such as BLAST and summaries key data. Phytozome has
grown to be a major asset to the plant science community. Although it con-
tains data from a few green algae, an expanded web-portal focused on algal
systems-bioinformatics research could be of immense benefit to the field, par-
ticularly for those studying the more industrially relevant diatoms and het-
erokont species (table 7.2). Such a web-portal would provide access to new
and existing tools specifically useful for algal species and facilitate exposure
to a broad audience. In addition, it could act as a hosting platform for small
but useful tools such as a refined algal literature research algorithm and tools
that suggest genes to fill gaps in metabolic or regulatory pathways for mi-
croalgae. Adopting an algal web-portal would provide a good overview of all
available data and tools, and help to reduce the redundancy that is often seen
in biology and bioinformatics.

Box 1. Argot2
One of the top performers in the CAFA experiment is Argot2 (anno-
tation retrieval of gene ontology terms) [124]. It stands out in terms
of simplicity, as well as by incorporation of BLAST and HMMER. Ar-
got2 combines an easy interface with multilayer analysis, making it a
perfect starting point for biologists wishing to annotate their data.
Argot2 requires a nucleotide or protein sequence as input. It queries
the UniProt and Pfam databases using BLAST and HMMER respec-
tively, providing an initial high-throughput sequence analysis. A
weighting scheme and clustering algorithm are then applied to the re-
sults to select the most accurate gene ontology (GO) terms for each
query sequence. The user can choose to perform this entire process
online at the Argot2 webserver, limited to one hundred sequences per
query. Alternatively, if the BLAST and HMMER steps are performed
locally and provided to the webserver, over 1000 sequences can be sub-
mitted per query. After the analysis is completed, which can take sev-
eral hours depending on the amount of input data, the user is provided
with the prediction results as well as the intermediate BLAST and HM-
MER files. These predictions include molecular function, biological
processes, and cellular component GO terms for each query. Predicted
GO terms are ranked by a score based on statistical significance and
specificity. Optionally, the user can choose to compute protein clusters
based on functional similarity.
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TABLE 7.2: List of selected industrially useful microalgae

Species Genome sizea (Mb) Available proteinsb Reported industrially relevant
characteristicsa

Refs

Chlamydomonas reinhardtii 120 15 144 Model system for unicellular green algae
Monoraphidium neglectum 68 16 761 Up to 21% dry weight neutral lipid under ni-

trogen starvation
[46]

Nannochloropsis gaditana
Nannochloropsis oceanica

34 28 15361 242 Can produce high amounts of ω-3 long-chain
polyunsaturated fatty acids Up to 50% dry
weight oil content

[381]

Phaeodactylum tricornutum 27 10 673 Can produce antibacterial fatty acids (9Z)-
hexadecenoic acid (palmitoleic acid; C16:1 n-
7) and (6Z, 9Z, 12Z)-hexadecatrienoic acid
(HTA; C16:3 n-4)

[104]

Chlorella variabilis 46 9831 The first sequenced Chlorella genome. A
model genome for understanding other
Chlorella species

[368]

Ostreococcus tauri 12.6 9050 Smallest sequenced microalgal genome with
simple cellular structure

Chlorella protothecoides 22.9 7039 Up to 55% dry weight lipid content in
heterotrophic growth. Highest published
biomass yield, average 3.37 gDW L−1 h−1 in
heterotrophic growth

[107, 151, 381]

Chlorella vulgaris N.a.c 292 Up to 42% lipid content in photobioreactor
with artificial waste water. Up to 26% total
lipid in dry weight in heterotrophic growth

[134, 368]

Dunaliella salina N.a. 238 Up to 10% carotenoids in dry weight; 90% β-
carotene in carotenoids

[340]

Haematococcus pluvialis N.a. 60 Highest reported yield of antioxidant astax-
anthin (3.8% dry weight)

[8]

Botryococcus braunii ∼166–211 30 Up to 57% total lipids in dry weight. Con-
tains exopolysaccharides

[405, 442, 443]

Neochloris oleoabundans N.a. 0 Up to 56% total fatty acids in dry weight un-
der nitrogen-deprivation

[222]

(a) Genome size or characteristics are according to NCBI unless otherwise specified.
(b) Estimated protein numbers are according to UniProt unless otherwise specified. (c)

N.a., not available.

Understanding algal metabolism at a systems level

The sheer number of genes for metabolic enzymes, combined with the com-
plexity of cellular metabolism, means that it is not straightforward to estab-
lish metabolic capability, even for well-annotated species. This limitation
has led to the development of metabolic models which represent a snap-
shot of metabolism of an organism in a network format. Once an anno-
tated algal genome or transcriptome is available, a corresponding Genome-
Scale Metabolic model (GSM) can be reconstructed and the topology of the
metabolic network of the algal species can be analyzed. An initial draft model
can be generated directly from the genomic annotation, and is then adjusted
and expanded based on experimental data, literature, and gap-filling proce-
dures. The final GSM then includes all reactions the alga is known to perform
as well as the associated genes and constraints, for example, reaction direc-
tionalities and rate limits. Owing to their comprehensive representation of
metabolism, GSMs form the basis for a large and diverse set of mathemat-
ical methods for predicting metabolic behavior. These methods include the
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widely employed flux balance analysis (FBA) [318] and flux variability analy-
sis (FVA) [261], but also methods integrating fluxomic, transcriptomic, or pro-
teomic data (Box 2) [318]. For an extensive overview of mathematical methods
using metabolic models we refer to Zomorrodi et al. [472]. We focus here on
recent developments in the modeling of microalgae specifically.

GSMs of microalgae reflect the modeling counterpart of their current an-
notation; therefore, inconsistencies between GSM predictions and experimen-
tal findings indicate missing and/or poor annotations. For example, experi-
mentally identified metabolites were compared to metabolites that could be
produced in metabolic reconstructions of C. reinhardtii [80, 269] (figure 7.1).
Metabolites found experimentally but not in the models initiated pathway
elucidation and identification of the corresponding genes, and thereby led
to an improved genomic annotation [269]. This procedure was automated
by Christian et al. who designed a gap-filling method to identify reactions
allowing production in a model of experimentally detected metabolites [80].
These updated reactions and annotations [80, 269] were subsequently stored
in ChlamyCyc [270], allowing continuous expansion of the database. Con-
currently, a separate C. reinhardtii GSM, iAM303, was created in which the
included open reading frames were experimentally validated. This led both
to improved structural genomic annotation and to additional support for the
reactions included in the model [263]. This GSM was greatly expanded in
iRC1080 in 2011 and additional ORFs were validated [71]. The predictive
power of the latter GSM was tested for 30 environmental conditions and 14
gene knockouts. In addition, iRC1080 predicted essential genes (lethal phe-
notype upon knockout) under different experimental conditions, although
these predictions remain to be validated [71]. Recently GSMs for Ostreococ-
cus tauri and Ostreococcus lucimarinus have been constructed [231] (figure 7.1),
demonstrating expansion in the field. The initial GSMs, based on the available
gene annotations, revealed that these could not account for the production of
many biomass constituents [231]. The gap-filling method designed in [80] was
subsequently employed to find suitable reactions for the production of these
metabolites [231].
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Box 2. Flux analysis in microalgae part 1
Flux Balance Analysis (FBA) [318] is the most commonly applied
method to simulate metabolism in GSMs. It identifies a theoretically
optimal use of metabolic capabilities for a selected metabolic objec-
tive in a specific environment. Because some microalgae can grow
autotrophically in chemically defined medium, the boundary condi-
tions for consumption of all medium components are well specified in
those cases. This is advantageous for in silico metabolic flux analy-
sis using GSMs to address, for example, how a microalga can achieve
maximal growth under defined illumination. In addition, disabling the
metabolic capabilities associated with a gene allows simulation of mu-
tant strains. FBA can thus assess the potential of different strains and
different environmental conditions. To run FBA, all reactions are orga-
nized in a stoichiometric matrix S. Each column in S represents a dif-
ferent reaction, and each row a different metabolite. A nonzero value
at position [i,j] thus indicates the stoichiometric coefficient of metabo-
lite i in reaction j. FBA then employs two different constraints. (i)
Metabolism is assumed to be in steady-state; production/degradation
of intermediate compounds is not possible, and (ii) thermodynamics
(reversibility) and substrate availability both dictate lower and upper
flux bounds for individual reactions. Finally, one or more reactions
are selected to represent the metabolic objective, for example, algal
biomass production. Together, the S matrix, the constraints, and the
objective function form a linear programming problem:

Maximize c’x
Subject to Sx = 0

lb ≤ x ≤ ub

where x is the flux vector, c is the objective vector, 0 is a null vector en-
suring steady-state, and lb/ub are the lower/upper bounds for each
reaction. The vector x represents a flux distribution with the theoreti-
cally maximal value for the metabolic objective. However, because of
the presence of alternative/cyclic pathways, there are often alternative
flux distributions with equally high values for the objective function.
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Box 2. Flux analysis in microalgae part 2
Flux Variability Analysis (FVA) [261] explores for each reaction to what
extent the flux can vary while permitting only a small reduction in
the obtained objective value. In addition, experimental data can be
used to provide additional constraints. For example, 13C-labeling ex-
periments provide experimentally measured fluxes as inputs for the
model simulations [444, 447]. Several FBA-based methods also facil-
itate the integration of transcriptomic, proteomic, and metabolomic
data with metabolic models to constrain reactions based on measured
RNA or protein levels [190, 462]. Thereby, flux distributions are identi-
fied which are most consistent with the expression data [42]. Because of
the greater number of quantitative genome-wide transcriptomic stud-
ies compared to those analyzing the proteome, applications using tran-
scriptomic data have been relatively more abundant. However, the
methods generally do not distinguish between these two types of data,
and metabolic models can therefore be integrated with, and their pre-
dictions compared to, experimental data yielding new insights into
metabolic functioning.

It is well recognized that the exact choice of growth conditions is highly
important in attaining desired metabolic activities. GSMs can explore how
different growth conditions affect metabolism and can identify theoretically
optimal conditions for a given metabolic objective. For example, multiple
GSMs of C. reinhardtii were used to simulate metabolism under autotrophic,
heterotrophic, and mixotrophic conditions to verify model predictions [315],
to investigate how metabolite production is influenced [51, 315], and to con-
trast mutant strains [71]. C. reinhardtii GSMs were also used to determine
how the quantity of light [71, 86, 220] and its spectral composition [71] affect
metabolism. Of particular interest is the possibility to predict an optimal light
spectrum for a given metabolic goal [71]. In contrast to these successful GSMs
of C. reinhardtii, the metabolism of other algae is only poorly understood. For
example, some industrially relevant algae can currently not be grown effi-
ciently without bacterial presence [365]. Potentially, these algae and associ-
ated bacteria can be modeled simultaneously to deduce their relationship, as
has been done for other microbial communities [470, 471].

The most comprehensive algal GSMs to date are iRC1080 [71] and Al-
gaGEM [315], which account for various cellular compartments. However,
they vary in degree of compartmentalization (figure 7.1). In iRC1080, half
(865/1730) of the non-transport reactions occur in cellular compartments
other than the cytosol. By contrast, this is only about 12% (201/1617) for
AlgaGEM. This reflects the fact that independently generated GSMs for the
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same organism can differ significantly in their representation of metabolism
because different sources of information are included. By combining the in-
formation from all currently available C. reinhardtii GSMs, as well as from im-
proved annotation methods, a single and more-comprehensive GSM may be
obtained. This consensus C. reinhardtii GSM would be an important starting
point for the generation of GSMs for other interesting microalgae, with the
proviso mentioned earlier that it might not be applicable to distantly related
microalgae. Alternatively, ab initio models can be made using genomic data
for the alga in question, but employing the strategies and tools developed for
C. reinhardtii, as has been done for Ostreococcus [231]. Ultimately, GSMs of
various microalgae will be valuable for designing strategies that increase the
production of compounds of interest [425, 472]. This, combined with the de-
sign of novel synthetic pathways, such as the species-independent prediction
demonstrated for novel isobutanol, 3-hydroxypropionate, and butyryl-CoA
biosynthesis [78], will pave the way for model-driven engineering of algal
species.

