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1.1 Introduction to the research project

Due to increased exposure in the media about global warming and depletion of resources, 
society is more aware of the environmental damage caused by human actions (Quariguasi Frota 
Neto et al., 2009). Resources are becoming scarce, and the consequences of climate change are 
having a large impact on the living environment. At the same time, it is estimated that about 
50% of total food production is wasted in the supply chain and after reaching the customer, 
which accounts for over 1.3 billion tons of food wastage worldwide (Lin et al., 2013).
Moreover, it is predicted that by 2050, overall food production will need to be increased by 
some 70% to feed the increasing world population (Alexandratos and Bruinsma, 2012). To 
satisfy the future needs of the growing population, Food Supply Chains (FSCs), composed of 
organisations that produce, process and distribute crop- and animal-based products (van der 
Vorst et al., 2005), are challenged to increase productivity, eliminate current inefficiencies, and 
produce more sustainable and healthier products.

Concerns about sustainability around FSCs require action. The research in this thesis originates 
from the idea that food production could become more sustainable than it currently is if scarce 
resources (such as raw materials, energy sources, water, chemicals) are used efficiently (not 
producing more side streams than necessary) and effectively (by valorization of unavoidable 
side streams) without seriously harming the environment. This may imply a re-design of food 
production and distribution. Advanced decision support models can help re-design FSCs to 
eliminate current inefficiencies and to assess technical innovations at chain level (de Keizer, 
2015; Rijpkema, 2014). This is challenging because these decision support models must deal 
with the complexity of FSCs and account for intrinsic characteristics of food products, such as 
alternative production options, perishability of products, as well as uncertainty in productivity, 
demand and prices (Soysal, 2015; Shukla and Jharkharia, 2013).

Most of the mathematical models for decision support in FSCs only consider economic aspects 
(Akkerman et al., 2010). However, sustainable supply chains require more than the economic 
validation of a single overriding objective (i.e. profit) for individual links within the chain. A 
sustainable supply chain involves multiple and (mostly) conflicting objectives and requires an 
integrated approach by the different stakeholders, including complex interrelated input-output 
relationships. Inevitably, choices have to be made and each alternative has a specific impact on 
the (conflicting) goals. Moreover, there is a need to develop and analyse sustainable supply 
chain models, instead of focusing on single-location models, which may result in a reduction of 
negative environmental impact at one location at the expense of an increase elsewhere in the 
chain (Chaabane et al., 2012; Tang and Zhou, 2012). The research in this thesis aims to provide 
the food sector with tools to take its social responsibility and to be prepared for the societal urge 
to improve on sustainability by developing decision support models for quantifying the impact 
of alternative production options and for optimizing flows of material in FSCs with respect to 
multiple criteria.
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1.2 Research problem description

Environmental concerns have become an important issue in supply chains, which are defined as 
“all activities associated with the flow and transformation of goods from raw materials stage, 
through to the end user, as well as the associated information flows” (Seuring and Muller, 
2008). Until recently, supply chains focused mainly on delivering high-quality products at low 
cost and gave only secondary attention, if any, to environmental impact and depletion of natural 
resources. To avoid depletion of natural resources for future generations, nowadays decision 
makers in supply chains are focused on using natural resources to their full potential by using as 
little material as possible, not producing more side streams (or waste) than necessary, and 
valorizing unavoidable side streams (i.e. “to do more with less”) to ensure environmental 
sustainability of supply chains.

1.2.1 Improvement opportunities

To improve the environmental performance of a supply chain, a so-called green supply chain 
should be considered, which extends the traditional supply chain to include activities that 
minimize the environmental impact of a product throughout its life cycle by giving attention to 
waste reduction, efficient use of energy resources, greenhouse gas emissions, and resource use 
efficiency (Paksoy et al., 2010; Beamon, 1999). The environmental impact of supply chains has 
been measured based on the amount of greenhouse gases (GHG) emitted (Aramyan et al., 2011; 
Bauer et al., 2010), energy consumed (Zanoni and Zavanella, 2012; van der Vorst et al., 2009),
solid waste produced (Paksoy et al., 2010; Quariguasi Frota Neto et al., 2009), or water 
consumed (You et al., 2012; Oglethorpe, 2010). In the context of FSC, the sustainability 
discussion has mainly focused on reduction of waste and transportation emissions (Soysal et al., 
2014; van der Vorst et al., 2009).

In addition, integration of forward and reverse logistics into so-called closed-loop supply chains 
has been explored (Chaabane et al., 2012; Paksoy et al., 2011; Jayaraman, 2006). Such 
considerations are extended to include recovery of (by)products, typically achieved through 
practices such as reuse, repair, recycle, remanufacture and reverse logistics (Chaabane et al., 
2011; Paksoy et al., 2011; Chaabane et al., 2008). With respect to supply chains concerned with
food products, quantitative models have been proposed for biofuel production (Ziolkowska, 
2014; You et al., 2012), which can be seen as a reverse supply chain for food products, because 
it offers insights into potential ways to valorize food waste. However, as shown in Chapter 2, 
the literature lacks FSC decision support models that focus on closing loops by using waste as 
materials for production in the same chain. Furthermore, assessment of closing loop 
technologies needs to be performed with respect to both environmental and economic factors 
(Govindan et al., 2015d).

1.2.2 Multi-criteria decision making

It is clear that studying sustainability in supply chains requires the consideration of multiple 
goals. Any design of a supply chain usually involves trade-offs among different conflicting 
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objectives (Wang et al., 2011), and only a limited number of initiatives for environment-
friendly production have proved to be profitable (Quariguasi Frota Neto et al., 2008), i.e. 
reduction of environmental impact often requires sacrifices in terms of economic performance 
of a supply chain. Moreover, evaluation of an FSC requires not only the assessment of 
environmental and economic aspects but also their interdependence. Multi-Criteria Decision 
Making (MCDM) is a research field within Operations Research that deals with any decision 
where multiple and conflicting criteria have an influence on the decision (Scott et al., 2012).
Multi-criteria decision approaches are the basis for developing case-dependent models 
commonly used to address different decision problems in sustainable supply chains and to test 
the efficiency of various supply chain configurations and operating strategies (Aramyan et al., 
2011; Chaabane et al., 2011; Ramudhin et al., 2010).

In this research, multi-objective optimization, one area of MCDM, is applied to balance the 
conflicting economic and environmental objectives. Multi-objective optimization is particularly 
suitable for finding the best compromise between economic and environmental dimensions of 
sustainability (Chaabane et al., 2011). The rationale is to develop decision support models that 
can be used to determine a set of eco-efficient solutions, i.e. a set of solutions for which it is 
impossible to improve the environmental objective without worsening the economic objective 
(and vice versa) (Quariguasi Frota Neto et al., 2009). Despite the vast body of literature on 
MCDM, determining eco-efficient solutions with multi-objective optimization is quite new and 
has been identified as a challenging task because of the computational difficulties (Dekker et 
al., 2012; Quariguasi Frota Neto et al., 2009). Moreover, when the environmental performance 
is expressed by multiple indicators, the set of eco-efficient solutions cannot be as clearly 
presented and interpreted because of the need for multiple dimensions.

1.2.3 Embeddedness

The issue of sustainability in food production is addressed in this work, which is part of a 
project called Valorisation of raw materials and process efficiency commissioned by the Top 
Institute Food and Nutrition (TIFN). The objective of the TIFN project is to investigate how 
current food production can be optimized with respect to resource use in terms of raw material 
valorization, which is interpreted as better use of raw materials, reduced use of energy and 
water, and the minimization of losses.

The TIFN project involves multiple food processing companies and research groups, two of 
which involve Wageningen University & Research. The Food Process Engineering (FPE) group 
focuses on technological innovations to reduce inefficiencies and improve sustainability at the 
process level, and on using exergy analysis to quantify the environmental performance of FSCs. 
Exergy analysis is based on basic concepts in thermodynamics and can be used to objectively 
assess environmental impact (Zisopoulos et al., 2017). The advantage of exergy as an 
environmental indicator is that it allows the environmental impact of production and 
distribution activities to be quantified and expressed in a single unit (i.e. megajoules). In 
contrast to energy, exergy is exempt from the law of conservation, and in all real-life processes 
exergy input always exceeds exergy output (Apaiah et al., 2006), which means that some 
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exergy is irreversibly lost in each processing step. The exergy balance applied to a process 
explains how much exergy supplied as input to the system has been irretrievably lost by the 
process (Kotas, 1995).

The data on technological innovations and exergy analysis delivered by the FPE group is used 
by the Operations Research and Logistics (ORL) group, which focuses on the identification and 
quantification of opportunities for valorization and waste stream management at the supply 
chain level using decision support models. This dissertation contributes to the work of ORL.

The TIFN project has embraced two case studies: the bread supply chain (partner: Sonneveld 
BV), and the mushroom supply chain (partner: C4C Holding BV). These cases were chosen 
based on their potential to recover waste materials; i.e. recycling of waste bread is central in the 
bread case, whereas reusing (parts of) the growing medium is central in the mushroom case. 
The setting of the TIFN project ensures strong involvement of the industry in the complete 
process, i.e. problem finding, data collection, and communication with the industrial partners. 
For each case study, a working group, including the industrial partners and senior researchers, 
was set up to provide focus, gather data, and discuss findings.

1.3 Research objective and questions 

The overall objective of this research is to support decision making in FSCs by developing 
dedicated multi-objective models that are used to optimize and re-design FSCs by balancing 
economic and environmental criteria. The emphasis is directed towards the valorization of 
(by)product flows by means of closing loops and waste management at the chain level. In 
particular, we aim to: (i) develop blueprints for industry-specific FSC models by deriving eco-
efficient solutions to assess alternative production options and to quantify the impact of closing 
loop technologies, (ii) assess the potential of exergy as a single indicator for the environmental 
dimension of sustainability, (iii) investigate the impact of uncertainty in model parameters on 
eco-efficient solutions in FSCs.

The challenge and scientific contribution of this work are to develop sophisticated optimization 
models that capture the underlying complexity of FSCs in order to support decision making in 
real life. The specific goals of the optimization models developed are to:

- Support managerial decisions for alternative production options that result in lower 
production costs and environmentally friendly food production;

- Perform ex ante, quantitative assessment of technological innovations on the economic and 
the environmental performance of the chain;

- Quantify the impacts of closing loops;
- Calculate and determine the trade-offs between important economic and environmental 

criteria to support decision making.

In line with the research objective, four research questions are defined, which are introduced in 
the following subsections.
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1.3.1 Research challenges

Incorporating environmental thinking into supply chains is not new, and a considerable amount 
of literature describing quantitative tools for eco-efficient supply chains is available. Literature 
review articles on quantitative approaches to support decision making in supply chains with 
environmental concerns include, for example, Brandenburg et al. (2014), Dekker et al. (2012),
Soysal et al. (2012), and Seuring (2013). To the best of our knowledge, however, no reviews 
have focused specifically on MCDM approaches in eco-efficient supply chains. To investigate 
gaps and research challenges in the literature related to the use of multi-criteria approaches for 
decision making in supply chains, the following research question has been formulated:

RQ1: What is the state of the art and what are the research challenges in MCDM approaches 
applied to eco-efficient supply chains?

Some of the findings of the literature review, which is discussed in Chapter 2, include: (i) a lack 
of multi-objective optimization models to support decision making in real-life FSCs, (ii) a 
variety of indicators used in the literature to account for the environmental impact of food 
production, (iii) no attention given to closed-loop FSCs, (iv) most papers assume all data to be 
deterministic. These findings were the motivation to formulate research questions RQ2, RQ3, 
and RQ4 discussed in the following subsections.

1.3.2 MCDM models to evaluate new technologies in FSCs

The findings of the literature review suggest that only some isolated studies are built on 
empirical research, and in most cases, the developed models use illustrative (not real-life) 
examples. More attention should be given to industry-specific research on eco-efficient supply 
chains, and the multi-objective models developed should be linked to empirical data (Seuring, 
2013; Hassini et al., 2012).

In food industries, technological innovations become available that allow for alternative ways to 
deal with waste materials, i.e. allow for reducing, reusing, or recycling waste materials from 
food production. However, there are few studies in the closed-loop supply chain literature that 
evaluate quantitatively the relationship between economic and environmental criteria 
simultaneously (Govindan et al., 2015d; Stindt and Sahamie, 2014). Best practices must be 
identified given the currently available technology and technological innovations, including e.g. 
pre-processing, new recipes and alternative activities. All these specificities need to be 
evaluated with the help of multi-objective optimization models that encompass features and 
specificities of the supply chains under consideration to assess the benefits of technological 
innovations and ultimately to determine eco-efficient configurations of an FSC. The following 
research question has been formulated:

RQ2: What type of MCDM models can be used to evaluate the effects of new technologies and 
logistical structures on eco-efficiency in food supply chains?
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- Quantify the impacts of closing loops;
- Calculate and determine the trade-offs between important economic and environmental 

criteria to support decision making.

In line with the research objective, four research questions are defined, which are introduced in 
the following subsections.
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1.3.1 Research challenges

Incorporating environmental thinking into supply chains is not new, and a considerable amount 
of literature describing quantitative tools for eco-efficient supply chains is available. Literature 
review articles on quantitative approaches to support decision making in supply chains with 
environmental concerns include, for example, Brandenburg et al. (2014), Dekker et al. (2012),
Soysal et al. (2012), and Seuring (2013). To the best of our knowledge, however, no reviews 
have focused specifically on MCDM approaches in eco-efficient supply chains. To investigate 
gaps and research challenges in the literature related to the use of multi-criteria approaches for 
decision making in supply chains, the following research question has been formulated:

RQ1: What is the state of the art and what are the research challenges in MCDM approaches 
applied to eco-efficient supply chains?

Some of the findings of the literature review, which is discussed in Chapter 2, include: (i) a lack 
of multi-objective optimization models to support decision making in real-life FSCs, (ii) a 
variety of indicators used in the literature to account for the environmental impact of food 
production, (iii) no attention given to closed-loop FSCs, (iv) most papers assume all data to be 
deterministic. These findings were the motivation to formulate research questions RQ2, RQ3, 
and RQ4 discussed in the following subsections.

1.3.2 MCDM models to evaluate new technologies in FSCs

The findings of the literature review suggest that only some isolated studies are built on 
empirical research, and in most cases, the developed models use illustrative (not real-life) 
examples. More attention should be given to industry-specific research on eco-efficient supply 
chains, and the multi-objective models developed should be linked to empirical data (Seuring, 
2013; Hassini et al., 2012).

In food industries, technological innovations become available that allow for alternative ways to 
deal with waste materials, i.e. allow for reducing, reusing, or recycling waste materials from 
food production. However, there are few studies in the closed-loop supply chain literature that 
evaluate quantitatively the relationship between economic and environmental criteria 
simultaneously (Govindan et al., 2015d; Stindt and Sahamie, 2014). Best practices must be 
identified given the currently available technology and technological innovations, including e.g. 
pre-processing, new recipes and alternative activities. All these specificities need to be 
evaluated with the help of multi-objective optimization models that encompass features and 
specificities of the supply chains under consideration to assess the benefits of technological 
innovations and ultimately to determine eco-efficient configurations of an FSC. The following 
research question has been formulated:

RQ2: What type of MCDM models can be used to evaluate the effects of new technologies and 
logistical structures on eco-efficiency in food supply chains?
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1.3.3 Indicator based on exergy analysis to account for environmental performance of 
an FSC

For ease of interpretation and from a computational point of view, it is beneficial to use a single 
indicator for environmental performance. To account for the environmental impact of an FSC, 
this TIFN project proposes an indicator based on exergy analysis. Exergy analysis is a suitable 
scientific concept to study the impact on the environment because it measures all inputs and 
outputs in a single unit (MJ), making the results visible and the conclusions easy to draw 
(Zisopoulos et al., 2017; Wall, 2010; Apaiah et al., 2006; Apaiah et al., 2005). Exergy analysis 
is an accepted tool in engineering and has been successfully applied in many fields, including 
the energy and chemical sectors, environmental engineering, and construction industries, but 
has not been widely applied to FSCs (Zisopoulos et al., 2015). Despite the broad use of exergy 
analysis, its applicability in FSCs and its capacity to deal with the multi-dimensional nature of 
sustainability has not yet been evaluated. To address this problem, the following research 
question has been formulated:

RQ3: What is the added value of using a single metric indicator based on exergy analysis to 
account for the environmental performance of a food supply chain?

1.3.4 Accounting for uncertainty in optimizing production planning decisions in FSCs

Models developed for supply chain management with environmental considerations usually 
assume all data to be deterministic, i.e. the values of all parameters are assumed to be known 
and certain. In real-world optimization problems, however, the data are not known exactly at 
the time the problem is being solved because of measurement, estimation and implementation 
errors (Ben-Tal et al., 2009). In addition, in FSCs, not all the required data are available in 
advance because of various sources of uncertainty, e.g. risks related to the market, fluctuating 
demand, production yields, and prices. These uncertainties should be considered to give a better 
representation of reality in the mathematical models used to support decision making.

Notably, as presented in Chapter 2, most of the papers on eco-efficient supply chains assume all 
data to be deterministic, and uncertainty is hardly taken into account. Moreover, none of the 
sources of uncertainty related to food production (e.g. production yields or demand) are 
included in publications, which present decision support models for eco-efficient FSCs. To 
investigate the impact of uncertainty on the overall performance of an FSC, the following 
research question has been formulated:

RQ4: What is the impact of including uncertainty of data in optimization models on eco-
efficient solutions in a food supply chain?

1.4 Methodological design

A considerable amount of literature describing quantitative approaches for eco-efficient supply 
chains is available and is the basis for answering RQ1. A comprehensive literature review is 
conducted to identify indicators to account for eco-efficiency and to investigate what MCDM 
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approaches are used to tackle distribution, production, and inventory problems in supply chain
models with environmental considerations. Answering this research question provides 
information on research opportunities in the use of MCDM approaches for eco-efficient (food) 
supply chains, and offers insights into potential models and their characteristics to answer the 
subsequent research questions.

To answer RQ2, we develop industry-specific models for two case studies, i.e. the bread supply 
chain and the mushroom supply chain. Before developing the mathematical decision support 
models, input-output relationships in the supply chains under consideration are investigated 
through extensive literature review, data analysis, and expert knowledge. Interrelations between 
links in the chain are identified to get a good understanding of the objectives involved, sourcing 
of raw materials, and production of intermediate products, final products, and by-products. In 
collaboration with the technological research partners and the industrial partners, we identify 
alternative processes, technological innovations, including opportunities for closing loops, and 
quantify the economic and environmental impact of all activities and processes in the case 
studies. The mathematical models are used for optimization of economic performance, 
improvement of current practices, and elimination of inefficiencies for specific FSCs. 
Identifying an appropriate MCDM model and applying it to the studies under consideration 
provides information on the optimal settings of the FSC structure.

The models developed to answer RQ2 are used to quantify trade-offs between economic and 
environmental indicators. Environmental indicators considered include CO2 emissions, energy 
consumption, waste generated, and exergy loss; the data were quantified by collaborating 
scientists. To address RQ3, a comparison is made between the single indicator of exergy loss 
against commonly used environmental indicators to assess FSCs. To evaluate the value of 
exergy as a single metric to account for environmental impact, we investigate if other indicators 
(compared with using an indicator based on exergy analysis) leads to different conclusions. 
Answering this research question provides information on the capacity of exergy to capture the 
environmental dimension of sustainability at the chain level.

Many production processes and distribution activities are characterized by uncertain data 
parameters. Uncertain data parameters are identified and evaluated by the industrial partners, 
which allows the probability distribution function of the uncertain parameters to be established. 
Stochastic programming is used to reformulate the problem with uncertain parameters into a 
tractable form, and the reformulated model is solved by standard optimization software to 
obtain the best expected values of the objectives. The approach developed is tested on a case 
study characterized by uncertainty in the input data parameters. Answering RQ4 delivers 
information on the added value of using stochastic programming in MCDM models in the FSC 
context.
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1.5 Thesis outline

This thesis includes a collection of four papers that discuss or apply the use of MCDM for eco-
efficient FSCs. The papers are either published or under review for journal publication. The 
subsequent chapters comprise these papers, which address each research question. An overview 
of the thesis is shown in Figure 1.1. Chapter 2 reviews the literature on the use of MCDM 
approaches applied to eco-efficient supply chains. Chapter 3 discusses the assessment of 
alternative production options and compares the solutions when different environmental 
objectives are considered. Chapter 4 introduces a closed-loop industrial mushroom supply chain 
and proposes a model for an assessment of alternative production options and closing loop 
technologies. Chapter 5 proposes a two-stage stochastic production planning model to account 
for uncertainty in an eco-efficient FSC. Chapter 6 discusses the summarized findings and 
conclusions from the research. In addition, scientific contribution, managerial impact and 
recommendations for further research are provided.

Chapter 5: RQ4

Accounting for uncertainty 
in optimizing production 

planning decisions

Chapter 2: RQ1

Research challenges in MCDM approaches for eco-efficient SCs

Chapter 3: RQ3

Assessment of 
environmental indicator 
based on exergy analysis

Chapter 3 + Chapter 4: RQ2

Assessment of production 
options and closing loop 

technologies

Chapter 6: Conclusions and general discussion

Figure 1.1 Thesis overview 

Chapter 2

Multi-criteria decision making approaches 
for green supply chains: a review

This chapter is based on the published journal article:

A. Banasik, J. M. Bloemhof-Ruwaard, A. Kanellopoulos, G.D.H. Claassen,

J.G.A.J. van der Vorst (2016)

Multi-criteria decision making approaches for green supply chains: a review

Flexible Services and Manufacturing Journal

DOI: http://dx.doi.org/10.1007/s10696-016-9263-5
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Abstract

Designing Green Supply Chains (GSCs) requires complex decision-support 
models that can deal with multiple dimensions of sustainability while taking into 
account specific characteristics of products and their supply chain. Multi-Criteria 
Decision Making (MCDM) approaches can be used to quantify trade-offs 
between economic, social, and environmental criteria i.e. to identify green 
production options. The aim of this chapter is to review the use of MCDM 
approaches for designing efficient and effective GSCs. We develop a conceptual 
framework to find relevant publications and to categorise papers with respect to 
decision problems, indicators, and MCDM approaches. The analysis shows that 
(1) the use of MCDM approaches for designing GSCs is a rather new but 
emerging research field, (2) most of the publications focus on production and 
distribution problems, and there are only a few inventory models with 
environmental considerations, (3) the majority of papers assume all data to be 
deterministic, (4) little attention has been given to minimization of waste, (5) 
numerous indicators are used to account for eco-efficiency, indicating the lack of 
standards. This study, therefore, identifies the need for more multi-criteria models 
for real-life GSCs, especially with inclusion of uncertainty in parameters that are 
associated with GSCs.
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2.1 Introduction

Until recently, supply chains focused mainly on delivering high quality products at low costs 
and gave only secondary attention, if any, to environmental impact and depletion of natural 
resources. However, natural resources (like energy, water, minerals, metals and land) are 
becoming scarce, and their demand is expected to increase because of the growing world 
population (PWC, 2011). Additionally, society puts more pressure on companies to apply 
environmentally friendly practices due to the growing awareness of climate change caused by 
greenhouse gas emissions. Escalating deterioration of the environment leads to growing interest 
of researchers and practitioners in Green Supply Chains (GSCs), which extend the traditional 
supply chains to include activities that minimize environmental impact of a product throughout 
its entire life cycle (Beamon, 1999). To satisfy the future needs of growing population, supply 
chains are challenged to increase productivity and eliminate current inefficiencies. To achieve 
this, decision support models, which account for characteristics of products, such as e.g. 
increased risks related to uncertainty of the market and productivity, can be used to assess 
technical innovations at chain level and optimize the current logistic management (i.e. 
production, distribution and inventory management).

Eliminating inefficiencies and designing GSCs imply quantification of what is feasible from a 
technical point of view and calculation of trade-offs between economic and environmental 
indicators (Dekker et al., 2012). This leads to a concept of eco-efficiency, which we define as 
‘maintaining or increasing the value of economic output while simultaneously decreasing the 
impact of economic activity upon ecological systems’ (Braungart et al., 2007). Eco-efficiency, 
therefore, combines environmental and economic demands (Govindan et al., 2014b), and an 
‘eco-efficient solution’ is one where further environmental damage can only be prevented at 
higher costs (Dekker et al., 2012; Quariguasi Frota Neto et al., 2009).

Studying eco-efficiency in GSCs requires the consideration of multiple conflicting criteria, as 
any design of a Supply Chain (SC) usually involves trade-offs among different conflicting 
objectives (Wang et al., 2011). Inclusion of multiple criteria in supply chains is a natural way of 
dealing with different dimensions of sustainability (Eskandarpour et al., 2015; Kannegiesser et 
al., 2015). Multi-Criteria Decision Making (MCDM), refers to a general class of Operations 
Research models (Pohekar and Ramachandran, 2004), which aim to quantify feasible 
production alternatives and support decision makers in selecting (a subset of) alternative options 
based on two or more criteria (Wallenius et al., 2008). MCDM approaches have already been 
applied successfully in various research areas, such as energy fuels, management, or ecology 
(Zavadskas et al., 2014). Although literature reviews have been carried out on quantitative 
approaches for Supply Chain Management (SCM) with environmental concerns (Eskandarpour 
et al., 2015; Brandenburg et al., 2014; Seuring, 2013; Dekker et al., 2012), to the best of our 
knowledge, no reviews specifically focus on MCDM approaches in eco-efficient GSCs and 
related production, distribution and inventory problems.

The aim of this chapter is to review MCDM approaches that have been used for the design of 
Green Supply Chains. A conceptual framework is developed in Section 2 to categorise 
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indicators and decision problems in GSCs based on existing literature reviews and to outline 
MCDM approaches and requirements for modelling GSCs. The approach we use to structure 
and design the literature review, including the search queries, is presented in Section 3. The 
results of the literature review are presented in Section 4, where publications are categorised 
according to the conceptual framework. Finally, Section 5 proposes research opportunities for 
MCDM approaches in eco-efficient GSCs and presents concluding remarks.

2.2 Conceptual framework

We started this research by identifying recent and relevant literature reviews on the topic of 
green supply chain management, which refers to integrating environmental thinking in SCM 
(Srivastava, 2007). This resulted in 10 review articles which were used as a basis for the 
development of the conceptual framework for this study. First of all, Dekker et al. (2012)
discussed issues related to green logistics, and revealed Operations Research contributions to 
supply chains with environmental considerations. Seuring (2013) and Brandenburg et al. (2014)
focused on forward supply chains and reviewed modelling approaches used for SCs with 
sustainability considerations. Seuring and Muller (2008) reviewed literature on forward 
sustainable supply chain management. Srivastava (2007) presented a state of the art literature 
review on green supply chain management with a focus on reverse logistics, whereas Carter and 
Rogers (2008) and Ashby et al. (2012) reviewed and discussed literature on supply chain 
management within the context of sustainability. Three review articles focused on perishable 
products. Perishability is an important source of inefficiency because it contributes to 
production of waste. Food production chains are characteristic example of supply chains where 
perishability and changing product quality is evident. Akkerman et al. (2010) reviewed 
quantitative approaches used for distribution management of food products and focus on 
quality, safety and sustainability; Shukla and Jharkharia (2013) reviewed literature in agri-fresh 
produce SCs and discussed operational issues causing post-harvest wastage; and Soysal et al. 
(2012) reviewed quantitative models used for sustainable food logistics management.

Analysing the key words and frameworks used in the 10 reviews and mapping these on the use 
of MCDM approaches in GSCs, we developed a conceptual framework for the literature 
analysis. This framework identifies which economic and environmental performance indicators 
are used to account for sustainability, categorise decision problems in SCs, and outline the 
impact of specific product characteristics on the decision problems and indicators (Figure 2.1). 
These characteristics are further explored as they should be included in MCDM models 
developed for GSCs. The proposed framework is used to identify relevant articles and conduct 
the literature review.

2.2.1 Eco-efficiency indicators in Supply Chains

During the production of final products from raw materials, and the delivery of products to final 
customers, supply chains inevitably harm the environment (Tang and Zhou, 2012). In Supply 
Chain Management with environmental concerns, the main business objectives are cost 
reduction, responsiveness improvement, and avoidance of permanent environmental damage 
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(Soysal et al., 2012). In order to quantify the economic and environmental impact of supply 
chain activities and to improve environmental and economic performance, a set of indicators for 
eco-efficiency must be selected and considered to support decision making at SC level. Apart 
from commonly used indicators for economic performance of supply chains, such as total costs 
or profit, the analysis of the 10 review papers shows that important indicators to account for 
eco-efficiency are greenhouse gas (GHG) emissions, energy consumption and water 
consumption (Seuring, 2013; Dekker et al., 2012; Soysal et al., 2012).

Eco-efficiency 
indicatorsDecision Making in Supply ChainsMulti-Criteria

Economic criteria

Environmental 
criteria

Product characteristics
-quality
-uncertainty
-perishability

costs

waste

emissions

energy consump.

water consump.

Inventory management
Eco-efficiency

Distribution planning

Production planning
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Each supply chain is unique in its characteristics. Products are characterized by quality, 
fluctuations in demand and prices, seasonality, and perishability (Akkerman et al., 2010; 
Quariguasi Frota Neto et al., 2009; van der Vorst et al., 2009). These factors are associated with 
uncertainty. For instance, in Food Supply Chains (FSCs) these various sources of uncertainty
lead to production of substantial amount of losses (Shukla and Jharkharia, 2013). Perishability 
and continuous quality change of products over time is not exclusively associated with food 
products, but holds for other products as well, e.g. other fast moving consumer goods. Quality 
change over time is also associated with uncertainty because the change in quality is usually not 
precisely known as it depends on environmental conditions. We conclude that product quality, 
uncertainty, and perishability should be taken into account when designing eco-efficient GSCs.

2.2.2 Decision problems in supply chain management

Research has been focusing on improving the environmental performance of SCs (Brandenburg 
et al., 2014). To categorise decision problems in the conceptual framework we adapt the 
classification proposed by Shukla and Jharkharia (2013), and distinguish between three decision 
problems that have an impact on eco-efficiency in GSCs: production planning, distribution 
planning, and inventory management.

Production planning commonly refers to decisions on how the production is organised, how, 
when, and how many products are produced, and when the products become available, to 
minimize operational costs of production and simultaneously use available resources and 
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indicators and decision problems in GSCs based on existing literature reviews and to outline 
MCDM approaches and requirements for modelling GSCs. The approach we use to structure 
and design the literature review, including the search queries, is presented in Section 3. The 
results of the literature review are presented in Section 4, where publications are categorised 
according to the conceptual framework. Finally, Section 5 proposes research opportunities for 
MCDM approaches in eco-efficient GSCs and presents concluding remarks.

2.2 Conceptual framework
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(Srivastava, 2007). This resulted in 10 review articles which were used as a basis for the 
development of the conceptual framework for this study. First of all, Dekker et al. (2012)
discussed issues related to green logistics, and revealed Operations Research contributions to 
supply chains with environmental considerations. Seuring (2013) and Brandenburg et al. (2014)
focused on forward supply chains and reviewed modelling approaches used for SCs with 
sustainability considerations. Seuring and Muller (2008) reviewed literature on forward 
sustainable supply chain management. Srivastava (2007) presented a state of the art literature 
review on green supply chain management with a focus on reverse logistics, whereas Carter and 
Rogers (2008) and Ashby et al. (2012) reviewed and discussed literature on supply chain 
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products. Perishability is an important source of inefficiency because it contributes to 
production of waste. Food production chains are characteristic example of supply chains where 
perishability and changing product quality is evident. Akkerman et al. (2010) reviewed 
quantitative approaches used for distribution management of food products and focus on 
quality, safety and sustainability; Shukla and Jharkharia (2013) reviewed literature in agri-fresh 
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impact of specific product characteristics on the decision problems and indicators (Figure 2.1). 
These characteristics are further explored as they should be included in MCDM models 
developed for GSCs. The proposed framework is used to identify relevant articles and conduct 
the literature review.
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reduction, responsiveness improvement, and avoidance of permanent environmental damage 
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(Soysal et al., 2012). In order to quantify the economic and environmental impact of supply 
chain activities and to improve environmental and economic performance, a set of indicators for 
eco-efficiency must be selected and considered to support decision making at SC level. Apart 
from commonly used indicators for economic performance of supply chains, such as total costs 
or profit, the analysis of the 10 review papers shows that important indicators to account for 
eco-efficiency are greenhouse gas (GHG) emissions, energy consumption and water 
consumption (Seuring, 2013; Dekker et al., 2012; Soysal et al., 2012).
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Each supply chain is unique in its characteristics. Products are characterized by quality, 
fluctuations in demand and prices, seasonality, and perishability (Akkerman et al., 2010; 
Quariguasi Frota Neto et al., 2009; van der Vorst et al., 2009). These factors are associated with 
uncertainty. For instance, in Food Supply Chains (FSCs) these various sources of uncertainty
lead to production of substantial amount of losses (Shukla and Jharkharia, 2013). Perishability 
and continuous quality change of products over time is not exclusively associated with food 
products, but holds for other products as well, e.g. other fast moving consumer goods. Quality 
change over time is also associated with uncertainty because the change in quality is usually not 
precisely known as it depends on environmental conditions. We conclude that product quality, 
uncertainty, and perishability should be taken into account when designing eco-efficient GSCs.

2.2.2 Decision problems in supply chain management

Research has been focusing on improving the environmental performance of SCs (Brandenburg 
et al., 2014). To categorise decision problems in the conceptual framework we adapt the 
classification proposed by Shukla and Jharkharia (2013), and distinguish between three decision 
problems that have an impact on eco-efficiency in GSCs: production planning, distribution 
planning, and inventory management.

Production planning commonly refers to decisions on how the production is organised, how, 
when, and how many products are produced, and when the products become available, to 
minimize operational costs of production and simultaneously use available resources and 
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capacities efficiently. Within production planning two aspects play an important role (Dekker et 
al., 2012). The first aspect is the production process and the way the product is produced, i.e. 
what resources are used to make the product and what is the environmental impact related to 
production. Associated decisions include e.g. which raw materials and technology to use at 
which location to create the right number of finished products on time to satisfy the customer’s 
demand. These decisions have an impact on eco-efficiency as they determine the amounts of 
(raw) material, energy, water, and fuel use, as well as the total amount of waste produced. The 
second relevant aspect with respect to production planning is whether a product’s value can be 
(partly) recovered after its use. This issue is relevant also for FSCs, as products that cannot be 
sold (due to quality requirements) and are considered as post-harvest losses often still possess 
valuable nutrients. If products (or their components) can be processed and reused, it might 
improve eco-efficiency by reducing the total amount of waste and reducing the need for using 
other raw materials.

A second decision problem affecting the performance of a supply chain is distribution planning,
which refers to two main topics: facility selection and transportation. Facilities are physical 
locations in a supply chain, comprising of production sites, distribution centres, airports, 
railway stations or ports. Related decisions on role, location, size and number of facilities have 
a substantial impact on the performance of a supply chain (Chopra and Meindl, 2013).
Decisions concerning facilities affect not only total operating costs, but also the energy use of 
facilities. Additionally, the location and the number of facilities determine the total travelling 
distance of a product before reaching the final destination. Facility decisions therefore have an 
effect on the total time needed to reach the final customer, which is an important aspect in
relation to products that degrade in quality over time. With respect to technological innovations, 
such as extending the shelf-life of products, a redesign of existing networks might bring 
economic and environmental benefits. A second aspect in distribution planning is 
transportation, which refers to the movement of products between facilities. Decisions in 
transportation include the selection of transportation mode, type and size of transportation unit, 
fuel choice, loading and routing of vehicles (Chopra and Meindl, 2013). Transportation 
activities account for 15% of total GHG emissions worldwide (TSP, 2010) and account at the 
same time for up to two thirds of the total logistic costs (Akkerman et al., 2010). Due to 
handling and deterioration of food products, transportation is also the biggest cause of food 
waste in FSCs (Shukla and Jharkharia, 2013). This shows that choices of transportation have a 
substantial impact on environmental and economic performance. New transportation equipment 
enables to reduce fuel consumption as observed in airplanes or ships (Dekker et al., 2012), and 
technological innovations allow the transportation of products in cooled or frozen conditions. 
This permits the control of the product’s quality degradation over time but at the same time 
leads to additional energy consumption. These technological innovations make the 
transportation problems a highly dynamic environment requiring frequent reconsiderations of 
previously made choices (Akkerman et al., 2010).

The third decision problem closely related to performance of the supply chain is related to 
inventory management decisions and to the way the inventory is controlled, e.g. using a 
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periodical or continuous reviewing system, determining safety stock levels, reorder points or 
reorder quantities. Decisions in inventory management determine how long the product is 
waiting before use. In relation to products with limited shelf-life, the most important factor in 
inventory models is to take into account the deterioration of produce over time (Shukla and 
Jharkharia, 2013). Inventory holding is associated with holding costs, and in the case of 
controlled holding conditions (such as frozen, cooled, or heated storage), which is often used 
for perishable products, inventory holding is also associated with environmental impact because 
of energy consumption (Dekker et al., 2012) and other issues such as buildings or equipment.

It should be mentioned that apart from the three aggregate categories of decision problems 
considered in this chapter (i.e. production planning, distribution planning, inventory 
management), other decision problems can be found in literature too, e.g. supplier selection, 
procurement planning, or combinations of decision problems, such as inventory routing, or 
production-distribution. These topics have also been investigated, but are categorised into one 
of the three main decision themes, i.e. distribution, production, and inventory. The topic of 
procurement planning can be characterized by making links between the buyer and the supplier, 
and supplier selection influences the physical location of links in a supply chain. Once physical 
locations of supply chain links are known, they can be translated into distances. Therefore, for 
simplification and to facilitate presentation, supplier selection and procurement planning are 
assigned to decision problems in the distribution planning category.

The environmental impact of a SC can be improved by practices such as reuse, repair, recycle, 
remanufacture and reverse logistics (Chaabane et al., 2012; Paksoy et al., 2011; Jayaraman, 
2006). Thus, not only forward flows of products in a SC, but also reverse and closed-loop 
supply chains (integrated forward and reverse supply chains) are investigated to improve the 
environmental impact. The investigation can be divided into the three types of decision 
problems described above.

2.2.3 MCDM model characteristics and requirements

Decision makers in GSCs are confronted with multiple and mostly conflicting criteria of 
economic and environmental performance, which by definition implies that MCDM approaches 
are appropriate tools for decision support. Hence it is not surprising that MCDM approaches 
have already been used to address different decision problems in SCs and to test the efficiency 
of various SC configurations and operating strategies (Aramyan et al., 2011; Ramudhin et al., 
2010). Within the MCDM field, existing approaches are divided in literature into two categories 
based on the number of feasible solutions (Wallenius et al., 2008; Mendoza and Martins, 2006; 
Hwang et al., 1980): 1) a small and finite set of solutions, called Multi-Attribute Decision 
Making (MADM), and 2) a large and infinite set of alternatives, referred to as Multi-Objective 
Decision Making (MODM) or Multi-Objective Programming (MOP). MADM approaches aim 
at identifying the best option based on the known attributes of a limited number of alternatives, 
whereas MODM approaches aim to find the best solution that satisfies the decision maker’s 
desires (Scott et al., 2012). Some of the MADM approaches include analytic hierarchy process 
(AHP), analytic network process (ANP), decision-making trial and evaluation laboratory 
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capacities efficiently. Within production planning two aspects play an important role (Dekker et 
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which refers to two main topics: facility selection and transportation. Facilities are physical 
locations in a supply chain, comprising of production sites, distribution centres, airports, 
railway stations or ports. Related decisions on role, location, size and number of facilities have 
a substantial impact on the performance of a supply chain (Chopra and Meindl, 2013).
Decisions concerning facilities affect not only total operating costs, but also the energy use of 
facilities. Additionally, the location and the number of facilities determine the total travelling 
distance of a product before reaching the final destination. Facility decisions therefore have an 
effect on the total time needed to reach the final customer, which is an important aspect in
relation to products that degrade in quality over time. With respect to technological innovations, 
such as extending the shelf-life of products, a redesign of existing networks might bring 
economic and environmental benefits. A second aspect in distribution planning is 
transportation, which refers to the movement of products between facilities. Decisions in 
transportation include the selection of transportation mode, type and size of transportation unit, 
fuel choice, loading and routing of vehicles (Chopra and Meindl, 2013). Transportation 
activities account for 15% of total GHG emissions worldwide (TSP, 2010) and account at the 
same time for up to two thirds of the total logistic costs (Akkerman et al., 2010). Due to 
handling and deterioration of food products, transportation is also the biggest cause of food 
waste in FSCs (Shukla and Jharkharia, 2013). This shows that choices of transportation have a 
substantial impact on environmental and economic performance. New transportation equipment 
enables to reduce fuel consumption as observed in airplanes or ships (Dekker et al., 2012), and 
technological innovations allow the transportation of products in cooled or frozen conditions. 
This permits the control of the product’s quality degradation over time but at the same time 
leads to additional energy consumption. These technological innovations make the 
transportation problems a highly dynamic environment requiring frequent reconsiderations of 
previously made choices (Akkerman et al., 2010).

