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Abstract 

Tenghe, A.M.M. (2017). Milk progesterone measures to improve genomic selection 

for fertility in dairy cows. Joint PhD thesis, between Swedish University of 

Agricultural Sciences, Sweden and Wageningen University, the Netherlands 

 

Improved reproductive performance has a substantial benefit for the overall 

profitability of dairy cattle farming by decreasing insemination and veterinary 

treatment costs, shortening calving intervals, and lowering the rate of involuntary 

culling. Unfortunately, the low heritability of classical fertility traits derived from 

calving and insemination data makes genetic improvement by traditional animal 

breeding slow. Therefore, there is an interest in finding novel measures of fertility 

that have a higher heritability or using genomic information to aid genetic selection 

for fertility. The overall objective of this thesis was to explore the use of milk 

progesterone (P4) records and genomic information to improve selection for fertility 

in dairy cows. In a first step, the use of in-line milk progesterone records to define 

endocrine fertility traits was investigated, and genetic parameters estimated. 

Several defined endocrine fertility traits were heritable, and showed a reasonable 

repeatability. Also, the genetic correlation of milk production traits with endocrine 

fertility traits were considerably lower than the correlations of milk production with 

classical fertility traits. In the next step 17 quantitative trait loci (QTL) associated with 

endocrine fertility traits, were identified on Bos taurus autosomes (BTA) 2, 3, 8, 12, 

15, 17, 23, and 25 in a genome-wide association study with single nucleotide 

polymorphisms. Further, fine-mapping of target regions on BTA 2 and 3, identified 

several associated variants and potential candidate genes underlying endocrine 

fertility traits. Subsequently, the optimal use of endocrine fertility traits in genomic 

evaluations was investigated; using empirical and theoretical predictions for single-

trait models, I showed that endocrine fertility traits have more predictive ability than 

classical fertility traits. The accuracy of genomic prediction was also substantially 

improved when endocrine and classical fertility traits were combined in multi-trait 

genomic prediction. Finally, using deterministic predictions, the potential accuracy 

of multi-trait genomic selection when combining a cow training population 

measured for the endocrine trait commencement of luteal activity (C-LA), with a 

training population of bulls with daughter observations for a classical fertility trait 

was investigated. Results showed that for prediction of fertility, there is no benefit 

of investing in a cow training population when the breeding goal is based on classical 

fertility traits. However, when considering a more biological breeding goal for 

fertility like C-LA, accuracy is substantially improved when endocrine traits are 

available from a limited number of farms. 
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1.1 Importance of fertility 

 Fertility is one of the non-yield traits which is of great economic importance in dairy 

herds. Poor fertility increases costs due to fertility treatments, multiple 

inseminations, prolongs calving interval, and leads to a high replacement rate due to 

involuntary culling (Boichard, 1990; Dekkers, 1991; González-Recio et al., 2004). The 

economic consequences of poor fertility have been widely studied. Inchaisri et al., 

(2010) studied the economic consequences of non-optimal fertility of dairy cows 

under Dutch conditions, where non-optimal fertility was defined as “average” or 

“poor” reproductive performance, using different fertility traits. They reported mean 

net economic losses of €34 and €231 per cow per year for “average” and “poor” 

reproductive performance respectively, compared to a “good” fertility. The losses 

were mainly caused by decreased milk production and increased number of non-

pregnant cows, especially in the situation of poor fertility.  Also, a net cost of a one 

day increase in calving interval was €0.57 per cow per day for “average” fertility,  and 

€0.70 per cow per day for “poor” fertility (Inchaisri et al., 2010). Other studies have 

reported costs of one day extra for of €0.06 to €1.10 for days open  (de Vries and 

Conlin, 2003; Groenendaal et al., 2004; Meadows et al., 2005) and €2.07 to €2.95 for 

calving interval (Plaizier et al., 1997). This economic importance is one of the reasons 

why there is an interest in genetic improvement of fertility. 

 

 

1.2 Fertility measures used in genetic evaluation 

Overall fertility can be described and measured by several different traits. For 

example, it is useful to distinguish among traits which are affected by the cow 

(female fertility), and traits affected by the sire mated to the cow (male fertility), and 

traits affected by both. Traits like age at first puberty in heifers, estrous expression, 

and the time between calving and regular ovarian activity or first insemination 

measure female fertility, whereas traits like sperm count and semen quality measure 

male fertility. Traits that measure the results of insemination and conception rate 

are influenced by both male and female fertility, and a combination of them. They 

include non-return rate, number of inseminations per conception or service period, 

percentage of cows bred that are pregnant (conception rate), the period between 

calving and confirmed conception (days open), and pregnancy rate. This thesis 

focuses on female fertility. Female fertility is made up of different underlying traits 

(Figure 1.1).  The traits used in genetic evaluation of female fertility can be 

categorized into two aspects of fertility. The first reflects the ability of the cow to 

return to cyclicity after calving, e.g., the interval from calving to first service. The 
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second reflects the ability of the cow to conceive following insemination, become 

pregnant, and maintain pregnancy, e.g., the time between the first and last 

insemination, and non-return rate after service. Therefore, because female fertility 

can be measured by different indicators, it is important to identify the optimal 

measures to facilitate genetic improvement. 

 

The classical fertility traits derived from insemination and calving data which are 

used in genetic evaluation of fertility  have the disadvantage that they have a low 

heritability (Jansen, 1985; Berry et al., 2003), which makes genetic improvement 

difficult. Heritability estimates for classical fertility traits generally range from 0.01 

to 0.10 (Hou et al., 2009; Sun et al., 2009; Berry et al., 2012). The low heritability may 

be explained by the fact that classical fertility traits are highly influenced by farm 

management decisions and poor recording practices (Hayes et al., 1992; Campos et 

al., 1994; Marti and Funk, 1994). For example, a planned extended CI will delay CFS, 

not because a cow has a late start of cyclic activity, but because of the farmer’s 

decision on when to inseminate. Such management practices are justified, but 

results in large residual variance and low heritability estimates. The low heritability 

sparks the interest for alternative approaches that might yield more accurate 

information for genetic evaluations of dairy cows’ fertility. For instance, fertility 

measures that more directly reflect the cows’ own reproductive physiology like 

endocrine fertility traits that are derived from progesterone concentration levels in 

milk, or the use of DNA information. 

 



1 General introduction 

 

 

15 

 

 
 

Figure 1.1 Schematic chart of different components of female fertility in dairy cattle (in 
double boxes), most widely used underlying phenotype measures associated with each 
component (in solid boxes), and source of data used to derive the phenotypes (in dashed 
boxes). This thesis investigated the traits in the orange boxes. C-LA = Interval from calving to 
commencement of luteal activity; PLA = Proportion of samples in luteal activity; LA60 = 
Occurrence of luteal activity during first 60 days in milk; LPL = Luteal phase length; ILI = Length 
of inter-luteal interval (ILI); IOI = Length of inter-ovulatory interval; CFHA = interval from 
calving to first high activity; CFS = interval from calving to first service 
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1.3 Progesterone defined fertility traits 

Understanding the estrous cycle is important for managing and improving 

reproductive performance in dairy cattle. The estrous cycle is divided into two 

phases which are characterized by changes on the ovary (Figure 1.2).  There is the 

follicular phase during which the pre-ovulatory follicle on the ovary, which contains 

the oocyte (or egg), produces estrogen. When estrogen concentrations are high 

enough, a surge of luteinizing hormone is released, initiating ovulation. The luteal 

phase begins after ovulation, when the follicle transforms into a corpus luteum 

which produces progesterone to maintain pregnancy (Senger, 2003). Early 

resumption of ovarian cyclicity postpartum facilitates a greater number of estrus 

cycles before insemination which, on average, increases the likelihood of subsequent 

conception (Darwash et al., 1997). Studies have shown that there is a high 

correlation between progesterone (P4) concentration in blood and milk (e.g., r = 

0.88; Dobson and Fitzpatrick, 1975), hence, P4 analysis of milk samples can be used 

to study postpartum ovarian activity in dairy cows. A period of low P4 levels usually 

occurs after calving, when a cow exhibits anestrous (Lamming and Bulman, 1976). 

This period is followed by an increase in P4 levels, which is indicative of the first 

postpartum ovulation. The cavity of the ovulated follicle is gradually filled with 

progesterone-secreting luteal cells, which forms the corpus luteum. From about the 

fifth day after ovulation, the corpus luteum dominates the estrous cycle during the 

luteal phase with high P4 levels for about 14 days. After that, unless the cow 

becomes pregnant, the corpus luteum degenerates (luteolysis), and a new ovulation 

can occur. If the cow becomes pregnant, the corpus luteum is maintained during the 

pregnancy (Ball and Peters, 2004). 

 

Progesterone and overall fertility of the dairy cow have been shown to be connected 

in several ways. Low probability of embryo survival was shown to be associated with 

both low and excessive P4 levels 5 to 7 days after insemination, which indicates that 

an optimum in P4 level is required for embryo survival after insemination (Stronge 

et al., 2005). In a study,  repeat breeding heifers  (i.e., heifers that fail to conceive 

from 3 or more regularly spaced services in the absence of detectable abnormalities) 

tended to have higher basal P4 concentrations at estrus, a late P4 rise in early luteal 

phase and low luteal concentrations of P4 compared to virgin heifers (Båge et al., 

2002). In addition, increased basal P4 levels at insemination have been associated 

with increased probability of repeat-breeding for cows and higher return rate at 

insemination (Waldmann et al., 2001).  The ovarian activity of a cow after calving 

also affects overall fertility. For example, early onset of estrous cyclicity after calving 

has been shown to increase probability of an early insemination after calving, 
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shorten the interval from calving to conception, increase conception rate and reduce 

the number of services per conception (Darwash et al., 1997).  

 

 

Figure 1.2 Stages within the follicular and luteal phases in association with respective 
changes in circulating concentrations of estrogen and progesterone during the bovine 
estrous cycle. Adapted from P.L. Senger Pathways to pregnancy and parturition Current 
Conceptions, Inc., Pullman, WA 
 

 

1.4 Genomic regions associated to endocrine fertility traits 

Several genome-wide association studies have attempted to locate genomic regions 

associated with reproductive performance in dairy cattle, see the cattle QTL 

(quantitative trait loci) database for an overview  (Hu et al., 2016).  To date, 81,653 

QTL have been catalogued in cattle, for 521 traits of which 8,969 QTL are for fertility 

traits (http://www.animalgenome.org; 2016). For CFS, QTL have been reported on 

chromosomes 4, 7, 9, 13, 20, 23, and 25 (Druet et al., 2008; Sahana et al., 2010; 

Schulman et al., 2011; Höglund et al., 2014, 2015). Most QTL studies for fertility have 

been based on classical fertility traits, with few studies performed with endocrine 

fertility traits. In a genome-wide association study with 50,000 single nucleotide 

polymorphisms (SNP), Berry et al., (2012)reported QTL regions associated to C-LA on 

chromosomes 2 and 21 and these regions have been associated with reproductive 

performance in other studies (Huang et al., 2010; Sahana et al., 2010; Schulman et 
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al., 2011). Also, most of the QTL studies used low density (e.g., 50,000) SNP panels 

which do not allow for precision mapping of quantitative trait loci. The use of 

genome sequence data for association studies has been enabled by advances in next 

generation sequencing techniques which have led to sequencing numerous animals 

in cattle, e.g., projects like the 1000 Bull Genome Consortium (Daetwyler et al., 

2014). It is expected that associations with endocrine fertility traits can be targeted 

to smaller chromosomal regions with sequence compared to smaller genetic marker 

panels like 50,000 SNP markers. 

 

 

1.5 Genomic selection for fertility 

Genomic selection is a breeding tool that uses SNP markers spread across the 

genome to predict genomic breeding values for individuals (Meuwissen et al., 2001; 

Hayes et al., 2009). Genomic selection has become the standard for dairy cattle 

breeding in most countries, because it increases the potential genetic gain by up to 

80% due to reduced generation interval (Schaeffer, 2006). Two steps are required to 

perform genomic selection. The first step entails genotyping and phenotyping a set 

of animals to form the training population. The phenotypes and genotypes of the 

training population are then used to obtain prediction equations. In the second step, 

the prediction equations are used with genotypes of evaluation animals (e.g., 

selection candidates), to predict their genomic breeding values. The selection 

candidates usually are juveniles, and their genomic breeding values are more 

accurate than when estimated with traditional breeding tools that rely on parent 

average information (Meuwissen et al., 2001). The accuracy of genomic selection 

depends several factors including the number of animals in the training population, 

the heritability of the trait, and the genetic architecture of the trait, in particular the 

number of loci affecting the trait and distribution of their effects (Daetwyler et al., 

2008; Meuwissen, 2009). An important feature of genomic selection which makes it 

interesting to apply to expensive or difficult to measure traits like endocrine fertility 

traits is that the traits do not have to be recorded on a routine scale and on a large 

number of daughters for each selection candidate. With a training population of 

limited size, genomic selection was shown as a promising tool for starting selection 

for scarcely recorded or difficult to measure traits (Calus et al., 2013).  
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1.6 This thesis 

The main objective of this thesis was to explore the use of milk P4 records and 

genomic information to improve selection for fertility in dairy cows. This main 

objective was divided into two sub-objectives. The first sub-objective investigated 

the use of in-line milk P4 records to define endocrine fertility traits and identify 

genomic regions associated to the defined traits, using SNP markers and whole 

genome sequence variants. The second sub-objective aimed to determine the 

optimal use of endocrine fertility traits in genomic evaluations by investigating the 

impact of different phenotyping strategies on the accuracy of predicting genomic 

breeding values for fertility. 

 

In chapter 2 of this thesis, the use of in-line recorded milk progesterone levels to 

define endocrine fertility traits was investigated, genetic parameters were estimated 

and genetic correlations of the endocrine traits with classical fertility and milk 

production traits were estimated. In chapter 3, genomic regions associated to 

endocrine fertility traits were identified by performing a genome-wide association 

study with 85,485 SNP, and targeted QTL regions were fine-mapped using imputed 

sequence variants. Chapter 4 investigated the added value in terms of accuracy, of 

using endocrine traits along with classical fertility traits in genomic prediction of 

fertility, by performing single-trait and multi-trait genomic predictions. The aims of 

chapter 5 were: a) to investigate the potential accuracy of different scenarios when 

combining a cow training population measured for an endocrine trait with a training 

population of bulls with daughter observations for a classical trait for multi-trait 

genomic prediction of fertility, by using a deterministic prediction equation within 

and between populations, and b) to investigate recording strategies that optimally 

use the Herd Navigator for genomic prediction, in terms of, the number of farms, 

and recording period for endocrine fertility traits. 
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Abstract 

The aim of this study was to define endocrine fertility traits from in-line milk 

progesterone (P4) records and to estimate genetic parameters for these traits. 

Correlations of classical fertility (calving interval and calving to first service) and milk 

production traits with endocrine fertility traits were also estimated. In-line milk P4 

records (n = 160,952) collected from June 2009 through November 2013 for 2,273 

lactations of 1,561 Holstein-Friesian cows in 12 commercial herds in the Netherlands 

were analyzed for (the log of) the number of days from calving till commencement 

of luteal activity (lnC-LA), proportion of samples between 25 and 60 days in milk with 

luteal activity (PLA), presence or absence of luteal activity for a cow between 25 and 

60 days in milk, interval from commencement of luteal activity to first service 

(CLAFS), first luteal phase length, length of first inter-luteal interval, and length of 

first inter-ovulatory interval. Milk P4 records were sampled on average every two 

days. Genetic parameters were estimated using a mixed linear animal model. 

Heritability estimates (± SE) of endocrine fertility traits were 0.12 ± 0.05 for lnC-LA, 

0.12 ± 0.05 for PLA, and 0.11 ± 0.06 for CLAFS, and their repeatability estimates were 

0.29 ± 0.04, 0.21 ± 0.04 and 0.15 ± 0.06 respectively. The genetic correlation of lnC 

LA with PLA was -0.91 ± 0.06, and -0.56 ± 0.25 with CLAFS. The genetic correlations 

of lnC-LA were 0.26 ± 0.33 with calving interval and 0.37 ± 0.21 with calving to first 

service. Genetic correlations of the milk production traits with lnC-LA ranged from 

0.04 to 0.18 and 0.07 to 0.65 with classical fertility traits. The phenotypic correlations 

of all endocrine fertility traits with milk production traits were close to zero (0.01 to 

0.07). This study shows that in-line P4 records can be used to define and explore 

several heritable endocrine fertility traits in dairy cows, and might help in selection 

for improved fertility.  

 

Key words: dairy cow, fertility, in-line progesterone, heritability  
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2.1 Introduction 

Fertility is an important component of herd production efficiency because each 

additional estrus cycle that does not result in a planned pregnancy adds to the cost 

of dairy farming. The negative impact of fertility on production efficiency is often 

reflected in increased number of inseminations per conception, higher involuntary 

herd replacement, high cost of veterinary intervention and longer calving intervals. 

In addition to these negative effects, subfertility can affect the rate of genetic gain 

in other traits of economic importance.  

 

Genetically improving fertility by selection with classical traits like interval from 

calving to first service (CFS), calving interval (CInt), or days open is complicated by 

the low heritability (h2) of these traits (Jansen, 1985; Berry et al., 2003). These low 

heritabilities (h2 ˂ 0.1) may be explained by the fact that classical fertility traits are 

highly influenced by farm management decisions and poor recording practices 

(Hayes et al., 1992; Campos et al., 1994; Marti and Funk, 1994). For instance, a 

planned extended CInt will delay CFS not because a cow has a late start of cyclic 

activity, but because of the farmer’s decision on when to inseminate, which results 

in large residual variance and low heritability estimates. Further indications that 

commercial farm management and recording might affect heritability estimates for 

classical fertility traits is the fact that larger heritability estimates (h2 = 0.13, for days 

open and CFS) have been estimated from records collected on an experimental farm, 

under controlled management (Pryce et al., 1997). This low heritability of classical 

fertility traits makes it difficult to discriminate fertile genotypes at the cow level and 

consequently makes selection less effective.  

 

Endocrine fertility traits have been suggested as alternative indicators for fertility in 

dairy cows because they more directly reflect a cow’s physiology (Bulman and 

Lamming, 1978b; Lamming and Darwash, 1998; Darwash et al., 1999). For example, 

the interval from calving to first ovulation as determined by progesterone (P4) levels 

in milk could be used as a direct indicator of a cow’s ability to return to luteal activity 

after calving, instead of an indirect indicator like CFS. Several studies have revealed 

that endocrine fertility traits yield higher heritability estimates than classical fertility 

traits. Notably, for interval from calving to commencement of luteal activity (C-LA), 

heritability estimates of 0.16 – 0.28 have been found, which is larger than for classical 

fertility traits (Darwash et al., 1997a; Veerkamp et al., 1998; Petersson et al., 2007). 

Furthermore, examination of phenotypic correlation of C-LA with classical fertility 

traits revealed that early re-establishment of cyclic activity in post-partum cows 
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increases the probability of an early insemination after calving, shortens the interval 

from calving to conception, increases conception rate, and reduces the number of 

services per conception (Darwash et al., 1997b). These results further suggest that 

early re-establishment of cyclic activity is an important prerequisite for high fertility. 

In addition to C-LA, Darwash et al. (1997a) equally confirmed that milk P4 profiles 

could provide several objective heritable endocrine fertility traits. For example, 

corpus luteum competence and inter-luteal interval (ILI) were highly correlated with 

conception rate. Similarly, (Petersson et al., 2006) showed that endocrine fertility 

traits have moderate repeatability (0.14 to 0.16), suggesting more influence by the 

cow itself compared with classical fertility traits.  

 

Although milk P4 levels have been widely accepted as valid indicators of fertility in 

dairy cows (Bulman and Lamming, 1978b; Lamming and Darwash, 1998; Royal et al., 

2002a), their application in routine genetic evaluation schemes has been constrained 

by the high cost associated with collecting these measures in sufficient number of 

samples per cow. Until recently, methods to measure milk P4 level were labor 

intensive. They often entailed manually taking several milk samples per cow, 

analyzing and recording the results. However, P4 level measuring technology has 

advanced to allow in-line systems to instantly measure milk P4 level (Friggens et al., 

2008). In    these systems, milk is automatically sampled; P4 level measured, and 

results recorded. Hence, more animals can be sampled at a lower cost, making it 

possible to have sufficient endocrine fertility traits for use in routine genetic 

evaluations. To use endocrine fertility traits from in-line milk P4 records in genetic 

improvement of fertility, the first step will be to examine whether these traits have 

sufficient genetic variation. Moreover, it will be important to know the correlation 

of in-line endocrine fertility traits with other traits included in the selection index 

before use in genetic improvement. To the best of our knowledge, no study has 

attempted to characterize heritable endocrine fertility traits in dairy cows from in-

line milk P4 records.   

 

The aim of this study was to define endocrine fertility traits from in-line milk 

progesterone records, estimate genetic parameters for these traits and their genetic 

correlations with classical fertility and milk production traits. 
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2.2 Materials and Methods 

 

2.2.1 In-line milk progesterone records and filtering criteria 

Milk P4 records (n = 226,188) collected from June 2009 through November 2013 

were available for 2,514 Holstein-Friesian cows from 12 commercial dairy herds in 

the Netherlands. Milk sampling, measuring and recording of P4 level was performed 

by the Herd NavigatorTM. (HN, DeLaval Intl, Tumba, Sweden). The HN is a 

management tool for dairy herds, which samples and analyzes a number of milk 

constituents automatically during milking. One function of the HN is to monitor 

reproductive performance of cows by sampling and analyzing milk P4 level. This 

function is based on a bio-model that controls automatic in-line sampling, measuring 

and recording of milk P4 level at varying intervals during a cows’ estrus cycle 

(Friggens et al., 2008). Progesterone record files from each herd consisted of four 

variables: 1) herd number, 2) cow identification, 3) sampling date and time, and 4) 

sample value (P4 level in ng/ml). These records were accompanied by corresponding 

data files with information on calving dates, parity and data files with insemination 

dates. Linking of P4 records to calving data resulted in 3,648 lactations of 2,340 cows 

with 213,877 P4 records. In total, 5% P4 records and 7% of cows were edited out 

after linking, because their corresponding calving information was not available. 

Most cows were sampled from 27 days in milk (DIM) to 176 DIM, with a mean 

sampling duration of 149 days. Milk P4 samples were taken on average every 2 days, 

with 25 percent of samples taken at an interval of less than 1 day, and 75 percent at 

an interval of less than 4 days.  

 

Two sets of filtering criteria (FC) were applied to P4 records: herd level FC and 

lactation level FC. At the herd level, two criteria were applied. The management tool 

is recent and most herds installed the tool at a certain date when not all sampled 

cows were at the start of their lactation, therefore a lactation was retained if the 

interval from calving to start of herd P4 recording was ≤ 25 days. Similarly, because 

P4 recording ended at different times in each herd, a lactation was retained if the 

interval from calving to end of herd P4 recording was ≥ 60 days. At the lactation level, 

to reduce sampling variation due to difference in start of P4 recording per lactation, 

two criteria were applied: 1) P4 samples taken before 25 DIM in a lactation were 

excluded, and 2) lactations for which P4 recording started after 35 DIM were 

excluded. After data filtering, 160,952 (75%) P4 records of 2,353 (65%) lactations for 

1,630 (70%) cows were retained. Data editing, filtering, and trait definition were 

carried out in R (R Core Team, 2013). The largest data loss was at herd level filtering. 
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The number of P4 records, lactations and cows retained after each filtering criterion 

are shown in Table 2.1. 

 

Table 2.1 Number of progesterone (P4) records, lactations (Lact), and cows retained by 

filtering   criteria (FC). 
 

Criteria1 P4 % P4 Lact % Lact Cows % Cows 

Start Data 213,877 100 3,648 100 2,340 100 

Herd FC 171,804 80 2,489 68 1,708 73 

Lactation FC 160,952 75 2,353 65 1,630 70 
 

1Herd FC = exclude lactations with interval from calving to start of P4 recording > 25 

days and lactations with interval from calving to end of P4 recording < 60 days; 

Lactation FC = exclude P4 records taken before 25 days in milk and lactations with 

start of P4 recording > 35 days in milk 

 

2.2.2 Defining endocrine fertility traits 

For each lactation, the following endocrine fertility traits were defined (Figure 2.1). 

 

Commencement of luteal activity (C-LA). C-LA refers to the interval 

from calving to start of luteal activity. A threshold of 5 ng/ml was used as indication 

for luteal activity. Commencement of luteal activity (indicator I, Figure 2.1) was 

defined as the number of days between day of calving and first day on which milk P4 

level was elevated (≥ 5 ng/ml).   

 

Commencement of luteal activity to first service (CLAFS). 

CLAFS refers to the interval from the initiation of luteal activity to first service 

(indicator II, Figure 2.1), and was measured from the first day of elevated P4 level (≥ 

5 ng/ml), fitting the luteal activity criteria, to day of first service. This trait is not 

strictly endocrine, but a hybrid trait as it is defined from both P4 and insemination 

records. 

 

First luteal phase length (LPL). After ovulation, the period during which 

the corpus luteum secretes progesterone, measuring ≥ 5 ng/ml was referred to as 

the luteal phase (indicator III, Figure 2.1). The LPL was defined as the interval from 

the first day of elevated P4 level (≥ 5ng/ml), to the last consecutive day of elevated 

P4 level (≥ 5 ng/ml). 

 



2 In-line progesterone and cow fertility 

 

 

32 
 

 

Figure 2.1 Milk progesterone level over days in milk of a hypothetical dairy cow, used to 
define endocrine fertility traits. C-LA = Interval from calving to commencement of luteal 
activity; CLAFS = Interval from commencement of luteal activity to first service; LPL = First 
luteal phase length; ILI = Length of first inter-luteal interval (ILI); IOI = Length of first inter-
ovulatory interval; FS = First service; Line at 5 ng/ml represents threshold for luteal activity, 
records above 5 ng/ml indicate occurrence of luteal activity while records below 5 ng/ml 
indicate no luteal activity 

 

Length of first inter-luteal interval (ILI). ILI refers to the period of 

anestrus between the demise of one corpus luteum and the rise of the next 

(indicator IV, Figure 2.1). Length of ILI was defined as the interval from the first day 

of decreased P4 level (˂ 5 ng/ml) following luteal phase, and the last consecutive day 

of decreased P4 level (< 5 ng/ml). 

 

Length of first inter-ovulatory interval (IOI). IOI refers to the 

interval between P4 level rise from the corpus luteum of one estrus cycle and the P4 

level rise from corpus luteum of the next estrus cycle (indicator V, Figure 2.1). Length 

of IOI was defined from the first day of elevated P4 level (≥ 5 ng/ml) and the first day 

of elevated P4 level (≥ 5 ng/ml) following ILI. 

 

Luteal activity during first 60 days in milk (LA60). LA60 refers 

to the presence (LA60 = 1) or absence (LA60 = 0) of luteal activity between 25 and 60 

days in milk. 

 

Proportion of samples with luteal activity (PLA). PLA refers to 

the number of P4 records with luteal activity (P4 level ≥ 5 ng/ml), divided by total 
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number of P4 records in the period from 25 to 60 days in milk. This trait gives an 

indication of the reproductive activity of a cow within 25 – 60 DIM, which could be 

quantified by alternative measures, for example by taking the absolute number of 

P4 samples above a given maximum threshold of luteal activity. Although PLA could 

be affected by dynamic sampling, still taking the ratio of number of possible samples 

versus absolute numbers in luteal activity gives less bias in terms of bias that could 

be expected due to dynamic sampling. 

