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Chapter 1

Introduction

We live on planet Earth, and yes, the cliché that it should be called planet “Water” and not
Earth is rather valid, for it is water the vital constituent that we live surrounded by and
that we are made of. In fact, we should be called “aqualings” or “waterlings” instead of
earthlings. By now, we are already familiar with the distribution of water on Earth (let's
keep calling “Earth” Earth in the meantime): 97.47% is salt water, with its vast majority
found in the oceans. The remaining 2.53% is fresh water, out of which 69.6% is on gla-
ciers, snow, and permafrost; and 30.1% is found as groundwater. 0.00759% of the total
amount is the fresh water we usually survive with, i.e., rivers, lakes, soil moisture, atmosp-
heric and biologic water (Oki and Kanae, 2006; Shiklomanov and Sokolov, 1983). The volume
of salt water is huge (∼1.36×109 km3) but this water is not appropriate for human con-
sumption given its high salinity. The energy spent in seawater desalination is up to 10
times more than the energy spent in wastewater treatment (Talbot, 2015a), which is the
main constraint for large-scale desalination. Nevertheless, Israel has achieved practical
(cheap) levels of large-scale desalination, and50%of its water supply now comes from se-
awater (Talbot, 2015b). “Global desalination output has tripled since 2000: 16,000 plants
are up and running around the world,...” (Talbot, 2015a). Fresh water from glaciers and ice
sheets and caps is trapped, and even though groundwater extraction has doubled in the
last decades (Wada et al., 2012), it is within that tiny0.00759% that earthlings flourished.

Where does water come from? Actually... we are not sure. One theory suggests that water
was brought to Earth by the early impact of comets and asteroids. The whole∼1.4×1021
kg of terrestrial oceans could have been delivered by accretion of asteroidal material ac-
cording to Dauphas (2003), for instance. Another theory suggests the early lock/entrap-
ment of water in Earth's mantle when this latter formed billions of years ago (Hirschmann,
2006; Smyth, 1987), with more recent evidence of H2O-bearing fluids in the lower/deep
mantle, i.e., deeper than 660 km (Palot et al., 2016; Hallis et al., 2015). The potential vo-
lume of water within Earth's mantle ranges from 1/4 to 4 times its ocean water (Hirsch-
mann, 2006). This implies vast reserves of deep groundwater we just can't reach (for now),
and a much larger quantity of water than previously considered.
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Chapter 1. Introduction

1.1 Rainfall and the Hydrological Cycle

Hydrology is the branch of Earth sciences that studies the fluxes and processes of fresh
water on Earth. As with the distribution of water on Earth, we are also familiar with the
hydrological cycle, i.e., the movement of water between the atmosphere and the conti-
nental crust.With the sun as the driving force, radiation heats all water surfaces, predo-
minantly those of the oceans. Water rises to the atmosphere as water vapour and moves
inland driven by wind currents. If enough condensation nuclei are present in the atmos-
phere, condensation takes place, and clouds are formed. If clouds grow enough, water
precipitates as rain and/or snow. Water that is not intercepted by vegetation or urbaniza-
tion reaches the ground, and infiltrates (and percolates) and/or runs to rivers, lakes and
seas. Then, the hydrological cycle starts all over again. Over the oceans there is a surplus
of evaporation, whereas over the continents there is a surplus of precipitation, partly due
to the uneven distribution of water and land. This difference in net fluxes between preci-
pitation and evaporation enhances the dynamics of the hydrological cycle back and forth.

The relevance of the study of the hydrological cycle cannot be stressed enough, given that
is within its dynamics that society exists. Take for instance groundwater, which has always
been an alternative source of clean water, and has been extracted through qanāts (Biswas,
1970, p.26–29) for approximately three millennia (Solomon, 2011, p.487). There is also ru-
noff and reservoir storage, from which we satisfy our increasing demand for fresh water
for irrigation, and industrial and household consumption. Rivers are used not only for wa-
ter supply, power generation and transport but also for dilution of pollutants. In fact, our
interaction with the hydrological cycle is so intensive that it has led us to change the hy-
drological response of many catchments worldwide through the diversion of water flows,
transformation of stream networks, alteration of drainage basins, and regional or global
climate (Savenije et al., 2014). This (deliberate?) huge impact on Earth and atmosphere
driven by human activities since the late 18th century is now known as the Anthropocene
(Crutzen and Stoermer, 2000). For more in-depth views on hydrology, the reader is referred
to Melsen (2017); Brutsaert (2005); Biswas (1970) for comprehensive technical and histori-
cal reckonings on the science of hydrology.

Rainfall is arguably the most important process of the hydrological cycle. In the right
quantity, it could sustain the food production of a nutritious low-meat diet year-round
(Postel, 1997, p.57). If there is too little, life and nature struggle because the land beco-
mes unproductive and uninhabitable. The state of California (USA) is seeing the end of a
6-year drought period (Carlton, 2017; Ehlers and Brown, 2016) that caused agricultural los-
ses by 1.5 billion USD (Talbot, 2015a, p.46) in 2014 alone. If there is too much, life and
human activities are threatened by natural hazards like storms, floods, and landslides.
From 210 billion USD of economic losses due to these natural hazards in 2016, flooding
was the costliest natural hazard with 62 USD billion, for the fourth time in a row (Impact
Forecasting, 2017). About 1.28 trillion USD was the total insured values due to flooding
from 2001 through 2012 in the USA (Kousky and Michel-Kerjan, 2015). In 2011 Thailand
experienced economic losses of 45 billion USD due to widespread flooding between July
and November, with790casualties (Gale and Saunders, 2013; Impact Forecasting, 2012). This
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event ranked second in the costliest events for that year, the earthquake and subsequent
tsunami in Japan was first (210 billion USD).

Rainfall is the product of hydrometeorological processes that extensively vary in time and
space (Sene, 2013a; Hou et al., 2008). It is not equally distributed over Earth's surface, and
it is highly variable in time and space. Most of the rain falls along the equator (and within
the tropics) substantially more over oceans than over land (Yong et al., 2015). Continental
northern latitudes experience more rainfall than southern latitudes, in terms of volume,
as the proportion of land is larger in the northern hemisphere. The IPCC (2013) states
that it is likely that the global water cycle has been affected by anthropogenic forcing (hu-
man influence) since the 60's, with an increased frequency of warm days and nights (cli-
mate change definitely is a fact!, folks). Therefore, under the current trends, it is expected
by the end of the 21st century a likely increase in the annual mean precipitation at the
equatorial Pacific Ocean, tropical monsoon areas, mid-latitude wet regions, and high la-
titudes (northern hemisphere mainly, e.g., most of Canada, northern Europe, and Russia
(Henson, 2014, ch.5)). It is also expected a likely decrease in annual mean precipitation at
mid-latitude and subtropical dry regions, e.g., most of Australia, southern Africa, the Me-
diterranean and Caribbean, and the south-west of USA and México (Henson, 2014, ch.5).
The frequency and intensity of such heavy and/or extreme events is also likely to increase.
With exceptional local exceptions, the apocalyptic global trend for the coming century is
that wet places become wetter and dry places become drier (to paraphrase Henson, 2014,
p.84).

To entertain ourselves a bit, it is worth to mention for instance, that the wettest place ever
measured on Earth is Mawsynram (India) with11, 871 mm of mean annual precipitation,
officially (Burt and Stroud, 2007, ch.4). Unofficially, there are indications that the wettest
spot is not Mawsynram but LLoro with 13, 300 mm·year−1 (Burt and Stroud, 2007, p.112),
and (Dolman, 2008, p.7). LLoro is located in Colombia (my Matushka), and it literally me-
ans “it cried”. The maximum rainfall in 24 h was registered in La Réunion (French island
east of Madagascar in the South Indian Ocean) with1, 870 mm (in1952according to Burt
and Stroud, 2007, p.121) or 1, 825 mm (in 1966 according to Cerveny et al., 2007, p.856). In
2007, the world records for the most rainy multi-day periods (3 up to 9 days) were shat-
tered for this same spot (Quetelard et al., 2009; Masters, 2007; NOAA-NWS, 2014). Also in
India (Cherrapunji), we found the most consecutive and wettest 12- and 24-month rain-
fall period with 26, 461 mm and 40, 768 mm, respectively. Arica (Chile) is considered
the driest spot on Earth, with a mean annual precipitation of 0.762 mm (Burt and Stroud,
2007; Cerveny et al., 2007); “although there are dry valleys in the interior of Antarctica that
are believed to have not experienced precipitation in the last 2 million years” (Dolman,
2008, p.7).

1.2 Rainfall Measurements

As with any other natural phenomena, humans developed the need to measure rainfall
to quantify its magnitude, and to account for its distribution in space and time. Measure-
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ments help us to gain a better understanding of the natural environment that surrounds
us. They are a necessary step towards the development of measures intended to somehow
quantify the risks of natural hazards we are exposed to. Rainfall measurements are a va-
luable input in several applications, for instance: to infer the discharge that a catchment
will produce at its outlet; to estimate the water balance (or water level) in a given reservoir
(e.g., a dam) over which local authorities can elaborate water management programmes
or mitigation plans, in case the dam is about to overflow (e.g., the case for the Oroville
dam, CA, USA, Henson (2017)); to account for the water in the soil that may be available
for root uptake and crop growth or that can cause landslides due to high pore pressures
(Posner and Georgakakos, 2016); to estimate ground water tables and/or flood plains in hy-
drological models; in climate modelling, and the estimation of global water and energy
budgets; to track waterborne (and vector-borne) diseases (Kirschbaum and Patel, 2016); to
link rainfall as a weather hazard with the risk of motor vehicle crashes, injuries, and fata-
lities (Black et al., 2017).

Measuring rainfall is a whole science per se that has evolved in time. Rainfall measurement
techniques are practically divided in two principles: direct measurements and indirect es-
timates.

I. Rain Gauges
Rain gauges (and maybe disdrometers) are examples of devices for (direct) measurements,
whereas indirect estimates are provided for instance by radars, satellites and the like. A
rain gauge is in essence a bucket in which the amount of rain that falls into is measured (or
quantified). Up to date it is the only technology that directly measures rainfall, and thus
the most reliable source when it comes to rainfall estimates. Because it is the most basic
and ancient technology, it is the one with the longest records of rainfall measurements.
Early rainfall measurements date back to the fourth century B.C. (Strangeways, 2006; Bis-
was, 1970, p.75). There are several types of rain gauges. The simplest one consists of a
bucket with a graded funnel. Pluviographs include automatic graphing devices to gene-
rate the mass curve of the measured time series. Tipping buckets contain a system that
counts the volume of raindrops falling into a scale system. There also exist vibrating-wire,
weighing, and optical gauges. Disdrometers are a sort of rain gauges, but much cooler,
because they not only do literally count the number of raindrops that fall on or through
their sampling surface but also measure other physical properties like raindrop size and
fall velocity. All of the above devices are mainly owned by meteorological institutes, wa-
ter authorities or companies dedicated to hydrometeorological business. Nevertheless,
the growing interest to measure and report precipitation by worldwide volunteers jointly
with more accessible prices to (less regulated) weather stations have made “crowdsour-
cing” the uprising trend in rainfall measurements based on gauge technology (de Vos et al.,
2017; Reges et al., 2016).

II. Radar
Radar has evolved a long way since it was devised for RAdio Detection And Ranging, and
alongside with the cracking of Enigma, it is often regarded as the invention that helped
the Allies to take the upper hand in World War II (Buderi, 1997). There was no meteorolo-
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gical radar involved in the weather forecast for D-day, but the absence of rainfall did play
a central role in the beginning of the end of World War II (Fleming, 2004). Radar detects
objects that its pulse encounters in the atmosphere, and since its early origins, its poten-
tial application in meteorology was clear due to its capabilities to also detect storms and
water droplets (Buderi, 1997, p.253). Radar estimates rainfall by quantifying all the back-
scattered radiation from raindrops that the electromagnetic signal encounters when it
propagates through the atmosphere. Bigger raindrops cause larger scatter than smaller
ones. Thus, after a volume is scanned up in the atmosphere, we end up with the sum of
backscattered powers from all raindrops found in that volume. The main components of
a weather radar are the transmitter, receiver, pedestal, parabolic dish, feedhorn (device
to convey the pulse to the dish), and the waveguide (hollow conduit where the pulse tra-
vels). The size of a radar is constrained by the size of the parabolic dish, which is a function
of the transmitted pulse frequency and required beam width. For instance, C-band radars
(4-8 GHz or 38-75 mm wavelength) have dish sizes∼5.0 m in diameter, whereas the ty-
pical dish diameter for X-band frequency radars (8-12 GHz or 25-38 mm of wavelength)
is only∼2.5 m. It seems that the next step in radar technology for hydrometeorological
applications is the phased-array antenna, which allows more frequent scanning, simulta-
neous targeting, and electronic steering of the pulse (Hong and Gourley, 2014, p.102). The
latter avoids the (mechanical) rotation of the parabolic dish, and thus reduces (regular)
maintenance costs. Radar is an expensive technology, but if one would try to match up
the capabilities of a radar with a network of gauges, the costs of such a task would be at
least just as high.

III. Satellite
This year (2017), it is six decades since the first launch of satellites for scientific purposes,
which have lead humans to gain a huge understanding about Earth processes on a truly
global scale. The first rainfall estimates came from microwave and stratospheric soun-
ders aboard Nimbus 5 back in the 70's (NRC, 2008, p.14). Nowadays, and since Febru-
ary 2014, for such a task we count on GPM (the Global Precipitation Measurement mis-
sion) which aims to advance global precipitation measurements from space (Hou et al.,
2014). GPM is a multinational platform of∼10 satellite programmes that offers world-
wide precipitation estimates, which are freely available for everyone (with access to the
Internet), as was the case with its predecessor TRMM (Tropical Rainfall Measurement Mis-
sion), which provided rainfall retrievals for17 continuous years since1997. Conversely to
radars, satellites could long be considered as passive (remote) sensors. Their rainfall es-
timates come from measurements of radiation emitted or reflected by atmospheric hyd-
rometeors. With missions like GPM (or TRMM), meteorological satellites can also be con-
sidered as active sensors due to the installation of radars aboard these platforms. Satel-
lite platforms are divided in two categories: LEO (Low Earth Orbit), which orbit Earth at
800 km or lower, and GEO (Geostationary Earth Orbit), which orbit Earth at 36, 000 km.
The main advantage that satellite has over all other technologies is the continuous mo-
nitoring of rainfall over oceans and large proportions of land. Satellite measurements
over the oceans help us, for instance, to identify and track Atmospheric Rivers which are
known to produce extreme precipitation events (Dacre et al., 2015; Gimeno et al., 2014);
and to study global ocean-atmosphere (interdecadal) cycles such as “El Niño” and/or “La
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Niña”, which hugely influence the weather in the countries surrounding the Pacific Ocean
(Henson, 2014, p.159).

IV. Microwave Links
Commercial microwave links (CML) as a technology for rainfall retrievals has gained mo-
mentum in the last decade. Microwave or radio links are pairs of transmitter and receiver
antennas mainly used in telecommunication networks. Such networks are designed to
transfer data/information from radio, tv, internet, and especially from cellular communi-
cation services. The measurement principle of CML is cemented on the near-linear rela-
tion that exists between rainfall and attenuation. The stronger the rainfall, the larger the
attenuation an electromagnetic signal experiences when traveling along the link path, i.e.
between transmitter and receiver antennas. The attenuation is the decrease of received
power in the electromagnetic signal (or pulse). This phenomenon was promptly discove-
red after the invention of radar, and although experiments date back as far as five decades
(Hogg, 1968), it was only after the uprise of cellular communications in the late 90's that
the scientific community saw the potential of CML for rainfall estimation in the 21st cen-
tury. The origins of CML and rainfall retrievals are rooted within the electronic commu-
nity, which was more interested in collecting rainfall statistics to better design communi-
cation networks, and thus avoid or forecast disruptions in the transmitted signal(s). The
potential of such networks relies on its massive deployment worldwide despite the recent
and continuous transition from CML to fiber optics for some areas. Fiber optics is more
targeted for urban areas, whereas in rural areas there is still the necessity for CML as their
deployment is cheaper compared to that of fiber optics (World Bank, 2012, p.32). GSMA
(2016) and ITU (2016) report that the coverage of mobile cellular networks reaches 95%
of Earth's population. Nevertheless, only20%of Earth's land surface is covered by cellular
networks (Overeem et al., 2016a). Rainfall retrievals from CML can be seen as by-product of
the network operation, which implies a potential scenario of costless estimates of rainfall.

This dissertation involves measurements of all the above technologies, i.e, CML, satellites,
radars and gauges. Nonetheless, we are in the early stages of innovative approaches such
ashome TV-satellite links for rainfall retrievals (Mercier et al., 2015), and umbrellas (Amos,
2014) and car windshields as moving rain gauges (Rabiei et al., 2016).

1.3 Spatiotemporal Caveats

All the above technologies come with pros and cons linked to the spatiotemporal resolu-
tion at which they either retrieve or measure rainfall. Hence, it would be unfair to tag one
technology above the others as “the best” or “most complete”.

Measurements from rain gauges are only representative of the rain that falls in their vi-
cinity, due to the large variability of precipitation in space, and their small size. Kidd et al.
(2017) estimate the representativeness of rain gauge measurements as ∼1% of Earth's
surface, and the actual coverage of gauge orifices as 5.93×10−10 %, i.e., an area equiva-
lent to less than half a football pitch! (yes, exclamation mark). Their temporal resolution
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depends on the type of gauge, and commonly goes from10 min to24 hours. 10-min gau-
ges are also known as “automatic stations”, whereas24-h gauges are mainly operated ad-
hoc by a number of volunteers everywhere in the world.

A S- or C-band radar typically scans an area of ∼125, 000 km2 (for no-beam-blockage
conditions) with a spatial resolution of∼1 km2. X-band radars typically scan a smaller
areas at spatial resolutions of∼1 ha. Radars also scan the vertical direction which offers
a 3D-view of rainfall. The temporal resolution of radar estimates is∼5 min or less, the
time in which information is retrieved from all directions. Currently, radar is the techno-
logy which offers the highest resolutions in rainfall retrievals.

The spatiotemporal resolution of satellite retrievals varies with the type of instruments
carried aboard, and whether the satellite is LEO or GEO. For instance, infrared sensors
aboard GEO satellites provide observations at resolutions of∼10-30min (or hourly) and
1-4 km, whereas for LEO satellites, near-infrared imagers offer∼1 km or better, and GPM
dual-frequency precipitation radar offers 5 km in the horizontal and 250-500 m in the
vertical, twice a day over a fixed spot on Earth. GPM gridded products span from 180◦W-
E and 60◦N-S with spatiotemporal resolutions of 0.1◦×0.1◦ every 30min.

Power (attenuation) retrievals from CML can be logged at the sub-minute scale, with the
most common sampling interval of 1 or 15 min. Their spatial resolution is given by the
path length of the link that usually goes from hundreds of meters to tens of kilometers.
Conversely to the other technologies, rainfall retrievals from CML are not volumetric or
areal. Their estimates correspond to the accumulated rainfall over the path in which the
link transmits its signal. Nevertheless, as CML networks are configured from multiple
links, current interpolation techniques use tomographic (Zinevich et al., 2008) or geosta-
tistical (Overeem et al., 2013) methods to generate rainfall fields at∼1 km2 or higher reso-
lutions.

1.4 Why is it Important to Accurately Measure Rainfall?

Accurate rainfall measurements are of extreme importance not only for hydrological and
climatological modelling but also because most of the times the purposes for which they
are requested are directly linked to the economic welfare of a society. For instance, Uru-
guay now has to gauge the rainfall for the Rio Negro and Rio Uruguay basins (on which its
hydro-power generation relies) to compile a weather index (Somanathan and Nageswaran,
2015). If the measured rainfall falls below a certain threshold, Uruguay will receive a pa-
yout form the World Bank that works as a “weather insurance”. This payout is intended to
cover the purchase of alternative fuels for energy generation. In2012, previous to the ap-
plication of this payout system, the overtaxation of increased fares in electricity caused by
an intensive drought had to be paid by the end-users. 80%of the power needs in Uruguay
are supplied by hydro-electric generation. Another example is the design of hydraulic in-
frastructure which relies on the concept of “return period”, i.e., the time in which a given
rainfall event would most likely surpass a certain threshold. The longer the return period
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the stronger the event that is expected. For the hydraulic design of dams, channels, di-
kes, flood plains, box-culverts, sewers and the like, rainfall estimates are translated into
water surface levels for which the structures should hold. If such structures fail, the socio-
economic impact for a society can be devastating, as was the case in 2005 when hurri-
cane Katrina hit the city of New Orleans, USA (Horowitz, 2016). As of 2017 it remains the
third costliest natural disaster, 152 billion 2016 USD in economic losses (Impact Forecas-
ting, 2017, p.56). Depending on the technology we use, we certainly have an idea about
the intensity of the rain event, and how this develops. With regard to the temporal di-
mension, it is also very important to generate consistent rainfall measurements to avoid
systematic biases that may lead to inaccurate rainfall aggregates in the long run.

1.5 On the Uncertainties

Rain gauges, radars, satellites, and CML offer distinct and diverse vantage points with re-
gard to how and what they measure... but thou shalt not forget that these technologies
are also plagued with a requiem of uncertainties. “Uncertainties” and “errors” are terms
with interchangeable meanings. Sources of uncertainty in rainfall are mainly attributed
to uncalibrated devices, poor sampling in the measurement process, intensity of the rain
event, topography and location, and surroundings of the target and/or device, interpola-
tion methodology, and the physical domain over which they perform. To give a detailed
account of all possible (sources of) errors that affect rainfall estimation (from four techno-
logies) is a behemoth task that serves a purpose beyond the scope of this thesis. There-
fore, only a few examples are mentioned here for the sake of brevity.

If the rainfall event is too heavy, then a tipping bucket would stop measuring rainfall and
thus the intensity would be underestimated. In the same way, a radar pulse would be lost
due to strong attenuation. If the rainfall event is too light, then the tipping bucket won't
record rainfall at all, whereas the radar echo would be lower than the detection threshold.
CML (and radars) need to be shielded. Thus, in the case of CML a layer of water on the an-
tennas may induce an attenuation not characteristic of rainfall that should be corrected
for. This phenomenon is known as “wet antenna attenuation”.

We have to accept that nature (i.e., physical processes) and life (human and animal acti-
vities) are factors that impede perfect measurements. Local turbulence in the vicinity of
gauges may withhold raindrops from falling into them. Solar radiation evaporates the
upper layer of water inside a bucket. Trees may grow and buildings may be erected shado-
wing gauge measurements, which is especially the case for backyard-stations from volun-
teer or amateur networks. The volunteers’ perception of the graded funnel in rain gauges
may contribute to a slightly different measure of what actually fell. CML are commonly
placed on building rooftops where maintenance cranes can interfere with the measure-
ment path. Ground clutter and anomalous propagation, beam blockage, range degrada-
tion, and vertical variability of the precipitation system, are some of the most common
error sources in rainfall retrievals from radar (Villarini and Krajewski, 2010).
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The representativeness of each technique also contributes to the uncertainty, especially
when comparisons between rainfall products from different technologies take place. Sa-
tellites often infer precipitation from top cloud measurements, whereas radar measure-
ments represent an average rainfall field hundreds of meters above the ground. Because
of their proximity to the ground CML are representative of rainfall depths tens of meters
above the ground. Ironically, and despite their deficiencies, rain gauge measurements are
the most representative of the actual amount of rain that reaches the ground surface, if
they are well maintained.

To deal with sources of uncertainty is almost as important as to deal with the measure-
ments themselves, because such errors propagate all the way through hydrological mo-
dels. For instance, Kirstetter et al. (2015) developed a methodology for the generation of
probabilistic quantitative precipitation estimates from radar. This certainly is of great va-
lue because now not only rainfall depths are provided but also their associated uncertain-
ties.

1.6 The Truth About Ground Truth: An Ontological Disclaimer

Before we dwell on some of the uncertainties in rainfall products from satellites and CML
over the continental Netherlands and beyond, a big disclaimer should be considered. The
error analyses presented in this thesis come from the evaluation of rainfall products with
regard to a framework of reference, something we like to call “ground truth”. It is always
assumed that the ground truth is the most accurate representation of the actual rainfall
field. This is never the case, technically speaking. First of all, our quest is to measure no-
thing less than rainfall, a quasi-continuous variable in discrete chunks, which by default
implies an error in the source (uncertainties from sampling)... a “contradictio in terminis”
if you will. Yet, still we have to measure something, right? (no purpose in going home
empty-handed). By the way, hardcore scientists will tell you that rainfall is a discrete va-
riable because you can actually count raindrops... don't let them trick you that easily. In
Chapters 2, 3 and 4, a climatological radar data set from the Netherlands is fearlessly ta-
ken as the ground truth. There is no doubt that such a data set has been meticulously
subjected to quality standards that make it suitable for evaluation purposes. The end re-
sult is a mosaic field from two C-band doppler radars, in which the rainfall estimates are
adjusted with a manual and automatic gauge network (in the Netherlands, for the Ne-
therlands). Despite its high quality, and truth be told, it is not the actual representation
of the rain that falls, perhaps the most accurate representation, but not the actual one.
This also holds for Chapter 5 in which gauge measurements represent the ground truth,
although the quality of their estimates could not be verified. To make things worse, it was
previously mentioned that uncertainties are introduced when techniques of different na-
ture are compared against each other (representativeness). For instance, the evaluation
of CML rainfall estimates against very local gauge measurements (Chapter 5) or 30-min
satellite rainfall at77 km2 resolution against30-min aggregations of5-min rainfall fields
at 1 km2 (Chapter 2).
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Hence, we should pensively remind ourselves that ground truth is just an abstraction for
a reality we want to exist (but that doesn't), as all those rainfall measurements are ab-
stractions of a phenomenon we want to quantify (but we technically can't). Here is where
the ontology kicks in: In a philosophical sense we've just devoided/shattered the scientific
foundation of the results presented in the following chapters, i.e., if the ground truth is a
fallacy, why bother with rainfall measurements? An uncertainty within uncertainties, the
mother of all uncertainties that actually and humorously cannot be quantified. For better
or worse there is not a clear exit to avoid such a quintessential predicament. We saw how
important rainfall is within the hydrological cycle and why we should measure it as ubi-
quitously as possible, or at least to believe that we accurately do so. The ground truth is
not held in only one technology, what takes us one step closer to that ground truth is the
study, understanding and combination of all possible rainfall measurement technologies
and techniques.