The third decision problem closely related to performance of the supply chain is related to 
inventory management decisions and to the way the inventory is controlled, e.g. using a 
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periodical or continuous reviewing system, determining safety stock levels, reorder points or 
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waiting before use. In relation to products with limited shelf-life, the most important factor in 
inventory models is to take into account the deterioration of produce over time (Shukla and 
Jharkharia, 2013). Inventory holding is associated with holding costs, and in the case of 
controlled holding conditions (such as frozen, cooled, or heated storage), which is often used 
for perishable products, inventory holding is also associated with environmental impact because 
of energy consumption (Dekker et al., 2012) and other issues such as buildings or equipment.

It should be mentioned that apart from the three aggregate categories of decision problems 
considered in this chapter (i.e. production planning, distribution planning, inventory 
management), other decision problems can be found in literature too, e.g. supplier selection, 
procurement planning, or combinations of decision problems, such as inventory routing, or 
production-distribution. These topics have also been investigated, but are categorised into one 
of the three main decision themes, i.e. distribution, production, and inventory. The topic of 
procurement planning can be characterized by making links between the buyer and the supplier, 
and supplier selection influences the physical location of links in a supply chain. Once physical 
locations of supply chain links are known, they can be translated into distances. Therefore, for 
simplification and to facilitate presentation, supplier selection and procurement planning are 
assigned to decision problems in the distribution planning category.

The environmental impact of a SC can be improved by practices such as reuse, repair, recycle, 
remanufacture and reverse logistics (Chaabane et al., 2012; Paksoy et al., 2011; Jayaraman, 
2006). Thus, not only forward flows of products in a SC, but also reverse and closed-loop 
supply chains (integrated forward and reverse supply chains) are investigated to improve the 
environmental impact. The investigation can be divided into the three types of decision 
problems described above.

2.2.3 MCDM model characteristics and requirements

Decision makers in GSCs are confronted with multiple and mostly conflicting criteria of 
economic and environmental performance, which by definition implies that MCDM approaches 
are appropriate tools for decision support. Hence it is not surprising that MCDM approaches 
have already been used to address different decision problems in SCs and to test the efficiency 
of various SC configurations and operating strategies (Aramyan et al., 2011; Ramudhin et al., 
2010). Within the MCDM field, existing approaches are divided in literature into two categories 
based on the number of feasible solutions (Wallenius et al., 2008; Mendoza and Martins, 2006; 
Hwang et al., 1980): 1) a small and finite set of solutions, called Multi-Attribute Decision 
Making (MADM), and 2) a large and infinite set of alternatives, referred to as Multi-Objective 
Decision Making (MODM) or Multi-Objective Programming (MOP). MADM approaches aim 
at identifying the best option based on the known attributes of a limited number of alternatives, 
whereas MODM approaches aim to find the best solution that satisfies the decision maker’s 
desires (Scott et al., 2012). Some of the MADM approaches include analytic hierarchy process 
(AHP), analytic network process (ANP), decision-making trial and evaluation laboratory 
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(DEMATEL), elimination and choice expressing reality (ELECTRE), preference ranking 
organization method for enrichment of evaluations (PROMETHEE), technique for order of 
preference by similarity to ideal solution (TOPSIS), and utility additive (UTA) method (Figure 
2.2). For a description of MADM approaches see Tzeng and Huang (2011). Some basic MODM 
approaches are Weighting Method, ε-constraint, and Goal Programming. For a description of 
MODM methods see Miettinen (2008). The specific MCDM approach used to support decision 
making in GSCs depends on the case study and scope of the analysis. Additionally, MCDM 
approaches differ in complexity and model characteristics.

Within MCDM a distinction can be made depending on how data are taken into account. 
Deterministic data is often assumed for modelling simplicity and computational effort needed to 
arrive at a solution. In real-world optimization problems however, the data are not exactly 
known at the time the problem is being solved, due to measurement, estimation and 
implementation errors (Ben-Tal et al., 2009). Uncertainty in SCs is related to ‘situations in 
which a decision maker lacks effective control actions or is unable to predict accurately the 
impact of possible control actions on system behaviour due to a lack of 1) information (or 
understanding) of the environment or current SC state, 2) a consistent model of the SC 
presenting the relationships between SC redesign variables and SC performance indicators’ 
(van der Vorst, 2000). In SCs uncertainty can be related to supply of raw materials, demand for 
final products, processing parameters, prices, and in the light of reverse logistics quantity and 
quality of returned products (Soysal et al., 2012; Tang and Zhou, 2012; Ahumada and 
Villalobos, 2009). Due to the importance of uncertainty in SCs, in our literature review we 
differentiate between deterministic models and models taking uncertainty into account.

MCDM

MADM MODM

UTAAHP ANP TOPSISDEMATEL ELECTRE PROMETHEE
Weighting 

methodε-constraint GP 
(Goal Programming)

Figure 2.2 Some existing MCDM approaches, based on Tzeng and Huang (2011) and Miettinen (2008)

Specific characteristics of products, such as quality changes, demand and prices variability 
require model representations of the system dynamics and the interactions between time 
periods. For that reason, another characteristic of reviewed MCDM approaches is related to 
whether and how time is taken into account.

2.3 Literature review method

To review scientific literature concerned with applications of MCDM approaches to support 
decision making processes for establishing eco-efficient GSCs, we defined three categories of 
keywords: Multi-Criteria Decision Making, Supply Chain Management, and eco-efficiency. 
Based on the conceptual framework (Section 2), we created a set of keywords for each 

MCDM approaches for GSCs: a review

25

category. Within the eco-efficiency category, keywords are included that automatically entail 
simultaneous consideration of economic and environmental criteria, i.e. keywords such as “eco-
efficient” or “sustainability”, instead of using specific indicators or criteria as keywords. The 
intention is to find articles that position themselves under the umbrella of GSCs, instead of 
finding articles that focus on a specific aspect of environmental protection. A set of keywords 
for each category together form a search string that was used to explore existing literature in the 
ISI Web of Science database, one of the highest regarded science databases, which covers more 
than 11 000 journals from multiple disciplines, allowing in-depth exploration of the literature.

A search for scientific publications fitting each of the three categories was conducted. The 
following search string was used:

(multicriteria OR multi-criteria OR multiobjective OR multi-objective OR multiattribute OR 
multi-attribute OR trade-off*) 
AND ("supply chain" OR logistics or "network design" OR "production planning" OR 
"inventory management" OR "supplier selection" OR "distribution management" OR 
"distribution planning") 
AND (green OR sustainable OR sustainability OR eco-efficien* OR "resource efficient")

Within the results found, we selected the articles that fit the scope of our analysis: i.e. those 
articles that concern quantitative models for supporting decision making in supply chains in a 
multi-criteria decision making context, while taking into account eco-efficiency considerations. 
We excluded publications concerned with non-quantitative analysis, publications describing 
non-MCDM approaches (e.g. simulation approaches, regression analysis, and single-objective 
inventory models), publications that do not describe supply chain analysis, and publications that 
do not include an indicator associated with eco-efficiency (e.g. models including carbon 
emission trading scheme in costs only).

2.4 Results

This section presents the results of the literature review. Publications that fit in each of the three 
categories (MCDM, Supply Chain Management, and eco-efficiency) are discussed in line with 
the developed conceptual framework. Additionally, these publications are analysed to determine 
the trends in literature with respect to indicators used to account for eco-efficiency, decision 
problems tackled, and approaches used.

Our literature review resulted in 418 publications out of which 188 publications (45%) turned 
out to be relevant for our analysis and were included in the literature review. Figure 2.3 presents 
a distribution of publications considered by publication year, indicating that the considered 
research field is new and emerging.
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Figure 2.3 Distribution of publications between 2000 and 2015. Relevant publications include application 
of MCDM approaches to support decisions in inventory, production and distribution in green supply 
chains.

The articles were published in 68 different journals. In 43 of these journals only one article of 
interest was found (Table 2.1). Publications are most frequently found in journals associated 
with categories: operations research and management science; industrial, chemical, and 
environmental engineering; and environmental sciences. However, some publications are also 
found in journals associated with categories such as forestry, electrochemistry, thermodynamics 
or computer science. The distribution of publications among numerous journals, associated with 
such diverse categories, shows how multi-disciplinary the topic is. It is also observed that the 
number of conceptual studies from operations management and supply chain management 
journals is limited, providing a research opportunity to include green supply chain 
considerations within MCDM context.

2.4.1 Decision problems

Production and distribution planning models represent the majority of the publications. We 
found 69 articles concerned with distribution planning (Figure 2.4) and the associated decision 
problems related to supplier selection, reverse logistics project selection, third party contractor 
selection, facility location and transportation planning. Production planning problems were 
found in 39 papers. The related problems are e.g. capacity planning and technology selection, 
manufacturing, and scheduling. In 70 publications both production and distribution planning 
decisions are considered. These articles concern network design and associated production 
decisions, such as technology selection, or decisions on the quantity of products to be produced.
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Table 2.1 Distribution of papers across journals
Journal Articles Year
Journal of Cleaner Production 18 2009-2016
International Journal of Production Economics 15 2008-2015
International Journal of Production Research 14 2007-2016
European Journal of Operational Research 9 2004-2016
Expert Systems with Applications 9 2011-2016
Computers & Chemical Engineering 8 2000-2016
Sustainability 8 2014-2016
Acs Sustainable Chemistry & Engineering 6 2013-2015
Aiche Journal 6 2009-2015
Transportation Research Part E-Logistics and Transportation Review 6 2014-2016
Computers & Industrial Engineering 5 2005-2016
Mathematical Problems in Engineering 5 2013-2016
International Journal of Environmental Science and Technology 4 2009-2016
Journal of Manufacturing Systems 4 2015-2016
Resources Conservation and Recycling 4 2009-2016
Computers & Operations Research 3 2015
Industrial & Engineering Chemistry Research 3 2008-2016
International Journal of Hydrogen Energy 3 2005-2014
Production Planning & Control 3 2011-2016
Applied Energy 2 2013-2014
Decision Support Systems 2 2009-2011
Energy 2 2012-2016
Flexible Services and Manufacturing Journal 2 2014-2016
Journal of Manufacturing Technology Management 2 2015
Journal of the Operational Research Society 2 2016
Journals with one article a 43 2004-2016

a Abstract and Applied Analysis, Annals of Operations Research, Applied Mathematical Modelling, Applied Soft 
Computing, Applied Thermal Engineering, Arabian Journal for Science and Engineering, Biofuels Bioproducts & 
Biorefining-Biofpr, Biomass & Bioenergy, Canadian Journal of Forest Research-Revue Canadienne De Recherche 
Forestiere, Computers in Industry, Croatian Journal of Forest Engineering, Ecological Indicators, Energy Conversion 
and Management, Energy Policy, Environment and Planning A, Environment and Planning B-Planning & Design, 
Environmental Science & Technology, Environmental Technology, Human and Ecological Risk Assessment, Ieee 
Transactions on Engineering Management, Information Sciences, Intelligent Decision Technologies-Netherlands, 
International Journal of Advanced Manufacturing Technology, International Journal of Sustainable Transportation, 
Journal of Advanced Mechanical Design Systems and Manufacturing, Journal of Food Engineering, Journal of 
Intelligent & Fuzzy Systems, Journal of Natural Gas Science and Engineering, Journal of Scientific & Industrial 
Research, Kybernetes, Mathematical and Computer Modelling, Omega-International Journal of Management Science, 
OR Spectrum, Proceedings of the Romanian Academy Series a-Mathematics Physics Technical Sciences Information 
Science, Processes, Renewable & Sustainable Energy Reviews, Renewable Energy, Scientia Iranica, Scientific World 
Journal, Springerplus, Tehnicki Vjesnik-Technical Gazette, Transportation Research Part D-Transport and 
Environment, Waste Management

Inventory management with an environmental objective is hardly treated with MCDM models. 
Only ten publications include inventory management decisions while considering economic and 
environmental criteria. Bouchery et al. (2012) present the Sustainable Order Quantity, which is 
a multi-objective formulation of an Economic Order Quantity (EOQ) model, including 
economic, environmental and social objectives. An extension to multiple echelons is proposed, 
and the eco-efficient frontiers are characterized analytically. Andriolo et al. (2015) also propose 
a bi-objective EOQ optimization model, and develop a haulage-sharing lot sizing model to 
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Figure 2.3 Distribution of publications between 2000 and 2015. Relevant publications include application 
of MCDM approaches to support decisions in inventory, production and distribution in green supply 
chains.

The articles were published in 68 different journals. In 43 of these journals only one article of 
interest was found (Table 2.1). Publications are most frequently found in journals associated 
with categories: operations research and management science; industrial, chemical, and 
environmental engineering; and environmental sciences. However, some publications are also 
found in journals associated with categories such as forestry, electrochemistry, thermodynamics 
or computer science. The distribution of publications among numerous journals, associated with 
such diverse categories, shows how multi-disciplinary the topic is. It is also observed that the 
number of conceptual studies from operations management and supply chain management 
journals is limited, providing a research opportunity to include green supply chain 
considerations within MCDM context.

2.4.1 Decision problems

Production and distribution planning models represent the majority of the publications. We 
found 69 articles concerned with distribution planning (Figure 2.4) and the associated decision 
problems related to supplier selection, reverse logistics project selection, third party contractor 
selection, facility location and transportation planning. Production planning problems were 
found in 39 papers. The related problems are e.g. capacity planning and technology selection, 
manufacturing, and scheduling. In 70 publications both production and distribution planning 
decisions are considered. These articles concern network design and associated production 
decisions, such as technology selection, or decisions on the quantity of products to be produced.
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Inventory management with an environmental objective is hardly treated with MCDM models. 
Only ten publications include inventory management decisions while considering economic and 
environmental criteria. Bouchery et al. (2012) present the Sustainable Order Quantity, which is 
a multi-objective formulation of an Economic Order Quantity (EOQ) model, including 
economic, environmental and social objectives. An extension to multiple echelons is proposed, 
and the eco-efficient frontiers are characterized analytically. Andriolo et al. (2015) also propose 
a bi-objective EOQ optimization model, and develop a haulage-sharing lot sizing model to 
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discuss the benefits of cooperation for cost and emission reduction. Konur and Schaefer (2016)
model multi-item joint replenishment problem under indirect and direct grouping strategies. 
Chan et al. (2013) study vendor-buyers co-ordination and illustrate its benefits on economic and 
environmental performance. 

Six publications are assigned to inventory and distribution problems. Jamshidi et al. (2012)
present a bi-objective network design model with periodic review inventory replenishment 
policy (with back-ordering) in warehouses and distribution centres. Sazvar et al. (2014) develop 
a model to select the best transportation vehicles and to optimally replenish a deteriorating 
product in a two-echelon centralized supply chain under partial backorder assumption. Marti et 
al. (2015) use a continuous review inventory policy in the considered supply chain network 
design model with facility location, procurement and transportation decisions. The developed 
model is used to analyse the effects of different carbon policies, and allows distinguishing 
between functional or innovative products. Schaefer and Konur (2015) study continuous review 
inventory control systems with explicit transportation considerations, and consider models with 
less-than-truckload transportation and truckload transportation. Bouchery et al. (2016)
formulate a model with simultaneous optimization of decisions on transportation mode and 
order quantity and propose analytical results to identify the efficient frontier when multiple 
transportation modes are available. Tang et al. (2016) propose a supply chain network design 
model to select number and location of warehouses and to select routes from manufacturers to 
warehouses and from warehouses to retailers, while using continuous review inventory policy. 
We observe that no publications are found that consider simultaneously production and 
inventory decisions in the context of eco-efficiency. These findings show that gaps in literature 
exist concerning the use of MCDM approaches to support inventory management decisions 
with respect to economic and environmental criteria.

Reverse logistics is considered in 27 publications, while only 11 papers combined forward and 
reverse logistics to support decision making in a closed-loop supply chain (Govindan et al., 
2016a; Garg et al., 2015; Ghayebloo et al., 2015; Mota et al., 2015b; Devika et al., 2014; 
Kannegiesser and Gunther, 2014; Oh and Jeong, 2014; Pishvaee et al., 2014; Ozkir and Basligil, 
2013; Paksoy et al., 2012; Quariguasi Frota Neto et al., 2010). Only few of the papers dealing 
with modelling material flows in a closed-loop supply chain presents a case study with realistic 
data. This shows that the actual economic and environmental implications of closing loops in
real-life case studies still require investigation. Additionally, it is observed that none of the 
analysed papers concerning food products takes the principles of reverse logistics or closed loop 
into account.
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Inventory
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69 (7)

70 (15)
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Figure 2.4 Number of publications for each decision problem; numbers in brackets indicate the number of 
publications considering reverse logistics or closed-loop supply chains

2.4.2 Key performance indicators

The analysis shows that the number and types of indicators considered are closely related to the 
applied MCDM approach. In MADM approaches (in which decision makers interactively assess 
alternatives with respect to multiple attributes or indicate their perceived importance of each 
criterion e.g. on a Likert scale), numerous economic, technological, environmental and social 
indicators are used. In each publication dealing with an MADM approach, a unique set of 
indicators is developed, which renders clustering and aggregating of these indicators 
problematic. For this reason we only outline the number of indicators used. The average number 
of indicators used in MADM approaches is 9.9; the largest number of indicators used is 31 in 
Govindan et al. (2015b); and the smallest number of indicators used is two in Validi et al. 
(2015). The largest number of objectives in papers concerned with MODM models is 
considered in Kostin et al. (2015) (15 objectives for two case studies presented), where an 
approach is proposed to reduce the number of objectives to a comprehensible number. In 
articles in which the ultimate goal is to derive a Pareto-efficient frontier, authors focus on two 
or three objectives. The most commonly used objectives in these studies are minimization of 
total costs and GHG emissions.

In MODM approaches the indicators (treated as objectives) most commonly used to account for 
economic performance are costs, profit, Net Present Value, expected return, economic output, 
financial risk, and total value of purchasing (Table 2.2). In seven publications assigned to 
production planning no economic indicators were used. Publications that did not use an 
economic indicator in production planning, focused on balancing between either energy 
consumption and total completion time (Mansouri et al., 2016; Yildirim and Mouzon, 2012; 
Mouzon et al., 2007), energy consumption and tardiness (Liu et al., 2014b), carbon emissions 
and total completion time (Liu et al., 2014a), or focused on environmental indicators objectives 
only in pinch analysis (Geldermann et al., 2007; Geldermann et al., 2006). In some publications 
two economic indicators are used simultaneously, e.g. profit and risk (Cruz, 2013; Cruz, 2009; 
Cruz and Matsypura, 2009).
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applied MCDM approach. In MADM approaches (in which decision makers interactively assess 
alternatives with respect to multiple attributes or indicate their perceived importance of each 
criterion e.g. on a Likert scale), numerous economic, technological, environmental and social 
indicators are used. In each publication dealing with an MADM approach, a unique set of 
indicators is developed, which renders clustering and aggregating of these indicators 
problematic. For this reason we only outline the number of indicators used. The average number 
of indicators used in MADM approaches is 9.9; the largest number of indicators used is 31 in 
Govindan et al. (2015b); and the smallest number of indicators used is two in Validi et al. 
(2015). The largest number of objectives in papers concerned with MODM models is 
considered in Kostin et al. (2015) (15 objectives for two case studies presented), where an 
approach is proposed to reduce the number of objectives to a comprehensible number. In 
articles in which the ultimate goal is to derive a Pareto-efficient frontier, authors focus on two 
or three objectives. The most commonly used objectives in these studies are minimization of 
total costs and GHG emissions.

In MODM approaches the indicators (treated as objectives) most commonly used to account for 
economic performance are costs, profit, Net Present Value, expected return, economic output, 
financial risk, and total value of purchasing (Table 2.2). In seven publications assigned to 
production planning no economic indicators were used. Publications that did not use an 
economic indicator in production planning, focused on balancing between either energy 
consumption and total completion time (Mansouri et al., 2016; Yildirim and Mouzon, 2012; 
Mouzon et al., 2007), energy consumption and tardiness (Liu et al., 2014b), carbon emissions 
and total completion time (Liu et al., 2014a), or focused on environmental indicators objectives 
only in pinch analysis (Geldermann et al., 2007; Geldermann et al., 2006). In some publications 
two economic indicators are used simultaneously, e.g. profit and risk (Cruz, 2013; Cruz, 2009; 
Cruz and Matsypura, 2009).
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Table 2.2 Number of publications with a given indicator used in MODM approaches for different decision 
problems (P – production planning, D – distribution planning, I – inventory management)

Decision Problem
totalIndicator P D I P+D D+I

ec
on

om
ic costs 13 20 4 37 5 79

profit 2 - - 21 1 24
NPV 4 - - 11 - 15
other economic a 6 3 - 6 - 15

en
vi

ro
nm

en
ta

l GHG 12 14 4 42 6 78
energy 12 2 1 2 - 17
LCA based 2 1 - 13 - 16
water 10 1 - 1 - 12
waste - 4 1 6 - 11
other environmental b 7 5 - 6 - 18

ot
he

r service level 6 7 - 5 - 18
social 3 3 1 21 - 28

Number of MODM publications 31 21 4 67 6 129
a Other economic indicators include: Economic score, Economic output, Economic value added, Expected return, 
Financial risk, Production, Revenue, Total credit, Total value of i) purchasing performance, ii) production performance, 
iii) delivery and logistics performance
b Other environmental indicators include: Ecocosts, Environmental certification, Environmental efficiency, 
Environmental index, Environmental score, Exergy losses, Greenness, Green appraisal scores, Hazardous waste 
management, Non-renewable resources consumption, Recycling rate, Relative Direct Sustainability Index, Relative 
Total Sustainability Index, Remanufacturing activity, Reverse logistics program, Soil erosion, Volatile Organic 
Compounds

With respect to environmental indicators, some form of greenhouse gas (GHG) emissions, such 
as CO2-equivalent, CO2 emission per capita, embodied carbon footprint, air pollution, or impact 
on global warming is most commonly used. Greenhouse gasses were used as an indicator in 
60% of publications, and were most frequently used in distribution planning models (67% of 
publications), and in combination of distribution and production planning models (63%). 
Energy consumption is used in 13% of publications, and was most frequently used in 
production planning models (39%). LCA based indicators, such as ReCiPe 2008, Impact2002+ 
or EcoIndicator, are used in 12% of publications, water is used in 9% of publications, and waste 
is used as an indicator in 9% of publications. Other environmental indicators, e.g. green 
appraisal scores, environmental efficiency, environmental index, volatile organic compounds 
emissions, or exergy losses are used in 14% of the papers. Note that number of (environmental) 
indicators is larger than number of publications. This is because in some publications more than 
one indicator is used. Notably, none of the studied articles on FSCs use the amount of food 
waste as an objective.

Numerous indicators were identified to account for eco-efficiency throughout the considered 
literature. A variety of environmental indicators is observed, and it is concluded that the exact 
environmental indicator used depends on the specific problem environment and case study.
Moreover, attempts are made to assess the environmental impact using standardised methods 
(e.g. Eco-indicator). However, such newly created measures continue to emerge (e.g. 
environmental impact score in Inghels et al. (2016), greenness level in Ghayebloo et al. (2015)), 
indicating the lack of standards.

MCDM approaches for GSCs: a review

31

Service level indicators (e.g. total completion time, rejection rate, late delivered items, 
tardiness) are used in 14% of publications. Social indicators, such as number of accrued jobs, 
hours of employment, injury rate, satisfaction levels of stakeholders and customers, and social 
risks, were used in 22% of the publications.

2.4.3 Solution approaches

It is observed that the use of MADM approaches to balance conflicting criteria in eco-efficient 
SCs is well represented. Numerous approaches such as AHP, TOPSIS, ANP, PROMETHEE, 
DEMATEL, VIKOR and their combinations are used. In 78 out of 188 studied articles (41%) 
one or more MADM approaches were applied. The most commonly used approach is AHP (32 
publications), TOPSIS (23 publications), and ANP (16 publications). Most of the MADM 
approaches are applied to supplier selection or evaluation problems (44 publications, 56% of all 
MADM approaches), and technology or material selection (9 publications, 12%). Within the 
relevant publications, 129 articles (69%) use an MODM approach, mostly based on linear and 
non-linear programming problems. In some studies two or more approaches are presented. It is 
observed that MODM approaches most commonly focus on deriving a set of Pareto-efficient 
solutions (or Pareto-efficient frontier). Pareto-efficient solutions are derived to aid a decision 
maker in selecting most preferable solution that balances environmental and economic 
objectives. The methods most frequently used are the ε-constraint method (44 papers, 34% of 
all MODM approaches) and weighting methods (35 papers, 27%). Some problems are solved 
using heuristics (in case the problem is too difficult or takes too much computational effort to 
solve with standard optimization approaches), such as genetic algorithms (14 papers, 11%), 
other evolutionary algorithms, multi-objective gravitational search algorithm, memetic 
algorithm, multi-objective heuristic based on variable neighbourhood search, or greedy 
heuristic. Additionally, in 19 publications (10%) MADM and MODM approaches are combined 
to arrive at a final solution. In these articles AHP, ANP, and/or TOPSIS are used to obtain 
weights for multi-objective optimization problems, and a single solution out of the efficient set 
is selected, e.g. in Validi et al. (2014a) an AHP constraint is introduced to include decision 
makers’ consensus opinions for vehicles used for distribution, and TOPSIS approach is used to 
evaluate results generated by (three genetic algorithm-based) optimizers to highlight the best 
candidate to a decision maker. 

Among publications assigned to MODM approaches, we included Bouchery et al. (2012) which 
studies the SOQ model and analyses the efficient frontier analytically. The authors also develop 
an interactive procedure to find a balance between the considered objectives. Five publications 
concerned with supply chain network equilibrium problems (Cruz, 2013; Cruz and Matsypura, 
2009; Nagurney et al., 2007) are also assigned to MODM approaches. The authors model the 
behaviours of multiple decision makers in the supply chain and derive the equilibrium 
conditions and optimality conditions for all actors, with the variables such as product flows, 
prices, or levels of social responsibility activities.

Publications in which the Data Envelopment Analysis (DEA) method is used are assigned to 
MODM or MADM approaches depending on its context. Publications of Dobos and 
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With respect to environmental indicators, some form of greenhouse gas (GHG) emissions, such 
as CO2-equivalent, CO2 emission per capita, embodied carbon footprint, air pollution, or impact 
on global warming is most commonly used. Greenhouse gasses were used as an indicator in 
60% of publications, and were most frequently used in distribution planning models (67% of 
publications), and in combination of distribution and production planning models (63%). 
Energy consumption is used in 13% of publications, and was most frequently used in 
production planning models (39%). LCA based indicators, such as ReCiPe 2008, Impact2002+ 
or EcoIndicator, are used in 12% of publications, water is used in 9% of publications, and waste 
is used as an indicator in 9% of publications. Other environmental indicators, e.g. green 
appraisal scores, environmental efficiency, environmental index, volatile organic compounds 
emissions, or exergy losses are used in 14% of the papers. Note that number of (environmental) 
indicators is larger than number of publications. This is because in some publications more than 
one indicator is used. Notably, none of the studied articles on FSCs use the amount of food 
waste as an objective.

Numerous indicators were identified to account for eco-efficiency throughout the considered 
literature. A variety of environmental indicators is observed, and it is concluded that the exact 
environmental indicator used depends on the specific problem environment and case study.
Moreover, attempts are made to assess the environmental impact using standardised methods 
(e.g. Eco-indicator). However, such newly created measures continue to emerge (e.g. 
environmental impact score in Inghels et al. (2016), greenness level in Ghayebloo et al. (2015)), 
indicating the lack of standards.
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Service level indicators (e.g. total completion time, rejection rate, late delivered items, 
tardiness) are used in 14% of publications. Social indicators, such as number of accrued jobs, 
hours of employment, injury rate, satisfaction levels of stakeholders and customers, and social 
risks, were used in 22% of the publications.

2.4.3 Solution approaches

It is observed that the use of MADM approaches to balance conflicting criteria in eco-efficient 
SCs is well represented. Numerous approaches such as AHP, TOPSIS, ANP, PROMETHEE, 
DEMATEL, VIKOR and their combinations are used. In 78 out of 188 studied articles (41%) 
one or more MADM approaches were applied. The most commonly used approach is AHP (32 
publications), TOPSIS (23 publications), and ANP (16 publications). Most of the MADM 
approaches are applied to supplier selection or evaluation problems (44 publications, 56% of all 
MADM approaches), and technology or material selection (9 publications, 12%). Within the 
relevant publications, 129 articles (69%) use an MODM approach, mostly based on linear and 
non-linear programming problems. In some studies two or more approaches are presented. It is 
observed that MODM approaches most commonly focus on deriving a set of Pareto-efficient 
solutions (or Pareto-efficient frontier). Pareto-efficient solutions are derived to aid a decision 
maker in selecting most preferable solution that balances environmental and economic 
objectives. The methods most frequently used are the ε-constraint method (44 papers, 34% of 
all MODM approaches) and weighting methods (35 papers, 27%). Some problems are solved 
using heuristics (in case the problem is too difficult or takes too much computational effort to 
solve with standard optimization approaches), such as genetic algorithms (14 papers, 11%), 
other evolutionary algorithms, multi-objective gravitational search algorithm, memetic 
algorithm, multi-objective heuristic based on variable neighbourhood search, or greedy 
heuristic. Additionally, in 19 publications (10%) MADM and MODM approaches are combined 
to arrive at a final solution. In these articles AHP, ANP, and/or TOPSIS are used to obtain 
weights for multi-objective optimization problems, and a single solution out of the efficient set 
is selected, e.g. in Validi et al. (2014a) an AHP constraint is introduced to include decision 
makers’ consensus opinions for vehicles used for distribution, and TOPSIS approach is used to 
evaluate results generated by (three genetic algorithm-based) optimizers to highlight the best 
candidate to a decision maker. 

Among publications assigned to MODM approaches, we included Bouchery et al. (2012) which 
studies the SOQ model and analyses the efficient frontier analytically. The authors also develop 
an interactive procedure to find a balance between the considered objectives. Five publications 
concerned with supply chain network equilibrium problems (Cruz, 2013; Cruz and Matsypura, 
2009; Nagurney et al., 2007) are also assigned to MODM approaches. The authors model the 
behaviours of multiple decision makers in the supply chain and derive the equilibrium 
conditions and optimality conditions for all actors, with the variables such as product flows, 
prices, or levels of social responsibility activities.

Publications in which the Data Envelopment Analysis (DEA) method is used are assigned to 
MODM or MADM approaches depending on its context. Publications of Dobos and 
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Vorosmarty (2014), Zeydan et al (2011), and Kuo et al. (2010) are assigned to MADM 
approaches, and the authors use DEA to select the most appropriate suppliers, to rank them, and 
to choose a weight system. Two publications in which DEA is used are assigned to MODM 
approaches: Van Meensel et al. (2011) evaluate the ability of frontier approaches to support 
decision making and to analyse trade-offs between economic and environmental performance; 
Quariguasi Frota Neto et al. (2008) propose a methodology based on DEA and multi-objective 
programming to assess efficiency of logistic networks.

Current categorisation could be further extended by categorising the papers based on the 
involvement of the decision maker in selecting a solution from the efficient set. Within MCDM 
approaches a distinction can be made depending on when preferences of a decision maker are 
specified: 1) no articulation of preference, 2) ‘a priori’ articulation of preference information
(before solution process), 3) ‘progressive’ articulation of preferences (during solution process), 
and 4) ’a posteriori’ articulation of preferences (after solution) (Hwang et al., 1980).

2.4.4 Model characteristics

Within the 188 papers considered, 123 (65%) assume all data to be deterministic (Table 2.3), 
and uncertainty is included more often in publications concerned with MADM approaches 
compared to MODM approaches. Non-deterministic data in MADM approaches are included in 
46 articles (59% of all MADM approaches), whereas in MODM approaches only 27 papers 
(21% of all MODM approaches) use uncertainty in parameters. Among non-deterministic 
models fuzzy set theory is most frequently applied to take uncertainty into account. Fuzzy set 
theory is used to take uncertainty into account in weights of decision makers, demand, 
capacities, prices of products, and customer satisfaction levels. Fuzzy set theory was combined 
with AHP, ANP, TOPSIS and Multi-Objective Optimization models. In publications concerned 
with MADM approaches, fuzzy set theory is applied in majority of papers to treat uncertainty, 
and other approaches are used in five papers only. Liou et al. (2016), Chithambaranathan et al. 
(2015), Hashemi et al. (2015), and Wang et al. (2014) apply grey system theory based approach 
to integrate uncertainty in decision making process. In Cobuloglu and Buyuktahtakin (2015) 
stochastic AHP is proposed to treat uncertain information obtained from decision makers. 

In 14 publications associated with MODM approaches uncertainty in parameters is treated with 
an approach different from fuzzy set theory. Eker and van Daalen (2015) consider multiple 
sources of uncertainty associated with biomethane production (e.g. resource availability, 
demand, capacity) and formulate a multi-objective robust optimization model. Brandenburg 
(2015) studies supply chain design problem under uncertain demands, and solves the proposed 
two-stage stochastic programming model with discrete number of scenarios to support 
production and transportation decisions. Gonela et al. (2015) consider uncertain parameters 
related to bioethanol price, demand, and biomass yield. A two-stage stochastic programming 
model is proposed to support design and production decisions in bioethanol supply chain. 
Govindan et al. (2015a) consider uncertain demand of retailers, and develop a scenario-based 
two-stage stochastic programming network design model including transportation and 
manufacturing decisions. Fahimnia and Jabbarzadeh (2016) apply a two-stage stochastic fuzzy 
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goal programming approach to design a resiliently sustainable supply chain by considering a set 
of disaster scenarios. Kravanja (2010) includes uncertain parameters related to processing, and 
the non-linear problem including uncertainty is solved with the developed synthesizer to derive 
Pareto-efficient solutions. Radulescu et al. (2009) formulate a multi-objective stochastic 
programming model with random vectors (with multivariate normal distribution) in the 
objective function and solve the presented model with a genetic algorithm. Radulescu et al. 
(2008) solve a stochastic programming model (with random selling price coefficients) with 
optimization software maximizing one objective at a time. Wu and Chang (2004) use the grey 
system theory to account for uncertainty, and solve their problem with grey compromise 
programming approach. Guillen-Gosalbez and Grossmann (2009), and Guillen-Gosalbez and 
Grossmann (2010) include uncertainty related to environmental damage and use a chance 
constraint indicating that environmental impact must be within a given bound at a given 
probability. Three papers include uncertainty in demand in inventory models. Marti et al.
(2015), and Schaefer and Konur (2015) consider uncertain demand while using a continuous 
review inventory policy. Sazvar et al. (2014) also consider uncertain demand and propose a
two-stage stochastic programming model. Limited number of papers shows an opportunity for 
future research to consider uncertainty in parameters in MCDM approaches. 

It can be observed that in eight out of ten papers concerned with food products, all data are 
assumed to be deterministic. Ziolkowska (2014) uses fuzzy set theory to evaluate linguistic 
variables assigned by decision makers to assess the relation between each production alternative 
and each attribute. Also in Azadnia et al. (2014) experts’ (linguistic) evaluations are quantified 
based on fuzzy set theory. None of the sources of uncertainty listed in the conceptual 
framework related to food production (e.g. production yields or demand) are included in papers 
that model FSCs.

The time aspect is taken into account in 51 publications. Perishability and degrading product 
quality, however, is taken into account in only five publications associated with food products. 
Soysal et al. (2014) and Govindan et al. (2014a) take perishability into account by allowing a 
maximum number of consecutive time periods that a food product can be stored. You et al. 
(2012) take into account a given degradation rate during storage, i.e. it is assumed that during 
each time period a given fraction of stored products deteriorates and cannot be used. Miret et al. 
(2016) take into account biomass deterioration during the storage by considering a given (fixed) 
deterioration rate for each product. To consider perishability Bortolini et al. (2016) propose a 
quality function, which describes shelf life, to evaluate the quality decrease over the time and 
the related market purchase probability.
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Vorosmarty (2014), Zeydan et al (2011), and Kuo et al. (2010) are assigned to MADM 
approaches, and the authors use DEA to select the most appropriate suppliers, to rank them, and 
to choose a weight system. Two publications in which DEA is used are assigned to MODM 
approaches: Van Meensel et al. (2011) evaluate the ability of frontier approaches to support 
decision making and to analyse trade-offs between economic and environmental performance; 
Quariguasi Frota Neto et al. (2008) propose a methodology based on DEA and multi-objective 
programming to assess efficiency of logistic networks.

Current categorisation could be further extended by categorising the papers based on the 
involvement of the decision maker in selecting a solution from the efficient set. Within MCDM 
approaches a distinction can be made depending on when preferences of a decision maker are 
specified: 1) no articulation of preference, 2) ‘a priori’ articulation of preference information
(before solution process), 3) ‘progressive’ articulation of preferences (during solution process), 
and 4) ’a posteriori’ articulation of preferences (after solution) (Hwang et al., 1980).

2.4.4 Model characteristics

Within the 188 papers considered, 123 (65%) assume all data to be deterministic (Table 2.3), 
and uncertainty is included more often in publications concerned with MADM approaches 
compared to MODM approaches. Non-deterministic data in MADM approaches are included in 
46 articles (59% of all MADM approaches), whereas in MODM approaches only 27 papers 
(21% of all MODM approaches) use uncertainty in parameters. Among non-deterministic 
models fuzzy set theory is most frequently applied to take uncertainty into account. Fuzzy set 
theory is used to take uncertainty into account in weights of decision makers, demand, 
capacities, prices of products, and customer satisfaction levels. Fuzzy set theory was combined 
with AHP, ANP, TOPSIS and Multi-Objective Optimization models. In publications concerned 
with MADM approaches, fuzzy set theory is applied in majority of papers to treat uncertainty, 
and other approaches are used in five papers only. Liou et al. (2016), Chithambaranathan et al. 
(2015), Hashemi et al. (2015), and Wang et al. (2014) apply grey system theory based approach 
to integrate uncertainty in decision making process. In Cobuloglu and Buyuktahtakin (2015) 
stochastic AHP is proposed to treat uncertain information obtained from decision makers. 

In 14 publications associated with MODM approaches uncertainty in parameters is treated with 
an approach different from fuzzy set theory. Eker and van Daalen (2015) consider multiple 
sources of uncertainty associated with biomethane production (e.g. resource availability, 
demand, capacity) and formulate a multi-objective robust optimization model. Brandenburg 
(2015) studies supply chain design problem under uncertain demands, and solves the proposed 
two-stage stochastic programming model with discrete number of scenarios to support 
production and transportation decisions. Gonela et al. (2015) consider uncertain parameters 
related to bioethanol price, demand, and biomass yield. A two-stage stochastic programming 
model is proposed to support design and production decisions in bioethanol supply chain. 
Govindan et al. (2015a) consider uncertain demand of retailers, and develop a scenario-based 
two-stage stochastic programming network design model including transportation and 
manufacturing decisions. Fahimnia and Jabbarzadeh (2016) apply a two-stage stochastic fuzzy 
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goal programming approach to design a resiliently sustainable supply chain by considering a set 
of disaster scenarios. Kravanja (2010) includes uncertain parameters related to processing, and 
the non-linear problem including uncertainty is solved with the developed synthesizer to derive 
Pareto-efficient solutions. Radulescu et al. (2009) formulate a multi-objective stochastic 
programming model with random vectors (with multivariate normal distribution) in the 
objective function and solve the presented model with a genetic algorithm. Radulescu et al. 
(2008) solve a stochastic programming model (with random selling price coefficients) with 
optimization software maximizing one objective at a time. Wu and Chang (2004) use the grey 
system theory to account for uncertainty, and solve their problem with grey compromise 
programming approach. Guillen-Gosalbez and Grossmann (2009), and Guillen-Gosalbez and 
Grossmann (2010) include uncertainty related to environmental damage and use a chance 
constraint indicating that environmental impact must be within a given bound at a given 
probability. Three papers include uncertainty in demand in inventory models. Marti et al.
(2015), and Schaefer and Konur (2015) consider uncertain demand while using a continuous 
review inventory policy. Sazvar et al. (2014) also consider uncertain demand and propose a
two-stage stochastic programming model. Limited number of papers shows an opportunity for 
future research to consider uncertainty in parameters in MCDM approaches. 

It can be observed that in eight out of ten papers concerned with food products, all data are 
assumed to be deterministic. Ziolkowska (2014) uses fuzzy set theory to evaluate linguistic 
variables assigned by decision makers to assess the relation between each production alternative 
and each attribute. Also in Azadnia et al. (2014) experts’ (linguistic) evaluations are quantified 
based on fuzzy set theory. None of the sources of uncertainty listed in the conceptual 
framework related to food production (e.g. production yields or demand) are included in papers 
that model FSCs.

The time aspect is taken into account in 51 publications. Perishability and degrading product 
quality, however, is taken into account in only five publications associated with food products. 
Soysal et al. (2014) and Govindan et al. (2014a) take perishability into account by allowing a 
maximum number of consecutive time periods that a food product can be stored. You et al. 
(2012) take into account a given degradation rate during storage, i.e. it is assumed that during 
each time period a given fraction of stored products deteriorates and cannot be used. Miret et al. 
(2016) take into account biomass deterioration during the storage by considering a given (fixed) 
deterioration rate for each product. To consider perishability Bortolini et al. (2016) propose a 
quality function, which describes shelf life, to evaluate the quality decrease over the time and 
the related market purchase probability.
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2.5 Discussion and conclusions

As observed by Dekker et al. (2012), environmental performance can often be improved 
substantially at a marginal expense of economic performance, and MCDM approaches can be 
very useful within this context. To the best of our knowledge, no reviews have specifically 
focused on MCDM approaches in GSCs and related production, distribution, and inventory 
problems. The aim of this chapter was to review studies and to identify research opportunities in 
this field. While MCDM approaches are important to identify solutions balancing 
environmental and economic concerns, there are other approaches that can be used to take 
environmental issues into account, e.g. financial evaluation of environmental criteria, for 
instance carbon tax as presented in Chaabane et al. (2008), or using economic objective and 
environmental constraints (or vice versa). In this manuscript, however, we focused on papers 
that as a starting point apply MCDM approaches to balance (conflicting) criteria of economic 
and environmental performance. 

