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Chapter 1 

 

General introduction 

 

 

1.1  Mining for genotype-phenotype relationships 

 

An integrative view of diversity and singularity in the living world requires a better 

understanding of the intricate link between genotypes and phenotypes (Orgogozo et al. 

2015). Genotype, i.e. the “internally coded, inheritable information” carried by a 

living organism, holds the critical instructions that are used and interpreted by cellular 

machinery to produce a phenotype, i.e. the “outward, physical manifestation” of the 

organism. However, the relationship of genotype to phenotype is not one-to-one; 

phenotypes typically result from interactions between the products of multiple genes 

(Lehner 2007).  

Existing methods for unraveling the genetic architecture of complex traits mainly 

identify genomic regions associated with phenotypic variation through standard 

quantitative trait locus (QTL) analysis. But between genes and the final phenotypes, 

there exist a few intermediary substances such as proteins and metabolites, which 

have a quantitative nature and vary among individuals within populations. 

Successfully linking variations at intermediate levels to allelic variations on the one 

hand and to phenotypic variations on the other hand is expected to improve the 

prediction and manipulation of complex traits, which are crucial in plant and animal 

breeding.  

 

1.2  Inferring causal relationships among phenotypic traits 

 

Estimates of phenotypic correlations are widespread throughout the literature of plant 

and animal breeding (Searle 1961). According to quantitative genetic theory, genetic 

http://gsejournal.biomedcentral.com/articles/10.1186/1297-9686-43-6
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and environmental causes of correlation combine together to produce the phenotypic 

correlation (Waitt and Levin 1998); hence the phenotypic variance is conventionally 

partitioned into genetic and environmental components.  

However, beyond phenotypic correlations, causal relationships among 

phenotypes have attracted increasing research interest in recent years. Investigation on 

the causal structure of genetic data used to be ignored simply because it is well-known 

that genotype is the cause and phenotype is the effect, and the reverse scenario has 

been proven to be unlikely (Li et al. 2006). Of late, it has been realized that 

phenotypic traits may exert causal effects between them (Rosa et al. 2011), especially 

when intermediate phenotypes are involved. For example, two molecular traits can 

serve, respectively, as the upstream and downstream elements in a biochemical 

pathway. Then the upstream one is considered as a cause, and the downstream one is 

considered as an effect.  

Causal inference in phenotypic traits, or equivalently, the construction of causal 

phenotype networks was so far mainly based upon logic that involves underlying 

QTLs (Jansen et al. 2009). In practice, it has become fashionable to map QTLs for 

phenotypes of interest via genome-wide scans, since genotyping has become cheaper 

and easier thanks to the advancement of genome sequencing technologies. 

Contrariwise, phenotyping, especially that of late-emerging traits in long-lived species, 

remains time-consuming and thus expensive (Monneveux et al. 2012). This imposes 

limits on the sample size (Ríos 2015), i.e., leads to limited sample sizes that provide 

insufficient power for detecting small to medium sized QTLs. Thus, it is often the 

case that no QTL is identified for some of the traits of interest. In such cases, the 

state-of-the-art methods for inferring causal relationships among phenotypes become 

invalid because they require at least one unique QTL for each trait studied (Logsdon 

and Mezey 2010; Neto et al. 2008).  

 

1.3  Genetic mapping 

 

Genetic map construction remains an important prerequisite for QTL analysis in 

organisms for which genomic sequence is not available (Broman 2010). In view of the 

fact that the closer the two markers are on a chromosome, the more likely they are to 

be passed together on to the next generation, the "co-segregation" patterns of markers 

are believed useful for genetic mapping. For this reason, current approaches to map 

construction are mainly based on the estimates of recombination frequencies between 

genetic markers.  
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These approaches, though theoretically true, can produce reasonably informative 

genetic maps; their practical performances have proven largely dependent on the 

quality of the marker data. It is known that genotyping errors inflate the number of 

apparent recombinations, and thus expand map distances and reduce the proportion of 

correctly ordered maps, especially when marker density increases (Göring and 

Terwilliger 2000; Hackett and Broadfoot 2003; Shields et al. 1991). Markers 

exhibiting high nearest-neighbour stress (N.N.Stress) are generally considered to have 

genotyping errors (Van Ooijen and Jansen 2013) and are therefore often removed 

from constructed genetic maps (Farré et al. 2011; Ting et al. 2013). Nonetheless, it 

should be noted that this post-hoc filtering is inherently biased because it is applied to 

marker orders that are obtained under the assumption of no error.  

Moreover, few methods have been proposed for genetic map construction in the 

case of chromosomal rearrangements such as reciprocal translocations. A reciprocal 

translocation refers to an even exchange of DNA fragments between two 

non-homologous chromosomes. Recombination between loci around the translocation 

breakpoints is severely suppressed. As a consequence, markers in these regions 

become ‘pseudo-linked’, that is, markers that lie on different chromosomes involved 

in the translocation will be mapped into a single linkage group (Farré et al. 2011).  

 

1.4  Probabilistic graphical models 

 

Reverse-engineering of biological networks is a central research problem in 

computational and systems biology. Earlier approaches to solving this problem mainly 

resort to clustering and correlation analysis, which are rather straightforward but with 

limited effectiveness. More specifically, clustering is able to uncover the modular 

topology but cannot explore in depth the fine architecture of each module (Hanisch et 

al. 2002; Jiang and Singh 2010; Muff et al. 2005; Ravasz et al. 2002); correlation 

analysis is known to not only confound direct and indirect associations but also 

provide no means to distinguish between cause and effect (Opgen-Rhein and 

Strimmer 2007).  

Recent studies show that probabilistic graphical models (PGMs), which combine 

the graph theory and probability theory to give a multivariate statistical modeling, 

have been successfully used to reconstruct a wide range of biological networks 

(Airoldi 2007; Friedman 2004). PGMs are categorized into two general types based 

on the nature of edges in the resulting network: undirected graphical models and 

directed graphical models. A representative subgroup of undirected graphical models 
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is Gaussian graphical models (GGMs), which allow the identification of conditional 

independence relationships between variables under the assumption of multivariate 

Gaussian distribution. The most commonly used directed graphical model are 

Bayesian Network (BNs), which decompose a joint probability distribution over 

multiple variables into a set of conditional and marginal distributions on 

low-dimensional subspaces. Thanks to their factorization of multivariate probability 

distributions, BNs are an efficient tool for reasoning under uncertainty, i.e. exploring 

the dependence structure of variables to facilitate reasoning in multidimensional 

domains under probabilistic settings (Campos 2006; Silander et al. 2008). 

Werhli et al. performed a comparative study of correlation analysis, GGMs and 

BNs in the reconstruction of gene regulatory networks, using both laboratory data 

from cytometry experiments and synthetic data from gold-standard networks (Werhli 

et al. 2006). Their results showed that: first, GGMs and BNs outperformed correlation 

analysis on Gaussian observational data; second, there was no significant difference 

between GGMs and BNs on observational data in general; third, for interventional 

data, BNs outperformed GGMs and correlation analysis, especially when taking the 

edge directions rather than just the skeletons of the graphs into account. The last point 

in particular suggested that active interventions in the form of gene knockouts and 

over-expressions would be helpful to exploit the full potential of BNs. 

 

1.5  Study objectives and outline of the thesis 

 

The work in this thesis aims at exploring the use of PGMs in quantitative genetics and 

systems biology for plants, and further developing computational strategies for 

reverse-engineering of biological networks and genetic mapping. These objectives are 

achieved in the following four chapters, each of which is deliberately self-contained 

and can be read individually with no loss of understanding.  

Chapter 2 proposes a novel method called the QTL+phenotype supervised 

orientation (QPSO) algorithm. As its name indicates, this algorithm is designed to 

infer directionality of edges in undirected phenotype networks utilizing phenotypic 

interactions in addition to QTL information. The QPSO algorithm outperforms other 

existing methods as it is applicable to cases where some phenotypes of interest come 

without QTLs. This makes it suitable for a much broader range of real-life studies, 

especially those involving expensive phenotypes.  

In chapter 3, we present an integrative method for simultaneous modeling of 

multilevel phenotypic responses to DNA variations. More specifically, we combine 

http://bioinformatics.oxfordjournals.org/search?author1=Adriano+V.+Werhli&sortspec=date&submit=Submit
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three GGM approaches with the QPSO algorithm to model genotype-phenotype 

relationships with consideration for variations on intermediate molecular phenotypes, 

e.g. metabolites. The inferred dependency network which, though not essentially 

representing biological pathways, suggests how the effects of allele substitutions 

propagate through multilevel phenotypes. Such simultaneous study of the underlying 

genetic architecture and multifactorial interactions is expected to enhance the 

prediction and manipulation of complex traits. 

Chapter 4 shows that PGMs have great potential in reliable reconstruction of 

genetic maps. We prove both theoretically and practically that PGMs can be used to 

construct genetic maps in the face of data perturbations caused by genotyping errors. 

Moreover, we demonstrate empirically that PGMs offer a promising solution to 

genetic map construction in the case of a reciprocal translocation. 

Chapter 5 is dedicated to a comparative investigation of the two most common 

approaches to constructing PGMs, i.e. the PC algorithm and the Metropolis-Hastings 

algorithm. In view of the fact that BNs become an effective tool for causal network 

inference and most biological systems exist in the form of random network or 

scale-free network, here we compare the performance of the two algorithms in 

constructing both random and scale-free BNs. With this study, we aim to provide an 

informative guide to choosing the appropriate method depending on the application 

background and further selecting the proper related parameters.  

Finally, chapter 6 presents a general discussion and a few concluding remarks. 
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Chapter 2 

 

A new method to infer causal phenotype networks using QTL and 

phenotypic information 

 

 

Abstract 

 

In the context of genetics and breeding research on multiple phenotypic traits, 

reconstructing the directional or causal structure between phenotypic traits is a 

prerequisite for quantifying the effects of genetic interventions on the traits. Current 

approaches mainly exploit the genetic effects at quantitative trait loci (QTLs) to learn 

about causal relationships among phenotypic traits. A requirement for using these 

approaches is that at least one unique QTL has been identified for each trait studied. 

However, in practice, especially for molecular phenotypes such as metabolites, this 

prerequisite is often not met due to limited sample sizes, high noise levels and small 

QTL effects. Here, we present a novel heuristic search algorithm called the 

QTL+phenotype supervised orientation (QPSO) algorithm to infer causal directions 

for edges in undirected phenotype networks. The two main advantages of this 

algorithm are: first, it does not require QTLs for each and every trait; second, it takes 

into account associated phenotypic interactions in addition to detected QTLs when 

orienting undirected edges between traits. We evaluate and compare the performance 

of QPSO with another state-of-the-art approach, the QTL-directed dependency graph 

(QDG) algorithm. Simulation results show that our method has broader applicability 

and leads to more accurate overall orientations. We also illustrate our method with a 

real-life example involving 24 metabolites and a few major QTLs measured on an 

association panel of 93 tomato cultivars. Matlab source code implementing the 

proposed algorithm is freely available upon request.  
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2.1  Introduction 

 

In animal and plant breeding, selection of superior genotypes for further crossing is an 

important objective. To achieve this objective, identification of quantitative trait loci 

(QTLs) can be a first step in the development of a breeding strategy; alternatively 

nowadays, estimation of genomic breeding values can be considered to form another 

initial step. Whether a breeding strategy is based on QTLs or genomic breeding values, 

multi-trait approaches offer clear advantages over single-trait approaches (Calus and 

Veerkamp 2011; Jiang and Zeng 1995). In multi-trait models, correlations, or 

associations, between traits have a symmetrical nature and are not supposed to convey 

information about causal relationships. Nonetheless, causal inference in correlated 

traits has been attracting growing research interest since it allows predicting effects of 

external interventions, where the effects of QTLs on phenotypic traits can be 

interpreted to represent a specific class of interventions (Rosa et al. 2011; Valente et 

al. 2013).  

Causal inference in correlated traits, or equivalently, the construction of directed 

phenotype networks was so far mainly based upon logic that involves underlying 

QTLs (Jansen et al. 2009). For the simplest system with two traits (T1, T2) and one 

QTL (Q), Schadt et al. (2005) and Li et al. (2010) presented different implementations 

of triad analysis to determine whether the three entities are interconnected in, what 

they called, causal (Q→T1→T2), reactive (Q→T2→T1) or independent (T1←Q→T2) 

manner. Further research efforts concerned the investigation of multi-locus and multi-

trait systems. Aten et al. (2008) developed a network edge orienting (NEO) method 

and software to 1) perform genetic marker selection for each trait and 2) infer 

pairwise relationships between traits, using local-structure edge orienting (LEO) 

scores. Specifically, the LEO scores were calculated according to the likelihoods of 

local structural equation models (SEMs), which integrated two traits and the markers 

selected for each of them. Li et al. (2006) introduced another systematic method to 

first infer genetic architecture of multiple traits and then iteratively assess and refine 

the path model by means of covariance-based SEM. Neto et al. (2008) proposed a 

QTL-directed dependency graph (QDG) approach that requires a priori estimation of 

QTLs for the traits and executes the following two steps: 1) learn an undirected 

network from phenotypic data; 2) infer causal direction for every edge in the 

undirected phenotype network by conditioning on detected QTLs. In the QDG 

algorithm, QTL mapping is treated independently from the construction of phenotype 

network. In contrast, a QTL-driven phenotype network (QTLnet) method was 

introduced to jointly infer a directed phenotype network and the associated genetic 

architecture for a set of correlated traits (Neto et al. 2010). An adaptive lasso (AL) 

based method was presented to infer a gene regulatory network from gene expression 

and expression quantitative trait loci (eQTLs) data (Logsdon and Mezey 2010). In 

their simulation studies, Logsdon and Mezey (2010) compared the performance of 

five algorithms, i.e. the PC algorithm (Spirtes et al. 2000), the NEO algorithm, the 

QDG algorithm, the QTLnet algorithm and the AL algorithm. The results indicated 
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that in the setting of tens of traits and QTLs, the QDG and the AL algorithms 

exhibited comparable performance but consistently outperformed the other three 

methods. Logsdon and Mezey (2010) also considered a couple of other algorithms 

including the one proposed by Li et al. (2006), but they were deemed computationally 

expensive. Therefore, the QDG and the AL algorithms will be regarded as two state-

of-the-art methods in this field.  

In practice, it has become fashionable to map QTLs for phenotypes of interest 

via genome-wide scans, since genotyping has become cheaper and easier thanks to the 

advancement of genome sequencing technologies. Contrariwise, phenotyping, and 

especially metabolic profiling and sensory assessment, is still expensive and time-

consuming (Gagneur et al. 2011). Thus, for phenotypic traits such as metabolites and 

sensory attributes, it is hard to obtain large sample sizes that provide sufficient power 

for detecting small to medium sized QTLs. And it is often the case that, given high-

dimensional phenotypic and genetic data (i.e. large numbers of traits and QTLs vs. 

small numbers of samples), significant QTLs cannot be identified for each and every 

trait (Hill et al. 2013; Joosen et al. 2013). In such cases, both the QDG and AL 

algorithms become inapplicable as they require at least one unique QTL for each trait 

studied (Logsdon and Mezey 2010; Neto et al. 2008).  

To construct directed phenotype networks, especially when some traits come 

without QTLs, we present in this paper a QTL+phenotype supervised orientation 

(QPSO) algorithm. Compared with the benchmark QDG algorithm, our proposed 

method is likewise based on a priori determination of an undirected phenotype 

network and QTLs for the traits, where we recommend estimation of initial QTLs 

using multi-trait QTL mapping methods (Alimi et al. 2013; Jiang and Zeng 1995; 

Malosetti et al. 2008). Our QPSO algorithm implements a heuristic search different 

from that of the QDG algorithm and investigates a more comprehensive local 

structure at each step. More specifically, the QPSO algorithm takes into account the 

related phenotypic interactions in addition to QTLs when orienting an undirected edge 

between two traits. As a result, it can orient multiple undirected edges simultaneously. 

The performance of the QPSO and the QDG algorithms is compared through a series 

of simulations. The results show that our method has broader applicability and 

produces more accurate overall orientations. To demonstrate the QPSO algorithm 

empirically, we use it in combination with the PC-skeleton (Spirtes et al. 2000) to 

build a partially directed network that sheds light on causal relationships between 24 

metabolites in ripe fruits of a tomato association panel.  

 

2.2  Method 

 

2.2.1 Causal inference in two correlated traits 

Assume Y1 and Y2 are two correlated traits connected by an undirected edge in a 

phenotype network. The causal direction of Y1─Y2 should follow one of two scenarios: 

Y1→Y2 or Y1←Y2. The two causal models are considered likelihood equivalent 
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because p(Y1)p(Y2|Y1) = p(Y1,Y2) = p(Y2)p(Y1|Y2). Thus, it is impossible to distinguish 

between Y1→Y2 and Y1←Y2, i.e. to orient Y1─Y2, using a maximum-likelihood 

criterion.  

Neto et al. (2008) presented a smart way to solve the problem of causal inference 

in two correlated traits. They introduced QTLs to Y1 and Y2 so as to get two expanded 

directed graphs as shown in Figure 2.1. The two expanded directed graphs are not 

likelihood equivalent since p(Q1)p(Y1|Q1)p(Q2)p(Y2|Y1,Q2) ≠ 

p(Q2)p(Y2|Q2)p(Q1)p(Y1|Y2,Q1), which can be further simplified as p(Y1|Q1)p(Y2|Y1,Q2) 

≠ p(Y2|Q2)p(Y1|Y2,Q1). In this context, it is feasible to infer the causal direction of 

Y1─Y2 according to the maximum-likelihood criterion. More specifically, Y1─Y2 

should be oriented in favor of the direction present in the model with higher 

likelihood, i.e. Y1→Y2 if p(Y1|Q1)p(Y2|Y1,Q2) > p(Y2|Q2)p(Y1|Y2,Q1) while Y1←Y2 if 

p(Y1|Q1)p(Y2|Y1,Q2) < p(Y2|Q2)p(Y1|Y2,Q1).  

 

2.2.2 Causal inference in local generalized phenotype networks 

In the context of Figure 2.1, Y1─Y2 is oriented by introducing parent nodes to Y1 and 

Y2, where the parent nodes are restricted to earlier identified QTLs. However, it is 

known that many molecular traits, such as metabolites and proteins, do interact with 

one another. This means that in addition to QTLs, some other traits may also have 

causal effects on Y1 and Y2. Therefore, these traits should also be included in the 

parent nodes of Y1 and Y2; or, at least, their potential effects on Y1 and Y2 should be 

taken into account when one is attempting to orient Y1─Y2. To make a comprehensive 

consideration of the local structure regarding Y1 and Y2, we present here the concept 

of local generalized phenotype network (LGPN) (Figure 2.2A), in which we include 

1) QTLs identified for Y1 and Y2, 2) traits that have been determined as parent nodes 

of Y1 and Y2, 3) traits that are directly connected to Y1 and Y2 by undirected edges 

(these traits are hereinafter referred to as neighbouring traits of Y1 and Y2).  

It has been demonstrated that the maximum-likelihood criterion can be employed 

to infer the direction of Y1─Y2 in the context of Figure 2.1. Inspired by this, we find a 

feasible solution to the problem of causal inference in LGPNs that meet the following 

two conditions: 1) both Y1 and Y2 have parents nodes and at least one of Y1 and Y2 has 

unique parent nodes; 2) each neighboring trait of Y1 is nonadjacent to at least one of 

the parent nodes of Y1, and the same is true of Y2. Assume in such a LGPN there are n 

undirected edges including Y1─Y2. As every undirected edge has two optional 

directions (i.e. either forward or backward), the total number of candidate directed 

graphs derived from that LGPN is then   . Verma and Pearl (Verma and Pearl 1990) 

have proved a theorem for the characterization of equivalent graphical models:  

Theorem: Two directed acyclic graphs (DAGs) are likelihood equivalent if and only if 

they have the same skeletons and the same v-structures (A v-structure in a DAG G is 

an ordered triple of nodes (X, Y, Z) such that G contains the directed edges X→Y and 

Z→Y, and X and Z are not adjacent in G).  
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According to the theorem, we find that under the two aforementioned conditions, each 

of the    candidate directed graphs possesses a distinct set of v-structures (for 

detailed explanation please refer to Supplementary material) and thus returns a 

distinct log-likelihood score                                     
 
   , where   is 

the sample size,       represents the parent nodes of trait  , and     is a conditional 

probability density function with parameters replaced by the corresponding 

maximum-likelihood estimates. Accordingly, the locally optimal directed graph 

(LODG) among the    candidates should be the one with the highest log-likelihood 

score.  

All undirected edges involving in a LGPN can be oriented simultaneously in the 

light of the corresponding LODG. These newly determined directed edges will then 

be employed to infer directions of some remaining undirected edges in the entire 

phenotype network. This leads to a heuristic search process, which will be described 

in detail in the following section. In the process of heuristic search, it might happen 

that some of the traits have never been assigned parent nodes in all of the previous 

steps. In cases where only Y1 or Y2, say Y1, has been determined with parent nodes, the 

maximum likelihood criterion is able to identify the LODG for a reduced LGPN 

(Figure 2.2B), and the log-likelihood score should be reformulated as 

                    
 
   . In particular cases where neither Y1 nor Y2 has unique 

parent nodes, the maximum likelihood criterion fails to infer direction of Y1─Y2. This 

means that the consideration of LGPN regarding Y1 and Y2 becomes a bit pointless 

and should be skipped.  

In this study, we restrict ourselves to quantitative phenotypic traits and 

categorical QTL data, i.e., QTLs are represented by closest markers that can take one 

of two or three genotypes at that locus, depending on the type of population. Missing 

values in phenotypic and marker data are assumed to be estimated or imputed before 

that causal inference is applied. We also assume that a LGPN is a conditional linear 

Gaussian (CLG) model, in which discrete variables are not allowed to have 

continuous parents, and the joint distribution of continuous variables for every 

instantiation of discrete variables is multivariate Gaussian (Shenoy 2006).  

 

2.2.3 Causal inference in an entire undirected phenotype network 

A LODG may introduce new parent nodes to some of the traits. As illustrated in 

Figure 2.3, Y1 is the newly determined parent node of C1 and C4. This updated causal 

information might subsequently enable or improve the orientation of the remaining 

undirected edges connecting to C1 and C4. Therefore, iterative implementation of 

causal inference in sequential LGPNs can finally orient as many edges as possible in 

an undirected phenotype network. This is, however, a typical heuristic search 

technique that has to be rerun from different starting points a number of times to 

avoid getting stuck in local optima. To this end, we exploit the Bayesian information 

criterion (BIC) score as a global evaluation metric to find the most likely fully or 

partially directed phenotype network obtained in multiple runs. The BIC score is a 

well-known penalized likelihood criterion that is often used to prevent overfitting the 
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training data. It is formally defined as                      , where   is the 

learnt network,   is the training data,         is the maximum log-likelihood,   is 

the sample size, and | | denotes the dimension of   (Schwarz 1978).  

In summary, our QPSO algorithm executes the following steps to perform causal 

inference in an entire undirected phenotype network, where we assume that the QTLs 

have been identified earlier by a multi-trait QTL mapping method like the ones 

described by Malosetti et al. (2008) and Alimi et al. (2013).  

(1) Randomly choose a pair of traits that simultaneously satisfy two conditions: first, 

they are connected by an undirected edge; second, both of them have parent nodes 

and at least one of them has unique parent nodes. 

(2) Extract the LGPN (as illustrated in Figure 2.2A) with respect to these two traits. 

(3) Identify the LODG from all candidate directed graphs derived from that LGPN; 

update the phenotype network (i.e. orient all the corresponding undirected edges) 

according to the LODG. 

(4) Repeat steps (1), (2) and (3) until no more traits satisfying the two conditions 

mentioned in step (1) remain. 

(5) If the resulting phenotype network is partially directed, randomly choose a pair of 

traits that simultaneously satisfies two conditions: first, the traits are connected by 

an undirected edge; second, only one of them has parent nodes. 

(6) Extract the LGPN (as illustrated in Figure 2.2B) with respect to these two traits. 

(7) Identify the LODG from all candidate directed graphs derived from that LGPN; 

update the phenotype network according to the LODG. 

(8) Repeat steps (5) (6) and (7) until no more undirected edges can be oriented; store 

the overall orientation of the entire phenotype network. 

(9) Repeat steps (1) through (8) a number of times (this number is hereinafter referred 

to as the number of iterations); use the BIC score to evaluate each overall 

orientation and return the one with the highest score. 

An implementation of the QPSO algorithm has been realized in Matlab. 

Thereinto, the probability density function of the CLG distribution and the BIC score 

are computed by calling functions in Bayes Net Toolbox 

(https://code.google.com/p/bnt/). Matlab source code is available from the authors 

upon request. 

