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Abstract 

Located in a highly populated region the Kenyan Mau forest complex is increasingly 

exploited for cattle grazing, fuel wood collection and charcoal burning. This has big 

implications on the state of the forest as the understorey is disturbed and tree cover gradually 

diminishes. To understand the underlying forces driving forest degradation knowledge of the 

timing and location of anthropogenic disturbances in the forest is crucial. Using a stable forest 

mask for the period between 2000-2016 the analysis was limited to persistently forested areas, 

thus excluding deforestation. To detect forest degradation, we computed time series from the 

Normalized Difference Fraction Index (NDFI) which synthesizes subpixel fraction images 

from spectral mixture models. NDFI time series were then screened for structural changes 

using the data-driven Breaks For Additive Season and Trend (BFAST) model. Our results 

indicate an overall detection accuracy of 75.74 %. User and Producer accuracies for the 

mapped forest degradation class amounted 84.31% and 56.58% respectively. The no-

degradation class showed user and Producer accuracies of 72.03% and 91.4% respectively. 

Undetected degradation patches generally remained below an area size of 0.2 ha, which 

reveals the importance of matching targeted degradation processes with an appropriate spatial 

sensor resolution. Furthermore, the year 2015 indicated an exceptional peak of degradation 

processes. In that year about 28 % of non-disturbed forest samples were falsely attributed as 

degraded. 2015 stands out with the lowest precipitation rates among all years in the study 

period, likely leading to the false identification of phenological anomalies as actual 

degradation processes. The main benefit of combining NDFI time series and BFAST is the 

high sensitivity towards canopy changes. Potentially, the employed change detection method 

can be further enhanced using additional spectral indices and breakpoint validation criteria 

that are more resilient to fluctuations of climate and vegetation phenology. While revealing 

some weaknesses of the approach the study also mapped hotspots of forest degradation in the 

Mau forest. These findings are relevant for the daily work of local forest services but also for 

future research and continued degradation mapping. 

Keywords: Remote sensing, Landsat, Forest degradation, Spectral mixture analysis, 

Normalized Difference Fraction Index, BFAST 
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1 Introduction 

1.1 Background 

The Mau forest complex (MFC) is part of the largest closed-canopy montane forest ecosystem 

in Eastern Africa (Were, Dick and Singh 2013). While these forests represent an important 

sanctuary for the Kenyan flora and fauna, they are also major sinks of CO2 (Vidal 2009). 

Furthermore, the MFC provides a wide range of Ecosystem Services such as the improvement 

of soil fertility through supporting nutrient cycling, local climate regulation, flood prevention 

and rainwater retention (Imo 2012). The latter is particularly important for local livelihoods as 

it contributes to year-round water availability, even throughout the dry season (Mogaka et al. 

2006).  

Located in a highly populated region of western Kenya, the MFC underwent continuous 

processes of uncontrolled forest degradation (Imo 2012). Given varying degrees of poverty, 

local livelihoods rely on land for settlement, cultivation and livestock grazing. Due to high 

demographic pressure along the edges of the MFC, forest resources are increasingly exploited 

for cattle grazing, fuel wood collection and charcoal burning. Although the structure and 

composition of the forest is modified by these activities the respective areas are not 

considered as deforested because the original land cover (LC) is not replaced.  

Beside the local and regional importance of the MFC, tropical forest degradation is also 

acknowledged as a relevant aspect of the international climate change agreement (UNFCCC, 

2015). Attributing carbon stock changes to forest degradation poses a big challenge in 

advancing mechanisms for carbon payments through REDD+
1
. For the implementation at 

national level, changes in carbon stocks have to be adequately monitored as required for 

national Measuring Reporting and Verification (MRV) systems. That specifically demands 

the acquisition of so-called activity data, i.e. the quantified area undergoing forest change 

processes (deforestation, forest degradation and regrowth). While few deforestation 

monitoring systems exist, forest degradation is not monitored regularly in any tropical 

country. This however is needed to support the Kenyan MRV systems and to track illegal 

logging activities (Sharife 2010). Furthermore, better knowledge on the various drivers of 

forest degradation can help to mitigate societal needs and shape adequate policies to protect 

the MFC and tropical forests at large.  