 

In defining the endocrine fertility traits, a set of restrictions were applied to periods 

of non-sampling of P4 records that might occur during a lactation period. A period of 

no P4 sampling might be herd-specific and occurs when the HN has a breakdown, 

resulting in gaps of no sampling. If these gaps are not taken into account, they can 

bias the defined endocrine traits. Recording gaps were identified at herd and at cow-

lactation level. When the cow’s lactation had no P4 samples for more than 7 days, 

the following restrictions were applied: 1) if the gap occurred 1 or more days before 

C-LA (i.e. there was a low progesterone sample before CLA), and the gap duration 

was less than 15 days, all traits were retained, otherwise all traits were excluded; 2) 

if the gap occurred at least 25 days after C-LA, all traits were retained, otherwise all 

traits were excluded except C-LA. On the other hand, when the gap was herd-specific 

all lactations on the given herd could be affected, hence when a gap was herd-

specific; the following restrictions were applied to all lactations on that herd. For 

each lactation, when a gap of 3 or more days occurred 1 or more days before C-LA 

all traits were retained. When a gap of 3 or more days occurred after C-LA, the 

following restrictions where applied: a) LPL was retained if the gap occurred at least 

25 days after C-LA; b) ILI was retained if gap occurred 1 or more days before start of 

the inter-luteal interval; c) IOI was retained if gap occurred 1 or more days before 

start of the next luteal cycle. In total, 45 (2%) lactations were affected by the 

restrictions applied to cow-lactation-specific gaps, and 144 (6%) lactations for herd-

specific gaps. 

 

2.2.3 Defining classical fertility traits 

For all cows with defined endocrine fertility traits, extra lactation records for these 

cows were obtained from the national database, to increase number of records. 

These records included the classical fertility traits calving interval (CInt), and interval 

from calving to first service (CFS). The trait CInt was restricted between 300 and 700 

days, while CFS was restricted to 30 and 250 days. The following milk production 

traits were considered as well: accumulated milk yield (MY), protein yield (PY) and 
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fat yield (FY) over 305 days of lactation; of which, 55% of the lactations had their milk 

production traits from 305 DIM lactations whereas 39% were predicted milk 

production traits over 305 days, and 6% of lactations had no production traits. One 

herd did not participate in the national milk recording scheme, hence only records 

for fertility traits were used for that herd. 

 

After trait definition, the data were linked to pedigree information. The pedigree (n 

= 8,712) was traced back in the national database for each animal (n = 1,561) with 

records.  Pedigree data consisted of 514 paternal and 1,643 maternal half-sib groups. 

Maximum group size was 79 for paternal half-sibs and 4 for maternal half-sibs. 

Percentage Holstein genes of cows were obtained from pedigree data. The final data 

used in genetic analysis consisted of 5,792 lactations of 2,119 cows. There were 

2,273 lactations (80 lactations excluded due to no pedigree) of 1,561 cows with 

endocrine fertility traits, and 1,954 extra lactations with classical fertility and 

production traits from the national database for these cows. In addition, 1,565 

lactations of 558 cows in the 12 herds with classical fertility and production traits but 

no endocrine traits were also included from the national database. Of the final data, 

1,963, 1,525, 1,011 and 1,293 lactations were in parity 1, 2, 3, and ≥ 4 respectively. 

The proportion of cows with repeated records per trait were: 33% for C-LA, 23% for 

CLAFS, 32% for PLA and LA60, 20% for LPL, 15% for ILI, 14% for IOI, 66% for CI, 62% 

for CFS and 74% for MY, PY, and FY. 

 

2.2.4 Genetic analysis 

Data were analyzed with mixed linear models that use the restricted maximum 

likelihood method in ASREML (Gilmour et al., 2009). To estimate the heritability of 

each trait, variance components were obtained with a univariate animal model. The 

traits C-LA, LPL, ILI and IOI were highly skewed, and hence were transformed (natural 

logarithm) to lnC-LA, lnLPL, lnIILI, and lnIOI respectively. Genetic and phenotypic 

correlations were obtained with bivariate models. The model used was: 

 

yijklmn = μ + pi + hysj + b1pchk +b2cal + b3cal
2(pi) + am + pem + eijklmn 

where yijklmn was the analyzed trait, µ was the intercept, pi was  the fixed effect of 

parity i (cows in parity 4 or above were grouped to a common class); hysj was  the 

fixed effect of herd-year-season combination j, with calving season defined as 

winter: December-February, spring: March-May, summer: June-August, autumn: 

September-November; b1pchk was the fixed regression on percentage Holstein genes 

with coefficient b1; b2cal was  the fixed regression on age at calving l (in months) with 



2 In-line progesterone and cow fertility 

 

 

35 

 

coefficient b2; b3cal
2(pi) was the fixed regression on age at calving l, fitted as a 

quadratic covariate, nested within parity pi, with coefficient b3; am was the random 

genetic effect of cow m: ~N(0, Aσa
2), A was the additive genetic relationship matrix 

and σa
2  was the genetic effects variance;  pem was the random permanent 

environmental effect of cow m to account for repeated measures within cow: ~N(0, 

Iσpe
2), I was an identity matrix including all animals (but animals without information 

on repeated records are automatically set at zero) and σpe
2  was the permanent 

environment variance; and eijklmn was the random error term, ~N(0, Iσe
2), I was an 

identity matrix  and σe
2 was the residual variance.  

 

The same model was fitted for univariate and bivariate analysis. However, the 

number of repeated records was too low for the endocrine traits to estimate the 

correlation between traits for the permanent environmental effect, and to separate 

this covariance from the genetic covariance between traits. Therefore, also a 

reduced model was fitted without this correlation included, and a dataset was 

created without the repeated records per animal. The likelihood ratio test was used 

to test for the significant difference between the full bivariate model and the model 

without the permanent environmental covariance (the reduced model). From the 

likelihood ratio test, only 8 pairs of bivariate analysis (out of 33) gave a significant 

improvement for the full model. Still, some of the genetic correlations were affected, 

and it is difficult to ascribe the covariance to a genetic effect, if the data are not 

sufficient to disentangle genetic from permanent environmental effects. Therefore, 

the results of the full model will be presented in the results section, and compared 

with the alternative model’s results in the discussion. Also, finally, the variance-

covariance matrix was constrained to be positive definite. There was no large change 

in correlation estimates when the matrix was constrained. The absolute average 

change for correlations in the model without a constrained matrix and the model 

with a constrained matrix was 0.05 for correlations ≥ 0.75 and 0.06 for other 

correlations.  

 

 

2.3 Results 

Summary statistics for fertility and milk production traits are in Table 2.2. Overall 

mean C-LA was 38.1 d and 50.4 d for CLAFS. Minimum CLAFS was -46, which occurs 

when a cow is inseminated before start of recorded luteal activity; 9 (0.72%) records 

for CLAFS were negative. Days between calving and first service (CFS) was 92 d on 

average and mean CInt 410 d, whereas average 305-day milk yield was 8,592 kg milk. 



2 In-line progesterone and cow fertility 

 

 

36 
 

Mean LA60 was 0.88, implying that 88% of cows were in luteal activity during the 

first 60 DIM, whereas mean PLA was 58%. Large differences were observed at herd 

level, C-LA ranged from 32.4 d to 45.3 d, and milk yield from 7,070 to 10,140 kg milk, 

while CLAFS ranged from 37.4 d to 66.3 d across herds. Herd average C-LAs were also 

moderately correlated with longer calving intervals (0.20), but strongly correlated 

with longer CFS (0.55).  

 

Table 2.2 Overall mean, standard deviation (S.D.), minimum (Min), maximum (Max), number 

of lactations (n), and skewness (Skew) for endocrine fertility traits, classical fertility traits, 

and milk production traits 
 

Trait1 Mean S.D. Min Max n Skew 

C-LA (d) 38.1 17.8 25 187 2,165 2.42 

CLAFS (d) 50.4 29.5 -46 181 1,245 0.91 

LA60 (0-1) 0.88 0.33 0 1 2,192 -2.31 

PLA (%) 58 30 0 1 2,192 -0.70 

LPL (d) 13.0 11.5 2 106 1,055 3.77 

ILI (d) 9.3 8.5 1 103 924 4.44 

IOI (d) 26.2 13.3 5 115 932 2.54 

CInt (d) 410 68 303 699 3,632 1.40 

CFS (d) 92 36 30 250 4,413 1.36 

MY (kg) 8,592 1,888 1,228 15,319 5,466 0.18 

PY (kg) 301 63 43 532 5,466 0.13 

FY (kg) 374 76 47 714 5,466 0.17 
 

  1C-LA = Commencement of luteal activity, CLAFS = interval from commencement of luteal 

activity to first service, LA60 = luteal activity between  25 and 60 days in milk, PLA = proportion 

of samples in luteal activity between  25 and 60 days in milk, LPL = first luteal phase length, ILI 

= length of first inter-luteal interval, IOI = length of first inter-ovulatory interval, CInt = calving 

interval, CFS = interval from calving to first service, MY = milk yield over 305 days, PY = protein 

yield over 305 days, FY = fat yield over  305 days 

 

Heritability estimates for the fertility traits reported in Table 2.3 ranged from 0.05 to 

0.12. The endocrine fertility traits lnC-LA and PLA had moderate heritability (0.12 ± 

0.05), with genetic standard deviations on the original scale 5 d and 0.10 

respectively, while heritability of CLAFS was 0.11 ± 0.06 with genetic standard 

deviation 9 d. For the classical traits, heritability was 0.05 ± 0.03 for CInt and 0.11 ± 

0.03 for CFS. Repeatability estimates of fertility traits ranged from 0.09 for CInt to 

0.29 for lnC-LA, implying that a cow with an early C-LA has a low to moderate 

probability to have an early C-LA after the next calving. The traits lnILI, lnLPL and lnIOI 
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had a close to or zero genetic variation (results not shown), and were therefore 

excluded from correlation analysis.  

Table 2.3 Estimates of heritability (h2), repeatability (t) and their standard errors (s.e.) for 

endocrine fertility traits, classical fertility traits and milk production traits, and number of 

lactations (n) per trait 
 

Trait1 n h2 s.e. t s.e. 

lnC-LA (ln(d)) 2,165 0.12 0.05 0.29 0.04 

CLAFS (d) 1,245 0.11 0.06 0.15 0.06 

LA60 (0-1) 2,192 0.06 0.04 0.18 0.04 

PLA (%) 2,192 0.12 0.05 0.21 0.04 

CInt (d) 3,632 0.05 0.03 0.09 0.02 

CFS (d) 4,413 0.11 0.03 0.12 0.02 

MY (kg) 5,466 0.23 0.04 0.42 0.02 

PY (kg) 5,466 0.22 0.04 0.42 0.02 

FY (kg) 5,466 0.20 0.03 0.38 0.02 
 

1lnC-LA = natural logarithm of commencement of luteal activity, CLAFS = interval from 
commencement of luteal activity to first service, LA60 = luteal activity between 25 and 60 days 
in milk, PLA = proportion of samples in luteal activity between 25 and 60 days in milk, CInt = 
calving interval, CFS = interval from calving to first service, MY = milk yield over 305 days, PY = 
protein yield over 305 days, FY = fat yield over 305 days 
2Heritability and repeatability estimates of lnLPL, lnILI, and lnIOI are not shown, as they were 
close to or zero; lnLPL = natural logarithm of first luteal phase length, lnILI = natural logarithm 
of length of first inter-luteal interval, lnIOI = natural logarithm of length of first inter-ovulatory 
interval 

 

Correlations between fertility traits are in Table 2.4.  Due to low to moderate 

heritability and low number of records for some of the endocrine traits, standard 

errors for those genetic correlations were large. Therefore, the phenotypic 

correlations are discussed as proxies for the genetic correlations for those cases. 

There was a strong genetic correlation of lnC-LA with PLA (-0.91 ± 0.06), LA60 (-0.86 

± 0.03), and a longer lnC-LA (late start of luteal activity) was associated with shorter 

CLAFS (-0.56 ± 0.17).  

 

All correlations of endocrine with classical fertility traits were in the direction that is 

expected from the trait definition. There was a moderate genetic correlation of CFS 

with lnC-LA (0.37 ± 0.21), and PLA (-0.31 ± 0.20), suggesting that cows with an early 

start of luteal activity and high reproductive activity have shorter intervals from 

calving to first service.  
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Correlations of milk production traits with all fertility traits are in Table 2.5. The 

genetic correlations of milk production traits with lnC-LA ranged from 0.04 to 0.18 

and from 0.03 to 0.34 with other endocrine traits. With the exception of CLAFS, the 

phenotypic correlations of all endocrine traits with milk production traits were low 

(0.01 to 0.07), and based on the standard errors (0.02 to 0.03), not significantly 

different from zero. For phenotypic correlations of CLAFS with milk production traits, 

estimates of up to 0.14 ± 0.03 were obtained.  

 

Table 2.4 Estimates of genetic (below diagonal) and phenotypic (above diagonal) 

correlations, of endocrine and classical fertility traits, and standard errors below each 

estimate in parentheses 
 

Trait1 lnC-LA CLAFS LA60 PLA CInt CFS 

lnC-LA _ -0.44 -0.77 -0.80 0.03 0.23 

  (-0.02) (-0.01) (0.01) (0.04) (0.03) 

CLAFS -0.56 _ 0.34 0.41 0.28 0.86 

  (0.25)  (0.03) (0.03) (0.05) (0.01) 

LA60  -0.86 0.47 _ 0.71 -0.03 -0.25 

 (0.03) (0.27)  (0.01) (0.04) (0.03) 

PLA  -0.91 0.65 0.82 _ -0.02 -0.14 

 (0.06) (0.21) (0.16)  (0.04) (0.03) 

CInt  0.26 0.29 -0.54 -0.28 _ 0.46 

 (0.33) (0.43) (0.33) (0.31)  (0.02) 

CFS  0.37 0.46 -0.53 -0.31 0.75 _ 

  (0.21) (0.12) (0.21) (0.20) (0.16)   
 

1lnC-LA = natural logarithm of commencement of luteal activity, CLAFS = interval from 

commencement of luteal activity to first service, LA60 = luteal activity between 25 and 60 days 

in 

 

 

2.4 Discussion 

The uniqueness of this study is that in-line milk P4 records were used to characterize 

endocrine fertility traits. As a consequence, P4 level sampling frequency was higher, 

and more P4 records were available per lactation than in previous studies. Moreover, 

previous studies on characterization of heritable endocrine fertility traits have been 

based on manually collected milk samples for P4 recording, which is not practical for 
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breeding programs, mainly because routine milk recording samples are taken only 

every 4 to 6 weeks. In this study, genetic variation of similar size as in previous 

studies was found for some of the endocrine fertility traits. Heritability estimates 

were greatest for lnC-LA and PLA (0.12 ± 0.05), CLAFS (0.11 ± 0.06), and lnC-LA was 

strongly correlated with PLA (-0.91 ± 0.06). Correlations of classical fertility traits 

(CInt and CFS) and milk production traits (MY, PY, and FY) with endocrine fertility 

traits were also examined. All correlations of endocrine traits with classical fertility 

traits were as expected, and there was a near-zero phenotypic correlation of 

endocrine fertility traits with yield traits. 

 

2.4.1 Characterization of endocrine fertility traits. 

The overall mean for C-LA (38.1 d) can be used as an indication of the interval from 

calving to first ovulation, which occurs on average 5 days before C-LA (Bulman and 

Lamming, 1978a), hence on average ovulation would have occurred in this study on 

approximately day 33 post-partum. The mean C-LA in this study was 8.6 days longer 

than the estimate (29.5 d) reported by Veerkamp et al (2000) for Dutch cows. 

Petersson et al. (2006) reported a mean C-LA of 33.8 d for data collected in the period 

of 1987 to 2002 on Swedish Holstein-Friesian and Swedish Red and White cows, 

whereas using data collected from 2003 through 2005 on British cows, Pollott and 

Coffey (2008) observed mean C-LA of 32.4 d. Furthermore, Royal et al. (2000) found 

shorter C-LA, 27.9 d, for data collected between 1995 to 1998, in British cows.  In 

addition, C-LA as low as 24.7 d for data collected between 1976 to 1977 has been 

reported (Bulman and Lamming, 1978b). One likely reason for the mean difference 

of C-LA between these studies is differences in data recording and editing. For 

example, in our study most herds did not start recording P4 before 25 DIM, hence 

this was used as the lower bound for the data, whereas in most of the previous 

studies, P4 recording started earlier after calving. However, the mean difference 

might also be the result of population differences or declining fertility in dairy cattle 

(Lucy, 2001; Pollott and Coffey, 2008). 

 

Proportion of samples in luteal activity (PLA) might be an informative indicator for 

dairy cow fertility. In addition to C-LA, PLA not only measures start of luteal activity, 

but also gives an indication of a cow’s cyclicity after first ovulation. Because PLA was 

quantified based on P4 records between 25 and 60 DIM, it gives an indication of the 

reproductive activity of a cow post-partum for this period of time, but the period can 

be easily extended, and could be useful for management purposes. Another 

advantage of PLA is that it can be quantified for more animals than C-LA at a given 
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time after calving. Animals without a C-LA in the first 60 days have a missing C-LA, 

but will have a score for PLA. In this study, more lactations with P4 records received 

a measure for PLA (n = 2,192), than for C-LA (2,165), but PLA may have the 

disadvantage that it is affected by the number of samples taken in a fixed period. 

Because P4 records were sampled on average every two days, mean PLA (58%) was 

higher than the values of 37% and 47% that have been reported elsewhere 

(Petersson et al., 2006; Petersson et al., 2007), where P4 records were sampled one 

to three times per week. Furthermore, a decrease in mean PLA was also observed 

when P4 sampling frequency was decreased from twice weekly to twice monthly 

(Petersson et al., 2007). Another disadvantage of PLA is that, very high values could 

be associated with poor reproductive performance, e.g. persistent corpus luteum or 

pyometra (Etherington et al., 1991; Petersson et al., 2007). The occurrence of luteal 

activity during the first 60 days in milk (LA60) is a new trait that has the same 

advantages as PLA, but LA60 has the disadvantage of being a binary trait. 

 

Repeatability estimates for endocrine fertility traits (0.15 to 0.29) were generally 

moderate, while those for classical fertility traits were low (0.09 to 0.12), thus 

supporting the hypothesis that endocrine measures of fertility are more influenced 

by the cow itself, and better reflect the cow’s own physiology than classical fertility 

measures, which are biased by farm management decisions and recording practices. 

The repeatability for lnC-LA was similar to that of Darwash et al. (1997a). Moreover, 

a moderate repeatability for lnC-LA (0.29) suggests that cows with shorter intervals 

from calving to first ovulation have the tendency to have such short intervals after 

every calving. 

 

2.4.2 Genetic parameters 

Heritability estimates for endocrine fertility traits varied from 0.06 to 0.12. The 

heritability of lnC-LA (0.12 ± 0.05) was at the lower bound of previously reported 

estimates (0.13 to 0.21) (Darwash et al., 1997a; Veerkamp et al., 2000; Berry et al., 

2012). However, the genetic standard deviation of lnC-LA (0.12) in this study, which 

is equivalent to approximately 5 days, implies that there is considerable genetic 

variation in lnC-LA. Most previous studies defined C-LA and other endocrine traits 

using 3 ng/ml as threshold for luteal activity, whereas this study used 5 ng/ml. To 

investigate the effect of the threshold on the heritability of lnC-LA, the analysis with 

3 ng/ml was also performed, but that did not affect the heritability of lnC-LA. 

Phenotypic variation in CLAFS has been studied (Royal et al., 2000), but no other 

estimates are available for the  genetic variation. The genetic standard deviation for 
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CLAFS was 9 d, so also considerable genetic variation was observed for this trait. 

Heritability of PLA (0.12 ± 0.05), was lower than the estimate (0.29 ± 0.06) of 

Petersson et al. (2007). However, the genetic standard deviation for PLA (0.10) 

implies that there is considerable genetic variation also for this trait. The heritability 

of CInt in this study was in agreement with previous studies (Wall et al., 2003; Berry 

et al., 2012), but the heritability of CFS was slightly larger than generally observed 

from field data.  

 

Besides possible reasons like sample size, population structure and other factors that 

might influence heritability estimates, one possible reason for the lower estimates 

of endocrine fertility traits in this study compared to previous reports, might be the 

data editing steps applied. By excluding all lactations for cows not sampled before 

25 DIM or for at least 60 DIM, a sampling bias might have been introduced, and 

hence biased estimates for endocrine fertility traits. However, the considerable 

genetic variation and moderate repeatability estimates of the endocrine fertility 

traits found in this study led to the conclusion that no important bias existed, and 

substantial genetic improvement can be achieved if the accuracy of identifying 

genetically superior animals is high. 

 

The correlations of lnC-LA with PLA (-0.91 ± 0.06) and CLAFS (-0.56 ± 0.17) implies 

that direct selection for shorter lnC-LA will lead to increased reproductive activity, 

but also to increased CLAFS. The strong correlation of PLA with lnC-LA means that 

PLA could be used for selection in cases where C-LA cannot be quantified for all 

animals, though some checks for reproductive abnormalities should be considered, 

as very high values of PLA are sometimes associated with persistent corpus luteum 

or pyometra. Comparable correlations between lnC-LA and PLA (-0.97 ± 0.05) have 

been reported (Petersson et al., 2007). Also, there was a moderate genetic 

correlation (-0.31 ± 0.20) between PLA and CFS, whereas Petersson et al. (2007) 

found a low estimate (-0.03 ± 0.22) but of same sign, and both with large standard 

errors. The genetic correlation of lnC-LA with CFS (0.37 ± 0.21) and CInt (0.26 ± 0.33), 

imply that decreasing lnC-LA by 1 genetic standard deviation will decrease CFS by 4.1 

days and CInt by 3.7 days. Some studies have examined the correlations between 

endocrine and classical fertility traits. Nyman et al. (2014) found a correlation of 0.54 

± 0.27 between lnC-LA and CInt. Fitting a genetic regression of daughter lnC-LA on 

sire PTA for CInt, Royal et al. (2002b) inferred a genetic correlation of 0.36 between 

lnC-LA and CInt, while Berry et al. (2012) reported an estimate of 0.87 ± 0.33 from 

an animal model. Similarly, positive genetic correlations between lnC-LA and CFS 
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(0.37 ± 0.34 and 0.35 ± 0.12) have been reported (Berry et al., 2012; Nyman et al., 

2014).  

The results discussed thus far were estimated including the correlation between 

permanent environmental effects across traits (full model). Since there were too few 

(repeated) records available to estimate both the genetic and permanent 

environmental correlation between traits very accurately, two alternative analyses 

were performed to investigate the effect on the estimated genetic correlations. First 

a reduced model was fitted that excluded the permanent environmental correlation 

between traits (but included the permanent effect for each trait), and secondly an 

analysis without repeated records was performed. Comparing the likelihood from 

the reduced and full model, the permanent environmental covariance between traits 

could have been excluded for 25 (out of 33) of the analysis.  However, excluding the 

permanent environmental covariance or not had an impact on some of the genetic 

correlation estimates. Especially for CLAFS, its genetic correlations with milk 

production traits from the full model were:  0.00 ± 0.25 for MY, 0.04 ± 0.25 for PY, 

and 0.42 ± 0.15 for FY, but moved to 0.40 ± 0.17 for MY, 0.45 ± 0.17 for PY, and 0.53 

± 0.19 for FY with the reduced model. Hence, the two models seemed to be 

conflicting, either suggesting no genetic correlation (full model) between CLAFS and 

MY or a moderate genetic correlation (reduced model). This illustrates the 

confounding between the permanent and genetic correlation. The analysis where all 

repeated records were deleted and genetic correlations re-estimated gave low 

genetic correlations of CLAFS with MY (0.09 ± 0.31), but 0.24 ± 0.32 for PY and 0.70 

± 0.44 for FY. However, the genetic correlations of the different models were not 

statistically significantly different from each other, and therefore there is still an 

open question of whether there is a positive genetic correlation between CLAFS and 

MY, or not.  However, it is clear that properly accounting for a permanent 

environmental effect for each cow, that is likely to be influenced by voluntary waiting 

period determined by the farmer when a cow is inseminated or not, and having 

enough (repeated) records to separate theses effects is important when concluding 

on the association between yield and fertility traits. 

 

The positive genetic correlation between lnC-LA and milk production traits suggests 

that there is an unfavorable influence of genetic merit for milk yield on genetic merit 

for lnC-LA, but this correlation was considerably lower than estimates reported in 

previous studies. Veerkamp et al. (2000) reported higher correlations of C-LA with 

MY (0.51), PY (0.48), and FY (0.65) for 305-day yield records, while Royal et al. 

(2002a) found an estimate (0.36) for lnC-LA with predicted milk yield on day 56, and 

Nyman et al. (2014) found a genetic correlation of 0.45 ± 0.09 for lnC-LA with energy-
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corrected milk during the first 60 DIM. Furthermore, the negative genetic 

correlations between PLA and milk production traits suggest an unfavorable 

influence of genetic merit for yield on genetic merit for PLA. No previous study has 

reported correlations for PLA and milk production traits. Nonetheless, the 

correlations of endocrine fertility traits and milk production traits in this study are 

considerably lower than has been observed between classical fertility and milk 

production traits (Pryce et al., 1997; Pryce et al., 1998). The results from this study 

support and expand the work of (Darwash et al., 1997a; Royal et al., 2002b; 

Petersson et al., 2007) that endocrine fertility traits might serve as better indicators 

of dairy cow fertility. In addition, Berry et al. (2012) were able to identify two markers 

on the genome associated with C-LA that have not been identified with classical 

fertility traits, suggesting that endocrine fertility traits might be more useful for 

mapping genomic regions and studying the biology of fertility. Moreover, endocrine 

fertility traits can also help provide valuable insights to the consequences of 

selection for different aspects of fertility, or on the other hand be very useful in 

understanding how selection for other traits impacts on fertility in great detail.  

 

2.4.3 Application of endocrine fertility traits in breeding 

schemes 

The breeding goal trait for fertility would be cows that resume luteal activity early 

after calving, start showing heat so they can be inseminated at the optimal time 

point, are pregnant after first insemination and calve successfully. None of these 

traits are measured on a sufficient large scale to select on these traits directly. The 

use of endocrine fertility traits might provide a better trait definition, with the added 

advantage that they provide an elaborate definition of the breeding goal. However, 

the use of endocrine fertility traits has been limited by the costs associated with 

frequent sampling of P4 records per cow and on a large number of animals required 

for genetic evaluation. Alternatives like sampling of daughters of bulls only during 

normal milk recording (Van der Lende et al., 2004), or sampling at the cow level on 

a monthly basis (Petersson et al., 2007) have been suggested. In-line P4 records may 

provide a new opportunity to address these limitations.  

 

This study has provided a number of endocrine fertility traits with genetic variation 

that might serve as breeding goal traits. For example in breeding programs where 

CFS is used as index trait as indirect measure of calving to first ovulation, lnC-LA  is 

likely to be a more direct measure of return to reproductive cyclicity, as there is only 

a delay of 4 to 5 days between C-LA and first ovulation. Hence, in accordance with 
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Petersson et al. (2007), we suggest using lnC-LA as a trait in the breeding goal, rather 

than CFS. Also, CLAFS might provide a measure for heat and heat detection, although 

CLAFS is partly affected by insemination decision, and PLA might be an interesting 

trait to be considered indicating reproductive abnormalities, because most of the 

detailed traits like LPL, ILI, and IOI gave zero heritability in this study.  Nonetheless, 

classical fertility traits are measured on a large scale and might still serve as predictor 

traits in the national genetic evaluations. Thus, endocrine fertility traits provide the 

option of a more precise definition of the breeding goal. 

 

Also, to be considered is the fact that only few herds at present possess the in-line 

recording system, although the number of herds with this system is increasing, and 

in the near future it might be possible to use endocrine fertility traits in genetic 

evaluation schemes. However, because of the few herds, in-line endocrine fertility 

traits would be most useful in a genomic selection scheme, where cows from 

collaborator herds would be part of the reference population and for the national 

breeding schemes genomic prediction are used for endocrine fertility traits. 