Integrating bioinformatics and modeling for algal
biotechnology

The GSMs provide a basis for both computational and laboratory-driven ex-
periments, assisting in the discovery of biotechnology-driven solutions for ge-
netic bottlenecks in algae. For example, to enable microalgae to become a vi-
able industrial biosynthesis platform, their photosynthetic efficiency, product
yield, and their growth rates under conditions for product synthesis will need
to be addressed. Photosynthetic efficiency, with an estimated maximum of
8–9% in wild type algae [77, 244], sets a limit to both product synthesis and
growth rate. Because of efficient light-harvesting antenna, algal cells can ab-
sorb much more light than they are able to use for photosynthesis [244], with
the excess being lost as heat or fluorescence. In dense algal cultures, such as
might be found in industrial cultivation systems, this reduces light penetra-
tion, placing a limit on the depth of the culture, increasing the surface area to
volume ratio required for maximum productivity. Truncated light-harvesting
chlorophyll antenna size (tla) mutants of C. reinhardtii with reduced antenna
size have been shown to have improved solar energy conversion efficiency
and photosynthetic productivity in mass culture and bright light [218]. An-
other study has modeled different pathways for the process of carbon fixation
[23] as a means to overcome the low oxygenase activity of Rubisco [446]. Bar-
Even et al. [23] computationally identified alternative carbon fixation path-
ways by using approximately 5000 known metabolic enzymes, hoping to find
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carbon fixation pathways with superior kinetics, energy efficiency, and topol-
ogy. Some of their proposed pathways were estimated to be up to two- to
threefold more efficient than the conventional Calvin–Benson cycle. Using an
algal GSM to study these pathways would help in understanding how these
predictions may affect biomass and product synthesis in microalgae.

FIGURE 7.1: Overview of metabolic models of microalgae. Green boxes represent C.
reinhardtii GSMs, the red box represents an A. thaliana GSM associated with one mi-
croalgae GSM, and the blue box represents two Ostreococcus GSMs. A connection be-
tween two GSMs indicates that the former was used in the reconstruction of the latter.
The boxes are annotated with the model names if available and otherwise with the au-
thor name(s). The numbers in each box indicate the total number of reactions (R), total
number of genes (G), unique decompartmentalized metabolites (M), and biological
cellular compartments (C) found in the model files. The pie charts depict the distribu-
tion of biochemical reactions among different compartments as well as compartment-
spanning reactions (transport). The meaning of the different colors is shown in the
legend. The group ‘Others’ contains the compartments: flagellum, Golgi apparatus,
thylakoid lumen, nucleus, and eyespot. (*) Additional information obtained from au-

thors. (**) Gene information not available from model files.

As explained earlier, nitrogen limitation is a necessary stimulus for TAG
accumulation by microalgae [222]. This also triggers a reduction in photosyn-
thetic membrane lipids and cessation of cell growth. The link between accu-
mulation of lipid (including TAG) and macronutrient stress has been investi-
gated using a systems approach, such as in a proteomic analysis of C. vulgaris,
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which led to identification of new transcription factors associated with lipid
accumulation, offering the prospect of TAG overproduction independently
of nutrient limitation [160]. In another approach, in the diatom, Thalassiosira
pseudonana, TAG production was increased not by targeting the biosynthesis
of lipids, or the production of competing energy sinks, but instead by RNAi
knockdown of lipases involved in glycerolipid catabolism [428]. The integra-
tion of knowledge gained from GSMs and similar metabolic engineering offers
scope for improved efficiency based on rational design. For example, farne-
syl pyrophosphate is a precursor of terpenoids, steroids, and carotenoids, and
the metabolite itself is also a product of interest in algae. Bacterial promot-
ers responsive to the toxic accumulation of farnesyl pyrophosphate have been
identified and used to regulate the expression of the precursor biosynthesis
operon. This increased the yield of amorphadiene twofold over chemically
inducible and constitutive gene expression [94]. Such an approach in mi-
croalgae would be foreseeable in the future, when promoters in various algal
species are better understood, through model-driven design that incorporates
systems data.

Alongside genomic sequence information, a key requirement is the ability
to carry out genetic transformation, and while this is routine for C. reinhardtii,
and a few other species such as the diatom P. tricornutum, in the past few years
there has been a rapid increase in published methods for the transformation
of several species of industrial interest including Nannochloropsis sp. [211].
Moreover, the ability to engineer the chloroplast genome offers considerable
opportunities for metabolic engineering, given the focus of this organelle on
biosynthesis [343]. Nevertheless, for predictive metabolic engineering there is
an urgent need to expand the toolbox, particularly for the regulation of trans-
gene expression. In this context, there are several well-established systems for
inducible gene expression in C. reinhardtii, most notably promoters that are
regulated in response to nitrate (NIT1 or NIA1) [313] or copper (CYC6) [346].
More recently, vitamin-responsive cis elements have been identified, namely
a cobalamin (vitamin B12)-responsive promoter [174] as well as a thiamine
(vitamin B1)-responsive riboswitch [355], and these have been demonstrated
to be useful regulatory tools. Vitamins have the advantages of being benign,
cheap, and effective at low concentrations. However, the majority of these
elements have been discovered by coincidence rather than by design, and a
more rational approach will come from use of transcriptomic data to provide
promoters responsive to particular regulators, for example in response to CO2

levels [126]. Further facilitation of transgene expression comes from the use
of 2A peptides [356] which cause self-cleavage to release individual domains
from a fusion protein. They thus provide the capacity for operon-like trans-
gene expression within the nucleus. Marker recycling methods for chloroplast



7

Chapter 7. Metabolic modeling for algae biotechnology 155

engineering have also been developed for C. reinhardtii [98, 343]. However, de-
spite these developments, progress remains parallel in nature and heavily fo-
cused upon the development of C. reinhardtii. Information from algal genomes
will be key to increasing the molecular tools available.

Box 3. Integrative and systematic understanding of algae
Improvements in algal annotations will need to interact closely with
systems modeling of the metabolic and regulatory networks to refine
our understanding of the capabilities of a specific alga and to provide
a basis for applications in biotechnology. Figure 7.2 shows the connec-
tion between the various stages in bioinformatics and systems-biology
modeling. New algal genomic, transcriptomic, and proteomic data
are collected (step 1), allowing the identification of genes and proteins
(step 2). After first-generation high-throughput functional annotation
(step 3), a refinement step using second-generation functional annota-
tion algorithms (step 4) is applied. The bioinformatics annotation itself
is an iterative process for genes and proteins until they are deemed
sufficient (step 5). These annotations (step 6), as well as data avail-
able from public databases and the literature (step 7), are then used by
systems-biology modeling to reverse-engineer a GSM (step 8) to study
metabolic interactions in different circumstances in detail. After at-
taining a GSM, experimental validation of the metabolic model (step
9) should be performed to validate model predictions or pinpoint inac-
curacies and knowledge gaps. Depending on these results, additional
omics data or refinements of annotation are required. Owing to the low
number of experimentally validated algal proteins, the feedback loop
from algal modeling back to genes/proteins function prediction plays
a significant role in strengthening the knowledge foundation, and this
will ultimately underpin efficient engineering of algal genomes for in-
dustrial product synthesis. Once an algal GSM is constructed it should
be made available in a common public database and literature.

Nonetheless, for microalgae to be developed as a commercially viable
biotechnology platform, rational design to address the current shortcomings
must be achieved through the development of fit-for-purpose metabolic engi-
neering or synthetic-biology resources. The diversity of algae provides con-
siderable biotechnological potential but also presents a serious challenge to
establishing common tools and approaches. The relative immaturity of the
field, combined with the enticing potential of integrating predictive design of
microalgae with the bioinformatics and systems-biology modeling framework
(figure 7.2), offers new perspectives for future improvements in algal biotech-
nology. By adapting cutting-edge developments in functional annotation for
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microalgae, and using these for the modeling of their metabolic and regula-
tory pathways, it will be easier to establish common features of algal genomes,
and at the same time identify novel pathways for exploitation. A more ac-
curate and elaborate functional annotation of omics data by combining first-
and second-generation methods will allow reverse-engineering based on algal
GSMs. These can then be used to inform hypothesis-driven metabolic engi-
neering experiments in microalgae. Such an integrated approach is currently
missing, but will provide the knowledge necessary for predictive modifica-
tions of algal industrial biotechnology platforms in the future.

FIGURE 7.2: A multidisciplinary workflow integrating bioinformatics, systems biol-
ogy, and metabolic engineering/synthetic biology of microalgae. Black arrow, in silico

data or predictions; white arrow, experimental (wet-lab) data.
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Concluding remarks

The significant gap of unknown and non-validated gene and protein func-
tions in algae remains one of the top challenges faced by scientists wanting to
tap further into the potential of these organisms for sustainable biosynthesis.
Predictive design of metabolic engineering strategies for microalgae still has a
long journey ahead. An improved understanding of the metabolism, regula-
tion, and growth of algae, together with their interactions with coexisting bac-
teria, is a crucial first step. Extending bioinformatics approaches for function
prediction through incorporation of new methodology, integrated and flexible
databases, in combination with metabolic modeling and model-driven design
of experiments at the systems-biology level, will underpin this process and
enable the future era of algal industrial biotechnology.
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Abstract

The human gut is colonized with a myriad of microbes, with substantial in-
terpersonal variation. This complex ecosystem is an integral part of the gas-
trointestinal tract and plays a major role in the maintenance of body home-
ostasis. Its dysfunction has been correlated to a wide array of diseases, but the
understanding of causal mechanisms is hampered by the limited amount of
cultured microbes, poor understanding of phenotypes, and the limited knowl-
edge about interspecies interactions. Genome-Scale Metabolic models (GSMs)
have been used in many different fields, ranging from metabolic engineering
to the prediction of interspecies interactions. We provide showcase examples
for the application of these GSMs and focus on (i) the prediction of minimal,
synthetic or defined media, (ii) the prediction of possible functions and phe-
notypes, and (iii) the prediction of interspecies interactions. All three applica-
tions are key in understanding the role of individual species in the gut ecosys-
tem as well as the role of the microbiota as a whole. Using GSMs in the pro-
posed fashions has led to designs of minimal growth media, an increased un-
derstanding of microbial phenotypes and their influence on the host immune
system, and in dietary interventions to improve human health. Ultimately,
an increased understanding of the gut ecosystem will enable targeted inter-
ventions in gut microbial composition to restore homeostasis and appropriate
host-microbe crosstalk.
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Understanding the gut microbiome

The human gut is colonized since birth with complex microbial communities,
mainly consisting of bacteria with millions of unique genes that show sub-
stantial interpersonal variation in adult life [344]. This complex ecosystem –
the gut microbiome– is an integral part of the gastrointestinal tract (GIT) and
is intrinsically involved in the maintenance of body homeostasis. Aberrations
in the microbial composition have been correlated to a wide array of diseases,
ranging from obesity to diabetes, and from inflammatory bowel diseases to
autism [139, 467]. These correlations have spawned interest in developing
strategies to improve human health by rationally steering this composition
and thereby the function of the gut microbiome [114, 207]. This approach has
been greatly stimulated by the success of transplantations of faecal microbiota,
which showed that ‘bugs-can-beat-drugs’ in fighting recurrent Clostridium dif-
ficile infections [302]. However, rationally steering microbiome composition
and function requires a thorough understanding of the causal mechanisms
underpinning these correlations. Thus far, this understanding has been ham-
pered by (i) the limited amount of cultured and sequenced gut bacteria, (ii)
the poor phenotypic characterization of the majority of gut microbes, and (iii)
the limited understanding of the interactions of microbes with each other as
well as their host. As in other areas of research, the deployment of descrip-
tive and predictive mathematical models has the potential to provide insights
that ultimately enable to overcome these limitations. In this review we will
discuss the use of genome-scale constraint-based metabolic models for an in-
creased understanding of the gut microbiome and its role in gut homeostasis
and (dys-)function.

