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ABSTRACT 

Land use systems are a fundamental part of the Earth's surface. Change of land use has significant impacts 

on climate, biodiversity, hydrological cycles, biogeochemical processes and human society. The Mau forest 

complex in Kenya is a montane forest ecosystem where significant land use changes have occurred: over 

the last few decades a quarter of the forest cover has been lost. The complex is one of the largest closed-

canopy montane forests in Eastern Africa and is part of the global biodiversity hotspots; ecosystems that 

are exceptional rich in biodiversity and where abrupt and significant environmental degradation takes 

place. In addition, the forest fulfils a crucial socio-economic function because several millions of Kenyans 

rely on the products and services it provides. Currently there is no comprehensive overview of the driving 

factors of land use change in the Mau forest complex. Knowledge of these drivers is important for policy 

making and modelling future processes. To address this gap, this study analysed the land use changes and 

its drivers in the Mau forest complex in the period 1973-2013. Remote sensing and GIS techniques 

combined with multiple logistic regression modelling were used to identify the dynamics and drivers of 

land use change. This study shows that the main land use changes in the Mau forest complex in the period 

1973-2013 were loss of forest and rangeland, while smallholder agriculture extended. More precisely, the 

largest land use change in the study area was a conversion from forest to smallholder agriculture. Hence, 

smallholder agriculture can be considered the most important proximate driver of deforestation in the 

Mau forest complex in every time period analysed. Based on the accuracy assessment and land use change 

dynamics analysis two land use change models were fitted: forest conversion and smallholder agricultural 

expansion. The regression analysis showed that biophysical and socio-economic factors were significant 

driving forces in both models. Drivers such as aspect East, curvature, the topographical wetness index, 

population density, distance to towns and distance to roads increased the odds of forest conversion, and 

in particular the distance variables became more important in more recently periods (1994-2003 and 

2003-2013). In the agricultural expansion model, biophysical factors had mainly an influence in the 

second period (1984-1994), while the socio-economic underlying drivers were more important in the 

third and fourth periods (1994-2003 and 2003-2013). In the overall period 1973-2013, both the forest 

conversion and agricultural expansion model showed that a growth in population density increased the 

chance of land use change. In conclusion, this research demonstrates that land use change and its drivers 

show different spatial-temporal trends. The models revealed an increasing importance of socio-economic 

variables which means there is a need for better understanding the socio-economic aspects behind land 

use change. Therefore, future research and policies should be time and space specific and focus more on 

socio-economic drivers of land use change. 

 
Keywords: Remote sensing, GIS, Land use change, Deforestation, Proximate drivers, Underlying 

drivers, Multiple logistic regression, Spatial-temporal analysis 
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1. INTRODUCTION 

1.1 BACKGROUND 

Land use systems are a fundamental part of the Earth's surface and change of land use has significant 

impacts on climate, biodiversity, hydrological cycles, biogeochemical processes and human society 

(Baldyga et al., 2007; Lambin et al., 2001; Were et al., 2013). In fact, land use change, and in particular the 

process of deforestation, is one of the largest anthropogenic contributors to carbon dioxide emissions (Le 

Quéré et al., 2009). Given that carbon dioxide is the primary driver of global warming and climate change, 

understanding the causes of land use change (e.g. deforestation) is essential for mitigation policies such as 

REDD+ (Reducing Emissions from Deforestation and Forest Degradation in developing countries) and 

modelling future scenarios (Hansen et al., 2009; DeFries et al., 2010; Were et al., 2014: Kissinger et al.,  

2011).  

 

Kenya's Mau forest complex is an area where significant land use changes occurred: over the last few 

decades a quarter of the forest cover has been removed (Baxter, 2014; KWS, 2009; UNEP, 2011). The 

forest complex is one of the largest closed-canopy montane forests in Eastern Africa and is part of the 

global biodiversity hotspots; ecosystems that are exceptional rich in biodiversity and where abrupt and 

significant environmental degradation takes place (Mittermeier et al., 2011; Myers et al., 2000; Sloan et al., 

2014; UNEP, 2006; Were et al., 2013). The Mau forest complex has a valuable function as carbon sink and 

is an essential catchment area as it forms the water catchment of several of Kenya's main rivers and feeds 

major lakes such as Lake Victoria, Lake Baringo and Lake Nakuru (Le Quéré et al., 2009; Olang and Kundu, 

2011; Were et al., 2013). In addition, the complex fulfils a crucial socio-economic function because several 

millions of Kenyans rely on the products and services it provides (Sena, 2006; UNEP, 2012). The urban 

centres depend on its water supply and the area is important for economic sectors such as tourism and 

agriculture, as well for the tea industry and energy sector (Baxter, 2014; KWS, 2009; Olang and Kundu, 

2011; UNEP, 2006; UNEP, 2012). Not only the human population needs the forest for its services, the 

water is essential for many domestic and wild animals that have their habitat there (Sena, 2006). Thus, the 

Mau forest complex plays an essential role for environment and society, and destruction of the area has 

substantial consequences. 

 

Several studies analysed the land use changes that occurred in different areas in and around the Mau 

forest, and primarily observed a process of deforestation driven by agricultural expansion (Baldyga et al., 

2008; Kiage et al., 2006; KWS, 2009; KFS, 2013; Mutoko et al., 2014; Olang and Kundu, 2011; Were et al., 

2014). According to these studies, the land use changes can be explained by climatic variations (Kiage et 

al., 2006), an increased demand for land because of a growing human population (Olang and Kundu, 2011; 

KFS, 2013), topographical and soil-related factors (Were et al., 2014), and institutional arrangements and 

poor governance (KWS, 2009). It can be argued that in the Mau forest complex, various proximate and 

underlying drivers – which can be biophysical and socio-economic – and their interactions, determine 

land use changes (Geist and Lambin, 2002; Jaimes et al., 2010; Kissinger et al., 2011; Were et al., 2014).  

