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Abstract 

Host-seeking is an important component of mosquito vectorial capacity on which the success 

of the other behavioural determinants depends. Blood-seeking mosquitoes are mainly guided 

by chemical cues released by their blood hosts. This thesis describes results of a study that 

determined the effect of microorganisms – host skin bacteria as well as malaria parasites – on 

host-seeking behaviour of female Anopheles gambiae sensu stricto and An. arabiensis in 

Homabay county, western Kenya. Semi-field and field experiments were conducted to 

determine the response of mosquitoes with different host preference to synthetic and natural 

odour blends from three vertebrate hosts, a human, a cow and a chicken. Screen house 

experiments were conducted to test whether specific skin bacteria or a mix of skin bacterial 

volatiles from the three vertebrate hosts mediate mosquito response. A review chapter in this 

thesis discusses how malaria parasites can manipulate human hosts to enhance their own 

transmission, by making the hosts more attractive to mosquitoes. Another experiment, using a 

dual-choice olfactometer, determined whether infection with malaria parasites increases 

human attractiveness to malaria mosquitoes, and whether the attractiveness of infected 

humans is Plasmodium falciparum-stage specific. Here, the same children participated in the 

study during infection with malaria parasites and after treatment with antimalarial drugs, 

artemisinin lumefantrine. Cage assays were further used to test mechanisms of attractiveness 

of P. falciparum-infected individuals using body odours or skin bacterial volatiles collected 

from the children at the two time points. Overall results show that skin bacterial volatiles play 

an important role in guiding mosquitoes with different host preferences to their specific host. 

For An. gambiae s.s., high (microscopic) densities of P. falciparum gametocytes (and not 

parasite-free, submicroscopic gametocytes or asexual stages of Plasmodium parasites) results 

into higher attractiveness of hosts, and body odours play a role in attractiveness of P. 

falciparum-infected humans. The results may help to develop more effective health policies 

and enable targeted interventions towards the most attractive hosts, which could contribute to 

reductions in malaria transmission. Identification of general or common attractive volatiles 

produced by the natural hosts as well as those from the gametocyte carriers may contribute to 

the development of an improved synthetic odour blend that may be used for sampling of 

mosquitoes with different host preferences. The use of powerful odorants may result in 

reductions of vector-borne diseases transmitted by mosquitoes. 
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Chapter 1 

General introduction 
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Introduction 

Vector-borne pathogens are transmitted by the bites of infected arthropod species. These 

pathogens require two different host species to complete their lifecycle, usually a vertebrate 

and an invertebrate host, of which the latter transmits the pathogen between vertebrate hosts 

(Killeen & Smith, 2007). Blood-feeding mosquitoes are important vectors of several human 

pathogens, including arboviruses namely: chikungunya, dengue fever, Rift Valley fever, 

yellow fever and Zika transmitted by Aedes mosquitoes amongst others. Japanese 

encephalitis, lymphatic filariasis and West Nile fever are transmitted by Culex mosquitoes, 

while Anopheles mosquitoes mainly transmit malaria. The contact rate between vectors and 

their vertebrate hosts affects the intensity of pathogen transmission, and hence disease 

epidemiology. The ability of vectors to locate their blood hosts therefore is crucial in disease 

maintenance and perseverance. Host odour is known to play an important role in mosquito 

host-seeking behaviour (Takken, 1991) and hence influences the contact rate between vectors 

and hosts. This thesis focuses on interactions between mosquitoes, malaria parasites, humans, 

and how skin bacterial volatiles mediate host-seeking behaviour of mosquitoes. 

Malaria 

Malaria is a major vector-borne disease, caused by protozoan Plasmodium parasites (Kimani 

et al., 2006; Alonso et al., 2011; WHO, 2015b). Transmission of the parasites to humans is 

through bites of infected female Anopheles mosquitoes. In 2015, approximately 214 million 

malaria cases and 438,000 deaths occurred worldwide with children under five years and 

pregnant women being most vulnerable (WHO, 2015b). Malaria, the leading cause of 

morbidity and mortality in Sub-Saharan Africa (RBM, 2013) is estimated to cost USD 12 

billion every year, absorbing to a maximum of 40% of the health expenses in Sub-Saharan 

countries (RBM, 2013). 

 

Life-cycle 

Malaria parasite species that infect humans are Plasmodium falciparum, P. vivax, P. 

malariae, P. ovale and P. knowlesi (White et al., 2014). Females of the Anopheles gambiae 

sensu lato sibling species complex (An. gambiae sensu stricto [hereafter termed An. gambiae] 

and An. arabiensis) and An. funestus are the principal vectors of malaria in most African 

countries (Coetzee, 2004; Okara et al., 2010), while a higher diversity of vector species 
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occurs in other parts of the world (Sinka et al., 2012). Dominance of African malaria vectors 

is largely due to their preference for human blood, high vector competence and high daily 

survival rates. The malaria transmission cycle starts when an infected female mosquito injects 

sporozoites into a human host while blood-feeding (figure 1). The sporozoites travel to the 

liver where they produce merozoites, which, in turn, infect red blood cells (P. falciparum 

does not have hypnozoites, a dormant liver stage). Inside the red blood cells, the parasite 

reproduces asexually until the cells burst, causing fevers and other symptoms of malaria. 

Eventually, some parasites develop into gametocytes that may be taken up by another 

mosquito while ingesting a blood meal. Inside the mosquito’s midgut, the parasite reproduces 

sexually, producing sporozoites that migrate to the salivary glands, thereby closing the cycle 

(White et al., 2014).  

 

 

 

Figure 1. Life cycle of the malaria parasite Plasmodium falciparum. Infected female 

Anopheles mosquitoes pass Plasmodium sporozoites to a human who gets infected (A), while 

male and female gametocytes are the stages taken up by female mosquitoes from the blood 

stream of infected hosts in order to mediate disease transmission (D). Source: (White et al., 

2014). 

Diagnostic tools to identify malaria infection include microscopic analysis of blood films, 

rapid diagnostic tests (RDTs) (Batwala et al., 2010), real-time quantitative polymerase chain 

reaction (qPCR) (Hermsen et al., 2001)and the quantitative nucleic acid sequence-based 
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amplification (QT-NASBA) that allows highly sensitive stage-specific quantification of 

malaria parasites (Schneider et al., 2004; Bousema et al., 2006). Treatment of malaria in all 

endemic countries in the world is mainly by artemisinin-lumefantrine, which kills all stages 

of malaria parasites (WHO, 2015b; Gonçalves et al., 2016).  

Mosquito host-seeking behaviour 

Mosquitoes use (volatile) chemical cues to locate their blood-meal hosts. They have a highly 

developed chemosensory system located on the antennae and maxillary palps (Mclver, 1982; 

Zwiebel & Takken, 2004). These cues are more important to vectors that have a specific host 

requirement (Takken & Knols, 1999; Zwiebel & Takken, 2004). Anthropophilic mosquitoes 

are sensitive to a narrow range of chemical stimuli and they primarily take blood meals from 

humans.  

More opportunistic vectors have a more general sensitivity to a wide range of chemical 

volatiles, which enables them to feed on humans and animals (Costantini et al., 1999; Tirados 

et al., 2006; Carey et al., 2010). 

To find a host, mosquitoes engage in upwind flight behaviour using carbon dioxide (CO2) 

(Dekker et al., 2001). The universal kairomone, CO2, acts as an activator and attractant for 

host-searching mosquitoes (Gillies, 1980; Mboera & Takken, 1997; Spitzen et al., 2008). 

Thereafter, they begin a directional flight towards humans when they encounter long-range 

host-kairomones up to around 70 m distance from the host, whereafter they initiate a landing 

response using volatiles emanating from human skin (Healy & Copland, 2000) and physical 

cues like heat, when at close range of their/the blood-meal host (Knols et al., 1997; Spitzen et 

al., 2013). The host-seeking behaviour of mosquitoes can be exploited using traps. 

Combining natural host odours, synthetic odour blends or skin bacterial volatiles with CO2 

causes an increase in mosquito catch in such traps (Spitzen et al., 2008; Okumu et al., 2010; 

Verhulst et al., 2011a). Consequently, odour-baited traps can be used to catch malaria vectors 

in the field, hence reduce transmission of malaria (Homan et al., 2016). 
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Role of skin bacterial volatiles in attraction of mosquitoes 

Volatiles from human skin microbiota are attractive to the anthropophilic mosquito An. 

gambiae, but not all skin bacterial species attract mosquitoes (Verhulst et al., 2009; Verhulst 

et al., 2011b). This suggests that An. gambiae selects its blood hosts based on specific 

bacterial volatiles released from the human skin (Verhulst et al., 2010a; Verhulst et al., 

2010b). Humans are differentially attractive to malaria mosquitoes based on bacterial species 

on their skin (Verhulst et al., 2010a). Highly attractive individuals harbour higher 

densities, but a lower diversity of bacteria on their skin, compared to poorly attractive 

individuals (Verhulst et al., 2011b). This therefore suggests that attractiveness of humans 

to mosquitoes based on microbial diversity and/or density can have an effect on the 

number of mosquito bites received per person, hence the risk of malaria infection 

(Takken & Knols, 1999).  

Mechanisms of odour production by specific bacteria 

Different bacterial species on human skin have specific metabolism for generation of specific 

odour profiles. Corynebacteria generates volatile fatty acids which produce odour and only 

these bacteria transform long chain fatty acids into short and medium-chain fatty acids (C2-

C11), causing malodour (James et al., 2004). Micrococci and Brevibacteria metabolize the 

short and medium-chain fatty acids even further (James et al., 2004). Staphylococcus species 

convert amino acids to highly odorous short-chain amino acids (James et al., 2004) that are 

available as host-seeking cues (Smallegange et al., 2009).  

 

Manipulation of vertebrate hosts by Plasmodium parasites  

Besides variation caused by skin bacteria in attractiveness of healthy humans, it is also 

expected that the presence of diseases/parasites can alter host attractiveness. To optimize 

Plasmodium transmission, malaria-infected mosquito vectors carrying transmissible stages 

(sporozoites) should preferentially bite non-infected hosts, while infected hosts carrying 

transmissible stages (gametocytes) should be more attractive to healthy vectors than hosts 

without transmissible stages. Various studies in non-human systems indeed demonstrated 

altered mosquito feeding behaviour such as probing, persistence and engorgement rate upon 

Plasmodium infection (Hurd, 2003), suggesting manipulation of mosquito vectors by 
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Plasmodium (Cator et al., 2012). Anopheles gambiae mosquitoes infected with sporozoites 

also showed increased attraction to the odour of healthy humans compared to non-infected 

mosquitoes (Smallegange et al., 2013).  

In addition to changes in infected vectors, infected rodent and bird hosts received more bites 

from mosquitoes than non-infected hosts (Ferguson & Read, 2004; Cornet et al., 2013a, 

2013b). Kenyan children infected with transmissible stages of P. falciparum (gametocytes) 

attracted significantly more mosquitoes than non-infected children (Lacroix et al., 2005), 

suggesting that malaria parasites may also manipulate their human hosts to enhance 

transmission. The mechanism underlying this manipulation are thought to include changes in 

the infected individual's breath or body odour (Lacroix et al., 2005), and are further 

investigated in this thesis.  

Bottlenecks in malaria control 

Interventions such as insecticide treated bed-nets and indoor residual spraying combined with 

effective anti-malaria drugs have reduced vector-host contact and reduced the malaria burden 

significantly (Bhatt et al., 2015). This reduction in malaria is aided by increased funding 

towards malaria control strategies (WHO, 2012, 2015a). However, due to the changing 

malaria transmission landscape with secondary vector species becoming more important 

(Sriwichai et al., 2016), outdoor residual transmission (Durnez & Coosemans, 2013; Russell 

et al., 2013), continued emergence and spread of parasite resistance to antimalarial drugs, 

resistance of mosquitoes to insecticides (WHO, 2015b) and lack of a standardised reliable 

vector control tool (Alonso et al., 2011), additional knowledge and/or alternative methods for 

vector control are urgently needed. This is especially important because a single strategy may 

not be effective in all malaria-endemic countries as some countries/regions have set targets 

on elimination of malaria. 

Aim of the study 

This PhD thesis was undertaken to investigate the effects of Plasmodium parasites and skin 

bacteria in mediating responses of malaria vectors to human body odours, a novel approach 

that could contribute to improvement of odour-baited traps. Findings from this study may 

also have an impact on epidemiological models of malaria transmission in a sense that if 
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mosquitoes do not bite people randomly but malaria parasites influence the chance of hosts 

being bitten by mosquitoes, this affects the transmission cycle.  

Such knowledge can therefore be exploited to improve current interventions. Specifically, I 

addressed three research questions listed below, with specific objectives of the study and 

outline of the thesis listed hereafter. 

 

Research questions 

1. Do volatiles produced by skin bacteria play a role in species-specific host preference of 

mosquitoes? 

2. Does infection with gametocytes of Plasmodium increase the attractiveness of humans to 

malaria mosquitoes? 

3.  What is the mechanism through which Plasmodium influences human attractiveness to 

malaria mosquitoes? 

 

Specific objectives  

1. Determine whether mosquito host preference affects the mosquito’s response to synthetic 

and natural odour blends. 

2. Investigate whether volatiles from skin bacteria mediate the response of malaria 

mosquitoes with different host preferences. 

3. Develop hypotheses on how malaria parasites manipulate their vertebrate host to enhance 

transmission, based on literature. 

4. Investigate the effect of different Plasmodium falciparum lifecycle stages in humans on 

their attractiveness to malaria mosquitoes. 

5. Evaluate the role of body odours and skin bacteria in differential attraction of 

Plasmodium-infected humans to malaria mosquitoes. 

 

Outline of the thesis  

In this thesis, I investigated the interactions between malaria parasites, human hosts and their 

associated skin bacteria, and mosquitoes, whose host-seeking behaviour was used to address 

my research questions. In Chapter 2, I determined the attractiveness of natural host odours 

and synthetic odour blends on mosquito species with different host preference in Kenya. This 
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study included screen house experiments with the anthropophilic An. gambiae and the more 

opportunistic An. arabiensis mosquitoes, as well as field experiments in a malaria-endemic 

area of Kenya. In Chapter 3, I tested the response of the anthropophilic and more 

opportunistic mosquito species to skin bacterial volatiles of vertebrate hosts, including 

human, cow and chicken (also used in Chapter 2). The response of both mosquito species to 

volatiles released from human-specific bacterial species was also tested in a screen house. 

Parasites can manipulate vectors directly to enhance their own transmission. They can also 

manipulate vertebrate hosts to indirectly influence vector attraction towards infected hosts, 

e.g. by making them more attractive to parasite-vectors.  

Chapter 4 is a review on this topic, and includes the fitness effects of malaria parasites on 

the vector and vertebrate host as well. Hypotheses on the mechanisms of malaria 

manipulation of vertebrates were developed and future research discussed. Chapter 5 

describes a study that investigated if P. falciparum parasites in Kenyan children affect the 

behaviour of mosquitoes, and if so, if a change in attractiveness of malaria-infected children 

is stage specific. I also looked at the effect of parasite density on mosquito behaviour. In 

Chapter 6, follow up experiments were conducted to investigate the mechanisms involved in 

the attractiveness of microscopic gametocyte carriers who were significantly more attractive 

to malaria mosquitoes than parasite-free children or individuals with asexual stages or 

submicroscopic gametocytes. For this purpose, a cage-assay was developed to determine 

mosquito preference between two skin odour samples or two skin bacterial samples obtained 

from the same individual before and after treatment with antimalarial drugs. Finally, in 

Chapter 7, results of this PhD study are discussed based on the research questions outlined 

above. Future perspectives including mechanisms of Plasmodium-mediated host 

attractiveness and identification of common attractive skin volatiles (from various naturals 

hosts) that may be used to improve the existing odour-baited traps, DNA sequencing of skin 

bacteria from infected and non-infected humans for determination of bacterial densities and 

composition, and studies of their role in attractiveness to mosquitoes are discussed. 
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Abstract 

The anthropophilic malaria mosquito Anopheles gambiae sensu stricto (hereafter termed 

Anopheles gambiae) primarily takes blood meals from humans, whereas its close sibling 

Anopheles arabiensis is more opportunistic. Previous studies have identified several 

compounds that play a critical role in the odour-mediated behaviour of An. gambiae. This 

study determined the effect of natural and synthetic odour blends on mosquitoes with 

different host preferences to better understand the host-seeking behaviour of mosquitoes and 

the potential of synthetic odour blends for standardized monitoring. Odour blends were 

initially tested for their attractiveness to An. gambiae and An. arabiensis in a semi-field 

system with MM-X traps baited with natural and synthetic odours. Natural host odours were 

collected from humans, cows and chickens. The synthetic odour blends consisted of three or 

five previously identified compounds released with carbon dioxide. These studies were 

continued under natural conditions where odour blends were tested outdoors to determine 

their effect on species with different host preferences. In the semi-field experiments, human 

odour attracted significantly higher numbers of both mosquito species. However, An. 

arabiensis was also attracted to cow and chicken odours, which confirms its opportunistic 

behaviour. A five-component synthetic blend was highly attractive to both mosquito species. 

In the field, the synthetic odour blend caught significantly more An. funestus than traps baited 

with human odour, while no difference was found for An. arabiensis. Catches of An. 

arabiensis and Culex spp. contained large numbers of blood-fed mosquitoes, mostly from 

cows, which indicates that these mosquitoes had fed outdoors. Different odour baits elicit 

varying responses among mosquito species. Synthetic odour blends are highly effective for 

trapping mosquitoes; however, not all mosquitoes respond equally to the same odour blend. 

Combining fermenting molasses with synthetic blends in a trap represents the most effective 

tool to catch blood-fed mosquitoes outside houses, which is essential for understanding 

outdoor malaria transmission. 
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Introduction 

The host preference of a mosquito species is an important determinant of its vectorial 

capacity and mosquito species that are highly anthropophilic are often vectors of important 

human diseases (Takken & Verhulst, 2013). The anthropophilic malaria mosquitoes An. 

gambiae sensu stricto and An. funestus s.s. for example, primarily take blood meals on 

humans (Costantini et al., 1999) and are two of the most important malaria vectors in Africa 

(WHO, 2013). Anopheles arabiensis, a close relative of An. gambiae, is more opportunistic, 

feeding on both humans and animals, and is considered a less important malaria vector 

(Tirados et al., 2006; Takken & Verhulst, 2013). This difference in host preference is most 

evident in odour-guided behaviour, where An. arabiensis responds more strongly to carbon 

dioxide (CO2) as a general cue to find a host and An. gambiae mainly relies on specific 

human odours (Takken & Verhulst, 2013).  

 

Carbon dioxide (CO2) is a major constituent of exhaled air and has been identified as an 

attractant for many mosquito species including the main vectors of malaria in Africa (Mboera 

et al., 2000). Gillies (Gillies, 1980) suggested that this compound acts as an activator, 

initiating flight responses as well as being an attractant. There is strong evidence that CO2 

acts synergistically with other chemical compounds in natural and synthetic odour blends to 

attract host-seeking mosquitoes (Murphy et al., 2001; Smallegange et al., 2005; Njiru et al., 

2006; Jawara et al., 2011; Mukabana et al., 2012). This synergistic effect can be used in 

odour-baited traps in which CO2 and synthetic blends that mimic human odour are combined 

(Okumu et al., 2010; Mukabana et al., 2012). These traps can then be used for monitoring, 

but can also intercept and reduce the number of malaria mosquitoes entering or leaving 

houses (Jawara et al., 2011). A standard synthetic blend (SB) consisting of ammonia, (S)-

lactic acid, tetradecanoic acid, and CO2 was tested and found to be very efficient for trapping 

the malaria mosquito An. gambiae in a semi-field setting as well as in two traditional villages 

in western Kenya (Mukabana et al., 2012). Significantly enhanced attraction of the SB blend 

to An. gambiae was achieved by adding 3-methyl-1-butanol and butan-1-amine (MB5 blend) 

(Hiscox et al., 2014; Menger et al., 2014; van Loon et al., 2015). These attractive blends have 

been developed for anthropophilic An. gambiae mosquitoes (Smallegange et al., 2005; 

Smallegange et al., 2009; Verhulst et al., 2011a; Verhulst et al., 2011b; Mukabana et al., 
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2012; van Loon et al., 2015). However, less is known about their effect on the host-seeking 

behaviour of other mosquito species with different host preferences.  

In this study, natural host odours and synthetic odour blends were dispensed from mosquito 

traps to determine the efficacy of synthetic blends for monitoring mosquito species with 

different host preferences. Anopheles gambiae and An. arabiensis mosquitoes, which are 

reported to be anthropophilic and opportunistic respectively (Tirados et al., 2006; Takken & 

Verhulst, 2013), were simultaneously released in a semi-field system in western Kenya to 

determine their host-seeking behaviour, either in the presence of CO2 alone, or combined 

with natural odours or the synthetic blends (SB and MB5).  

In a field trial the efficacy of traps baited with natural odours or a synthetic blend was 

compared to determine the efficacy of the blend for different species of wild mosquitoes. 

Materials and methods 

Mosquitoes 

The semi-field experiments utilized laboratory colonies of the Mbita strain of An. gambiae 

sensu stricto and An. arabiensis. Aquatic stages of the mosquitoes were separately reared 

under ambient atmospheric conditions in screen-walled greenhouses at the Thomas 

Odhiambo Campus Odhiambo (TOC) of the International Centre of Insect Physiology and 

Ecology (icipe), Mbita, Kenya. Adult mosquitoes were placed in a holding room under 

ambient conditions with a scotophase of 12:12 h. Female adult mosquitoes were fed three 

times a week on a human arm (Mweresa et al., 2014). Eggs were laid on moist filter paper 

and dispensed into plastic trays containing filtered water from Lake Victoria. Newly hatched 

larvae were transferred into plastic basins and fed on Tetramin® baby fish food (Melle, 

Germany) three times a day. Collection of pupae until adult emergence is described in 

Mukabana et al. (2012). Female mosquitoes used for semi-field experiments were placed in 

mosquito netting covered plastic cups (Mukabana et al., 2012). They had no prior access to a 

blood meal but were fed only on water, provided on wet cotton towels placed on top of 

mosquito holding cups during starvation (Mukabana et al., 2012). All semi-field experiments 

were carried out at night (20:00–06:30 h) inside the screen houses (Verhulst et al., 2011a). 

Two hundred females of An. gambiae and 200 An. arabiensis aged three to eight days old 

were painted with either pink or yellow fluorescent dyes (FTX Series, Astral Pink, Swada, 
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London) ten h before the experiments, as described before (Verhulst et al., 2013). Mosquitoes 

were starved for eight h and simultaneously released at the centre of a screen-walled 

greenhouse.  

Study sites 

Semi-field experiments were conducted between February and April 2013 in a 7x11 m screen 

house (Add. figure 1) constructed on the grounds of the Thomas Odhiambo Campus of 

ICIPE, Kenya (00
0
 25

¹
 S, 34°13

¹
E). Field studies were conducted between May and June 

2013 at Kigoche village, situated near Ahero town, in the Kano plains of Kisumu County, 

Kenya (Add. figure 2, 00°34′S, 34°65′ E) (Bukhari et al., 2011; Mukabana et al., 2012). The 

area receives between 1,000 and 1,800 mm of rainfall annually with annual temperature and 

relative humidity (RH) ranges of 17-32°C and 44-80%, respectively. The long rainy season 

occurs between March and August while short rains are common in October to November. 

The main economic activity is rice farming which creates numerous mosquito larval habitats 

resulting in high malaria transmission. Indigenous goats, cattle, poultry and sheep are also 

kept in Kigoche (Mweresa et al., 2014). During the night, domestic animals are tethered 

outdoors adjacent to houses occupied by humans. Many houses in the area are mud-walled 

with roofs made of corrugated iron sheets or thatch, or without ceiling. Eaves of most houses 

are open due to the high daytime temperatures (Atieli et al., 2009). 

Collection of natural host odours and preparation of CO2 

Human foot odour previously shown to be moderately attractive to mosquitoes (Mukabana et 

al., 2002) was collected from nylon socks worn by a Kenyan male (age 31) (Add. figure 

3).The socks were worn for 24 h before they were used in the experiment (Pates et al., 2001). 

The volunteer did not smoke, use alcohol, spicy food, perfumes and the last shower was 

without soap (Mukabana et al., 2002; Olanga et al., 2010). Animal odours were collected by 

wrapping a clean nylon sock above the knee of a cow or around the leg of a chicken for 24 h 

(Add. figure 3). For the cow odour sample, a piece of cloth was wrapped over the sock to 

prevent dirt or faeces from contaminating the odour sample. Clean latex gloves were worn to 

avoid contamination by other odours. 

Sugar and molasses were used to produce CO2 in semi-field and field experiments 

respectively. Sugar-produced CO2 was prepared by mixing 250 g sugar (Mumias Sugar 
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Company Ltd, Kenya), 17.5 g yeast (Angel®Company, China) and 2 litre (L) water in 5 L 

containers (Smallegange et al., 2010). Molasses-produced CO2 was obtained by mixing 2 L 

water, 250 g molasses (Mumias Sugar Company Ltd, Kenya) and 17.5 g dry instant yeast in 5 

L containers (Mweresa et al., 2014). Tap water was used during semi-field experiments while 

all field bioassays were conducted using clean water from Kigoche village. Released CO2 was 

delivered through a 60-cm long silicon tubing (0.5 cm diameter) into individual MM-X traps 

(American Biophysics, North Kingstown, RI, USA) (Mweresa et al., 2014). The MB5 and 

the SB blends used in the current study were separately prepared following protocols 

described before (Mukabana et al., 2012; Menger et al., 2014). Socks containing cow, 

chicken and human odour, and synthetic blends were separately hooked on a wire ring and 

hung inside the plume tube of a MM-X trap and always supplied with CO2 from either 

molasses or sugar. Control traps were baited with CO2 alone unless indicated specifically. 

The lower end of the plume tube was suspended 15 cm above ground level (Schmied et al., 

2008). Socks and synthetic blends were placed in glass jars, and stored in a freezer until and 

between experiments. 

 

General experimental procedures 

All MM-X traps were operated using a 12 V battery. Vaseline pure petroleum jelly was 

applied on suspension wire bars, electrical cables and CO2 tubing to prevent ants from 

preying on mosquitoes caught in the MM-X traps. A data logger (Tinytag® Ultra, model 

TGU-1500, INTAB Benelux, the Netherlands) was used to record ambient temperature and 

relative humidity at 30 min intervals. To terminate experiments, a plug was inserted into the 

outer tube of the MM-X trap, the CO2 supply was cut off, and the power disconnected 

(Mweresa et al., 2014). Traps containing mosquitoes were placed in a refrigerator at −4°C for 

10 minutes. Immobilized mosquitoes were collected from each trap, counted, and recorded. 

Traps were cleaned between experiments using 70% ethanol (to remove residual odours). A 

manual, hand held aspirator was used to collect un-trapped, free-flying mosquitoes from the 

screen house.  

The sand-filled floor of the greenhouse was moistened daily to enhance survival of 

mosquitoes. Latex gloves were worn during experiments to avoid contamination with human 

volatiles or other odorant compounds. 
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Attractiveness of natural host odours to laboratory-reared An. gambiae and An. 

arabiensis 

MM-X traps were placed in all four corners of the screen-house, with identical treatments 

placed at opposite corners of the house. Each treatment pair was tested over four 

experimental nights. Treatments were rotated between the four corners of the screen-house 

every night to avoid the effect of site on mosquito catches. The treatment combination 

included: (i) CO2 vs no stimulus (ii) cow odour +CO2 vs clean sock+CO2, (iii) chicken odour 

+CO2 vs clean sock + CO2 and (iv) human odour + CO2 vs clean sock + CO2. 

Attractiveness of natural host odours to An. gambiae and An. arabiensis by competition 

A randomized 4 × 4 Latin square experimental design replicated over 16 nights was adopted. 

Treatments were rotated every night. The following treatments were added to each of the four 

MM-X traps: (i) only CO2 and clean sock (control), (ii) cow odour +CO2, (iii) chicken odour 

+CO2 and (iv) human odour +CO2. 

Attractiveness of synthetic odour blends to An. gambiae and An. arabiensis 

A randomized 4 × 4 Latin square experimental design was adopted and the experiment was 

conducted during 12 consecutive nights. The following treatments were added to each of the 

four MM-X traps: (i) only clean nylon strips without CO2 (control), (ii) clean nylon strips + 

CO2, (iii) Simple Blend (SB: NH3+Lactic acid+C14+CO2 and (iv) Mbita blend (MB5: 

NH3+Lactic acid+C14+3-methyl-1-butanol+Butan-1-amine (Hiscox et al., 2014; Menger et 

al., 2014; van Loon et al., 2015; Homan et al., 2016) + CO2. 

 

Response of wild mosquitoes with different host preferences to natural and synthetic 

odour blends 

Five village houses were selected and experiments were carried out from 18.30 to 06.30 h 

each night. A randomized 5 × 5 Latin square experimental design was adopted. The houses 

were mud-walled, had open eaves, and corrugated iron sheet roofs  (Mweresa et al., 2014) 

and had owner occupants throughout the night sleeping under untreated bednets. The houses 

were located at least 25 m apart (Hill et al., 2007) to exclude the potential interaction of 

treatments placed in any two adjacent houses. The treatments included a MM-X trap with 

CO2 produced by molasses fermentation and (i) clean sock (ii) sock with cow odour (iii) sock 
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with chicken odour (iv) sock with human odour (v) MB5 blend. All the baited MM-X traps 

were hung outside the bedroom window, under the eaves (Verhulst et al., 2011b). Individual 

treatments were rotated between the five houses every night. One experimental round lasted 

five nights and this was repeated five times, so every treatment was tested 25 nights. 

Anopheles species identification 

Adult mosquitoes were identified morphologically (Gillies & Coetzee, 1987) and abdominal 

status was recorded (unfed, partially blood fed, fully blood fed, gravid) (WHO, 2013). 

Female An. gambiae s.l. and An. funestus s.l. were preserved in 2 ml Eppendorf tubes 

containing 80% ethanol and a subset (215 fully blood fed An. gambiae s.l. and 92 unfed An. 

funestus s.l.) was selected for DNA extraction (QiagenDNeasy kit) and molecular analysis. 

Anopheles complex was confirmed by PCR amplification, sequencing, and phylogenetic 

analysis of a 816 base pair (Ouédraogo et al.,2016) fragment of the mosquito mitochondrial 

cytochrome oxidase I (COI) gene using primers (forward primer: 5’-

YTGATTTTTTGGDCAYCCAGAA-3’; reverse primer: 5’-

TTCATTGCACTAATCTGCCATA-3’) designed to amplify multiple Anopheles species. 

Each PCR reaction used 0.5 µl mosquito DNA. Cycling conditions were 94
o
C for 5 minutes 

followed by 40 cycles of 94
o
C for 15 seconds, 52

o
C for 30 seconds, and 68

o
C for 1 minute 

with a final elongation step of 68
o
C for 10 minutes. Anopheles gambiae species were 

identified using a multiplex PCR approach as previously described (Scott et al., 1993; 

Koekemoer et al., 2002), while Anopheles funestus subspecies were determined by PCR 

amplification, sequencing, and phylogenetic sequence analysis of a 380-704 bp fragment of 

the rDNA gene using primers designed to amplify coding regions flanking the internal 

transcribed Spacer Region 2 (ITS2) domain (Koekemoer et al., 2002). 

 

Blood meal identification and detection of Plasmodium  

Blood meals were identified using two independent PCR-based approaches. First, all samples 

were subjected to PCR amplification of the cytochrome b gene (132-680 bp amplicon) using 

primers designed to amplify human, cow, goat, pig and dog mitochondrial DNA (Kent & 

Norris, 2005). For each mosquito, human-, cow-, goat-, pig- and dog-specific forward 

primers were used in combination with a universal reverse primer in individual reactions to 

ensure sensitive detection of mixed blood meals using 0.5 µl of mosquito DNA per reaction. 
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PCR amplicons were sequenced and subjected to phylogenetic analysis. Second, all samples 

were also subjected to PCR amplification of the hypervariable D-loop region (498 bp) of the 

mammalian mitochondrial genome as described previously (Keele et al., 2006) using 3 µl of 

mosquito DNA per reaction. 