Genome-Scale Metabolic models (GSMs) in gut mi-
crobiota research

GSMs are mathematical representations of the knowledge on an organism’s
metabolic capacity and have been previously applied in bacterial systems for
a variety of purposes, including the design of cultivation media, phenotypic
characterizations, and study of interspecies interactions (Table 1).

Strong developments in both GSMs and gut microbiome research are
bound to facilitate moving from correlation studies to gaining mechanistic
insights. GSMs can integrate knowledge on the metabolism of one or more
gut microbes and predict how this metabolic system functions and responds
to a constantly changing environment. The gut environment includes nutri-
ent gradients both along the length of the GIT, as well as along the mucosal
gradient and villi, and have strong effects on the microbial function [123, 362].
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GSMs provide a valuable framework for the integrated study of gut function
as they enable the generation of testable hypotheses that can lead to novel
insights into causal relationships between the gut microbiome and human
health. Considerable progress in these relations has been obtained with the
short chain fatty acids (SCFAs) that are produced as main bacterial metabo-
lites in the colon, as illustrated for butyrate, an established functional com-
pound [165, 390]. The impact of SCFAs on metabolic health has been reviewed
recently [342]. In a model system it was found that acetate is secreted by Bifi-
dobacterium adolescentis L2-32 and taken up by Faecalibacterium prausnitzii A2-
165 that in turn produces butyrate. This enabled the prediction of F. prausnitzii
acetate requirements for butyrate production and how this relates to its low
abundance in cases of Crohn’s disease [4], showing how an observed correla-
tion can possibly be explained mechanistically using GSMs. However, recent
research indicated the potential anti-inflammatory activity of a small protein
produced by F. prausnitzii [345].

In the remainder of this review we will discuss the use of GSMs in gut mi-
crobiota research and how GSMs can advance gut research towards the under-
standing of gut homeostasis and (dys)function. We will focus on the metabolic
reactions of the microbes in the gut, on their growth, on their interactions and
on the metabolites produced. These are either primary products of microbial
metabolism or breakdown products of our diets or host compounds, having
a plethora of functions, ranging from SCFAs that fuel enterocytes and have
specific signalling and immune functions, to vitamins and other host growth-
promoting compounds [469]. Most of these metabolites cannot be easily de-
tected in the human GIT as these are taken up by the host and processed in
the liver. Since GSMs stochiometrically represent all metabolic reactions in
a microbe or microbial community, such models enable to estimate the pro-
duction of these transient metabolites, estimate their distributions within the
global metabolic network and provide hypotheses for the metabolic interac-
tions among gut microbes and of those with their host. Moreover, GSMs are
instrumental in optimizing growth of GIT microbes in laboratory conditions
and hence are relevant for the production of biomolecules that are involved
in host signalling, such as TLR ligands or specific functional proteins [322,
345]. First, we briefly describe the process of genome-scale metabolic recon-
struction and its implications for network modeling. Secondly, we describe
applications of GSMs for gut microbiome research that enable: (i) selecting
minimal and defined growth media for previously cultured as well as not yet
cultured gut microbes, (ii) predicting growth and phenotypes of gut microbes
and their influence on health and disease, and (iii) modeling co-cultures and
multispecies interactions of gut microbes and the human host (figure 8.1).
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FIGURE 8.1: Simplified overview of the use of GSM to increase understanding of the
metabolic interactions in the gut microbiome. Individual species require metabolites
(squares) to grow. These metabolites can be predicted by GSMs, which results in
medium and growth (rate) prediction (i, top). The possible solution the bacteria use to
metabolize these metabolites can change under different conditions (ii, middle), which

leads to altered interactions between bacteria (iii, bottom)

Genome-scale metabolic reconstruction and net-
work modeling

The basis of GSM construction is the genome annotation of the microbe of in-
terest since this predicts the enzymes a microbe encodes, and thereby provides
a list of chemical reactions the microbe can perform. This list of chemical reac-
tions forms the draft metabolic model, which is often far from complete [418].
Typically, there are missing reactions due to incorrect, missing, or low-quality
annotations, even for well-studied organisms [317]. Moreover, our knowl-
edge of the biochemical pathways is often insufficient, with unknown conver-
sions still being discovered [58]. These missing reactions – also called gaps
– severely limit the possibilities for GSM analyses, as parts of the metabolic
network are not connected. Therefore, gap-filling algorithms are used to pre-
dict the presence of additional reactions that can be obtained from reaction
databases such as KEGG [200] or Metacyc [66] and used to connect discon-
nected parts of the network [316, 418]. Thereby, these algorithms provide hy-
potheses on enzymes that were missed in the genome annotation. In some
cases, a corresponding gene, not initially annotated as such, is identified and
the genome annotation is improved. In the remaining cases, the reactions be-
come ‘orphan reactions’, i.e., reactions that are thought to occur in the microbe
based on existing pathways of other microbes but that have not been linked to
any genes. The addition of orphan reactions might lead to erroneous model
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predictions, but is often essential to obtain a functioning GSM and facilitates
targeted gene identification [316, 418]. Model construction and gap-filling al-
gorithms have been extensively described elsewhere [316, 324, 418].

After gap-filling, GSMs are expected to be able to sustain in silico growth
of the modeled organism. Growth is modeled as the formation of biomass
in a complex reaction involving a large number of biomass precursors such
as DNA, RNA, proteins, lipids, ATP, NADPH, and various small molecules.
If all of these precursors can be formed in the right ratios the GSM predicts
that growth is possible. The most common way to predict growth phenotypes
is through Flux Balance Analysis (FBA), reviewed in [318]. FBA determines
an optimal flux distribution for the production of biomass components while
adhering to several types of constraints: (i) mass-balance constraints; the pro-
duction and consumption of intracellular metabolites cancels out, (ii) thermo-
dynamic feasibility constraints; reactions can only operate in thermodynami-
cally feasible directions, and (iii) capacity constraints; fluxes through reactions
are bounded to biologically feasible ranges. Capacity constraints are also used
to define the medium conditions by directly defining which metabolites can
be imported. Thereby, GSMs can be easily modified to simulate growth phe-
notypes in a wide range of different experimental conditions.

GSMs are typically evaluated by comparing predicted growth phenotypes
for both wild type and mutant strains to the available experimental data. This
experimental data usually consists of growth measurements for a large num-
ber of media containing different carbon, nitrogen, phosphorus and sulphur
sources. For the comparison, both the experimental data and the GSM pre-
dictions are discretized to the two states ‘growth’ and ‘no growth’. This bi-
nary discretization leads to two different types of inconsistencies: (i) growth
predicted by the GSM but not experimentally found, and (ii) growth that is
experimentally validated but not predicted by the GSM. In the first case, the
GSM overestimates the microbe’s abilities, suggesting it may include reactions
that the microbe cannot perform. In contrast, the other case suggests that the
GSM is missing reactions. This comparison can thus be used to evaluate both
the annotation and the gap-filling process that underlie the GSM construc-
tion. For example, if the removal of a single reaction from the GSM results in
a large improvement of GSM predictions, this suggests that this reaction was
erroneously added and should be considered for removal. This process of
using experimental data to find incorrect GSM predictions and subsequently
making changes to the GSM has also been combined into algorithms, such
as GrowMatch [235], that will make a minimal number of changes to a GSM
while maximizing its coherence to experimental data.

The established manual GSM reconstruction process ultimately results in
high-quality GSMs, but is extremely time-consuming [316]. The advent of
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high throughput sequencing and concurrent rapid increase in available bi-
ological data warrants a faster approach, which is provided by the RAVEN
toolbox [3] and the Model SEED approach [176]. In both cases, the process of
genome annotation, draft GSM construction and gap-filling has been fully au-
tomated, although some level of manual curation is recommended to sustain
a high quality [3, 176].

The need for manual curation in automatically generated GSMs is partic-
ularly relevant for poorly or not yet characterized microbes, which is the case
for many gut-inhabiting microbes. In the annotation step many gene annota-
tions may be missed due to poor homology to known sequences, or due to the
reactions being completely new. Especially in the latter case, there is a large
risk of reactions being erroneously added in the subsequent gap-filling step.
In particular, it is important to be aware of the underlying assumptions in
a gap-filling process. For example, the gap-filling process used by the Model
SEED requires the composition of a medium in which the microbe grows [176].
The established GSM generation process is thus not directly suitable for the
generation of GSMs for microbes with complex dependencies and syntrophic
relations with a host or with other microbes.

Using GSMs to design defined culture media

The basis of classic microbiology is the ability to culture bacteria in a pure
culture on a well-defined medium. Pure cultures have been successfully ob-
tained for over 1000 different gut microbes [350]. However, as it has been
predicted that there are at least two to three times more different gut species,
the majority of gut microbes remain uncultured and inaccessible for study in
isolation [364], although recent studies have increased the number of cultured
gut bacteria [56]. A major issue in the culturing of these microbes is the lack
of suitable growth media. Growth media are often based on the ecosystem
a microbe naturally occurs in, but the gut is extremely complex with many
different nutrients, highly variable nutrient levels, and many interspecies in-
teractions. Here we describe how GSMs have previously been used to design
minimal or defined media, and how a similar approach can be used to culture
not-yet cultured bacteria.

GSMs can be used to reduce a complex growth medium to a minimal
growth medium, as has been shown for the lactic acid bacterium Lactobacil-
lus plantarum WCFS1 [414], and illustrated in figure 8.2. Lactic acid bacteria
are important in many industrial food processes and some are marketed as
probiotics [415]. Therefore, the GSMs of lactic acid bacteria are used to study
their metabolic capabilities and behavior in fermentation processes [416, 441],



8

166 Chapter 8. Metabolic modeling for gut research

as well as their probiotic functions [371, 375]. The GSM of Lactobacillus plan-
tarum WCFS1 was automatically constructed based on its genome sequence
and subsequently extensively manually curated [219, 414]. The GSM was
then used to predict the essentiality of 36 compounds in a chemically defined
growth medium. The GSM predictions were correct for 29/36 (81%) of the
compounds, but were incorrect for the vitamins folate, thiamine, and vita-
min B6, as well as for the amino acids arginine, glutamate, isoleucine, and
tryptophan. The incorrect predictions pinpointed errors in both the GSM con-
struction process and in the experimental procedures, and also pinpointed
distinct metabolic features of L. plantarum WCFS1, for example: (i) The incom-
plete folate biosynthesis pathway in the GSM was in part due to a missing
EC number for a correctly annotated gene, as well as no reactions in Metacyc
for another EC number. (ii) The GSM lacked a complete isoleucine biosynthe-
sis pathway, but growth was observed in the isoleucine omission experiment.
This turned out to be a result of isoleucine contamination in the other amino
acids. (iii) A missing reaction for thiamine biosynthesis was assigned to a gene
involved in molybdopterin biosynthesis. In Enterobacteria these reactions are
carried out by two paralogs, but it appears that both reactions are carried out
by a single enzyme in L. plantarum [414]. These results clearly illustrate how a
GSM-driven systematic evaluation of medium compositions can increase the
understanding of a microbe’s metabolism.