Therefore, combining (genomic predictions for) endocrine and classical fertility traits 

may provide the most accurate information for the selection of a more precise 

definition of dairy cattle breeding goals based on endocrine fertility traits.  

 

2.5 Conclusions 

We showed that in-line progesterone records can be used to define and explore 

several endocrine fertility traits in dairy cows. Some of these traits have genetic 

variation, and might help to define better breeding goals in order to select for 

improved fertility.  Nonetheless, because there are only few herds at present with 

the in-line recording system, endocrine fertility traits would only be more useful in a 

genomic selection scheme. 
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Abstract 

Endocrine fertility traits which are defined from progesterone concentration levels 

in milk are interesting indicators of dairy cow fertility because they more directly 

reflect the cows own reproductive physiology than classical fertility traits which are 

more biased by farm management decisions.  The aim of this study was to detect 

quantitative trait loci (QTL) for 7 endocrine fertility traits in dairy cows by performing 

a genome-wide association study with 85k SNP, and then fine-map targeted QTL 

regions, using imputed sequence variants. Two classical fertility traits were also 

analyzed for QTL with 85k SNP. The association between a SNP and a phenotype was 

assessed by single-locus regression for each SNP, using a linear mixed model that 

included a random polygenic effect.  A total of 2,447 Holstein Friesian cows with 

5,339 lactations with both phenotypes and genotypes were used for association 

analysis. Heritability estimates ranged from 0.09 to 0.15 for endocrine fertility traits 

and 0.03 to 0.10 for classical fertility traits. The genome-wide association study 

identified 17 QTL regions for endocrine fertility traits, on Bos taurus autosomes (BTA) 

2, 3, 8, 12, 15, 17, 23, and 25. The highest number (5) of QTL regions from the 

genome-wide association study were identified for the endocrine trait “proportion 

of samples with luteal activity”. Overlapping QTL regions were found between 

endocrine traits on BTA 2, 3 and 17. For the classical trait calving to first service, 3 

QTL regions were identified on BTA 3, 15, and 23, and an overlapping region on 

BTA23 with endocrine traits. Fine-mapping target regions for the endocrine traits on 

BTA 2, and 3 using imputed sequence variants confirmed the QTL from the genome-

wide association study, and identified several associated variants that can contribute 

to an index of markers for genetic improvement of fertility. Several potential 

candidate genes underlying endocrine fertility traits were also identified in the target 

regions and are discussed. However, due to high linkage disequilibrium, it was not 

possible to specify genes or polymorphisms as causal factors for any of the regions. 

 

Key words: quantitative trait loci, milk progesterone, dairy cattle, fertility   
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3.1 Introduction 

Genome-wide association studies (GWAS) have identified thousands of single 

nucleotide polymorphisms (SNP) across the cattle genome associated with 

important economic traits (Hu et al., 2016). Previous studies that have attempted to 

locate QTL for reproductive performance in dairy cattle have used mostly classical 

fertility traits, see Khatkar et al., (2004) for a review, and the cattle QTL database (Hu 

et al., 2016) for more recent studies. Endocrine fertility traits defined from 

progesterone concentration levels in milk have been suggested as alternative 

indicators for diary cow fertility, because they more directly reflect a cow’s 

reproductive physiology and are less influenced by farm management decisions 

(Bulman and Lamming, 1978; Darwash et al., 1999), compared to classical fertility 

traits which are defined from calving data and insemination records. Hence 

endocrine fertility trait might be more useful to detect fertility QTL. In addition, 

endocrine fertility traits seem to be more heritable than classical traits (Veerkamp et 

al., 2000; Petersson et al., 2007; Tenghe et al., 2015), but few GWAS studies have 

been performed for endocrine fertility traits (Berry et al., 2012).  

 

Most of the genetic variants detected in GWAS are not the causal mutations for the 

traits, but in linkage disequilibrium (LD) with these causal polymorphisms. This is so 

mainly because the marker panels used in most of the studies only represent a small 

fraction of the common variants segregating in the population. However, advances 

in next generation sequencing techniques have led to sequencing a large number of 

animals in cattle. Also, imputation techniques offer the possibility to reliably impute 

genotyped animals to sequence variants (Browning and Browning, 2009).  The 

advantage of using sequence data over SNP arrays for GWAS arises from the  

expectation that there will be higher precision in detecting QTL as the data is 

expected to include the causal variant, and there is less dependence on population 

LD (Meuwissen and Goddard, 2010; Daetwyler et al., 2014; Druet et al., 2014). 

Furthermore, recent studies have shown that the precision of mapped QTL can be 

increased by the use of sequence data (Sahana et al., 2014; Höglund et al., 2014a, 

2015). 

 

Genomic prediction helps to select breeding animals for the next generation more 

accurately at an early age. In addition to revealing the genetic architecture that 

underlies the physiological and biological process of female reproduction, detected 

QTL could also be practically applied to genomic selection schemes to improve 

fertility. The introduction of high-density SNP arrays like the 777k did not increase 
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accuracy of genomic predictions in cattle substantially  (Su et al., 2012; VanRaden et 

al., 2013), one of the reasons being the increase in the number of unknown 

parameters to be estimated with high density data. However, Meuwissen and 

Goddard (2010) demonstrated in simulations that genomic predictions based on 

sequence data were up to 40 % more accurate than predictions based on ~ 30k SNP, 

because the causal mutations were used in prediction. Furthermore, in another 

simulation study, Druet et al. (2014) showed that, if the minor allele frequency of 

QTL is very low, genomic predictions from imputed sequence data can have up to 

20% advantage in accuracy of genomic predictions from SNP panels. If the causal 

mutations influencing female fertility are detected, this information could be 

included in genomic prediction models where additional weight is put on the regions 

that influence female fertility; this would especially improve predictions over 

generations. 

 

The aim of this study was to detect QTL for 7 endocrine fertility traits in dairy cows 

by performing a GWAS with 85k SNP, and then fine-map targeted QTL regions using 

imputed sequence variants. Two classical fertility traits were also analyzed for QTL 

with 85k SNP. 

 

 

3.2 Materials and Methods 

 

3.2.1 Animal population and phenotypes 

The data consisted of in-line progesterone (P4) records from 14 commercial herds in 

the Netherlands, and manually collected P4 records of 4 experimental herds from: 

Wageningen UR Livestock Research, the Netherlands; Teagasc, Moorepark, Ireland; 

Scottish Agricultural College, United Kingdom; and the Jälla herd of Swedish 

University of Agricultural Science. In total, phenotypic data were available for 2,447 

Holstein cows with 5,339 lactations. 

 

A detailed description of the experimental treatments imposed on animals in the 

different experimental herds, procedures for milk sampling and P4 level measuring 

have been given in Veerkamp et al. (2000), Horan et al. (2005), Petersson et al. 

(2006), and Pollott and Coffey (2008). In brief, milk sampling for P4 measurement 

was undertaken twice a week at the experimental herds in Sweden and the 

Netherlands, and thrice a week in Ireland and the United Kingdom. In the commercial 

herds, milk sampling, measuring and recording of P4 level was performed by the 
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Herd NavigatorTM (HN, DeLaval Intl, Tumba, Sweden). Sampling frequency on the 

commercial herds is based on a biological model (Friggens et al., 2008), but on 

average undertaken every 2 days. 

 

For each lactation, endocrine fertility traits were defined using P4 records as 

described in Tenghe et al., (2015) as follows: 1) commencement of luteal activity (C-

LA) as the number of days between calving and first day on which milk P4 level was 

elevated (≥ 5 ng/ml); 2)  proportion of samples with luteal activity (PLA) as the 

number of P4 records with luteal activity (P4 level ≥ 5 ng/ml), divided by total number 

of P4 records in the period from 25 to 60 days in milk; 3) luteal activity during first 

60 days in milk (LA60) as the presence (LA60 = 1) or absence (LA60 = 0) of luteal 

activity between 25 and 60 days in milk; 4) commencement of luteal activity to first 

service (CLAFS) as the interval from the first day of elevated P4 level (≥ 5 ng/ml), 

fitting the luteal activity criteria, to day of first service; 5) first luteal phase length 

(LPL) as the interval from the first day of elevated P4 level (≥ 5ng/ml) to the last 

consecutive day of elevated P4 level (≥ 5 ng/ml); 6) length of inter-luteal interval (ILI) 

as the interval from the first day of decreased P4 level (˂ 5 ng/ml) following the luteal 

phase, and the last consecutive day of decreased P4 level (< 5 ng/ml);  and 7) length 

of first inter-ovulatory interval (IOI) as the interval from the first day of elevated P4 

level (≥ 5 ng/ml) of one oestrus cycle to the first day of elevated P4 level (≥ 5 ng/ml) 

of the following oestrus cycle. In defining the endocrine fertility traits, a set of 

restrictions was applied to periods of non-sampling of P4 records that might occur 

during a lactation period. When a gap was cow-specific, that is, when the cows 

lactation had no P4 samples for more than 7 days, the following restrictions were 

applied: 1) if the gap occurred 1 or more days before C-LA, and the gap duration was 

less than 15 days, all traits were retained, otherwise all traits were excluded; 2) if the 

gap occurred at least 25 days after C-LA, all traits were retained, otherwise all traits 

were excluded except C-LA. When a gap was herd-specific, the following restrictions 

were applied to all lactations on that herd; for each lactation, when a gap of 3 or 

more days occurred 1 or more days before C-LA and there were low P4 values after 

the gap, C-LA and all traits were retained, whereas when a gap of 3 or more days 

occurred after C-LA, the following restrictions where applied: a) LPL was retained if 

the gap occurred at least 25 days after C-LA; b) ILI was retained if gap occurred 1 or 

more days before start of the inter-luteal interval; c) IOI was retained if gap occurred 

1 or more days before start of the next luteal cycle. 

The classical fertility traits interval from calving to first service (CFS) and calving 

interval (CInt) were also analyzed in the GWAS. The trait CInt was restricted between 

300 and 700 d, whereas CFS was restricted to 30 and 250 d. 
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3.2.2 Genotypes and imputation 

Genotyping of cows from the experimental herds was performed with the Illumina 

BovineSNP50 v1 BeadChip (Illumina Inc., San Diego, CA, USA) on 1,946 cows and 

contained 54,001 SNP (50k), whereas 1,907 cows on commercial herds were 

genotyped with the GeneSeek Genomic Profiler Bovine HD (GeneSeek, Lincoln, NE, 

USA), containing 76,883 SNP (80k). An additional 6 cows from a commercial herd 

were genotyped with a custom Illumina 6k array. The 50k and 80k SNP arrays had 

25,815 SNP in common, the rest were imputed from one dataset to the other and 

vice versa using BEAGLE 3.3.2. (Browning and Browning, 2009), resulting in a total of 

102,062 SNPs. The quality criteria applied before imputation were minimum call rate 

of 95% per animal and 97% per SNP, and minimum GC-score of 0.3. A total of 120 

animals failed the quality criteria and were excluded. After imputation, SNPs were 

retained for association analysis if they fulfilled all of the following filtering criteria: 

1) call rate > 95%, minor allele frequency (MAF) > 0.01, and no extreme deviation 

from Hardy-Weinberg Equilibrium (p-value < 0.01). The final genotype dataset 

contained 85,485 SNP for 3,739 cows. 

 

Table 3.1 Target regions from sequence data selected based on a genome-wide association 

study with 85,485 SNP in Bos taurus 
 

BTA 
Target 

region (Mb) 

Position 
top SNP 

(bp) 

No. of 
significa
nt SNP 

No. of 
SNP on 

85k 

No. of 
variants 

on 
sequence 

Traits1 showing 
association 

2 1.87 – 15.30 6,852,950 8 202 161,426 C-LA, CLAFS, LPL 

2 31.87 – 41.96 36,891,323 3 320 97,548 LPL, IOI 

3 85.68 – 95.66 90,669,666 6 348 89,632 C-LA, PLA, LA60 
 

1C-LA = commencement of luteal activity, PLA = proportion of samples in luteal activity 
between 25 and 60 days in milk, LA60 = luteal activity between 25 and 60 days in milk, CLAFS 
= interval from commencement of luteal activity to first service, LPL = first luteal phase length, 
IOI = length of first inter-ovulatory interval 
 
 

3.2.3 Statistical analysis 

A total of 2,447 Holstein Friesian cows with 5,339 lactations with both phenotypes 

and genotypes were used for all association analysis. For both fine mapping and the 

GWAS, the association between a SNP and a phenotype was assessed by a single-

locus regression for each SNP separately, using a linear mixed model that included a 
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random polygenic effect. Because there were repeated lactations per cow, a random 

permanent environmental effect was also fitted.  The model was as follows: 

 

𝑦𝑖𝑗𝑘𝑙𝑚 = 𝜇 + 𝑝𝑎𝑟𝑖𝑡𝑦𝑖 + ℎ𝑦𝑠𝑗 + 𝑏1×𝑐𝑎𝑘 + 𝑏2×𝑀𝑙 + 𝑎𝑚 + 𝑝𝑒𝑚 + 𝑒𝑖𝑗𝑘𝑙𝑚  

 

where 𝑦𝑖𝑗𝑘𝑙𝑚  is the phenotype; µ is the intercept, 𝑝𝑎𝑟𝑖𝑡𝑦𝑖  is the fixed effect of parity 

i (cows in parity 4 or above were grouped to a common class); ℎ𝑦𝑠𝑗  is the fixed effect 

of herd-year-(calving) season combination j ( j=1-495), with calving season defined 

as winter: December-February, spring: March-May, summer: June-August, autumn: 

September-November; 𝑏1×𝑐𝑎𝑘  is the regression on calving age k (in months) with 

coefficient b1; 𝑀𝑙  is the genotype score (0, 1, 2 for the GWAS with SNP-chip data, but 

genotype dosage [any value between 0-2] for the regional association study with 

sequence variants) of SNP l for individual m; 𝑏2 is the additive effect of SNP l; 𝑎𝑚 is 

the random polygenic effect of animal m, 𝑎𝑚 was assumed to be normally 

distributed with mean zero  and variance A𝜎𝑎
2, where A is the additive genetic 

relationship matrix; 𝑝𝑒𝑚  is the random permanent environmental effect of animal m 

to account for repeated measures (i.e. more than one lactation) within animal, 𝑝𝑒𝑚 

was assumed to be normally distributed with mean zero and variance 𝜎𝑝𝑒
2 , and 

𝑒𝑖𝑗𝑘𝑙𝑚  is the random error term, with residuals assumed to be normally distributed, 

with mean zero and variance  𝜎𝑒
2. The variance components were re-estimated for 

each SNP analyzed. The F-test of the null hypothesis (no QTL, i.e., βSNP = 0) against 

the alternative (there is a QTL, i.e., βSNP ≠ 0) was performed for each SNP. 

 

Heritability and repeatability estimates were calculated from univariate analyses 

using the same model, but with the SNP effect excluded. Because LA60 is binary a 

trait, it was analyzed with a threshold model, which included the same fixed and 

random effects as described above. All statistical analysis were performed in ASReml 

4.1 (Gilmour et al., 2014). 

 

3.2.4 Imputation to sequence 

The multi-breed sequenced population from the 1,000 Bulls Genomes Project Run 4 

was used as reference population for imputation to sequence and contained 1,147 

sequenced animals with on average 11-fold coverage. The reference population 

contained 311 Holstein bulls, but all individuals were used as reference, because 

earlier studies have shown that a multi-breed sequenced reference population can 

be beneficial for imputation accuracy, especially for variants with low minor allele 

frequency (Bouwman and Veerkamp, 2014; Daetwyler et al., 2014). Imputation was 
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done using MINIMAC2  (Fuchsberger et al., 2015) with pre-phased genotypes from 

BEAGLE. As described by Daetwyler et al. (2014), the genotype calls of 1,000 Bull 

Genomes reference population were improved with BEAGLE using genotype 

likelihoods from SAMtools (Li et al., 2009) and inferred haplotypes in the samples, 

the resulting phased genotypes were used directly as pre-phased reference 

genotypes in MINIMAC2. Also, the target population had pre-phased genotypes due 

to the imputation step in BEAGLE described above. 

 

Defining QTL regions. QTL regions from the GWAS were defined based on 

the location of the significant SNPs. A chromosomal region was defined as a QTL 

when at least two SNPs within a 10 Mb region showed genome-wide significant 

association with a trait. Single, isolated, significant SNP were excluded from QTL 

definition, because they have a high risk of representing a false positive. 

 

Significant associations. In association analyses with a dense marker 

map, results are obscured by issues related to multiple testing and high correlations 

between close markers due to LD. As suggested by Teyssèdre et al., (2012), three p-

value thresholds were used to identify and describe regions of interest. The most 

stringent threshold 10-6 was chosen as an approximation of the tests corrected with 

Bonferroni. The threshold of 10-5 was used to provide moderate evidence of 

association (Burton et al., 2007). A less stringent threshold of 10-4 was used to detect 

associations from the GWAS scan, and to describe and compare QTL between traits. 

 

Selecting target regions. Three chromosomal regions were targeted for 

fine mapping based on results of the GWAS with 85,485 SNPs for the endocrine 

fertility traits. The target regions were selected based on association signals across 

multiple traits. The full chromosomes containing these regions were then imputed 

to sequence level, and the regions for fine-mapping extracted.  There were two 

target regions on BTA2, and one target region on BTA3. The number of imputed 

sequence variants in the target regions ranged from 89,632 to 161,426. The lengths 

of the target regions and number of imputed variants (SNP and short insertions and 

deletions) based on whole-genome sequence are listed in Table 3.1.  Filtering out 

imputed variants, with MAF < 0.01, resulted in 109,051 and 57,622 variants for the 

target regions of BTA 2 (1.87 – 15.30 Mb and 31.87 – 41.96 Mb respectively), and 

58,894 variants on BTA3 (85.68 – 95.66 Mb). Region-wise association analysis with 

the sequence variants was performed with the same model used in the GWAS. 
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Candidate genes. Based on the region-wise association results for each target 

region, putative candidate genes were searched for in the regions flanking the most 

significant variant. We kept the genes closest to the most significant variant. The 

candidate genes were identified based on the Bos taurus UMD3.1 genome assembly 

(Zimin et al., 2009), and visualized using locusZoom (Pruim et al., 2010). The gene 

information was extracted from the Ensembl data base http://www.ensembl.org 

(Cunningham et al., 2015): Ensembl Bos taurus 81.31, UMD3.1. 

 

3.3 Results 

For all the fertility traits analyzed, descriptive statistics, heritability and repeatability 

estimates are in Table 3.2. Heritability estimates ranged from 0.03 to 0.15, whereas 

repeatability estimates ranged from 0.14 to 0.34. The trait ILI had zero heritability, 

hence was excluded from further analysis. 

 

3.3.1 Genome-wide association study 

The average inflation factor of p-values from the GWAS was 1.08 ± 0.061, with a 

minimum of 0.99 for IOI, and a maximum of 1.16, for PLA, indicating relatively good 

concordance between observed and assumed distributions of the test statistics. The 

quantile-quantile plots of all the GWAS are in Supplementary Figure 3. S1.  

 

The Manhattan plots for all fertility traits analyzed with the 85,485 SNPs are in Figure 

3.1, and Figure 3.2 shows the location of all SNP-trait associations on the 30 

chromosomes. In total, 150 SNP-trait associations [-log10(p-value) > 4] were detected 

across all chromosomes except on BTA 4, 22, 26 and 28. For endocrine fertility traits, 

there were 123 SNP-trait associations on all chromosomes except on BTA 4, 22, 26 

and 28. The greatest number of associated SNP were on BTA2, followed by BTA3 and 

BTA17. All associated SNP from the GWAS are in Supplementary Table 3. S1 (online 

at JDS). 

 

A total of 20 QTL regions (of which 17 were for endocrine traits) were identified for 

all the fertility traits except CInt, on 8 chromosomes (BTA 2, 3, 8, 12, 15, 17, 23, and 

25), Table 3.3. The trait PLA had the highest number of QTL regions (5), followed by 

CLAFS (4). The traits LA60, LPL and CFS each had 3 QTL regions, whereas C-LA and IOI 

had a QTL region each. As shown in Table 3.4, the top associated SNP in a QTL for C-

LA and PLA were observed on BTA3 at 90.67 Mb, and 95.24 Mb for LA60. The top 

QTL for CLAFS was on BTA2 (74.44 Mb), whereas that of LPL and IOI was on BTA2 at 

36.89 Mb.  The magnitude of estimated SNP effects (Table 3.4) was expressed in trait 
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phenotypic standard deviation units. The absolute SNP effects ranged from 0.12 for 

CFS to 0.93 for LA60.  

 

Two QTL regions were shared by multiple endocrine fertility traits on BTA 2 and 3 

(Table 3.3). The QTL region on BTA2 (36.88 – 37.05 Mb) was shared by LPL and IOI. 

The top associated SNP in this region was for LPL [-log10(p-value) = 4.96], with a total 

of 3 SNP associations for both LPL and IOI; also, the other 2 associated SNP had the 

same p-value as the top associated SNP, suggesting strong LD. The region on BTA3 

(90.67 – 95.24 Mb) was shared by C-LA, PLA and LA60, with the topmost association 

being for PLA [-log10(p-value) = 6.41], followed by LA60 and C-LA (Table 3.4).  

 

There were 29 SNP-trait associations [-log10(p-value) > 4] identified for classical 

fertility traits (CFS and CInt) across 18 chromosomes (Figure 3.2).  The most 

significant SNP association for CInt [-log10(p-value) = 5.78] was on BTA11 (76.42 Mb). 

A total of 3 QTL regions were identified for CFS (on BTA 3, 15 and 23), and none for 

CInt (Table 3.3). The top QTL region for CFS ranged from 27.78 – 30.35 Mb on BTA23 

[-log10(p-value) = 6.35], which was also associated to CLAFS [-log10(p-value) = 4.50]. 

 

Table 3.2 Number of lactations (n) per trait, overall mean, standard deviation (SD), estimates 

of heritability (h2), repeatability (t) and their SE for various endocrine fertility traits. 
 

Trait1 n Mean SD h2 SE t SE 

C-LA (d) 3,524 38.53 18.04 0.14 0.04 0.34 0.03 

PLA (%) 3,597 0.56 0.30 0.15 0.04 0.32 0.03 

LA60 (0-1) 3,597 0.87 0.33 0.15 0.06 0.19 0.03 

CLAFS (d) 2,015 51.23 30.83 0.09 0.05 0.29 0.04 

LPL (d) 1,785 12.54 11.09 0.15 0.05 0.15 0.05 

IOI (d) 1,658 26.71 14.91 0.14 0.05 0.14 0.05 

ILI (d) 1,637 10.95 11.04 0.00 0.00 0.00 0.06 

CFS (d) 3,631 90.85 33.72 0.10 0.04 0.15 0.02 

CInt (d) 2,031 408.46 65.17 0.03 0.04 0.11 0.03 

1C-LA = Commencement of luteal activity; PLA = proportion of samples in luteal activity 
between 25 and 60 days in milk; LA60 = luteal activity between 25 and 60 days in milk, CLAFS 
= interval from commencement of luteal activity to first service; LPL = first luteal phase length; 
IOI = length of first inter-ovulatory interval; ILI = inter-luteal interval; CFS = interval from 
calving to first service; CInt = calving interval 
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Figure 3.1 Genome-wide scan for 6 endocrine and 2 classical fertility traits using 
85,485 SNPs of 2,447 cows with 5,339 lactations in dairy cattle. The y-axis shows 
the −log10 (p-value) for each SNP. The x-axis shows the chromosomes and SNP 
position; chromosomes are shown in alternating colors for clarity. The dotted line 
represents the significance threshold [-log10 (p-value) = 4] as considered in the 
present study 
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Table 3.3 The QTL3 regions on chromosomes of Bos taurus (BTA) associated to endocrine 

and classical fertility traits 

BTA Trait1 No.2 
Start QTL 

(bp) 
End QTL 

(bp) 

2 CLAFS 5 6,852,950 7,561,006 

2 LPL 3 36,777,703 37,051,246 

2 IOI 3 36,777,703 37,051,246 

2 CLAFS 2 53,979,862 55,566,541 

2 CLAFS 6 71,779,928 74,548,518 

3 LPL 2 50,948,690 51,069,220 

3 CFS 3 79,997,340 80,486,264 

3 CLA 4 90,669,666 95,240,284 

3 PLA 7 90,669,666 100,563,383 

3 LA60 4 90,669,666 96,751,550 

8 PLA 6 91,395,466 97,118,294 

12 LA60 5 86,501,602 90,422,712 

15 PLA 2 24,225,492 24,257,848 

15 CFS 2 43,813,899 51,499,475 

17 PLA 8 25,146,353 34,816,827 

17 PLA 5 35,229,850 40,308,609 

17 LPL 2 70,962,192 72,151,374 

23 CFS 5 27,776,075 30,349,749 

23 CLAFS 2 28,855,836 29,385,602 

25 LA60 2 23,315,423 23,372,664 
1C-LA = Commencement of luteal activity; PLA = proportion of samples in luteal activity 
between 25 and 60 days in milk; LA60 = luteal activity between 25 and 60 days in milk, CLAFS 
= interval from commencement of luteal activity to first service; LPL = first luteal phase length; 
IOI = length of first inter-ovulatory interval; CFS = interval from calving to first service 
2No. = Number of significant SNP within the QTL 
3QTL region defined as a chromosomal region with multiple significant SNP within a window 
of 10 Mb 
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Figure 3.2 Distribution along the chromosomes of SNPs with p-value < 10-4, identified 

for 6 endocrine and 2 classical fertility traits in dairy cattle, from a genome-wide scan 

using 85,485 SNP of 2,447 cows with 5,339 lactations  

 

 

Table 3.4 The most significantly associated SNP in QTL4 regions identified on chromosomes 

of Bos taurus from a genome-wide association study of fertility traits with 85,485 SNP 
 

BTA Trait1 
Position 
top SNP 

MAF2 -log(p-value) 
Effect in 

SD3 
SE in 
SD3 

2 CLAFS 6,852,950 0.33 6.53 - 0.19 0.04 

2 LPL 36,777,703 0.06 4.96 0.33 0.07 

2 IOI 36,777,703 0.06 4.09 0.29 0.07 

2 CLAFS 55,566,541 0.03 5.91 - 0.45 0.09 

2 CLAFS 74,444,101 0.45 7.01 - 0.18 0.03 

3 LPL 51,069,220 0.31 4.78 - 0.18 0.04 

3 CFS 80,486,264 0.4 5.34 - 0.12 0.03 

3 CLA 90,669,666 0.2 5.46 0.16 0.04 

3 PLA 90,669,666 0.2 6.41 - 0.17 0.03 

3 LA60 95,240,284 0.22 5.83 - 0.86 0.10 

38 PLA 91,401,417 0.11 5.45 0.21 0.05 

12 LA60 90,422,712 0.26 5.00 0.85 0.11 

15 PLA 24,257,848 0.21 4.40 - 0.14 0.03 

15 CFS 43,813,899 0.03 4.45 0.32 0.08 
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17 PLA 25,146,353 0.32 5.68 - 0.14 0.03 

17 PLA 36,525,393 0.16 5.10 0.17 0.04 

17 LPL 70,962,192 0.07 4.52 0.30 0.07 

23 CLAFS 28,855,836 0.49 4.50 - 0.14 0.03 

23 CFS 28,855,836 0.49 6.35 - 0.13 0.03 

25 LA60 23,315,423 0.12 4.94 - 0.93 0.12 

 1C-LA = Commencement of luteal activity; PLA = proportion of samples in luteal activity 
between 25 and 60 days in milk; LA60 = luteal activity between 25 and 60 days in milk, CLAFS 
= interval from commencement of luteal activity to first service; LPL = first luteal phase length; 
IOI = length of first inter-ovulatory interval; CFS = interval from calving to first service 
2MAF = Minor allele frequency 
3SD = Allele substitution effect expressed in phenotypic standard deviation of trait 
4QTL region defined as a chromosomal region with multiple significant SNP within a window 
of 10 Mb 

 

3.3.2 Fine-mapping with sequence variants 

Three target regions on BTA 2 and 3 were fine-mapped for 6 endocrine fertility traits 

by region-wise association analysis using imputed sequence variants (Table 3.1).  A 

total of 4,747 associations [-log10(p-value) > 4] between sequence variants and 6 

endocrine fertility traits were identified on all target regions. All variants associated 

to the analysed endocrine fertility traits are in Supplementary Table 3. S2 (online at 

JDS). The most likely candidate genes for each target region, based on proximity to 

the most significant variant are in Table 3.6.  