 

To identify Plasmodium infected mosquitoes, mosquito DNA was subjected to nested PCR 

targeting a 956 bp cytochrome b (cytb) fragment of the Plasmodium mitochondrial genome as 

described previously (Liu et al., 2010; Prugnolle et al., 2010). All PCR reactions used 

previously reported cycling conditions and the Roche Expand Long Template PCR system. 

 

Ethical Considerations 

Scientific and ethical approval of the present study was granted by the Kenya Medical 

Research Institute (KEMRI/RES/7/3/1). Consent for houses used in the study was obtained 

from the household heads and the local administration prior to the start of the study. 

 

Statistical analysis 

A Generalized Linear Model (GLM assuming a Binomial distribution, logit link function) 

was used to investigate the relative attractiveness of each combination of odours tested in the 

traps in the semi-field and field experiments, expressed as the number of mosquitoes caught 

in one of the traps divided by the total number of mosquitoes trapped in all traps during each 

experimental night (Qiu et al., 2006; Verhulst et al., 2011a). The effects of treatment, 

position of trap or house on mosquito catches were tested and fitted as parameters in the 

model when significant. Differences between treatments were tested by pairwise comparisons 

with Least Square Differences (Wheeler & Tiefelsdorf, 2005) correction. Effects were 

considered significant at P < 0.05. All analyses were performed using IBM SPSS statistical 

software, version 22. 

 



 
 
 

32 
 

Results 

Attractiveness of natural host odours to laboratory-reared An. gambiae and An. 

arabiensis 

In the semi-field studies, using laboratory-reared mosquitoes, we observed a significantly 

higher number of both An. gambiae and An. arabiensis in MM-X traps baited with CO2 than 

in traps without CO2 (P <0.001; GLM, figure 1, Add. Table 1). Adding cow odour to the 

traps with CO2 significantly decreased the number of An. gambiae caught (P <0.001), but 

increased the number of An. arabiensis caught (P <0.001, GLM, figure 1, Add. Table 2). The 

response of An. gambiae to traps baited with chicken odour was not significantly different 

than to the control of CO2 alone (P = 0.102, GLM, figure 1), while significantly higher 

numbers of An. arabiensis responded to chicken odour than CO2 alone (P < 0.001, GLM, 

figure 1). Traps baited with human odour caught significantly more mosquitoes than the 

control traps for both species (P < 0.001; GLM, figure 1). 

 

 

Figure 1. Screen house mosquito catches in dual-choice test with different odour baits. 

Estimated mean proportion (GLM) of mosquitoes caught in a screen house using MM-X 

traps with CO2 tested versus an empty trap (A) Cow (B) chicken C) and human (D) 

emanations were tested in combination with CO2 versus a trap with CO2 alone. Error bars 

represent the standard error of the mean; ***: χ
2
-test P < 0.001, NS: χ

2
-test P > 0.05. 

Numbers in the bars indicate number of mosquitoes caught. 
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Attractiveness of natural host odours to An. gambiae and An. arabiensis by competition 

Of 3,200 mosquitoes of each species released, 1,161 (36%) An. gambiae and 940 An. 

arabiensis (29%) were caught during the 16 experimental nights (GLM, figure 2). The 

response of An. gambiae to traps baited with human odour was significantly higher than to 

the other treatments (P < 0.05; GLM, figure 2). The response of An. arabiensis was 

significantly higher to human odour than to cow odour or CO2 alone (P < 0.001), and close to 

significant when compared to chicken odour (P = 0.061, GLM, figure 2, Add. Table 3). 

 

 

Figure 2. Competition experiment in a screen house with traps baited with natural odours 

from different host species. Estimated mean proportion (GLM) of mosquitoes caught in a 

screen house using MM-X traps with CO2 only (control), or CO2 and cow, chicken or human 

odours. Error bars represent the standard error of the mean. Numbers in the bars indicate 

number of mosquitoes caught. For each mosquito species: different letters indicate significant 

differences between treatments for each mosquito species (P < 0.05, GLM). 
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Attractiveness of synthetic odour blends to An. gambiae and An. arabiensis 

The attractiveness of all treatments was significantly different for both mosquito species, (P < 

0.001, GLM, figure 3, Add. Table 4). The trap without CO2 was least attractive to 

mosquitoes, followed by the traps baited with CO2 alone, and then CO2+SB. Traps baited 

with CO2  plus the MB5 blend were the most attractive to mosquitoes (GLM, figure 3). 

 

 

Figure 3. Screen house mosquito catches in traps baited with synthetic blends. Estimated 

mean proportion (GLM) of mosquitoes caught in a screen house using MM-X traps without 

(strips only) and with CO2 (control) or with CO2 plus synthetic blends. Error bars represent 

the standard error of the mean. Numbers in the bars indicate number of mosquitoes caught. 

For each mosquito species: different letters indicate significant differences between 

treatments (P < 0.05, GLM). 

 

Response of wild mosquitoes with different host preferences to natural and synthetic 

odour blends 

A total of 6,057 wild mosquitoes were caught outdoors in Kigoche village over a period of 25 

nights between May and June 2013. Of the 6,057 mosquitoes, 6% (n = 367) were males and 

94% (n = 5,690) were females (Add. Table 5). Out of the 5,690 female mosquitoes trapped, 

9% (n = 535) were blood-fed. 
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For the ‘unfed’ mosquitoes, 16% (n = 816) were An. arabiensis, 23% (n = 1186) were An. 

funestus, 35% (n=1803) were Culicines, and 26% (n = 1350) were other mosquito species. In 

general, the traps baited with human odour plus the MB5 blend performed best trapping both 

An. arabiensis and An. funestus as well as other mosquito species (figure 4, Add. Tables 6,7). 

Compared to the response to CO2 alone, the culicines did not show any enhanced attraction to 

the traps when natural odours or the synthetic blend were added (P > 0.05, GLM, figure 4C, 

Add. Table 6,7). 

 

There was no significant difference in numbers of An. arabiensis caught in traps baited with 

CO2alone and traps baited with cow or chicken odours (P = 0.273, P = 0.703, respectively, 

GLM, figure 4A, Add. Tables 6,7). Human and MB5-baited traps attracted equal numbers of 

An. arabiensis (P = 0.887) and the catches were significantly higher than those of CO2, cow 

or chicken-baited traps (GLM, figure 4A, Add. Tables 6,7).  

For unfed An. funestus, CO2 and chicken odour were least attractive (P = 0.696, GLM figure 

4B, Add. Tables 6,7). Cow or human odours were more attractive to An. funestus (P = 0.292) 

with higher catches than CO2 (P = 0.007) or chicken (P = 0.020) but lower than the MB5 

blend which was most attractive to An. funestus (P < 0.001, GLM figure 4B, Add. Tables 

6,7). 

A total of 535 out of 6,057 mosquitoes were blood-fed (figure 4). Of all the blood-fed 

mosquitoes, 278 (45%) were An. arabiensis, 29 (5%) were An. funestus, 202 (38%) were 

culicines and 56 (11%) were other mosquito species (GLM figure 4). There was a 

significantly higher number of blood fed An. arabiensis caught by MB5 compared to CO2, 

chicken or man (P < 0.036) but not compared to cow odour baited traps (P = 0.142, GLM, 

figure 4A, Add. Tables 7, 8). Blood-fed An. funestus were caught more often in traps baited 

with cow odour, human odour and the MB5 blend than traps baited with CO2 alone (P < 

0.021, GLM, figure 4B, Add. Tables 7, 8). No significant differences were found between 

culicines and other mosquito species trapped with the different treatments (P > 0.05, GLM, 

figure 4; Add. Table 7). 
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Figure 4. Mosquito catches in traps baited with natural and synthetic odours in a field set-up. 

Estimated mean proportion (GLM) of wild unfed or blood-fed mosquitoes caught outdoors. 

A) An. arabiensis, B) An. funestus s.l. caught outdoors using MM-X traps with CO2 or CO2 

and treatments. Numbers in the bars indicate number of mosquitoes caught during 25 

experimental nights. For each mosquito species: different letters indicate significant 

differences between treatments (P < 0.05, GLM). 

 

Molecular characterization of mosquitoes caught in field settings 

To confirm the species origin of a subset of wild-caught mosquitoes, 215 fully blood-fed An. 

gambiae s.l. and 92 unfed An. funestus s.l. were subjected to mitochondrial DNA analysis. In 

concordance with previous studies (Menger et al., 2014; Mweresa et al., 2014), all An. 

gambiae s.l. were identified as An. arabiensis except for one that could not be typed due to 

insufficient material. Similarly, all An. funestus s.l. analysed were identified as An. funestus 

sensu stricto. Analysis of the same mosquitoes for the presence of Plasmodium DNA 

revealed that two An. funestus were positive for P. falciparum and one An. funestus was 

positive for P. malariae. None of the An. arabiensis were Plasmodium infected. Finally, 

blood meal analysis of 215 blood-fed An. arabiensis revealed that the vast majority had fed 

on cows, with 86% (184 out of 215) of mosquitoes positive for bovine mitochondrial (cytb) 

DNA (Table 1, Add. figure 5). Additionally, one An. arabiensis had fed on a caprid and one 

on a dog. Five (2%) An. arabiensis contained human DNA as determined by mitochondrial 

D-loop analysis, and this was confirmed for three samples by amplification of the cytb region. 

Four of these human blood meal positive mosquitoes were also positive for cow DNA, 
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indicating that these mosquitoes had taken multiple blood-meals from both humans and cows. 

Twenty-nine (13%) of the 215 An. arabiensis did not yield blood meal PCR amplicons. 

 

Table 1: Blood meal identification of field caught mosquitoes 

 

 

 

 

 

 

 

 

 

  

 

Discussion 

The semi-field experiments presented here show that CO2 is an important cue for both An. 

gambiae s.s. and An. arabiensis (figure 1). Carbon-dioxide, a major constituent of human 

exhaled air has been identified as an attractant for many mosquito species (Gillies, 1980; 

Mboera et al., 2000) and including CO2 in monitoring traps increases their efficacy as shown 

here. Human odour was highly attractive to both species (figure 1,2) and although this has 

been reported previously for An. gambiae in both field and laboratory studies (Gillies, 1964; 

Pates et al., 2001; Takken & Verhulst, 2013), only a few studies have reported An. arabiensis 

to be more attracted to human compared to cow odour (Diatta et al., 1998; Torr et al., 2008; 

Lyimo et al., 2013; Takken & Verhulst, 2013).The results show that An. arabiensis is 

opportunistic in nature. Moreover, human odour appeared to play a larger role than cow or 

chicken odour in the attractiveness to female An. arabiensis.  

 

Interestingly, in some of the semi-field experiments presented here, adding cow or chicken 

odour to traps baited with CO2 decreased the number of An. gambiae s.s. caught (figure 1). 

This effect has been reported before when CO2 was added to cow odour in an olfactometer, 

Blood meal origin No. of An. arabiensis (percent) 

Single species blood meal  

Cow 180 (83.3) 

Caprid 1 (0.5) 

Dog 1 (0.5) 

Human 1 (0.5) 

Multiple species blood meal  

Cow and human 4 (1.8) 

Blood meal undetectable 29 (13.4) 
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however, when only cow odour without CO2 was present, the inhibiting effect was not 

observed (Pates et al., 2001). A field study by Costantini et al. ( also indicated an aversion of 

An. gambiae s.s.to cattle odour when using odour baited entry traps. These studies and the 

results presented here further confirm the anthropophilic nature of this mosquito species and 

the importance of both human odour and CO2 in its host seeking behaviour. 

 

The MB5 blend has proven to be an effective synthetic blend for monitoring malaria 

mosquitoes (Hiscox et al., 2014; Menger et al., 2014). However, it was not clear from 

previous studies whether this blend would attract different species equally, and whether the 

host preference of these species would affect their preference to these blends. Our semi-field 

experiments demonstrate that two of the most important malaria vectors, An. gambiae s.s. and 

An. arabiensis can be trapped effectively by the MB5 blend, and that the difference in host 

preference of these two species does not influence their response to the blend. Field 

experiments also revealed a clear difference in response between the two important malaria 

vectors An. funestus and An. arabiensis. Although human odour and the MB5 blend attracted 

equal numbers of An. arabiensis, the synthetic blend attracted significantly more An. funestus 

s.s. than traps baited with human odour. Particular odour baits selected for monitoring 

purposes will therefore affect both the number of mosquitoes and the ratio between the 

species collected. The advantage of using the MB5 blend for monitoring is that it is 

standardized, highly effective (figure 4) and long lasting (Mweresa, pers. comm.).  

 

No Plasmodium was detected in the An. arabiensis mosquitoes analysed; however, 3.3% of 

the An. funestus s.s. tested were Plasmodium positive. This result may be explained by the 

zoophilic nature of An. arabiensis and more anthropophilic behaviour of An. funestus s.s. 

Blood meal analysis indicated that 87% of the blood meals identified were of cow and only 

2% of human origin. Since traps were hung outside, this result may reflect host availability 

rather than host preference (Lyimo & Ferguson, 2009). True host preference is better 

evaluated using choice tests (Takken & Verhulst, 2013) as performed in our semi-field 

experiments; however, host choice will largely depend on the host availability in the field 

(Takken & Verhulst, 2013). A previous study by Mweresa et al. (2014) showed that a trap 

with fermenting molasses, rather than fermenting sugar, significantly increased the number of 
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blood fed mosquitoes caught. The blood meal results presented here show that the use of 

fermenting molasses in a trap can catch mosquitoes that have fed outdoors, since most of the 

blood meals were from cows and typically cattle are kept outside human habitations. This 

result indicates that molasses-fermenting traps are very suitable for monitoring outdoor 

mosquitoes and thereby outdoor transmission. 

In the last decade, Indoor Residual Spraying and the use of Long Lasting Impregnated Nets 

(LLINs) have reduced indoor mosquito populations and thereby malaria transmission (Bayoh 

et al., 2010; Russell et al., 2011). In areas where indoor transmission has been reduced 

substantially through the use of LLINs and IRS, the control of outdoor malaria has become 

more important and there is a need, therefore, for effective tools to monitor and reduce 

outdoor transmission. Outdoor odour-baited traps have become increasingly efficient 

for catching host-seeking mosquitoes. Nonetheless, they catch few or no blood-fed 

mosquitoes (Okumu et al., 2010; Mukabana et al., 2012).  

 

The use of a synthetic odour blend as an attractant in traps is a very effective and 

standardized method for mosquito monitoring. Nonetheless, odour baits, including synthetic 

blends, are biased in their capture efficacy, which is an important consideration when 

monitoring or mass trapping mosquitoes. Currently no successful tools for trapping blood-fed 

mosquitoes outdoors are available. The combination of fermenting molasses with selected 

odour baits represents an important new tool for understanding outdoor mosquito behaviour, 

which will be of utility to measure, and possibly even reduce, outdoor transmission.  

 

Acknowledgements 

We are grateful to David Alila for providing the laboratory-reared mosquitoes used during 

the semi-field experiments. Mrs. Margaret Ayugi and Mr. Erick Ambugo are thanked for 

making natural host odours available. We are thankful to Dr. Susan Imbahale and Mr. Fred 

Kisanya for the laboratory facility at the Ahero Multi-purpose Development Training 

Institute (AMDTI) and Mr. Charles Oketch for assistance in conducting field studies 

alongside Mr. Philemon Omusula. Our gratitude goes to household owners at Kigoche village 

for allowing us to conduct this study near their houses. This work was supported by a grant 

from the Earth and Life Sciences Foundation (Veni-ALW) of The Netherlands Organisation 



 
 
 

40 
 

for Scientific Research (NWO, 863.13.012) and grants from the National Institutes of Health 

(R01 AI091595, T32 AI007532, P30 AI045008). 

References 

Atieli, H., Menya, D., Githeko, A. & Scott, T. (2009) House design modifications reduce 

indoor resting malaria vector densities in rice irrigation scheme area in western 

Kenya. Malaria Journal,8. 

Bayoh, M. N., Mathias, D. K., Odiere, M. R., Mutuku, F. M., Kamau, L., Gimnig, J. E., et al. 

(2010) Anopheles gambiae: historical population decline associated with regional 

distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. 

Malaria Journal,9. 

Bukhari, T., Takken, W. & Koenraadt, C. J. M. (2011) Development of Metarhizium 

anisopliae and Beauveria bassiana formulations for control of malaria mosquito 

larvae. Parasites & Vectors,4. 

Costantini, Sagnon, N., Torre, A. & Coluzzi, M. (1999) Mosquito behavioural aspects of 

vector-human interactions in the Anopheles gambiae complex. Parassitologia,41, 

209-220. 

Costantini, C., Sagnon, N., Della Tori, A., Diallo, M., Brady, J., Gibson, G., et al. (1998) 

Odor-mediated host preferences of West African mosquitoes, with particular 

reference to malaria vectors. American Journal of Tropical Medicine and Hygiene,58, 

56-63. 

Diatta, M., Spiegel, A., Lochouarn, L. & Fontenille, D. (1998) Similar feeding preferences of 

Anopheles gambiae and An. arabiensis in Senegal. Transactions of the Royal Society 

of Tropical Medicine and Hygiene,92 (3):270-272. 

Gillies, M. (1964) Selection for host preference in Anopheles gambiae. Nature,203, 852-854. 

Gillies, M. & Coetzee, M. (1987) A supplement to the anophelinae of Africa South of the 

Sahara (Afrotropical region). S Afric Inst Med Res, Johannesburg. 

Gillies, M. T. (1980) The role of carbon dioxide in host-finding by mosquitoes (Diptera: 

Culicidae): a review. Bulletin of Entomological Research,70, 525-532. 

Hill, N., Lenglet, A., Arnez, A. M. & Carneiro, I. (2007) Plant based insect repellent and 

insecticide treated bed nets to protect against malaria in areas of early evening biting 



 
 
 

41 
 

vectors: double blind randomised placebo controlled clinical trial in the Bolivian 

Amazon. British Medical Journal,335, 1023-1025. 

Hiscox, A., Otieno, B., Kibet, A., Mweresa, C. K., Omusula, P., Geier, M., et al. (2014) 

Development and optimization of the Suna trap as a tool for mosquito monitoring and 

control. Malaria Journal,13. 

Homan, T., Hiscox, A., Mweresa, C. K., Masiga, D., Mukabana, W. R., Oria, P., et al. (2016) 

The effect of mass mosquito trapping on malaria transmission and disease burden 

(SolarMal): a stepped-wedge cluster-randomised trial. Lancet,388, 1193-1201. 

Jawara, M., Awolola, T. S., Pinder, M., Jeffries, D., Smallegange, R. C., Takken, W., et al. 

(2011) Field Testing of Different Chemical Combinations as Odour Baits for 

Trapping Wild Mosquitoes in The Gambia. Plos One,6. 

Keele, B. F., Van Heuverswyn, F., Li, Y., Bailes, E., Takehisa, J., Santiago, M. L., et al. 

(2006) Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science,313, 

523-526. 

Kent, R. J. & Norris, D. E. (2005) Identification of mammalian blood meals in mosquitoes by 

a multiplexed polymerase chain reaction targeting cytochrome B. American Journal 

of Tropical Medicine and Hygiene,73, 336-342. 

Koekemoer, L., Kamau, L., Hunt, R. & Coetzee, M. (2002) A cocktail polymerase chain 

reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) 

group. American Journal of Tropical Medicine and Hygiene,66, 804-811. 

Liu, C., Pitts, R. J., Bohbot, J. D., Jones, P. L., Wang, G. & Zwiebel, L. J. (2010) Distinct 

olfactory signaling mechanisms in the malaria vector mosquito Anopheles gambiae. 

PLoS biology,8. 

Lyimo, I. N. & Ferguson, H. M. (2009) Ecological and evolutionary determinants of host 

species choice in mosquito vectors. Trends in Parasitology,25, 189-196. 

Lyimo, I. N., Haydon, D. T., Russell, T. L., Mbina, K. F., Daraja, A. A., Mbehela, E. M., et 

al. (2013) The impact of host species and vector control measures on the fitness of 

African malaria vectors. Proceedings of the Royal Society B-Biological Sciences,280. 

Mboera, L. E. G., Knols, B. G. J., Braks, M. A. H. & Takken, W. (2000) Comparison of 

carbon dioxide-baited trapping systems for sampling outdoor mosquito populations in 

Tanzania. Medical and Veterinary Entomology,14, 257-263. 



 
 
 

42 
 

Menger, D. J., Van Loon, J. J. A. & Takken, W. (2014) Assessing the efficacy of candidate 

mosquito repellents against the background of an attractive source that mimics a 

human host. Medical and Veterinary Entomology,28, 407-413. 

Mukabana, W. R., Mweresa, C. K., Otieno, B., Omusula, P., Smallegange, R. C., van Loon, 

J. J. A., et al. (2012) A novel synthetic odorant blend for trapping of malaria and other 

African mosquito species. Journal of Chemical Ecology,38, 235-244. 

Mukabana, W. R., Takken, W., Coe, R. & Knols, B. G. (2002) Host-specific cues cause 

differential attractiveness of Kenyan men to the African malaria vector Anopheles 

gambiae. Malaria Journal,1, 17. 

Murphy, M. W., Dunton, R. F., Perich, M. J. & Rowley, W. A. (2001) Attraction of 

Anopheles (Diptera: culicidae) to volatile chemicals in Western Kenya. Journal of 

medical entomology,38, 242-244. 

Mweresa, C. K., Omusula, P., Otieno, B., van Loon, J. J. A., Takken, W. & Mukabana, W. R. 

(2014) Molasses as a source of carbon dioxide for the malaria mosquitoes Anopheles 

gambiae and Anopheles funestus. Malaria Journal,13: 160. 

Njiru, B. N., Mukabana, W. R., Takken, W. & Knols, B. G. J. (2006) Trapping of the malaria 

vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in 

western Kenya. Malaria Journal,5. 

Okumu, F. O., Killeen, G. F., Ogoma, S., Biswaro, L., Smallegange, R. C., Mbeyela, E., et al. 

(2010) Development and field evaluation of a synthetic mosquito lure that is more 

attractive than humans. Plos One,5. 

Olanga, E. A., Okal, M. N., Mbadi, P. A., Kokwaro, E. D. & Mukabana, W. R. (2010) 

Attraction of Anopheles gambiae to odour baits augmented with heat and moisture. 

Malaria Journal,9. 

Ouedraogo, A., Goncalves, B., Gneme, A., Wenger, E., Guelbéogo, M., Ouedraogo, A., et al. 

(2016) Dynamics of the human infectious reservoir for malaria determined by 

mosquito feeding assays and ultrasensitive malaria diagnosis in Burkina Faso. Journal 

of Infectious Diseases,213 (1): 90-99. 

Pates, H. V., Takken, W., Stuke, K. & Curtis, C. F. (2001) Differential behaviour of 

Anopheles gambiae sensu stricto (Diptera : Culicidae) to human and cow odours in 

the laboratory. Bulletin of Entomological Research,91, 289-296. 



 
 
 

43 
 

Prugnolle, F., Durand, P., Neel, C., Ollomo, B., Ayala, F. J., Arnathau, C., et al. (2010) 

African great apes are natural hosts of multiple related malaria species, including 

Plasmodium falciparum. Proceedings of the National Academy of Sciences of the 

United States of America,107, 1458-1463. 

Qiu, Y. T., Smallegange, R. C., Van Loon, J. J. A., Ter Braak, C. J. F. & Takken, W. (2006) 

Interindividual variation in the attractiveness of human odours to the malaria 

mosquito Anopheles gambiae s. s.Medical and Veterinary Entomology,20, 280-287.  

Russell, T. L., Govella, N. J., Azizi, S., Drakeley, C. J., Kachur, S. P. & Killeen, G. F. (2011) 

Increased proportions of outdoor feeding among residual malaria vector populations 

following increased use of insecticide-treated nets in rural Tanzania. Malaria 

Journal,10. 

Schmied, W. H., Takken, W., Killeen, G. F., Knols, B. G. J. & Smallegange, R. C. (2008) 

Evaluation of two counterflow traps for testing behaviour-mediating compounds for 

the malaria vector Anopheles gambiae s.s. under semi-field conditions in Tanzania. 

Malaria Journal,7. 

Scott, J., Brogdon, W. & Collins, F. (1993) Identification of single specimens of the 

Anopheles gambiae complex by the polymerase chain reaction. American Journal of 

Tropical Medicine and Hygiene,49. 

Smallegange, R. C., Qiu, Y. T., Bukovinszkiné-Kiss, G., Van Loon, J. J. A. & Takken, W. 

(2009) The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the 

malaria mosquito Anopheles gambiae sensu stricto. Journal of Chemical Ecology,35, 

933-943. 

Smallegange, R. C., Qiu, Y. T., van Loon, J. J. A. & Takken, W. (2005) Synergism between 

ammonia, lactic acid and carboxylic acids as kairomones in the host-seeking 

behaviour of the malaria mosquito Anopheles gambiae sensu stricto (Diptera: 

Culicidae). Chemical Senses,30, 145-152. 

Smallegange, R. C., Schmied, W. H., van Roey, K. J., Verhulst, N. O., Spitzen, J., Mukabana, 

W. R., et al. (2010) Sugar-fermenting yeast as an organic source of carbon dioxide to 

attract the malaria mosquito Anopheles gambiae. Malaria Journal,9. 

Takken, W. & Verhulst, N. O. (2013) Host preferences of blood-feeding mosquitoes. Annual 

Review of Entomology,58, 433-453. 



 
 
 

44 
 

Tirados, I., Costantini, C., Gibson, G. & Torr, S. (2006) Blood-feeding behaviour of the 

malarial mosquito Anopheles arabiensis: implications for vector control. Medical and 

Veterinary Entomology,20, 425-437. 

Torr, S., Della Torre, A., Calzetta, M., Costantini, C. & Vale, G. (2008) Towards a fuller 

understanding of mosquito behaviour: use of electrocuting grids to compare the 

odour‐orientated responses of Anopheles arabiensis and An. quadriannulatus in the 

field. Medical and veterinary entomology,22, 93-108. 

van Loon, J. J. A., Smallegange, R. C., Bukovinszkine-Kiss, G., Jacobs, F., De Rijk, M., 

Mukabana, W. R., et al. (2015) Mosquito attraction: Crucial role of carbon dioxide in 

formulation of a five-component blend of human-derived volatiles. Journal of 

Chemical Ecology,41, 567-573. 

Verhulst, N. O., Loonen, J. A. C. M. & Takken, W. (2013) Advances in methods for colour 

marking of mosquitoes. Parasites & Vectors,6. 

Verhulst, N. O., Mbadi, P. A., Kiss, G. B., Mukabana, W. R., van Loon, J. J. A., Takken, W., 

et al. (2011a) Improvement of a synthetic lure for Anopheles gambiae using 

compounds produced by human skin microbiota. Malaria Journal,10. 

Verhulst, N. O., Mukabana, W. R., Takken, W. & Smallegange, R. C. (2011b) Human skin 

microbiota and their volatiles as odour baits for the malaria mosquito Anopheles 

gambiae s.s. Entomologia Experimentalis Et Applicata,139, 170-179. 

Wheeler, D. & Tiefelsdorf, M. (2005) Multicollinearity and correlation among local 

regression coefficients in geographically weighted regression. Journal of 

Geographical Systems,7: 161-187. 

WHO. (2013) World Malaria Report 2013. WHO. 

 



 
 
 

45 
 

Additional Figures and Tables 

 

 
Additional Figure 1. Collection of host odours from legs of (A) a male human, (B) cow, and (C) from chicken. 
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Additional Figure 2. Blood meal analysis of wild caught An. arabiensis 
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DNA was extracted from wild-caught An. arabiensis and used to amplify (A) cytochrome B (cytb) and (B) hypervariable D-loop sequences 

using primers specific for mammalian mitochondrial sequences. (A) Phylogenetic tree of cytochrome B (cytb) gene (305 bp) sequences 

identifying blood meals of dog, sheep/ goat, cow and human origins. Seven distinct haplotypes (A-G) are shown in relation to reference 

sequences for Bostaurus (GenBank accession numbers AB090987 and DQ186224), Homo sapiens (AY495285 and KM102057), 

Hemitragus jayakari (AY846791), Pseudoisnayaur (JX101652), Capra hircus (D84201), and Canis lupus familiaris (KJ637145 and 

NC_002008). (B), Phylogenetic tree of mitochondrial D-loop (313 bp) sequences, identifying four human blood meal haplotypes (1-4) in An. 

arabiensis. Reference sequences for Pan troglodytesverus (KJ606392.1), Pan troglodytes troglodytes (AJ851169.1), Pan troglodytes 

schweinfurthii (JQ812125.1), and Homo sapiens (KC005303.1) are shown. The number of An. arabiensis containing the respective blood 

meal haplotype is indicated in parenthesis. Both trees were inferred using maximum likelihood methods (Guindon et al., 2010) in Geneious 

version 8.0.4 (Kearse et al., 2012). Numbers above nodes indicate bootstrap values (> 70 %) and the scale bar represents 5 nucleotide 

substitutions.  
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Additional Figure 3. Identification of Plasmodium falciparum and Plasmodium malariae in wild caught mosquitoes 
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The phylogenetic positions of Plasmodium cytochrome B (cytb) gene (689 bp) sequences amplified from three wild-caught An. funestus 

mosquitoes (sample numbers 2U25, 2U49, and 2U87) are shown in relation to reference sequences for Plasmodium falciparum (AY282973.1), 

Plasmodium malariae (AB354570.1), Plasmodium vivax (KF591834.1), and Plasmodium ovale (AB182497.1).  The tree was inferred using 

maximum likelihood methods (Guindon et al., 2010) in Geneious version 8.0.4 (Kearse et al., 2012). Numbers above nodes indicate bootstrap  

Values (> 70%) and the scale bar represents 5 nucleotide substitutions. 
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Additional Table 1. Mean (±SE) of mosquitoes caught in a screenhouse using MM-X 

traps with A) without CO2, B) cow, C) chicken and D) human odours. N=number of 

trapping nights. 

A  Mean (±SE) B   Mean (±SE) 

Treatment N An. gambiae An. arabiensis  Treatment N An. gambiae An. arabiensis 

CO2 4 47.25± 9.37 91.25±26.22  CO2 4 51.25±22.13 24.75±3.75 

Empty 4 4.25±3.28 5.00±2.80  Cow 4 18.25±2.84 63.00±0.82 

       

C 

 

 Mean (±SE) D  

 

 Mean (±SE) 

Treatment N An. gambiae An. arabiensis  Treatment N An. gambiae An. arabiensis 

CO2 4 42.25± 5.76 21.00±1.35  CO2 4 1.00±0.71 2.50±0.96 

Chicken 4 25.25±3.99 65.50±1.76  Man 4 37.75±21.15 41.50±14.90 

 

 

Additional Table 2. Mean (±SE) of mosquitoes caught in a screenhouse using MM-X 

traps baited with natural host odours N=number of trapping nights. 

Treatment N  Mean (±SE) 

  An. gambiae An. arabiensis 

Control (CO2 only) 16 13.00±2.73 10.44±1.62 

Cow 16 13.00±2.55 11.25±2.05 

Chicken 16 16.31±2.31 15.25±2.99 

Human 16 30.25±5.60 21.81±3.82 
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Additional Table 3. P-values of pair-wise comparisons (GLM) after LSD correction, 

based on proportions of number of mosquitoes caught in a screenhouse by use of 

natural host odours. The mean difference is significant at the 0.05 level. 