1.2 Problem definition 

Currently, no common definition of forest degradation exists. Depending on the perspective, 

many biophysical processes can indicate a form of degradation (e.g. soil degradation, 

biodiversity loss etc.). In the context of climate change, forest degradation can be defined as a 

loss of carbon stocks without land cover change (LCC). Compared to other degradation 

processes, loss of carbon stocks can be directly related to logging activities and fire, which 

                                                 
1
 REDD+ poses an incentive mechanism to “reduce emissions from deforestation and degradation and to conserve and enhance 

carbon stocks”. 
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manifests in canopy cover changes. Multi-temporal optical Remote Sensing (RS) imagery can 

be employed to map such processes over time (Broich et al. 2011). However, this is far more 

challenging than mapping deforestation as degraded forest ‘pixels’ represent complex 

environments with different features on the ground (i.e. vegetation, dead trees, bark, tree 

branches, soil, shade) (Souza and Roberts 2005). To differentiate natural degradation 

processes from anthropogenic causes, many approaches additionally incorporate bare soil 

fraction per pixel, as main drivers charcoal burning and timber extraction are characterized by 

the complete removal of biomass (Gaveau et al. 2014, Hirschmugl et al. 2014, Souza, Roberts 

and Cochrane 2005). Due to the ephemeral nature of RS signals and the spectral ambiguity 

between low intensity logging and intact forests, automated pixel-based approaches are 

needed that exploit the full temporal and spectral coverage of a sensor (Asner, Keller and 

Silva 2004). The use of spectral mixture analysis (SMA) (Stueve et al. 2009), a technique 

based on modelling image spectra as the linear combination of pure spectra (Adams, Smith 

and Gillespie 1993), has been a great advancement for the mapping of forest degradation 

(Souza et al. 2005). While SMA-derived fractions of shade and Green Vegetation (GV) are 

helpful to identify canopy gaps (Asner et al. 2002), the bare soil fraction allows to identify 

skid trails and logging roads (de Wasseige and Defourny 2004). Souza et al. (2005) developed 

a spectral index that incorporates relevant endmember fractions in degrading forest 

landscapes, the Normalized Difference Fraction Index (NDFI).  

Current change detection approaches use the NDFI and SMA-derived fraction images for the 

classification of few images and comparing them over time (Sofan et al. 2016, Souza Jr et al. 

2013). Although this method generated satisfactory results in Brazil and Indonesia (ibid.), a 

few disadvantages can be identified for applying the method in the MFC. Forests in Kenya 

show a higher seasonality than rainforest, which can result in the confusion of forest classes if 

bi-temporal imagery from different seasons are compared (Coppin et al. 2004). Furthermore, 

degradation is not detectable anymore within 1 year due to understorey regrowth (Souza et al. 

2005). Recently, a number of time-series based approaches for change detection have been 

developed (e.g. Verbesselt et al. 2010b, Verbesselt et al. 2012, Zhu and Woodcock 2012). 

This follows a general trend towards multi-temporal change detection, exploiting the full 

temporal detail of the RS-based data streams available today (Hansen and Loveland 2012). In 

part this is motivated by recent changes in the data policy of the U.S. Geological Survey 

(USGS) and advancements in pre-processing algorithms permits to harness the full Landsat 

archive (Wulder et al. 2012). The spectral coverage and spatial resolution of Landsat imagery 

allows to track both tree cover changes and primary logging roads, which makes it a 

promising data source for mapping forest degradation (Broich et al. 2011, Gaveau et al. 2014, 

Margono et al. 2012). Some change detection approaches are fully data-driven and therefore 

require no training data or detailed knowledge of the expected change. The pixel-based 

Breaks For Additive Season and Trend (BFAST) Monitor method developed by Verbesselt, 

Zeileis and Herold (2012) has been previously used to detect small-scale disturbances in 

montane forests in Ethiopia (DeVries et al. 2015). BFAST is robust in regard of short-term 

data variations and inherent noise (e.g. clouds and atmospheric scatter), which further 

supports its use in tropical areas (Verbesselt et al. 2010b).  
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Given the necessity to enhance forest monitoring in the MFC, the main objective of this 

project was to develop a method for the timely detection of forest degradation combining 

NDFI TS and BFAST. In this context, it was hypothesized that RS TS can be partitioned in 

such a way that they are representative of forest degradation processes. Computed degradation 

maps will support the Initiative for Sustainable Landscapes (ISLA) Program operating in 

South West Mau to develop a baseline, and to assess proposed interventions.  