Similarly, a GSM was used to remove all non-essential metabolites from a
rich medium in order to design a minimal medium for the bacterium Lacto-
coccus lactis IL1403 [314]. The GSM predicted that arginine, methionine and
valine are essential for growth, and that either glutamate or glutamine is re-
quired additionally. However, recent single amino acid omission experiments
have led to the conclusion that arginine, asparagine, histidine, methionine,
serine, isoleucine, leucine, and valine are essential medium components for
L. lactis, and that glutamate and glutamine are not [6]. At first glance this
might incorrectly seem like poor performance by the GSM. The agreements
and disagreements between predictions and experiments can be summarized
in three points: (i) they agree on the essentiality of arginine, methionine, va-
line and the non-essentiality of the ten amino acids not previously mentioned,
(ii) they do not evaluate glutamate and glutamine in the same manner - the
GSM predicts that one of them is required, whereas the experiment indicates
that either one can be omitted, but that glutamine cannot be omitted if the
concentration of glutamate is additionally reduced to 10% of the normal con-
centration - and (iii) they disagree on the essentiality of asparagine, histidine,
isoleucine, leucine, and serine, but also disagree on the meaning of ‘essen-
tial’. In the L. lactis IL1403 GSM a compound was essential if its omission
reduced the specific growth rate below 0.01/h. In the omission experiment a
compound was essential if the growth rate dropped below 40% of the growth



8

Chapter 8. Metabolic modeling for gut research 167

rate in the rich medium. This introduces a certain level of ambiguity and, for
example, if the experimental threshold would instead be at 20%, asparagine
and serine would not have been considered essential.

FIGURE 8.2: Suggested cultivation strategy. The initial cultivation strategy of a mi-
crobe can be optimized by thorough analysis of its genome and isolation conditions.
The genome contains information on metabolic pathways, as represented in GSMs,
that inform on auxotrophies and suitable carbon, nitrogen, and sulfur sources. In ad-
dition, the genome annotation can reveal additional considerations such as antibiotic
or bile resistance, or the ability to form spores. The isolation condition of a microbe,
for example the human gut, provides information on suitable environmental condi-

tions such as temperature, pH, and ion strength.

The ability to culture pathogens and probiotics is important to study them
in isolation and to determine their role in the gut microbiome. Therefore, a
GSM was used to design a minimal growth medium for Staphylococcus au-
reus N315, a pathogen that frequently infects hospitalized patients [30]. The
GSM predicted that several amino acids were essential, but in vivo experi-
ments indicated otherwise. Later on, an updated GSM predicted that S. aureus
N315 has no intrinsic auxotrophies for amino acids, but that some particular
isolates do require some amino acids [172]. This discrepancy between the up-
dated GSM and the experimental results for the isolates was explained by the
repression of amino acid synthesizing genes. The repression could be relieved
by progressively eliminating the amino acids from the medium, supporting
the GSM prediction that S. aureus can indeed synthesize these amino acids.
This study showed how a GSM can aid in omitting nutrients from a known
defined medium.
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These three case studies show that GSMs are a good starting point for de-
signing minimal media. In fact, the ability of GSMs to design growth media
was recently emphasized by the development of the Minimal ENvironmental
TOol (MENTO) [464]. MENTO predicts the minimal medium requirements
for an organism based on its GSM, and was used to study broad nutritional
trends in over 2500 automatically generated SEED [176] models. For 5 well-
characterized organisms, the predictions based on the SEED models were also
compared to the predictions based on manually curated models. The compar-
ison indicated that although the SEED models underpredicted growth abili-
ties of the modeled organisms, they are not actually worse predictors than the
manually curated models. Nonetheless, the authors indicate that while the
SEED models are suitable for studying broad nutritional trends, one should be
careful in interpreting results for any specific organism. A SEED model may
thus require some manual curation before using it to predict suitable minimal
growth media.

Such a manually curated SEED model was recently used for minimal
medium design for Faecalibacterium prausnitzii, a prevalent and beneficial
gut microbe that is commonly grown on the chemically undefined YCFAG
medium [173]. The automatically generated SEED model was manually cu-
rated such that it correctly captured the known biochemistry and physiology
of F. prausnitzii. This curation involved changing the biomass reaction, up-
dating reaction directionalities, adding species-specific pathways, and filling
gaps. The curated GSM was then used to predict a chemically defined growth
medium called CDM1. CDM1 did, however, not facilitate in vitro growth
and was subsequently supplemented with additional nutrients to form an ex-
tended medium CDM2, which did facilitate in vitro growth. The researchers
then used LC-MS to identify what metabolites in CDM2 are net consumed,
and what metabolites are net produced. The metabolite consumption and
production data was then used to improve the GSM and the corresponding
genome annotation. Ultimately, the researchers were able to design a refined
and chemically defined medium CDM3 that facilitated both in silico and in
vitro growth, albeit that growth was still rather poor and unreliable [173].

Metagenomic studies [291] and single-cell genomics [226, 239] of gut bac-
teria have already yielded genomes that could be used to create draft GSMs.
However, the available biochemical information to turn draft GSMs into func-
tional GSMs for uncultured bacteria is limited. To gain more insight in se-
creted metabolites and available nutrients in the gut, imaging mass spectrom-
etry can be applied [357]. These uptake and secretion patterns can be incor-
porated into GSMs. We propose to use GSMs to predict minimal or defined
media on which the microbes of interest can be cultured. Combined with
additional ecological and genomic markers, such as temperature, antibiotic
resistance and spore formation, it should be possible to culture more bacterial
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species (figure 8.2). The next steps are in predicting how varying environ-
ments result in different phenotypes.

Phenotype prediction

Most microbes have versatile and complex metabolic pathways. Often, many
alternative pathways are available for the conversion of the available sub-
strate to all biomass components. GSMs can be used to explore all possible
phenotypes for a wild type or mutant strain in a given environment. In ad-
dition, GSMs can be used to interpret experimental data that is difficult to
directly connect to metabolic rates, such as transcriptomics and proteomics
data. GSMs, which are ultimately based on genotypes, are thus a means to
explore possible phenotypes in a wide range of different experimental condi-
tions. The GSM-driven methods for exploring the genotype-phenotype rela-
tionship have recently been extensively reviewed [248]. The ability to predict
how different microbial phenotypes result from different environments can
ultimately have consequences for human health. For example, GSMs may
be able to identify the conditions under which conditional pathogens become
pathogenic [310], or, in contrast, when therapeutic bacteria or probiotics may
convey their beneficial properties [375, 435].

GSM-driven exploration of the metabolic capacities of pathogens has been
explanatory for pathogenic phenotypes. For example, a GSM was used to
predict virulence of Salmonella in a mouse model system. The GSM describes
a very versatile metabolism that enables Salmonella to utilize 31 host nutri-
ents, allowing it to grow fast within the host cell. The GSM predicted the
pathogenicity of phenotypes and was accurate in 92% of the cases [397]. In
addition, it was found that the metabolic capabilities of Salmonella show sim-
ilarities in host dependency for growth substrates and biosynthesis to other
pathogens. Like Salmonella, other pathogens are also capable of degrading
purine nucleosides, pyrimidine nucleosides, fatty acids, glycerol, arginine, N-
acetylglucosamine, glucose and gluconate. Similarly, it was hypothesized that
comparisons of metabolic patterns between Pseudomonas aeruginosa and non-
pathogenic relatives could yield insight into opportunistic pathogenic pheno-
types of this species [310], as has later been done successfully for Burkholderia
species [27]. The metabolic model for the pathogenic P. aeruginosa also showed
a versatile metabolic pattern and accounted for virulence inducing pathways,
such as exopolysaccharide alginate synthesis [354].

Transcriptomics and proteomics experiments aim to discover what an or-
ganism is doing, but the data is often difficult to analyse because there are
no one-to-one relationships between expression levels, protein quantities, and
enzymatic activities. GSMs can aid in elucidating the metabolic activities
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from these data by visualising the data on a metabolic map or by predicting
metabolic fluxes. For example, transcriptomics data of two strains of Lacto-
bacillus reuteri, with potentially opposite effects on the human immune sys-
tem, were analysed by visualising the data on two GSMs. The analysis re-
vealed that both strains produce vitamins, essential amino acids, and mucosal
binding proteins, but that they differed in their production of potential induc-
ers of tumour necrosis factor [375]. The prediction of metabolic fluxes from
omics data relies on the concept that, on average, gene expression levels are a
proxy for enzymatic activities. The GSM then predicts a flux distribution that
matches the trends in the expression data, while accounting for mass balance,
thermodynamics, and capacity constraints. Several such methods have been
developed in the last few years, and have been extensively summarised and
evaluated recently [259].

A different approach to find out what an organism is doing, rather than
what it can do, is by combining GSMs with other models, such as regulatory
networks [68, 127, 212]. The regulatory networks of well-studied species such
as E. coli, M. tuberculosis and M. genitalium have been elucidated and incorpo-
rated in metabolic models [65, 203, 215]. Based on these model organisms, at-
tempts have been made to automate the incorporation of regulatory networks
into GSMs [308], also especially aiming at less well-characterized species [69].
These models incorporate the influence of environmental factors on the behav-
ior of the modeled organism, which may be extremely relevant for microbes
residing in a dynamic environment such as the human gut.

These examples show how GSMs can be used to explore possible pheno-
types, and to predict actual phenotypes based on omics data or regulatory
models. We propose to use GSMs in combination with transcriptomics data
to predict the phenotypes of gut bacteria. In this way, the role of bacteria can
be predicted under different gastrointestinal conditions, on which also other
microbial species have a big influence.

GSM predicted co-cultures and interspecies interac-
tions

Within the gut microbiome there are numerous microbial interactions and net-
works. Three types of simple multispecies interactions have been described
and modeled before: mutualism, commensalism and neutralism [221, 271].
GIT-colonizing microbial species often depend on each other for growth sig-
nals and substrates or compete for the metabolites, thus this ecosystem is ideal
for the modelling of interspecies interactions and using interspecies interac-
tions predictions to gain a mechanistic insight into this ecosystem [48, 191].
Interactions between microbes have been modeled on different phylogenetic
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levels, ranging from strains [430] to species [370, 403] and ecosystem com-
munities [246]. The different modes of modeling are described below and
summarized in figure 8.3.

FIGURE 8.3: Modes of interspecies interactions as modeled before. Pairwise interac-
tions only account for two species to share metabolites. Multispecies models allow
sharing of metabolites between more than two species. Microbiota-host interaction
models lump all the microbial species into one meta-model and model the interaction
with the host. Microbe-microbe and microbiota-host interactions are multilevel models

that take into account microbial interactions and interactions with the host.

The most straightforward way to create multispecies GSMs is by combin-
ing multiple GSMs into a single model, where the individual GSM networks
share the extracellular environment. This approach has been taken to model
an ecologically relevant mutualism between the bacterium Desulfovibrio vul-
garis and the archaeon Methanococcus maripaludis S2 [401]. In this syntrophic
relationship, D. vulgaris ferments lactate, and M. maripaludis consumes the fer-
mentation products formate, dihydrogen and acetate. This work addressed
several challenges in the use of multispecies GSMs that originate from the
presence of two independent types of biomass. Normally, for single-species
models, all fluxes in a GSM are scaled to the amount of biomass [mmol gdw−1

h−1], and FBA is used to predict a flux distribution that leads to maximal
biomass production. In the case of a multispecies GSM both of these charac-
teristics become problematic. The first issue is problematic because there are
two different types of biomass, but was solved by re-scaling, and expressing
all fluxes in [µmol h−1]. The second issue is problematic because although the
assumption that the metabolic goal of a single microbe is to produce biomass
is reasonable, it is not reasonable to assume that multiple different microbes
strive to produce as much biomass as possible, irrespective of which species it
belongs to. In this study, the second issue was evaluated by adding different
weights to the different biomass reactions. The predicted biomass production
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for D. vulgaris was practically independent of the relative weights, whereas
the M. maripaludis biomass production increased if it received higher weights.
This is due to the sequential nature of the interaction between these bacteria,
where D. vulgaris effectively ‘feeds’ M. maripaludis. Such a direct approach to
multispecies GSMs does not work in case of cross-feeding or substrate com-
petition.