1.7 What This Thesis Is About... and What to Expect

This dissertation is a quantitative assessment of state-of-the-art rainfall estimates from
satellites and CML for the land surface of the Netherlands, mainly. The Netherlands is a
relatively small country of∼35, 000km2 with a population of∼16.8million inhabitants,
located above the tropics (5◦33

′
E, 52◦19

′
N) with a temperate climate (Cfb – Köppen-

Geiger climate classification, Peel et al., 2007), limiting to the west and north with the
North Sea, to the east with Germany, and to the south with Belgium. Founder member
of the European Union. The average winter and summer temperatures for the Nether-
lands are 2.6 ◦C and 17.0 ◦C, respectively, for the months of January and July. Its yearly
average precipitation is 851 mm (climatology for 1981-2010). According to KNMI (2015),
the average precipitation in the Netherlands is expected to increase 2.5-5.5% by 2050,
and 5-7% by 2085, depending on the climate scenario.

The Netherlands has well-established automatic and manual gauge networks with 31
and 321 gauges, respectively (as of 2017). Two C-band doppler radars have been opera-
ting for∼20 years. It is within the reach of IMERG (Integrated Multisatellite Retrievals for
GPM) rainfall products; and since one decade it has been one of the leading countries to
continuously use CML in research for rainfall estimation. This data availability makes the
Netherlands a suitable test bed for the evaluation of rainfall retrievals from innovative,
alternative, and state-of-the-art technologies such as satellites and CML.

In this thesis, uncertainties in rainfall estimates from CML for a subtropical location are
also explored and quantified. The test bed was the city of São Paulo, Brasil, with clima-
tological conditions different than the Netherlands, e.g., a stronger precipitation regime
characteristic of (sub)tropical latitudes. The topology of the CML network is also different
from the Dutch one. Thus, this is an excellent opportunity to test and export the Dutch
approach for CML rainfall estimation.
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The first year of the research-version of IMERG is presented in Chapter 2. The evaluation
is done for the land surface of the Netherlands, at half-hourly, daily, monthly, and yearly
durations. IMERG calibrated and uncalibrated data sets are evaluated, and it is shown
how calibration based on rain gauges is still necessary, despite the technological advan-
ces in satellite rainfall measurements. Nevertheless, once the correction is done, the per-
formance of IMERG matches the rainfall distribution over the Netherlands. Hence, the
value of such a product is demonstrated, which is especially relevant for places with no
rainfall networks.

In Chapter 3 a similar exercise to that of Chapter 2 is carried out for 7 months (at half-
hourly durations), not only for the IMERG product but also for two satellite products from
a GEO platform, and one rainfall product derived from CML. The good performance of
IMERG is once more confirmed, this time with regard to the GEO-satellite products. Ne-
vertheless, the best performance is obtained for the CML product. These findings are used
to further explore the potential use of CML in the eventual validation of satellite rainfall
estimates at IMERG resolutions.

Chapter 4 is entirely devoted to explore the uncertainties due to the availability and in-
terpolation methodology of rainfall estimates from CML. It is a continuation of the work
conducted by Overeem et al. (2013) (exploring only 12 days at 15 min resolution) in which
they demonstrated the suitability of CML to derive country-wide rainfall maps. Here, CML
measurements are simulated from radar estimates to explore the uncertainties due to the
interpolation methodology and the measurements themselves.

Chapter 5 is a straightforward application of the algorithm developed by Overeem et al.
(2016b) for CML rainfall estimation, but for a different climatology and network topology
than the one for which the algorithm was developed. The analysis is done for 3 months
of15-min CML data. It shows that even without locally optimal parameters of calibration
the methodology offers accurate rainfall estimates for such subtropical conditions.

The discussion presented in Chapter 6 gives an overview of the evaluation of rainfall pro-
ducts for the Netherlands. It is also argued why there is no technology better than all the
others, and how we can benefit from multiple types of rainfall measurements.
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Chapter 2

GPM-IMERG: Satellite Rainfall

The Global Precipitation Measurement (GPM) mission is the successor to the Tropical Rain-
fall Measuring Mission (TRMM), which orbited Earth for∼17 years. With Core Observatory
launched on27 February2014, GPM offers global precipitation estimates between60◦N
and 60◦S at 0.1◦×0.1◦ resolution every 30 min. Unlike during the TRMM era, the Ne-
therlands is now within the coverage provided by GPM. Here the first year of GPM rainfall
retrievals from the 30-min gridded Integrated MultisatellitE Retrievals for GPM (IMERG)
product Day 1 Final Run (V03D) is assessed. This product is compared against gauge-
adjusted radar rainfall maps over the land surface of the Netherlands at 30-min, 24-h,
monthly, and yearly scales. These radar rainfall maps are considered to be ground truth.
The evaluation of the first year of IMERG operations is done through time series, scat-
terplots, empirical exceedance probabilities, and various statistical indicators. In gene-
ral, there is a tendency for IMERG to slightly underestimate (2%) countrywide rainfall
depths. Nevertheless, the relative underestimation is small enough to propose IMERG
as a reliable source of precipitation data, especially for areas where rain gauge networks
or ground-based radars do not offer these types of high-resolution data and availability.
The potential of GPM for rainfall estimation in a midlatitude country is confirmed.

This chapter was originally published as:
Rios Gaona, M. F., A. Overeem, H. Leijnse, and R. Uijlenhoet, 2016: First-Year Evaluation of GPM Rainfall over the
Netherlands: IMERG Day 1 Final Run (V03D). J. Hydrometeor., 17, 2799−2814, doi: 10.1175/JHM-D-16-0087.1.
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Chapter 2. GPM Rainfall over the Netherlands

2.1 Introduction

On 28 February 2014, the National Aeronautics and Space Administration (NASA) and
the Japan Aerospace Exploration Agency (JAXA) jointly launched the core satellite of the
Global Precipitation Measurement (GPM) mission. GPM is the follow-on to the Tropical
Rainfall Measuring Mission (TRMM), which orbited Earth for 17 years (scientific opera-
tions and data collection stopped on 8 April 2015). TRMM data were a valuable source
of rainfall data for studies related toextreme convection and precipitation-related events
such as tropical cyclones, floods, landslides, and drought; human impact on precipita-
tion; high-quality climatology of rainfall; hydrological modeling to monitor streamflows,
floods, and drought; tropical cyclone tracking and forecasting; climate and weather mo-
del validation and improvement; disease monitoring in flooded areas; and fire detection
(Gran, 2014). In succeeding TRMM, GPM will provide a new generation of precipitation
measurements from space to quantify the spatiotemporal variability of global precipita-
tion with an improved accuracy and coverage at higher space-time resolutions. This will
not only improve our knowledge ofEarth's water and energy cycles and hydrological and
climate modeling (Hou et al., 2014), but also enhance relevant societal applications such
asfresh water availability, flood forecasting, landslide warning, crop growth prediction,
and storm tracking.

The key components of the core satellite of GPM are the Dual-Frequency Precipitation Ra-
dar (DPR) and the GPM Microwave Imager (GMI). The DPR consists of two phased-array
precipitation radars (PR): 1) KaPR at 35.5 GHz, with a cross-track swath width of 120 km
and vertical resolution of250or500 m; and 2) KuPR at13.6 GHz, with a cross-track swath
width of 250 km and vertical resolution of 250 m. Both radars have a horizontal resolu-
tion of 5 km. The Ku band measures moderate-to-heavy rain, whereas the Ka band mea-
sures frozen precipitation and light rain. The GMI is a conical scanning passive microwave
radiometer with 13 channels, from 10.65 to 183.31± 7 GHz. The mean spatial resoluti-
ons vary inversely with the frequencies from26 to6 km. At these frequencies GPM detects
a wide range of precipitation intensities, from heavy to light precipitation. The detection
of light and frozen precipitation is one improvement of GPM with regard to TRMM. GMI
measures over a 140◦ sector, which represents a cross-track swath of 885 km. The GPM
Core Observatory orbits Earth407 km above its surface at7 km·s−1 with an inclination of
65◦ to the equator. Its orbit is circular and non-sun-synchronous, with a period of 93 min
(∼16 orbits per day). A non-sun-synchronous orbit means that in about one month the
satellite acquires measurements at all longitudes and times of day (NRC, 2008, p. 50).
Gray and Hanson (2013), Hou et al. (2014), and Skofronick-Jackson et al. (2013) give detailed
accounts of the technicalities of the GPM mission and Core Observatory. GPM was origi-
nally established as a cooperation between nine satellite programs, each with microwave
radiometers on board and one with precipitation radar (GPM core satellite). Together,
they can provide information on global precipitation with a revisit time of approximately
3 h.

GPM offers orbital and gridded products at three different levels of data processing. For
instance, a level-1 orbital product is the calibrated GMI brightness temperature (1C-GMI),
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whereas DPR Ka/Ku rainfall estimates (2A-DPR) or combined GMI-DPR rainfall estima-
tes [2B-Combined Radar-Radiometer Algorithm (2B-CMB)] are level-2 orbital products.
Level-3 products are gridded products, like combined GMI-DPR rainfall averages (3-CMB)
or rainfall estimates combined from data of all active and passive microwave instruments
in the GPM constellation, that is, Integrated MultisatellitE Retrievals for GPM (IMERG;
Huffman et al., 2014). IMERG is a post-real-time research product that is of special rele-
vance for hydrological purposes given its high spatiotemporal resolution of 0.1◦×0.1◦
every 30 min. The main improvement of IMERG can be summarized as the combination
of high space-time resolutions, the near-global coverage, and the high quality through
the use of active instruments that support the use of passive instruments. GPM offers
three different IMERG products: “Day 1 Early Run” is a near-real-time product with a la-
tency of 6 h, “Day 1 Late Run” is a reprocessed near-real-time product with a latency of
18 h, and “Day 1 Final Run” is a post-real-time research product with a latency of4months.

Two high-quality precipitation-gauge products from the Deutscher Wetterdienst (DWD)
Global Precipitation Climatology Centre (GPCC) are used in the calibration of IMERG pro-
ducts: 1) the full data analysis, which is a large database (from 1901 to 2010); and 2) the
monitoring product, which is posted/produced two months after the month of observa-
tion and is based on synoptic observational data (SYNOP) and monthly aggregated data
(CLIMAT) reports from∼7, 000 to 8, 000 stations worldwide (Huffman et al., 2015a). We
studied IMERG Day 1 Final Run because it is not only the longest dataset among the IMERG
products, but it also incorporates monthly precipitation-gauge analyses, which provides
more accurate results (in regions with gauge information; Huffman et al., 2015b). Its avai-
lability starts on 12 March 2014 with a latency of four months. IMERG Day 1 Early and
Late Runs are available from 1 April and 7 March 2015, respectively, to present. Huffman
et al. (2015a,c,b) offer extensive and technical information with regard to IMERG products.
From here onward, unless stated otherwise, for simplicity we will refer to the IMERG Day
1 Final Run (precipitationCal) only as IMERG.

Extensive literature over the last decade has dealt with satellite rainfall products. Here
we mention some relevant works to the hydrological sciences. Kucera et al. (2013), Tapia-
dor et al. (2012), Kidd and Huffman (2011), Kidd and Levizzani (2011), and Kidd et al. (2009)
offer detailed overviews of the state of the art in global precipitation measurements, es-
pecially TRMM, and how this technology has advanced in scientific and societal rainfall-
related applications such asglobal high-resolution flux estimates of heat and moisture
(energy and water cycle); monitoring of soil moisture, crops, drought, and health; water
availability/scarcity; process and climate studies; and atmospheric aerosols, among ot-
hers. Specific studies to characterize floods (Wu et al., 2012; Khan et al., 2011) and lands-
lides (Kirschbaum et al., 2012; Hong et al., 2007a) have also been carried out. More details
on satellite rainfall products such as merging techniques of satellite-based passive micro-
wave (PMW) data, and precipitation radar algorithms are found in Kummerow et al. (2011),
Huffman et al. (2007), Rose and Chandrasekar (2006), Joyce et al. (2004), and Huffman et al.
(2001). Merging techniques between processed satellite rainfall products and rain gauges
are presented, for instance, by Nerini et al. (2015) and Tobin and Bennett (2010). Thorough
evaluations of several rainfall products developed so far have been done by Wentz (2015),
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Yang and Nesbitt (2014), Kidd et al. (2012), Scheel et al. (2011), Dinku et al. (2010), Su et al.
(2008), Ebert et al. (2007), and Villarini and Krajewski (2007). Kirstetter et al. (2014), Vergara
et al. (2014), and Kirstetter et al. (2012) are validation studies against radar data over the
continental United States. Tang et al. (2015) is one of the first studies on the evaluation of
the IMERG product. Errors and uncertainties in satellite rainfall products are characteri-
zed and studied by Gebregiorgis and Hossain (2015), Sarachi et al. (2015), Yong et al. (2015),
Gebregiorgis and Hossain (2014), Tian and Peters-Lidard (2010), and Tian et al. (2009). Xue
et al. (2013), Bitew et al. (2012), Bitew and Gebremichael (2011), Hong et al. (2007b), and Ni-
jssen and Lettenmaier (2004) focus their efforts on runoff and streamflow modeling with
satellite products as precipitation inputs.

Here, we analyze the first year of IMERG (from 12 March 2014 to 31 March 2015) over
the land surface of the Netherlands (50.7◦−53.6◦N, 3.3◦−7.3◦E;∼35, 000 km2). We
assess the performance of satellite estimates at the scale of medium-size catchments by
means of quantitative verification scores and cumulative time series of rainfall averaged
over the land surface of the Netherlands. Pixel-by-pixel comparisons between radar and
satellite rainfall maps are made to establish the accuracy of IMERG rainfall depths at 30-
min and 24-h intervals. Radar rainfall maps are considered here to be the ground truth
and are aggregated to match the spatiotemporal resolution of IMERG. To investigate the
suitability of IMERG for extreme event analyses, empirical exceedance probabilities are
also presented.

Our work is one of the first studies that extensively evaluates the performance of IMERG
in its first full year of operations. The yearly evaluation of IMERG is novel given the re-
cent long-term availability of this dataset. Although the validation is done for a relative
small midlatitude country, we evaluate IMERG at 30-min scales, whereas the majority of
the above-mentioned studies focus their analysis on 24-h scales. The use of high-quality
gauge-adjusted radar data for evaluation purposes is another valuable asset of this study.

This chapter is organized as follows: Section 2.2 describes the rainfall datasets jointly with
the metrics used to assess the accuracy of IMERG rainfall estimates. Section 2.3 presents
the results and comparisons between satellite and radar rainfall maps and highlights our
major findings. Summary, conclusions, and recommendations are provided in section
2.4.

2.2 Measurements and Methods

Data

The period under analysis extends from 0000 UTC 12 March 2014 to 0000 UTC 1 April
2015; 12 March 2014 is the first day IMERG became available for end users. Because
Royal Netherlands Meteorological Institute (KNMI) gauge-adjusted radar data are not
fully available either for 2014 or 2015, we chose 1 April 2015 as the end date to account
for data losses.
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Satellite data

From the available GPM rainfall measurements1, we evaluated the IMERG dataset. This
is the GPM postreal-time gridded research product, obtained from the intercalibration,
merging, and interpolation of all microwave precipitation estimates from the GPM con-
stellation (Huffman et al., 2015a) combined with global gauge analyses of precipitation
(Schneider et al., 2015a,b). IMERG is 100% available for the studied period, with a tempo-
ral resolution of30 min (also monthly) and spatial resolution [pixel size for the World Ge-
odetic System 1984 (WGS 84) projection] of 0.1◦×0.1◦ (∼77 km2 at the latitude of the
Netherlands). At this resolution, the land surface of the Netherlands is covered by 593
pixels. There are two datasets embedded in the IMERG products: precipitationUncal and
precipitationCal. Conversely to precipitationUncal, rainfall estimates in precipitationCal
are calibrated by GPCC monthly precipitation-gauge analyses (Huffman et al., 2015a). Here,
the evaluation of IMERG is done for both datasets precipitationCal and precipitationUncal.

Radar data

Radar rainfall depths were obtained from the climatological rainfall dataset2 of two C-
band Doppler weather radars operated by KNMI. From these radars, a composite of ra-
dar reflectivity factors at a constant altitude [pseudo-constant-altitude plan position in-
dicator (CAPPI) images] of 1, 500 m was derived every 5 min. The data were corrected for
ground clutter. To avoid remaining strong residual clutter and hail, reflectivities above
55 dBZ were set to 55 dBZ (∼100 mm·h−1). Next, reflectivity factors Z (mm6·mm−3)
were converted to rainfall intensitiesR (mm·h−1) with a fixedZ−R relationship (Mars-
hall et al., 1955),Z =200·R1.6. This results in 97 levels of rainfall intensities from 0.1 to
100 mm·h−1. A five-pixel median filter on nearest-neighbor pixels was applied to the
rainfall depths to remove local outliers caused by accumulated residual ground clutter
(Overeem et al., 2011).

Radar data were adjusted with data from one manual and one automatic rain gauge net-
work also operated by KNMI. The automatic network (32gauges) gives1-h rainfall depths
every hour, whereas the manual network (325 gauges) gives 24-h rainfall depths. A 24-h
spatial adjustment was combined with an hourly mean-field bias adjustment. The gauge-
adjusted radar product has a temporal resolution of 5 min and a spatial resolution (pixel
size) of0.92 km2 for the land surface of the Netherlands (38, 063pixels). Note that gauge-
adjusted radar estimates of rainfall are only available over the land surface of the Ne-
therlands because no gauge data are available outside this area. This dataset is a reliable
source given its accuracy, spatiotemporal resolution, and availability (99% for the studied
period). For more elaborate descriptions on the construction and quality of this radar da-
taset, see Overeem et al. (2011, 2009a,b).

1GPM rainfall datasets are freely available at the NASA portal: http://pmm.nasa.gov/data-

access/downloads/gpm.
2KNMI climatological rainfall datasets are freely available at the Infrastructure for the European

Network for Earth System Modelling (IS-ENES) climate4impact portal: http://climate4impact.

eu/impactportal/data/catalogbrowser.jsp?catalog=http://opendap.knmi.nl/knmi/

thredds/./radarprecipclim.xml.
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Although both satellite and radar data are retrieved from two different and unrelated
web portals, their complete independence cannot be guaranteed. This is because IMERG
is combined with a monthly GPCC precipitation-gauge analysis (Huffman et al., 2015a,
section 3.8). Therefore, it is plausible to assume that some of the gauges used to adjust
radar rainfall fields in the Netherlands (Overeem et al., 2009b) are also involved in IMERG
estimates. For the Netherlands, the average number of rain gauges used in the GPCC Full
Data Product, version 7 (January-December2013), and GPCC Monitoring Product, version
5 (January-December 2014), are∼120 and 35, respectively3. The latter agrees more or
less with the number of gauges from the automatic network (32). At this moment, it is
not possible to exactly determine which Dutch rain gauges are used in IMERG. Still, for
evaluation purposes, we assume the radar dataset to be the ground truth and indepen-
dent from the satellite dataset.

Spatiotemporal Aggregation

Two classes of rainfall maps were retrieved from the satellite and radar datasets: 30 min
and24 h. To match the spatiotemporal resolution of IMERG, radar rainfall maps were ag-
gregated in time and space. The 5-min radar rainfall maps were simply aggregated, pixel
by pixel, into 30-min rainfall fields. The spatial grids of both satellite and radar data were
superimposed; thus, for every IMERG pixel, a set of radar pixels was identified. The mean
rainfall value of every set of radar pixels was assumed to represent the spatial aggrega-
tion of radar rainfall maps (0.92 km2) at IMERG resolution (0.1◦×0.1◦;∼77 km2 at the
latitude of the Netherlands). This spatial average is less representative along the borders
of the land surface of the Netherlands, where in most cases the spatial average was ba-
sed on few radar pixels. Therefore, only those spatial averages of rainfall depths based on
62 radar pixels or more were taken into account for comparison purposes (against IMERG
data); 62 is equivalent to 70% of the maximum number of radar pixels (88) that fit into
one IMERG grid cell.

Error and Uncertainty Metrics

We quantified the accuracy and uncertainty in IMERG estimates over the Netherlands
through1) the relative bias, 2) the coefficient of variation, and 3) the coefficient of deter-
mination.

The relative bias is a relative measure of the average error between the satellite and radar
rainfall fields (the latter considered as the ground truth):

relative bias =
Rres

Rradar
=

n∑
i=1

Rres,i

n∑
i=1

Rradar,i

, (2.1)

3Visualization and access of GPCC Full Data and Monitoring Product is possible at https://kunden.
dwd.de/GPCC/Visualizer.
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whereRres,i = RIMERG,i − Rradar,i. Rres represents the average rainfall residuals,Rradar
represents the average radar rainfall,Rres,i represents the rainfall residual (i.e., the diffe-
rence between IMERG and radar rainfall depths) for a corresponding pixel and time step,
Rradar,i represents the radar rainfall for any pixel at any time step,RIMERG,i is the IMERG
rainfall for any pixel at any time step, andn represents all possible pixels at all time steps
for the period under consideration, that is, the first year of IMERG estimates. The relative
bias ranges from−1 to+∞, where 0 represents an unbiased rainfall field.

The coefficient of variation (CV) is a dimensionless measure of dispersion (Haan, 1977),
defined in this case as the standard deviation of the residuals divided by the mean of the
reference field, that is, the mean of the radar rainfall field:

CV =

√
V̂ar
(
Rres

)
Rradar

. (2.2)

The coefficient of variation is a measure of uncertainty. It ranges from 0 (a hypothetical
case with no uncertainty) to+∞.

The coefficient of determination is a measure of the strength of the linear dependence
between two random variables, satellite and radar rainfall depths in this case. It is defined
as the square of the correlation coefficient between the satellite and radar rainfall depths:

r2 =
Ĉov

2(
Rradar, RIMERG

)
V̂ar
(
Rradar

)
·V̂ar

(
RIMERG

) , (2.3)

where r2 ranges from 0 to 1, where 1 is the case of perfect linear correlation, that is, all
data points would fall on a straight line without any scatter. Perfect linearity does not
imply unbiased estimation because the regression line does not have to coincide with the
1:1 line, even if it captures all variability.

Quantitative Validation and Extremes

To assess the ability of IMERG to detect rainfall above a given threshold, we used two
scores for deterministic detection of discrete events (Wilks, 2011): 1) the false alarm ra-
tio (FAR) and 2) the probability of detection (POD). Deterministic detection means that
there is no information about the uncertainty of the event. Although rainfall is conside-
red to be a continuous variable, it becomes discrete when the scores are established for
exceeding thresholds of rainfall. The quantitative verification is assessed by means of a
2×2 contingency table. As explained by Su et al. (2008), the contingency table is compo-
sed ofa, where both satellite and radar rainfall depths are above a given threshold T ; b,
for satellite rainfall above T and radar rainfall below T ; c, for satellite rainfall below T
and radar rainfall above T ; and d, where both satellite and radar rainfall depths fall be-
low T . The variables a, b, c, and d represent the total number of counts above the given
thresholdT .
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The scores are defined as follows:

POD =
a

a+ c
and (2.4a)

FAR =
b

a+ b
. (2.4b)

POD [Eq. (2.4a)] is a measure of discrimination, that is, the ability of IMERG estimates to
reproduce radar observations above a given rainfall threshold. It is the ratio of IMERG de-
tections to the number of times the event actually occurred. It ranges from 0 to 1, with 1
as the perfect case where all the events were correctly detected. FAR [Eq. (2.4b)] is a me-
asure of reliability, that is, the proportion of IMERG detections that turn out to be wrong.
It goes from 1 to 0, with 0 as the perfect case where no IMERG detection is wrong. Both
POD and FAR were computed for spatial resolutions of 0.1◦×0.1◦ and 0.5◦×0.5◦. Rain-
fall estimates in the latter (non-overlapping) resolution were obtained from the simple
average of 25 pixels at IMERG resolution. The 0.5◦×0.5◦ resolution is equivalent to the
average area of the 23 water authorities that the Netherlands is divided into, a relevant
scale for local water management.

The empirical probability of exceedance assesses the ability of IMERG to detect high-inten-
sity rainfall events. It is defined as the ratio of the number of rainfall measurements that
exceed a given threshold of rainfallT and the total number of rainfall measurements. As
with the other metrics, the empirical probability of exceedance is computed for IMERG
and radar rainfall estimates.