 

2.3  Results 

 

2.3.1 Synthetic phenotypic and QTL data 

We followed the same protocol used by Neto et al. (2008) to generate synthetic data 

for a simulation study creating phenotypic and marker data for an F2 population. A 

directed network composed of 65 nodes and 74 edges (Figure 2.4) was created by the 

randomDAG function in the R package ‘pcalg’ (http://cran.r-

project.org/web/packages/pcalg/index.html). In this network, 34 nodes denoted 

phenotypic traits while the other 31 nodes represented QTLs. QTLs were randomly 

https://code.google.com/p/bnt/
http://cran.r-project.org/web/packages/pcalg/index.html
http://cran.r-project.org/web/packages/pcalg/index.html
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selected among 50 markers, with 5 markers unevenly distributed on each of 10 

chromosomes. Observations of a trait were generated on the basis of linear regression 

model            , where   is a vector of marker scores (QTLs),   is a 

vector of traits,   and   are the regression coefficients corresponding to q and x, and 

  is the residual. To simplify exposition, we assumed quantitative traits and 

categorical QTL data, and allowed only additive genetic effects with an increment of 

0.1 per allele. Specifically, QTL genotypes aa, Aa and AA were respectively encoded 

as 1, 2 and 3; the regression coefficient for genotype aa was uniformly drawn from 

[0.2, 0.4]; the coefficients for genotypes Aa and AA were then given by adding 0.1 

and 0.2, respectively. Besides, the regression coefficient of a phenotype on one 

another was chosen uniformly from [0.5, 1], and standard deviation of   was 

randomly drawn from [0.1, 0.5].  

 

2.3.2 Simulation results 

Our QPSO method is applicable to pre-learnt undirected or partially directed 

phenotype networks. There are a number of ways to learn undirected graphical 

models from data, including marginal and partial correlation analyses, as well as 

conditional independence tests. We consider the QDG algorithm still to represent a 

benchmark algorithm with which to compare our QPSO approach. The QDG 

algorithm uses an undirected phenotype network as reconstructed by the PC-skeleton 

algorithm as the starting configuration for edge orientation. For the comparative 

simulations, we also took the PC-skeleton as the method to arrive at an undirected 

phenotype network.  

In a first set of 20 simulation runs, we evaluated the performance of the PC-

skeleton algorithm using two indicators, recall and precision. Each simulation run was 

based on a distinct phenotypic dataset. Recall, also called true positive rate or 

sensitivity, measures the proportion of true edges that are retrieved in relation to the 

full set of true edges. Precision, or positive predictive value, measures the proportion 

of true (positive) edges in the set of identified edges (true and false positives). The 

higher recall and precision, the better the reconstruction of the network is. The results 

of our first set of simulations are shown in Table 2.1, where means and standard 

deviations for recall and precision are given. With increasing sample size, both recall 

and precision improved with respect to their means across simulation runs, while their 

standard deviations remained at a low level. In particular, given that in practice 100 

individuals is a representative sample size for biological data like metabolites, a recall 

of 0.86 and a precision of 0.97 on average, is very encouraging. High mean value and 

low standard deviation indicate that the PC-skeleton algorithm can accurately and 

consistently recover an undirected network, using a reasonable sample size.  

Given an undirected phenotype network pre-learnt by the PC-skeleton algorithm, 

our next step was to infer causal directions for edges in the network by exploiting 

associated QTLs. Both the QDG and QPSO algorithms are applicable to this problem 

when at least one QTL has been identified for each and every trait. In a second set of 

simulations we then made a comparative evaluation of the two edge orientation 
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algorithms using the full set of QTL data and the earlier reconstructed undirected 

phenotype network. Results are presented in Table 2.2, where we give mean and 

standard deviation of the proportion of true positive edges that were correctly oriented 

for QDG using all QTLs and QPSO using all QTLs over 20 independent simulation 

runs. To achieve consistent results (i.e. small standard deviations) from multiple runs, 

the QDG algorithm claimed 1000 iterations (Neto et al. 2008) while our QPSO 

method required only about 10 iterations for each individual run. Two conclusions 

regarding the effectiveness of the two algorithms can be drawn from the comparative 

study. First, along with the increase of samples, the overall orientations obtained by 

both methods became increasingly accurate and consistent. Second, given the same 

sample size, the QPSO algorithm produced more accurate overall orientation than the 

QDG method, since the former always possessed a higher mean proportion of 

correctly oriented true edges combined with a comparable or slightly lower standard 

deviation.  

The major advantage of the QPSO algorithm lies in the ability of inferring causal 

relationships between correlated traits when some or more of the traits do not have 

QTLs. To demonstrate this, in a third set of simulations, we blanked out a number of 

detected QTLs and then investigated the performance of the QPSO algorithm. We 

assumed that QTLs corresponding to the clear rectangular nodes in Figure 2.4 were 

not available for the reconstruction of the directed phenotype network, i.e., these 

QTLs were removed from the input of the QPSO algorithm. Results of this particular 

simulation study are summarized in the columns of Table 2.2 that are labelled QPSO 

using partial QTLs. It is obvious that QPSO still has reasonably good edge orientation 

even when a substantial proportion of the traits come without QTLs. Table 2.2 learns 

that given the same sample size, the overall orientation obtained by the QPSO 

algorithm with partial QTLs is getting refined when sample size increases, and is 

slightly inferior to the one obtained by the same algorithm with full QTLs, but 

nevertheless superior to the one obtained by the QDG algorithm with full QTLs.  

To demonstrate the robustness of the QPSO algorithm, we elaborated on the 

results of the third set of simulations reported above. We selected five edges from the 

simulated phenotype network that differed with respect to the configuration of parent 

nodes for two correlated traits: (1) between traits 2 and 18, with the two traits having 

one common QTL (C8m1) and trait 2 having a unique QTL (C3m5); (2) between 

traits 1 and 16, with each trait having a unique QTL (C2m1 for trait 1 and C4m4 for 

trait 16); (3) between traits 16 and 26, with trait 16 having a unique QTL (C4m4) and 

trait 26 having no QTL; (4) between traits 13 and 26, with trait 13 having a unique 

QTL (C6m1) and trait 26 having no QTL; (5) between traits 26 and 31, with neither 

trait having QTL. We investigated the accuracy of orientations obtained by the QPSO 

algorithm for the five edges (Table 2.3). When sample size increased from 100 to 500, 

the two edges 2─18 and 13─26 were almost 100% correctly oriented, the average 

percentages of correct orientations improved from 65 to 95% for the edge 1─16, from 

25 to 70% for the edge 16─26 and from 35 to 100% for the edge 26─31. The 

declining performance of our method on edge 16─26 than 1─16 was mainly due to 

error propagation in orientations. If an incorrect direction has been assigned to edge 
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1─16 in a previous step, it will affect the accuracy of orientation regarding edge 

16─26. Likewise, an incorrect direction inferred for edge 16─26 will subsequently 

harm the orientation of edge 26─31. However, results in Table 2.3 indicate that our 

QPSO algorithm possesses higher accuracy in orientation of edge 26─31 than of 

16─26. This is because the algorithm makes a full consideration on the neighborhood 

of trait 26 (i.e. the interactions between traits 13, 15, 16 and 26 were all taken into 

account) when orienting the edge 26─31, so that the negative impact of incorrect 

orientation of edge 16─26 can be counterbalanced, to some extent, by the positive 

effect of correct orientation of edge 13─26.  

Each run of the QPSO algorithm selects the best model according to the 

maximum-likelihood criterion. Nonetheless, in many cases, several models may have 

very close likelihoods, meaning that they are all compatible with the data. Therefore, 

it is critical to check the consistency of those competing models. Also based on the 

third set of simulations, we compared the best two models obtained by a single run of 

the QPSO algorithm for different sample sizes. The results (Table 2.4) show that for a 

given sample size, the best two models indeed possess very close BIC scores; but, 

more importantly, they are substantially the same, except for a handful of edges that 

are assigned with opposite directions in the two models. In view of the high 

consistency that exists between the best two models, we believe it will suffice to 

return only the best model as final output. All simulations were implemented in a 32 

bit Intel(R) Core(TM) i5-2410M 2.30GHz 4GB RAM machine. The computing time 

of a single run of the QPSO algorithm for each sample size studied is also included in 

Table 2.4. 

As explained in the Method section, the QPSO method returns fully or partially 

directed phenotype networks depending on the number of available QTLs. The PC 

algorithm, which is a further extension of the PC-skeleton algorithm, also returns 

partially directed phenotype networks but without using QTLs. To demonstrate the 

advantage of our QPSO method over the PC algorithm, in a final set of simulations 

we assessed the performance of the PC algorithm in the reconstruction of the 

simulated phenotype network. Results are shown in the last two columns of Table 2.2. 

The last four columns of Table 2.2 support the conclusion that for a given sample size 

and undirected phenotype network, the QPSO algorithm with partial QTLs orients 

correctly far more edges than the PC algorithm, which orients edges without using 

QTL information.   

 

2.3.3 Metabolic and QTL data collected in ripe tomato fruits 

Metabolic data were collected from ripe fruits of 93 tomato cultivars, an association 

panel provided by five breeding companies involved in the Centre for BioSystems 

Genomics tomato quality program (http://www.cbsg.nl/tomato.aspx). According to 

morphological characteristics of ripe tomato fruits, the 93 cultivars were categorized 

into three groups, labelled as beef, cherry and round. The three groups made up 

approximately 25%, 25% and 50% of the total collection. Metabolic profiling of 

cultivars was based on pooled fruit samples, where the sample for each beef or round 

http://www.cbsg.nl/tomato.aspx
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cultivar mixed 12 fruits while the sample for each cherry cultivar contained 18 fruits. 

Sugars and acids were measured using the technique described by Roessner-Tunali et 

al. (2003). Volatiles were quantified using the method presented by Tikunov et al. 

(2005). In this study, we investigated a subset of 24 metabolites of special interest. 

The same set of metabolic data was studied by Ursem et al. (2008), where a detailed 

description of the measurements and the data can be found. Most of the metabolites 

strongly discriminated between cherry and non-cherry (i.e. beef and round) tomatoes, 

as was found by both principal component analysis and discriminant analysis (Ursem 

et al. 2008). Application of the PC-skeleton algorithm to reconstruct a phenotypic 

network between the 24 metabolites led to a network with 17 edges (Figure 2.5). The 

reconstruction was done choosing a rather strict test level of 0.01 for the conditional 

independence tests to arrive at a sparse but high confidence phenotypic network.   

To find a list of QTLs driving the variation in the 24 metabolites, association 

analysis was performed using 600 SNPs in a multi-trait mixed model association 

mapping procedure that allowed for trait specific effects of pleiotropic QTLs. In 

addition, this mixed model contained intercept terms for the cherry and non-cherry 

groups to correct for this obvious type of population structure. To investigate the 

susceptibility of the QPSO algorithm to the amount of QTL information for orienting 

edges between metabolites, we selected QTLs at three levels significance. The more 

liberal the threshold, the greater the number of selected QTLs is. We adopted three 

closely together thresholds for the significance of the test for a QTL with an effect on 

any of the 24 metabolites at a given marker locus, corresponding to –log10(P-value) = 

4.5, 5.0, 5.5. At the strictest level of –log10(P-value) > 5.5, 11 QTLs were identified 

for seven metabolites (Figure 2.5A), with two QTLs that had pleiotropic effect on 

two metabolites. Of the 24 metabolites, 17 remained without QTL. Lowering the–

log10(P-value) for QTL detection to 5.0 led to four additional QTLs and more QTLs 

with pleiotropic effects: eight metabolites came with one or more QTLs, 16 stayed 

without QTLs (Figure 2.5B). At a -log10(P-value) threshold of 4.5, a total of 19 QTLs 

were detected for 10 metabolites (Figure 2.5C).  

 

2.3.4 Causal relationships among tomato metabolites 

The QPSO algorithm was used to orient undirected edges between the metabolites. 

The results corresponding to QTLs selected at the three thresholds of –log10(P-value) 

= 4.5, 5.0 and 5.5, are shown in Figure 2.5A, B and C, respectively.  Comparison of 

the three graphs indicates that when more QTLs with relatively small effects enter the 

model, more traits tend to be associated with at least one QTL, and accordingly more 

undirected edges between traits can be oriented. The 11 QTLs for the seven 

metabolites in Figure 2.5A allowed 11 of the 17 edges to be oriented. For the 15 

QTLs and 8 metabolites in Figure 2.5B and the 19 QTLs and 10 metabolites in 

Figure 2.5C, 13 edges out of the 17 could be oriented.  

Among the 17 undirected edges between metabolites, 11 were oriented 

throughout the three graphs. We examined the consistency of the inferred directions 

of the 11 edges and found that only the edge connecting 1-penten-3-one and trans-2-
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hexenal came varied in direction across the test levels for QTLs. The directions of the 

other 10 edges were invariant to the changes in the amount of QTL information. This 

invariance of edge orientation provides a modest demonstration of the robustness of 

the QPSO algorithm.  

After reconstruction of the directed network, an investigation of pleiotropic 

QTLs is possible in a post hoc analysis of the network. For example, in Figure 2.5C, 

initially the two QTLs rs4494 and rs4715 were pleiotropic for 3-methylbutanol and 2-

methylbutanol. Simultaneously, 3-methylbutanol was identified to be a direct 

upstream metabolite of 2-methylbutanol. Did the two QTLs have pleiotropic effects 

on both traits, or, were their effects on 2-methylbutanol mediated via 3-methylbutanol? 

To answer this question, we used the BIC scoring metric to evaluate and compare the 

two models shown in Figure 2.6A and B, where Q denotes rs4494 or rs4715, Y1 and 

Y2 represent respectively 3-methylbutanol and 2-methylbutanol. It turned out that with 

respect to either of the two QTLs, the simplified model in Figure 2.6B possessed a 

higher BIC score, thereby providing a better fit to the observed data. Thus, we deleted 

from Figure 2.5C the two edges pointing from rs4494 and rs4715 to 2-methylbutanol. 

The same concern can be raised with respect to the QTL effect of NSG1 on methyl 

salicylate and 2-methoxyphenol. In this case, we failed to infer the causal relationship 

between the two metabolites due to lack of unique QTL. To this type of specific 

problems, Neto et al. (2008) suggested a possible solution by comparing the 

likelihoods of the three models shown in Figure 2.6B, C and D. Here, we exploited 

the BIC score again and let Q, Y1 and Y2 denote NSG1, methyl salicylate and 2-

methylbutanol, respectively. Comparative results indicated that the data best 

supported the pleiotropic model in Figure 2.6D, therefore the local structure of NSG1, 

methyl salicylate and 2-methylbutanol in Figure 2.5C should remain the same. The 

investigation to the reality of observed pleiotropic relations as described for Figure 

2.5C was equally applied to Figure 2.5A and B.  

Given the structure of the network, we estimated effects of traits on one another 

and of QTLs on traits. To that end, we regressed metabolites on QTLs and adjacent 

upstream metabolites. We discriminated between positive and negative associations 

among the metabolites according to the signs of fitted regression coefficients. The 

signs of QTL effects were not considered as they are somewhat arbitrary in the 

context of association mapping and binary markers such as SNPs. 

The above directed network can be compared with undirected networks 

constructed on the basis of marginal and partial correlations, like a correlation 

network and a graphical Gaussian model (GGM), see Figure 5 and 9 as presented by 

Ursem et al. (2008). Both these graphs look very dense despite the fact that only 

strongly significant correlations were displayed (q<0.05, as a false discovery rate 

procedure was chosen). From a dense graph with many variables incorporated, it is 

hard to arrive at meaningful interpretations. Compared with the results reported by 

Ursem et al. (2008), our findings obtained by the PC-skeleton algorithm in 

combination with the QPSO algorithm comprised a much sparser graph, with the 

additional advantages of showing (partial) directedness between traits and the 



20  Chapter 2 

 

influence of QTLs on traits. It should be remarked that between the three graphs, a 

central backbone coincided.  

Although we reconstructed a directed network on a set of metabolites, the 

resulting network cannot be interpreted as an approximation to a metabolic network, a 

major reason being the absence of time course data. The metabolic data we analysed 

represented mean metabolite abundances obtained from grinding a number of fruits 

for a set of tomato genotypes. To get insight in biological pathways, we should 

measure series of chemical reactions occurring over relative short time frames within 

a cell, but the measurement and analysis of such time series still presents large 

challenges (Blair et al. 2012). The value of a directed network like that of Figure 2.5 

is that it allows to correctly quantifying the effects of QTL allele substitutions, say 

genetic interventions or perturbations, at a number of phenotypic traits simultaneously. 

For instance, changes at locus rs7213 will have an effect on the concentration of 1-

penten-3-one, which will subsequently affect the concentration of cis-3-hexenal. In 

contrast, variations in the concentration of 1-penten-3-one will not influence the level 

of trans-2-hexenal, as trans-2-hexenal is an upstream metabolite of 1-penten-3-one. 

Another representative example is that if we attempt to control the concentration of 2-

methylbutanol, we should be cautious about the allelic composition at loci rs4715, 

rs8396, rs8340, rs7143 and rs8233, since any genetic perturbation leading to an 

alteration in the concentration of 3-methylbutanol will then change the concentration 

of 2-methylbutanol.  

From a biological point of view, Figure 2.5A, B and C present several 

interesting clusters. It is noteworthy that the major carbohydrates glucose and fructose 

are linked to sucrose and citric acid via myo-inositol. Whilst myo-inositol is 

synthesized from glucose, the recovery of the indirect link is remarkable, also 

considering that myo-inositol is linked to sucrose which can be broken down into 

glucose and fructose or alternatively into UDP- glucose and fructose. Another 

remarkable link is the one between beta-damascenone and beta-ionone both of which 

are break-down products of carotenoids (Baldermann et al. 2010). Interestingly 6-

methyl-5-hepten-2-one was not linked to these, despite being a carotenoid class 

volatile. This indicates that the latter open chained form likely stems from lycopene 

(Gao et al. 2008), potentially explaining why it is not linked to any of the former two 

metabolites. Furthermore, the negative correlation between aspartic acid and glutamic 

acid might be explained by the action of aspartate aminotransferase converting 

glutamate oxaloacetate to 2-oxoglutarate and aspartate. It is clear that the C5 and C6 

volatiles were grouped together. Whilst intriguing that these are likely produced from 

the same precursors via lipoxygenases (Rambla et al. 2014), one would speculate that 

the C5 and C6 volatiles should probably be disconnected, making the 1-penten-3-one 

(C5) mini hub linked to many C6 volatiles worth further investigation. Incidentally, 

both C5 and C6 volatiles were also found in different clusters previously (Mathieu et 

al. 2009). Regarding the metabolites 3- and 2-methylbutanol, they both are likely 

leucine/isoleucine derived compounds and they were found linked to 2-

isobutylthiazole before (Mathieu et al. 2009).  
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In summary, our partially directed network for the 24 tomato metabolites is 

clearly more concise and informative than those of conventional marginal and partial 

correlation analyses and allowed discriminating between direct and indirect metabolic 

responses to particular genetic perturbations in tomatoes. Following Valente et al. 

(2013), it is exactly the type of information that is needed for predicting the effects of 

genetic interventions on sets of correlated phenotypic traits.  

 

2.4  Discussion 

 

The QPSO algorithm is applied to pre-learnt undirected or partially directed 

phenotype networks. Correlation networks and GGMs are the most common models 

used to learn undirected graphs from biological data (Krumsiek et al. 2011; Ma et al. 

2007; Ursem et al. 2008). Bayesian networks (BNs) are considered a promising tool 

to recover partially directed biological networks (Gavai et al. 2009; Hodges et al. 

2010; Iyer et al. 2013). Formally, a BN is a DAG that represents probabilistic 

conditional independence structures for a set of interacting variables. Two mainstream 

approaches regarding BN structure learning are the constraint-based and the score-

based methods. However, due to their inherent limitations, in many cases the two 

approaches can only return partially directed graphs rather than DAGs. Please refer to 

Mahdi and Mezey (2013) and Chickering (1996) for details. A comparative evaluation 

of correlation networks, GGMs and BNs has been made in the reconstruction of gene 

regulation networks (Werhli et al. 2006). The results indicated that GGMs performed 

comparably to BNs on general observations, and both GGMs and BNs outperformed 

correlation networks on Gaussian observations. 

Besides the construction of undirected or partially directed phenotype networks, 

QTL mapping for the traits is also a prerequisite for using the QPSO algorithm. 

Standard QTL mapping methods, including association mapping and linkage mapping, 

process phenotypic traits in a parallel fashion without paying attention to the 

underlying dependence structure of traits. Neto et al. (2010) claimed that QTL 

mapping conditional on the phenotype network should lead to a better estimated 

genetic architecture, and a better genetic architecture should in turn result in a better 

inferred phenotype network. Accordingly, they developed a statistical framework, 

named QTLnet, to jointly infer a causal phenotype network and the associated genetic 

architecture for a set of correlated phenotypes. The QTLnet method is actually a 

Metropolis–Hastings algorithm that integrates QTL mapping and the sampling of 

directed phenotype networks at each step. However, like many other Markov Chain 

Monte Carlo approaches, this method shows slow mixing of the resulting Markov 

chains and requires considerable computation time. Its implementation in R can 

handle no more than 20 traits at this point (Neto et al. 2010).  

The QPSO algorithm treats QTL mapping independent from phenotype network 

reconstruction and cannot correct misspecified edges in undirected phenotype 

networks pre-learnt by the PC algorithm. In this sense, it would be considered less 

robust than the QTLnet method. We observed, however, that the QPSO algorithm 
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performed well in the reconstruction of directed phenotype networks: 1) the results of 

our first set of simulations and also the ones shown by Neto et al. (2008) implied that 

given relatively sufficient samples (say, ≥100 for a network composed of 34 

phenotypes and 27 edges, or, ≥300 for a network composed of 100 phenotypes and 

107 edges), the undirected phenotype networks recovered by the PC-skeleton 

algorithm were fairly reliable (with recall>0.85 and precision>0.90); 2) the simulation 

results presented by Logsdon and Mezey (2010) indicated that in small-scale 

phenotype networks (to which the QTLnet method is only applicable), the QTLnet 

method was outperformed by the QDG algorithm that was used as benchmark in this 

study; 3) the results of our second and third sets of simulations showed that compared 

with the benchmark QDG algorithm, our proposed method was applicable to more 

general cases and led to more accurate overall orientations. In summary, we have 

confidence that the QPSO algorithm is of great potential in practical applications.  

In simulation experiments, the QPSO algorithm was applied to a random 

network consisting of dozens of nodes and edges. Theoretically, this method has no 

limit to the scale of either random networks or scale-free networks, since it always 

decomposes a whole network into a finite number of LGPNs and makes causal 

inferences in the LGPNs using a heuristic search strategy. Scale-free networks show 

power-law degree distributions that are very different from the Poisson degree 

distributions of random networks. More specifically, in scale-free networks, most 

nodes have relatively few links while only a few nodes (called hubs) have a large 

number of links; contrariwise, in random networks nodes are more evenly connected. 

Here we would like to point out that node degree distribution is believed to have some 

effect on the efficiency of the QPSO algorithm, but the extent of this impact is hard to 

evaluate. Recall from the Method section that the LODG is selected from    

candidates, where n would be a big number if either or both of Y1 and Y2 are hubs. A 

large n means that, on the one hand, an enormous computational effort has to be made 

when scanning for the LODG; on the other hand, the number of LGPNs decomposed 

from the whole network is significantly reduced as a great number of undirected 

edges are assigned to the same LGPN. These two effects will counterbalance each 

other to some extent; but on the whole, the overall efficiency of the algorithm will 

vary a lot depending on the specific circumstances, including sample size, the number 

of nodes, and the node degree distribution. In addition, computer memory and 

processor speed are practical factors that can also affect the scalability and efficiency 

of the algorithm.  

As explained previously, the QPSO algorithm returns fully or partially directed 

phenotype networks depending on the number of available QTLs. Its exhaustive 

search for LODGs is based on the distinction between non-equivalent DAGs, each of 

which has a unique set of v-structures. Thus, there is no directed cycle in a LODG. 

However, the QPSO algorithm is overall a heuristic method. It takes a random walk 

from one LODG to another. The integration of all LODGs does not necessarily lead to 

a complete DAG. That is, in some cases, it is possible that certain edges in two or 

more LODGs form a directed cycle. Please note that the benchmark QDG algorithm 

has substantially the same property.  
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We developed our methodology in the first place for data from plant breeding 

experiments, in which advanced experimental designs are common that include local 

control of error variation at multiple levels and in multiple directions. As genotypes 

for population types like doubled haploids and recombinant inbred lines are replicated 

in such experiments, reconstruction of networks take place at genotypic means 

obtained from mixed model analyses of one or more experiments. These genotypic 

means will have small standard errors and that will contribute to the stability of 

reconstructed directed networks. For metabolic assessments, usually pooled samples 

of fruits stemming from multiple replicates in an experiment are used. Pooling is 

another way of reducing measurement error. Therefore, it will beneficial to bring 

phenotypic traits to the aggregation level of genotypic means before trying to 

reconstruct a phenotype network. The QPSO algorithm is applicable to a complete 

data matrix of genotypes (samples) by traits. Pre-processing of phenotypic data by 

converting them to genotypic means by mixed model analyses provides a 

straightforward and accurate way of imputing missing phenotypic values.  

In conclusion, we have presented a novel heuristic search algorithm, named 

QPSO, to infer causal relationships between correlated traits. This algorithm allows 

some traits to come without QTLs, and it takes into account associated phenotypic 

interactions in addition to QTLs when orienting undirected edges between traits. 

Thanks to these two properties, the QPSO algorithm has much broader applicability 

and produces more accurate overall orientations, compared to the benchmark QDG 

algorithm. 
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Figure 2.1 Candidate solutions to causal inference in two correlated traits. Y1 and Y2 

are two traits correlated with each other; Q1={Q11,…,Q1k} and Q2={Q21,…,Q2l} 

denote QTLs for Y1 and Y2, respectively. 