 

The target region on BTA2 (1.87 – 15.30 Mb) was fine-mapped for C-LA, CLAFS and 

LPL, and variant-trait associations were observed for all traits. In total, 45 

associations were identified for C-LA, 716 for CLAFS and 564 for LPL. The most 

significant association was observed for CLAFS [-log10(p-value) = 6.89] at 7.18 Mb 

(Table 3.5), followed by LPL [-log10(p-value) = 6.62; at 8.45 Mb], and C-LA [-log10(p-

value) = 4.75; at 14.02 Mb]. Based on the region-wise association results, candidate 

genes were searched for in the region spanning 12,499,856-15,303,929 bp for C-LA, 

and 3,499,960-10,999,836 bp for CLAFS and LPL (Figure 3.3). A total of 83 genes were 

identified for CLAFS and LPL, of which 61 are annotated and 22 uncharacterized. 

There were 24 genes for C-LA, with 16 annotated. The annotated genes closest to 

the most significant variant were PDE1A for C-LA, SLC40A1 for CLAFS, and GULP1 for 

LPL (Table 3.6). 
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Table 3.5 The most significantly associated variants from region-wise association analysis of 

6 endocrine fertility traits in target regions of Bos taurus chromosomes using imputed 

sequence variants  
 

BTA Trait1 Top variant Position 

-
log10(p 

–
value) 

MAF2 

Effect SE 

rs-ID4 in 
SD3 

in 
SD3 

2 C-LA Chr2:14019875 14,019,875 4.75 0.01 3.68 0.85 rs472149103 

2 CLAFS Chr2:7175833 7,175,833 6.89 0.08 1.38 0.26 rs479466942 

2 LPL Chr2:8453071 8,453,071 6.62 0.04 - 7.68 1.47 rs43288488 

2 LPL Chr2:39502686 39,502,686 8.96 0.01 - 2.17 0.35 rs110097322 

2 IOI Chr2:40258911 40,258,911 5.31 0.01 - 1.91 0.42 rs378841057 

3 C-LA Chr3:89795380 89,795,380 6.10 0.18 - 0.22 0.04 rs451081085 

3 PLA Chr3:89360154 89,360,154 7.84 0.08 0.88 0.15 rs461884243 

3 LA60 Chr3:89360154 89,360,154 7.11 0.08 4.45 0.45 rs461884243 
1C-LA = Commencement of luteal activity; PLA = proportion of samples in luteal activity 
between 25 and 60 days in milk; LA60 = luteal activity between 25 and 60 days in milk, CLAFS 
= interval from commencement of luteal activity to first service; LPL = first luteal phase length; 
IOI = length of first inter-ovulatory interval 
2MAF = Minor allele frequency 
3SD = Allele substitution effect expressed in phenotypic standard deviation of trait 
4rs-ID = reference SNP identification  

 

Two traits (LPL and IOI) were fine-mapped for the second target region on BTA2 

(31.87 – 41.96 Mb). There were 477 variants associated with LPL and 70 with IOI. The 

most significant association for LPL [-log10(p-value) = 9.09] was at 39.45 Mb, and at 

39.48 Mb for IOI [-log10(p-value) = 6.03]. The region between 33,500,042-40,999,921 

bp was searched for candidate genes, and resulted in 62 genes, of which 45 were 

annotated and 17 were uncharacterized. The annotated gene closest to the most 

significant variant for both LPL and IOI was NR4A2 (Figure 3.4), and another 

interesting candidate gene was ACVR1. 

 

The target region on BTA3 (85.68 – 95.66 Mb) was fine-mapped for C-LA, PLA and 

LA60, and variant-trait associations were observed for all three traits. There were 

594 variants associated with C-LA, 1,298 with PLA and 983 with LA60. The most 

significant association was observed for PLA [-log10(p-value) = 7.84] at 89.4 Mb (Table 

3.5); this SNP was also the most significant for LA60 [-log10(p-value) = 7.11]. For C-LA, 

the most significant association [-log10(p-value) = 6.10] was at 89.8 Mb. Candidate 

genes were searched for in the region spanning 87,500,158-95,662,104 bp. There 

were 105 genes in this region, of which 76 have been annotated, and 26 were 
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described as uncharacterized. The annotated genes closest to the most significant 

variant were DAB1 for C-LA and C8B for PLA and LA60 (Figure 3.5).  

 

 
 

Figure 3.3 Region-wise association using sequence variants within the target region on BTA2 
from 12,499,856-15,303,929 bp for A) C-LA, and 3,499,960-10,999,836 bp for B) CLAFS and 
C) LPL. Blue circles: genome-wide association with 85,485 SNPs of 2,447 cows; gray circles: 
region-wise association analysis with imputed sequence variants; labeled green circle is the 
most significant variant in the region. Candidate genes in the target regions are annotated in 
the boxes below each target region.  
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Figure 3.4 Region-wise association using sequence variants within the target region 
on BTA2 from 33,500,042-40,999,921 bp for A) LPL, and B) IOI. Blue circles: genome-
wide association with 85,485 SNPs of 2,447 cows; gray circles: region-wise 
association analysis with imputed sequence variants; labeled green circle is the most 
significant variant in the region. Candidate genes are annotated below the target 
region. 
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Figure 3.5 Region-wise association using sequence variants within the target region on BTA3 

from 87,500,158-95,662,104 bp for A) C-LA, B) PLA, and C) LA60. Blue circles: 
genome-wide association with 85,485 SNPs of 2,447 cows; gray circles: region-wise 
association analysis with imputed sequence variants; labeled green circle is the most 
significant variant in the region. Candidate genes are annotated below the target 
region.  
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Table 3.6 The most likely candidate genes (Top candidate) for 6 endocrine fertility traits on 

target regions of Bos taurus chromosomes 

BTA Trait1 
Top 
candidate 

Start 
gene 
(Mb) 

End 
gene 
(Mb) 

Gene description 

2 C-LA PDE1A 14.09 14.48 Phosphodiesterase 1A, calmodulin-dependent 

2 CLAFS SLC40A1 6.72 6.74 Solute carrier family 40 (iron-regulated transporter) 

2 LPL GULP1 7.83 8.07 GULP, engulfment adaptor PTB domain containing 1 

2 LPL, IOI NR4A2 40.00 40.02 Nuclear receptor subfamily 4, group A, member 2 

2 LPL, IOI ACVR1 39.26 39.36 Activin A receptor, type I 

3 C-LA DAB1 88.37 89.72 Dab, reelin signal transducer, homolog 1 (Drosophila) 

3 PLA, LA60 C8B 89.74 89.79 Complement component 8, beta polypeptide 
1C-LA = Commencement of luteal activity; PLA = proportion of samples in luteal activity 
between 25 and 60 days in milk; LA60 = luteal activity between 25 and 60 days in milk, CLAFS 
= interval from commencement of luteal activity to first service; LPL = first luteal phase length; 
IOI = length of first inter-ovulatory interval 
 
 

3.4 Discussion 

Previous studies have shown that endocrine fertility traits derived from milk 

progesterone profiles  have higher heritability than classical fertility traits (Veerkamp 

et al., 2000; Petersson et al., 2007; Tenghe et al., 2015). Heritability estimates of the 

endocrine fertility traits in this study were similar to estimates reported by Veerkamp 

et al. (2000), and  Nyman et al. (2014) who used a subset of the data used in this 

study, and estimates for classical fertility traits were similar to those of previous 

studies (Campos et al., 1994; Pryce et al., 1998; Berry et al., 2003; VanRaden et al., 

2004). The trait ILI had zero heritability. Tenghe et al. (2015) also reported a 

heritability of zero for ILI,  although (Nyman et al., 2014) reported a heritability of 

0.08.  

 

3.4.1 Genome-wide association study 

Detecting QTL for fertility traits is of high importance due to the low heritability of 

these traits. In this study, a GWAS was performed for 6 endocrine and 2 classical 

fertility traits using 85k SNP. The GWAS identified 20 QTL regions for all the fertility 

traits except CInt on BTA 2, 3, 8, 12, 15, 17, 23, and 25. Three selected target QTL 

regions on BTA 2 and 3, were then fine-mapped for endocrine fertility traits using 

imputed sequence variants. The endocrine trait PLA had the highest number (5) of 

QTL regions from the GWAS. The top QTL for PLA on BTA3 (90.67 Mb) was also 

associated with C-LA, and with LA60 (at 95.24 Mb), an observation consistent with 

the genetic correlation between these traits. Tenghe et al. (2015) reported strong 
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genetic correlations of -0.91 for C-LA with PLA and 0.82 for PLA with LA60. Up till 

now, no QTL have been reported for C-LA in this region. Using a subset (1,570 cows 

from the experimental herds; 50k SNP) of the data used in this study, Berry et al. 

(2012) identified QTL for C-LA at 130,141,723 bp on BTA2 and 9,375,095 bp on 

BTA21. No QTL was identified for C-LA on BTA21 in this study, however, a single SNP 

association was observed at 13,821,980 bp on BTA2, which is 116.32 Mb away from 

the QTL observed by Berry et al. (2012). Discrepancies between sample size, 

methods of analysis, and marker density could explain the differences between the 

results of Berry et al. (2012) and our study. 

 

To the best of our knowledge, with the exception of C-LA, no QTL have been reported 

for the other endocrine fertility traits analyzed in this study. In this study, the top 

QTL for LPL on BTA2 was also associated to IOI. As expected from the trait definition, 

IOI combines information from LPL and ILI, hence it is likely that IOI and LPL are 

influenced by overlapping groups of genes.  

The top QTL for CFS on BTA23 (28.86 Mb) was also associated to CLAFS. The shared 

QTL region by CFS and CLAFS could be expected, given the trait definition. The trait 

CLAFS is not entirely endocrine, but part endocrine and part classical, as it combines 

information from CFS and C-LA. In addition, there is a moderate genetic correlation 

(0.46) of C-LA and CFS, as reported by Tenghe et al. (2015). A number of fertility QTL 

in dairy cattle have been reported on BTA23 (Druet et al., 2008; Sahana et al., 2010; 

Höglund et al., 2014b). A QTL associated with veterinary treatment for reproductive 

disorders at 28.89 Mb was found in Danish and Swedish Holstein (Sahana et al., 

2010). A QTL for CFS was found in Danish Holstein and validated in Danish Jersey at 

28.09 Mb (Höglund et al., 2014b).  They reported QTL 0.03 and 0.77 Mb away from 

the QTL identified in this study, suggesting it might be the same QTL. Furthermore, 

using sequence variants, (Höglund et al., 2015) identified a QTL region from 30 – 32 

Mb for components of a fertility index (which included CFS as component trait) in 

Danish Jersey;  the QTL for CFS was at 30.36 Mb, which may be identical to the one 

we observed at 30.35 Mb in this study. 

 

3.4.2 Fine-mapping BTA2 

The target region on BTA2 (1.87 – 15.30 Mb) was fine-mapped for C-LA, CLAFS and 

LPL. The most likely candidate genes in this region were PDE1A for C-LA, SLC40A1 for 

CLAFS and GULP1 for LPL. The PDE1 belongs to the cyclic nucleotide 

phosphodiesterases (PDEs) that play a role in signal transduction by regulating 

intracellular cyclic nucleotide concentrations through hydrolysis of cyclic adenosine 
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monophosphate (cAMP). This gene complex is known to mediate oocyte maturation 

by regulating cAMP concentrations (Landim-Alvarenga and Maziero, 2014). A 

relative increase in the level of cAMP within the oocyte is essential for maintaining 

meiosis block, while a decrease in cAMP oocyte concentration allows the resumption 

of meiosis (Sela-Abramovich et al., 2006; Conti et al., 2012). The protein encoded by 

SLC40A1 is a cell membrane protein that may be involved in iron export from 

duodenal epithelial cells, and defects in this gene result in hemochromatosis (Geer 

et al., 2010).  In cattle, SLC40A1 is suggested to be related to milk yield, but no 

fertility-related function is known (Fang et al., 2014). The gene GULP1 encodes an 

adapter protein necessary for the engulfment of apoptotic cells by phagocytes, but 

no fertility-related function is known for this gene. 

 

Another target region (31.87 – 41.96 Mb) on BTA2 was fine-mapped for LPL and IOI. 

The most significant variant in this region was located in close proximity of NR4A2, 

and ACVR1 was another interesting candidate based on its function. The gene NR4A2 

is a member of the steroid receptor superfamily (Geer et al., 2010), and considered 

an important ovarian factor in regulation of female reproduction (Zhao et al., 2007). 

ACVR1 (also known as ALK2) is a dimeric growth and differentiation factor which 

belongs to the transforming growth factor-beta (TGF-beta). The TGF-beta together 

with bone morphogenetic proteins (BMPs) form a signaling family that is necessary 

for follicle development and oocyte competence in mammals, and different studies 

have demonstrated the role of specific family members in theca cells, granulosa cells, 

cumulus cells and oocytes (Knight and Glister, 2006; Edson et al., 2009). In cattle, FSH 

and estradiol both play a role in regulating ACVR1 expression during follicle 

development, and BMP signaling through ACVR1 in granulosa cells is thought to play 

a role in follicle growth (Shimizu et al., 2006; Glister et al., 2010). Furthermore, 

ACVR1 levels in granulosa cells were shown to  increase with follicle size (Shimizu et 

al., 2006). Moreover, in equine, ACVR1 is suggested to be involved with follicular 

fluid exosomes that regulate members of the TGFB/BMP signaling pathway in 

granulosa cells, and possibly play a role in regulating follicle maturation (da Silveira 

et al., 2014).  

 

3.4.3 Fine-mapping BTA3 

The target region on BTA3 (85.68 – 95.66 Mb) was fine-mapped for C-LA, PLA and 

LA60. Similar to the GWAS, the most significant association (89,360,154 bp) was 

common to PLA and LA60, suggesting that indeed these traits are probably 



3 Quantitative trait loci for endocrine fertility traits 

 

 

71 

 

influenced by the same genes. Moreover, detecting the same QTL for genetically 

correlated traits improves evidence for the QTL. 

 

In the region from 87,500,158-95,662,104 bp on BTA3, DAB1 and C8B were located 

in close proximity of the most significant variant in this region. The gene DAB1 has 

been suggested to be involved in numerous potential physiological functions: cell 

adhesion processes, activation of neuron differentiation, stimulation of protein 

kinase activity, ventral spinal cord development, adult walking behavior, and 

cerebellum structural organization (Ashburner et al., 2000). In mice, the protein 

encoded by this gene is thought to be a signal transducer that interacts with protein 

kinase pathways to regulate neuronal positioning in the developing brain. The gene 

C8B is involved in encoding a membrane attack complex protein that mediates cell 

lysis. In humans, deficiency of this protein is associated with increased risk of 

meningococcal infection (Geer et al., 2010). Nevertheless, none of the candidate 

genes in this region had obvious fertility-related functions.  

 

3.4.5 Limitations to mapping causal mutations  

The LD in cattle is spread over a wide region due to low effective population size and 

strong selection. This LD breadth places limitations on mapping QTL to regions 

suitable for identifying causative mutations. However, using multiple-breed data 

may have advantage for mapping causal factors; for example, as shown in dogs 

(Karlsson et al., 2007). Also, studies on a more functional level may be required to be 

able to identify causative variants. 

 

3.4.6 Effect size and application for breeding 

Genomic predictions are now used routinely in selection of dairy cattle (Hayes et al., 

2009; Goddard et al., 2010; Wiggans et al., 2011), however, an ongoing challenge is 

to improve the accuracy of these predictions, as the genetic gain that can be 

achieved is proportional to their accuracy. Genomic prediction from whole-genome 

sequence data is attractive, because the accuracy of genomic prediction is no longer 

bounded by the extent of linkage disequilibrium between DNA markers and causal 

mutations affecting the trait, given the causal mutations are in the data set. Although 

simulation studies show large gain in accuracy of genomic prediction due to use of 

sequence data, (Meuwissen and Goddard, 2010; Clark et al., 2011; Druet et al., 

2014), this has not yet been realized in real data (Ober et al., 2012; Hayes et al., 2014; 

van Binsbergen et al., 2015). These simulation studies also show that the added value 

of using sequence data over SNP arrays to increase accuracy of genomic breeding is 
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dependent on the size, and distribution of QTL effects. The absolute effect sizes of 

QTL detected for endocrine fertility traits in this study were low to moderate, ranging 

from 0.12 to 4.45 (Table 3.4 and Table 3.5), suggesting that the effect of the causative 

mutations for endocrine fertility traits may be very small as observed for several 

quantitative traits (Kemper et al., 2011; Stahl et al., 2012). When QTL effects are 

small and MAF are low as observed for the fertility QTL in this study, large numbers 

of individuals are required to estimate these effects accurately, and even though the 

cost of genome resequencing has fallen dramatically, it is still too expensive to 

consider resequencing the tens of thousands of individuals that would be required 

to accurately estimate the likely small effects of mutations. An alternative strategy 

would be to sequence a relatively few individuals (key ancestors), and then impute 

genotypes for the variants discovered in the sequence into the whole population. 

Furthermore, simulation results (Druet et al., 2014) suggest that when the MAF of 

QTL is very low, genomic predictions from imputed sequence data can have up to 

20% advantage in accuracy over use of SNP panels. In dairy cattle, such genetic 

architecture is most likely for a complex trait like fertility, which would benefit 

greatly from genomic prediction with whole-genome sequence. Another possibility 

to benefit from sequence data as suggested by Hayes et al., (2014) would be to 

preselect sequence variants based on annotation information, and include this 

biological information in genomic predictions. Yet another strategy could be to 

include the sequence variants from the causal regions on low density chips used in 

genomic prediction on which a large number of individuals can be genotyped. This 

would increase the power of QTL detection e.g., a mutation in the SMC2 gene that 

causes embryonic loss was identified using such strategy in the 1000 bull genome 

project (Daetwyler et al., 2014). However, in terms of genomic prediction these low 

density chip do not provide more accuracy of prediction yet.  

 

A sustainable breeding scheme also takes into account the correlated effects on 

other production and reproduction traits. In general, the genetic correlations among 

all the analyzed fertility traits are favorable, and therefore no serious negative 

effects on genetic progress due to selection are to be expected. However, the genetic 

correlations of milk yield with endocrine and classical fertility traits are generally 

unfavorable, hence special attention will be needed to optimize breeding schemes 

to account for these correlations. Although genetic correlation estimates of in-line 

endocrine fertility traits with milk yield seem lower (Tenghe et al., 2015) than genetic 

correlations of milk yield with classical fertility traits, more studies are needed to 

confirm these estimates. Hence a plausible solution to improve fertility using 

endocrine fesrtility traits would be optimized breeding schemes that jointly include 
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endocrine and classical fertility traits in a fertility index, with special attention given 

to the negative correlation of fertility with milk yield. 

 

Nonetheless, it is not yet obvious on how to benefit directly from the endocrine 

traits, QTL, and sequence data, as there are still several challenges e.g., how to 

translate SNP effects to economic values and optimal integration in breeding 

decisions, where it is not clear how to deal with. Hence the findings in this study 

helped to learn more about the genetic architecture and underlying biology of 

fertility. 

 

3.5 Conclusions 

A total of 17 QTL regions for 6 endocrine fertility traits were identified on 

chromosomes 2, 3, 8, 12, 15, 17, 23, and 25 from a genome-wide association with 

85,485 SNPs. Three QTL regions were identified for classical fertility traits. 

Overlapping QTL regions were found between endocrine traits on BTA 2, 3, and 17 

and between endocrine and classical fertility traits on BTA23.  

 

Fine-mapping of target regions for endocrine traits on BTA 2, and 3, using imputed 

sequence variants confirmed the QTL from the genome-wide association study, and 

identified several associated variants that can contribute to an index of markers for 

genetic improvement of fertility. Several potential candidate genes underlying 

endocrine fertility traits were also identified in the target regions. However, due to 

high LD, it was not possible to specify genes or polymorphisms as causal factors for 

any of the regions. 
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Supplementary Figure 3. S1 Quantile-quantile plots (Q-Q plot) of –log10 of p-values 
resulting from a genome-wide scan for 6 endocrine and 2 classical fertility traits using 
85,485 SNPs of 2,447 cows with 5,339 lactations in dairy cattle. Deviations from the 
slope line correspond to loci that deviate from the null hypothesis of no association; 
λ = genomic inflation factor  
C-LA = Commencement of luteal activity; PLA = proportion of samples in luteal 
activity between 25 and 60 days in milk; LA60 = luteal activity between 25 and 60 
days in milk, CLAFS = interval from commencement of luteal activity to first service; 
LPL = first luteal phase length; IOI = length of first inter-ovulatory interval; CFS = 
interval from calving to first service; CInt = calving interval. 
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Abstract 

Endocrine fertility traits, defined from progesterone concentration levels in milk, 

have been suggested as alternative indicators for fertility in dairy cows because they 

are less biased by farm management decisions and more directly reflect a cow’s 

reproductive physiology than classical traits derived from insemination and calving 

data. To determine the potential use of endocrine fertility traits in genomic 

evaluations, the improvement in accuracy from using endocrine fertility traits 

concurrent with classical traits in the genomic prediction of fertility was quantified. 

The impact of recording all traits on all training animals was also investigated. 

Endocrine and classical fertility records were available on 5,339 lactations from 2,447 

Holstein cows in Ireland, the Netherlands, Sweden, and the United Kingdom. The 

endocrine traits were commencement of luteal activity (CLA) and proportion of 

samples in luteal activity (PLA); the classical trait was calving to first service (CFS). 

The interval from commencement of luteal activity to first service (CLAFS) which is a 

combination of an endocrine and classical trait was also investigated. The target 

(breeding goal) trait for fertility was CFS or CLAFS, whereas CLA and PLA served as 

predictor traits. Genomic estimated breeding values (GEBV) for fertility were derived 

using genomic BLUP in bivariate models with 85,485 single nucleotide 

polymorphisms. GEBV for the separate fertility traits were also computed, in 

univariate models. The accuracy of GEBV were evaluated by 5-fold cross-validation. 

The highest accuracy of GEBV was achieved using bivariate predictions, where both 

an endocrine and the classical fertility trait were used. Accuracy of GEBV for 

predicting adjusted phenotypes for CFS in the univariate model was 0.04, but when 

predicting CFS using a bivariate model with CLA, the accuracy increased to 0.14 when 

all training animals were phenotyped for CLA and (or not) for CFS. On phenotyping 

all training animals for both CLA and CFS, accuracy for CFS increased to 0.18; 

however, when validation animals were also phenotyped for CLA, there was no 

substantial increase in accuracy. When predicting CFS in bivariate analysis with PLA, 

accuracy ranged from 0.07 to 0.14. This first study on genomic predictions for fertility 

using endocrine traits suggests some improvement in the accuracy of prediction over 

using only the classical traits. Further studies with larger training populations may 

show greater improvements. 

 

Key words: fertility, multi-trait genomic prediction, milk progesterone, dairy cattle, 

endocrine fertility traits, validation  
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4.1 Introduction 

Endocrine fertility traits, based on progesterone (P4) levels in milk, have been 

suggested as indicators for fertility as they are less biased by farm management 

decisions and more directly reflect a cow’s reproductive physiology than 

insemination and calving based indicators of fertility (Lamming and Darwash, 1998; 

Darwash et al., 1999). For example, the interval from calving to first ovulation as 

determined by P4 levels in milk could be used as indicator of a cow’s ability to return 

to luteal activity after calving, instead of the indirect indicator calving to first service 

(CFS). However, the use of endocrine traits in routine genetic evaluation schemes 

has been constrained by the high cost associated with collecting P4 measures on 

sufficient number of animals. Nonetheless, in-line technology now exists to measure 

P4 during each milking (Friggens et al., 2008), enabling sampling of more animals at 

reasonable cost.  

 

Because few herds currently have the in-line recording system, endocrine traits 

would be most useful in a genomic selection scheme, where cows from contract 

herds form part of the reference population. In comparison, classical fertility traits 

are routinely measured on a large scale and remain useful target traits in national 

genetic evaluations. Therefore, combining genomic predictions for endocrine and 

classical fertility traits may provide a more accurate prediction of dairy cow fertility. 

 As a first step towards determining the optimum scenario for using endocrine 

fertility traits in genomic evaluations, the aim of this study was to quantify the 

improvement in accuracy achievable from using endocrine traits that describe the 

ability to return to normal cyclicity concurrent with the classical trait CFS in genomic 

prediction of fertility. This is only a first step, as CFS may not be the ideal breeding 

goal trait, and all traits related to fertility should be considered. Also evaluated were 

whether all traits should be measured on all animals in the training data and how 

well the genomic predictions translate across countries.  

 

 

4.2 Materials and Methods 

 

4.2.1 Phenotypes 

The phenotype data consisted of in-line P4 records from 14 commercial herds in the 

Netherlands, and manually collected P4 records of 4 experimental herds from 

Wageningen UR Livestock Research, the Netherlands; Teagasc, Moorepark, Ireland; 

Dairy Research Centre, SRUC (Scotland’s Rural College, previously SAC), Scotland;   
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and the Jälla herd of the Swedish University of Agricultural Science. In total, 

phenotypic data were available from 5,339 lactations on 2,447 Holstein-Friesian 

cows. A detailed description of the experimental treatments imposed on animals in 

the different experimental herds, procedures for milk sampling and P4 level 

measuring have been given in Veerkamp et al. (2000), Horan et al. (2005), Petersson 

et al. (2006), and Pollott and Coffey (2008). In brief, milk sampling for P4 

measurement was undertaken twice a week at the experimental herds in Sweden 

and the Netherlands, and three times a week in Ireland and the United Kingdom. In 

the commercial herds, milk sampling, measuring and recording of P4 level was 

performed using the Herd NavigatorTM (HN, DeLaval Intl, Tumba, Sweden). Sampling 

frequency on the commercial herds was based on a biological model (Friggens et al., 

2008), but on average, was undertaken every 2 days. 

  

For each lactation, the following endocrine fertility traits were defined using P4 

records as described  in Tenghe et al. (2015): 1) commencement of luteal activity 

(CLA) as the number of days from calving to start of luteal activity; 2) proportion of 

samples with luteal activity (PLA) as the number of P4 records with luteal activity, 

divided by total number of P4 records in the period from 25 to 60 days in milk; 3) 

commencement of luteal activity to first service (CLAFS) as the interval from   start 

of luteal activity, to the day of first service. The trait CLAFS is a hybrid trait as it is 

composed of both an endocrine and a classical fertility trait. The classical fertility trait 

investigated was interval from calving to first service (CFS). The trait CFS was 

restricted between 30 to 250 days.  