Treatment Comparison host 

odour+CO2 
P values 

An. gambiae 

P values   

An. arabiensis 

Chicken Control  0.400 0.116 

 Cow 0.319 0.137 

 Human <0.001 0.061 

Control Chicken 0.400 0.116 

 Cow 0.882 0.924 

 Human 0.000 0.001 

Cow Chicken  0.319 0.137 

 Control 0.882 0.924 

 Human <0.001 0.001 

Human Chicken <0.001 0.061 

 Control <0.001 0.001 

 Cow <0.001 0.001 

 

 

Additional Table 4. Mean (±SE) of mosquitoes caught in a screenhouse using MM-X 

traps baited with synthetic blends. N=number of trapping nights. 

Treatment N Mean (±SE) 

An. gambiae  An. arabiensis 

Control strips without CO2  12 6.58±1.196 5.33±1.05 

CO2 12 23.92±1.43 18.42±1.12 

SB 12 50.75±2.43 32.25±1.95 

MB5 12 67.17±2.50 42.75±2.26 
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Additional Table 5. Mean (±SE) of wild male mosquitoes caught outdoors using MM-X traps baited with natural host or synthetic odour 

blends. N=number of trapping nights. 

 

 

 

 

 

 

 

 

Additional Table 6. Mean (±SE) of wild non-fed female mosquitoes caught outdoors using MM-X traps baited with natural or synthetic 

odour blends. N=number of trapping nights. 

 

Treatment N An. gambiae s.l An. funestus Culex spp. Mansonia spp. An. ziemmani An. coustani 

Control 25 0.48±0.15 0.52±0.24 0.24±0.15 0.40±0.30 0 0 

Cow 25 0.88±0.32 0.68±0.21 0.80±0.28 0.44±0.25 0 0.08±0.08 

Chicken 25 0.96±0.29 0.92±1.73 0.52±1.05 2.40±2.28 0.08±0.06 0.24±0.24 

Human 25 0.40±0.15 0.20±0.10 0.40±0.14 0.56±0.232 0 0.08±0.08 

MB5 25 1.32±0.44 0.76±0.23 0.44±0.22 0.68±0.44 0.02±0.01 0.11±0.06 

  An. arabiensis An. funestus Culex spp. Mansonia spp. An. ziemmani An. coustani Unidentified 

Control 25 4.36±2.59 3.36±0.80 13.4±8.12 4.80±1.63 0.04±0.04 0.92±0.65 0.16±0.10 

Cow 25 6.32±1.61 8.44±1.42 14.00±2.87 10.92±2.77 0.08±0.06 1.60±0.43 0.44±0.21 

Chicken 25 4.96±1.25 3.96±0.77 15.12±3.39 7.04±1.49 0.60±0.29 1.56±0.52 0.29±0.13 

Human 25 8.36±2.23 10.88±2.39 16.24±3.56 7.92±1.60 0.56±0.40 2.32±0.57 0.44±0.327 

MB5 25 8.64±1.96 20.80±4.33 13.36±2.72 10.44±2.16 0.04±0.04 3.08±1.27 0.76±0.28 



 
 
 

 

Additional Table 7. Pair-wise comparisons of P values (GLM) based on proportions of wild mosquitoes caught in MM-X traps baited 

with natural and synthetic odour blends. The mean difference is significant at the 0.05 level. 

Treatment A) Non blood-fed mosquitoes B) Blood-fed mosquitoes 

An. gambiae s.l An. funestus Culex spp. Mansonia spp. An. gambiae s.l An. funestus Culex spp. Mansonia spp. 

Chicken CO2 0.703 0.696 0.675 0.176 0.945 0.370 0.120 0.826 

cow 0.423 0.020 0.787 0.172 0.072 0.141 0.341 0.525 

human 0.059 0.001 0.792 0.948 0.242 0.141 0.445 0.705 

MB5 0.042 <0.001 0.668 0.124 0.002 0.085 0.252 0.937 

Control chicken 0.703 0.696 0.675 0.176 0.945 0.370 0.120 0.826 

cow 0.237 0.007 0.882 0.01 0.059 0.021 0.549 0.673 

human 0.023 <0.001 0.495 0.145 0.212 0.021 0.431 0.875 

MB5 0.016 <0.001 0.992 0.007 0.001 0.010 0.684 0.890 

Cow chicken 0.423 0.020 0.787 0.172 0.072 0.141 0.341 0.525 

CO2 0.237 0.007 0.882 0.01 0.059 0.021 0.549 0.673 

human 0.276 0.292 0.593 0.182 0.514 1.000 0.851 0.788 

MB5 0.218 <0.001 0.874 0.834 0.142 0.805 0.847 0.580 

Human chicken 0.059 0.001 0.792 0.948 0.242 0.141 0.445 0.705 

CO2 0.023 <0.001 0.495 0.145 0.212 0.021 0.431 0.875 

cow 0.276 0.292 0.593 0.182 0.514 1.000 0.851 0.788 

MB5 0.887 <0.001 0.489 0.135 0.036 0.805 0.703 0.768 

MB5 chicken 0.042 <0.001 0.668 0.124 0.002 0.085 0.252 0.937 

CO2 0.016 <0.001 0.992 0.007 0.001 0.010 0.684 0.890 

cow 0.218 <0.001 0.874 0.834 0.142 0.805 0.847 0.580 

human 0.887 <0.001 0.489 0.135 0.036 0.805 0.703 0.768 

 



 
 
 

 

Additional Table 8. Mean (±SE) of wild blood-fed mosquitoes caught outdoors using MM-X traps baited with natural and synthetic 

odour blends. N=number of trapping nights. 
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Treatment  An. arabiensis An. funestus Culex spp. Mansonia spp. An. ziemmani An. coustani 

Control 25 1.40±0.56 0.04±0.04 1.20±0.56 0.32±0.15 0 0.20±0.12 

Cow 25 2.24±0.83 0.32±0.13 1.56±0.59 0.40±0.173 0 0 

Chicken 25 1.32±0.43 0.12±0.09 2.20±0.79 0.28±0.20 0 0.04±0.04 

Human 25 1.76±0.58 0.32±0.14 1.68±0.42 0.36±0.21 0 0.08±0.56 

MB5 25 3.16±1.06 0.36±0.16 1.44±0.39 0.28±0.15 0 0.24±0.20 
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Abstract 

Host preference of the anthropophilic mosquito species in the Anopheles gambiae complex 

(Diptera, Culicidae) is mediated by skin bacterial volatiles. However, it is not known if 

these mosquitoes respond differentially to skin bacterial volatiles from non-human host 

species. In this study, the response of two malaria mosquito species in the An. gambiae 

complex, An. gambiaes.s. (hereafter, An. gambiae) and An. arabiensis, with different host 

preferences to volatiles released from skin bacteria, was tested. Skin bacteria collected from 

human, cow and chicken significantly increased trap catches and traps containing bacteria 

collected from the human skin caught the highest proportion of An. gambiae and An. 

arabiensis. Traps with bacteria of human origin caught a significantly higher proportion of 

An. gambiae than An. arabiensis, while bacterial volatiles from chicken attracted 

significantly higher numbers of An. arabiensis than An. gambiae. Additionally, An. 

gambiae had a specialized response to volatiles from four specific bacteria, while An. 

arabiensis responded equally to all bacterial species tested. Skin bacterial volatiles may 

therefore play an important role in guiding mosquitoes with different host preferences. 

Identification of these bacterial volatiles can contribute to development of an odour blend 

that attracts mosquitoes with different host preferences.  
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Introduction 

Malaria is caused by Plasmodium parasites and has a worldwide impact on humans in terms 

of deaths, economic and social burden (Sachs & Malaney, 2002). Plasmodium parasites are 

transmitted by female Anopheles mosquitoes of which An. funestus and three members of the 

An. gambiae sensu lato complex, An. gambiae, An. coluzzii and An. arabiensis are the most 

important vectors in Africa (Sinka et al., 2012; Coetzee et al., 2013; WHO, 2015). Anopheles 

gambiae and An. arabiensis have different host preferences, which influences their efficiency 

as malaria vectors. Anopheles gambiae prefers blood-meals from humans (Costantini et al., 

1999), whereas An. arabiensis is considered more an opportunist, taking blood-meals from 

both animals and humans (Lyimo et al., 2013; Ndenga et al., 2016), although the host 

preference of these species varies between populations and geographic areas (Bøgh et al., 

2001; Takken & Verhulst, 2013). Anopheles arabiensis is thought to respond more strongly 

to carbon dioxide (CO2) as a general cue to find a host and An. gambiae mainly relies on 

specific human odours (Takken & Verhulst, 2013). However, in a recent study, human skin 

odour attracted higher numbers of both An. gambiae and An. arabiensis, compared to odours 

of other host species, although the preference of An. gambiae for the human odour was more 

pronounced (Busula et al., 2015). 

 

Skin odour is an important cue for host-seeking mosquitoes and consists of volatile organic 

compounds (VOCs) that originate either directly from the skin glands or after conversion by 

skin bacteria (Braks & Takken, 1999). These VOCs mainly consist of volatile fatty acids 

(Meijerink et al., 2000), and different bacteria species produce different subsets of VOCs 

(Verhulst et al., 2009). For example, corynebacteria, the most abundant micro-organisms on 

human skin, transform long-chain fatty acids into short and medium-chain fatty acids (James 

et al., 2004). Brevibacteria metabolize the short and medium chain fatty acids even further 

(James et al., 2004), while Staphylococcus which is also very abundant on the human skin 

(Council et al., 2016) converts amino acids to highly volatile short-chain amino acids (James 

et al., 2004). Mosquito vectors use some of these volatile short-chain fatty acids to locate 

their blood hosts (Knols & Takken, 1997; Smallegange et al., 2011). Skin bacteria, and the 

volatile metabolic products they produce are therefore an important link between malaria 

vectors and humans (Verhulst et al., 2010b). 
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When grown in vitro, human skin bacteria produce VOCs that are attractive to An. coluzzii 

(formerly An. gambiae) and some bacterial species are more attractive than others; volatiles 

from Corynebacterium minutissimum are highly attractive, while volatiles from Pseudomonas 

aeruginosa are poorly attractive to An. coluzzii (Verhulst et al., 2010a). In addition, human 

individuals highly attractive to An. coluzzii have a higher abundance but lower diversity of 

bacteria on their skin than poorly attractive individuals (Verhulst et al., 2011b), supporting 

the role of skin bacteria in mediating olfactory preferences of malaria mosquitoes.  

Previous studies have determined the role of human skin bacterial volatiles in the host-

seeking response of the anthropophilic mosquito An. coluzzii. In the current study, the role of 

bacterial volatiles in mediating responses of mosquitoes with different host preference to 

different host species, was determined. Attraction of An. gambiae and An. arabiensis to 

VOCs produced by either skin bacteria from three different host species or from previously 

tested bacterial species (Verhulst et al., 2010a) was assessed under semi-field conditions to 

determine whether they mediate the host preference of malaria vectors. 

 

Materials and methods 

Mosquitoes 

Colonies of An. gambiae s.s (Mbita strain, from Kenya, 2001) and An. arabiensis (Mwea 

strain from Kenya, 2004) were reared separately under ambient atmospheric conditions in 

screen-houses at the Thomas Odhiambo Campus (TOC) of the International Centre of Insect 

Physiology and Ecology (icipe), Mbita, Kenya. Adult mosquitoes were blood-fed on a human 

arm three times a week, and fed on 6% glucose solution provided through wicks of adsorbent 

tissue paper. Eggs were laid on moist filter paper and dispensed into plastic rearing trays (35 

× 25 × 5 cm), containing filtered water from Lake Victoria. All larval instars were fed on cat 

food (Purina Go, U.K.), three times per day. Pupae were collected daily, placed in clean cups 

half filled with filtered lake water and transferred into mesh-covered cages (30 × 30 × 30 cm) 

prior to adult emergence. Two-hundred female An. gambiae and 200 female An. arabiensis 

aged 3-7 d that had no prior access to a blood-meal were randomly aspirated from the cages 

and transferred to small holding cups, 10 h before being used in semi-field experiments. The 

two species were colour-marked with either green or pink fluorescent powder (FTX Series, 

Astral Pink, Swada, London, UK) to distinguish them after simultaneous release (Verhulst et 
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al., 2013). Mosquitoes were provided with water on cotton wool placed on top of mosquito 

holding cups until use in experiments.  

 

Collection of skin bacteria 

Skin bacteria were obtained from a chicken, a cow and a Kenyan man (34 years old). The 

man did not smoke, use perfumed cosmetics, take spicy food or alcohol, and the last shower 

before sample collection was without soap (Verhulst et al., 2011b). He was also tested for 

presence of malaria parasites every two weeks to confirm that he did not have malaria. The 

chicken and cow had not received antibiotic treatment, vaccines and insecticide spray before 

and during collection of bacteria. Skin bacteria were collected by rubbing a cotton swab (BD 

BBL™ Culture Swab™ EZ II–Becton, Dickinson and Company, Sparks, USA) ten times 

over 10 cm
2
 of the underside of the foot of the human, the skin above the knee of the cow 

or around the leg of the chicken (Supplementary information Figure. S1). The body sites for 

bacterial collection on the human and animal subjects matched the places for odour collection 

in a previous study (Busula et al., 2015), to be able to compare the results of skin bacteria 

with skin odour. Collected bacteria were cultured on arrival in the laboratory (see below). 

Henceforth, collected chicken, cow and human skin bacteria will be referred to as “chicken 

bacteria”, “cow bacteria”, and “human bacteria”, respectively. 

 

Cultivation of bacteria  

Under sterile conditions, a tip of each bacterial swab obtained from chicken, cow or a human 

was cut off and transferred into an Eppendorf tube containing 1 mL of sterile distilled water. 

The second tip was stored at -20 °C. Of the bacteria in water, 100 µL was spread on 60 mm 

Tryptic Soy Agar (TSA; Bacto TSA, Becton & Dickinson, USA) plates, which were 

incubated at 34 °C (the normal human skin temperature) for 24 h before use in experiments. 

To determine the concentration of bacteria, 100 µL of the same solution of bacteria was 

spread on another TSA plate incubated at 34 °C and the colony forming units (cfu’s) were 

counted after 24 h. New skin bacterial swabs were collected for each day of the experiments. 
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Cultivation of four bacteria common on human skin 

Four skin bacterial species that are common on the human skin were selected: 

Staphylococcus epidermidis, Pseudomonas aeruginosa, Corynebacterium minutissimum and 

Brevibacterium epidermidis (Verhulst et al., 2010a). Bacteria were obtained from the 

Deutsche Sammlung von Mikroorganismen und Zellkulturen DSMZ (Germany) or in case of 

P. aeruginosa, from the laboratory of Microbiology at Wageningen University and Research, 

Wageningen, the Netherlands (Verhulst et al., 2010a). Bacteria were grown separately by 

adding 10 µL of the glycerol stock of each species to five mL of liquid medium to support 

exponential growth of specific bacteria (Verhulst et al., 2010a). The liquid medium consisted 

of: 2 g infusion from heart muscle, 13 g pancreatic digest of casein, 5 g yeast extract, 5 g 

sodium chloride (all Sigma-Aldrich, Munich, Germany) and 1 L sterile distilled water 

(Verhulst et al., 2010a). Bacteria in liquid medium were incubated at 34 °C, at 225 rpm for 

30 h. After incubation, 700 μL of each bacterial species was mixed with 300 μL glycerol and 

stored at -80 °C until use. Bacterial broths (glycerol stock) were decimally diluted 1:1; 1:10; 

1:100 and 1:1,000 in phosphate buffered saline (PBS) and 50 μL of each dilution was plated 

on TSA plates. After incubation for 24 h at 34°C, the cfu’s were counted. The concentration 

of the bacterial species with the smallest number of cfu’s was identified and other bacteria 

species were diluted to the same concentration to obtain the same number of cfu’s. In this 

case, 50 µL C. minutissimum diluted 1000 times had the least cfu’s (77 cfu’s) while 21.1 µL, 

28.1 µL and 15.4 µL of the same concentration were used to obtain the same concentration 

for B. epidermidis, P. aeruginosa and S. epidermidis, respectively.  

 

General experimental procedures for semi-field experiments 

Experiments were carried out in 7×11 m screen-houses constructed on the grounds of the 

TOC of icipe, located near Mbita Point township in Western Kenya (00°25
’
S, 34°13

’
E) 

(Verhulst et al., 2011a). On each experimental day, the sand-covered floor of the screen-

house was moistened with water to enhance survival of mosquitoes. The agar with bacteria of 

each TSA plate was cut into two pieces and placed inside a wire mesh holder in the air outlet 

of a Mosquito Magnet-X (MM-X) trap (Verhulst et al., 2009). Carbon dioxide was added to 

each trap and prepared daily by mixing 17.5 g yeast (Angel ® Company, Yichang, China), 

250 g sugar (Mumias Sugar Co Ltd, Mumias, Kenya), and 2 L water in 5 L plastic containers 
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(Smallegange et al., 2010). Each trap was marked, and used for one specific treatment 

throughout the experiments to prevent contamination with the odours. Traps were placed 15 

cm above the ground level, in the corners of the screen-house and positions were rotated to 

minimize positional effects (Mukabana et al., 2012).  

 

MM-X traps operated on 12-V batteries. Vaseline® pure petroleum jelly was applied on 

electrical cables, suspension wire bars and CO2 tubing to prevent ants from preying on 

trapped mosquitoes. Two hundred green-marked An. gambiae and 200 pink-marked An. 

arabiensis were simultaneously released at the centre of the screen-house at 20:00 h until 

06.30 h the following morning. To stop experiments, a plug was inserted into the outer tube 

of the trap, CO2 supply was cut off, and the power disconnected. Traps containing 

mosquitoes were transported from the screen-house and placed in a freezer at −20 °C for 

10 min. Immobilized mosquitoes were counted, and recorded. Traps and wire mesh that held 

TSA with bacteria in the traps were cleaned between experiments using 70 % ethanol. Wire 

mesh holders were further sterilized in an oven at 100 °C for about two h. A hand-held 

manual aspirator was used to collect untrapped, free-flying mosquitoes from the screen-

house. Latex gloves were worn during experiments to avoid contamination of equipment and 

odour sources with human volatiles or bacteria. 

 

Attractiveness of natural host skin bacteria to An. gambiae and An. arabiensis 

MM-X traps were baited with skin bacteria from different host species, grown on agar plates 

to assess the attractiveness of the produced volatiles to An. gambiae and An. arabiensis. The 

traps were placed in the four corners of the screen-house and treatments rotated nightly. A 

randomized 4 × 4 Latin square experimental design was adopted and a total of 16 replicates 

was carried out. The treatment combinations included: (i) clean agar + CO2 (control); (ii) cow 

bacteria + CO2; (iii) chicken bacteria + CO2; and (iv) human bacteria + CO2. Depending on 

the availability these experiments were carried out in one to three screen-houses 

simultaneously. 
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Attractiveness of specific bacteria to An. gambiae and An. arabiensis 

To test whether An. gambiae and An. arabiensis respond to a range of selected four common 

specific bacteria, a randomized 4 × 4 Latin square experimental design was conducted, 

incorporating incubated S. epidermidis + CO2, C. minutissimum + CO2, B. epidermidis + CO2 

and P. aeruginosa + CO2. MM-X traps containing each of the four bacterial species were 

placed in the four corners of the screen-house and treatments were rotated nightly for a total 

of 16 nights.  

 

Ethical considerations 

Approval of this study was granted by the ethics committee of the Kenya Medical Research 

Institute (KEMRI/RES/7/3/1). Consent to collect skin bacteria was obtained from the 34 year 

old man and the owner of the cow and chicken. 

 

Statistical analysis 

A generalized linear model (GLM), assuming a binomial distribution with logit link function, 

was used to investigate the relative attractiveness of each combination of bacteria tested in 

the traps, expressed as: the number of caught mosquitoes (per species) in one of the traps 

divided by the total number of mosquitoes of that species caught in all traps during each 

experimental night. The effects of day, host or bacterial species, mosquito species, cfu’s, 

screen-house, position of trap and their two-way interactions on mosquito catches were fitted 

in the models and the non-significant factors dropped from the final model. Differences 

within species between odour sources and between species to the same odour sources were 

tested by pair-wise comparisons with least square differences (LSD) correction. Effects were 

considered significant at P< 0.05. All analyses were performed using IBM SPSS statistical 

software, version 23. 

 

Results 

Attractiveness of natural host skin bacteria to An. gambiae and An. arabiensis 

Of the 3,200 mosquitoes of each species released in the screen-house, 1,410 of An. gambiae 

(44%) and 1,397 of An. arabiensis (44%) were trapped. Responses within and between-

mosquito species were compared and results showed that all bacterial volatiles attracted 
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significantly higher numbers of both mosquito species than the control agar (GLM, P< 0.001, 

Figure 1, Suppl. Inf.: Table S1) and volatiles from human bacteria were more attractive than 

bacterial volatiles from chicken or cow (GLM, P< 0.001, Figure1). The interaction between 

mosquito species and host species was significant (GLM, P= 0.002, Figure 1), indicating that 

the two mosquito species responded differently to the bacterial volatiles released. Traps with 

bacteria of human origin contained 45% of all An. gambiae caught, which was about two 

times higher than traps with odour from bacteria collected from chicken or cow skin, and 

about four times higher than traps with clean agar (GLM, P< 0.05, Figure 1). The proportions 

of An. arabiensis caught in traps with clean agar, chicken, cow and human bacteria were 9%, 

26%, 27% and 38% respectively (GLM, Figure 1). Comparing the responses of the two 

mosquito species showed that An. gambiae had a higher preference for human bacteria than 

An. arabiensis (GLM, P= 0.026, Figure 1), while the latter species was attracted more 

strongly to volatiles from chicken bacteria than An. gambiae (GLM, P= 0.014, Figure 1). No 

significant difference was found in the response of both mosquito species to volatiles from 

bacteria from cow skin (GLM, P= 0.219, Figure 1). Bacterial counts determined by the 

number of cfu’s (Suppl. Inf.: Table S1), day of experiment and trap position did not influence 

the mosquito response and were excluded from the final model (GLM, P= 0.246, P= 1.000, 

P= 0.667, respectively). 
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Figure 1. Screen-house experiment using traps baited with skin bacteria from different host 

species showing back-transformed proportions (GLM) of mosquitoes caught in MM-X traps 

with CO2 and clean agar (control), or CO2 and cow, chicken or human bacteria. Error bars 

represent the standard error of the proportion. Numbers in the bars indicate total number of 

mosquitoes caught in 16 experimental nights (200 released per night of each species). 

Different letters indicate significant differences between treatments and between the two 

mosquito species (GLM, P< 0.05). 

 

Attractiveness of specific bacteria to An. gambiae and An. arabiensis 

The responses of An. gambiae and An. arabiensis to volatiles from specific bacteria were 

compared. In total, 3,200 mosquitoes of each species were released, of which 31% (n=994) of 

An. gambiae and 25% (n=804) of An. arabiensis were caught in the four traps during the 16 

experimental nights. The GLM analysis revealed a significant interaction between mosquito 

species and bacterial species (P< 0.001), indicating that the two mosquito species responded 

differently to the bacterial volatiles released. The proportions of An. gambiae caught in traps 

baited with P. aeruginosa, S. epidermidis, B. epidermidis, and C. minutissimum were 10%, 

26%, 27%, and 37% respectively (Figure 2, GLM, Suppl. Inf.: Table S2). The response of 

An. gambiae to C. minutissimum was significantly higher than to the other bacteria species 
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(GLM, P< 0.05, Figure 2), while P. aeruginosa was least attractive to An. gambiae (GLM, P< 

0.05, Figure 2).  

 

In contrast to An. gambiae, An. arabiensis was equally trapped by the four bacterial species 

(GLM, P> 0.05, Figure 2, Suppl. Inf.: Table S2).  

 

The relative response of An. arabiensis to C. minutissimum was significantly lower than that 

of An. gambiae (GLM, P= 0.001, Figure 2), while bacterial volatiles from P. aeruginosa were 

2.5 times more attractive to An. arabiensis than to An. gambiae (GLM, P< 0.001, Figure 2). 

Attractiveness of mosquitoes was influenced by the interaction between screen-house and 

position of the trap and therefore included in the GLM (P< 0.001). Day on which the 

experiment was conducted had no significant effect (GLM, P= 1.000).  

 

 

Figure 2. Proportion of mosquitoes trapped in traps baited with various bacteria in a screen-

house, showing back-transformed proportions (GLM) of mosquitoes caught in traps baited 

with CO2 and C. minutissimum, S. epidermidis, B. epidermidis or P. aeruginosa. Error bars 

represent the standard error of the proportion. Numbers in the bars indicate total number of 

mosquitoes caught in 16 experimental nights (200 released per night of each species). 

Different letters indicate significant differences between treatments, and between the two 

mosquito species (GLM, P< 0.05). 
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Discussion 

The results of this study show that two closely related species in the An. gambiae complex in 

Kenya with different host preferences respond differently to skin bacterial volatiles from 

natural hosts, and to bacterial volatiles from individual bacterial species.  

 

In the initial experiment, traps with bacteria caught significantly higher numbers of An. 

gambiae and An. arabiensis than traps baited with clean agar and CO2, supporting the earlier 

evidence of the importance of skin bacterial volatiles in the host-seeking behaviour of 

mosquitoes (Verhulst et al., 2009; Verhulst et al., 2011b).  

This is a particularly interesting result regarding An. arabiensis host seeking behaviour, 

because of the evidence that this is a more opportunistic species than An. gambiae, and more 

reliant on CO2 to locate hosts than are extremely anthropophilic species (Takken & Verhulst, 

2013). A mix of volatiles released by human skin bacteria was significantly more attractive to 

both mosquito species than volatiles released by the skin bacteria of a cow or a chicken. 

However, bacteria of human origin were significantly more attractive to An. gambiae than to 

An. arabiensis. These results can be explained by the anthropophilic nature of An. gambiae, 

which has a strong preference for humans as a source of blood-meal (Gillies, 1964; 

Costantini et al., 1999) and is attracted to human odour over animal odours (Lyimo et al., 

2013; Busula et al., 2015). Some bacterial species are strongly associated with humans 

(Verhulst et al., 2010b; Council et al., 2016), which could have led to the production of 

volatiles that attracted An. gambiae more strongly than An. arabiensis. Preference of An. 

gambiae to human skin bacteria was also shown in previous semi-field experiments (Verhulst 

et al., 2011a).  

 

Further results showed that although An. gambiae prefers blood-meals from selected host 

species (Verhulst et al., 2010b), a considerable proportion of mosquitoes in the current study 

entered traps baited with non-human bacteria, possibly due to an overlap in bacterial volatile 

profiles of different hosts. These results with skin bacterial volatiles closely resemble the 

response of An. gambiae to skin rubbings of the same hosts tested in a similar setup (Busula 

et al., 2015).  

 



 
 
 

67 

 

Anopheles arabiensis is more zoophilic than An. gambiae and has a preference for biting 

cattle and other warm-blooded animals, although in some areas it has been found to be 

anthropophilic (Costantini et al., 1996; Mutero et al., 2004; Tirados et al., 2006; Mahande et 

al., 2007; Tirados et al., 2011). Anopheles arabiensis rarely takes blood meals from chicken 

(Githeko et al., 1994; Jaleta et al., 2016), however, chicken odour was found to be either 

repellent (Jaleta et al., 2016) or attractive (Busula et al., 2015), depending on the setup. In 

this study, An. arabiensis responded more strongly to volatiles from human bacteria than 

volatiles from cow or chicken bacteria. These results match those of previous experiments 

with another An. arabiensis line (Mbita, Kenya), which showed that An. arabiensis was 

attracted more strongly to host odours from human compared to cow or chicken odours 

(Busula et al., 2015), and may be explained by the colony being fed on human blood or by 

the differences in host preference between populations as indicated above. However, the 

response of An. arabiensis mosquitoes to volatiles from human bacteria was still significantly 

lower than the response of An. gambiae to these volatiles (Figure 1). In general, the 

behavioural response of An. gambiae and An. arabiensis to bacterial volatiles, closely 

resembled their response to the odours of these hosts (Busula et al., 2015) indicating that 

bacterial volatiles may play an important role in their host selection. Follow up experiments 

in field setting where mosquitoes of different populations with different host preferences 

occur should further confirm the role of skin bacterial volatiles in host selection. 

 

The experiment with individual bacterial species showed that the two mosquito species 

respond differently to volatiles from bacteria that are common on human and animal skin. 

Anopheles gambiae preferred volatiles from C. minutissimum to the volatiles from other 

bacterial species.  

This preference may be explained by corynebacteria being the most abundant microbes on 

the human skin (Council et al., 2016), especially on human feet (Wilson, 2008). These results 

closely match the results that were obtained in an olfactometer experiment with An. coluzzii 

and the same bacterial species grown in vitro (Verhulst et al., 2010a). Verhulst et al. (2010a) 

also reported significantly higher responses of An. coluzzii to C. minutissimum and 

significantly lower responses to P. aeruginosa. In addition, in an in vivo experiment with 48 

human volunteers, the increased attractiveness of certain individuals was associated with the 
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abundance of staphylococcus, while abundance of Pseudomonas species was associated with 

poorly attractive people (Verhulst et al., 2011b). Corynebacteria were not significantly 

associated with attractiveness in this in vivo study.  

 

Anopheles arabiensis, on the other hand, responded to the volatiles from all bacterial species 

tested without differentiation: in contrast to An. gambiae, it responded equally well to 

volatiles from P. aeruginosa as to the volatiles from the other bacterial species. Because An. 

arabiensis is more opportunistic than An. gambiae, it may find its host by using volatiles that 

are generally produced by skin bacteria. Previous volatile analysis of the four bacterial 

species tested in this study showed that one volatile chemical, butyl 2-methylbutanoate, was 

present in the headspace of all four bacterial species, including P. aeruginosa (Verhulst et al., 

2010a). This compound may therefore be utilized by opportunistic mosquitoes as a general 

skin bacterial cue to find their host. To confirm this and to find other common skin bacterial 

volatiles that mediate host preference, a next step would be to determine the volatile profiles 

of different groups of hosts by gas chromatography-mass spectrometry (GC-MS) and in 

addition define their bacterial profiles by 16S rRNA sequencing.  

 

In this study, skin bacterial samples were taken from specific parts of the human, cow and 

chicken body, which will have influenced the bacterial composition of the samples (Grice et 

al., 2009) and thereby the volatiles produced. The sampling places were chosen based on a 

previous study (Busula et al., 2015), to be able to compare the results obtained with skin 

bacterial volatiles and volatiles collected directly from the skin. Although, the differences in 

attractiveness of volatiles released from different parts of the human body to An. coluzzii may 

be limited (Dekker et al., 1998; Verhulst et al., 2016), this may be different for other 

mosquito species and with volatiles from different animals. Nevertheless, differences 

between animal species are likely larger than within species and different body sites. 

 

In conclusion, this study demonstrates that, in addition to An. gambiae, An. arabiensis also 

responds to skin bacterial volatiles. Both mosquito species can distinguish between volatiles 

from bacteria collected from different host species and respond differently to the volatiles 

from individual skin bacteria.  
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Current odour blends that attract host-seeking mosquitoes are specifically designed to attract 

anthropophilic mosquitoes such as An. gambiae and An. funestus (Mukabana et al., 2012; 

Menger et al., 2014; Mweresa et al., 2014). Since targeting secondary vectors is becoming 

increasingly important as a result of changes in the malaria transmission landscape (Killeen, 

2014), further identification of common bacterial volatiles would be an important step 

towards the development of a more general odour blend that attracts more opportunistic 

disease vectors, thereby reducing a broader range of potential vectors.  
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Supplementary Figure and Tables 

 

Figure 1: Collection of skin bacteria with dual tip cotton swab from A) human host, B) 

chicken and C) cow. 
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Table S1. Number of mosquitoes caught in traps baited with clean agar, skin bacteria from 

human, cow and chicken. Two hundred female mosquitoes of each species were released per 

night.Cfu’s = colony forming units on the plates tested. N = number of trapping nights. SE= 

Standard error of the mean. 

 

 

 

 

 

 

 

 

 

 

Table 2. Number of mosquitoes caught in a screen-house using MM-X traps baited with CO2 

and S. epidermidis, P. aeruginosa, C. minutissimum or B. epidermidis. Two hundred female 

mosquitoes of each species were released per night. N = number of trapping nights. SE= 

Standard error of the mean. 