 

Remote sensing and geographic information systems (GIS) techniques combined with statistical analysis 

methods are effective tools to identify, analyse and understand land use change dynamics (DeFries et al., 

2010; Kiage et al., 2006; Long et al., 2007; Serneels and Lambin, 2001; Verburg et al., 2004; Were et al., 

2014). Currently there is no comprehensive overview of the drivers of land use change in the Mau forest 

complex, and since knowledge of these drivers is important for policy making and modelling future 

processes, this research focuses on monitoring land use changes and analysing its drivers. 

1.2 RESEARCH OBJECTIVE AND QUESTIONS 

The main objective of this study is to analyse land use change and the drivers of these changes in the 

Mau forest complex in the period 1973 - 2013. Analysing historical data - in this case a 40-year period - 

helps understanding land use change patterns. In this way trends can be detected which contributes to 



2 
 

future land use change strategies (Kissinger et al., 2011). Furthermore, focusing on areas where key 

drivers are most prevalent, risks are high and possibilities for successful intervention seem greatest, is 

essential for effective national policy making (Herold and Skutch, 2011). 

 

In order to achieve the aim stated above, the following research questions were formulated: 

1. What land use changes can be identified and what are the proximate drivers of land use change 

in the Mau forest complex? 

2. What are the underlying drivers of land use change in the Mau forest complex? 

3. What are the main spatial-temporal trends of land use change in the Mau forest complex, and 

how can they inform on future land use change trends? 

1.3 METHODS 

The figure 1.1 shows the overview of the methodology applied in this research (chapter 3 shows the 

methods in more detail). The first research question was studied by validating five remote sensing derived 

land use maps of a previous research and characterising the land use dynamics in the Mau forest complex. 

Secondly, the possible underlying drivers were identified by use of a literature study and data was 

collected to quantify these drivers. To finally answer the second question, and the third research question 

as well, a statistical analysis was performed: in particular, multiple logistic regression models were 

computed. This helped characterising the underlying drivers and the main spatial-temporal trends in the 

study area. 

 

1.4 STRUCTURE 

This report starts with a literature review where proximate and underlying drivers and the modelling of 

land use change will be discussed. The next chapter elaborates on the methods used in this study: the 

methods used for validation of the land use maps, the characterisation of the land use change dynamics in 

the Mau forest, the quantification of land use change drivers, and the regression modelling framework will 

be explained. In chapter 4, the results of the validation, the characterisation of the land use dynamics and 

the statistical analysis are described. The results are reviewed and discussed in chapter 5. The report 

concludes in chapter 6 by answering the research questions and give recommendations for further 

research. 

 

QUANTIFICATION  

OF UNDERLYING 

DRIVERS 

STATISTICAL ANALYSIS:  

MULTIPLE LOGISTIC 

REGRESSION 

VALIDATION OF 5 LAND 

USE MAPS 
& 

CHARACTERISATION LAND 

USE CHANGE DYNAMICS 

QUESTION 1 
LUC & PROXIMATE DRIVERS 

QUESTION 2 
UNDERLYING DRIVERS 

QUESTION 2 + 3 
UNDERLYING DRIVERS 

SPATIAL-TEMPORAL TRENDS 

Figure 1.1: The methodology 
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2. LITERATURE REVIEW 

This chapter gives an overview of the literature that underpins the research. First the drivers of land use 

change will are described, and next the modelling of land use changes. 

 

Land cover and land use are not the same concepts. According to Lambin et al. (2001:262) land cover 

points to ‘the biophysical attributes of the Earth’s surface’, whereas land use is ‘the human purpose or 

intent applied to these attributes’ – the way land cover is used. In this report the applied terminology is 

land use because the classes that are used in the classification maps (see table 3.3) are land use categories 

according to the widely applied definitions of the IPCC (2000) and FAO (2005). Other studies use the 

concepts interchangeably as well, primarily because land use is often very similar to land cover (see for 

instance Kiage et al., 2006). Thus, in this research the drivers of land use change are studied without 

explicitly making a difference in terminology.  

2.1 THE DRIVERS OF LAND USE CHANGE 

Land use change can be caused by various factors and considerable research has been conducted to 

identify the drivers of land use changes: from deforestation in tropical regions (DeFries et al., 2010; Geist 

and Lambin, 2002; Houghton, 2012) to urban processes of land use change (Braimoh and Onishi, 2006; 

Lambin et al., 2001; Seto & Kaufman, 2003), agricultural changes and land use changes in mountainous 

ecosystems (Alexander et al., 2015; Mottet et al., 2006; Serra et al., 2008). Geist and Lambin (2002) 

developed a theoretical framework that identified and analysed the drivers of tropical deforestation, 

which is widely adopted in other studies, policy programmes such as REDD+, and used to identify causes 

for different kinds of land use changes (Mutoko et al., 2014; Jaimes et al., 2010; Kissinger et al., 2011).  

 

In Geist and Lambin’s framework, the drivers are broadly divided into first, the proximate or direct 

drivers, and second, the underlying or indirect drivers of land use change (see figure 2.1). The complex 

interactions between the proximate and underlying causes describe land use change processes, or as Geist 

and Lambin (2002:149) argue in the context of deforestation: "there is no single or key variable ... that 

unilaterally impacts forest cover change; synergies between proximate causes and underlying driving 

forces best explain tropical forest cover losses". Thus, the combined effects of the proximate and 

underlying drivers explain land cover and land use changes. Drivers of land use change differ in time and 

space (Hosonuma et al., 2012). 