 

 
 

 

 

Figure 2.2 The general representations of resolvable LGPNs. Y1 and Y2 are two 

correlated traits; P1={P11,…,P1k} and P2={P21,…,P2l} are, respectively, the unique 

parent nodes of Y1 and Y2; P12={P1,…,Ps} are the common parent nodes of Y1 and Y2; 

C1={C11,…,C1u} and C2={C21,…,C2v} are the unique neighboring traits of Y1 and Y2; 

C12={C1,…,Ct} are the common neighboring traits of Y1 and Y2. Note that each of the 

neighboring traits of Y1 is nonadjacent to at least one of the parent nodes of Y1, and the 

same is true of Y2. Also note that P1, P2 and P12 are allowed to have three different 

compositions: (1) a pure set of QTLs, if only genetic factors have been identified for 

Y1 and/or Y2; (2) a mixed set of QTLs and traits, if some traits in addition to QTLs 

have been determined to have causal effects on Y1 and/or Y2; (3) a pure set of traits, if 

only some traits have been found as causal factors of Y1 and/or Y2; in contrast, C1, C2 

and C12 only refer to those traits that are directly connected to Y1 and/or Y2 by an 

undirected edge. (A) The general representation of LGPNs where both Y1 and Y2 have 

parent nodes, and at least one of them has unique parent nodes; (B) the general 

representation of LGPNs where only Y1 has parent nodes.  
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Figure 2.3 An example of LODG. Y1 and Y2 are two correlated traits; C2 and C3 are 

two traits that have been newly determined as parent nodes of Y1; Y1, C3 and C5 are 

three traits newly determined as parent nodes of Y2; Y1 is a newly determined parent 

node of traits C1 and C4; Y2 is a newly determined parent node of traits C4 and C6.  

 

 
 

 

 

Figure 2.4 A synthetic QTL-phenotype network. This network consists of 31 QTLs, 

34 traits and 74 directed edges. Traits are ordered by numerical numbers and QTLs 

are labelled in the form of ‘Cimj’ indicating the j-th marker on the i-th chromosome. 

Because only a part of QTLs were used in a third set of simulations, the nodes are 

further classified as follows: shaded rectangular nodes – QTLs present in the third set 

of simulations; clear rectangular nodes – QTLs absent in the third set of simulations; 

shaded circular nodes – traits provided with QTLs in the third set of simulations; clear 

circular nodes – traits provided without QTLs in the third set of simulations.  
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Figure 2.5 Three partially directed graphs describing the relationships among 24 

metabolites in ripe tomato fruits. Clear nodes represent metabolites; shaded nodes 

denote QTLs identified for the metabolites. QTLs in (A), (B) and (C) were selected on 

the basis of –log10(p-value) thresholds 5.5, 5.0 and 4.5, respectively. Grey edges link 

QTLs to the corresponding metabolites. Blue and red edges, without regard to their 

directions, were learnt by the PC-skeleton algorithm; their directions, if any, were 

inferred by the QPSO algorithm. Blue edges occur consistently throughout the three 

graphs representing different test levels for QTLs, while red edges do not. Solid and 

dashed edges indicate positive and negative correlations, respectively; fishbone edges 

are removed by post hoc causal reasoning. 
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C 

 
 

 

 

Figure 2.6 Test models in triad analysis. (A) a QTL Q has pleiotropic effects on two 

traits Y1 and Y2,  Y1 is also a causal factor of Y2; (B) Q is identified for Y1, Y1 has a 

causal effect on Y2; (C) Q is identified for Y2, Y2 has a causal effect on Y1; (D) Q is 

identified for both Y1 and Y2, but the causal relationship between Y1 and Y2 is unclear. 
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Table 2.1 Performance of the PC-skeleton algorithm in reconstructing the synthetic 

phenotype network across a series of 20 simulations. 

 

Sample 

size 

Recall Precision 

mean sd mean sd 

100 0.86 0.06 0.97 0.03 

200 0.94 0.03 0.97 0.03 

300 0.96 0.03 0.98 0.03 

400 0.98 0.03 0.98 0.03 

500 0.99 0.03 0.98 0.02 

The significance level of conditional independent tests used in the PC-skeleton 

algorithm was set at 0.01.  

 

 

 

Table 2.2 Comparative evaluation of three algorithms in overall orientation of the 

synthetic phenotype network. Sample size, means and standard deviations of the 

proportion of true positive edges that were correctly oriented across a series of 20 

simulations.  

 

Sample 

size 

QDG (using 

full QTLs) 

QPSO (using 

full QTLs) 

QPSO (using 

 partial QTLs) 

PC (no use of  

QTLs) 

mean sd mean sd mean sd mean sd 

100 0.72 0.11 0.78 0.07 0.77 0.09 0.49 0.11 

200 0.74 0.08 0.81 0.07 0.80 0.08 0.57 0.06 

300 0.75 0.06 0.81 0.06 0.81 0.07 0.60 0.05 

400 0.77 0.05 0.82 0.06 0.82 0.06 0.60 0.05 

500 0.78 0.05 0.84 0.05 0.83 0.06 0.60 0.05 
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Table 2.3 Demonstration of the robustness of the QPSO algorithm. Proportion of 

correct edge orientation across 20 simulations for edges with varying parent 

configurations. Node numbers refer to Figure 2.4. 

 

Sample 

size 

Proportions of correct orientations of five edges 

2→18 1→16 16→26 13→26 26→31 

100 1.00 0.75 0.45 1.00 0.45 

200 1.00 0.75 0.50 1.00 0.80 

300 1.00 0.80 0.60 1.00 0.95 

400 1.00 0.85 0.65 1.00 1.00 

500 1.00 0.95 0.70 1.00 1.00 

Decimal numbers were the average values deduced from 20 independent runs in the 

third set of simulations.  

 

 

 

Table 2.4 Comparison between the best two models obtained by a single run of the 

QPSO algorithm 

 
Sample 

size 

The best model The second-best model Computing 

time (h) BIC score different edges BIC score different edges 

100 -6.8990e+03 14 24 (√)  -6.9057e+03 14 24 (×)  0.89 

200 -1.3308e+04 1 14 (√)       

16 27 (√) 

1 16 (×) 

14 24 (×) 

-1.3325e+04 1 14 (×)       

16 27 (×)    

1 16 (√) 

14 24 (√) 

1.27 

300 -1.9663e+04 11 23 (√)   

16 26 (√) 

 

1 16 (×) 

11 22 (×) 

14 24 (×) 

-1.9693e+04 11 23 (×)   

16 26 (×) 

 

1 16 (√) 

11 22 (√) 

14 24 (√) 

2.18 

400 -2.5944e+04 11 23 (√) 

15 25 (√) 

11 22 (×) 

15 26 (×) 

-2.5988e+04 11 23 (×)   

15 25 (×)    

11 22 (√) 

15 26 (√) 

2.76 

500 -3.2333e+04 1 14 (√)       

4 19 (√) 

11 23 (√) 

17 28 (√) 

4 28 (×) 

11 22 (×) 

-3.2459e+04 1 14 (×)       

4 19 (×) 

11 23 (×)   

28 17 (×) 

4 28 (√) 

11 22 (√) 

3.30 

Computing time was measured on a 32 bit Intel(R) Core(TM) i5-2410M CPU 

2.30GHz machine with 4GB RAM. “different edges” were assigned with opposite 

directions in the best two models. (√) means the direction of that edge was inferred 

correctly, whereas (×) applies to the opposite case.  
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Supplementary material 

 

Figure 2A shows a local generalized phenotype network (LGPN), in which 1) both 

traits Y1 and Y2 have parent nodes and at least one of Y1 and Y2 has unique parent 

nodes; 2) each neighboring trait of Y1 is nonadjacent to at least one of the parent nodes 

of Y1, and the same is true of Y1. 

Theorem [Verma and Pearl, 1990]: Two directed acyclic graphs (DAGs) are 

likelihood equivalent if and only if they have the same skeletons and the same v-

structures (A v-structure in a DAG G is an ordered triple of nodes (X, Y, Z) such that 

G contains the directed edges X→Y and Z→Y, and X and Z are not adjacent in G).  

According to this theorem, we can deduce that given the directed edge pointing from 

P11 to Y1, the two candidate directions of the undirected edge between C11 and Y1 (i.e., 

C11→Y1 and Y1→C11) will form two nonequivalent structures: P11→Y1←C11 and 

P11→Y1→C11. The reason is quite straightforward: since C11 is nonadjacent to P11, 

P11→Y1←C11 is a v-structure whereas P11→Y1→C11 is not. The same is true if P11 is 

replaced by any other node  {P11,…,P1k} {P1,…,Ps}, and, C11 is replaced by any 

other node  {C11,…,C1u} {C1,…,Ct}.  

Similarly, we can deduce that given the directed edge pointing from P21 to Y2, 

P21→Y2←C21 and P21→Y2→C21 are nonequivalent. And the same is true if P21 is 

replaced by any other node  {P21,…,P2l} {P1,…,Ps}, and, C21 is replaced by any 

other node  {C21,…,C2v} {C1,…,Ct}. 

Lastly, let’s consider the orientation of the undirected edge between Y1 and Y2. We 

restrict ourselves to the cases where at least one of Y1 and Y2 has unique parent nodes 

(please note the unique parent nodes are not limited to QTLs, that is, traits that have 

been previously determined as parent nodes of Y1 and Y2 are also taken into account). 

In Figure 2A, P11 is a unique parent node of Y1, which indicates that P11 is 

nonadjacent to Y2. Therefore, we know that P11→Y1←Y2 and P11→Y1→Y2 are 

nonequivalent as the former forms a v-structure while the latter does not. The same is 

true if P11 is replaced by any other node  {P11,…,P1k}.  

Similarly, we have P21→Y2←Y1 and P21→Y2→Y1 are nonequivalent and the same is 

true if P21 is replaced by any other node  {P21,…,P2l}.  

In conclusion, if a LGPN satisfies the aforementioned two conditions and there are a 

total of n undirected edges involved in it, we know that each of the 2
n
 candidate 

directed graphs possesses a distinct set of v-structures and is therefore not equivalent 

to the others.  
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Chapter 3 

 

Genotype-phenotype modeling considering intermediate level of 

biological variation: a case study involving sensory traits, metabolites 

and QTLs in ripe tomatoes 

 

 

Abstract 

 

Modeling genotype-phenotype relationships is a central objective in plant genetics 

and breeding. In standard QTL mapping, as applied to plant breeding populations, 

variations in phenotypic traits are modeled in relation to variations at the genomic 

level, regardless of intermediate levels of biological variations. Here we present an 

integrative method for simultaneous modeling of multilevel phenotypic responses to 

DNA variations. Specifically, for ripe tomato fruits, the dependencies of 24 sensory 

traits on 29 metabolites and the dependencies of all the sensory and metabolic traits 

further on 21 QTLs were investigated by graphical modeling and causal inference 

techniques. The inferred dependency network which, though not essentially 

representing biological pathways, suggests how the effects of allele substitutions 

propagate through multilevel phenotypes. Such simultaneous study of the underlying 

genetic architecture and multifactorial interactions is expected to enhance the 

prediction and manipulation of complex traits.  
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3.1  Introduction 

 

Elucidating the genetic architecture of complex traits is a key objective in plant 

genetics. Existing methods mainly identify genomic regions associated with 

phenotypic variation through single- or multi-trait quantitative trait locus (QTL) 

analysis. However, between DNA and final phenotype, there exist multilevel 

intermediate substances such as proteins and metabolites, which possess a quantitative 

nature and vary among individuals within populations. Successfully linking variations 

at intermediate levels to DNA variations on the one hand and to phenotypic variations 

on the other hand should enhance the prediction and manipulation of complex traits.  

Associations between and within multilevel omics data can be jointly learnt by 

probabilistic graphical models (PGMs), which typically unravel probabilistic 

conditional independence structures of multiple variables. A particular type of PGMs, 

namely Gaussian graphical models (GGMs, also known as “covariance selection” or 

“concentration graph” models) (Drton and Perlman 2004), has become popular in 

computational systems biology. GGMs are superior to the well-known correlation 

networks (also called “relevance networks”), as they are based on partial correlations 

and thereby distinguish between direct and indirect associations (Krumsiek et al. 

2011).  

The metabolome is of great importance in crop plants, as metabolite 

concentrations reflect the developmental stage of plants and determine to a great 

extent many quality traits such as nutritional value and sensory attributes. Recent 

advances in plant metabolite profiling, including gas chromatography-mass 

spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS) and 

nuclear magnetic resonance (NMR), have enabled large-scale analyses that reveal 

quantitative variation in the metabolic content of various species (Carreno-Quintero et 

al. 2013). Accordingly, it has become feasible to investigate associations between 

metabolites.  

Beyond associations, dependencies among metabolites are of interest to plant 

biologists for understanding adaptation and survival in relation to primary and 

secondary metabolism. The metabolome is recognized as a highly interactive system, 

where a metabolite variation may lead to a chain reaction: changes in the 

concentration of a metabolite alter the concentrations of some other metabolites 

through specific regulatory pathways. A few methods have been presented to uncover 

dependencies among associated traits, using previously determined QTLs (Aten et al. 

2008; Cai et al. 2013; Li et al. 2006; Logsdon and Mezey 2010; Neto et al. 2008; Neto 

et al. 2010). All these approaches require at least one unique QTL for each trait 
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studied. In practice, however, this prerequisite is often not satisfied. To cope with 

more general scenarios where some of the traits come without QTL or unique QTL, a 

QTL + phenotype supervised orientation (QPSO) algorithm has recently been 

proposed (Wang and van Eeuwijk 2014). This algorithm looks promising in learning 

dependencies between metabolites, whose profiling is still expensive and 

time-consuming, with small sample sizes limiting the power of QTL mapping.  

In this paper, we combine three GGM approaches with the QPSO algorithm to 

model genotype-phenotype relationships with consideration for the intermediate 

metabolite variations. Our integrative method is demonstrated through a practical case 

study, in which we obtain a dependency network involving 24 sensory traits, 29 

metabolites and 21 QTLs identified for those sensory traits and metabolites in ripe 

tomato fruits. In the first place, a high-confidence true positive undirected network, 

which represents direct associations within and between metabolites and sensory traits, 

is learnt by the three GGM approaches including: (i) lasso-based neighborhood 

selection (Meinshausen and Buhlmann 2006) (LBNS) in combination with a stability 

approach to regularization selection (Liu et al. 2010) (StARS), (ii) the PC-skeleton 

algorithm (Spirtes et al. 2000) and (iii) the Lasso (Tibshirani 1996) in combination 

with stability selection (Meinshausen and Buhlmann 2010) (SS). In the second place, 

given the undirected network and QTLs previously identified for the sensory traits 

and metabolites, edge directions (i.e., the directions of associations) are inferred by 

the QPSO algorithm. In the third place, each sensory trait and metabolite is regressed 

on its QTLs and inferred parent nodes (i.e., nodes with outgoing edges pointing to this 

sensory trait or metabolite). The fitted regression coefficients provide more details 

regarding the estimated dependencies: “+” – positive, “-” – negative, and their 

absolutes values – the strength of dependencies.  

It is known that tomato sensory traits are co-determined by metabolites (Abegaz 

et al. 2004; Carli et al. 2009; Tandon et al. 2003). A major concern of plant breeders 

and physiologists is, thus, how to identify metabolites and the underlying genomic 

regions responsible for certain sensory traits of interest, and thereby come up with 

targeted strategies for simultaneous improvement of those traits. Our proposed 

method provides a way to investigate the dependencies within and between 

metabolites and sensory traits. The estimated dependencies which, though not equal to 

biological pathways, suggest how the effects of allele substitutions propagate through 

metabolites to sensory traits. This information should help breeders and physiologists 

to predict and manipulate the target traits. 
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3.2  Materials 

 

3.2.1 Tomato populations and phenotypic data 

The data were collected on ripe fruits of four F2 segregating populations developed in 

the tomato program of a consortium that was called the Centre for BioSystems 

Genomics (CBSG; http://www.cbsg.nl/tomato.aspx). Four contrasting tomato 

cultivars were selected as parental lines, namely C074 (cherry fruit type), C085 

(cherry fruit type), R075 (round fruit type) and R104 (round fruit type). Crosses 

between the parental lines were made following a half-diallel mating design. The F1 

plants were selfed and the subsequent F2 generation included four cherry×round 

populations: C074×R075, C074×R104, C085×R075 and C085×R104. For each 

cherry×round population, plants of 48 offspring genotypes were grown.  

On all plants, 29 metabolites and 24 sensory traits were scored on ripe fruits, 

which were harvested and prepared as described in Tikunov et al. (2005). Metabolic 

profiling was carried out in two ways: volatiles were measured using a head space 

Solid Phase Microextraction – Gas Chromatography – Mass Spectrometry 

(SPME-GC-MS) (Tikunov et al. 2005); sugars and acids were quantified using the 

method of GC-MS of trimethylsylil ester derivatives (Roessner-Tunali et al. 2003). 

All metabolites were identified at level 1 annotation (Sumner et al. 2007) using 

authentic chemical standards analyzed at identical experimental conditions, except 

beta-damascenone, which has a level 2 identity: NIST mass spectral library 2010 

(Mainlib) match 911 (0-1000) and the library retention index deviation of 4 

(http://www.nist.gov/srd/nist1a.cfm). All metabolites have corresponding CAS ID 

numbers. Sensory profiles were obtained by a trained panel of judges for just 16 out 

of the 48 genotypes for each cherry×round population. The judges evaluated each 

genotype for a set of sensory traits including smell, taste, aftertaste, and mouthfeel 

experience. All sensory attributes were scored on a scale of 0 to 100. In addition to the 

metabolites and sensory traits, brix was measured for each genotype using a 

refractometer (GMK-701R; Nie-Co Products, Aalsmeer, NL). Metabolite abundances 

were transformed to log10 scale for statistical analysis. Prior to network 

reconstruction, genotypic means for the sensory traits, brix and metabolites were 

calculated using mixed models, which contained corrections for measurement time 

(for brix and metabolites), judge (for the sensory traits), population (for all traits) and 

the presence/absence of the Rin mutation (for all traits). Rin is the recessive 

ripening-inhibitor mutation that inhibits ripening (Vrebalov et al. 2002), and was 

present in all crosses involving parent R075. Fruits from plants that are homozygous 

for Rin do not ripen and have lower concentrations of metabolites. The corrected 

http://www.cbsg.nl/tomato.aspx
http://www.nist.gov/srd/nist1a.cfm
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genotypic means were used for further analysis. 

 

3.2.2 Genotypic data and QTL analysis 

A set of 6000 SNP markers was available from the Infinium BeadArray. A selection of 

the markers was used to produce a high quality genetic linkage map. The obtained 

linkage map contained 600 SNP markers, 50 markers per chromosome, evenly spread 

at about 2cM.  

A multi-trait QTL mapping strategy was implemented following the idea 

described in Malosetti et al. (2008) and Alimi et al. (2013). This strategy assumes that 

a single biparental offspring population was present. We turned the four cherry×round 

F2 populations into a single biparental F2 population by interpreting the two cherry 

parents to represent a first single parent and the two round tomato parents to represent 

a second single parent. Phenotypes were then regressed on genetic predictors, i.e. 

independent variables expressing molecular marker information. Genetic predictors 

were based on the expected number of alleles coming from the round parents, i.e. 

conditional QTL probabilities given flanking marker information using a Hidden 

Markov model (Jiang and Zeng 1997). Parametrization was such that positive 

regression coefficients, QTL allele substitution effects, would point to the round allele 

as increasing the level of the trait, whereas negative QTL effects would imply that the 

cherry allele increased the trait. In comparison to Malosetti et al. (2008) and Alimi et 

al. (2013), for the current multi-trait QTL model we took care to allow for population 

specific intercepts for each trait. Another deviation from Malosetti et al. (2008) and 

Alimi et al. (2013) was that we included a trait specific correction for the 

presence/absence of the Rin mutation. Our multi-trait QTL model for a vector of trait 

responses was therefore as follows: traits = population specific trait intercepts + trait 

specific RIN corrections + trait specific QTLs + trait specific residuals. The trait 

specific residuals were modeled with trait specific variances and correlations. 

Multi-trait QTL models were fitted on each of three groups of traits: 1) volatiles; 2) 

sugars and acids; 3) sensory attributes. The multi-trait QTL modeling was done in 

GenStat 16 (http://www.vsni.co.uk/software/genstat/). Positions of QTLs identified 

for the traits studied are summarized in Table 3.1.  

 

 

 

 

http://www.vsni.co.uk/software/genstat/
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3.3  Methods 

 

3.3.1 Outline approach to dependency network reconstruction 

Figure 3.1 illustrates our integrative method for learning dependency network from 

the sensory, metabolic and QTL data. First, two GGM approaches, (i) LBNS + StARS 

and (ii) the PC-skeleton algorithm, were used to obtain the consensus of direct 

associations among metabolites (Figure 3.S1B vs. 3.S3B) and that among sensory 

traits (Figure 3.S2B vs. 3.S3D). Second, the Lasso + SS was implemented in addition 

to the above two approaches to get the consensus of dependencies of sensory traits on 

metabolites (Figure 3.S4A-C). Please note that here brix was taken into account, 

since it is a major intermediate between metabolites and sensory traits. Specifically, 

brix was treated as a response of metabolites and a predictor for sensory traits in the 

Lasso + SS. The reason for taking multiple ways to network reconstruction is because 

the common findings of various methods are considered to be true positive with 

high-confidence. Third, given (i) the dependencies obtained in the second step and (ii) 

QTLs previously identified for the metabolites and sensory traits, the directions of 

associations were inferred by the QPSO algorithm. Last, each metabolite and sensory 

trait was regressed on its QTLs and estimated parent nodes, respectively. It is worth 

noting that parent nodes of a metabolite should only be metabolites, while parent 

nodes of a sensory trait could consist of metabolites and sensory traits. Signs of the 

fitted coefficients discriminated between positive and negative dependencies. This is 

particularly helpful to decipher whether cherry or round allele contributed to the 

alteration of a trait. As in Figure 3.2-4, positive QTL effects (solid red lines) mean 

that the round allele increased the level of a trait whereas the cherry allele led to a 

decrease; conversely, negative QTL effects (dashed red lines) mean that the cherry 

allele produced an increase while the round allele a decrease. The absolute values of 

the fitted coefficient implied the strength of dependencies, which were depicted by the 

edge thickness in Figure 3.2-4. 

 

3.3.2 Gaussian Graphical Models (GGMs) 

GGMs are a class of undirected graphs that present only direct associations among 

multivariate Gaussian random variables. Under the assumption that all involved 

variables have a multivariate Gaussian distribution, two variables are said to be 

conditionally independent, i.e. not directly associated, if and only if their partial 

correlation is zero. Partial correlation measures the degree of correlation between two 

variables after removing the effects of other variables. It is known that zero entries in 
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the inverse covariance matrix, also known as concentration matrix or precision matrix, 

correspond to zero partial correlations. In sum, under multivariate normality, non-zero 

entries of the concentration matrix imply direct associations between pairs of 

variables, and thereby define the presence of edges in GGM.  

 

3.3.3 Lasso-Based Neighborhood Selection (LBNS) + Stability Approach to 

Regularization Selection (StARS) 

For high-dimensional data with more variables than samples, the concentration matrix 

cannot be directly estimated from the sample covariance matrix as the latter is 

non-invertible (singular). In such a case, estimating a sparse concentration matrix is a 

prerequisite to constructing GGM. To this end, Meinshausen and Buhlmann (2006) 

proposed the LBNS scheme. This scheme first fits a lasso model (Tibshirani 1996) to 

each variable separately, using all other variables as predictors. It then sets an entry in 

the concentration matrix, say pij, to be non-zero if the estimated coefficient of variable 

i on j and/or the estimated coefficient of variable j on i is non-zero.  

A major challenge when applying lasso-based approaches to graphical modeling 

is to specify the regularization parameter that controls the sparsity of the resulting 

graph: larger amounts yield sparser graphs whereas smaller amounts lead to denser 

graphs. To come up with a general solution that is especially suited to 

high-dimensional problems, Liu et al. (2010) proposed StARS: a stability approach to 

regularization selection. StARS implements subsampling (Politis et al. 1999) to draw 

a finite number of subsamples (overlapping subsamples are allowed) and constructs a 

GGM for each subsample. StARS starts with a large regularization and gradually 

reduces it until the resulting graphs are simultaneously sparse and replicable across all 

subsamples. An implementation of LBNS in combination with StARS is available in 

the R package ‘huge’, which involves a variability threshold with two alternatives 0.1 

and 0.05 (Zhao et al. 2012). Application of the two thresholds to both metabolic and 

sensory data suggested that 0.1 would be a better choice in this study (see section 5.2 

for details).  

 

3.3.4 The PC-skeleton algorithm 

The PC algorithm, named after its inventors Peter Spirtes and Clark Glymour, consists 

of two steps: first, learn an undirected graph from observational data through a series 

of conditional independence tests; second, orient as many edges as possible according 

to the estimated conditional independencies and the acyclic constraint. Here we only 

used the first step, which is referred to as the PC-skeleton algorithm. It starts with a 

complete graph and removes redundant edges one by one if pairs of corresponding 

variables are found conditionally independent. For proper implementation of 
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conditional independence tests on different types of data, the PC-skeleton algorithm 

uses Fisher’s z-transformation of the partial correlation for quantitative data and the 

G
2
 statistic for categorical data (Colombo et al. 2014). In this study, the significance 

level of conditional independence tests was set at 0.05. The reason for this will be 

given in detail in section 5.2. 