We found that MCDM approaches to support production, distribution and inventory decisions 
in GSCs gain an increasing interest in recent years. However, using MCDM approaches to 
design green supply chains is currently absent in many Operations Management and Supply 
Chain Management journals, which shows a gap in literature. Most of the studied publications 
focus on production and distribution problems. There are not many MCDM studies focusing on 
inventory management. The reason may be that inventory management decisions do not heavily 
influence the environmental impact. Storage of food products, however, often requires 
temperature controlled conditions that are associated with energy consumption. Nonetheless, we 
did not find any publications on inventory management for food products, which shows a gap in 
literature. In fact, multi-criteria approaches in green FSCs are especially scarce, despite the 
perishability of the products that often results in trade-offs between quality decay and costs. It is 
also surprising that no attention has been given to the closed loop principles in publications 
concerned with perishable products, as we are aware of technologies that can process agri-food 
waste into raw materials used in the same supply chain, as presented in e.g. Zisopoulos et al. 
(2015).

It is observed that numerous indicators are used to account for environmental performance in 
supply chains, indicating a lack of standards. We observe attempts to assess the environmental 
impact of a SC by using standardised methods such as Eco-Indicator, Impact2002, or 
environmental index. It appears, however, that there is no agreement on a unified indicator to be 
used to account for environmental damage, as newly created measures aggregating some 
indicators continue to emerge. Notably, none of the publications concerned with food products 
take food waste as an indicator. This is surprising knowing that food waste is a major concern in 
FSCs (Shukla and Jharkharia, 2013), and one-third of all food produced for human consumption 
is lost or wasted (FAO, 2013).

To assess the limited number of alternatives, multi-attribute decision making (MADM) 
approaches are used, mainly TOPSIS, AHP and ANP. These approaches are commonly applied 
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to assess potential suppliers, to select most appropriate production technology, or to evaluate 
contractors for reverse logistics activities. Multi-objective decision making (MODM) 
approaches are used to find an optimal solution for a large or infinite set of alternatives. These 
approaches are used to support decision making in problems associated with network design, 
transportation planning, scheduling, and with allocation problems. Most publications concerned 
with MODM approaches focus on deriving Pareto-efficient solutions, which are especially 
informative, because they illustrate a quantified trade-off between conflicting economic and 
environmental performance. Pareto-efficient solutions are derived to aid a decision maker in 
selecting most preferable solution. Weighted sum method and ε-constraint method are most 
commonly used to derive these efficient solutions, while other methods often require 
involvement of the decision maker, who may not always be available or capable to participate 
in a weight elicitation process. In some publications Pareto-efficient solutions are derived, and 
an MADM approach is used to select a single solution out of the efficient set. 

Notably, in the majority of papers on eco-efficient supply chains all data are assumed to be 
deterministic, and uncertainty is hardly taken into account. Fuzzy set theory is most commonly 
applied to take uncertainty into account, and the use of other approaches to treat uncertainty in a 
multi-criteria context is limited. We therefore conclude that there is a need for more emphasis to 
include uncertainty inherently associated with supply chains (in demand, prices, processing 
parameters, quality change in products, as pointed out in the developed framework). This can 
lead to the need for exploring other solution approaches that are capable of including 
uncertainty in various data parameters in all decision problems.

We conclude that more attempts to balance economic and environmental criteria in real-life SC 
decision problems are needed. In line with Brandenburg et al. (2014), we identify a need for 
more stochastic approaches in modelling to represent the uncertain decision environment of 
SCs, to take intrinsic characteristics of products into account. It will be interesting to observe 
which impact stochasticity in parameters has on decision making and on eco-efficient frontiers 
in supply chains.
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Abstract

Due to tremendous losses of resources in modern food supply chains, higher 
priority should be given to reducing food waste and environmental impacts of 
food production. In practice, multiple production options are available, but must 
be quantitatively assessed with respect to economic and environmental 
performances before they are adopted in food supply chains. The objective of this 
chapter is to develop a mathematical model that can be used for such a 
quantitative assessment of alternative production options that are associated with 
different ways to deal with waste in food supply chains, i.e. prevention, recycling, 
and disposal of food waste. We develop a multi-objective Mixed Integer Linear 
Programming model to derive the set of eco-efficient solutions corresponding to 
production planning decisions. Environmental performance of the chain is 
expressed with an indicator based on exergy analysis, which has the potential to 
capture other commonly used indicators, such as energy consumption, fuel 
consumption, and waste generation, and express them in a single value. This 
simplifies the calculation of the eco-efficient frontier, and enables its intuitive 
graphical representation, which is much easier to communicate to the involved 
decision makers. The applicability of the developed model is demonstrated on a 
real-life industrial bread supply chain in the Netherlands. Results confirm the 
findings from literature that prevention is the best waste management strategy 
from environmental perspective. The advantages of using exergy as an indicator 
to capture the environmental performance is demonstrated by comparing the 
outcomes to other commonly used indicators of environmental performance. We 
illustrate the potential of studying food production planning decision problems in 
a multi-objective context, and demonstrate the applicability of the model in the 
assessment of alternative production options.
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3.1 Introduction

Until recently, food production focused mainly on delivering high quality products at low costs 
with only secondary attention on environmental impacts, food losses, and depletion of natural 
resources. However, increasing awareness of environmental issues, increasing scarcity of 
resources, social pressure and new regulations force companies to reconsider their operations 
(Chaabane et al., 2012). A major concern in Food Supply Chains (FSCs) is related to food 
waste (Shukla and Jharkharia, 2013). According to FAO (2013) about 1.6 billion tons 
corresponding to one-third of all food produced for human consumption is lost or wasted. 
Processing and distribution of food are responsible for approximately 0.4 billion ton of food 
wastage. To remain competitive, FSCs are challenged to adopt new technologies that reduce or 
valorise food waste. These technologies can contribute to maintaining or increasing economic 
output and reducing environmental impact of current operations i.e. achieving what has been 
defined as eco-efficiency (Braungart et al., 2007). Quantitative assessment of both the economic 
and environmental benefits of these alternative technologies and production options increase the 
adoption rate and facilitates managerial decision making. Production planning models that 
optimize decisions on how, how much, what and when to produce to meet the demand can be 
used to combine available production options and assess quantitatively the economic and 
environmental consequences of new technologies.

Most of the production planning literature, i.e. lot sizing, is focussed on discrete (assembly) 
manufacturing and traditional models have been increasingly refined to incorporate more detail 
of specific production environments (Clark et al., 2011; Jans and Degraeve, 2008; Quadt and 
Kuhn, 2008). Nevertheless, almost all traditional models take the classical principle of 
optimality for lot-sizing as the ultimate objective, i.e. find the best compromise between total 
production costs on the one hand and total inventory-holding costs on the other hand (Claassen 
and Hendrix, 2014). In their special issue on lot-sizing, Clark et al. (2011) stated that changes in 
the philosophy of production planning and control triggered the debate about whether or not lot-
sizing as a trade-off between setups and stocks should be the ultimate objective in production 
planning. The authors noticed a lack of research on i) more realistic and practical variants of 
lot-sizing models and ii) the effect of using real life instances to carry out computational 
experiments. To explore eco-efficient logistical structures with production planning models it is 
important to be able to quantify the potential economic output for different levels of 
environmental impact (and vice versa). Consequently, multi-objective optimization is required. 

Only a few studies apply multi-objective optimization in FSCs to account for economic and 
environmental indicators (Govindan et al., 2014a; Soysal et al., 2014; Validi et al., 2014a; 
Akkerman et al., 2009), but focus mainly on optimizing strategic distribution and 
location/allocation problems, and not production planning decisions. In these aforementioned 
studies CO2 emissions are used as an indicator for environmental performance. In multi-
objective optimization models for supply chain management environmental performance of a 
SC is expressed by various indicators, such as greenhouse gases (GHG) emitted (Aramyan et 
al., 2011; Chaabane et al., 2011; Harris et al., 2011), energy consumed (Zanoni and Zavanella, 
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2012; Quariguasi Frota Neto et al., 2009; van der Vorst et al., 2009), solid waste produced 
(Paksoy et al., 2010; Quariguasi Frota Neto et al., 2009), or water consumed (Oglethorpe, 2010; 
You et al., 2012). An important drawback of these indicators is the lack of a uniform metric for 
the comparison of different substances (e.g. different emissions, waste produced, energy and 
water consumed) including their impacts (Wall, 2010; Coatanéa et al., 2006). Moreover, often a 
single indicator is chosen in optimization models to express the environmental performance for 
computational purposes and for easiness of communicating results with the involved decision 
makers. To overcome these shortcomings aggregated environmental indicators have been 
proposed, such as Cumulative Energy Demand (CED) (Quariguasi Frota Neto et al., 2009) and 
total GHG emissions represented in tons of CO2 equivalent. However, these metrics have been 
criticized because they concentrate only on a single aspect of environmental performance (e.g. 
CED on energy use, tCO2e on greenhouse gas emissions). An alternative approach to quantify 
environmental impact in a single unit is based on the concept of exergy. Exergy analysis is an 
objective assessment method that has been applied in many fields, e.g. chemical sector, 
environmental engineering; and recently also in food industry (Zisopoulos et al., 2015). Despite 
its advantages, exergy analysis has not been used in combination with economic performance in 
optimization models to support decision making in FSCs.

This study adds to literature on supply chain management by 1) presenting a realistic variant of 
a lot sizing model used to assess alternative production options, and 2) providing a model to 
support production planning decisions in an FSC while taking into account economic and 
environmental criteria. The objective of this chapter is to develop a mathematical model that 
can be used to optimize production decisions in FSCs by quantifying trade-offs between (most 
of the time) conflicting economic and environmental indicators, and by exploring alternative 
production options (at food production chain level) with specific attention to food waste. This is 
achieved by developing a multi-objective multi-item capacitated lot-sizing optimization model. 
The applicability of the model to a real-life problem is shown on a bread supply chain in the 
Netherlands, where the total amount of food waste throughout the complete chain constitutes 
approximately 30% of total bread production (Zisopoulos et al., 2015; Blonk, 2006) accounting 
for 330 thousand tons of bread waste annually. On the bread supply chain the differences in 
optimal solutions and trade-off curves are illustrated when environmental performance is 
expressed with different measures, which are: exergy loss, CO2 equivalent, and waste 
generated. Our analysis focuses on the eco-efficient solutions, i.e. solutions for which it is 
impossible to improve one objective, without worsening the other. Eco-efficient solutions 
provide insights in the costs for a unit improvement in environmental impact and vice versa.

This chapter is structured as follows. The next section discusses the conceptual model, in which 
we describe three options to produce a food product, introduce the concept of exergy analysis, 
which is used for quantification of environmental impact, and present the multi-objective mixed 
integer linear programming (MILP) model used to support production planning decisions in an
FSC. Section 3 describes the bread supply chain in the Netherlands including three alternative 
bread production options, discusses the data, and gives the results of the mathematical model. 
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Section 4 presents sensitivity analysis on important parameters of the mathematical model for 
industrial bread production. The last section presents conclusions.

3.2 Problem description

A typical FSC comprises the following links: suppliers of raw materials, processing facility, and 
retail outlet. Our analysis starts with procurement of raw materials (production of raw materials 
is not taken into account) and ends with meeting customer’s demand. We look at a perishable 
food product that becomes waste if it is not sold on the day of production.

3.2.1 Alternative production options

Alternative production options are available in practice to produce a food product. Each 
production option, due to its unique production structure and processing steps, is inherently 
associated with (at least) one waste management option. According to Papargyropoulou et al. 
(2014) the most favourable option to deal with waste is prevention followed by re-use, recycle, 
recovery, and disposal. Three food waste management options are considered here: disposal, 
prevention, and recycling of food waste (Figure 3.1). Disposal of waste refers to a situation 
when the product is not sold before its due date, and is not recycled in the studied FSC.
Prevention of waste, as considered in this chapter, is possible via potential storage of products 
in controlled conditions, therefore extending product’s shelf life. Recycling of waste allows 
valorising not sold products by using processed waste as a raw material for production, 
therefore reducing the need for other raw materials.
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Figure 3.1 Conceptual model for assessing alternative production options with multi-objective production 
planning

Because the decision on production quantities must be made before the actual demand is exactly 
known, we assume that each production option is associated with a pre-defined amount of waste 
stream calculated as a fraction of total production with a given option. To compare the 
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alternative production options, production planning models are needed that take both economic 
and environmental criteria into account.

Optimizing production planning decisions gives insights in the most preferable production 
option, which in turn will have an impact on the design of an FSC. Moreover, optimizing 
production planning decisions is important for improving eco-efficiency, because each 
production option has an effect on both the total amount of waste produced, and on other 
environmental indicators, such as water consumed, or emitted GHG. Producing a food product 
that has the potential to prevent waste may require additional processing steps or temperature 
controlled storage leading to additional energy consumption at different links of a chain. A food 
product that can be recycled may require an additional waste processing step and additional fuel 
consumption due to transportation. Therefore two aspects play an important role. First, the 
whole chain should be taken into account to avoid sub optimization, i.e. improving the 
performance of a single link of a supply chain, at the greater expense of the performance in 
other links. Secondly, multiple environmental indicators (next to an economic indicator) must 
be considered when assessing the impact of each production option. However, in cases of more 
than two objectives in multi-objective optimization models there is no guarantee of efficiency 
for the obtained solution and computation times may increase substantially with the number of 
conflicting objectives (Mavrotas, 2009). To simplify the problem we use an integrated indicator 
based on exergy analysis that has the potential to capture other commonly used environmental 
indicators and express them in a single value.

3.2.2 Environmental assessment: Exergy analysis

Exergy analysis is based on the basic concepts in thermodynamics and it is a suitable scientific 
concept to study the environmental impact because, unlike other single metric indicators, it 
measures all inputs and outputs in a single unit (MJ), making the results visible and conclusions 
easy to draw (Wall, 2010; Apaiah et al., 2006; Apaiah et al., 2005). Exergy analysis has been 
widely used as an assessment of environmental impact in various fields, including the chemical 
industry (Cortez et al., 1997; Morris, 1991) and, more recently, the food industry (Draganovic 
et al., 2013; Apaiah et al., 2006). Exergy measures the ability of a source to produce useful 
work (measured in MJ) that gives a numerical value not only to the quantity but also to the 
quality of the energy use (Apaiah et al., 2006; Apaiah et al., 2005). In contrast to energy, exergy 
is exempt from the law of conservation, and in all real life processes exergy input always 
exceeds exergy output (Apaiah et al., 2006), which means that some exergy is irreversibly lost 
in each processing step. An exergy balance applied to a process explains how much exergy 
supplied as an input to the considered system has been irretrievably lost by the process (Kotas, 
1995). It enables the determination of the location, types and magnitudes of wastes (streams that 
still contain exergy) and losses (exergy irreversibly lost). Exergy analysis has also the potential 
to characterize each product by an exergetic value based on product’s chemical composition. If 
a product is not (re)used and becomes waste, then the exergetic value of the product is 
considered as a loss. As a result the production process, transportation and waste can be 
quantified based on exergy losses, and exergy can be regarded as an umbrella indicator for the 
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assessment of environmental impact. The concept of exergy is used in this chapter to assess 
environmental impact of alternative production options (defined by practitioners) that are 
associated with at least one waste management option considered i.e. disposal, prevention and 
recycling of food waste.

3.2.3 Mathematical model

The mathematical model for production planning in an FSC is formulated as a multi-objective 
mixed integer linear programming model with economic and environmental objectives. We 
formulated a multi-item capacitated lot-sizing model in line with Pochet and Wolsey (2006) and 
tuned it for comparing alternative production options that determine different ways of dealing 
with waste (dispose, prevent, or recycle waste). The economic objective is expressed in 
monetary units and represented by profit. The environmental impact is expressed in megajoules 
and represents exergy losses. The presented model supports decisions on start-ups of production 
and production amounts in each time period for each considered product type and production 
option.

Index sets

𝐼𝐼𝐼𝐼 Set of all product types
𝐵𝐵𝐵𝐵 Set of all production options

𝑃𝑃𝑃𝑃 ⊂ 𝐵𝐵𝐵𝐵 Set of production options (associated with prevention of food waste) allowing for storage of 
products

𝑅𝑅𝑅𝑅 ⊂ 𝐵𝐵𝐵𝐵 Set of production options (associated with recycling food waste) that include (processed) waste 
as a raw material in production

𝑅𝑅𝑅𝑅′ ⊂ 𝐵𝐵𝐵𝐵 Set of production options resulting in products, which waste can be recycled in production 
option(s) 𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅

𝑇𝑇𝑇𝑇 Set of time periods

Decision variables

𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 amount of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with production option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 in time 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇
𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 inventory level of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced according to production option 𝑏𝑏𝑏𝑏 ∈ 𝑃𝑃𝑃𝑃 at the end of 

time period 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇
𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 binary variable indicating if product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 is made with production option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 in time period 

𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 amount of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 on shelf in retail outlet in period 

𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 [kg]
𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 amount of waste from product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝑅𝑅𝑅𝑅′ recycled and used in period 

𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 [kg]
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alternative production options, production planning models are needed that take both economic 
and environmental criteria into account.

Optimizing production planning decisions gives insights in the most preferable production 
option, which in turn will have an impact on the design of an FSC. Moreover, optimizing 
production planning decisions is important for improving eco-efficiency, because each 
production option has an effect on both the total amount of waste produced, and on other 
environmental indicators, such as water consumed, or emitted GHG. Producing a food product 
that has the potential to prevent waste may require additional processing steps or temperature 
controlled storage leading to additional energy consumption at different links of a chain. A food 
product that can be recycled may require an additional waste processing step and additional fuel 
consumption due to transportation. Therefore two aspects play an important role. First, the 
whole chain should be taken into account to avoid sub optimization, i.e. improving the 
performance of a single link of a supply chain, at the greater expense of the performance in 
other links. Secondly, multiple environmental indicators (next to an economic indicator) must 
be considered when assessing the impact of each production option. However, in cases of more 
than two objectives in multi-objective optimization models there is no guarantee of efficiency 
for the obtained solution and computation times may increase substantially with the number of 
conflicting objectives (Mavrotas, 2009). To simplify the problem we use an integrated indicator 
based on exergy analysis that has the potential to capture other commonly used environmental 
indicators and express them in a single value.

3.2.2 Environmental assessment: Exergy analysis

Exergy analysis is based on the basic concepts in thermodynamics and it is a suitable scientific 
concept to study the environmental impact because, unlike other single metric indicators, it 
measures all inputs and outputs in a single unit (MJ), making the results visible and conclusions 
easy to draw (Wall, 2010; Apaiah et al., 2006; Apaiah et al., 2005). Exergy analysis has been 
widely used as an assessment of environmental impact in various fields, including the chemical 
industry (Cortez et al., 1997; Morris, 1991) and, more recently, the food industry (Draganovic 
et al., 2013; Apaiah et al., 2006). Exergy measures the ability of a source to produce useful 
work (measured in MJ) that gives a numerical value not only to the quantity but also to the 
quality of the energy use (Apaiah et al., 2006; Apaiah et al., 2005). In contrast to energy, exergy 
is exempt from the law of conservation, and in all real life processes exergy input always 
exceeds exergy output (Apaiah et al., 2006), which means that some exergy is irreversibly lost 
in each processing step. An exergy balance applied to a process explains how much exergy 
supplied as an input to the considered system has been irretrievably lost by the process (Kotas, 
1995). It enables the determination of the location, types and magnitudes of wastes (streams that 
still contain exergy) and losses (exergy irreversibly lost). Exergy analysis has also the potential 
to characterize each product by an exergetic value based on product’s chemical composition. If 
a product is not (re)used and becomes waste, then the exergetic value of the product is 
considered as a loss. As a result the production process, transportation and waste can be 
quantified based on exergy losses, and exergy can be regarded as an umbrella indicator for the 
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assessment of environmental impact. The concept of exergy is used in this chapter to assess 
environmental impact of alternative production options (defined by practitioners) that are 
associated with at least one waste management option considered i.e. disposal, prevention and 
recycling of food waste.

3.2.3 Mathematical model

The mathematical model for production planning in an FSC is formulated as a multi-objective 
mixed integer linear programming model with economic and environmental objectives. We 
formulated a multi-item capacitated lot-sizing model in line with Pochet and Wolsey (2006) and 
tuned it for comparing alternative production options that determine different ways of dealing 
with waste (dispose, prevent, or recycle waste). The economic objective is expressed in 
monetary units and represented by profit. The environmental impact is expressed in megajoules 
and represents exergy losses. The presented model supports decisions on start-ups of production 
and production amounts in each time period for each considered product type and production 
option.

Index sets

𝐼𝐼𝐼𝐼 Set of all product types
𝐵𝐵𝐵𝐵 Set of all production options

𝑃𝑃𝑃𝑃 ⊂ 𝐵𝐵𝐵𝐵 Set of production options (associated with prevention of food waste) allowing for storage of 
products

𝑅𝑅𝑅𝑅 ⊂ 𝐵𝐵𝐵𝐵 Set of production options (associated with recycling food waste) that include (processed) waste 
as a raw material in production

𝑅𝑅𝑅𝑅′ ⊂ 𝐵𝐵𝐵𝐵 Set of production options resulting in products, which waste can be recycled in production 
option(s) 𝑟𝑟𝑟𝑟 ∈ 𝑅𝑅𝑅𝑅

𝑇𝑇𝑇𝑇 Set of time periods
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𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 amount of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with production option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 in time 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇
𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 inventory level of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced according to production option 𝑏𝑏𝑏𝑏 ∈ 𝑃𝑃𝑃𝑃 at the end of 

time period 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇
𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 binary variable indicating if product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 is made with production option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 in time period 

𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇
𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 amount of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 on shelf in retail outlet in period 
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𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 [kg]
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Parameters

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 demand for product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 in period 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 [kg]
𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 volume of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 [m3/kg]
𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 processing time of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 [h/kg]

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏 daily processing capacity in the processing facility [h]
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_ℎ holding capacity in the retail outlet [m3]
𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 large constant
𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 fraction of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 wasted at the retail outlet [%]
𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 selling price of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 [€/kg]
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 costs associated with producing one kg of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 delivered 

to the retail outlet [€/kg]
𝑐𝑐𝑐𝑐ℎ holding costs per kilogram per day [€/kg]

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 production setup costs for product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 [€]
𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 total exergy losses for producing one kg of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 delivered 

to the retail outlet [MJ/kg]
𝑒𝑒𝑒𝑒ℎ exergy losses associated with holding one kg of product in inventory per day [MJ/kg]

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 chemical exergy in one kg of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 [MJ/kg]
𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 fraction of product waste 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 (based on recipe) needed as an ingredient to produce one kg of 

product with production option 𝑏𝑏𝑏𝑏 ∈ 𝑅𝑅𝑅𝑅 [%]

𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 � � 𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏�1 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏�𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

− � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

− � 𝑐𝑐𝑐𝑐ℎ𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

− � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

� (1)

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 � � 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

+ � 𝑒𝑒𝑒𝑒ℎ𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

+ � 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏�𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡−1 −𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡�
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

� (2)

Subject to

��1 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏�𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵

= 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (3)

𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 − 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 = 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 − 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡−1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵, 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (4)

� 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵∖𝑃𝑃𝑃𝑃,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

= 0 (5)

𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 ≤ 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵, 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (6)

� 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵

≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (7)

� 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵

≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (8)

𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡−1 ≥ 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, 𝑏𝑏𝑏𝑏 ∈ 𝑅𝑅𝑅𝑅′, 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (9)

�𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑏𝑏𝑏𝑏∈𝑅𝑅𝑅𝑅

= � 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑏𝑏𝑏𝑏∈𝑅𝑅𝑅𝑅′

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (10)

� �𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,0 + 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,0�
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵

= 0 (11)

𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 ∈ {0,1} 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵, 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (12)
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Objective function (1) specifies the economic objective function, and refers to maximization of 
profit over the planning horizon. Profit is defined as revenues minus production, inventory and 
setup costs. Total revenues are related to product sales at the retail outlet while total production 
costs are associated with costs related to sourcing of raw materials, energy, transportation, and 
labour. Inventory costs are related to energy consumption of inventory due to storage (in 
temperature controlled conditions), while setup costs (such as cleaning and warm-up of 
machines) are related to production. Objective function (2) refers to the environmental objective 
and aims to minimize total exergy losses related to production, holding and waste. Production 
losses include exergy losses related to fuel consumption in transportation of raw materials to the 
processing facility, transportation of products to the retail outlet, as well as exergy losses related 
to energy consumption in all processing steps in the processing facility. Holding losses relate to 
energy consumption due to temperature controlled conditions in the inventory in the retail 
outlet. Waste losses are calculated by multiplying total amount of wasted product with the 
exergetic value of one kg of product.

We assume that the demand is given per product type and independent of the production option. 
Constraints (3) ensure that demand for each product type is met while taking into account the 
amount of waste in the retail outlet. Constraints (4) ensure that any surplus of products is stored 
in an inventory. Constraint (5) implies that only products associated with preventing waste 
option can be held in inventory. Constraints (6) ensure that the set up binary variable gets value 
1 if production of a particular product type takes place. Constraints (7) and (8) correspond to 
respectively production capacity in the processing facility and holding capacity. Constraints (9) 
ensure that the amount of recycled waste does not exceed available waste. Constraints (10) 
correspond to the amount of recycled waste needed to produce product made with recycled 
material. Constraint (11) sets the starting inventory and amount of product on the shelf at time 
period t=0.

3.3 Case study

In this section we apply the general model to a specific case study of a bread supply chain in the 
Netherlands. We consider a bread supply chain with fixed raw material providers, a single 
industrial bakery, and supermarkets. We consider two bread types: white tin bread, and brown 
bun. These two bread types are considered to be the two extreme recipes, representative for the 
complete variety of bread products. Each bread type can be produced with one of the three 
available production options resulting in freshly baked bread (waste disposal), par-baked bread
(waste prevention), or fermented breadcrumb bread (waste recycling). A time period of a week 
(Monday to Sunday) is considered to be representative, and we optimize a production plan for 
that time period taking into account fluctuations in demand throughout different weekdays.

The main raw materials needed for bread production are wheat flour, whole meal, water, yeast, 
salt, and bread improver. At the bakery the raw materials are combined in a mixing machine to 
produce dough. After the mixing phase, the dough is put on a conveyor for further processing 
steps. Dough is fermented for one hour, and subsequently divided and shaped in a desired form 
by a machine. Next, it is left for one more hour for another fermenting step, called proving. 
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Parameters

𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 demand for product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 in period 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 [kg]
𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 volume of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 [m3/kg]
𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖 processing time of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 [h/kg]

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏 daily processing capacity in the processing facility [h]
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_ℎ holding capacity in the retail outlet [m3]
𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 large constant
𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 fraction of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 wasted at the retail outlet [%]
𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 selling price of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 [€/kg]
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 costs associated with producing one kg of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 delivered 

to the retail outlet [€/kg]
𝑐𝑐𝑐𝑐ℎ holding costs per kilogram per day [€/kg]

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 production setup costs for product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 [€]
𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 total exergy losses for producing one kg of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 delivered 

to the retail outlet [MJ/kg]
𝑒𝑒𝑒𝑒ℎ exergy losses associated with holding one kg of product in inventory per day [MJ/kg]

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 chemical exergy in one kg of product 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 produced with option 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵 [MJ/kg]
𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏 fraction of product waste 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼 (based on recipe) needed as an ingredient to produce one kg of 

product with production option 𝑏𝑏𝑏𝑏 ∈ 𝑅𝑅𝑅𝑅 [%]

𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 � � 𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏�1 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏�𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

− � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

− � 𝑐𝑐𝑐𝑐ℎ𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

− � 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

� (1)

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 � � 𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

+ � 𝑒𝑒𝑒𝑒ℎ𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

+ � 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏�𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡−1 −𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡�
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

� (2)

Subject to

��1 − 𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏�𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵

= 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (3)

𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 − 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 = 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 − 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡−1 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵, 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (4)

� 𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵∖𝑃𝑃𝑃𝑃,𝑡𝑡𝑡𝑡∈𝑇𝑇𝑇𝑇

= 0 (5)

𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 ≤ 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵, 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (6)

� 𝑏𝑏𝑏𝑏𝑖𝑖𝑖𝑖𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵

≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑏𝑏𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (7)

� 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵

≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (8)

𝑧𝑧𝑧𝑧𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡−1 ≥ 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, 𝑏𝑏𝑏𝑏 ∈ 𝑅𝑅𝑅𝑅′, 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (9)

�𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑏𝑏𝑏𝑏∈𝑅𝑅𝑅𝑅

= � 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡
𝑏𝑏𝑏𝑏∈𝑅𝑅𝑅𝑅′

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (10)

� �𝐻𝐻𝐻𝐻𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,0 + 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,0�
𝑖𝑖𝑖𝑖∈𝐼𝐼𝐼𝐼,𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵

= 0 (11)

𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑏𝑏𝑏𝑏,𝑡𝑡𝑡𝑡 ∈ {0,1} 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼, 𝑏𝑏𝑏𝑏 ∈ 𝐵𝐵𝐵𝐵, 𝑡𝑡𝑡𝑡 ∈ 𝑇𝑇𝑇𝑇 (12)
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Objective function (1) specifies the economic objective function, and refers to maximization of 
profit over the planning horizon. Profit is defined as revenues minus production, inventory and 
setup costs. Total revenues are related to product sales at the retail outlet while total production 
costs are associated with costs related to sourcing of raw materials, energy, transportation, and 
labour. Inventory costs are related to energy consumption of inventory due to storage (in 
temperature controlled conditions), while setup costs (such as cleaning and warm-up of 
machines) are related to production. Objective function (2) refers to the environmental objective 
and aims to minimize total exergy losses related to production, holding and waste. Production 
losses include exergy losses related to fuel consumption in transportation of raw materials to the 
processing facility, transportation of products to the retail outlet, as well as exergy losses related 
to energy consumption in all processing steps in the processing facility. Holding losses relate to 
energy consumption due to temperature controlled conditions in the inventory in the retail 
outlet. Waste losses are calculated by multiplying total amount of wasted product with the 
exergetic value of one kg of product.

We assume that the demand is given per product type and independent of the production option. 
Constraints (3) ensure that demand for each product type is met while taking into account the 
amount of waste in the retail outlet. Constraints (4) ensure that any surplus of products is stored 
in an inventory. Constraint (5) implies that only products associated with preventing waste 
option can be held in inventory. Constraints (6) ensure that the set up binary variable gets value 
1 if production of a particular product type takes place. Constraints (7) and (8) correspond to 
respectively production capacity in the processing facility and holding capacity. Constraints (9) 
ensure that the amount of recycled waste does not exceed available waste. Constraints (10) 
correspond to the amount of recycled waste needed to produce product made with recycled 
material. Constraint (11) sets the starting inventory and amount of product on the shelf at time 
period t=0.

3.3 Case study

In this section we apply the general model to a specific case study of a bread supply chain in the 
Netherlands. We consider a bread supply chain with fixed raw material providers, a single 
industrial bakery, and supermarkets. We consider two bread types: white tin bread, and brown 
bun. These two bread types are considered to be the two extreme recipes, representative for the 
complete variety of bread products. Each bread type can be produced with one of the three 
available production options resulting in freshly baked bread (waste disposal), par-baked bread
(waste prevention), or fermented breadcrumb bread (waste recycling). A time period of a week 
(Monday to Sunday) is considered to be representative, and we optimize a production plan for 
that time period taking into account fluctuations in demand throughout different weekdays.

The main raw materials needed for bread production are wheat flour, whole meal, water, yeast, 
salt, and bread improver. At the bakery the raw materials are combined in a mixing machine to 
produce dough. After the mixing phase, the dough is put on a conveyor for further processing 
steps. Dough is fermented for one hour, and subsequently divided and shaped in a desired form 
by a machine. Next, it is left for one more hour for another fermenting step, called proving. 
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Finally the baking, cooling/freezing, and packing takes place, after which the products can be 
transported to the supermarkets.

Bread products are commonly transported from an industrial bakery to supermarkets every 
morning. A key characteristic of freshly baked bread in the Netherlands is its short shelf life. 
Most of the bread products must be sold on the production day due to quality characteristics and 
consumer acceptance. Freshly baked bread products not sold at production day become waste. 
Because the decision on production quantities is commonly made before the actual (exact) 
demand is known, supermarkets usually order more bread than the actual demand in order to 
avoid stock outs. This results in a large waste stream in supermarkets.

In the remainder of this section we describe three alternative bread production options evaluated 
in this study: i) freshly baked bread, ii) par-baked bread and iii) fermented breadcrumb bread.

Current practice for industrial bread production in the Netherlands is the so-called freshly baked 
bread (associated with disposal of food waste as presented in Figure 3.1, and corresponding to 
production option b=1), referred to as fresh bread. Fresh bread production in this chapter refers 
to baking the products at the bakery and transporting the products daily to the supermarkets. In 
this traditional production option, after the dough preparation phase, breads are fully baked at 
the industrial bakery. Bread loaves are then automatically packed, loaded in returnable crates, 
and transported to supermarkets by (non-conditioned) trucks. In the supermarkets, fresh breads 
are directly put on shelves and must be sold on delivery day, otherwise it will become waste. It 
is estimated that 11% of fresh bread is wasted at supermarkets (Zisopoulos et al., 2015; Blonk, 
2006). Currently, wasted bread products are typically given away for animal feed production.

Par-baked bread production (associated with prevention of food waste as presented in Figure 
3.1, and corresponding to production option b=2) is an alternative production option that has the 
potential to prevent bread waste. The main difference compared to the fresh bread production is 
that par-baked bread production involves two baking steps: a partial bake at the industrial 
bakery and a final bake at each supermarket (consequently losing economies of scale). Breads 
are first partially baked (for the same amount of time as fresh bread, but at lower temperature), 
and subsequently frozen. Frozen bread loafs are loaded in returnable crates and transported to 
supermarkets in trucks with a refrigeration unit under temperature controlled conditions. At the 
supermarket, par-baked bread can be stored up to 9 months in freezing conditions that entail 
electricity consumption. The final baking step is performed in response to the observed demand, 
which implies that quantities of wasted bread are substantially less compared to fresh bread 
production.

Fermented breadcrumb bread production (associated with recycling of food waste as presented 
in Figure 3.1, and corresponding to production option b=3) is an alternative that allows to 
recycle bread waste (Zisopoulos et al., 2015). Commonly, bread products not sold on the same 
day as being produced are considered as waste. However, the recipe for fermented breadcrumb 
bread production includes an ingredient that is based on bread leftovers. To produce fermented 
breadcrumb, the bread not sold at the supermarket should be collected and transported back to 
the bakery. At the bakery, the leftover bread is mixed with water and enzymes, and 
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subsequently fermented and chilled. This so-called fermented breadcrumb is mixed with other 
raw materials defined by the recipe for fermented breadcrumb bread. Further processing is in 
line with processing steps for fresh bread production.

Decisions to be taken by management include the frequency of production, batch sizes, and (if 
par-baked bread is produced) the amount of inventory held. The alternative options can affect 
the production planning and logistical structure of the current bread supply chain with 
substantial consequences to economic and environmental performance of the chain as a whole.

All bread types can be produced according to the three described alternatives: produced at an 
industrial bakery (fresh bread, b=1), partially baked at the bakery and final baked in the 
supermarkets (par-baked bread, b=2), or prepared using processed bread waste, thus reducing 
the need of other ingredients (fermented breadcrumb bread, b=3). Fresh bread production is 
associated with the least processing and transportation per kilogram of bread produced, but 
entails high amounts of food waste (amount of fresh bread exceeds the demand to prevent stock 
outs). Production of par-baked bread allows reducing the amount of waste to a minimum (the 
final baking step is carried out to react to current demand), but requires more energy 
consumption due to an additional baking step, and electricity consumption in storage. 
Production of fermented breadcrumb bread is a way to valorise bread waste, but is associated 
with additional processing steps compared to fresh bread production.

3.3.1 Data

Data and assumptions are collected and assessed with industrial partners as well as 
collaborating scientists from food processing, who assess the environmental impact. Exergy 
analysis for this case study, the calculation of exergy losses per processing step, and all 
assumptions related to activities carried out to produce a food product (including fuel 
consumption for transportation, electricity and natural gas consumption for processing) are 
presented in Zisopoulos et al. (2015). Selling prices for bread products are the same for each 
production option, and the demand for breads (Figure 3.2) is aggregated and given per bread 
type, not per production option. In other words, the same product types produced with different 
production options are perfect substitutes. We aggregate all supermarkets in a region into one, 
and thus demand data of the single (aggregated) supermarket refers to demand of a complete 
region supplied by a single industrial bakery.
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recycle bread waste (Zisopoulos et al., 2015). Commonly, bread products not sold on the same 
day as being produced are considered as waste. However, the recipe for fermented breadcrumb 
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breadcrumb, the bread not sold at the supermarket should be collected and transported back to 
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subsequently fermented and chilled. This so-called fermented breadcrumb is mixed with other 
raw materials defined by the recipe for fermented breadcrumb bread. Further processing is in 
line with processing steps for fresh bread production.

Decisions to be taken by management include the frequency of production, batch sizes, and (if 
par-baked bread is produced) the amount of inventory held. The alternative options can affect 
the production planning and logistical structure of the current bread supply chain with 
substantial consequences to economic and environmental performance of the chain as a whole.
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industrial bakery (fresh bread, b=1), partially baked at the bakery and final baked in the 
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associated with the least processing and transportation per kilogram of bread produced, but 
entails high amounts of food waste (amount of fresh bread exceeds the demand to prevent stock 
outs). Production of par-baked bread allows reducing the amount of waste to a minimum (the 
final baking step is carried out to react to current demand), but requires more energy 
consumption due to an additional baking step, and electricity consumption in storage. 
Production of fermented breadcrumb bread is a way to valorise bread waste, but is associated 
with additional processing steps compared to fresh bread production.
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collaborating scientists from food processing, who assess the environmental impact. Exergy 
analysis for this case study, the calculation of exergy losses per processing step, and all 
assumptions related to activities carried out to produce a food product (including fuel 
consumption for transportation, electricity and natural gas consumption for processing) are 
presented in Zisopoulos et al. (2015). Selling prices for bread products are the same for each 
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type, not per production option. In other words, the same product types produced with different 
production options are perfect substitutes. We aggregate all supermarkets in a region into one, 
and thus demand data of the single (aggregated) supermarket refers to demand of a complete 
region supplied by a single industrial bakery.
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Figure 3.2 Demand for different bread types throughout a week (day 1 refers to Monday, day 2 to Tuesday 
etc.)

In the bakery, equipment used for processing raw materials (mixing machine and conveyor belt) 
is supplied by electricity, and a continuous oven is heated by natural gas. Energy usage differs 
for each production option, because each option determines the temperature needed for baking. 
An industrial oven can be used efficiently for 90% of a day (21.6 hours per day) and has the 
capacity to bake 1920kg of white tin bread per hour, and 1080kg of brown buns per hour.

At the supermarket, the environmental impact is associated with energy consumption related to 
(final) baking of par-baked breads, electricity consumption in storage room, and wasted bread 
products, i.e. bread is considered wasted if it cannot be sold the same day as being produced and 
if it is not recycled and used for (fermented breadcrumb bread) production.

Total exergy losses associated with production and transportation are expressed in a single 
value per kilogram of product produced for each bread type, and each production option (Table 
3.1). This single value includes exergy losses associated with transport of raw materials, 
mixing, fermenting, dividing, proving, baking, transport of bread, and final baking per kilogram 
of product produced. Table 3.1 also provides data on other environmental indicators considered, 
i.e. bread waste, and total emission in production and transportation.

We used average data to fix the amount of bread waste at the supermarket. The amount of bread 
wasted is calculated as a fraction of total demand (assuming overproduction to avoid stock 
outs). Each production option entails a different amount of wasted bread, e.g. par-baked bread 
entails the lowest bread losses, as management of the bakery in the supermarket can react to 
low stock of bread products, and perform the final baking step. Based on industrial data and 
discussion with experts we assume that production of fresh bread, par-baked bread, and 
fermented breadcrumb bread entails 11%, 0%, and 11% waste, respectively. Each type of bread 
produced with each option is associated with a different chemical exergy value (Table 3.1). This 
value is considered as exergy loss for each kilogram of bread product wasted. However, if the 
leftover bread at the supermarket is recycled and used for fermented breadcrumb bread 
production, then it is not associated with exergy losses.
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Table 3.1 Exergy losses in each production and transportation step [MJ/kg], chemical exergy per 1 
kilogram of bread [MJ/kg], and production and transportation costs [€/kg] for fresh, par-baked, and 
fermented breadcrumb

White tin Brown bun
Values of parameters in the 
objective functions fresh par-

baked
ferm. 
bread. fresh par-

baked
ferm. 
bread.