A GSM containing seven well-known species was constructed to predict
pairwise modes of interaction, but not for all species simultaneously [221].
This number was rapidly expanded to 118 species coupled in 6.903 pairs
driven by automated curation of over a hundred GSMs [146]. The compe-
tition between the bacteria was measured by pairwise simulated growth on
media that stimulated competition by using overlapping resources. Similarly,
cooperation was simulated by using a medium that contained the minimal re-
sources for both bacteria to grow. Competition was generally won by species
that grow fast on versatile media, such as E. coli. Cooperation was more evi-
dent in Clostridia species that are able to degrade lignin and cellulose, which
releases free sugars to other bacteria. This type of macromolecule degrada-
tion is highly important in degradation of host dietary compounds and thus
directly relates to gut health.

Instead of looking into the details of the interactions between a few species,
GSMs have also been used to elucidate general properties of the co-occurrence
of microbes. Specifically, there are two main mechanisms driving species co-
occurrence: (i) habitat filtering: microbes occupy a similar nutritional niche
and compete, and (ii) species assortment: microbes have complementary
metabolisms and cooperate. A recent study aimed to identify which of these
two mechanisms is the driving force behind the co-occurrence of microbes
in the human gut [246]. Therefore, they automatically generated 154 GSMs
based on KEGG [133, 200] for gut microbes whose co-occurrences were de-
termined based on a gut metagenome dataset containing measurements from
124 individuals. These GSMs were used to determine metabolic competition
and complementarity indices between each pair of species. As the species
co-occurrence was best explained via the metabolic competition index, the au-
thors concluded that habitat filtering is the main driving force behind species
co-occurrence in the human gut. In an other recent study, GSMs were used to
study species co-occurrence based on 261 microbial species in 1297 commu-
nities from diverse habitats [465]. The GSMs were used to calculate both the
resource competition and interaction potential within these communities. Re-
source competition was significantly higher in the 1297 communities versus
random assemblies, indicating that habitat filtering was again identified as
the main driving force behind community composition. However, there were
also 7221 subcommunities of up to 4 co-occurring species within the larger
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communities. Within these subcommunities, the interaction potential – de-
fined as the difference in minimal number of metabolites required for growth
between a non-interacting and a cooperating community - was significantly
higher than in full communities and random assemblies.

In order to understand how gut communities form and change, it is im-
portant to consider spatial and temporal effects. The novel modelling frame-
work COMETS [167] - COmputation of Microbial Ecosystems in Time and
Space – simulates multiple GSMs on a lattice over time using dynamic FBA
[167] COMETS does not require any prior information on how the mod-
eled microbes interact, but nonetheless captures interesting and non-intuitive
spatiotemporal dynamics of multispecies interactions. For example, it cor-
rectly predicted that the slowest-growing microbe of a three-species ecosys-
tem would also ultimately be the most-prevalent one, and that the growth
rate of a colony with a mutualistic partner can be improved by placing a
competing colony in between them. COMETS has also been used to study
how robust competing and mutualistic interactions are to genetic perturba-
tions. Specifically, it has been possible to predict the effects of gene knock-
outs on a synthetic community of Escherichia coli and Salmonella enterica [166]
on competition-inducing and mutualism-inducing growth media [81]. Inter-
estingly, the community was more robust to genetic perturbations in E. coli
under cooperative conditions, but more robust to genetic perturbations in S.
enterica under competing conditions [81]. These results highlight that GSMs
can mechanistically explain the intriguing interactions of multispecies inter-
actions.

A multispecies interaction of particular interest is the interaction between
gut microbes and their host. The host is the most important environmental
factor for gut microbes, but is also metabolically active itself. GSMs have been
created for hosts of particular interest, such as mouse [385] and human [421],
and have even been trimmed down to tissue-specific GSMs, including a GSM
for colon-derived tissue [56]. The mouse GSM [226] was recently used to study
how different diets and the presence of the gut microbe Bacteroides thetaiotaomi-
cron affect its metabolism [173]. A B. thetaiotaomicron model was constructed
using SEED [176] and, after manual curation, was linked to the mouse GSM
via a shared lumen compartment. Although a single microbe is not directly
representative of the gut community, the combined GSM mechanistically ex-
plained how both organisms benefit from the mutualism, correctly predicted
how the interaction affects biofluid metabolome composition, and even de-
scribed how gut microbes can rescue hosts with lethal gene deletions [173].

Host-microbe interactions have also been modeled using a single ‘supra-
organism model’ [48] to represent all gut microbes. These GSMs don’t focus
on individual microbes or their interactions, but rather on the interaction of
the community with the environment or host. Such a GSM was used together
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with metagenomics data to study how host-microbe interactions differ in case
of obesity or inflammatory bowel disease (IBD) [158]. This revealed a dif-
ferential expression of enzyme groups expressed by the complete microbiota
between diseased and healthy people, without investigating the roles of indi-
vidual species or their interactions. The differences were found in the upreg-
ulation of membrane transport and downregulation of vitamin metabolism,
nucleotide metabolism and transcription. This study suggests that the differ-
ences in enzyme expression originate from an altered interaction between the
microbes and their environment. They are the result of a change in the en-
vironment of the bacteria and do not come from a change in core metabolic
processes. By combining previous approaches of modelling interspecies inter-
actions and considering the whole microbiota as one entity, a predictive tool
for dietary interventions was created [384]. The tool, CASINO - Community
And Systems-level Interactive and Optimization - predicts dietary interven-
tions based on interactions between the host, the microbiota and the applied
diet. CASINO was used to model the interactions of four microbes in two syn-
thetic communities that differed by a single microbe. It correctly predicted the
produced metabolites, including essential amino acids, and the contribution
of each species to the production of each metabolite. CASINO was then used
to predict the impact of a dietary intervention in 44 individuals, based on rela-
tive abundances of the most prevalent microbes in each individual before and
after the intervention. The predicted production of SCFAs and amino acids
mostly matched the in vivo measurements. Finally, CASINO was used to de-
sign a beneficial diet for subjects with a poor microbiota composition [384].

We propose to use predictions for multispecies interactions to study the
influence of perturbations in environmental factors and communities. In this
way it can be predicted how individual species contribute to healthy and dis-
eased conditions. Moreover, this approach was instrumental in the prediction
of diets to improve the metabolic function of gut microbiota [384]. Ultimately,
this will lead to increased understanding of the interactions of the gut micro-
biota and its host, on its role in gut homeostasis and (dys-)function and should
pave to way to improve human health by the use of specific gut microbes or
dietary interventions.

Conclusion and perspectives

After a few decades of characterizing gut microbiota composition many gut
microbes have been sequenced [333, 344]. Over 200 of these genome sequences
have been used to generate GSMs, in most cases by automated tools [66, 176].
These GSMs have been used to predict growth phenotypes of single microbes
and communities in laboratory and in vivo settings.
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Here, we reviewed three ways in which GSMs contribute in elucidating
gut microbiome function. We described how GSMs are used to: (i) culture
bacteria, (ii) predict bacterial phenotypes under changing conditions and (iii)
study the interactions both among the bacterial species and with their host.

We have shown that recent advances in automated generation of GSMs
[176], single-cell genomics [41], metagenomics [154, 344] and metatranscrip-
tomics [18, 19, 268] can increase the availability and accuracy of GSMs.
Metagenomic as well as single-cell genomics yield more full genomes se-
quences of microbes that can be used for generating GSMs. These GSMs will
contribute in understanding how both uncultured and cultured bacteria live
and behave in complex ecosystems [191]. In vivo or in vitro validation of
GSM predictions and subsequent GSM updates remain key in improving GSM
quality and ultimately understanding the complex gut ecosystem.

GSMs allow understanding why species are present and what they do, in-
stead of who they are, as was the focus in the last decades. We expect that
GSMs will contribute to elucidate the mechanisms behind known probiotics,
as well as in identifying new probiotics, and understanding the role of differ-
ent bacteria in complex ecosystems. Ultimately, GSMs can contribute to the
design of controlled interventions that steer gut composition and activity to
improve human health.
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The goals of this thesis were: To increase the understanding of microbial
metabolism and to functionally redesign microbial systems using metabolic
models. The metabolically versatile bacterium P. putida was used as a case
study.

P. putida: Model-driven discovery and design

A defining feature of P. putida is its ability to degrade an immense variety
of compounds [84, 195, 424], including hard-to-degrade aromatics [290, 327,
372]. Nonetheless, many degradation pathways of P. putida have not been
fully elucidated. This is highlighted by the inability of the most comprehen-
sive P. putida Genome-Scale Metabolic model (GSM) iJP962 [311] to degrade
120 compounds in silico, whereas P. putida can degrade these compounds in
vitro (chapter 2). This GSM is based on extensive literature research as well as
the P. putida KT2440 genome annotation from 2002 [290].

Therefore, we structurally and functionally reannotated the P. putida
KT2440 genome (chapter 2). The structural reannotation identified 311 CoD-
ing Sequences (CDS) that were not identified previously, and determined that
102 previously identified CDS were false positives. The total number of iden-
tified CDS in P. putida is now 5592 versus 5350 in 2002 [290]. The functional
reannotation associated 1250 CDS to EC numbers versus 463 in 2002 [290]. In
total, 902 unique EC numbers are assigned in the updated annotation versus
the 360 previously, suggesting that the updated genome annotation provides
a substantially expanded view on P. putida metabolism.

A crucial part of the functional reannotation was its contextualization and
assessment using the GSM iJP962. In an iterative approach, the GSM was
(i) expanded based on reactions corresponding to newly annotated genes, (ii)
used to evaluate the contribution of these new reactions in resolving knowl-
edge gaps, and (iii) used to generate hypotheses on missing functional an-
notations for manual inspection. This iterative approach ultimately enabled
the elucidation of proposed degradation pathways for 86/120 compounds for
which these were not present in iJP962; a substantial increase in coverage of P.
putida metabolism.

The combination of reannotation and GSM expansion pinpointed future
research directions to increase and consolidate the understanding of P. putida
metabolism: (i) Verification of annotation and proposed degradation path-
ways. In particular, the degradation pathways for several compounds consist
of reactions that were absent from biochemical databases or rely on enzyme
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promiscuity to extend substrate specificity. These newly proposed degrada-
tion pathways warrant experimental verification. (ii) Identification of trans-
port systems. The lack of identified transporters and corresponding mecha-
nisms played a major role in the inability of the GSM to successfully degrade
compounds. (iii) Update of the P. putida GSM. In this study the GSM was
extended to evaluate whether newly identified genes and corresponding re-
actions closed the knowledge gap on degradation pathways in the context of
the rest of metabolism. However, the created GSM should, in my opinion, not
be regarded as an updated GSM to use henceforth. In particular, the GSM
was only modified to decrease false negative growth predictions, but not false
positive growth predictions, and inconsistencies between the GSM and the
updated annotation were not addressed. A substantial effort remains to thor-
oughly update a P. putida GSM based on recent experimental literature and
the updated annotation.

To create an updated P. putida GSM I would start with PpuQY1140 [463].
PpuQY1140 is a recently published consensus P. putida GSM that was gen-
erated using a pathway-based systematic comparison of iJN746 [298], iJP962
[311], and PpuMBEL1071 [395]. This pathway-based comparison was focused
on differences in predictions between the GSMs, which is complementary to
the topological differences we identified between iJN746 and iJP962 using
COMMGEN in chapter 3. As PpuQY1140 is mostly based on iJP962 [463], and
an updated version of iJN746 is expected ’soon’, I suggest using PpuQY1140,
the updated iJN746, and the reaction list corresponding to the updated anno-
tation (chapter 2) as an input for COMMGEN to create a P. putida consensus
GSM. This GSM will comprehensively represent the available knowledge on
the metabolism of P. putida.