BIOPHYSICAL 

ECONOMIC 

DEMOGRAPHIC 

TECHNOLOGICAL 

CULTURAL 

INSTITUTIONAL 

PROXIMATE DRIVERS 
(e.g. agricultural expansion, 

wood extraction, 

infrastructure extension) 

LAND COVER/  

LAND USE CHANGE 
(e.g deforestation) 

UNDERLYING DRIVERS 

Figure 2.1: Framework drivers of land use change (based on Geist and Lambin, 2002; Kissinger et al., 2011) 
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2.1.1 Proximate drivers 

The first group, the proximate or direct drivers, are the human activities and actions that have a direct 

effect on land cover or land use (Geist and Lambin, 2002; Jaimes et al. 2010; Kissinger et al., 2011). In the 

context of deforestation, multiple studies argue that the most important proximate driver is agriculture: 

the development of subsistence or commercial agriculture can cause forest loss (Alexander et al., 2015; 

Hosonuma et al., 2012; Kissinger et al., 2011). Other direct factors that explain deforestation can be the 

extraction of wood (for either commercial use or fuelwood for domestic use) or for instance the 

development of infrastructure (Geist and Lambin, 2002; Hosonuma et al., 2012; Kissinger et al., 2011). 

Another important proximate driver of deforestation – and land use change in general - is urban 

expansion (Long et al., 2007; Lambin et al. 2001). 

 
2.1.2 Underlying drivers 

Second, the underlying drivers, are ‘fundamental (social) processes that underpin the proximate causes 

and either operate at the local level or have an indirect impact from national or global level’ (Geist and 

Lambin, 2002: 143) or as Kissinger et al. (2011:5) state: ‘they are complex interactions of social, economic, 

political, cultural and technological processes that affect the proximate drivers’. Several studies mention 

an extra group of environmental or biophysical drivers as explaining forces for land use changes (Aguiar 

et al., 2007; Jaimes et al., 2010; Were et al., 2014). Thus, broadly these underlying drivers can be divided 

into environmental or biophysical, economic, demographic, technological, cultural, and institutional 

drivers (see figure 2.1). They can be considered as interconnected concepts, all linked to each other, 

operating on multiple scales. Lambin et al. (2001) stress the importance of these scales: according to 

them, global forces are becoming the key factors of land use change. Therefore, it is essential to consider 

drivers of land use change from a local, regional, national or global level. 

 
Environmental or biophysical 

Climatic, geological, geomorphological and soil related factors are often documented as significant drivers 

for land use change (Aguiar et al., 2007; Mottet et al., 2005; Serra et al., 2008; Verburg et al., 2002; Were et 

al., 2014). First, climatic variability can explain changes in forest or agricultural land use: temperature, 

precipitation and solar radiation can have substantial influence (Serra et al., 2008). Next, geological 

features as rock types or sediments can be of importance for land use change (Verburg et al., 2002). 

Geomorphological factors, for instance elevation, slope and aspect, can have an effect on land use, and are 

in particular of importance in mountainous areas (Huang et al., 2007; Mottet et al., 2005). For instance, 

slopes give an indication about soil erosion and land degradation which is related to the way land is used 

(Kiage et al., 2006). Furthermore, the quality of the soil is of importance for land use change (Aguiar et al., 

2007; Were et al., 2008). 

 
Economic 

Several studies argue that economic drivers are essential to consider when explaining land use changes 

(DeFries et al., 2010; Geist and Lambin, 2002; Kissinger et al., 2011). In fact, Geist and Lambin (2002) 

show that, globally, economic factors are the primary drivers for tropical deforestation. Market growth, 

rising income of population, commercialization or for instance change in poverty rates can all have an 

influence on the conversion of land use (Aguiar et al., 2007; Geist and Lambin, 2002). Other research 

shows that accessibility to markets is often identified as one of the economic determinants (Aguiar et al., 

2007; Braimoh and Onishi, 2006; Serneels and Lambin, 2001). Moreover, a change in agricultural 

production can be an economic underlying driver. DeFries et al. (2010) identify - in their study - 

agricultural trade as one of the main determinants of deforestation. According to them, a rising demand 

for agricultural products in urban and international centres causes forest loss.  

 
Demographic 

Demographic drivers, and in particular population growth and population density, are extensively 

discussed in literature as an important driver for land use change (Alexander et al., 2015; Kiage et al., 

2006; Kissinger et al., 2011). Alexander et al. (2015) emphasize that population growth is the largest 
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driver for agricultural expansion on a global scale. Rising income that changes diet, the production of 

animal products and use of agriculture for bioenergy are consequences of population growth, and this in 

turn has an effect on agricultural land use (Alexander et al., 2015). In particular, in the humid tropics, the 

growth of urban population places pressure on rural landscapes for commercial agriculture (DeFries et al., 

2010). Mutoko et al. (2014) argue that population growth does increase the demand for food, however 

their study shows that growth of population does not per se lead to agricultural intensification – other 

factors were more important in their study such as economic and technological changes. 

 
Technological 

Technological development can have an influence on land use change, and in particular agro-technological 

changes can be of importance (Geist and Lambin, 2002; Mutoko et al., 2014). Change of soil conservation 

measures, fertilizers and for instance improvement of crop varieties can advance farming practices, which 

can have an effect on land use (Mutoko et al., 2014). Furthermore, Geist and Lambin (2002) argue that 

technological changes in the wood sector can be a driver of tropical deforestation. 

 
Cultural 

Cultural factors are often underlying economic and institutional drivers: public attitudes, values and 

beliefs towards environment can be important (Geist and Lambin, 2002). For instance, society can be 

unaware of environmental issues (and the need of forest protection) as governments and policies might 

be focused on economic development or modernisation. Understanding values and beliefs of communities 

is essential: for example, indifference about nature and environment, in particular towards others and 

future generations, can contribute to land use changes (Geist and Lambin, 2002). In addition, when 

considering cultural factors, individual and household behaviour is important too. 

 
Policy or institutional 

The institutional and/or policy framework implemented is of high influence on how land is used - a 

change of regulations can have enormous effects on land use. Multiple studies identify this driver as very 

important one in the context of deforestation (Geist and Lambin, 2002) or urban expansion (Seto and 

Kaufman, 2003). Kissinger et al. (2010) mention the weak governance in some countries, and in Kenya, 

specifically towards the forest sector, that drives land use changes. As a matter of fact, in the Mau forest, 

the effects of forest conversion can be related to a change in regulations and weak policies in Kenya (Were 

et al., 2013). 