 

3.3.5 The Lasso + SS 

Though GGMs can effectively reveal direct associations among substances of the 

same nature, they perform poorly in the identification of associations between 

substances of different nature. This is mainly because substances of different nature 

are usually obtained by different measuring techniques and thus have medium to low 

absolute correlations. This phenomenon was also observed in the present study for 

associations between metabolic and sensory traits. For this reason, we performed 

Lasso regression (Tibshirani 1996) of each sensory trait on metabolites as a 

supplement to the implementation of LBNS + StARS and the PC-skeleton algorithm. 

The proper amount of regularization in the Lasso was chosen by SS. More specifically, 

the Lasso was applied to each of a hundred half-size subsamples. The first four 

predictor metabolites that entered the regularization path for each sensory trait were 

selected. The final selection retained those predictors that were selected for at least 

      percent of the subsamples.   was chosen such that the expected number of 

false positives, i.e.              , was bounded at 1, where   is the number of 

metabolites (Meinshausen and Buhlmann 2010).  

 

3.3.6 The QPSO algorithm 

Inferring causal phenotype networks contributes to predicting the effects of external 

interventions on traits (Valente et al. 2013), and thereby attracts a surge of research 

interest (Rosa et al. 2011). Current approaches mainly exploit previously determined 

QTLs to learn about causal relationships between traits. These methods require at 

least one unique QTL for each and every trait. This prerequisite, however, is often not 

met in practice due to various reasons such as limited samples sizes, small QTL 

effects and high noise levels. To get rid of this unrealistic prerequisite, the QPSO 

algorithm has been presented very recently (Wang and van Eeuwijk 2014). This 

algorithm is applied to a pre-learnt undirected phenotype network, based on which it 

searches for the optimal causal phenotype network through a heuristic strategy. A 

major advantage of the QPSO algorithm is that it takes into account the relevant 

phenotypic interactions in addition to the detected QTLs when orienting an undirected 

edge between two traits. As a result, it is applicable to general cases where some traits 

lack unique QTLs, or, come without QTL. 
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3.4  Results 

 

3.4.1 A dependency network involving 29 metabolites and 14 QTLs 

Figure 3.2 presents a dependency network involving 29 metabolites in ripe tomatoes 

and the most significant 14 QTLs (p-value<0.01) identified by multi-trait mixed 

model analysis for the metabolites. Except two QTLs, rs6495 and rs8314, which were 

responsible for beta-damascenone and cis-3-hexenol respectively, all other QTLs were 

found associated with multiple metabolites. In particular, rs2050 had pleiotropic 

effects on many metabolites, including eleven volatiles, two sugars and three acids. 

For two metabolites, eugenol and trans-2-hexenal, no QTL was identified. Another ten 

metabolites were, respectively, associated with one QTL. Each of the remaining 

metabolites was associated with two or more QTLs.  

Figure 3.2 indicates a separation between primary and secondary metabolism, 

i.e., sugars and acids on the left whereas volatiles on the right. Further, (1) sugars and 

a sugar alcohol, myo-inositol, were grouped together; (2) acids were gathered and 

linked to sugars; (3) most volatiles interacted, and a few of them were connected with 

sugars/acids.  

Metabolic profiling of ripe tomatoes was carried out at single time points after 

harvest, that is, it did not produce time series data. The dependency network (Figure 

3.2) learnt from non-sequential metabolic data cannot be interpreted as metabolic 

pathways; instead, it represented directed associations at the level of mean metabolite 

abundances. These dependencies, though essentially different from pathways, still 

provide hints on how the effects of allele substitutions propagate through metabolites. 

For example, genotypic changes at locus rs6691 shall alter the concentration of 

1-penten-3-one. This will probably subsequently affect the concentrations of 

beta-ionone, cis-3-hexenal and aspartic acid. Conversely, variations in the 

concentration of 1-penten-3-one are unlikely to affect the concentration of 

trans-2-hexenal, since trans-2-hexenal was found a parent node of 1-penten-3-one in 

the dependence network.  

A better understanding of the dependence structure underlying multiple traits 

contributes to a better manipulation of those traits. Assume we want to regulate the 

concentration of beta-ionone, we should control genotypes at loci rs6691 and rs3540 

in addition to those at rs2050 and rs6254. The reason is that any allele substitution 

leading to a change in the concentration of 1-penten-3-one might then alter the 

concentration of beta-ionone.  
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3.4.2 A dependency network involving 24 sensory traits and 7 QTLs 

Figure 3.3 shows a dependency network involving 24 sensory traits in ripe tomatoes 

and the most significant 7 QTLs (p-value<0.01) identified by multi-trait mixed model 

analysis for the sensory traits. Among the 7 QTLs, rs8591 and rs8016 were 

respectively responsible for one sensory trait; each of the remaining QTLs was 

associated with multiple sensory traits. From another perspective, 7 sensory traits 

came without QTLs, while every other trait was identified with at least one QTL.  

Figure 3.3 is helpful to predict the simultaneous influence of various allele 

substitutions on multiple sensory traits. Assume that a genotypic change at locus 

rs7448 raises the level of scent_tomato. Accordingly there might be a decrease in 

scent_smoky, and further, an increase in scent_sweet. However, to finely predict one 

or more phenotypes, a comprehensive consideration of multiple allele substitutions is 

usually required. For instance, an increase in scent_tomato is not necessarily coupled 

with a decrease in scent_smoky. This is because apart from QTL rs7448, which had 

direct negative effect on scent_tomato and, subsequently, indirect positive influence 

on scent_smoky, scent_smoky was found also being regulated by another two QTLs 

rs7775 and rs8016. Analogously, scent_sweet was directly or indirectly determined by 

5 QTLs, including rs7089, rs8434, rs7448, rs7775 and rs8016.  

 

3.4.3 A dependency network involving brix, 29 metabolites, 24 sensory traits 

and 21 QTL 

Figure 3.4 shows a dependency network involving brix as well as all metabolites, 

sensory traits and QTLs mentioned above. Brix was found to be dependent on two 

sugars sucrose and fructose and the sugar alcohol myo-inositol; meanwhile, it was 

found a main factor influencing taste_sweet. This does not come as a surprise, as brix 

whilst being a measure of total soluble solids content is most often used to measure 

sugar content. Indeed, silencing an invertase had a strong influence on brix (Fridman 

et al. 2000; Zanor et al. 2009). Citric acid was involved in the determination of 

taste_sour, aftertaste_fresh and taste_tomato. Sucrose, in addition to citric acid, was 

also a predictor of taste_tomato. Scent_smoky was driven by methyl_salicylate, which 

was positively affected by guaiacol. This coincides with the previous findings that 

both methyl_salicylate and guaiacol contribute to the smokey smell of tomatoes 

(Buttery et al. 1987; Buttery et al. 1990), though a recent study indicates that guaiacol 

is probably a more important contributor (Tikunov et al. 2013).  

In addition to the aforementioned positive directed associations between 

metabolites and sensry traits, three negative dependencies were respectively found 

between eugenol and aftertaste_fresh, 2-methyl-1-butanol and aftertaste_chemical, as 

well as 2-methyl-1-butanol and aftertaste_sweet. The latter two are in agreement with 
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the fact that 2-methyl-1-butanol is often found in fruits (NCBI PubChem) and that it 

seems to improve or partially impart an Italico-cheese flavor (US 3978242 A), which 

would not be perceived as a chemical taste but rather associated with natural products. 

By taking into account the directed associations from metabolites to sensory 

traits, we were able to get a more realistic estimation of the dependence structure 

underlying those sensory traits. An example is that in Figure 3.3 aftertaste_sour is 

present as a parent node of taste_sour, while in Figure 3.4 a reversed dependency, 

which seems more logical, is achieved simply because an additional determinant 

citric_acid has been introduced to taste_sour.  

 

3.5  Discussion 

 

3.5.1 Comparison with known metabolic reactions 

As noted above, though the metabolic part of network was learnt from non-sequential 

data and thus intrinsically not a representation of metabolic pathways, it is still to 

some extent informative about the regulatory mechanisms underlying those 

metabolites.  

There was a separation between primary and secondary metabolites. This of 

course makes sense considering the structural function of primary metabolites and the 

auxiliary function of secondary metabolites. Interestingly, within the primary 

metabolites, sucrose was the parent of fructose which in turn was the parent of 

glucose. This may be due to the enzymatic action of invertase which splits sucrose 

into glucose and fructose. And the direct link between sucrose and glucose was 

recovered as an indirect one is potentially due to the additional action of Sucrose 

Synthase utilizing fructose and UDP-glucose.  

It is noteworthy that in Figure 3.4 fructose and glutamic acid were present as 

parent nodes of myo-inositol which in turn was the parent of sucrose. Metabolically 

myo-inositol is synthesized from glucose-6-phosphate via D-myo-inositol 

3-phosphate (Hegeman et al. 2001). But since neither glucose-6-phosphate nor 

D-myo-inositol 3-phosphate were quantified in this study, the network reconstruction 

and orientation algorithms might have compacted the network. Whilst this leaves the 

link from glutamic acid unexplained, it seems like a good testable hypothesis for the 

sugars and the sugar alcohol myo-inositol, which could be explored. 

For glutamic acid a direct and strong influence was observed from aspartic acid. 

Metabolically this might be explained by the enzymatic action of aspartate 
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aminotransferase that converts glutamic acid and oxaloacetate into 2-oxoglutarate and 

aspartate. Indeed, aspartate aminotransferase has already been implicated in glutamate 

content in red tomato fruits (Boggio et al. 2000). Comparatively, the impact of malic 

acid on aspartic acid seems less obvious. That said, an RNAi approach against 

PEPCK revealed strongly increased aspartic acid levels coinciding with reduced 

malate levels. However, silencing of NADP-malic enzyme in the same study showed 

less aspartic acid and somewhat lower malic acid levels in one transgenic line (Osorio 

et al. 2013).  

Turning to volatiles as flavor carrying compounds it is obvious that the 

most-likely carotenoid derived volatiles beta-damascenone (Mathieu et al. 2009) and 

beta-ionone (Baldermann et al. 2010) were linked because of the common precursor 

beta-carotene. However, the deduced influence of one on the other might only be 

explained by hidden variables such as the actual enzyme activities and actual 

carotenoid concentrations not measured here. Also it is intriguing that 

6-methyl-5-hepten-2-one and geranylacetone, both being interconnected, were not 

linked to the former pair of volatiles despite them also being carotenoid volatiles. The 

different differential behaviors of these two pairs of volatiles were also observed in 

earlier studies (Mathieu et al. 2009), and it has been reported that 

6-methyl-5-hepten-2-one likely stems from lycopene (Gao et al. 2008). We therefore 

suspect the difference is attributed to distinct precursors. Apart from these carotenoid 

derived metabolites, the synthesis of phenylethyl alcohol from benzeneacetaldehyde 

(Sakai et al. 2007) was recovered in our analysis. 

Regarding the linked metabolites 3-methyl-1-butanol and 3-methylbutanal, they 

are most likely leucine derived, whilst the associated 2-methyl-1-butanol likely stems 

from isoleucine. Also the association between 2-isobutylthiazole and 

3-methyl-1-butanol was observed before (Mathieu et al. 2009; Tikunov et al. 2005). 

Thus this whole sub-cluster of metabolites is derived from or associated to branched 

chain amino acids. The current model for the biosynthesis of leucine-derived flavor 

imparting compounds assumes a decarboxylation to an aldehyde followed by a 

reduction. The truth, however, is that the alcohols should derive from the aldehydes. 

 

3.5.2 Choice of methods and parameters 

The most straightforward way to construct biological networks is the correlation 

network (also known as relevance network), which is based on unconditional pairwise 

correlations. However, though strong correlations are good indicators of dependencies, 

they cannot distinguish between direct and indirect associations. Thus, correlation 

networks are typically dense graphs, from which definitive conclusions can hardly be 

drawn (see examples in Figure 3.S5A and B). To learn less dense but more 
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informative graphs, especially from high-dimensional data with limited sample size, 

here we used three approaches to graphical modeling: LBNS + StARS, the 

PC-skeleton algorithm, and the Lasso + SS. 

StARS has been shown to outperform the conventional regularization parameter 

selection methods, including AIC, BIC and cross-validation, in the reconstruction of 

high-dimensional graphs (Liu et al. 2010). In view of this, we exploited StARS to set 

regularization in LBNS. The R package “huge” implements StARS with two optional 

variability thresholds: 0.1 and 0.05. We tested both thresholds on the metabolic and 

sensory data separately, and found that 0.05 led to a bit sparser graph than 0.01 

(Figure 3.S1A vs. B, Figure 3.S2A vs. B). As we aimed to extract a consensus 

network, the variability threshold of 0.1 was then used in StARS to ensure that given 

the same dataset, edges obtained by LBNS can overlap, to a large extent, with those 

learnt by the PC-skeleton algorithm.  

The PC-skeleton algorithm also requires a pre-specified parameter, i.e. the 

significance level of conditional independence tests. We tested the two most common 

significance levels, 0.01 and 0.05, on the metabolic and sensory data separately. 

Results on the same datasets indicated that the significance level of 0.05 recovered a 

few more edges than the level of 0.01 (Figure 3.S3A vs. B, Figure 3.S3C vs. D). 

Again, to reach as many as possible consensus edges, we took the significance level 

of 0.05 in this study.  

Our strategy, which first overfits an undirected graph by LBNS + StARS and 

then screens out the unlikely edges by comparison with the outcome of the 

PC-skeleton algorithm, was also tried on the mixture of metabolic and sensory data. 

Surprisingly, only a few links between metabolites and sensory traits were discovered 

by either method (see black edges in Figure 3.S4A and B). After discarding edges 

unique to one graph, we were left with merely eight common links (see the boldfaced 

black edges in Figure 3.S4A or B). This implies that the above strategy, when being 

used to decipher the relationships between substances of different nature, is very 

likely to produce an underfitted graph. We then tried a third method, i.e. regressing 

every sensory trait on the metabolites by the Lasso + SS, to get the directed graph in 

Figure 3.S4C. To draw safe conclusions but without losing too much useful 

information, we extracted those edges that appeared between metabolites and sensory 

traits at least twice over Figure 3.S4A, B and C. Finally, 12 edges satisfying this 

criterion were reported (see black edges in Figure 3.4).  

 

3.5.3 Other aspects 

Multi-trait analysis is in general preferred over single-trait analysis for QTL mapping. 

This is because: (1) multi-trait analysis takes into account the genetic correlations 
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among traits and thus increases the power of detecting QTLs (Jiang and Zeng 1995); 

(2) it allows a more straightforward assessment of pleiotropic effects of QTLs (Alimi 

et al. 2013; Malosetti et al. 2008). Nonetheless, the outputs of multi-trait QTL 

analyses not necessarily fully encompass the results of single-trait analyses. That is, a 

QTL identified by single-trait analysis can be missed in multi-trait analysis, though 

this rarely happens. In this study we missed a QTL for scent smoky on chromosome 9, 

whereas this QTL was clearly identified in another study with the same material 

(Tikunov et al. 2013). We were able to detect the QTL when rerunning a single-trait 

analysis for scent smoky. A limited multi-trait analysis on scent smoky and some 

volatiles that are known to be related to scent smoky produced the QTL as well. 

We have identified a total of 21 QTLs for the 29 metabolites and 24 sensory 

traits. Most of the QTLs were found to have pleiotropic effects; in particular, a few of 

them, such as rs2050, rs6687, rs7089 and rs7448, served as hubs in the resulting 

dependency network (Figure 3.4). A particularly noteworthy phenomenon was that a 

number of directed triangles appeared in Figure 3.4, especially around the hubs. One 

may doubt whether the QTL really affects so many traits? Does its impact on a 

downstream trait actually pass through the upstream traits? Moreover, will two 

directly associated traits become independent of each other given their common QTL? 

A possible solution to these detailed questions is the triad analysis, which aims at 

identifying causal relationships in configurations consisting of two traits and one QTL 

(Li et al. 2010; Schadt et al. 2005).  

Though both SS and StARS can choose a proper regularization for 

high-dimensional sparse linear regression, they are essentially different. Given the 

same training dataset, StARS tolerates false positives (false edges in the reconstructed 

graph) but not false negatives (true edges absent in the reconstructed graph) and thus 

leads to a dense graph with high recall but relatively low precision (in the context of 

graphical modeling, recall refers to the fraction of true edges that are recovered in the 

resulting graph; precision refers to the fraction of recovered edges that are actually 

true); SS, contrariwise, allows false negatives but not false positives and therefore 

results in a sparse graph with high precision but comparatively low recall.  

 

3.6  Conclusion 

 

We have investigated the utility of existing methods for GGM reconstruction in 

combination with the QPSO algorithm for dependency inference between 29 

metabolites and 24 sensory traits scored on ripe tomatoes. The resulting network 
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provides hints on how the sensory traits depend upon the metabolites and further upon 

the detected QTLs. This integrative approach does not require the identification of 

QTLs for each and every trait studied, and thus has broad applicability across a 

number of practical settings. Furthermore, it is applicable to a range of population 

structures, including offspring populations from crosses between inbred parents and 

outbred parents, association panels and natural population. The novel dependencies 

emerged in this study form the hypotheses that can be individually tested in the future.  
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Figures  59 

Figure 3.S1 Two correlation networks involving 29 metabolites or 24 sensory traits in 

ripe tomatoes. Nodes denote metabolites in (A) and sensory traits in (B). Edges 

represent the significant pairwise Pearson correlations (the p-value associated with the 

t-test < 0.05) between the nodes. Solid and dashed edges indicate positive and 

negative correlations, respectively.  
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Figure 3.S2 Two undirected networks involving 29 metabolites in ripe tomatoes. 

Nodes denote metabolites. Edges represent the strong symmetric associations between 

nodes. Both (A) and (B) are learnt by LBNS + StARS. The variability threshold used 

in StARS to construct (A) is 0.05 while the threshold used to construct (B) is 0.1.  

 



Figures  61 

Figure 3.S3 Two undirected networks involving 24 sensory traits in ripe tomatoes. 

Nodes denote sensory traits. Edges represent the strong symmetric associations 

between nodes. Both (A) and (B) are learnt by LBNS + StARS. The variability 

threshold used in StARS to construct (A) is 0.05 while the threshold used to construct 

(B) is 0.1.  
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Figure 3.S4 Four undirected networks involving 29 metabolites or 24 sensory traits in 

ripe tomatoes. Nodes denote metabolites in (A) and (B), and sensory traits in (C) and 

(D). Edges represent the strong symmetric associations between nodes. All four 

graphs are learnt by the PC-skeleton algorithm, where the significance level of 

conditional independence tests used to construct (A) and (C) is 0.01 and the one used 

to construct (B) and (D) is 0.05.  

 



Figures  63 

Figure 3.S5 Three networks regarding the relationships between 29 metabolites, brix 

and 24 sensory traits in ripe tomatoes. Blue, green and lavender nodes are used to 

distinguish between metabolites, sensory traits and brix. Edges in (A) and (B) are, 

respectively, learnt by LBNS + StARS (variability threshold set at 0.1) and the 

PC-skeleton algorithm (significance level of 0.05 for conditional independence tests). 

Edges in (C) are learnt by the Lasso + SS (where explanatory variables selected over 

77.6% of 100 half-sized subsamples are returned for each response variable). 

Particularly, black edges highlight strong dependencies between metabolites and 

sensory traits (some via brix), where the bold black edges are consistent in (A) and 

(B). 
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This chapter was published as: Wang, H., van Eeuwijk, F. A., & Jansen, J. (2016). The 
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Chapter 4 

 

The potential of probabilistic graphical models in linkage map 

construction 

 

 

Abstract 

 

It has been shown that linkage map construction can be hampered by the presence of 

genotyping errors and chromosomal rearrangements such as inversions and 

translocations. Here, we report a novel method for linkage map construction using 

probabilistic graphical models. The method is proven, both theoretically and 

practically, to be effective in filtering out markers that contain genotyping errors. In 

particular, it carries out marker filtering and ordering simultaneously, and is therefore 

superior to the standard post-hoc filtering using nearest-neighbour stress. Furthermore, 

we demonstrate empirically that the proposed method offers a promising solution to 

linkage map construction in the case of a reciprocal translocation.  
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4.1  Introduction 

 

Genetic maps greatly facilitate a variety of genetic and genomic studies, including the 

genetic dissection of complex traits, comparative genomic analyses, and genome 

assembly (Bowers et al. 2012; Liu et al. 2014). Current approaches to map 

construction are mainly based on estimation of recombination frequency, and they 

aim to achieve three core objectives: (1) grouping, i.e. assigning markers to linkage 

groups; (2) ordering, i.e. finding the correct order of markers within each linkage 

group; (3) spacing, i.e. estimating the map distances between pairs of adjacent 

markers (Cheema and Dicks 2009; Wu et al. 2008b).  

Grouping is usually done by setting a threshold either directly on the pairwise 

recombination frequencies or on a statistic based on the pairwise recombination 

frequencies, e.g. the LOD scores (Van Os et al. 2005). Ordering can be viewed as an 

optimization problem. It typically involves two essential elements: (1) a scoring 

function that quantifies the quality of a given marker order, e.g. the likelihood 

(Cartwright et al. 2007; Jansen et al. 2001), the sum of adjacent recombination 

frequencies (SARF) (Falk 1989), the sum of adjacent LOD scores (SALOD) (Weeks 

and Lange 1987), the product of adjacent recombination fractions (PARF) (Wilson 

1988) and weighted least squares (WLS) (Stam 1993); (2) a search strategy that 

reduces the space of candidate marker orders, e.g. simulated annealing (Cartwright et 

al. 2007; Jansen et al. 2001), ant colony optimization (ACO) (Iwata and Ninomiya 

2006), genetic algorithms (Gaspin and Schier 1998), evolutionary algorithms (Mester 

et al. 2003) or greedy and Lin-Kernighan heuristics (Van Os et al. 2005). The optimal 

marker order is the one that optimizes the scoring function. The map distance is 

measured in centiMorgan (cM), which is a unit that describes a recombination 

frequency of 1%. For complete data, spacing is straightforward once ordering is done 

(Wu et al. 2008b). For incomplete data, multi-point maximum likelihood estimates of 

recombination frequencies between adjacent markers can be obtained by the EM 

algorithm using the theory of hidden Markov models (Lander and Green 1987).  

It has been recognized that genotyping errors tend to inflate map lengths and 

reduce the proportion of correctly ordered maps, particularly as marker density 

increases (Hackett and Broadfoot 2003; Shields et al. 1991). Markers exhibiting high 

nearest-neighbour stress (N.N.Stress, a quantity measuring the difference between 

estimated and observed recombination frequencies for the directly neighbouring loci 

with respect to a particular locus on the map) generally contain genotyping errors 

(Van Ooijen and Jansen 2013) and are therefore often removed from constructed 

genetic maps (Farré et al. 2011; Ting et al. 2013). Nonetheless, this post-hoc filtering 

is inherently biased in terms of predictive validity, as it is applied to marker orders 

that are obtained under the assumption of no error.  

Marker orders have been shown to be relatively robust against both missing data 

and genotyping errors for widely spaced markers (10cM intervals) (Hackett and 

Broadfoot 2003). This essentially coincides with the proposition made in Vision et al. 

(2000). In their study, Vision et al. demonstrated that it is neither necessary nor 
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desirable to genotype all markers in every individual of a large mapping population to 

get a high-density genetic map. Instead, genotyping a limited number of markers, 

which are evenly and sparsely distributed throughout the genome, is sufficient for 

constructing a high-confidence framework map. Afterwards, additional markers can 

be added to the framework map by certain fine-mapping strategies, so as to avoid the 

loss in map resolution.  

Few methods have been proposed for linkage map construction in the case of 

reciprocal translocations. A reciprocal translocation refers to an even exchange of 

DNA fragments between two non-homologous chromosomes. Recombination 

between loci around the translocation breakpoints is severely suppressed. As a 

consequence, markers in these regions become ‘pseudo-linked’, i.e. markers that lie 

on different chromosomes involved in the translocation will be mapped onto a single 

linkage group (Farré et al. 2011).  

Probabilistic graphical models (PGMs) combine graph theory and probability 

theory to give a multivariate statistical modelling framework. A PGM depicts a set of 

random variable as nodes or vertices in a graph, and encodes the conditional 

independence between variables through edges in the graph where a lack of an edge 

between two nodes indicates that the two variables are conditionally independent. 

Beyond existing successful applications of PGMs in the reconstruction of various 

biological networks (Airoldi 2007; Friedman 2004), we show here that they can also 

serve as a map construction method that does not suffer from wrong marker orders as 

a consequence of genotyping errors and reciprocal translocations. More specifically, 

we demonstrate both theoretically and empirically that linkage map construction using 

PGMs can achieve marker filtering and ordering at the same time effectively. 

Moreover, PGMs allow accurate positioning of the translocation breakpoint and 

correct ordering of markers on the distal parts of the two chromosomes.   

 

4.2  Materials and Methods 

 

4.2.1 Partial correlation coefficient vs. N.N.Stress in identifying markers 

having genotyping errors 

The partial correlation coefficient provides a measure of conditional independence 

between variables, which forms the basis for construction of PGMs. Here we 

demonstrate, theoretically, that the partial correlation coefficient can serve as an 

alternative to N.N.Stress to identify markers with genotyping errors. To begin with, a 

few basic concepts are briefly reviewed. The recombination frequency θ refers to the 

probability of observing a gamete with a recombinant haplotype in a single meiosis of 

a heterozygous parent. In this study, we mainly consider the recombination frequency 

between marker loci. For each marker, the two parental alleles are denoted by a and b, 

respectively. The genotyping error rate ε is the probability of observing allele a when 

b is the true allele, or vice versa. An observation on a set of markers is referred to as a 

phenotype. We investigate the probabilities associated with all possible phenotypes 
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for an ordered triplet of markers M1-M2-M3 (Table 4.1). The genotypic frequencies 

are obtained under two assumptions:  

(1) recombination events occurring in adjacent intervals are statistically 

independent;  

(2) the alleles a and b occur with equal probability (0.5).  