P. putida is commonly found in soil, especially in polluted soils, while other
members of the Pseudomonas genus inhabit very different growth environ-
ments. For example, P. syringae is a well-known plant pathogen that is also
commonly found in clouds at several kilometers altitude and has been hy-
pothesised to cause precipitation using an ice-nucleation protein [287, 339],
and P. aeruginosa is an oppurtunistic and antibiotic-resistant human pathogen
that thrives in hospitals. These distinct lifestyles in the Pseudomonas genus
suggest that there is an immense functional genetic diversity among its mem-
bers, but also that the core genome is enriched for universally essential fea-
tures. In chapter 4 we evaluated this hypothesis by linking the persistence
of protein domains, i.e., the fraction of strains having a particular protein do-
main, with the essentiality of the corresponding genes. As gene essentiality
data is limited in both represented organisms and experimental conditions,
we complemented the available data with simulated data obtained using sev-
eral previously published Pseudomonas GSMs [49, 298, 310, 311, 341] exposed
to thousands of different growth media. This large dataset of gene essentiality
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combined with an analysis of 432 published Pseudomonas genomes demon-
strated a clear link between persistence of protein domains and gene essen-
tiality.

The aforementioned GSM applications describe the use of GSMs to in-
crease understanding of genetics and metabolism in a purely in silico manner.
If, however, the description of microbial metabolism in GSMs is sufficiently
accurate, they may also have the potential for the functional redesign of mi-
crobes. Based on the work presented in this thesis, I will discuss four different
avenues of this model-driven redesign: (i) further extending the P. putida sub-
strate spectrum, (ii) enabling anaerobic growth in P. putida, (iii) enabling CO2

fixation in P. putida and other organisms, and (iv) metabolic engineering.
There are several compounds that P. putida does not degrade in vitro, while

complete degradation pathways appear to be genetically encoded (chapter 2).
The only missing functionality appears to be the lack of transport proteins for
these compounds. This suggests that the substrate spectrum of P. putida may
be further enhanced by the heterologous expression of transporters for these
compounds. Irrespective of the successful degradation of these compounds
following the expression of a transporter, these experiments will either con-
solidate or increase knowledge on P. putida metabolism; successful degrada-
tion strongly supports the presence of the pathways, whereas a lack thereof
pinpoints errors in the current understanding of P. putida metabolism.

Enabling an anaerobic lifestyle in P. putida has been a goal of several prior
experimental studies [238, 292, 377, 395, 398] that have so far consistently re-
sulted in increased anaerobic survival, but not in growth. In chapter 5 we
present an alternative systems biology approach to the design of an anaer-
obic P. putida. This approach is based on complementary in silico analyses
that have been used to identify potential bottlenecks to anaerobic growth in
P. putida. The identification of these bottlenecks has enabled the design of P.
putida strains that are capable of anaerobic growth according to the P. putida
GSMs. One of these designed strains is currently being evaluated experimen-
tally with very promising preliminary results.

Microbial CO2 fixation has the potential to drive the biobased economy
by eliminating the need for cultivating, harvesting, and chemically pretreat-
ing the plant biomass. The organisms naturally fixing CO2 and the employed
pathways are, however, not necessarily the most optimal for industrial ex-
ploitation. Therefore, in chapter 6, we used species-specific GSMs as a basis
to design CO2 fixation pathways for eight industrially relevant organisms in-
cluding P. putida. These pathways were primarily selected for high growth
rate predictions in the GSM, but also for their ATP-efficiency, thermodynamic
feasibility and attractive kinetics. For all eight organisms the introduction
of efficient CO2 fixation pathways requires surprisingly few non-native re-
actions.
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Metabolic engineering refers both to the theoretical model-driven strain
design for the production of a compound, as well as to the experimental re-
alization thereof. Although none of the chapters of this thesis delves into
metabolic engineering, a big part of my PhD work has been devoted to this
topic nonetheless. Currently, we are creating and evaluating pyruvate pro-
duction strains that were designed using a combination of the iJP962 GSM
[311] and a modification of the OptKnock [59] strain design method that uses
objective tilting [129], which is conceptually similar to RobustKnock [411] but
faster and easier to implement. Unfortunately, at the time of this writing, I
cannot yet conclude whether the in silico predictions accurately describe the
phenotypes of the designed strains.

GSMs have been a cornerstone of the research presented in this the-
sis. They have been pivotal in increasing the understanding of P. putida
metabolism, and have led to interesting strain designs. However, during this
work I have also been confronted with many misconceptions and issues sur-
rounding the use of GSMs. In the remainder of this chapter I will focus on
these topics and provide my outlook on what can be improved. In particular,
I will focus on: (i) Non-biological artifacts in GSMs stemming from the gener-
ation procedure, (ii) the role of GSMs as comprehensive knowledge base, (iii)
the relation between GSM predictions and experimental data, (iv) the evalua-
tion of GSM quality, and (v) the role of GSMs in metabolic engineering.

GSM generation artifacts

GSM generation involves many choices on the followed procedure. For ex-
ample: (i) The used gene caller, (ii) the used gene annotation method, (iii) the
reaction database to use, (iv) the reaction directionality determination method,
(v) the gap-filling method, (vi) the biomass reaction, and (vii) the process for
manual curation. Each of these choices ultimately affects the exact contents
of a GSM. GSM contents thus not only reflect the biology of the modeled or-
ganism, but also contain artifacts stemming from the generation procedure.
Hence, when multiple GSMs are independently made for the same organism
they may end up being practically incomparable (chapter 3). The problem
surrounding GSM generation artifacts only becomes truly apparent when try-
ing to use GSMs to contrast two or more organisms. Specifically, any observed
differences can be true biological differences, but may also just reflect the dif-
ferent GSM generation procedures (chapter 6).

To avoid GSM generation artefacts from impacting a comparison between
GSMs, the GSM have to be generated according to the exact same procedure.
Therefore, I think that the focus of future GSM generation should be on auto-
mated procedures such as the Model SEED [176] and the RAVEN toolbox [3].
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Currently the automatically generated GSMs still require extensive manual
curation, and it should, in my opinion, be a priority of the metabolic model-
ing community to decrease this requirement as much as possible.

The GSM generation artefact that is the most problematic, in my experi-
ence, is the lack of a common chemical naming system (namespace); a re-
curring problem in my work (chapters 2,3,6,7). The namespace in a GSM
is typically based on reaction databases such as KEGG [201], metacyc [66],
and rhea [286], or on a specifically designed GSM namespace such as BiGG
[217], or SEED [176], or on a reference namespace such as MNXref [36], or
what also happens, unfortunately, is that the GSM creators design their own
novel namespace, or that multiple namespaces are used within a single GSM.
The lack of a commonly used namespace is a substantial hurdle when not us-
ing a GSM in complete isolation, for example: (i) Gap-filling methods require
the same namespace between GSM and reference database, (ii) Integrating
metabolomics data requires a matching namespace, (iii) Determining reaction
directionalities via Equillibrator [138] requires the KEGG [201] namespace, (iv)
Combining reactions from different sources requires a common namespace,
(v) Determining reaction directionalities via network patterns [149] requires
reference GSMs in the same namespace, (vi) Using multiple GSMs requires a
common namespace or separate scripts for each GSM.

The conversion of one namespace to another is not straightforward, al-
though somewhat simplified through reference namespaces such as MNXref
[36]. MNXref is a specifically designed namespace that connects to other
namespaces commonly used for metabolic modeling. Still, however, a ref-
erence namespace can not fully solve the namespace problem between GSMs
as namespaces also operate on different granularities, for example, one GSM
may contain ’glucose’ whereas another contains ’α-D-glucose’. In chapter
3 we demonstrate that network topology can be used to further match the
namespace of GSMs and reaction databases that operate on different granu-
larities. As it is unlikely that a single namespace will be adopted by the GSM
community, there is an urgent need for an easy and suitable method to convert
one namespace to another.

GSMs as comprehensive knowledge base

GSMs are regarded as comprehensive mathematical representations of the
current knowledge on the metabolism of an organism. Their generation is,
as aforementioned, a rather ambiguous process involving many choices. Typ-
ically the process and choices are not fully transparent to the end-user as the
ambiguities and exact choices are not recorded. For example, the provenance
of why reactions are included is often missing. Reactions that have gene asso-
ciations are not exempt from this requirement of provenance. Specifically, the
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GSM creators should record on what basis the corresponding gene was anno-
tated, which tools were used, which versions of these tools, which reference
databases, and ultimately how certain it is that this gene-protein-reaction as-
sociation is actually correct (chapter 4). Without this information, the end-user
will simply have to accept the GSM as ’the truth’, or will have to manually as-
sess the validity of all its contents. In addition, GSMs are already outdated by
the time they are publically available. The time between the initial phase of
genome annotation and draft GSM generation and the final publication eas-
ily extends over more than a year. From a somewhat pessimistic perspective,
GSMs are thus rather ambiguous and outdated representations of the knowl-
edge on the metabolism of an organism.

Eventually an updated GSM is published, typically a few years later by
the original creators, and the rest of the field gains access to a more up-to-date
representation of the knowledge on the organism’s metabolism. This time-
discrete publishing of GSMs does not reflect the continuous developments in
annotation tools, reference databases, reaction databases, experimental char-
acterization, and in the GSM itself. The scientific community as a whole would
be better served via continuous development and sharing rather than the oc-
casional publication describing a major GSM update.

Continually updated GSMs can be obtained via platforms for automatic
GSM generation such as the Model SEED [176] and the RAVEN toolbox [3].
The automatic generation of GSMs has the benefit of a clear procedure without
human intervention implying that, in principle, all contents of the GSM can
be accounted for; there can be full automated provenance. For example, for
each reaction in an automatically generated GSM the origin of its reversibil-
ity can be pinpointed, whereas this is not possible if undocumented manual
choices were made. Nonetheless, there remains tremendous value in the ex-
tensive manual curation that is typically applied during GSM generation, as
highlighted by the remaining need to curate automatically generated GSMs
[3, 173, 176]. This need for manual curation does, however, result in a simi-
lar situation as for manually generated GSMs where the scientific community
does not have continuous access to an up-to-date GSM.

Currently, the scientific community thus has to choose for continuous GSM
updates via automatic GSM generation, or for high quality via manual GSM
curation. In order to improve the access to curated and up-to-date informa-
tion a new framework is required. To me, a wiki-based framework for GSM
construction, curation, expansion and analysis seems ideal. A wiki has several
advantages over the current system:

• Provenance. All (suggested) modifications can be stored such that com-
plete provenance is kept. This enables to track why each and every com-
ponent of the GSM was included.
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• Dynamic links to external resources. I would not suggest to automati-
cally update the GSM based on an update in an external resource, but
rather to flag the relevant part of the GSM for inspection. Examples of
relevant resources are (i) the genome annotation, (ii) a reaction database,
(iii) a thermodynamics calculator such as Equillibrator [138], and (iv)
GSMs of closely related organisms.

• Ongoing development. Currently, if a GSM user finds an error there is
no system to broadly inform other users. In the best-case scenario the
error will be reported to people working on a GSM update, and in a few
months to years other users will also benefit from the fix. In contrast,
a wiki encourages all users to provide their expert insights from which
other users directly benefit.

• Consensus representation. As aforementioned, the correct representa-
tion of biological information in GSMs is ambiguous. This ambiguity
can become evident if alternative representations of a process can be
suggested and discussed by domain experts. Ultimately, a community-
consensus can be used to select the final representation, rather than the
opinion of the small group of scientists publishing a GSM.

• Version control. It is not uncommon that multiple versions of a GSM
can be found online with little to no description on how they relate to
the version accompanying the corresponding article. I have even seen
several examples where the version of a GSM described in the paper
does not match the accompanying SBML file in terms of number of reac-
tions, genes, metabolites, or predictions. An online resource that tracks
changes can provide a date or version stamp whenever an analysis is run
or the GSM is exported, enabling other users to use the same version to
repeat an analysis.

• Ease of access. Arguably, a git repository would share many of the same
benefits as a wiki. A wiki is, however, easy to use for people with lim-
ited programming experience. Given that GSMs ideally incorporate ex-
pert knowledge from various non-computational disciplines, their in-
spection and curation should be facilitated.