2 Study area 

The study site for mapping forest degradation stretches from the western parts of the MFC to 

the eastern shorelines of Lake Victoria covering mainly the south-central part of the Rift 

Valley province (see Figure 1). The area is designated by 1735 mm annual precipitation at an 

average temperature of 18.1°C (Acker, J. G. & G. Leptoukh 2007). Ranging from an altitude 

between 1,800 - 3,000 m.a.s.l. the forested mountains function as one of the main water 

towers in Kenya forming the headwaters of the Sondu and Mara catchments. As such this 

region functions as an important water retention basin supporting agriculture, hydropower 

generation, urban drinking water supply, and rural livelihoods throughout significant parts of 

western Kenya. 

Forest degradation processes in the study area can be largely attributed to increasing 

population pressure which manifests in the growing exploitation of forest resources. Lack of 

governance and poor regulatory policies in the past led to the excision of vast forest areas for 

settlements, commercial tea and wheat production (Allaway, 1989, unknown, 2002). Despite 

renewed political efforts against human encroachment, forest destruction continues, especially 

through the burning of charcoal, one of the cheapest household energy sources in Kenya 

(GFC 2010, WildlifeDirect 2010). Frequently, degrading forests are soon converted into areas 

of subsistence agriculture or pastures (Olang and Kundu 2011). 

 
Figure 1: Study area in Kenya 
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3 Methodology 

3.1 Remote sensing data and pre-processing 

Optical RS data for this study was comprised of Landsat surface reflectance images from TM 

(Thematic Mapper), ETM+ (Enhanced Thematic Mapper) and OLI (Operational Land 

Imager) sensors, provided by the USGS, for the period between 01.01.2000 – 01.07.2016. 

Imagery with less than 80% cloud cover was downloaded via the ESPA ordering interface 

(https://espa.cr.usgs.gov). Using the provided metadata, all scenes with a geometric accuracy 

below 15 m or without any accuracy information were discarded from the dataset. Clouds 

were flagged using the available FMASK band (Zhu and Woodcock 2012). A full flowchart 

of implemented pre-processing steps is given in Annex 1. 

3.2 Normalized Difference Fraction Index 

For an optimal detection of forest canopy disturbance Landsat surface reflectance bands were 

first used to model sub-pixel fractions (endmembers) of green vegetation (GV), non-

photosynthetic vegetation (NPV), bare soil and shade. For that purpose a Spectral Mixture 

Analysis (Stueve et al. 2009, Adams et al. 1993) was employed using the IMGtools software 

package developed by Souza et al. (2005). For the accurate modelling of pixel endmember 

fractions in degraded forests, an optimal identification of pure training spectra (100% GV, 

NPV, bare soil or shade) is imperative. In this study, we made use of a spectral library 

specifically developed for endmembers in degraded forest landscapes (Souza et al. 2005). 

To enhance the sensitivity of this information towards forest degradation subpixel fractions of 

endmembers were synthesized into the Normalized Difference Fraction Index (NDFI), which 

was used successfully for the detection of tropical rainforest degradation (ibid.) (see eq.1). 

    𝑵𝑫𝑭𝑰 =
𝑮𝑽𝑺𝒉𝒂𝒅𝒆−(𝑵𝑷𝑽+𝑺𝒐𝒊𝒍)

𝑮𝑽𝑺𝒉𝒂𝒅𝒆+ 𝑵𝑷𝑽+𝑺𝒐𝒊𝒍
      ( 1) 

Where GVShade is the shade-normalized GV fraction (see eq. 2). 

    𝑮𝑽𝑺𝒉𝒂𝒅𝒆 =
𝑮𝑽

𝟏𝟎𝟎−𝑺𝒉𝒂𝒅𝒆
      ( 2) 

3.3 Construction of Time Series Stacks (TSS) 

Sequences of Landsat images were bundled into ready-to-use Time Series Stacks (TSS). TSS 

are acquired at nominal temporal intervals for a specific Worldwide Reference System (WRS) 

location and enable the pixel-wise computation of any type of TS analysis (Huang et al. 

2009). With the implementation of LEDAPS processing prior to the publication of 

downloadable data, the production of TSS including data of Landsat TM, ETM+ and OLI 

sensors is a fairly straightforward procedure.  

However, one important drawback of Landsat data is the low temporal resolution. Despite the 

revisit time of 16 days, persistent cloud coverage limits the availability of valid surface 

reflectance data. Therefore less, often temporally isolated, observations are recorded for the 

https://espa.cr.usgs.gov/
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rainy season. Moreover, the malfunction of the Scan Line Corrector (SLC) in 2003 causes 

systematic data gaps in all Landsat 7 images, which were used in this study.  

