Elsevier

MethodsX

Volume 4, 2017, Pages 134-142
MethodsX

Method Article
A modification of the constant-head permeameter to measure saturated hydraulic conductivity of highly permeable media

https://doi.org/10.1016/j.mex.2017.02.002Get rights and content
Under a Creative Commons license
open access

Abstract

The saturated hydraulic conductivity (Ks) is a key characteristic of porous media, describing the rate of water flow through saturated porous media. It is an indispensable parameter in a broad range of simulation models that quantify saturated and/or unsaturated water flow.

The constant-head permeameter test is a common laboratory method to determine Ks on undisturbed soil samples collected from the field. In this paper we show that the application of this conventional method may result in a biased Ks in the case of highly permeable media, such as the top layer of Sphagnum peat and gravel. Tubes in the conventional permeameter, that collect water under the sample, introduce a hydraulic head-dependent resistance for highly permeable media and result in an underestimation of Ks.

We present a simple and low-budget alternative of the constant-head permeameter test that overcomes the disadvantages of conventional permeameters. The new method was successfully tested on intact highly permeable peatmoss collected from a northern peatland.

  • Conventional constant-head permeameters underestimate Ks of highly permeable media due to flow resistance in tubing systems

  • We developed the low-resistance permeameter to overcome this disadvantage.

  • Testing of the low-resistance permeameter demonstrated no systematic bias and successful application for highly permeable media.

Method name

Low-resistance permeameter

Keywords

Permeability
Low-resistance permeameter
Laboratory method
Soil physics
Reynolds number
Compression
Peat
Sphagnum

Cited by (0)