 

4.2.2 Genotype data and quality control 

Genotyping of cows from the experimental herds was performed with the Illumina 

BovineSNP50 v1 BeadChip (Illumina Inc., San Diego, CA, USA) on 1,946 cows and 

contained 54,001 SNP (50k), whereas 1,907 cows from commercial herds were 

genotyped with the GeneSeek Genomic Profiler Bovine HD (GeneSeek, Lincoln, NE, 

USA), containing 76,883 SNP (80k). An additional 6 cows from a commercial herd 

were genotyped with a custom Illumina 6k array. The 50k and 80k SNP arrays had 

25,815 SNP in common, the rest were imputed from one dataset to the other and 

vice versa using BEAGLE 3.3.2. (Browning and Browning, 2009), resulting in a total of 

102,062 SNPs. The quality criteria applied before imputation were minimum call rate 

of 95% per animal and 97% per SNP, and minimum GC-score of 0.3. A total of 120 

animals failed the quality criteria and were excluded. After imputation, SNPs were 

retained for analysis if they fulfilled all of the following quality criteria: 1) call rate > 
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95%, minor allele frequency (MAF) > 0.01, and no extreme deviation from Hardy-

Weinberg Equilibrium (p < 0.01). Following all edits, 85,485 SNP for 3,739 cows 

remained. 

 

 
 

Figure 4.1 Flow chart showing the scenarios of genomic prediction for fertility 

investigated, using endocrine and classical fertility traits in dairy cows. The interval 

from calving to commencement of luteal activity (CLA) is used as an example for 

endocrine fertility traits, and the interval from calving to first service (CFS) as an 

example for classical fertility traits. The difference between scenarios is based on the 

fertility records in training and validation sets. 
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4.2.3 Statistical analysis 

From the 3,739 cows, 2,447 cows with both phenotypes (5,339 lactations) and 

genotypes were used for analysis. Genomic estimated breeding values (GEBV) were 

predicted based on the genomic best linear unbiased prediction (GBLUP). The model 

was: 

 

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + ℎ𝑦𝑠𝑖 + 𝑝𝑎𝑟𝑖𝑡𝑦𝑗 + 𝑏1×𝑐𝑎𝑘(𝑝𝑗) +  𝑏2×𝑐𝑎𝑘
2(𝑝𝑗) + 𝑔𝑙 + 𝑝𝑒𝑙 + 𝑒𝑖𝑗𝑘𝑙  

 

where 𝑦𝑖𝑗𝑘𝑙  is the phenotype; µ is the intercept, ℎ𝑦𝑠𝑖  is the fixed effect of herd-year-

(calving) season combination i ( i=1-495), with calving season defined as winter: 

December-February, spring: March-May, summer: June-August, autumn: 

September-November;  𝑝𝑎𝑟𝑖𝑡𝑦𝑗  is the fixed effect of parity j (cows in parity 4 or 

above were grouped to a common class); 𝑏1×𝑐𝑎𝑘(𝑝𝑗) is the linear regression on 

calving age k (in months) nested within parity 𝑝𝑗;  𝑏2×𝑐𝑎𝑘
2(𝑝𝑗) is the quadratic 

regression on age at calving, 𝑔𝑙  is the genomic breeding value of the 𝑙𝑡ℎ individual, 

and 𝑝𝑒𝑙  is the permanent environmental effect of individual l to account for repeated 

measures (i.e., more than 1 lactation). The 𝑔 were random, normally distributed 

effects with mean zero and variance 𝐺𝜎𝑔 
2 , where 𝐺 is the genomic relationship 

matrix among all individuals, constructed according to VanRaden (2008), which was 

computed as 𝐺 = 𝑍𝑍′/ 2 ∑ 𝑝𝑚𝑞𝑚, where Z is a matrix of centred genotypes, and 𝑝𝑚 

and 𝑞𝑚 are the allelic frequencies of the 𝑚𝑡ℎ marker based on observed genotypes; 

𝑝𝑒 were assumed to be normally distributed with mean zero and variance 𝜎𝑝𝑒
2 , and 

𝑒𝑖𝑗𝑘𝑙  is the random error term, with residuals assumed to be normally distributed, 

with mean zero and variance  𝜎𝑒
2. ASReml 4.1 (Gilmour et al., 2014) was used for the 

GBLUP analysis.  

 

A univariate model was used for single trait predictions, whereas bivariate models 

were used for multiple trait predictions, with the same fixed effects described above. 

Heritability estimates and pedigree-based estimated breeding values (EBV) were 

calculated from the univariate model, using the whole dataset.  

 

4.2.4 Scenarios 

Three scenarios for genomic predictions (Figure 4.1) were investigated using 

univariate and bivariate approaches. Scenario 1 aimed to evaluate the accuracy of 

predicting fertility for non-phenotyped candidate animals when all training animals 

were phenotyped for endocrine fertility traits, and (or not) for classical fertility traits. 

Scenario 2 aimed to evaluate whether the accuracy of prediction for non-
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phenotyped candidate animals could be improved when all training animals were 

phenotyped for both endocrine and classical fertility traits. Scenario 3, investigated 

whether also phenotyping validation animals for endocrine fertility traits improved 

accuracy. 

 

4.2.5 Accuracy of prediction 

A 5-fold cross-validation was used to quantify the accuracy of prediction for the 

different scenarios. For each analysis (i.e., univariate or bivariate), individuals were 

randomly divided in five subsets and 5 training-validation groups were then formed 

from the subsets; each subset was used as validation set once. The accuracy was 

averaged across the 5 training-validation groups. To estimate accuracy of prediction, 

the target phenotype of the validation set in (i.e., univariate or bivariate) each 

analysis was excluded from the training dataset, and the GEBV were predicted from 

the training set. For the validation set, the GEBV were then correlated with a vector 

of phenotypes (Phen), corrected for the fixed effects previously described. In case a 

cow had multiple lactations, only the first available lactation was used in the 

validation set. However, the accuracy of GEBV may be best described as the 

correlation between GEBV and true breeding values. The accuracy of true breeding 

values (realized accuracy) was approximated as r(GEBV, Phen)/h, where h was the 

square root of the estimated heritability of the phenotype from the univariate 

model. Prediction bias was then calculated by regressing the validation variables 

(Phen) on the predictor variables (GEBV). Prediction bias was also assessed by 

regressing the pedigree-based EBV on GEBV. 

  

We also performed single trait predictions across country for scenario 1, with the 

univariate model. The data for this study originated from 4 countries (Ireland, the 

Netherlands, Sweden, and the United Kingdom). The number of cows and lactations 

available from each country are in Table 4.1. Because the Netherlands had the largest 

proportion of the data (88 %), it was not used as a validation set. The validation sets 

were the data from Ireland, Sweden or the United Kingdom, and for each validation 

set, the training set was composed of data from the Netherlands and the other two 

countries.  
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Table 4.1 Number of cows and lactation records for Holstein-Friesian cows from Ireland 

(IRE), the Netherlands (NL), Sweden (SWE), and the United Kingdom (UK), used in analysis  
 

Trait1 No. IRE NL SWE UK Total 

CLA (d) Records 63 2,946 473 42 3,524 

 Cows 35 2,037 217 30 2,319 

PLA (%) Records 63 3,001 491 42 3,597 

 Cows 35 2,074 220 30 2,359 

CLAFS (d) Records 61 1,542 380 32 2,015 

 Cows 33 1,166 187 24 1,410 

CFS (d) Records 100 3,064 395 75 3,634 

 Cows 35 1,407 189 30 1,661 
1CLA = Commencement of luteal activity, PLA = proportion of samples in luteal activity 

between 25 and 60 days in milk, CLAFS = interval from commencement of luteal activity to 

first service, CFS = interval from calving to first service 

 

 

4.3 Results 

The descriptive statistics for each trait in each country are in Table 4.2, together with 

the genomic heritability estimated from the whole dataset. The genomic heritability 

estimates of the fertility traits ranged from 0.04 to 0.12 (Table 4.2), whereas 

pedigree-based heritability estimates (± SE) were 0.14 (± 0.04) for CLA, 0.15 (± 0.04) 

for PLA, 0.09 (± 0.05) for CLAFS, and 0.10 (± 0.04) for CFS. The genomic and pedigree-

based heritabilities were generally similar.  

  

4.3.1 Accuracy 

Accuracy of calculated   from univariate and bivariate analysis are presented in 

Tables 4.3 and 4.4. The accuracy of prediction for endocrine fertility traits was in 

general greater than for the classical fertility trait in univariate predictions. In the 

univariate predictions, accuracy of prediction ranged from 0.13 to 0.15 for CLA across 

scenarios, and was 0.14 for PLA. The accuracy of prediction for CFS and CLAFS was 

0.04 across scenarios. 

 

There was an increase between 0.10 to 0.14 in accuracy of predicting CFS in bivariate 

analysis with endocrine fertility traits, compared to accuracy in the univariate 

predictions (Tables 4.3 and 4). The accuracy of predicting CFS in univariate 

predictions was 0.04, but when predicting CFS using the bivariate analysis with CLA 

as predictor trait, accuracy increased to 0.14 in scenario 1 (Table 4.3) where all 

training animals were phenotyped for CLA, and (or not) for CFS, and up to 0.18 in 
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scenario 2 (Table 4.4) where all training animals were phenotyped for both CLA and 

CFS. When all validation animals were also phenotyped for endocrine traits (scenario 

3), there was no substantial increase in accuracy; that is accuracy of CFS was 0.15 

(Table 4.4). For prediction of CFS using the bivariate analysis with PLA as predictor 

trait, the accuracy of predicting CFS was greatest in scenario 1 (0.14), decreased to 

0.07 in scenario 2, and was 0.12 in scenario 3.  

 

For the hybrid trait CLAFS, an increase in accuracy of prediction was observed only 

in scenario 3 where all candidate animals were phenotyped for endocrine fertility 

traits. That is, when predicting CLAFS in a bivariate analysis with CLA, the accuracy of 

predicting CLAFS increased to 0.18 and up to 0.21 in the bivariate analysis with PLA, 

but for the bivariate predictions of CLAFS in scenario 1 and 2, accuracy ranged from 

0.02 to 0.07. 

 

Accuracy of prediction across countries was low to moderate for the endocrine and 

classical fertility traits. The accuracy of prediction across countries ranged from 0.12 

to 0.34 for CLA, 0.14 to 0.24 for PLA and 0.06 to 0.38 for CFS (Table 4.5). The accuracy 

of prediction for CLAFS was poor across all countries except for Sweden.  

 

Table 4.2 Genomic heritability (h2) and repeatability (t) estimates with their standard errors 

from the whole dataset and number of records, mean, and phenotypic standard deviation for 

each trait within each country 

      Ireland  Netherlands  Sweden  

United 
Kingdom 

Trait1 h2 SE t SE  Mean SD  Mean SD  Mean SD  Mean SD 

CLA 0.10 0.02 0.33 0.03  38.6 14.8  38.3 17.4  40.0 21.5  38.2 21.2 

PLA 0.12 0.03 0.31 0.03  0.4 0.2  0.6 0.3  0.5 0.3  0.5 0.3 

CLAFS 0.04 0.03 0.28 0.04  36.7 20.5  48.5 27.6  66.0 39.2  35.5 20.8 

CFS 0.11 0.03 0.15 0.02  74.1 19.6  89.8 33.0  105.7 39.1  77.4 23.8 
1CLA = Commencement of luteal activity, PLA = proportion of samples in luteal activity 

between 25 and 60 days in milk,  CLAFS = interval from commencement of luteal activity to 

first service, CFS = interval from calving to first service 
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Table 4.3 Accuracy of genomic estimated breeding values (GEBV) from GBLUP, using 

univariate and bivariate models (Scenario 1) 

  Training2  Validation3      

Trait1 
Training 

Trait 
Validation 

Average 
no. of 

lactations 

Average 
no. of 
cows  

Average 
no. of 
cows  

Accuracy 
(SD) 

Realized4 
accuracy 

(SD) Slope1 Slope2 

CLA CLA 2,819 1,855  464  0.15 (0.05) 0.46 (0.16) 1.19 0.79 

PLA PLA 2,878 1,887  472  0.14 (0.02) 0.42 (0.07) 0.97 0.68 
CLAFS CLAFS 1,612 1,128  282  0.04 (0.07) 0.19 (0.37) 1.72 1.69 
CFS CFS 2,907 1,329  332  0.04 (0.07) 0.13 (0.21) 0.37 0.47 
CLA, CFS CFS 2,819 1,855  258  0.14 (0.07) 0.41 (0.21) 1.39 0.42 
CLA, CLAFS CLAFS 2,819 1,855  258  0.03 (0.09) 0.13 (0.44) 0.98 1.07 
CLA, PLA PLA 2,819 1,855  464  0.14 (0.05) 0.41 (0.14) 0.95 0.67 

PLA, CFS CFS 2,878 1,887  284  0.10 (0.03) 0.31 (0.09) 1.12 0.53 
PLA, CLAFS CLAFS 2,878 1,887  282  0.07 (0.03) 0.34 (0.16) 1.29 0.96 

1CLA = Commencement of luteal activity, PLA = proportion of samples in luteal activity 
between 25 and 60 days in milk, CLAFS = interval from commencement of luteal activity to 
first service, CFS = interval from calving to first service. Slope1 = regression coefficient of 
phenotypes on GEBV, Slope2 = regression coefficient of pedigree-based EBV on GEBV. 
Accuracy and average of training and validation sets were obtained by 5 random training-
validation sets 
2Standard deviation of average number of lactations in the training sets ranged from 5.89 to 
26.24; Standard deviation of average number of cows in the training sets ranged from 0.00 to 
0.45; 3Standard deviation of average number of cows in the validation sets ranged from 0.00 
to 13.77, each cow in the validation set had one lactation 
4Realized accuracy = Accuracy divided by square root of heritability of the validation trait 
 

 

4.3.2 Bias 

In the univariate prediction of the endocrine fertility traits, the slopes ranged from 

0.97 to 1.20, indicating that the predictions were not severely biased (Tables 4.3 and 

4); the confidence intervals for the slopes were wide, but the slopes were not 

different from 1. For univariate predictions of CFS and CLAFS, the variance of the 

GEBV were most biased in scenario 1, the slopes were 0.37 for CFS and 1.72 for 

CLAFS, but somewhat reduced in scenario 2 and 3, that is, the slope increased to 0.70 

for CFS and reduced to 1.34 for CLAFS. In the cases with high prediction bias in 

bivariate predictions, we observed that the genomic heritability was very low. For 

example, in scenario 2 (Table 4.4), when CFS was predicted in bivariate analysis with 

CLA, the GEBV across the cross-validation sets were on a much smaller scale 

compared to pedigree-based EBV for CFS. That is, the pedigree-based EBV ranged 

from -15 to 20 whereas the GEBV ranged from - 2 to 2 (Supplementary Figure 4.1), 

implying that the genomic heritability of CFS was under estimated in the cross-

validation sets due to small sample sizes. Also, the GEBV from bivariate predictions 
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were in general on a much smaller scale than GEBV from univariate predictions (e.g., 

Supplementary Figure 4.2), implying that genomic heritability of the target trait was 

underestimated in the bivariate predictions. 

 

There was generally a bias in estimated variance of GEBV across countries, with the 

most bias for CLAFS (Table 4.5). This bias could be due to the few number of animals 

in training and validation sets. For example, GEBV for CLAFS for the United Kingdom 

predicted with the whole dataset (scenario 1) ranged from -1 to 3, and those from 

across country predictions ranged from -1 to 4 (Supplementary Figure 4.3), implying 

that prediction of CLAFS was consistent in both cases, but biased due to very few 

animals (n = 24). 

 

 

4.4 Discussion 

The main aim of this study was to quantify the improvement in accuracy from using 

endocrine fertility traits concurrent with classical traits in genomic prediction of 

fertility. Univariate and bivariate predictions were used to obtain GEBV for two 

endocrine fertility traits (CLA and PLA), a classical trait (CFS), and a hybrid trait 

(CLAFS) in three scenarios of genomic prediction. With CFS as target (breeding goal) 

trait, for fertility, our results show that accuracy of GEBV for CFS was increased in 

bivariate analysis where endocrine and classical fertility traits were used, and there 

was a better predictive ability of CFS in bivariate analysis with CLA than with PLA. 

There was no substantial increase in accuracy of GEBV for CFS when both training 

and validation animals were phenotyped for endocrine fertility traits. Across country 

predictions were also evaluated in univariate predictions, and some predictive ability 

was observed for all traits across countries, except for CLAFS.  

The mean phenotypic performance in the present study was similar to previous 

reports from Ireland (Berry et al., 2012), the Netherlands (Veerkamp et al., 2000), 

Sweden (Petersson et al., 2006), and the United Kingdom (Pollott and Coffey, 2008), 

all of which included some of the data used in this study. The genomic heritability 

estimates of the endocrine traits (CLA and PLA) in this study were slightly lower than 

pedigree-based estimates reported elsewhere (Veerkamp et al., 2000; Petersson et 

al., 2007; Tenghe et al., 2016), whereas heritability of the classical trait CFS was 

similar to those of previous studies (Pryce et al., 1998; Berry et al., 2003). 
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4.4.1 Accuracy 

This is the first study to evaluate the usefulness of endocrine measures on genomic 

predictions for fertility. The study showed that the accuracy of predicting genomic 

breeding values for fertility can be increased in multi-trait predictions when 

endocrine and classical fertility traits are used. In the bivariate predictions, the target 

trait was CFS or CLAFS, whereas the predictor trait was CLA or PLA. The gain in 

accuracy of GEBV of a target trait is expected to be higher when the correlation with 

the predictor trait is stronger. In a previous study, using a subset of the dataset used 

in this study, Tenghe et al. (2015) estimated genetic correlations of 0.37 between 

CFS and CLA, and 0.31 between CFS and PLA. Hence the gain in accuracy of GEBV for 

CFS was expected to be slightly higher when using CLA as the predictor trait than 

when using PLA, as confirmed by the results in this study. Similarly, the genetic 

correlation of CLAFS was -0.56 with CLA and 0.65 with PLA (Tenghe et al., 2015), 

hence the gain in accuracy of GEBV for CLAFS was expected to be higher when using 

PLA as predictor trait rather than CLA. With the exception of scenario 2, accuracies 

of predicting CLAFS with CLA or PLA as predictor traits were as expected, that is the 

highest accuracy for GEBV of CLAFS were obtained when PLA was used as the 

predictor trait. The superiority of multi-trait genomic analysis over single-trait has 

been shown in stochastic (Calus and Veerkamp, 2011; Jia and Jannink, 2012) and 

deterministic (Calus et al., 2013) simulations, as well as in real data (Aguilar et al., 

2011; De Haas et al., 2012; Pszczola et al., 2013). 
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Table 4.4 Accuracy of genomic estimated breeding values (GEBV) from GBLUP, using univariate and bivariate models (Scenarios 2 and 3) 

 

  Training2  Validation3      

Trait1 
Training 

Trait Validation 
Average  

no. of 
lactations 

Average no. 
of cows 

 Average 
no. of cows 

 Accuracy 
(SD) 

Realized4 
accuracy 
(SD) 

Slope1 Slope2 

Scenario 2          

CLA CLA 1,822 1,199  300  0.13 (0.08) 0.40 (0.26) 1.14 0.72 

PLA PLA 1,819 1,202  301  0.14 (0.04) 0.42 (0.12) 1.20 0.67 

CLAFS CLAFS 1,612 1,128  282  0.04 (0.04) 0.22 (0.21) 1.34 1.34 

CFS CFS 1,621 1,131  283  0.04 (0.05) 0.11 (0.15) 0.70 0.77 

CLA, CFS CFS 1,614 1,128  282  0.18 (0.04) 0.55 (0.13) 12.27 2.20 

CLA, CLAFS CLAFS 1,612 1,128  282  0.04 (0.03) 0.19 (0.17) 1.17 1.21 

CLA, PLA PLA 2,808 1,853  464  0.15 (0.04) 0.43 (0.13) 1.02 0.71 

PLA, CFS CFS 1,614 1,129  282  0.07 (0.06) 0.20 (0.17) 0.65 0.40 

PLA, CLAFS CLAFS 1,605 1,126  282  0.02 (0.02) 0.10 (0.09) 0.39 0.75 

Scenario 3         

CLA, CFS CFS 1,614 1,128  282  0.15 (0.05) 0.44 (0.16) 1.38 0.42 

CLA, CLAFS CLAFS 1,612 1,128  282  0.18 (0.07) 0.90 (0.37) 7.91 2.60 

CLA, PLA PLA 2,808 1,853  464  0.49 (0.03) 1.42 (0.07) 2.74 0.82 

PLA, CFS CFS 1,614 1,129  282  0.12 (0.07) 0.35 (0.20) 0.98 0.36 

PLA, CLAFS CLAFS 1,605 1,126  282  0.21 (0.09) 1.05 (0.47) 3.62 0.90 
1CLA = Commencement of luteal activity, PLA = proportion of samples in luteal activity between 25 and 60 days in milk, CLAFS = interval from 
commencement of luteal activity to first service, CFS = interval from calving to first service. Slope1 = regression coefficient of phenotypes on GEBV, 
Slope2 = regression coefficient of pedigree-based EBV on GEBV. Accuracy and average of training and validation sets were obtained by 5 random 
training-validation sets  
2Standard deviation of average number of lactations in the training sets ranged from 5.89 to 26.24; Standard deviation of average number of cows 
in the training sets ranged from 0.00 to 0.45; 3Standard deviation of average number of cows in the validation sets ranged from 0.00 to 13.77, each 
cow in the validation set had one lactation; 4Realized accuracy = Accuracy divided by square root of heritability of the validation trait  
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The results from across country predictions were inconclusive when predicting GEBV 

for animals in Sweden with data from the Netherlands, Ireland and the United 

Kingdom. Predictive ability was not confirmed for Ireland or the United Kingdom, 

when using training data from the other three countries. The accuracy of GEBV for 

Sweden was highest for endocrine fertility traits and lowest for the classical trait. The 

accuracies in across country predictions were in general higher than accuracies 

observed in the univariate predictions that used the whole dataset. One reason 

might be the fact that the size of the training set with phenotypes is larger when 

combining data from multiple countries to predict another country.  

 

Future studies with larger training populations within countries may show greater 

improvements in accuracy (Daetwyler et al., 2008; Calus et al., 2013). Also, it needs 

to be studied how this relates to using multiple traits across multiple countries (e.g., 

Wientjes et al., 2015) 

  

4.4.2 Bias 

The slopes of regression of phenotypes on GEBV are a measure of the bias in terms 

of the estimated variance of the GEBV. Slopes greater than one indicate 

underestimation of the variance of the GEBV whereas slopes smaller than one 

indicate overestimation. When CFS and CLAFS were predicted in univariate analyses, 

there was increased bias in variance of GEBV, but this bias was reduced in the 

bivariate analysis in scenario 1, where CLA or PLA were used as predictor traits in the 

training population, suggesting that inclusion of a predictor trait may decrease the 

bias. However, also phenotyping the validation animals (scenario 3) for CLA or PLA 

in the bivariate approach did not improve the bias, which is in contrast to the results 

of Pszczola et al., (2013), where in a similar study they found that recording predictor 

traits for both training and validation animals significantly increased accuracy of 

GEBV for the target trait and removed the bias observed when only training animals 

had phenotypes. The difference in  results could be because the traits investigated 

by Pszczola et al. (2013) had higher heritability than the traits in this study. In 

Pszczola et al. (2013), heritability for the target trait ranged from 0.60 to 0.44 (when 

estimated using the pedigree or genomic relationship matrix), whereas heritability 

for the predictor traits ranged from 0.36 to 0.48. 
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Table 4.5 Accuracy of across country predictions for fertility from GBLUP, using endocrine 

and classical fertility records from Ireland (IRE), the Netherlands (NL), Sweden (SWE), and 

the United Kingdom (UK)  
 

    
No.  

Training  

No. 
Validation     

Trait1 
Validation 

set Lactations Cows  Cows Accuracy 
Realized2 
accuracy Slope1 Slope2 

CLA IRE 3,461 2,284  35 0.12 0.37 1.02 0.29 

CLA SWE 3,051 2,102  217 0.16 0.52 2.68 0.42 

CLA UK 3,482 2,289  30 0.34 1.07 2.72 1.19 

PLA IRE 3,534 2,324  35 0.15 0.43 1.01 0.38 

PLA SWE 3,106 2,139  220 0.24 0.68 2.32 0.46 

PLA UK 3,555 2,329  30 0.14 0.41 0.99 0.64 

CLAFS IRE 1,954 1,377  33 0.00 0.01 0.05 0.43 

CLAFS SWE 1,635 1,223  187 0.12 0.61 5.84 0.65 

CLAFS UK 1,983 1,386  24 -0.11 -0.55 -1.14 - 0.12 

CFS IRE 3,534 1,626  35 0.12 0.36 0.63 0.50 

CFS SWE 3,239 1,472  189 0.06 0.18 0.88 0.25 

CFS UK 3,559 1,631  30 0.38 1.15 1.80 0.20 
1CLA = Commencement of luteal activity, PLA = proportion of samples in luteal activity 
between 25 and 60 days in milk, CLAFS = interval from commencement of luteal activity to 
first service, CFS = interval from calving to first service. Slope1 = regression coefficient of 
phenotypes on GEBV, Slope2 = regression coefficient of pedigree-based EBV on GEBV.  
2Realized accuracy = Accuracy divided by square root of heritability of the trait 
 
 

4.4.3 Breeding goal for fertility and optimal selection 

strategy 

In this study, we assumed the breeding goal trait for fertility to be the target trait 

(i.e., CFS or CLAFS), in the bivariate predictions. However, in practice, the breeding 

goal for fertility is usually a fertility index which is composed of several individual 

fertility traits. The current fertility index in most countries is composed mainly of 

classical fertility traits, with CFS often used as an indirect indicator of a cow’s ability 

to return to luteal activity after calving. This study has shown that it is possible to 

increase the accuracy of predicting CFS when CLA is used as a predictor trait in multi-

trait genomic prediction. For example, when predicting CFS in univariate predictions, 

the realized accuracy of GEBV was 0.13, which improved to between 0.41 to 0.55, 

when CLA was included in the training or validation sets of predictions for CFS (Tables 

4.3 and 4.4). Also, the predictive ability for CLA in the univariate predictions was 

better than for CFS. Hence it might be advantageous to include CLA in the fertility 

index, as a direct indicator of a cow’s ability to resume luteal activity after calving. 

Furthermore, there was no substantial increase in accuracy of GEBV for CFS when 
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both training and validation animals were phenotyped for endocrine fertility traits, 

suggesting that the optimal design of the training population for genomic prediction 

of fertility using endocrine and classical fertility traits would be scenario 1, in which 

all training animals were phenotyped for endocrine traits, and all available classical 

phenotypes for the training population were used.  

 

Ideally, the breeding goal trait for fertility would be cows that resume luteal activity 

early after calving, start showing heat so they can be inseminated at the optimal time 

point, are pregnant after first insemination and calve successfully. However, not all 

of these components are captured by endocrine fertility traits at present, hence the 

feasible approach at the moment for using endocrine fertility traits in genetic 

evaluation schemes would be to combine current endocrine and classical fertility 

traits in a fertility index. Therefore, evaluating the predictive ability of the separate 

endocrine fertility traits is a first step towards incorporating endocrine fertility traits 

in genetic evaluations.  

 

The greatest advantage of combining genomic data from multiple countries is that 

the size of the training set with phenotypes is increased. Although the achieved 

accuracy of GEBV in this study were lower than those currently reported for other 

dairy cattle traits (e.g., milk yield and type traits Lund et al., 2011), having GEBV from 

endocrine fertility traits is an important first step towards incorporating them in 

genomic selection for fertility. To further increase the accuracy of GEBV, one strategy 

can be to increase the training set for the endocrine fertility traits by expanding 

international collaboration. This will be especially useful for across country 

predictions, as international collaboration would open the way for the introduction 

of international multi-trait genomic predictions, and more accurate GEBVs. 