Total exergy losses in production 
and transportation [MJ/kg]* 4.47 5.64 4.79 4.73 5.39 5.53

Chemical exergy per 1kg of 
bread [MJ/kg] 11.48 11.48 11.46 12.72 12.72 12.71

Setup costs [€/setup] 1000 1000 1000 1000 1000 1000

Production costs [€/kg]* 0.66 0.82 0.68 0.97 1.15 0.97

Selling price [€/kg] 1.61 1.61 1.61 2.75 2.75 2.75
Bread waste at the supermarket 
[% of total production] 11.2 0 11.2 11.2 0 11.2

Total emissions in production 
and transportation [g CO2e/kg] 303 414 343 298 404 356

*detailed data on exergy losses and production costs per activity are given in Appendix 1 and Appendix 2, respectively.

Total costs associated with production and transportation (including fuel for transport of raw 
materials, energy costs at the bakery, labour costs in the bakery, fuel for transport of bread, 
energy costs for final baking at the supermarket, and labour costs in the supermarket associated 
with final baking step) are also expressed in a single value per kilogram of bread produced with 
each production option (Table 3.1).

Inventory holding costs, as well as exergy losses due to inventory holding, are associated with 
electricity consumption only, being 0.0005€ per kilogram of each product stored per day, and 
0.0187MJ exergy losses per kilogram of each product stored per day. Setup costs associated 
with starting up the production (e.g. preparing the production line, heating up the ovens, 
cleaning the machines etc.) are set at 1000€ per bread type, per production option.

3.3.2 Computational results: optimizing single objectives

First results of the multi-objective MILP for bread production planning are given in this section. 
We present the optimal solutions while optimizing single environmental and economic 
objectives. Optimal solutions indicate the produced quantities of bread including production 
frequencies. The production planning model for a bread supply chain in the Netherlands was 
solved using Xpress-IVE version 7.2. The mathematical model comprises 42 binary variables, 
192 continuous variables, and 171 constraints. Results are presented in Figure 3.3 that shows 
the daily amounts of bread produced with each production option for the optimal production 
plans with respect to economic and environmental performance.

The optimal economic production plan for white tin bread is to produce fresh bread daily 
(Figure 3.3a). Variable costs of fresh white tin bread are 26% lower than for par-baked and 3% 
lower than for fermented breadcrumb white tin bread. For production of brown buns, the par-
baking option is selected and produced in two days in the considered planning horizon 
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Figure 3.2 Demand for different bread types throughout a week (day 1 refers to Monday, day 2 to Tuesday 
etc.)

In the bakery, equipment used for processing raw materials (mixing machine and conveyor belt) 
is supplied by electricity, and a continuous oven is heated by natural gas. Energy usage differs 
for each production option, because each option determines the temperature needed for baking. 
An industrial oven can be used efficiently for 90% of a day (21.6 hours per day) and has the 
capacity to bake 1920kg of white tin bread per hour, and 1080kg of brown buns per hour.

At the supermarket, the environmental impact is associated with energy consumption related to 
(final) baking of par-baked breads, electricity consumption in storage room, and wasted bread 
products, i.e. bread is considered wasted if it cannot be sold the same day as being produced and 
if it is not recycled and used for (fermented breadcrumb bread) production.

Total exergy losses associated with production and transportation are expressed in a single 
value per kilogram of product produced for each bread type, and each production option (Table 
3.1). This single value includes exergy losses associated with transport of raw materials, 
mixing, fermenting, dividing, proving, baking, transport of bread, and final baking per kilogram 
of product produced. Table 3.1 also provides data on other environmental indicators considered, 
i.e. bread waste, and total emission in production and transportation.

We used average data to fix the amount of bread waste at the supermarket. The amount of bread 
wasted is calculated as a fraction of total demand (assuming overproduction to avoid stock 
outs). Each production option entails a different amount of wasted bread, e.g. par-baked bread 
entails the lowest bread losses, as management of the bakery in the supermarket can react to 
low stock of bread products, and perform the final baking step. Based on industrial data and 
discussion with experts we assume that production of fresh bread, par-baked bread, and 
fermented breadcrumb bread entails 11%, 0%, and 11% waste, respectively. Each type of bread 
produced with each option is associated with a different chemical exergy value (Table 3.1). This 
value is considered as exergy loss for each kilogram of bread product wasted. However, if the 
leftover bread at the supermarket is recycled and used for fermented breadcrumb bread 
production, then it is not associated with exergy losses.
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Table 3.1 Exergy losses in each production and transportation step [MJ/kg], chemical exergy per 1 
kilogram of bread [MJ/kg], and production and transportation costs [€/kg] for fresh, par-baked, and 
fermented breadcrumb

White tin Brown bun
Values of parameters in the 
objective functions fresh par-

baked
ferm. 
bread. fresh par-

baked
ferm. 
bread.

Total exergy losses in production 
and transportation [MJ/kg]* 4.47 5.64 4.79 4.73 5.39 5.53

Chemical exergy per 1kg of 
bread [MJ/kg] 11.48 11.48 11.46 12.72 12.72 12.71

Setup costs [€/setup] 1000 1000 1000 1000 1000 1000

Production costs [€/kg]* 0.66 0.82 0.68 0.97 1.15 0.97

Selling price [€/kg] 1.61 1.61 1.61 2.75 2.75 2.75
Bread waste at the supermarket 
[% of total production] 11.2 0 11.2 11.2 0 11.2

Total emissions in production 
and transportation [g CO2e/kg] 303 414 343 298 404 356

*detailed data on exergy losses and production costs per activity are given in Appendix 1 and Appendix 2, respectively.

Total costs associated with production and transportation (including fuel for transport of raw 
materials, energy costs at the bakery, labour costs in the bakery, fuel for transport of bread, 
energy costs for final baking at the supermarket, and labour costs in the supermarket associated 
with final baking step) are also expressed in a single value per kilogram of bread produced with 
each production option (Table 3.1).

Inventory holding costs, as well as exergy losses due to inventory holding, are associated with 
electricity consumption only, being 0.0005€ per kilogram of each product stored per day, and 
0.0187MJ exergy losses per kilogram of each product stored per day. Setup costs associated 
with starting up the production (e.g. preparing the production line, heating up the ovens, 
cleaning the machines etc.) are set at 1000€ per bread type, per production option.

3.3.2 Computational results: optimizing single objectives

First results of the multi-objective MILP for bread production planning are given in this section. 
We present the optimal solutions while optimizing single environmental and economic 
objectives. Optimal solutions indicate the produced quantities of bread including production 
frequencies. The production planning model for a bread supply chain in the Netherlands was 
solved using Xpress-IVE version 7.2. The mathematical model comprises 42 binary variables, 
192 continuous variables, and 171 constraints. Results are presented in Figure 3.3 that shows 
the daily amounts of bread produced with each production option for the optimal production 
plans with respect to economic and environmental performance.

The optimal economic production plan for white tin bread is to produce fresh bread daily 
(Figure 3.3a). Variable costs of fresh white tin bread are 26% lower than for par-baked and 3% 
lower than for fermented breadcrumb white tin bread. For production of brown buns, the par-
baking option is selected and produced in two days in the considered planning horizon 
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(Figure 3.3b). The variable costs of fresh brown buns are 19% lower than for par-baked bread, 
which is not enough to compensate for the lower total setup costs of producing only twice par-
baked brown buns. If the baking capacity constraint was removed from the model formulation, 
production of par-baked brown buns would have taken place on the first day to cover weekly 
demand.

When exergy losses are minimized, the optimal production plan includes daily production of 
par-baked bread for both bread types (Figure 3.3c and 3.3d). Despite higher exergy losses per 
unit of par-baked bread produced compared to other production options (Table 3.1), no bread 
losses at the supermarket make par-baking option favourable from an environmental point of 
view.

The optimal economic production plan has a profit of 126268€ and 835579 MJ exergy losses. 
The optimal environmental production plan has a profit of 112172€ and 745415 MJ exergy 
losses. Therefore, the economic production plan has 12% more exergy losses than the 
environmental production plan, whereas the environmental production plan has 11% less profit 
than the economic production plan. This finding shows that the two objectives are conflicting 
for this case study.

Minimizing the total amount of waste would result in producing par-baked bread (no bread 
losses) for both bread types. Minimization of total emissions expressed in CO2 equivalents 
results in fresh bread only, which has the lowest amount emissions for both bread types. 
Therefore, under current assumptions, using exergy losses as an environmental objective yields 
the same optimal solution with respect to environment as if waste was used as an objective.
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Figure 3.3 Optimal production plans with respect to economic (profit maximization) and environmental 
(exergy losses minimization) objectives
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3.3.3 Computational results: multi-objective approach

A number of approaches are available to solve multi-objective optimization problems, among 
them ε-constraint and weighted sum method are the most widely used (Miettinen, 2008).
However, weighted sum method, in which the weighted sum of objectives is optimized, is not 
suitable for our problem because this approach does not find all Pareto-efficient points when the 
solution space is not convex (Chanta et al., 2014; Das and Dennis, 1997). Therefore, we 
selected the ε-constraint to solve the bi-objective optimization problem and to calculate the set 
of eco-efficient solutions. For a detailed description of the method we refer to Ehrgott (2005).

The eco-efficient solutions are generated by minimizing the environmental objective and 
varying parametrically (in 10 000 iterations) a lower bound on the profit objective function 
value in the constraint set. This is performed for three scenarios depending on the 
environmental objective considered i.e. exergy losses, food waste, and CO2e.

3.3.3.1 Eco-efficient solutions for exergy loss as an environmental objective

The set of eco-efficient solutions, while taking exergy loss as an environmental objective, is 
presented in Figure 3.4. The “jumps” in between some line segments on the efficient frontier 
are caused by discrete changes in selection of production options or changes in production days 
of bread types, and are often associated with the number of setups. The total number of setups, 
when minimizing total exergy losses, is 14 (i.e. producing par-baked bread every day for both 
bread types). By increasing the lower bound of profit the number of setups decreases, while still 
producing only par-baked bread. After the initial rapid increase in economic objective, the 
number of setups rises gradually and reaches 9 setups (due to a gradual change in production of 
par-baked white tin bread to daily production of fresh white tin bread) for the two production 
plans with the highest economic objective function value.

In all eco-efficient solutions, brown buns are produced only with the par-baking option (note
that demand for brown buns corresponds to 19.5% of total bread demand). Moreover, the 
production of brown buns is carried out within two days to fulfil the weekly demand (i.e. there 
are only two setups) in each eco-efficient production plan for profit above 95% of the maximum 
profit. Par-baking is also the only production option for white tin bread when minimizing 
exergy losses. However, production of fresh white tin bread is observed for production plans on 
the eco-efficient frontier where exergy losses exceed 90% of exergy losses obtained for best 
economic production plan (Figure 3.4). The number of days when fresh (white tin) bread is 
produced increases for eco-efficient production plans with increasing profit. At the same time, 
number of days when par-baked white tin bread is produced decreases from 7 to 0. The total 
production of white-tin bread is complimented with fermented breadcrumb bread in some parts 
of the frontier.



C
ha

pt
er

 3

Chapter 3

52

(Figure 3.3b). The variable costs of fresh brown buns are 19% lower than for par-baked bread, 
which is not enough to compensate for the lower total setup costs of producing only twice par-
baked brown buns. If the baking capacity constraint was removed from the model formulation, 
production of par-baked brown buns would have taken place on the first day to cover weekly 
demand.

When exergy losses are minimized, the optimal production plan includes daily production of 
par-baked bread for both bread types (Figure 3.3c and 3.3d). Despite higher exergy losses per 
unit of par-baked bread produced compared to other production options (Table 3.1), no bread 
losses at the supermarket make par-baking option favourable from an environmental point of 
view.

The optimal economic production plan has a profit of 126268€ and 835579 MJ exergy losses. 
The optimal environmental production plan has a profit of 112172€ and 745415 MJ exergy 
losses. Therefore, the economic production plan has 12% more exergy losses than the 
environmental production plan, whereas the environmental production plan has 11% less profit 
than the economic production plan. This finding shows that the two objectives are conflicting 
for this case study.

Minimizing the total amount of waste would result in producing par-baked bread (no bread 
losses) for both bread types. Minimization of total emissions expressed in CO2 equivalents 
results in fresh bread only, which has the lowest amount emissions for both bread types. 
Therefore, under current assumptions, using exergy losses as an environmental objective yields 
the same optimal solution with respect to environment as if waste was used as an objective.
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3.3.3 Computational results: multi-objective approach

A number of approaches are available to solve multi-objective optimization problems, among 
them ε-constraint and weighted sum method are the most widely used (Miettinen, 2008).
However, weighted sum method, in which the weighted sum of objectives is optimized, is not 
suitable for our problem because this approach does not find all Pareto-efficient points when the 
solution space is not convex (Chanta et al., 2014; Das and Dennis, 1997). Therefore, we 
selected the ε-constraint to solve the bi-objective optimization problem and to calculate the set 
of eco-efficient solutions. For a detailed description of the method we refer to Ehrgott (2005).

The eco-efficient solutions are generated by minimizing the environmental objective and 
varying parametrically (in 10 000 iterations) a lower bound on the profit objective function 
value in the constraint set. This is performed for three scenarios depending on the 
environmental objective considered i.e. exergy losses, food waste, and CO2e.

3.3.3.1 Eco-efficient solutions for exergy loss as an environmental objective

The set of eco-efficient solutions, while taking exergy loss as an environmental objective, is 
presented in Figure 3.4. The “jumps” in between some line segments on the efficient frontier 
are caused by discrete changes in selection of production options or changes in production days 
of bread types, and are often associated with the number of setups. The total number of setups, 
when minimizing total exergy losses, is 14 (i.e. producing par-baked bread every day for both 
bread types). By increasing the lower bound of profit the number of setups decreases, while still 
producing only par-baked bread. After the initial rapid increase in economic objective, the 
number of setups rises gradually and reaches 9 setups (due to a gradual change in production of 
par-baked white tin bread to daily production of fresh white tin bread) for the two production 
plans with the highest economic objective function value.

In all eco-efficient solutions, brown buns are produced only with the par-baking option (note
that demand for brown buns corresponds to 19.5% of total bread demand). Moreover, the 
production of brown buns is carried out within two days to fulfil the weekly demand (i.e. there 
are only two setups) in each eco-efficient production plan for profit above 95% of the maximum 
profit. Par-baking is also the only production option for white tin bread when minimizing 
exergy losses. However, production of fresh white tin bread is observed for production plans on 
the eco-efficient frontier where exergy losses exceed 90% of exergy losses obtained for best 
economic production plan (Figure 3.4). The number of days when fresh (white tin) bread is 
produced increases for eco-efficient production plans with increasing profit. At the same time, 
number of days when par-baked white tin bread is produced decreases from 7 to 0. The total 
production of white-tin bread is complimented with fermented breadcrumb bread in some parts 
of the frontier.



Chapter 3

54

Figure 3.4 Trade-off between profit and exergy loss; pie charts above solutions indicate amount of bread 
produced with each option as a fraction of total (weekly) production; numbers above pie charts indicate 
total number of setups for both bread types in the considered production plan.

The curve presented in Figure 3.4 shows a clear trade-off between economic and environmental 
objectives. This shape of the curve (determined by the non-dominated solutions found) can be 
used to calculate the price of an improvement in environmental performance. For instance, for a 
production plan focusing only on profit maximization we can observe that for 0.17% (210€) of 
current profit we can improve the environmental performance by 2.45% (20690 MJ).

3.3.3.2 Eco-efficient solutions for other environmental objectives

The impact of the selected environmental indicator on the eco-efficient frontier is investigated 
by expressing the environmental performance by other commonly used indicators in SC 
literature. In Figure 3.5 and Figure 3.6 two sets of eco-efficient solutions are presented, 
corresponding to two scenarios: where the environmental objective is represented with total 
amount of total amount of CO2e, and waste generated, respectively.
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Figure 3.5 Trade-off between profit and CO2e; pie charts above solutions indicate amount of bread 
produced with each option as a fraction of total (weekly) production; numbers above pie charts indicate 
total number of setups for both bread types in the considered production plan.

Using CO2e as an environmental objective yields a trade-off curve with only six solutions 
(Figure 3.5), and the best environmental solution when considering exergy losses (only par-
baked bread) is different to the solution when using CO2e as an objective (only fresh bread). 
Analysis of this trade-off curve indicates that the production plan becomes more profitable by 
gradually changing the production for brown buns (white tin bread is freshly baked in each 
production option on the eco-efficient frontier) from fresh, to par-baked bread. This shows that 
apart from the best economic solution, all solutions on the eco-efficient frontier are different 
compared to considered scenarios where exergy loss is used as an environmental indicator.
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Figure 3.4 Trade-off between profit and exergy loss; pie charts above solutions indicate amount of bread 
produced with each option as a fraction of total (weekly) production; numbers above pie charts indicate 
total number of setups for both bread types in the considered production plan.

The curve presented in Figure 3.4 shows a clear trade-off between economic and environmental 
objectives. This shape of the curve (determined by the non-dominated solutions found) can be 
used to calculate the price of an improvement in environmental performance. For instance, for a 
production plan focusing only on profit maximization we can observe that for 0.17% (210€) of 
current profit we can improve the environmental performance by 2.45% (20690 MJ).

3.3.3.2 Eco-efficient solutions for other environmental objectives

The impact of the selected environmental indicator on the eco-efficient frontier is investigated 
by expressing the environmental performance by other commonly used indicators in SC 
literature. In Figure 3.5 and Figure 3.6 two sets of eco-efficient solutions are presented, 
corresponding to two scenarios: where the environmental objective is represented with total 
amount of total amount of CO2e, and waste generated, respectively.
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Figure 3.5 Trade-off between profit and CO2e; pie charts above solutions indicate amount of bread 
produced with each option as a fraction of total (weekly) production; numbers above pie charts indicate 
total number of setups for both bread types in the considered production plan.

Using CO2e as an environmental objective yields a trade-off curve with only six solutions 
(Figure 3.5), and the best environmental solution when considering exergy losses (only par-
baked bread) is different to the solution when using CO2e as an objective (only fresh bread). 
Analysis of this trade-off curve indicates that the production plan becomes more profitable by 
gradually changing the production for brown buns (white tin bread is freshly baked in each 
production option on the eco-efficient frontier) from fresh, to par-baked bread. This shows that 
apart from the best economic solution, all solutions on the eco-efficient frontier are different 
compared to considered scenarios where exergy loss is used as an environmental indicator.
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Figure 3.6 Trade-off between profit and bread waste; pie charts above solutions indicate amount of bread 
produced with each option as a fraction of total (weekly) production; numbers above pie charts indicate 
total number of setups for both bread types in the considered production plan.

We observe that using total amount of food waste generated as an objective for environmental 
performance (Figure 3.6) yields nearly the same trade-off curve compared to the scenario when 
total exergy losses are used. The main difference is the absence of most solutions in which only 
par-baked bread is produced, i.e. nine solutions observed in the bottom left corner of Figure 3.4. 
These solutions are not efficient when waste is the environmental objective, because they all 
correspond to solutions where no waste is produced (production with par-baked bread only). 
Overall, within the 10 000 iterations performed, 88% of efficient solutions when waste is 
considered as an environmental objective (Figure 3.6), are also found on the eco-efficient 
frontier when exergy loss is considered as an environmental objective (Figure 3.4). In the 
remaining 12% of efficient solutions, the average difference in total exergy losses is 0.11% as 
compared to solutions when exergy loss is considered. This shows that the eco-efficient frontier 
is nearly the same when waste and exergy loss is used. The reason for having nearly the same 
eco-efficient frontier is that total exergy losses are most heavily influenced by chemical exergy 
associated with bread waste.
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3.4 Sensitivity analysis

Sensitivity analysis illustrates that the proposed model can be used to investigate the impact of 
parameter changes on the optimal solution. Results presented in previous section are based on 
the data obtained via collaboration with experts from industry. To make a reliable analysis, 
experts were involved before, during, and after the model development phase. While experts 
could estimate some model parameters relatively easy (e.g. bread prices, energy costs, labour 
costs, amount of bread waste for fresh bread production based on historical data), some other 
parameters are rather difficult to measure, e.g. par-baked bread losses at the supermarket and 
setup costs. For the current data structure, par-baked bread production seems beneficial as it is 
the only option used to produce brown buns in all production plans in the eco-efficient frontier. 
Moreover, par-baked bread production is selected in most production plans for white tin bread, 
given the assumption of no losses at the supermarket. Additionally, (high) setup costs make par-
baking beneficial because in this production option inventory is allowed. Therefore, based on 
discussion with experts, the primary focus of sensitivity analysis was examining the impact of a 
change in the following parameters: assumed amount of par-baked bread losses, and setup 
costs.

Additionally, it was examined whether the solutions obtained by maximizing profit and 
minimizing exergy losses are sensitive to changes in other parameters in the objective functions. 
We varied each parameter separately by changing its value in an interval between 50% 
decrease, and 100% increase for all production options simultaneously. We found that the 
optimal economic solution is not sensitive to changes within the examined interval for selling 
price, and inventory holding costs. Production costs, however, are more sensitive to changes in 
parameters. Decrease by 10% in production costs entails more production of par-baked white 
tin constituting to 22% of total white tin bread production. Increase in production costs by 46% 
makes fresh bread somewhat beneficial for brown buns, and constitutes to 48% of total brown 
buns production. With respect to environmental objective expressed with exergy loss, we found 
that changes in chemical exergy, exergy losses related to production, and exergy losses 
associated with holding, do not affect the optimal production plan.

3.4.1 Par-baked bread losses

To evaluate the consequences of having some losses in the par-baking option, we calculated 
optimal production plans assuming losses of par-baked bread between 1% and 10%. Sensitivity 
on this parameter with respect to economic objective does not affect the production plan for 
white tin bread (freshly baked only). For brown buns, production of fresh bread appears in the 
optimal production plan when losses of par-baked bread are 3% (Figure 3.7) or higher. Par-
baking, however, is still favourable and constitutes to more than 50% of the production for 
brown buns in each examined scenario (e.g. for 3% losses, par-baking is 52.8% of brown bun 
production).
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Figure 3.6 Trade-off between profit and bread waste; pie charts above solutions indicate amount of bread 
produced with each option as a fraction of total (weekly) production; numbers above pie charts indicate 
total number of setups for both bread types in the considered production plan.

We observe that using total amount of food waste generated as an objective for environmental 
performance (Figure 3.6) yields nearly the same trade-off curve compared to the scenario when 
total exergy losses are used. The main difference is the absence of most solutions in which only 
par-baked bread is produced, i.e. nine solutions observed in the bottom left corner of Figure 3.4. 
These solutions are not efficient when waste is the environmental objective, because they all 
correspond to solutions where no waste is produced (production with par-baked bread only). 
Overall, within the 10 000 iterations performed, 88% of efficient solutions when waste is 
considered as an environmental objective (Figure 3.6), are also found on the eco-efficient 
frontier when exergy loss is considered as an environmental objective (Figure 3.4). In the 
remaining 12% of efficient solutions, the average difference in total exergy losses is 0.11% as 
compared to solutions when exergy loss is considered. This shows that the eco-efficient frontier 
is nearly the same when waste and exergy loss is used. The reason for having nearly the same 
eco-efficient frontier is that total exergy losses are most heavily influenced by chemical exergy 
associated with bread waste.
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3.4 Sensitivity analysis

Sensitivity analysis illustrates that the proposed model can be used to investigate the impact of 
parameter changes on the optimal solution. Results presented in previous section are based on 
the data obtained via collaboration with experts from industry. To make a reliable analysis, 
experts were involved before, during, and after the model development phase. While experts 
could estimate some model parameters relatively easy (e.g. bread prices, energy costs, labour 
costs, amount of bread waste for fresh bread production based on historical data), some other 
parameters are rather difficult to measure, e.g. par-baked bread losses at the supermarket and 
setup costs. For the current data structure, par-baked bread production seems beneficial as it is 
the only option used to produce brown buns in all production plans in the eco-efficient frontier. 
Moreover, par-baked bread production is selected in most production plans for white tin bread, 
given the assumption of no losses at the supermarket. Additionally, (high) setup costs make par-
baking beneficial because in this production option inventory is allowed. Therefore, based on 
discussion with experts, the primary focus of sensitivity analysis was examining the impact of a 
change in the following parameters: assumed amount of par-baked bread losses, and setup 
costs.

Additionally, it was examined whether the solutions obtained by maximizing profit and 
minimizing exergy losses are sensitive to changes in other parameters in the objective functions. 
We varied each parameter separately by changing its value in an interval between 50% 
decrease, and 100% increase for all production options simultaneously. We found that the 
optimal economic solution is not sensitive to changes within the examined interval for selling 
price, and inventory holding costs. Production costs, however, are more sensitive to changes in 
parameters. Decrease by 10% in production costs entails more production of par-baked white 
tin constituting to 22% of total white tin bread production. Increase in production costs by 46% 
makes fresh bread somewhat beneficial for brown buns, and constitutes to 48% of total brown 
buns production. With respect to environmental objective expressed with exergy loss, we found 
that changes in chemical exergy, exergy losses related to production, and exergy losses 
associated with holding, do not affect the optimal production plan.
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optimal production plans assuming losses of par-baked bread between 1% and 10%. Sensitivity 
on this parameter with respect to economic objective does not affect the production plan for 
white tin bread (freshly baked only). For brown buns, production of fresh bread appears in the 
optimal production plan when losses of par-baked bread are 3% (Figure 3.7) or higher. Par-
baking, however, is still favourable and constitutes to more than 50% of the production for 
brown buns in each examined scenario (e.g. for 3% losses, par-baking is 52.8% of brown bun 
production).
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Figure 3.7 Optimal economic production plan with 3% par-baked bread losses at the supermarket

When minimizing exergy losses (Figure 3.8), fermented breadcrumb bread becomes the best 
option for white tin bread when losses of par-baked bread are 3% or more, because it offers the 
opportunity to valorise environmentally costly bread waste, which otherwise would result in 
exergy lost. Par-baking is preferred for brown buns until par-baked bread losses are lower than 
8%. Then, fermented breadcrumb bread becomes beneficial. In scenarios where fermented 
breadcrumb bread is produced it is observed that in the first time period(s) other production 
options are used, such that sufficient amount of waste is available, which is required as a raw 
material for fermented breadcrumb bread production.
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Figure 3.8 Optimal environmental production plans with 3% and 8% par-baked bread losses at the 
supermarket
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3.4.2 Setup costs

Sensitivity analysis of setup costs affects only the profit maximization model run. Results are 
presented in Figure 3.9. When setup costs are neglectable, production of fresh baked breads is 
most attractive (lowest variable costs, despite producing 11% waste). When setup costs are 
2000€, par-baked production takes place for white tin bread to cover the lowest three demands 
thereby reducing the number of setups. On the second day full baking capacity is devoted to 
produce par-baked brown buns.

Profit maximization
setup costs=0€ base case (setup costs=1000€) setup costs=2000€
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Figure 3.9 Optimal economic production plans with 0€, 1000€, and 2000€ daily setup costs per bread type, 
per production option

3.5 Discussion and managerial insights

In spite of the impact of parameter settings, some general conclusions and managerial insights 
can be drawn. From an economic point of view fresh bread is beneficial for the majority of 
bread products (white tin bread in our study), especially under low setup costs. The par-baking 
production option is interesting when setup costs are high. An important managerial insight is 
that par-baking can bring economic benefits for some bread types (brown buns), if the 
management is able to react to the observed demand rapidly and minimize the losses. Therefore, 
par-baked bread production should be implemented as it can give economic and environmental 
benefits. The analysis also shows that the economic solution is hardly sensitive to changes in 
the selling prices and inventory holding costs. However, changes in production costs have a 
clear impact on the quantities of par-baked and fresh bread, i.e. a decrease in production costs 
entails more production of par-baked bread, and an increase in these costs entails more 
production of freshly baked bread.
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Figure 3.7 Optimal economic production plan with 3% par-baked bread losses at the supermarket
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Figure 3.8 Optimal environmental production plans with 3% and 8% par-baked bread losses at the 
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Figure 3.9 Optimal economic production plans with 0€, 1000€, and 2000€ daily setup costs per bread type, 
per production option
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From the environmental perspective par-baking is beneficial for all bread types in the base case 
scenario. It turns out that exergy losses (chemical exergy, exergy losses related to production, 
and exergy losses associated with holding) hardly affect the optimal production plan. Fermented 
breadcrumb bread production can give better results if losses of par-baked bread are higher than 
a threshold value of 3%. From a technological point of view, it is interesting to investigate if 
wasted bread, or processed wasted bread can be stored (and if so, for how long) and used as a 
raw material for fermented breadcrumb bread production after more than one day (as assumed 
here).

Sensitivity analysis shows that the preferred production option depends on parameter settings. 
Each production option is dominant in some scenario, depending on the overriding objective, 
and depending on used parameter values. Future research can help to determine more accurately
the demand patterns, amount of waste at the supermarkets and setup costs.

We assumed that the selling price of bread is independent of the production option. In practice, 
the price of bread produced might be different between production options, which will have a 
direct effect on the results of our analysis.

3.6 Conclusions and future research

The main contribution of this study is the development of a model to assess alternative 
production options for waste management, by optimizing production planning decisions in 
FSCs with respect to economic and environmental criteria. We fill the gap in literature by 
assessing the eco-efficiency of production options using a lot sizing model for a real-life case 
study, namely industrial bread supply chain in the Netherlands. Three options to produce a 
bread product are available, and each production alternative is associated with a different option 
to deal with waste, i.e. par-baked bread (prevention), fermented breadcrumb bread (recycling), 
and freshly baked bread (disposal). We found that prevention of waste appears to be the most 
beneficial solution for all bread types from an environmental point of view, what is in line with 
the guideline provided in the food waste hierarchy (Papargyropoulou et al., 2014). Prevention of 
waste is also beneficial for a fraction of all bread types from an economic point of view. The 
possibility to store par-baked bread and sell when is needed gives additional flexibility and
reduces substantially the setup costs. Shift to a par-baked bread production implies that shelf 
life of a product can be substantially extended, and this offers change in the design of a bread 
supply chain. These findings encouraged our industrial partners to carry out a follow up 
research to investigate the potential alternative logistical structures, including location and sizes 
of distribution centres, which are enabled due to par-baked bread production. Future research on 
this industrial bread supply chain should also investigate inventory management related issues, 
such as alternative reviewing policies, and safety stock levels of frozen breads. It is also 
important in future research to quantify production setup costs, to determine the accuracy of the 
demand patterns, and to investigate if (processed) bread waste can be stored before being used 
for production of fermented breadcrumb bread. The applicability of the model has been 
demonstrated by performing sensitivity analysis on input parameters. Sensitivity analysis 
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revealed that optimal solutions depend on parameters not precisely known in advance, and we 
conclude that future research is needed to take into account uncertainty in parameters.

The environmental impact of the bread supply chain is expressed by the concept of exergy. We 
show in the case study that the optimal solutions obtained are different when exergy losses are 
used as an environmental indicator compared to a scenario in which the most commonly applied 
indicator, i.e. CO2 equivalents, is used. CO2 equivalents focuses only on specific issues, and 
does not always provide an integrated assessment of environmental impact. Using CO2

equivalents, therefore, may point to solutions that are not overall environmentally friendly. 
When environmental impact is expressed with the total amount of bread waste generated, 
solutions obtained are nearly the same as when exergy losses are used. This confirms that 
exergy is able to capture both energy and waste impact, and provides some evidence that exergy 
analysis offers an objective assessment of environmental impact. Future case studies are needed 
to confirm this.

In the study we illustrated the potential of studying food production planning problems in a 
multi-objective context, and demonstrated that the developed model can provide insights in 
assessment of alternative production options.
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Appendix 1

White tin Brown bun
Activity associated with exergy 
losses fresh par-

baked
ferm. 
bread. fresh par-

baked
ferm. 
bread.

Transport raw materials [MJ/kg] 0.09 0.09 0.09 0.09 0.09 0.10
Mixing, fermenting, dividing, 
proving [MJ/kg]

1.22 1.21 1.28 1.22 1.19 1.36

Baking [MJ/kg] 2.28 1.99 2.57 2.25 1.66 2.67
Cooling [MJ/kg] 0.31 - 0.24 0.60 - 0.60
Freezing [MJ/kg] - 0.90 - - 1.00 -
Packing [MJ/kg] 0.01 0.00 0.01 0.02 0.00 0.02
Transport bread [MJ/kg] 0.56 0.55 0.56 0.56 0.55 0.56
Final baking [MJ/kg] - 0.91 - - 0.91 -
Processing waste [MJ/kg] - - 0.05 - - 0.22
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Appendix 2

White tin Brown bun

Component of production costs fresh par-
baked

ferm. 
bread. fresh par-

baked
ferm. 
bread.

Electricity consumption (MJ/kg)
price=0.03 €/MJ

Mixing, dividing, proving 1.06 1.05 1.22 1.03 1.00 1.28
Cooling/Freezing 0.22 0.89 0.21 0.21 0.98 0.21
Packing 0.01 0.00 0.01 0.02 0.00 0.02
Processing waste into sourdough - - 0.04 - - 0.04
Natural gas consumption (MJ/kg)

price=0.01 €/MJ
Baking 2.15 1.86 2.48 2.11 1.51 2.59
Final baking - 0.89 - - 0.89 -
Fuel consumption (L/kg)

price=1.47 €/L
Raw materials transport 0.0023 0.0023 0.0025 0.0024 0.0023 0.0026
Bread transport 0.0147 0.0144 0.0147 0.0147 0.0144 0.0147
Recipe for 1kg of bread (kg)
Flour [0.34 €/kg] 0.72 0.72 0.67 0.32 0.31 0.31
Whole meal [0.34 €/kg] - - - 0.32 0.31 0.31
Water [0.00 €/kg] 0.42 0.42 0.44 0.38 0.37 0.40
Yeast [3.50 €/kg] 0.01 0.01 0.01 0.04 0.04 0.03
Salt [0.14 €/kg] 0.01 0.01 0.01 0.04 0.04 0.03
Bread Improver [2.32 €/kg] 0.01 0.01 0.01 0.01 0.01 0.01
Waste [0.00 €/kg] - - 0.06 - - 0.07
Enzymes [4.00 €/kg] - - 0.002 - - 0.002
Labour costs (€/kg) 0.25 0.28 0.28 0.25 0.28 0.28
Packaging costs (€/kg) 0.02 0.14 0.02 0.05 0.20 0.05
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Abstract

Environmental concerns and scarcity of resources encourage decision makers in 
supply chains to consider alternative production options that include preventing 
the production of waste streams, and simultaneously reusing and recycling waste 
materials. Until now, hardly any quantitative modelling approaches exist in 
literature on closing loops in agri-food supply chains. In contrast to closed-loop 
studies in discrete parts industry, in agri-food supply chains the value of the final 
product itself cannot be regained. However, the components used for production 
such as organic matter or a growing medium, can be recycled. In this chapter, the 
consequences of closing loops in a mushroom supply chain are revealed. We 
propose a multi-objective mixed integer linear programming model to quantify 
trade-offs between economic and environmental indicators and explore 
quantitatively alternative recycling technologies. The model was developed to re-
design the logistical structure and close loops in the mushroom supply chain. We 
found that adopting closing loop technologies in industrial mushroom production 
has the potential to increase total profitability of the chain by almost 11% while 
the environmental performance improves by almost 28%. We conclude that a 
comprehensive evaluation of recycling technologies and re-designing logistical 
structures requires quantitative tools that optimize simultaneously managerial 
decisions at strategic and tactical level.
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4.1 Introduction

Resources become scarce, ecosystems are threatened, and the consequences of climate change 
have a large impact on the living environment. People become aware of environmental 
pressure, which in turn causes an increasing demand for sustainable food production. To 
become more environmentally friendly, food supply chains need to adopt innovative 
technologies that focus on using natural resources and materials to their full potential.

The concept of “closing loops”, which refers to the integration of forward and reverse supply 
chain activities (Guide et al., 2003), is one of the options considered to ensure the sustainability 
of supply chains (Chaabane et al., 2012). This topic has been widely studied and has given rise 
to the field of Closed Loop Supply Chains (CLSCs) (Paksoy et al., 2011). In CLSCs, items no 
longer desired or used are taken care of and their value is (partly) recovered (Flapper et al., 
2005). Examples of new logistical structures exist in which the concept of closing loops has 
been used and showed that resource use efficiency can be substantially improved. However, 
these examples mostly refer to returning products to original equipment manufacturers (OEM) 
in discrete parts industry e.g. car industry (van der Laan, 1997), refrigerators (Krikke et al., 
2003), copiers (Krikke et al., 1999), and electronic equipment (Quariguasi Frota Neto et al., 
2010). Value of OEM products can be regained after their use because these products consist of 
materials and components that are suitable for reuse. In agri-food chains, defined as supply 
chains that produce and distribute agricultural or horticultural products (Ahumada and 
Villalobos, 2009; Aramyan et al., 2006), raw materials used for production usually either 
disappear due to consumption or lose their value (e.g. due to product decay), and wasted food 
products can be valorised in other supply chains, e.g. for biofuel production or feed production. 
Thus in contrast to discrete parts industry, in a closed-loop agri-food supply chain it is not the 
value of what is in the products that can be regained (in the same chain), but rather the 
components used for production, such as organic matter or a growing medium. Therefore, 
closing loops in agri-food chains may require a fundamental reconsideration of business 
processes and redesign of distinct logistical structures.

To redesign an agri-food supply chain, decision support models are needed that can optimize 
decision making at chain level. Additionally, these decision support models should enable the 
assessment of multiple indicators. This can result in the calculation of trade-offs between 
conflicting objectives, which make decision makers aware of (individual) trade-offs and can 
facilitate the discussion and exploration of alternative logistical structures. Govindan et al. 
(2015d) confirm that there are hardly studies in the CLSC literature that evaluate quantitatively 
the relationship between economic and environmental criteria simultaneously. Bell et al. (2013)
emphasize the need for studies to demonstrate how closed loop technologies can lead to 
improved environmental performance. Moreover, in order to investigate the relation between 
economic and environmental criteria, Soysal et al. (2012) and Brandenburg et al. (2014) 
confirm the need for quantitative models on real-life case studies. 

The research presented in this chapter attempts to fill in these gaps. More specifically, we 
evaluate quantitatively a mushroom supply chain, in which farm waste materials are used for 
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Abstract

Environmental concerns and scarcity of resources encourage decision makers in 
supply chains to consider alternative production options that include preventing 
the production of waste streams, and simultaneously reusing and recycling waste 
materials. Until now, hardly any quantitative modelling approaches exist in 
literature on closing loops in agri-food supply chains. In contrast to closed-loop 
studies in discrete parts industry, in agri-food supply chains the value of the final 
product itself cannot be regained. However, the components used for production 
such as organic matter or a growing medium, can be recycled. In this chapter, the 
consequences of closing loops in a mushroom supply chain are revealed. We 
propose a multi-objective mixed integer linear programming model to quantify 
trade-offs between economic and environmental indicators and explore 
quantitatively alternative recycling technologies. The model was developed to re-
design the logistical structure and close loops in the mushroom supply chain. We 
found that adopting closing loop technologies in industrial mushroom production 
has the potential to increase total profitability of the chain by almost 11% while 
the environmental performance improves by almost 28%. We conclude that a 
comprehensive evaluation of recycling technologies and re-designing logistical 
structures requires quantitative tools that optimize simultaneously managerial 
decisions at strategic and tactical level.
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4.1 Introduction

Resources become scarce, ecosystems are threatened, and the consequences of climate change 
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(2015d) confirm that there are hardly studies in the CLSC literature that evaluate quantitatively 
the relationship between economic and environmental criteria simultaneously. Bell et al. (2013)
emphasize the need for studies to demonstrate how closed loop technologies can lead to 
improved environmental performance. Moreover, in order to investigate the relation between 
economic and environmental criteria, Soysal et al. (2012) and Brandenburg et al. (2014) 
confirm the need for quantitative models on real-life case studies. 

The research presented in this chapter attempts to fill in these gaps. More specifically, we 
evaluate quantitatively a mushroom supply chain, in which farm waste materials are used for 



Chapter 4

68

mushroom production. Horse and chicken manure are some of the ingredients that can be used 
for the production of substrate for growing mushrooms. Spent mushroom substrate, a material 
remaining after cultivating mushrooms can cause environmental burden, i.e. for instance in the 
Netherlands over 800 000 tons of spent mushroom substrate is produced annually (Phan and 
Sabaratnam, 2012), and need to be transported hundreds of kilometres just to be used as 
fertilizer. The activities related to disposal are neither economically nor environmentally 
attractive. The amount of mushrooms produced in the Netherlands constitutes to less than 9% of 
global mushroom production (Koopman et al., 2010). These figures demonstrate the magnitude 
of this waste stream worldwide. Simultaneously, the figures show the potential for 
improvement, as the economic and environmental performance could be improved substantially 
if only a minor part of the nutritious waste materials could be reused or recovered in the same 
chain for production. Amount of spent mushroom substrate can be reduced by extending 
production cycles, i.e. using the same substrate for more subsequent production rounds at 
mushroom production level. Such an option will reduce the amount of disposed substrate, 
however, always at the expense of the yearly production yield. Technological innovations 
provide potential for reusing and recycling parts of the spent mushroom substrate to close the 
loop in mushroom supply chains. The feasibility of these technological innovations including 
their impact on sustainability must be further investigated. It is therefore important to quantify 
the implications of valorisation of materials on the performance of a mushroom supply chain.