2.2 MODELLING LAND USE CHANGE 

A way to understand land use change dynamics and its drivers is by modelling the land use changes 

(Huang et al., 2007; Jaimes et al., 2010; Lambin and Geist, 2006; Serneels and Lambin, 2001; Serra et al., 

2008; Seto and Kaufmann, 2003; Veldkamp and Lambin, 2001; Verburg et al. 2002; Were et al., 2014). 

Studies that model these changes can be divided in two broad categories: non-spatial and spatial. The first 

category models the magnitude and rate of land use change, without considering spatial variation. The 

second, on the other hand, focuses on land use changes at a specific spatial level (for instance 

administrative units) and detects spatial variation in land use change and the biophysical and socio-

economic context (Seto and Kaufmann, 2003; Huang et al. 2007).  

 

Spatial land use change models are thus of great significance for understanding land use change processes 

Knowledge of the drivers in time and space is needed to do this: the identification of proximate drivers is 

necessary for spatial prediction of changes, whereas insight in the underlying drivers is essential for the 

prediction of future drivers of land use change (Serneels and Lambin, 2001). Specifically, detecting 

historical trends of drivers helps constructing future scenarios because it broadens knowledge about past 

and recent drivers (Veldkamp and Lambin, 2001; Kissinger et al., 2011). For instance, information about 

the development of an underlying driver such as population growth is useful for predicting future land use 

change (e.g. continuous population growth keeps on affecting land use) (Kissinger et al., 2011).  
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In particular, empirical-statistical models of land use change are used to explain the driving forces of land 

use changes (Aguiar et al., 2007; DeFries et al., 2010; Millington et al., 2007; Serra et al., 2008; Serneels 

and Lambin, 2001; Verburg et al., 2004; Were et al., 2014). These models show the relationship between 

the observed land use changes and the drivers: they examine the statistical significance of the drivers and 

help predicting land use changes (Millington et al., 2007; Yin et al., 2014). More specifically, regression 

methods are used for this: from linear regression, to geographically weighted regression, regression tree 

methods and multiple logistic regression (Aguiar et al., 2007; DeFries et al., 2010; Jaimes et al., 2010; 

Verburg et al., 2004).  

 

Especially the last method, multiple logistic regression, has proved to be suitable for spatial land use 

change modelling, and has been widely applied in land use change research (Braimoh and Onishi, 2006; 

Millington et al., 2007; Serneels and Lambin, 2001; Serra et al., 2008; Verburg et al., 2004; Were et al., 

2014; Yin et al., 2014; Zar, 2015). In these models land use changes are often represented as discrete 

events (e.g. forest changes to agriculture). Logistic regression is used to measure the probability of the 

presence of a particular land use change process – given a selection of drivers (Yin et al., 2014). A benefit 

of logistic regression modelling is that the method can be used for prediction of future land use changes 

(Millington et al., 2007; Were et al., 2014). 
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3. METHODS 

Figure 3.1 shows the methodology of the research (see also figure 1.1 in the introduction). The validation 

of the land use maps and the characterisation of the land use dynamics were of importance to answer 

research question 1 (the yellow arrows in the figure 3.1) and helped identifying the dependent variables 

for regression modelling. The quantification of the underlying drivers (part of research question 2, the red 

arrow) resulted in finding the independent variables. Last, the dependent and independent variables were 

statistically analysed by using multiple logistic regression models (green arrow). This resulted in the 

identification of the underlying drivers and the main spatial-temporal trends of land use change, which 

helped answering both research question 2 and research question 3. 

 

Figure 3.1: Framework methodology 

 

In this chapter the study area is described first. Next, the data that was used is discussed: the remotely 

sensed data for the land use maps, the fieldwork data for validation, and the datasets that were used for 

regression modelling (paragraph 3.2). Furthermore, the methods that were applied to validate the land 

use maps and to characterise the dynamics of change are discussed. In addition, the methodology to 

conduct the dependent and independent variables for statistical modelling is explained. The last 

paragraph will focus on the logistic regression modelling framework. 

3.1 STUDY AREA 

The study area, the Mau forest complex, is located in the Rift Valley province in Kenya, between latitudes 

0°91' N - 1°49' S and longitudes 34°9' - 36° 6' E (see figure 3.2). It covers a total area of about 24,000 km² 

and 13 counties: Baringo, Bomet, Elgeyo Marakwet, Kericho, Kiambu, Kisumu, Nakuru, Nandi, Narok, 

Nyamira, Nyandarua and Uasin Gishu (see figure F1 in Appendix F). The most dominant land use in the 

study area is smallholder agriculture (50.7%), followed by rangeland (23.7%) and forest (17.7%) (see 

figure 4.1). Furthermore, several rivers run through the study area and a few large lakes are located in the 

county Nakuru: Lake Naivasha and Lake Nakuru. Important urban centres are Nakuru and Kericho. The 

altitude ranges between 1000 to 3200 meters above sea level, with the most highly elevated areas located 

in the middle part of the study area: the northern part of the county Narok and western areas of Nakuru 

(NASA, 2011). 

 

The area falls into different climate zones: equatorial tropical rainforest climates with high monthly 

rainfalls and tropical savannah climates with dry seasons. In the study area, the rainfall pattern is bimodal 

and the long rainy season is from March to May, and short rainy season October to December (Mutoko et 

al., 2014). Depending on the exact location in the area, dry season generally runs from January to March, 

and May to September. Thus, there are some differences in the amount of rainfall across the study area: 

the annual monthly rainfall is higher in the western counties of the study area (western parts of Kisimu, 

Kericho and Bomet), whereas the north and south eastern counties prove to be dryer (Baringo, Elgeyo 
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Marakwat, Nakuru, Narok) (Worldbank, 2016). Annual monthly temperatures vary spatially as well: the 

highly elevated parts show low annual temperatures (minimums of 10.6 °C), while the most northern 

parts in Elgeyo Marakwet and Baringo have high annual temperatures (maximum temperatures of 24.6 

°C) (Worldbank, 2016). 