For mathematical simplicity, we replace alleles a and b by the values -1 and 1, 

respectively. By doing so, the mean and variance of each marker, hereafter considered 

as a random variable and denoted by Mk (k = 1,2,3), become 0 and 1, respectively. This 

will greatly facilitate the derivations on (partial) correlation coefficients presented 

below.  

 

4.2.1.1 Partial correlation coefficient 

Under the settings mentioned above, the correlation coefficient between markers Mi 

and Mj, rij, is equal to the expectation value E[Mi×Mj]. Let θij (0<θij<0.5) denote the 

recombination frequency between markers Mi and Mj; εM1, εM2 and εM3 denote locus-

specific genotyping error rates. When εM1 = εM3 = 0 and εM2 = ε (0<ε<0.5), we obtain 

r12 = (1–2θ12)(1–2ε) 

r23 = (1–2θ23)(1–2ε) 

r13 = (1–2θ12)(1–2θ23) 

It is obvious that (1–2θ12)(1–2ε) < 1–2θ12 and (1–2θ23)(1–2ε) < 1–2θ23. This shows 

that if M2 contains errors, r12 and r23 decrease when ε increases, whereas r13 remains 

unchanged.  

The partial correlation coefficient ρMiMj|Mk measures the correlation between markers 

Mi and Mj after removing the effect of marker Mk. It can be computed as  

|
2 21 1

ij ik jk

MiMj Mk

ik jk

r r r

r r


 


 
 

It follows that 
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We have derived that when εM1 = εM3 = 0 and εM2 = ε (0<ε<0.5), ρM1M2|M3 (and 

analogously, ρM2M3|M1) is a monotonically decreasing function of ε, whereas ρM1M3|M2 

is a monotonically increasing function of ε (please refer to Supplementary material 

for detailed derivation). This indicates that the association between a marker 

containing genotyping error and each of its flanking markers decreases with 

increasing error rate, whereas the association between the two flanking markers 

increases with increasing error rate.  

 

In Table 4.2 we have summarized the values of r12, r23 and r13 with respect to eight 

different settings of εM1, εM2 and εM3. Accordingly, we have derived the following 

relationships: 

0M1M3|M2 M1M3|M2 M1M3|M2 M1M3|M2
        

0 1
M1M3|M2 M1M3|M2 M1M3|M2 M1M3|M2

        , when θ12 = θ23 
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0 1
M1M3|M2 M1M3|M2 M1M3|M2 M1M3|M2

        , when θ12 > θ23 

0 1
M1M3|M2 M1M3|M2 M1M3|M2 M1M3|M2

        , when θ23 > θ12 

where 
iM and 

iM  denote a locus genotyped without and with error, respectively. 

 

4.2.1.2 N.N.Stress 

Genotyping errors that occur at a marker will increase the observed recombination 

frequencies between that marker and its flanking markers (Goring and Terwilliger 

2000). When εM1 = εM3 = 0 and εM2 = ε (0<ε<0.5),  

12 = θ12+ε(1–2θ12) 

23 = θ23+ε(1–2θ23) 

13 = θ12+θ23–2θ12θ23 

where ij  denote the observed recombination frequency between two markers Mi and 

Mj. Let dij denote the distance (in Morgans) between two markers Mi and Mj. 

Applying Haldane’s mapping function, dij = –0.5ln(1–2
ij ), gives 

d12 = –0.5ln[(1–2θ12)(1–2ε)] 

d23 = –0.5ln[(1–2θ23)(1–2ε)] 

d13 = –0.5ln[(1–2θ12)(1–2θ23)] 

The N.N.Stress of marker M2 given M1 and M3 is computed as 

d12 + d23 – d13 = –ln(1–2ε) 

Given that 0 < ε < 0.5, –ln(1–2ε) is a monotonically increasing function of ε. This 

indicates that markers genotyped with high error rate exhibit large N.N.Stress.  

 

Analogously, we have investigated and listed the values of 12 , 23  and 13  with 

respect to eight different settings of εM1, εM2 and εM3 in Table 4.3. Further, we have 

derived the relationships below: 

M2|M1,M3 M2|M1,M3 M2|M1,M3 M2|M1,M3
N.N.Stress = N.N.Stress = N.N.Stress = N.N.Stress =0  

M2|M1,M3 M2|M1,M3 M2|M1,M3 M2|M1,M3
0 < N.N.Stress = N.N.Stress = N.N.Stress = N.N.Stress = –ln(1–2ε) 

where Mj|Mi,MkN.N.Stress denote the N.N.Stress of Mj given its flanking markers Mi and 

Mk. 

 

In view of the similarity between relationships revealed by partial correlation and 

N.N.Stress, we are able to draw the following conclusions: 

1. When the marker data contain no genotyping errors, the partial correlations 

between physically non-adjacent markers are all equal to 0, whereas the absolute 

partial correlations between physically adjacent markers are close to 1. It implies 

that, ideally, marker ordering can be carried out through diagonalization of the 

partial correlations matrix.  

2. In addition to its application to marker ordering, partial correlation coefficient can 

also serve as an alternative to N.N.Stress, i.e. it can be used to identify markers 
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involving genotyping errors. More specifically, if ρM1M3|M2 is larger than a certain 

threshold, for the conditioning marker M2 one of the two situations holds:  

(i) M2 is not genetically located between M1 and M3;  

(ii) M2 is indeed between M1 and M3, but contains genotyping error 

(alternatively, the error rate of M2 is much greater than the error rates of M1 

and M3).  

Notably, a large ρM1M3|M2 always comes with small r12 and r23, which indicates, in 

the context of PGMs, that M1 and M3 are, highly likely, directly connected to each 

other; whereas M2 is, quite possibly, disconnected from M1 and M3. This naturally 

provides a simultaneous graphical representation of two situations:  

(i) the non-intermediate marker M2 is excluded from the connection between 

M1 and M3;  

(ii) the intermediate marker M2 that involves big genotyping error is 

excluded from the connection between M1 and M3.  

3. If not only M2 but also M1 or/and M3 have genotyping errors (alternatively, the 

error rates of M2, M1 or/and M3 are comparable), the increment of ρM1M3|M2 

decreases while N.N.StressM2|M1,M3 does not change. This suggests in the 

application of partial correlation for identifying markers with genotyping errors, 

smaller cut-off values are preferable so that minor increases caused by genotyping 

errors of at least two markers in a triplet can still be captured.  

4. When M2 has no genotyping error, there is no increase of ρM1M3|M2, despite of 

genotyping errors occurring on either or both of M1 and M3. This shows partial 

correlation is limited to filtering out markers that simultaneously satisfy three 

requirements:  

(i) they are taken as conditioning variables;  

(ii) they are intermediates in triplets of markers;  

(iii) they have high error rates.  

However, this limitation can be overcome by iterative implementation of partial 

correlation estimation on sequential triplets of markers. Specifically, assume that 

M1-M2-M3-M4 is the true order of four markers, of which M3 has a high error rate. 

Then, the problematic marker M3 can be filtered out by investigating ρM2M4|M3 

instead of ρM1M3|M2.  

 

4.2.2 The PC-stable algorithm 

In the construction of PGMs, the conditional independence relationships among a set 

of variables are typically represented in the form of an undirected graph. The PC 

algorithm (Spirtes et al. 2000) was originally designed to learn a Markov equivalence 

class of directed acyclic graphs that can be uniquely described as a completed 

partially directed acyclic graph (CPDAG) (Hauser and Buhlmann 2012). Its learning 

process consists of two phases: first, construct an undirected graph by means of a 

series of well-structured conditional independence tests; second, assign directions to 

certain edges according to the determined v-structures and the acyclic constraint, so 

that the undirected graph is transformed into a CPDAG.  
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It should be noted that only the first phase of the PC algorithm is applicable to 

linkage map construction, since in such a context the directionality of edges between 

markers is meaningless. However, it has been pointed out that the first phase of the 

PC algorithm returns order-dependent skeletons (Colombo and Maathuis 2014). That 

is, the resulting undirected graph is subject to the order of variables present in the 

input data. For this reason, a modified version of the PC algorithm, which is referred 

to as the PC-stable algorithm, has been presented to overcome the order-dependent 

issue (Colombo and Maathuis 2014). The PC-stable algorithm is implemented in the 

R package pcalg.  

 

4.2.3 Frequentist diagonal ordering 

In the application of the PC-stable algorithm to linkage mapping, the resulting 

undirected graphs usually capture the connectivity of markers to a large extent. 

Nonetheless, the linearity of markers could be a bit ambiguous at certain detailed parts. 

To eliminate such minor ambiguities, here we’ve proposed a frequentist diagonal 

ordering algorithm, which serves as a complement to the PC-stable algorithm for fine-

ordering of markers. The logic behind this algorithm is rather straightforward: first, 

represent the undirected graph achieved by the PC-stable algorithm in the form of an 

adjacency matrix, which is typically a (0,1)-matrix with entries “1” indicating the 

corresponding two (row & column) variables are directly connected in the graph; 

second, restructure the adjacency matrix so that as many "1" entries as possible are 

located on the first super diagonal of the new adjacency matrix; third, convert the new 

adjacency matrix into input of a network visualization tool (e.g. Cytoscape), and let 

the relationships between markers be presented graphically. Essentially, this 

algorithm is to extract a marker string, as long as possible, from the constructed PGM. 

The related Matlab source code is available at: 

https://github.com/Huange/Frequentist-diagonal-ordering.  

 

4.2.4 Simulated data 

A doubled-haploid population was simulated using the R package hypred. Two 

homozygous parental lines with genotypes aa and bb at each of 200 loci, which were 

evenly distributed along a single chromosome of 300cM, were simulated initially. The 

two parental lines were then crossed to give an F1 population with heterozygous 

genotype ab at each locus. Subsequently, 300 doubled-haploid individuals were 

simulated from the gametes produced by the F1 generation. No interference was 

simulated, and so Haldane’s mapping function was applicable to the marker data. The 

markers were numerically labelled from 1 to 200 according to their relative positions 

along the chromosome. Among them, six markers, 34, 51, 63, 128, 155 and 184, were 

set to have genotyping errors at rates of 1%, 3%, 5%, 1%, 3% and 5%, respectively. 

 

 

 

https://github.com/Huange/Frequentist-diagonal-ordering
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4.2.5 Cucumber data 

This set of marker data was obtained from a RIL population derived from an inter-

subspecific cross between the North American processing market type cucumber 

cultivar Gy14 (C. sativus var. sativus) and the wild accession PI 183967 (C. sativus 

var. hardwickii) originating from India. The RIL population consisted of 77 F6-F8 

individuals, each of which was genotyped with 995 SSR markers. For more details 

see Ren et al. (2009). To deal with missing values in the marker scores, we used a 

hidden Markov model approach  (Jiang and Zeng 1997) implemented in Genstat to 

estimate the marker genotypes. It appeared interesting to investigate these data 

because our pre-processing results showed that genotyping errors were widely present 

across the whole dataset; besides, redundant markers existed in the sense that some 

markers were located on more or less the same locus. 

 

4.2.6 Barley data 

This set of marker data is obtained from DH1 population developed from a cross 

between the barley varieties ‘Albacete’ and ‘Barberousse’. ‘Albacete’ is known for 

containing a reciprocal translocation between chromosomes 1H and 3H. The dataset 

consisted of 231 lines and 30 markers, of which 13 markers were located on 

chromosome 1H and 17 markers on chromosome 3H. For more details see Farré et al. 

(2011). 

 

4.3  Results 

 

4.3.1 Simulated data 

By applying the PC-stable algorithm to the simulated marker data, we obtained a 

linkage map as shown in Figure 4.1a. In the map, all the six markers having 

genotyping errors (i.e., nodes coloured in red) were successfully identified, as they 

were pulled aside from the linear string formed by the vast majority of all other 

markers. Meanwhile, a couple of markers without genotyping errors (i.e., nodes 

coloured in cyan) were also pulled aside from the linear string. This should be 

attributed to the inherently weak connectivity between those markers and their 

flanking markers.  

For comparison, we also reconstructed a linkage map from the simulated data 

with JoinMap 4.1. Table 4.S1 gives the map position and the N.N.Stress of each 

marker in cM. It shows that the 200 markers were perfectly sequentially ordered, 

though a few markers possessed high N.N.Stress and thus should be removed from 

the reconstructed map. Table 4.4 lists the top six markers with the highest N.N.Stress, 

which are, as expected, exactly those markers designed with genotyping errors. 

Furthermore, a minimum spanning tree (MST) was constructed with Genstat from the 

same dataset (Figure 4.1b), since MST has been claimed as another promising tool 

for efficient and accurate reconstruction of linkage maps (Wu et al. 2008b). Similarly, 

the 200 markers were substantially linearly arranged in the MST, except that only 
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three markers 51, 63 and 184 were clearly shown in branches, indicating that they 

should be excluded from the reconstructed linkage map. 

 

4.3.2 Cucumber data 

 

4.3.2.1 Data pre-processing 

In a single seed descent (SSD) procedure, the percentage of heterozygotes is halved 

each generation. In the cucumber data, the proportion of heterozygotes was according 

to expectation for most individuals, but high for about 10% of the individuals (Figure 

4.S1). Considering that the intention of SSD is to make all heterozygotes disappear 

eventually, we made all heterozygous scores missing and treated the entire population 

as a RIL population, i.e. a RIL population obtained after infinitely many generations 

of SSD. This might lead to some individuals coming with a high proportion of 

missing data. Afterwards, we first excluded markers with more than four (>5.2%) 

missing data. This concerned 132 markers, leaving 863 markers for further analysis. 

We then excluded individuals with >10% missing data. These concerned only two 

individuals, leaving 75 individuals for further analysis. It should be noted that the 

number of individuals is small for accurate map construction.  

 

4.3.2.2 Forming linkage groups 

With a threshold of 0.2 for the recombination frequency, two linkage groups were 

formed, consisting of 719 and 144 markers, respectively. With a threshold of 0.15, the 

linkage group consisting of 144 markers remained intact, while the linkage group 

consisting of 719 markers was split into five subgroups, consisting of 340, 108, 107, 

95 and 69 markers, respectively. With a threshold of 0.10, the linkage group 

consisting of 340 markers was further split into three groups of 177, 162 and 1 

markers, respectively. With a threshold of 0.10, also the linkage group consisting of 

69 markers was split into three groups of 38, 30 and 1 markers, respectively. Given 

the estimated six linkage groups obtained with a threshold of 0.15, we used the ML 

algorithm of JoinMap (Stam 1993) five times to check the stability of the resulting 

genetic maps. The results indicated that only the linkage group consisting of 340 

markers should be split into two groups (Figure 4.S2): the first 177 markers at the 

upper part of the map (0 ~ 350cM), and the remaining 163 markers at the lower part 

of the map (370 ~ 750cM). The reason is that although there was a small gap between 

the two groups, there was no exchange of markers between the two groups in repeated 

runs of the ML algorithm. In summary, the 863 markers could be divided into seven 

linkage groups consisting of 177, 163, 144, 108, 107, 95 and 69 markers, respectively. 

Notably, this grouping was consistent with the one shown by the data providers, who 

assigned indicators Chr.6, Chr.3, Chr.5, Chr.2, Chr.1, Chr.4 and Chr.7 to the seven 

linkage groups, respectively. Table 4.5 offers, for each linkage group, a summary of 

the total number of markers, the number of unique markers, average map length 

across five mapping runs, and the highest value of N.N.Stress. The lengths of the 
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preliminary maps constructed for each linkage group were fairly consistent over five 

mapping runs. Nonetheless, they were always large and especially so for Chr.3 and 

Chr.6. Also, the highest N.N.Stress is generally quite high. Both phenomena are 

indicators of genotyping errors in the marker data. Genotyping errors inflate pairwise 

recombination frequencies between markers (Goring and Terwilliger 2000), and 

subsequently inflate map lengths and harm the accuracy of marker ordering (Hackett 

and Broadfoot 2003; Shields et al. 1991).  

In this study, we will focus on the map construction for Chr.5, which is an 

example involving issues of genotyping errors in combination with locally high 

marker density. The original 144 markers of Chr.5 contained 104 markers, which 

were unique when accounting for the pattern of missing data alongside with the 

observed marker phenotypes. After missing data imputation 64 unique markers 

remained. Hereafter, we will use the imputed data of the 64 markers (but the marker 

numbers refer to the set of 104 markers) to illustrate our method.  

 

4.3.2.3 Identifying representative markers having genotyping errors for Chr.5 

Initially, we focused on a subset of 20 markers that were representative for Chr.5. The 

20 markers were obtained as cluster centres of a K-medoids clustering as 

implemented in the QMKSELECT procedure of Genstat. According to expectation, 

the cluster centres should either be:  

(i) high-quality markers (i.e. markers virtually without errors), in which case 

markers assigned to be a cluster are similar to the cluster centre, with a few more 

errors;  

(ii) low-quality markers (i.e. markers with many errors), in which case the cluster 

is equivalent to its centre. Indeed, we observed that some of the 20 markers only 

represented themselves, that is, clusters of size 1.  

For the 20 markers, we constructed a MST with Genstat and a PGM with the PC-

stable algorithm, respectively (Figure 4.2; a linearized version of the MST is shown 

in Figure 4.S3). Most links present in the two graphs were consistent, except that 

markers 44 and 59, 59 and 65 were connected while markers 77 and 80 were 

disconnected in the PGM. We also constructed a series of linkage maps with JoinMap 

4.1 by sequentially deleting the markers with the highest, positive N.N.Stress (Figure 

4.S4). The deleted markers shown at the top of Figure 4.S4 were almost identical to 

the problematic markers revealed in Figure 4.2, i.e. markers deviating from the linear 

tree. Notably, N.N.Stress analysis indicated that marker 77 had large genotyping error 

and thus should be excluded from an accurate linkage map. In this regard, the 

obtained PGM is considered a bit more precise than the MST, since in the former a 

string of markers was disconnected from marker 77, whereas the latter did not 

uncover the error issue underlying marker 77. 

 

4.3.2.4 Constructing framework map for Chr.5 

Instead of being restricted to the 20 representative markers, we then investigated the 

set of 64 unique markers on Chr.5 after missing data imputation. A graphical display 



4.3 Results  75 

of all pairwise recombination frequencies implied that some of the 64 markers were 

genetically closely or completely coinciding (Figure 4.S5a). Results of five 

independent mapping runs in JoinMap 4.1 further showed that the majority of 

genetically similar markers were located on the first half of Chr.5 and they led to 

chaos in the ordering of markers (Figure 4.S5b). An MST and a PGM were 

constructed respectively from the same set of marker data (Figure 4.3; a linearized 

version of the MST is shown in Figure 4.S6). The connectivity patterns revealed in 

the two graphs were generally similar to each other. Specifically, the lower parts of 

both graphs had roughly vertical linear structures, whereas the upper parts expanded 

horizontally instead of vertically and there was no obvious clue to the linearity of 

markers in this region. By further applying frequentist diagonal ordering to the 

adjacency matrix of the PGM, we obtained the graph shown in Figure 4.4. The long 

string on the left of the graph clearly indicated the linearity of markers at the second 

half of Chr.5. The short strings at the upper right of the graph were mainly extracted 

from the nested part of the PGM, i.e. the first half of Chr.5. Though each of the short 

strings revealed, to some extent, the linearity between a couple of markers, as a whole 

they failed to form a coherent string and thus were not very informative to an accurate 

map construction. Isolated markers at the lower right of the graph should be excluded 

from map construction anyway, because of the fact that they occurred either with big 

genotyping errors or they were genetically very similar to other markers. Again, a 

series of linkage maps were constructed by sequentially deleting the markers with the 

highest, positive N.N.Stress (Figure 4.S7). Not surprisingly, the deleted markers 

shown at the top of Figure 4.S7 overlapped, to a large extent, with those markers 

excluded from the long string in Figure 4.4. It is worth noting that in addition to the 

first half of Chr.5, a few other problematic markers on the second part of this 

chromosome, i.e. markers 75, 77, 86 and 97, were also unanimously diagnosed by all 

three approaches.  

 

4.3.3 Barley data - Linkage map construction involving a reciprocal 

translocation 

Figure 4.5 presents the PGM constructed from the barley data by the PC-stable 

algorithm in combination with frequentist diagonal ordering. Impressively, instead of 

finding a 'pseudo-linkage' between markers of chromosomes 1H and 3H, as obtained 

with standard methods, we obtained a cross-like configuration between the given 

markers. The translocation breakpoint was located around markers 12, 19, 20 that 

belong to chromosome 1H and markers 1, 22 that belong to chromosome 3H. 

Moreover, markers on the distal parts of the two chromosomes were perfectly linearly 

ordered. Our findings were in full agreement with the reference map (Table 4.S2) 

supplied by the data providers.  
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4.4  Discussion 

 

Our proposed method in principle can be applied to linkage mapping involving large 

numbers of markers. More generally, whatever the number of markers is, a three-step 

framework for achieving an accurate genetic map is as follows. First, cut up the set of 

markers into a number of linkage groups corresponding to the number of a single set 

of chromosomes. Second, for markers within a single linkage group, whatever the size, 

use K-medoids clustering to produce a limited set of clusters corresponding to the 

number of markers required for a framework map for that linkage group. Probably 

best to define the number of clusters slightly larger than the number of markers 

required for the framework map, so that it is possible to throw out clusters that are 

small or consist of isolated markers. Third, take the cluster centres, i.e. representative 

markers, of the larger groups, and start with the construction of PGMs at that point.  

We have shown through the barley example that it is possible to simultaneously 

realize marker grouping and ordering with PGMs, which are constructed through a 

series of well-structured conditional independence tests, e.g. the PC-stable algorithm. 

Of course, the estimated number of linkage groups is subject to the significance level 

α adopted in the conditional independence tests. Empirically, smaller values of α tend 

to lead to sparser graphs (Colombo and Maathuis 2014) that are equivalent to 

conservative grouping of markers, i.e., more linkage groups of smaller size.  

By definition the map distance is measured in cM; 1 cM approximately 

corresponds to 1% recombination frequency. Constructing PGMs from the observed 

genotype data involves the calculation of partial correlation coefficients, which 

essentially measure the combined effect of recombination frequencies between all 

markers, error rates of markers and marker order. Consequently, once marker 

grouping and ordering have been achieved using PGMs, one still has to calculate 

recombination frequencies and genetic distances to obtain a complete genetic map.  

Like most existing approaches to linkage map construction, our method is based 

on the assumption of independent recombination events. In reality, however, chiasma 

interference (hereafter simply referred to as interference) occurs when the occurrence 

of one crossover (or chiasma) influences the probability of another crossover 

occurring nearby, especially in regions of high marker density (Weeks et al. 1994). 

Assuming no interference simplifies the construction of linkage maps but it leads to 

considerable overestimation of map distances (Speed and Waterman 1996). In 

contrast to Haldane’s mapping function that is applicable in the absence of 

interference, Kosambi’s mapping function has been invented and empirically verified 

to well describe the mathematical relation between recombination frequency and map 

distance in the case of interference. And yet, the performance of PGMs in 

constructing linkage maps in the face of interference together with data perturbations 

caused by genotyping errors and reciprocal translocations is currently unclear and 

deserve further investigation.  

A few other studies have also applied graph-theoretic approaches to genetic map 

construction for plant species (Ronin et al. 2012; Wu et al. 2008a; Yap et al. 2003). 
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However, they all concentrated on map integration, aiming at producing a consensus 

genetic map using maps from different populations. We have shown that PGMs 

present great potential for constructing a reliable genetic map for a single population, 

by constructing a genetic map in combination with tackling problems that are caused 

by genotyping errors and reciprocal translocations in the data.  
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Figures  81 

Figure 4.1 (a) A PGM constructed with the PC-stable algorithm for the simulated 

data. The six markers designed with genotyping errors are pulled aside from the linear 

string and coloured in red, another six markers pulled aside from the linear string are 

coloured in cyan. Enlargements of two detailed parts of the PGM are given above the 

linear string, though the whole graph itself can be enlarged dramatically to show all 

details clearly. (b) A MST constructed with Genstat for the simulated data. The 

diagram was projected on the first two principal axes obtained by a principal 

coordinate analysis. Only the six markers designed with genotyping errors are marked 

out and coloured in red. 
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Figure 4.4 An adjusted PGM obtained by further applying frequentist diagonal 

ordering to the adjacency matrix of the PGM shown in Figure 4.3b.  
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Figure 4.5 A PGM constructed from the barley data by the PC-stable algorithm in 

combination with frequentist diagonal ordering. Yellow nodes stand for markers on 

chromosome 1H and green nodes stand for markers on chromosome 3H. 

The significance level for conditional independence tests was set at 0.05.  

 

 
 

 

 

Figure 4.S1 The proportion of heterozygous scores for individuals in the cucumber 

data set. 

 

 



86  Chapter 4 

Figure 4.S2 Five genetic maps generated repeatedly by the ML algorithm of JoinMap 

for a linkage group consisting of 340 markers that was obtained with a threshold of 

0.15 for the recombination frequency. According to the consistent (small) gap at 

approx. 360 cM, this linkage group could be split into two linkage groups of 177 and 

163 markers, respectively.  
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Figure 4.S3 Linearized MST for 20 representative markers of Chr.5. The numbers 

between connected markers represent the number of recombinations and simple 

matching coefficient of similarity, respectively. 