2.3 Results and Discussion

Figure 2.1 compares two different cases of IMERG evaluation at 30 min. One is an exam-
ple of how IMERG accurately detects one of the most intense rainfall events for the studied
period. The other case is also an example in which IMERG fails to detect one typical rain-
fall event for the Dutch winter. In appendices A.1 and A.2, we present a few more visual
comparisons of IMERG evaluation at 30 min and 24 h (Figs. A.1, A.2). The full monthly
evaluation of IMERG is shown in Fig. A.3.

For the intense rainfall event shown in Fig. 2.1 (top), IMERG clearly detects the difference
between areas where rainfall fell and where it did not. IMERG still gives some small dif-
ferences along the transitions between rain and no-rain areas. Nevertheless, such diffe-
rences fall below 1.0 mm when compared against radar (at IMERG resolution). One im-
portant feature is that IMERG is able to track high-intensity events, especially at higher
temporal resolutions, that is, 30 min. This can also be seen in Fig. A.1, where the rainfall
event on 28 July 2014 is shown practically in its entire duration. When it comes to rain-
fall estimates, IMERG performance is equally good. For the case in Fig. 2.1 (top),47.9 mm
is the rainfall depth retrieved by radar at its original resolution. When radar rainfall is
scaled up to match IMERG resolution, this maximum rainfall depth becomes 20.5 mm.
The maximum IMERG estimate for this event is 16.7 mm, which gives an indication of
the good performance of IMERG at such higher spatiotemporal resolutions. Still, there
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are some cases in which IMERG does not track the rainfall event nor is able to retrieve
accurate rainfall estimates, as presented by the case in Fig. 2.1 (bottom).
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Figure 2.1: Comparison of 30-min rainfall maps. (left) Radar or ground truth, (center) radar at
IMERG resolution, and (right) IMERG. The spatial resolution of the rainfall maps at the left is
∼1 km2. These radar maps represent the actual rainfall fields for the time steps under conside-
ration. The radar maps in the center are equivalent to the ground truth at IMERG resolution, that
is, 0.1◦×0.1◦ (∼77 km2 at the latitude of the Netherlands). Results are for one good evaluation
case (top) and a bad one (bottom). Column labels indicate the end time (UTC) and dates at which
the 30-min maps were obtained.

Pixel-by-Pixel Comparison

IMERG and radar rainfall maps were compared on a pixel-by-pixel basis at 30-min, 24-
h, monthly, and yearly durations for the land surface of the Netherlands over the IMERG
grid. The scatter density plots presented in Fig. 2.2 represent the pixel-by-pixel compari-
sons of IMERG estimates against radar rainfall depths. These plots only include data for
which the radar rainfall depth is equal or larger than 0.1 mm (for 30 min) or 1.0 mm for
all other cases. With such thresholds (significance condition), we concentrate upon more
significant rainfall events. Thus, the statistics are not affected by frequent zeros.
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Under the conditions of significance and representativeness (see section 2.2), the coef-
ficient of determination at 30 min is very low (r2 =0.11), which indicates a poor linear
correlation between IMERG and radar rainfall fields at high temporal resolutions. Large
representativeness errors between radar and satellite retrievals, revisit time of GPM, and
30-min downscaling and interpolation procedures are some of the reasons for such a low
30-min correlation (∼0.3). Nevertheless, the relatively low CV of 1.9 is a promising esti-
mate for such a high spatiotemporal resolution, as seen in Fig. 2.2 (top left). Comparisons
of 24-h rainfall estimates exhibit an r2 of 0.40 (Table 2.1), which implies a correlation of
∼0.6, and a much lower CV of 1.15. This indicates a good performance in 24-h IMERG
estimates. Such a good performance can certainly (but not exclusively) be attributed to
the progressive smoothing of rainfall fields when aggregated at larger temporal and/or
spatial scales (Huffman et al., 2015c). The scatter density plots of 24-h rainfall depths re-
veal a relative bias of only−4.7% in IMERG (Fig. 2.2, top right; Table 2.1).
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Figure 2.2: Scatter density plots of IMERG precipitationCal rainfall depths vs radar
rainfall depths for 30-min, 24-h, monthly, and yearly accumulations, from 12 Mar
2014 to 1 Apr 2015. Paired data are only plotted when radar rainfall depths are equal
to or larger than 0.1 mm (for 30 min) or 1.0 mm (for 24 h, monthly, and yearly).

All the above metrics are based on just 5.5% of the maximum possible number of data
pairs for the 30-min evaluation, and 92.2% of all data pairs correspond to values below
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0.1 mm. If no threshold is applied, the CV remains at∼7.0 either for the full coverage of
the Netherlands or for 70% of its land surface (representativeness condition, see section
2.2− Spatiotemporal aggregation). This means that the variability in rainfall estimates
cannot be attributed to a poor representativeness of IMERGrainfall depths along the bor-
ders of the Netherlands. Instead, when only significant rainfall depths are accounted for
(R > 0.1 mm), the CV decreases from∼7.0 to 1.9, which means that most of the discre-
pancies between rainfall estimates come from the inability of IMERG to properly retrieve
the intermittency of rainfall.

Table 2.1 summarizes the values of the relative bias, the CV (of the residuals), and the
coefficient of determination [Eqs. (2.1), (2.2), and (2.3), respectively] for the30-min,24-h,
monthly, and yearly scales at two rainfall thresholds for the precipitationCal and precipi-
tationUncal datasets.

Table 2.1: Relative bias, CV, andr2 for 30-min, 24-h, monthly, and yearly cases, from 12 Mar 2014
to 1 Apr 2015. For the second column, the statistics are based on paired rainfall depths equal or lar-
ger than 0.0 mm for all cases. For the third and fourth columns, the statistics are based on paired
data in which radar rainfall depths are equal to or larger than 0.1 mm (for 30-min cases) or 1.0 mm
(for 24-h, monthly, and yearly cases). The second and third columns correspond to IMERG precipi-
tationCal. The fourth column corresponds to IMERG precipitationUncal. For all cases the statistics
represent at least 70% of the land surface of the Netherlands.

precipitationCal precipitationUncal

R ≥ 0.0mm R ≥ 0.1 or 1mm R ≥ 0.1 or 1mm

Relative bias (%)
30 min -2.68 -21.88 -32.89
24 h -0.96 -4.67 -17.15
Monthly -2.06 -2.06 -18.03
Yearly -2.30 -2.30 -15.97

CV
30 min 6.98 1.88 1.97
24 h 1.83 1.15 1.44
Monthly 0.24 0.24 0.58
Yearly 0.07 0.07 0.15

r2

30 min 0.19 0.11 0.10
24 h 0.50 0.40 0.29
Monthly 0.78 0.78 0.27
Yearly 0.19 0.19 0.03

Number of pairsn
30 min 7,541,380 591,905 591,905
24 h 147,441 56,502 56,502
Monthly 4,956 4,956 4,956
Yearly 413 413 413
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Cumulative Distribution

Figure 2.3a presents the cumulative satellite and radar rainfall depths for the first year of
IMERG. Figure 2.3b presents time series of IMERG 24-h rainfall depths, averaged over the
land surface of the Netherlands. The date 21 October 2014 had the largest average rain-
fall depth (19.0 mm), although 28 July 2014 registered a local maximum of 135.4 mm.
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Figure 2.3: (a) Time series of cumulative rainfall depths averaged over the land surface of
the Netherlands for KNMI radar data, IMERG precipitationCal, and IMERG precipitation-
Uncal, from 12 Mar 2014 to 1 Apr 2015. (b) Time series of 24-h rainfall depths averaged over
the land surface of the Netherlands for IMERG precipitationCal and KNMI radar dataset.

From Fig. 2.3 it can be seen that the yearly distribution of Dutch rainfall is well captured by
IMERG. In general, rainfall events retrieved from IMERG, either significant or small, rea-
sonably represent the yearly distribution of rainfall (∼900 mm) across the land surface of
the Netherlands (∼35, 000 km2). On a yearly basis, there is a tendency for IMERG to un-
derestimate 24-h rainfall, especially at low rainfall depths (Fig. 2.3b). Nevertheless, the
tendency for IMERG to have a high bias for high precipitation rates has already been re-
ported by Huffman et al. (2015c). This is clearly seen in Fig. 2.3b, where, for high-intensity
rainfall events like those on 26 and 27 May and 25 August 2014, with averaged rainfall
depths of 16.2, 15.9, and 13.6 mm, respectively, IMERG estimates were 25.6, 28.9, and
36.1 mm, respectively. Yong et al. (2015) found systematic negative biases in satellite rain-
fall products. Such negative biases are also seen here in the time series of cumulative rain-
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fall depths (Fig. 2.3a).

The difference between the cumulative rainfall depths of IMERG and radar is just−1.9%
at the end of the period under analysis (Fig. 2.3a). If the period under consideration is ex-
actly one year, that is, from 12 March 2014 to 12 March 2015, the relative bias is−4.1%.
A very similar relative bias (−4.0%) was found by Tang et al. (2015) for the IMERG Day 1
Early Run over a catchment twice as large as the Netherlands (∼81, 000 km2, Ganjiang
River basin, southeastern China). The low relative bias (−1.9%) is consistent with the re-
lative bias between average yearly rainfall depths of IMERG and radar data (−2.3%; Fig.
2.2, bottom right; Table 2.1). The difference is due to the way the metrics were computed.
For the cumulative distribution, all rainfall is averaged over the land surface of the Ne-
therlands, whereas for the scatterplots only rainfall with representative spatial average
was taken into account (at least 70% of land surface coverage; see section 2.2− Spati-
otemporal aggregation). Figure 2.2 also shows the coefficient of determination for the
yearly comparisons, that is, r2 =0.19. Given the low relative bias mentioned above, this
lower coefficient of determination is related to the low variability of yearly accumulati-
ons. Conversely to r2, the good yearly performance of IMERG is also indicated by the very
low coefficient of variation (∼0.1).

Of all the scales studied here, the monthly duration is the one at which IMERG performs
best. For average monthly rainfall depths, the relative bias is−2.1%, with a low CV of0.24
and r2 of 0.78, that is, a correlation of∼0.9 (Fig. 2.2, bottom left; Table 2.1). This good
performance is mainly attributed not only to the monthly (and climatological) correction
that IMERG is subjected to (Huffman et al., 2015a,c,b), but also to the number of Dutch
rain gauges included in the GPCC products used in the IMERG calibration (Schneider et al.,
2015a,b). The larger number of gauges from the Netherlands is included in GPCC (∼120;
see section 2.2−Data). Figure A.3 shows all the monthly rainfall fields of IMERG against
radar.

Quantitative Validation and Extremes

Quantitative validation was done for 30-min and 24-h IMERG rainfall fields. For each
threshold of rainfall, metrics of discrimination (POD) and reliability (FAR) were compu-
ted on 0.1◦×0.1◦ and 0.5◦×0.5◦ resolutions. Figure 2.4 presents the curves of POD and
FAR as a function of the rainfall threshold and their spatial resolution. As with the scatter
density plots (Fig. 2.2), the POD and FAR curves are based on a spatial minimum represen-
tativeness of70% (see section 2.2) for both resolutions. Analyses of extremes were carried
out for several rainfall thresholds via empirical probability exceedance curves (Fig. 2.5).
The empirical probability of exceedance is based on the total number of pixels for which
a given threshold is exceeded within the studied period.

For very low rainfall depths, the POD for30 min and24 h are∼0.4 and∼0.6, respectively
(Fig. 2.4; 0.1◦×0.1◦ resolution). Defined by Eq. (2.4a), the POD indicates the propor-
tion of correct IMERG measurements with regard to rainfall events that actually occurred
(radar measurements). At 30-min scales the POD decreases as higher rainfall thresholds
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are evaluated, after which the POD becomes more or less constant at∼0.2. At 24-h sca-
les the POD remains more or less constant around 0.6. FAR gives better results at 24-
h than at 30-min scales. At 24-h scales FAR starts at∼0.15 and steadily increases until
∼0.9 beyond 30-mm rainfall depths. Similarly, at 30-min scales FAR starts∼0.45 and ri-
ses until ∼0.95 beyond 8 mm. FAR indicates the proportion of missed (wrong) IMERG
detections with regard to all possible detections [Eq. (2.4b)]. Thus, Fig. 2.4 indicates
that most high intensities detected by IMERG are not justified. This is confirmed by Fig.
2.5, which shows how the overestimation pattern dominates IMERG estimates for higher
rainfall intensities, especially above 9 mm (for 24 h) and 0.7 mm (for 30 min). Such ove-
restimation implies that IMERG generates more high-intensity intervals, which leads to
a relatively high FAR as seen from Fig. 2.4. High intense rainfall events rapidly evolve in
time. Hence, the probability of direct detection of such events is reduced given the∼3-h
sampling of the whole GPM constellation and the twice-a-day overpassing of GPM core
satellite over the Netherlands.
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Figure 2.4: FAR and POD of IMERG precipitationCal for (left) 30 min and
(right) 24 h as function of rainfall thresholds from 12 Mar 2014 to 1 Apr 2015.

On the other hand, it is not realistic to expect very high or perfect POD and FAR scores
(1 and 0, respectively). As suggested by Ebert (2010), there are several sources of error
inherent to the evaluation itself of satellite estimates against high-resolution reference
data (radar), such as retrieval errors and representativeness of each type of measurement,
sampling errors due to spatiotemporal mismatches between satellite and reference data,
and the conversion of radiance and/or reflectivity to rainfall intensities. We applied a very
simple neighborhood verification method in which both satellite and radar rainfall esti-
mates were upscaled in space from 0.1◦×0.1◦ to 0.5◦×0.5◦ (which corresponds to the
average scale of Dutch water authorities). Thus, Fig. 2.4 shows how there is a large im-
provement of POD at 30 min, that is, from∼0.4 (at 0.1◦×0.1◦) to∼0.5, without decre-
asing when larger rainfall depths are detected. The same holds for the POD at 24-h scale.
For the 0.5◦×0.5◦ resolution there is an improvement, particularly for POD at the 30-
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min scale. A small improvement can be seen also for the FAR at both 30-min and 24-h
scales for low rainfall depths. Nevertheless, after some rainfall threshold (∼1.2 mm for
30 min, and∼15 mm for24 h), the FAR gets worse with regard to that of0.1◦×0.1◦. This
once more suggests the difficulty for IMERG to accurately detect higher rainfall intensi-
ties, even at larger spatial scales.
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Figure 2.5: Empirical probability of exceedance curves for IMERG
precipitationCal and IMERG precipitationUncal (red and green, re-
spectively) and radar (blue) data for 30-min (dashed) and 24-h
(continuous) rainfall depths, from 12 Mar 2014 to 1 Apr 2015.

IMERG precipitationUncal

Given the strong spatiotemporal variability of rainfall, it is an immense task for GPM to
produce accurate rainfall estimates, especially when its core satellite samples more or less
the same place only twice per day. Nevertheless, out of the∼18, 000 30-min time steps
analyzed here, the proportion of cases in which IMERG performs well is larger than those
cases in which its performance is bad. To some extent this reflects the recent advance of
such a robust mission to estimate high-resolution rainfall rates across Earth.

One may assume that such a satisfactory performance in IMERG is due to the gauge-ad-
justment procedure. In fact, Fig. 2.3a clearly shows the key role of gauge adjustment in
satellite rainfall estimates, where at the end of the studied period the cumulative distribu-
tion of IMERG precipitationUncal gives an underestimation of−14% (−16%when pixel-
by-pixel comparisons are done; Table 2.1). Around the second full month of IMERG (May
2014), an overestimation in IMERG precipitationUncal took place. This overestimation
abruptly increased because of the rainfall events on 26 and 27 May, 9 June, and 25 Au-
gust2014. Of particular interest is the apparent adjustment of IMERG at the end of2014.
We found that this adjustment was only carried out for the month of December. From
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this point on, underestimation becomes the dominant pattern in IMERG precipitation-
Uncal. Hence, the similarity in rainfall time series between IMERG and radar estimates
confirms a large influence of the Dutch gauge network in the calibration of GPM rainfall
retrievals (Fig. 2.3b). It is therefore expected that in places of lower gauge densities the
performance of IMERG may not be as good as for the Netherlands. The monthly gauge
adjustment of IMERG is a crucial step because it is where actual measurements of rainfall
calibrate satellite retrievals and is used to back calibrate the 30-min rainfall fields (Huff-
man et al., 2015b).

IMERG precipitationUncal was thoroughly evaluated as well. As with IMERG, uncalibra-
ted satellite maps (IMERG precipitationUncal) were compared against radar data on a
pixel-by-pixel basis. The comparisons (not presented here) were based on paired data for
which the radar rainfall depth is equal to or larger than0.1 mm (for30 min) or1.0 mm for
all other cases. Therefore, the evaluation between IMERG and IMERG precipitationUncal
is consistent for both datasets (Table 2.1). IMERG precipitationUncal is entirely based on
satellite rainfall retrievals. Thus, and given the consistency among comparisons, the diffe-
rences between IMERG and IMERG precipitationUncal performances are only attributed
to the gauge calibration done for IMERG Final Run.

IMERG precipitationUncal performance is very similar to that of IMERG at 30-min sca-
les. The relative bias is−32.9%, which represents50%more underestimation of average
rainfall over the Netherlands with regard to IMERG. The coefficients of determination and
variation are slightly worse for IMERG precipitationUncal than for IMERG, just 10% and
5%, respectively. Thus,r2 decreases from0.11 to0.10, whereas CV increases from1.88 to
1.97 (Table 2.1). As with IMERG, the good performance of IMERG precipitationUncal im-
proves as rainfall is accumulated at larger intervals. Nevertheless, such an improvement
is not as significant as the one achieved by IMERG (Table 2.1). This highlights once more
the importance of ground calibration satellite retrievals. It was previously discussed how
promising IMERG is for rainfall estimation despite its low correlation (∼0.3). We show
here that practically the same correlation is found for IMERG precipitationUncal, which
implies an actual step forward in satellite-only rainfall estimation. Note that our results
are only transferable to a similar climate as experienced in the Netherlands. Still, such a
relatively good performance of IMERG precipitationUncal is a trustworthy finding, as it is
plausible that in some places or cases the latter outperforms IMERG itself (G. Huffman
2015, personal communication).

For quantitative validation of IMERG precipitationUncal, results remained practically the
same for both spatial resolutions (also not shown here), especially at 30-min intervals
where there is no significant distinction between POD and FAR metrics for IMERG and
IMERG precipitationUncal. For the probability of exceedance, results are presented in Fig.
2.5, which reflect once more the similar performance between IMERG and IMERG precipi-
tationUncal. Exceptions are the overestimates of extreme 24-h events by IMERG precipi-
tationUncal: Fig. 2.5 clearly shows how24-h IMERG precipitationUncal estimates surpass
100 mm of rainfall, something not even possible for IMERG. Therefore, it is expected that
the POD for IMERG precipitationUncal decreases when compared to that of IMERG, more
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drastically at 24-h than at 30-min scales. This is consistent with the sudden jumps in the
cumulative distribution of IMERG precipitationUncal (Fig. 2.3a).

2.4 Summary, Conclusions and Recommendations

The aim of this work was to evaluate the first year of IMERG estimates (Day 1 Final Run)
above the land surface of the Netherlands. Because of the TRMM orbit, TMPA products
were not available for the Netherlands during the successful 17 years of TRMM operati-
ons. GPM has provided the impetus to generate precipitation estimates that extend to
the latitudes of the Netherlands at 0.1◦×0.1◦ resolution every 30 min.

To test the accuracy and performance of GPM rainfall estimates in its first year of ope-
ration, IMERG rainfall maps were compared against radar rainfall fields at 30-min, 24-
h, monthly, and yearly durations. Gauge-adjusted radar rainfall maps are considered as
ground truth. The quantitative evaluation of these comparisons was established through
statistical performance scores, time series analyses, empirical exceedance probabilities,
and scatter density plots (with their related error and uncertainty metrics).

We found an∼8% relative bias in IMERG rainfall estimates over the Netherlands. The
relative bias is slightly negative (underestimation) for all temporal scales, that is,30-min,
24-h, monthly, and yearly, and it is noticeable not only in the scatterplots (Fig. 2.2) but
also in time series of cumulative 24-h rainfall depths (Fig. 2.3a). In the latter, it is clea-
rer how, on average, IMERG tends to systematically underestimate rainfall in the Nether-
lands, although only by∼2%. These low percentages of underestimation indicate the ca-
pability of IMERG to broadly reproduce the distribution of rainfall at medium-catchment
scales, especially for longer durations, and hence the potential applicability of IMERG in
hydrology and water management.

With regard to rainfall correlation, IMERG performs better at larger durations. Thus, at
yearly and monthly aggregations the CV was 0.07 and 0.24, respectively, much better
than for 24-h and 30-min aggregations (1.15 and 1.88, respectively). This better perfor-
mance of IMERG for longer durations is corroborated by the coefficient of determination
r2, which gradually improved from0.11 for30-min durations to0.78 for monthly durati-
ons (withr2 = 0.40at24-h scales). Much credit has to be conceded to the monthly gauge
adjustment in the IMERG product (Huffman et al., 2015a). IMERG precipitationUncal r2
and CV were 0.10 and 1.97, respectively, for 30-min aggregations. These coefficients are
very similar to those found for IMERG. This similarity implies an actual step forward in
high-resolution satellite-only rainfall estimation, given that IMERG is a gauge-calibrated
product whereas IMERG precipitationUncal is not. Given the expected similarity between
the precipitationUncal datasets of IMERG Final and Early (or even Late) Runs, IMERG pre-
cipitationUncal results are promising for near-realtime applications, and particularly im-
portant for ungauged regions.

The monthly gauge adjustment in IMERG improves the 24-h, monthly, and yearly rain-
fall estimates with regard to IMERG precipitationUncal. For IMERG precipitationCal a low
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correlation (r2 =0.19) is found for yearly rainfall estimates, which is mainly driven by the
long period of the aggregation itself, the lack of spatial variability in the annual precipita-
tion, and the few samples it was based on. A poor correlation for 30-min durations sug-
gests room for improvement in IMERG estimates at such high resolution, at least over the
land surface of the Netherlands. Nonetheless, we presented one good case (out of many)
in which IMERG roughly retrieves a reliable spatiotemporal distribution of a30-min rain-
fall extreme over the Netherlands. Figures 2.1 and A.1 show 30-min comparisons of rain-
fall fields from IMERG Final Run and radar (at IMERG resolution).

Better performances are expected at any spatiotemporal aggregation, where extremes
and outliers tend to be filtered or canceled out. This was the case when POD and FAR
were evaluated over a coarser grid (0.5◦×0.5◦), in which such scores perform better for
30 min and24 h than their counterparts at0.1◦×0.1◦ resolution. Scores like POD or FAR
are too severe in the pixel-by-pixel evaluation of satellite products against the reference
data, especially at higher spatiotemporal resolutions. Therefore, it is advisable to evalu-
ate IMERG through more sophisticated neighborhood verification approaches, such as
those proposed by Ebert (2010) and Ebert (2008). Such an approach allows comparisons
of estimates and observations within spatial and/or temporal neighborhoods to evaluate
the accuracy of satellite estimates, given the spatiotemporal requirements of a particular
application. Through a very simple neighborhood approach, we showed how these scores
give better results for a spatial resolution 25 times coarser than IMERG. Figures A.2 and
A.3 show 24-h and monthly comparisons of rainfall fields from IMERG against radar.

The evaluation carried out here heavily relied on the assumption of the Dutch radar data
as the ground truth. Nevertheless, the gauge-adjusted radar dataset is not perfect either,
particularly for 30-min duration. Overeem et al. (2009a) reported an underestimation for
the most extreme rainfall amounts. There are also differences in representativeness bet-
ween radar and satellite rainfall retrievals that may cause differences in both datasets.

With regard to GPCC data, it would be valuable if such a dataset gives detailed informa-
tion about the gauge network used for IMERG calibration. Thus, the level of dependence
between the ground truth and IMERG could be assessed. At present, GPCC gauge network
details are not publicly available, conversely to all the other products involved in IMERG.

IMERG is now a valuable source of rainfall estimates at high spatiotemporal resolutions.
The increased coverage and spatiotemporal resolution is certainly beneficial, especially
in those areas (countries) in which other technologies (like ground-based weather radar
for instance) or even standard gauge networks are scarce or too expensive to operate (or
maintain). Applications such as hydrological modeling can now benefit from GPM pro-
ducts like IMERG. Flood monitoring and forecasting could be another area of application
if IMERG near-real-time products are to be used.
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Chapter 3

Satellite- and Link-derived Rainfall

High-resolution inputs of rainfall are important in hydrological sciences, especially for ur-
ban hydrology. This is mainly because heavy rainfall-induced events such as flash floods
can have a tremendous impact on society given their destructive nature and the short
time scales in which they develop. The spatiotemporal resolutions at which rainfall can
be retrieved are becoming higher and higher, with the development of technologies like
radars, satellites and (commercial) microwave links (CML). Such high resolutions provide
not only more accurate rainfall estimates but also allow a better understanding of its spa-
tiotemporal distribution
For the land surface of the Netherlands, we evaluate here four rainfall products, i.e., link-
derived rainfall maps, IMERG Final Run (Integrated Multi-satellitE Retrievals for GPM -
Global Precipitation Measurement mission), NIPE (Nighttime Infrared Precipitation Esti-
mation), and MSG CPP (Meteosat Second Generation Cloud Physical Properties). All rain-
fall products are compared against gauge-adjusted radar data, considered as the ground
truth given its high quality, resolution and availability. The evaluation is done for7months
at 30 min and 24 h. Overall, we found that link-derived rainfall maps outperform the sa-
tellite products, and that GPM outperforms CPP and NIPE.
We also explore the potential of a CML network to validate satellite rainfall products. Usu-
ally, satellite derived products are validated against radar or rain gauge networks. If data
from CML would be available, this would be highly relevant for ground validation in areas
with scarce rainfall observations, since link-derived rainfall is truly independent from sa-
tellite-derived rainfall. The large worldwide coverage of CML potentially offers a more
extensive platform for the ground validation of satellite estimates over the land surface
of the Earth.