 

The estimated total human population in the study area is around 4.8 million, with Nakuru as largest 

county in terms of inhabitants (KNBS, 2015). The Mau forest complex is not only important for the 

livelihoods of the people in the study area, it support livelihoods of people in the Rift Valley province and 

western parts of Kenya as well (KWS, 2009). As mentioned, agriculture is the most dominant land use, and 

is foremost important for food security. In addition, economic reasons motivate agriculture: it functions as 

a source of income. The farmers mostly export their product to other places within Kenya (Atele et al., 

2012). Internationally, the study area is of importance for the tea industry and tourism (KWS, 2009). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: The study area (data from ILRI, 2000; KNBS, 2015; WRI, 2016) 
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3.2 DATA 

The data used in this study were Landsat satellite images (see table 3.1), which were used to produce land 

use maps (Vita et al., 2014), fieldwork data for validation of these maps, and multiple datasets for the 

logistic regression modelling, which are summarized in table 3.2.  

3.2.1 Remotely sensed data 

Table 3.1 shows the Landsat data Vita et al. (2014) used for the segmentation and classification of five 

land use maps. The maps for the years 1973, 1984, 1994, 2003 and 2013 were created by use of different 

Landsat sensors (obtained via USGS): Multispectral Scanner System (MSS), Thematic Mapper (TM), 

Enhanced Thematic Mapper (ETM+) and Operational Land Imager (OLI). As in tropical areas it is cloudy 

throughout the year, selecting images without cloud cover can be difficult.  The images shown in table 3.1 

were chosen by Vita et al. (2014) based on temporal resolution, in every time period an image, and data 

availability, thus only cloud-free images. 

Table 3.1: Implemented images for classification 

LANDSAT SENSOR SCENE ID (PATH-ROW) DATE SPATIAL RESOLUTION 

MSS 181-060 31 Jan 1973 60m 

MSS 181-061 31 Jan 1973 60m 

MSS 182-060 01 Feb 1973 60m 

TM 169-060 01 Jul 1984 30m 

TM 169-061 01 Jul 1984 30m 

TM 169-060 17 Oct 1994 30m 

TM 169-061 04 Dec 1994 30m 

ETM 169-060 04 Feb 2003 30m 

ETM 169-061 04 Feb 2003 30m 

OLI 169-060 30 May 2013 30m 

OLI 169-061 17 Jul 2013 30m 

 

3.2.2 Fieldwork data 

Fieldwork was conducted in February 2016 to validate the extracted land use maps of 2013. Appendix A 

shows a map of the fieldwork plan. 180 sampling points were collected by use of Garmin 30 handheld GPS 

device. Validation points were collected in particular areas (see the boxes figure A1 in Appendix A). 

Reasons to focus on specific areas were the large nature of the study area, the poor road network, and the 

limited available time for validation in the field. The areas were appointed based on a validation check of 

the land use maps by use of Google Earth high resolution imagery (see paragraph 3.3.2 methods accuracy 

assessment). 

3.2.3 Logistic regression modelling datasets 

The data that was used for the logistic regression analysis is summarized in table 3.2. The table shows the 

dependent variables, the independent variables, the data types, the units of the data, and the data sources. 

The binary dependent variables were derived from the land use classification maps created by Vita et al., 

(2014). Rainfall and temperature data was derived from WorldClim, slope, aspect, curvature and the 

topographical wetness index (TWI) were derived from the ASTER GDEM elevation data, and soil data 

obtained via World Soil Information. Population data was derived from several census reports from Kenya 

Central Bureau of Statistics. To calculate the other socio-economic variables, the accessibility variables, 

data of roads was derived via the Centre for International Forestry Research, data of rivers via the World 

Resource Institute and data of towns via the International Livestock Research Institute and Central 

Bureau of Statistics. Paragraph 3.4 and 3.5 explain the exact methods that were used to compute the 

dependent and the independent variables.  

 



10 
 

Table 3.2: The variables used for logistic regression (R stats package version 3.4.0) 

VARIABLES TYPE UNIT SOURCE 

DEPENDENT VARIABLES 

 Forest conversion, 1973-1984 Binary 0 - 1 

Land use 
classification maps 
of Landsat imagery 
(Vita, 2014) 

 Forest conversion, 1984-1994 Binary 0 - 1 

 Forest conversion, 1994-2003 Binary 0 - 1 

 Forest conversion, 2003-2013 Binary 0 - 1 

 Forest conversion, 1973-2013 Binary 0 - 1 

 Smallholder agriculture expansion, 1973-1984 Binary 0 - 1 

 Smallholder agriculture expansion, 1984-1994 Binary 0 - 1 

 Smallholder agriculture expansion, 1994-2003 Binary 0 - 1 

 Smallholder agriculture expansion, 2003-2013 Binary 0 - 1 

 Smallholder agriculture expansion, 1973-2013 Binary 0 - 1 

INDEPENDENT VARIABLES 

Biophysical 

 Rainfall Continuous  mm worldclim.org 

 Temperature Continuous  ºC * 10 worldclim.org 

 Elevation Continuous  m ASTER GDEM¹ 

 Slope Continuous  º DEM extract 

 Aspect Continuous  º DEM extract 

 Curvature Continuous  1/100 m DEM extract 

 TWI Continuous  - DEM extract 

 Soil pH Continuous  water * 10 ISRIC² 

 Soil CEC Continuous  cmol/kg ISRIC 

Socio-economic 

 Population density, 1979 Continuous  pers/km² KCBS³ 

 Population density, 1989 Continuous  pers/km² KCBS 

 Population density, 1999 Continuous  pers/km² KCBS 

 Population density, 2009 Continuous  pers/km² KCBS 

 Population density, change 1979-2009 Continuous % KCBS 

 Distance to roads Continuous  km CIFOR4 

 Distance to rivers Continuous  km WRI5 

 Distance to towns Continuous  km KCBS, ILRI6 

¹DEM via https://asterweb.jpl.nasa.gov/gdem.asp 

²ISRIC World Soil Information datasets via www.isric.org 

³Kenya Central Bureau of Statistics: population census reports of 1979, 1989, 1999 and 2009 
4Centre For International Forestry Research road network dataset of Kenya 
5World Resources Institute river network dataset 
6International Livestock Research Institute towns dataset 