In order to enhance the frequency of observations in TSS, the tile overlap of Landsat imagery 

with neighbouring WRS locations was harnessed. Four overlap zones were defined, each with 

a unique set of overlapping images (see Figure 1). The extent of each zone was outlined 

manually. Minima/maxima of x and y coordinates of zone extents were determined visually 

and are documented in Annex 2. Overlapping images were then cropped (and/or extended) to 

the extent of each overlap zone and stacked producing one TSS for each spectral band and 

NDFI in each respective overlap zone. Through this procedure many additional observations 

were gained, especially for years 2013-2015 (see Figure 2). The zone defined as “NE” 

displays the amount of data that would be available without the inclusion of neighbouring 

tiles.  

 
Figure 2: Overlap zones of Landsat images from different WRS tiles 

3.4 Noise removal from NDFI TSS 

Although Landsat data was provided with an available cloud and cloud shadow mask, not all 

contaminations were captured. Consequently, NDFI TS are characterized by positive and 

negative outliers increasing the risk of commission errors (false detection of forest 

disturbances) (DeVries et al. 2015). Global outlier thresholds (i.e. standard deviation of TS 

observations) are not applicable for forest change monitoring as these are likely to 

misinterpret actual changes as outliers. In this study outliers were determined by a moving 

window through pixel TS, checking if any observation is bigger than 2.5% (positive outliers, 

mainly cloud shadows) or smaller than 3.5% (negative outliers, mainly clouds) the value of 

neighbouring observations. These thresholds have been qualitatively assessed using NDFI and 

FMASK images. Although consecutive outliers cannot be detected by this method, random 

observation of pixel TS did not reveal frequent abundance of this condition. The resulting TS 

of this method is exemplified in Figure 3. 
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Figure 3: Effect of outlier removal on NDFI TS 

3.5 Stable forest mask 

Compared to deforestation forest degradation does not describe persistent LCC. In order to 

disentangle both processes two forest masks were produced for the years 2000 and 2016. By 

flagging only pixels that are forested in both time steps, degradation monitoring was limited 

to pixels which are known to be forested throughout the whole study period. 

A pixel-wise Random Forest classifier using temporal metrics as input variables was 

implemented following the procedure described in Griffiths et al. (2013). Temporal metrics 

were derived from all spectral bands for the periods between 15.04.2000-14.04.2001 and 

15.04.2015-14.04.2016. Additional temporal metrics were computed for rainy and dry seasons 

(see Figure 4). The computed image stacks can be conceptualized as extended snapshots 

which complement each other by specifying particular seasonal or annual characteristics of 

spectral indices. Such temporal compositing approaches increase the separability of classes, 

specifically for forests, pastures and cropland (Griffiths et al. 2013). Furthermore this method 

is less affected by cloud cover in single images allowing for an area-wide characterization of 

annual/seasonal states of LC. 

The classifier was implemented in supervised mode using reference data derived from aerial 

photography and Spot imagery. Aerial photography was provided by Rhino Ark for the year 

2003. Aerial photos were compared with Landsat imagery from the year 2000 and 2003. As 

the target year of the first forest mask was 2000, only large, homogenous LC patches with 

unchanged spectral signatures between 2000 and 2003 were chosen as training sites. Spot 

imagery was provided by Airbus Defence and Space for the year 2016. To build the second 

forest mask a linear reference grid resembling Landsat pixels was laid on top of Spot imagery. 

For most classes, only pixels with homogenous LC were chosen to train the classifier. To 

conform to the forest definition of the FAO, forested training pixels with different canopy 

cover (10-100 %) were uniformly collected. Canopy cover was determined visually based on 

the reference grid.  
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Initial LC classes comprised pastures, crops, urban, water bodies and wetlands. In a 

subsequent step these classes were fused into the non-forest class. The forest class consists of 

primary and secondary forest, shady forest in mountain ridges and tree plantations. In order to 

focus the analysis on actual forests all spatially isolated clusters of forest with a size below 5 

Landsat pixels (4.500m²) were excluded from the forest class. 

 
Figure 4: Conceptualization of classification approach to generate forest masks 

3.6 Detection of forest degradation 

The specific goal of this study was to differentiate two forest states: no-change and 

degradation. To identify these states a data-driven approach based on the BFAST monitoring 

algorithm (Verbesselt et al. 2012) was implemented. BFAST fits a model nesting both 

seasonal signal variations (harmonic) and long term trends (linear) within a defined historical 

period of stable forest. In our study, the stable history was defined for the years 2000-2010. 