International collaboration will be important for traits like endocrine fertility traits 

that are difficult or expensive to measure on a large scale in individual countries, as 

this will make it possible to achieve a sufficiently large training population. Although 

not investigated in this study, another approach could be to use more endocrine 

(predictor) traits in a multi-trait analyses. In a similar study on investigating the 

accuracy of genomic prediction for a scarcely recorded trait using predictor traits, 

Pszczola et al. (2013) showed that three-trait analyses were more accurate than two-

trait analyses, hence, adding more endocrine traits as predictor traits could further 

increase the accuracy. However, for practical application, the challenge of defining 

the breeding goal for fertility using endocrine and classical fertility traits remains and 

should be addressed.  
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Another important point to be addressed is how to combine the endocrine fertility 

traits with the large datasets of bull fertility EBV from national genomic evaluations. 

For national genomic evaluations, classical fertility traits are usually available for 

large number of daughters to predict GEBV for genotyped test bulls. One approach 

of incorporating endocrine traits in national genomic evaluations will be to combine 

the cow endocrine traits to the bull training population to improve accuracy of 

predicting test bulls (or cows). However, because the bull training populations with 

classical fertility traits for national genomic evaluations are usually large, a large 

number of cows with endocrine fertility traits will be required to obtain a substantial 

increase in accuracy of prediction. Nevertheless, with the increased use of 

automated systems coupled with new technologies like the Herd Navigator on farms, 

we can expect the number of cow records to increase. Furthermore, evaluating the 

required number of cows using simulations will be an important first step 

 

  

4.5 Conclusions 

This study showed that the accuracy of predicting genomic breeding values for 

fertility can be increased by using endocrine and classical fertility traits in multi-trait 

genomic prediction. The greatest accuracy of GEBV for CFS was achieved in the 

bivariate predictions, in which endocrine and classical fertility traits were used, and 

there was a better predictive ability of CFS in bivariate analysis with CLA than with 

PLA. There was no substantial increase in accuracy of GEBV for CFS when both 

training and validation animals were phenotyped for endocrine fertility traits. Across 

country predictions were also evaluated in univariate predictions, and some 

predictive ability was observed for all traits across countries, except for CLAFS. This 

first study on genomic predictions for fertility using endocrine traits suggests some 

improvement over using only the classical traits. Further studies with larger training 

populations may show bigger improvements. 
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Supplementary Material 

 

 
Supplementary Figure 4.1 Regression of pedigree-based estimated breeding values (PED-EBV) 
for calving to first service (CFS) obtained from univariate predictions using the whole dataset 
on genomic estimated breeding values (GEBV) for CFS obtained from prediction of CFS in 
bivariate analysis with commencement of luteal activity (CLA) as predictor trait (Scenario 2); 
CFS was the target trait  

 



4 Progesterone profiles in genomic prediction 

 

 

103 

 

 
 

Supplementary Figure 4.2 Plot of genomic estimated breeding values (GEBV) for calving to 
first service (CFS) obtained from univariate prediction of CFS against GEBV for CFS obtained 
from prediction of CFS in bivariate analysis with commencement of luteal activity (CLA) as 
predictor trait (Scenario 2)  
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Supplementary Figure 4.3 Plot of genomic estimated breeding values (GEBV) for the interval 
from commencement of luteal activity to first service (CLAFS) obtained from across country 
predictions on GEBV for CLAFS obtained from univariate predictions of CLAFS using the whole 
dataset in scenario 1  
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Abstract 

The main objective of this study was to investigate the potential accuracy of multi-

trait genomic selection when combining a cow training population measured for the 

endocrine fertility trait C-LA (commencement of luteal activity) with a training 

population of bulls with daughter observations for classical fertility traits. The 

potential accuracy of across country genomic prediction and optimal recording 

strategies of C-LA for genomic prediction was also investigated in terms of the 

number of farms and recording period for C-LA. Predicted accuracy was obtained by 

estimating population parameters for the traits in a dataset of 3,136 Holstein Friesian 

cows with 8,080 lactations, and using a deterministic prediction equation. The effect 

of different factors such as genetic correlations, heritability, and reliability of C-LA on 

the accuracy of genomic prediction were investigated. When considering a classical 

breeding goal trait like calving interval (CInt), and when there is an existing large 

training population with bull EBV for CInt, there is no benefit in adding cow C-LA 

records to the training population. However, when considering an endocrine 

breeding goal trait like C-LA, accuracy is substantially improved. For the endocrine 

breeding goal, and genetic correlation of 0.3 between C-LA and CInt, when the 

existing training population was 10,000 bulls EBV, predicted accuracy increased from 

0.22, to 0.57 when 15,000 cows with C-LA records were added to the bull training 

population; for genetic correlation of 0.7, accuracy increased from 0.51 to 0.63. In 

across country predictions, when the training population from Sweden was small, 

e.g., 200 cows, accuracy increased from 0.19 to 0.31 when 15,000 cows were added 

from the Netherlands, for a genetic correlation of 0.5 between countries, and from 

0.19 to 0.48 for genetic correlation of 0.9. There was little to no increase in accuracy 

when the training population from Sweden was large. Optimizing the recording 

strategy for C-LA can maximize accuracy of genomic prediction. That is, for genomic 

prediction of fertility using C-LA, it is more important to have more animals with C-

LA records than more C-LA records per animal. For example, 15,000 records obtained 

from 3 different recording strategies yield different accuracies due to different 

number of cows in the training population. That is, for 15,000 records obtained from 

15 farms on 4,875 cows in 10 years, accuracy of prediction is 0.54, when the 15,000 

records are obtained from 30 farms on 6,000 cows in 5 years, accuracy is 0.56, and 

accuracy is 0.57 for the 15,000 records obtained from 50 farms on 7,500 cows in 3 

years. Therefore, for genomic prediction, it is more important to have records from 

more cows than more lactations per cow in the training population. 

  

Key words: multi-trait genomic prediction, milk progesterone, dairy cattle, accuracy
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5.1 Introduction 

Although milk progesterone (P4) levels have been widely accepted as valid indicators 

of fertility in dairy cows, their application in routine genetic evaluation schemes has 

been constrained by the high cost associated with collecting sufficient samples per 

cow. Until recently, methods to measure milk P4 levels were labor intensive. They 

often entailed manually taking several milk samples per cow, analyzing, and 

recording the results. However, in-line technology like the Herd NavigatorTM (HN, 

DeLaval Intl, Tumba, Sweden) now exists to measure P4 on individual cows during 

each milking, making it possible to sample a larger number of animals at a reasonable 

cost. But because few herds currently have the in-line recording system, endocrine 

fertility traits that are defined from milk P4 levels would be most useful in a genomic 

selection scheme, where cows from contract herds form the reference population. 

In comparison, classical fertility traits are routinely measured on a large scale and 

are still useful target traits in national genetic evaluations. Therefore, combining 

(genomic predictions for) endocrine and classical fertility traits may provide a more 

accurate prediction of fertility. In a previous study, using real data, the improvement 

in accuracy achievable from using  endocrine fertility traits concurrent with a classical 

trait (interval from calving to first service) in genomic prediction of fertility was 

quantified (Tenghe et al., 2016a). However, the extent of exploring the impact of 

number of cows with endocrine traits in the training population in that study was 

limited by the data size. In this study, the limitation was overcome by using a 

deterministic prediction equation to evaluate accuracy. 

 

The objectives of this study were to 1) investigate the potential accuracy of different 

scenarios when combining a cow training population measured for the endocrine 

fertility trait C-LA (commencement of luteal activity) with a training population of 

bulls with daughter observations for classical fertility traits for multi-trait genomic 

prediction of fertility; 2) investigate the potential accuracy of across country genomic 

prediction; 3) investigate recording strategies that optimally use the Herd Navigator 

for genomic prediction, in terms of, the number of farms,  recording period for 

endocrine traits, and number of lactations per cow. For the above objectives, 

predicted accuracy was obtained by estimating population parameters for the traits 

in a dataset of Holstein Friesian cows, and using a deterministic prediction equation 

(Wientjes et al., 2015). The effect of different factors such as genetic correlation 

between populations, heritability and reliability of the endocrine fertility trait on the 

accuracy of genomic prediction were investigated. 
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5.2 Materials and Methods 

 

5.2.1 Phenotypes 

The phenotype data consisted of in-line progesterone (P4) records from 15 

commercial herds in the Netherlands. In total, phenotypic data were available for 

8,080 lactations on 3,136 Holstein Friesian cows. Milk sampling, measuring and 

recording of P4 level was performed with the Herd NavigatorTM (HN, DeLaval Intl, 

Tumba, Sweden) on all farms. Sampling frequency for P4 measurement was based 

on a biological model (Friggens et al., 2008), but on average, was undertaken every 

2 days. The endocrine fertility trait investigated was commencement of luteal 

activity (C-LA) which is the number of days from calving to start of luteal activity, as 

defined in Tenghe et al. (2015). The classical fertility traits were: interval from calving 

to first service (CFS) and calving interval (CInt).  

 

5.2.2 Genotypes 

The genotypes were used to calculate the effective number of chromosome 

segments (Me) across predicted and training populations; Me is one of the 

parameters used in the deterministic equation to predict accuracy. Genotypes were 

available from a previous study (Tenghe et al., 2016b), where 1,907 cows from the 

Netherlands were genotyped with the GeneSeek Genomic Profiler Bovine HD 

(GeneSeek, Lincoln, NE, USA), containing 76,883 SNP (80k), and an additional 6 cows 

were genotyped with a custom Illumina 6k array, whereas 1,946 cows from Ireland, 

Sweden and the United Kingdom were genotyped with the Illumina BovineSNP50 v1 

BeadChip (Illumina Inc., San Diego, CA, USA) which contained 54,001 SNP (50k). The 

50k and 80k SNP arrays had 25,815 SNP in common, the rest were imputed from one 

dataset to the other and vice versa using BEAGLE 3.3.2. (Browning and Browning, 

2009), resulting in a total of 102,062 SNPs. The quality criteria applied before 

imputation were minimum call rate of 95% per animal and 97% per SNP, and 

minimum GC-score of 0.3. After imputation, SNPs were retained for analysis if they 

fulfilled all the following quality criteria: 1) minor allele frequency (MAF) > 0.01, and 

2) no extreme deviation from Hardy-Weinberg Equilibrium (p < 0.01). Following all 

edits, the final data contained 85,485 SNP for 3,739 cows. Of the 3,739 cows with 

genotypes, 1,623 cows from the Netherlands and 223 from Sweden were used to 

calculate Me. 
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5.2.3 Estimating variance components 

Variance components were estimated with mixed linear models that use the 

restricted maximum likelihood method. The model used was: 

 

𝑦𝑖𝑗𝑘𝑙 = 𝜇 + 𝑝𝑗 + ℎ𝑦𝑠𝑘 + 𝑏1×𝑐𝑎𝑙(𝑝𝑗) + 𝑏2×𝑐𝑎𝑙
2(𝑝𝑗) + 𝑎𝑖 + 𝑝𝑒𝑖 + 𝑒𝑖𝑗𝑘𝑙  

 

where yijkl was the phenotype of the analyzed trait for individual i, µ was the 

overall mean, pj was the fixed effect of parity j (cows in parity 4 or above were 

grouped to a common class); hysk was the fixed effect of herd-year-season 

combination k, with calving season defined as winter: December-February, spring: 

March-May, summer: June-August, autumn: September-November; b1cal(pj) was the 

fixed regression on age at calving l(in months), nested within parity pj, with 

regression coefficient b1; b2cal
2(pj) was the fixed regression on age at calving l, fitted 

as a quadratic covariate, nested within parity pj, with regression coefficient b2; ai was 

the random genetic effect of cow i: ~N(0, Aσa
2), A was the additive genetic 

relationship matrix and σa
2  was the additive genetic variance; pei was the random 

permanent environmental effect of cow i to account for repeated measures within 

cow: ~N(0, Iσpe
2), I was an identity matrix including all animals (but animals without 

information on repeated records are automatically set at zero) and σpe
2 was the 

permanent environment variance; and eijkl was the random error term, ~N(0, Iσe
2), I 

was an identity matrix and σe
2 was the residual variance. ASReml 4.1 (Gilmour et al., 

2014) was used for estimating the variance components. 

 

5.2.4 Deterministic prediction of accuracy 

We used the deterministic equation of Wientjes et al. (2015), which uses population 

parameters as input, to predict the accuracy of genomic prediction when different 

populations are combined into one training population. The populations might be 

populations from different lines or environments, or populations measured for 

different traits. The prediction equation is: 
𝑟𝐺𝐸𝐵𝑉

=

√
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where 𝑟𝐺𝐸𝐵𝑉  is the accuracy of genomic estimated breeding values; A and B are the 

populations that are combined into one training population; C represents  the 
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animals in the predicted population for which only genotypes are available; 𝑀𝑒 is 

the effective number of chromosome segments across predicted and training 

populations; ℎ2 is the reliability of the breeding value used, i.e. the trait heritability 

for a single record on a cow, a reliability for progeny tested bulls (a value of 0.8 was 

assumed), and the reliability when cows have multiple repeated records in each 

training population; 𝑁 is the number of individuals in each training population; 𝑟𝐺 is 

the genetic correlation between the traits measured in the different populations; 

𝑟𝐿𝐷 is the genetic variance in the predicted population captured by SNP in the 

training populations.  

 

5.2.5 Scenarios 

Three main scenarios were examined for accuracy of genomic estimated breeding 

values (GEBV). The first two scenarios (Figure 5.1), represent multi-trait genomic 

prediction scenarios where prediction is for an endocrine or classical fertility 

breeding goal. A cow training population (population B) with own records for an 

endocrine fertility trait is combined with training population A, consisting of classical 

fertility records. Population A is either a bull training set with EBV based on daughter 

information for a classical trait, or a cow training set where cows have own 

phenotypes for a classical trait. The combined training set (population A and B) is 

then used to predict GEBVs for animals from population C. In scenario 1, the 

prediction in population C is for an endocrine breeding goal, and for a classical 

breeding goal in scenario 2. The animals from population C could be young 

genotyped bulls or cows with genotypes only and no phenotypes. Scenario 3 (Figure 

5.2) represents multi-population prediction where countries collaborate to set-up a 

training population. For example, the training set of cows with endocrine fertility 

traits in Sweden (population A) is increased by adding a training set of cows with 

endocrine traits from the Netherlands (population B) to predict GEBVs for animals in 

Sweden (population C). The effect of heritability, genetic correlation between 

countries, number of cows in training population A and number of cows in training 

population B on predicted accuracy were investigated in scenario 3. For scenario 1 

and 2, the parameters impacting predicted accuracy that were investigated included: 

heritability, genetic correlation between the endocrine and classical traits, and 

number of cows with endocrine traits added in training population B. The 

parameters used in all scenarios are in Table 5.1. 
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Table 5.1 Input parameters of scenarios investigated for accuracy of genomic prediction 

when combining training populations and considering an endocrine or classical breeding goal 

for fertility in dairy cattle 
 

1A and B are the different populations that are combined into one training population; C is the 
predicted population; 
 𝑁 is the number of individuals in each training population; ℎ2 is the heritability in each 
training population;  
𝑟𝐺 is the genetic correlation between the populations; 𝑟𝐿𝐷 is the genetic variance in the 
predicted population captured by SNP in the training population; 𝑀𝑒 is the effective number 
of chromosome segments across predicted and training populations 2C-LA = Commencement 
of luteal activity, CInt = calving interval, CFS = interval from calving to first service 

 

 

 

 

 

 

 

 

     Scenario  

   1 2 3 

   

Multi-trait prediction 
for endocrine 
breeding goal 

Multi-trait prediction 
for classical 
breeding goal 

Across country prediction 
for endocrine 
breeding goal 

Parameter1      

Trait training population (A)  Classical (CInt or CFS)2 Classical (CInt or CFS) Endocrine (C-LA)2 

Trait training population (B)  Endocrine (C-LA) Endocrine (C-LA) Endocrine (C-LA) 

Trait predicted population (C)  Endocrine (C-LA) Classical (CInt or CFS) Endocrine (C-LA) 

N population A  10,000 bulls or cows 10,000 bulls or cows 200 -10,000 cows 

N population B  0 - 15,000 cows 0 - 15,000 cows 0 - 15,000 cows 

Range h2A  0.8 (bulls) or 0.05 (cows) 0.8 (bulls) or 0.05 (cows) 0.13 

Range h2B  0.05 - 0.3 0.05 - 0.3 0.13 

Range rGA,B  0.1- 0.7 0.1 - 0.7 0.5 - 0.9 

Range rGA,C  0.1- 0.7 0.99 0.99 

Range rGB,C  0.99 0.1 - 0.7 0.5 - 0.9 

rLDA,C  0.8 0.8 0.8 

rLDB,C  0.8 0.8 0.8 

MeA,C  1,566 1,566 416 

MeB,C   1,566 1,566 2,683 
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Figure 5.1 Flowchart of multi-trait scenarios investigated, where a cow training population 
(population B) with own records for an endocrine fertility trait is combined with training 
population A, consisting of classical fertility records. The endocrine trait is commencement 
of luteal activity (C-LA), and calving interval (CInt) is the classical trait. Population A is either a 
bull training set with estimated breeding values (EBV) based on daughter information from a 
classical trait, or a cow training set where cows have own records for a classical trait. The 
combined training set is then used to predict genomic breeding values for animals from 
population C. The prediction in population C is for an endocrine breeding goal in scenario 1, 
and for a classical breeding goal in scenario 2; Nbulls in population A is the number of bulls 
whose information comes from at least 100 daughters; Ncows represents the number of cows 
with their own records. 
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Figure 5.2 Flowchart of a multi-environment (or across country) genomic prediction scenario 
investigated in dairy cattle, where because the training set of cows with endocrine fertility 
traits in Sweden (population A) is limited, the training population is increased by adding a 
training set of cows with endocrine traits from the Netherlands (population B) to predict 
genomic estimated breeding values for animals in Sweden (population C). The interval from 
calving to commencement of luteal activity (C-LA) is used as an example for endocrine fertility 
traits; Ncows represents the number of cows with their own records 
 

 

5.2.6 Recording strategies for endocrine fertility traits 

To investigate different strategies that optimally use the investment in the Herd 

Navigator for genomic prediction, we evaluated the impact of the number of farms 

and number of cows on predicted accuracy for scenario 1.  We also varied the 

recording period for endocrine traits because simply varying the number of records 

for genomic prediction is not sufficient since cows are recorded for several lactations 

on a single farm. We assumed a strategy with different number of farms (15, 30, and 

50) equipped with the Herd Navigator and different lengths of recording periods, 

that is, 1, 2, 3, 5, 10, and 15 years of recording C-LA. Each farm was assumed to have 

100 lactating cows at the start of recording, with a replacement and culling rate of 

25% per year where the oldest animals were replaced, and each cow would have one 

calf per year.  With multiple records per cow the heritability estimate for C-LA in the 

prediction equation defined above, was replaced with the reliability calculated using 

the formula; r𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
𝑚ℎ2

(𝑚−1)𝑡+1
 , where m = number of records per cow, h2 = 

heritability of the trait, and t = repeatability of the trait. The h2 (0.13) and t (0.26) of 

C-LA obtained from the mixed model described above were used. The number of 
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cows with C-LA records for each recording period and corresponding reliability 

estimates were used in the prediction equation to predict accuracy of GEBVs. The 

details of the computed reliabilities, number of cows and records for each recording 

period are in Table 5.2. 

 

Table 5.2 Input parameters used to investigate optimal recording strategies for endocrine 

fertility traits for use in genomic prediction [Text]. 
 

No. 
of 

farms 

No. of 
recording 

years 

No. of 
unique 

cows per 
farm 

No. of 
records 

per 
farm 

Total 
cows on 
all farms 

Total 
records 
on all 
farms 

No. of 
records 
per cow 

Reliability 
C-LA1 

15 1 100 100 1,500 1,500 1.0 0.13 
 2 125 200 1,875 3,000 1.6 0.18 
 3 150 300 2,250 4,500 2.0 0.21 
 5 200 500 3,000 7,500 2.5 0.23 
 10 325 1000 4,875 15,000 3.1 0.26 
 15 450 1500 6,750 22,500 3.3 0.27 
 

      
 

30 1 100 100 3,000 3,000 10 0.13 
 2 125 200 3,750 6,000 1.6 0.18 
 3 150 300 4,500 9,000 2.0 0.21 
 5 200 500 6,000 15,000 2.5 0.23 
 10 325 1000 9,750 30,000 3.1 0.26 
 15 450 1500 13,500 45,000 3.3 0.27 
 

      
 

50 1 100 100 5,000 5,000 1.0 0.13 
 2 125 200 6,250 10,000 1.6 0.18 
 3 150 300 7,500 15,000 2.0 0.21 
 5 200 500 10,000 25,000 2.5 0.23 
 10 325 1000 16,250 50,000 3.1 0.26 
 15 450 1500 22,500 75,000 3.3 0.27 

1C-LA = Commencement of luteal activity; Reliability computed as mh2/(m-1)t+1, m = number 
of records per cow, h2 = heritability of the trait, and t = repeatability of the trait   
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5.3 Results 

 

5.3.1 Genetic parameters 

The estimated heritability and repeatability for each trait are in Table 5.3. Heritability 

estimates were 0.06 for CInt, 0.11 for CFS and 0.13 for C-LA. Repeatability estimates 

were low to moderate, ranging from 0.09 to 0.26, with the highest value observed 

for C-LA. The estimated genetic correlations (± SE) were 0.58 (±0.12) between C-LA 

and CFS, and 0.31 (± 0.21) between C-LA and CInt. 

 

Table 5.3 Overall mean, standard deviation (S.D), estimates of heritability (h2), repeatability 

(t) and their standard errors (± SE) below estimates for endocrine and classical fertility traits 

from Holstein Frisian cows in the Netherlands  
 

Trait1 Mean SD 
Number of 
Lactations 

Number 
of cows 

h2 t 

C-LA, d 38.96 18.98 5043 2,748 
0.13 

(0.03) 
0.26 

(0.02) 

CInt, d 409.76 66.54 4030 1,916 
0.06 

(0.03) 
0.09 

(0.02) 

CFS, d 88.94 33.93 6655 2,898 
0.11 

(0.02) 
0.11 

(0.02) 
1C-LA = Commencement of luteal activity, CInt = calving interval, CFS = interval from calving to 
first service 

 

 

5.3.2 Multi-trait genomic prediction considering an 

endocrine breeding goal 

First, we considered an endocrine breeding goal in scenario 1, where C-LA is the 

breeding goal trait, and training population A is either 10,000 bulls with EBV or 

10,000 cows with own records for a classical trait (CInt or CFS), whereas training 

population B is cows with own records for C-LA. The training populations are 

combined and used to predict C-LA for animals from population C. Predicted 

accuracy as a function of number of cows from population B added to training 

population A are shown in Figure 5.3, assuming a heritability of 0.05 to 0.3 for C-LA 

and genetic correlations of 0.1 to 0.7 between C-LA and the classical trait. When 

training population A consists of bull EBV (Figure 5.3a), and heritability of C-LA is 0.1, 

with a genetic correlation of 0.3, accuracy increases from 0.22 when only population 

A is used, to 0.57 when 15,000 cows are added from population B; with genetic 

correlation of 0.7, accuracy increases from 0.51 to 0.63. With a higher heritability for 

C-LA of 0.3, the accuracy increases more (from 0.22 to 0.68) when 15,000 cows are 
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added from population B for genetic correlation of 0.3, and from 0.51 to 0.70 with 

genetic correlation of 0.7. When training population A consists of cows with own 

records of CInt or CFS instead of bull EBV (Figure 5.3b), and the heritability of C-LA is 

0.1, with a genetic correlation of 0.3, the accuracy increases from 0.04 when only 

population A is used, to 0.55 when 15,000 cows are added from population B; with 

a genetic correlation of 0.7, the accuracy increases from 0.28 to 0.57. A similar trend 

of increased accuracy was observed with heritability of 0.3 for C-LA (Figure 5.3b). In 

general, the accuracy is higher when the genetic correlation between C-LA and the 

classical trait is higher, and the accuracy increases when an increasing number of 

cows with C-LA records is added to the training population, especially when the 

genetic correlation is small.  

 

5.3.3 Multi-trait genomic prediction considering a classical 

breeding goal 

The second scenario considered a classical breeding goal where CInt or CFS is the 

breeding goal trait. Training population A consists of 10,000 bulls with EBV or 10,000 

cows with own records for CInt or CFS, and training population B is cows with own 

records for C-LA. The training populations are combined and used to predict CFS or 

CInt for animals from population C. Predicted accuracy as a function of number of 

cows added to training population B is shown in Figure 4. When training population 

A consists of bull EBV, adding information on cows for C-LA did not increase accuracy, 

irrespective of the genetic correlation between traits, or heritability of C-LA (Figure 

5.4a). However, when the 10,000 animals in training population A are cows with own 

records for the classical trait, there is some improvement in accuracy when adding 

cows with C-LA records form population B (Figure 5.4b). That is, when heritability of 

C-LA is 0.1, with a genetic correlation of 0.3, the accuracy increases from 0.39 when 

only population A is used, to 0.41 when 15,000 cows are added from population B, 

and from 0.39 to 0.50 with a correlation of 0.7. For heritability of 0.3, with a genetic 

correlation of 0.3, the accuracy increases from 0.39 when only population A is used, 

to 0.42 when adding population B, and from 0.39 to 0.55 with a genetic correlation 

of 0.7.  
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Figure 5.3 Predicted accuracies for fertility when considering the endocrine trait C-LA 
(commencement of luteal activity) as the breeding goal trait, and adding different number 
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of cows (population B) with own C-LA records to a training population (population A) 
consisting of 10,000 individuals (bulls or cows) with records for classical fertility traits.  The 
classical traits considered were calving interval (CInt) and calving to first service (CFS). When 
population A was a bull training population with estimated breeding values (EBV) based on 
daughter information, heritability or reliability of the classical trait was 0.8 (a); when 
population A was a cow training population with own records, heritability of the classical trait 
was 0.05 (b). The heritability for the endocrine trait in population B varied from 0.05 to 0.5, 
and genetic correlation between the endocrine and classical trait (rgAB) varied from 0.1 to 
0.7. The effective number of chromosomes (Me) was 1,566, and the proportion of variance 
captured by SNPs (rLD) was 0.8. The accuracy was based on the formula of Wientjes et al. 
(2015)  

 

5.3.4 Across country genomic prediction 

The across country predictions show that when the training population from Sweden 

is small, a substantial increase in accuracy can be obtained by adding animals from 

the Netherlands. For example, the predicted accuracy with 200 cows from Sweden 

was 0.19, and increased to 0.31 when 15,000 cows were added from the 

Netherlands, for a genetic correlation of 0.5 between countries; and for a genetic 

correlation of 0.9, the accuracy increased from 0.19 to 0.48 (Figure 5.5a). Also, when 

the genetic correlation between countries is high, fewer animals from the 

Netherlands are needed to obtain substantial accuracy. For example, with 200 

animals from Sweden and a correlation of 0.5, 15,000 animals from the Netherlands 

were needed to achieve an accuracy of 0.31, but when the correlation was 0.9, only 

3,000 animals from the Netherlands were needed to achieve the same accuracy 

(Figure 5a). Similarly, with 2,000 animals from Sweden, 15,000 animals from the 

Netherlands were needed to achieve an accuracy of 0.52 when the correlation was 

0.5, but only 3,000 animals were needed to attain the same accuracy when the 

correlation was 0.9 (Figure 5.5c).  

