Defining genetic diversity based on genomic tools

Second chapter in the book:

"Genomic management of animal genetic diversity"

Jesús Fernández, INIA and Jörn Bennewitz, Hohenheim University

- > You can not maintain what you can not measure!
 - ✓ Degree of endangerment
 - \Rightarrow prioritisation
 - ✓ Management
 - ✓ Monitoring
 - \Rightarrow check for success

- Keep phenotypic features
 - ✓ Morphological
 ✓ Productive

 - ⇒ breed standard
- \Rightarrow profitability

- ✓ Adaptation to particular environment
- Classical approach through the concept of variance
 - √ Good recording scheme (standardised and accurate)
 - ⇒ avoid confounding errors with high variability
- > Look for high levels of phenotypic diversity through high levels of genetic diversity

PEDIGREES

- > Absent or unreliable
 - **✓** Especially between breeds
 - \Rightarrow prioritisation
- > Assume founders unrelated and non inbred

Genomics: Mendelian sampling visible by DNA analysis

DNA

- Present in two copies (pairs of chromosomes)
- · Always 50% submitted by the dam and 50% by the sire
- . A random process determines which part from the sire and from the dam

> Average 'expected' value for neutraleloci

- √ No Mendelian sampling
 - \Rightarrow no all sibs are equal

Genomics determines which part from the sire and which part from the dam!

MOLECULAR INFORMATION

- > Deal with 'realised' values
 - ✓ percentage of polymorphic sites
 - √ distribution of allelic frequencies
 - √ observed and expected heterozygosity
 - √ allelic diversity

⇒ detect relevant individuals or populations

- dense coverage by SNPs
 - ✓ every locus in LD with one marker
 - ⇒ more precise measure
 - √ measure non-neutral genetic diversity
 - ⇒ account for productivity or fitness
 - √ separate analysis of particular regions
 - ⇒ instead of global picture
 - √ finer determination of relationships between individuals/breeds
 - ⇒ crucial in management

- Close SNPs inherited together
 - √ use haplotype (kinship)
 - ⇒ detect selection signatures
 - √ Runs Of Homozygosity (ROHs)
 - ⇒ reflect IBD if they are long enough
 - ⇒ but still 'realised' IBD

'... long stretches of two homologous chromosomes within the same individual that are identical (homozygous for all the loci within) ...'

- whole sequence
 - ✓ detect other types of markers, e.g. Copy Number Variants (CNV)
 - ✓ causal mutations for important traits are present
 - ⇒ not depending on LD with the SNPs
 - √ easier to detect rare variants

- ✓ efficient way of detecting SNPs for rare breeds
 - ⇒ avoid ascertain bias from commercial SNP chips

> Partition of diversity within and between breeds

- √ better description of genetic structure
- ✓ prioritisation of breeds

$$GD = \lambda GD_W + GD_B$$

- > trait-based adaptive diversity measures
 - ✓ excess of variance in genotypic values relative to the variance expected in the absence of selection
 - ✓ adaptivity coverage of a set of subpopulations
 - ✓ how well the subpopulations could adapt to a large range of environments