The objective of this chapter is to evaluate the economic and environmental performance of 
closing loop technologies at chain level in a mushroom supply chain. A multi-objective (mixed 
integer) linear programming model is developed to support production and distribution planning 
decisions by optimizing material flows in a closed-loop mushroom supply chain. The 
mushroom supply chain provides an example of an agri-food supply chain in which not the 
product itself, but the medium for growing the product can be reduced, reused, or recycled. We 
demonstrate how environmental and economic performance of alternative closed-loop logistical 
structures can be evaluated in a multi-objective context. To the best of our knowledge, this 
chapter presents the first decision support model to optimize flows of materials with respect to 
economic and environmental objectives in a closed-loop agri-food supply chain. Deriving a set 
of Pareto-optimal solutions allows to obtain insights in the environmental costs of activities in a 
mushroom supply chain.

This chapter is structured as follows. Section 2 presents an overview from literature in the 
related areas, i.e. closed-loop supply chains, and the use of multi-criteria decision making 
models in agri-food supply chains. Section 3 introduces a mushroom supply chain in which 
possibilities exist to close material loops. We propose a multi-objective decision support model 
that can be used to quantify the benefits of closing loops. Section 4 presents the results of the 
model applied to the real-life mushroom supply chain. Section 5 focuses on the generalizability 
of the case study to create a framework for closed-loop agri-food supply chains. The main 
conclusions are summarized in Section 6.
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4.2 Literature review

A vast body of literature exists that focuses on improving the environmental performance of 
supply chains (SCs) (Brandenburg et al., 2014). Reduction of environmental impact, however, 
often requires sacrifices in terms of economic performance in a SC, and only a limited number 
of initiatives for environmental friendly production have proven to be profitable (Quariguasi 
Frota Neto et al., 2008). Assessment of alternative options requires the consideration of multiple 
criteria, because any (re)design of a SC usually involves trade-offs between different conflicting 
objectives (Wang et al., 2011). Multi-objective optimization has already been used to address 
different decision problems in SCs and to test the efficiency of various SC configurations and 
operating strategies (Aramyan et al., 2011; Ramudhin et al., 2010).

One of the environmental issues in SCs is associated with the amount of waste produced and in 
response, the recovery of products is drawing attention of researchers and practitioners (Paksoy 
et al., 2010). Commonly, the aim is to regain the incorporated value of some products once their 
use has ended, instead of land filling or incinerating the remains (Dekker et al., 2012).
Regaining value of a product typically involves reverse logistic activities, such as reuse, repair, 
recycle and remanufacture (Chaabane et al., 2012; Paksoy et al., 2011; Jayaraman, 2006).
Reverse logistics, therefore, includes the activities all the way from used products (i.e. no longer 
required by the user), to products that are reusable in a market (Fleischmann et al., 1997).
Applications of reverse logistics in literature include e.g. hi-tech products (Eskandarpour et al., 
2013), computer hardware (Ravi et al., 2008), electronic equipment (Quariguasi Frota Neto et 
al., 2009), plastic recycling (Senthil et al., 2014), or tire recovery (Dehghanian and Mansour, 
2009). Reverse supply chain activities improve supply chain management by giving the 
advantage of closing the material loop of products from resource extraction, through 
production, use, and end-of-life (Paksoy et al., 2010).

A Closed Loop Supply Chain (CLSC) is defined as a chain in which both forward and reverse 
logistics are combined. In a CLSC flows of materials are circular and finished products do not 
become waste after their use, but instead are disassembled, reused, remanufactured, or recycled 
into a source of raw materials (Hassini et al., 2012). Examples of CLSC optimization models 
including economic and environmental criteria can be found for instance in automotive industry 
(Kannegiesser et al., 2014) or electronic equipment (Quariguasi Frota Neto et al., 2010).

Within the context of agri-food supply chains the sustainability discussion focuses on emissions 
related to all activities in the supply chain, including the reduction of waste (Bloemhof and van 
der Vorst, 2014). Amorim et al. (2012) present a multi-objective model to minimize the costs, 
and maximize the remaining shelf life of a perishable product. Akkerman et al. (2009) study 
sustainable production and distribution of industrially prepared meal elements, while taking into 
account products’ quality degradation. To ensure the product’s quality, its enthalpy levels in the 
developed mathematical model must be below a given threshold when delivered to customers. 
Soysal et al. (2014) study a beef logistics network problem. The authors develop a generic bi-
objective linear programming model to support decisions on the amount of livestock 
slaughtered per period, the amount of livestock kept in inventory, flows between different 
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actors in a supply chain, and the number of trucks used, while taking into account the possibility 
of using less than full loaded trucks and its impact on fuel consumption. 

Food waste mostly arises at the beginning and at the final stage in a supply chain i.e. 
agricultural production, postharvest handling and storage, and consumption phase (FAO, 2013).
Valorisation of waste materials arising from food production gains growing attention in recent 
years (Chen et al., 2017). Food waste can be used in a wide range of industrial applications, 
including energy production, animal feed production, chemical or pharmaceutical applications 
(Girotto et al., 2015). A number of publications present mathematical models to optimize 
biofuel production in a multi-criteria context. Biofuel production can be seen as a reverse 
supply chain for food products, as it offers insights in potential ways to valorise food waste. For 
instance, Ziolkowska (2014) investigates optimal biofuel production, and presents a fuzzy 
PROMETHEE approach to derive coefficients for an LP model, which includes fuzzy 
constraints related to uncertain resource availability, such as water and land use. You et al. 
(2012) study sustainable cellulosic biofuel supply chains, and develop a Multi-Objective Mixed 
Integer Programming model at the strategic design level and at operational planning level. The 
developed model predicts optimal network design, technology selection, capital investment, 
production operations, inventory control, and logistics management decisions while taking the 
products degradation rate into account.

While the above mentioned publications provide mathematical models for what can be seen as 
reverse supply chains for food products, these publications do not concern CLSCs because the 
waste products are not used in the same chain. It is observed by Stindt and Sahamie (2014) that 
research on CLSC in process industry is limited, and the challenges regarding non-discrete 
products are not sufficiently covered. In discrete manufacturing products can often be 
disassembled to valuable flows of materials with the same original properties, and kept at an 
inventory until being used. In closed-loop agri-food chains, on the other hand, deterioration of 
products plays a role, and products to be recovered often need to be enhanced by adding value 
in processing. Because of perishability, the need for enhancing product’s value during recovery, 
and specific reverse flows of waste materials, which come from manufacturing stages and not 
the customers, the models developed in closed-loop agri-food supply chains are different from 
the models developed for discrete part industries. To the best of our knowledge, there are no 
agri-food supply chain decision support models in literature that optimize the flows of materials 
in closed loop form by using waste as materials for production in the same supply chain. 
Additionally, according to Mirabella et al. (2014), environmental and economic implications of 
closing loops in an agri-food supply chain context need to be investigated, particularly in real-
life case studies. Moreover, the prevalent recovery options (i.e. reuse, repair, remanufacturing, 
refurbishing, retrieval and recycling) are not applicable to non-discrete products, and there is a 
challenge to redefine the recovery options for process industry (Stindt and Sahamie, 2014).
Based on the case study considered in this chapter, we make a first attempt to create a 
framework for a closed-loop agri-food supply chain.
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4.3 Industrial mushroom production

Mushrooms are grown on industrially prepared substrate that consists of two layers: compost as 
a bottom layer, and casing soil as a top layer. All raw materials needed for substrate production 
are transported to a substrate production factory. Raw materials used for compost production 
usually include horse manure (main source of carbon and nitrogen), chicken manure (source of 
nitrogen), straw (source of carbon), and gypsum (source of calcium, helps to control the pH
value of the compost). Other raw materials used for production include water and ammonium 
sulphate (source of nitrogen). Casing soil is usually produced from peat and limestone.

Production of compost is divided in three subsequent phases: (1) mixing (duration of around 5 
days), (2) main micro-biological process (duration of around 6 days), (3) combining mycelium 
with compost (duration of around 16 days). The final product of phase (3) is called full-grown 
inoculated compost, which is delivered to the growers. It is crucial that full-grown inoculated 
compost is produced just-in-time, because it can be stored for at most 24 hours (and becomes 
waste afterwards).

Substrate is transported to mushroom growers who provide appropriate growing conditions for 
mushrooms. The same substrate can be used to obtain multiple flushes of mushrooms. Substrate 
cannot be used for more than three flushes because of increasing risks for pests and diseases. In 
general, productivity of substrate decreases with each flush. The quality and consequently the 
selling price of fresh mushrooms mainly depends on the size of the produced mushrooms. After 
the last harvest, spent mushroom substrate has to be steamed to become pathogen-free and is 
discarded on agricultural land. Discarding the substrate involves substantial disposal costs 
associated mainly with transportation. Additionally, spent mushroom substrate is rich in 
nutrients that are wasted if the material is not reused or recycled.

Technological innovations at processing level that allow for recovery of spent substrate to 
produce compost and casing soil have recently become available. These innovations provide 
alternatives that can result in more sustainable mushroom production and can definitely affect
managerial decision making at chain level. Currently, feasibility is investigated of reusing the 
bottom layer of spent mushroom substrate (spent mushroom compost) directly as an ingredient 
for compost production. Reusing spent mushroom compost is possible after separating the two 
layers of substrate by scrubbing and removing the top layer. Alternatively, the spent mushroom 
compost can be recycled and used for casing soil production. Such recycling stage requires the 
spent mushroom compost to be fermented before it can be used to replace other raw materials in 
casing soil. To recover the waste product (i.e. spent mushroom compost), it needs to be 
treated/processed directly after usage for quality reasons. The implications of these closing loop 
technologies on strategic (e.g. network designing) and tactical (e.g. production planning) 
managerial decision making have not been evaluated quantitatively.
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4.3.1 A closed-loop supply chain model for a mushroom supply chain

In agri-food supply chains, tactical production planning decisions can directly affect strategic 
network design decisions and vice versa. Chain level assessment requires simultaneous 
optimization of these decisions. For that reason, the proposed multi-objective mixed integer 
linear programming model comprises two coupled components. The first component describes 
location allocation decisions in factories, which produce compost and casing soil. This location 
allocation model supports decisions on how much of each raw material to source each time 
period, and how much components to produce in each factory such that demand of growers for 
substrate is fulfilled. The model includes binary decisions on operationalising production 
options that can be associated with valorisation of wasted materials, thus allowing closing the 
loop in the considered supply chain. This has the potential to improve the economic and 
environmental performance by 1) replacing other raw materials and producing less waste, and 
2) reducing the total transportation distance. The second component of the model supports 
decisions at (tactical) harvest and production planning level, i.e. when to start and finish the 
harvest (i.e. how many flushes to cultivate), such that mushroom production will result in the 
greatest benefits regarding the defined objectives. Additionally, the option to include a closing 
loop in the considered supply chain has been modelled in order to valorise the waste stream 
(spent mushroom substrate) and use it as a raw material for production. Both components of the 
model account for economic and environmental objectives to investigate a potential trade-off 
between both dimensions, and to inform decision makers about the costs associated with 
improving the environmental performance.

We consider a number of (real-life) production factories. The potential locations of substrate 
production factories 𝐼𝐼𝐼𝐼, as well as mushroom growers’ 𝐽𝐽𝐽𝐽 are fixed. The general structure of the 
case study supply chain is presented in Figure 4.1. Demand for mushrooms does not depend on 
mushroom size and is assumed to be known in advance. Moreover, for each mushroom size 
three different selling prices are defined: mushrooms within the specified demand are sold at the 
highest price, mushrooms produced exceeding the demand are sold at a lower price, and low
quality mushrooms are sold to a processing company also at a lower price. In the next section 
we present an outline of the applied model in practice.

Closing loops in agricultural supply chains using multi-objective optimization

73

ManufacturingManufacturing

Phase 1 Phase 2 Phase 3

Casing soil

Forward flow Reverse flow

...

Waste 
processing

Phase 1 Phase 2 Phase 3

Casing soilWaste 
processing

Closed facility
(non-existent facility)

Open facility

Raw MaterialRaw Material

1

2

...

R

Grower 1

Grower 2

Grower J

Sell food 
products

Recover 
waste

Dispose 
waste

...

ConsumerConsumer

Factory 1

Factory I

Figure 4.1 General structure of the mushroom supply chain considered in the case study

4.3.2 Bi-objective mixed-integer linear programming model

The model for production planning in a mushroom supply chain is formulated as a multi-
objective mixed integer programming model. The objectives of the model include an economic 
objective and an environmental objective. For the readability we split the model into two 
components, i.e. the location/allocation model in Section 4.3.2.1 and production planning model 
in Section 4.3.2.2. 

For the mathematical description of the model the following notation is introduced:

Indices

𝑟𝑟𝑟𝑟 index for a material used for substrate production, 𝑟𝑟𝑟𝑟 = 1, … ,𝑅𝑅𝑅𝑅
𝑟𝑟𝑟𝑟1 index for a raw material, 𝑟𝑟𝑟𝑟1 = 1, … ,𝑅𝑅𝑅𝑅1
𝑟𝑟𝑟𝑟2 index for a material obtained via recovery, 𝑟𝑟𝑟𝑟2 = 𝑅𝑅𝑅𝑅1 + 1, … ,𝑅𝑅𝑅𝑅
𝑚𝑚𝑚𝑚 index for compost production option, 𝑚𝑚𝑚𝑚 = 1, … ,𝑀𝑀𝑀𝑀
𝑚𝑚𝑚𝑚 index for casing soil production option, 𝑚𝑚𝑚𝑚 = 1, … ,𝑁𝑁𝑁𝑁
𝑖𝑖𝑖𝑖 index for a substrate production factory, 𝑖𝑖𝑖𝑖 = 1, … , 𝐼𝐼𝐼𝐼
𝑗𝑗𝑗𝑗 index for a mushroom grower, 𝑗𝑗𝑗𝑗 = 1, … , 𝐽𝐽𝐽𝐽
𝑡𝑡𝑡𝑡 index for a time period, 𝑡𝑡𝑡𝑡 = 1, … ,𝑇𝑇𝑇𝑇
𝑐𝑐𝑐𝑐 index for age of cultivated substrate, 𝑐𝑐𝑐𝑐 = 1, … ,𝐴𝐴𝐴𝐴
𝑐𝑐𝑐𝑐 index for size of mushroom, 𝑐𝑐𝑐𝑐 = 1, … ,𝐶𝐶𝐶𝐶
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Monetary parameters

𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖 price per ton of raw material 𝑟𝑟𝑟𝑟 sourced to factory i
𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 costs per ton of product transported from factory i to grower j
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 operating costs per ton of substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2 recovering costs per ton of a bottom layer of spent substrate produced with compost 𝑚𝑚𝑚𝑚 and 

casing 𝑚𝑚𝑚𝑚 to be used as raw material 𝑟𝑟𝑟𝑟2
𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 fixed cost of operationalizing in factory 𝑖𝑖𝑖𝑖 production of substrate with compost 𝑚𝑚𝑚𝑚 and 

casing 𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 selling price of one kilogram of mushrooms size 𝑐𝑐𝑐𝑐 fulfilling the demand in period 𝑡𝑡𝑡𝑡
𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 selling price of one kilogram of mushrooms size 𝑐𝑐𝑐𝑐 exceeding the demand in period 𝑡𝑡𝑡𝑡
𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 selling price for one kilogram of low quality mushrooms size 𝑐𝑐𝑐𝑐 in period 𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐ℎ𝑗𝑗𝑗𝑗 disposal and transportation costs per ton of disposed material from grower 𝑗𝑗𝑗𝑗
𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 variable and labour costs per ton of substrate at age 𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 handling costs per kilogram of mushrooms due to diseases

Environmental parameters

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖 environmental impact associated with transporting 1 ton of raw material 𝑟𝑟𝑟𝑟 sourced to 
factory 𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 environmental impact associated with transporting 1 ton of product between factory 𝑖𝑖𝑖𝑖 and 
grower 𝑗𝑗𝑗𝑗

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 environmental impact associated with producing 1 ton of substrate with compost 𝑚𝑚𝑚𝑚 and 
casing 𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2 environmental impact associated with recovering 1 ton of bottom layer of spent substrate 
produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚 to be used as raw material 𝑟𝑟𝑟𝑟2

𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚 environmental impact of disposing 1kg of mushrooms
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 environmental impact associated with producing 1kg of mushrooms cultivated on substrate 

based on compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗 environmental impact of associated with transporting 1 ton of waste for disposal from 

grower 𝑗𝑗𝑗𝑗
𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 environmental impact associated with disposing 1 ton of substrate produced with compost 

𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚

Technical parameters

𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 amount of raw material 𝑟𝑟𝑟𝑟 in the recipe for substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓_𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟 supply capacity of raw material 𝑟𝑟𝑟𝑟 provider
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓_𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 capacity in factory 𝑖𝑖𝑖𝑖 for substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 fraction of compost in substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2 fraction of material recovered from bottom layer of substrate, produced with compost 𝑚𝑚𝑚𝑚

and casing 𝑚𝑚𝑚𝑚 to be used as material 𝑟𝑟𝑟𝑟2
𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎 yield (kg) of mushrooms size 𝑐𝑐𝑐𝑐 per ton of substrate at age 𝑐𝑐𝑐𝑐
𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗 capacity of grower 𝑗𝑗𝑗𝑗
𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎 ratio of mushroom loss due to diseases at age 𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎 fraction of low quality mushrooms at age 𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡 demand for mushrooms at location 𝑗𝑗𝑗𝑗 in time period 𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡1
𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 processing time of a part produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚
𝑡𝑡𝑡𝑡2
𝑟𝑟𝑟𝑟2 processing time of a wasted product to be used as a raw material 𝑟𝑟𝑟𝑟
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Decision variables:

𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 amount of raw material 𝑟𝑟𝑟𝑟 sourced to factory 𝑖𝑖𝑖𝑖 in period 𝑡𝑡𝑡𝑡
𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡 amount of substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚 in factory 𝑖𝑖𝑖𝑖 transported to 

grower 𝑗𝑗𝑗𝑗 in period 𝑡𝑡𝑡𝑡
𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡 amount of bottom layer of spent substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚, sourced 

by factory 𝑖𝑖𝑖𝑖 from grower 𝑗𝑗𝑗𝑗 to be recovered and used as a raw material 𝑟𝑟𝑟𝑟2 in period 𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 binary variable indicating if substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚 is 

operational in factory 𝑖𝑖𝑖𝑖
𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 amount of substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚 cultivated by grower 𝑗𝑗𝑗𝑗 in time 

period 𝑡𝑡𝑡𝑡 at age 𝑐𝑐𝑐𝑐
𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 amount of substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚 thrown away by grower 𝑗𝑗𝑗𝑗 in 

time period 𝑡𝑡𝑡𝑡 at age 𝑐𝑐𝑐𝑐
𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗,𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 The amount of premium quality mushrooms size 𝑐𝑐𝑐𝑐 sold in period 𝑡𝑡𝑡𝑡 by grower 𝑗𝑗𝑗𝑗
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗,𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 The amount of surplus mushrooms size 𝑐𝑐𝑐𝑐 sold in period 𝑡𝑡𝑡𝑡 by grower 𝑗𝑗𝑗𝑗
𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗,𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 The amount of low quality mushrooms size 𝑐𝑐𝑐𝑐 sold in period 𝑡𝑡𝑡𝑡 by grower 𝑗𝑗𝑗𝑗

4.3.2.1 Location allocation model for substrate production planning

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 �𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒1 = �𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖 ∗ 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡
𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡

+ � �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 + 𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗� ∗ 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡

+ � �𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2� ∗ 𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡

+ � 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 ∗ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐

𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛

�

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 �𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒1 = �𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖 ∗ 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡
𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡

+ � �𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛� ∗ 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡

+ � �𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2� ∗ 𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡

�

Subject to:

�𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖

≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓_𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟 ∀𝑟𝑟𝑟𝑟,∀𝑡𝑡𝑡𝑡 (1)

𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 =  � 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 ∗ 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡+𝑡𝑡𝑡𝑡1
𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛

𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑗𝑗𝑗𝑗
∀𝑟𝑟𝑟𝑟,∀𝑖𝑖𝑖𝑖,∀𝑡𝑡𝑡𝑡 (2)

� 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡+𝑘𝑘𝑘𝑘

𝑡𝑡𝑡𝑡1
𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛−1

𝑘𝑘𝑘𝑘=0
≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓_𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 ∗ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛

𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 ∀𝑖𝑖𝑖𝑖,∀𝑡𝑡𝑡𝑡,∀𝑚𝑚𝑚𝑚,∀𝑚𝑚𝑚𝑚 (3)

�𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖

= 𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 ∀𝑗𝑗𝑗𝑗,∀𝑚𝑚𝑚𝑚,∀𝑚𝑚𝑚𝑚,∀𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐 = 1 (4)

�𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟2

≤�𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 ∗ 𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎

∀𝑗𝑗𝑗𝑗,∀𝑚𝑚𝑚𝑚,∀𝑚𝑚𝑚𝑚,∀𝑡𝑡𝑡𝑡 (5)

� 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2 ∗ 𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛

= �𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟2,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡+𝑡𝑡𝑡𝑡2
𝑟𝑟𝑟𝑟2

𝑖𝑖𝑖𝑖

 ∀𝑡𝑡𝑡𝑡,∀𝑟𝑟𝑟𝑟2 (6)
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Monetary parameters

𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖 price per ton of raw material 𝑟𝑟𝑟𝑟 sourced to factory i
𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 costs per ton of product transported from factory i to grower j
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 operating costs per ton of substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2 recovering costs per ton of a bottom layer of spent substrate produced with compost 𝑚𝑚𝑚𝑚 and 

casing 𝑚𝑚𝑚𝑚 to be used as raw material 𝑟𝑟𝑟𝑟2
𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 fixed cost of operationalizing in factory 𝑖𝑖𝑖𝑖 production of substrate with compost 𝑚𝑚𝑚𝑚 and 

casing 𝑚𝑚𝑚𝑚
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 selling price of one kilogram of mushrooms size 𝑐𝑐𝑐𝑐 fulfilling the demand in period 𝑡𝑡𝑡𝑡
𝑓𝑓𝑓𝑓𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 selling price of one kilogram of mushrooms size 𝑐𝑐𝑐𝑐 exceeding the demand in period 𝑡𝑡𝑡𝑡
𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 selling price for one kilogram of low quality mushrooms size 𝑐𝑐𝑐𝑐 in period 𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐ℎ𝑗𝑗𝑗𝑗 disposal and transportation costs per ton of disposed material from grower 𝑗𝑗𝑗𝑗
𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 variable and labour costs per ton of substrate at age 𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 handling costs per kilogram of mushrooms due to diseases

Environmental parameters

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖 environmental impact associated with transporting 1 ton of raw material 𝑟𝑟𝑟𝑟 sourced to 
factory 𝑖𝑖𝑖𝑖

𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 environmental impact associated with transporting 1 ton of product between factory 𝑖𝑖𝑖𝑖 and 
grower 𝑗𝑗𝑗𝑗

𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 environmental impact associated with producing 1 ton of substrate with compost 𝑚𝑚𝑚𝑚 and 
casing 𝑚𝑚𝑚𝑚

𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2 environmental impact associated with recovering 1 ton of bottom layer of spent substrate 
produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚 to be used as raw material 𝑟𝑟𝑟𝑟2

𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚 environmental impact of disposing 1kg of mushrooms
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 environmental impact associated with producing 1kg of mushrooms cultivated on substrate 

based on compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗 environmental impact of associated with transporting 1 ton of waste for disposal from 

grower 𝑗𝑗𝑗𝑗
𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 environmental impact associated with disposing 1 ton of substrate produced with compost 

𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚

Technical parameters

𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 amount of raw material 𝑟𝑟𝑟𝑟 in the recipe for substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓_𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟 supply capacity of raw material 𝑟𝑟𝑟𝑟 provider
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓_𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 capacity in factory 𝑖𝑖𝑖𝑖 for substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 fraction of compost in substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚
𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2 fraction of material recovered from bottom layer of substrate, produced with compost 𝑚𝑚𝑚𝑚

and casing 𝑚𝑚𝑚𝑚 to be used as material 𝑟𝑟𝑟𝑟2
𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎 yield (kg) of mushrooms size 𝑐𝑐𝑐𝑐 per ton of substrate at age 𝑐𝑐𝑐𝑐
𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗 capacity of grower 𝑗𝑗𝑗𝑗
𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑎𝑎𝑎𝑎 ratio of mushroom loss due to diseases at age 𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎 fraction of low quality mushrooms at age 𝑐𝑐𝑐𝑐
𝑑𝑑𝑑𝑑𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡 demand for mushrooms at location 𝑗𝑗𝑗𝑗 in time period 𝑡𝑡𝑡𝑡
𝑡𝑡𝑡𝑡1
𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 processing time of a part produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚
𝑡𝑡𝑡𝑡2
𝑟𝑟𝑟𝑟2 processing time of a wasted product to be used as a raw material 𝑟𝑟𝑟𝑟
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Decision variables:

𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 amount of raw material 𝑟𝑟𝑟𝑟 sourced to factory 𝑖𝑖𝑖𝑖 in period 𝑡𝑡𝑡𝑡
𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡 amount of substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚 in factory 𝑖𝑖𝑖𝑖 transported to 

grower 𝑗𝑗𝑗𝑗 in period 𝑡𝑡𝑡𝑡
𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡 amount of bottom layer of spent substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚, sourced 

by factory 𝑖𝑖𝑖𝑖 from grower 𝑗𝑗𝑗𝑗 to be recovered and used as a raw material 𝑟𝑟𝑟𝑟2 in period 𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 binary variable indicating if substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚 is 

operational in factory 𝑖𝑖𝑖𝑖
𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 amount of substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚 cultivated by grower 𝑗𝑗𝑗𝑗 in time 

period 𝑡𝑡𝑡𝑡 at age 𝑐𝑐𝑐𝑐
𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 amount of substrate produced with compost 𝑚𝑚𝑚𝑚 and casing 𝑚𝑚𝑚𝑚 thrown away by grower 𝑗𝑗𝑗𝑗 in 

time period 𝑡𝑡𝑡𝑡 at age 𝑐𝑐𝑐𝑐
𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗,𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 The amount of premium quality mushrooms size 𝑐𝑐𝑐𝑐 sold in period 𝑡𝑡𝑡𝑡 by grower 𝑗𝑗𝑗𝑗
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗,𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 The amount of surplus mushrooms size 𝑐𝑐𝑐𝑐 sold in period 𝑡𝑡𝑡𝑡 by grower 𝑗𝑗𝑗𝑗
𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗,𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 The amount of low quality mushrooms size 𝑐𝑐𝑐𝑐 sold in period 𝑡𝑡𝑡𝑡 by grower 𝑗𝑗𝑗𝑗

4.3.2.1 Location allocation model for substrate production planning

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 �𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒1 = �𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖 ∗ 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡
𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡

+ � �𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 + 𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗� ∗ 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡

+ � �𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2� ∗ 𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡

+ � 𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 ∗ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛
𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐

𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛

�

𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑚𝑚 �𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒1 = �𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖 ∗ 𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡
𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡

+ � �𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛� ∗ 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡

+ � �𝑒𝑒𝑒𝑒𝑡𝑡𝑡𝑡𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 + 𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2� ∗ 𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡

�

Subject to:

�𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖

≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓_𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟 ∀𝑟𝑟𝑟𝑟,∀𝑡𝑡𝑡𝑡 (1)

𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡 =  � 𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒𝑟𝑟𝑟𝑟,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 ∗ 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡+𝑡𝑡𝑡𝑡1
𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛

𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑗𝑗𝑗𝑗
∀𝑟𝑟𝑟𝑟,∀𝑖𝑖𝑖𝑖,∀𝑡𝑡𝑡𝑡 (2)

� 𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡+𝑘𝑘𝑘𝑘

𝑡𝑡𝑡𝑡1
𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛−1

𝑘𝑘𝑘𝑘=0
≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓_𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 ∗ 𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛

𝑓𝑓𝑓𝑓𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 ∀𝑖𝑖𝑖𝑖,∀𝑡𝑡𝑡𝑡,∀𝑚𝑚𝑚𝑚,∀𝑚𝑚𝑚𝑚 (3)

�𝑌𝑌𝑌𝑌𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖

= 𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 ∀𝑗𝑗𝑗𝑗,∀𝑚𝑚𝑚𝑚,∀𝑚𝑚𝑚𝑚,∀𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐 = 1 (4)

�𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖,𝑟𝑟𝑟𝑟2

≤�𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛 ∗ 𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎

∀𝑗𝑗𝑗𝑗,∀𝑚𝑚𝑚𝑚,∀𝑚𝑚𝑚𝑚,∀𝑡𝑡𝑡𝑡 (5)

� 𝑑𝑑𝑑𝑑𝑟𝑟𝑟𝑟𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2 ∗ 𝑈𝑈𝑈𝑈𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑟𝑟𝑟𝑟2,𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛

= �𝑋𝑋𝑋𝑋𝑟𝑟𝑟𝑟2,𝑖𝑖𝑖𝑖,𝑡𝑡𝑡𝑡+𝑡𝑡𝑡𝑡2
𝑟𝑟𝑟𝑟2

𝑖𝑖𝑖𝑖

 ∀𝑡𝑡𝑡𝑡,∀𝑟𝑟𝑟𝑟2 (6)



Chapter 4
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The first component of the economic objective (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒1 ) minimizes total costs associated with 
production and transportation of substrate, which is delivered to growers. It comprises four 
terms: (a) acquisition costs of raw materials, (b) substrate production costs, and transportation 
costs of substrate to growers, (c) transportation costs of spent compost to be recovered, and 
recovery costs of spent compost, (d) fixed cost associated with operationalizing production 
options (by setting fixed costs to 0 the model becomes a typical allocation model).

The first component of the environmental objective (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒1 ) minimizes total environmental 
impact associated with production and transportation of substrate. It comprises three terms: (a) 
environmental impact associated with transportation of raw materials, (b) environmental impact 
associated with production and transportation of substrate, (c) environmental impact associated 
with transportation of spent compost to be recovered, and environmental impact associated with 
recovery of spent compost.

Constraints (1) ensure capacity restrictions on raw material providers for substrate production. 
Constraints (2) are recipe constraints that ensure the amount of raw materials sourced 
correspond to the requirements for substrate production, while taking into account processing 
time of production option 𝑚𝑚𝑚𝑚. Constraints (3) ensure capacity restrictions on each production 
option. Constraints (4) ensure balanced flows of materials between facilities, i.e. the amount of 
substrate supplied by factories must be equal to the grower’s demand for substrate. The 
constraints in (5) ensure that the recovered amount of compost is not larger than the amount of 
spent compost (disposed by growers). Constraints (6) ensure that the amount of recovered 
materials correspond to the amount used in production while taking into account mass change 
during recovery.
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4.3.2.2 Production planning model

𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 �𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒2 = ��𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡𝑀𝑀𝑀𝑀𝑗𝑗𝑗𝑗,𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑗𝑗𝑗𝑗,𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡𝐿𝐿𝐿𝐿𝑗𝑗𝑗𝑗,𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡�
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− � 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎
𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎
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𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎
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≤ 𝑔𝑔𝑔𝑔𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗 ∀𝑗𝑗𝑗𝑗,∀𝑡𝑡𝑡𝑡 (10)

𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 = 𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡−1,𝑎𝑎𝑎𝑎−1 − 𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡−1,𝑎𝑎𝑎𝑎−1 ∀𝑚𝑚𝑚𝑚,∀𝑚𝑚𝑚𝑚,∀𝑗𝑗𝑗𝑗,∀𝑡𝑡𝑡𝑡 > 1,∀𝑐𝑐𝑐𝑐 > 1 (11)

𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 = 𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 ∀𝑚𝑚𝑚𝑚,∀𝑚𝑚𝑚𝑚,∀𝑗𝑗𝑗𝑗, 𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑇𝑇,∀𝑐𝑐𝑐𝑐 (12)

𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 = 𝑍𝑍𝑍𝑍𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚,𝑛𝑛𝑛𝑛,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 ∀𝑚𝑚𝑚𝑚,∀𝑚𝑚𝑚𝑚,∀𝑗𝑗𝑗𝑗,∀𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐 = 𝐴𝐴𝐴𝐴 (13)

The second component of the economic objective (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒2 ) maximizes total profit of growers, and 
it is calculated as revenues from sales of final products minus growers’ costs. This objective 
function comprises four terms: (a) revenue from selling (premium quality, surplus, and low 
quality) mushrooms, (b) costs associated with cultivating substrate, (c) handling costs of a
disease outbreak, (d) disposal and transportation costs of (not recovered) waste substrate.

The second component of the environmental objective (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒2 ) minimizes total environmental 
impact associated with growers. It comprises following terms: (a) environmental impact 
associated with growing, (b) environmental impact associated with a disease outbreak, (c) 
environmental impact associated with transportation of disposed waste materials and 
environmental impact associated with disposal of waste materials.
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The first component of the economic objective (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒1 ) minimizes total costs associated with 
production and transportation of substrate, which is delivered to growers. It comprises four 
terms: (a) acquisition costs of raw materials, (b) substrate production costs, and transportation 
costs of substrate to growers, (c) transportation costs of spent compost to be recovered, and 
recovery costs of spent compost, (d) fixed cost associated with operationalizing production 
options (by setting fixed costs to 0 the model becomes a typical allocation model).

The first component of the environmental objective (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒1 ) minimizes total environmental 
impact associated with production and transportation of substrate. It comprises three terms: (a) 
environmental impact associated with transportation of raw materials, (b) environmental impact 
associated with production and transportation of substrate, (c) environmental impact associated 
with transportation of spent compost to be recovered, and environmental impact associated with 
recovery of spent compost.

Constraints (1) ensure capacity restrictions on raw material providers for substrate production. 
Constraints (2) are recipe constraints that ensure the amount of raw materials sourced 
correspond to the requirements for substrate production, while taking into account processing 
time of production option 𝑚𝑚𝑚𝑚. Constraints (3) ensure capacity restrictions on each production 
option. Constraints (4) ensure balanced flows of materials between facilities, i.e. the amount of 
substrate supplied by factories must be equal to the grower’s demand for substrate. The 
constraints in (5) ensure that the recovered amount of compost is not larger than the amount of 
spent compost (disposed by growers). Constraints (6) ensure that the amount of recovered 
materials correspond to the amount used in production while taking into account mass change 
during recovery.
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4.3.2.2 Production planning model
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The second component of the economic objective (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒2 ) maximizes total profit of growers, and 
it is calculated as revenues from sales of final products minus growers’ costs. This objective 
function comprises four terms: (a) revenue from selling (premium quality, surplus, and low 
quality) mushrooms, (b) costs associated with cultivating substrate, (c) handling costs of a
disease outbreak, (d) disposal and transportation costs of (not recovered) waste substrate.

The second component of the environmental objective (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒2 ) minimizes total environmental 
impact associated with growers. It comprises following terms: (a) environmental impact 
associated with growing, (b) environmental impact associated with a disease outbreak, (c) 
environmental impact associated with transportation of disposed waste materials and 
environmental impact associated with disposal of waste materials.
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Constraints (7) and (8) are used to calculate the amount of premium quality, surplus, and low 
quality mushrooms. Constraints (9) ensure that demand is satisfied by premium quality 
mushrooms. Constraints (10) ensure capacity restrictions at mushroom growers. Constraints 
(11) are recursive constraints ensuring that the amount of substrate cultivated for mushroom 
production in a given period is not larger than in the previous period. Constraints (12) and (13) 
ensure that the cultivation of a substrate stops in the last considered period, and when substrate 
has been cultivated for the maximal allowed number of days. The two defined components are 
aggregated in a single model, which is used to support decision making in the considered 
closed-loop mushroom supply chain.

4.3.3 Data and setup of the modelling exercise

The summarized model components presented in the previous subsections are combined into a 
bi-objective optimization model by adding the objective functions of economic performance 
(i.e. 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒1 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒2 ) and environmental impact (i.e. 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒1 + 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒2 ), and including all presented 
constraints in a single model. Constraint (4) links the two model components by ensuring that 
amount of substrate supplied by substrate production facilities is equal to mushroom growers’ 
demand for substrate. The model is applied to redesign an industrial mushroom supply chain. 
The studied supply chain comprises of two substrate production factories with fixed (i.e. 
known) locations. In the current structure of the chain, one factory does not produce casing soil, 
while the other factory cannot produce phase 1 compost. To compare the operational benefits of 
opening new facilities (including casing soil production, phase 1 compost production, recycling, 
and reusing options), we take the fixed costs for opening facilities equal to zero.

Mushroom growers were clustered based on their geographical location into seven grower 
groups. Transportation costs are calculated by multiplying average fuel consumption (0.02L of 
diesel per ton of product per kilometre), with price of diesel (1.2€/L), with the average distance 
from each factory to each location. The distances are given in Table 4.1. The considered time 
horizon consists of 365 days to capture the variations in prices and demand for mushrooms 
throughout a year (Figure 4.2).

Table 4.1 Transportation distances from factories to mushroom growers locations, and demand data as a 
fraction of total demand

Transportation distance (km)
Demand

zone Factory 1 Factory 2

1 60 70 0.29

2 120 50 0.25

3 140 40 0.17

4 1000 900 0.17

5 250 200 0.04

6 650 600 0.04

7 500 500 0.04
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Figure 4.2 Annual fluctuations of prices for small, giant, mean, low quality and over demand mushrooms 
(primary axis), and aggregated demand for all zones of mushroom growers (secondary axis)

We use total exergy loss as a single metric indicator for environmental performance (Apaiah et 
al., 2006; Kotas, 1995). Exergy losses of a system have been widely used to express the 
environmental impact in various fields, including chemical sectors, construction industries, and 
food industry (Zisopoulos et al., 2017). The advantage of exergy, as an environmental indicator 
is that it allows to quantify environmental impact of production activities (including energy 
consumption, fuel consumption and waste generation) and express them in a single unit, i.e. 
megajoules.

Data on current practice of substrate production and mushrooms cultivation are collected by 
interviews with industrial partners and collaborating scientists from food processing who 
quantify the environmental impact of all activities and processes in the mushroom supply chain. 
Some indicative data are given in Table 4.2 and Table 4.3.

Table 4.2 Average revenues, variable costs, profit and exergy losses associated with mushroom production
Average revenues
(€/ton substrate)

Average costs
(€/ton substrate)

Profit
(€/ton substrate)

Exergy loss
(MJ/ton substrate)

1st flush 270 96 174 6.07
2nd flush 437 122 315 6.10
3rd flush 497 160 337 6.11

Table 4.3 Average variable costs associated with substrate production and exergy losses production per 
ton of substrate
Types of substrate Variable costs (€/ton substrate) Exergy (MJ/ton substrate)
Current (production) 80.2 5.91
Reused compost 79.6 5.82
Recycled casing soil 70.7 5.94
Reused compost and recycled casing soil 70.1 5.79

To assess the effects of individual technological innovations and potential investment decisions 
we used the model to calculate an optimal logistical structure in 5 different scenarios (Table 
4.4).
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Constraints (7) and (8) are used to calculate the amount of premium quality, surplus, and low 
quality mushrooms. Constraints (9) ensure that demand is satisfied by premium quality 
mushrooms. Constraints (10) ensure capacity restrictions at mushroom growers. Constraints 
(11) are recursive constraints ensuring that the amount of substrate cultivated for mushroom 
production in a given period is not larger than in the previous period. Constraints (12) and (13) 
ensure that the cultivation of a substrate stops in the last considered period, and when substrate 
has been cultivated for the maximal allowed number of days. The two defined components are 
aggregated in a single model, which is used to support decision making in the considered 
closed-loop mushroom supply chain.

4.3.3 Data and setup of the modelling exercise

The summarized model components presented in the previous subsections are combined into a 
bi-objective optimization model by adding the objective functions of economic performance 
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constraints in a single model. Constraint (4) links the two model components by ensuring that 
amount of substrate supplied by substrate production facilities is equal to mushroom growers’ 
demand for substrate. The model is applied to redesign an industrial mushroom supply chain. 
The studied supply chain comprises of two substrate production factories with fixed (i.e. 
known) locations. In the current structure of the chain, one factory does not produce casing soil, 
while the other factory cannot produce phase 1 compost. To compare the operational benefits of 
opening new facilities (including casing soil production, phase 1 compost production, recycling, 
and reusing options), we take the fixed costs for opening facilities equal to zero.

Mushroom growers were clustered based on their geographical location into seven grower 
groups. Transportation costs are calculated by multiplying average fuel consumption (0.02L of 
diesel per ton of product per kilometre), with price of diesel (1.2€/L), with the average distance 
from each factory to each location. The distances are given in Table 4.1. The considered time 
horizon consists of 365 days to capture the variations in prices and demand for mushrooms 
throughout a year (Figure 4.2).

Table 4.1 Transportation distances from factories to mushroom growers locations, and demand data as a 
fraction of total demand

Transportation distance (km)
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Figure 4.2 Annual fluctuations of prices for small, giant, mean, low quality and over demand mushrooms 
(primary axis), and aggregated demand for all zones of mushroom growers (secondary axis)

We use total exergy loss as a single metric indicator for environmental performance (Apaiah et 
al., 2006; Kotas, 1995). Exergy losses of a system have been widely used to express the 
environmental impact in various fields, including chemical sectors, construction industries, and 
food industry (Zisopoulos et al., 2017). The advantage of exergy, as an environmental indicator 
is that it allows to quantify environmental impact of production activities (including energy 
consumption, fuel consumption and waste generation) and express them in a single unit, i.e. 
megajoules.