This chapter was submitted after revision to IEEE Trans. Geosci. Remote Sens. as:
M.F. Rios Gaona, A. Overeem, N. Brasjen, J.F. Meirink, H. Leijnse, and R. Uijlenhoet, “Evaluation of Rainfall Pro-
ducts Derived from Satellites and Microwave Links for the Netherlands,” Mar. 2017.
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3.1 Introduction

Rainfall is the key input in environmental applications such as hydrological modeling,
flash-flood and crop forecasting, landslide triggering, waterborne disease propagation,
and fresh water availability. Rainfall is the product of hydrometeorological processes that
extensively vary in time and space Hou et al. (2008); Sene (2013a). It is extremely difficult to
capture its inherent variability at high spatiotemporal resolutions, i.e., in the order of mi-
nutes and kilometers. The requirements of spatiotemporal resolutions are related to the
applications for which rainfall inputs are deemed, for instance, urban vs. rural catchments
Schilling (1991). In urban hydrology, rainfall-related events such as flash floods drastically
impact society at short time scales. Thus, temporal resolutions of 30 min or less and spa-
tial resolutions of10 km or less are necessary Berne et al. (2004). Over history, devices and
techniques have been developed not only to measure or estimate rainfall quantities but
also to fill the spatiotemporal gaps in the data collected.

Rain gauges are the only devices that directly measure rainfall. They are a relatively low-
cost technology due to their compact size and simplicity; consequently, large networks of
rain gauges are found in many places over the land surface of the Earth Becker et al. (2013).
If well maintained, measurements from rain gauges are accurate. However, they are point
measurements, only representative of the area in their direct vicinity. The spatial variabi-
lity of rainfall is not well captured by gauges given their sparsity, especially over the oce-
ans, where practically no gauges are placed. Often, depending on the type of gauge, it is
only possible to collect daily rainfall values, which is not desirable if hourly (or sub-hourly)
analyses are needed. Yet still, rain gauges are the main and most reliable devices to vali-
date more advanced platforms like weather radars and meteorological satellites.

Weather radar has greatly improved the spatiotemporal resolution of rainfall retrievals.
After World War II radar (RAdio Detection And Ranging) technology became popular for
meteorological purposes Rogers and Smith (1996); Atlas and Batan (1990). Weather radar
measures the power of the backscatter (reflection) produced by hydrometeors encounte-
red by an electromagnetic pulse along its propagation path. The backscatter produced
by raindrops can later be processed and transformed into precipitation intensity. Hence,
rainfall is estimated for any given volume that radar scans up in the atmosphere. In ge-
neral, weather radars scan azimuths (0◦−360◦) with an angular resolution of∼1◦, and
reach distances of∼100−300 km with horizontal resolutions of∼1 km. Such scans are
also done for several elevations (0◦−90◦) with regard to the horizon. Radar retrieves in-
formation from all directions with a typical time resolution of 5 min.

Satellite constellations provide global estimates of rainfall on a quasi real-time basis. Sa-
tellite rainfall estimates are obtained from remotely sensing the radiation emitted or re-
flected by atmospheric hydrometeors. This can be done by several techniques which de-
pend on the type of sensor and the range of the spectrum they sense Kidd et al. (2010): 1) Vi-
sible (VIS) and infrared (IR) methods− in which measurements of reflectance and brig-
htness temperature, or retrieved cloud properties such as water path, particle effective
radius, and height are related to occurrence and intensity of precipitation; 2) Passive Mi-
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crowave methods (PMW)− in which liquid or solid precipitation is identified through
measurements of microwave radiation transmitted by both hydrometeors and the Earth,
which is partly scattered and absorbed by hydrometeors; 3) Active Microwave methods
(AMW)− in which rainfall information is retrieved from power measurements of the back-
scatter produced by the interaction of hydrometeors and electromagnetic pulses emitted
by satellite-borne sensors, namely radars; 4) Multisensor techniques− in which the com-
bination of data collected within a satellite constellation overcomes some of the deficien-
cies of the above techniques, for instance, temporal sampling, spatial resolution, and in-
direct measurements. An example of the latter is the Global Precipitation Measurement
mission (GPM), which is the recent upgrade of the Tropical Rainfall Measurement Mission
(TRMM). The GPM constellation consists of 9 satellites which offer global precipitation
estimates between 60◦N−60◦S at a spatial resolution of 0.1◦×0.1◦ every 30 min, with
a minimum latency of 6 h, i.e., in near-real time. Hou et al. (2014); Skofronick-Jackson et al.
(2013) give a detailed account of all the technicalities of the GPM mission and its core ob-
servatory launched on 27 February 2014.

Meteorological satellites can be divided into two categories: Geostationary Earth Orbit
(GEO), and Low Earth Orbit (LEO or polar). GEO satellites orbit the Earth at∼36, 000 km,
and maintain a fixed position to match Earth's rotation; thus, always the same area is
scanned. Their instrumentation typically includes VIS and IR sensors, which provide ob-
servations at resolutions of ∼10−30 min (or hourly), and 1−4 km Sene (2013b); Wang
(2013). Examples of GEO satellites are those part ofNOAA GOES (National Oceanic and At-
mospheric Administration - Geostationary Operational Environmental Satellite system);
and EUMETSAT (European Organisation for the Exploitation of Meteorological Satelli-
tes) with the MSG, which carries the Spinning Enhanced Visible and InfraRed Imager (SE-
VIRI) aboard. LEO satellites orbit the Earth mostly in polar (sun-synchronous) orbits at
∼800 km (407 km for GPM's core observatory). The resolution of their observations stron-
gly depends on the type of sensor. For instance, LEO VIS-NIR (near IR) imagers typically
have∼1km or better; whereas PMW imagers are coarser, e.g., GMI (GPM Microwave Ima-
ger) is∼6×13 km2 (depends on the channel). Since TRMM, AMW sensors such as preci-
pitation radar (PR) or DPR (dual PR) are also placed on meteorological satellites. Exam-
ples of LEO satellites are those part ofEUMETSAT MetOp and NOAA-N NASA (National
Aeronautics and Space Administration) Aqua and Terra, which carries the MODerate re-
solution Imaging Spectroradiometer (MODIS) aboard. For more in-depth details on the
state-of-the-art of rainfall estimation from satellites see Kidd et al. (2010) and references
therein.

CML are a promising alternative for rainfall estimation, especially for places in which rain
gauges are scarce or poorly maintained, or where ground-based weather radars are not
yet deployed or cannot be afforded Doumounia et al. (2014). Rainfall rates can be retrie-
ved from power measurements because rain drops attenuate the electromagnetic signal
along the link path, i.e., between transmitter and receiver. Rainfall estimation via ML da-
tes back nearly four decades Atlas and Ulbrich (1977); Crane (1977), but with the worldwide
spread of wireless communication in the last two decades, this technique has become in-
creasingly popular. Giuli et al. (1991) had previously reconstructed rainfall fields from si-
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mulated microwave attenuation measurements. Nonetheless, Messer et al. (2006); Leijnse
et al. (2007a) were the first to actually use CML to estimate rainfall rates. Schleiss et al.
(2013); Chwala et al. (2014) developed methods to improve rainfall estimates from link
measurements. Overeem et al. (2013); Zinevich et al. (2008) advanced in link rainfall maps
for large datasets. When compared to satellite, weather radar or even rain gauges, links
may outperform them in one or more of the following areas: they are just tens of meters
above the ground, their spatial resolution is in the order of hundreds of meters to kilo-
meters, and their temporal sampling is in the order of seconds to minutes. The massive
availability of CML can potentially provide complementary rainfall information. Never-
theless, the success of this technology depends on the availability of received signal level
(RSL) measurements from the providers of cellular communication.

We divide our study in two parts: 1) evaluation of satellite- and link-derived rainfall pro-
ducts, and 2) the potential of a CML network to validate satellite rainfall estimates. For the
first part, we evaluate the accuracy of four gridded rainfall products: Cloud Physical Pro-
perties (CPP) and the experimental Nighttime Infrared Precipitation Estimation (NIPE),
both from the GEO platform Meteosat Second Generation (MSG); Integrated Multi-satel-
litE Retrievals for GPM (IMERG), of which the core satellite is a LEO platform; and rainfall
maps from a Dutch CML network. The evaluation is done through pixel-by-pixel compa-
risons against radar rainfall maps at half-hourly (30 min) and daily (24 h) durations from
1April2014 to1November2014, i.e., 7months. Radar rainfall maps are considered here
to be the ground truth. For the second part, we focus our analysis on the spatiotempo-
ral availability of a Dutch CML network. Once we have established the accuracy of link
rainfall estimates (first part), we are able to evaluate their performance against satellite
estimates. We then assess the potential of a CML network as ground validation for satel-
lite products for different link densities. This is of relevance due to the very high coverage
of CML over the Earth's land surface, also in areas where no other infrastructure to mea-
sure rainfall is available Overeem et al. (2013).

This chapter is organized as follows: Section 3.2 describes the rainfall datasets, jointly
with the evaluation metrics, and the methodology to assess the spatiotemporal perfor-
mance of a Dutch CML network. Section 3.3 presents the evaluation of satellite and link-
derived rainfall products. Results from the spatiotemporal analysis of a Dutch CML net-
work are also presented in section 3.3. Section 3.4 highlights our major findings. Sum-
mary, conclusions and recommendations are provided in Section 3.5.

3.2 Measurements and Methods

The evaluation period is from0000UTC1April2014 to0000UTC1November2014. This
period is limited by the availability of GPM data for the start date, and CML data for the
end date.
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Radar Data

Radar rainfall depths were obtained from the climatological rainfall dataset1 of two C-
band Doppler weather radars operated by the Royal Netherlands Meteorological Institute
(KNMI). Radar data is adjusted with data from one manual and one automatic rain gauge
network (325 and 32 gauges, respectively) also operated by KNMI. The gauge-adjusted
radar product has a temporal resolution of 5 min, and a spatial resolution (pixel size) of
0.92 km2 for the land surface of The Netherlands (38, 063pixels). This dataset is conside-
red here as the ground truth, and it is a reliable source given its accuracy, spatiotemporal
resolution and availability (99.05% for the studied period). For its complete description
see Overeem et al. (2011).

Microwave Link Data

Rainfall maps were derived from one Dutch CML network. These rainfall maps, LINK he-
reafter, are derived from the methodology established by Overeem et al. (2016b), which
can be briefly explained in six steps: 1) a link is considered for non-zero rainfall retrievals
if the received power jointly decreases with that of nearby links, i.e. a wet-dry classifica-
tion is applied; 2) the RSL is subtracted from a reference signal level representative of dry
weather, i.e. the median signal level of all dry periods in the previous 24 h; the result is
the attenuation estimate; 3) links for which specific attenuation (accumulated over1day)
deviates too much (from that of nearby links) are excluded from the analysis; 4) a dew fil-
ter is applied to correct for dew formation on antennas Overeem et al. (2016a); 5) 15 min
average rainfall intensities are computed from a weighted average of minimum and max-
imum rainfall intensities obtained by a power-law relation with specific attenuation, as-
signed to the middle of the link paths Atlas and Ulbrich (1977); and 6) for each grid cell over
the land surface of the Netherlands, the 50 nearest rainfall intensities are interpolated
via Ordinary Kriging. The spatiotemporal resolution of these rainfall maps is 0.92 km2,
which corresponds to the radar grid, every 15 min. Examples on rainfall maps from CML
are provided in Overeem et al. (2016a, 2013) (the latter with supplemental information ex-
clusively on rainfall maps).

RSL storage is not fully continuous for most of the links within the network (Fig. 3.1a). This
is mainly due to storage issues at the communication provider's server or replacement of
links by fiber optics in urban areas. Consequently, rainfall retrievals for individual links are
unevenly distributed in time for the land surface of the Netherlands. Still, it is possible
to derive rainfall maps even with missing links because the methodology does not rely
on the full availability of the network. Only when none of the links within the network
retrieves RSL, rainfall fields cannot be derived. For the studied period, the availability of
the CML dataset is 85.2% (59.1% the average availability of individual link paths). Most
CML operate at a microwave frequency between 37 and 40 GHz. The average link-path
length 4.43 km, with maximum and minimum path lengths of 19.68 km and 0.16 km,
respectively.

1KNMI climatological rainfall datasets are freely available at the IS-ENES climate4impact portal:
https://climate4impact.eu/impactportal/data/catalogbrowser.jsp?catalog=http:

//opendap.knmi.nl/knmi/thredds/catalog/radarprecipclim/catalog.xml?.
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Figure 3.1: a) Topology and temporal availability of one Dutch CML network,
for the period between 0000 UTC 1 April 2014 and 0000 UTC 1 November
2014. b) Bivariate choropleth map for the spatial density at IMERG resolution
(0.1◦×0.1◦), and the temporal availability of the CML network shown in a).

Satellite Data

IMERG

GPM offers orbital and gridded products processed at three levels2. IMERG Day 1 (V03D)
is a level-3 product with a spatiotemporal resolution of0.1◦×0.1◦ every30 min, for a glo-
bal coverage of 180◦W−180◦E and 60◦N−60◦S Huffman et al. (2014). IMERG is the re-
sult of intercalibration, merging and spatiotemporal interpolation of all microwave pre-
cipitation estimates from the GPM constellation Huffman et al. (2015a) combined with
IR data from geostationary satellites and calibrated with global gauge analyses of pre-
cipitation Schneider et al. (2015a,b). These gauge analyses come from two high-quality
precipitation-gauge products from the DWD (Deutscher Wetterdienst) Global Precipita-
tion Climatology Centre (GPCC), i.e., the Full Data Analysis which is a large data base (from
1901 to2010), and the Monitoring Product which is based on synoptic observational data
(SYNOP) and monthly aggregated climatological data (CLIMAT) from∼7, 000 to 8, 000
stations worldwide Huffman et al. (2015a). There are three IMERG products, which target
different user requirements for latency and accuracy: Early Run (flash flooding), Late Run
(crop forecasting), and Final Run (research product; Huffman et al. (2015a,c)). Their laten-
cies, i.e, the time after they become available are6 h,18 h, and4months, respectively. The
main variable embedded in each IMERG product is “precipitationCal”, in which the rain-

2GPM rainfall datasets are freely available at the NASA (National Aeronautics and Space Administration)
portal: http://pmm.nasa.gov/data-access/downloads/gpm.
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fall estimates are calibrated by GPCC monthly analyses of gauge precipitation. Huffman
et al. (2015a,c,b) offer extensive and more conceptual information with regard to IMERG
products. Rios Gaona et al. (2016) provides examples on rainfall maps from IMERG.

We chose IMERG Final Run because it is considered the post-real-time research product,
it is the only IMERG product available for the studied period, and provides more accurate
results Huffman et al. (2015b). For simplicity, we refer (from here onwards) to the IMERG
Final Run (precipitationCal dataset) only as IMERG. For the analyzed period, IMERG avai-
lability is 100%, and overlaps that of the CML dataset (Sec. 3.2). At the latitude of the
Netherlands, the IMERG spatial resolution [pixel size for the World Geodetic System 1984
(WGS 84) projection] is equivalent to∼77 km2. Hence, the land surface of the Nether-
lands is covered by 593 IMERG pixels.

Although both IMERG and radar data are retrieved from two different and unrelated web-
portals, their complete independence cannot be guaranteed. This is because IMERG is
combined with a monthly GPCC precipitation gauge analysis (Huffman et al., 2015a, sec.
3.8). Therefore, it is plausible to assume that some of the gauge (stations) used to adjust
radar rainfall fields are also involved in IMERG (∼30, according to Rios Gaona et al. (2016)).
Still, for evaluation purposes, we assume the radar dataset to be independent from the
satellite datasets.

MSG

MSG is a series of GEO-satellites which carry the Spinning Enhanced Visible and InfraRed
Imager (SEVIRI) aboard. The latter is an imager with 12 narrow-band channels in the VIS
to IR spectral range. We use data from Meteosat-10 (MSG3). Two SEVIRI products deve-
loped by KNMI were evaluated: CPP and NIPE. Both products are available every 15 min
at the MSG-SEVIRI native spatial resolution, i.e., 4×7 km2 over the Netherlands3. Cor-
rection for parallax effects is not included.

The CPP product relies on the retrieval of cloud optical and microphysical properties from
a combination of VIS and shortwave-IR channels. More specifically, precipitating clouds
and rain rates are retrieved from cloud condensed water path, particle effective radius,
cloud thermodynamic phase, and cloud height measurements. Due to the shortwave
channels, CPP is only available during daytime (i.e., solar zenith angle smaller than 78◦,
∼12 h). This leads to an overall availability of 42.96% for the 30-min resolution for the
period under analysis. The algorithm is calibrated with radar data from another period.
More details on the algorithm and its validation can be found in Roebeling and Holleman
(2009); Roebeling et al. (2012).

NIPE is an algorithm designed to estimate precipitation rates solely from MSG-SEVIRI IR
imagery. It is based on a cloud type dependent precipitation index in which brightness
temperatures and brightness temperature differences are combined with corrections for

3MSG CPP rainfall datasets are freely available at the KNMI portal: http://msgcpp.knmi.nl/

portal/.
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Chapter 3. Satellite and CML rainfall products

atmospheric moisture and cloud top structure. This precipitation index is then converted
to precipitation rate by statistical mapping which aims at unbiased statistics on the preci-
pitation estimates. The algorithm used here has been trained with rainfall data from the
Dutch radar network from another period. More details on NIPE can be found in Brasjen
and Meirink (2015). The availability of the NIPE product for the period under analysis is
92.4% for the 30-min resolution.

Spatiotemporal Aggregation

Half-hourly rainfall maps are retrieved from radar, satellite and CML data. All rainfall
maps are upscaled to match the spatiotemporal resolution of IMERG, which is conside-
red here as the resolution of reference. The spatial upscaling is done through the sim-
ple average of all the values within the resolution of reference. For instance, the spatial
grids of IMERG and radar data are superimposed, and for every IMERG pixel a set of ra-
dar pixels is identified. The mean rainfall value of every set of radar pixels is assumed
to represent the spatial aggregation of radar rainfall maps (0.92 km2) at IMERG resolu-
tion (0.1◦×0.1◦). This procedure is done for all datasets given their higher resolutions
when compared to IMERG. For the temporal upscaling, rainfall maps are simply aggrega-
ted (pixel-by-pixel) into 30-min rainfall fields, which are also aggregated into daily rain-
fall maps. Daily aggregations in the NIPE dataset are based on a minimum availability of
95% of the half-hourly rainfall maps.

Spatiotemporal Availability

The topology and time availability of link paths within a network are highly variable (Fig.
3.1a, and Sec 3.2). Translating such spatiotemporal features into a 2D-domain, one obtains
a visualization of the spatial density of the network (defined as the total CML path length
per IMERG pixel) and its availability for a given resolution, e.g., at IMERG resolution (Fig.
3.1b). The temporal availability of any link within the network is represented as 1 or 0
whether the link was active or not (respectively) for a given time step. Thus, the spatial
density of the network at any given time step is equivalent to the sum of all active path
lengths within one pixel of the IMERG grid (resolution of reference). For the topology pre-
sented in Fig. 3.1a, the spatial density extends from0 to97.39 km per IMERG pixel for the
entire evaluation period. If such a range of spatial densities is binned into few catego-
ries, one can explore the influence of the spatial density of a CML network in link-derived
rainfall maps against any other rainfall product. In this case, we compute statistics for
four spatial density bins between LINK and radar rainfall maps to quantitatively assess
the role of CML as potential alternatives for ground validation in satellite rainfall estima-
tion.

Figure 3.1b shows the distribution of the spatial density against the time availability for
every (Dutch) IMERG pixel (see also its legend for the link distribution in such a 2D-space).
In this figure, the time availability of the network is given by the average relative availabi-
lity of all the link-paths within each pixel. The relative availability of one link is the num-
ber of 30-min time steps in which RSLs were retrieved with regard to the total number
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of 30-min time steps in which at least one link was active (theoretical maximum). The
maximum time availability for the evaluation period is 99.8%.

Error and Uncertainty Metrics

We evaluate the performance of rainfall estimates from satellites and CML through the
relative bias, the coefficient of variation (CV), and the coefficient of determination (r2).

The relative bias is a measure of the average systematic error between a given rainfall pro-
ductRproduct and radar rainfall fieldsRradar (the latter considered as the ground truth):

relative bias =
Rres

Rradar
=

n∑
i=1

Rres,i

n∑
i=1

Rradar,i

, (3.1)

whereRres,i = Rproduct,i − Rradar,i and n represents all possible pixels at all time steps
for the period under consideration. Rres,i are the residuals, i.e., the difference between
Rproduct,i andRradar,i. Rres andRradar are the average of the residuals and radar rainfall
measurements (in mm), respectively. The relative bias ranges from−1 to +∞, where 0
represents an unbiased rainfall field.

The coefficient of variation is a dimensionless measure of dispersion Haan (1977), defined

in this case as the standard deviation of the residuals
√

V̂ar
(
Rres

)
divided by the mean of

the reference field, i.e., the mean of the radar rainfall field:

CV =

√
V̂ar
(
Rres

)
Rradar

. (3.2)

The coefficient of variation is a measure of uncertainty. It ranges from 0 (a hypothetical
case with no uncertainty) to+∞.

The coefficient of determination is a measure of the strength of the linear dependence
between two random variables, satellite (or link) and radar rainfall depths in this case.
It is defined as the square of the correlation coefficient between the rainfall depths of a
given rainfall productRproduct,i and its equivalent radar rainfall depthsRradar,i:

r2 =
Ĉov

2(
Rradar, Rproduct

)
V̂ar
(
Rradar

)
·V̂ar

(
Rproduct

) , (3.3)

where V̂ar
(
Rradar

)
and V̂ar

(
Rproduct

)
are the variance of radar rainfall measurements and

a given rainfall product, respectively; and Ĉov
2(
Rradar, Rproduct

)
the squared covariance

between these two variables. r2 ranges from 0 to 1, the latter in case of perfect linear cor-
relation, i.e., where all data points would fall on a straight line without any scatter. Perfect
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linearity does not imply unbiased estimation because the regression line does not have to
coincide with the 1:1 line, even if it captures all the variability.

3.3 Results

IMERG, LINK, CPP and NIPE products are compared against radar rainfall maps on a pixel-
by-pixel basis for the land surface of the Netherlands for seven months, at half-hourly
and daily scales over the IMERG grid. The pixel-by-pixel comparisons are done through
scatter density plots of satellite and link-derived estimates against radar rainfall depths.
Scatter density plots based on half-hourly paired rainfall depths are presented in Figure
3.2. These half-hourly plots only include data for which radar rainfall depths are equal to
or larger than 0.1 mm.

Table 3.1 summarizes the values of the relative bias, the coefficient of variation of the re-
siduals, and the coefficient of determination [Eqs. (3.1), (3.2), and (3.3)], respectively] at
half-hourly and daily scales. Except for the relative bias, the metrics at daily durations are
based on rainfall pairs for which the radar depths are equal to or larger than 1.0 mm. For
half-hourly durations the analysis is split into daytime (0600 to1800UTC), and nighttime
(1800 to 0600UTC) (Table 3.1, 3rd and 4th columns).

Figure 3.3 shows the coefficients of determination and variation between LINK and IMERG,
and between LINK and radar rainfall depths for bins of spatial density of the CML network
(Fig. 3.1). Similar to the scatter density plots, these metrics are computed for radar rainfall
depths equal to or larger than 0.1 mm (30 min), and 1.0 mm (24 h).

3.4 Discussion

The main focus of this study is the evaluation of rainfall products at half-hourly scales.

Rainfall Intercomparison

Out of the four products, LINK is the one which best reproduces the spatiotemporal dis-
tribution of rainfall over the land surface of the Netherlands. It is the product with the
lowest CV of 1.16 and the highest r2 of 0.37 (Fig. 3.2, and Table 3.1, 30 min, day+night).
The latter indicates a linear correlation of∼0.6 which can be described as good for such
fine resolutions. These results are consistent with those obtained by (Overeem et al., 2013,
Fig. 4, right panel) (CV =1.13 and r2 =0.49). Overeem et al. (2013) performed a similar
analysis for 15-min rainfall accumulations for 12 days from 2011, with a higher average
link density. The similar results between their work and ours imply that the algorithm
developed by Overeem et al. (2016b) (Sec. 3.2) is able to accurately retrieve rainfall fields
under different network topologies (availability issues included), which would be bene-
ficial and convenient for GPM ground validation (see Sec. 3.4). Our results are based on
the comparison of∼10, 000 time steps, compared to the∼1, 000 they considered. Our
results for 30 min are also consistent with those in (Overeem et al., 2016a, Table 1 - ‘out-
lier + dew filter’ row, ‘entire period’ dataset), i.e., CV =1.08 and r2 =0.35. Their analyses
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were done for a much more complete network for15-min durations at74 km2, and for2.5
years of CML data. In winter, solid precipitation is a known factor that worsens link rain-
fall retrievals. Rainfall estimates from LINK on average underestimate rainfall by 8.88%.
IMERG and NIPE also yield low relative biases, i.e,< 10%. Mei et al. (2016); Nikolopoulos
et al. (2010) found that errors in similar and coarser satellite rainfall products result in pre-
dicted runoff with a relative error of the same order.
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Figure 3.2: Scatter density plots of IMERG, LINK, CPP and NIPE vs. radar rainfall
depths for half-hourly accumulations, from 1 April 2014 to 1 November 2014. ‘n’
represents the number of half-hourly intervals the comparisons are based on.