 

23

1

8/0.8933 7

26 59

30

2/0.973 

62

4/0.947 

6/0.920
61

44
5/0.933

65

4/0.947 

70

5/0.933 

73

8/0.893 

77

6/0.920 

6/0.920
75

80

8/0.893 

89

5/0.933 

91

12/0.840 

98

6/0.920 

8/0.893
60



88  Chapter 4 

 

F
ig

u
re

 
4
.S

4
 
L

in
k
ag

e 
m

ap
s 

o
f 

C
h
r.

5
 
o
b
ta

in
ed

 
b
y
 
se

q
u
en

ti
al

ly
 
d
el

et
in

g
 
m

ar
k
er

s 
w

it
h
 
th

e 
h
ig

h
es

t,
 
p
o
si

ti
v
e 

N
.N

.S
tr

es
s 

fr
o
m

 
th

e 
se

t 
o
f 

2
0
 

re
p
re

se
n
ta

ti
v

e 
m

ar
k

er
s.

 
T

h
e 

d
el

et
ed

 
m

ar
k
er

s 
ar

e 
sh

o
w

n
 

ab
o
v
e 

th
e 

li
n

k
ag

e 
m

ap
s;

 
th

e 
as

so
ci

at
ed

 
N

.N
.S

tr
es

s 
is

 
g
iv

en
 

b
et

w
ee

n
 

b
ra

ck
et

s.
 

C
o
m

p
ar

is
o
n
 o

f 
th

e 
la

st
 t

w
o
 m

ap
s 

in
d
ic

at
es

 r
eg

io
n

s 
(s

h
o
w

n
 i

n
 r

ed
) 

w
h

er
e 

m
ar

k
er

s 
h

av
e 

b
ee

n
 d

el
et

ed
 a

n
d
 t

h
e 

as
so

ci
at

ed
 r

ed
u

ct
io

n
s 

in
 m

ap
 l

en
g
th

. 
 



Figures  89 

Figure 4.S5 (a) Pairwise recombination frequencies estimated for 64 unique markers 

of Chr.5. Markers are sorted according to their numerical labels. (b) Five linkage 

maps obtained by independent mapping runs in JoinMap 4.1 for the 64 markers. 
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Figure 4.S6 Linearized MST for 64 unique markers of Chr.5.  

 

1

23

30

7

31 3

40

57

35

62

59

64

65

66

69

70

71

72

73

74

76 77

78

80

82

89 87

91

93

94

98

96

99

101

102

103

97

88

86

75

55

53

60

61

37

50

9

21

29

39

41

44

47

15

34

52 16

26

33

36

48

2

63

90



Figures  91 

F
ig

u
re

 4
.S

7
 L

in
k
ag

e 
m

ap
s 

o
b
ta

in
ed

 b
y
 s

eq
u
en

ti
al

ly
 d

el
et

in
g

 t
h
e 

u
n
iq

u
e 

m
ar

k
er

s 
w

it
h
 t

h
e 

h
ig

h
es

t,
 p

o
si

ti
v
e 

N
.N

.S
tr

es
s 

o
n
 C

h
r.

5
. 

T
h
e 

d
el

et
ed

 

m
ar

k
er

s 
ar

e 
sh

o
w

n
 a

b
o
v
e 

th
e 

li
n
k
ag

e 
m

ap
s.

  



92  Chapter 4 

Table 4.1 Genotypic frequencies for ordered triplet of markers M1-M2-M3. θij 

(0<θij<0.5) denote the recombination frequency between markers Mi and Mj; εM1, εM2 

and εM3 denote locus-specific genotyping error rates, 0<ε<0.5. Numeric values -1 and 

1 in the first three columns represent marker types a and b, respectively. 

 

Marker type Genotypic frequency 

(εM1 = εM3 = 0, εM2 = ε) M1 M2 M3 

-1 -1 -1 0.5×[(1–ε)(1–θ12)(1–θ23)+εθ12θ23] 

-1 -1 1 0.5×(1–ε)(1–θ12)θ23+εθ12(1–θ23) 

-1 1 1 0.5×ε(1–θ12)θ23+(1–ε)θ12(1–θ23) 

-1 1 -1 0.5×[ε(1–θ12)(1–θ23)+(1–ε)θ12θ23] 

1 1 1 0.5×[(1–ε)(1–θ12)(1–θ23)+εθ12θ23] 

1 1 -1 0.5×(1–ε)(1–θ12)θ23+εθ12(1–θ23) 

1 -1 -1 0.5×ε(1–θ12)θ23+(1–ε)θ12(1–θ23) 

1 -1 1 0.5×[ε(1–θ12)(1–θ23)+(1–ε)θ12θ23] 

 

 

 

Table 4.2 Pairwise correlation coefficients for ordered triplet of markers M1-M2-M3. 

Denotations of θ12, θ23, εM1, εM2, εM3 and ε are identical to those in Table 4.1. 

 

 r12 r23 r13 

εM1 = 0, εM2 = 0, εM3 = 0 1–2θ12 1–2θ23 (1–2θ12)(1–2θ23) 

εM1 = ε, εM2 = 0, εM3 = 0 (1–2θ12)(1–2ε) 1–2θ23 (1–2θ12)(1–2θ23)(1–2ε) 

εM1 = 0, εM2 = 0, εM3 =ε 1–2θ12 (1–2θ23)(1–2ε) (1–2θ12)(1–2θ23)(1–2ε) 

εM1 = ε, εM2 = 0, εM3 = ε (1–2θ12)(1–2ε) (1–2θ23)(1–2ε) (1–2θ12)(1–2θ23)(1–2ε)
2
 

εM1 = 0, εM2 = ε, εM3 = 0 (1–2θ12)(1–2ε) (1–2θ23)(1–2ε) (1–2θ12)(1–2θ23) 

εM1 = ε, εM2 = ε, εM3 = 0 (1–2θ12)(1–2ε)
2
 (1–2θ23)(1–2ε) (1–2θ12)(1–2θ23)(1–2ε)

 

εM1 = 0, εM2 = ε, εM3 =ε (1–2θ12)(1–2ε) (1–2θ23)(1–2ε)
2
 (1–2θ12)(1–2θ23)(1–2ε) 

εM1 = ε, εM2 = ε, εM3 = ε (1–2θ12)(1–2ε)
2
 (1–2θ23)(1–2ε)

2
 (1–2θ12)(1–2θ23)(1–2ε)

2 
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Table 4.3 The observed pairwise recombination frequencies for ordered triplet of 

markers M1-M2-M3. Denotations of θ12, θ23, εM1, εM2, εM3 and ε are identical to those in 

Table 4.1. 

 

 12  
23  

13  

εM1 = 0, εM2 = 0, εM3 = 0 θ12 θ23 θ12+θ23–2θ12θ23 

εM1 = ε, εM2 = 0, εM3 = 0 θ12+ε(1–2θ12) θ23 θ12+θ23–2θ12θ23+ε(1–2θ12)(1–2θ23) 

εM1 = 0, εM2 = 0, εM3 = ε θ12 θ23+ε(1–2θ23) θ12+θ23–2θ12θ23+ε(1–2θ12)(1–2θ23) 

εM1 = ε, εM2 = 0, εM3 = ε θ12+ε(1–2θ12) θ23+ε(1–2θ23) θ12+θ23–2θ12θ23+2ε(1–ε)(1–2θ12)(1–2θ23) 

εM1 = 0, εM2 = ε, εM3 = 0 θ12+ε(1–2θ12) θ23+ε(1–2θ23) θ12+θ23–2θ12θ23 

εM1 = ε, εM2 = ε, εM3 = 0 θ12+2ε(1–ε)(1–2θ12) θ23+ε(1–2θ23) θ12+θ23–2θ12θ23+ε(1–2θ12)(1–2θ23) 

εM1 = 0, εM2 = ε, εM3 = ε θ12+ε(1–2θ12) θ23+2ε(1–ε)(1–2θ23) θ12+θ23–2θ12θ23+ε(1–2θ12)(1–2θ23) 

εM1 = ε, εM2 = ε, εM3 = ε θ12+2ε(1–ε)(1–2θ12) θ23+2ε(1–ε)(1–2θ23) θ12+θ23–2θ12θ23+2ε(1–ε)(1–2θ12)(1–2θ23) 

 

 

 

Table 4.4 The top six markers with the highest N.N.Stress obtained by JoinMap 4.1 

from the simulated marker data. 

 

 Locus Position N.N. Stress (cM) 

1 marker63 96.145 11.01 

2 marker184 296.883 10.939 

3 marker155 243.352 6.318 

4 marker51 70.273 5.629 

5 marker128 195.223 2.046 

6 marker34 43.34 2.041 

 

 

 

Table 4.5 A summary of the total number of markers, the number of unique markers, 

the average map length across five mapping runs, and the highest values of N.N.Stress 

for each of the seven linkage groups constructed from the cucumber data (before 

missing data imputation). 

 

Linkage group Number of 

markers 

Number of 

unique markers 

Average map length 

in 5 runs (cM) 

Highest N.N.Stress 

(cM) 

Chr.1 107 103 195.1 8.0 

Chr.2 108 103 269.8 11.7 

Chr.3 163 151 343.9 22.3 

Chr.4 95 67 115.4 11.8 

Chr.5 144 104 155.0 9.1 

Chr.6 177 157 333.1 12.0 

Chr.7 69 66 176.7 9.5 

Total 863 751   



94  Chapter 4 

Table 4.S1 The map position and the N.N.Stress of each marker obtained with 

JoinMap 4.1 from the simulated marker data. 

 

Nr Locus Position (cM) N.N. Stress (cM) 

1 marker1 0 
 

2 marker2 1.01 -0.028 

3 marker3 2.362 -0.047 

4 marker4 4.057 -0.023 

5 marker5 4.728 -0.014 

6 marker6 5.738 -0.028 

7 marker7 7.09 -0.057 

8 marker8 9.131 -0.057 

9 marker9 10.482 -0.009 

10 marker10 10.817 -0.012 

11 marker11 12.512 -0.059 

12 marker12 14.207 -0.035 

13 marker13 15.217 -0.014 

14 marker14 15.888 -0.014 

15 marker15 16.898 -0.028 

16 marker16 18.25 -0.047 

17 marker17 19.945 -0.023 

18 marker18 20.616 0.671 

19 marker19 21.287 -0.028 

20 marker20 23.328 -0.072 

21 marker21 25.023 -0.047 

22 marker22 26.375 -0.047 

23 marker23 28.07 -0.023 

24 marker24 28.741 -0.023 

25 marker25 30.436 -0.023 

26 marker26 31.107 -0.023 

27 marker27 32.802 -0.023 

28 marker28 33.473 -0.019 

29 marker29 34.825 -0.077 

30 marker30 37.565 -0.019 

31 marker31 37.9 -0.007 

32 marker32 38.91 -0.05 

33 marker33 41.299 -0.102 

34 marker34 43.34 2.041 

35 marker35 45.73 -0.102 

36 marker36 47.771 -0.014 

37 marker37 48.105 -0.012 

38 marker38 49.8 -0.047 

39 marker39 51.152 -0.047 

40 marker40 52.847 -0.023 

41 marker41 53.518 -0.023 

42 marker42 55.213 -0.035 
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43 marker43 56.223 -0.035 

44 marker44 57.918 -0.023 

45 marker45 58.59 -0.019 

46 marker46 59.941 -0.028 

47 marker47 60.951 -0.028 

48 marker48 62.303 -0.038 

49 marker49 63.654 -0.038 

50 marker50 65.005 -0.152 

51 marker51 70.273 5.629 

52 marker52 74.443 -0.059 

53 marker53 75.114 -0.009 

54 marker54 75.785 -0.033 

55 marker55 78.174 -0.033 

56 marker56 78.846 0.671 

57 marker57 80.887 -0.057 

58 marker58 82.238 -0.047 

59 marker59 83.933 -0.047 

60 marker60 85.285 -0.019 

61 marker61 85.956 -0.009 

62 marker62 86.627 -0.142 

63 marker63 96.145 11.01 

64 marker64 102.536 -0.139 

65 marker65 103.546 0.666 

66 marker66 104.898 -0.009 

67 marker67 105.232 -0.005 

68 marker68 105.903 -0.014 

69 marker69 106.914 -0.028 

70 marker70 108.265 -0.047 

71 marker71 109.96 -0.047 

72 marker72 111.312 -0.077 

73 marker73 114.052 -0.118 

74 marker74 116.093 -0.043 

75 marker75 117.103 -0.035 

76 marker76 118.798 -0.072 

77 marker77 120.839 -0.087 

78 marker78 122.88 0.642 

79 marker79 124.576 -0.023 

80 marker80 125.247 -0.019 

82 marker82 126.598 -0.009 

81 marker81 126.933 0.688 

83 marker83 130.026 -0.043 

84 marker84 130.697 -0.019 

85 marker85 132.049 -0.047 

86 marker86 133.744 -0.023 

87 marker87 134.415 -0.023 

88 marker88 136.11 -0.035 
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89 marker89 137.12 -0.043 

90 marker90 139.161 -0.043 

91 marker91 140.172 -0.043 

92 marker92 142.213 -0.043 

93 marker93 143.223 -0.021 

94 marker94 144.233 -0.043 

95 marker95 146.274 -0.028 

96 marker96 146.945 -0.019 

97 marker97 148.297 -0.057 

98 marker98 150.338 -0.072 

99 marker99 152.033 -0.035 

100 marker100 153.043 -0.05 

101 marker101 155.432 0.597 

102 marker102 158.173 -0.159 

103 marker103 160.913 -0.159 

104 marker104 163.654 -0.058 

105 marker105 164.664 -0.021 

106 marker106 165.674 -0.014 

107 marker107 166.345 -0.043 

108 marker108 169.439 -0.228 

109 marker109 172.889 -0.048 

110 marker110 173.56 -0.009 

111 marker111 174.231 -0.023 

112 marker112 175.926 -0.012 

113 marker113 176.26 -0.007 

114 marker114 177.271 -0.028 

115 marker115 178.622 -0.019 

116 marker116 179.293 -0.014 

117 marker117 180.303 -0.014 

118 marker118 180.974 -0.023 

119 marker119 182.669 -0.023 

120 marker120 183.341 -0.009 

121 marker121 184.012 -0.033 

122 marker122 186.401 -0.05 

123 marker123 187.411 0.671 

124 marker124 188.083 -0.038 

125 marker125 190.823 -0.058 

126 marker126 191.833 -0.035 

127 marker127 193.528 -0.059 

128 marker128 195.223 2.046 

129 marker129 197.964 -0.118 

130 marker130 200.005 -0.043 

131 marker131 201.015 -0.014 

132 marker132 201.686 -0.028 

133 marker133 203.727 -0.043 

134 marker134 204.737 -0.021 
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135 marker135 205.747 0.662 

136 marker136 207.789 -0.043 

137 marker137 208.799 -0.05 

138 marker138 211.188 -0.067 

139 marker139 212.54 -0.028 

140 marker140 213.55 -0.014 

141 marker141 214.221 -0.038 

142 marker142 216.961 -0.019 

143 marker143 217.296 -0.005 

144 marker144 217.967 -0.023 

145 marker145 219.662 -0.137 

146 marker146 223.47 -0.109 

147 marker147 224.822 -0.038 

148 marker148 226.173 -0.038 

149 marker149 227.524 0.647 

150 marker150 229.914 0.584 

151 marker151 233.008 -0.11 

152 marker152 234.703 -0.097 

153 marker153 237.443 -0.058 

154 marker154 238.453 -0.105 

155 marker155 243.352 6.318 

156 marker156 247.16 0.51 

157 marker157 250.254 -0.065 

158 marker158 251.264 -0.021 

159 marker159 252.274 -0.021 

160 marker160 253.285 -0.089 

161 marker161 257.454 -0.119 

162 marker162 258.805 -0.028 

163 marker163 259.815 -0.028 

164 marker164 261.167 -0.057 

165 marker165 263.208 -0.087 

166 marker166 265.249 -0.072 

167 marker167 266.944 -0.047 

168 marker168 268.295 -0.047 

169 marker169 269.99 -0.084 

170 marker170 272.38 -0.067 

171 marker171 273.731 -0.038 

172 marker172 275.083 -0.009 

173 marker173 275.417 -0.009 

174 marker174 276.769 0.666 

175 marker175 277.779 -0.043 

176 marker176 279.82 -0.057 

177 marker177 281.171 -0.019 

178 marker178 281.843 -0.019 

179 marker179 283.194 -0.038 

180 marker180 284.545 -0.057 
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181 marker181 286.587 0.642 

182 marker182 288.282 -0.023 

183 marker183 288.953 -0.116 

184 marker184 296.883 10.939 

185 marker185 304.424 -0.281 

186 marker186 306.119 -0.084 

187 marker187 308.509 -0.102 

188 marker188 310.55 -0.028 

189 marker189 311.221 -0.048 

190 marker190 314.671 0.612 

191 marker191 316.366 -0.097 

192 marker192 319.106 -0.159 

193 marker193 321.847 -0.138 

194 marker194 324.236 -0.213 

195 marker195 328.405 0.621 

196 marker196 329.757 -0.038 

197 marker197 331.108 -0.009 

198 marker198 331.442 -0.019 

199 marker199 334.183 0.612 

200 marker200 336.224 
 

 



Tables  99 

Table 4.S2 The neighbourhood obtained by the lasso approach for the 30 markers on 

chromosomes 1H and 3H of the barley data. An ‘x’ symbol indicates that the 

corresponding row marker is strongly linked to the column marker. Markers are 

ordered so that both chromosomes are linearly structured, and meanwhile the 

translocation breakpoint is clearly displayed off-diagonal. 
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Supplementary material 

 

When εM1 = εM3 = 0 and εM2 = ε, rM1M2 = (1–2θ12)(1–2ε), rM2M3 = (1–2θ23)(1–2ε) and rM1M3 = 

(1–2θ12)(1–2θ23). 

Let a = 1–2θ12, b = 1–2θ23, x = 1–2ε. 

∵ 0 < θ12 < 0.5, ∴ 0 < a < 1 

∵ 0 < θ23 < 0.5, ∴ 0 < b < 1 

∵ 0 < ε < 0.5, ∴ 0 < x < 1 

|
2 21 1

M 1M 2 M 1M 3 M 2M 3
M 1M 2 M 3

M 1M 3 M 2M 3

r r r

r r
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2 2 2 2
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2 23 3

| 2 2 3 2 22 2

2 2 2 2

1 11
2 1 0

21 1

M 1M 2 M 3
a b a bd

x b x b x
dx a b a b

  
 

  
       

  
 

∴ |M 1M 2 M 3 is a monotonically increasing function of x.  

Considering that x is a monotonically decreasing function of ε, |M 1M 2 M 3  is therefore a 

monotonically decreasing function of ε.  
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When εM1 = εM3 = 0 and εM2 = ε, rM1M2 = (1–2θ12)(1–2ε), rM2M3 = (1–2θ23)(1–2ε) and rM1M3 = 

(1–2θ12)(1–2θ23). 

Let a = 1–2θ12, b = 1–2θ23, x = (1–2ε)
2
. 

∵ 0 < θ12 < 0.5, ∴ 0 < a < 1 

∵ 0 < θ23 < 0.5, ∴ 0 < b < 1 

∵ 0 < ε < 0.5, ∴ 0 < x < 1 

|
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Thus, |M 1M 2 M 3 is a monotonically decreasing function of x. Considering that x is a 

monotonically decreasing function of ε, |M 1M 2 M 3  is accordingly a monotonically increasing 

function of ε.  
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Chapter 5 

 

A comparative simulation study of the PC algorithm and the 

Metropolis-Hastings algorithm in constructing random and scale-free 

Bayesian networks 

 

 

Abstract 

 

Deciphering causal relationships from genetic and molecular phenotyping data sets 

has remained one of the central challenges in computational biology. Among existing 

approaches to the reconstruction of directed causal networks, Bayesian networks have 

proven to be promising both theoretically and practically. In particular, the PC 

algorithm and the Metropolis-Hastings algorithm, which are representatives of 

mainstream methods to the structure learning of Bayesian networks, are reported to 

have been successfully applied to the domain of biology. Most biological systems are 

considered to exist in the form of random network or scale-free network. The two 

types of networks are essentially different from each other in terms of node degree 

distribution. In view of these facts, here we compare the performance of the PC 

algorithm and the Metropolis-Hastings algorithm in constructing both random and 

scale-free Bayesian networks. Our simulation study shows that for either type of 

Bayesian network, the PC algorithm is superior to the M-H algorithm in terms of 

timeliness; the M-H algorithm is preferable to the PC algorithm when the 

completeness of reconstruction is emphasized; but when the fidelity of reconstruction 

is taken into account, the better one of the two algorithms varies from case to case. 

Moreover, whichever algorithm is adopted, larger sample sizes generally permit more 

accurate reconstructions, especially in regard to the completeness of the resulting 

networks.
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5.1  Introduction 

 

Constructing causal networks from genetic and molecular phenotyping data sets is 

still a major challenge in computational biology. Earlier approaches mainly resort to 

clustering and correlation analysis, which are rather straightforward techniques but 

with limited effectiveness. More specifically, clustering is able to uncover the 

modular topology of metabolic and protein interaction networks but cannot explore in 

depth the fine architecture of each module (Hanisch et al. 2002; Jiang and Singh 2010; 

Muff et al. 2005; Ravasz et al. 2002). The measures of correlation are known to not 

only confound direct and indirect associations but also provide no means to 

distinguish between cause and effect (Opgen-Rhein and Strimmer 2007). In particular, 

the most commonly used Pearson correlation coefficient applies rigorously only to 

linear associations with Gaussian noise (Numata et al. 2008).  

Over the past two decades, there have been considerable attempts to construct 

diverse biological networks using more advanced approaches, among which Bayesian 

networks (BNs) have proven to be promising for causal network inference (Ellis and 

Wong 2008; Friedman et al. 2000; Heckerman 1998; Margaritis 2003). Formally, a 

BN consists of two components: (1) a directed acyclic graph (DAG) that encodes a set 

of conditional independence assertions about the variables of interest; (2) a 

conditional probability distribution (CPD) assigned to each variable given its parents 

in the DAG. A BN essentially represents a factorization of a multivariate probability 

distribution, that is, it decomposes a joint probability distribution over multiple 

variables into a set of conditional and marginal distributions on low-dimensional 

subspaces. This forms the basis for efficient reasoning under uncertainty, whose core 

idea is to explore the dependence structure of variables to facilitate reasoning in 

multidimensional domains under probabilistic settings (Reusch and Temme 2013; 

Wang et al. 2002).  

Mainstream approaches to structure learning of BNs can be broadly divided into 

two categories: constraint-based search and score-based search. Constraint-based 

search is built on a well- organized set of conditional independence tests. It starts with 

a complete graph, and then deletes certain edges if the corresponding conditional 

independencies are detected from the training data. Representative algorithms of this 

category are the IC algorithm (Pearl and Verma 1995) and the PC algorithm (Spirtes 

et al. 1993). Score-based search benefits from research achievements in optimisation 

theory. It typically searches through a large model space with a heuristic strategy, and 

returns one or several most likely networks according to a scoring metric. Existing 

search strategies include greedy hill climbing, stochastic search such as Markov Chain 
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Monte Carlo (MCMC) and simulated annealing, other optimization methods such as 

genetic algorithms and ant colony optimization algorithms (Yuan and Malone 2013). 

Well-known scoring metrics are those based on information theory, such as Akaike 

information criterion (AIC) (Akaike 1998), Bayesian information criterion (BIC) 

(also known as minimum description length (MDL)) (Lam and Bacchus 1994; 

Rissanen 1978), normalized maximum likelihood (NML) (Silander et al. 2008) and 

mutual information test (MIT) (Campos 2006), and Bayesian scoring functions such 

as Bayesian Dirichlet (BD) (Heckerman et al. 1995) and its variants (K2, BDe and 

BDeu) (Buntine 1991; Cooper and Herskovits 1992; Heckerman et al. 1995).  

Among various methods for structure learning of BNs, the two most common 

ones that have been successfully applied to the reconstruction of biological networks 

are the PC algorithm (Gavai et al. 2009; Mansmann and Jurinovic 2011; 

Schmidberger et al. 2011) and the MCMC approach (Husmeier 2003; Ram and Chetty 

2009; Wu and Liu 2008; Zhou et al. 2004). In view of the promising expansion of the 

use of the two methods in systems biology, it becomes important for scientific 

researchers to better understand their relative strengths and weaknesses. Kalisch and 

Bühlmann (2007) evaluated the effectiveness of the PC algorithm in skeleton 

reconstruction of high-dimensional DAGs, and provided general guidance on 

parameter selection. Wu and Liu (2008) demonstrated MCMC had better accuracy 

and efficiency than greedy hill climbing search in the reconstruction of dynamic BNs. 

However, comparative evaluation of the PC algorithm and the MCMC approach has 

not yet been reported.  

To fill the gap, here we compare the performance of the PC algorithm and the 

Metropolis-Hastings (M-H) algorithm (Metropolis et al. 1953), a representative 

MCMC method, in reconstructing synthetic causal networks of different complexities. 

Our primary motivation is, by running comparative simulations we hope to answer the 

question: under what circumstances will one algorithm outperform the other? 