Data on current practice of substrate production and mushrooms cultivation are collected by 
interviews with industrial partners and collaborating scientists from food processing who 
quantify the environmental impact of all activities and processes in the mushroom supply chain. 
Some indicative data are given in Table 4.2 and Table 4.3.

Table 4.2 Average revenues, variable costs, profit and exergy losses associated with mushroom production
Average revenues
(€/ton substrate)

Average costs
(€/ton substrate)

Profit
(€/ton substrate)

Exergy loss
(MJ/ton substrate)

1st flush 270 96 174 6.07
2nd flush 437 122 315 6.10
3rd flush 497 160 337 6.11

Table 4.3 Average variable costs associated with substrate production and exergy losses production per 
ton of substrate
Types of substrate Variable costs (€/ton substrate) Exergy (MJ/ton substrate)
Current (production) 80.2 5.91
Reused compost 79.6 5.82
Recycled casing soil 70.7 5.94
Reused compost and recycled casing soil 70.1 5.79

To assess the effects of individual technological innovations and potential investment decisions 
we used the model to calculate an optimal logistical structure in 5 different scenarios (Table 
4.4).
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Table 4.4 Investigated scenarios
Scenario 1 2 3 4 5
Opening phase 1 production in factory 1    
Opening casing production in in factory 2    
Reusing spent mushroom compost for compost production  
Recycling spent mushroom compost for casing production  

Scenario 1 refers to the base case scenario and corresponds to the current structure of the 
mushroom supply chain. The structure of the factories, i.e. not existing phase 1 compost 
production in factory 1 and not existing casing soil production in factory 2, imply that all raw 
materials for compost production need to be transported to factory 2 for phase 1, and 
subsequently (after the mixing phase) some phase 1 compost is transported to factory 1 for 
phases 2 and 3. Analogously, all raw materials for casing soil production are transported to 
factory 1 and after mixing, the casing soil is transported to all mushroom growers. In scenario 2 
it is investigated what is the impact of opening phase 1 production in factory 1, and opening 
casing soil production in factory 2. Scenario 3 investigates the potential added value of reusing 
spent mushroom compost, and scenario 4 investigates the benefit of recycling the spent 
mushroom compost. 

4.4 Results

The primary objective is to demonstrate how the model can be used to explore the effects of 
applying closed loop principles on the economic and environmental performance of the 
mushroom supply chain. This section presents the optimization results.

4.4.1 Multi-objective optimization

To increase awareness of decision makers regarding trade-offs between economic and 
environmental objectives, and to provide insights into costs associated with improving 
environmental performance we derive a set of Pareto-optimal solutions for which it is 
impossible to improve one objective without worsening the other.

The set of Pareto-optimal solutions in multi-objective optimization can be calculated using the 
ε-constraint method (Ehrgott 2005). To quantify the set of efficient solutions, one of the 
objective functions is optimized while the other objective functions are represented by goal 
constraints. The efficient solutions are obtained by parametrical variation of the right hand side 
of the goal constraints. An important advantage of the ε-constraint method is that non-extreme 
solutions for the original multi-objective problem are generated. For the problem considered 
here, the Pareto-optimal solutions are generated by minimizing the environmental objective and 
varying parametrically (in 10 iterations) a lower bound on the profit objective function value in 
the constraint set. This is performed for each scenario. The developed model was solved using 
Xpress-IVE version 7.2. The sets of Pareto-optimal solutions for each considered scenario are 
presented in Figure 4.3.
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Figure 4.3 Pareto-optimal solutions for the mushroom supply chain; values on the axes are given as 
compared to best environmental and best economic solutions of the base case

The derived Pareto solutions for each considered scenario represent the trade-off relationship 
between profit and cumulative exergy losses. For each scenario it is observed that mushroom 
growers gradually change from cultivating mostly three flushes for best environmental solution, 
to cultivating two flushes for best economic solution. Additionally, for scenarios 3, 4, and 5, 
where recycling or reusing waste material is allowed, we observe a gradual change in the 
amount of recycled or reused material, i.e. the more environmentally friendly the solution, the 
lower the absolute value of amount of product recycled or reused. The reason is that more 
environmentally friendly solutions require lower amounts of substrate (substrate is used for 
three instead of two flushes). Lower substrate requirements result in less recovered material. 
Nevertheless, the total amount of waste produced decreases with improving the environmental 
impact expressed in cumulative exergy losses.

Additionally, the illustration of Pareto solutions for each scenario visualises what the quantified 
benefits are for potential changes in the design of the supply chain. Comparisons of the Pareto 
solutions show that allowing recycling and reusing spent mushroom compost provides the most 
promising solutions. For this case study we observe that the possibility to valorise waste 
material from mushroom production (scenarios 3, 4, 5) brings substantially larger benefits 
compared to an alternative logistical structure as considered by the industry (i.e. in scenario 2). 
It can be observed that every efficient solution for the scenarios 3 and 5 is better with respect to 
both: the economic and environmental objectives compared to all solutions in the scenarios 1 
and 2.

It should be mentioned that scenario 2 introduces two aspects simultaneously, i.e. opening 
phase 1 facility in factory 1, and opening casing soil production in factory 2. We observe that 
the shift of the trade-off curve upwards is caused primarily by opening phase 1 facility in 
factory 1, and opening casing soil production in factory 2 only provides for a marginal 
improvement, i.e. opening casing soil production in factory 2 in addition to scenario 1 improves 
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Table 4.4 Investigated scenarios
Scenario 1 2 3 4 5
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The set of Pareto-optimal solutions in multi-objective optimization can be calculated using the 
ε-constraint method (Ehrgott 2005). To quantify the set of efficient solutions, one of the 
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of the goal constraints. An important advantage of the ε-constraint method is that non-extreme 
solutions for the original multi-objective problem are generated. For the problem considered 
here, the Pareto-optimal solutions are generated by minimizing the environmental objective and 
varying parametrically (in 10 iterations) a lower bound on the profit objective function value in 
the constraint set. This is performed for each scenario. The developed model was solved using 
Xpress-IVE version 7.2. The sets of Pareto-optimal solutions for each considered scenario are 
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the best economic solution of scenario 1 by 0.01%, and the best environmental solution is 
comparable to scenario 1.

The set of efficient solutions provides managerial insights as it ensures finding a solution
compromising economic and environmental objectives. Based on the efficient solutions the 
costs of improving the environmental performance in the analysed supply chain can be 
calculated. As can be observed, for instance, in the base case the environmental impact of the 
best economic solution can be improved by 10% at the expense of 1% profit. Additionally, the 
trade-off curve can serve as a tool to analyse how much money can be invested in technological 
innovations focusing on reusing and recycling the waste materials.

4.4.2 Single objective optimization

Each scenario of the model is optimized with respect to one objective at a time to examine the 
best economic and environmental solutions. This is done to investigate the differences between 
different solutions with respect to the amount of compost cultivated and waste produced. The 
results of the model are summarized in Table 4.5.

Table 4.5 Summary results for each scenario when optimizing each considered objective separately
Profit maximization Exergy loss minimization

sc
en

ar
io Compost 

cultivated 
(tons)

Waste 
produced 
(tons)

Share 
of 1st

flush

Share 
of 2nd

flush

Share 
of 3rd

flush

Compost 
cultivated 
(tons)

Waste 
produced 
(tons)

Share 
of 1st

flush

Share 
of 2nd

flush

Share 
of 3rd

flush
1 339383 339383 1% 96% 3% 294157 294157 2% 18% 79%
2 343029 343029 1% 97% 3% 294157 294157 2% 18% 79%
3 357502 220900 0% 97% 3% 295036 183145 3% 19% 79%
4 360348 321575 1% 97% 3% 294498 263515 2% 18% 79%
5 372519 190119 1% 97% 2% 295448 152740 3% 19% 78%

4.4.2.1 Economic objective maximization

When the economic objective is maximized, we observe that in the optimal solutions for each 
scenario all mushroom growers cultivate mainly two flushes of mushrooms to maximize the 
overall profit of the supply chain. In scenario 2, where the impact of opening additional 
facilities is investigated, we observe that the economic objective is improved by 1.3% compared 
to scenario 1. This is primarily due to increased capacity that allows producing more substrate. 
It enables mushroom growers to produce more mushrooms in seasons of peak mushroom prices. 
As observed in Table 4.5, the amount of compost cultivated has increased by over 1%. We also 
observe a decrease in costs associated with transportation of compost and casing soil to growers 
by 24%. In scenario 3, which allows to reuse the bottom layer of spent mushroom compost for 
compost production, the total profit in the supply chain for the best economic solution increases 
by 5.1% compared to the base case. The majority of compost produced includes spent 
mushroom compost as a raw material (83%) and the total amount of waste produced decreases 
by 35% compared to scenario 1. Recycling spent casing soil (studied in scenario 4) improves 
the best economic solution by 5.8% compared to scenario 1. This improvement is due to a 
substantial reduction of required (expensive) raw materials for casing production, and as a result 
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total costs of raw materials are 23% lower than in scenario 1 (compared to 8% reduction of raw 
material costs in scenario 3). The total amount of waste produced is 5% lower compared to 
scenario 1. In scenario 5, the best economic solution is improved by 11% compared to scenario 
1, and the total amount of waste produced, i.e. spent mushroom substrate, is reduced by 44%.

4.4.2.2 Environmental objective minimization

Results presented in Table 4.5 show that mushroom growers cultivate mainly three flushes of 
mushrooms in each considered scenario to minimize the environmental impact. This is due to a 
large value of chemical exergy of waste material. Minimizing cumulative exergy losses forces 
mushroom growers to reduce the total amount of waste. In the scenarios 1 and 2, all 
components except exergy losses for transportation, remain at the same level. In scenario 2 
(including the possibility to use all facilities for the production of phase 1 compost and casing), 
transportation exergy losses decrease by 17% resulting in 1% decrease of the optimal objective 
function value. Total exergy losses in scenario 3 decrease by 20% compared to scenario 1, and 
the greatest improvement is associated with the possibility to avoid chemical exergy losses. 
Total chemical exergy of disposed material is reduced by 39% compared to the best 
environmental solution in scenario 1. The best environmental solution in scenario 4 is improved 
by 8% compared to scenario 1. Exergy losses associated with waste production are reduced by 
10% compared to scenario 1, whereas the greatest relative improvement in exergy losses is 
associated with transportation of raw materials, and amounts for a decrease of 26%. The best 
environmental solution in scenario 6 improves compared to the one in scenario 1 by 28%, and 
the total amount of waste produced decreases by 48%. These figures show how large the 
benefits can be of applying the concepts of circular economy to an FSC with respect to 
economic performance and environmental impact.

We note that the amount of substrate produced differs greatly depending on the overriding 
objective. This difference is a result of mushroom growers’ decision concerning the number of 
flushes. It is observed that in all environmental solutions mostly three flushes are used, and in 
all economic solutions two flushes are used to cultivate mushrooms.

4.4.2.3 Sensitivity analysis

Sensitivity analysis is conducted to explore the effects of possible changes in input parameters 
for the current logistical structure of the mushroom supply chain, i.e. scenario 1 in the previous 
section. Based on discussions with industrial partners, sensitivity analysis is conducted on the 
most relevant technical and monetary parameters that are associated with 1) uncertainty, i.e. 
yield for mushrooms per ton of substrate (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑎𝑎𝑎𝑎), and mushroom demand (𝑐𝑐𝑐𝑐𝑗𝑗𝑗𝑗,𝑡𝑡𝑡𝑡); and 2) expected 
change in the (near) future, i.e. spent mushroom substrate disposal costs (𝑡𝑡𝑡𝑡𝑐𝑐𝑐𝑐ℎ𝑗𝑗𝑗𝑗), prices of raw 
materials (𝑐𝑐𝑐𝑐𝑓𝑓𝑓𝑓𝑟𝑟𝑟𝑟,𝑖𝑖𝑖𝑖), and mushroom selling prices (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡).

Effects of change in technical parameters: Due to observed fluctuations in mushroom yields per 
ton of substrate it was advised to investigate the sensitivity of solutions for different levels of 
this parameter. The total yield was varied between decrease and increase of 10%, which 
corresponds to the fraction of low quality mushrooms in the base case. The findings presented 
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the best economic solution of scenario 1 by 0.01%, and the best environmental solution is 
comparable to scenario 1.

The set of efficient solutions provides managerial insights as it ensures finding a solution
compromising economic and environmental objectives. Based on the efficient solutions the 
costs of improving the environmental performance in the analysed supply chain can be 
calculated. As can be observed, for instance, in the base case the environmental impact of the 
best economic solution can be improved by 10% at the expense of 1% profit. Additionally, the 
trade-off curve can serve as a tool to analyse how much money can be invested in technological 
innovations focusing on reusing and recycling the waste materials.

4.4.2 Single objective optimization

Each scenario of the model is optimized with respect to one objective at a time to examine the 
best economic and environmental solutions. This is done to investigate the differences between 
different solutions with respect to the amount of compost cultivated and waste produced. The 
results of the model are summarized in Table 4.5.

Table 4.5 Summary results for each scenario when optimizing each considered objective separately
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4.4.2.1 Economic objective maximization

When the economic objective is maximized, we observe that in the optimal solutions for each 
scenario all mushroom growers cultivate mainly two flushes of mushrooms to maximize the 
overall profit of the supply chain. In scenario 2, where the impact of opening additional 
facilities is investigated, we observe that the economic objective is improved by 1.3% compared 
to scenario 1. This is primarily due to increased capacity that allows producing more substrate. 
It enables mushroom growers to produce more mushrooms in seasons of peak mushroom prices. 
As observed in Table 4.5, the amount of compost cultivated has increased by over 1%. We also 
observe a decrease in costs associated with transportation of compost and casing soil to growers 
by 24%. In scenario 3, which allows to reuse the bottom layer of spent mushroom compost for 
compost production, the total profit in the supply chain for the best economic solution increases 
by 5.1% compared to the base case. The majority of compost produced includes spent 
mushroom compost as a raw material (83%) and the total amount of waste produced decreases 
by 35% compared to scenario 1. Recycling spent casing soil (studied in scenario 4) improves 
the best economic solution by 5.8% compared to scenario 1. This improvement is due to a 
substantial reduction of required (expensive) raw materials for casing production, and as a result 
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total costs of raw materials are 23% lower than in scenario 1 (compared to 8% reduction of raw 
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objective. This difference is a result of mushroom growers’ decision concerning the number of 
flushes. It is observed that in all environmental solutions mostly three flushes are used, and in 
all economic solutions two flushes are used to cultivate mushrooms.
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in Table 4.6 show that in the economic solution an increase in productivity entails more 
production of compost. This results in higher environmental impact compared to the base 
scenario because more waste is produced. On the contrary, a reduction of compost cultivated is 
observed until the productivity decreases by 3%. For a larger decrease, the amount of compost 
cultivated increases due to the need of fulfilling the demand for mushrooms. In the 
environmental solution, higher productivity allows reducing the amount of substrate cultivated 
to meet the demand. Nonetheless, the shape of the Pareto frontier is not affected.

In line with the observation that 3-flush cultivation, which is associated with highly uncertain 
yields, is more environmentally friendly compared to 2-flush cultivation, we investigated the 
required increase in these yields, such that the majority of compost in the best economic 
solution is cultivated for three flushes of mushrooms. It is observed that increase in the yields in 
the third flush by 16%, which corresponds to only 2% increase in total yield, entails the increase 
in share of the third flush cultivation to 62%. This results in 8% decrease in exergy losses of the 
best economic solution, showing that the environmental performance can be improved 
substantially due to an increase of the yield in the third flush. It is concluded that yields of 
substrate have a major impact on the economic and environmental performance of the 
mushroom supply chain.

The impact of a change in the demand data is examined by varying this parameter’s value 
between 10% increase and decrease, what corresponds to the (maximal) yearly annual 
variations in this data. Results presented in Table 4.6 suggest that the examined changes in 
demand do not affect the solutions substantially, but result in a shift of the Pareto frontier.

Effects of change in monetary parameters: Changes in price parameters do not affect the best 
environmental solution. The results are therefore discussed only for the best economic solution.

Industrial partners were keen on investigating the consequences of the expected increase in 
disposal costs (associated with transportation), and the increase in raw material costs. We found 
that even a large (100%) increase in these costs does not have a major impact on the production 
plan, although, as expected, substantially reduces the total profit. The reduction in the total 
profit due to expected increase in costs strengthens the need for more (research on) 
technological innovations that aim to reduce the amount of disposed waste, and aim to reduce 
the amount of ingredients required for production. Such technological innovations will reduce 
the economic effects of increase in costs, and at the same time will contribute to improvement 
of environmental performance by producing less waste.
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Table 4.6 Results for sensitivity analysis
Profit maximization

Economic 
objective

Environmental 
objective

Compost 
cultivated 
(tons)

Share of
1st flush

Share of 
2nd flush

Share of 
3rd flush

base case 1.00 1.15 339383 1% 96% 3%

10% total yield increase 1.14 1.28 375056 1% 96% 4%
10% total yield decrease 0.85 1.20 354331 2% 95% 3%

10% demand increase 1.10 1.23 360991 1% 95% 4%
10% demand decrease 0.90 1.08 316775 1% 96% 3%

10% selling price increase 1.24 1.29 378178 1% 95% 4%
10% selling price decrease 0.77 1.09 319431 1% 96% 3%

Exergy loss minimization

Economic 
objective

Environmental 
objective

Compost 
cultivated 
(tons)

Share of 
1st flush

Share of 
2nd flush

Share of 
3rd flush

base case 0.98 1.00 294157 2% 18% 79%

10% total yield increase 1.10 0.90 264163 2% 5% 93%
10% total yield decrease 0.84 1.16 340179 2% 59% 39%

10% demand increase 1.08 1.14 335441 2% 55% 43%
10% demand decrease 0.88 0.89 261470 2% 5% 93%

It is observed that changes in selling prices entail the shift of Pareto frontier (upwards for price 
increase, and downwards for price decrease). While the total profit of the chain changes, there 
are no substantial difference in the shares of different flushes used for mushroom production, 
and the trade-off relationship between the economic and environmental performance is hardly 
affected.

4.5 Discussion 

This chapter presents an example of a closed-loop agri-food supply chain, where the medium 
used for growing mushrooms can be recovered and used as a raw material for the production of 
a new (or alternative) growing medium. To the best of our knowledge, we present the first 
model for a closed-loop agri-food supply chain, where material used for production, instead of 
the product itself, is recovered.

The considerations in this chapter differ from traditional closed-loop supply chains. In a 
framework for a traditional Closed Loop Supply Chain (CLSC), products or materials after 
usage are returned by the customer, and subsequently reused, repaired, refurbished, 
disassembled and serviced, remanufactured or recycled (Bloemhof and van der Vorst, 2014).
Such a general class of CLSCs does not fit agricultural products as most of the components 
cannot be reused or recycled (i.e. food is consumed). Instead, production inputs, which are 
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in Table 4.6 show that in the economic solution an increase in productivity entails more 
production of compost. This results in higher environmental impact compared to the base 
scenario because more waste is produced. On the contrary, a reduction of compost cultivated is 
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cultivated increases due to the need of fulfilling the demand for mushrooms. In the 
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required increase in these yields, such that the majority of compost in the best economic 
solution is cultivated for three flushes of mushrooms. It is observed that increase in the yields in 
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variations in this data. Results presented in Table 4.6 suggest that the examined changes in 
demand do not affect the solutions substantially, but result in a shift of the Pareto frontier.
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Industrial partners were keen on investigating the consequences of the expected increase in 
disposal costs (associated with transportation), and the increase in raw material costs. We found 
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plan, although, as expected, substantially reduces the total profit. The reduction in the total 
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Table 4.6 Results for sensitivity analysis
Profit maximization

Economic 
objective

Environmental 
objective

Compost 
cultivated 
(tons)

Share of
1st flush

Share of 
2nd flush

Share of 
3rd flush

base case 1.00 1.15 339383 1% 96% 3%

10% total yield increase 1.14 1.28 375056 1% 96% 4%
10% total yield decrease 0.85 1.20 354331 2% 95% 3%

10% demand increase 1.10 1.23 360991 1% 95% 4%
10% demand decrease 0.90 1.08 316775 1% 96% 3%

10% selling price increase 1.24 1.29 378178 1% 95% 4%
10% selling price decrease 0.77 1.09 319431 1% 96% 3%

Exergy loss minimization

Economic 
objective

Environmental 
objective

Compost 
cultivated 
(tons)

Share of 
1st flush

Share of 
2nd flush

Share of 
3rd flush

base case 0.98 1.00 294157 2% 18% 79%

10% total yield increase 1.10 0.90 264163 2% 5% 93%
10% total yield decrease 0.84 1.16 340179 2% 59% 39%

10% demand increase 1.08 1.14 335441 2% 55% 43%
10% demand decrease 0.88 0.89 261470 2% 5% 93%

It is observed that changes in selling prices entail the shift of Pareto frontier (upwards for price 
increase, and downwards for price decrease). While the total profit of the chain changes, there 
are no substantial difference in the shares of different flushes used for mushroom production, 
and the trade-off relationship between the economic and environmental performance is hardly 
affected.

4.5 Discussion 

This chapter presents an example of a closed-loop agri-food supply chain, where the medium 
used for growing mushrooms can be recovered and used as a raw material for the production of 
a new (or alternative) growing medium. To the best of our knowledge, we present the first 
model for a closed-loop agri-food supply chain, where material used for production, instead of 
the product itself, is recovered.

The considerations in this chapter differ from traditional closed-loop supply chains. In a 
framework for a traditional Closed Loop Supply Chain (CLSC), products or materials after 
usage are returned by the customer, and subsequently reused, repaired, refurbished, 
disassembled and serviced, remanufactured or recycled (Bloemhof and van der Vorst, 2014).
Such a general class of CLSCs does not fit agricultural products as most of the components 
cannot be reused or recycled (i.e. food is consumed). Instead, production inputs, which are 
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related to agri-food products, can provide potential to close a nutrient cycle. Consequently, the 
framework for CLSCs needs to be adjusted to fit the agri-food products.

Agri-food supply chains stretch from agricultural producers to consumers, and may comprise 
multiple actors (Bloemhof and van der Vorst, 2014; Akkerman et al., 2010). Traditionally, agri-
food supply chains involve three main stages as presented: (i) raw material providers, (ii) 
manufacturing and (iii) retailing to consumers. Transportation is involved throughout the chain 
in order to transfer raw materials from suppliers to manufacturers, and final agri-food products 
from manufacturers to consumers. In general, food waste occurs primarily in the beginning and 
at the final stage in a supply chain. Although valorisation options are available for food waste 
(including e.g. energy and animal feed production) and provide for waste reduction, these 
options do not correspond to the concept of a CLSC in which after-use materials are recovered 
in the same chain. For this reason we exclude food waste arising at stages associated with raw 
material providers and retailing to customers, and solely focus on waste reduction at 
manufacturing stages which correspond to the recovery of components in material flows for 
production.

Closing the loops in agri-food supply chains involves adaptation of new processing 
technologies that focus on valorising waste streams and by-products. In this sense, the design of 
a CLSC involves additional processing steps that increase complexity compared to traditional 
agri-food supply chains. Figure 4.4 proposes a general structure of closed loops in agri-food 
supply chains. The middle part of the figure may comprise multiple manufacturing stages 
(k=1, ... , K) depending on a specific supply chain, including producers, growers, distribution 
centres, etc. Each manufacturing stage results in an intermediate product. Moreover, each 
manufacturing stage k can comprise alternative production options (Mk), e.g. in this chapter four 
alternative production options to produce substrate are considered: 1) no recovered material 2) 
reused waste for compost production, 3) recycled waste for casing production, 4) reused waste 
for compost production and recycled waste for casing production. Production options can take 
place in various locations, and each alternative production option can be associated with 
different characteristics, e.g. production time, costs, and environmental impact. After the final 
manufacturing stage, the food products are distributed to consumers, and the material used for 
production (e.g. a growing medium) is typically disposed. The downstream supply chain in the 
figure represents wholesalers, retailers, and consumers. The main difference compared to a 
framework for a CLSC is that (recoverable) end-of-life products arise not from the customers, 
as in discrete part industry, but from any of the manufacturing stages.
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Figure 4.4 Overview of an agri-food (closed-loop) supply chain

New developments and technologies emerge that are able to process waste material from agri-
food production into new materials that can be used for production in the same chain. 
Therefore, in a closed-loop agri-food supply chain recovery stages exist, such as reuse, in which 
waste material is used directly in the same chain, or recycling, in which waste material is used 
again after some processing steps. These recovery stages, therefore, provide input in the form of 
raw materials for other stages by converting waste into usable new (raw) materials. Bread 
production can be given as an example where wasted bread loafs are recycled by treatment with 
enzymes, and subsequently used as a raw material in production replacing some of the 
ingredients (see e.g. Chapter 3 or Zisopoulos et al. (2015)). Another example providing an 
opportunity to close a mineral cycle concerns production of white sugar from sugar beet. By-
products from sugar production can be processed (i.e. recycled) and used as fertilizers to supply 
minerals for growing sugar beets (Kolfschoten et al., 2014). Additionally, as given in this 
chapter, part of the medium used for growing mushrooms can be recovered (i.e. reused and 
recycled) and used as a material for production of new growing medium. 

4.6 Conclusions

The large amount of losses in food manufacturing industry encourage industries to apply 
concepts of circular economy, such that all materials are valorised and waste is eliminated by 
using it in new products and applications (Mirabella et al., 2014). Despite the vast body of 
literature on closed-loop supply chains, to the best of our knowledge no publications exist that 
present decision support models to evaluate economic and environmental benefits of closing 
loops in an agri-food supply chain.

The main contribution of this study is the development of a multi-objective model for 
production and distribution planning in industrial mushroom production, with a particular focus 
on the valorisation of waste in the form of a closed-loop supply chain. The mushroom supply 
chain illustrates potential benefits of applying concepts of circular economy in food production. 
The presented closed-loop mushroom supply chain fills the gap identified by Mirabella et al. 
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(2014), on the need for specific case studies related to logistical concerns of industrial 
symbiosis. By using realistic data, which is usually not the case in literature on sustainable 
supply chain management (Seuring, 2013), we show that opening new facilities has the 
potential to improve both the economic and the environmental performance. The greatest 
benefits and win-win solutions, however, from both economic and environmental perspective 
are brought in scenarios that focus on using materials to their full potential by valorising waste 
streams as much as possible. With all (potential) technological innovations that allow for 
reusing and recycling the waste stream in mushroom production, economic and environmental 
performance can be improved by 11%, and 28% respectively. The presented case study 
illustrates that it is worthwhile to invest in research on technological innovations (and their 
development) for closing loops in agri-food supply chains. 

In contrast to closed-loop studies in discrete parts industry, in agri-food supply chains the value 
of the final products itself cannot be regained (i.e. food is consumed). Instead, value of spent 
components used for production can be recovered. These spent production components may 
arise in any of the manufacturing stages. Therefore, decision support models for closed-loop 
agri-food supply chains require very specific characteristics. However, if more case studies on 
closed-loop agri-food supply chains are available, it may be possible to generalize the 
developed decision support model to be applicable to a more general class of closed-loop agri-
food supply chains. Moreover, more case studies are needed to confirm or further adapt the 
proposed framework for a closed-loop agri-food supply chain.

In the developed model all data are assumed to be deterministic. In real-world optimization 
problems, however, the data are not exactly known at the time the problem is being solved. To 
deal with uncertainty in parameters, sensitivity analysis was performed to investigate the impact 
on the solutions. Future research can include stochasticity in parameters to arrive at solutions 
that optimize the expected value of the objective functions. It will then be possible to examine 
the impact of uncertainty on each link of the chain and on the Pareto-optimal solutions.

New processes in the agri-food supply chain, which are associated with recovering materials, 
mean that more activities need to be carried out and (more) actors will have a different role in 
the production process. These new closing loop structures, therefore, give the potential of 
additional employment and income of societies, and can impact other representative indicators 
for the social dimension of sustainability in an agri-food supply chain. This social aspect of 
sustainability requires further investigation and can be considered in future studies.

Environmental impact is expressed in this study in exergy losses. Using this environmental 
indicator enables to consider multiple indicators simultaneously, at the same time simplifying 
the calculation of the Pareto frontier, and enabling its intuitive graphical representation, which 
is much easier to communicate to the involved decision makers.

To conclude, this study serves as an illustration on how decision support models can be used to 
quantify the benefits of potential innovations that focus on the application of concepts of 
circular economy. Careful planning and designing of closing the loops is essential, and decision 
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support models that optimize simultaneously managerial decisions at strategic and tactical level 
are required (Mota et al., 2015a) to comprehensively evaluate the impact of closing these loops.
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Abstract

Until recently, food production focused mainly on delivering high quality 
products at low costs and hardly paid attention to environmental impact and 
depletion of natural resources. Due to the growing awareness of climate change, 
shrinking resources, and increasing world population, this trend is changing. 
Multi-objective optimization models have been proposed in literature to quantify 
trade-offs between conflicting objectives and to derive eco-efficient solutions, i.e. 
solutions for which environmental performance can only be improved at higher 
costs. Often these models are developed under the assumption that all information 
required for model parameterization is known in advance. In practice, however, 
not all the required information is available in advance due to various sources of 
uncertainty in food supply chains. In this research a multi-objective two-stage 
stochastic programming model is proposed to analyse and evaluate the economic 
and environmental impacts to account for uncertainty in agri-food supply chains. 
A mushroom supply chain in the Netherlands is presented as an illustrative case 
study. Optimal production planning decisions calculated with a two-stage 
stochastic programming model are compared with the results of an equivalent 
deterministic model. It is clearly demonstrated that taking uncertainty into 
account at production planning phase in an agri-food supply chain can bring 
substantial economic and environmental benefits.
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5.1 Introduction 

Until recently, food production focused mainly on delivering high quality products at low costs 
and gave only secondary attention, if any, to environmental impact and depletion of natural 
resources (Soysal et al., 2015). Due to the growing awareness of food losses, shrinking 
resources, and increasing world population, society puts more pressure on companies to use 
sustainable practices. To remain competitive, companies in the agri-food sector are challenged 
to redesign the current logistical structures. Decision support models are needed to evaluate the 
economic and environmental performance of agri-food supply chains quantitatively. Such 
evaluations require not only the assessment of environmental and economic performance but 
also the relationship and trade-offs between these conflicting objectives (Wang et al., 2011).
Only a limited number of initiatives for environment-friendly production have proved to be 
profitable (Quariguasi Frota Neto et al., 2008).

Multi-objective optimization is particularly suitable for finding the best compromise between 
economic and environmental dimensions of sustainability (Chaabane et al., 2011), and for 
determining eco-efficient solutions, i.e. solutions in which it is not possible to decrease 
environmental damage unless increasing costs (Quariguasi Frota Neto et al., 2009). In many 
cases multi-objective optimization models, developed to support decision making in agri-food 
chains, are deterministic. This implies that it is implicitly assumed that all model parameters are 
known in advance. However, in practice not all the required information for parameterization of 
production planning models is deterministic. Main sources of uncertainty in agri-food supply 
chains are related to productivity (yields), estimated supply and demand patterns, processing 
parameters, and prices (Soysal et al., 2012; Ahumada and Villalobos, 2009). Often uncertainty 
is explored with sensitivity analysis and scenario studies to address what-if questions as done in 
e.g. Chapter 3, or in Ahumada and Villalobos (2011). However, even in these cases, uncertainty 
is not included explicitly in the optimization phase. This may lead to calculated production 
planning decisions, which if implemented, result in lower than expected overall economic and 
environmental performance. Despite that the importance of accounting for uncertainty in 
decision support models has been stressed in existing literature (Brandenburg et al., 2014; 
Ahumada and Villalobos, 2009), to the best of our knowledge there are no studies that quantify 
the consequences of uncertainty in data including its impact on the overall economic and 
environmental performance in agri-food supply chains.

The aim of this chapter is to evaluate the impact of uncertainty in agri-food supply chains in a 
multi-objective context. We investigate the impact of uncertain parameters on optimal 
economic and environmental solutions, and on the eco-efficient frontier. Particularly in agri-
food supply chains, many decisions have to be taken in an early stage while yields, output 
prices and demand are often revealed later in the production process. To decompose such multi-
phase production planning decisions in eco-efficient agri-food supply chains we propose a 
multi-objective two-stage programming model. We use an illustrative real-life mushroom 
supply chain as a case to demonstrate the potential benefits of treating uncertainty in 
optimization of production planning decisions in an agri-food supply chain. To compare the 
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performance of the generated solutions, a simulation is performed to unravel the different 
objective values and generated solutions depending on the realization of uncertainty in model 
parameters.

This chapter is structured as follows: Section 2 presents an overview from literature on 
publications treating uncertainty in food supply chains and on publications treating uncertainty 
in multi-objective optimization. Section 3 introduces the case study of a mushroom supply 
chain, describes the developed bi-objective production planning model, and discusses the data 
including uncertain model parameters. Section 4 presents the results of the model, and section 5 
summarizes the conclusions of the study.

5.2 Literature review

Food products are particularly characterized by seasonality, yield variability, products’ 
perishability and high fluctuations in demand and prices (Akkerman et al., 2010; van der Vorst 
et al., 2009). Food production is therefore unique in its complexity, and optimization models 
used to support decision making should account for intrinsic characteristics of food production, 
such as productivity uncertainty and increased risks related to market demands and prices. 
Despite the increasing use of optimization models in agri-food supply chain planning (see e.g. 
Brandenburg and Rebs (2015), Brandenburg et al. (2014), Ahumada and Villalobos (2009)), 
uncertainty in these models is rarely taken into account, as shown in the review of Soysal et al. 
(2012).

The data in real-world optimization problems are not exactly known at the time the problem is 
being solved due to inevitable estimation, measurement and implementation errors (Ben-Tal et 
al., 2009), and incorporating uncertainty in some parameters of the model may lead to a better 
representation of the actual problem. To deal with uncertain input parameters in models, a 
number of approaches can be applied. The most popular approaches include Stochastic 
Programming (SP) and Robust Optimization (RO). Stochastic programming models are used to 
determine production plans that optimize the expected value of an objective function based on 
numerous scenarios for realizations of uncertain data. Robust optimization models are used to 
obtain robust production plans that are less risky, immune to infeasibilities, and less sensitive to 
realizations of uncertain data. For a detailed description of SP and RO we refer to Birge and 
Louveaux (2011) and Ben-Tal et al. (2009), respectively. 

In SP some data parameters are uncertain, and an accurate probability distribution of these 
parameters is assumed to be available (Birge and Louveaux, 2011). The aim of SP is to find the 
best solution depending on the expected value of an objective function. Variations of SP exist in 
terms of e.g. number of stages, types of recourses, or the inclusion of probabilistic (chance) 
constraints. The difficulty of considering continuous distributions is often avoided by 
introducing a discrete set of (limited) scenarios. However, a large number of scenarios may be 
necessary to accurately resemble the distributions of parameters, and the more scenarios the 
harder to solve the considered problem to optimality (Keyvanshokooh et al., 2016). Robust 
Optimization, on the other hand, is applied whenever there is a need for creating robust 
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solutions that are immune for uncertainty within the specified intervals. In other words, with 
RO, the best feasible solution is found for worst case instances of the problem parameters. 
Robust optimization is therefore particularly appropriate for situations where the decision 
maker is concerned with the worst case and to find a sharp lower bound on the objective 
value(s). The benefits of RO include the fact that exact distributions of uncertain parameters are 
not necessary, and independently on the number of uncertain parameters the (transformed) 
model remains computationally tractable. In RO uncertain data is assumed to belong to some 
pre-defined set with no specific probabilistic distribution (Bohle et al., 2010).

The aforementioned approaches to treat uncertainty are hardly applied in food production 
context. Pauls-Worm et al. (2016) study lost sales in inventory problems for fresh food products 
with uncertain and fluctuating demand. A stochastic programming model is developed to find 
order quantities to meet cycle fill rate service requirements while keeping outdating low. Guan 
and Philpott (2011) present a production planning problem in dairy industry under uncertain 
milk supply and formulate a multistage stochastic programming model with a linear price-
demand curve. Soysal et al. (2015) develop a chance-constrained programming model with 
demand uncertainty for a multi-period generic inventory routing problem for perishable 
products with specific attention to environmental considerations. Borodin et al. (2014) propose
a stochastic optimization model for the annual harvest scheduling problem of cereal crop 
production. A chance constrained optimization model is proposed to minimize the risk of crop 
quality degradation under meteorological uncertainty. Bohle et al. (2010) propose a modified 
robust optimization approach to solve an agricultural planning problem of wine grape 
harvesting subject to uncertain labors harvesting productivity. Munhoz and Morabito (2014)
apply a RO approach to an aggregate production planning model for frozen orange juice 
concentrates to minimize total costs with uncertainty in juice acidity parameters. We observe 
that stochasticity in production yields, which are highly uncertain in food production, is not 
considered in the aforementioned studies. Moreover, hardly any of the above mentioned 
publications take multiple conflicting objectives into account.

Publications treating environmental and economic performance in multi-objective optimization 
while including uncertainty in parameters in production planning are very scarce. Mirzapour 
Al-e-hashem et al. (2013) propose a two-stage stochastic programming model for aggregate 
production planning with quantity discounts in green supply chain with uncertain demand. 
Environmental performance is embedded in the presented model by limiting the greenhouse gas 
emission from transportation and waste produced to a predetermined level. Radulescu et al. 
(2009) assumes an uncertain amount of pollution emissions per unit of product, and formulate 
two stochastic programming models for production planning: a maximum expected return 
problem, and a minimum pollution risk problem. Sazvar et al. (2014) propose a multi-stage 
stochastic programming model to optimize costs and total GHG emissions for a supply chain 
with deteriorating products under uncertain demand. Amin and Zhang (2013) investigate the 
impact of demand and return uncertainties on the closed-loop supply chain network 
configuration using a multi-objective model. A scenario-based stochastic programming 
approach is used to minimize costs and an environmental objective. The aforementioned 
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performance of the generated solutions, a simulation is performed to unravel the different 
objective values and generated solutions depending on the realization of uncertainty in model 
parameters.
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publications treating uncertainty in food supply chains and on publications treating uncertainty 
in multi-objective optimization. Section 3 introduces the case study of a mushroom supply 
chain, describes the developed bi-objective production planning model, and discusses the data 
including uncertain model parameters. Section 4 presents the results of the model, and section 5 
summarizes the conclusions of the study.
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Despite the increasing use of optimization models in agri-food supply chain planning (see e.g. 
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determine production plans that optimize the expected value of an objective function based on 
numerous scenarios for realizations of uncertain data. Robust optimization models are used to 
obtain robust production plans that are less risky, immune to infeasibilities, and less sensitive to 
realizations of uncertain data. For a detailed description of SP and RO we refer to Birge and 
Louveaux (2011) and Ben-Tal et al. (2009), respectively. 

In SP some data parameters are uncertain, and an accurate probability distribution of these 
parameters is assumed to be available (Birge and Louveaux, 2011). The aim of SP is to find the 
best solution depending on the expected value of an objective function. Variations of SP exist in 
terms of e.g. number of stages, types of recourses, or the inclusion of probabilistic (chance) 
constraints. The difficulty of considering continuous distributions is often avoided by 
introducing a discrete set of (limited) scenarios. However, a large number of scenarios may be 
necessary to accurately resemble the distributions of parameters, and the more scenarios the 
harder to solve the considered problem to optimality (Keyvanshokooh et al., 2016). Robust 
Optimization, on the other hand, is applied whenever there is a need for creating robust 
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solutions that are immune for uncertainty within the specified intervals. In other words, with 
RO, the best feasible solution is found for worst case instances of the problem parameters. 
Robust optimization is therefore particularly appropriate for situations where the decision 
maker is concerned with the worst case and to find a sharp lower bound on the objective 
value(s). The benefits of RO include the fact that exact distributions of uncertain parameters are 
not necessary, and independently on the number of uncertain parameters the (transformed) 
model remains computationally tractable. In RO uncertain data is assumed to belong to some 
pre-defined set with no specific probabilistic distribution (Bohle et al., 2010).

The aforementioned approaches to treat uncertainty are hardly applied in food production 
context. Pauls-Worm et al. (2016) study lost sales in inventory problems for fresh food products 
with uncertain and fluctuating demand. A stochastic programming model is developed to find 
order quantities to meet cycle fill rate service requirements while keeping outdating low. Guan 
and Philpott (2011) present a production planning problem in dairy industry under uncertain 
milk supply and formulate a multistage stochastic programming model with a linear price-
demand curve. Soysal et al. (2015) develop a chance-constrained programming model with 
demand uncertainty for a multi-period generic inventory routing problem for perishable 
products with specific attention to environmental considerations. Borodin et al. (2014) propose
a stochastic optimization model for the annual harvest scheduling problem of cereal crop 
production. A chance constrained optimization model is proposed to minimize the risk of crop 
quality degradation under meteorological uncertainty. Bohle et al. (2010) propose a modified 
robust optimization approach to solve an agricultural planning problem of wine grape 
harvesting subject to uncertain labors harvesting productivity. Munhoz and Morabito (2014)
apply a RO approach to an aggregate production planning model for frozen orange juice 
concentrates to minimize total costs with uncertainty in juice acidity parameters. We observe 
that stochasticity in production yields, which are highly uncertain in food production, is not 
considered in the aforementioned studies. Moreover, hardly any of the above mentioned 
publications take multiple conflicting objectives into account.