 

Treatment N Mean # caught ± SE 

An. gambiae An. arabiensis 

B. epidermidis 16 16.7 ± 1.54 11.9 ± 2.2 

C. minutissimum 16 23.1 ± 1.37 12.9 ± 1.59 

P. aeruginosa 16 6.1 ± 0.54 13.0 ± 1.56 

S. epidermidis 16 16.3 ± 1.01 12.4 ± 2.50 

 

-host manipulation by malaria  

 

 

 Mean # caught ± SE 

Treatment+CO2 

 

N Cfu’s An. gambiae An. arabiensis 

Clean agar 16 0 10.8 ± 1.23 8.1 ± 1.14 

Cow bacteria 16 134.1 ± 9.76 21.0 ± 1.63 23.6 ± 1.81 

Chicken bacteria 16 117.5 ± 5.17 17.6 ± 1.70 22.9 ± 1.94 

Human bacteria 16 133.0 ± 8.96 40.0 ± 1.30 33.6 ± 1.92 
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Abstract 

Vector-borne parasites can manipulate their hosts to enhance their transmission 

success, and this can occur directly through the vector as well as through the vertebrate 

host. Evidence is accumulating that infectious hosts are more attractive to Plasmodium 

vectoring mosquitoes than non-infected hosts. Host-seeking mosquitoes rely on volatile 

organic compounds, mediated by skin bacteria, to locate their blood-meal hosts, and 

changes in host odour have been suggested as a likely target for parasite manipulation. 

This review discusses potential mechanisms that may lead to changes in host odour, 

hence increased attractiveness upon Plasmodium infection. Two alternative routes are 

suggested, including direct emission of volatile products from malaria parasites, and 

changes in skin microbial composition that could lead to changes in the vertebrate 

odour profile. The specific role of gametocytes is discussed because high gametocyte 

densities may lead to increased attractiveness in humans, and since gametocyte density 

is also associated with increased mosquito infection rates, gametocyte-related 

attractiveness may amplify Plasmodium transmission from highly infectious 

individuals to mosquitoes. Such an effect of malaria manipulation on the transmission 

cycle could be particularly important in areas with hot spots of transmission, or in areas 

that are close to elimination of malaria. 
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Introduction 

The manipulation hypothesis states that parasites may manipulate their hosts to increase their 

transmission success and thereby fitness (Thomas et al., 2005). Examples of parasite-host 

manipulation and the mechanisms involved are presented for Toxoplasma gondii and its rat 

host (Webster & McConkey, 2010) and hairworms and their terrestrial cricket host (Thomas 

et al., 2002). In the former example, Toxoplasma-infected rats are attracted to the scent of 

cats, which are natural predators of rats, while non-infected rats avoid this scent (House et al., 

2011). Since Toxoplasma must undergo sexual reproduction in cats, the observed change in 

rat behaviour is an example of a parasite manipulating a mammalian host for its own benefit, 

because infected rats have a higher chance of falling prey to cats than non-infected rats. In the 

case of hairworms, crickets that harbour hairworms leave their terrestrial habitat to jump into 

water, unlike non-infected crickets, to allow immediate emergence of the worms after their 

hosts enter water. The ultimate goal of cricket manipulation is to improve parasite fitness, i.e. 

this behaviour increases the probability of the hairworms to reach a mating place (Thomas et 

al., 2002). Other examples of manipulation are seen in Trypanosome-infected tsetse flies, 

which probe more frequently on vertebrate hosts than their non-infected counterparts 

(Roberts, 1981), thus increasing parasite transmission. Manipulation of mosquitoes by 

Plasmodium parasites, through direct effects in the mosquito, has been reviewed in detail 

(Koella et al., 1998; Lefèvre & Thomas, 2008; Cator et al., 2012) and will be briefly 

introduced below. 

This review focuses on manipulation of malaria mosquitoes by Plasmodium parasites through 

effects on host attractiveness. We will discuss i) how Plasmodium parasites can benefit from 

manipulating mosquito vectors, and the fitness effects of parasites on the vector and 

vertebrate, ii) the effects of malaria parasites on the vertebrate host that may affect 

transmission through attractiveness to mosquitoes, including the potential role of clinical 

symptoms, developmental stage of the parasite, host age and immunity, and host odour 

profile, and iii) potential mechanisms of manipulation of host attractiveness by Plasmodium 

with emphasis on the role of microscopic gametocytes in mosquito attraction, mosquito 

attractive cues emitted by Plasmodium, and the role of skin bacteria in mediating 
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Plasmodium-induced changes in host odour. Possible consequences and opportunities of 

these findings for malaria control are discussed.  

Malaria lifecycle and benefits of manipulating vertebrate host and vector 

Malaria parasites depend on mosquito vectors to be transmitted from infected vertebrate hosts 

to healthy ones. During host-seeking, vectors take a blood meal with gametocytes, the sexual 

stages of the parasite, from infected hosts and the parasite undergoes sporogonic development 

in the vector (figure 1). After activation of male and female gametocytes in the midgut, a 

fertilized zygote develops into a motile ookinete that penetrates the mosquito midgut wall to 

form oocysts. These oocysts are first detectable after two days (Zollner et al., 2006), they 

enlarge over time to release sporozoites by day 11-14, migrate to the salivary gland and 

render the mosquito infectious (Stone et al., 2013).  

 

In the period preceding sporozoite colonization of the salivary glands, the mosquito is not yet 

infectious and the malaria parasite depends on the survival of its mosquito host for successful 

transmission. During sporogonic development, mosquito behaviour changes to maximize the 

likelihood that the Plasmodium infection is successfully transmitted to the next vertebrate 

host. This may be achieved through reduced contact rate between mosquitoes and vertebrate 

hosts because blood-feeding and being blood-fed are associated with an increased mortality 

risk (Roitberg et al., 2003; Seaman et al., 2015). Infection of the vector by Plasmodium 

parasites at the oocyst stage indeed decreases the vector’s motivation to bite (Anderson et al., 

1999). Interestingly, a recent study also showed that P. falciparum-infected vectors 

responded more strongly to odours from nectar at the oocyst stage than did non-infected 

mosquitoes of the same age (Nyasembe et al., 2014). This manipulation of vector behaviour 

may benefit the parasite by ensuring survival of its vector, and hence its own survival, and 

development to the infectious stage and transmission. In contrast, at the transmissible 

sporozoite stage, infection with Plasmodium increases mosquito attraction to host odours, 

motivation to bite, landing and biting activity, blood meal size and biting frequency, hence 

increasing the chance that sporozoites are transmitted to new vertebrate hosts (Koella et al., 

1998; Ferguson & Read, 2002; Koella et al., 2002; Cator et al., 2013; Smallegange et al., 

2013). 
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The likelihood of successful transmission events by the infectious vector is thus enhanced by 

increased frequency of blood feeding or increased attraction to non-infected vertebrates. The 

cycle commences when the vector injects sporozoites into non-infected vertebrate hosts 

where the parasites develop until gametocytes form. Besides these direct effects of 

Plasmodium on mosquitoes, Plasmodium parasites may affect attractiveness of gametocyte-

carrying vertebrate hosts to mosquito vectors (Hamilton & Hurd, 2002; Mukabana et al., 

2007), which is discussed in detail below. 

 

 

 
 

Figure 1. Life cycle of the malaria parasite Plasmodium falciparum. Female Anopheles 

mosquitoes pass Plasmodium sporozoites to a human when blood feeding, during which 

process the human becomes infected. Male and female gametocytes are the parasite stages 

taken up by female mosquitoes from the blood stream of infected hosts in order to mediate 

disease transmission. Source: (Cowman et al., 2012). 

 

Evolutionary signatures of malaria parasites in humans  

In order to understand how Plasmodium parasites may manipulate their vertebrate hosts, it is 

important to consider the fitness effects of Plasmodium on the vertebrate host as well as on 

the mosquito. Plasmodium infection often has negative effects on vertebrate fitness, e.g. birds 

or mammals may have a lower survival rate, either through direct pathological effects, or 

because they are more vulnerable to predation or secondary infections, although the level of 

fitness costs is dependent on the Plasmodium species (Lachish et al., 2011).  
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Vertebrate hosts have evolved defence strategies against Plasmodium infection to reduce 

fitness costs, and humans are no exception. Their susceptibility to Plasmodium infection is 

influenced by genetic factors (Migot-Nabias et al., 2000) that comprise many polymorphisms 

of red blood cells (RBCs), which provide shelter and nutrients to malaria parasites. Abnormal 

haemoglobin, changes in levels of key enzymes of the RBCs, and changes in physical 

structure of the RBC membrane (e.g. the Duffy blood group) partially protect humans from 

severe malaria (Bousema & Baidjoe, 2013). Haemoglobin S (HbS), a stable polymorphism in 

malaria-endemic regions, is associated with a reduced life expectancy among individuals who 

suffer from sickle cell disease, and an extended life expectancy of heterozygous individuals 

who are more likely to evade malaria (Haldane, 1949; Allison, 1954).  

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked disorder of red blood 

cells in humans (Al-Joborae, 2015). In case of Plasmodium infection, G6PD deficient 

infected RBCs are phagocytized more efficiently than infected normal RBCs, leading to 

reduced parasite growth rates. Human leukocyte antigen (HLA) are also associated with 

changes in the susceptibility to severe malaria and parasitaemia, and play a significant role in 

the acquisition of immune responses (Hill et al., 1992).  

 

Mosquito fitness and deceptive signalling 

It is also important to understand the effect of Plasmodium on vector fitness because the 

vector is essential for transmission of the parasite. Although some studies did not show 

significant reductions in mosquito survival or fecundity following Plasmodium infection 

(Ferguson & Read, 2002; Hien et al., 2016), the infection can have negative effects on vector 

fitness. For example, Ferguson and Read (2002) found shorter lifespans in An. stephensi 

infected with P. chabaudi compared to non-infected mosquitoes. Culex pipiens infected with 

P. Relictum (Vézilier et al., 2012) and An. gambiae s.l. infected with P. falciparum (Hogg & 

Hurd, 1997) also had significantly shorter lifespans than their non-infected counterparts. 

Additionally, significantly reduced reproductive fitness was reported in Plasmodium-infected 

An. gambiae s.s. and An. stephensi (Takken et al., 2013). Moreover, Plasmodium-infected 

humans often have a decreased haematocrit, which is indeed negatively correlated with 

parasitaemia in vertebrate hosts (Nacher, 2002a). Hence, blood meals from infected hosts are 
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expected to be less nutrious and feeding mosquitoes on (non-infected) blood with a low 

haematocrit indeed reduced the long term survival of An. gambiae (Emami et al., 2013).  

In addition to direct effects of Plasmodium-infection on mosquitoes, ‘stage-dependant’ 

manipulation described above may reduce their fitness (Lefèvre & Thomas, 2008). Non-

infected mosquitoes undergo the regular gonotrophic cycles, maximizing the number of 

offspring with the available resources (Takken et al., 2013). In contrast, a reduction in 

mosquito offspring may be expected when they are Plasmodium-infected because the 

mosquito may avoid host-seeking during the oocyst stage, and will consequently go through 

fewer gonotrophic cycles than non-infected mosquitoes (Cator et al., 2014). 

 

Host, parasite and vector are constantly evolving to optimize their fitness. This means they 

are constantly adapting to each other; they co-evolve and are engaged in an ‘evolutionary 

arms-race’ (Dawkins & Krebs, 1979). If Plasmodium-infection indeed has a negative impact 

on mosquito fitness, mosquitoes are expected to evolve adaptations against taking blood 

meals from infectious vertebrate hosts, and/or to evolve a preference for biting non-infected 

hosts. It has been suggested that upregulation of existing host-seeking cues induced by 

Plasmodium-infection could deceive mosquito vectors and result in increased attractiveness 

of infected vertebrate hosts despite the negative fitness impact of feeding on infected hosts 

(Mauck et al., 2010). The deceptive signalling hypothesis poses that counter-adaptations to 

upregulated cues that are important in host-seeking are less likely to evolve, compared to 

counter-adaptations to completely novel parasite-associated cues that do not play a role in 

host- seeking to healthy hosts. 

 

Do clinical symptoms, host-age and immunity, and gametocytaemia influence malaria 

transmission? 

Clinical symptoms of malaria 

In humans, Plasmodium parasites cause symptoms such as severe headache, nausea 

(vomiting), convulsions, and typical fever cycles. The period of relative normalcy in humans 

depends on the species of the infecting parasite. This interval is every 48 hours in the case of 

P. vivax and P. ovale, and every 72 hours in the case of P. malariae. Plasmodium falciparum 

does not usually cause a regular, cyclic fever (Nacher et al., 2004). Plasmodium ovale and P. 
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vivax-infected patients may experience relapses over a period of months or years because 

parasite hypnozoites can be inactive in the liver during remission periods.  

 

It has been suggested that the emergence of clinical symptoms could guide mosquitoes in 

host-seeking towards Plasmodium-infected humans (Nacher, 2005). The presence of fever 

and gametocytes in P. vivax-infected people increased short distance-host attractiveness to 

An. darlingi (Batista et al., 2014). Fever could lead to increased sweat production, which may 

result in increased mosquito attraction (Katsuragawa et al., 2010). A small study with two 

adult men as study participants suggested that malaria mosquitoes were not attracted to 

symptomatic P. falciparum carriers and that clinical malaria symptoms reduced their 

attractiveness to An. gambiae (Mukabana et al., 2007).  

 

Clinical symptoms of malaria are not directly correlated with the production of transmissible 

stages in P. falciparum-infected humans (McKenzie et al., 2006; McKenzie et al., 2007) and 

gametocytes may appear after symptoms have resolved, suggesting that it is unlikely that 

symptoms are induced by the parasite to increase its transmission success. In malaria-

endemic regions, the majority of Plasmodium infections are asymptomatic or subclinical 

(Bousema et al., 2014) due to the humoral immune response caused by repeated parasite 

exposure (Zoghi et al., 2012). Despite the presence of malaria parasites, asymptomatic 

individuals do not show clinical symptoms and have an axillary temperature < 37.5°C 

(Laishram et al., 2012). Such infections can persist for several months when left untreated 

(Jeffery & Eyles, 1955; Roucher et al., 2012), and when gametocytes are present, subclinical 

infections can contribute to Plasmodium transmission (Churcher et al., 2013). Since most of 

the symptoms associated with malaria are not specific to this parasite but also occur with 

other infectious diseases, host-seeking mosquitoes are thus not expected to differentiate 

between Plasmodium-infected and non-infected hosts based on symptoms alone (Day & 

Edman, 1984). 

 

Host age and immunity 

In Sub-Saharan Africa, approximately 17% and 27% of the population ranges between 0–4 

and 5–14 years, respectively, while 64% of the population consists of older children or adults 
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aged 15 years and above (Stone et al., 2015). Children and infants harbour Plasmodium 

gametocytes more commonly and in greater numbers than adults (Stone et al., 2015), and this 

decreases with age when immunity against asexual stages of Plasmodium parasites is 

acquired (Del Giudice et al., 1990; Wipasa et al., 2002; Ouédraogo et al., 2010). Children are 

therefore thought to be the main source of infection for mosquitoes (Bonnet et al., 2003) and 

they infect mosquitoes at a higher rate than adults (Drakeley et al., 2006; Churcher et al., 

2013), thus contributing most to the total infectious reservoir. Infection with malaria parasites 

in children is correlated with their developing immune system; after repeated Plasmodium-

infections, as they grow to adulthood, they acquire partial immunity, which is associated with 

an increase in asymptomatic Plasmodium infections. 

 

Despite the larger contribution of children to the human infectious reservoir of Plasmodium, 

Anopheles biting preference among humans is thought to increase with age (Boreham et al., 

1978; Carnevale et al., 1978; Port et al., 1980). Mosquito biting preference could result from 

small differences in skin odour profile among adults and children (Gallagher et al., 2008). 

These differences may be correlated with the maturation of sweat glands (Blackburn, 1991) 

and colonization by skin bacteria (Nordstrom & Noble, 1984), which results in a microbial 

shift on the skin of children when they reach puberty (Oh et al., 2012). In addition, skin 

surface area and exposure to mosquitoes differ between children and adults, with children 

having a smaller skin surface and likely being less exposed during the times of the night 

when malaria mosquitoes are active (Stone et al., 2015). Based on the differences between 

children and adults in gametocyte prevalence, mosquito biting preference and exposure to 

mosquitoes, we suggest that malaria parasites would benefit most from gametocyte-induced 

changes in attractiveness in children. 

 

Gametocytaemia 

There is a density-dependent relationship between Plasmodium gametocytaemia and 

infectiousness of the human host to mosquitoes (Bousema et al., 2014). Detection limits of 

gametocytes by microscopy are approximately100 gametocytes/µl and such levels may lead 

to infection of over 20% of mosquitoes in membrane feeding assays (Churcher et al., 2013). 

Lower levels of gametocytaemia are not detected by microscopy but can be detected by 

sensitive molecular methods, with detection limits as low as 0.01 gametocyte per microlitre 
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blood (Schneider et al., 2004; Churcher et al., 2013). These, so-called, sub-microscopic 

gametocyte carriers form an important part of the human infectious reservoir, infecting up to 

4% of mosquitoes in membrane feeding assays (Churcher et al., 2013; Stone et al., 2015). 

Although the majority of gametocyte carriers harbour gametocytes below the microscopic 

detection limit (Stone et al., 2015), manipulation by malaria parasites might be more 

beneficial at high levels of gametocytaemia because this leads to considerably higher 

infection rates in mosquitoes.  

 

Plasmodium-mediated changes in host attractiveness 

Before a mosquito takes a blood meal, it must locate its vertebrate host by use of the 

developed sense organs, particularly olfaction (Takken & Knols, 1999; Lehane et al., 2005). 

Host odour has therefore been suggested as a likely target of manipulation by malaria 

parasites (De Moraes et al., 2014). Increased host attractiveness would directly increase the 

rate at which vectors encounter infected hosts, and consequently influence transmission. 

Evidence is accumulating that malaria parasites indeed manipulate their vertebrate hosts 

through host-seeking behaviour of Plasmodium vectors, which appear to be able to 

discriminate between infected and non-infected hosts. This phenomenon has been observed in 

a handful of choice experiments, including canaries (Cornet et al., 2013a, 2013b), rodents 

(Ferguson & Read, 2004; De Moraes et al., 2014) and humans (Lacroix et al., 2005; Batista 

et al., 2014, and Chapter 5). 

 

In Cornet’s studies (2013a,b), mosquitoes were given a choice between birds inoculated with 

P. relictum or non-infected birds. The results showed increased attractiveness of chronically 

infected birds to both sporozoite-infected and non-infected Culex pipiens mosquitoes (Cornet 

et al. 2013a, b). These findings suggest that, in this system, parasite manipulation could be 

stronger through the vertebrate host rather than through the vector, as both infected and non-

infected mosquitoes had similar preference for infected birds. Mosquitoes did not 

differentiate between non-infected and infected birds during the acute phase, possibly as a 

result of lower haematocrit levels in acutely infected birds negating a positive effect of 

Plasmodium infection on attractiveness.  
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In a recent study on mice, both parasite and gametocyte densities were monitored in healthy 

and P. chabaudi-infected mice, at different stages throughout infection. The infection stages 

included: (i) the acute or symptomatic phase associated with poor response of mosquitoes to 

emitted volatiles, (ii) the chronic phase during which high gametocyte levels and significantly 

increased attraction of Anopheles stephensi mosquitoes were observed in infected and not in 

healthy mice, and (iii) the post-chronic stage correlated with low gametocyte levels and no 

preference of mosquitoes between the infected or healthy mice, despite of the distinct pattern 

in volatiles emitted by infected mice (De Moraes et al., 2014). In this study, it is evident that 

gametocytes during the chronic stage influenced attractiveness of mice to mosquitoes. 

Interestingly, attraction of An. stephensi was low during acute infection despite the 

abundance of transmissible gametocytes, suggesting that symptoms may interfere with 

manipulation of host attractiveness rather than contribute to it.  

 

Humans harbouring gametocytes were more attractive than parasite-free humans, to An. 

darlingi (Batista et al., 2014) and to An. gambiae (Lacroix et al., 2005, and Chapter 5). 

Batista tested attractiveness of feet of P. vivax-infected adults at three moments; when they 

were found with parasites, i.e. before treatment, seven days later (during antimalarial 

treatment), and 14 days later (after treatment). Patients were treated with an anti-malarial 

drug, primaquine, which clears gametocytes or renders them non-infectious in about 6-7 days 

(Butcher, 1997; Eziefula et al., 2013). Attractiveness of three gametocyte carriers was 

increased compared to three infected patients without gametocytes, although the latter three 

likely harboured gametocytes that were not detected (McKenzie et al., 2006; Wampfler et al., 

2013). Febrile participants with gametocytes were also found to be more attractive to An. 

darlingi than febrile participants without gametocytes, while no effect of gametocytes was 

found in non-febrile participants, suggesting that fever may play a role in this system. 

Although Batista’s team found the gametocyte carriers to be more attractive to mosquitoes, 

they did not include control groups for their attractiveness during 14 days, i.e. non-infected 

(control) and asexual carriers, and the absence of gametocytes and parasites was not 

confirmed during the follow-up visits at days 7 and 14.  
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Lacroix’ and Busula’s studies involved whole body odour from parasite-free children or 

children naturally infected with asexual stage or sexual stage (gametocytes) P. falciparum. 

All children included in these studies were non-febrile and asymptomatic. Interestingly, both 

studies suggest that microscopic gametocytes alter human attractiveness, making gametocyte 

carriers approximately twice as attractive to An. gambiae compared to parasite-free children 

(Lacroix et. al 2005), Chapter 5). After antimalarial treatment, attractiveness of children was 

tested again and formerly infected children were found to be equally attractive to the other 

groups. Importantly, the attractiveness of Plasmodium-free children remained unchanged 

during the two phases (Chapter 5). 

 

The study by Lacroix et al. (2005) has been criticized because Plasmodium-infected children 

were treated with sulfadoxine-pyrimethamine, which does not effectively clear gametocytes 

(Bousema et al., 2003). Additionally, given the prevalence of sub-microscopic gametocytes 

in western Kenya, where Lacroix’ study was conducted (Schneider et al., 2006), it seems 

likely that a significant proportion of the included children with microscopic levels of asexual 

stages, or even children that were microscopically parasite-negative, actually harboured low 

levels of gametocytes. This thesis (Chapter 5) tested the attractiveness of PCR-negative as 

well as carriers of asexual stages, submicroscopic gametocyte or microscopic gametocyte 

carriers, and infected children were treated with artemisinin-lumefantrine combination 

therapy, a first line anti-malarial drug that kills all stages of malaria parasites (WHO, 2015). 

This was indeed confirmed by highly sensitive Pfs25 mRNA QT-NASBA three weeks after 

antimalarial treatment, when the attractiveness of children was evaluated again.  

 

While these studies demonstrate that mosquito behaviour is influenced by malaria parasites in 

vertebrate hosts, only one study has also analysed the odour profiles of infected and healthy 

hosts (see below) (De Moraes et al., 2014). The mechanisms behind the attractiveness of 

Plasmodium-infected (gametocytes) humans have not been studied to date and need attention. 

 

Mechanisms of parasite manipulation of host attractiveness 

Changes in host phenotype may result from chemical substances emitted by the parasite 

while in the host, or by emission of chemical substances from the host itself through the 
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action of the parasite. De Moraes et al. (2014) collected whole body volatiles from healthy 

and Plasmodium infected mice throughout different stages of infection. A reduction and an 

increase in volatile emissions during the acute and chronic stages of infection were shown, 

respectively, while similar levels of total emission in healthy and infected mice were reported 

during the post-chronic stage. A clear distinction in volatile blend composition was observed 

between the infected and healthy mice during the acute and chronic phases. Eleven 

compounds were associated with Plasmodium infection, including tridecane, N,N-

dibutylformamide, 2-hexanone, 3-methyl-2-buten-1-ol, 3-methyl butanoic acid, 2-

pyrrolidone, benzaldehyde and four unidentified compounds. Additionally, several volatile 

compounds that were produced in significantly higher amounts during the chronic stage of 

infection, which led to high levels of attraction to An. stephensi, were shown to mediate the 

host-seeking behaviour of these mosquitoes; hexanoic acid, 2- and 3-methyl butanoic acid 

and tridecane played a significant role in attractiveness of mosquitoes. Benzothiazole, which 

was present in lower amounts in chronically infected mice, also played a role in mosquito 

behaviour. In conclusion, the researchers clearly showed that the body odour profile of 

infected mice changes due to manipulation by Plasmodium parasites, but the mechanisms 

leading to these changes were not investigated. Here, we review two possible routes of 

manipulation of host odour by malaria parasites: direct emission of cues from Plasmodium 

and indirect manipulation through changes in skin microbial composition. 

Direct emission of cues from Plasmodium 

Host odour manipulation by Plasmodium could occur through direct emission of cues from 

malaria parasites. Kelly and colleagues found that P. falciparum cultures produce terpenes 

namely α-pinene, limonene, 4,5,9,10-dehydroisolongifolene and its derivative 8,9-dehydro-9-

formyl cycloisolongifolene (Kelly et al., 2015). The identified terpenes may be used as 

volatile biomarkers of Plasmodium infection. From an evolutionary perspective, it is 

important to investigate whether Plasmodium gametocytes emit specific cues. However, the 

analysed cultures of P. falciparum existed largely of asexual stages, likely in combination 

with some gametocytes (Audrey Odom, personal communication), so this needs further 

investigation. It is also essential to investigate whether the cues produced by malaria parasites 

are emitted by the vertebrate host and thus available as host-seeking cues to mosquitoes. 
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Notably, no changes in terpene levels were observed in Plasmodium-infected mice (De 

Moraes et al., 2014).  

 

Additionally, in search of biomarkers for Plasmodium infection, a recent study did not report 

terpene emission from human breath as a result of P. falciparum infection (Berna et al., 

2015). Instead, the researchers identified a group of thioethers in human breath samples, 

namely (E)-1-methylthio-1-propene, ally methyl sulfide, (Z)-1-methylthio-1-propene, and 1-

methylthio-propane. The thioethers are suspected to result from the association between non-

gametocytaemic people and P. falciparum, and their levels were strongly correlated with 

parasitaemia. To our knowledge, thioethers have never been investigated as host-seeking cues 

for malaria mosquitoes. However, volatiles from human breath are thought not to increase 

mosquito attractiveness (Mukabana et al., 2004; Olanga et al., 2010). The role of terpenes in 

host-seeking behaviour of malaria mosquitoes is unclear. A recent field study showed that 

traps baited with limonene, cis-limonene oxide or trans-limonene oxide significantly reduced 

An. arabiensis catches  compared to a negative control when traps were placed next to a 

human host sleeping under a bed net (Kassahun et al., 2016). This suggests a negative effect 

of limonene and some of its derivatives in the host-seeking of Plasmodium vectors. Due to 

the difference in mosquito-physiological states (Foster & Takken, 2004), terpenes may be 

attractive to young Anopheles mosquitoes searching for nectar (Nyasembe et al., 2012), while 

they could be repellent for host-seeking mosquitoes (Kassahun et al., 2016). Despite of these 

findings, further investigations on whether mosquitoes use terpenes and thioethers in host-

seeking is needed. 

 

Bacterial hypothesis: do skin microbiota mediate Plasmodium-induced changes in odour 

profile? 

Volatile organic chemicals (VOCs) are the principal host-seeking cues for malaria 

mosquitoes, and human skin volatiles associated with sweat are the key determinants in host 

preference of anthropophilic mosquitoes (Smallegange et al., 2011). Skin bacteria are known 

to play an important role in human attractiveness, by converting components of sweat to 

attractive volatiles (Braks et al., 1999; Verhulst et al., 2009; Verhulst et al., 2010; Verhulst et 

al., 2011).  
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Verhulst et al. (2010) demonstrated that attractiveness to mosquitoes varies between different 

species of bacteria when grown in vitro. These findings were recently confirmed in a semi-

field setting with An. gambiae (Chapter 3) and suggest that not all bacteria on the human skin 

produce volatiles attractive to An. gambiae. Skin microbial composition as well as bacterial 

abundance play important roles in attractiveness of human hosts (Verhulst et al., 2011). 

Highly attractive persons had a significantly higher abundance but lower diversity of skin 

bacteria than poorly attractive persons. Interestingly, high levels of Pseudomonas spp. were 

associated with low levels of attractiveness, while high levels of Staphylococcus spp. were 

associated with high levels of attractiveness in healthy humans (Verhulst et al., 2011).  

 

Remarkably, De Moraes et al. (2014) identified elevated levels of volatiles of bacterial origin 

in Plasmodium-infected mice, and these were shown to increase attractiveness to An. 

stephensi when combined with the odour of healthy mice. The compounds include 2- and 3-

methyl butanoic acid that are known to be emitted by S. epidermidis, and are also attractive to 

An. gambiae (Verhulst et al., 2009; Verhulst et al., 2011). Elsewhere, de Boer et al. 

(submitted) analysed human odour samples at three time periods throughout infection, i.e. 

before, during and after infection with malaria parasites. They identified three compounds 

that were associated with Plasmodium-infection and known to be produced by skin bacteria. 

The compounds include 2- and 3-methyl-butanal that were also found in the headspace of S. 

epidermidis and in a mixture of skin bacteria, and 3-hydroxy-2-butanone that was emitted by 

a mixture of skin bacteria (Verhulst et al., 2009). These are important candidate compounds 

for mediating host-seeking behaviour of malaria mosquitoes to Plasmodium-infected humans 

because they are attractive to An. gambiae (Verhulst et al., 2009), and support a potential role 

for skin microbes in mediating attractiveness of malaria infected hosts. 

 

Conclusion and recommendations for future research 

Evidence is accumulating that gametocytes, and specifically high (microscopic) levels of 

gametocytes, lead to increased attractiveness of vertebrate hosts to vector mosquitoes. We 

have discussed two possible manipulation routes that may lead to changes in the vertebrate 

odour profile: (1) direct emission of volatile products from malaria parasites, and (2) indirect 

changes in volatile emission resulting from changes in the skin microbial profile (figure 2). 



 
 
 

92 

 

At present, there is no conclusive evidence for either route. An essential next step in 

addressing the mechanisms of Plasmodium manipulation would be to investigate odour and 

bacterial profiles of naturally infected, and gametocytaemic, humans. Such studies could lead 

to the identification of compounds that are influenced by Plasmodium infection and thereby  

give insight into how these changes occur.  

  

Figure 2. Factors that influence the production of VOCs from non-infected and Plasmodium-

infected humans. Solid and broken lines represent known and unknown relationships, 

respectively.  Attractiveness of mosquitoes to VOCs from people infected with different 

stages of Plasmodium is shown by the thickness of the grey lines. 

 

Although emission of specific terpenes from Plasmodium cultures has been reported (Kelly et 

al., 2015), terpenes were not detected in breath of Plasmodium infected humans and in whole 

body odour profiles of mice (De Moraes et al., 2014; Berna et al., 2015). Terpenes are 

typically produced by plants and known as sugar-searching cues for young Anopheles 

mosquitoes (Nyasembe et al., 2012). Kelly et al. (2015) argue that the production of nectar-

associated volatiles may be a strategy of Plasmodium parasites to overcome selection against 
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biting infected hosts. This would be an alternative to the deceptive signaling hypothesis, 

where upregulation of existing host-seeking cues is postulated to be the best strategy to 

minimize this selection pressure (Mauck et al., 2010; De Moraes et al., 2014). However, 

mosquito physiological status and age are known to play an important role in their olfactory 

behavior (Takken et al., 1998; Foster & Takken, 2004), and limonene was recently shown to 

repel host-seeking mosquitoes (Kassahun et al., 2016). It is thus unclear if and how terpenes 

may increase Anopheles responses to existing host-seeking cues. Moreover, it is not yet 

known whether emission of terpenes from malaria parasites is lifecycle specific. This may not 

be expected, given the function of the apicoplast in malaria parasite development in the 

vertebrate host (Stanway et al., 2009), although differences in parasite metabolism at the 

asexual and gametocyte stage may still lead to distinct volatile emission (Audrey Odom, 

personal communication).  