• Standardized testing. As discussed further below, I have found GSM
evaluation to be lacking both in extent and standardization. The extent
can be increased in a community-framework as any user can submit new
testing criteria and data. I expect standardization within a community
to follow as scientists will discuss the advantages and disadvantages of
testing approaches.
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Model predictions and experimental data

Models are simplifications of real systems that approximate the real system’s
behaviour in their predictions. If the model predictions do not match the be-
haviour of the real system, it is logically concluded that the model is wrong.
However, in the case of GSMs, these conclusions should not be so readily
draw as there is a fundamental mismatch between what GSMs describe and
what is typically available as experimental data. GSMs describe the theoret-
ical potential of an organism, whereas data represent what the organism did
in a particular instance. In addition, some commonly used data types are but
proxies for what they represent, for example BIOLOG [43] data.

BIOLOG experiments are commonly performed to evaluate whether or not
an organism can use a wide variety of different carbon (C), nitrogen (N), phos-
phor (P) and sulfur (S) sources [43]. They are typically carried out using sev-
eral 96-well plates where each well contains a default medium lacking a C, N,
P, or S source, corresponding to a supplemented metabolite that potentially
serves as a source for that element. In addition, each well contains a tetra-
zolium dye. This tetrazolium dye is a redox indicator, and will color purple
with ongoing on redox activity. Redox activity in a particular well implies
that the organism can process the corresponding compound. Subsequently,
the capability of processing is taken as a proxy for growth and used for the
validation of GSMs [130, 176, 312] (chapters 2,3). However, correct predic-
tions regarding the ability of an organism to grow in a particular medium,
may thus be deemed incorrect based on the BIOLOG data.

The BIOLOG data published as part of [294] demonstrate another implicit
inconsistency between GSM predictions and experimental data. GSMs played
no part in this particular work, but GSMs could never describe the accompa-
nying data. In this work, P. putida knockout strains were created that either
missed the soluble transhydrogenase sthA or the membrane-bound transhy-
drogenase pntAB or both. These strains were subsequently subjected to BI-
OLOG experiments, and several ’gain-of-function’ phenotypes are reported.
From the functional standpoint of a GSM, this is impossible; a reduction in
available enzymatic activities can never lead to a new flux mode. Possibly,
the ’gain-of-function’ phenotype is a result of the knockout strain having a
perturbed regulatory network. This can not be captured by GSMs analy-
ses as these assume that regulatory systems have evolved to enable optimal
metabolic activities, which is not the case for genetically modified strains or
strains that are subjected to new growth media. These strains first have to
undergo experimental evolution.

Experimental evolution has succesfully pushed strains to phenotypes that
were priorly predicted by a GSM. This holds for both the adaptation of wild-
type strains to a particular substrate [186, 249], as well as for the adaptation
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of genetically modified strains to their new genotype [140, 141]. Experimental
evolution is, in my opinion, an integral part of any GSM-driven strain design.
I do not think that this should be considered as a downside, but rather as an
opportunity to have Nature’s optimization algorithms work for us, solving
problems we may not even be aware of, and tuning the system to optimality
in a way we can currently not realize via rational engineering. We will use ex-
perimental evolution for the practical implementation of the work presented
in chapters 5 and 6. Note that the main difficulty in using experimental evolu-
tion is the identification of the conditions under which the desired phenotype
is evolutionary favorable. In the examples mentioned in chapters 5 and 6 this
is trivial, as both aim to enable growth and increase growth rates.

For any experimental evolution set-up, it is important to consider the dis-
tinction between growth rates and growth yield. GSM predictions are often
interpreted as growth rates [129, 176], but what they predict is the growth
yield [249, 417]. In practical terms, this means that experimental evolution for
GSM-based predictions requires a system where cells are not competing for
resources, and selection is based on final biomass production. Alternatively,
GSMs can be modified such that growth rate is predicted instead of growth
yield. The reason GSMs predict growth yield is the unlimited flux for most re-
actions, and the lack of a link between how much protein is required to main-
tain a particular flux. Thermodynamically efficient reactions typically have
poor kinetics, and thus require a lot of protein to maintain a sufficient flux.
As GSMs do not explicitly model proteins, there can effectively be an infinite
amount of proteins catalyzing these reactions with poor kinetics. If a GSM is
to predict growth yield, it will thus have to be expanded to include molecular
crowding, and to describe the relationship between protein abundance and
attainable flux for each reaction.

GSM evaluation

GSMs — like most mathematical models — are commonly published along
with an evaluation of their quality. If the quality of the GSM is deemed high,
this suggests that its predictions are trustworthy and that the GSM can be used
for a large variety of applications. There is, however, no clear standard proto-
col to determine the quality of a GSM, which has both benefits and drawbacks.
A clear benefit is that GSM evaluation can be tailored to the modeled organ-
ism for optimal relevance. A drawback is that the lack of a common standard
complicates the comparisons between GSMs, and enables the cherry-picking
of evaluation criteria for a given GSM.

The lack of a common standard for GSM evaluation is not only restricted
to which methods are being used, but also how they are used. For example,
consider the most commonly used method for GSM evaluation: phenotype
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predictions. Conceptually, this method evaluates the ability of the GSM to
predict whether or not a wildtype or mutant strain of the modeled organ-
ism can grow in a variety of environments. In principle, the analysis seems
straightforward: Use FBA [318] to predict whether growth is possible in var-
ious media conditions for which experimental data is available, and compare
the predictions and experimental measurements. However, there are various
ways in which this analysis can be approached. In short, there are differences
in: (i) The used reference data. For example, in [235] phenotype prediction ac-
curacies of multiple GSMs are presented while these are generated based on
different datasets. (ii) The used summary statistic. In many cases the accuracy
is reported, but also the geometric mean accuracy [232], and the Matthews cor-
relation coefficient [266] are used [170]. (iii) The definition of growth. There
is no universal threshold growth rate above which in silico ’growth’ occurs
and below which not. For example, in silico gene essentiality has been defined
as resulting in growth rates ==0 [319], <0.001 [39], <0.01 [314], <5% of wild-
type growth rate [363], or < a cut-off growth rate depending on other mutant
strains [111]. (iv) The implication of non-modeled information. If a gene is not
included in a GSM, this can either be interpreted as the GSM predicting it is
not essential, or that the GSM can not make a prediction regarding the gene’s
essentiality. (v) The implication of dependent data. Suppose a gene deletion
leads to an auxotrophy in vitro, but not in the GSM. The GSM is thus incorrect
in the prediction of the gene essentiality, but will also correctly predict that the
gene is not essential if the medium is supplemented with the compound for
which the deletion strain is auxotrophic. In my opinion, the latter prediction
is irrelevant given the inaccuracy of the former.

The suitability of phenotype predictions as GSM evaluation method is also
somewhat dubious considering the role these predictions play during model
construction. Growth phenotype data is typically used during model con-
struction to match the in silico and in vitro phenotypes [418]. In particular,
algorithms such as GrowMatch [234] will modify a GSM to maximize the con-
sistency between its predictions and experimental data. Other types of model-
ing often have distinguished ’training data’ and ’test data’. The training data
is used during model construction, and the test data is used to evaluate how
the ’trained’ model performs. For GSMs this concept is not directly suitable as
the ability to use a specific substrate likely depends on some substrate-specific
reactions that would not be added if that substrate was not part of the train-
ing data. Nonetheless, it is not surprising that GSMs can accurately predict
growth phenotypes if they were specifically altered to predict these growth
phenotypes.

Growth phenotype predictions also do not capture all relevant GSM char-
acteristics. For example, a GSM that has thermodynamically infeasible cycles
resulting in unrealistically efficient ATP generation and in CO2 fixation can
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outcompete other GSMs for the same organism in terms of phenotype predic-
tions (chapter 3).

The second most commonly used metric for GSM evaluation is ’scope’.
Conceptually, the scope of a GSM reflects how much biological knowledge
is represented in the GSM. A rough indication of this is the sheer number of
reactions, metabolites, and genes that are included in the GSM. A more precise
estimate also considers the fraction of reactions that were added during gap-
filling and are not based on the genome annotation. Although the scope thus
represents comprehensiveness and biological relevance of the GSM, it does
not provide any information on the quality of the GSM predictions.

Phenotype predictions and scope both provide insight into the quality of a
GSM, but are not suitable as sole evaluation criteria. The GSM evaluation cri-
teria should assess GSMs on those aspects that are relevant for their intended
applications. The applications and validation methods hardly overlap, how-
ever. For example, Oberhardt et al. described six different validation methods
and thirteen applications, but only the prediction of essential genes falls in
both categories [309]. Here, I will discuss a variety of potential evaluation
criteria that are intended to probe different aspects of GSM quality.

The first set of criteria relate to the individual contents that make up a
GSM. Each individual reaction should be elementally balanced, its direction
should be thermodynamically supported, and there needs to be full prove-
nance on why the reaction was included in the GSM. Each metabolite should
be clearly linked to at least one major chemical database to avoid ambiguous
metabolites (chapter 3). Without this information, the GSM validity of the
GSM contents can not be independently confirmed.

The second set of criteria is that that there can be no cycles that arbitrarily
spend or gain redox equivalents or energy-containing molecules such as ATP.
These are basic requirements for the practical application of GSMs that may
be missed if not explicitly assessed.

The next set of criteria relate to the qualitative GSM growth phenotype pre-
dictions. Besides the aforementioned wildtype and mutant growth phenotype
predictions in different media, also broader phenotypic traits should be explic-
itly tested. For example: (i) Does the obligate aerobe need oxygen? (ii) Can the
facultative anaerobe do without oxygen? (iii) Can the autotroph fix CO2? (iv)
Is there no CO2 fixation if it should not be there? (v) Can the photoautotroph
use light to generate energy? (vi) Can the chemolithotroph generate reducing
equivalents from an inorganic substrate? These are species-specific tests that
relate to their basic and defining characteristics.

Quantitative flux predictions are relevant for many applications, but are
also substantially more difficult to assess. A commonly reported quantitative
prediction for GSM evaluation is the growth rate. The growth rate is, however,
not a suitable readout for quantitative flux predictions as (i) the maintenance
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values are typically fit such that the GSM predicts a reasonable growth rate,
and (ii) the growth rate is but a single summary value, and (iii) GSMs predict
growth yields, not rates. The flux distributions that a GSM predicts are more
wholly evaluated using fluxomics data. Fluxomics data are reaction rates de-
duced from experimental measurements of the metabolic processing of a 13C-
enriched substrate [12]. These reaction rates may appear straightforward to
compare to FBA prediction, which are also reaction rates, but the reality is
more complicated. The main complication is that FBA predictions correspond
to an arbitrary point in a usually rather large optimal solution space (see Fig-
ure 1.2), and the real reaction rates may lie in a different point of this optimal
solution space, or at any ’distance’ outside of it in any direction. Therefore, the
optimal solution space should either be shrunk using additional assumptions
via, for example parsimonious FBA [249], or the comparison should focus on
whether FBA predictions can, rather than do, match the experimentally mea-
sured rates. In addition, a scoring function will be required to summarize the
extent of the match, but it is unclear what needs to be considered. For exam-
ple: (i) If a predicted flux range is large, the inclusion of the ’real’ value is more
likely. Should it therefore be scored lower? (ii) If the predicted flux range does
not include the real value, how should the score be penalized? Options are,
for example, via absolute distance; distance on a log scale; or relative distance
to the predicted flux range. (iii) Are distances measured to the mean of the
predicted flux range or to its closest point? A suitable scoring function will
have to be devised in future work by comparing the performance of scoring
functions for various datasets, organisms, and GSMs.