 

The remote sensing software that was used to create land use classification maps was eCognition 

Developer 8.9. The GIS software used for computation of variables was ArcMap 10.1 and QGIS 2.14. For 

pre-processing and statistical analysis R version 3.3.0 was used, supplemented with statistical software 

IBM SPSS Statistics 22.  
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3.3 VALIDATION LAND USE MAPS 

This paragraph describes the methodology of the validation of the land use maps. First the exact methods 

used for segmentation and classification were identified. Secondly an accuracy assessment was applied. 

3.3.1 Image segmentation and classification 

Figure 3.3 shows the methodology Vita et al. (2014) applied for image segmentation and classification. 

The input for object based segmentation in eCognition was a Landsat 2003 image with the following 

parameters: band 2, 3 and 4 received a weight of 1, whereas the Normalised Differenced Vegetation Index 

received a weight of 2 (see box 1 and 2 in the figure 3.3). The scale parameter was 9 pixels (30x30m), 

shape value 0.1 and compactness 0.5. The output was a dataset consisting of 121.000 land use polygons. 

Next, the dataset was intersected with the Africover classification data: a land cover classification scheme 

created in 2004 by the FAO. This resulted in a land use map where each of the 121.000 polygons were 

coded with one of the 59 Africover classes (box 5 in the figure). 

 

 
Figure 3.3: Image segmentation and classification methods Vita et al. (2014) 

 

Thus, a classification scheme was designed by Vita et al. (2014) based on the Africover land cover 

classification. Table 3.3 shows the Africover land use classes and the aggregation of the final 9 land use 

classes (see table B1 in Appendix B for the full scheme of the 59 classes). The result of the aggregation of 

the land use classes was a 2003 land use map of the study area consisting of 10910 land use polygons. 

Finally this map was used to produce the land use maps for 1973, 1984, 1994 and 2013. 

 

Table 3.3: Land use classes 

CLASS DEFINITION LAND USE DESCRIPTION AFRICOVER CLASS 

F Forest 
Tree height > 2 m, crown coverage > 30%, 
includes bamboo forest 

Closed trees with shrubs, closed trees 
bamboo 

SA Smallholder Agriculture 
Includes small scale agriculture, horticulture, 
rain fed maize , agriculture frontier, small 
(<2ha) tea orchards intercropped with food 

Rain fed shrub crops small fields, rain 
fed herbaceous crop large to medium 
fields, large fields, tree crop small fields, 

LANDSAT7 LT1 IMAGE 2003 

OBJECT BASED SEGMENTATION 

ECOGNITION 

121.000 LAND USE POLYGONS/SEGMENTS 

INTERSECTION  

AFRICOVER DATA 

121.000 CODED LAND USE POLYGONS/SEGMENTS 

AGGREGATION AFRICOVER 

CLASSES FROM 59 TO 9 

LAND USE MAP 2003 

Band 2, 3, 4: weight 1 
NDVI: weight 2 
Scale parameter: 9 pixels 
Shape value: 0.1 
Compactness: 0.5 

1. Forest 
2. Smallholder Agriculture 
3. Irrigated Commercial Agriculture 
4. Rangeland 
5. Tea Estates 
6. Tree Plantation 
7. Infrastructure 
8. Wetland 
9. Waterbodies 
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crops, small tree/shrub orchards 
intercropped with herbaceous crops 

irrigated herbaceous crop small fields 
sugarcane, large fields coffee 

IC 
Irrigated Commercial 
Agriculture 

High input crops, irrigated, use of 
mechanization, includes paddy rice 

Irrigated crops large to medium field, 
includes sugarcane and rice, irrigated 
crop sugarcane large fields 

TE Tea Estates 
Large tea estates (>2 ha), high use of 
fertilizers 

Tea, rain fed shrub crops 

TP Tree Plantations 
Timber plantation of eucalyptus, pines, 
cypress 

Forest plantation 

R Rangeland 
Includes grassland and shrub land, trees may 
be present but < 30% of crown coverage, 
may be suitable for pasture 

Closed to very open shrubs, closed to 
very open herbaceous, sparse to very 
open trees, sparse shrubs 

I Infrastructure Built up area or excavation site Rural, quarry, airport, urban areas 

WL Wetland 
Temporary or permanently flooded 
rangeland 

Shrubs/open herbaceous on temporarily 
and permanently flooded land 

WB Waterbodies Lake (natural or artificial) or river Natural lakes, artificial lakes, lake shore 

 

3.3.2 Accuracy assessment 

The previously produced land use maps were not thoroughly validated and therefore another accuracy 

assessment procedure was conducted on the 2013 land use map. Vita et al. (2014) created a 5 by 5 

kilometres grid consisting of 961 sampling locations covering the study area. This grid was validated by 

using high resolution imagery and supplemented with fieldwork sampling points (see Appendix C for the 

final validation grid). The accuracies of the other four land use maps could not be assessed because there 

was no ground validation data available, nor where there historical maps available for the years 1973, 

1984, 1994 and 2003. 