For IMERG, results are less appealing with a CV of 1.88 and r2 of 0.10. Nevertheless,
Rios Gaona et al. (2016) showed that such results are typical for the Netherlands in the first
year of IMERG operations, i.e., CV=2.30 and r2 =0.08. The low linear correlation∼0.3
is partly attributed to the few direct measurements the GPM constellation is able to re-
trieve over the Dutch surface. The GPM core satellite carries a state-of-the-art DPR (dual
precipitation radar) and GMI (GPM Microwave Imager), but only overpasses the land sur-
face of the Netherlands twice a day on average. The revisit time of GPM constellation is
approximately3 h. Therefore the probabilities to detect and track heavy storm events are
low, given the relative small size of the Netherlands (∼35, 000 km2). Still, IMERG also
relies on GEO-satellite IR data and continental rain gauges to merge and downscale all
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data to obtain an almost instantaneous global snapshot of precipitation. For the ana-
lyzed period the relative bias is low, i.e., −1.51% (Fig. 3.2 and Table 3.1). This is due to
the gauge adjustment IMERG is subjected to, especially at monthly scales Huffman et al.
(2015a); Rios Gaona et al. (2016). Note that IMERG offers a∼15% higher availability with
regard to LINK. This is an advantage of IMERG given that in many places around the world
radars and/or CML are not yet operational, and most gauge networks are too sparse to of-
fer high-resolution and continuous rainfall estimates.

Table 3.1: Relative bias and coefficients of variation and determination for half-hourly and daily
rainfall depths from IMERG, LINK, CPP and NIPE. For the second column all possible 30-min steps
are considered. The third column only considers 30-min steps where CPP retrievals were available,
i.e., daytime (0600 to 1800 UTC). The fourth column considers 30-min steps where CPP retrievals
were not available, i.e., nighttime. The results for the daily aggregation of 30-min steps are shown
in the fifth column. The CV and r2 are computed on paired rainfall depths equal to or larger than
0.1 mm for 30 min; and equal to or larger than 1.0 mm for 24 h. These thresholds are used in all
the analyses, i.e., Day, Night, and Day+Night. For the relative bias no threshold was applied.

30 min 24 h

Day+Night Day Night Day+Night

Relative bias (%)
IMERG -1.51 -14.88 +9.89 -1.49
LINK -8.88 -10.88 -2.92 -8.88
CPP — +60.41 — —
NIPE +5.33 +31.63 -32.50 +0.37

CV
IMERG 1.88 1.80 2.06 1.17
LINK 1.16 1.21 1.14 0.58
CPP — 2.17 — —
NIPE 1.93 2.17 1.50 2.01

r2

IMERG 0.10 0.10 0.11 0.36
LINK 0.37 0.34 0.40 0.66
CPP — 0.09 — —
NIPE 0.01 0.01 0.02 0.06

CPP is the rainfall product with the highest relative bias, i.e., +60.41%. In general, CPP
tends to overestimate rainfall at high solar zenith angles. Conversely to IMERG, CPP is en-
tirely based on MSG which monitors the Netherlands once every 15 min. Thus, the pro-
bability to detect rainfall and track storms is very high with this platform. However, CPP
measures cloud properties such as optical thickness only in daylight conditions. Thus, for
the studied period, the comparison is based on just∼50% of the availability with regard
to LINK. Table 3.1 (third column) also presents the analyses of all the other products for
daytime to facilitate consistent comparisons between products. Despite its high CV of
2.17, the highest among all products, it is still remarkable how CPP broadly matches the
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performance of IMERG in terms of CV and r2. This is more clear when the coefficients of
determination (r2) are compared, i.e., 0.09 for CPP and 0.10 for IMERG. The relative bias
of the latter increases to−14.88%when only daytime steps are considered. Still, neither
CPP nor IMERG are able to approach the performance of LINK. This can be attributed to
the fact that CML provide more direct estimates of surface rainfall than satellites, which
have larger measurement and sampling uncertainties.

NIPE is the rainfall product with the worst statistics either for daytime or nighttime. Al-
though its CV of 1.93 is very similar to that of IMERG, its very poor r2 of 0.01 basically
suggests no linear correlation (∼0.1). In principle, NIPE is expected to perform better du-
ring nighttime (in all aspects, i.e. bias and correlation) because during daytime the radi-
ance observed in the SEVIRI IR channel at 3.9µm has a solar component which has to
be corrected for. This is confirmed by the evaluation of NIPE during nighttime where its
CV decreases from 1.93 to 1.50. Such an improvement suggests the separate use of MSG
CPP for daytime and NIPE for nighttime. For daily durations CV andr2 improve due to the
smoother rainfall fields result of the temporal aggregation. The last column of Table 3.1
shows how for nearly all cases, and all metrics, daily rainfall maps are more accurate than
half-hourly maps. Unlike IMERG and LINK, the relative bias between 30-min and 24-h
NIPE differs because not all half-hourly steps are included in the daily aggregations (we
only aggregate to daily accumulations if at least 95% of 30-min data is available for any
given day; Section 3.2).

CML for Satellite Ground Validation

As shown in section 3.3 (Table 3.1, Fig. 3.2), LINK rainfall estimates at the IMERG pixel scale
are more accurate than IMERG rainfall retrievals, in the sense of being closer to gauge-
adjusted radar rainfall estimates, considered to be the reference product in this study.
This suggests that networks of CML have information to add to IMERG and can poten-
tially be used for near real-time ground validation of IMERG at time scales from 30 min
to 24 h.

The results presented in Table 3.1 and Fig. 3.2 are indicative for CML networks with an
average spatial density and time availability comparable to that of the Netherlands (Fig.
3.1b). However, many areas around the world, in particular regions with few surface rain-
fall observations such as developing countries, will exhibit significantly lower link den-
sities than countries such as the Netherlands. It is to be expected that the performance
of CML networks in terms of rainfall estimation would deteriorate for such lower spatial
densities.

The density of the considered CML network over the Netherlands is spatially variable,
with generally higher densities around urban areas and lower densities in rural areas. In
addition, network renewal or replacement with optical fiber cables affects link densities
in some areas. This property of the CML network allows a systematic investigation of the
effect of spatial network density on LINK performance, by classifying the pixels in Fig. 3.1b
in different categories of link density, from low to high, and subsequently computing the
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performance indicators CV and r2 [Eqs. (3.2) and (3.3)] for each class separately. The re-
sult of such an analysis is shown in Fig. 3.3, for four spatial density classes of equal width,
namely 27 km per IMERG pixel. Approximately 85% of the pixels in Fig. 3.1b fall in the
1st class, 12% in the 2nd class, 2% in the 3rd class, and 1% in the 4th class, over the entire
7-month period considered.

Figure 3.3 shows that the performance of LINK rainfall estimates is in fact hardly affected
by spatial network density, neither in terms of the coefficient of variation of the residuals
(CV, left panel) nor in terms of the coefficient of determination with regard to the refe-
rence product, i.e., the gauge-adjusted weather radar data (r2, middle panel). Only for
very small network densities, a slight deterioration of the LINK performance in terms of
r2 is noted (right panel). The near independence of LINK performance from network den-
sity can be partially explained by the employed interpolation methodology, which takes
into account information from the 50 nearest link observations around each individual
pixel of the original link interpolation grid (0.92 km2). As a result of this, CML from neig-
hbouring IMERG pixels with a higher link density carry over rainfall information to the
current IMERG pixel, even if that has a lower link density. Nevertheless, the results pre-
sented in Fig. 3.3 are encouraging from the perspective of the potential of LINK rainfall
estimates as means of ground validation of satellite rainfall products in areas with lower
link densities, such as encountered in regions with few surface rainfall observations (e.g.
developing countries).
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Figure 3.3: Coefficient of variation (CV, left) and coefficient of determination (r2, centre and right)
for four bins of spatial density of the CML network shown in Fig. 3.1. The statistics are computed
for rainfall depths above 0.1 and 1.0 mm (30 min and 24 h durations, respectively) for the period
between 1 April 2014 and 1 November 2014. Panel c shows the results obtained for smaller spatial
density bins (a discretization of the first bin in panel b). Blue lines are for 30 min. Orange lines are
for 24 h.
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3.5 Conclusions and Recommendations

We evaluated the performance of three rainfall products derived from satellite (IMERG,
CPP, and NIPE), and one from a Dutch CML network (LINK). Gauge-adjusted radar rainfall
fields were considered as the ground truth. The information from all platforms was ga-
thered and transformed into rainfall maps with spatiotemporal resolution of 0.1◦×0.1◦
every 30 min (IMERG resolution). Pixel-by-pixel comparisons were done for the land sur-
face of the Netherlands at half-hourly and daily scales, over a 214-day period (∼10, 000
30-min rainfall maps). The performance was compiled in three metrics: r2, CV and the re-
lative bias. Beyond that, we explored the potential use of link-derived rainfall as ground-
validation for satellite rainfall.

LINK is the rainfall product which best reproduces the spatiotemporal distribution of rain-
fall over the land surface of the Netherlands. For 30 min, its relatively high r2 =0.37 in-
dicates a linear correlation of∼0.6, twice as high as that of IMERG (∼0.3). The LINK pro-
duct underestimates rainfall events by 8.88%. This underestimation is attributed to the
limited number of links, whereas for IMERG it is related to the revisit time of GPM constel-
lation (∼3 h). LINK, IMERG and NIPE yielded low relative biases (< 10%) which becomes
suitable from the perspective of hydrological modeling.

CPP is able to broadly match the performance of IMERG, i.e., r2 =0.09. Such an equiva-
lent performance suggests CPP as a reliable alternative to IMERG for daytime precipita-
tion, given its continuous monitoring over the Netherlands. The least poor performance
of NIPE is achieved for nighttime, i.e., r2 =0.02, which suggests ample room for impro-
vement.

For24 h, the performance of LINK and IMERG is better than for30 min. With anr2 =0.36
and a CV =1.17, IMERG was found to be better than the NIPE product. With anr2 =0.66
and a CV =0.58, LINK strongly improves upon IMERG. These results confirm the poten-
tial of IMERG, and especially of LINK, in hydrological applications at relevant spatiotem-
poral resolutions.

We directly compared LINK vs radar rainfall estimates to assess the potential of CML data
for satellite rainfall validation, especially at half-hourly durations. We found that the qua-
lity of rainfall estimates from LINK shows no clear dependence on the link density. The
average r2 of LINK vs radar is 0.50 for 30 min, and 0.76 for 24 h, regardless of the spatial
link density, even at very small link densities.

The derived LINK maps are based on an interpolation technique which takes the actual
availability into account. This interpolation methodology (section 3.2) is expected to have
limited influence on the outcome of the rainfall intercomparisons, given that LINK is the
result of spatiotemporal aggregation at the relatively coarse IMERG pixel scale (section
3.2). Should evaluations at higher spatiotemporal resolutions be required, the link-de-
rived rainfall products should preferably be based on more sophisticated interpolation
techniques, e.g., D'Amico et al. (2016); Roy et al. (2016).
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An alternative type of comparison between IMERG and LINK would be to compare not-
interpolated link retrievals against IMERG or even IMERG precipitationUncal; thus, the
true potential of CML in satellite ground validation could be assessed. Another appro-
ach to find if there is indeed a relation between link density and rainfall retrieval would
be that of Rios Gaona et al. (2015). There, CML rainfall depths were simulated from radar
data. In the same way, if CML data is simulated here from radar rainfall depths, one might
be able to explore the influence of the spatial density by changing the amount of (simu-
lated) links available.

Pixel-by-pixel comparisons of rainfall products are a drastic evaluation exercise, especi-
ally at higher spatiotemporal resolutions. Future work should apply more sophisticated
neighborhood verification approaches, such as those proposed by Ebert (2010). Such an
approach allows comparisons within spatial and/or temporal neighborhoods to evalu-
ate the accuracy of rainfall estimates, given the spatiotemporal requirements of a par-
ticular application. The evaluation of the rainfall products at such a high spatiotempo-
ral (IMERG) resolution is important for hydrological applications. It also implies that we
ask the most from the observational systems. On the other hand, results are expected to
greatly improve at lower spatiotemporal resolutions. For instance, Roebeling and Holleman
(2009) showed a better performance for CPP at much larger spatial scales. This could also
be the case for the experimental product NIPE in spite of its poor performance at higher
resolutions. Note that no parallax correction was applied for either CPP or NIPE. If such a
correction were to be applied, the validation scores at the pixel scale would likely improve.

Our study is representative of spring, summer, and autumn. Solid precipitation is a known
factor that worsens link rainfall estimates Overeem et al. (2016a). Results for the LINK pro-
duct might be transferable to tropical latitudes with few rainfall observations, and similar
characteristics to Dutch summer rainfall.

High-quality and -resolution products are beneficial worldwide and very much in need,
especially in those areas in which technologies like ground-based weather radar or even
standard gauge networks are scarce or too expensive to operate (or maintain). We showed
that the performance of satellite rainfall products still shows room for improvement, and
that a link-derived rainfall product performs better. Nevertheless, it is remarkable how sa-
tellite products like IMERG or CPP offer global estimates of rainfall at high spatiotemporal
resolutions. At even higher resolutions, link-derived rainfall estimates are more accurate
than those from satellite. This is a clear incentive for such networks to play a more impor-
tant role in rainfall estimation worldwide.
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Chapter 4

Errors in Dutch Rainfall Maps from CML

Accurate measurements of rainfall are important in many hydrological and meteorolo-
gical applications, for instance, flash-flood early-warning systems, irrigation, weather fo-
recasting, and climate modelling. Whenever possible, commercial microwave link (CML)
networks measure and store the received power of the electromagnetic signal at regular
intervals. The decrease in power can be converted to rainfall intensity, and is largely due
to the attenuation by raindrops along the link paths. Such an alternative technique fulfils
the continuous effort to obtain measurements of rainfall in time and space at higher re-
solutions, especially in places where traditional rain gauge networks are scarce or poorly
maintained.
The uncertainties present in rainfall maps from CML networks are not yet fully compre-
hended. Here we identify and quantify the sources of uncertainty present in interpolated
rainfall maps from link rainfall depths. To disentangle such sources of uncertainty, we
classified them into two categories:1) those associated with the individual link measure-
ments, i.e. the errors involved in link rainfall retrievals, such as wet antenna attenuation,
sampling interval of measurements, wet/dry period classification, dry weather baseline
attenuation, quantization of the received power, drop size distribution (DSD), and multi-
path propagation; and 2) those associated with mapping, i.e. the combined effect of the
interpolation methodology and the spatial density of link measurements.
We computed∼3, 500 rainfall maps from real and simulated link rainfall depths for 12
days for the land surface of the Netherlands. Simulated link rainfall depths refer to path-
averaged rainfall depths obtained from radar data. Real and simulated rainfall maps were
compared against quality-controlled gauge-adjusted radar rainfall fields (assumed to be
the ground truth). Thus, we were able to not only identify and quantify the sources of un-
certainty in such rainfall maps, but also test the actual and optimal performance of one
CML network from one of the cellular providers in the Netherlands. Errors in ML measure-
ments were found to be the source that contributes most to the overall uncertainty.

This chapter was originally published as:
Rios Gaona, M. F., Overeem, A., Leijnse, H., and Uijlenhoet, R.: Measurement and interpolation uncertainties in
rainfall maps from cellular communication networks, Hydrol. Earth Syst. Sci., 19, 3571−3584, doi:10.5194/hess-
19-3571-2015, 2015.
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4.1 Introduction

Accurate rainfall estimates are crucial inputs for hydrological models, especially those
employed for forecasting flash floods, due to the short timescales in which they deve-
lop. Rainfall rates can be retrieved from (commercial) microwave links (CML) because
rain droplets attenuate the electromagnetic signal between transmitter and receiver al-
ong the link path. The principles behind rainfall estimates from microwave attenuation
were investigated by Atlas and Ulbrich (1977). They established the nearly linear relations-
hip between the rainfall intensity and the specific attenuation of the signal for frequen-
cies between 10 and 35 GHz.

Messer et al. (2006) and Leijnse et al. (2007b) used CML to estimate rainfall rates. Note that
networks of such links have not been designed for that purpose. In the last decade se-
veral studies have developed methods to improve rainfall estimates from CML measure-
ments (Leijnse et al., 2008, 2010; Overeem et al., 2011; Schleiss et al., 2013; Chwala et al., 2014).
In addition, Goldshtein et al. (2009) and Zinevich et al. (2008, 2009, 2010) proposed met-
hods to estimate rainfall fields via CML networks. Giuli et al. (1991) had previously recon-
structed rainfall fields from simulated microwave attenuation measurements. Overeem
et al. (2011) developed an algorithm to estimate rainfall from minimum and maximum
received signal levels over 15-min intervals, in which the wet antenna effect is corrected
for, and where wet and dry spells are identified from the removal of signal losses not re-
lated to rainfall by using nearby links.

Rainfall fields can generally be retrieved from CML networks at a higher resolution than
rain gauge networks. This holds not only for the spatial resolution (usually CML outnum-
ber rain gauges) but also for the temporal resolution (link measurements can be obtained
for 1 s, 1 min, 15 min, or daily intervals at either instantaneous or minimum and maxi-
mum samples of received signal level (RSL) measurements; Messer et al., 2012). The mas-
sive deployment of CML provides a complementary network to measure rainfall, especi-
ally in countries where rain gauges are scarce or poorly maintained, and where ground-
based weather radars are not (yet) deployed (Doumounia et al., 2014).

Overeem et al. (2013) obtained 15-min and daily rainfall depths from one CML network
for 12 days for the land surface of the Netherlands (∼35, 000 km2;∼1, 750 links). They
interpolated these rainfall depths to obtain rainfall fields to be compared against gauge-
adjusted radar rainfall maps. Although the associated biases were small, the correspon-
ding uncertainties were not. The coefficient of determination, i.e. the square of the corre-
lation coefficient, between link-based and gauge-adjusted radar rainfall maps was 0.49
for the 15-min timescale, and 0.73 for the daily timescale. They did not explore the sour-
ces of error that impeded these correlations to reach higher values, though. Here, we ad-
dress this issue with the aim to unravel and understand the sources of error (and their
uncertainties) present in the methodology proposed by Overeem et al. (2013) to estimate
rainfall fields. We split the overall uncertainty in rainfall maps from CML networks into
two main sources of error: 1) those associated with the individual link measurements,
such as wet antenna attenuation, sampling interval of measurements, wet/dry period
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classification, dry weather baseline attenuation, drop size distribution (DSD), and multi-
path propagation; and 2) those associated with mapping, that is, the combined effect of
the interpolation methodology and the spatial density of link measurements. Note that
not all the links in the network continuously report data. Only the overall effects of mea-
surement and interpolation errors are addressed here, not all measurement errors sepa-
rately.

This chapter is organized as follows: Section 4.2 describes the data sets and methodology
developed by Overeem et al. (2013) to estimate rainfall maps, jointly with the methodolo-
gies for this work to derive rainfall maps to identify and quantify error sources. Section 4.3
compares the results obtained here with those presented in Overeem et al. (2013). Section
4.4 highlights our major findings. Finally, Sections 4.5 and 4.6 provide a summary, con-
clusions, and recommendations.

4.2 Materials and Methods

Data

Two categories of data were used: link data and radar data. These two data sets are fully
independent given that each one originates from a different source: link measurements,
and a combination of radar and rain gauge measurements, respectively. Link and radar
data contain rainfall depths from the 12-day validation period studied by Overeem et al.
(2013), which is spread across the months of June, August, and September 2011. This va-
lidation period was selected because of its large number of rainfall events. Figure 4.1 con-
ceptually illustrates the steps we followed to quantify uncertainties in rainfall maps from
link networks.

Link data

Link data refer to rainfall depths retrieved from measurements of the attenuation of elec-
tromagnetic signals from one CML network in the Netherlands. Overeem et al. (2011, 2013)
thoroughly explained the methodology to convert measurements of the decrease in the
received power to rainfall depths, with reference to a level representative of dry weather.
Briefly explained, their methodology is based on four steps: 1) a link is considered to be
affected by rainfall if the received power jointly decreases with that of nearby links; 2) a
reference signal level representative of dry weather, i.e. the median signal level of all dry
periods in the previous 24 h, is determined, and the signal is subtracted from this refe-
rence level; the result is the attenuation estimate; 3) links for which accumulated (over 1
day) specific attenuation deviates too much (from that of nearby links) are excluded from
the analysis; and 4) 15-min average rainfall intensities are computed from a weighted
average of minimum and maximum rainfall intensities obtained by a power-law correla-
tion of specific attenuation (Atlas and Ulbrich, 1977). These rainfall intensities are expres-
sed as path-averaged rainfall depths, and are assumed to be representative of the rain-
fall across the link path. Full details of the algorithm can be found in Overeem et al. (2011,
2013).
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Figure 4.1: Flowchart to visualize the hierarchical process to identify and quantify uncertainties in
rainfall maps from link networks. From top to bottom: (1−2) raw data are selected and rainfall
depths simulated; (3−4) through the interpolation methodology rainfall maps are obtained; (5)
from the comparison between rainfall maps scatter plots are created; and (6) from the comparison
between these scatter plots (and their metrics), the error sources are quantified. ε1 and ε2 repre-
sent the categories in which the sources of error are classified. Specifically, ε1 indicates the error
from link rainfall retrievals, and ε2 indicates the error related to mapping. ε∗2 indicates the best
case for the mapping-related error (i.e. all links are available all of the time). The number between
brackets (1−2) indicates the number of data for every single map or data set.
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Data from up to1, 751 link paths are available, with path lengths from 0.13 to20.26 km,
and frequencies from 12.8 to 39.4 GHz (Fig. 4.2). It is also clear that the network is de-
signed such that the link frequency decreases as path length increases, mainly because
low-frequency links suffer less from rain attenuation.

Figure 4.3 presents the spatial distribution of one commercial link network from one of
the providers in the Netherlands, as well as the temporal availability for each link path.
Due to data storage problems, wet/dry classification, and outlier removal, it is not feasi-
ble to have link data for all the possible link paths in the network (1, 751) for every time
step. The temporal availability per link varies from 0.9 to 99.9%, with a global average
over the entire 12-day data set of 83.5%.

The spatial distribution of the network has two characteristics: 1) there is a strong contrast
between urban and rural areas with regard to the spatial distribution of the network; and
2) there are gaps in the network, because of a complete absence of link data or low data
availability. Analyses of the link-path orientations show no preferred orientations, i.e. a
uniform distribution (such analyses are not presented in this chapter).

Radar data

Radar data are taken from the climatological rainfall data set1 of two C-band Doppler we-
ather radars operated by the Royal Netherlands Meteorological Institute (KNMI) (Over-
eem et al., 2009a,b, 2011). The composite image of rainfall depths has a temporal reso-
lution of 5 min, and a spatial resolution (pixel size) of 0.92 km2 (rounded to 1 km2 in fi-
gures, tables, and subsequent analyses), for the entire land surface of the Netherlands
(38, 063pixels). This composite image is adjusted with rainfall depths from one automa-
tic and one manual rain gauge network (32 and 325 gauges, respectively) also operated
by KNMI. The spatial and temporal resolution, and its accuracy, make this data set a reli-
able source of rainfall data. We used the same radar data set as that used in Overeem et al.
(2013).

Simulated Link Rainfall Depths

Simulated link rainfall depths are averages of radar data based on the topology and time-
availability features of the link network. The purpose of simulated link rainfall depths is
twofold: 1) to evaluate the performance of the link network assuming that all links provide
perfect measurements of path-averaged rainfall at the15-min interval, and 2) to evaluate
the performance of the link network if all links would be available all the time.

Because link data were obtained in intervals of15 min, sets of three consecutive5-min ra-
dar composite images were summed up on a pixel-by-pixel basis. The simulation allows
us to separate mapping errors from other errors. For detailed studies on the effects of link

1KNMI climatological rainfall data sets are freely available at the IS-ENES climate4impact portal:
http://climate4impact.eu/impactportal/data/catalogbrowser.jsp?catalog=http:

//opendap.knmi.nl/knmi/thredds/./radarprecipclim.xml.
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Figure 4.2: Scatter density plot of link frequencies vs. link-path lengths
for the 12-day validation period. The colour scale is logarithmic.
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Figure 4.3: Topology of the T-Mobile NL CML network used for this study. The
colour scale of the CML network represents the temporal availability of the
link data for the 12-day validation period. The average availability is 83.5%.
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length and frequency, temporal sampling, power resolution, and wet antenna attenua-
tion in link measurements see Leijnse et al. (2008, 2010). After the addition of5-min radar
composite images, the link network topology was overlaid on the 15-min radar compo-
site image, and all pixels under every link path were selected. Then, for every link path
and its associated pixels, rainfall depths were averaged. This was a weighted average in
which the weight was taken as the fraction of the total link path that overlaps one radar
pixel. For instance, if a1-km link path was located0.6 km over one pixel and0.4 km over a
contiguous pixel, the average rainfall depth was the sum of60%of the first pixel's rainfall
depth plus 40% of the second pixel's rainfall depth.