Publications treating environmental and economic performance in multi-objective optimization 
while including uncertainty in parameters in production planning are very scarce. Mirzapour 
Al-e-hashem et al. (2013) propose a two-stage stochastic programming model for aggregate 
production planning with quantity discounts in green supply chain with uncertain demand. 
Environmental performance is embedded in the presented model by limiting the greenhouse gas 
emission from transportation and waste produced to a predetermined level. Radulescu et al. 
(2009) assumes an uncertain amount of pollution emissions per unit of product, and formulate 
two stochastic programming models for production planning: a maximum expected return 
problem, and a minimum pollution risk problem. Sazvar et al. (2014) propose a multi-stage 
stochastic programming model to optimize costs and total GHG emissions for a supply chain 
with deteriorating products under uncertain demand. Amin and Zhang (2013) investigate the 
impact of demand and return uncertainties on the closed-loop supply chain network 
configuration using a multi-objective model. A scenario-based stochastic programming 
approach is used to minimize costs and an environmental objective. The aforementioned 
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publications apply multi-objective optimization in supply chains under uncertainty. However, 
none of the studies consider (fast moving) food products.

There are multiple calls in literature reviews for more stochastic models on realistic case studies 
e.g. Brandenburg et al. (2014), and Ahumada and Villalobos (2009). To the best of our 
knowledge there is a lack of publications considering environmental criteria in multi-objective 
optimization with uncertain parameters to support food production planning decisions.
Moreover, the (quantified) impact of treating uncertainty in optimization on different objectives 
associated with sustainability is still unclear. This chapter contributes to literature by filling in 
these gaps. We investigate the effect of treating uncertainty in optimization in an agri-food 
supply chain while considering conflicting economic and environmental criteria. Additionally, 
our contribution provides for a real life study for a mushroom production planning problem in 
practice.

5.3 Illustrative real-life case study 

This section starts with the description of the mushroom supply chain and the associated 
production planning problem. The presented case study illustrates that production planning 
decisions in agri-food supply chains need to be made before the actual values of uncertain 
production and demand parameters reveal. This gives rise to decompose the decision making 
process into multiple steps, providing therefore a typical example in which multi stage decision 
making may have an added value above a commonly applied deterministic approach. After the 
case description, a bi-objective model comprising economic and environmental criteria for the 
mushroom production planning is given. Subsequently, data used in the model are presented. 
Finally, the setup of numerical analysis is discussed.

5.3.1 Case description

Mushrooms are grown on industrially prepared substrate that consists of two layers: compost as 
a bottom layer, and casing soil as a top layer. Compost ingredients commonly include horse 
manure, chicken manure, straw, gypsum, water, and ammonium sulphate. Casing soil is usually 
produced from peat and limestone. All raw materials for substrate production are processed in 
substrate producing factories. Production of compost takes place in multiple phases as 
illustrated in Figure 5.1, and total duration of compost production takes a few weeks. The final 
product must be produced just-in-time, because compost can be stored for at most 24 hours at 
factory level and becomes waste afterwards due to biological processes taking place in the 
compost inoculated with mycelium.

Substrate is transported to mushroom producers who provide for appropriate growing 
conditions for mushrooms. The same substrate can be used for at most three subsequent flushes 
of mushrooms due to increasing risks for pests and diseases. Productivity of substrate decreases 
with each flush. Different mushroom sizes are distinguished based on the cap size, which 
determines the selling price of fresh mushrooms. After the last harvest, spent mushroom 
substrate is discarded on agricultural land. Discarding the substrate involves substantial disposal 
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costs, mainly associated with transportation costs. Additionally, spent mushroom substrate is 
rich in nutrients that are wasted once the material is discarded. For instance in the Netherlands 
over 800 000 tons of spent mushroom substrate is produced annually (Phan and Sabaratnam, 
2012), and need to be transported hundreds of kilometres just to be used as fertilizer. This 
shows that activities related to disposal are neither economically nor environmentally attractive. 

Mushroom producers commonly cultivate two flushes of mushrooms. Changing over to a three 
flush cultivation scheme would reduce the amount of disposed substrate, but at the expense of 
the yearly production yield. Additionally, various sources of uncertainty including production 
yields and demand patterns, complicate decision making in the mushroom supply chain 
considerably. The impact of uncertainty and the implications of production planning decisions 
on environmental and economic performance should be evaluated quantitatively to support 
effective decision making in practice.

Processing facility
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Figure 5.1 A mushroom supply chain

Decision makers in a mushroom supply chain look for ways to optimize interrelated production 
planning decisions between different links in the chain. Production planning decisions concern 
the amount of compost produced in each time period under limited production capacity 
(processing facility), and the amount of compost cultivated in each time period under limited 
growing capacity (producers). The main objectives include maximization of economic 
performance expressed by total profit, and minimization of environmental impact expressed by 
cumulative exergy losses (Apaiah et al., 2006; Kotas, 1995). Exergy losses have been widely 
accepted to express the environmental impact in various fields, including chemical sectors, 
construction industries, and food industry (Zisopoulos et al., 2017). The advantage of exergy as 
an environmental indicator is that it allows to quantify the environmental impact of production 
activities (including energy consumption, fuel consumption and waste generation) and express 
them in a single unit, i.e. megajoules.

5.3.2 Mathematical model for mushroom production planning problem 

A model for production planning in a mushroom supply chain is formulated as a multi-objective 
linear programming model. The objectives of the model include both an economic and an 
environmental objective. The model supports production planning and harvesting decisions, i.e. 
when substrate should be produced and transported to producers, and when to start and finish 
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publications apply multi-objective optimization in supply chains under uncertainty. However, 
none of the studies consider (fast moving) food products.

There are multiple calls in literature reviews for more stochastic models on realistic case studies 
e.g. Brandenburg et al. (2014), and Ahumada and Villalobos (2009). To the best of our 
knowledge there is a lack of publications considering environmental criteria in multi-objective 
optimization with uncertain parameters to support food production planning decisions.
Moreover, the (quantified) impact of treating uncertainty in optimization on different objectives 
associated with sustainability is still unclear. This chapter contributes to literature by filling in 
these gaps. We investigate the effect of treating uncertainty in optimization in an agri-food 
supply chain while considering conflicting economic and environmental criteria. Additionally, 
our contribution provides for a real life study for a mushroom production planning problem in 
practice.

5.3 Illustrative real-life case study 

This section starts with the description of the mushroom supply chain and the associated 
production planning problem. The presented case study illustrates that production planning 
decisions in agri-food supply chains need to be made before the actual values of uncertain 
production and demand parameters reveal. This gives rise to decompose the decision making 
process into multiple steps, providing therefore a typical example in which multi stage decision 
making may have an added value above a commonly applied deterministic approach. After the 
case description, a bi-objective model comprising economic and environmental criteria for the 
mushroom production planning is given. Subsequently, data used in the model are presented. 
Finally, the setup of numerical analysis is discussed.

5.3.1 Case description

Mushrooms are grown on industrially prepared substrate that consists of two layers: compost as 
a bottom layer, and casing soil as a top layer. Compost ingredients commonly include horse 
manure, chicken manure, straw, gypsum, water, and ammonium sulphate. Casing soil is usually 
produced from peat and limestone. All raw materials for substrate production are processed in 
substrate producing factories. Production of compost takes place in multiple phases as 
illustrated in Figure 5.1, and total duration of compost production takes a few weeks. The final 
product must be produced just-in-time, because compost can be stored for at most 24 hours at 
factory level and becomes waste afterwards due to biological processes taking place in the 
compost inoculated with mycelium.

Substrate is transported to mushroom producers who provide for appropriate growing 
conditions for mushrooms. The same substrate can be used for at most three subsequent flushes 
of mushrooms due to increasing risks for pests and diseases. Productivity of substrate decreases 
with each flush. Different mushroom sizes are distinguished based on the cap size, which 
determines the selling price of fresh mushrooms. After the last harvest, spent mushroom 
substrate is discarded on agricultural land. Discarding the substrate involves substantial disposal 
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costs, mainly associated with transportation costs. Additionally, spent mushroom substrate is 
rich in nutrients that are wasted once the material is discarded. For instance in the Netherlands 
over 800 000 tons of spent mushroom substrate is produced annually (Phan and Sabaratnam, 
2012), and need to be transported hundreds of kilometres just to be used as fertilizer. This 
shows that activities related to disposal are neither economically nor environmentally attractive. 

Mushroom producers commonly cultivate two flushes of mushrooms. Changing over to a three 
flush cultivation scheme would reduce the amount of disposed substrate, but at the expense of 
the yearly production yield. Additionally, various sources of uncertainty including production 
yields and demand patterns, complicate decision making in the mushroom supply chain 
considerably. The impact of uncertainty and the implications of production planning decisions 
on environmental and economic performance should be evaluated quantitatively to support 
effective decision making in practice.
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Decision makers in a mushroom supply chain look for ways to optimize interrelated production 
planning decisions between different links in the chain. Production planning decisions concern 
the amount of compost produced in each time period under limited production capacity 
(processing facility), and the amount of compost cultivated in each time period under limited 
growing capacity (producers). The main objectives include maximization of economic 
performance expressed by total profit, and minimization of environmental impact expressed by 
cumulative exergy losses (Apaiah et al., 2006; Kotas, 1995). Exergy losses have been widely 
accepted to express the environmental impact in various fields, including chemical sectors, 
construction industries, and food industry (Zisopoulos et al., 2017). The advantage of exergy as 
an environmental indicator is that it allows to quantify the environmental impact of production 
activities (including energy consumption, fuel consumption and waste generation) and express 
them in a single unit, i.e. megajoules.

5.3.2 Mathematical model for mushroom production planning problem 

A model for production planning in a mushroom supply chain is formulated as a multi-objective 
linear programming model. The objectives of the model include both an economic and an 
environmental objective. The model supports production planning and harvesting decisions, i.e. 
when substrate should be produced and transported to producers, and when to start and finish 
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the harvest (i.e. how many flushes to cultivate), such that the production plan will result in the 
greatest benefits regarding the defined objectives.

We aggregate the two (real-life) production facilities into one, and thus the capacity of the 
single (aggregated) production facility refers to the total capacity of all substrate facilities. 
Mushroom producers are also aggregated into a single producer, and thus their growing 
capacity and demand for mushrooms are combined. For each mushroom size three different 
selling prices are defined: mushrooms within the specified demand are sold at the highest price, 
mushrooms produced exceeding the demand are sold at a lower price, and low quality 
mushrooms are sold to a processing company at the lowest price. Demand for mushrooms is 
expressed in kilograms and does not depend on mushroom size.

Practitioners emphasized that some of the data to be used in the optimization model are highly 
uncertain. Firstly, despite all measures taken by the compost production facility to keep the 
quality of compost standardized, the yield of mushrooms per ton of compost is always different. 
Exact demand values are neither precisely known. 

To treat uncertainty in yield and demand parameters we start from a deterministic model in 
which expected values of (uncertain) parameters are used. Next, a two-stage stochastic 
programming model is developed. We follow a common approach to solve the two-stage 
stochastic programming model by using sample average approximation based on Monte Carlo 
sampling (Lohndorf, 2016; Birge and Louveaux, 2011). In this method, the expected value of 
objective function is approximated by solving the problem for a set of scenarios. A discrete set
of scenarios is introduced to avoid the complexity of considering continuous distributions. 

Any two-stage stochastic programming model comprises first, and second stage decision 
variables (Birge and Louveaux, 2011). The first stage variables refer to decisions that have to be 
taken before the actual realization of uncertain parameters are available (Ahmed et al., 2004). 
After random events have occurred, adjustments can be made by second stage decision 
variables. In the developed mushroom production planning model first stage variables include 
the amount of compost cultivated in each time period. Second stage variables, which 
correspond to decisions that can be postponed until the revealed uncertainty, include the amount 
of mushrooms sold at each price, size, and period.

5.3.2.1 Notation

For the mathematical description of the model the following notation is introduced:

Indices

𝑐𝑐𝑐𝑐 index for the size of mushroom, 𝑐𝑐𝑐𝑐 = 1, … ,𝐶𝐶𝐶𝐶
𝑡𝑡𝑡𝑡 index for time periods, 𝑡𝑡𝑡𝑡 = 1, … ,𝑇𝑇𝑇𝑇
𝑐𝑐𝑐𝑐 index for the age of cultivated compost, 𝑐𝑐𝑐𝑐 = 1, … ,𝐴𝐴𝐴𝐴
𝑝𝑝𝑝𝑝 index for the number of scenarios, 𝑝𝑝𝑝𝑝 = 1, … , 𝑆𝑆𝑆𝑆
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Monetary parameters

𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 variable, labour, and disposal costs per ton of substrate at age 𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 selling price of one kilogram of low quality mushrooms size 𝑐𝑐𝑐𝑐 in period 𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 selling price of one kilogram of mushrooms size 𝑐𝑐𝑐𝑐 fulfilling the demand in period 𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 selling price of one kilogram of mushrooms size 𝑐𝑐𝑐𝑐 exceeding the demand in period 𝑡𝑡𝑡𝑡

Environmental parameters

𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐 environmental impact associated with producing 1 kilogram of mushrooms
𝑒𝑒𝑒𝑒_𝑒𝑒𝑒𝑒 environmental impact associated with disposing 1 ton of spent mushroom compost

Technical parameters

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 capacity of processing facility for compost production
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟 capacity of mushroom producer for compost cultivation
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠 demand for mushrooms in time period 𝑡𝑡𝑡𝑡 in scenario 𝑝𝑝𝑝𝑝
𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎 fraction of low quality mushrooms at age 𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐_𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 processing time of raw materials to produce compost
𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠 yield (kg) of mushrooms size 𝑐𝑐𝑐𝑐 per ton of compost in period 𝑡𝑡𝑡𝑡 at age 𝑐𝑐𝑐𝑐 in scenario 𝑝𝑝𝑝𝑝

Decision variables

𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠 the amount of low quality mushrooms of size 𝑐𝑐𝑐𝑐 sold in period 𝑡𝑡𝑡𝑡 in scenario 𝑝𝑝𝑝𝑝
𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠 the amount of premium quality mushrooms of size 𝑐𝑐𝑐𝑐 sold in period 𝑡𝑡𝑡𝑡 in scenario 𝑝𝑝𝑝𝑝
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠 the amount of surplus mushrooms of size 𝑐𝑐𝑐𝑐 sold in period 𝑡𝑡𝑡𝑡 in scenario 𝑝𝑝𝑝𝑝
𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 the amount of compost disposed in time period 𝑡𝑡𝑡𝑡 at age 𝑐𝑐𝑐𝑐
𝑍𝑍𝑍𝑍𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 the amount of compost cultivated in time period 𝑡𝑡𝑡𝑡 at age 𝑐𝑐𝑐𝑐

5.3.2.2 Multi-objective linear programming model

The model presented in this section is a two-stage stochastic programming model with 𝑆𝑆𝑆𝑆
scenarios. The presented model is also used as a deterministic model by considering only one 
scenario (𝑆𝑆𝑆𝑆=1) and using expected values for the uncertain parameters 𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠 and 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠.



C
ha

pt
er

 5

Chapter 5

98

the harvest (i.e. how many flushes to cultivate), such that the production plan will result in the 
greatest benefits regarding the defined objectives.

We aggregate the two (real-life) production facilities into one, and thus the capacity of the 
single (aggregated) production facility refers to the total capacity of all substrate facilities. 
Mushroom producers are also aggregated into a single producer, and thus their growing 
capacity and demand for mushrooms are combined. For each mushroom size three different 
selling prices are defined: mushrooms within the specified demand are sold at the highest price, 
mushrooms produced exceeding the demand are sold at a lower price, and low quality 
mushrooms are sold to a processing company at the lowest price. Demand for mushrooms is 
expressed in kilograms and does not depend on mushroom size.

Practitioners emphasized that some of the data to be used in the optimization model are highly 
uncertain. Firstly, despite all measures taken by the compost production facility to keep the 
quality of compost standardized, the yield of mushrooms per ton of compost is always different. 
Exact demand values are neither precisely known. 

To treat uncertainty in yield and demand parameters we start from a deterministic model in 
which expected values of (uncertain) parameters are used. Next, a two-stage stochastic 
programming model is developed. We follow a common approach to solve the two-stage 
stochastic programming model by using sample average approximation based on Monte Carlo 
sampling (Lohndorf, 2016; Birge and Louveaux, 2011). In this method, the expected value of 
objective function is approximated by solving the problem for a set of scenarios. A discrete set
of scenarios is introduced to avoid the complexity of considering continuous distributions. 

Any two-stage stochastic programming model comprises first, and second stage decision 
variables (Birge and Louveaux, 2011). The first stage variables refer to decisions that have to be 
taken before the actual realization of uncertain parameters are available (Ahmed et al., 2004). 
After random events have occurred, adjustments can be made by second stage decision 
variables. In the developed mushroom production planning model first stage variables include 
the amount of compost cultivated in each time period. Second stage variables, which 
correspond to decisions that can be postponed until the revealed uncertainty, include the amount 
of mushrooms sold at each price, size, and period.

5.3.2.1 Notation

For the mathematical description of the model the following notation is introduced:

Indices

𝑐𝑐𝑐𝑐 index for the size of mushroom, 𝑐𝑐𝑐𝑐 = 1, … ,𝐶𝐶𝐶𝐶
𝑡𝑡𝑡𝑡 index for time periods, 𝑡𝑡𝑡𝑡 = 1, … ,𝑇𝑇𝑇𝑇
𝑐𝑐𝑐𝑐 index for the age of cultivated compost, 𝑐𝑐𝑐𝑐 = 1, … ,𝐴𝐴𝐴𝐴
𝑝𝑝𝑝𝑝 index for the number of scenarios, 𝑝𝑝𝑝𝑝 = 1, … , 𝑆𝑆𝑆𝑆
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Monetary parameters

𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 variable, labour, and disposal costs per ton of substrate at age 𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 selling price of one kilogram of low quality mushrooms size 𝑐𝑐𝑐𝑐 in period 𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 selling price of one kilogram of mushrooms size 𝑐𝑐𝑐𝑐 fulfilling the demand in period 𝑡𝑡𝑡𝑡
𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 selling price of one kilogram of mushrooms size 𝑐𝑐𝑐𝑐 exceeding the demand in period 𝑡𝑡𝑡𝑡

Environmental parameters

𝑒𝑒𝑒𝑒_𝑐𝑐𝑐𝑐 environmental impact associated with producing 1 kilogram of mushrooms
𝑒𝑒𝑒𝑒_𝑒𝑒𝑒𝑒 environmental impact associated with disposing 1 ton of spent mushroom compost

Technical parameters

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑓𝑓𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 capacity of processing facility for compost production
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑔𝑔𝑔𝑔𝑟𝑟𝑟𝑟 capacity of mushroom producer for compost cultivation
𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠 demand for mushrooms in time period 𝑡𝑡𝑡𝑡 in scenario 𝑝𝑝𝑝𝑝
𝑐𝑐𝑐𝑐𝑙𝑙𝑙𝑙𝑎𝑎𝑎𝑎 fraction of low quality mushrooms at age 𝑐𝑐𝑐𝑐
𝑐𝑐𝑐𝑐_𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 processing time of raw materials to produce compost
𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠 yield (kg) of mushrooms size 𝑐𝑐𝑐𝑐 per ton of compost in period 𝑡𝑡𝑡𝑡 at age 𝑐𝑐𝑐𝑐 in scenario 𝑝𝑝𝑝𝑝

Decision variables

𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠 the amount of low quality mushrooms of size 𝑐𝑐𝑐𝑐 sold in period 𝑡𝑡𝑡𝑡 in scenario 𝑝𝑝𝑝𝑝
𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠 the amount of premium quality mushrooms of size 𝑐𝑐𝑐𝑐 sold in period 𝑡𝑡𝑡𝑡 in scenario 𝑝𝑝𝑝𝑝
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠 the amount of surplus mushrooms of size 𝑐𝑐𝑐𝑐 sold in period 𝑡𝑡𝑡𝑡 in scenario 𝑝𝑝𝑝𝑝
𝑆𝑆𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 the amount of compost disposed in time period 𝑡𝑡𝑡𝑡 at age 𝑐𝑐𝑐𝑐
𝑍𝑍𝑍𝑍𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎 the amount of compost cultivated in time period 𝑡𝑡𝑡𝑡 at age 𝑐𝑐𝑐𝑐

5.3.2.2 Multi-objective linear programming model

The model presented in this section is a two-stage stochastic programming model with 𝑆𝑆𝑆𝑆
scenarios. The presented model is also used as a deterministic model by considering only one 
scenario (𝑆𝑆𝑆𝑆=1) and using expected values for the uncertain parameters 𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎,𝑠𝑠𝑠𝑠 and 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠.
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The economic objective (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) maximizes total profit. This objective function comprises the 
following terms: (i) total revenue for selling (premium quality, surplus, and low quality) 
mushrooms, and (ii) total costs associated with cultivating substrate, including the disposal 
costs for the transportation of spent mushroom substrate. The environmental objective (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒)
minimizes cumulative exergy losses. It comprises the following terms: (iii) exergy losses 
associated with growing, and (iv) exergy losses associated with the disposal of waste materials.

Constraints (1) ensure compost production capacity at processing level. Constraints (2) and (3) 
are used to calculate the amount of premium quality, surplus, and low quality mushrooms. 
Constraints (4) ensure that demand is satisfied by premium quality mushrooms. Constraints (5) 
ensure that periodic capacity restrictions at the producer level are taken into account. 
Constraints (6) are recursive constraints, which ensure that the amount of substrate cultivated 
for mushroom production in a given period is not larger than in the previous period. Constraints 
(7) and (8) ensure the cultivation of compost stops in the last period of the considered planning 
horizon, and when compost has been cultivated for the maximal allowed number of days (i.e. 
after at most three flushes). 
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5.3.3 Data

Data on substrate production and mushrooms cultivation are provided by industrial partners and 
collaborating scientists from food processing who quantify the environmental impact of all 
activities and processes in the mushroom supply chain.

Total duration of compost production in the substrate production facility is 27 days. The 
processing capacity of compost over 27 days is limited to 44 415 tons. Processed compost and 
mixed casing soil ingredients are transported to the mushroom producer. Ingredients, 
processing, transportation, and disposal costs account for 229€ per ton of compost.

Compost can be cultivated for at most three flushes that are equivalent to 43 growing days. The 
yield variations over production cycle for each size of mushrooms (small, medium, large) are 
presented in Figure 5.2. Each flush is associated with a given percentage of low quality 
mushrooms. Low quality mushrooms are sold to a processing company at a lower price. The 
amount of low quality mushrooms in the first, second, and third flush, accounts for 5%, 10%, 
and 20% of yield respectively. 

Figure 5.2 Expected yield of small, medium and large mushroom (kg) per ton of compost for maximal 
duration of a single cultivation round (43 days)

Analysis of historical data, confirmed by chi-squared goodness of fit tests, clearly revealed that 
yield fluctuations in each flush follow a Gaussian distribution with the following parameters 
(expressed in kilogram mushrooms/ton of compost per flush): mean yield in the first flush is 
192 with standard deviation 17, mean yield in the second flush is 109 with standard deviation 
17, and the mean yield in the third flush is 48 with standard deviation 15. Uncertainty in yield 
parameters are assumed to be independent of yields in previous flushes (e.g. the yield in the 
second flush is independent on the yield in the first flush), and in time periods (e.g. the yield in 
time t is independent of yield in time period t-1).

The considered time horizon consists of 365 days to capture the variations in prices and demand 
for mushrooms throughout a year (Figure 5.3). According to domain experts, the demand can 
deviate from the expected values following a Gaussian distribution with standard deviation of 
10%. Uncertainty in demand parameters is assumed to be independent of time periods.

0

2

4

6

8

10

12

14

17 22 27 32 37 42

yi
el

d 
(k

g/
to

n)
 

day 

small

medium

large



C
ha

pt
er

 5

Chapter 5

100

𝑚𝑚𝑚𝑚𝑐𝑐𝑐𝑐𝑚𝑚𝑚𝑚 �𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒 =
1
𝑆𝑆𝑆𝑆
∗��𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ,𝑡𝑡𝑡𝑡 ∗ 𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 ,𝑡𝑡𝑡𝑡 ∗ 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡 ∗ 𝐿𝐿𝐿𝐿𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠�
𝑐𝑐𝑐𝑐,𝑡𝑡𝑡𝑡,𝑠𝑠𝑠𝑠

−�𝑐𝑐𝑐𝑐𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎 ∗ 𝑍𝑍𝑍𝑍𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎
𝑡𝑡𝑡𝑡,𝑎𝑎𝑎𝑎
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The economic objective (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒) maximizes total profit. This objective function comprises the 
following terms: (i) total revenue for selling (premium quality, surplus, and low quality) 
mushrooms, and (ii) total costs associated with cultivating substrate, including the disposal 
costs for the transportation of spent mushroom substrate. The environmental objective (𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑒𝑒)
minimizes cumulative exergy losses. It comprises the following terms: (iii) exergy losses 
associated with growing, and (iv) exergy losses associated with the disposal of waste materials.

Constraints (1) ensure compost production capacity at processing level. Constraints (2) and (3) 
are used to calculate the amount of premium quality, surplus, and low quality mushrooms. 
Constraints (4) ensure that demand is satisfied by premium quality mushrooms. Constraints (5) 
ensure that periodic capacity restrictions at the producer level are taken into account. 
Constraints (6) are recursive constraints, which ensure that the amount of substrate cultivated 
for mushroom production in a given period is not larger than in the previous period. Constraints 
(7) and (8) ensure the cultivation of compost stops in the last period of the considered planning 
horizon, and when compost has been cultivated for the maximal allowed number of days (i.e. 
after at most three flushes). 
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5.3.3 Data

Data on substrate production and mushrooms cultivation are provided by industrial partners and 
collaborating scientists from food processing who quantify the environmental impact of all 
activities and processes in the mushroom supply chain.

Total duration of compost production in the substrate production facility is 27 days. The 
processing capacity of compost over 27 days is limited to 44 415 tons. Processed compost and 
mixed casing soil ingredients are transported to the mushroom producer. Ingredients, 
processing, transportation, and disposal costs account for 229€ per ton of compost.

Compost can be cultivated for at most three flushes that are equivalent to 43 growing days. The 
yield variations over production cycle for each size of mushrooms (small, medium, large) are 
presented in Figure 5.2. Each flush is associated with a given percentage of low quality 
mushrooms. Low quality mushrooms are sold to a processing company at a lower price. The 
amount of low quality mushrooms in the first, second, and third flush, accounts for 5%, 10%, 
and 20% of yield respectively. 

Figure 5.2 Expected yield of small, medium and large mushroom (kg) per ton of compost for maximal 
duration of a single cultivation round (43 days)

Analysis of historical data, confirmed by chi-squared goodness of fit tests, clearly revealed that 
yield fluctuations in each flush follow a Gaussian distribution with the following parameters 
(expressed in kilogram mushrooms/ton of compost per flush): mean yield in the first flush is 
192 with standard deviation 17, mean yield in the second flush is 109 with standard deviation 
17, and the mean yield in the third flush is 48 with standard deviation 15. Uncertainty in yield 
parameters are assumed to be independent of yields in previous flushes (e.g. the yield in the 
second flush is independent on the yield in the first flush), and in time periods (e.g. the yield in 
time t is independent of yield in time period t-1).

The considered time horizon consists of 365 days to capture the variations in prices and demand 
for mushrooms throughout a year (Figure 5.3). According to domain experts, the demand can 
deviate from the expected values following a Gaussian distribution with standard deviation of 
10%. Uncertainty in demand parameters is assumed to be independent of time periods.
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Figure 5.3 Annual fluctuations of prices for small, large, medium, low quality, and over demand 
mushrooms (primary axis), and expected demand (secondary axis)

Variable and labour cultivation costs for days 1 up to 31 are 3€ per ton of compost per day, and 
for days 32-43 are 5€ per ton of compost per day. Additionally, ingredients, processing, 
transportation, and disposal costs of spent mushroom compost (229€ per ton of compost) are 
included in variable and labour cultivation costs for the first day of cultivation. The total 
growing capacity of the (aggregated) mushroom producer is limited to 51 975 tons of compost 
in each time period.

Exergy losses of all activities and processes in the mushroom supply chain have been quantified 
by collaborating scientists from food processing, and calculations for exergy losses are 
presented in Zisopoulos et al. (2016). Exergy losses account for 0.3 megajoules per kilogram of 
grown mushrooms. Exergy losses associated with waste disposal account for 5959 
megajoules/ton of spent mushroom compost, and include exergy losses due to transportation 
and waste stream exergy losses (chemical exergy losses).

5.3.4 Setup of numerical analysis

The deterministic and the two-stage stochastic programming models are optimized with respect 
to the economic and environmental objectives. For the deterministic model the expected values 
of parameters are used as outlined in the previous subsection. For the two-stage stochastic 
programming model one hundred scenarios are used to resemble the probability distribution 
function accurately, and simultaneously to avoid computational difficulty. For each scenario 
one value is drawn from the given probability distribution functions for each time period for the 
yields of each flush and for each time period of demand. The optimal objective function values 
are further referred to as expected values of the deterministic and stochastic model. 

After obtaining the solutions for each optimization approach, a simulation is performed to
benchmark the generated solutions. Uncertain data parameters are simulated for each time 
period in 1000 scenarios. The optimal values of first-stage variables are used to examine the 
objective function values in the simulation. The results obtained from simulations on the 
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performance of the objective function values are further called realized values of the objective 
functions.

To provide insights into costs associated with improving environmental performance we derive 
a set of efficient solutions for which it is impossible to improve one objective without 
worsening the other. Efficient frontiers ensure finding a solution that compromises the 
considered economic and environmental objectives and therefore provide valuable information 
to decision makers. To obtain efficient solutions we applied the ε-constraint method (Ehrgott, 
2005). The efficient solutions for the deterministic problem are generated by maximizing the 
economic objective, while varying in 10 iterations the allowed level of environmental impact. 
The same levels of allowed environmental impact were used to derive efficient solutions for the 
stochastic model.

5.4 Results

This section presents the optimization results of the deterministic and the stochastic model as 
discussed in previous sections. All models are solved using Xpress-IVE version 7.9. The 
deterministic model comprises 34 675 continuous variables and 18 960 constraints. The two-
stage stochastic programming model comprises 359 890 continuous variables and 271 905 
constraints. Optimal solutions for economic performance and environmental impact correspond 
to a specific production plan, i.e. the amount of compost produced on a given day in the 
aggregated substrate production facility, the amount of compost cultivated each day at the 
(aggregated) mushroom producer, and the amount of mushrooms sold at each price level every 
day.

5.4.1 Single objective optimization

According to the results of the deterministic model, compost should be cultivated mostly for 
two flushes of mushrooms in order to obtain maximal profit. The expected (annual) profit is 
over 65 million Euros, and corresponds to 3.4 million gigajoules of exergy losses. However, 
according to the simulation results, the realized value of profit is 3.9% lower than expected 
(Table 5.1). The expected profit of the stochastic model turns out to be 1.9% less compared to 
the expected profit of the deterministic model, but yields 1.7% higher realized profit compared 
to the realized profit of the deterministic model, corresponding to over 1 million euro more 
profit for the supply chain on a yearly basis. At the same time 4% more compost is cultivated in 
the best economic solution obtained for the stochastic model, and therefore this solution is 
associated with a higher value for exergy losses.

To obtain the best environmental solution, we introduce a lower bound on the amount of profit 
at 90% of the best deterministic solution. Results show that the best environmental solution 
mostly refers to three flushes. Decisions on the number of used flushes determine the total 
amount of cultivated compost, and therefore also the total amount of waste accounting for the 
majority of environmental impact.
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Figure 5.3 Annual fluctuations of prices for small, large, medium, low quality, and over demand 
mushrooms (primary axis), and expected demand (secondary axis)

Variable and labour cultivation costs for days 1 up to 31 are 3€ per ton of compost per day, and 
for days 32-43 are 5€ per ton of compost per day. Additionally, ingredients, processing, 
transportation, and disposal costs of spent mushroom compost (229€ per ton of compost) are 
included in variable and labour cultivation costs for the first day of cultivation. The total 
growing capacity of the (aggregated) mushroom producer is limited to 51 975 tons of compost 
in each time period.

Exergy losses of all activities and processes in the mushroom supply chain have been quantified 
by collaborating scientists from food processing, and calculations for exergy losses are 
presented in Zisopoulos et al. (2016). Exergy losses account for 0.3 megajoules per kilogram of 
grown mushrooms. Exergy losses associated with waste disposal account for 5959 
megajoules/ton of spent mushroom compost, and include exergy losses due to transportation 
and waste stream exergy losses (chemical exergy losses).

5.3.4 Setup of numerical analysis

The deterministic and the two-stage stochastic programming models are optimized with respect 
to the economic and environmental objectives. For the deterministic model the expected values 
of parameters are used as outlined in the previous subsection. For the two-stage stochastic 
programming model one hundred scenarios are used to resemble the probability distribution 
function accurately, and simultaneously to avoid computational difficulty. For each scenario 
one value is drawn from the given probability distribution functions for each time period for the 
yields of each flush and for each time period of demand. The optimal objective function values 
are further referred to as expected values of the deterministic and stochastic model. 

After obtaining the solutions for each optimization approach, a simulation is performed to
benchmark the generated solutions. Uncertain data parameters are simulated for each time 
period in 1000 scenarios. The optimal values of first-stage variables are used to examine the 
objective function values in the simulation. The results obtained from simulations on the 
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performance of the objective function values are further called realized values of the objective 
functions.

To provide insights into costs associated with improving environmental performance we derive 
a set of efficient solutions for which it is impossible to improve one objective without 
worsening the other. Efficient frontiers ensure finding a solution that compromises the 
considered economic and environmental objectives and therefore provide valuable information 
to decision makers. To obtain efficient solutions we applied the ε-constraint method (Ehrgott, 
2005). The efficient solutions for the deterministic problem are generated by maximizing the 
economic objective, while varying in 10 iterations the allowed level of environmental impact. 
The same levels of allowed environmental impact were used to derive efficient solutions for the 
stochastic model.

5.4 Results

This section presents the optimization results of the deterministic and the stochastic model as 
discussed in previous sections. All models are solved using Xpress-IVE version 7.9. The 
deterministic model comprises 34 675 continuous variables and 18 960 constraints. The two-
stage stochastic programming model comprises 359 890 continuous variables and 271 905 
constraints. Optimal solutions for economic performance and environmental impact correspond 
to a specific production plan, i.e. the amount of compost produced on a given day in the 
aggregated substrate production facility, the amount of compost cultivated each day at the 
(aggregated) mushroom producer, and the amount of mushrooms sold at each price level every 
day.

5.4.1 Single objective optimization

According to the results of the deterministic model, compost should be cultivated mostly for 
two flushes of mushrooms in order to obtain maximal profit. The expected (annual) profit is 
over 65 million Euros, and corresponds to 3.4 million gigajoules of exergy losses. However, 
according to the simulation results, the realized value of profit is 3.9% lower than expected 
(Table 5.1). The expected profit of the stochastic model turns out to be 1.9% less compared to 
the expected profit of the deterministic model, but yields 1.7% higher realized profit compared 
to the realized profit of the deterministic model, corresponding to over 1 million euro more 
profit for the supply chain on a yearly basis. At the same time 4% more compost is cultivated in 
the best economic solution obtained for the stochastic model, and therefore this solution is 
associated with a higher value for exergy losses.

To obtain the best environmental solution, we introduce a lower bound on the amount of profit 
at 90% of the best deterministic solution. Results show that the best environmental solution 
mostly refers to three flushes. Decisions on the number of used flushes determine the total 
amount of cultivated compost, and therefore also the total amount of waste accounting for the 
majority of environmental impact.
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Results show hardly any difference in the environmental performance of expected and realized 
objective function values (Table 5.1). The reason is that the amount of waste, which is not 
associated with uncertainty in our study, accounts for the majority of environmental impact, i.e. 
98.7% for the best economic solutions found.

Table 5.1 Summary of best economic and best environmental solutions for the deterministic and stochastic 
models including: expected objective function values, realized objective function values, and amount of 
compost produced compared to the best economic solution of the deterministic model (shaded cells), and 
share of each flush in production plans

Profit maximization Exergy loss minimization
Deterministic 

model
Stochastic 

model
Deterministic 

model
Stochastic 

model
expected(Profit) 100.00% 98.10% 90.00% 90.00%
realized(Profit) 96.07% 97.82% 86.03% 89.59%
expected(Exergy loss) 100.00% 104.25% 78.28% 82.96%
realized(Exergy loss) 100.00% 104.25% 78.28% 82.96%
Compost produced 100.00% 104.25% 78.06% 82.81%

2nd flush 98% 97% 18% 45%
3rd flush 2% 3% 82% 55%

5.4.2 Multi-objective optimization

The sets of eco-efficient solutions for both models (including the best stochastic solution found 
for the stochastic model), as well as the objective function values based on simulation, are all 
presented in Figure 5.4.

Each point on the efficient frontier corresponds to a specific production plan, and the extreme 
solutions of the efficient frontier for the deterministic model are summarized in the previous 
subsection. It is observed that for each efficient frontier the number of flushes used for 
cultivation change gradually from mostly two for the best economic solutions, to mostly three 
for the best environmental solution. This entails a lower amount of cultivated compost resulting 
in lower environmental impact due to less produced waste.

Simulation results show a substantial reduction of the economic performance for the 
deterministic cases. The expected profits and the realized profits of the deterministic model (D1 
and D2 in Figure 5.4) differ on average by 4.5%. This shows that not accounting for uncertainty 
in optimization may lead to considerably lower values of economic performance after the 
values of uncertain parameters reveal. The difference between the expected and realized profit 
values obtained with stochastic model (S1 and S2) is on average only 0.3%.
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Figure 5.4 Efficient solutions for expected values of objectives functions obtained using deterministic (D1) 
and stochastic (S1) models; and realized values of objective functions (based on simulation) for 
deterministic (D2) and stochastic (S2) models

The ten best environmental solutions of D2 and S2 are considered to compare the solutions 
obtained from the deterministic and stochastic model. The analysis shows that each 
deterministic solution can be improved by including uncertainty in optimization. The maximum 
difference between solutions is 1.2%, the minimum difference is 0.2%, and the average 
difference is 0.5%, which corresponds to over 300 000€ more profit for the supply chain on a 
yearly basis. At the same time it can be observed that accounting for uncertainty amounts up to 
5% reduction in environmental impact (i.e. by moving from the best economic solution D2 left 
until reaching S2 in Figure 5.4).

Eco-efficient solutions allow to quantify the costs associated with improvement of 
environmental impact. Based on the results in Figure 5.4, it can be calculated that e.g. the 
environmental impact of the best economic solution obtained with stochastic programming can 
be improved by 9% at the expense of 2% decrease in total profit.

5.5 Discussion and conclusions

Due to various sources of uncertainty in agri-food supply chains, not all the required 
information for optimization is known at the moment that important production planning 
decisions are made. We confirmed that including uncertain model parameters in agri-food 
supply chain optimization models is important and can lead to a better representation of the 
actual decision problem. Based on the numerical results of the case study we conclude that 
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Results show hardly any difference in the environmental performance of expected and realized 
objective function values (Table 5.1). The reason is that the amount of waste, which is not 
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98.7% for the best economic solutions found.
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share of each flush in production plans
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realized(Profit) 96.07% 97.82% 86.03% 89.59%
expected(Exergy loss) 100.00% 104.25% 78.28% 82.96%
realized(Exergy loss) 100.00% 104.25% 78.28% 82.96%
Compost produced 100.00% 104.25% 78.06% 82.81%

2nd flush 98% 97% 18% 45%
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5.4.2 Multi-objective optimization

The sets of eco-efficient solutions for both models (including the best stochastic solution found 
for the stochastic model), as well as the objective function values based on simulation, are all 
presented in Figure 5.4.

Each point on the efficient frontier corresponds to a specific production plan, and the extreme 
solutions of the efficient frontier for the deterministic model are summarized in the previous 
subsection. It is observed that for each efficient frontier the number of flushes used for 
cultivation change gradually from mostly two for the best economic solutions, to mostly three 
for the best environmental solution. This entails a lower amount of cultivated compost resulting 
in lower environmental impact due to less produced waste.
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using expected (deterministic) parameter values in optimization leads to an overestimated 
economic performance that will hardly be realized in practice. It is found that accounting for the 
main uncertain model parameters (i.e. yield and demand) leads to more realistic results, where 
the solutions of the model are on average much closer to the realized (i.e. after uncertainty has 
revealed) optimal solutions. 

As observed by Dekker et al. (2012), eco-efficient solutions illustrate that improvement of 
environmental performance comes at a cost, and observe that the use of multi-objective models 
to derive eco-efficient solutions is rather new. We show how a stochastic multi-objective 
optimization model can be used to derive efficient solutions for real-life production planning 
problems. We quantified the stochastic trade-offs between economic and environmental criteria, 
which can be very different from the corresponding deterministic. Using the stochastic trade-off 
to support decision making in agri-food supply chains may bring substantial economic and 
environmental benefits and also a more accurate representation of the trade-off between 
conflicting objectives. It is therefore concluded that accounting for uncertainty in agri-food 
supply chains is important, especially when sustainability concerns occur.