 

It may be unlikely that compounds emitted from Plasmodium directly influence host-seeking 

behaviour of mosquitoes, but they could indirectly alter the composition of host odour and 

hence mosquito attraction.  

 

Penn and Potts (1998) suggested that infection with parasites can change the odour of an 

individual by changing the profile of commensal microbes. In this case, during infection, the 

activities of either the immunological and/or endocrine systems may be induced by parasite 

infection. This could also be the case when vertebrates are infected by malaria parasites, 

resulting in increased attractiveness of people who harbour gametocytes. High levels of 

attractiveness in healthy people are associated with high densities of Staphylococcus spp. 

(Verhulst et al., 2011). This leads to the hypothesis that parasites alter the skin bacterial 

profile in such a way that gametocyte carriers harbour more Staphylococcus spp. than non-

infected persons and persons with asexual stages. Additionally, or instead, gametocyte 

infections could lead to a reduction in densities of Pseudomonas spp., which are associated 

with poorly attractive healthy people (Verhulst et al., 2011). Such a shift in skin microbial 

composition could lead to changes in volatile profiles, with increased levels of, for example, 

2- and 3-methyl butanoic acid that were already identified in Plasmodium-infected mice (De 

Moraes et al. 2014), or 2- and 3 methyl-butanal, and 3-hydroxy-2-butanone, which were 
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found in volatiles of infected (although non-gametocytaemic) people (de Boer et al., 

submitted). Research is thus needed to determine the composition of skin bacteria on 

gametocyte-positive individuals in comparison with healthy individuals or those infected with 

asexual stages. This could be done by 16S-rRNA sequencing of the skin microbiome 

(Costello et al., 2009; Peterson et al., 2009; Kong, 2011; Verhulst et al., 2011). 

 

Interestingly, microbial communities on children’s skin shift as they grow to adulthood such 

that more diverse microbiota can be found on their skin than on adults’ skin (Oh et al., 2012). 

This shift may be due to maturation of the immune system, supporting a potential effect of 

the immune system on the skin microbiome. Even small changes in skin-lipids are sufficient 

to drive colonization of bacteria (Oh et al., 2012), and shifts in skin microbiota can occur 

rapidly (within eight hours) in replacement studies (Costello et al., 2009). The role of skin 

microbiota in mediating Plasmodium-induced changes in vertebrate attractiveness seems 

plausible but remains to be established. If an association between Plasmodium-infection, skin 

microbiome and attractiveness can be shown, this leads to new questions. How do 

gametocytes specifically induce changes in the skin microbiome? Addressing this question 

requires a detailed understanding of the effects of malaria-gametocytes on the human immune 

system (Stone et al., 2016). Additionally, the dynamics of gametocytaemia in Plasmodium 

species are known to differ (McKenzie et al., 2007), with P. vivax gametocytes being 

produced during every multiplication cycle and those of P. Malariae being more irregular 

(Mckenzie et al., 2001). Such differences may also have implications on the mechanisms of 

vertebrate host manipulation, particularly on the relative roles of gametocyte and asexual 

stages. Further studies are also necessary to understand whether Plasmodium-induced 

attractiveness is also mediated by the skin microbiome in non-human systems.  

 

This is of particular interest because the role of skin bacteria in host-seeking of mosquito 

vectors has only been established for two Anopheles species (Chapter 3), and different host-

seeking cues might be more important in other mosquito species, such as Culex 

quinquefasciatus, that transmit non-human malaria parasites (Puri et al., 2006). Finally, it 

will be important to examine how co-infections with other parasites or pathogens influence 

manipulation of vertebrate odour profiles by Plasmodium parasites. Such co-infections are 
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very common in malaria-endemic areas, with Plasmodium infections often co-occurring with 

helminth infections or the human immune deficiency virus (Nacher, 2002b). Because these 

other infections also influence the immune system, studying malaria-parasite manipulation in 

co-infected individuals will not only be more representative of a natural setting but also be 

informative on the role of the immune system in the mechanisms of Plasmodium 

manipulation. 

 

Now that several mosquito behavioural studies provided convincing evidence for host 

manipulation by Plasmodium parasites, it is time to further investigate the mechanisms 

behind malaria-parasite manipulation. Future studies on this topic will not only lead to better 

understanding of why mosquitoes prefer volatiles from gametocyte-carriers, but may also 

lead to novel tools that intervene in this manipulation. 
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Abstract 

Rodents and birds infected with malaria parasites are known to receive more bites from 

mosquitoes than non-infected counterparts, suggesting that Plasmodia may be able to 

manipulate vertebrate hosts to enhance their transmission. Using a dual-choice 

olfactometer, we investigated the attraction of Anopheles gambiae sensu stricto to 50 

Kenyan children (aged 5-12 years) infected with asexual or gametocyte stages of 

Plasmodium falciparum, or non-infected controls. The tests were repeated after treatment 

of infected children with the anti-malarial drug artemisinin-lumefantrine to assess intrinsic 

attractiveness and changes in attractiveness following clearance of parasite populations. 

Microscopic gametocyte carriers attracted almost two times more mosquitoes than 

children that were parasite-free, harboured asexual stages only or had submicroscopic 

gametocyte densities. Attractiveness of gametocyte carriers but not of the other groups 

was significantly higher before than after antimalarial treatment and was associated with 

clearance of gametocytes below molecular detection thresholds in all but two participants. 

High levels of gametocytaemia were thus associated with high attractiveness of children 

compared to children without gametocytes or with low levels of gametocytaemia. 

Attractiveness of the children to An. gambiae was not influenced by gender or age of 

children. These findings may impact epidemiological studies and models of malaria 

transmission because differential attractiveness of human hosts could considerably 

influence patterns of mosquito exposure. 
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Introduction 

Numerous parasites alter the phenotype or behaviour of their hosts to increase their 

transmission success and thereby fitness (Dawkins, 2012). For example, Trypanosoma-

infected tsetse flies (Van Den Abbeele et al., 2010) and plague-infected fleas (Eisen & Gage, 

2012) express higher host probing and/or biting rates than their non-infected counterparts. 

Plasmodium parasites also alter the phenotype of infected mosquitoes, e.g. by increased 

blood-meal size, frequency of feeding or enhanced responses to host odour (Koella et al., 

1998; Smallegange et al., 2013). 

 

Manipulation by parasites can also occur through the vertebrate host rather than directly in 

the vector. In case of malaria, it is expected that infected hosts become more attractive to 

vector mosquitoes than non-infected hosts, particularly when transmissible stages 

(gametocytes) are present. This phenomenon has indeed been shown in studies involving a 

range of Plasmodium and mosquito species (Lacroix et al., 2005; Cornet et al., 2013b; Batista 

et al., 2014; De Moraes et al., 2014). In Cornet et al. (2013), Culex pipiens preferred birds 

chronically infected with P. Relictum over non-infected birds or acutely infected birds 

(Cornet et al., 2013b). Batista et al. (2014) found that humans infected with P. vivax 

gametocytes were significantly more attractive to Anopheles darlingi before antimalarial 

treatment than during or after medication (Batista et al., 2014). High gametocyte levels 

during the chronic stage of infection with P. chabaudii also caused increased attractiveness of 

mice to An. stephensi compared to infection during either acute or post-chronic stage, or to 

healthy mice (De Moraes et al., 2014). Several volatile compounds namely tridecane, 3-

methyl butanoic acid, 2-methyl butanoic acid, hexanoic acid, and benzothiazole were 

suggested to play a significant role in mediating the host-seeking behaviour of An. stephensi 

to malaria-infected mice. De Moraes et al. (2014) thus showed that the skin odour profile of 

infected mice changed, supporting manipulation by Plasmodium parasites.  

 

Lacroix et al. (2005) performed a mosquito-choice experiment with parasite-free children (by 

microscopy) and children naturally infected with P. falciparum asexual parasites or sexual 

stage parasites (gametocytes). All participants were non-febrile and asymptomatic. Their 

results showed that microscopic gametocyte carriers were significantly more attractive to the 
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malaria vector An. gambiae sensu stricto (hereafter An. gambiae) than asexual carriers or 

parasite-free children (Lacroix et al., 2005). After antimalarial treatment with sulfadoxine-

pyrimethamine, attractiveness of the children was tested again and formerly gametocytaemic 

children were found to be equally attractive as the other groups (Lacroix et al., 2005). 

Although these results seem to offer evidence for manipulation by malaria parasites, it 

remains unclear whether the gametocytes specifically and not asexual parasites induce 

increased attractiveness to mosquitoes, and whether there is a density-dependent relationship 

between gametocytaemia and attractiveness.  

 

Submicroscopic levels of gametocytes are common in the study area in western Kenya 

(Bousema et al., 2004), and it is highly plausible that a significant number of the parasite-free 

or asexual carriers of P. falciparum could have harboured low levels of gametocytes. 

Similarly, there is increasing evidence for the widespread presence of submicroscopic 

infections in individuals who appear infection-free by microscopy (Okell et al., 2012), which 

may have confounded the infection-free population in the original study by Lacroix et al. 

(2005). 

 

In this study, we therefore further explored the hypothesis that malaria gametocytes 

manipulate host attractiveness to mosquitoes by investigating whether sub-clinical P. 

falciparum infection with different lifecycle stages affects host-seeking behaviour of malaria 

mosquitoes. We used sensitive stage-specific molecular methods to detect low levels of 

gametocytes or parasites (Schneider et al., 2004). A dual-choice olfactometer in Mbita, 

Kenya was used to test the attractiveness of parasite-free children, carriers of gametocyte or 

asexual stages of P. falciparum to An. gambiae when compared against a standardized 

control odour. Infected children had acquired the infection naturally. Attractiveness of all 

children was tested again three weeks after antimalarial treatment with artemisinin-

lumefantrine, which rapidly clears asexual parasites and also has a pronounced effect on post-

treatment gametocyte prevalence and density (Gonçalves et al., 2016; WWARN, 2016). 
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MATERIALS AND METHODS 

Study area 

The study was conducted between February and August 2015 at the Thomas Odhiambo 

Campus of the International Centre of Insect Physiology and Ecology (icipe), in western 

Kenya (00°25
’
S, 34°13

’
E). Study participants originated from Rusinga Island or Lambwe 

valley, located in Suba District, Homabay County. Plasmodium falciparum is the leading 

cause of morbidity in the study area and the vectors transmitting malaria are An. funestus, An. 

gambiae and An. arabiensis (Bayoh et al., 2010; Homan et al., 2016). Transmission of 

malaria occurs throughout the year, with peaks at the end of the rainy seasons, when parasite 

prevalence is around 30% (WHO, 2015). The majority of residents lives in mud-walled 

houses, roofed with corrugated iron sheets with one door and open eaves, and is engaged 

mainly in subsistence farming and fishing (Oria et al., 2014). 

 

Procedures for recruiting children  

Participants were recruited among asymptomatic school children aged 5-12 years at schools 

in Suba District. Children were asked to participate in the olfactometer assay directly on the 

day of malaria-screening when they were found with asexual stages or gametocytes of P. 

falciparum by microscopy. Parasite-free individuals were screened by PCR a week earlier 

because of the time it took to run PCRs and confirm the absence of P. falciparum parasites 

(see below). Parasite-free children were screened again for malaria by all diagnostic methods 

(see below) on the day they participated in olfactometer assays. Further inclusion criteria  

for study participants were: willingness of their parents or guardians to sign the informed 

consent form, absence of malaria symptoms and an in-ear temperature below 37.5°C, no 

chronic diseases such as the human immunodeficiency virus (HIV) or tuberculosis (Roitberg 

et al., 2003), not having been treated against malaria in the past two weeks, willingness to be 

treated against malaria in case of a positive diagnosis and willing to have an extra 50 µL of 

blood stored for further analysis) for all participants as described below. PCR and microscopy 

data were used for inclusion of children in the experiment, while 18S qPCR and gametocyte-

specific nucleic acid sequence based amplification (NASBA) data became available at a later 

time-point and were used to further categorize participants into four groups: (1) parasite-free; 

(2) asexual stages only; (3) submicroscopic gametocytes; (4) microscopic gametocytes.  
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The same children were revisited for the same procedures three weeks after antimalarial 

treatment of infected children (further referred to as after antimalarial treatment, even though 

parasite-free children did not receive this treatment). 

Diagnosis of malaria parasites 

Microscopic determination of P. falciparum 

The ring finger of the participant was sterilised with an alcohol swab and the ball punctured 

using a sterile single-use monolet lancet (SD Bioline, Gyeonggi-do, Republic of Korea). 

Thick and thin smears were prepared and stained with 3 % Giemsa (Sigma-Aldrich, 

Darmstadt, Germany) for one h, according to WHO protocol (WHO, 2015). Thin smears 

were fixed with pure methanol (Scharlau, Barcelona, Spain) prior to staining. Smears were 

examined with a ×100 oil immersion (Sigma-Aldrich, Darmstadt, Germany) objective at 

1,000 × magnification. Three independent experienced microscopists read the smears 

according to WHO protocol (WHO, 2015) and each was blinded to the other’s reads. Slides 

were considered to be negative if parasites were not observed in 200 microscopic fields of the 

thick film. When thick films were positive, thin films were read for determination of 

Plasmodium species, and those with non-falciparum malaria were excluded from the study. 

Asexual stage and gametocyte density were determined by counting the number of asexual P. 

falciparum parasites per 200 white blood cells. Assuming a standard white blood cell count 

of 8000/µL of blood this results in a detection limit of 40 parasites/µL or 40 gametocytes/µL 

(WHO, 2015). Presence of the asexual stage of P. falciparum was determined by at least two 

slide readers. Slides were considered gametocyte-positive when one or more gametocytes 

were observed by at least one slide reader. 

 

Plasmodium-specific diagnostic PCR assay 

Blood from the finger-prick was also blotted onto a Whatman no. 3 filter paper, which was 

dried overnight, transferred to a zip lock bag containing silica gel and stored at −20°C until 

analysis. Each microfiber paper contained three separate dry blood spots (DBS) of about five 

mm diameter and of undefined volume. DNA was extracted from two discs (3 mm) per 

participant using a saponin/chelex method (Baidjoe et al., 2013). Two discs, measuring three 

mm in diameter were punched from the centre of two dried blood spots of each participant 
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and transferred into a 1.5-mL sterile tube. Eight hundred µL of a 0.5% saponin (Sigma-

Aldrich, Darmstadt, Germany) solution was added to each tube at room temperature. The 

tubes containing DBS discs were left to shake overnight for elution of antibodies. Thereafter, 

each tube was placed on ice, saponin was discarded and one mL of phosphate-buffered saline 

(PBS, pH 7.4) washing solution was added. The tubes were shaken further for one h before 

PBS was aspirated and discarded. One hundred and fifty µL of 6% Chelex (Bio-Rad 

Laboratories, USA), in DNase/RNase-free water (Sigma-Aldrich, Darmstadt, Germany) was 

then added to each tube. The tubes were sealed and incubated in a water bath three times for 

ten min at 95
o
C while shaking after every ten min to relieve pressure. After the last ten min-

incubation, the tubes were spun down for 2.5 min at maximum speed of 14,000 rpm to allow 

the Chelex to settle and bind positively to the charged oxidative elements. Seventy µL of the 

solutions containing DNA were pipetted into new tubes and the samples were stored at 

−70°C until further analyses. Positive and negative controls were used to ensure that cross-

contamination did not occur during DNA extraction. 

 

Nested PCR targeting a fragment of the 18S rRNA genes (Snounou et al., 1993) was 

performed in two steps and all the reactions were carried out in a total reaction volume of 25 

µL, with 5 µL template DNA in N1, which amplified the 1200 base pair, fragment spanned 

by rPLU5 (5’-CCTGTTGTTGCCTTAAACTTC-3’), and rPLU6 (5’-

TTAAAATTGTTGCAGTTAAAACG-3’).  PCR mixture was prepared from buffer, dNTPs, 

MgCl2, primers (Eurofins), Taq polymerase (PromegaTaq Kit, Germany) and sterile water. In 

the second PCR (N2), 2 µL of amplified N1 product was used as a template for P. 

falciparum-specific fragment amplification using FAL1 (5’-

TTAAACTGGTTTGGGAAAACCAAATATATT-3’) and FAL2 (5’-ACACAAT 

GAACTCAATCATGACTACCCGTC-3’). The N1 and N2 PCRs consisted of a series of 30 

and 35 amplification cycles, respectively with three different temperature steps: denaturation 

(95°C), annealing (58°C) and elongation (72°C). A negative water control, and a positive 

control with an appropriate template (DNA of P. falciparum,NF54 cultured in Nijmegen, the 

Netherlands) (Baidjoe et al., 2013), were always included in N1. N2 products were visualized 

on a 0.8% agarose gel by electrophoresis in 0.5X Tris-acetate-EDTA buffer (0.04 M Tris-

acetate and 1 mM EDTA, pH 8.0). Every DNA extract was run in PCR twice. Sensitivity of 
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this PCR is reported to be approximately 1-10 parasites/dried blood spot of 30 uL volume 

(Hwang et al., 2012), and using this method for inclusion of participants increased the 

likelihood of obtaining participants that were parasite-free by 18S qPCR. The gel image was 

captured on InGenius LHR gel documentation system (Syngene, Cambridge, U.K.) and 

scored visually for the presence or absence of PCR bands (size of the amplified product for P. 

falciparum is 205 bp). 

 

Molecular detection of total parasites and gametocytes  

Fifty µL of finger-prick blood collected from each individual during infection with malaria 

parasites and after antimalarial treatment was stored in 250 μL of RNAprotect® cell reagent 

(Qiagen, Hilden, Germany) at -70°C until shipment to Radboud University Medical Center 

(Nijmegen, The Netherlands) for molecular detection of P. falciparum. Total nucleic acid 

was extracted using a MagNAPure LC automatic extractor (Total Nucleic Acid Isolation Kit–

High Performance; Roche Applied Science, Indianapolis, IN, USA). The density of all stages 

of P. falciparum was determined by quantitative PCR of a fragment of the 18S rRNA genes  

(Hermsen et al., 2001).The 18S qPCR was run in duplicate and the average value of the two 

runs was used in the analyses. Mature gametocytes were detected by NASBA on the Pfs25 

mRNA gene (Schneider et al., 2004), with a slight modification in the potassium chloride 

concentration used: 60 instead of 80 mM as described in Gonçalves et al. (2016), using the 

NucliSens Basic Kit for amplification, in a total reaction volume of 10 µL per reaction. 

Gametocyte density was calculated based on a standard gametocyte stage V dilution series, 

using the time-point of amplification at which the fluorescence detecting target amplicons 

exceeded the mean fluorescence of three negative controls + 20 SD. The detection limit of 

qPCR and QT-NASBA is approximately 0.01-0.02 parasites per µL of blood (Ouédraogo et 

al., 2016). Samples with an estimated parasite density of <0.02 parasites/µL were considered 

parasite-negative 

 

Experimental procedures for the olfactometer assay  

Preparation of a standardized control odour 

In order to prepare a standardized control odour, worn nylon socks were collected from ten 

adult men residing in Mbita, Kenya, who tested negative for malaria parasites by PCR (as 
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described above). The men were asked to wear nylon socks (20 denier, Hema, The 

Netherlands) for 24 h while they refrained from using alcohol (Lefevre et al., 2010), spicy 

food and taking a shower with soap (Verhulst et al., 2011b).Worn socks were collected and 

stored in pre-cleaned glass jars (Fisher Scientific, Loughborough, U.K) at -20°C until use. 

Further, a strip from one sock of each of the ten parasite-free men was combined into a set of 

ten strips. In this way, ten identical sets of strips were obtained to be used as control odours in 

the olfactometer experiment. The sets of strips were stored in cleaned glass jars at -20°C until 

and between use. 

 

Preparation of CO2 

Carbon dioxide was used to activate mosquitoes in the choice chamber of the olfactometer. 

Carbon dioxide was prepared daily by mixing 17.5 g yeast (Angel ® Company, China), 250 g 

sugar (Mumias Sugar Co Ltd, Kenya), and 2 L water in 5 L plastic containers (Saitoh et al., 

2004; Smallegange et al., 2010).  

 

Mosquitoes 

Experiments were conducted with a laboratory-reared Mbita strain colony of An. gambiae s.s. 

Mosquitoes were reared under ambient atmospheric conditions in screen houses (Mweresa et 

al., 2014). Adult mosquitoes were blood-fed on a human arm three times a week, and fed on 

6% glucose solution provided through wicks of adsorbent tissue paper. Eggs were laid on 

moist filter paper and dispensed into plastic rearing trays measuring 35 cm × 25 cm × 5 cm, 

containing filtered water from Lake Victoria. All larval instars were fed on cat food (Purina 

Go, U.K.), three times per day. Pupae were collected daily, placed in clean cups half filled 

with filtered lake water and transferred into mesh-covered cages (30 × 30 × 30 cm) prior to 

adult emergence. One-hundred female An. gambiae aged 3-7 d that had no prior access to a 

blood-meal were randomly aspirated from the colony cages and transferred to small holding 

cups, eight h before being used in the olfactometer assay. Mosquitoes were provided with 

water on cotton wool placed on top of mosquito holding cups until use. 
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Olfactometer experiment 

A maximum of four participants was recruited per evening (18:30-21:30hr), aiming for one or 

more with gametocyte stages of P. falciparum, one with asexual stages (both determined by 

microscopy), and one parasite-free child (confirmed by nested PCR). Children were 

transported to icipe at Mbita point for relative comparisons with a standardized human odour 

(control) during the 30 min. experiment, in the olfactometer. Parents or guardians were 

invited to accompany their children to icipe. 

 

Before the olfactometer assay was conducted, children were dressed in clean short-sleeved 

cotton T-shirts and shorts that were washed with an odourless soap ‘menengai’ (Kapa Oil 

Refineries limited, Kenya) prior to use. Participants’ gender and age were noted, while the 

weight, body temperature and haemoglobin level (Hb) were measured using a weighing scale, 

in-ear thermometer, and the HemoCue
®
Hb 301 system (Angelholm, Sweden), respectively. 

Additionally, 50 µL of blood was obtained for molecular diagnostics of P. falciparum (see 

above). 

 

Two dual-choice aluminium built olfactometers, modified from Olanga et al. (2010) were 

used in this experiment. Each olfactometer opens directly to two trap chambers, which were 

connected to two tents that can either sit a person or hold another odour source (figure 1). 

Before the study, the four olfactometer tents were cleaned with tap water and fitted with new 

inner (cotton) and outer (black PVC) covers. They were placed inside a 7×11 m screen house 

(Verhulst et al., 2011a) and cleaned again when not in use for more than one week. One 

recruited child was positioned in one tent and the standard human odour (nylon strips) in the 

other tent.  

 

Both odours were connected to the choice chamber of the olfactometer, which was 

approximately one metre away from the odours. Same sets of sock strips were used 

throughout one evening and rotated between evenings. Positions of children or control odour 

were alternated between the two tents of one olfactometer in subsequent runs to minimize 

positional bias.  
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Figure 1. The dual choice olfactometer used to test the response of An. gambiae mosquitoes 

to either the control odour of worn nylon strips placed in one tent and either a parasite-free 

child, asexual or gametocyte carrier of P. falciparum in the other tent. The fan (a) drew air 

from the two tents (b) via aluminium tubes to the outside environment. Wooden stands (e) 

supported the olfactometer. Mosquitoes were released in the central choice chamber (d) from 

below, and they were caught in the exit traps (c) through the openings connected to the two 

tents. CO2 was released into the choice chamber from the bottom, near the mosquito release 

point, to activate the mosquitoes. Figure not drawn to scale and the measurements are in 

centimetres. Adapted from Olanga et al. (2010).  

 

Selected female An. gambiae mosquitoes were released into the choice chamber of the 

olfactometer and their preference for odour from either tent was recorded after thirty min. 

Mosquitoes that did not make a choice were removed from the choice chamber thereafter. 

Children were not exposed to mosquito bites because the olfactometer assay was 100% 

exposure free (Mukabana et al., 2004; Olanga et al., 2010). On the same evening, after the 

experiment, all malaria positive participants were treated by administration of weight-based 

dosing of artemisinin-lumefantrine, 20 mg artemisinin/120 mg lumefantrine per tablet 

(Coartem-D™; Novartis, Basel, Switzerland) according to WHO recommendations (WHO, 

2015). The experimental clothes were retained for cleaning and use in subsequent 

experiments before taking the children back home. Three weeks after antimalarial treatment, 

the same children were tested for attractiveness using the two pairs of olfactometers as in the 

first sampling moment. The same individuals were placed in the same tent.  

 

 

Entry slit  
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Ethical considerations 

The goal, rationale and procedures of the study were explicitly discussed with parents, 

guardians and children. Participants were recruited in the study after obtaining signed 

consent. The study protocol (NON SSC 389) was approved by the Scientific and Ethical 

Review Committee of the Kenya Medical Research Institute (KEMRI) (KEMRI/RES/7/3/1). 

Statistical analysis 

Three children withdrew from the experiment after antimalarial treatment and their data were 

excluded from analysis. Three children that were parasite-free by nested PCR but for which 

no 18S qPCR and NASBA data were available, were also excluded from the analyses. The 

remaining 50 children were categorized into four groups based on malaria diagnosis by 

microscopy, 18S qPCR and gametocyte-specific NASBA (figure 2A): (1) Parasite-free 

children were negative for the presence of malaria parasites by 18S qPCR; (2) Children with 

asexual stages included those that were positive for asexual stages by microscopy and/or 

positive by 18S qPCR but negative for gametocyte-specific NASBA; (3) Children that were 

positive by gametocyte-specific NASBA but had no microscopic gametocytes were 

categorized as submicroscopic gametocytes; (4) Children with gametocytes by microscopy. 

This approach was used to retain maximum sample size because molecular data (18S qPCR 

and/or NASBA) were missing for 22 out of 106 samples.  

 

Attractiveness was assessed as mosquito response or as mosquito choice. Mosquito response 

was defined as the total number of mosquitoes trapped per child over the number of 

mosquitoes released (100). A generalized linear mixed model (GLMM), assuming a binomial 

distribution with logit link function, was used to investigate the main effects of 

parasitological status (parasite-free, asexuals, submicroscopic gametocytes, gametocytes) and 

moment of sampling (before versus after antimalarial treatment) and their interaction on 

mosquito response as fixed effect terms. Mosquito response was defined as the total number 

of mosquitoes trapped per child (used as the response variable), and the number of 

mosquitoes released (100) was used as the binomial total. Participant was used as a random 

effect term in the model. The effects of date, olfactometer tents, time of experiment, set of 

sock strips, age of children, gender, Hb level and body temperature were fitted in the model 

as fixed effect terms but dropped when they had no significant effect (P > 0.05). After the 
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non-significant terms were dropped from the model, the estimated mean numbers of 

mosquitoes for each category of parasitological status and sampling moment were calculated. 

Differences between parasitological status within sampling moment and differences between 

sampling moment within category of parasitological status were tested by pairwise 

comparisons using least square differences (Wheeler & Tiefelsdorf, 2005). Effects were 

considered significant at P < 0.05. 

 

We also examined mosquito choice, defined as the proportion of mosquitoes attracted to 

children relative to the control odour. The GLMM procedure was the same as described 

above for mosquito response but in this case the sum of mosquitoes caught on the child and 

on the set of sock strips was used as the binomial total. The mosquitoes that were not trapped 

are therefore not taken into account in this analysis. 

 

Levels of parasitaemia and gametocytaemia as measured by microscopy and molecular 

methods (18S qPCR), as well as of other covariates measured on participants (age, weight, 

body temperature and Hb levels) were compared between parasitological status groups 

(parasite-free, asexuals, submicroscopic gametocytes and gametocytes) with One-way 

ANOVAs for data of each sampling moment separately (i.e. before or after antimalarial 

treatment). ANOVAs accounted for unbalanced designs and were followed by pairwise 

comparison between categories within sampling moment using Bonferroni tests. All analyses 

were run in GenStat 18
th

 edition (VSN International, U.K). 

 

Results 

Study population 

The study tested the attractiveness of children in a dual-choice olfactometer at two time 

periods: before antimalarial treatment and three weeks after treatment of the Plasmodium-

infected participants with artemisinin-lumefantrine. Among the 53 recruited children, 12 were 

parasite-free participants (i.e. negative for the presence of P. falciparum by 18S qPCR) (N, 

n=12), 9 were asexual P. falciparum carriers (positive for asexual stages by microscopy 

and/or by 18S qPCR but without gametocytes by QT-NASBA) (A, n=9), 10 were categorized 

as submicroscopic gametocyte carriers (positive for gametocyte-specific QT-NASBA but 
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negative for gametocytes by microscopy) (SG, n= 10), and 19 were microscopic P. 

falciparum gametocyte carriers, (MG, n=19); three children were excluded from the analyses 

because they were slide-negative and 18S qPCR and NASBA data were missing (figure 2A 

and Table 1).  

 

After antimalarial treatment, no parasites were observed in the four groups of children by 

microscopy. Parasite and gametocyte prevalence measured by molecular methods also 

dropped considerably following antimalarial treatment (figure 2B and Table 1), although 

parasites were still detectable in both groups of former gametocyte carriers (3 out of 6 of the 

former submicroscopic gametocyte carriers, and 10 out of 15 of the former gametocyte 

carriers). Only three children (one SG, two MG) out of 40 children still had submicroscopic 

gametocytes by NASBA after antimalarial treatment (figure 2B). Median age of participants 

was 9 years and was statistically similar among the four categories (ANOVA, P = 

0.185).Before antimalarial treatment, tympanic temperature was significantly influenced by 

parasitological status (Table 1, ANOVA, P = 0.038). Participants of the asexual group had a 

significantly higher tympanic temperature than those of the submicrocopic gametocyte group 

(Bonferroni pairwise comparisons, P < 0.008). Haemoglobin levels also varied with 

parasitological status before antimalarial treatment but the effect was not significant (Table 1, 

ANOVA, P = 0.079). 
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Figure 2. Flow diagram of diagnostic methods used to categorize participants into four parasitological status groups. Panel A shows the 

number of children that were found to be negative or positive according to microscopy, 18S qPCR and gametocyte specific NASBA before 

antimalarial treatment. The four categories used in analyses are indicated with green (parasite-free), yellow (asexual stages), orange 

(submicroscopic gametocytes) and red (microscopic gametocytes). Panel B shows the number of children that were found to be negative or 

positive after antimalarial treatment according to 18S qPCR and gametocyte specific NASBA of each of the four categories before 

antimalarial treatment. 
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Table 1. Overview of study population categorized by parasitological status before antimalarial treatment according to microscopy, 18S qPCR 

and gametocyte specific NASBA. The same categorization was used after antimalarial treatment, i.e. parasite-free, asexual, submicroscopic 

gametocytes and microscopic gametocytes refer to those children that were parasite-free, asexual, submicroscopic gametocyte or microscopic 

gametocyte carriers before antimalarial treatment respectively. All values indicate means ± standard errors, with the number of replicates in 

brackets. Molecular quantification of total Plasmodium parasites (by 18S qPCR) as well as asexual and gametocyte densities as measured by 

microscopy are given. Different letters in the superscripts indicate significant differences in the means between parasitological status groups 

within round of testing (One-Way ANOVAs, Bonferroni tests, P < 0.008). Means of other parameters measured on children and evaluated as 

covariates in the statistical analyses of attractiveness are also given. 
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*
Body weight was not used in the statistical analyses of attractiveness because of its correlation with age. 