To detect structural breakpoints in the TS moving sums (MOSUM) of residuals of 

observations following this stable history period (monitoring period) were computed (ibid.). A 

breakpoint is declared when residuals and hence also their MOSUM values deviate from 0 at 

a significance level of 0.05 (see Leisch, Hornik and Kuan (2000)) for more information on 

this boundary condition). The BFAST approach is described in more detail in Verbesselt et al. 

(2012).  

In order to incorporate the maximum number of observations for fitting the harmonic model, 

sequential monitoring periods of one year were defined. In case a monitoring year did not 

demonstrate structural changes in the TS, that year was added to the stable history and the 

model re-fit. Limiting the length of the monitoring period to one year has the additional 

advantage that MOSUM values are not affected by observations long after actual change 

events.  

This approach is based on the methods implemented by DeVries et al. (2015) who robustly 

mapped small-scale forest disturbances in Kafa, Ethiopia. Also based on their experience the 
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trend term of the algorithm was omitted and solely a first-order harmonic model was fit to the 

data in the history period (see eq.3). The overall approach is illustrated in Figure 5. 

     𝒚𝒕 = 𝜸 𝐬𝐢𝐧 (
𝟐𝝅𝒕

𝒇
+ 𝜹) + 𝜺𝒕     ( 3) 

3.7 Disturbance magnitude and soil fraction change thresholds 

To ensure the exclusion of spurious breakpoints (due to outliers, seasonal shifts or positive 

canopy cover changes), two additional aspects were included in the computation. As a 

measure of change magnitude the median difference between actual and expected NDFI 

observations was computed within a specified period (see Table 1) of after a detected break 

(DeVries et al. 2015). Based on the logic that human induced forest degradation is inherently 

linked with soil exposure (e.g. emergence of paths, biomass removal) an additional validity 

check using the SMA-derived bare soil fraction images was implemented (Souza et al. 2005). 

Soil fraction TS were 1) split into pre- and post-disturbance segments around computed 

breakpoints, 2) the median was calculated separately for observations within each segment 

and 3) the difference between these medians computed.  

A random subset of collected field observations was used to calibrate the parameters listed in 

Table 1. In 250 iterations parameters were sampled randomly from a uniform distribution. 

Field observations were used to assess the model performance for each set of parameters. The 

parameter configuration yielding the highest overall model accuracy was used for the area-

wide implementation of the change detection algorithm. During the computation breaks were 

excluded if either magnitude or soil fraction change thresholds were not exceeded. In these 

cases the model would omit observations in the period the change magnitude was calculated 

and the model re-fitted.  

Table 1: Parameters to for approval of detected breaks by BFAST model 

Parameter Value 

Minimum change magnitude threshold -0.0354 

Post-break period for which to calculate 

change magnitude 

128 d 

Minimum bare soil fraction increase 0.31% 

Pre- and post-break period for which to 

calculate soil fraction increase 

146 d 

 

All analytical steps were implemented using mainly the “BfastSpatial” and “bfast” packages 

in R (R Core Development Team 2015, Dutrieux, DeVries and Verbesselt 2014, Verbesselt et 

al. 2010a).  
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Figure 5: Conceptualization of sequential BFAST monitoring approach 

3.8 Accuracy assessment 

Forest degradation can be difficult to detect and characterize using imagery only, especially 

when single trees are removed from forests with a high biomass or high vegetation density. 

To overcome the limitations of RS based reference datasets, the validation of our method was 

based on field data. Field data was collected during March-April 2016 in the area indicated in 

Figure 1. To ensure the visibility of degradation processes the validation was centered on 

changes in 2014 and 2015. For efficient data collection, mobile devices with integrated GPS 

and camera functionality were used. The decision-based data collection application of 

(Pratihast et al. 2014, Pratihast et al. 2013) was adopted for the purpose of this study using the 

Open Data Kit (ODK) Collect application. An overview of the procedures related to sampling 

and accuracy assessment can be found in Annex 3. 
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3.8.1 Sample-based field data 

For the sampling itself, a two-stage approach was taken. First accessible forest areas and paths 

were explored during 7 full days of scrutinizing the inside of the forest. The route was 

planned as such as to cover ‘undisturbed’ and degraded parts of the forest as well as bamboo 

forest. Alongside activity data on forest degradation was documented wherever observed. 

Harnessing the gained knowledge of the forest a buffer of 100 m was created around 

accessible forest areas. Following the assumption that most disturbances take place in the 

vicinity of accessible areas, the second sampling campaign was limited to areas within this 

buffer. To enhance data collection a stratified random sampling approach was designed using 

strata derived from preliminary data-driven BFAST outputs. These outputs specify pixels with 

change and no change as well as magnitude thresholds. Accordingly, strata represent no 

change and change while the latter was further split into three magnitude classes (low = 0-

0.04; medium = 0.04-0.08; high = > 0.08). This differentiation was necessary to calibrate 

magnitude thresholds of BFAST (see section 3.6). 