Application-driven predictions are both the most relevant and the most
difficult to assess. If a GSM is not evaluated for a specific application, it is
an immense asumption that it can be used for it. On the other hand, it is not
trivial to assess the ability of a GSM to be used for, for example, metabolic
engineering. Despite the many GSM-based preoduction strain design meth-
ods [262], there is no straightforward process to evaluate GSMs based on pre-
vious experimental successes in metabolic engineering. This can partially be
explained as experimentally common practices such as overexpression, down-
regulation and enzyme engineering are not directly compatible with GSMs as
regulation and enzyme characteristics are not explicitly modeled. Nonethe-
less, GSMs should be able to predict the experimentally observed phenotype,
similar to the flux predictions discussed above. If, however, a specific pheno-
type was obtained via the overexpression of a particular gene, it is reasonable
that the GSM predictions should also steer towards that phenotype if a higher
flux is forced through the corresponding reaction.
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Evaluations based on application-driven GSM predictions are not going to
be straightforward. There are no established commonly accepted protocols.
There are no clear metrics. Nonetheless, the more straightforward and easier
evaluation methods simply do not suffice to determine the quality of GSMs
given the immense range of described applications. For each intended appli-
cation a thorough review on common practices is warranted with the goal to
define standard protocols for evaluation of GSMs based on the specifics of the
intended application. A framework in which this could be organised is via
an open challenge or crowdsourcing, as has been succesful for other systems
biology disciplines [277].

GSMs in metabolic engineering

One of the most-described applications of GSMs is production strain design
as part of a metabolic engineering effort. There are many GSM-based strain
design methods that are covered in even more review papers that mostly sug-
gest that GSM-driven strain design works like a charm. However, the number
of actual applications appears to lag behind. A recent assessment of GSM-
driven strain design methods found that only six out of the thirty-four con-
sidered methods have some experimental validation [262]. In total, this article
refers to 14 cases of experimental validation of strains designed using GSMs.
In other words, there are more than twice as many published methods as there
are examples of any single of them working as intended. The underlying rea-
son for the lack of success in GSM-driven strain design is not clear.

An obvious explanation could be that the methods simply do not work or
that the currently available GSMs are not of sufficient quality. It is hard to
argue against this explanation because, as aforementioned, GSMs are hardly
evaluated on these criteria. For the field to advance it will be necessary to
have a substantial number of testcases. Preferably these testcases regard sit-
uations in which different methods and GSMs propose alternative strategies
to obtain a production strain for a specific compound. In particular, also cases
where the strain design methods did not work or where the compound is not
industrially interesting should be published in some form. Incorrect predic-
tions carry information on the limitations and false assumptions underlying
the used method and GSM. This information is crucial to determine the con-
ditions under which GSM-driven strain design performs well, and how it can
be further improved.

Another possibility is the lack of the systems biology ’design-build-test-
improve’ cycle in GSM-driven strain design. The GSM-based methods are
used to design a strain that is expected to have a certain phenotype following
experimental evolution. If the strain does not have the expected phenotype,
there is no clear procedure on how to re-evaluate the designs using GSMs.
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This ties in directly with the previous discussion on the evaluation of GSMs
for metabolic engineering. If there is no method to redesign the system based
on the experimental results, there is no real engineering cycle.

A third explanation, which is rather undocumented, is the lacking avail-
ability of many published methods. An overview of the availability of pub-
lished strain design methods indicates that only fifteen out of thirty-two con-
sidered tools are accessible [262]. In my own experience, accessible does not
imply proper functioning. This lack in available tools severely hampers their
independent assessment and application. I strongly advocate for the need
for computational articles to be accommodated by fully functional code that
directly replicates the reported results. The tendency to not share code in sys-
tems biology results in a huge waste of scientific resources as any scientist who
wants to use — or even try — a method will have to start from scratch with
coding, testing, and optimizing.

It is interesting to consider this issue in the context of the publication-based
incentive system in science. The creators of the method have published and
thus have received their ’reward’. However, a potential user has no access and
may not have the time or skill to recreate the method. I have on several occa-
sions contacted the creators of a published method only to hear that it was ei-
ther ’not yet available’ or that ’we could collaborate’. In my opinion, the intent
to only provide access to a method when rewarded with a co-authorship is de-
testable; and not in any way related to the colloborative pursuit of knowledge
that science should represent. If, however, the potential user does have the
time and skill to recreate the method, there is no incentive to share this with
the scientific community as the merits of the publication and corresponding
academic acknowledgement have already been awarded elsewhere. I advo-
cate for an incentive to recreate and share versions of published yet publically
unavailable tools. Such an incentive could be financially via funding, or per-
haps recognition-based similar to recent efforts to acknowledge scientists who
devote their time to the inherently not rewarding process of peer review [152].



9

192 Chapter 9. General discussion

Concluding remarks

GSMs have become commonplace for the study of metabolism (see Figure
1.1). The generation of GSMs has been simplified by the emergence of fully
automatic tools, and GSMs have been successfully used for a large range of
applications. GSM-based research may well become one of the most impact-
ful fields in the next few decades with applications in industrial biotechnol-
ogy, agriculture, fundamental biological research, and personalized medicine.
Some modest progress towards these prospects have been made as part of this
thesis, and I have outlined the major challenges I think systems biologists have
to overcome for GSMs to fully enable the desired à la carte design of biological
systems.
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The goals of this thesis are to increase the understanding of microbial
metabolism and to functionally (re-)design microbial systems using Genome-
Scale Metabolic models (GSMs). GSMs are species-specific knowledge repos-
itories that can be used to predict metabolic activities for wildtype and ge-
netically modified organisms. Chapter 1 describes the assumptions associ-
ated with GSMs, the GSM generation process, common GSM analysis meth-
ods, and GSM-driven strain design methods. Thereby, Chapter 1 provides
a background for all other chapters. In this work, there is a focus on the
metabolically versatile bacterium Pseudomonas putida chapters 2,3,4,5,6), but
also other model microbes and biotechnologically or societally relevant mi-
crobes are considered (chapters 3,4,6,7,8).

GSMs are reflections of the genome annotation of the corresponding or-
ganism. For P. putida, the genome annotation that GSMs have been built on
is more than ten years old. In chapter 2, this genome annotation was up-
dated both on a structural and functional level using state-of-the-art anno-
tation tools. A crucial part of the functional annotation relied on the most
comprehensive P. putida GSM to date. This GSM was used to identify knowl-
edge gaps in P. putida metabolism by determining the inconsistencies between
its growth predictions and experimental measurements. Inconsistencies were
found for 120 compounds that could be degraded by P. putida in vitro but not
in silico. These compounds formed the basis for a targeted manual annotation
process. Ultimately, suitable degradation pathways were identified for 86/120
as part of the functional reannotation of the P. putida genome.

For P. putida there are 3 independently generated GSMs, which is not
uncommon for model organisms. These GSMs differ in generation proce-
dure and represent different and complementary subsets of the knowledge
on the metabolism of the organism. However, the differing generation pro-
cedures also makes it extremely cumbersome to compare their contents, let
alone to combine them into a single consensus GSM. Chapter 3 addresses
this issue through the introduction of a computational tool for COnsen-
sus Metabolic Model GENeration (COMMGEN). COMMGEN automatically
identifies inconsistencies between independently generated GSMs and semi-
automatically resolves them. Thereby, it greatly facilitates a detailed compari-
son of independently generated GSMs as well as the construction of consensus
GSMs that more comprehensively describe the knowledge on the modeled or-
ganism.

GSMs can predict whether or not the corresponding organism and derived
mutants can grow in a large variety of different growth conditions. In com-
parison, experimental data is extremely limited. For example, BIOLOG data
describes growth phenotypes for one strain in a few hundred different media,
and genome-wide gene essentially data is typically limited to a single growth
medium. In chapter 4 GSMs of multiple Pseudomonas species were used to
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predict growth phenotypes for all possible single-gene-deletion mutants in all
possible minimal growth media to determine conditionally and uncondition-
ally essential genes. This simulated data was integrated with genomic data
on 432 sequenced Pseudomonas species which revealed a clear link between
the essentiality of a gene function and the persistence of the gene within the
Pseudomonas genus.

Chapters 5 and 6 describe the use of GSMs to (re-)design microbial sys-
tems. P. putida is, despite its acknowledged versatile metabolism, an obli-
gate aerobe. As the oxygen-requirement limits the potential applications of
P. putida, there have been several experimental attempts to enable it to grow
anaerobically, which have so far not succeeded. Chapter 5 describes an in silico
effort to determine why P. putida can not grow anaerobically using a combi-
nation of GSM analyses and comparative genomics. These analyses resulted
in a shortlist of several essential and oxygen-dependent processes in P. putida.
The identification of these processes has enabled the design of P. putida strains
that can grow anaerobically based on the current understanding of P. putida
metabolism as represented in GSMs.

Efficient microbial CO2 fixation is a requirement for the biobased com-
munity, but the natural CO2 fixation pathways are rather inefficient, while
the synthetic CO2 fixation pathways have been designed without consider-
ing the metabolic context of a target organism. Chapter 6 introduces a com-
putational tool, CO2FIX, that designs species-specific CO2 fixation pathways
based on GSMs and biochemical reaction databases. The designed pathways
are evaluated for their ATP efficiency, thermodynamic feasibility, and kinetic
rates. CO2FIX is applied to eight different organisms, which has led to the
identification of both species-specific and general CO2 fixation pathways that
have promising features while requiring surprisingly few non-native reac-
tions. Three of these pathways are described in detail.

In all previous chapters GSMs of relatively well-understood microbes have
been used to gain further insight into their metabolism and to functionally (re-
)design them. For complex microbial systems, such as algae (chapter 7) and
gut microbial communities (chapter 8), GSMs are similarly useful, but sub-
stantially more difficult to create and analyze. Algae are widely considered
as potential centerpieces of a biobased economy. Chapter 7 reviews the cur-
rent challenges in algal genome annotation, modeling and synthetic biology.
The gut microbiota is an incredibly complex microbial system that is crucial to
our well-being. Chapter 8 reviews the ongoing developments in the model-
ing of both single gut microbes and gut microbial communities, and discusses
how these developments will enable the move from studying correlation to
causation, and ultimately the rational steering of gut microbial activity.
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Chapter 9 discusses how the previous chapters contribute to the research
goals of this thesis. In addition, it provides an extensive discussion on current
GSM practices, the issues associated therewith, and how these issues can be
tackled. In particular, the discussion focuses on issues related to: (i) The inabil-
ity to distinguish between biological difference and GSM generation artifacts
when using multiple GSMs, (ii) The lack of continuous GSM updates, (iii) The
mismatch between what GSM predictions and experimental data represent,
(iv) The need for standardization in GSM evaluation, and (v) The lack of ex-
perimental validation of GSM-driven strain design for metabolic engineering.
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Overview of completed
training activities

Discipline specific Year
Linear and integer programming 2013
IPOP networks tutorial 2013
Synthetic Biology 6.0 2013
iGEM 2013 regional jamboree (judge) 2013
SB@NL 2013 2013
Gordon conference Synthetic Biology 2013
COBRA conference 2014 2014
Multiscale, Cell-based Modelling in Biological Development and Cancer 2014
iGEM 2014 world jamboree (supervisor) 2014
Integrative Cell Models 2015
EmPowerPutida Kick-off meeting 2015
EmPowerPutida 1st General Assembly 2015
EmPowerPutida 2nd General Assembly 2016
EmPowerPutida 3rd General Assembly 2016
BioSB 2016 2016
General
VLAG PhD week 2013
Reviewing a scientific paper 2014
Scientific writing 2015
Teaching and Supervising Thesis Students 2015
Introduction to FAIR data management 2016
Responsible Research and Innovation 2016
Soft skills training with role play 2016
IPLAW1x Intellectual Property Law and Policy: Part 1 2016
IPLAW1x Intellectual Property Law and Policy: Part 2 2016
FAIR data management workshop 2017
Optional
Preparation of research proposal 2013
Weekly group meetings 2013-2017
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PhD trip 2015 organization 2014-2015
PhD trip 2015 2015
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