**
Four outliers from the Hb data were excluded from Hb analysis.   

Parameter  

Before antimalarial treatment 

 

After antimalarial treatment 

N Malaria-

free 

Asexual Submicroscopic 

gametocytes 

Microscopic 

gametocytes 

N Malaria-

free 

Asexual Submicroscopic 

gametocytes 

Microscopic 

gametocytes 

Male/ 

Female 

50 7M/5F 6M/3F 4M/6F 11M/8F      

Total 

parasites by 

18S qPCR 

(par/µL)  

41 0
a  

(12) 

10628±9968
a
 

(6) 

101203±74303
a
 

(10) 

156180±102432
a
 

(13) 

40 0
a
 

(11)  

0
a
 

(8) 

23547±23529
a
 

(6) 

29±20
a
 

(15) 

Asexuals by 

microscopy 

(par/µL) 

49 0
a
 

(12) 

1102±404
a 

 (9) 

1360±721
a
 

(10) 

342.2±215.9
a
 

(18) 

50 0 

(12) 

0 

(9) 

0 

(10) 

0 

(19) 

Gametocytes 

by 

microscopy 

(gam/µL) 

50 0
a
 

(12) 

0
ab

 

(9) 

0
ab

 

(10) 

162±57
b
 

(19) 

50 0 

(12) 

0 

(9) 

0 

(10) 

0 

(19) 

Age (years) 50 7.8±0.6
a
 

(12) 

8.9±0.7
a
 

(9) 

9.7±.6
a
 

(10) 

9.1±0.5
a
 

(19) 

50 7.8±0.6
a
 

(12) 

8.9±0.7
a
 

(9) 

9.7±.6
a
 

(10) 

9.1±0.5
a
 

(19) 

Body weight 

(kg)
*
 

50 24.1±1.7
a
 

(12) 

28.3±1.8
a
 

(9) 

29.3±3.1
a
 

(10) 

28.6±1.9
a
 

(19) 

50 23.4±1.7
a
 

(12) 

28.1±1.8
a
 

(9) 

29.3±3.1
a
 

(10) 

28.5±1.9
a
 

(19) 

Hb 

(mmol/L) 

46
**

 7.80±0.37
a
 

(11) 

7.69±0.33
a
 

(9) 

7.04±0.39
a
 

(10) 

6.84±0.20
a
 

(16) 

50 7.64±0.25
a
 

(12) 

7.49±0.26
a
 

(9) 

7.15±0.44
a
 

(10) 

7.12±0.14
a
 

(19) 

Axillary 

temperature 

(°C) 

50 36.1±0.1
ab

 

(12) 

36.5±0.3
b
 

(9) 

35.6±0.2
a
 

(10) 

36.1±0.1
ab

 

(19) 

50 36.3±0.2
a
 

(12) 

36.1±0.3
a
 

(9) 

36.1±0.2
a
 

(10) 

36.1±0.1
a
 

(19) 
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Effect of parasitological status on attractiveness 

Standardized human odour was used as a control versus each child and attractiveness 

determined as mosquito response (i.e. number of mosquitoes attracted to the child), and 

mosquito choice (i.e. proportion of mosquitoes attracted to the child as a fraction of the total 

number of mosquitoes trapped). We first assessed the effect of parasitological status 

(parasite-free, asexuals, submicroscopic or microscopic gametocytes) on mosquito response 

to children. Before antimalarial treatment, children of the four parasitological status groups 

attracted on average 22 to 54 mosquitoes, with the gametocyte carriers attracting the largest 

number (figure 3A). After antimalarial treatment of the infected children, children of the four 

groups attracted on average 24 to 29 mosquitoes of the 100 released. Parasitological status 

and moment of testing, i.e. before or after antimalarial treatment, and the interaction between 

parasitological status and sampling moment significantly affected mosquito response to 

children (Supplementary figure S.1, GLMM, Pstatus< 0.001, Psampling moment < 0.001, 

Pstatus*sampling moment < 0.001). Of the covariates associated with participants (Table 1), Hb had a 

significant effect on mosquito response and was included in the final model (GLMM, PHb= 

0.005). There was no significant effect on mosquito response of the interaction between Hb 

and parasitological status, or Hb and moment of testing (GLMM, both P > 0.05). Of the 

covariates associated with the set-up, day of experiment significantly affected mosquito 

response (GLMM, Pdate< 0.001). 

 

Before antimalarial treatment, children who harboured microscopic gametocytes attracted 

almost twice as many mosquitoes than children in the other three groups (figure 3A and 

supplementary figure S.1 and Table S.1, GLMM, pairwise comparisons, P < 0.05). The 

presence of submicroscopic gametocytes or asexual stages of P. falciparum did not increase 

attractiveness of children compared to parasite-free children before antimalarial treatment 

(figure 3A and supplementary figure S.1 and Table S.1, GLMM, pairwise comparisons, P > 

0.05).  

 

After antimalarial treatment, mosquito responses to the four groups of children, former 

gametocyte carriers, former submicroscopic gametocyte carriers, asexual carriers and 

parasite-free children did not differ significantly (figure 3A and supplementary figure S.1 and 
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Table S.1, GLMM, pairwise comparisons, P > 0.05). Clearance of microscopic gametocytes 

following antimalarial treatment (Table 1) significantly reduced mosquito response (about 

two times) compared to before treatment (figure 3A and supplementary figure S.1 and Table 

S.1, GLMM, pairwise comparisons, 0.05), and indeed only two of the 19 children in this 

group still harboured submicroscopic gametocytes.  

 

Results of the analyses of mosquito choice between children and the standard control odour 

were similar to those of mosquito response (figure 3B, GLMM, Pstatus= 0.004, Psampling moment = 

0.052, Pstatus*sampling moment < 0.001, Pdate= 0.007). Before antimalarial treatment, children of the 

four parasitological status groups attracted on average between 69-84% of trapped 

mosquitoes, with the gametocyte carriers attracting the largest proportion (figure 3B and 

supplementary figure S.2 and Table S.2, GLMM, pairwise comparisons, P < 0.05). After 

antimalarial treatment, children of the four groups attracted statistically similar proportions of 

trapped mosquitoes (71-75%, figure 3B, GLMM, pairwise comparisons, P > 0.05).  
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Figure 3. Results from the olfactometer experiment in which groups of 100 mosquitoes were offered a choice between either a parasite-free 

child, a child with asexual stages, submicroscopic, or microscopic levels of gametocytes of P. falciparum versus a standardized control odour 

(worn socks). Experiments were done twice for every child, before and after treatment of infected children with the antimalarial drug, 

artemisinin-lumefantrine. Panel A shows the average number of mosquitoes attracted to children (mosquito response). Panel B shows the 

average choice of mosquitoes for children as a proportion of the total number of mosquitoes caught in both traps (child and sock). Error bars 

indicate standard errors of the mean. Numbers in bars indicate the number of study participants in each parasitological status group. Different 

letters above bars indicate significant differences in attractiveness of the children to malaria mosquitoes (GLMM, pairwise comparisons, P < 

0.05, see supplementary material for predicted means from the GLMM and standard errors of the differences). 
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Discussion 

Our results showed that a significantly higher proportion of mosquitoes was attracted to 

children than to the standard control odour, before and after antimalarial treatment. The 

presence of asexual parasites did not affect attractiveness when gametocytes were not 

present, or when they were present at low levels. In contrast, microscopic gametocyte carriers 

attracted almost twice as many An. gambiae mosquitoes than children without microscopic 

gametocytes. After antimalarial treatment, children of the four groups became equally 

attractive to mosquitoes. Comparisons within each group of children between the before and 

after antimalarial treatment moments showed higher attractiveness of the microscopic 

gametocyte carriers before than after antimalarial treatment, when gametocyte levels dropped 

below the microscopic threshold. The attractiveness of the other groups of children did not 

differ significantly before or after treatment. Together with Lacroix et al. (2005), we 

demonstrate that the presence of microscopic levels of P. falciparum gametocytes 

significantly increases attractiveness of children to mosquitoes. Importantly, we utilized 

sensitive molecular methods to confirm parasite-free participants and to identify the presence 

of gametocytes below the microscopic detection threshold. Interestingly, the presence of 

submicroscopic gametocytes did not contribute significantly to attractiveness. Additionally, 

we used these molecular methods to detect low levels of parasites or gametocytes during the 

follow-up after antimalarial treatment, confirming that children formerly infected with 

microscopic gametocytes attracted equal numbers of mosquito vectors as the other groups of 

children. This demonstrates that the presence of parasites played a role in attractiveness of 

children, and it was stage specific (gametocytes) as well as density-dependent. Our analyses 

generally show that the malaria manipulation effect was independent of gender, age, body 

temperature or Hb levels, although Hb significantly affected mosquito attraction, with lower 

Hb levels associated with higher attraction. In vitro feeding on blood with low haemoglobin 

levels does not affect survival of An. gambiae (Emami et al., 2013), and may accelerate blood 

intake, as it does in Aedes aegypti (Shieh & Rossignol, 1992). It should be noted, though, that 

the number of participants in our study is small for such detailed analyses. Similarly, efforts 

to quantity a density-dependent effect of gametocytes on host attractiveness, or determine the 

minimum gametocyte density to manipulate mosquito choice, will require a larger sample 

that may be purposefully selected to include a range of gametocyte densities. The combined 
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findings support strongly our hypothesis that Plasmodium gametocytes, and not asexual 

stages, mediate the attractiveness of mammalian hosts to mosquitoes. 

 

Results from the current and Lacroix et al. (2005) study suggest that infectious humans are 

more attractive and hence likely receive more mosquito-bites. Importantly, Churcher et al. 

(2013) found a relationship between gametocyte densities and mosquito infectivity such that 

higher gametocyte densities, on average, result in higher mosquito infection rates.  

 

They reported no mosquito-infections from blood without gametocytes, infection rates of 1-

4% at low gametocyte densities, and successful infection of 20% of mosquitoes at densities 

of more than 500 gametocytes/µL of blood. Our finding that gametocyte density is positively 

correlated with the degree of mosquito attraction is therefore interesting, as it underlines once 

more that parasites signal their presence at a stage when there is the greatest chance of 

successfully infecting their vectors. Humans harbouring high levels of gametocytes could 

thus contribute considerably more to malaria transmission than is currently assumed in 

epidemiological models of malaria transmission. Current epidemiological models do not take 

into account heterogeneous biting related to gametocyte-mediated attractiveness and 

disproportionate infection rates resulting from different levels of gametocytaemia (Smith et 

al., 2004; Smith et al., 2014). Should further investigations reveal that gametocyte-infected 

people are indeed bitten more under field conditions, it will be important to consider these 

elements in epidemiological models of malaria transmission because these models form an 

important basis of predicting disease outbreaks and planning for interventions.  

 

Evidence is accumulating that manipulation of malaria-vectors by parasites can indeed occur 

indirectly through the vertebrate host (Cornet et al., 2013b, 2013a; Batista et al., 2014). The 

mechanisms underlying induction of increased attraction by gametocytes of P. falciparum are 

under investigation. In line with our study, De Moraes et al. (2014) demonstrated that high 

levels of P. chabaudi gametocytes were responsible for increased attractiveness in 

chronically infected mice. These researchers further identified a number of volatiles 

associated with malaria-infection and they suggested that the skin odour profile of infected 

mice changed due to manipulation by Plasmodium parasites. They identified elevated levels 
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of volatiles of bacterial origin in malaria-infected mice, and these were shown to increase 

attractiveness to An. stephensi. Our results suggest that malaria parasites can also change the 

VOCs of gametocyte carriers, making them more attractive to mosquitoes than asexual 

carriers or non-infected individuals. This may occur through alteration of the skin bacteria, 

which mediate odour production (Verhulst et al., 2010, and Chapters 3 and 4). Interestingly, 

several volatile compounds of known skin bacterial origin were elevated in adult humans 

with early stage non-gametocytaemic P. falciparum infections (de Boer et al., submitted).  

 

Alternatively, host odour manipulation by Plasmodium may occur through direct emission of 

cues from malaria parasites. Kelly et al. (2015) showed that P. falciparum cultures produce 

terpenes, but it is not yet known whether these compounds are emitted through breath or skin 

of infected hosts. Berna et al. (2015) identified a group of thioethers in human breath 

samples, which may be used as volatile biomarkers of malaria infection.  

 

Little is currently known about the importance of breath in host-searching of malaria vectors, 

but it is possible that breath contributes to relative attractiveness of people (Mukabana et al., 

2004). It is presently unknown whether terpenes and thioethers play a role in host-searching 

of malaria vectors. In our study, both breath and body odour were available as olfactory cues 

to host-searching mosquitoes. To start unravelling the mechanisms of malaria manipulation 

of vertebrate hosts, it should be investigated whether breath, body odours or both were 

involved in attractiveness of naturally infected children, such as those recruited in the current 

study.  

 

In conclusion, the current study supports the hypothesis that children harbouring the 

transmissible (gametocytes) stage of P. falciparum are two times more attractive to malaria 

mosquitoes than asexual carriers or non-infected people, but high levels of gametocytaemia 

are necessary to result in increased attractiveness to malaria vectors. Additionally, the effect 

of Plasmodium manipulation was not influenced by covariates associated with children, 

supporting the role of gametocytes in attractiveness of the individuals. Further, volatile 

analyses of volatiles from parasite-free, asexual- and gametocyte carriers may result in 

identification of compounds that enable malaria mosquitoes to differentiate between 
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gametocyte-infected and non-infected persons. The attractive compounds, especially unique 

compounds from gametocyte carriers, may contribute to the development of new odour 

blends or they may be used in improvement of existing synthetic odour blends (Verhulst et 

al., 2011b; Homan et al., 2016). Such gametocyte-based odour blends are expected to be 

more effective in trapping malaria vectors resulting in reductions in mosquito vector 

population, hence malaria transmission.  

 

Acknowledgements 

David Alila and Elisha Kobudho are appreciated for providing mosquitoes in the olfactometer 

experiments. Joseph Ogacho is appreciated for field assistance. Geoffrey O. Olweru is 

thanked for the technical support, while two additional slide re-readers, Paul O. Osodo and 

Sally Mongoi are appreciated. Our gratitude goes to the study participants, their 

parents/guardians and the minister for education, Mbita District, for their cooperation during 

the study. Saskia Burgers is thanked for advice on the experimental design and statistical 

analyses. This work was supported by a ZonMW TOP Grant (no. 91211038 to Willem 

Takken). TB is supported VIDI fellowship from the Netherlands Organization for Scientific 

Research (NWO, no. 016.158.306). 

 

References 

Baidjoe, A., Stone, W., Ploemen, I., Shagari, S., Grignard, L., Osoti, V., et al. (2013) 

Combined DNA extraction and antibody elution from filter papers for the assessment 

of malaria transmission intensity in epidemiological studies. Malaria Journal,12, 1. 

Batista, E. P. A., Costa, E. F. M. & Silva, A. A. (2014) Anopheles darlingi (Diptera: 

Culicidae) displays increased attractiveness to infected individuals with Plasmodium 

vivax gametocytes. Parasites & Vectors,7. 

Bayoh, M. N., Mathias, D. K., Odiere, M. R., Mutuku, F. M., Kamau, L., Gimnig, J. E., et al. 

(2010) Anopheles gambiae: historical population decline associated with regional 

distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. 

Malaria Journal,9. 



 
 
 

129 

 

Berna, A. Z., McCarthy, J. S., Wang, R. X., Saliba, K. J., Bravo, F. G., Cassells, J., et al. 

(2015) Analysis of breath specimens for biomarkers of Plasmodium falciparum 

infection. Journal of Infectious Diseases,212, 1120-1128. 

Bousema, J. T., Gouagna, L. C., Drakeley, C. J., Meutstege, A. M., Okech, B. A., Akim, I. 

N., et al. (2004) Plasmodium falciparum gametocyte carriage in asymptomatic 

children in western Kenya. Malaria Journal,3, 1-6. 

Churcher, T. S., Bousema, T., Walker, M., Drakeley, C., Schneider, P., Ouedraogo, A. L., et 

al. (2013) Predicting mosquito infection from Plasmodium falciparum gametocyte 

density and estimating the reservoir of infection. Elife,2. 

Cornet, S., Nicot, A., Rivero, A. & Gandon, S. (2013a) Both infected and uninfected 

mosquitoes are attracted toward malaria infected birds. Malaria Journal,12. 

Cornet, S., Nicot, A., Rivero, A. & Gandon, S. (2013b) Malaria infection increases bird 

attractiveness to uninfected mosquitoes. Ecology Letters,16, 323-329. 

Dawkins, R. (2012) Host manipulation by parasites. Oxford University Press. 

de Boer, J. G., Robinson, A., Powers, S. J., Burgers, S. L. G. E., Caulfield, J. C., Birkett, M. 

A., et al. (submitted). Odours of Plasmodium falciparum-infected participants 

influence mosquito-host interactions Scientific Reports. 

De Moraes, C. M., Stanczyk, N. M., Betz, H. S., Pulido, H., Sim, D. G., Read, A. F., et al. 

(2014) Malaria-induced changes in host odors enhance mosquito attraction. 

Proceedings of the National Academy of Sciences of the United States of 

America,111, 11079-11084. 

Eisen, R. J. & Gage, K. L. (2012) Transmission of flea-borne zoonotic agents. Annual Review 

of Entomology,57, 61-82. 

Emami, S. N., Ranford-Cartwright, L. C. & Ferguson, H. M. (2013) The impact of low 

erythrocyte density in human blood on the fitness and energetic reserves of the 

African malaria vector Anopheles gambiae. Malaria Journal,12. 

Gonçalves, B. P., Tiono, A. B., Ouédraogo, A., Guelbéogo, W. M., Bradley, J., Nebie, I., et 

al. (2016) Single low dose primaquine to reduce gametocyte carriage and Plasmodium 

falciparum transmission after artemether-lumefantrine in children with asymptomatic 

infection: a randomised, double-blind, placebo-controlled trial. BMC Medicine,14, 1-

11. 



 
 
 

130 

 

Hermsen, C. C., Telgt, D. S. C., Linders, E. H. P., van de Locht, L., Eling, W. M. C., 

Mensink, E., et al. (2001) Detection of Plasmodium falciparum malaria parasites in 

vivo by real-time quantitative PCR. Molecular and Biochemical Parasitology,118, 

247-251. 

Homan, T., Hiscox, A., Mweresa, C. K., Masiga, D., Mukabana, W. R., Oria, P., et al. (2016) 

The effect of mass mosquito trapping on malaria transmission and disease burden 

(SolarMal): a stepped-wedge cluster-randomised trial. Lancet,388, 1193-1201. 

Hwang, J., Jaroensuk, J., Leimanis, M. L., Russell, B., McGready, R., Day, N., et al. (2012) 

Long-term storage limits PCR-based analyses of malaria parasites in archival dried 

blood spots. Malaria Journal,11. 

Kelly, M., Su, C. Y., Schaber, C., Crowley, J. R., Hsu, F. F., Carlson, J. R., et al. (2015) 

Malaria parasites produce volatile mosquito attractants. Mbio,6. 

Koella, J. C., Sörensen, F. L. & Anderson, R. (1998) The malaria parasite, Plasmodium 

falciparum, increases the frequency of multiple feeding of its mosquito vector, 

Anopheles gambiae.Proceedings of the Royal Society of London B: Biological 

Sciences,265, 763-768. 

Lacroix, R., Mukabana, W. R., Gouagna, L. C. & Koella, J. C. (2005) Malaria infection 

increases attractiveness of humans to mosquitoes. Plos Biology,3, 1590-1593. 

Lefevre, T., Gouagna, L. C., Dabire, K. R., Elguero, E., Fontenille, D., Renaud, F., et al. 

(2010) Beer Consumption Increases Human Attractiveness to Malaria Mosquitoes. 

Plos One,5. 

Mukabana, W. R., Takken, W., Killeen, G. F. & Knols, B. G. J. (2004) Allomonal effect of 

breath contributes to differential attractiveness of humans to the African malaria 

vector Anopheles gambiae. Malaria Journal,3. 

Mweresa, C. K., Omusula, P., Otieno, B., van Loon, J. J. A., Takken, W. & Mukabana, W. R. 

(2014) Molasses as a source of carbon dioxide for the malaria mosquitoes Anopheles 

gambiae and Anopheles funestus. Malaria Journal,13: 160. 

Okell, L. C., Bousema, T., Griffin, J. T., Ouedraogo, A. L., Ghani, A. C. & Drakeley, C. J. 

(2012) Factors determining the occurrence of submicroscopic malaria infections and 

their relevance for control. Nature Communication,3, 1237. 



 
 
 

131 

 

Olanga, E. A., Okal, M. N., Mbadi, P. A., Kokwaro, E. D. & Mukabana, W. R. (2010) 

Attraction of Anopheles gambiae to odour baits augmented with heat and moisture. 

Malaria Journal,9. 

Oria, P. A., Hiscox, A., Alaii, J., Ayugi, M., Mukabana, W. R. & Takken, W. (2014) 

Tracking the mutual shaping of the technical and social dimensions of solar-powered 

mosquito trapping systems (SMoTS) for malaria control on Rusinga Island, western 

Kenya. Parasites and Vectors,7. 

Ouédraogo, A., Goncalves, B., Gneme, A., Wenger, E., Guelbéogo, M., Ouédraogo, A., et al. 

(2016) Dynamics of the human infectious reservoir for malaria determined by 

mosquito feeding assays and ultrasensitive malaria diagnosis in Burkina Faso. Journal 

of Infectious Diseases,213 (1): 90-99. 

Roitberg, B. D., Mondor, E. B. & Tyerman, J. G. (2003) Pouncing spider, flying mosquito: 

blood acquisition increases predation risk in mosquitoes. Behavioral Ecology,14, 736-

740. 

Saitoh, Y., Hattori, J., Chinone, S., Nihei, N., Tsuda, Y., Kurahashi, H., et al. (2004) Yeast-

generated CO2 as a convenient source of carbon dioxide for adult mosquito sampling. 

Journal of the American Mosquito Control Association,20, 261-264. 

Schneider, P., Schoone, G., Schallig, H., Verhage, D., Telgt, D., Eling, W., et al. (2004) 

Quantification of Plasmodium falciparum gametocytes in differential stages of 

development by quantitative nucleic acid sequence-based amplification. Molecular 

and Biochemical Parasitology,137, 35-41. 

Shieh, J. & Rossignol, P. (1992) Opposite influences of host anaemia on blood feeding rate 

and fecundity of mosquitoes. Parasitology,105: 159-163. 

Smallegange, R. C., Schmied, W. H., van Roey, K. J., Verhulst, N. O., Spitzen, J., Mukabana, 

W. R., et al. (2010) Sugar-fermenting yeast as an organic source of carbon dioxide to 

attract the malaria mosquito Anopheles gambiae. Malaria Journal,9. 

Smallegange, R. C., van Gemert, G. J., van de Vegte-Bolmer, M., Gezan, S., Takken, W., 

Sauerwein, R. W., et al. (2013) Malaria infected mosquitoes express enhanced 

attraction to human odor. Plos One,8. 



 
 
 

132 

 

Smith, D., Perkins, T., Reiner, R., Barker, C., Niu, T., Chaves, L., et al. (2014) Recasting the 

theory of mosquito-borne pathogen transmission dynamics and control. Transactions 

of the Royal Society of Tropical Medicine and Hygiene,108(4): 185-197. 

Smith, D. L., Dushoff, J. & McKenzie, F. E. (2004) The risk of a mosquito-borne infection in 

a heterogeneous environment. PLoS Biology,2(11): e368. 

Snounou, G., Viriyakosol, S., Zhu, X. P., Jarra, W., Pinheiro, L., Dorosario, V. E., et al. 

(1993) High-sensitivity of detection of human malaria parasites by the use of nested 

polymerase chain-reaction. Molecular and Biochemical Parasitology,61, 315-320. 

Van Den Abbeele, J., Caljon, G., De Ridder, K., De Baetselier, P. & Coosemans, M. (2010) 

Trypanosoma brucei modifies the tsetse salivary composition, altering the fly feeding 

behavior that favors parasite transmission. Plos Pathogens,6. 

Verhulst, N. O., Mbadi, P. A., Kiss, G. B., Mukabana, W. R., van Loon, J. J. A., Takken, W., 

et al. (2011a) Improvement of a synthetic lure for Anopheles gambiae using 

compounds produced by human skin microbiota. Malaria Journal,10. 

Verhulst, N. O., Qiu, Y. T., Beijleveld, H., Maliepaard, C., Knights, D., Schulz, S., et al. 

(2011b) Composition of human skin microbiota affects attractiveness to malaria 

mosquitoes. Plos One,6. 

Verhulst, N. O., Takken, W., Dicke, M., Schraa, G. & Smallegange, R. C. (2010) Chemical 

ecology of interactions between human skin microbiota and mosquitoes. Fems 

Microbiology Ecology,74, 1-9. 

Wheeler, D. & Tiefelsdorf, M. (2005) Multicollinearity and correlation among local 

regression coefficients in geographically weighted regression. Journal of 

Geographical Systems,7: 161-187. 

WHO. (2015) World Malaria Report 2015. WHO, Geneva: Switzerland. 

WWARN, W. A. R. N. (2016) Gametocyte carriage in uncomplicated Plasmodium 

falciparum malaria following treatment with artemisinin combination therapy: a 

systematic review and meta-analysis of individual patient data. BMC Medicine,14, 1-

18. 



 
 
 

133 

 

Supplementary Figures and Tables 

 
Figure S.1. Effect of parasitological status and sampling moment on mosquito attraction to children in a dual-choice olfactometer. Panel A: 

Predicted means are derived from the generalized linear mixed model (GLMM) including parasitological status (P < 0.001), sampling moment (P 

< 0.001) and their interaction (P < 0.001), as well as haemoglobin level (P = 0.005) and date (P < 0.001) as fixed effect terms, and participant as 

a random effect term. Statistically significant pairwise comparisons are indicated by different letters above bars (see Table S.1 for pairwise 

standard error of the difference (SEDs). Panel B: Back-transformed values of predicted means from the GLMM on the original scale of number 

of mosquitoes per child. (Parasite-free, asexual, sub/microscopic carriers of P. falciparum are now and hereafter labelled as parasite-free, 

Asexuals, SubGam or GAM, respectively). 
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Table S.1. Matrix of pairwise standard errors of the differences (SEDs) between predicted means of number of mosquitoes attracted to children 

of four parasitological categories and two sampling moments (before and after antimalarial treatment). Statistical comparisons were made within 

sampling moment between parasitological categories, and between sampling moment within parasitological categories. Other pairwise 

comparisons were considered irrelevant and are indicated by n/a. SEDs are derived from the GLMM (figure S.1). Significant pairwise 

differences (P < 0.05) were made by multiplying SEDs by 2 (the 2.5 % t-value) and comparing to the difference between predicted means, and 

are indicated in bold font. 

Sampling moment Parasitological status         

Before 

Parasite-free *        

Asexuals 0.2875 *       

SubGam 0.292 0.2889 *      

GAM 0.2597 0.2572 0.2376 *     

After 

Parasite-free 0.2541 n/a n/a n/a *    

Asexuals n/a 0.2757 n/a n/a 0.2808 *   

SubGam n/a n/a 0.2527 n/a 0.278 0.2937 *  

GAM n/a n/a n/a 0.1906 0.2469 0.264 0.2406 * 

 Parasite-free Asexuals SubGam GAM Parasite-free Asexuals SubGam GAM 

 Before   After  
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Figure S.2. Effect of parasitological status and sampling moment on the proportion of mosquitoes attracted to children in a dual-choice 

olfactometer. Panel A: Predicted means derived from the generalized linear mixed model (GLMM) including parasitological status (P = 0.004), 

sampling moment (P = 0.052) and their interaction (P < 0.001), as well as date (P = 0.007) as fixed effect terms, and participant as a random 

effect term. Significant pairwise comparisons are indicated by different letters above bars (see Table S.2 for pairwise SEDs). Panel B: Back-

transformed values of predicted means from the GLMM on the original scale. 
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Table S. 2. Matrix of pairwise standard errors of the differences (SEDs) between predicted means of the proportion of mosquitoes attracted to 

children of four parasitological categories and two sampling moments (before and after antimalarial treatment). Statistical comparisons were 

made within sampling moment between parasitological categories, and between sampling moment within parasitological categories. Other 

pairwise comparisons were considered irrelevant and are indicated by n/a. SEDs are derived from the GLMM (figure S.2). Significant pairwise 

differences (P< 0.05) were made by multiplying SEDs by 2 (the 2.5 % t-value) and comparing to the difference between predicted means, and 

are indicated in bold font. 

 

Sampling moment Parasitological status         

Before 

Parasite-free *        

Asexuals 0.196 *       

SubGam 0.193 0.201 *      

GAM 0.172 0.18 0.165 *     

After 

Parasite-free 0.131 n/a n/a n/a *    

Asexuals n/a 0.155 n/a n/a 0.204 *   

SubGam n/a n/a 0.134 n/a 0.199 0.215 *  

GAM n/a n/a n/a 0.097 0.176 0.193 0.175 * 

 Parasite-free Asexuals SubGam GAM Parasite-free Asexuals SubGam GAM 

 Before   After   
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Abstract 

Body odour is an important host-seeking stimulus for mosquitoes, and recent work shows that 

skin bacteria mediate the production of odorous volatiles that guide host-seeking mosquitoes to 

their specific hosts. Interestingly, infection with Plasmodium parasites influences mosquito host 

selection by making gametocyte carriers more attractive to mosquito vectors leading to the 

question of whether this change in attractiveness results from changes in body odour and/or the 

skin microbial volatiles. In this study, dual-choice cage assays were conducted to determine the 

relative preference of Anopheles gambiae sensu stricto for body odours and skin bacterial 

volatiles from children that were naturally infected with Plasmodium falciparum before and 

after antimalarial treatment. Anopheles gambiae mosquitoes were attracted more to volatiles 

from socks worn by infected children than to volatiles from socks worn by the same children 

after antimalarial treatment, irrespective of parasite stage. The response to body odours from 

parasite-free children remained stable between the two sampling moments. Infection with P. 

falciparum did not affect mosquito responses to volatiles from cultured skin microbes. It is 

concluded that Plasmodium parasites manipulate body odours of carriers of both asexual and 

sexual parasite stages, increasing their attractiveness to malaria vectors. Identification of 

chemical compounds responsible for the attraction of volatiles from infected children could lead 

to tools for rapid malaria diagnosis as well as the improvement of the effectiveness of existing 

odour-baited traps. 
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Introduction 

Several studies show that host characteristics such as physical and chemical stimuli influence 

the attractiveness of humans to malaria mosquitoes (Qiu & van Loon, 2010; Takken & 

Verhulst, 2013). These include gender, body surface area, ABO blood group type, diet, 

consumption of alcohol, weight, pregnancy status and host age. Carbon dioxide (CO2) and 

body odour of the host are particularly important in host-seeking of the anthropophilic 

mosquito, Anopheles gambiae sensu stricto (hereafter referred to as An. gambiae) 

(Takken, 1999; Takken & Knols, 2010). Human odour comprises of volatile organic 

compounds (VOCs), which together with CO2 are detected by An. gambiae through 

odorant receptors (Carey et al., 2010). Some VOCs can be detected from a distance as far 

as 70 meters from the source (Gillies, 1980; Carey & Carlson, 2011; Chaisson & Hallem, 

2012), while others may be more important in initiating a landing response on the host 

(Healy & Copland, 2000; Healy et al., 2002). 

 

Differential attractiveness in humans has been explained by differences in chemical 

composition of their odour profile (Takken, 1999; Mukabana et al., 2002; Omolo et al., 

2013), which can partly be explained by differences in skin microbial composition 

(Verhulst et al., 2009), and genetic differences between individuals (Fernández-Grandon 

et al., 2015). Skin bacteria play an important role in guiding malaria vectors towards their 

blood-meal hosts (Verhulst et al., 2009, and Chapter 3) because skin exudates can be 

converted to VOCs by skin microbiota (Braks & Takken, 1999). The unique bacterial 

composition on human skin (Grice et al., 2009; Fierer et al., 2010) has a great impact on 

the variety in VOCs produced on the skin, hence variation in human attractiveness to 

mosquitoes (Verhulst et al., 2010). Indeed, humans that are highly attractive to An. gambiae 

have a higher abundance but lower diversity of bacteria on their skin than poorly attractive 

individuals (Verhulst et al., 2011b), supporting the role of skin bacteria in mediating 

olfactory preference of malaria mosquitoes. Skin bacteria and the volatiles they produce are 

therefore an important link between malaria vectors and humans (Verhulst et al., 2010).  