Moreover, we aim to provide an informative guide to parameter selection in the use of 

each method. Complex networks were initially modelled using random networks 

introduced by Edgar Gilbert, Paul Erdős and Alfréd Rényi (Erdos and Rényi 1960; 

Gilbert 1959). A few recent studies have shown that many real-world networks 

exhibit scale-free behaviour in terms of node degree distribution (Albert 2005; 

Barabasi and Albert 1999; Jeong et al. 2000). Nonetheless, it is still under debate 

whether a wide variety of biological systems should be presented in the form of 

random network or scale-free network (Khanin and Wit 2006). Considering this, our 

comparative simulations are implemented on both random and scale-free BNs. 

The rest of this chapter is organized as follows. Section 2 reviews the PC 

algorithm and the M-H algorithm. Section 3 describes the simulation settings. Results 

https://en.wikipedia.org/wiki/Edgar_Gilbert
https://en.wikipedia.org/wiki/Paul_Erd%C5%91s
https://en.wikipedia.org/wiki/Alfr%C3%A9d_R%C3%A9nyi
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of comprehensive comparison followed by detailed discussion are presented in section 

4. Finally, concluding remarks are drawn in section 5.  

 

5.2  Methods 

 

A BN is a DAG where the nodes {1, 2, …, n} denote random variables {X1, X2, …, Xn} 

and the edges represent dependencies between the variables. By definition each node 

is assigned with a CPD given its parents. The directed acyclic structure in 

combination with all associated CPDs encodes a decomposition of the joint 

probability distribution (JPD) over all variables. Let pa(Xi) be the parent nodes of Xi. 

According to the chain rule of probability, we have  

     1 1
,..., |

n

n i ii
P X X P X pa X


         (1) 

A major advantage of BN lies in the fact that reverse derivations of various CPDs 

from the JPD enable probabilistic inference, which is to answer probabilistic queries 

in the form of P(A|B), where A and B are disjoint subsets of X = {X1, X2, ..., Xn}. 

Real-world applications of probabilistic inference are, for example, to help clinicians 

diagnose diseases from symptoms and predict responses to treatments.  

 

5.2.1 The PC algorithm 

The PC algorithm is named after its inventors Peter Spirtes and Clark Glymour. It is 

designed to firstly construct an undirected network with conditional independence 

tests and then orient as many edges as possible according to certain orientation rules. 

It uses G
2
 test for conditional independence of discrete variables, and uses Fisher’s 

z-transformation of the sample partial correlation to test for zero partial correlation of 

sets of normally distributed random variables. Note that a major, but often neglected, 

problem of the PC algorithm is that it is generally order-dependent, in the sense that 

the output depends on the order in which the variables are given (Cano et al. 2008; 

Dash and Druzdzel 1999). For this reason, Colombo and Maathuis have made a 

modification to the first phase of the PC algorithm to address the issue of 

order-dependence involved in the determination of equivalent DAGs* (Colombo and 

Maathuis 2014).  

*Equivalent DAGs: Two DAGs are said equivalent or in the same equivalence class if 

they show alternative ways of describing the same set of conditional dependencies. 

Pearl and Verma (1995) proved that DAGs are equivalent if and only if they have the 
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same skeleton and the same set of v-structures (v-structure: two parent nodes 

converge on a child node). 

 

5.2.2 The M-H algorithm 

The M-H algorithm is a commonly used MCMC method for obtaining a sequence of 

random samples from a probability distribution for which direct sampling is difficult. 

In its application to BN structure learning, the state space of the resulting Markov 

chain consists of all plausible DAGs, whose stationary distribution is the desired 

posterior distribution. Statistical analysis on the Markov chain after burn-in will 

reveal general properties of the desired distribution, based on which one or several 

most likely DAGs can be returned as the result of structure learning. A detailed 

description of the M-H algorithm is given below. 

 

5.2.2.1 Searching strategy 

A Markov chain is a discrete random process holding the Markov property, which 

refers to the fact that the next state depends purely on the current state, i.e. the future 

is independent from the past given the present. An ergodic Markov chain will 

eventually converge to a stationary distribution, no matter which state the chain 

begins with. Let {M1, M2, …, Mm} denote the finite state space of a Markov chain and 

P(Ml|Mk) represents the transition probability of going from state Mk to state Ml. The 

mathematical expressions of the two aforementioned properties are given as Eq.2-4, 

where D is the observational data and t is the step counter. 

     1 | t l l k t kk
P M P M M P M              (2) 

    t l lP M P M                        (3) 

   | ( | ) |l l k kk
P M D P M M P M D           (4) 

     | | |l k l k l kP M M Q M M A M M            (5) 

 
   

   

| |
| min ,1

| |

l k l

l k

k l k

P M D Q M M
A M M

P M D Q M M

  
  

  
      (6) 

The M-H algorithm aims to generate a proper transition matrix, so that the Markov 

chain drawn accordingly can satisfy convergence (Eq.4). It defines P(Ml|Mk) as the 

product of two terms: a proposal probability Q(Ml|Mk) and an acceptance probability 

A(Ml|Mk) (Eq.5). It allows only three elementary proposal moves for DAGs: (1) 

deletion of an edge, (2) reversal of an edge, and (3) creation of a new edge. Note that 

either of the last two moves may lead to graphs that violate the acyclic constraint and 

https://en.wikipedia.org/wiki/Pseudo-random_number_sampling
https://en.wikipedia.org/wiki/Probability_distribution
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therefore have to be discarded. The neighbourhood of a DAG is restricted to all valid 

DAGs that can be reached from the given DAG with one of the three elementary 

moves. Q(Ml|Mk) is then given by the reciprocal of the neighbourhood size of Mk, as 

each member within the neighbourhood has an equal chance of occurring in a random 

walk. A(Ml|Mk) is calculated by Eq.6, which has proven to be a sufficient condition for 

Eq.4.  

 

5.2.2.2 Bayesian scoring metrics 

Bayesian scoring metrics define the best candidate DAG M
*
 as Eq.7, in which the 

posterior probability P(Mk|D) can be computed by Eq.8, where P(M) is the prior 

probability and P(D|Mk) is the likelihood. Since all candidate DAGs are typically 

assigned with equal prior probabilities and the term P(D) is identical, P(D|Mk) is 

always calculated instead of P(Mk|D) in practice.  

   * | max |k
k

P M D P M D           (7) 

 
   

 

|
|

k k

k

P D M P M
P M D

P D
         (8) 

On the basis of four assumptions: multinomial samples, Dirichlet parameters, 

parameter independence and parameter modularity, Heckerman et al. (1995) proposed 

the Bayesian Dirichlet (BD) score (Eq.9), 
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           (9) 

where ijkN  is the number of times the event {Xi = k, pa(Xi) = j} occurs in D, ir  and 

iq  are the numbers of possible values for Xi and pa(Xi), ijk  denotes the 

hyper-parameter of Dirichlet distribution, 
1

 



ir

ij ijkk
 and 

1


ir

ij ijkk
N N . 

Considering that the specification of ijk  for all i, j and k is formidable in practice, 

Cooper and Herskovits (1992) suggests a simple uninformative assignment, i.e. 

1ijk  . This is referred to as the K2 score. In addition, Heckerman et al. (1995) also 

suggested another uninformative assignment over ijk  by specifying an equivalent 

sample size N   and a prior probability distribution for each variable given its parents 

(Eq.10).  

  ,ijk i iN P X k pa X j             (10) 
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This metrics is called the BDe score since it possesses the property of likelihood 

equivalence, i.e. P(D|Mk) = P(D|Ml) if the two DAGs Mk and Ml are equivalent. 

Buntine (1991) proposed a particular BDe score, named the BDeu score, where 

    , 1i i i iP X k pa X j q r     and 1N   , that is,  1ijk i iq r   . 

 

5.2.2.3 Convergence diagnosis and structural feature selection 

In the application of the M-H algorithm, it is critical to assess the convergence of the 

resulting Markov chains. Only then can one draw a safe conclusion on the desired 

posterior distribution. A common way for effective diagnosis is to implement multiple 

MCMC runs from overdispersed starting points, and then track a same convergence 

indicator for all the chains. Convergence is achieved when the tracks are well mixed. 

Werhli et al. (2006) found that a burn-in period of 20,000 steps followed by a 

sampling period of 80,000 steps, keeping samples in intervals of 200 MCMC steps, 

was usually sufficient.  

It is generally not straightforward to select the most likely one or several DAGs 

from the posterior distribution of candidate models. This is because the number of 

DAGs has super-exponential growth of the number of variables, which implies the 

posterior distribution over all possible DAGs is rather scattered and few DAGs can be 

considered significant. Moreover, as mentioned previously, the most practical scoring 

metrics, BDe score, will assign the same score to equivalent DAGs. Therefore, it is 

advisable to consider the posterior distribution over equivalence classes instead of 

DAGs. A further way to make the posterior distribution less diffuse and more 

informative is to map the high-dimensional space of equivalence classes into the 

low-dimensional space of structural features. In this study, we extracted the 

remarkable high-frequency structural features to construct high-confidence (but 

incomplete) networks. Note that we only focused on a particular type of structural 

features, i.e. the parent-child relations. The posterior probability of a feature f is given 

by Eq.11, where f(Mk) = 1 if the network Mk satisfies the feature f, otherwise f(Mk) = 

0.  

     
1

| |
m

k kk
P f D f M P M D


         (11) 
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5.3  Simulation setup 

 

5.3.1 Random networks vs. scale-free networks 

Two random network models have been commonly used in multiple disciplines. In 

the model introduced by Gilbert (1959), every possible edge occurs independently 

with equal probability. In the model characterised by Erdos and Rényi (1960), all 

possible random networks on a given set of variables with a fixed number of edges 

are equally likely. In comparison, Gilbert’s model is more widely used in practice, 

due in part to the ease of analysis allowed by the independence of the edges.  

It has recently been shown that the node connectivity of many large-scale 

networks follows a power-law distribution (Barabasi and Albert 1999). Such networks, 

unlike random networks, lack typical node degrees and are thus referred to as 

scale-free networks (Albert 2005). Scale-free networks possess some intriguing 

properties. First, they belong to the class of small-world networks, in which most 

nodes are not neighbours of one another but can be reached from every other through 

a short path. Second, though low-degree nodes are the majority in scale-free networks, 

nodes whose degrees are much higher than average, so-called hubs, exist as well. 

Third, scale-free networks are robust to random breakdowns, i.e. random node 

disruptions do not usually result in a major loss of connectivity. These properties are 

also possessed by various biological networks. Accordingly, there is a view that many 

biological networks are scale-free (Albert 2005; Jeong et al. 2000).  

However, scientific researchers still debate on whether certain biological 

networks are indeed scale-free, since the scale-free assumption does not hold for a 

number of published datasets of various biological interactions (Khanin and Wit 

2006). In view of this, in the present study we implement comparative simulations of 

the PC algorithm and the M-H algorithm on both random and scale-free BNs. 

 

5.3.2 Synthetic data 

We created (1) six different random BNs by function randomDAG in R package pcalg 

and (2) six different scale-free BNs by the Barabási-Albert (B-A) algorithm in Matlab. 

Each BN can be characterized by a two-dimensional vector (a, b), where a is the 

number of nodes and b is the number of edges in the graph. As shown in Figure 5.1 

and 2, the six random BNs and the six scale-free BNs can be, respectively, sorted with 

respect to their complexities: (30, 30), (30, 55), (40, 40), (40, 75), (50, 50) and (50, 

95). To facilitate analysis, for every BN, a Beta distribution was randomly assigned to 
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each variable as its predetermined prior probability, or, conditional probability given 

the values of all its parents. That is, all variables were assumed to be binary.  

In addition to network complexity, sample size of the observational data is 

another vital factor that should be taken into account in the evaluation of BN structure 

learning algorithms. We therefore investigated for each BN six different sample sizes, 

including 200, 350, 500, 1000, 2000 and 5000. Further, for every sample size, three 

replication datasets were generated in order to improve simulation accuracy.  

 

5.3.3 Implementation and evaluation of the structure learning algorithms 

In the use of the PC algorithm, the significance level of conditional independence 

tests was set at 0.01 and 0.05, respectively, for each set of data. The implementation 

of the PC algorithm is available in R package pcalg. In the use of the M-H algorithm, 

four independent Markov chains, each with length of 100,000 steps, were generated 

for every dataset. And for each Markov chain, the number of edges in the BN learnt at 

each step was tracked as the indicator of convergence. According to the mixture of the 

four tracks (see examples in Figure 5.3), the very first 20,000 steps were considered 

as the burn-in period and thus were discarded. We calculated the marginal posterior 

probability of every single edge, and then eliminated those edges whose probabilities 

were lower than a certain threshold. However, to our knowledge, there is no existing 

study reporting a golden rule for selecting such a threshold. Thus we evaluated the 

outcomes on the basis of a wide range of thresholds, which step between 0.1 and 0.9 

by 0.1, to find out the most favourable threshold value. Open-source code of the M-H 

algorithm is available in Matlab package Bayes Net Toolbox. 

We exploited a well-established criterion to evaluate and compare the simulation 

results. Each edge obtained after the structural feature selection mentioned previously 

was classified into one of the following four categories: (1) true positive (TP), i.e. the 

edge appears in both the true network and the selected high-frequency structural 

features; (2) false positive (FP), i.e. the edge appears in the selected high-frequency 

structural features but not in the true network; (3) true negative (TN), i.e. the edge 

occurs in neither the true network nor the selected high-frequency structural features; 

(4) false negative (FN), i.e. the edge occurs in the true network but not in the selected 

high-frequency structural features. After the events of TP, FP, TN and FN were 

counted, true positive rate (TPR), false positive rate (FPR) and precision can be 

computed as follows: 

# # #
, , .

# # # # # #

TP FP TP
TPR FPR Precision

TP FN FP TN TP FP
  

  
  

TPR, also known as sensitivity or recall in machine learning, measures completeness 

of the reconstruction. FPR, also known as the fall-out, is mathematically equal to 

https://en.wikipedia.org/wiki/Information_retrieval#Fall-out
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the type I error rate. Precision measures the fidelity of the reconstruction. Apparently, 

a good graphical modelling algorithm should lead to high TPR and precision but low 

FPR. Here we used the ROC curve (a graphical plot of TPR vs. FPR) and 

precision-recall curve to compare (1) performance of different algorithms under the 

same simulation setting and (2) performance of the same algorithm under different 

simulation settings.  

 

5.4  Results 

 

To give a comprehensive representation of the simulation results, we first display the 

ROC and precision-recall curves obtained for each algorithm on every synthetic BN. 

Based on these diagrams, we are able to find out the optimal parameter setting for 

each algorithm. Afterwards, we compare the two algorithms with the selected 

parameters to see if one algorithm outperforms the other under certain circumstances.  

 

5.4.1 Simulation results of the PC algorithm 

Figure 5.4 shows, for every two networks that are of the same type and are composed 

of the same number of nodes but different numbers of edges, the ROC curves 

obtained by the PC algorithm at two significance levels, i.e. 0.01 and 0.05. Each line 

connects six data points that correspond to the six sample sizes in increasing order. 

We found that for any particular network and a given significance level, TPR grew 

successively as the sample size increased. For any particular network and a given 

sample size, higher TPR and FPR were obtained at a loose significance level, i.e. 0.05 

rather than 0.01. Moreover, for any two networks that are of the same type and with 

the same number of nodes, given sample size and the significance level, the more 

complex the network (i.e. the higher the number of edges), the lower the TPR.  

Figure 5.5 shows the precision-recall curves in the same layout as Figure 5.4. It 

is worth noting that for any particular network and a given sample size, higher recall 

but lower precision were obtained at a loose significance level, i.e. 0.05 rather than 

0.01. Nonetheless, compared with recall, precision was much more sensitive to 

changes in the significance level. Thus we consider that a stricter significance level, 

e.g. 0.01 instead of 0.05, is preferable in the practical application of the PC algorithm.  

 

 

 

https://en.wikipedia.org/wiki/Type_I_error
http://dict.cn/It%20is%20worthwhile%20to%20note%20that%20both%20suffered%20persecution_2E
http://dict.cn/It%20is%20worthwhile%20to%20note%20that%20both%20suffered%20persecution_2E
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5.4.2 Simulation results of the M-H algorithm 

The six coloured lines in each subgraph of Figure 5.6 and 7 display the ROC curves 

obtained by the M-H algorithm for a given synthetic network and six different sample 

sizes. Specifically, the nine data points involved in each curve correspond to 

increasing threshold of structural feature selection, which steps between 0.1 and 0.9 

by 0.1. From the diagrams we concluded that, for any particular network and a given 

sample size, both TPR and FPR increased as the threshold decreased. And generally 

speaking, when the threshold reduced from 0.9 to 0.5, TPR grew rapidly while FPR 

maintained at very low levels (< 0.02); when the threshold further reduced from 0.5 to 

0.1, TPR increased at a slow rate while FPR had successive growth. This indicates 

that thresholds above 0.5 lead to loss of TPR and thus should be considered too 

stringent, whereas thresholds below 0.5 result in increase of FPR and thus should be 

considered too lax. Consequently, 0.5 would be suggested as the optimal threshold 

value for structural feature selection on networks obtained by the M-H algorithm. In 

each subgraph of Figure 5.6 and 7, markers of different shapes are used to highlight 

the six data points that were obtained with fixed threshold 0.5 but different sample 

sizes. It is clear that for any particular network, FPR remained very low while TPR 

dropped remarkably along with the gradual reduction of sample size.  

Figure 5.8 and 9 show the precision-recall curves in the same layout as Figure 

5.6 and 7. For any particular network and a given sample size, when the threshold of 

structural feature selection decreased from 0.9 to 0.5, recall grew rapidly and 

precision remained at high levels; when the threshold further decreased from 0.5 to 

0.1, recall did not increase too much while precision dropped significantly. This also 

implies that 0.5 would be the optimal threshold for structural feature selection as it 

offered the best trade-off between precision and recall. Again, in each subgraph of 

Figure 5.8 and 9, markers of different shapes are used to highlight the six data points 

that were obtained with fixed threshold 0.5 but different sample sizes. From the 

locations of the markers we can tell that, for any particular network, precision kept up 

high levels and recall increased dramatically along with the gradual increase in 

sample size.  

 

5.4.3 Comparison between performance of the two algorithms 

We concluded above that no matter random BNs or scale-free BNs are targeted, the 

lower significance level for conditional independence tests, say 0.01 instead of 0.05, 

is preferred in the use of the PC algorithm; and the median threshold value of 0.5 is 

optimal for structural feature selection following the use of the M-H algorithm. Below, 

we will make further comparison between the two algorithms given the suggested 

parameters. 
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Figure 5.10 and 11 present the precision-recall curves drawn for every synthetic 

network with increasing sample size. For any particular network and a given sample 

size, recall of the M-H algorithm was higher than that of the PC algorithm, which 

indicated the former outperformed the latter with respect to the completeness of 

reconstruction. As for the fidelity of reconstruction, it is hard to draw a 

straightforward conclusion since there was no clear pattern of precision over all 

subgraphs.  

 

5.5  Discussion 

 

Through the simulation we have noticed that, the M-H algorithm was much more 

time-consuming than the PC-algorithm. Moreover, the number of network nodes, 

rather than the number of network edges or the sample size, was the most critical 

factor affecting the running time of the M-H algorithm. Nonetheless, it has been 

reported that the bottleneck of applying the M-H algorithm to BN structure learning in 

practice is the memory requirement rather than the time requirement (Tamada et al. 

2011). This is because the M-H algorithm needs to calculate the inverse of an 

adjacency matrix, such calculation typically has high demand for memory. In addition, 

during its learning process the M-H algorithm needs to store the intermediate optimal 

structures whose number increases super-exponentially with the number of network 

nodes. Consequently, the M-H algorithm is currently only applicable to networks of 

small or moderate sizes (with up to a few tens of nodes) on a typical PC. For plant 

species, the crop populations typically contain hundreds to thousands of individuals. 

In view of this and also the performance limit of the M-H algorithm, we therefore 

restricted the scale of simulations to 30~50 nodes in combination with 200~5000 

samples.  

 

5.6  Conclusion 

 

In summary, we conclude that in the reconstruction of both random and scale-free 

BNs, the significance level for conditional independence tests involved in the PC 

algorithm is preferred at 0.01 rather than 0.05; and the optimal threshold for structural 

feature selection following the use of the M-H algorithm is 0.05. When the 
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completeness of reconstruction is emphasized, the M-H algorithm is definitely 

preferable to the PC algorithm; but when the fidelity of reconstruction is taken into 

account, the better one of the two algorithms varies from case to case. In terms of 

timeliness, the PC algorithm is considered superior to the M-H algorithm, since the 

former is much less time-consuming than the latter. Last but not least, whichever 

algorithm is adopted, larger sample sizes generally permit more accurate 

reconstructions, especially in regard to the completeness of the resulting networks.  
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Figure 5.1 The six synthetic random BNs sorted according to their complexities. 

Network complexity is characterized by a two-dimensional vector (a, b), where a is 

the number of nodes and b is the number of edges in the graph.  

         

(30, 30)                               (30, 55) 

         

(40, 40)                               (40, 75) 

         

(50, 50)                               (50, 95) 
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Figure 5.2 The six synthetic scale-free BNs sorted according to their complexities. 

Network complexity is characterized by a two-dimensional vector (a, b), where a is 

the number of nodes and b is the number of edges in the graph. 
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Figure 5.6 ROC curves obtained by the M-H algorithm for the six synthetic random 

BNs. A uniform colour scheme is applied to all subgraphs to discriminate the curves 

obtained for a given network with six different sample sizes. Each curve is a smooth 

connection of nine points obtained at different thresholds for structural feature 

selection (i.e. 0.1 by 0.1 to 0.9). In particular, the TPR and FPR values obtained at the 

threshold of 0.5 are marked on each curve (using a square, cross, dot, diamond, plus 

or triangle marker) for emphasis.  
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Figure 5.7 ROC curves obtained by the M-H algorithm for the six synthetic scale-free 

BNs. A uniform colour scheme is applied to all subgraphs to discriminate the curves 

obtained for a given network with six different sample sizes. Each curve is a smooth 

connection of nine points obtained at different thresholds for structural feature 

selection (i.e. 0.1 by 0.1 to 0.9). In particular, the TPR and FPR values obtained at the 

threshold of 0.5 are marked on each curve (using a square, cross, dot, diamond, plus 

or triangle marker) for emphasis. 
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Figure 5.8 Precision-recall curves by the M-H algorithm for the six synthetic random 

BNs. A uniform colour scheme is applied to all subgraphs to discriminate the curves 

obtained for a given network with six different sample sizes. Every curve is a smooth 

connection of nine points obtained at different thresholds for structural feature 

selection (i.e. 0.1 by 0.1 to 0.9). In particular, the precision and TPR values obtained 

at the threshold of 0.5 are marked on each curve (using a square, cross, dot, diamond, 

plus or triangle marker) for emphasis. 
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Figure 5.9 Precision-recall curves by the M-H algorithm for the six synthetic 

scale-free BNs. A uniform colour scheme is applied to all subgraphs to discriminate 

the curves obtained for a given network with six different sample sizes. Every curve is 

a smooth connection of nine points obtained at different thresholds for structural 

feature selection (i.e. 0.1 by 0.1 to 0.9). In particular, the precision and TPR values 

obtained at the threshold of 0.5 are marked on each curve (using a square, cross, dot, 

diamond, plus or triangle marker) for emphasis.  
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Figure 5.10 The comparison of precision-recall curves obtained by the M-H 

algorithm (the threshold of structural feature selection set at 0.5) and the PC algorithm 

(the significance level for conditional independence test set at 0.01) for the six 

synthetic random BNs. In each subgraph, the plus, square, dot, triangle, cross and 

diamond markers on each curve represent the precision and TPR values obtained with 

sample sizes 200, 350, 500, 1000, 2000 and 5000, respectively. 
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Figure 5.11 The comparison of precision-recall curves obtained by the M-H 

algorithm (the threshold of structural feature selection set at 0.5) and the PC algorithm 

(the significance level for conditional independence test set at 0.01) for the six 

synthetic scale-free BNs. In each subgraph, the plus, square, dot, triangle, cross and 

diamond markers on each curve represent the precision and TPR values obtained with 

sample sizes 200, 350, 500, 1000, 2000 and 5000, respectively. 
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Chapter 6 

 

General discussion 

 

 

The aim of this thesis is to explore the potential of probabilistic graphical models 

(PGMs) in systems biology and quantitative genetics. To achieve this goal, we 

conducted in-depth investigations on two categories of applications, i.e. 

gene-phenotype network reconstruction (Chapter 2 and 3) and linkage map 

reconstruction (Chapter 4). Furthermore, a comparative simulation study of two 

representative algorithms for structure learning of PGMs indicated that 

comprehensive evaluation of approaches to reconstructing PGMs would be rather 

complicated. This is due to the fact that a range of interactive factors, such as the size 

and complexity of the true networks, the completeness and fidelity of the 

reconstructed networks, as well as the running time of programs, have to be taken into 

account (Chapter 5). In this final chapter, we will further elaborate and discuss a few 

concepts, theories and findings related to the content of the thesis.  

 

6.1  A theoretical summary of PGMs 

 

The formalism of PGMs provides a unifying framework for capturing complex 

dependencies among random variables, and building large-scale multivariate 

statistical models (Wainwright and Jordan 2008)[1]. PGMs commonly seen in 

practical applications are categorized into two major types: Bayesian networks (BNs) 

and Markov random fields (MRFs).  