 

However, when the training population from Sweden is large, for example 10,000 

animals, there is little to no increase in accuracy when adding animals from the 

Netherlands. That is, for 10,000 animals from Sweden, the accuracy was 0.69 with 

and without adding animals from the Netherlands, for a genetic correlation of 0.5; 

for genetic correlation of 0.9, accuracy increased from 0.69 to 0.70 (Figure 5.5d). 
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Figure 5.4 Predicted accuracies for fertility when considering the classical traits calving 

interval (CInt) or calving to first service (CFS) as the breeding goal trait, and adding different 

number of cows (population B) with own measures for the endocrine trait C-LA 
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(commencement of luteal activity) to a training population (population A) consisting of 

10,000 individuals (bulls or cows) with classical fertility traits. When population A was a bull 

training population with estimated breeding values (EBV) based on daughter information, 

heritability or reliability of the classical trait was 0.8 (a); when population A was a cow training 

population with own records, heritability of the classical trait was 0.05 (b). The heritability for 

the endocrine trait in population B varied from 0.05 to 0.5, and the genetic correlation 

between the endocrine and classical trait (rgAB) varied from 0.1 to 0.7. The effective number 

of chromosomes (Me) was 1,566, and the proportion of variance captured by SNPs (rLD) was 

0.8. The accuracy was based on the formula of Wientjes et al. (2015) 

 

 

 
 

Figure 5.5 Predicted accuracies for fertility when adding different number of cows from the 
Netherlands (population B) with own measures for the endocrine trait C-LA 
(commencement of luteal activity) to a cow training population consisting of 200 to 10,000 
cows from Sweden with own measures for C-LA, to predict animals in Sweden. The 
heritability of the C-LA was 0.13, and the genetic correlation between the populations (rgAB) 
varied from 0.5 - 0.9. The effective number of chromosomes (Me) was 416 (MeA,C) and 2,683 
(MeB,C), and proportion of variance captured by SNPs (rLD) was 0.8. The accuracy was based 
on the formula of Wientjes et al. (2015)   
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5.3.5 Recording strategies for endocrine fertility traits 

Figure 5.6 presents predicted accuracy for the endocrine breeding goal, as a function 

of recording strategies for C-LA in terms of different number of farms on which cows 

were recorded, and number of years during which C-LA was recorded. The recording 

strategies influence the number of cows recorded and the number of lactations for 

each cow added from training population B. The reliability of C-LA for the different 

recording strategies are in Table 5.3, they are 0.13 for 1 year of recording, 0.18 (for 

2 years), 0.21 (for 3 years), 0.23 (for 5 years), 0.26 (for 10 years), and 0.27 (for 15 

years). The number of lactations (records) per cow, number of cows, and total 

number of records for each recording strategy are in Table 5.3. The predicted 

accuracy increases substantially when multiple C-LA records are used in prediction 

compared to single records; the accuracy increases from 0.33 with single records, to 

0.38 with multiple records (on average 1.6 records per cow) from 2 years of recording 

(Figure 5.6a). However, when C-LA is recorded for longer periods, there is no 

substantial benefit in accuracy from multiple records. For example, for 5 years of 

recording (on average 2.5 records per cow), the accuracy was 0.47, on doubling the 

recording period to 10 years (on average 3.1 records per cow), the accuracy 

increased by 0.07 units (Figure 5.6a), but when C-LA was recorded for 15 years (on 

average 3.5 records per cow) it increased only by 0.05 units. Therefore, the extra 

lactations for each cow after the second lactation did not add much benefit to the 

accuracy of prediction. 

 

The results also indicate that in general, the number of cows with C-LA is more 

important than the number of records for genomic predictions. For example, 15,000 

records obtained from 3 different recording strategies yield different accuracies due 

to different number of cows in the training population. That is, for 15,000 records 

obtained from 15 farms on 4,875 cows in 10 years, the accuracy of predicting C-LA is 

0.54, when the 15,000 records are obtained from 30 farms on 6,000 cows in 5 years, 

accuracy is 0.56, and the accuracy is 0.57 for the 15,000 records obtained from 50 

farms on 7,500 cows in 3 years (Figure 5.6a); a similar trend is observed for the other 

scenarios (Figure 5.6). Thus, it is more important to have more cows than more 

lactations per cow in the training population. 
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Figure 5.6 Predicted accuracies for commencement of luteal activity (C-LA), as a function of 
number of cows and recording period in years for C-LA, when considering an endocrine 
breeding goal. Training population A is combined with different number of cows (with 
different number of C-LA records per cow) in population B for genomic prediction. Heritability 
estimates were 0.13 for C-LA, 0.06 for calving interval (CInt), and 0.11 for calving to first service 
(CFS). The genetic correlations were 0.31 between C-LA and Cint, and 0.58 between C-LA and 
CFS. The effective number of chromosomes (Me) was 1,566, and proportion of variance 
captured by SNPs (rLD) was 0.8. The accuracy was based on the formula of Wientjes et al. 
(2015) 
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5.4 Discussion 

The main objective of this study was to investigate the potential accuracy multi-trait 

genomic selection when combining a cow training population (population B) 

measured for the endocrine fertility trait C-LA, with a training population (population 

A), measured for classical fertility traits (CFS or CInt). Population A was either a bull 

training set with EBV based on daughter information for the classical trait, or a cow 

training set where cows had own phenotypes for the classical trait. Also investigated 

was the potential accuracy of across country genomic prediction where training 

populations from Sweden and the Netherlands were combined to predict animals in 

Sweden. To achieve these, predicted accuracies were obtained by using population 

parameters and a deterministic prediction equation, and the effect of genetic 

correlations, size of training populations, heritability and reliability of the endocrine 

trait on predicted accuracy were assessed. The results show that when considering 

a classical breeding goal trait like CFS or CInt, and when there is an existing large 

training set with bull EBV for the classical trait, there is no benefit in adding cow C-

LA records to the training set. However, when considering an endocrine breeding 

goal trait like C-LA, the accuracy is substantially improved. For across country 

prediction, when the training population from Sweden is small (e.g., 200 animals), 

substantial increase in accuracy can be obtained by adding animals from the 

Netherlands. But, when the training population from Sweden is large (e.g., 10,000 

animals), there is little to no increase in accuracy when adding animals from the 

Netherlands. Another objective was to investigate recording strategies that 

optimally use the Herd Navigator for genomic prediction, in terms of, the number of 

farms, and recording period for C-LA. The results show that for genomic prediction 

of fertility using C-LA, it is more important to have more animals with C-LA records 

than more C-LA records per animal. 

 

5.4.1 Accuracy 

The general increase in accuracy from multi-trait genomic prediction is in accordance 

with previous studies that have shown that when the genetic correlation between 

traits is high, multi-trait prediction improves accuracy; this has been shown in 

stochastic (Calus and Veerkamp, 2011; Jia and Jannink, 2012) and deterministic 

(Calus et al., 2013) simulations as well as in real data (Calus et al., 2013; Cooper et 

al., 2016; Tenghe et al., 2016a). However, a substantial increase in accuracy was 

observed in scenario 1 where C-LA was the breeding goal trait, and cows with own 

C-LA records were added to a large training population of bulls with EBV for a 

classical trait for prediction. This may be explained by the fact that in scenario 1, 
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because the breeding goal trait (C-LA) was not measured in the bull training 

population, more information from the cows added to the training set was used to 

predict C-LA. But when CFS or CInt were the breeding goal trait (scenario 2), adding 

15,000 cows with C-LA records to the bull training set did not improve accuracy 

because the bull training population was measured for the breeding goal trait. This 

confirms that it is important to measure the breeding goal trait in the training 

population to benefit from the information in predictions. This was true for C-LA, but 

could equally apply to similar situations where a predictor trait is used to predict the 

breeding goal trait. For example, somatic cell counts can be used to predict breeding 

values for mastitis incidence (Philipsson et al., 1995), and birth weight can be used 

to predict calving ease or perinatal mortality (Johanson and Berger, 2003). However, 

it is beneficial to have actual measures of mastitis or perinatal mortality incidence 

on a set of cows. That is, it is beneficial to have actual measurements on the breeding 

goal trait if a correlated trait is used to predict it. 

 

The accuracy of breeding values depends on the sources of information included in 

each phenotypic record.  The accuracy of a single phenotypic measurement of an 

animal itself is equal to the square root of the heritability (√h2), and the reliability = 

h2, however, this is not true when multiple measurements per animal are used. In 

practice, more than one measurement for C-LA will be available for cows with 

multiple lactations. Therefore, the predicted accuracy was also evaluated accounting 

for repeated records, by substituting the heritability of C-LA in the prediction 

equation with the reliability. When considering C-LA as breeding goal trait, the 

predicted accuracy increased substantially when more records were available either 

due to measuring on more farms (i.e. more animals), or due to measuring for a longer 

period on the farms (i.e. repeated records). However, measuring C-LA on more farms 

gave more increase in accuracy than measuring for longer periods on a few farms. 

Little to no increase in accuracy was observed when considering a classical breeding 

goal and accounting for repeat records, especially when training population A 

consisted of bulls with EBV for the classical trait. 

 

The trend of increased accuracy from combining two populations from different 

countries in one training population was expected due to the increase in size of the 

training population. When the training population from Sweden was small, the 

accuracy was improved on adding animals from the Netherlands. Previous studies 

that investigated the accuracy of multi-population genomic prediction by combining 

Holstein populations from different countries found a similar trend (Lund et al., 

2011; Haile-Mariam et al., 2015; de Haas et al., 2015). A similar trend has also been 
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observed in other studies involving different breeds, e.g., Jersey populations 

(Wiggans et al., 2015; Haile-Mariam et al., 2015), and Brown Swiss populations 

(Zumbach et al., 2010; Jorjani, 2012). Little to no improvement in accuracy was 

observed when the training population from Sweden was large, e.g., 10,000 because 

the accuracy obtained with 10,000 animals was already high.  

 

5.4.2 Implications for practical dairy breeding 

In genomic selection, the requirement of collecting many phenotypes on progeny is 

minimized, as opposed to conventional selection. Therefore, genomic selection 

provides a new opportunity to reconsider genetic improvement using new traits like 

endocrine fertility traits, and to start selecting for them. For genomic selection with 

new traits, the phenotypes need to be collected only for the animals in the training 

population, hence collection of the phenotypes may be conducted on contract farms 

where collecting expensive or difficult to measure data is feasible. The training 

population for new traits will be smaller, compared to the routinely recorded traits, 

and may result in lower accuracy in genomic prediction. The expected limited size of 

the training population for new traits stresses the need for methods that optimally 

record and use all available information. One objective of this study was therefore 

to investigate recording strategies that optimally use the Herd Navigator for genomic 

prediction. This was done by evaluating the effect of number of farms, and recording 

period for C-LA on accuracy when combining endocrine and classical fertility traits 

for prediction. This study showed that in terms of accuracy, it is more beneficial to 

record more cows for C-LA than more C-LA records per cow. That is, for example, it 

is more beneficial to collect 15,000 records for C-LA on 7,500 cows, than 15,000 

records on 4,875 cows. This is important, as it raises an important question of 

whether it is beneficial to invest in more contract farms and record C-LA for a shorter 

period, or invest in fewer contract farms and record for longer period to attain a 

target training population size.  

 

The investment option will depend partly on the breeding goal trait, and cost of 

measuring the trait. In our case, if we consider that each farm requires one Herd 

Navigator for collecting P4 records, and the breeding goal trait is C-LA, then it will be 

beneficial for the accuracy of estimating genomic breeding values, to invest in more 

contract farms. That is, for example, there is more benefit investing in 50 contract 

farms to collect 15,000 records on 7,500 cows in three years, than investing in 15 

farms to collect the 15,000 records on 4,875 cows in 10 years. Such recording 

strategies could equally be applied to traits that are not routinely measured because 
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they are difficult or expensive to measure, and for which obtaining large number of 

phenotypes for the training population in genomic prediction is problematic. On the 

other hand, if the aim is for a classical breeding goal trait like CInt or CFS, then 

collecting P4 data in general would be a waste of time and money, especially when 

there is a large existing population of bulls with EBV for the classical trait.  

The substantial increase in accuracy due to increase in size of the training population 

by combining the Dutch and Swedish populations in one training population denotes 

that there is a benefit in collaboration between countries enabling an increased size 

of the training population for expensive or difficult to measure traits. This 

collaboration is especially beneficial when the genetic correlation between countries 

is high. In this study, when the genetic correlation was high, fewer number of animals 

were needed to attain the same level of accuracy as for when the correlation was 

lower. This also means that for mutual benefit or as incentive for collaboration 

between countries, it would be more interesting for both countries when setting up 

a training set of 5,000 C-LA records yields an accuracy of 0.52 provided the genetic 

correlation is 0.9, than collecting 17,000 C-LA records to obtain the same accuracy 

when the correlation is 0.5. 

 

 

5.5 Conclusions 

Genomic selection and new phenotyping technologies like the Herd Navigator for 

measuring P4 level in milk present an opportunity to fundamentally redesign dairy 

breeding programs and include selection for new phenotypes like endocrine fertility 

traits. Optimal use of these technologies may require a different balance in the 

investments that underpin breeding activities compared to current practice. This 

study showed that the use of C-LA in genomic selection can be maximized based on 

the breeding goal objective considered. When the breeding goal is a classical trait 

like CFS or CInt, and when there is an existing large training set with bull EBV for the 

classical trait, there is no benefit in adding cow C-LA records to the training set. But 

when the breeding goal is an endocrine trait like C-LA, accuracy is substantially 

improved when cows with C-LA records are added to the bull training set, and the 

accuracy is further improved when multiple records of C-LA per cow are accounted 

for in predictions. The study also showed that optimizing the recording strategy for 

C-LA can maximize the accuracy of prediction, that is, for genomic prediction of 

fertility using C-LA, it is more important to have more animals with C-LA records than 

more C-LA record per animal.  
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6.1 Introduction 

The research in this thesis on exploring the use of milk progesterone (P4) measures 

to improve selection for fertility in dairy cows can be divided in to two main areas. 

The first focused on the genetic aspects of fertility as measured using P4, which have 

been dealt with in chapters 2 and 3. Chapter 2 investigated the use of in-line 

measured milk P4 concentrations to define endocrine fertility traits and estimate 

genetic parameters. In chapter 3, a study on identifying genomic regions associated 

to endocrine fertility traits, using single nucleotide polymorphisms (SNP) panels as 

well as and imputed whole genome sequence variants was performed. The second 

part focused on the use of endocrine fertility traits in genomic prediction, to improve 

genomic selection for fertility. On the one hand, classical fertility traits derived from 

calving and insemination data are available for numerous cows for national genetic 

evaluations. On the other hand, the availability of endocrine fertility traits presents 

the opportunity to improve accuracy of predicting genomic breeding values of cows’ 

fertility by combining endocrine and classical fertility traits in multi-trait genomic 

predictions (chapter 4). Also, an important question is how many cows with 

endocrine fertility records in the training population will be required to improve the 

accuracy of bulls’ genomic breeding values (chapter 5).  

 

In each of the chapters, the main results have already been discussed. The general 

discussion will focus on aspects related to breeding for fertility in dairy cows, 

optimizing accuracy of genomic prediction for endocrine fertility traits, practical 

integration of endocrine fertility traits (and novel traits in general) in routine genetic 

evaluations, and prospects for future research will be given. 

 

 

6.2 Breeding for fertility 

This thesis specifically looked at estrous related traits that reflect the ability of a cow 

to return to cyclicity after calving (see Figure 1, chapter 1), and how they can be used 

in genetic evaluations to improve selection for fertility. Different traits derived from 

different sources of information have been proposed as measures of the ability of a 

cow to resume cyclicity postpartum. In this thesis, we investigated endocrine fertility 

traits derived from milk P4 concentrations and classical fertility traits derived from 

insemination and calving data. Endocrine fertility traits are expected to be more 

objective measures that are closer to the physiology underlying fertility than the 

classical traits. For genetic evaluations, the most commonly used traits are classical 

fertility traits like calving to first service (CFS) and calving interval (CI). Although the 
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use of classical fertility traits for breeding has been facilitated by their ease of 

recording on a large scale and at feasible cost, the drawbacks are that classical traits 

are highly influenced by farm management decisions, are available late in life (e.g., 

CI), and have low heritability. Reported heritability estimates for CFS range from 0.05 

to 0.10 (Roxström et al., 2001; Andersen-Ranberg et al., 2005; Sun et al., 2009; Berry 

et al., 2012), though estimates for CFS in this thesis were in the upper bound. The 

estimated heritability of CI in this thesis was low (0.03 to 0.05), and in agreement 

with previous studies (Wall et al., 2003; Berry et al., 2012). The low heritability of 

classical fertility traits makes selection for fertility less effective. Studies of physical 

activity derived traits e.g., the interval from calving to the first sign of high activity 

(CFHA) have reported higher heritability, ranging from 0.12 to 0.18 (Løvendahl and 

Chagunda, 2009; Ismael et al., 2015). Though CFHA has been suggested as a measure 

for resumption of ovarian activity, Ismael et al., (2016) showed that a drawback is 

that activity monitor derived fertility traits are seasonally sensitive.  

 

The advantage of endocrine fertility traits is that they are less biased by farm 

management decisions and have higher heritability. In this thesis, several endocrine 

fertility traits were derived, but not all the traits were heritable. The traits with 

highest heritability were commencement of luteal activity (C-LA), and proportion of 

samples in luteal activity (PLA). The heritability of C-LA ranged from 0.12 to 0.14, 

whereas that of PLA ranged from 0.12 to 0.15. Reported heritability estimates for C-

LA or transformed C-LA range from 0.16 to 0.30 (Veerkamp et al., 2000; Royal et al., 

2002; Petersson et al., 2007), whereas Petersson et al., (2007) reported a heritability 

estimate of 0.30 for PLA. Thus, heritability estimates of C-LA and PLA in this thesis 

were in the lower bound of those reported in literature. Another advantage of 

endocrine fertility traits is that they more directly reflect a cow’s reproductive 

physiology than classical traits. For example, in some breeding programs, CFS is used 

in a fertility index as an indirect indicator of calving to first ovulation, but C-LA is a 

more objective indicator of first ovulation because it more directly reflects a cows 

physiology (Bulman and Lamming, 1978; Lamming and Darwash, 1998; Darwash et 

al., 1999). In addition, for animals with delayed insemination, CFS records will be 

available much later, whereas C-LA is independent of farm management decisions. 

Thus, C-LA is a better trait to use in genetic evaluations. 

 

Whether a trait is suitable for use in breeding depends not only on that it has 

substantial genetic variation, but also its genetic correlation with other traits. As 

discussed in 6.2.2, results in chapter 2 demonstrated that the genetic correlation of 

endocrine fertility traits with milk production traits were considerably lower than 
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those observed between milk yield and classical fertility traits. The genetic 

correlation of C-LA was 0.18 with milk yield, and there was a favorable correlation of 

C-LA with fat yield (- 0.12) and with protein yield (- 0.04). This is another advantage 

of using endocrine traits compared with the classical traits. In this thesis, the genetic 

correlation between C-LA and CFS was positive (0.37 to 0.58), which indicates that 

selection for shorter C-LA will also reduce interval from CFS. Royal et al. (2003) 

reported a genetic correlation of 0.53 between CFS and C-LA. Furthermore, they 

found genetic correlations between a long C-LA and a long CI (0.39). In this thesis, 

the genetic correlation between C-LA and CI varied from 0.26 to 0.31. Ismael et al., 

(2015) also found a positive correlation between CFHA and CFS (0.96). This indicates 

that selection for a shorter interval from calving to resumption of ovarian activity 

would benefit overall fertility.  

 

6.2.1 New tools and new breeding goals to improve selection 

for fertility in dairy cows  

New breeding tools like genomic selection and in-line recording technologies like the 

Herd Navigator provide an opportunity to implement endocrine fertility traits in 

genetic evaluations to improve fertility in dairy cows. However, to benefit from the 

added value of endocrine traits in genetic evaluations, breeding goals for fertility will 

need to be redefined. For a long time, the use of endocrine fertility traits in genetic 

evaluations has been hindered by the fact that it is laborious and costly to measure 

sufficient milk P4 records per cow on a large scale. Also, all research on the use of 

endocrine fertility traits has focused on application in breeding schemes that 

generally target a classical breeding goal (e.g., cows with shorter calving intervals 

and shorter intervals from calving to first service). However, now that measuring 

sufficient P4 records on a large scale has been facilitated by in-line technologies, we 

now realize that endocrine traits will be useful for breeding only if they are important 

for the breeding goal. As shown in chapter 5, if the question is “can we improve 

selection for the biological breeding goal for fertility?”, that is, where the breeding 

goal trait is an endocrine trait like C-LA, then it is valuable to include endocrine 

fertility traits in genetic evaluations. However, if the question remains to improve 

the classical breeding goal for fertility (e.g., CI or CFS), there is little to no benefit of 

including endocrine traits in addition to the cheap classical traits in genetic 

evaluations. This means that if breeding programs want to make valuable use of 

endocrine fertility traits to improve selection for fertility, they will need to defining 

new breeding goals for fertility that include the endocrine traits.  
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A disadvantage of using the endocrine traits in progeny testing schemes is that it is 

unrealistic, as progeny testing schemes usually require a large number (100 - 150) of 

daughters with phenotypes of each selection candidate bull, and these daughters 

are often milked in many different herds.  Another drawback of progeny testing is 

that the long generation interval between phenotyping and proving bulls hampers 

genetic gain. Genomic selection has become the standard in cattle breeding because 

it increases the potential genetic gain by up to 80% due to reduced generation 

interval (Schaeffer, 2006). Genomic selection has the added benefit that it also 

disconnects the phenotype recording in a training population from the selection of 

the candidates. This new feature of genomic selection provides a great opportunity 

for novel traits such as endocrine traits, because a trait can be selected as soon as 

several thousand of animals are recorded for the trait (Misztal, 2011). For endocrine 

fertility traits, deterministic predictions with the equation in chapter 5 show that for 

within population genomic prediction of C-LA with heritability of 0.13, and 

considering 1,566 for the effective number of chromosomes (Me), 15,000 animals in 

a cow training population with own C-LA records are needed to achieve 0.74 

accuracy; to achieve 0.84 accuracy of prediction, 30,000 animals are required. 

Although these numbers are still high, it is easier to achieve than collecting records 

on progeny of every test bull. Also, across country collaboration can help. This is 

especially beneficial when one country has very limited number of animals in the 

training population. However, as shown in chapter 5, the accuracy of prediction 

when combining training populations across countries is largely influenced by the 

genetic correlation between the countries for the target trait. For example, in 

chapter 5, when the genetic correlation between Sweden and the Netherlands was 

high, fewer animals from the Netherlands were needed to obtain the same accuracy 

of genomic breeding values in Sweden than with lower genetic correlations. That is, 

with 200 animals from Sweden and a genetic correlation of 0.5 between countries, 

15,000 animals from the Netherlands were needed to achieve 0.31 accuracy of 

predicting C-LA, but when the correlation was 0.9, only 3,000 animals from the 

Netherlands were needed to achieve the same accuracy.  

 

Furthermore, recording strategies for endocrine fertility traits can be optimized to 

improve accuracy of genomic prediction. For example, in chapter 5, it was shown 

that it is more important to have more animals with phenotypes than more 

lactations per animal in the training population. Also, to maximize accuracy of 

genomic prediction, it is important to optimize the design of the training population. 

An optimal design of the training population should maximize the relationships 

between evaluated animals and animals in the training population, and minimize 
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relationships between training animals (Habier et al., 2007; Meuwissen, 2009; 

Pszczola et al., 2012). Because animals in the training population do not have to be 

progeny or relatives of evaluated bulls, this conveniently allows for optimizing 

recording strategies for endocrine fertility traits as shown in chapter 5, while at the 

same time maintaining an optimal design of the cow training population. Optimizing 

the training population can be done by choosing animals for phenotyping based on 

their genomic relationship with evaluated animals. 

 

Therefore, genomic selection and in-line recording technologies provide a great 

opportunity to reconsider the use of endocrine fertility traits to further improve 

selection for fertility. However, investing in novel traits for a cow training population 

should only be done when the trait is in the breeding goal. 

 

6.2.2 Association of fertility traits with milk yield and 

genetic progress 

There is accumulating evidence of the antagonistic effect of increased milk yield on 

fertility in dairy cattle, for a review see Lucy, (2001), Veerkamp and Beerda, (2007), 

and Walsh et al., (2011). For several decades, breeding objectives in dairy cattle 

focused mainly on increasing milk yield and its components, with the exception of 

the Nordic countries that included fertility since the 1970s. The unfavorable genetic 

correlation between milk yield and fertility traits meant that fertility decreased with 

increasing milk yield, which led to a long-term decline in fertility. In recent years, 

selection indices worldwide have changed  to a more balanced breeding approach 

that includes longevity, udder health, and fertility (Miglior et al., 2005, 2012). This 

has in turn reversed the undesirable genetic trend for fertility, while genetic progress 

for production has continued at about the same rate as before. For example, Figure 

6.1 shows the genetic trend in Holstein Friesian cows from the Netherlands, from 

1990 to 2014. In the Netherlands, fertility traits were included in the total merit index 

from 2006. As can be seen in Figure 1, the genetic trend has reversed after the 

inclusion of fertility in the breeding goal. This indicates that it is possible to improve 

fertility genetically, without ceasing selection for milk yield, as milk production traits 

still have a major impact on the revenue of each farm, and are still worth improving.  
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Figure 6.1 Genetic trend of fertility for Holstein Friesian cows from commercial farms in the 
Netherlands. CFS = calving to first service, CI = calving interval, IFLS = interval from first to last 
service, NR56 = non-return rate within 56 days, PPC = percentage of pregnant cows, EBV = 
estimated breeding value. Data from the Dutch herd book (https://crvnl-be6.kxcdn.com/wp-
content/uploads/2016/09/gen_trend_koe_nl_20160816.pdf). 

 

The traits currently used for fertility in the total merit index of the Netherlands are 

classical fertility traits derived from insemination and calving data. The current rate 

of genetic progress for fertility, as seen in Figure 6.1, is influenced by the unfavorable 

genetic correlation between milk production and classical fertility traits. In this 

thesis, the genetic correlation varied from 0.07 to 0.24 between milk production 

traits and CFS, and from 0.56 to 0.69 between milk production traits and CI, while 

phenotypic correlations of milk production traits with CFS and CI varied from 0.13 to 

0.21. However, in chapter 2, the genetic correlations of endocrine fertility traits with 

milk production traits were considerably lower than those observed between milk 

yield and classical fertility traits. The genetic correlation of C-LA was 0.18 with milk 

yield, and there was a favorable correlation of C-LA with fat yield (- 0.12) and with 

protein yield (- 0.04). In addition, the phenotypic correlations of the endocrine 

fertility traits with milk production traits were close to zero (0.01 to 0.07). This 

indicates that novel fertility traits that are not (or less) unfavorably correlated with 

milk yield can improve genetic progress for fertility further. Higher genetic 

correlation estimates of C-LA with milk yield have been reported, but all unfavorable. 

Veerkamp et al., (2000) reported an unfavorable genetic correlation of 0.51 between 

C-LA and milk yield, and Nyman et al., 2014 found a correlation of 0.45. Although 

further research is needed to confirm the low genetic correlation between in-line 



6 General discussion 

 

 

143 

 

endocrine fertility traits and milk production traits, this thesis shows that the genetic 

progress of fertility can be improved by considering C-LA as a breeding goal trait in 

genetic evaluations, or index trait in a fertility index. 

 

Another approach of improving the genetic progress for fertility is to put a higher 

economic weight (breeding goal weight) on fertility to get faster genetic 

improvement, compared with the other traits in the breeding. Miglior et al 2005, 

analyzed national selection indices for 15 major dairy countries and reported that 

average relative emphasis was 59.5% for production, 28% for durability, and 12.5% 

for health and reproduction across all countries. In another study, Miglior et al., 

(2012) reported interesting changes in relative emphasis on production traits in 

selection indices of four countries taken as examples. This suggest that perhaps we 

could put more emphasis on fertility traits to improve genetic progress. However, 

such a scenario would reduce genetic progress in milk yield due to its unfavorable 

correlation with fertility, but again this higher emphasis on fertility could be put on 

endocrine fertility traits like C-LA, as it is less unfavorably correlated with milk 

production traits. 