Given the large prevalence of the non-disturbance class it would have been difficult to derive 

a reliable estimate of omission errors using only randomly sampled strata derived from 

BFAST. In our approach that was anticipated by combining purposive activity data collection, 

with stratification in the proximity of paths (Pfaff 1999). An overview of all collected samples 

is given in Figure 6. 

3.8.2 Validation 

The accuracy of the developed change detection method was assessed by comparing final 

change maps with the collected field data. For the validation only degradation and non-

degradation samples of the year 2015 have been compared with change maps. If a breakpoint 

was detected in the same year as actual disturbances the change was considered correctly 

identified. Similarly it was considered correct, if no break was detected in that year and the 

pixel was sampled as non-degraded. Validation results were compiled in a confusion matrix 

from which classical accuracy measures were derived: overall accuracy, as well as class-

specific user and producer accuracies (Congalton 1991). 
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Figure 6: Sampling locations 
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4 Results and Discussion 

4.1 Stable forest mask 

Because the forest masks for the years 2000 and 2016 were independent from each other, the 

accuracy of the final stable forest mask (see Annex 4) was assessed by multiplying User and 

Producer accuracies for the individual forest masks of 2000 and 2016. Accuracies (estimated 

with a confidence interval of 95%) and confusion matrices for forest masks of individual 

years and the stable forest mask are given in Table 2. The final stable forest mask 

demonstrates a very high overall accuracy around 99.36%.  

Table 2: Count-based confusion matrix comparing validation pixels with computed forest masks 

Forest mask 2000 

  Reference     

  Forest 
Non-

forest 
Σ 

User  

accuracy 

(%) 

Producer 

accuracy 

(%) 

Total 

accuracy 

(%) 

Predicted 

Forest 8509 21 8530 99.75 99.46  

Non-

forest 
46 6196 6242 99.26 99.66  

 Σ 8555 6217 14705   
99.55  

(± 0.13) 

Forest mask 2016 

  Reference     

  Forest 
Non-

forest 
Σ 

User 

accuracy 

(%) 

Producer 

accuracy 

(%) 

Total 

accuracy 

(%) 

Predicted 

Forest 6889 2 6891 99.97 99.59  

Non-

forest 
28 8987 9017 99.66 99.98  

 Σ 6917 8989 15876   
99.81  

(± 0.08) 

Stable forest mask 

     

User  

accuracy 

(%) 

Producer 

accuracy 

(%) 

Total 

accuracy 

(%) 

 

  Forest 99.72 99.05  

  
Non-

forest 
98.92 99.64  

       
99.36  

(± 0.1) 
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4.2 Annual change maps and accuracy assessment 

In the framework of this study the feasibility of combining NDFI TS and BFAST for forest 

degradation monitoring has been tested. It is the first time this method has been used in mixed 

evergreen-semi-deciduous forests (Obare and Wangwe 1998) and in the context of forest 

degradation. The main outputs of this work are forest degradation maps shown in Annex 5.  

Overall the method performed at an adequate accuracy. A confusion matrix, including 

quantified accuracies (confidence interval = 95%), comparing collected field samples with 

degradation maps is given in Table 3. 

Table 3: Count-based confusion matrix comparing field observations with computed forest degradation maps 

  Reference      

  
No-

Degradation 
Degradation Σ 

User 

accuracy 

(%) 

Producer 

accuracy 

(%) 

Total  

(%) 

Predicted 
No-

degradation 
85 33 118 72.03 91.40 

75.74 

(± 7.0) 

 Degradation 8 43 51 84.31 56.58  

 Σ 93 76 169    
 

From the confusion matrix, we estimated a total accuracy 75.74 %. User and Producer 

accuracies for the mapped forest degradation class amount 84.31% and 56.58% respectively. 

The no-degradation class showed user and Producer accuracies of 72.03% and 91.4% 

respectively. 

A comparison of the annual degradation maps indicates a peak of degradation processes in 

2015, while least disturbances took place in 2013 (see Figure 7). The big difference between 

2015 and other years is discussed in section 4.3. 