 

6.1.1 Bayesian networks (BNs) 

 

BNs, also known as Bayes nets or belief networks, are directed acyclic graphs (DAGs) 

that represent probabilistic causation. In contrast to deterministic causation (i.e. the 

https://en.wikipedia.org/wiki/Causal_determinism
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occurrence of event A inevitably leads to event B), probabilistic causation 

characterizes cause-effect (causal) relations from the perspective of probability theory: 

the occurrence of event A increases the probability of event B. In statistics, it is 

generally accepted that observational studies, without further assumptions, can give 

hints but can never establish cause and effect, because associations do not logically 

imply probabilistic causation (Glasser 2008; Pearl 2009; Ward 2009). For instance, 

the observation that smokers are far more susceptible to lung cancer cannot establish 

smoking as a cause of increased cancer rate, since there may exist a certain genetic 

defect that causes both lung cancer and a craving for nicotine.  

A BN allows a natural factorization of the joint probability distribution (JPD) 

over all variables in the graph into a set of conditional probability distributions 

(CPDs). It can be expressed mathematically as 
1 1

( ,..., ) ( | ( ))
n

n i ii
P X X P X pa X


 , 

where ( )ipa X  denotes the set of parent variables of iX . The factorization further 

implies a set of conditional independence relations in the form of 

~ ( ) | ( )i i iX de X pa X , where ~ ( )ide X  denotes the set of non-descendants of iX . 

In words, each variable in a BN is conditionally independent of its non-descendants 

given its parent variables. Nonetheless, a BN is a non-unique representation of a given 

set of conditional independence relations. There are often many BNs that represent 

different causal structures but are said to be Markov equivalent (or, belong to the 

same Markov equivalence class) in the sense that they encode the same conditional 

independencies. For simplicity's sake, let’s take triplets of variables {A, B, C} as an 

example. Three different causal structures ACB, ACB and ACB are 

Markov equivalent since they entail the same set of relationships: (1) A and C are 

unconditionally dependent, as are C and B; (2) A and B are unconditionally dependent 

but conditionally independent given C. In contrast, the v-structure ACB, where C 

has converging arrows from A and B and there is no direct link between A and B, does 

not belong to the same Markov equivalence class because it reveals partially different 

relationships: (1) A and C are unconditionally dependent, as are C and B; (2) A and B 

are unconditionally independent but conditionally dependent given C. More generally, 

it has been proved that two BNs are Markov equivalent if and only if they have the 

same skeleton (the skeleton of a BN refers to the undirected graph resulted from 

removing the directions of all the edges in the network) and the same v-structures 

(Verma and Pearl 1991). Considering that only v-structures can be distinguished by 

the observed patterns of conditional independence and dependence, it is concluded 

that BNs between, but not within, Markov equivalence classes are distinguishable 

from one another. That is, causal inference based on conditional independence and 
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dependence facts can actually identify a distinct Markov equivalence class instead of 

a distinct BN.  

 

6.1.2 Markov random fields (MRFs) 

 

A MRF, also known as a Markov network or undirected graphical model, represents 

conditional independence relations among a set of variables via graph separation as 

follows: for three subsets of variables A, B and C, we say C separates A from B (or 

equivalently, A and B are conditionally independent given C) if every path starting 

from a node in A and terminating in a node in B passes at least one node in C. This is 

known as the global Markov property (for clarity, hereafter we restrict ourselves to 

Markov properties on MRFs, which are generally different from Markov properties on 

DAGs (Lauritzen 1996)). In a MRF, the smallest set of variables that makes a variable 

X conditionally independent of all other variables is called X’s Markov blanket. One 

can show that, a node’s Markov blanket is the set consisting of its immediate 

neighbors. This is known as the local Markov property, from which we can further 

deduce that any two non-adjacent variables are conditionally independent given all 

other variables. This is known as the pairwise Markov property.  

Given the three Markov properties mentioned above, it is straightforward to 

unveil the conditional independencies encoded by a MRF. However, parameterization 

of MRFs is not as intuitive as that of BNs, since the parameters of MRFs are less 

interpretable and less modular due to their lack of probabilistic connotation (Koller et 

al. 2007; Murphy 2012). Specifically, one cannot use the chain rule of probability to 

factorize a JPD, because there is no topological ordering associated with a MRF 

(Murphy 2012). Instead of associating a CPD with each node, the practical 

parameterization method for a MRF is to associate a factor (also referred to as 

potential function) with each clique in the graph. The JPD is then defined as the 

normalized product of factors over all the maximal cliques. We will not go further 

into details on this aspect, as in this thesis we focus on the topological reconstruction 

of PGMs. For those readers interested in parametric inference in MRFs, please refer 

to (Koller et al. 2007). 

It is obvious that for any MRF and any distribution over the variables, global 

Markov property implies local Markov property which in turn implies pairwise 

Markov property. What is less obvious, but nonetheless true, is that the three Markov 

properties are equivalent for a positive distribution (Koller and Friedman 2009; 

Murphy 2012). The importance of revealing the equivalence among the three Markov 

properties is that it is usually easier to empirically assess pairwise conditional 

independencies, which are commonly exploited to construct MRFs.  

https://en.wikipedia.org/wiki/Conditional_independence
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A particular type of MRFs, namely Gaussian graphical models (GGMs) or 

Gaussian Markov random fields (GMRFs), models a multivariate normal distribution 

in the form of an undirected graph, where nodes denote the variables and edges 

correspond to the non-zero entries in the precision matrix (i.e. the inverse covariance 

matrix) of the multivariate normal distribution. From a statistical point of view, the 

precision matrix indicates sophisticated and subtle relationships between variables: if 

an entry in the precision matrix is zero, then it means the two variables are 

conditionally independent given the other variables; furthermore, it means graphically 

there is no edge connecting the two nodes in the corresponding GGM. This transforms 

the problem of learning a GGM from observational data into the problem of 

estimating coefficients in the precision matrix, or alternatively, into the problem of 

estimating pairwise conditional independence relations among variables.  

 

6.1.3 BNs vs. MRFs 

 

Which type of PGMs has more “expressive power”, BNs or MRFs? The answer is 

that BNs are neither more nor less expressive than MRFs, as some conditional 

independence relations can be perfectly modeled by the former but not the latter, and 

vice versa. To be more specific, BNs are directed and acyclic, so that they are suitable 

for representing decomposable probabilistic causation; whereas MRFs are undirected, 

so that they are particular useful in modeling cases where the interactions between 

variables are symmetrical (e.g. associations) and one thus cannot naturally assign 

directions to edges in the graphs.  

 

6.2  Proper evaluation of structure learning algorithms of PGMs 

 

When developing and applying approaches to PGMs-based network reconstruction, it 

is of overriding importance to: (1) determine whether there exists a structure in the 

research problem for the algorithms to learn, since the answer can give an indication 

of how learnable the problem is; (2) test multiple structure leaning algorithms against 

the chosen performance measures, as this can tell which algorithms are worth tuning 

and which algorithms should not be considered further.  

The theoretically ideal way to evaluate and compare the performance of different 

structure learning algorithms (as we have adopted in Chapter 5) is to generate 

synthetic data from an existing network and subsequently retrieve the network by 

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
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applying the algorithms to the data. A major advantage of this approach is that each of 

the resulting networks obtained by the algorithms can be compared with the gold 

standard, i.e. the benchmark network used for synthetic data generation. But a critical 

element of this approach is the choice of performance measures that quantify the 

distance between an obtained network and the benchmark network: the smaller the 

distance, the better the algorithm performs in network reconstruction (de Jongh and 

Druzdzel 2009). The commonly used performance measures are: (1) recall, which 

represents the ratio of true positives to actual positives (i.e. the sum of true positives 

and false negatives); (2) precision, which represents the ratio of true positives to 

predicted positives (i.e. the sum of true positives and false positives). To put it in 

another way, recall measures the completeness whereas precision measures the 

fidelity of the reconstruction. In practice, it is easy to achieve either high recall or 

high precision, but rarely both simultaneously (see examples shown in Figure 5.8 and 

5.9). For a given benchmark network, conservative algorithms will return structures 

with higher precision but lower recall; while liberal algorithms will return structures 

with higher recall but lower precision. For a given structure learning algorithm, higher 

recall but lower precision are obtained for denser networks; while higher precision but 

lower recall are obtained for sparser networks (Oyen et al. 2013). This shows that the 

optimal tradeoff between recall and precision really depends on the nature of the 

problem domain and what one aims to achieve.  

As indicated above, the practical performance of a structure learning algorithm is 

subject to the application-specific circumstance, namely the topology of the 

benchmark/target network. The topology of a network mainly refers to two aspects: 

the size and the connectivity of a network. By size we simply mean the number of 

nodes in the network; with connectivity, we are talking about how easy or difficult it 

is for any two nodes to form a connection. These two factors together play a large part 

in how the network is analyzed and interpreted. Think about the modeling of a small 

rural community where residents are familiar with each other vs. the modeling of an 

urban metropolis where people usually know each other through complicated 

interpersonal relationships. Notably, a number of networks in nature, including some 

biological networks, exhibit a high degree of modularity. Networks with high 

modularity typically have dense connections between nodes within the same module 

but sparse connections between nodes belonging to different modules. Such 

heterogeneous connectivity makes structure learning algorithms that are based on 

global optimization suffer from a resolution limit, since it is hard to elaborate 

relatively small modules (Lancichinetti and Fortunato 2011; Nicolini and Bifone 

2016). Given this, it is worthwhile to further expand our study in Chapter 5 to 

investigate particularly the resolution limits of the two BN structure learning 

algorithms in the reconstruction of scale-free networks. 
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Moreover, a few nontrivial points need to be stressed. When causality come into 

play, as in the reconstruction of (multilayer) causal phenotype networks (Chapter 2 

and 3), the orientation of edges becomes extremely important. Contrariwise, when 

establishing causal relations is not the essence of the task, one can be more relaxed 

about edge orientations (de Jongh and Druzdzel 2009). When real-time performance 

of an algorithm is of importance to the research problem (though fairly rare in the 

domain of biology), the runtime of the program has to be taken into account as well.  

 

6.3  Practical problems in application of PGMs to systems biology 

 

Systems biology is an inter-disciplinary field that integrates biology, computer 

science and engineering to decipher complex biological systems using holistic 

approaches (Calvert and Fujimura 2009). It is based on the understanding that the 

functions of a whole living organism are more than the sum of its parts (Hurlbut 

2006). Accordingly, it requires the ability to obtain, integrate and analyze complex 

data sets from multiple sources.  

The rapid evolution of high-throughput technologies, such as nucleotide 

sequencing, DNA-chips and protein mass spectrometry, have enabled extensive 

generation of multi-omics data. But, these data are typically heterogeneous and 

distributed in various databases, since they come from studies driven by different 

objectives and conducted on different platforms. This raises challenges in data access 

and integration. Although the acquisition of publicly available sources has been 

largely facilitated thanks to the current data explosion, discovering the appropriate 

data is often not straightforward due to the diversity of data types and formats. 

Besides, experimental biologists are still struggling to provide complete and 

non-redundant information collected from varied data sources. For instance, 

Pathguide has reported by 2013 a list of 547 biological pathways and molecular 

interaction related resources. These resources are not simply complementary, but 

often define similar signaling and metabolic pathways with different boundaries and 

components (Gomez-Cabrero et al. 2014).  

Challenges beyond data access and integration lie in the integrative analysis of 

multi-omics data. A number of factors including data quality, the complexity of the 

target system and the characteristic of the technology employed come together to 

make integrative analysis not an easy job. It is notable that most of the systematic 

approaches developed so far are pipelines of analysis that apply several methods to 

carry out a sequence of tasks (Bersanelli et al. 2016). An example is the 

http://www.sciencedirect.com/science/article/pii/0015056874900232
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genotype-phenotype modeling scheme we have proposed in Chapter 3. 

Encouragingly, pipelines presented for addressing a particular problem can also be 

used, with minor modifications, to solve another problem, possibly with other types of 

omics (Bersanelli et al. 2016). For instance, although in Chapter 3 we have only 

demonstrated that the proposed scheme is effective in inferring directed associations 

among metabolites and sensory traits given relevant QTLs, this scheme should also be 

applicable to the modeling of general hierarchical networks that represent multilevel 

phenotypic responses to DNA variations.  

Identifying associations among entities within and across heterogeneous data 

sources is of great importance in most studies, as it is a straightforward and effective 

way to “glue” together pieces of information so as to provide a coherent view of the 

whole system. To establish multilevel associations, earlier studies often employed 

distance-based or correlation-based metrics, while recent studies tend to adopt more 

sophisticated modeling techniques such as PGMs. Whichever method is used, the 

conflicts between data measures must be handled beforehand. This includes 

missing-data imputation, data scaling, discretization, normalization, standardization, 

and etc. Nonetheless, even if data pre-processing has been done properly, it is 

noteworthy but often-overlooked that very few associations across heterogeneous data 

sets are usually revealed, compared to the great number of associations identified 

within the same data set (see, for example, Fig.4 in Chapter 3).  

A rich body of literature supports the idea that associations in observational data 

can provide insights into causal relations among the measured variables (Blair et al. 

2012; Pearl 2009; Shipley 2016). Nonetheless, it has been seen that causal relations 

are sensitive to subtle association patterns, which may be driven by other factors (e.g. 

environmental and experimental design factors) that do not reflect the underlying 

biological nature (Blair et al. 2012). In addition, graphical methods for causal 

inference from observational data, especially from observed associations, are 

admittedly subject to the existing theoretical constraints. As elaborated in Chapter 5 

and Section 6.1, constructing BNs on the basis of the BDe metric or conditional 

independence facts can end up with a distinct Markov equivalence class rather than a 

distinct BN. Also, Chapter 2 has demonstrated that inferring causal relations from 

observed associations requires introducing extra known causal factors to the measured 

variables. For instance, causal inference in correlated traits (or equivalently, the 

construction of directed phenotype networks) is based upon logic that involves the 

underlying QTLs. The existing related algorithms request at least one unique QTL for 

each trait studied, though such prerequisite is hardly being met in reality. In 

comparison, the QPSO algorithm presented in Chapter 2 is of more practical 

significance since it has a more realistic prerequisite – some traits can come without 

QTL. More encouragingly, as indicated in Chapter 2 and 3, the QPSO algorithm can 
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be embedded into a bottom-up strategy to systematically model multilevel phenotypic 

responses to DNA variations. 

Agreement between a mathematical or statistical model and the true underlying 

biology is vital to any practical study. It should be recognized that the extent to which 

a PGM derived from observational data can recapitulate the architecture of an 

underlying biological process is not yet well understood (Blair et al. 2012). On the 

one hand, observational data are often collected at single time points; on the other 

hand, biological processes typically display time varying dynamics. This conflict 

makes the interpretation of the reconstructed model challenging. Dynamic Bayesian 

networks (DBNs) are the time-generalization of BNs and relate variables to each other 

over discrete time points. Their major advantages lie in the ability to deal with 

multivariate time series data and permit presentation of cyclic causal relationships. 

Here, however, we will not discuss practical issues related to the use of DBNs, since 

analyzing time series data is beyond the scope of this thesis. For those who are 

interested in the computational power of DBNs, please refer to Ghahramani (1998), 

Murphy (2002) and Brulé (2016) for details. 

 

6.4  Practical problems in application of PGMs to linkage mapping 

 

Chapter 4 shows that PGMs are of great potential in the construction of linkage maps 

as they can achieve marker filtering and ordering simultaneously. By filtering, we 

mainly refer to the filter of markers with high genotyping error rates. Thanks to the 

natural structure of genetic markers, the topologies of PGMs reconstructed from sets 

of marker data are often nearly linear. But, for markers that are genetically very 

similar, the obtained PGMs expand horizontally instead of vertically, since there is no 

obvious clue to the linearity of those markers (see example in Figure 4.3b). For this 

reason, it is often the case that the ordering of markers by means of PGMs is 

susceptible to ambiguities in chromosomal regions with high marker density. To 

evade such ambiguities, we have proposed in Chapter 4 a frequentist diagonal 

ordering algorithm, which serves as a complement to PGMs for fine-ordering of 

markers. Please note that after the use of PGMs followed by a frequentist diagonal 

ordering, markers that are pulled aside from the resulting linear linkage map belong to 

one of the following two categories: first, they are genetically close to one another; 

second, they have high genotyping error rates (see example in Figure 4.4).  
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6.5  Tips on the use of PGMs in the reconstruction of biological 

networks and linkage maps 

 

1) As mentioned previously, PGMs of different natures apply in different 

circumstances: MRFs are ideal for identifying and representing conditional 

independence among measured variables; BNs are suitable for modeling of 

decomposable probabilistic causation.  

2) Various algorithms have been presented for the modeling of PGMs. Each algorithm 

has its own pros and cons. The selection of the appropriate algorithm depends on the 

nature (e.g. size and complexity) of the target system and also the requirement (e.g. 

accuracy and completeness) of the reconstruction (see Chapter 5). 

3) Most of the methods proposed for integrative analysis of multi-omics data employ 

a sequence of procedures. These methods, with minor changes to certain internal 

procedures, are often applicable to other analogous problems.  

4) Networks learnt from multi-omics data typically show hierarchical structures. 

Notably, however, the interactions inferred from heterogeneous data are generally far 

less than those inferred from homogeneous data (see Chapter 3).  

5) Detected associations may be further directed by means of introducing external 

causal factors to the measured variables. For instance, causal inference in correlated 

traits (or equivalently, the construction of directed phenotype networks) is based upon 

logic that involves underlying QTLs. Furthermore, the proposition of the QPSO 

algorithm indicates that the external causal factors are not necessarily required for 

each and every variable to fulfil the causal inference (see Chapter 2).  

6) Causal inference is vulnerable to external influences such as experimental and 

analytical design factors. The inferred causal relations should be interpreted carefully, 

since some of them might be pseudo and some of them are simplified, but incomplete, 

representations of more complex causal flows (see Chapter 3).  

7) In addition to biological network reconstruction, PGMs can also construct 

high-quality linkage maps in the face of data perturbations caused by genotyping 

errors and reciprocal translocations (see Chapter 4). 



140  Chapter 6 

 

References 

 

Bersanelli M, Mosca E, Remondini D, Giampieri E, Sala C, Castellani G, Milanesi L 

(2016) Methods for the integration of multi-omics data: mathematical aspects. BMC 

bioinformatics 17:167 

Blair RH, Kliebenstein DJ, Churchill GA (2012) What can causal networks tell us 

about metabolic pathways? PLoS Comput Biol 8:e1002458 

Brulé J (2016) The Computational Power of Dynamic Bayesian Networks. arXiv 

preprint arXiv:160306125 

Calvert J, Fujimura JH (2009) Calculating life? EMBO reports 10:S46-S49 

de Jongh M, Druzdzel MJ (2009) A comparison of structural distance measures for 

causal Bayesian network models. Recent Advances in Intelligent Information Systems, 

Challenging Problems of Science, Computer Science series:443-456 

Ghahramani Z (1998) Learning dynamic Bayesian networks.  Adaptive processing 

of sequences and data structures. Springer, pp 168-197 

Glasser SP (2008) Essentials of clinical research. Springer 

Gomez-Cabrero D, Abugessaisa I, Maier D, Teschendorff A, Merkenschlager M, 

Gisel A, Ballestar E, Bongcam-Rudloff E, Conesa A, Tegnér J (2014) Data integration 

in the era of omics: current and future challenges. BMC systems biology 8:1 

Hurlbut WB (2006) Framing the future: embryonic stem cells, ethics and the 

emerging era of developmental biology. Pediatric research 59:4R-12R 

Koller D, Friedman N (2009) Probabilistic graphical models: principles and 

techniques. MIT press 

Koller D, Friedman N, Getoor L, Taskar B (2007) 2 Graphical Models in a Nutshell. 

Statistical Relational Learning:13 

Lancichinetti A, Fortunato S (2011) Limits of modularity maximization in community 

detection. Physical review E 84:066122 

Lauritzen SL (1996) Graphical models. Clarendon Press 

Murphy KP (2002) Dynamic bayesian networks: representation, inference and 

learning. University of California, Berkeley 

Murphy KP (2012) Machine learning: a probabilistic perspective. MIT press 



References  141 

 

Nicolini C, Bifone A (2016) Modular structure of brain functional networks: breaking 

the resolution limit by Surprise. Scientific reports 6 

Oyen D, Niculescu-Mizil A, Ostroff R, Stewart A, Clark VP (2013) Controlling the 

precision-recall tradeoff in differential dependency network analysis. arXiv preprint 

arXiv:13072611 

Pearl J (2009) Causality. Cambridge university press 

Shipley B (2016) Cause and Correlation in Biology: A User's Guide to Path Analysis, 

Structural Equations and Causal Inference with R. Cambridge University Press 

Verma TS, Pearl J (1991) Equivalence and synthesis of causal models.  Proceedings 

of Sixth Conference on Uncertainty in Artijicial Intelligence, pp 220-227 

Wainwright MJ, Jordan MI (2008) Graphical models, exponential families, and 

variational inference. Foundations and Trends® in Machine Learning 1:1-305 

Ward AC (2009) The role of causal criteria in causal inferences: Bradford Hill's. 

Epidemiologic Perspectives & Innovations 6:2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



142  Chapter 6 

 

 



  143 

 

Summary 

 

Probabilistic graphical models (PGMs) offer a conceptual architecture where 

biological and mathematical objects can be expressed with a common, intuitive 

formalism. This facilitates the joint development of statistical and computational tools 

for quantitative analysis of biological data. Over the last few decades, procedures 

based on well-understood principles for constructing PGMs from observational and 

experimental data have been studied extensively, and they thus form a model-based 

methodology for analysis and discovery. In this thesis, we further explore the potential 

of this methodology in systems biology and quantitative genetics, and illustrate the 

capabilities of our proposed approaches by several applications to both real and 

simulated omics data.  

In quantitative genetics, we partition phenotypic variation into heritable, genetic, 

and non-heritable, environmental, parts. In molecular genetics, we identify 

chromosomal regions that drive genetic variation: quantitative trait loci (QTLs). In 

systems genetics, we would like to answer the question of whether relations between 

multiple phenotypic traits can be organized within wholly or partially directed 

network structures. Directed edges in those networks can be interpreted as causal 

relationships, causality meaning that the consequences of interventions are predictable: 

phenotypic interventions in upstream traits, i.e. traits occurring early in causal chains, 

will produce changes in downstream traits. The effect of a QTL allele can be 

considered to represent a genetic intervention on the phenotypic network. Various 

methods have been proposed for statistical reconstruction of causal phenotypic 

networks exploiting previously identified QTLs. In chapter 2, we present a novel 

heuristic search algorithm, namely the QTL+phenotype supervised orientation (QPSO) 

algorithm, to infer causal relationships between phenotypic traits. Our algorithm 

shows good performance in the common, but so far uncovered case, where some traits 

come without QTLs. Therefore, our algorithm is especially attractive for applications 

involving expensive phenotypes, like metabolites, where relatively few genotypes can 

be measured and population size is limited.  

Standard QTL mapping typically models phenotypic variations observable in 

nature in relation to genetic variation in gene expression, regardless of multiple 

intermediate-level biological variations. In chapter 3, we present an approach 

integrating Gaussian graphical modeling (GGM) and causal inference for 

simultaneous modeling of multilevel biological responses to DNA variations. More 

specifically, for ripe tomato fruits, the dependencies of 24 sensory traits on 29 

http://www.leibniz-hki.de/en/quantitative-analysis-of-biological-processes.html
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metabolites and the dependencies of all the sensory and metabolic traits further on 21 

QTLs were investigated by three GGM approaches including: (i) lasso-based 

neighborhood selection in combination with a stability approach to regularization 

selection, (ii) the PC-skeleton algorithm and (iii) the Lasso in combination with 

stability selection, and then followed by the QPSO algorithm. The inferred 

dependency network which, though not essentially representing biological pathways, 

suggests how the effects of allele substitutions propagate through multilevel 

phenotypes. Such simultaneous study of the underlying genetic architecture and 

multifactorial interactions is expected to enhance the prediction and manipulation of 

complex traits. And it is applicable to a range of population structures, including 

offspring populations from crosses between inbred parents and outbred parents, 

association panels and natural populations.  

In chapter 4, we report a novel method for linkage map construction using 

probabilistic graphical models. It has been shown that linkage map construction can 

be hampered by the presence of genotyping errors and chromosomal rearrangements 

such as inversions and translocations. Our proposed method is proven, both 

theoretically and practically, to be effective in filtering out markers that contain 

genotyping errors. In particular, it carries out marker filtering and ordering 

simultaneously, and is therefore superior to the standard post-hoc filtering using 

nearest-neighbour stress. Furthermore, we demonstrate empirically that the proposed 

method offers a promising solution to genetic map construction in the case of a 

reciprocal translocation.  

In the domain of PGMs, Bayesian networks (BNs) have proven, both 

theoretically and practically, to be a promising tool for the reconstruction of causal 

networks. In particular, the PC algorithm and the Metropolis-Hastings algorithm, 

which are representatives of mainstream methods to BN structure learning, are 

reported to have been successfully applied to the field of biology. In view of the fact 

that most biological systems exist in the form of random network or scale-free 

network, in chapter 5 we compare the performance of the two algorithms in 

constructing both random and scale-free BNs. Our simulation study shows that for 

either type of BN, the PC algorithm is superior to the M-H algorithm in terms of 

timeliness; the M-H algorithm is preferable to the PC algorithm when the 

completeness of reconstruction is emphasized; but when the fidelity of reconstruction 

is taken into account, the better one of the two algorithms varies from case to case. 

Moreover, whichever algorithm is adopted, larger sample sizes generally permit more 

accurate reconstructions, especially in regard to the completeness of the resulting 

networks. 

Finally, chapter 6 presents a further elaboration and discussion of the key 

concepts and results involved in this thesis.  
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