 

 

6.3 Optimal use of genomic information in selection for 

fertility 

The main interest in genome-wide association studies (GWAS) in dairy cattle 

breeding is to find markers to improve the accuracy of predicting breeding values 

and to increase the understanding of the genetic control of economically important 

traits. Identifying the genes that affect traits such as fertility will also provide insight 

into the likely effect of selection on these mutations on other traits in the breeding 

goal. With the development  of methods that allow to perform genomic prediction 

based on a large number of markers (Meuwissen et al., 2001), and the availability of 

commercial SNP chips, genomic selection has become the standard  tool for animal 

and plant breeders. The accuracy of genomic prediction is influenced by the number 

of phenotypes in the training population used to derive the prediction equation, the 

heritability of the trait, the effective population size, the size of the genome, the 

density of markers, and the genetic architecture of the trait, in particular the number 

of loci affecting the trait and distribution of their effects (Daetwyler et al., 2008; 

Meuwissen, 2009). 

 In this thesis, I investigated the heritability of fertility by defining different endocrine 

fertility traits in chapter 2. In chapter 3, the genetic architecture of fertility was 
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investigated by identifying quantitative trait loci (QTL) or genomic regions genes 

associated to fertility traits using SNP data. Using sequence variants, target QTL 

regions were also fine-mapped in chapter 3, and several candidate genes were 

identified. Chapter 4 evaluated empirical accuracy of predicting fertility using 

endocrine and classical fertility traits in multi-trait genomic prediction models, and 

in chapter 5 I evaluated the impact of the size of a cow training population with 

endocrine traits on accuracy of genomic prediction. In this section, I discuss the 

impact of the investigated factors on the accuracy of genomic prediction for fertility, 

and how to optimally use genomic information to improve accuracy of genomic 

prediction for endocrine traits.  

 

The properties of QTL that control a trait like allele frequency spectra of QTL, and 

distribution of QTL effects are key factors that determine the accuracy of genomic 

predictions (Wientjes et al., 2015a). When the minor allele frequency (MAF) of QTL 

is on average lower than that of SNP marker, the accuracy of genomic prediction is 

reduced (Daetwyler et al., 2013; Wientjes et al., 2015a). This is because, a lower MAF 

of QTL  than for SNPs, results in decreased strength of linkage disequilibrium (LD) 

between QTL and SNP markers (Khatkar et al., 2008; Yan et al., 2009; Wientjes et al., 

2015b), hence reducing the proportion of the genetic variance captured by the SNP 

markers. The MAF of QTL underlying complex traits is expected to be lower than the 

MAF of SNP markers (Goddard, 2009; Yang et al., 2010; Kemper and Goddard, 2012), 

therefore, it is highly likely that not all the genetic variance can be captured by SNP 

marker panels in real data. This also indicates that, there is a probability of 

underestimating the heritability of complex traits using SNP markers.  

 

In chapter 3, a genome-wide association study (GWAS) for endocrine and classical 

fertility traits was performed with 85,485 SNPs. The GWAS identified 17 QTL regions 

for 6 endocrine fertility traits and 3 regions for one classical trait. The average 

proportion of variation explained by SNPs in the QTL regions identified for each trait 

are in Figure 6.2. The proportion of variation was calculated as in Pryce et al.,  (2010). 

That is, the proportion of variation for any SNP can be calculated simply as, F/a, 

where F is the F statistic for that SNP based on number of animals (a)  used in 

analysis. In the absence of any real effect, F statistics have an expected value of 1, 

so an unbiased estimate of the proportion of variation can be made by (F-1)/a. This 

estimate of the proportion of variation (R2) was averaged over all N SNP that were 

statistically significant in each identified QTL region for each trait by calculating  R2= 

(
∑ FN

i=1

N
-1)  × 100% × 

1

a
 . The proportion of genetic variance explained by the QTL 
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was 0.70% for CLA, 0.72% for PLA, 0.72% for LA60, 0.71% for LPL, 0.60% for IOI, 0.77% 

for CLAFS, and 0.74% for CFS. In general, the variance explained by the QTL was very 

minimal, and there were no QTL with large effects. Also, the average MAF of the QTL 

detected was 0.27. This suggest that the remaining genetic variance of endocrine 

fertility traits is influenced by QTL with low MAF that may not have been detected in 

the GWAS due to incomplete LD between the SNP markers and underlying QTL. 

Consequently, genomic prediction for endocrine fertility traits will be more 

beneficial with genomic best linear unbiased (GBLUP) models that assume that all 

SNP effects are drawn from the same distribution and explain equal amount of 

genetic variance, than Bayesian variable selection models that accommodate for 

SNPs explaining a larger part of the genetic variance compared to other SNPs. For 

instance, in chapter 4, empirical accuracies of genomic prediction for endocrine 

fertility traits were estimated with GBLUP, and theoretical accuracies were 

estimated with the prediction equation of (Daetwyler et al., 2008, 2010) which was 

derived with the assumptions of a GBLUP model. The theoretical accuracies were in 

line with the empirical estimates. Therefore, based on the genetic architecture of 

endocrine fertility traits, I do not expect an improvement in accuracy of genomic 

prediction from approaches such as Bayesian variable selection. 
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Figure 6.2 Average genetic variation explained by SNP markers in QTL regions identified in a 
genome-wide association study using 85,485 SNPs and 2,447 cows for endocrine and 
classical fertility traits in Holstein. CLA = interval from calving to commencement of luteal 
activity; PLA = proportion of samples in luteal activity during the first 60 days in milk; LPL = 
length of first luteal phase; IOI = length of first inter-ovulatory interval; CLAFS = interval from 
commencement of luteal activity to first service; LA60 = occurrence of luteal activity during 
the first 60 days in milk; CFS = interval from calving to first service 

 

One option to increase the likelihood of identifying causal mutations is to increase 

marker density and (or) number of genotyped and phenotyped animals. 

Developments in genotyping technology have resulted in a reduction of costs, 

enabling the production of commercial high-density (HD) SNP chips (e.g., Illumina 

Bovine HD 770k SNP chip). With more animals genotyped, which increases the 

sample size, and with the genome more densely covered with markers, which leads 
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to a smaller distance between the SNP and the causative mutation, a more precise 

detection of QTL is expected. The ultimate level of genotypic information though is 

sequence data. Sequencing tries to determine the order of all nucleotides of the DNA 

of a given organism. Therefore, sequence data should contain the causative 

mutations of a trait. Hence a GWAS using sequence data is expected to find the 

causative mutation (Meuwissen and Goddard, 2010). There have been efforts to 

increase the number of sequenced animals (Daetwyler et al., 2014), but sequencing 

a large number of animals for GWAS is still expensive. Therefore, imputation from 

lower density genotypes to whole genome sequence using a sequenced training 

population offers a good alternative. The approach that has been taken in chapter 3 

was to perform a GWAS with a low density (e.g., here 85k) SNP chip panel, and then 

focus on the identified peaks, performing a region-wise association study (RWAS) 

using imputed sequence data  (e.g., Höglund et al., 2014; Sahana et al., 2014; Wu et 

al., 2015). In chapter 3, significant QTL regions from the GWAS with 85k SNP were 

fine-mapped for endocrine fertility traits using imputed sequence variants. The 

RWAS was able to refine the QTL regions from the GWAS, but it was not possible to 

identify the causative mutation, mainly because of long-range LD that exist in cattle 

due to low effective population size and strong selection. Similar observations have 

been reported in previous studies (Höglund et al., 2014; Wu et al., 2015). Another 

factor that might be hampering identification of the causative mutation is that 

imputation is not 100% accurate, especially for rare variants and small training 

populations. The RWAS was able to identify several candidate genes associated to 

endocrine fertility traits that can help to learn more about the genetic architecture 

and underlying biology of fertility. In addition, variants significantly associated to 

endocrine fertility traits detected in the RWAS can be integrated in genomic selection 

to improve accuracy of prediction. As these significant regions on the genome are 

continually being found and described, it is of interest to integrate the significant 

markers in genomic evaluations. This integration is relevant because while the 

causative mutations are not detected, these significant markers provide knowledge 

regarding the genetic architecture of the trait. Even though the effects found are not 

large, they might add to the prediction accuracy, and thus should be exploited. 

Although there is ongoing research to develop methods that efficiently make use of 

sequence variants in genomic predictions, at the moment, there is no consensus on 

how to benefit from the use of sequence information in genomic predictions. 

Wientjes et al., (2015a) demonstrated in a simulation study  that adding causal QTL 

to SNP panels increased accuracy of genomic prediction, with a much larger increase 

achieved when the initial number of SNPs is lower. Because the significant variants 

from the RWAS are expected to be in LD with the underlying causal mutation, an 
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option would be to add the identified variants to a low-density SNP chip to improve 

accuracy of genomic prediction. Brondum et al., (2015) investigated this option in 

cattle wherein they performed a GWAS in Nordic cattle for three separate breeds 

using sequence variants for different traits. They then selected QTL and three to five 

variants to tag each QTL and combined 1,623 variants with a 54k SNP panel. Their 

results showed that the reliability of genomic prediction was improved when using 

the combined SNP panel compared to only the 54k panel, with the largest gains of 

up to 5 percentage points for production traits and lowest of 0.5 percentage point 

increase for classical fertility traits. Their results also showed that when using a 

Bayesian model accuracies were generally higher with only 54k data compared with 

the genomic BLUP.  In chapter 4 of this thesis, I showed that there was more 

predictive ability for endocrine fertility traits than classical fertility traits. This 

suggests that combining the significant markers from the RWAS for endocrine 

fertility traits to a low SNP panel like 50k SNP might improve the accuracy of 

prediction further, compared to the 0.5 percentage point increase for classical 

fertility traits.  

 

In general, the accuracy of genomic selection can be improved by spending time on 

trait definition to improve heritability, improving statistical modelling of the trait, or 

by increasing the size of the training population. Although all these factors are 

important to improve accuracy of prediction, for endocrine fertility traits and novel 

traits in general, the critical factor that needs to be improved is the size of the 

training population. 

 

 

6.4 Practical integration of novel traits in routine genetic 

evaluations 

Chapter 5 showed that for genomic prediction, it is more important to have 

phenotypes from more cows than more lactations with phenotypes per cow in the 

training population. That is, optimizing recording strategies for endocrine fertility 

traits will maximize the accuracy of genomic prediction for fertility. This is true for 

endocrine fertility traits, but will generally apply to novel traits that are expensive or 

difficult to measure, e.g., feed efficiency and methane emission. For endocrine 

fertility traits, some important questions that arise are “can we use the Herd 

Navigator for the national breeding goal?”, “who should pay for the Herd 

Navigator?”, and “should farmers be subsidized for collecting extra records?” There 

is no single answer to these questions, as this depends on several factors. In this 
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section, I will discuss the pros and cons of using the Herd Navigator in national 

breeding evaluations, phenotyping strategies for novel traits, and in general, 

challenges for integrating novel traits in genetic evaluation schemes. 

 

6.4.1 Use of the Herd Navigator in genetic evaluations  

In this thesis, we specifically looked at estrous related fertility traits derived from in-

line milk P4 levels measured with the Herd Navigator, and how to include these traits 

in genetic evaluations. One downside of using the Herd Navigator for the national 

breeding goal, is that it is not realistic for progeny testing schemes. Also, chapter 5 

showed that it is only worthwhile to invest in endocrine traits if the endocrine traits 

are themselves breeding goal traits. A key requirement for the recording of data is 

the motivation of the stakeholders involved. That is, recording needs to have 

benefits beyond genetic improvement, and the additional effort required for 

recording must result in added value, also for the farmers. The added advantage of 

the Herd Navigator is that famers can also use the Herd Navigator for other 

management purposes like estrus detection, and monitoring of mastitis and ketosis. 

However, there is a lot of competition with other fertility systems e.g., fertility 

systems based on heat detection and movement like physical activity monitors; 

these other systems are generally cheaper than the Herd Navigator. Furthermore, 

fertility traits based on physical activity monitors like interval from calving to first 

high activity have been shown to have substantial genetic variation, and have the 

potential to improve genetic selection for fertility (Løvendahl and Chagunda, 2009; 

Ismael et al., 2015).  However, comparisons of pedometer measures with 

progesterone-determined estrus has shown that activity monitors cannot detect 

silent behavioral estrus (Løvendahl and Chagunda, 2016). Studies show that body 

condition score has a favorable relationship with fertility (e.g., Pryce et al., 2001; 

Berry et al., 2003) and is growing in popularity as a novel predictor for fertility (Fogh 

et al., 2013), but body condition score cannot be used for estrus detection. Research 

on the use of mid-infrared predicted fatty acids as indicator traits for fertility (Bastin 

et al., 2012) and of mid-infrared for pregnancy status testing is also underway 

(Gengler, 2014). None the less, such novel traits are not designed to detect estrus, 

except for the activity meters, and P4 remains the ‘gold standard’ for estrus 

detection.  

For the farms that have the Herd Navigator, P4 levels are usually recorded until 

pregnancy is established, and these P4 measure were available in the data used in 

this thesis. Therefore, these profiles could also be used to derive endocrine fertility 

traits that reflect the ability of a cow to conceive following insemination, and become 
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pregnant. This will be useful, as these endocrine traits might be more informative 

and objective than some of the classical fertility traits currently used to reflect 

conception and pregnancy in dairy cows e.g., non-return rate (see Figure 1, chapter 

1). For example, perhaps describing the length of the last luteal phase before 

pregnancy might be a more informative trait that reflects the ability of a cow to get 

pregnant after insemination. The last luteal phase before pregnancy might be more 

informative because in general, after ovulation, the luteal phase is the period during 

which the endometrium (uterine lining) is prepared for implantation of an eventual 

fertilized egg (or embryo). That is, estrogen and progesterone together promote 

thickening of the endometrium. The length of the last luteal phase before pregnancy 

might be informative on whether a pregnancy is successful, as shorter luteal phase 

lengths might mean that there is not enough time for the endometrium to develop, 

which might contribute to embryo death and pregnancy failure. The last luteal phase 

length before pregnancy might be a more objective measure for the ability of a cow 

to get pregnant after insemination.  Yet another option would be to describe lengths 

of all luteal phases before pregnancy, as animals with regular luteal phase lengths 

might have a higher probability of getting pregnant. Also, the interval from 

commencement of luteal activity to first service was investigated in chapter 2, but 

perhaps it will be more useful to look at the interval from C-LA to the last service 

before pregnancy, as this might be a more objective measure of the interval from 

calving to conception. For future studies, it would be interesting to consider defining 

and investigating this group of endocrine fertility traits that reflect the ability of a 

cow to conceive and get pregnant. Therefore, the Herd Navigator also makes it 

possible to exploit P4 measures further to improve fertility, because ideas that were 

considered unrealistic in the past may become feasible in the near future. 

 

6.4.2 Phenotyping strategies for novel traits  

A major benefit of genomic selection in dairy cattle breeding is that it is no longer 

required to measure a large number of phenotypes from progeny groups for each 

male selection candidate. This significantly decreases generation intervals and 

increases genetic gain per year for all breeding goal traits (Pryce et al., 2016; Lund et 

al., 2011). For traits that have been part of the breeding goal, current training 

populations consist of bulls with highly accurate phenotypes based on the average 

phenotype of hundreds of daughters (for reviews see: Hayes et al., 2009; Calus, 

2010) and may contain up to as much as 16, 000 bulls (Lund et al., 2011). For novel 

traits, depending on the cost of a single phenotypic measurement, composing 
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training populations may only be feasible for a few thousand cows. Therefore, there 

is the need to optimize phenotyping strategies for novel phenotypes. 

Genomic predictions with novel traits can be trained within a set of animals, 

representative for the whole population and then applied in the general population. 

In sheep or beef cattle breeding, selection for carcass and meat quality traits is 

implemented in a centralized approach, in which test animals are housed in 

information nucleus herds, and phenotypes are recorded on the breeding animals 

themselves (i.e., own phenotypes). One advantage of an information nucleus is that 

animals are well identified and similarly managed, and fixed effects are fully 

recorded.  In its current form, dairy cattle breeding companies have contracts with 

farmers, where intensive recording of phenotypes is performed. However, this 

system results in lots of records but with lots of lactations per animal. In this thesis, 

I showed that for genomic prediction of novel traits, it is more important to have 

more cows with phenotypes than more lactations per cow in the training population 

(chapter 5). Perhaps the dairy industry could learn from phenotyping structures 

established for breeding in other species.  That is, the dairy industry should think of 

optimizing phenotyping structures by establishing nucleus farms for phenotype 

recording, especially for novel phenotypes that need new technologies for optimal 

recording.  

 

6.4.3 Phenotyping farms and labs 

Advances in technology will have an impact on the future definition and availability 

of phenotypes. The challenge for dairy breeding companies is to start thinking of 

ways to optimize phenotyping strategies, which is something that has been lacking 

behind in the dairy industry compared to the meat industry.  Some dairy companies 

(http://www.eaap.org/Annual_Meeting/2015_warsaw/S22_12.pdf), have currently 

set up partner herds called “DataPlus” farms for recording specific phenotypes. A 

next step for dairy breeding companies would be to optimize the phenotyping 

structure by establishing phenotyping labs where animals are phenotyped in batches 

for one lactation and dispatched. This will make space for the next batch of cows and 

leads to phenotypes recorded on as many animals as possible.  Based on the results 

of chapter 5, I argue that this is an optimal way of collecting as many phenotypes on 

novel traits as possible to set up a training population for genomic prediction. In the 

case of endocrine traits, the Herd Navigator would be a great investment for 

phenotyping labs. Another advantage of having phenotyping labs is that animals to 

be measured can be selected in terms of their relatedness to important bulls (or 

offspring of the sires of the young bulls) so that there is always a close relationship 
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between the cow training population and the candidate bulls, as this will increase 

the accuracy of genomic prediction.  Studies have shown that a close relationship 

between evaluated animals and animals in the training population is expected to give 

more reliable prediction (Habier et al., 2007; Meuwissen, 2009; Pszczola et al., 2012). 

These relationships are especially important for small training populations (Wientjes 

et al., 2013). That is, optimally, all evaluated animals should have at least some 

closely related animals in the training population. Therefore, it will be more 

interesting to phenotype heifers (i.e., first parity cows) for novel traits than later 

parity cows. It is also important to have an idea of genetic correlation estimates 

between endocrine fertility traits across parities, but that requires large datasets, 

which were not available in this thesis. However, genetic correlation estimates of 

classical fertility traits across lactations can give an idea of what to expect from 

endocrine traits. Reported genetic correlation of classical fertility traits between first 

and second lactation vary between 0.7 and 0.9 (Roxström et al., 2001; Haile-Mariam 

et al., 2003), and are 0.9 or higher between the second and third lactation. Based on 

these, I do not expect a large difference for the correlation of endocrine fertility traits 

across lactations. To enable the immediate use of endocrine fertility traits in genetic 

evaluations, these correlation estimates for classical traits could be used as pointers 

rather than waiting to first obtain correlation estimates of endocrine traits. 

Therefore, rather than the partner farms, maybe the dairy breeding companies 

should be thinking about phenotyping labs. 

 

On the one hand, investing in phenotyping labs with the Herd Navigator will optimize 

the recording strategy for endocrine fertility traits in dairy cattle, but this investment 

will not be worthwhile if the only traits recorded are fertility traits. On the other 

hand, if investments for recording other novel traits e.g., feed intake and methane 

emission are included, this might become a realistic option for the future, where 

breeding companies establish high-tech farms with equipment for measuring 

different types of data, and where animals are kept for one lactation only. As an 

example, to optimize phenotyping strategies, a breeding company could invest in 10 

phenotyping labs where all novel phenotypes of interest are collected. Heifers are 

bought, genotyped, phenotypes are recorded for one lactation, and then animals are 

sold. Another advantage of phenotyping labs is that all traits can be recorded on the 

same animals. The number of phenotyping labs needed to optimize phenotyping can 

be decided based on predicted accuracy and expected size of the training population, 

as shown in chapter 5. A critical question that arises concerns genotype-by-

environment (G X E) interactions. With limited training populations in a given 

environment, selection will be more sensitive to G X E interactions than with 
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traditional progeny tests where daughters of candidate bulls are distributed over a 

large number of herds. Therefore, it is recommended to establish the phenotyping 

labs over a range of environments. 

 

 

6.5 Concluding remarks  

The research in this thesis investigated the use of in-line milk progesterone 

concentrations to define novel fertility traits that can be used in genetic evaluations 

to improve genomic selection for fertility in dairy cows. This was inspired by the 

availability of new in-line recording technologies like the Herd Navigator, and the 

opportunity due to genomic selection, that makes it feasible to implement novel 

traits in breeding programs for dairy cattle. In the first part of this thesis, I show how 

in-line milk progesterone records can be used to define several heritable endocrine 

fertility traits, and describe research that detected genetic markers significantly 

associated with endocrine fertility traits, fine-mapped target QTL regions and 

identified potential candidate genes. The less unfavorable genetic correlation of 

endocrine fertility traits like and their heritability makes them better alternatives for 

use in genetic improvement of fertility than classical fertility traits like CFS. I expect 

that GWAS will continue to be performed because they provide scientifically relevant 

results, especially with greater statistical power when more animals will be 

sequenced or genotyped using high density SNP chips. With more markers, the 

physical distance between markers and the causative mutation will be shortened, 

allowing QTL regions to be fine-mapped. However, finding the causal mutation will 

require more than just a GWAS using denser genotyping or sequence data. Linkage 

disequilibrium plays a major role in GWAS, and one may require additional evidence 

to distinguish associated variants. The results of GWAS with sequence variants can 

be used to augment low-density SNP chip panels like 50k, to increase the accuracy 

of genomic prediction. 

 

In the second part of this thesis, I describe genomic prediction using endocrine 

fertility traits in dairy cattle. This is the first study on the use of endocrine traits in 

genomic prediction. I have shown that endocrine fertility traits have more predictive 

ability than classical fertility traits, and that combining endocrine fertility traits in 

multi-trait genomic prediction can substantially increase the accuracy of genomic 

prediction. Because endocrine traits are novel fertility traits, there is bound to be a 

limited training population size for these traits. I showed that for prediction, it is 

more important to phenotype more animals than more lactations per animal in the 
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training population. Therefore, breeding companies can optimize phenotyping 

strategies for endocrine fertility traits (and novel traits in general) by establishing 

phenotyping labs where animals are phenotyped in batches for one lactation and 

dispatched, as leads to phenotypes recorded on as many animals as possible. 

However, as shown in this thesis, investing in a cow training population for endocrine 

fertility traits (and novel traits in general), is relevant only when the novel trait is in 

the breeding goal.  

 

In the final discussion, I show that new tools like, genomic selection and in-line 

recording technologies provide a great opportunity to reconsider the use of 

endocrine fertility traits to further improve selection for fertility, and should be 

explored further. These tools make it possible to optimize phenotype recording and 

increase the size of the training population, which is the main limiting factor of 

improving accuracy of prediction with novel traits. Also, the availability of more and 

more new electronic technologies for farm management and phenotype recording 

means that in the future, dairy farming might shift from the traditional system to a 

more electronic technology oriented farming system. Therefore, the dairy industry 

might be faced with challenges on how to handle/integrate new phenotypes from 

these new technologies in to genetic evaluations. The results from this thesis can 

server as pointers.  
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Summary 

Improved reproductive performance has a substantial benefit for the overall 

profitability of dairy cattle farming by decreasing insemination and veterinary 

treatment costs, shortening calving intervals, and lowering the rate of involuntary 

culling. Unfortunately, the low heritability of classical fertility traits derived from 

calving and insemination data makes genetic improvement by traditional animal 

breeding slow. Therefore, there is an interest in finding novel measures of fertility 

that have a higher heritability or using genomic information to aid genetic selection 

for fertility. Endocrine fertility traits based on progesterone concentration in milk 

have been widely accepted as valid indicators for fertility because they are not biased 

by farm management decisions and more directly reflect a cow’s reproductive 

physiology than classical fertility traits. However, the use of endocrine traits in 

routine genetic evaluations has been constrained by the high cost associated with 

collecting progesterone records on sufficient number of animals. Nonetheless, in-

line technology like the Herd Navigator now exists to automatically measure 

progesterone concentration during milking, enabling sampling of more animals at 

reasonable cost. 

 

In this thesis, I explored the use of milk progesterone concentrations and genomic 

information to improve genetic selection for fertility in dairy cattle. In chapter 2, I 

investigated the use of in-line milk progesterone records to define endocrine fertility 

traits, and estimated genetic parameters. Several defined endocrine fertility traits 

were heritable, and showed a reasonable repeatability. The genetic correlation of 

milk production traits with endocrine fertility traits were considerably lower than the 

correlations of milk production with classical fertility traits. In chapter 3, genomic 

regions associated to endocrine fertility traits were identified on the cattle genome 

by genome-wide association and fine-mapping.  

 

The genome-wide association study identified 17 quantitative trait loci (QTL) 

associated with endocrine fertility traits, on Bos taurus autosomes (BTA) 2, 3, 8, 12, 

15, 17, 23, and 25. Overlapping QTL regions were found between endocrine traits on 

BTA 2, 3, and 17. For the classical trait calving to first service, three QTL regions were 

identified on BTA 3, 15, and 23, and an overlapping region on BTA23 with endocrine 

traits. Fine-mapping target regions for the endocrine traits on BTA 2 and 3 confirmed 

the QTL from the genome-wide association study, and identified several associated 

variants that can contribute to an index of markers for genetic improvement of 
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fertility. Several potential candidate genes underlying endocrine fertility traits were 

also identified in the target regions. 

 

In the next two chapters, I investigated the optimal use of endocrine fertility traits in 

genomic evaluations. In chapter 4, using empirical and theoretical predictions for 

single-trait models, I showed that endocrine fertility traits have more predictive 

ability than classical fertility traits. The accuracy of genomic prediction was also 

substantially improved when endocrine and classical fertility traits were combined 

in multi-trait genomic prediction. Across country predictions were also evaluated in 

univariate predictions, and some predictive ability was observed. Because we were 

limited by sample size in chapter 4, in chapter 5, using a deterministic equation, I 

investigated the potential accuracy of multi-trait genomic selection when combining 

a cow training population measured for the endocrine fertility trait C-LA, with a 

training population of bulls with daughter observations for classical fertility traits. 

The results showed that for prediction of fertility, there is no benefit of investing in 

a cow training population when the breeding goal is based on classical fertility traits. 

However, when considering a more biological breeding goal for fertility like C-LA, 

accuracy is substantially improved when endocrine traits are available from a limited 

number of farms. Evaluation of the potential accuracy of across country genomic 

prediction showed that when the training population from one country (e.g., 

Sweden) is small, substantial increase in accuracy can be achieved by adding animals 

from another country (e.g., The Netherlands), however, the accuracy was highly 

dependent on the genetic correlation between countries. In chapter 5, recording 

strategies that optimally use the Herd Navigator for genomic prediction, in terms of, 

the number of farms, and recording period for endocrine traits were investigated. 

The results showed that for prediction of fertility using C-LA, it is more important to 

have more animals with C-LA records than more C-LA records per animal. That is, for 

prediction accuracy with novel traits in general, it is more beneficial to phenotype 

more animals than more lactations per animal in the training population. 

 

Finally, in chapter 6, the relevance of the findings was discussed, i.e. how breeders 

can benefit from combining endocrine fertility traits with genomic information to 

further improve selection for fertility. Suggestions for future studies and how 

breeders can make use of the results generated from this study were given. I finalized 

by suggesting practical phenotyping strategies like phenotyping labs, that can by 

established by breeding companies to optimize phenotype recording for endocrine 

fertility traits (and novel traits in general). 
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