 
Figure 7: Annual forest degradation in hectares (2010-2015) 
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Figure 8 composites detected disturbances of all monitoring years in one map. Hotspots of 

degradation processes are concentrated in the forest stations of Chepsil, the central part of 

Kericho and the eastern parts of MaraMara. The maps indicate different spatial patterns of 

forest degradation. While degradation areas in the Chepsil district cover large coherent areas, 

disturbed areas in Kericho, MaraMara and Itare are much smaller and patchier. Observations 

during field work indicated that the main driver of forest degradation in these areas is charcoal 

burning and that kilns are generally distributed along clearly defined donkey paths (see Figure 

9).  

  
Figure 8: Composite of annual forest degradation maps (2010-2015) 

These paths, used to transport charcoal out of the forest, increasingly penetrate the central 

parts of the south western Mau forest, which becomes a visible trace of forest degradation 

(see Figure 9 & Figure 10). In general, the study detected most degradation in the western part 

of the forest. Disturbances in the more eastern bamboo forest parts are less pronounced.  
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Figure 9: Charcoal kiln used in 2015 and donkey path 

 
Figure 10: Detailed forest degradation map of central parts of the South Western Mau 
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4.3 Potential sources of inaccuracies 

In comparison to other studies using the NDFI for forest degradation monitoring the method 

used in this study achieved lower overall accuracies. In Brazil and Indonesia forest 

degradation has been mapped with an accuracy of around 94 and 95% respectively (Sofan et 

al. 2016, Souza et al. 2005). These studies used one cloud-free image per year and a simple 

image differencing algorithm for consecutive time steps. Such an approach, however, is far 

less promising in the Mau Forest than for tropical rainforests because the Mau Forest is 

characterized by a mixture of evergreen, semi-deciduous and deciduous trees (Obare and 

Wangwe 1998). Here cloud-free imagery is only available in the dry season, in which 

degradation activities are less distinguishable from senescence of the canopy (Miettinen, 

Stibig and Achard 2014). Especially the leaf-off configuration of some trees, which is absent 

in tropical rainforests introduces considerable RS signal variation. The combination of high 

signal variation and very few non-cloudy observations in the rainy season poses an additional 

challenge to distinguish noise from actual disturbances or seasonal vegetation dynamics. 

Furthermore, the complex mixture of different forest types (evergreen, semi-deciduous, 

bamboo) and degradation drivers in the Mau forest may require type-specific configurations 

of BFAST, which were not implemented in this study. For further accuracy improvement of 

degradation maps a few more methodological alternatives can be considered:  

 investigation and implementation of more sophisticated outlier removal methods 

 addition of contextual classification algorithms (CCA) (Souza et al. 2005) 

 stratification of BFAST parameters, e.g. based on forest type, topography or distance 

to settlements 

In the framework of this study overall map accuracy was assessed using classes degradation 

and non-degradation. Generally, the detection of forest degradation worked better for bigger 

disturbance patches (see Figure 11). Therefore, detection of accuracies could be higher if 

degradation areas with a size below 0,2 ha are disregarded. In this study no distinction has 

been made between different drivers of forest degradation. However, it could be observed that 

logging of single trees (e.g. for honey harvest) is harder to detect than logging at charcoal 

burning and timber harvesting areas. The latter are characterized by the removal of biomass 

after disturbance events manifesting as clear drops in the NDFI signature. This drop is much 

less pronounced when trees remain on the felling location, because less soil is exposed. 

Potentially the detectability of very low intensity disturbances can be improved with finer 

resolution RS imagery (Souza Jr, 2013). With 10 m spatial resolution Sentinel 2 imagery is a 

promising alternative. The satellite additionally outperforms Landsat regarding spectral 

coverage and temporal resolution. The higher spectral coverage will allow for more accurate 

modelling of pixel endmember fractions, and therefore result in more accurate NDFI TS. 

Moreover, the shorter revisit time will provide more dense TS, which has several other 

advantages: 

 better modelling of seasonal signal variations, especially in the rain season 

 more accurate outlier detection 
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 higher detectability of small disturbances followed by understorey regrowth or canopy 

closure 

 
Figure 11: Patch size of detected and undetected degradation areas 

Particular difficulties were observed for change detection in 2015. Some mapped degradation 

patches were unrealistically large in that year, which might explain the large total area of 

change. Among all monitoring years 2015 demonstrates the lowest precipitation rates for the 

months between June and September (see Figure 12). Drying out of canopy and understory 

may have increased the permeability of green vegetation, and the exposure of bare soil and 

NPV. This causes low NDFI values which potentially were flagged falsely as forest 

degradation. That becomes apparent through the low producer accuracy of no-degradation 

pixels, which were thus frequently misinterpreted as disturbed. The implementation of change 

magnitude and bare soil fraction change thresholds meant to anticipate this issue. Potentially 

other additional criteria that are more resilient to fluctuations of climate and vegetation 

phenology could be explored for more reliable breakpoint validation. The exploration of such 

criteria was not feasible given the time and data availability in this study and remains subject 

to future research.  