In agri-food chains there are situations where infeasibilities are not acceptable, for instance 
when the demand must be met exactly due to strict periodic delivery contracts with customers, 
hard restrictions related to quality requirements and safety regulations of perishable products, or 
in the presence of penalty systems for upper limits on production amounts and the level of 
environmental impact. In such cases Robust Optimization (RO) is an appropriate approach. 
Robust optimization provides for solutions that are immune to infeasibilities but are more 
conservative. In the specific case presented in this chapter, infeasible solutions are hardly an 
issue as there are no hard constraints on demand (over and under achievement of demand is 
allowed at different price levels). The conservatism of RO was confirmed in our analysis, in 
which we assumed a polyhedral uncertainty set for each uncertain parameter (i.e. each uncertain 
parameter has a value from a pre-specified interval). The solution of such a model turned out to 
be comparable with the results of a linear optimization problem in which each uncertain 
parameter was fixed at its worst case value (as presented already by Soyster (1973)). Therefore, 
RO provided limited added value for the presented mushroom production planning problem. 
This observation might be very different for other real-life cases in which the achievement of 
hard constraints are of crucial importance.

This research shows that decomposing decision making into multiple stages has the potential to 
improve the economic performance of agri-food supply chains. This is because in agri-food 
supply chains there exists a substantial time lag between production decisions and the revealed 
uncertainty of production parameters. We provided an example where multistage decision 
making has an added value above the deterministic approach. Future case based research is 
needed to confirm the findings in general. It will be interesting to explore which uncertain 
parameters play a crucial role in other real-life cases, and to examine the impact of other
realistic probability distribution functions for those uncertain model parameters. 

Chapter 6
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6.1 Conclusions

The aim of this thesis is to contribute to improved decision making in Food Supply Chains 
(FSCs) by developing dedicated multi-objective models to optimize and re-design FSCs by 
balancing economic and environmental criteria. The emphasis is directed towards the 
valorization of product flows by means of closing loops and waste management at chain level. 
In line with the aim of this thesis, the following research questions have been formulated:

RQ1: What is the state of the art and what are the research challenges in MCDM approaches 
applied to eco-efficient supply chains?

RQ2: What type of MCDM models can be used to evaluate the effects of new technologies and 
logistical structures on eco-efficiency in food supply chains?

RQ3: What is the added value of using a single metric indicator based on exergy analysis to 
account for the environmental performance of a food supply chain?

RQ4: What is the impact of including uncertainty of data in optimization models on eco-
efficient solutions in a food supply chain?

This chapter starts with providing answers to the research questions, which are addressed in 
Chapters 2 to 5. Each of the following four subsections in Section 6.1 answers one research 
question. Section 6.2 presents the integrated findings and discussion. Section 6.3 gives 
managerial impacts. Section 6.4 provides some challenging directions for future research.

6.1.1 Research challenges

RQ1 is addressed in Chapter 2, which focuses on reviewing and identifying research challenges 
in the field of MCDM approaches applied to support decision making in eco-efficient supply 
chains. A theoretical framework is developed in Figure 2.1 to find relevant publications and to 
categorize them with respect to supply chain decision problems, key performance indicators, 
and the proposed MCDM approach.

Analysis of the literature shows that research on eco-efficient supply chains analysed with 
MCDM approaches is a relatively new but emerging field. Few publications considered forward 
and reverse logistics simultaneously to support decision making in a closed-loop supply chain 
in a multi-criteria context. Not much work has been published in relation to FSCs. Moreover, 
there is a lack of studies focusing on assessing technological innovations to close loops in FSCs, 
and no attention has been given to minimization of food waste. Chapter 2 points out that most 
of the models developed do not take into account stochasticity in parameters despite the 
inherent uncertainty associated with (food) supply chains, regarding, for example, prices, 
supply, processing parameters, or demand.

Chapter 2 concludes that despite the growing interest in MCDM approaches to support decision 
making in eco-efficient supply chains, more attempts to balance economic and environmental 
criteria in production, distribution, and inventory problems are needed. The study presented 
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identifies the need for more multi-criteria models focusing on FSCs, real-life case studies, and 
inclusion of data uncertainty in optimization models for eco-efficient supply chains.

6.1.2 MCDM models to evaluate new technologies in FSCs

RQ2 is addressed in Chapters 3 and 4. These two chapters illustrate how to quantify the effects 
of new technologies, which allow for waste management and prevention, on the economic and 
environmental performance of FSCs. Two case studies are considered: Chapter 3 focusses on a 
bread supply chain and Chapter 4 concentrates on a mushroom supply chain. For each case 
study, multi-objective models are developed and necessary data for model are collected. The 
data required for model parametrization include environmental and economic impacts of all 
processes, including technological innovations and distribution activities. The models 
developed are used to derive eco-efficient solutions that illustrate the best solutions from an 
economic and environmental point of view and the quantified trade-off between economic 
performance and environmental impact.

Chapter 3 presents a mathematical model to quantitatively assess alternative production options 
that are associated with different ways to deal with food waste, namely disposal, recycling, and 
prevention of food waste. The multi-objective mixed integer linear programming model 
developed is applied to a case study of a bread supply chain. Three options to produce a bread 
product are considered, and each production option is associated with a different way of dealing 
with waste, i.e. freshly baked bread (waste disposal), fermented breadcrumb bread (waste 
recycling), and par-baked bread (waste prevention). The results show that prevention of waste is 
beneficial from an economic point of view for a fraction of all bread types, and is the most 
beneficial solution from an environmental perspective for all bread types. A shift to par-baked 
bread production implies that the shelf life of a product can be substantially extended, and this 
offers a change in the design of a bread supply chain.

Chapter 4 presents a dedicated model to support decision making and to assess alternative 
production options in a mushroom supply chain. In the mushroom supply chain, new 
technologies allow for alternative production options to reduce, reuse, and recycle the amount 
of waste in the form of the growing medium (i.e. spent mushroom compost), which arises due 
to production of mushrooms. Multi-objective optimization is used to evaluate the effects of 
these technologies by formulating a set of scenarios and deriving eco-efficient frontiers to 
explore quantitatively alternative recycling options. It is found that adoption of closing loop 
technologies has the potential to improve substantially both the economic and environmental 
performance of the chain. This is achieved by reducing the need for raw materials and reducing 
transportation.

The case studies presented illustrate the potential of studying food production planning decision 
problems in a multi-objective context. The models developed provide insights on the 
assessment of alternative production options and alternative logistical structures. It is concluded 
that a comprehensive evaluation of recycling technologies and re-designing logistical structures 
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requires quantitative tools that optimize managerial decisions simultaneously at strategic and 
tactical levels.

6.1.3 Indicator based on exergy analysis to account for environmental performance of 
an FSC

In Chapters 3, 4 and 5, the environmental impact is expressed by exergy losses, an indicator 
based on exergy analysis. Exergy analysis has the potential to capture other commonly used 
indicators, such as energy consumption, fuel consumption, and waste generation, and express 
them in a single metric. This allows the environmental impacts of production activities 
(including energy consumption, fuel consumption and waste generation) to be quantified by a 
single indicator. The use of a single indicator to quantify the environmental performance of a 
food chain simplifies the calculation of the eco-efficient frontier, and enables its intuitive 
graphical representation. This has been proven to facilitate the communication of the results 
with decision makers in practice. 

The case study in Chapter 3 demonstrates that the optimal solutions obtained are different when 
exergy losses are used as an environmental indicator compared with a scenario in which the 
most commonly applied indicator, i.e. CO2 equivalents (CO2e), is used. CO2e focuses only on 
particular issues and does not always provide an integrated assessment of environmental 
impact. Using CO2e, therefore, may point to solutions that are not environmentally friendly 
overall. However, using total waste produced as an environmental indicator results in a 
comparable eco-efficient frontier, whereas total waste produced is the main concern in the case 
studies considered here. This finding confirms that exergy is able to capture the impact of both 
waste and energy and provides evidence that exergy analysis offers an objective assessment for 
environmental impact in the case studies.

6.1.4 Accounting for uncertainty in optimizing production planning decisions in FSCs

Chapter 5 proposes a multi-objective two-stage stochastic programming model that enables 
production planning decisions in FSCs to be decomposed into two phases. Particularly in FSCs, 
many decisions have to be taken at an early stage, whereas yields, output prices and demand are 
often revealed later in the production process. Not accounting for these sources of uncertainty in 
the optimization may lead to production planning decisions that result in lower than expected 
overall economic and environmental performance. The model developed in Chapter 5 is used to 
analyse and evaluate the economic and environmental impacts of accounting for uncertainty in 
FSCs. As a case study, an illustrative real-life mushroom production planning problem is 
presented in which a substantial time lag exists between production decisions and the revealed 
uncertainty of production parameters. The illustrative case study demonstrates the potential 
benefits of treating uncertainty in optimizing production planning decisions in an FSC. It is 
clearly demonstrated that taking uncertainty into account at the production planning level in an 
FSC has substantial economic and environmental benefits.
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6.2 Scientific contribution and integrated findings

The research presented in this thesis contributes to the scientific literature on eco-efficient FSCs 
by providing decision support models used by decision makers to assess alternative logistical 
structures, quantify the economic and environmental implications of closing loop technologies, 
and improve their economic and environmental performance by closing loops. In the previous 
section, the answers to the individual research questions are presented. This section provides 
integrated findings and shows how the overall research objective is attained. The overall 
research objective of this thesis is to support decision making by developing dedicated multi-
objective models to optimize and re-design FSCs by balancing economic and environmental 
criteria.

A thorough literature review on the new and emerging field of MCDM approaches for eco-
efficient supply chains is presented in Chapter 2. This chapter contributes to the scientific 
literature by identifying research challenges in the study domain. In addition, Chapters 4 and 5 
present literature reviews that highlight the gaps and justify the contributions of the studies. 
These literature reviews clearly show that more applications of multi-objective optimization to 
real-life case studies are needed to investigate the relationship between the economic and 
environmental dimensions of sustainability, and that determining eco-efficient solutions with 
multi-objective optimization models is quite new. Moreover, studies applying multi-objective 
optimization to eco-efficient FSCs have given little attention to food waste. Qualitative studies 
are available that identify and prioritize the most appropriate waste management and prevention 
options (Papargyropoulou et al., 2014), but quantitative evidence on case studies is missing. 
Furthermore, according to Govindan et al. (2015d) and Stindt and Sahamie (2014), assessments 
of technological innovations allowing for closing loops in supply chains are rare with respect to 
multiple criteria of economic and environmental performance. In addition, no studies applying 
the concept of closed-loop supply chains within the context of food products were found.

6.2.1 Decision support models for eco-efficient FSCs

Eco-efficient FSCs require new decision support models that are capable of assessing the 
impact of alternative production options and technological innovations on economic and 
environmental performance. The mathematical models used in this PhD thesis provide decision 
support tools for production and distribution planning problems. The models are based on 
known mathematical formulations of lot sizing and location/allocation models, adjusted to make 
them suitable for the specific problem setting. Chapter 3 formulates a multi-item capacitated
lot-sizing model in a multi-objective context. The model is tuned to compare alternative 
production options to determine different ways of dealing with waste. Chapter 4 combines a 
location/allocation model and a harvesting planning model to consider the complete supply 
chain simultaneously. Although the first component of the proposed model (i.e. the 
location/allocation model) is a well-known concept in Operations Research, the second model 
component (i.e. the harvesting planning model) has been designed specifically for the 
mushroom supply chain. In addition, the model has been adjusted to include the possibility of 
closing a loop. The model developed is used to perform ex ante quantitative assessment of 
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technological innovations, which allow valorization of waste, on the economic and the 
environmental performance of the chain. The optimization models developed in this thesis are 
used to support managerial decisions for alternative logistical structures that result in lower 
production costs and environmentally friendly food production.

Food production is intrinsically associated with uncertainty. The impact of uncertainty in supply 
chain studies is commonly explored by scenario studies or sensitivity analysis, i.e. by 
investigating the impact of a change in the (uncertain) parameters on the solutions obtained. In 
these cases, uncertainty is not included explicitly in the optimization phase and may lead to 
production planning decisions, which, if implemented, would result in lower than expected 
overall economic and environmental performance. To deal with uncertain input parameters in 
models, a number of approaches can be applied, such as stochastic programming, fuzzy 
programming, or robust optimization. Multi-stage stochastic programming is particularly 
suitable for FSCs, in which a substantial time lag commonly exists between production 
decisions and the revealed uncertainty of (production) parameters. Decomposing the decision-
making process into multiple stages, therefore, has an added value above the deterministic 
approach, in which all decisions are optimized once, i.e. at the beginning of a planning horizon. 
In Chapter 5, a multi-objective two-stage stochastic programming model is applied to an FSC in 
which some decisions can be postponed. The results show that accounting for uncertainty in 
optimizing production planning decisions in FSCs can bring substantial benefits from economic 
and environmental perspectives. The study presented in Chapter 5 is, to the best of our 
knowledge, the first attempt to model a production planning problem in a multi-objective 
context while taking into account yield and demand uncertainty in food production.

All models developed in this thesis are formulated in a multi-objective context to derive sets of 
Pareto-efficient solutions that are used to inform decision makers on the trade-offs between 
important economic and environmental criteria. To derive the set of Pareto-efficient solutions, a 
number of methods are available, as discussed in Chapter 2, including the ε-constraint method, 
weighted sum method, a multi-objective genetic algorithm, or other heuristics. It is important to 
identify the appropriate solution approaches based on the problem context and complexity. 
Pareto-efficient solutions are determined using the ε-constraint method because, unlike the 
weighted sum method, it is capable of finding all Pareto-efficient points when the solution 
space is not convex.

This thesis contributes to the scientific literature on MCDM from an application point of view 
by providing two real-life case studies. In the case studies, the reduction of waste materials 
produced is enabled by technological innovations. The applicability of the lot-sizing model 
developed in Chapter 3 is demonstrated on a real-life bread supply chain in the Netherlands. 
The model is used to assess alternative production options with particular attention to different 
ways of dealing with the issue of food waste. The location/allocation and harvesting planning 
model developed in Chapter 4 is tailored to support decision making in an industrial mushroom 
supply chain in which possibilities exist to recover part of the waste material, thereby reducing 
the total amount of waste stream produced. This thesis, therefore, contributes to the scientific 
literature by developing industry-specific FSC models based on real-life case studies and by 
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technological innovations, which allow valorization of waste, on the economic and the 
environmental performance of the chain. The optimization models developed in this thesis are 
used to support managerial decisions for alternative logistical structures that result in lower 
production costs and environmentally friendly food production.

Food production is intrinsically associated with uncertainty. The impact of uncertainty in supply 
chain studies is commonly explored by scenario studies or sensitivity analysis, i.e. by 
investigating the impact of a change in the (uncertain) parameters on the solutions obtained. In 
these cases, uncertainty is not included explicitly in the optimization phase and may lead to 
production planning decisions, which, if implemented, would result in lower than expected 
overall economic and environmental performance. To deal with uncertain input parameters in 
models, a number of approaches can be applied, such as stochastic programming, fuzzy 
programming, or robust optimization. Multi-stage stochastic programming is particularly 
suitable for FSCs, in which a substantial time lag commonly exists between production 
decisions and the revealed uncertainty of (production) parameters. Decomposing the decision-
making process into multiple stages, therefore, has an added value above the deterministic 
approach, in which all decisions are optimized once, i.e. at the beginning of a planning horizon. 
In Chapter 5, a multi-objective two-stage stochastic programming model is applied to an FSC in 
which some decisions can be postponed. The results show that accounting for uncertainty in 
optimizing production planning decisions in FSCs can bring substantial benefits from economic 
and environmental perspectives. The study presented in Chapter 5 is, to the best of our 
knowledge, the first attempt to model a production planning problem in a multi-objective 
context while taking into account yield and demand uncertainty in food production.

All models developed in this thesis are formulated in a multi-objective context to derive sets of 
Pareto-efficient solutions that are used to inform decision makers on the trade-offs between 
important economic and environmental criteria. To derive the set of Pareto-efficient solutions, a 
number of methods are available, as discussed in Chapter 2, including the ε-constraint method, 
weighted sum method, a multi-objective genetic algorithm, or other heuristics. It is important to 
identify the appropriate solution approaches based on the problem context and complexity. 
Pareto-efficient solutions are determined using the ε-constraint method because, unlike the 
weighted sum method, it is capable of finding all Pareto-efficient points when the solution 
space is not convex.

This thesis contributes to the scientific literature on MCDM from an application point of view 
by providing two real-life case studies. In the case studies, the reduction of waste materials 
produced is enabled by technological innovations. The applicability of the lot-sizing model 
developed in Chapter 3 is demonstrated on a real-life bread supply chain in the Netherlands. 
The model is used to assess alternative production options with particular attention to different 
ways of dealing with the issue of food waste. The location/allocation and harvesting planning 
model developed in Chapter 4 is tailored to support decision making in an industrial mushroom 
supply chain in which possibilities exist to recover part of the waste material, thereby reducing 
the total amount of waste stream produced. This thesis, therefore, contributes to the scientific 
literature by developing industry-specific FSC models based on real-life case studies and by 
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deriving eco-efficient solutions to assess and quantify the effect of alternative production 
options.

6.2.2 Closing the loop

Another area in which this thesis contributes to science is the reduction of food waste by closing 
the loop. The issue of food waste is addressed in a food waste hierarchy framework proposed by 
Papargyropoulou et al. (2014). Food waste hierarchy identifies and prioritizes the most 
appropriate options for prevention and management of food waste. The food waste hierarchy 
framework concludes that prevention is the most advantageous option from environmental and 
economic perspectives. Prevention is followed by reuse, recycle, recovery, and disposal, which 
is the least favourable option for managing food waste. However, quantitative evidence for the 
food waste hierarchy is missing and it needs to be confirmed. Chapter 3 proposes a model to 
assess alternative production options associated with different ways of dealing with waste 
materials. The model developed is applied to a bread supply chain in the Netherlands, and the 
results confirm the finding of Papargyropoulou et al. (2014) that prevention is the most 
beneficial option from an environmental point of view, and can also be beneficial from an 
economic point of view. Moreover, one of the production options in the bread supply chain 
allows recycling of bread waste and using it as a raw material in bread production. To the best 
of our knowledge, this feature is the first example in FSCs in which there is a possibility of 
closing the loop. We therefore not only provide a model that can be used to assess alternative 
production options associated with different ways of dealing with waste but also provide a real-
life case example of a closed-loop FSC.

The mushroom supply chain, discussed in detail in Chapter 4, provides another example in 
which there is potential to close the loop in an FSC. In Chapter 4, the quantified impact of 
closing loops in an industrial mushroom supply chain is examined with multi-objective 
optimization. All potential innovations allow the amount of waste to be reduced, thereby 
improving the economic and environmental performance by 11% and 28%, respectively. It is 
concluded that valorization of materials and closing loops in FSCs can have a positive effect on 
both economic and environmental performance. Chapter 4 contributes to the scientific literature 
by proposing a multi-objective model to quantitatively assess closing loop technology in an 
FSC with respect to economic and environmental performance. In addition, both case studies 
confirm that prevention of waste is the most desirable way of reducing the environmental 
impact of food production.

6.2.3 Environmental assessment

Another finding concerns the indicators used to account for the environmental performance of 
FSCs. It has been argued by Kaipia et al. (2013) that the amount of waste produced is the key 
factor contributing to the environmental impact of food production, and the environmental 
impact is not caused solely in the phase where the product is wasted; food products that end up 
not being consumed have an environmental impact without adding value. One of the causes of 
waste production is the selection of key performance indicators, because the indicators currently 
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used focus on cost efficiency (Kaipia et al., 2013). To reduce environmental impact, it is crucial 
to consider appropriate environmental indicators for the supply chain under consideration, as 
well as the economic indicators currently considered. Environmental impact can be objectively 
assessed using exergy analysis (Zisopoulos et al., 2017), which has the potential to capture 
multiple environmental indicators simultaneously. Both case studies considered in this thesis, 
however, show that using cumulative exergy loss (an indicator based on exergy analysis) or the 
amount of waste produced yields nearly the same solutions. Performing exergy analysis can be 
time consuming and requires detailed information on processes and activities. Quantifying the 
exergy losses of all (additional) processing steps can be difficult when technological 
innovations allowing for valorization of materials have not yet been implemented. Based on the 
results presented in this thesis, it is concluded that the amount of waste produced is an 
appropriate environmental indicator of FSCs, and the two case studies confirm that waste is the 
main factor contributing to exergy losses in food production.

6.3 Managerial impact

Most companies pursue environmental programmes only when improvements in economic 
performance are measurable and attainable (Pullman et al., 2009). The case studies clearly 
illustrate that technological innovations that allow for reuse and recycling of waste streams in 
the form of a closed-loop supply chain, can substantially improve the economic and 
environmental performance of an FSC. The greatest benefits are attained by using materials to 
their full potential by valorizing waste streams as much as possible. The case studies illustrate 
that it is worthwhile investing in research on technological innovations (and their development) 
for closing loops in FSCs. Although the economic and environmental performance can be
improved by implementing these technological innovations, trade-off between these criteria still 
exists. This confirms that simultaneous consideration of economic and environmental criteria is 
important to inform decision makers on the trade-off between these criteria.

The impact of alternative production options is quantified with the help of the decision support 
models developed in this thesis. A decision support model is developed for each case study. The 
models are used to derive sets of eco-efficient solutions (i.e. Pareto-efficient solutions that 
consider economic and environmental objectives). The sets of eco-efficient solutions made 
decision makers aware of their own trade-offs in practice, and proved to be especially 
informative in facilitating discussions with industrial partners.

The proposed realistic variants of production and distribution planning models can be used to 
assess alternative production options associated with different ways to address the issue of 
waste, i.e. prevention, recycling, or disposal. The proposed models can also be used for other 
case studies to assess production options with respect to economic and environmental 
performance. However, a generic model often requires adjustment to make it suitable for a 
particular case study. To operationalize the models for other case studies, detailed information 
is required and the necessary data on the economic and environmental impact of all processing 
steps and distribution activities must be quantified. Ongoing research is already using the 
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deriving eco-efficient solutions to assess and quantify the effect of alternative production 
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beneficial option from an environmental point of view, and can also be beneficial from an 
economic point of view. Moreover, one of the production options in the bread supply chain 
allows recycling of bread waste and using it as a raw material in bread production. To the best 
of our knowledge, this feature is the first example in FSCs in which there is a possibility of 
closing the loop. We therefore not only provide a model that can be used to assess alternative 
production options associated with different ways of dealing with waste but also provide a real-
life case example of a closed-loop FSC.

The mushroom supply chain, discussed in detail in Chapter 4, provides another example in 
which there is potential to close the loop in an FSC. In Chapter 4, the quantified impact of 
closing loops in an industrial mushroom supply chain is examined with multi-objective 
optimization. All potential innovations allow the amount of waste to be reduced, thereby 
improving the economic and environmental performance by 11% and 28%, respectively. It is 
concluded that valorization of materials and closing loops in FSCs can have a positive effect on 
both economic and environmental performance. Chapter 4 contributes to the scientific literature 
by proposing a multi-objective model to quantitatively assess closing loop technology in an 
FSC with respect to economic and environmental performance. In addition, both case studies 
confirm that prevention of waste is the most desirable way of reducing the environmental 
impact of food production.

6.2.3 Environmental assessment

Another finding concerns the indicators used to account for the environmental performance of 
FSCs. It has been argued by Kaipia et al. (2013) that the amount of waste produced is the key 
factor contributing to the environmental impact of food production, and the environmental 
impact is not caused solely in the phase where the product is wasted; food products that end up 
not being consumed have an environmental impact without adding value. One of the causes of 
waste production is the selection of key performance indicators, because the indicators currently 
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used focus on cost efficiency (Kaipia et al., 2013). To reduce environmental impact, it is crucial 
to consider appropriate environmental indicators for the supply chain under consideration, as 
well as the economic indicators currently considered. Environmental impact can be objectively 
assessed using exergy analysis (Zisopoulos et al., 2017), which has the potential to capture 
multiple environmental indicators simultaneously. Both case studies considered in this thesis, 
however, show that using cumulative exergy loss (an indicator based on exergy analysis) or the 
amount of waste produced yields nearly the same solutions. Performing exergy analysis can be 
time consuming and requires detailed information on processes and activities. Quantifying the 
exergy losses of all (additional) processing steps can be difficult when technological 
innovations allowing for valorization of materials have not yet been implemented. Based on the 
results presented in this thesis, it is concluded that the amount of waste produced is an 
appropriate environmental indicator of FSCs, and the two case studies confirm that waste is the 
main factor contributing to exergy losses in food production.

6.3 Managerial impact

Most companies pursue environmental programmes only when improvements in economic 
performance are measurable and attainable (Pullman et al., 2009). The case studies clearly 
illustrate that technological innovations that allow for reuse and recycling of waste streams in 
the form of a closed-loop supply chain, can substantially improve the economic and 
environmental performance of an FSC. The greatest benefits are attained by using materials to 
their full potential by valorizing waste streams as much as possible. The case studies illustrate 
that it is worthwhile investing in research on technological innovations (and their development) 
for closing loops in FSCs. Although the economic and environmental performance can be
improved by implementing these technological innovations, trade-off between these criteria still 
exists. This confirms that simultaneous consideration of economic and environmental criteria is 
important to inform decision makers on the trade-off between these criteria.

The impact of alternative production options is quantified with the help of the decision support 
models developed in this thesis. A decision support model is developed for each case study. The 
models are used to derive sets of eco-efficient solutions (i.e. Pareto-efficient solutions that 
consider economic and environmental objectives). The sets of eco-efficient solutions made 
decision makers aware of their own trade-offs in practice, and proved to be especially 
informative in facilitating discussions with industrial partners.

The proposed realistic variants of production and distribution planning models can be used to 
assess alternative production options associated with different ways to address the issue of 
waste, i.e. prevention, recycling, or disposal. The proposed models can also be used for other 
case studies to assess production options with respect to economic and environmental 
performance. However, a generic model often requires adjustment to make it suitable for a 
particular case study. To operationalize the models for other case studies, detailed information 
is required and the necessary data on the economic and environmental impact of all processing 
steps and distribution activities must be quantified. Ongoing research is already using the 
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models for other supply chains, including a potato supply chain and a biscuit supply chain, 
showing their general applicability.

The models developed in this thesis have been applied to two case studies: a bread supply chain 
and a mushroom supply chain. In each case study, technological innovations enabled reduction 
of the total amount of waste produced along the supply chain. The case studies were selected 
based on their differences with respect to the type of waste material produced. In the bread 
supply chain, the focus is directed towards product waste, i.e. bread loafs that are not sold on 
the day of production. In the mushroom supply chain, on the other hand, the focus is directed 
towards process waste, i.e. waste that arises as a result of mushroom production, and 
corresponds to the growing medium (i.e. substrate used for growing mushrooms), which needs 
to be discarded after mushroom cultivation. The results for the bread supply chain considered in 
Chapter 3 show that prevention of waste, associated with the par-baking production option, can 
be favourable from both an economic and environmental perspective. The possibility of storing 
par-baked bread and selling it when it is needed gives additional flexibility and reduces the 
setup costs substantially. A shift to par-baked bread production implies that the shelf life of the 
product can be extended substantially, and this offers a change in the design of the bread supply 
chain. These findings encouraged our industrial partners to carry out follow-up research to 
investigate the potential alternative logistical structures, including the location and size of 
distribution centres, and inventory management-related issues, including alternative reviewing 
policies, and safety stock levels of frozen breads.

According to experts, based on the set of eco-efficient solutions, a production option that is 
associated with recycling bread waste provides a good balance between economic and 
environmental objectives. Recycling of bread rejects is already common practice within the 
boundaries of a bakery, i.e. breads that are rejected because of e.g. their shape or weight, can be 
processed and used as a raw material for production. However, to implement recycling at a 
supply chain level (i.e. to collect the bread not sold from supermarkets and transport it back to 
industrial bakeries for processing), additional food safety measures are necessary to prevent any 
potential contamination of products. The results provided by this study encouraged our 
industrial partners to carry out follow-up research to investigate the feasibility of recycling 
bread waste in terms of food security issues, food safety, and marketing research to investigate 
the customers’ acceptability of products produced from recycled bread.

Chapter 4 presents a detailed integrated model with location/allocation and harvesting 
decisions. The results for the mushroom supply chain presented in Chapter 4 show that the 
(potential) technological innovations, which allow for recycling and reusing the waste stream in 
the form of spent mushroom substrate, can substantially improve the chain’s economic and 
environmental performance. The results of the study presented in this thesis encouraged our 
industrial partners to further investigate the technical feasibility of the recovery options of the 
waste material. Ongoing research is being carried out on the possibility of recovering spent 
mushroom substrate as a peat replacement for casing soil production. Recovery of spent 
mushroom compost reduces the need for raw materials, providing substantial economic and 
environmental benefits. Moreover, the model developed for the case study is currently being 
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used by our industrial partners to test various what-if scenarios, including the implications of 
increased compost production capacity and reduced availability of raw materials.

Although the research presented in this thesis does not have the capacity to support the claim 
that valorizing waste materials from food production brings benefits with respect to eco-
efficiency independently of the supply chain, it does provide tools for the assessment of 
alternative production options associated with different waste management and prevention 
options. Sustainability research is not easily generalized across industries, and industry-specific
sustainability research may yield more practical findings than cross-industry studies (Pullman et 
al., 2009). Future research on real-life case studies should be carried out to provide more 
evidence on the implications of valorizing raw materials in FSCs.

6.4 Future research directions

6.4.1 Decision support models for eco-efficient FSCs

As discussed in Chapter 2, existing approaches within the MCDM field are divided into two 
categories: MADM and MODM. This thesis explores only one of these categories (MODM) in 
case studies to optimize production and distribution planning decisions and derive eco-efficient 
solutions. Future case studies can build on the models developed in this thesis by additionally 
using MADM approaches to recover stakeholders’ weights associated with different objectives, 
such that a single (preferred) solution is selected from the eco-efficient set.

Despite the increased interest in the scientific literature in using MCDM approaches for eco-
efficient supply chains as presented in Chapter 2, only a few studies have focused on food 
products. It is clear that FSCs are unique in their complexity, and food products are 
characterized by seasonality, yield variability, product perishability and high fluctuations in 
demand and price (Akkerman et al., 2010; van der Vorst et al., 2009). Eliminating current 
inefficiencies and improving economic and environmental performance, therefore, requires 
sophisticated decision support models that account for the intrinsic characteristics of food 
products, including market and productivity uncertainty and perishability. Although the models 
proposed in this research account for market and productivity uncertainty, perishability issues 
are not explicitly included. However, perishability is implicitly included in the models by 
assuming that the products (bread and spent mushroom substrate) become waste if not sold or 
recycled on the day of production. Future research should explore the impact of inclusion of the 
limited shelf life of food products (i.e. longer than one day as assumed here) in a multi-criteria 
context.

This thesis provides tools for estimating the impact of alternative production options associated 
with different ways of valorizing (waste) materials. To operationalize the planning models in 
practice and to determine the impacts of new production technologies, the models should be 
further adjusted to include more realistic characteristics of the problems under study (e.g. 
including production in batches and considering different vehicles and their load) that have an 
impact on the economic and environmental performance. Future case studies should also 
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models for other supply chains, including a potato supply chain and a biscuit supply chain, 
showing their general applicability.

The models developed in this thesis have been applied to two case studies: a bread supply chain 
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boundaries of a bakery, i.e. breads that are rejected because of e.g. their shape or weight, can be 
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the customers’ acceptability of products produced from recycled bread.

Chapter 4 presents a detailed integrated model with location/allocation and harvesting 
decisions. The results for the mushroom supply chain presented in Chapter 4 show that the 
(potential) technological innovations, which allow for recycling and reusing the waste stream in 
the form of spent mushroom substrate, can substantially improve the chain’s economic and 
environmental performance. The results of the study presented in this thesis encouraged our 
industrial partners to further investigate the technical feasibility of the recovery options of the 
waste material. Ongoing research is being carried out on the possibility of recovering spent 
mushroom substrate as a peat replacement for casing soil production. Recovery of spent 
mushroom compost reduces the need for raw materials, providing substantial economic and 
environmental benefits. Moreover, the model developed for the case study is currently being 
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alternative production options associated with different waste management and prevention 
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products. It is clear that FSCs are unique in their complexity, and food products are 
characterized by seasonality, yield variability, product perishability and high fluctuations in 
demand and price (Akkerman et al., 2010; van der Vorst et al., 2009). Eliminating current 
inefficiencies and improving economic and environmental performance, therefore, requires 
sophisticated decision support models that account for the intrinsic characteristics of food 
products, including market and productivity uncertainty and perishability. Although the models 
proposed in this research account for market and productivity uncertainty, perishability issues 
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assuming that the products (bread and spent mushroom substrate) become waste if not sold or 
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consider multi-stage stochastic programming to better resemble reality by allowing more stages 
for decision making. Moreover, uncertainty associated with environmental impact of production 
processes, omitted in this work, should be considered in future studies. As shown in Zisopoulos 
et al. (2016), the values of some environmental parameters can have a critical influence on the 
overall environmental performance of an FSC.

6.4.2 Improvement opportunities

Each case studied in this thesis considers a supply chain as a single entity (from raw material 
providers to the retail stage) instead of considering each link in the chain separately. In practice, 
however, different links in the chain tend to maximize their own objectives. The scientific 
literature shows that collaboration and information sharing can bring economic and 
environmental benefits in FSCs (Kaipia et al., 2013). This provides potential for future research 
to investigate how the benefits obtained from collaboration and the benefits obtained by 
implementing technological innovations in processing can be assigned between different 
entities in a supply chain. Moreover, future research should also focus on investigating the 
impact of various sources of uncertainty on each link of the chain separately.

This study breaks away from the traditional view of supply chains in which the so-called take, 
make, dispose economic model dominates. Disposal of waste materials is the dominant pattern 
worldwide, leading to a huge loss of resources and causing heavy environmental impacts 
(Ghisellini et al., 2016). The large amount of waste produced by the food industry, in addition 
to being a great loss of valuable materials, raises problems both from the economic and 
environmental points of view (Mirabella et al., 2014). Recently, a new view of waste streams 
has been emerging, which recognizes waste management as recovery of resources and 
environmental impact prevention (Ghisellini et al., 2016). As a result of new production 
technologies in the food industry, valorizing waste materials in the same supply chain becomes 
possible. This leads to the concept of a closed-loop supply chain, which has not been widely 
applied to FSCs.

Even though interfirm clusters are considered simultaneously in this work by considering the 
supply chain as a whole, further improvement of economic and environmental performance 
could be attained if multiple interrelated supply chains are considered simultaneously. Many 
residues that cannot be valorized in one supply chain have the potential to be reused in other 
production systems, e.g. through bio-refineries (Mirabella et al., 2014). This can have an 
additional positive effect on eco-efficiency. Futures studies should consider more options for 
valorization of materials by considering more interrelated entities and supply chains in which 
waste material from processes in one sector can be used as input material in other sectors. A 
network of companies that exchange by-products and share other common resources 
corresponds to industrial symbiosis, in which the goal is to take full advantage of by-product 
utilization while reducing residual products or treating them efficiently (Zhu et al., 2007). In 
line with Mirabella et al. (2014), the potential direction for future research identified by this 
study is to perform feasibility studies to classify the type and amount of wastes and to identify 
which industrial sector might transform and use them.
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Summary
Until recently, food production focused mainly on delivering high-quality products at low cost 
and little attention was paid to environmental impact and depletion of natural resources. As a
result of the growing awareness of climate change, shrinking resources, and increasing world 
population, this trend is changing. A major concern in Food Supply Chains (FSCs) is food 
waste. To remain competitive, FSCs are challenged to adopt new technologies that reduce or 
valorize food waste. These technologies can contribute to maintaining or increasing economic 
output and concurrently reduce the environmental impact of current operations, i.e. achieving 
what has been defined as eco-efficiency. Designing eco-efficient supply chains requires 
complex decision support models that can deal with multiple dimensions of sustainability while 
taking into account the specific characteristics of products and their supply chain. Multi-Criteria 
Decision Making (MCDM), a research field within Operations Research, is particularly suitable 
to support decision making when multiple and (mostly) conflicting criteria are involved. In this 
research, multi-objective optimization was used to quantify trade-offs between conflicting
objectives and derive eco-efficient solutions, i.e. solutions in which environmental performance 
can only be improved at higher cost. The overall objective of this thesis was to support decision 
making in FSCs by developing dedicated decision support models to optimize and re-design 
FSCs by balancing the economic and environmental criteria. The emphasis is directed towards 
valorization of product flows by means of closing loops and waste management at a chain level. 
In line with this overall objective, four research questions were defined, which are addressed in 
Chapters 2 to 5.

In Chapter 2, the use of MCDM approaches for designing Green Supply Chains (GSCs) is 
reviewed; GSCs extend traditional supply chains to include activities that minimize the 
environmental impact of a product throughout its life cycle. A conceptual framework was 
developed to find relevant publications and categorize papers with respect to decision problems, 
indicators, and MCDM approaches. The analysis shows that the use of MCDM approaches for 
designing GSCs is a new but emerging research field. Most publications focus on production 
and distribution problems, and there are only a few inventory models with environmental 
considerations. Most papers assume all data to be deterministic. Moreover, little attention has 
been given to minimization of waste in studies on FSCs, and numerous indicators are used to 
account for eco-efficiency, indicating the lack of standards. Chapter 2, therefore, identifies the 
need for more multi-criteria models for real-life GSCs, especially with respect to supply chains 
dealing with food production, and with inclusion of uncertainty in parameters.

Environmental concerns and scarcity of resources encourage decision makers in supply chains 
to consider alternative production options that include preventing the production of waste 
streams and simultaneously reusing and recycling waste materials. Until now, quantitative 
modelling approaches on closing loops in FSCs have been rare in the literature. The aim of 
Chapter 3 was to develop a mathematical model that can be used for quantitative assessment of 
alternative production options associated with different ways of dealing with waste in FSCs, i.e. 
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consider multi-stage stochastic programming to better resemble reality by allowing more stages 
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technologies in the food industry, valorizing waste materials in the same supply chain becomes 
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study is to perform feasibility studies to classify the type and amount of wastes and to identify 
which industrial sector might transform and use them.
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need for more multi-criteria models for real-life GSCs, especially with respect to supply chains 
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alternative production options associated with different ways of dealing with waste in FSCs, i.e. 
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prevention, recycling, and disposal of food waste. A multi-objective mixed integer linear 
programming model was developed to derive a set of eco-efficient solutions corresponding to 
production planning decisions. The environmental performance of the chain is expressed by an 
indicator based on exergy analysis, which has the potential to capture other commonly used 
indicators, such as energy consumption, fuel consumption, and waste generation, in a single 
value. This simplifies the calculation of the eco-efficient frontier and enables its intuitive 
graphical representation, which is much easier to communicate to the decision makers. The 
applicability of the model is demonstrated on a real-life industrial bread supply chain in the 
Netherlands. The results confirm the findings from the literature that prevention is the best 
waste management strategy from an environmental perspective. The advantages of using exergy 
as an indicator to capture the environmental performance is demonstrated by comparing the 
outcomes with other commonly used indicators of environmental performance. The potential of 
studying food production planning decision problems in a multi-objective context is illustrated 
and the applicability of the model in the assessment of alternative production options is 
demonstrated.

In contrast to closed-loop studies in industry involving discrete parts, in FSCs the value of the 
final product usually cannot be regained. However, the components used for production, such as 
organic matter or a growing medium, can be recycled. The aim of Chapter 4 was to reveal the 
consequences of closing loops in a mushroom supply chain. A multi-objective mixed integer 
linear programming model was proposed to quantify trade-offs between economic and 
environmental indicators and to explore alternative recycling technologies quantitatively. The 
model was developed to re-design the logistical structure and close loops in the mushroom 
supply chain. It was found that adopting closing loop technologies in industrial mushroom 
production has the potential to increase the total profitability of the chain by almost 11% and 
improve the environmental performance by almost 28%. It is concluded that a comprehensive 
evaluation of recycling technologies and re-designing logistical structures requires quantitative 
tools that simultaneously optimize managerial decisions at strategic and tactical levels.

Multi-objective optimization models are often developed under the assumption that all 
information required for model parameterization is known in advance. In practice, however, not 
all the required information is available in advance because of various sources of uncertainty in 
FSCs. In Chapter 5, a multi-objective two-stage stochastic programming model was proposed to 
analyse and evaluate the economic and environmental impacts to account for uncertainty in 
FSCs. A mushroom supply chain in the Netherlands is presented as an illustrative case study. 
Optimal production planning decisions calculated with a two-stage stochastic programming 
model are compared with the results of an equivalent deterministic model. It is demonstrated 
that taking uncertainty into account at the production planning phase in an FSC can bring 
substantial economic and environmental benefits.

The research presented in this thesis contributes to the scientific literature on eco-efficient FSCs 
by providing decision support models for use by decision makers to assess alternative logistical 
structures and quantify the economic and environmental implications of closing loop 
technologies. This thesis shows that technological innovations, which allow for reuse and 
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recycling of waste streams, have the potential to improve the economic and environmental 
performance of an FSC substantially. The case studies illustrate that it is worthwhile investing 
in research on technological innovations (and their development) for closing loops in FSCs. The 
greatest benefits are brought about by using materials to their full potential by valorizing waste 
streams as much as possible.
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recycling of waste streams, have the potential to improve the economic and environmental 
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