Not all link data are available for all the possible link paths in the network (1, 751) at
every time step. In addition to the performance of the actual topology of the network,
the complete availability of radar data allowed us to simulate the optimal performance
of the link network, i.e. the performance that could theoretically be achieved if all links
(1, 751) would be available all the time.

Rainfall Maps

The rainfall depths from actual link measurements and both types of simulations (ac-
tual and 100%network availability) were spatially interpolated to obtain 15-min rainfall
maps with a spatial resolution of 1 km2. In all rainfall maps the land surface of the Ne-
therlands was represented by 38, 063 pixels. For any given time step, interpolated rain-
fall maps were compared on a pixel-by-pixel basis against the radar rainfall fields. Hence,
15-min rainfall maps were obtained for the 12-day validation period, i.e. 1, 152 rainfall
maps in total for each of the four sets of rainfall maps considered (namely, radar, actual
links, simulated links with partial availability, and simulated links with 100% availabi-
lity). In subsequent figures and tables, these four data sets will be identified as RADAR,
LINK, partSIM, and fullSIM, respectively (see Fig. 4.1); 15-min rainfall maps were accu-
mulated to daily rainfall maps, i.e. 12 daily rainfall maps per data set.

Ordinary kriging (OK) was employed to generate rainfall maps, because it is the simplest
and most straightforward method that accounts for the local variability of the stochastic
process, rainfall in this case (Cressie, 1990; Haining et al., 2010). Kriging is ideally suited for
interpolation of highly irregularly spaced data points. Nevertheless, this method comes
with its own limitations, and a number of assumptions should be made for the method to
be valid, e.g. isotropy and statistical stationarity. These assumptions are further explai-
ned in section 4.6. The path-averaged link rainfall estimates are assigned to the point at
the centre of the link, so that these point data can be used in the OK interpolation. This
conversion from line-scale to point-scale data is part of our mapping method, and hence
errors resulting from this conversion are part of the mapping uncertainty.

Any kriging method heavily relies on the function that describes the spatial covariance,
i.e. the semi-variogram. The semi-variogram is a continuous function that describes how
the spatial dependence of a random variable changes with distance and direction (Isaaks
and Srivastava, 1989, ch.7). Like Overeem et al. (2013), we chose the semi-variogram appro-
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ach of Van de Beek et al. (2011) because it is a simple isotropic spherical model developed for
the Netherlands on the basis of a30-year climatological rainfall data set. Van de Beek et al.
(2011) concluded that the seasonality in range and sill of the semi-variogram can be des-
cribed by cosine-function models with the day-of-year as the independent variable. Note
that they assumed the nugget to be zero. Van de Beek et al. (2012) also developed two met-
hodologies that allowed for the spherical semi-variogram to be downscaled from daily
to hourly time steps. We chose their second methodology, namely, power-law scaling of
cosine-function parameters, because it was shown to perform better. This downscaling
methodology was based on hourly rainfall data aggregated to 2, 3, 4, 6, 8, 12, and 24 h.
Here we extended this power-law downscaling to smaller timescales, namely, 0.25 h, i.e.
15 min.

For the LINK, partSIM, and fullSIM data sets, 15-min rainfall maps were obtained as fol-
lows: first, the spherical semi-variogram parameters were computed and downscaled for
the given day of the year. Hence, a single semi-variogram is applied to all 15-min time
steps within that given day. The nugget was defined as 10% of the sill. Second, rainfall
depths were assigned to the coordinates of the link paths’ middle points. Third, rainfall
depths were interpolated over the spatial grid of the radar data set. The interpolation al-
gorithm always selects the closest 100 rainfall depths to the pixel for which the interpo-
lation is carried out. This selection was established to speed up the interpolation process;
24-h rainfall maps were obtained from the aggregation of 15-min rainfall maps.

Error and Uncertainty Metrics

To quantify the uncertainty in rainfall maps from CML networks, we used three metrics:
1) the relative bias, 2) the coefficient of variation, and 3) the coefficient of determination.

The relative bias is a relative measure of the average error between the interpolated and
radar rainfall fields (considered to be the ground truth):

relative bias =
Rres

Rradar
=

n∑
i=1

Rres,i

n∑
i=1

Rradar,i

, (4.1)

whereRres,i = Rint,i−Rradar,i. In Eq. (4.1),n represents all possible pixels and time steps
for the 12-day validation period.

The coefficient of variation is a dimensionless measure of dispersion, which is defined as
the standard deviation divided by the mean (Haan, 1977). In this case we took the standard
deviation of the residuals divided by the mean of the reference field (i.e. the mean of the
radar rainfall field):
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CV =

√
1

n−1

n∑
i=1

(
Rres,i −Rres

)2
Rradar

. (4.2)

The coefficient of variation is a measure of uncertainty (similar to the root mean squared
error). For instance, a CV =0 would indicate a hypothetical case with no bias and no un-
certainty, i.e. a case in which all data points would fall exactly on the 1:1 line.

The coefficient of determination is a measure of the strength of the linear dependence
between two random variables, interpolated and radar rainfall depths, in this case. It is
simply defined as the square of the correlation coefficient between the interpolated and
radar rainfall depths:

r2 =

[
n∑

i=1

(
Rradar,i −Rradar

)
·
(
Rint,i −Rint

)]2
[

n∑
i=1

(
Rradar,i −Rradar

)2] · [ n∑
i=1

(
Rint,i −Rint

)2] . (4.3)

The coefficient of determination represents the fraction of the variance of the reference
variable that can be explained by a linear regression. In a case of perfect linear correla-
tion, i.e. r2 =1, all data points would fall on a straight line without any scatter. Hence,
the linear regression would be able to explain 100% of the variance of the reference vari-
able in that case. However, perfect linearity does not imply unbiased estimation because
the regression line could not necessarily coincide with the 1:1 line, even if it captures all
variability.

4.3 Results

From the actual and simulated link rainfall depths, rainfall maps were obtained for three
cases: 1) 15-min rainfall maps from interpolation of 15-min rainfall depths; 2) 24-h rain-
fall maps from the sum of these 15-min rainfall maps; and 3) 15-min rainfall maps from
interpolation of 15-min rainfall depths, in which each pixel (interpolated rainfall depth)
was averaged with the surrounding pixels within a 9×9 pixel square. The reason for this
posterior average of the rainfall depths was to limit representativeness errors in time (Over-
eem et al., 2013). Incidentally, this area (∼81 km2) roughly corresponds to the spatial ex-
tent of typical water management units in the Netherlands.

Appendix B.1 presents five examples of24-h and15-min rainfall maps. Overeem et al. (2013,
Supplement) showed daily comparisons between actual link rainfall maps and radar rain-
fall fields for the 12-day validation period. Here, we present 5 of those 12 cases for refe-
rence. These comparisons are extended to both types of simulated link rainfall maps (ac-
tual and 100% network availability) (Fig. B.1). Five comparisons of 15-min rainfall maps
are also presented (Fig. B.2). These examples provide information on the improvement
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in rainfall fields when the sources of error studied here are removed.

For any given time step, interpolated rainfall maps were compared on a pixel-by-pixel ba-
sis against radar rainfall fields. This pixel-by-pixel comparison was done via scatter den-
sity plots of interpolated against radar rainfall depths (ground truth). Figure 4.4 presents
an array of scatter plots, for the three cases of spatiotemporal aggregation, for the actual
and both types of simulated link rainfall depths (actual and 100% network availability).
Each of the scatter plots in Fig. 4.4 corresponds to all15-min (or24-h) rainfall maps within
the12-day validation period. These plots show paired rainfall depths of interpolated and
radar rainfall maps, for any pair in which the radar rainfall depth is larger than 0.1 mm.

The scatter density plot of Fig. 4.5 corresponds to the actual and simulated link rainfall
depths (actual availability) at the locations of the links, i.e. before any interpolation was
applied. Only those pairs for which at least one rainfall depth exceeded0.1 mm were plot-
ted.

Table 4.1 summarizes the values of the relative bias, the coefficient of variation (of the re-
siduals), and the coefficient of determination (i.e. the squared correlation coefficient) for
the three cases of spatiotemporal aggregation, for the actual and both types of simulated
link rainfall depths.

4.4 Discussion

From left to right and from top to bottom, the general picture that arises from Fig. 4.4 and
Table 4.1 is: 1) a reduced systematic error (relative bias); 2) a smaller random error (CV);
and 3) a stronger linear dependence (r2). This suggests a general improvement of the in-
terpolated link rainfall depths with respect to the radar rainfall depths, as more sources
of error are removed from the analysis.

Figure 4.4a, d, and g show the relation between the actual link and radar rainfall depths,
for the three cases of spatiotemporal aggregation. The scatter in these plots can be attri-
buted to all possible sources of error in rainfall maps from link measurements, i.e. those
associated with the link measurements themselves and those associated with the inter-
polation of individual measurements (mapping).

The dark blue shading close to the1:1 line for small rainfall depths in all panels of Fig. 4.4
indicates a good agreement between rainfall estimates from links and radar (note that
the colour scale is logarithmic). Conversely, for larger rainfall depths the scatter seems to
relatively increase for the actual link measurements (panels a, d, g), while it decreases for
the simulated link measurements (all other panels). Such deviations must be the result
of errors in individual link measurements as well as the combination of limited spatial
coverage of the link network (Fig. 4.3) with the strong variability of rainfall in space. The
relative contribution of the measurement errors to the total error hence increases with
rainfall amounts.
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Figure 4.4: Scatter density plots of interpolated link rainfall depths vs. radar rainfall depths for
15 min and 24 h. Top row (a, b, c): 15-min rainfall depths; middle row (d, e, f): 15-min rainfall
depths averaged with the surrounding pixels within a 9×9 pixel square; bottom row (g, h, i): daily
sum of 15-min rainfall depths. Left column (a, d, g): actual link rainfall maps vs. radar rainfall
fields; centre column (b, e, h): simulated link rainfall maps (actual availability) vs. radar rain-
fall fields; right column (c, f, i): simulated link rainfall maps (100% availability) vs. radar rainfall
maps. (d) and (g) are comparable to Overeem et al. (2013). The colour scale is logarithmic.
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From Fig. 4.4 and Table 4.1, it is clear as well that the relative bias is most sensitive to the
spatial and temporal aggregation level. If all paired rainfall accumulations would have
been used (and not only those in which at least the radar rainfall depth exceeds 0.1 mm)
one would expect the relative bias to be exactly the same for all aggregation levels, be-
cause both aggregation and computation of the bias are linear operators [Eq. (4.1)].

There is a limited improvement in terms of the coefficients of variation and determina-
tion, when the scatter plots in the second column of Fig. 4.4 are compared to those in the
third column, as well as their respective statistics in Table 4.1. This means that the main re-
duction of uncertainty is achieved when the actual link measurements are replaced with
the simulated link measurements, rather than to increase the actual link network avai-
lability to 100% for all links. This implies that a significant fraction of the overall uncer-
tainty must be due to errors and uncertainties in the link measurements themselves, rat-
her than due to errors and uncertainties associated with mapping, at which rainfall maps
are reconstructed.

Figure 4.4c, f, and i and the last column of Table 4.1 indicate the best possible performance
that can be achieved with the employed link network (if all links would yield perfect mea-
surements of path-averaged rainfall all the time). The remaining scatter can be attributed
to the interpolation methodology (including the assignment of path-averaged rainfall in-
tensities to the link's centre point), the spatial variability of rainfall, and the effect of other
factors such as the variable and limited density of the link network (more links in urban
than in rural areas).

Table 4.1: Relative bias, and coefficients of variation and determination for the
three cases of spatiotemporal aggregation (15 min [1 km2], 15 min [81 km2],
24 h [1 km2]), for the three sets of link measurements, i.e. the actual and both
types of simulated link rainfall depths (actual and 100% network availability).

LINK partSIM fullSIM

Relative bias (%)
15 min [1 km2] -14.3 -13.0 -9.3
15 min [81 km2] -9.1 -9.1 -5.6
24 h [1 km2] +1.6 -0.8 +0.7

CV
15 min [1 km2] 1.216 0.871 0.748
15 min [81 km2] 0.995 0.586 0.435
24 h [1 km2] 0.523 0.262 0.224

r2

15 min [1 km2] 0.366 0.605 0.709
15 min [81 km2] 0.496 0.770 0.873
24 h [1 km2] 0.720 0.903 0.928

When15-min rainfall depths at the1-km2 spatial scale (Fig. 4.4a−c) are summed to daily
rainfall depths (Fig. 4.4g−i), the discrepancies in rainfall estimates at15 min tend to can-
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cel each other. This explains the sharp decrease in the coefficient of variation, and the
sharp increase in the coefficient of determination between15-min and24-h rainfall accu-
mulations, which implies a certain degree of independence among the errors in the 15-
min accumulations.

Figure 4.5: Scatter density plot of simulated link rainfall depths (actual
availability) vs. actual link rainfall depths for all 15-min time steps in the
12-day validation period. Both simulated and actual link rainfall depths
are path-averaged rainfall depths. The colour scale is logarithmic.

Figure 4.6: Scatter density plots of coefficient of determination (r2) and coeffi-
cient of variation (CV) vs. link density (averaged over 155 km2), for the fullSIM
case at 15 min and 1 km2 spatial scale. The colour scale is logarithmic.

Figure 4.5 compares simulated against actual link rainfall depths, before any interpola-
tion was applied. This indicates the performance of the 1, 751 individual links in terms
of rainfall retrieval, regardless of the errors and uncertainties introduced by interpolation
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(mapping). Note that the coefficient of variation is larger than that of the 1 km2, 15-min
rainfall accumulations presented in panel a of Fig. 4.4; and that the coefficient of deter-
mination is between those coefficients presented in panels a and d of Fig. 4.4. If we would
assume that rainfall retrieval and mapping errors are independent, we would expect the
CV in Fig. 4.4 to be greater than that in Fig. 4.5. This means that there is a clear inter-
play between these two types of errors, and that the assumption of independence does
not hold. This may be explained by the fact that we use kriging with a variogram that in-
cludes a nugget. In areas with a dense link network, the weight of each individual link
is relatively small in the computation of the interpolated rainfall field. This reduces the
effect of large errors in a given link. In areas with lower link densities the nugget of the
employed variogram has a similar reducing effect on large errors.

From Fig. 4.6 it can be seen that a higher density in the link network guarantees good cor-
relation between the estimated values of rainfall and the ground truth, and a low coeffi-
cient of variation of the residuals. From the left panel (Fig. 4.6a), it can be concluded that
lower link densities also contribute (and in large proportion) to higher correlation coef-
ficients. This means that without considering errors in link measurements, these latter
being the largest source of uncertainty in country-wide rainfall fields, the network density
and the mapping methodology considered here are, respectively, high and good enough
to retrieve accurate rainfall fields at such country-wide scales (at least in the Netherlands).

4.5 Summary and Conclusions

Our goal was to quantify the errors and uncertainties in rainfall maps CML link networks.
In general, these errors can be attributed to different sources like wet antenna attenua-
tion, sampling interval of measurements, wet/dry period classification, dry weather ba-
seline attenuation, drop size distribution (DSD), multi-path propagation, interpolation
algorithm and methodology, the availability of link measurements, and the variability of
rainfall itself across time and space. For the purpose of this chapter we classified all pos-
sible sources of error into two categories: 1) those associated with the link measurements
themselves (retrieval algorithm included), and 2) those associated with mapping. Only
the overall effects of physical and interpolation errors were addressed here, not all physi-
cal errors separately.

To quantify the errors and uncertainties that can be attributed to these two categories,
rainfall maps created from three sets of link rainfall depths were compared: actual link
measurements, simulated link measurements with the actual network availability, and
simulated link measurements with 100% network availability assumed. Simulated link
rainfall depths are not affected by errors and uncertainties attributed to actual link mea-
surements; therefore, we could estimate uncertainties attributed to mapping. Based on a
pixel-by-pixel comparison, interpolated rainfall maps of the Netherlands were compared
against radar rainfall fields (considered to be the ground truth). These comparisons were
carried out on the basis of scatter density plots and three metrics: relative bias, coefficient
of variation (CV), and coefficient of determination (r2).
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We found that measurement errors themselves are the source of error that contributes
most to the overall uncertainty in rainfall maps from CML networks.

In a standard operational framework, data from CML networks may not be continuously
available for the entire network. Such data gaps affect the accuracy of the retrieved rain-
fall intensities. Because we were able to simulate rainfall depths on the basis of radar
composites, we could investigate the hypothetical case in which data from a commercial
link network would be available for all time steps, and for all possible link paths in the
network. This best-case scenario could explain an additional 10% of the variance explai-
ned by error-free link measurements with actual network availability for the15-min accu-
mulation (3% for the 24-h accumulation). Note that these percentages are particular for
the region and period considered in this study. Nevertheless, even the best-case scenario
showed a remaining and significant amount of uncertainty that could not be removed in
rainfall maps. This means that the space-time variability of rainfall is such that it would
require an even more dense and robust network of links to generate more accurate rain-
fall maps at country-wide scales. The uncertainties in link rainfall retrievals found in this
chapter are partly explained by the combined effects of rainfall space variability along the
link, non-linearity of the retrieval relation, imperfect temporal sampling strategy, quan-
tization of the received power (data stored in integer number of dBs), and wet antenna
attenuation (and correction) investigated by Leijnse et al. (2008, in particular Fig. 13, up-
per right panel on p.1487). They reported a CV of∼1.0, which explains a significant part
of the CV (1.44) given in Fig. 4.5. Daily rainfall maps from CML showed less uncertainty
compared to 15-min rainfall maps, because errors present in 15-min rainfall maps tend
to cancel each other when 15-min rainfall maps are aggregated.

4.6 Constraints and Recommendations

The kriging algorithm we used was that of Pebesma (2014) and Pebesma and Wesseling (1998).
The interpolated maps from simulated link rainfall depths represent the outcome of a
process in which a linear feature (link path) obtained from the average of volume sam-
ples (radar data) is assigned to a point (link-path middle point). Each of these features
(area, line, volume, point) represents what in geostatistics is referred to as support, i.e.
the spatial resolution at which the random variable is analyzed (Cressie and Wikle, 2011,
ch.4). The arbitrary change from line to point support introduces a source of error that is
implicitly included in the errors related to mapping.

Apart from its simplicity and the 30-year rainfall data set on which it is based, we also
chose the isotropic spherical semi-variogram of Van de Beek et al. (2011), because a con-
sistent semi-variogram model estimated from link data was not feasible for 15-min rain-
fall intensities. Isotropic semi-variograms assume equal spatial dependence in all possi-
ble directions. Rainfall is generally a phenomenon that exhibits anisotropy in time and
space (Lepioufle et al., 2012; Velasco-Forero et al., 2009; Guillot and Lebel, 1999; Amani and Le-
bel, 1997). Nevertheless, it is reasonable to assume isotropy for the Netherlands given
its relative small area and flat topography. OK assumes the mean to be constant and
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unknown within the region of interpolation. When this unknown mean presents substan-
tial changes over short distances, the assumption of statistical stationarity is no longer va-
lid. Universal kriging, kriging with external drift, and regression kriging are more sophis-
ticated interpolation techniques that incorporate trends to account for non-stationarity
(e.g. Schuurmans et al., 2007). The performance of these geostatistical techniques to re-
trieve link rainfall maps was beyond the scope of this research.

If a similar study were to be carried out in a country with different conditions than those
present in the Netherlands, three issues should be considered: 1) the spatial and opera-
tional configuration of the link network, 2) the climatology of the region where the link
network operates, and 3) the spatial scale at which the analysis is carried out.

The first issue, the spatial and operational configuration of the link network, refers to
the distribution of link frequencies, lengths, and densities of link networks around the
world. For instance, the CML network used in this study has an average link-path length of
3.1 km, a mean frequency of 36.0 GHz, and a global average availability of 83.5% across
the Netherlands (Figs. 4.2 and 4.3). Other regions may have more extensive urban and/or
rural areas. In particular, for rural areas one expects to find longer link paths, and there-
fore lower microwave frequencies. Another issue related to the lower frequencies, e.g.
7 GHz, is the low sensitivity to rainfall and the non-linearity of the R−k relationship,
mostly in tropical regions (Doumounia et al., 2014). This non-linearity will lead to biases
in rainfall intensities in cases of large rainfall variability along the link path (positive bi-
ases at lower frequencies where the exponent of the R−k power law is smaller than 1;
see Leijnse et al., 2010). Thus, the performance of the rainfall retrieval algorithm for such
link networks will differ from the performance found in this study. For instance, in places
where link paths are longer (tens of kilometres) the error due to spatial variability of rain-
fall along the link path becomes more important (Berne and Uijlenhoet, 2007; Leijnse et al.,
2008, 2010). Moreover, less dense networks with long link paths will provide less detailed
information about rainfall.

The second issue, the climatology of the region refers to the local pattern of rainfall that
characterizes different regions around the world. The rainfall characteristics of the Ne-
therlands are different from the ones encountered in, e.g., (sub-)tropical regions. For in-
stance, the spherical semi-variogram model applied here was derived from climatological
rain gauge data for the Netherlands. Furthermore, rainfall characteristics such as rain-
drop size distributions or the distribution of rainfall intensities will affect the optimal va-
lues of the parameters of the retrieval algorithm. Therefore, for regions with different
rainfall climatologies than the Netherlands, variations should be considered not only in
the interpolation methodology but also in the algorithms and their parameters to retrieve
rainfall intensities.

The third issue refers to the spatial scale at which rainfall maps are reconstructed. The
analyses presented here focussed on 15-min (and 24-h) maps at 1 and 81 km2, and the
differences in error characteristics are significant. For larger regions, for instance, the un-
certainty attributed to mapping could play a major role in the overall error distribution.
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Still, the scale at which rainfall can effectively be retrieved depends greatly on the density
of the underlying link network. This means that in regions with a much lower link density
than in the Netherlands, the effective spatial resolution for which rainfall maps can be
derived will be lower.
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Chapter 5

CML Rainfall in São Paulo, Brazil

In the last decade there has been a growing interest from the hydrometeorological com-
munity regarding rainfall estimation from commercial microwave link (CML) networks.
Path-averaged rainfall intensities can be retrieved from the signal attenuation between
cell phone towers. Although this technique is still in development, it offers great oppor-
tunities for the retrieval of rainfall rates at high spatiotemporal resolutions very close to
the Earth's surface. Rainfall measurements at high spatiotemporal resolutions are highly
valued in urban hydrology, for instance, given the large impact that flash floods exert on
society. Flash floods are triggered by intense rainfall events that develop over short time
scales.
Here, we present one of the first evaluations of this measurement technique for a subtro-
pical climate. Rainfall estimation for subtropical climates is highly relevant, since many
countries with few surface rainfall observations are located in such areas. The test bed of
the current study is the Brazilian city of São Paulo. The open-source algorithm RAINLINK
was applied to retrieve rainfall intensities from (power) attenuation measurements. The
performance of RAINLINK estimates was evaluated for 5 of the 250CML in the São Paulo
metropolitan area for which we received data, for 81 days between October 2014 and Ja-
nuary 2015. The evaluation was done by comparing the retrieved rainfall intensities and
accumulations from CML to those from a dense automatic gauge network. Results were
found to be promising and encouraging, especially for short links, for which high correla-
tions (> 0.9) and low biases (∼30% and lower) were obtained.

75



Chapter 5. CML Rainfall in São Paulo

5.1 Introduction

Rainfall is the key input in environmental applications such as hydrological modeling,
flash-flood and crop growth forecasting, landslide triggering, quantification of fresh wa-
ter availability, and waterborne disease propagation. Because it is a natural process with
a high spatiotemporal variability (Hou et al., 2008; Sene, 2013a), its accurate estimation is
a demanding task.

The most common technologies that are currently used to measure rainfall at larger sca-
les are rain gauges, radars and satellites. Each technology presents advantages and draw-
backs with regard to the accuracy of rainfall estimates and the spatiotemporal coverage.
Rain gauges directly measure the quantity of precipitation that falls on the ground. They
offer accurate estimates of rainfall collected at temporal scales from minutes to days. Ne-
vertheless, their rainfall estimates are only representative of their direct vicinity. In ad-
dition, in most cases the gauges within a network are unevenly distributed in space. Ra-
dar (RAdio Detection And Ranging) offers indirect estimates of rainfall, with horizontal
resolutions of∼1 km (even less depending on the frequency at which the radar opera-
tes) every∼2 to∼5 min. They reach distances of∼100−300 km, which represents an
area of∼125, 000 km2, if issues of beam blockage are not present. The accuracy of rain-
fall estimates from radar depends on how well the measurements of backscattered power
from hydrometeors are transformed into rain rates. Satellites offer also indirect estimates
of rainfall at several spatiotemporal resolutions. For instance, Geostationary Earth Orbit
(GEO) satellites (orbiting the Earth at∼36, 000 km) provide observations at resolutions
of∼10−60 min, and 1−4 km (Sene, 2013b; Wang, 2013), whereas Low Earth Orbit (LEO)
satellites (orbiting the Earth at∼800 km) can provide observations at resolutions of∼1
km or less. Gridded rainfall products from the Global Precipitation Measurement mis-
sion (GPM) offer precipitation estimates between 60◦N−60◦S at a spatial resolution of
0.1◦×0.1◦ every30 min. The main advantage of satellites above radar and gauges is that
they provide global and continuous rainfall estimates (oceans included).