 
Figure 12: Area-averaged time series of monthly precipitation rate (TRMM data retrieved from Giovanni climate 

data portal)  
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4.4 Feasibility for operationalized forest degradation monitoring 

The BFAST monitoring algorithm was initially designed for near real-time (NRT) monitoring 

of deforestation (Verbesselt et al. 2012). Pratihast et al. (2014) developed a BFAST-based 

framework for continuous deforestation monitoring in the UNESCO Kafa Biosphere Reserve, 

Ethiopia. Potentially, the method can be also used to operationalize the detection of forest 

degradation in the Mau Forest. Consistent (free) data acquisition and automated processing 

procedures pose an effective and cheap way to implement RS-based monitoring systems. To 

enhance the reliability of such systems ground-based field validation is needed (Li et al. 

2013). Field observations may further allow to link locations of forest change to specific dates 

and drivers of disturbance events. The involvement of local communities and experts is an 

effective way to establish continuous field data streams, while also addressing REDD+ 

implementation guidelines. In case of the Mau forest the prospect of paying local community 

groups and indigenous societies for such services could enhance the surveillance of the forest 

while at the same time creating a sense of awareness among the local communities.  

5 Conclusions 

This study is an explorative attempt to apply a BFAST-based algorithm to the challenging 

task of mapping forest degradation in mixed evergreen and highly seasonal semi-deciduous 

forests. The use of NDFI provided TS sensitive enough to track most actual forest degradation 

patches with a size larger than 2 ha. However, the exceptional absence of rainfall in 2015 

caused overestimation of degradation in non-disturbed areas. Further research is needed to 

securely differentiate between phenological anomalies and anthropogenic disturbances.  

The research of Schultz (2016) indicates that the combined use of NDFI TS and BFAST is 

very suitable for the timely detection of deforestation as well. If used in conjunction with 

deforestation monitoring, this approach could be the base for precise forest monitoring in 

Kenya. This could enhance the implementation of national MRV systems, and thus may help 

Kenya to become eligible for the proposed compensation scheme of REDD+.  

The findings indicate ongoing disturbances in both at the edge and the interior of the forest, 

resulting in the continuous fragmentation of the Mau forest. To slow down or reverse this 

process adequate forest monitoring tools are needed. As human activities progressively shift 

into the interior of the forest, currently degrading areas cannot be reached within one day. The 

presented method may support the Kenyan Forest Service and Kenyan Wildlife Service in the 

planning of patrols, especially when operationalized as an NRT monitoring system. 

Knowledge on the location and spatial extent of degrading areas may additionally inform 

policy makers to prioritize main intervention areas. 

The advent of the sentinel satellites (S1 and S2) with higher spatial resolution and revisit time 

marks an interesting opportunity to improve the proposed method. New spectral bands, 

particularly in the red spectrum, of Sentinel 2 may enhance the distinguishability of tree 

canopy and understory vegetation. Therefore, the calibration of SMA models may be more 
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accurate than with Landsat bands, and hence NDFI values more sensitive to small canopy 

disturbances. For future monitoring it is thus implicit to explore the potential of Sentinel 1 & 

2 for forest degradation monitoring.  
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7 Appendix 

Annex 1: Processing chain 
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Annex 2: Geographic extent of overlap zones 

Zone Xmin Xmax Ymin ymax Overlapping tiles 

NW Xmin (170-

60) 

Xmax (170-

60) 

Ymax 

(169_61) 

Ymax (169-

60) 

170-60, 

169-60 

NE 
Xmax (170-

60) 

Xmax (169-

60) 

Ymax 

(169_61) 

Ymax (169-

60) 
169-60 

SW 
Xmin (170-

60) 

Xmax (170-

60) 

Ymin 

(169_61) 

Ymax 

(169_61) 

170-60, 

169-60, 

169-61 

SE 
Xmax (170-

60) 

Xmax (169-

60) 

Ymin 

(169_61) 

Ymax 

(169_61) 

169-60, 

169-61 
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Annex 3: Sampling and accuracy assessment procedures 
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Annex 4: Stable forest mask 
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Annex 5: Annual forest degradation maps for the years 2010-2015 
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