 



 
 
 

140 

 

Differential attractiveness in humans suggests that some humans are at higher risk of being 

bitten by mosquitoes than others, which may lead to differences in infection rates with 

parasites (Lindsay et al., 1993; Logan et al., 2008). Unattractive humans are likely protected 

to some extent against infective mosquito bites, which may contribute to higher fitness (Snow 

et al., 2005). Logan et al. (2008) further suggested that reduced attractiveness could be a 

result of emission of higher levels of specific volatiles by humans that either mask their 

attractiveness to mosquitoes or are repellent to mosquitoes (Chapter 3). Besides a possible 

association between intrinsic attractiveness and infection risk, parasite infections may also 

change host attractiveness leading to increased contact rates between vector and infectious 

hosts.  

 

Several studies show that infection with malaria parasites indeed influences mosquito host-

selection (Lacroix et al., 2005; Cornet et al., 2013; Batista et al., 2014; De Moraes et al., 

2014),  making infected hosts more attractive to mosquitoes than parasite-free individuals. In 

a mouse model, high attraction to An. stephensi was seen during chronic infection with 

Plasmodium chabaudi (De Moraes et al., 2014) and compounds of bacterial origin such as 

2- and 3-methyl butanoic acid (Verhulst et al., 2009) were associated with increased 

attractiveness (De Moraes et al., 2014). Human individuals infected with P. falciparum 

gametocytes attracted about two times more An. gambiae mosquitoes than asexual 

carriers of P. falciparum or children without malaria. After anti-malarial treatment, 

increased attractiveness of former gametocyte carriers disappeared (Lacroix et al., 2005, 

and Chapter 5). These in vivo studies, using children to attract malaria mosquitoes, support 

the role of gametocytes in mosquito attraction but were not designed to study the possible 

mechanisms of parasite manipulation (Chapter 4). 

 

The present study therefore examined potential mechanisms of manipulation. First, we 

investigated whether body odour is responsible for the differential attraction to P. 

falciparum-infected children observed in Chapter 5. Because of the important role of skin 

bacteria in mosquito attraction, we also determined the effect of P. falciparum parasites 

and gametocytes on attractiveness of bacterial volatiles derived from human skin. 
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Materials and methods 

Sample collection 

Study participants 

A total of 46 children aged 5-12 years was recruited to collect body odour and bacterial 

samples to test the effect of P. falciparum infection on attractiveness to malaria mosquitoes. 

Infected children were selected based on microscopy, while the presence of submicrocopic 

levels of gametocytes was detected by NASBA, as described in Chapter 5. Sensitive 18S 

qPCR was used to categorize parasite-free children. This resulted in 12 parasite-free 

children, 7 carriers of asexual parasite stages, 8 submicroscopic gametocyte carriers and 19 

microscopic gametocyte carriers. Presence and absence of P. falciparum in all children was 

confirmed by nested PCR (Snounou et al., 1993; Baidjoe et al., 2013), and levels of total 

parasites and mature gametocytes were assessed by 18S qPCR (Hermsen et al., 2001) and 

NASBA (Schneider et al., 2004). 

 

Samples were collected at two moments: on the day children were recruited, just following 

the administration of the first dose of antimalarial medication (further referred to as before 

antimalarial treatment) and 21 days after malaria treatment (further referred to as after 

antimalarial treatment).  

Antimalarial treatment was done according to recommendations of the WHO, with weight-

dosed artemisinin-lumefantrine containing 20 mg artemisinin/120 mg lumefantrine per tablet 

(Coartem-D™; Novartis, Basel, Switzerland) (WHO, 2015). At the second sampling moment 

the same children were tested for presence of malaria parasites by microscopy and molecular 

methods. Age of children, haemoglobin level, weight and body temperature were measured 

also before and after antimalarial treatment (Chapter 5). The study protocol (NON SSC 389) 

was approved by the Scientific and Ethical Review Committee of the Kenya Medical 

Research Institute (KEMRI) (KEMRI/RES/7/3/1). 

 

Procedures for collection of body odour and skin bacteria 

Body odours and skin bacteria were collected on nylon socks and cotton pads respectively. 

Before use, nylon socks (97% polyamide, 3% elastane, 20 denier, Hema, The Netherlands) 

were washed by soaking and swirling them in an open glass container filled with 70% 
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ethanol. They were then squeezed and placed on clean aluminium foil in a ventilated oven to 

dry at 70°C for two h, while turning them a few times. Pre-treatment of cotton pads (100% 

cotton, 5 cm diameter, Hema, The Netherlands) was done by placing them in a large glass 

dish filled with n-hexane (100%, Merck; Darmstadt, Germany) and then transferring to 

another glass container filled with methanol (100%, Sigma-Aldrich, Steinheim, Germany) in 

a fume hood. The cotton pads were squeezed and placed in an oven at 100⁰C for two h to dry. 

Each cleaned and dried pair of socks and cotton pads was subsequently placed in a pre-

cleaned jar, which was tightly closed and kept at room temperature until use. Glass jars and 

lids were cleaned with tap water and 70% ethanol. The jars were dried in an oven at 150⁰C 

for 24 h while the lids were dried at room temperature. Pieces of aluminium foil were lined 

inside lids of the glass jars to prevent contact between the plastic cap and the sample. 

Surgical gloves were worn during all sample collection and experimental procedures to avoid 

contamination with human odour. 

 

After the children had participated in the olfactometer assay described in Chapter 5, a pair 

of nylon socks was placed on their feet, and two cotton pads were lined on their lower back 

using one sterile 10 × 15 cm island plaster (HEKA
®
plast, Van Heek medical, The 

Netherlands). A piece of aluminium foil was placed between the two pieces of cotton pads 

and the island plaster (Verhulst et al., 2016). Nylon socks and cotton pads were removed 

after approximately 20 h, and stored in clean glass jars at -20°C until use in cage assay 

experiments. Children were asked not to shower during the time they wore nylon socks and 

cotton pads but had no other behavioural restrictions. Nylon socks of all 46 children at both 

time points were included in the cage assays described below, while skin bacterial volatiles 

of 29 children were selected for the tests, i.e. 7 parasite-free children, 5 asexual carriers, 3 

submicroscopic gametocyte carriers and 14 microscopic gametocyte carriers. 

 

Behavioural assay 

A dual choice cage assay first described by (Okal et al., 2013), was modified to determine the 

preference of mosquitoes for VOCs from socks worn by the same individual either before or 

after antimalarial treatment. To avoid the effect of non-human odour from soiled socks, the 

foot part of all worn socks was cut off before the experiment was conducted.  
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This study was conducted under ambient conditions, in a red fluorescent-lit experimental 

room (average temperature, 24.1°C), at icipe-Thomas Odhiambo Campus (TOC), Mbita 

Point. Three WHO bioassay tubes (12.5 cm long, 5 cm wide) (WHO, 2006) were connected 

with slide units between the inner and outer tubes. Mosquito cages (15×15×15 cm) were 

wrapped with transparent kitchen cling-film (Chandaria industries limited, Kenya) and the 

outer tubes were inserted into the cages, at a distance of approximately 6 cm. A pair of nylon 

socks, worn by one study participant before antimalarial treatment was placed in one cage, 

while the other pair of socks of the same individual, worn after antimalarial treatment was 

placed in the second cage (figure 1).  

 
Figure 1. Schematic drawing of the cage assay set up used to test the response of An. 

gambiae to VOCs from human worn nylon socks or their skin bacteria. Two mosquito 

cages wrapped with kitchen cling-film were connected with three WHO bioassay tubes 

(WHO, 2006), with slide units between the inner and outer tubes. Each cage contained a 

pair of socks or a bacterial plate, with samples from the same child collected before or after 

antimalarial treatment offered in a dual-choice situation. Ten female mosquitoes were 

released in the central tube and given 15 min. to fly to either cage. 

 

 

A group of 350 female An. gambiae mosquitoes (Mbita strain), 6-8 d old, which had not 

received a blood meal, were randomly collected eight h before the start of the experiment. 

Mosquito rearing was done following methods described in Chapters 3 and 5. Collected 

mosquitoes were kept in a 15 cm cubic mesh-covered cage without access to sugar water 

but with access to filtered water from Lake Victoria provided on wet cotton wool placed 

on top of the cage. Groups of ten randomly selected mosquitoes were used in each dual-cage 

set up. They were released into the central WHO tube (WHO, 2006) and the gates of the 

15  cm  
WHO bioassay  tube  Slide unit  

 
 
 
 
 
15  cm  
 
 
 
 

15  cm  
12.5  cm  

 

 cm 37.5  
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tubes were fully opened for 15 min. to allow mosquitoes to fly towards odours from either 

pair of worn socks. During experiments, the cage set ups were covered with black cotton 

cloths. After 15 min., the gates were closed, socks were removed and stored in the freezer at -

20°C.  

The bio-assay tubes were removed and the cages sealed with cling film to prevent mosquitoes 

escaping. Mosquitoes were counted and recorded the following morning. The same sets of 

socks from the same child were replicated six times under the same conditions on different 

experimental nights, in different experimental set-ups, and their positions were rotated 

between the left or right cage over replicates to minimize any positional effects. Per 

experimental night (18.30 h – 22.30 h), two rounds of testing were conducted with a 

maximum of 18 cage set ups in parallel. A new cage set-up with new cling film, bioassay 

tubes and cages, (pre-cleaned with 70% ethanol) were used for every new group of 

mosquitoes.   

 

A second dual choice cage-assay experiment was conducted using the same set up, to 

evaluate the differences in host-seeking responses to VOCs produced by bacteria from 

non-infected and naturally infected children. In preparation of the behavioural 

experiment, bacterial plates were made from the cotton pads of the first and second 

sampling moment of the same volunteer (before and after antimalarial treatment). Each 

cotton pad was cut into three equal pieces (for a total of six pieces per sampling moment 

per volunteer) and for every experiment one piece was placed on a five cm TSA (Bacto, 

USA) plate. Phosphate-buffered saline (PBS, 1 mL) was added whereupon the agar was 

wiped ten times with both sides of the cotton pad to transfer the bacteria from the pad 

onto the agar. The plates were incubated at 34°C for 30 h, which should allow for 

sufficient bacterial growth to result in attractive volatiles for mosquitoes (Verhulst et al., 

2009). The number of colony forming units (cfu’s) was counted on each plate before the 

behavioural experiment. 

 

The two bacterial plates per individual, one of each sampling moment (before and after 

treatment with antimalarials), were placed in the cages connected to a dual-choice set up 

(figure 1). Procedures used in the sock experiment were utilised in testing attractiveness 
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of the bacterial plates. In total, six replicates per individual were performed on six 

different days, with new bacterial plates for each replicate made from the six pieces of 

cotton pad (see above). On each day there were three rounds with ten individuals tested in 

parallel per round in ten identical set-ups. Positions of bacterial plates of individuals and 

the two sampling moments were rotated between set-ups and rounds over days. A new set 

up with new cling film, pre-cleaned bioassay tubes and cages were used for every new group 

of mosquitoes.  

 

Statistical analysis 

We first used a generalized linear model (GLM) to predict per individual child the 

attractiveness of socks worn before antimalarial treatment, relative to the total mosquitoes 

caught, over six replicates (binomial distribution and logit link function, dispersion 

estimated).  

 

Participant was included in the model to obtain predictions per child, and day effect was 

included because it was significant (Pday= 0.019). 95% confidence intervals of predicted 

preference were used to determine whether mosquito choice deviated from a 50:50 

distribution to socks worn before or after antimalarial treatment. 

 

The effect of parasitological status (parasite-free, asexual, submicroscopic or 

microscopic gametocytes) on attractiveness of body odours (worn nylon socks) and skin 

bacterial volatiles was then tested. We hypothesized that body odour or skin bacterial 

volatiles collected from P. falciparum infected children before antimalarial treatment 

would be more attractive than volatiles of the same individuals after antimalarial 

treatment, and that this effect is specifically caused by gametocytes. A GLM with 

binomial distribution and logit link function was used with the mosquitoes caught on the 

sample taken before antimalarial treatment as the response variable, and total 

mosquitoes caught in both cages as the binomial total. Dispersion was estimated. 

Covariates associated with the set-up (day, time, set-up, sample position) and volunteers 

(age, gender, and haemoglobin level and body temperature measured before antimalarial 

treatment) were included in the model when they were significant (P < 0.05).  
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Pairwise comparisons between predicted means of main parasitological status groups 

were done following GLM using least significant differences (Wheeler & Tiefelsdorf, 

2005). In addition, we tested whether within parasitologically positive samples, 

gametocyte density (using three levels: absent, submicroscopic and microscopic) or 

density of total parasites as measured by 18S qPCR influenced preference of mosquitoes 

for body odour collected before antimalarial treatment. This was done by using these 

two continuous explanatory variables in two separate GLMs. 

 

The effect of parasitological status on mosquito attraction to skin bacterial volatiles was 

analysed with a GLM following the same methods as in the analyses of body odour. The 

effect of bacterial density on mosquito choice was analysed in a separate model. 

Bacterial densities were transformed to ranks before analyses because they were highly 

variable and not normally distributed. The ratio of bacterial densities between the two 

sampling moments (cfu’s(before)/cfu’s(after)) was used as an explanatory variable.  

 

The effect of parasitological status and sampling moment (before versus after 

antimalarial treatment) on rank-transformed bacterial densities was analysed with a 

generalized linear mixed model (GLMM, normal distribution, identity link function). 

Parasitological status, sampling moment and their interaction were used as fixed effect 

terms, and participant as a random effect term. Other covariates (day) were included in 

the model when significant. All data were analysed in GenStat v. 18 (VSN International, 

U.K.). 

Results 

Effect of Plasmodium falciparum infection on mosquito attraction to body odour 

The overall response of An. gambiae mosquitoes in the cage assay to socks was high, with 

approximately 90% of released mosquitoes caught within 15 min. Mosquito preference for 

the sock worn before antimalarial treatment compared to the sock worn after treatment varied 

from 46% to 76% for the individual participants. The mosquitoes did not differentiate 

between socks worn by any of the parasite-free children at the two sampling moments (GLM, 

P > 0.05, N = 12). One child of the group with asexual parasite stages (N = 7), three children 

of the submicroscopic gametocyte group (N=8), and seven children of the gametocyte group 
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(N = 19) were significantly more attractive before antimalarial treatment compared to after 

antimalarial treatment (GLM, 95% confidence intervals). No children were significantly more 

attractive after antimalarial treatment compared to before antimalarial treatment (GLM, 95% 

CI). 

 

We then investigated the effect of parasitological status and covariates associated with 

children on mosquito preference with a GLM. Preference for body odour before versus after 

antimalarial treatment was significantly affected by parasitological status (figure 2, GLM, P < 

0.001), but not by age, gender, body temperature or haemoglobin level before antimalarial 

treatment (GLM, all P > 0.05). Day of testing was included in this model because it 

significantly influenced mosquito preference (GLM, Pday= 0.014). Mosquitoes significantly 

preferred body odour collected from carriers of asexual stages of P. falciparum and both 

groups of gametocyte carriers before antimalarial treatment compared to body odour of the 

same individuals collected after treatment (figure 2, GLM, 95 % CI). The proportion of 

mosquitoes attracted to volatiles from parasite-free children at the two sampling moments did 

not differ significantly from 50% (GLM, 95% CI). Pairwise comparisons of parasitological 

status groups showed that mosquito preference for socks worn before antimalarial treatment 

of both asexual carriers and the two groups of gametocyte carriers differed significantly from 

mosquito preference for socks worn by parasite-free children (GLM, pairwise comparisons, P 

< 0.05, see supplementary figure S.1 and Table S.1).  

 

Within the three groups of parasitologically positive children, there was no effect of 

gametocyte level (absent, submicroscopic or microscopic, fitted as a continuous variable, 

GLM, P = 0.131) or density of total parasites measured by 18S qPCR (GLM, P = 0.696) on 

mosquito preference for body odour before antimalarial treatment. 
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Figure 2. Effect of parasitological status on mosquito preference for body odour before 

relative to after antimalarial treatment. Back-transformed estimated means from the GLM are 

plotted with standard errors, and significant differences from 0.5 are indicated with * (P < 

0.05). Different letters above bars indicate significant differences in choice between 

parasitological status groups (GLM, Pstatus< 0.001, Pday= 0.014, see supplementary material 

Table S.1 for pairwise standard errors of the difference). Numbers in bars represent the 

number of individual children in each malaria status group. Groups of ten mosquitoes were 

given a choice between socks worn by each participant at both sampling moments (before 

and after antimalarial treatment of infected children) in a cage assay, with six replicates per 

participant. 

 

Effect of P. falciparum infection on mosquito response to skin bacterial volatiles 

As with body odour, mosquito responses in the cage assay to skin bacterial volatiles 

were high, with more than 95% of released mosquitoes caught within 15 min. Mosquito 

choice between volatiles of skin bacteria collected before versus after antimalarial 

treatment was highly variable, and varied between 32% to 68% for the 29 individual 

participants. Skin bacterial volatile of none of the participants was significantly more 

attractive before than after antimalarial treatment (GLM, 95% CI), while skin bacterial 

volatiles of one gametocyte carrier were more attractive after than before antimalarial 

treatment. Bacterial densities on agar plates were also highly variable and significantly 
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affected by the interaction between parasitological status and sampling moment 

(GLMM, P = 0.012), although not by the terms on their own (Pstatus= 0.590, Psampling 

moment = 0.379, supplementary material Table S.2).  

 

Parasitological status did not affect mosquito preference between skin bacterial volatiles 

of the two sampling moments (Figure 3, GLM, Pstatus= 0.780; Pposition< 0.001, Pround= 

0.018), and indeed mean mosquito choice was statistically similar to 50% for all four 

groups of children (GLM, 95% CI). Finally, mosquito choice was not affected by 

bacterial densities in this experiment, using the ratio of bacterial densities between the 

two sampling moments as an explanatory variable (Pcfu’s(before)/cfu’s(after) = 0.884; Pposition< 

0.001, Pround= 0.029). 

 

 

Figure 3. Effect of parasitological status on mosquito preference for volatiles from skin 

bacteria collected before antimalarial treatment relative to volatiles from skin bacteria 

collected after treatment. Back-transformed estimated means from the GLM are plotted with 

standard errors. Numbers in bars represent the number of individual children in each 

parasitological status group. Groups of ten mosquitoes were given a choice between plated 

skin bacteria from each participant at both sampling moments (before and after antimalarial 

treatment of infected children) in a cage assay, with six replicates per participant (Pstatus= 

0.78; Ptime= 0.018 and Pposition< 0.001). 
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Discussion 

Volatiles from carriers of malaria parasites, both asexual and sexual stages, were significantly 

more attractive to An. gambiae mosquitoes at the time of infection than after treatment. There 

was no difference in mosquito response between volatiles from skin bacteria from parasite- 

free and malaria-infected children. These seemingly contrasting results are explained in the 

discussion below.  

 

Many studies show that odour influences the choice of host-seeking mosquitoes e.g. (Njiru et 

al., 2006; Omolo et al., 2013; Takken & Verhulst, 2013) and human odour is considered 

universally as an important cue guiding mosquitoes to their host.  

 

Evidence that parasites change host-odours resulting in increased attractiveness to mosquitoes 

is accumulating (Lacroix et al., 2005; Batista et al., 2014; De Moraes et al., 2014, and 

Chapter 5). In the present study, mosquitoes significantly preferred body odours of one child 

with asexual stages, three children with submicroscopic gametocytes and seven with 

microscopic gametocytes before versus after antimalarial treatment. Hence, when considering 

mosquito preferences to odour samples of individual participants, this suggests a stronger 

effect on mosquito behaviour at higher gametocyte levels. However, the overall results 

showed that infection with Plasmodium parasites significantly increased attractiveness of 

body odours in vitro from all parasitologically positive children before treatment, irrespective 

of parasite stage and density. This effect was independent of age (within the tested range of 

5-12 years old), gender or haemoglobin level of children. This finding is in contrast with our 

hypothesis that mosquito preference would be mediated specifically by transmissible 

gametocytes, based on previous in vivo olfactometer experiments (Lacroix et al., 2005, and 

Chapter 5). These studies, conducted in vivo, used total emanations of children (breath 

combined with body odour) and showed that children infected with microscopic gametocytes 

attracted about two times more mosquitoes than children without high levels of gametocytes.  

 

Our findings leave an open question why in the in vivo experiment (Chapter 5) with carriers 

of asexual parasite stages or children with submicroscopic gametocytes were not different 

from parasite-free children, and in the in vitro assay with the skin volatiles on socks they 
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were significantly more attractive than the parasite-free group. The most likely explanation 

for the difference in our in vivo and in vitro experiments may be the presence of breath in the 

experiment with children as compared to the experiment with socks. Breath was also present 

in addition to body odour in studies on malaria parasite mediated differences in mosquito 

attraction to birds and mice (Cornet et al., 2013; De Moraes et al., 2014). Mosquito attraction 

to breath has received little attention compared to mosquito responses to body odour. In fact, 

one study demonstrated a stronger response of An. gambiae to body odours compared to total 

emanations (breath and body odour) from two healthy human volunteers, suggesting that 

breath may suppress mosquito attraction rather than contribute to it (Mukabana et al., 2004). 

On the other hand, breath odour profiles have been shown to change during P. falciparum 

infection (Berna et al., 2015), and another study showed that P. falciparum cultures produce 

specific compounds that may be emitted through the breath (Kelly et al., 2015). It is therefore 

important to follow up on the role of breath in the attraction of Anopheles mosquitoes to 

gametocytaemic humans.  

 

Changes in body odour, due to disease in humans (Penn & Potts, 1998), can enhance 

attraction of mosquitoes to infected hosts, and this may depend on the life-cycle stage of the 

parasite (Cornet et al., 2013; Batista et al., 2014; De Moraes et al., 2014). Because several 

studies show that skin bacteria mediate odour production (Braks & Takken, 1999, and 

Chapter 3; Verhulst et al., 2009; Verhulst et al., 2011a; Verhulst et al., 2011b), we next 

examined whether infection with malaria parasites affects mosquito attraction to skin 

bacterial volatiles.  

Previous studies on non-infected humans show that the density and composition of skin 

bacteria are correlated with the intensity of human body odour (Stoddart, 1990) and 

human attractiveness to mosquitoes (Verhulst et al., 2011b). However, the results 

presented here did not show a correlation between the presence of Plasmodium parasites 

and attractiveness of skin bacterial volatiles. In addition, the number of cfu’s in both groups 

of gametocyte carriers, carriers of asexual parasite stages and parasite-free children were 

highly variable and did not differ significantly. Although previous studies have shown that 

skin bacteria grown on plates can be used to attract malaria mosquitoes, less than 10% of all 

bacteria can be grown on agar plates. In addition, these plates do not resemble the human skin 
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as a substrate and therefore other volatiles may be produced. Although the effect of malaria 

parasites was not seen in the skin bacterial volatile experiment, De Moraes et al. (2014) 

showed that elevated levels of volatiles of bacterial origin in malaria-infected mice increased 

attractiveness to An. stephensi. Compounds of bacterial origin were also upregulated in a 

study with P. falciparum infected Dutch adults (de Boer et al., submitted). 16s rRNA 

sequencing of the skin microbiota of infected and non-infected children would therefore be a 

next step to reveal potential differences and has been used before to correlate human 

attractiveness to mosquitoes with their skin microbiome (Verhulst et al., 2011b).  

 

We conclude that the blend of volatiles released from the skin changes when children carry 

malaria parasites, resulting in increased attractiveness of these infected children to 

mosquitoes. This effect was not strongly associated with gametocyte density, suggesting that 

additional cues contribute to differential attractiveness of microscopic gametocyte carriers 

observed in our previous in vivo study (Chapter 5). No effect of infection status on the skin 

bacterial density and attractiveness of skin bacterial volatiles to mosquitoes was found, 

although more detailed studies including 16s rRNA sequencing are required. From an applied 

perspective, VOC analyses of Plasmodium-infected humans could contribute to increase the 

efficiency of odour baits that may be used in trapping malaria mosquitoes (Homan et al., 

2016). 
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Supplementary Material 

 

 

Figure S.1. Predicted mean mosquito choice between body odour before compared to after 

antimalarial treatment to children of four parasitological status groups in cage assays. Error 

bars indicate standard errors of the mean. Different letters above bars indicate significantly 

different means by pairwise comparisons made using least significant differences following 

GLM (Pstatus< 0.001, Pday= 0.014; see Table S.1). Numbers in bars refer to the number of 

individual tested in each group. 

 

Table S.1. Matrix of least significant differences between pairs of parasitological status 

groups derived from the generalized linear model (Pstatus< 0.001, Pday= 0.014). Bold font 

indicates significant differences (see figure S.1). 

 

Parasitological 

status 

Parasite-free * 

Asexuals 0.2316 * 

SubGam 0.2266 0.2540 * 

GAM 0.1815 0.2159 0.2099 * 

 Parasite-free Asexuals SubGam GAM 
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Table S.2. Mean number of colony forming units (cfu’s) on agar plates streaked with skin 

bacteria from parasite-free or P. falciparum-infected children before and after treatment with 

antimalarials (with range of cfu’s in brackets). N indicates the number of individual children 

sampled per parasitological status group, while n represents the number of agar plates on 

which bacteria were counted (6 per child per sampling moment). 

 

 

 

Parasitological status  Mean cfu’s (minimum-maximum) 

n Before treatment After treatment 

Parasite-free (N=7) 42 85 (5-900) 572 (0-2000) 

Asexual carriers (N=5) 30 201 (1-2000) 122 (0-420) 

Submicroscopic gams (N=3) 18 60 (0-192) 372 (1-2000) 

Microscopic gametocytes (N=14) 84 198 (1-2000) 85 (5-900) 
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General discussion 

It has long been known that semio-chemicals play an important role in the life of mosquitoes, 

and both female and male mosquitoes use these cues in their foraging behaviour. Carbon 

dioxide (CO2) acts as an activator and attractant for female host-seeking mosquitoes (Gillies, 

1980; Mboera & Takken, 1997; Spitzen et al., 2008). In addition, odours from host skin 

provide important cues in this behaviour (Braks & Takken, 1999), and may enable host-

seeking females to differentiate between host species (Takken & Verhulst, 2013, and Chapter 

2). Bacteria on the human skin are involved in the production of skin volatiles attractive to 

mosquitoes (Verhulst et al., 2009; Verhulst et al., 2010; Verhulst et al., 2011c, and Chapter 

3). Identification of attractive volatile organic compounds (VOCs) has led to the development 

of synthetic odour blends used to trap mosquitoes in the field (Okumu et al., 2010; 

Smallegange et al., 2010; Verhulst et al., 2011a; Mukabana et al., 2012; van Loon et al., 

2015; Homan et al., 2016).   

 

To date, studies of host-seeking behaviour of malaria mosquitoes have focused primarily on 

their responses to healthy human hosts. For a better understanding of this behaviour, it is 

important to know how variation in VOCs between host species and variation within humans 

resulting from infection with malaria parasites influences host-seeking behaviour. Moreover, 

the role of skin bacteria in mediating these host-seeking responses needs to be established. 

Although human skin bacterial volatiles are attractive to Anopheles gambiae (Braks & 

Takken, 1999; Verhulst et al., 2011b), the response of this mosquito species to body odours 

and skin bacterial volatiles from other hosts species, as well as the response of opportunistic 

vectors such as An. arabiensis to these volatiles, are unknown. 

 

Apart from the bacteria on the skin of the vertebrate host (Chapter 3), microorganisms inside 

the host can also influence mosquito blood-meal choice (Chapters 5 and 6). Parasites can 

alter the phenotype of their hosts to increase the probability of transmission (Thomas & 

Poulin, 1998; Berdoy et al., 2000; Moore, 2002; Thomas et al., 2005). For example, mosquito 

vectors carrying transmissible stages of Plasmodium falciparum (sporozoites) have an 

increased olfactory response to human odour compared to their non-infected counterparts 



 
 
 

162 
 

(Smallegange et al., 2013), while infected birds or rodents carrying transmissible stages of 

malaria parasites (gametocytes) can become more attractive to uninfected vectors than hosts 

without gametocytes (Ferguson & Read, 2004; Cornet et al., 2013; De Moraes et al., 2014). 

Recent studies suggests that malaria parasites also manipulate attractiveness of infected 

humans to enhance transmission (Lacroix et al., 2005). However, whether parasites 

manipulate breath or body odour of the infected host is unclear and the mechanisms involved 

in this manipulation also remain unknown. Therefore, there is need to study the interactions 

between natural hosts and their associated skin bacteria, malaria parasites, and mosquitoes 

with respect to host-seeking behaviour of malaria vectors.  

 

Knowledge on these interactions could lead to an improved odour-bait that attracts malaria-

vectoring mosquitoes more efficiently and/or attracts a wider range of mosquito species. 

The aim of this thesis was therefore to investigate the role of Plasmodium parasites and skin 

bacteria in mediating responses of malaria vectors to body odours. Specifically, I addressed 

three research questions: 

 

1. Do volatiles produced by skin bacteria play a role in species-specific host preference of 

mosquitoes? 

2. Does infection with gametocytes of Plasmodium increase the attractiveness of humans to 

malaria mosquitoes? 

3. What is the mechanism through which Plasmodium influences human attractiveness to 

malaria mosquitoes? 

 

Do skin bacterial volatiles play a role in species-specific mosquito host preference? 

The anthropophilic mosquitoes An. gambiae and An. funestus primarily take blood meals 

from humans, while An. arabiensis is more opportunistic, feeding on both humans and 

animals (Costantini et al., 1999; Tirados et al., 2006; Takken & Verhulst, 2013). In Chapter 

2, I showed that human odour attracted the highest numbers of An. gambiae in a screen house 

choice assay with odours from three different vertebrate host species. Adding odours of cow 

or chicken to CO2 actually reduced the attractiveness of CO2 to An. gambiae (Chapter 2). 

These results match with the anthropophilic biting behaviour of An. gambiae, and confirm 
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previous findings (Gillies, 1964; Pates et al., 2001). Anopheles arabiensis responded most 

strongly to human odour as well, but was also attracted to cow and chicken odours (Chapter 

2), which confirms its more opportunistic behaviour (Githeko et al., 1996). Several other 

studies have also shown higher attraction of An. arabiensis to human than cow odour (Diatta 

et al., 1998; Torr et al., 2008; Lyimo et al., 2013), while other studies show that An. 

arabiensis avoids non-mammalian hosts such as chickens (Githeko et al., 1994; Mnzava et 

al., 1994; Kassahun et al., 2016), although this is dependent on the set up. 

 

The selective host-seeking behaviour of malaria mosquitoes in Chapter 2 of this thesis may 

be explained by nutritional variation in the blood-meals of different host types (Lyimo & 

Ferguson, 2009). Human odour was most preferred by the anthropophilic mosquitoes, which 

suggests its specialization on some of the host’s blood contents. The response of the 

mosquitoes with an opportunistic host preference to odours from several host species 

suggests its attraction to common/general VOCs produced by the hosts. Additionally, the 

presence of unattractive host volatiles may explain observed differential behaviour between 

the two species. For example, 6-methyl-5-hepten-2-one (MHO), a general compound 

identified in headspace volatiles of sheep, cattle and goat, did not affect the attraction of An. 

arabiensis (McBride et al., 2014; Kassahun et al., 2016), but negatively influenced the 

oviposition preference of An. coluzzii (formerly known as An. gambiae M molecular form) 

(Suh et al., 2016). People with lower emission rates of MHO were most attractive to Aedes 

aegypti while higher emission rates of the compound masked attractiveness of humans 

(Logan et al., 2008). It may therefore be possible that MHO did not increase the 

attractiveness of cow and chicken odour or bacterial volatiles from these hosts in this thesis 

(Chapter 2 and 3), although additional studies on concentrations of MHO versus mosquito 

response need attention. Importantly, comparative headspace analyses of the odour profile of 

host species in my study need to be done in order to address this topic further (see future 

perspectives).  