 

First, the 961 sampling points were imported into Google Earth, and land use was evaluated per sampling 

point. Depending on the data availability, imagery from 2009 until 2016 (Spot 6, 7) was used to identify 

the land use classes of 2013. Based on this assessment some land use classes indicated a high uncertainty 

(mainly due to limited image availability and/or low resolution imagery). Next, a fieldwork campaign was 

organised to check the land use classes with high uncertainty: rangeland and tree plantations. As the study 

area is large and the road network poor (dirt roads), two areas were appointed for data collection: in the 

west and south of the Mau forest complex (see Appendix A for fieldwork map). During the fieldwork 

conducted in January 2016, 180 points were sampled which in the end were overlaid with the validation 

grid (Appendix C). 

 

Finally an accuracy assessment was performed by using this validation grid: the observed land use classes 

were compared to the classified land use classes. A confusion matrix was computed, and the overall 

accuracy (measure of agreement or accuracy that considers the diagonal in the matrix), the producer’s- 

and user’s accuracies of the land use classes were calculated (Foody, 2002). The producer’s accuracy is the 

omission error: it gives the probability that a reference pixel is correctly classified. The user’s accuracy 

represents the commission error: the probability that a pixel classified on the map actually is that land use 

on the ground (Story and Congalton, 1986). In addition, Kappa coefficient was computed, which is another 

measure of accuracy, and considers the off-diagonal elements in the confusion matrix (Congalton, 1991). 

The following formula was used to calculate Kappa: 

 

    
                                                                   

                                    
 (1) 
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3.4 CHARACTERISATION LAND USE CHANGE DYNAMICS 

The five land use maps were used to make a characterisation of the magnitude, rate and nature of land use 

change in four time periods: 1973-1984, 1984-1994, 1994-2003 and 2003-2013. For each land use class 

in each time period the area was calculated, and by overlaying the land use segments (polygons), the 

change of those areas in kilometres (magnitude of change) and percentages (the rate of change) were 

calculated. In addition, the nature of the land use changes were computed via change matrices and land 

use change maps were created to show the spatial patterns. The characterisation of the land use dynamics 

resulted in the identification of the main conversions and the proximate drivers of land use change for 

every time period – which was of importance for selecting the dependent variables for regression 

modelling (see next paragraph). 
 
 

3.5 DEPENDENT VARIABLES 

The land use maps that were produced by Vita et al. (2014) were used to identify the land use conversions 

and proximate drivers in the study area, which resulted in the characterisation of the independent 

variables for logistic regression modelling (see figure 3.1 for the methodology and see paragraph 4.2 for 

results of the land use change dynamic analysis). The foremost land use change that was identified in the 

Mau forest complex in the period 1973-2013 was a conversion from forest to smallholder agriculture. 

Next to that, forest conversion and agricultural expansion were identified as main changes in the study 

area. Another important land use change that was identified was rangeland conversion (mainly rangeland 

to agriculture see paragraph 4.2.2). However, the accuracy assessment revealed a misclassification in the 

rangeland class. Based on these primary land use changes and the results of the accuracy assessment, two 

main land use changes were selected for the regression modelling: forest conversion and smallholder 

agriculture expansion.  

 

The first model included the change from forest land use to non-forest land use, and the second model the 

conversion of any land use to smallholder agricultural land use. These variables were transformed into 

binary variables: coded with 0 if the area was constant in time, coded with 1 if land use changed (see 

figures 3.4a and 3.4b). Thus, forest that remained forest was coded 0, while land use that changed from 

forest to another land use was coded 1. In addition, smallholder agriculture that stayed smallholder 

agriculture was coded 0, whereas any land use type that changed to smallholder agriculture was coded 1. 

This resulted in a total of 10 dependent variables: for each time period and the overall period a land use 

change variable was created (see table 3.2). 

 
 
 
 
 
 
 
 
 
 
 
 

3.6 INDEPENDENT VARIABLES 

The factors that could have an effect on land use changes and on the proximate drivers – the independent 

variables in the regression analysis – were identified by use of a literature study (see 2.1.2 for literature 

framework). Verburg et al. (2002) emphasize the importance of selecting only variables for which a 

theoretical relationship between land use and drivers is known. Absence of causality is often a problem in 

land use driver studies and in this way the occurrence of spurious correlations can be prevented. Studies 

showed that biophysical, economic, demographic, technological, cultural and institutional drivers could be 

underlying drivers of land use changes (see the table D1 in Appendix D with all possible underlying 

drivers that were identified by use of literature).  

Figure 3.4a: Forest conversion variable Figure 3.4b: Smallholder agriculture expansion variable 
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For the statistical analysis the drivers were divided into biophysical and socio-economic variables. The 

latter covers both economic and demographic drivers. The technological, cultural and institutional drivers 

could not be quantified due to a lack of available or useful data. As a matter of fact, cultural and 

institutional drivers are difficult to quantify and easier to assess qualitatively by use of, for instance, 

stakeholder interviews or household surveys (Mutoko et al., 2014). Unfortunately this was not possible 

within the time frame and therefore literature was used to obtain extra information about these drivers 

(e.g. changes in policies). Table 3.4 summarizes the fourteen independent variables that were finally used 

in the analysis (see also table 3.2) and gives a short description of them. The remainder of this paragraph 

will explain how each variable was computed. 

 

Table 3.4: The independent variables with description 

VARIABLE DESCRIPTION RESOLUTION 

Biophysical   

1 Rainfall Average annual rainfall in Kenya in the period 1950-2000 925x925m 

2 Temperature Average annual temperature in Kenya  in the period 1950-2000 925x925m 

3 DEM Digital Elevation Model 30x30m 

4 Slope DEM derivative 30x30m 

5 Aspect north (cosine) DEM derivative, slope direction south-north 30x30m 

6 Aspect east (sine) DEM derivative, slope direction west-east 30x30m 

7 Curvature DEM derivative, indication about flow and drainage 30x30m 

8 TWI 
Topographical Wetness Index extracted from DEM (contributing area and the 
slope) 

30x30m  

9 Soil pH Soil pH mean 0 - 200 cm depth 250x250m 

10 CEC Cation Exchange Capacity mean 0 - 200 cm depth 250x250m 

Socio-economic   

11 Population Density 
Population density per county for the years 1979, 1989, 1999 and 2009, and 
population density change between 1979-2009 

30x30m 

12 Distance Roads 
Euclidean distance to road network in Kenya, use of excellent, good and fair 
quality roads: gives an indication about the availability of the area 

30x30m 

13 Distance Towns 
Euclidean distance to towns in Kenya with more than 10.000 inhabitants: 
gives an indication about the availability of markets 

30x30m 

14 Distance Rivers 
Euclidean distance from grid cell to nearest river in Kenya: gives an 
indication about the availability of irrigation 

30x30m 

 

3.6.1 Biophysical variables 

Different climate, surface and soil variables were selected for the regression analysis: rainfall, 

temperature, elevation, slope, aspect , curvature, topographical wetness index (TWI), soil pH and soil 

cation exchange capacity (CEC). The selection of these specific variables mainly depended on data 

availability. 