Commercial microwave links (CML) are a technology that in the past decade has gained
momentum as an alternative means of rainfall estimation. CML rainfall estimates are
more representative of rainfall at the ground surface than those offered by satellites or
weather radars. Networks of CML are more dense than gauge networks given their wor-
ldwide deployment for telecommunication purposes (Overeem et al., 2016a). This world-
wide spread of CML has the potential to offer rainfall estimates in places where rain gau-
ges are scarce or poorly maintained, or where ground-based weather radars are not yet
deployed or cannot be afforded. The spatiotemporal resolution of rainfall estimates from
CML can vary from seconds to minutes, and from hundreds of meters to tens of kilome-
ters. For instance, Messer et al. (2012) and Overeem et al. (2016a) employ maximum and
minimum Received Signal Level (RSL) measurements over15-min intervals, for CML with
(spatial) densities of 0.3 to 3 links per km2, and 0.1 to 2.4 km per km2 (∼1 link per 10
km2), respectively. Messer et al. (2012) also retrieve rainfall fields from 1-min instantane-
ous RSL measurements, whereas Doumounia et al. (2014) sample RSL at 1 sec for a 29-km
link.
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The interaction between attenuation and rainfall has long been studied by the electronic
community (from the attenuation perspective), and during the last two and a half deca-
des by the hydrological community (from the rainfall perspective). Hogg (1968) and Crane
(1971) review the influence of atmospheric phenomena on mm- and cm-wavelength ba-
sed satellite communication systems. Later, Hogg and Chu (1975) and Crane (1977) focus ex-
clusively on the role of rainfall in satellite communication, as rainfall is the major source
of propagation issues for frequencies above 4−10 GHz. Recently, Badron et al. (2011) and
Chakravarty and Maitra (2010) have studied rain-induced attenuation in satellite commu-
nication at tropical locations, where the attenuation is severe. Even more recently, Bart-
hès and Mallet (2013) and Mercier et al. (2015) have retrieved high resolution rainfall fields
(0.5×0.5 km every10 sec) from10.7- and12.7-GHz Earth-space links used in satellite TV
transmission, although at Ku band the estimation of weak rainfall rates is not optimal.

Our main interest here is rainfall estimation from terrestrial links. The idea of rain rate
retrieval from attenuation measurements via tomographic techniques was presented by
Giuli et al. (1991). Cuccoli et al. (2013) and D'Amico et al. (2016) present reconstructed 2D-
rainfall fields from operational ML networks via tomographic techniques. Ruf et al. (1996)
use a 35-GHz dual-polarization link for rainfall estimation at 0.1−1 km horizontal reso-
lutions. Holt et al. (2000), Rahimi et al. (2004) and Upton et al. (2005) estimate path-aver-
aged rainfall from the differential attenuation of dual-frequency links. Minda and Naka-
mura (2005) use a 50-GHz link of 820 m to estimate rainfall. At such frequencies (or hig-
her) rainfall estimation is sensitive to the raindrop size distribution and raindrop tempe-
rature. The synergistic use of MLs, gauges and radars for rainfall estimation is proposed
by Grum et al. (2005) and Bianchi et al. (2013). The first references to estimate rainfall rates
from CML are Messer et al. (2006) and Leijnse et al. (2007b). Sources of uncertainty in rain-
fall estimates from MLs are studied by Berne and Uijlenhoet (2007), Leijnse et al. (2010) and
Zinevich et al. (2010). Methods for country-wide rainfall fields from CML have been deve-
loped by Zinevich et al. (2008) and Overeem et al. (2013).

In the last decade the use of MLs has broadened its spectrum to several other environmen-
tal applications beyond rainfall estimation, for instance, melting snow (Upton et al., 2007),
water vapour monitoring (David et al., 2009; Chwala et al., 2014), wind velocity estimation
(Messer et al., 2012), dense-fog monitoring (David et al., 2013), urban drainage modelling
(Fencl et al., 2013), flash flood early warning in Africa (Hoedjes et al., 2014), and air pollution
detection (David and Gao, 2016).

Here, we evaluate the performance of 5 CML located in the city of São Paulo, Brasil, in
terms of their capacity to retrieve rainfall for the period between 20 October 2014 and 9
January 2015 (∼3 months). Rainfall evaluation against gauge data was coherently pos-
sible for 5 links from a network of 117 CML. Previously, da Silva Mello et al. (2002) studied
the attenuation along MLs due to rainfall for São Paulo. They used6 links (7−43 km) ope-
rating at frequencies between 15 and 18 GHz. Here, instead of considering rainfall to be
a nuisance for the propagation of radio signals, we invert the problem by considering the
attenuation suffered by such signals to be a valuable source of rainfall information. Since
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CML were not intended for rainfall estimation purposes, rainfall retrievals from these de-
vices can be considered a form of opportunistic sensing. They are potentially cost-free as
the retrieved rain rates can be regarded as a by-product of power measurements. As sub-
tropical and tropical regions are the ones most deprived of radar (Heistermann et al., 2013)
and gauge networks (Kidd et al., 2017; Lorenz and Kunstmann, 2012), CML could serve as
complementary (or even alternative) networks for rainfall monitoring. Most of the recent
studies concerning rainfall retrieval from CML have focused on temperate and Mediterra-
nean climates, e.g., Overeem et al. (2016a); Messer and Sendik (2015). Thus, our evaluation is
one of the first which focuses on a subtropical climate, complementing the study of Dou-
mounia et al. (2014), which focused on a semi-arid climate. Focus on accurate rainfall es-
timation within the subtropics is of high relevance given that in such regions (e.g., São
Paulo) intense events develop more often into flash floods and mud slides, which cause
damage to property, disruption of business, and occasional casualties (Pereira Filho, 2012).

This chapter is organized as follows: Section 5.2 describes the study area, the employed
datasets (CML, rain gauges, disdrometers), the retrieval algorithm, and the metrics used
to evaluate the rainfall estimates from CML. The results and the related discussion of our
major findings are presented alongside in section 5.3. Summary, conclusions and recom-
mendations are provided in Section 5.4.

5.2 Study Area, Data and Methods

Description of Study Area

The city of São Paulo is located∼60 km from the Atlantic Ocean at∼770 masl, where see
breeze fronts commonly push from the SE against prevailing continental NW winds (cold
fronts). In general, the incoming see breeze interacts with the warmer and drier (urban)
heat island of São Paulo, producing very deep convection with heavy rainfall, wind gusts,
lightning and hail (Vemado and Pereira Filho, 2016; Machado et al., 2014; Pereira Filho, 2012).
de Oliveira et al. (2002) characterize the local climate as typical of subtropical regions of
Brazil, with a dry winter (June-August) and a wet summer (December-March). With re-
gard to the climatology of São Paulo1, February is the warmest month with 22.4◦ C, and
July the coldest with 15.8◦ C. Climatological averages for temperature and humidity, for
November and December (the full two months of the studied period), are20.2and21.1◦C,
and 78% and 80%, respectively. August is the driest month with 39.6 mm of precipita-
tion, and January the wettest with 237.4 mm. The (climatological) yearly accumulated
rainfall is 1441 mm. Overeem et al. (2016a) reported winter time issues in rainfall estima-
tes from CML. Thus, for the subtropical climate of São Paulo, such winter issues are not
expected to play a role, which is advantageous for accurate rainfall estimation.

1The climatological data presented here covers the period from 1961 to 1990 and corresponds to the sta-
tion “Mir. de Santana” located in the heart of São Paulo city (−46.6 lon, −23.5 lat, 792 masl). These data are
freely available at the INMET (METeorological National Institute) web portal: http://www.inmet.gov.br/
portal/index.php?r=home2/index.
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Figure 5.1: Topology of one CML network in the city of São Paulo, Brazil. 117 Huawei (HU) CML are
shown (101 link paths). CML in red are the ones where unequivocal power level assignment was
feasible (HU_data). CML which have both lengths above 20 km and frequencies above 15 GHz
were not analyzed. Thus, only 11 CML were retained given the proximity of rain gauges to their
link paths, i.e., 6 1 km (yellow circles). All circles represent gauges with 10-min resolution avai-
lable for the studied period (20 October 2014 to 9 January 2015). The black numbers refer to the
CML that showed clear rainfall signals as compared to nearby gauges, i.e. for whichr2 > 0.75 (see
also Tab. 5.1). The letters refer to the corresponding gauges. CML data was provided by the Plane-
tary Skin Institute / Italia Mobile2. Gauge data was retrieved from the CEMADEN database. The
geographical location of São Paulo is given in the upper left corner. The DEM was obtained from
Google maps.

Data

We received power measurements from two brands of CML: Ericsson (ER) and Huawei
(HU). Power levels were registered every15 min from0100UTC20October2014 to0045
UTC 8 January 2015, i.e., 81 days exactly. Their quantization level was 0.1 dB. Minimum
and maximum levels of received and transmitted power were available for HU CML (101
link paths, see Fig. 5.1), whereas only minimum received powers were available for ER CML
(149). Because our CML-based rainfall retrieval algorithm RAINLINK (Sec. 5.2) is only able
to retrieve rain rates from minimum and maximum power levels, we discarded the ER
CML. Due to issues in the log-file of the attenuation measurements, it was only possible

2We received CML data from a third party. It was not possible to verify the topology of the network, shown
in Fig. 5.1 on-site, which we suspect not always to be accurate given the orientation of the long links.
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to correctly and unequivocally assign power levels to 66 HU CML (16 full-duplex and 34
simplex). From the 66 HU CML, we selected 17 CML given their proximity to rain gauges
(6 1 km or less). Our experience tells us that CML with both lengths above20 km and fre-
quencies above 15 GHz are not common in CML networks (they are highly unlikely from
a link network design perspective: long links experience more attenuation in rain, and
should hence operate at low frequencies to limit this attenuation). Hence, we discarded
the data specifications for 6 CML as dubious and did not consider them in our analyses,
which reduced the number of CML considered to 11. Finally, from the 11 remaining CML,
we only kept the 5 CML which showed clear rainfall signals as compared to nearby rain
gauges, i.e. for which r2 > 0.75. The other 6 CML showed a nearly complete absence
of correlation with nearby gauges (r2∼0.3 for one CML-gauge pair and r2< 0.1 for the
other five CML-gauge pairs). This was due to issues with the CML attenuation data and/or
with malfunctioning gauges. Figure 5.2 shows the scatter plot of frequency against link
length for all HU CML. For RAINLINK to work, it is necessary that the power level of the
transmitted signal is essentially constant. For the remaining 5 CML evaluated here, the
mean difference between 15-minute transmitted power levels is ∼0.0 dB, with a maxi-
mum of 0.5 dB (for the 81 days considered).
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Figure 5.2: Scatter plot of link frequency against link length for all HU CML (gray
circles) shown in Fig. 5.1. Red markers indicate those 11 CML for which the evalua-
tion was possible (Tab. 5.1). The crosses represent the 5 HU CML which showed clear
rainfall signals as compared to nearby gauges, i.e. for which r2 > 0.75 (Sec. 5.3).

Rainfall depths from 152 stations were retrieved from the National Early Warning and
Monitoring Centre of Natural Disasters (CEMADEN), Brasil3. These 152 stations offer 10-

3Gauge data from Brazil is freely available at http://www.cemaden.gov.br/mapainterativo/.
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min rainfall depths for the period and region under study (Fig. 5.1). Stations located within
1-km distance from the evaluated link paths were selected. Hence, only 11 stations were
used to evaluate rainfall estimates in São Paulo from CML.

Thanks to the CHUVA project (Machado et al., 2014), we retrieved one-minute drop size
distributions (DSD) from three Parsivel disdrometers located in the region “Vale do Pa-
raíba”,∼93 km east of the study area4. DSD data were collected from 1 November 2011
to 14March 2012.

Rainfall Retrieval Algorithm

Rainfall estimation from CML is based on power measurements from the electromagne-
tic signal along a link path, i.e., between transmitter and receiver. Rainfall rates can be
retrieved from the decrease in power, which is largely due to the attenuation of the elec-
tromagnetic signal by raindrops along the link path. The power-law relation between at-
tenuation and rainfall (along a link path) was established by Olsen et al. (1978) and Atlas
and Ulbrich (1977) as:

A = aRb (5.1)

where A is the specific attenuation [dB·km−1] along the link path attributed to rainfall
andR is the rainfall rate [mm·h−1]. The coefficient a and exponent b depend on the fre-
quency and polarization of the electromagnetic signal, the DSD, and (to a much lesser
extent) on the raindrop temperature. At the frequencies CML commonly operate, the ex-
ponent b in Eq. (5.1) is∼1.0. Atlas and Ulbrich (1977) state that the near-linearity between
rain rates and specific attenuation (in the 20−40 GHz band) “makes it possible to use the
total path loss as a direct measure ofR [average rain rate] independent of the form of the
distribution ofR [rain rate] along the path”.

Both the degree to which Eq. (5.1) holds and the values of a and b are determined by the
DSD. In order to study how strongly this relation deviates from other relations found in
the literature, we determine values of a and b based on measured DSDs from the São
Paulo region. For each 1-min DSD, we compute the corresponding rainfall intensity and
specific attenuation at the three most common frequency bands in São Paulo (11, 18,
and 23 GHz). Specific attenuation is computed for vertically polarized signals (most CML
operate using this polarization) using T-Matrix scattering computations (e.g. Mishchenko,
2000), assuming raindrop oblateness as a function of its volume-equivalent diameter gi-
ven by Andsager et al. (1999), and a raindrop temperature of 287.15 K. The values ofa and
b are subsequently determined by nonlinear fitting of Eq. (5.1) to the computed values of
R andA.

Figure 5.3 shows the resulting power-law relations for the three different frequency bands.
Also shown in this figure are the power-law relations derived for rainfall in the Nether-
lands as used by Overeem et al. (2016b) and those recommended by the International Te-

4DSD data from Parsivel and other disdrometers for the region of São Paulo (and other regions across Bra-
zil) are freely available at http://chuvaproject.cptec.inpe.br/soschuva/
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lecommunication Union (ITU). It is clear from this figure that there are certainly differen-
ces, and that these differences at high rainfall intensities are largest for the 11-GHz band.
For the higher frequencies, these differences are more limited, especially for high rainfall
intensities. This is in line with what has been found earlier (e.g. Berne and Uijlenhoet, 2007;
Leijnse et al., 2008).
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Figure 5.3: Rainfall intensity against specific attenuation for the a and b para-
meters of three DSD models, i.e, local (SP - continuous line), suggested by ITU-R
Recommendation P.838-3 (ITU - dashed line), and RAINLINK's default (NL - dot-
ted line). TheA−R relations are presented for three frequencies: 11, 18, and
23GHz.

RAINLINK (Overeem et al., 2016b) is an R package (R Core Team, 2016) in which rain rates
and area-wide rainfall maps can be derived from CML attenuation measurements. A very
brief description of the algorithm is as follows: 1) wet-dry classification− a link is con-
sidered for non-zero rainfall retrievals if the received power jointly decreases with that
of nearby links; 2) attenuation estimates are obtained from the difference between RSL
and the reference signal level representative of dry weather (the median signal level of
all dry periods in the previous 24 h); 3) outlier removal− exclusion of links for which the
specific attenuation (accumulated over24 h) deviates too much from that of nearby links;
4)15-min average rainfall intensities are computed from a weighted average of minimum
and maximum rainfall intensities obtained by the (inverse) power-law of Eq. (5.1); and
5) through Ordinary Kriging the rainfall intensities are interpolated into rainfall maps for
the land surface of the Netherlands. This latter step was not implemented in this study.
Overeem et al. (2016b) give a more detailed and in-depth review and/or description about
all the technicalities within the RAINLINK package.
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Error and Uncertainty Metrics

We evaluated the rainfall estimates from RAINLINK through 1) the relative bias, 2) the
coefficient of variation (CV), and 3) the coefficient of determination (r2).

For a given CML, the relative bias is a relative measure of the average error between the
RAINLINK estimatesRRAINLINK,i and the gauge rainfall measurementsRgauge,i (the latter
considered as the ground truth):

relative bias =
Rres

Rgauge
=

n∑
i=1

Rres,i

n∑
i=1

Rgauge,i

, (5.2)

where Rres,i = RRAINLINK,i − Rgauge,i and n represents all possible time steps for the
(rainfall) event under consideration. Rres,i are the residuals, i.e., the difference between
RRAINLINK,i andRgauge,i. Rres andRgauge are the average of the residuals and gauge rain-
fall measurements (in mm), respectively. The relative bias ranges from−1 to+∞, where
0 represents unbiased rainfall estimates.

The coefficient of variation is a dimensionless measure of dispersion (Haan, 1977), defined

in this case as the standard deviation of the residuals
√

V̂ar
(
Rres

)
divided by the mean of

the gauge rainfall measurements, for the evaluated CML:

CV =

√
V̂ar
(
Rres

)
Rgauge

. (5.3)

The CV is a measure of uncertainty. It ranges from 0 (a hypothetical case with no uncer-
tainty) to∞.

The coefficient of determination is a measure of the strength of the linear dependence
between two random variables, RAINLINK estimates and gauge rainfall measurements
in this case. It is defined as the square of the correlation coefficient betweenRRAINLINK,i
andRgauge,i:

r2 =
Ĉov

2(
Rgauge, RRAINLINK

)
V̂ar
(
Rgauge

)
·V̂ar

(
RRAINLINK

) , (5.4)

where V̂ar
(
Rgauge

)
and V̂ar

(
RRAINLINK

)
are the variance of gauge rainfall measurements

and RAINLINK estimates, respectively; and Ĉov
2(
Rgauge, RRAINLINK

)
the squared covari-

ance between these two variables. r2 ranges from 0 to 1, this latter the case of perfect
linear correlation, i.e., all data points would fall on a straight line without any scatter. Per-
fect linearity does not imply unbiased estimates because the regression line does not have
to coincide with the 1:1 line, even if it captures all variability.
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The metrics were computed on 30-min paired rainfall depths, both above 0 mm to only
account for (significant) rainfall events. 30-min aggregation was necessary given the tem-
poral resolutions of the datasets, i.e.,10 min for gauge and15 min for link-retrieved data.

5.3 Results and Discussion

Evaluation of 30-min Rainfall Rates

Figure 5.4 shows minimum and maximum received powers and the derived CML rainfall
rates, as well as the rain rates from the nearest gauge. It can be seen that the minimum
and maximum received powers are strongly negatively correlated with the gauge rainfall
rates. Two clear rainfall events are found for CML 14. One can see that the stronger the
rainfall event is, the larger is the attenuation registered by this CML. The largest decrease
in received power,∼50 dB, is found for the rainfall event on 12 December 2014, where
gauge I measured 20 mm in 10 min.
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Figure 5.4: Time series of gauge measurements (light blue), RAINLINK estima-
tes (dark blue), and minimum and maximum received powers (pink and gold,
respectively) for a couple of rainfall events for CML 12 (a), and for CML 14 (b).
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The quality of rainfall estimates differs between CML12and CML14. For CML14 the rain-
fall rates correspond well with those from gauge I. In contrast, for CML 12 only the dyna-
mics, i.e. the variation with time corresponds, whereas the CML rainfall rates are much
larger than those from gauge I for the event around 23December 2014.

Uncertainties in gauge and attenuation measurements themselves are the two sources
of error that mainly constraint our evaluation. Our work compares CML rainfall estima-
tes against rain gauge measurements, which are considered here as the “ground truth”.
Nonetheless, a gauge is only representative of its surrounding area and does not account
for the spatial variability of rainfall along the link path. Representativeness errors will
increase for longer link paths and for more intense rainfall events. For tropical regions
where intense rainfall is associated to small convective raincells/systems, da Silva Mello
et al. (2014) showed that due to smaller raincells only a part of the link-path contributes to
the attenuation causing thus an effective link-rain rate smaller than the one(s) measured
by gauges.

In Figure 5.4 the best results are obtained for the longest link (5.3 km), whereas represen-
tativeness errors could already play a larger role. The worst result is found for the shortest
link (0.96 km). This may be related to the fact that rain-induced attenuation along the
link path may be relatively small compared to the attenuation caused by wet antennas,
i.e., the wet antennas may explain the large overestimation found for CML 12.

Table 5.1 provides a more extensive verification employing five CML shown in Fig. 5.1. The
results presented in Table 5.1 come from the manual selection of significant rainfall events
for each particular CML. A rainy event is identified if both rainfall depths (CML and gau-
ges) are above 0.0 mm for more than two consecutive 30-min steps, i.e., if it lasted more
than1 h. Hence, if the evaluation of CML estimates yields a r2 > 0.75we can be sure that
CML and gauge estimates show similarities, which is the case for the selected five CML in
Table 5.1. Given the fact that the CML and gauge measurements are totally independent,
it is likely that the high values ofr2 indicate that both types of observations contain a true
rain signal.

Table 5.1: Relative bias, and coefficients of variation (CV) and determination (r2) for A−R re-
lations: local (SP), suggested by ITU-R Recommendation P.838-3 (ITU), and RAINLINK's default
(NL). The metrics presented correspond to CML estimates for whichr2 > 0.75 (i.e., 5 out of 11 CML
evaluated). n indicates the number of rainfall pairs (comparisons) the metrics are computed on.
The mean rain gauge depth (Rgauge) for the n pairs is also presented.

CML Length Freq. gage r2 CV Rgauge relative bias n

[km] [GHz] NL ITU SP NL ITU SP SP SP ITU NL

14 5.30 19.5 I 0.85 0.85 0.85 0.70 0.73 0.70 2.69 +9.3 -2.7 -9.1 93
06 0.82 23.1 A 0.87 0.85 0.85 0.98 0.83 0.92 3.69 +32.9 +24.4 +31.6 22
07 1.68 23.5 B 0.75 0.76 0.76 0.96 0.88 0.90 3.86 +33.5 +26.2 +34.5 92
13 0.96 22.1 J 0.87 0.85 0.84 1.67 1.44 1.64 2.64 147.3 127.8 135.0 96
12 0.96 22.1 J 0.86 0.84 0.84 1.89 1.66 1.88 2.50 153.3 133.5 143.0 102
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A high value of r2, although promising, does not automatically imply that CML rainfall
estimates are accurate. Hence, it is important to also compute other metrics, such as CV
and the relative bias. CML 6, 7 and 14 provide relatively low values of CV, i.e. below 1. The
relative bias for CML 6 and 7 is relatively high (∼30%), whereas the relative bias for CML
14 is within 10%. CML 12 and 13 do likely perceive a rain signal given the high values of
r2, but their values of CV are much larger than 1, and their relative bias is roughly 130%,
implying a large rainfall overestimation by CML. This might be caused by wet antenna at-
tenuation being more dominant for those short links, although this is not found for the
short CML 6.

The results for differentA−R relations are quite similar, indicating that differences in cli-
matologies play a smaller role. For CML 12 and 13 the relative bias becomes more severe
for theA−R relation derived from São Paulo data.
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Figure 5.5: Scatter plot of aggregated CML rainfall against ag-
gregated gauge rainfall for all selected rainy events (20) in the
evaluation of CML 14. A rainfall event is selected if both rainfall
depths are above 0.0 mm, and for a duration of 1 h or more.

Evaluation of Event Rainfall Accumulations

The clear potential of CML technology for rainfall estimation (for subtropical climatolo-
gies) is presented through the outstanding performance of CML 14 (Fig. 5.4b, and Table
5.1). We further explore the performance of this CML by studying all registered rainfall
events for the period under consideration, i.e, 20 rainy events (excluding one event for
which the CML attenuations were clearly erroneous). Figure 5.5 presents a scatter plot of
aggregated CML rainfall against aggregated gauge rainfall for these 20 selected rainfall
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events. In the figure one can see how CML 14 accurately measures very intense, as well
as light rainfall events. The r2 for the aggregated rainfall of these 20 events is 0.95, with
a very low CV of 0.30, and a relative bias of 4%. Hence, the rainfall estimates from CML
14 agree well with those from a gauge based on a large dataset. This gives an indication
that the RAINLINK package is suitable to retrieve rainfall employing CML data from a sub-
tropical climate, even though many of its parameters have not been optimized for such a
climate. Since biases propagate in the hydrological model forecasts, the low relative bias
found for CML14 is of great importance if its rainfall estimates would be used as input for
a hydrological model.

The results presented in Fig. 5.5 correspond to RAINLINK retrievals where no wet-dry clas-
sification is applied, in order to focus on the performance of individual CML without uti-
lizing information from surrounding CML. Moreover, this shows the usefulness of RAIN-
LINK in case few nearby CML are available. If the wet-dry classification from RAINLINK,
i.e. the nearby link approach, is applied, slightly improved metrics are obtained.

5.4 Summary, Conclusions and Recommendations

CML networks are an opportunistic technique for rainfall estimation, with the potential to
be used worldwide given the spread of CML-based telecommunication systems/platforms
during the last two decades. Here we presented one of the first evaluations of CML rainfall
retrievals for a subtropical climate. Subtropical regions could benefit from this technique
given that rainfall events are often more extreme and usually fewer surface rainfall mea-
surements are collected. We evaluated rainfall retrievals from power attenuation mea-
surements for five CML from a network located in the city of São Paulo. We employed the
package RAINLINK (Overeem et al., 2016b) to retrieve rainfall from these CML.