 

My field experiments confirmed the screen house findings, and in addition showed that the 

synthetic MB5 odour bait was more attractive to some mosquito species than to others 

(Chapter 2). Mweresa et al. (2014) reported significant attractiveness of the same synthetic 
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blend to An. arabiensis and An. funestus in the field, and a large field trial on Rusinga Island-

Kenya demonstrated that MB5-baited traps can significantly reduce the densities of An. 

funestus (Homan et al., 2016). Despite the reduction in the An. funestus population, there is 

need to optimize the synthetic odour blend to enable higher catches of a wider range of 

mosquito species because secondary vectors may become more important in malaria 

transmission when primary species are successfully controlled (Sriwichai et al., 2016, and see 

future perspectives). 

 

After demonstrating that An. gambiae and An. arabiensis indeed have different preferences 

for volatiles of three species of vertebrate hosts (Chapter 2), I investigated whether volatiles 

from skin bacteria influence the interaction between vertebrate hosts and these two mosquito 

species (Chapter 3). Results of Chapter 3 support those of Chapter 2, which show that both 

mosquito species preferred odours from human skin bacteria to those of chicken or cow, 

while An. arabiensis was more opportunistic as it responded to odours from human animal 

skin bacteria. This study therefore shows that skin bacterial volatiles can guide mosquitoes 

with different host preference to their specific host (figure 1), i.e. An. gambiae responds more 

specifically to specific bacterial species and to VOCs from bacteria of human origin than An. 

arabiensis, which appears to use volatiles that are generally produced by skin bacteria to 

locate its hosts (Chapter 3). Moreover, the opportunistic nature of feeding on both animals 

and humans (Costantini et al., 1996) may explain the equal response of An. arabiensis to 

odours from four bacterial species (Chapter 3), although response of this mosquito species is 

dependent on the study area (geographical region). In order to know which specific bacterial 

species mediate attractiveness of each host species, future studies should focus on sequencing 

of skin bacteria from the three hosts. Further, analysis of the skin bacterial volatiles will also 

provide information on the abundance of specific or general bacterial compounds present on 

skin of various host species. Additionally, experiments using different strains of existing 

malaria mosquito species (from various populations) need to be conducted in order to draw 

conclusions on mosquito host preference, as the mosquitoes respond differently to host 

volatiles, based on their country of origin/geographical set up.  

In addition to their role in host-seeking of malaria vectors, VOCs from bacteria are known to 

mediate oviposition behaviour of gravid Aedes aegypti and Ae. Albopictus females (vectors of 
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yellow fever, dengue, chikungunya and Zika viruses) (Hasselschwert & Rockett, 1988; 

Ponnusamy et al., 2010; Ponnusamy et al., 2015). Interestingly, 3-methyl-1-butanol, a 

common and abundant attractive volatile obtained from Klebsiella pneumoniae and 

Citrobacter freundii, is also an oviposition attractant for An. gambiae s.l. (Lindh et al., 2008; 

Himeidan et al., 2013). This compound, a component of the odour blend, Mb5 (Menger et al., 

2014b) also increases malaria vector and other African mosquito species trap catches,  both in 

the semi- and field set ups (Verhulst et al., 2011a; Mukabana et al., 2012; van Loon et al., 

2015). On vertebrate skin, bacteria modify/convert some aromatic amino acids, fatty acids or 

carbohydrates that are larger and less volatile into smaller, smellier, detectable VOCs (Schulz 

& Dickschat, 2007). Because of their important role in mosquito behaviour, VOCs from 

bacteria have high potential to play an important role in vector control (see future 

perspectives).  

 

Figure 1. Factors that influence the production of VOCs from non-infected and malaria-

infected humans and the thesis chapters in which they were studied. Solid and broken lines 

represent confirmed and hypothesized relationships. Attractiveness of mosquitoes to VOCs 

from humans infected with different stages of malaria is shown by the thickness of the grey 

lines. * also tested for non-human host species (cows and chickens). (Figure adapted from 

Chapter 4). 
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Does infection with Plasmodium-gametocytes increase attractiveness of humans to An. 

gambiae s.s.? 

Manipulation of attractiveness of the vertebrate host by malaria parasites would increase 

contact rates between infected hosts and mosquito vectors, thus enhancing parasite 

transmission (Chapter 4). It is therefore expected that humans who harbour the 

transmissible, gametocyte, stage of malaria parasites attract significantly higher numbers 

of mosquitoes than those without gametocytes; parasite-free or those infected with the 

non-transmissible stage of the parasite, asexual carriers. I tested the attractiveness of 

naturally infected children in a dual-choice olfactometer (figure 1). Indeed, when 

microscopic gametocytes were present during infection, mosquitoes responded more 

strongly (about two times) to odours from gametocyte carriers than to odours from 

children without microscopic gametocytes (Chapter 5). After treatment with 

antimalarials, the attractiveness of children who previously harboured gametocytes at 

microscopic levels, dropped significantly to the same level of attractiveness of parasite-

free children, children with asexual stages of P. falciparum, or children with 

submicroscopic levels of gametocytes. Responses of An. gambiae to children without 

gametocytes at microscopic levels did not differ significantly between the two time 

sampling moments. These results show that higher attractiveness was strongly associated 

with high densities of gametocytes, i.e. above the detection threshold of microscopy and 

match those of Lacroix et al. (2005), who reported that about twice as many An. gambiae 

mosquitoes were attracted to children infected with P. falciparum gametocytes compared 

to carriers of asexual stages or non-infected children, and that mosquitoes did not 

differentiate between children after antimalarial treatment. The two studies show that 

asymptomatic but infectious humans are more attractive, hence likely to receive more 

mosquito bites than non-infectious people. Interestingly, higher gametocyte densities also 

result in higher infectiousness to malaria mosquitoes (Churcher et al., 2013). Low 

gametocyte densities of around one gametocyte per µl blood (considered as sub-microscopic) 

lead to low percentages of mosquitoes becoming infected (around 4% An. gambiae), but 

higher gametocyte densities (detectable by microscopy) of more than 200 gametocytes per µl 

blood lead to substantially higher infection rates (up to 20% of mosquitoes). Therefore, there 
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is an association between high gametocyte densities in humans, higher attractiveness to 

malaria vectors and a rapid increase in mosquito infection (Churcher et al., 2013, and Chapter 

5), which is expected to impact on models of malaria transmission considerably.  

 

Thus, an infection with high densities of Plasmodium gametocytes in humans increases host 

attractiveness to malaria vectors, which suggests that people with high gametocytaemia could 

contribute disproportionately to malaria transmission, as they are likely bitten more often 

than their non-gametocytaemic counterparts and also infect mosquitoes at a higher rate, hence 

have a considerably higher chance of passing on the parasites to non-infected mosquitoes.  

 

In order to confirm that gametocytaemic humans are indeed bitten more as a result of 

increasedattractiveness, people in the same household could be tested for the presence of 

gametocytes, while mosquitoes could be collected from the same household the following 

morning. Genotyping of mosquito blood-meals would reveal the contact rates of mosquitoes 

with specific household members (Mukabana et al., 2002). This would eventually reveal 

which of the household members received most mosquitobites. It is also important to 

investigate whether my finding applies more generally to interactions between 

gametocytaemic people and malaria vectors, particularly because secondary vector species 

are becoming increasingly important in Sub-Saharan Africa (Russell et al., 2011). I expect 

that, like An. gambiae, the anthropophilic An. funestus also discriminates between people 

harbouring asexual stages or gametocytes, as well as parasite-free humans, as both species 

rely on human-specific olfactory cues to locate their blood-meal host (Homan et al., 2016). 

Because the P. falciparum cue is likely an exaggeration of a pre-existing host cue (deceptive 

signaling), it is likely to affect other malaria vectors that are known to use human odour as 

host-seeking cues, but this requires further studies. 

 

Taking an evolutionary perspective, the findings of Chapter 5 contrast with those in a system 

consisting of an aphid vector, Micromyzus kalimpongensis Basu, that causes cardamom 

bushy dwarf virus (CBDV) in Elettaria cardamomum plants (Ghosh et al., 2016). Virus-

infected plants are more attractive to aphid vectors and this has a beneficial effect on aphid 

fitness. In my study system (Chapter 5), increased attractiveness of the host (gametocyte 
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carriers) is not likely to benefit the vector (mosquito). In fact, Plasmodium parasites may 

have a negative fitness impact on the vector during its development, where its motivation to 

get blood-meals and reproduce is decreased at the oocyst stage (Wekesa et al., 1992; 

Anderson et al., 1999; Cator et al., 2013; Cator et al., 2014). Despite such possible negative 

fitness consequences, mosquitoes were lured to the infectious hosts (Chapter 5). Plasmodium 

parasites have apparently a strong evolutionary capability to manipulate their arthropod hosts 

to their own advantage, regardless of negative fitness effects. Infection with Plasmodium 

parasites has been suggested to induce upregulation of the existing host-seeking cues, which 

could deceive malaria mosquitoes and result in increased attractiveness of infected vertebrate 

hosts (Mauck et al., 2010). 

 

How may Plasmodium influence human attractiveness to malaria mosquitoes? 

Evidence is accumulating that infection with parasites results in increased attractiveness of 

vertebrate hosts. De Moraes et al. (2014) showed increased attractiveness of Plasmodium-

infected mice with high gametocyte levels, while more mosquito bites were also reported 

in chronically infected birds (Cornet et al., 2013). Additionally, human adults who 

harboured P. vivax-gametocytes were more attractive to An. darlingi than their non-

gametocytaemic counterparts (Batista et al., 2014), and children infected with microscopic 

levels of P. falciparum gametocytes were approximately twice as attractive to An. gambiae 

than those without gametocytes (Lacroix et al., 2005), Chapter 5). However, these studies 

did not address the question whether increased attractiveness results from changes in 

total emanations (a combination of body and breath volatiles), body odour only or breath 

volatiles only. To date, only a single study with mice investigated the composition of 

total emanations of gametocytaemic vertebrates (De Moraes et al., 2014). These 

researchers identified five compounds (during the chronic stage) that played a significant 

role in attractiveness of mosquitoes. 

 

I conducted dual-choice cage assays to determine the role of body odour in mosquito 

responses to individual children before and after treatment with antimalarials. Attractiveness 

of socks worn by uninfected children did not differ significantly between the two moments, 
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corroborating results of in vivo experiments with parasite-free children when total body 

emanations were used (Lacroix et al., 2005, and Chapter 5).  
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As expected, An. gambiae responded more strongly to body odours of microscopic 

gametocyte carriers before antimalarial treatment compared to body odour of the same 

children after they received medication, which is in line with increased attractiveness of total 

emanations of gametocytaemic children in in vivo experiments (Lacroix et al., 2005, and 

Chapter 5). In addition, a significantly higher number of mosquitoes was attracted to body 

odours from asexual carriers and children with submicroscopic gametocytes before treatment 

than after medication, although no difference in attractiveness at the two time points was 

reported in in vivo studies (Lacroix et al., 2005, and Chapter 5). This shows that both asexual 

and sexual stages of malaria parasites can change body odours resulting in increased host 

attractiveness in the in vitro but not the in vivo assays (figure 1). Interestingly, this also 

suggests that changes in body odour alone were not sufficient to result in differential 

attractiveness in the olfactometer studies, and that changes in breath of microscopic 

gametocyte carriers likely contributed to the observed strong change in attractiveness of this 

group. Alternatively, the cage assay may be more sensitive to small differences in skin 

volatiles within the same child at two infection moments. Additionally, Plasmodium-infection 

in humans may induce production of short-range volatiles that malaria mosquitoes respond to 

or are sensitive to, compared to VOC’s from uninfected humans. In the cage assay, the 

distance between the mosquitoes and volatiles from the worn socks was much smaller (less 

than 50 cm) compared to the olfactometer or screen house set-ups. Smallegange et al 

(Smallegange et al., 2012) also found differences in response of mosquitoes in two set-ups, 

i.e. in an olfactometer (The Netherlands)  using the basic blend (ammonia, L-lactic acid and 

tetradecanoic acid) and in the semi field (Kenya), using similar volatile blends, with an 

addition of a few compounds to the basic blend, and explained these differences by 

dimension of the set-up. Indeed, spatial scale can determine whether mosquito responses to 

specific volatiles in addition to an attractive blend are increased or decreased (Smallegange et 

al., 2012). In addition, mosquito species or colony used in experiments could also explain 

differences in their response to volatiles. 

The mechanisms involved in manipulation of human attractiveness by malaria parasites 

were not addressed previously (figure 1). In Chapter 4, the hypothesis was developed 

that infection with malaria parasites may influence skin microbial composition, leading 

to changes in body odour. Indeed, skin microbial composition influences attractiveness 
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of body odour from healthy humans (Verhulst et al., 2011c), and attractiveness of 

different host species to malaria mosquitoes (Chapter 3). However, the attractiveness of 

skin bacterial volatiles from parasite-free and Plasmodium-infected children did not differ in 

a cage-assay (Chapter 6). Nevertheless, this does not preclude a role of skin bacterial 

volatiles in Plasmodium-mediated attraction of mosquitoes as agar and artificial medium 

are very selective in growths of bacteria. 

 

Unlikethe human skin, far fewerbacterial species will have grown on ouragarplates, 

whichmay have affectedtheattractiveness of thebacterialvolatilestomosquitoes. Therefore, 

sequencing of the skin microbiota of Plamodium-infected and parasite-free children is needed 

to examine the effect of Plasmodium-infection on skin microbiota in more detail. 16S-rRNA-

sequencing can be used to reveal skin bacterial composition, bacterial diversity and species 

abundance. This may further provide information on whether P. falciparum-infected humans 

have unique skin bacterial species compared to their non-infected counterparts.  

 

Future perspectives 

As pointed out in the sections above, findings in my thesis have led to the identification of 

future research areas that can provide information on mosquito-host-microorganisms 

interactions (figure 1), which are discussed here.  

 

Mechanisms of Plasmodium-mediated host attractiveness 

Analysis and identification of skin bacterial volatiles from Plasmodium-infected hosts 

(gametocyte carriers) 

Mosquito species coexist in nature and different mosquito species respond differently to host 

odours (Chapter 2). It is therefore important to determine the preference of mosquito species 

other than An. gambiae to Plasmodium-infected (asexual and gametocyte carriers) and 

uninfected people (as in Chapter 5). Follow up of the uninfected and Plasmodium-infected 

(carriers of asexual stages and gametocyte carriers) children throughout their infection cycle 

and analysis of their skin bacterial profiles is important to determine mechanisms involved in 

attractiveness of the gametocyte carriers. However, this is impossible due to the ethical 
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implications of leaving malaria-infected individuals untreated. Therefore, a mouse model 

similar to that used by De Moraes et al. (2014) to determine differences in the skin bacterial 

profiles of Plasmodium-infected and parasite-free mice would be more suitable to follow up 

on the relationship between  

 

Plasmodium, skin bacteria and mosquito response throughout infection (figure 1). In such 

experiments, it would be important to monitor the response of mosquitoes (anthropophilic 

and opportunistic) to Plasmodium chabaudi-infected mice versus mice infected with parasites 

other than Plasmodium (controls) to determine whether the observed changes in mosquito 

responses are Plasmodium-specific or caused by a generic immune response in the vertebrate 

host. Differences/similarities in composition of VOCs between uninfected and infected hosts 

would be determined (figure 1). The analyses of volatiles in the bacterial headspace that 

would be collected at all infection stages of mice with Plasmodium versus non-malaria 

parasites, together with results from mosquito behaviour experiments, can lead to 

identification of attractive compounds and the associated bacterial species. This will show 

similarities or differences in attractiveness of hosts infected with different parasites, which is 

needed to use the information obtained in this thesis in fine-tuning of mathematical models of 

malaria transmission. Additionally, the information may figure out the mechanisms of 

manipulation, which could perhaps be informative on the evolution of manipulation. 

 

Identification of attractive human-breath volatiles from gametocytaemic humans 

Results of the cage assay strongly support a role of body odour in Plasmodium-mediated host 

attractiveness, but differences between the cage assays (Chapter 6) and the in vivo 

olfactometer studies point at an additional role of breath in the observed attractiveness of 

microscopic gametocyte carriers. Breath has received little attention as a source of mosquito 

host-seeking cues, other than CO2. Mukabana et al (Mukabana et al., 2004) reported a 

stronger response of malaria mosquitoes to body odours compared to total emanations from 

two healthy human volunteers, suggesting that breath may suppress mosquito attraction to 

parasite-free hosts.  In search of bio-markers for malaria-infection, Kelly et al. (2015) and 

Berna et al. (2015) showed the presence of thioethers and terpenes in cultures of P. 

falciparum and breath volatiles of Plasmodium-infected humans, respectively.  
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Terpenes are generally known as plant-produced compounds (Bohlmann & Keeling, 2008) 

and have not been investigated much as host-seeking cues for malaria vectors.  However, 

they play a role in the behaviour of numerous plant-feeding insects (Courtois et al., 2016) 

and, as mosquitoes also feed on plants, may be recognized by mosquitoes. Interestingly, the 

same terpene identified in P. falciparum cultures, limonene, was also identified in healthy 

chicken odour profiles, and has been found to repel host-seeking An. arabiensis (Kassahun et 

al., 2016). Likewise, the role of thioethers in mosquito host-seeking is not known and could 

provide an interesting avenue of further research. Similar to my studies on the attractiveness 

of body odours, there is need to collect breath volatiles and test the attractiveness of breath 

volatiles from uninfected humans, carriers of asexual stages and gametocyte carriers.  

 

This will reveal whether malaria parasites manipulate breath composition leading to 

enhanced mosquito attraction to microscopic gametocyte carriers. 

 

Test manipulation mechanisms in arbovirus-infected hosts or parasites other than 

Plasmodium 

Infection with pathogens can influence the attractiveness of hosts to their vectors. The 

parasites manipulate their vertebrate hosts to make them more attractive to their vectors, 

which enhances transmission of the parasites. This has been reported in Leishmania 

infantum-infected hamsters (O'Shea et al., 2002), lambs infected with Rift Valley fever virus 

(RVF) (Turell et al., 1984), chickens infected with Sindbis virus (SINV) (Mahon & Gibbs, 

1982), P. chabaudi- or P. berghei-infected mice (Day et al., 1983; De Moraes et al., 2014), 

SINV-infected young birds (Scott et al. 1988). and, recently, for bank voles infected with 

Borrelia afzelii, a tick-borne pathogen (van Duijvendijk et al., 2016). The mechanisms of 

manipulation have, however, not been addressed in any of these systems. Culex and Aedes 

mosquitoes, as well as sand-flies and other non-malaria vectors bite humans, and some of 

these vectors are currently important in epidemics of vector-borne diseases, such as Zika. It is 

thus important to study the behaviour of these mosquitoes, i.e. their preference for infected or 

uninfected hosts, and the mechanisms involved in manipulation by their associated parasites 

and viruses, as this may clarify whether the effects are general for all pathogenic 

microorganisms.  
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Results of the suggested studies, together with results of this thesis (Chapters 5 and 6) may 

also determine whether the attractiveness of the vertebrate hosts is truly caused by the 

Plasmodium-manipulation phenomenon, or the observed changes are an outcome of 

upregulation of the immune system.  

A mouse-virus-vector system (Zouache et al., 2014) could be used to study strategies of 

manipulation on hosts, by specific viruses. Virus could be injected in healthy mice, and 

response of different mosquito species, including malaria mosquitoes, to body odour with and 

without breath of infected mice would be monitored. Volatiles need to be collected from 

breath and skin of the mice and analysed for identification of compounds produced by the 

infected and uninfected mice. Behavioural experiments using Culex, Aedes and malaria 

mosquitoes would reveal attractive compounds to the mosquito species. This can provide 

additional information and evidence for general/common attractive compounds for 

Plasmodium- and virus-vectors.  

 

Improvement of odour baits  

Of the three natural host species used in my experiments, humans were most attractive 

(Chapters 2 and 3) to mosquitoes. However, An. arabiensis also responded to cow and 

chicken odour. At microscopic levels, gametocytes increased the attractiveness of 

Plasmodium-infected children (Chapter 5). Further, analyses of volatiles from a human, a 

cow and a chicken can lead to the identification of compounds that enable mosquitoes to 

distinguish between different host species and between parasite-free humans, carriers of 

asexual or sexual (gametocytes) stages of P. falciparum using a combination of gas 

chromatography and mass spectrometry (Kassahun et al., 2016). Compounds that would be 

identified may be tested for their attractiveness to mosquitoes with different host preferences 

to ensure that primary and secondary malaria vectors are attracted (Homan et al., 2016). 

Together with the attractive compounds that could be identified from a mouse model system, 

as described above, and behavioural assays, a standardized synthetic blend that would attract 

mosquitoes with different host preferences could be developed. An additional effect of an 

improved, standardized synthetic odour blend could be trapping of nuisance biters and 

arthropod vectors other than mosquitoes. 
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Future studies should also focus on sequencing of skin bacteria using 16S-rRNA (Faith, 

1992; Verhulst et al., 2011c; Salter et al., 2014) of the three host species (cow, chickens and 

humans) and on non-infected, sub/microscopic gametocyte and carriers of asexual stages of 

Plasmodium parasites. This will provide information on bacterial diversity and abundance 

and the specific or general volatile compounds produced by different skin microbes. Analysis 

of skin volatiles of gametocytaemic, parasitaemic and parasite-free Kenyan children, as well 

as sequencing for skin bacterial profiles of the children is ongoing (Robinson et al. in 

preparation). Research on link(s) between skin microbial populations, Plasmodium, virus 

infections and attractiveness to mosquitoes with different host preferences is therefore 

expected to lead to improvement of the existing odour-baits (Homan et al., 2016) and 

development of new mosquito attractants and other methods for protection against malaria 

vectors, and other mosquito-borne diseases. 

 

Conclusions 

In conclusion, this thesis has shown that: i) mosquitoes with different host preferences 

respond differently to odours from different hosts and their associated skin bacterial volatiles, 

ii) Plasmodium falciparum gametocytes play a significant role in increased attractiveness of 

infected humans, and iii) body odours are partially responsible for increasing attractiveness of 

gametocyte carriers (figure 1), but also change in children carrying asexual stages.  Future 

research should focus on: a) the provision of information on mechanisms of host 

manipulation by pathogens/parasites, as this may lead to a better understanding of how the 

vertebrate host-pathogens-vector biological system operates and b) improvement of the 

synthetic odour blend MB5 (Menger et al., 2014a; Homan et al., 2016), or development of a 

standardized odour blend from attractive bacterial volatiles identified from different host 

species, carriers of asexual parasite stages, gametocyte carriers and parasite-free humans. 

Improved odour blends may be used as a strategy for control of malaria and other vector-

borne diseases.   
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Summary 

For the first time, interactions between human hosts and their skin microbiota, Plasmodium 

parasites and malaria vectors were investigated through a series of studies shown in this 

thesis. Skin microbes and malaria parasites were shown to mediate the interaction between 

vertebrates and arthropod vectors with different host preferences. This interaction could lead 

to improvement of existing odour-baited traps, which has become a viable option forvector 

control (Homan et al., 2016). In order to understand the role of microorganisms in mediating 

the response of mosquitoes with different host preferences, three research questions were 

studied: (1) Do volatiles produced by skin bacteria play a role in species-specific host 

preference of mosquitoes? (2) Does infection with gametocytes of Plasmodium increase the 

attractiveness of humans to malaria mosquitoes? and (3) What is the mechanism through 

which Plasmodium influences human attractiveness to malaria mosquitoes? The results are 

summarized below. 

 

In Chapter 2, I investigated the response of mosquitoes with different host preferences to 

natural host odours and synthetic odour blends in a screenhouse and outdoors, in a malaria-

endemic area in western Kenya. Both experiments tested the attractiveness of chicken, cow 

and human odours and odour blends that consisted of three compounds (the standard blend) 

or five compounds (MB5) previously identified and released with carbon dioxide to the 

anthropophilic Anopheles gambiae sensu stricto and the more opportunistic An. arabiensis. 

Semi-field results showed that both An. gambiae and An. arabiensis were significantly more 

attracted to human odours. However, An. arabiensis also responded to cow and chicken 

odours, which confirmed its opportunistic behaviour in Kenya. The MB5 blend was highly 

attractive to both mosquito species. In the field, the MB5 odour blend attracted significantly 

more An. funestus than human odour, while no difference was found for An. arabiensis, the 

dominant species of the An. gambiae sensu lato in the study area. Most of An. arabiensis and 

Culex spp. fed outdoors on cow blood. These results show that mosquito species express 

differences in their response to host odours, with variation between host species and odour 

blends, and this is dependent on the set up of the geographical area. 
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In Chapter 3, bacterial volatiles from the skins of three natural hosts, human, cow and 

chicken, were collected and grown on agar plates. Attractiveness of volatiles released from 

clean agar (control) and skin bacteria was tested in a screenhouse using An. gambiae s.s and 

An. arabiensis. Result showed that, in addition to An. gambiae, An. arabiensis also responds 

to skin bacterial volatiles, and that both mosquito species can distinguish between volatiles 

from bacteria collected from different host species. Bacterial volatiles, however, induced 

differential responses of the two mosquito species, which matched their response to the host 

odours themselves studied in Chapter 2, i.e. both mosquito species had a preference for 

bacterial volatiles from humans compared to volatiles from other hosts, although this effect 

was stronger for the more anthropophilic An. gambiae. In contrast to An. gambiae, An. 

arabiensis responded equally to all individual bacterial species tested, which may be 

explained by its more opportunistic feeding behaviour in Kenya. Analysis and identification 

of specific skin bacterial species and the compounds produced by skin bacteria from the three 

hosts (human, chicken and cow) would be important in the development of a standardised 

synthetic odour blend that can trap both the anthropophilic and more opportunistic 

mosquitoes. This approach would reduce mosquito populations, and hence, vector-borne 

diseases. 

 

In Chapter 4, we review how various parasites manipulate their vectors as well as their 

vertebrate hosts in order to enhance their transmission. The focus was on humans who were 

more attractive to malaria mosquitoes compared to their less-attractive counterparts. Our 

literature search and past experiments, including Chapter 5 of this thesis showed that people 

who harbour microscopic gametocytes of Plasmodium are significantly more attractive to 

malaria mosquitoes than submicroscopic gametocyte carriers, asexual carriers or malaria-free 

individuals before antimalarial treatment of infected children. We explored the possible 

mechanisms involved in attractiveness of gametocyte carriers by in-depth discussion on the 

possibility of the malaria parasites to produce attractive volatiles that may play a role in the 

attractiveness of humans infected with the sexual stage (gametocytes) of Plasmodium 

parasites, and suggest that the increased attractiveness of the gametocyte carriers may be due 

to manipulation of the skin bacterial profile of this group of people, by malaria parasites, 

which modify the VOCs of people harbouring gametocytes and not the non-microscopic 
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gametocyte carriers. We also suggest that Plasmodium parasites could induce upregulation of 

the existing host-seeking cues, which may deceive malaria vectors and result in increased 

attractiveness of infected vertebrate hosts. We conclude with suggestions to include volatile 

analyses of skin bacteria from gametocyte and non-gametocyte carriers, for identification of 

compounds attractive to mosquitoes.   

 

Chapter 5 describes a dual-choice olfactometer experiment using four groups of Kenyan 

school children, malaria-free, asexual, submicroscopic or microscopic gametocyte carriers 

aged 5-12 years, versus a standardised human odour. All children were screened for presence 

of malaria parasites using microscopy and two molecular techniques, PCR and QT-NASBA, 

at two time-periods, during infection and after treatment of infected children with 

artemisinin-lumefantrine. Only the malaria-free children were recruited in the study based on 

PCR results. Our findings showed that children attracted higher numbers of mosquitoes than 

the standardised human odour. Additionally, higher attractiveness of malaria-infected 

persons, (two times more in microscopic gametocyte carriers) is dependent on higher levels 

of gametocytaemia, compared to children without gametocytes or with low levels of 

gametocytaemia. Further, not only body odours, but also breath could have contributed to 

increased attractiveness of microscopic gametocyte carriers before antimalarial treatment. 

Additional results showed that the attractiveness of the microscopic gametocyte carriers was 

not influenced by their age and gender, and did not differ significantly with that of the other 

groups after treatment of infected children with antimalarials (21 days post-treatment). 

Findings from this study suggest that significantly highly attractive people are bitten more 

than the less attractive people, and our results could be used in mathematical models, in 

predicting and planning interventions towards the gametocyte carriers. This includes 

budgeting for transport costs, purchase of malaria screening equipment and antimalarial 

drugs, which would result in reductions in transmission of malaria. Further analysis and 

identification of specific compounds produced by skin bacterial volatiles from the most 

attractive gametocyte carriers and testing the attractiveness of the compounds identified, will 

provide information on volatiles that are attractive to mosquitoes. This may result in 

improvement of the existing synthetic odour blends like the MB5 blend that was used to trap 

mosquitoes on Rusinga Island, Western Kenya. 
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Chapter 6 utilised a dual-choice cage assay in determining the mechanism underlying 

attractiveness of Kenyan children (studied in Chapter 5) infected with the transmissible stage 

of P. falciparum (gametocytes). Relative comparisons were done to determine the response of 

malaria mosquitoes to i) body odours (worn nylon socks) and ii) skin bacterial volatiles (from 

the lower back), from the same child at two time periods, before and after treatment of 

infected children. Body odours from malaria-infected children were significantly more 

attractive to malaria vectors compared to body odours from the same children after 

medication, or to volatiles from malaria-free children. Odours from malaria-free children did 

not differ significantly during the two time-periods. The attractiveness of the microscopic 

gametocyte carriers studied in Chapter 5 (a combination of breath and body odours) and 

Chapter 6 (using body odours only) matched. Additionally, body odours of submicroscopic 

and asexual carriers were attractive to malaria vectors in the cage assay, but not in the 

olfactometer experiment before antimalarial treatment, which suggests manipulation of body 

odours by Plasmodium parasites to increase host odour attractiveness. The cage assay could 

be sensitive to small differences in skin volatiles of the same child at the two time-periods, 

which could have made the body odours of malaria-infected children attract high numbers of 

mosquitoes. In the bacterial experiment, the attractiveness of skin bacterial volatiles from 

malaria-free and infected children did not differ, but this does not preclude the role of skin 

bacterial volatiles in malaria-mediated attraction of mosquitoes. Future research should 

therefore aim at identification of bacterial species, their diversity and compounds emitted by 

bacteria, which could be tested for attractiveness to mosquitoes. This may lead to the 

development of new odour baits or improvement of the existing synthetic odour blends. The 

role of breath in attractiveness of gametocyte carriers should also be investigated. 

 

The final chapter of this thesis provides a general discussion and conclusions of previously 

unanswered questions on the role of microorganisms in mediating response of mosquitoes 

with different preferences and the underlying mechanisms. We showed that skin bacteria 

mediate odour production, and mosquitoes with different host-preferences respond differently 

to each odour. We further showed that infection with high gametocyte densities of 

Plasmodium enhances attractiveness of humans to malaria mosquitoes and body odours play 
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a significant role in the attractiveness of malaria-infected hosts. The results provided in this 

thesis create new opportunities for future experimentation. 

 

The main conclusions from this thesis are summarised as follows: Skin bacterial volatiles 

play an important role in guiding mosquitoes with different host preferences to their specific 

host. Within species, an infection with high densities of Plasmodium microscopic 

gametocytes results into higher attractiveness of hosts to malaria vectors. Identification of 

general or common attractive volatiles produced by the natural hosts, cattle, human, chickens 

as well as those from the gametocyte carriers may contribute to the development of a new 

standardized synthetic odour blend that may be used for sampling of mosquitoes with 

different host preferences. The use of powerful attractive odorants may result in reductions of 

vector-borne diseases caused by mosquitoes. 
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