CML rainfall estimates were evaluated against those from the nearest rain gauge at 30-
min intervals for the period from 20 October 2014 to 9 January 2015. We focused our
analyses on the five CML for which r2 > 0.75. Three out of five CML gave good results in
terms of CV. One CML also had a low relative bias. Subsequently, the quality of rainfall
estimates from this best performing CML was evaluated employing 20 events from the
entire three-month period. The good results indicate that RAINLINK can be successfully
applied to CML data from a subtropical climate, even though most parameters have been
optimized for the temperate climate of the Netherlands.

In order for RAINLINK to capture the rainfall characteristics from the region of São Paulo,
we derived a-b coefficients of power-lawA−R relations [Eq. (5.1)] from local DSD data5.
The a and b coefficients are a function of the polarization and frequency of the link, DSD
and raindrop temperature. The ITU/NL sets proved to be very useful and accurate enough
when local a-b coefficients cannot be derived. The NL set is characteristic for the hydro-
climatology of the Netherlands, and is the default set in RAINLINK.

5We enormously thank Timothy Hugh Raupach from EPFL (Switzerland) for his contribution to the DSD
data analysis.

87



Chapter 5. CML Rainfall in São Paulo

The 5.3-km CML was the one with the best performance for the NL A−R relation, i.e.,
r2 =0.851, CV =0.70, and relative bias of−9.11% (−2.67% for the ITU set). Such a low
relative bias indicates the suitability of CML rainfall retrievals in hydrological modeling,
for instance.

A more thorough evaluation should be done to systematically study and explain diffe-
rences between CML and gauge rainfall estimates. For instance, the influence of rainfall
variability along link paths could be studied. This can be achieved if local radar mea-
surements are compared against CML estimates, which would allow to better track the
rain events and their incidence over link paths, being especially relevant for longer link
paths. We also encourage future work on sensitivity analysis focused on the optimization
of RAINLINK parameters to improve the accuracy of rainfall estimates in subtropical re-
gions. Missing maximum signal level data, and unexpected combinations of link lengths
and microwave frequencies, decided us to remove many CML from the original dataset.
This shows that accurate metadata, such as link coordinates, are essential.

CML are still far from replacing currently standard technologies such as radars, rain gau-
ges (and even satellites), but their opportunistic use is rather valuable as a complemen-
tary network for high-resolution rainfall estimation. To conclude, we were able to obtain
good results for one link, which confirms the great potential of this technique if the data
and metadata are properly stored.
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Chapter 6

Synthesis

6.1 Summary

In Chapter 2 the first year of the GPM research product (IMERG) was evaluated for the land
surface of the Netherlands. IMERG is a gridded product with a spatiotemporal resolution
of 0.1◦×0.1◦ every 30 min. IMERG data sets were evaluated against the spatiotemporal
aggregation (at IMERG resolution) of radar rainfall fields which have a native resolution of
∼1 km2 every 5 min. The evaluation was done for half-hourly, daily, monthly, and yearly
durations through pixel-by-pixel comparisons, and cumulative daily rainfall for the entire
land surface of the Netherlands. It was found that IMERG tends to systematically unde-
restimate rainfall by 2%, for the precipitationCal data set.

In Chapter 3 not only IMERG was evaluated again for the land surface of the Netherlands
but also two more satellite rainfall products, and one from CML. The two extra GEO-satelli-
te products, i.e., CPP and NIPE have been designed for the hydrometeorological conditi-
ons of the Netherlands. This is also the case for CML-derived rainfall maps. Here, the eva-
luation was only based on pixel-by-pixel comparisons. IMERG was the satellite product
which outperformed its other two counterparts, CPP and NIPE. Rainfall maps from CML
were the product with the best performance with a correlation of∼0.6, which is twice as
good as the one obtained for IMERG. It was explored if the spatial density of CML would
be a crucial factor in satellite validation at IMERG resolution (it isn't).

Chapter 4 quantified the uncertainties in rainfall maps derived from CML data associa-
ted with the spatiotemporal availability of the CML data itself, and the methodology of
interpolation. The evaluation was carried out for spatiotemporal resolutions of∼1 km2

every 15 min and 24 h. CML rainfall was simulated from radar data. This derived data
set represented perfect rainfall measurements that potentially come from CML networks
where all links retrieve power measurements at all times, i.e., no availability issues. It was
found that measurement errors were the source that contributes most to the overall un-
certainty in rainfall maps from CML networks.

In Chapter 5 rainfall was retrieved from a Brazilian CML network through the freeware R-
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package RAINLINK. This package was developed for the climatological conditions of the
Netherlands, and for the topology of the local CML networks. Because of the tropical cli-
matology of Brazil, this was a perfect opportunity to test the applicability of RAINLINK to
other conditions than those for which it was originally designed. The evaluation was done
at half-hourly durations against aggregated data from a local automatic gauge network
of which the native resolution is10 min. Only for one CML the bias was below10%, which
is an indication that RAINLINK is suitable for rainfall estimation in (sub)tropical climates.

6.2 If Something Has to Be Concluded, It Should Be This

The following general conclusions are based on the evaluation of the rainfall products
carried out in this thesis:

− CML offer the most accurate rainfall estimates at higher spatiotemporal resolutions,
i.e.,∼1 km2 and sub-hourly. CML rainfall products were the ones which consistently
captured the inherent variability of rainfall at small spatiotemporal scales. We saw
how in Chapter 3 it is the product with the lowest coefficient of variation (CV), and the
highest coefficient of determination (r2), which represents a correlation of 0.61, with
regard to the product of reference, i.e., radar rainfall fields. This correlation is practi-
cally the same to the one obtained in Chapter 4 (also 0.61, with CV=1.2). The simi-
larity of these results boosts the validity of this technology, as these numbers were
computed for different topologies, evaluation periods, and accumulated durations.
For instance, in Chapter 3 the evaluation was for7months, at30min, for∼1, 400 links,
whereas in Chapter 4 the evaluation was for12days, at15min, for∼1, 700 links. Over-
eem et al. (2016a) obtained a correlation of 0.6 at hourly accumulations, for two-and-
a-half years of data from almost3, 400CML for the land surface of the Netherlands at
∼1 km2.

− RAINLINK is a good first approach for CML rainfall retrievals in subtropical latitudes.
The evaluation of CML rainfall from the city of São Paulo (Brazil) yielded promising
results. Results are not really conclusive at this point because the evaluation carried
out was only possible for 11 CML from a 200-link network for an evaluation period of
three months. Nevertheless, there was one case in which the performance of RAIN-
LINK was remarkable. Such a performance corresponded to a 5.3-km CML which yiel-
ded a correlation of 0.92, a CV of 0.7, and a relative bias below 10% (2% for an alter-
native scenario). This performance was achieved without modifying the default pa-
rameters RAINLINK comes with. Hence, it is expected that after a more detailed fine-
tuning of the embedded parameters within the package, jointly with a more extensive
data set, more promising results will come. This was an exciting exercise because (as
far as we know) it was the first time that RAINKLINK was applied to latitudes close to
the Equator where rainfall properties, and network topology, vastly differ from those
RAINLINK was designed for.

− Satellite rainfall estimates from the brand new GPM mission gave good results for the
hydrometeorological conditions of the Netherlands. With the transition from TRMM
to GPM it was possible to evaluate the first full year of rainfall measurements from
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space for the land surface of the Netherlands. The performance of IMERG was not as
good as the one obtained from CML. At half-hourly durations and 0.1◦×0.1◦ reso-
lution the correlation was 0.33 with CV=1.9 (Chapters 2 and 3). This implies a large
discrepancy between the ground truth and the rainfall estimated by GPM. Neverthe-
less, when it comes to the relative bias, IMERG underestimates rainfall by just∼2%,
whereas CML rainfall retrievals underestimate rainfall by∼14%. The low relative bias
of IMERG suggests the suitability of such a high-resolution gridded product for hydro-
logical modelling, for instance.

6.3 Discussion

The current and leading technology in high-resolution rainfall estimation is radar. Al-
though it is true that CML could potentially offer rainfall estimates at sub-kilometer and
sub-minute resolutions, and that satellites provide global rainfall estimates, radar is the
technology which actually offers accurate rainfall estimates at spatiotemporal resoluti-
ons of∼1 km2 (or higher) every 5 min on average (or less), on an operational basis. The
robustness of radar technology is the product of ∼80 years of evolution. Therefore, it
would be hard for any other technology to take that privilege away. What CML and sa-
tellite technologies now offer is the possibility to reach places radar can't, and counterba-
lance the limitations radar is prone to. It should be underlined one last time that the aim
of this thesis is not to promote satellite and/or CML technologies as future replacements
of radar, but to carry out the evaluation of state-of-the-art technologies in rainfall moni-
toring over the land surface of the Netherlands (and beyond).

CML rainfall retrievals proved to be accurate and valuable at higher resolutions, that is,
∼1 km2 in space and at sub-hourly durations. Even for the Brazilian case, in which the
performance was outstanding for rainfall occurring along a 5.3-km link-path sampled at
15-min resolution. For the Dutch case, it seems that the top correlation achieved for CML-
based rainfall maps is around 0.6. In Chapter 4 it was demonstrated how this correlation
could be improved by10% if we would manage to perfectly operate a CML network. Chap-
ters 3 and 4 also showed how the accuracy of CML rainfall retrievals is not directly linked
to the number of CML available in a given area, i.e., the density of the network. The largest
source of uncertainty in CML rainfall maps comes from (sources of) errors in the measure-
ments themselves. Unfortunately, in this thesis none of the possible errors induced by the
measurement process like sampling, quantization, wet-antenna attenuation, drop size
distribution, and many others were further explored. Nevertheless, with regard to the
contribution of CML measurements towards the enhancement of hydrological sciences,
especially rainfall estimation, what I can advocate for is a joint effort between scientists
and (cellular) communication providers. Especially bigger efforts from the latter are re-
quired to release the power measurements, if recorded at all.

We like to think of CML as rain gauges due to their conceptual similarities. CML are clo-
ser to the ground than what radar rainfall estimates can offer. CML are deployed in net-
works, which tend to be more dense in urban than in rural areas. The advantage with
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regard to gauge networks is mainly the proportion of CML to gauges (10:1 to50:1) due to
the boom in cellular communications. The proximity of these links to the ground and the
linearity of the retrieval relation yield accurate rainfall estimates, and thus, potentially
high-resolution products. It was argued that the accuracy of rainfall estimates does not
improve as the link density is higher, but large data sets of CML measurements would cer-
tainly provide the opportunity to explore new approaches and gain a deeper understan-
ding of the science and statistics of rainfall. These very same are the advantages that CML
offer to radar, and which radar could benefit from. While the time for phased-array radars
comes into operational fruition, current radars scan all directions within 5 min, whereas
CML could offer rainfall estimates at the sub-minute scale. In the same way, and despite
the coverage that radar offers, CML could be a better representation of the ground truth.

If IMERG has to be held accountable for what the numbers reflect on its performance, it
would most likely be disregarded, especially when better rainfall products such as those
from radar and CML are within our reach. This would be indeed a very harsh assessment
because despite the low correlation (0.33), IMERG succeeds in aspects radar and CML
don't, regardless of the high-resolution estimates they provide. We saw in Chapters 2
and 3 how this low correlation could be attributed to the few direct measurements the
GPM constellation is able to retrieve over the Dutch land surface. Not only does this lower
sampling in the direct detection of rainfall (from the dual-frequency precipitation radar)
contribute to a poor performance but also the large proportion of passive measurements
from top cloud properties (many kilometers up in the sky). Hence, it is definitely expected
that actual surface measurements of rainfall outperform satellite-derived ones. Never-
theless, the strength of IMERG lies in the joint effort between multinational satellite plat-
forms, reached in the 17 years in which TRMM orbited the Earth measuring rainfall over
the tropics. It is worth to briefly mention once more that the main advantage of satellite
retrievals of rainfall is their global coverage. Thus, places where radar technology is not
affordable or where poor gauge networks are in place or where CML-derived rainfall is still
to be tested can hugely benefit from this source of precipitation measurements, if at least
an internet connection does exist in such places. Satellite measurements not only are key
for places deprived of more conventional networks to measure rainfall but also provide
rainfall measurements over the vast oceans which also regulate Earth's water and energy
budget. More than to promote IMERG as an alternative source of rainfall measurements
for an already well-gauged country, this thesis evaluated the expected capabilities and
accuracy of IMERG in places with a similar rainfall climatology as experienced in the Ne-
therlands. In such places, at least, we can be confident that IMERG offers high-resolution
estimates of rainfall accurate enough to be used in hydrological modelling or for water
management purposes.

6.4 Outlook

I want to go back to my ontological disclaimer: It is realistically not possible to seize the
(rainfall) ground truth. Thus, whatever we measure is hopeless to compare against a truth
that does not exist. Nevertheless, what is possible is that what we measure could be a clo-
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ser representation of that truth we strive to achieve. We saw one example of this predica-
ment in Chapter 5 where CML rainfall retrievals were evaluated against a (dense) gauge
network. The data from this gauge network represented the “ground truth”; yet still its va-
lidity could not be assessed, neither confirmed nor rejected. The evaluation results were
sourly split, luckily they tended to be on the promising side, i.e., with correlations above
0.8. It is therefore reasonable to assume that if gauge and CML rainfall retrievals are both
inaccurate, there would naturally be little or no correlation whatsoever. Nonetheless, it
is virtually impossible (very unlikely) that two totally independent measurements would
consistently yield similar and inaccurate rainfall retrievals in the same proportion. This is
why CML14 in Chapter 5 is a promising (and outstanding) result for rainfall estimation in
the subtropics, and helps to prove my ontological point. Acknowledging that we actually
do not know the ground truth, the case of CML 14 tells us that two independent sources
practically measure(d) the same characteristics (to a certain extent) of the phenomenon
being observed. Hence, and for strictly technical purposes, neither of them (CML or gau-
ges) represent the ground truth but at the same time both of them could hold the ground
truth. So why prefer one above the other? We cannot deny that, unlike rain gauges, CML
still have to put up a lengthy fight before becoming operational networks in rainfall moni-
toring at global scale. But we should never prefer one technology above the other. Hence,
the synergistic use of all of them is what I think will put us one step closer to that ground
truth we strive to achieve, and one step further away from such an ontological dichotomy.

In this thesis we evaluated and quantified the performance of two state-of-the-art pro-
ducts in monitoring rainfall at high spatiotemporal resolutions. Doing so is very impor-
tant because we need to know how large the error in rainfall measurements is (if any),
and what are the sources that cause it. I believe that future work should focus less on pin-
pointing sources of uncertainty in such technologies, and more on the synergistic use of
current and available technologies and/or platforms for rainfall estimation like satellites,
radars, CML, gauges, and even tweets! (de Vasconcelos et al., 2016). This combinatorial ap-
proach would certainly offer the tools to truthfully estimate rainfall. On the other hand,
the work by Kirstetter et al. (2015) is one of the first steps in acknowledging the impossibi-
lity to measure the truth, the whole truth, and nothing but the truth... so help us [ .]
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Appendices

A. Comparisons between IMERG and RADAR rainfall maps−Chapter 2
B. Comparisons between CML and RADAR rainfall maps−Chapter 4
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A.1 The 30-min and 24-h scales

Figure A.1 shows1230-min comparisons between radar and IMERG rainfall fields. A wide
range of cases was selected, for instance, good cases such as 2000UTC 26May, 0930UTC
8 July, and 1430 UTC 22 August 2014, where rainfall partially and entirely fell over the
Netherlands, and some cases in which IMERG either missed precipitation or/and did not
accurately measure it, such as 0900 UTC 21 March 2014 and 1700 UTC 9 January 2015.
Of special interest in this figure is the good performance of IMERG for one of the most in-
tense events in 2014, that is, Fig. A.1 (second and third rows) that correspond to630-min
time steps on 28 July 2014 (each separated by 1 h). In Fig. A.1 (second and third rows) it is
shown how, despite some difficulties to capture high rainfall intensities, IMERG is able to
accurately track the storm at such medium-catchment scale.

Figure A.2 shows 12 24-h comparisons between radar and IMERG rainfall fields. Good
and bad cases of the performance of IMERG were selected. One pattern seen in this figure
is how IMERG on the 24-h scale tends to overestimate high intense rainfall events (pat-
tern also observed in Fig. 2.2, top right). Such are the cases for 0800 UTC 27 May, 0800
UTC 29 July, and 0800UTC 12December 2014.

A.2 The monthly scale

Figure A.3 shows 12 monthly comparisons between radar and IMERG rainfall fields. In
most cases IMERG is able to reproduce the spatial variability of rainfall, especially in those
cases where monthly rainfall is below 120 mm, for instance, from September to Novem-
ber 2014. When extreme events (above 160 mm) were developed either locally or spar-
sely through the Netherlands, IMERG fails to accurately capture such intense events, for
instance, May and August2014. In these IMERG rainfall fields, it is possible to identify the
signature of the spatial scale on which the GPCC gauge analyses are based.
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Cumulative Rainfall [mm]
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Cumulative Rainfall [mm]
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Cumulative Rainfall [mm]

R
A

D
A

R
−

IM
E

R
G

 r
es

APRIL  2014

IM
E

R
G

 F
in

al
 R

un

APRIL  2014

R
A

D
A

R
−

IM
E

R
G

 r
es

MAY  2014

IM
E

R
G

 F
in

al
 R

un

MAY  2014

R
A

D
A

R
−

IM
E

R
G

 r
es

JUNE  2014

IM
E

R
G

 F
in

al
 R

un

JUNE  2014

R
A

D
A

R
−

IM
E

R
G

 r
es

JULY  2014

IM
E

R
G

 F
in

al
 R

un

JULY  2014

R
A

D
A

R
−

IM
E

R
G

 r
es

AUGUST  2014

IM
E

R
G

 F
in

al
 R

un

AUGUST  2014

R
A

D
A

R
−

IM
E

R
G

 r
es

SEPTEMBER  2014

IM
E

R
G

 F
in

al
 R

un

SEPTEMBER  2014

R
A

D
A

R
−

IM
E

R
G

 r
es

OCTOBER  2014

IM
E

R
G

 F
in

al
 R

un

OCTOBER  2014

R
A

D
A

R
−

IM
E

R
G

 r
es

NOVEMBER  2014

IM
E

R
G

 F
in

al
 R

un

NOVEMBER  2014

R
A

D
A

R
−

IM
E

R
G

 r
es

DECEMBER  2014

IM
E

R
G

 F
in

al
 R

un

DECEMBER  2014

R
A

D
A

R
−

IM
E

R
G

 r
es

JANUARY  2015

IM
E

R
G

 F
in

al
 R

un

JANUARY  2015

R
A

D
A

R
−

IM
E

R
G

 r
es

FEBRUARY  2015

IM
E

R
G

 F
in

al
 R

un

FEBRUARY  2015

R
A

D
A

R
−

IM
E

R
G

 r
es

MARCH  2015

IM
E

R
G

 F
in

al
 R

un

MARCH  2015

02040608010
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Fi
gu

re
A.

3:
Co

m
pa

ris
on

of
m

on
th

ly
ra

in
fa

llm
ap

sb
et

w
ee

nI
M

ER
G

Fi
na

lR
un

an
dr

ad
ar

at
IM

ER
G

re
so

lu
tio

n.
Th

ec
ol

um
nl

ab
els

in
di

ca
te

th
ee

nd
tim

e(
UT

C)
an

dd
at

ef
or

w
hi

ch
th

e3
0-

m
in

m
ap

sw
er

eo
bt

ai
ne

d.

101



Appendices

B.1 The 24-h and 15-min scales

In Fig. B.1, the LINK column (rows 20110907_08:00 and 20110819_08:00, top and bot-
tom, respectively) shows how daily rainfall depths are greatly overestimated by link data,
especially in places where there is intense rainfall, and the density of the network is hig-
her. Simulated rainfall depths (actual availability) show improvement of rainfall fields
with regard to link-based rainfall fields. Conversely, to actual link rainfall maps, simu-
lated rainfall fields based on the actual availability of the network present a slight un-
derestimation of rainfall depths. Simulated link rainfall fields (actual and 100%network
availability) are similar because the effect of actual or 100% availability among 15-min
intervals is smoothed out by the sum of 15-min rainfall fields.

Figure B.2 shows how accurate rainfall events are captured across the Netherlands at 15-
min intervals. Note how the accuracy is improved for the best-case scenario of 100%net-
work availability (fullSIM column).
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Figure B.1: Comparison of daily interpolated rainfall maps with regard to radar rainfall fields
(ground truth; left column). The rows show five of the 12 days of the validation period. Daily
rainfall maps were aggregated from 15-min rainfall maps. The row labels indicate the end UTC
for which the maps were obtained.
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Figure B.2: Comparison of 15-min interpolated rainfall maps with regard to radar rainfall fields
(ground truth, left column). The rows show five of the 1,152 time steps (cases) present in the 12-
day validation period. The row labels indicate the start UTC for which the maps were obtained.
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Summary

This thesis is about the evaluation of several rainfall products retrieved from satellites and
microwave link networks for the land surface of the Netherlands and São Paulo.

In Chapter 2 the first year of the GPM research product (IMERG) was evaluated for the
land surface of the Netherlands. IMERG is a gridded product with a spatiotemporal reso-
lution of 0.1◦×0.1◦ (∼77 km2 at the latitude of the Netherlands) every 30min. The eva-
luation was done for both data sets of IMERG, i.e., precipitationUncal and precipitationCal.
The latter is calibrated through a global network of rain gauges, the former is not. IMERG
data sets were evaluated against the spatiotemporal aggregation (at IMERG resolution)
of radar rainfall fields which have a native resolution of∼1 km2 every 5min. The evalua-
tion was done for half-hourly, daily, monthly, and yearly durations through pixel-by-pixel
comparisons, and cumulative daily rainfall for the entire land surface of the Netherlands.
It was found that IMERG tends to systematically underestimate rainfall by2%, for the pre-
cipitationCal data set. For the precipitationUncal this yearly underestimation rises to 11%,
which shows the effective improvement in satellite rainfall retrievals from gauge calibra-
tion.

In Chapter 3 not only IMERG was evaluated again for the land surface of the Netherlands
but also two more satellite rainfall products, and one from CML. The evaluation is done for
a seven-month period. The two extra GEO-satellite products, i.e., CPP and NIPE have been
designed for the hydrometeorological conditions of the Netherlands. This is also the case
for CML-derived rainfall maps. From all the products evaluated in this chapter, IMERG
is the product with the lowest resolution; therefore, and for inter-comparison purposes,
the spatiotemporal resolution of all the other products were upscaled to match that of
IMERG. Here, the evaluation was only based on pixel-by-pixel comparisons. IMERG was
the satellite product which outperformed its other two counterparts, CPP and NIPE. This
latter is still an experimental product and the one with the poorest performance. Rainfall
maps from CML were the product with the best performance with a correlation of∼0.6,
which is twice as good as the one obtained for IMERG. This better performance sugge-
sted the added value that CML might have in the eventual validation of satellite rainfall
retrievals. Hence, it was explored if the spatial density of CML would be a crucial factor
in satellite validation at IMERG resolution. There was no clear evidence for this to be the
case.

Chapter 4 quantified the uncertainties in rainfall maps derived from CML data associa-
ted with the spatiotemporal availability of the CML data itself, and the methodology of

121



Summary

interpolation. The evaluation was carried out for∼1, 100 rainfall maps with spatiotem-
poral resolutions of∼1 km2 every 15 min. As with Chapters 2 and 3, the evaluation was
done via pixel-by-pixel comparisons against aggregated radar rainfall maps at 15-min
and daily durations. CML rainfall was simulated from radar data to quantify these types of
uncertainty. This derived data set represented perfect rainfall measurements that poten-
tially come from CML networks where all links retrieve power measurements at all times,
i.e., no availability issues. It was found that only 10% of the uncertainty can be attributed
to availability issues in the CML data set, from a CML network of∼1, 700 links with an
average availability of 83%. Measurement errors were the source that contributes most
to the overall uncertainty in rainfall maps from CML networks.

In Chapter 5 rainfall was retrieved from a Brazilian CML network through the freeware
R-package RAINLINK. RAINLINK is an R package that computes rainfall intensities from
minimum and maximum received power measurements (attenuation). This package was
developed for the climatological conditions of the Netherlands, and for the topology of
the local CML networks. Because of the subtropical climatology of Brazil, this was a per-
fect opportunity to test the applicability of RAINLINK to other conditions than those for
which it was originally designed. The city of São Paulo was the testbed for which rain-
fall retrievals from 16 CML were evaluated for a three-month period. The evaluation was
done at half-hourly durations against aggregated data from a local automatic gauge net-
work of which the native resolution is 10 min. Without totally adapting the algorithm to
the local conditions (something that would require a more extensive and intensive eva-
luation), in 9 out of 16 cases CML rainfall retrievals from RAINLINK gave a correlation of
0.84with a lower variability but high biases. Only for one CML the relative bias was below
10%, which is an indication that RAINLINK is suitable for rainfall estimation in subtropi-
cal climates.

The main results are summarized as follows: CML offer the most accurate rainfall esti-
mates at higher spatiotemporal resolutions, i.e.,∼1 km2 sub-hourly. RAINLINK is a good
first approach for CML rainfall retrievals in tropical latitudes. The evaluation of CML data
from the city of São Paulo (Brazil) yielded promising results with regard to rainfall retrie-
vals from the RAINLINK package. Satellite rainfall estimates from the brand-new GPM
mission perform well for the hydrometeorological conditions of the Netherlands.
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