 
Rainfall 

The dataset of rainfall in Kenya was obtained from WorldClim. Two tiles that covered the study area, with 

a resolution of 30 arc seconds (925x925m at the equator) were downloaded. They showed the average 

monthly rainfall in the period 1950-2000 in mm. To use the data for the analysis, the average annual 

rainfall (the average of 12 months) in this time period was calculated. Finally the data was clipped to the 

extent of the study area. Rainfall values range between 51.5 and 148.6 mm in the study area (see the 

figure E1 in Appendix E), with the Western counties such as Kericho and Kisimu, showing higher average 

annual rainfall than the other counties in the study area. No other rainfall datasets were available for more 

recent time periods nor were there higher resolution datasets available. 
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Temperature 

The temperature data in the study area was obtained via WorldClim as well. Two tiles with a resolution of 

30 arc seconds (925x925m at the equator) were downloaded, and showed the average monthly 

temperature in the period 1950-2000 in Celcius *10. For this variable, the average annual temperature 

was calculated and the data was clipped to the correct extent. The values in the study area vary between 

10.5 and 24.7 Celsius (see figure E2 for a temperature map in Appendix E). The Northern, lower elevated, 

counties show higher temperatures, whereas the highly elevated parts of the study area show lower 

temperatures. For temperature there were no datasets available with a higher spatial or temporal 

resolution. 

 
Digital Elevation Model (DEM) 

The DEM was downloaded from ASTER GDEM website and is a 30x30m resolution. The dataset shows the 

elevation in the study area. Some pre-processing was performed to improve the quality of the data, which 

is of importance when using the DEM for geomorphological analysis (Reuter et al., 2009). First, the 

outliers were removed from the elevation data: average elevation in a 3x3 window was calculated and the 

difference between these values and the elevation at the core cell was derived. A spatial threshold was 

selected to identify the pixels that were spikes or pits: if the difference was larger than two times the 

standard deviation in a 5x5 window, a pixel was selected as outlier (see Reuter et al., 2009: 100).  

 

In this research the elevation data was used for hydrological purposes – the movement of water is of 

importance for land use change - and therefore the next step was removing supposedly erroneous sinks in 

the elevation data (Reuter et al., 2009). First, the maximum depth of the sinks was calculated: 112 meters. 

Following, this value was used as the z-limit for filling in sinks of the DEM. The final DEM used in the 

analysis was a filled elevation model without outliers. The map in Appendix E shows the elevation data 

(figure E3). The lowest areas are around 959 meters, whereas the highest are 3107 meters. The middle 

part of the study areas shows the highest elevation. 

 
Slope 

The slope in degrees was derived from the elevation dataset and it is the first derivative of the DEM. The 

slope gradient is the maximum rate of change in elevation and gives an indication about the rate of 

movement downslope (the slope rate) (Buckley, 2010; Olaya, 2009). The slope map in Appendix E shows 

the slope values in the study area (figure E4). The mean slope value in the study area is around 9 degrees, 

whereas values range between 0 and 69 degrees. 

 
Aspect north and east 

The aspect was also extracted from the DEM. The variable indicates the compass direction of the slope, 

and thus the flow-line direction: water follows the aspect direction (Olaya, 2009). In addition, aspect can 

give an indication about the sunny side of a cell, which may be of importance for land use change. The 

output values range from -1, which is flat, to 360 degrees, which indicates a northern slope direction. To 

better interpret the aspect variable in the regression analysis, the aspect was converted to cosine and sine 

values (Jenness, 2007; Olaya, 2009; Rutherford, 2008). In this way a distinction between north-south and 

east-west was made. For the calculation, the aspect was first converted to radians, and then the cosine and 

sine were calculated. The cosine from the aspect ranges from -1, which is south, to 1, which is north. The 

sine, on the other hand, ranges from -1, which is west, to 1, which points to an eastern slope direction. This 

resulted in two independent variables: aspect north (the cosine of the aspect) and aspect east (the sine of 

the aspect) (see Appendix E figure E5 and E6 for maps of the aspect). 

 
Curvature 

The curvature gives an indication about flow and drainage across a surface and was calculated by use of 

the DEM. Curvature is called the second derivative of the elevation: it is the slope of the slope and gives 

information about the convexity and concavity of the surface (Buckley, 2010; Olaya, 2009). Values 
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generally range between -1 and 1, and the units are 1/100 of the z-unit (meters in this study). A positive 

curvature value indicates that the surface is upwardly convex (the surface curves outward), whereas 

negative points to upwardly concave (the surface curves inward). A value of zero represents flat areas. 

The figure 3.5 shows how curvature can influence flow across a surface: it can have effects on 

convergence, divergence, deceleration and acceleration of flow, and thus on erosion and deposition 

(Buckley, 2010; Olaya, 2009). The figure E7 in Appendix E shows the curvature values around Lake 

Naivasha in the study area: ridges (positive values – darker colour) and valleys (negative values – lighter 

colour) are clearly visible. 

 

 
Figure 3.5: Surface curvature (Buckley, 2010) 

 
Topographic Wetness Index (TWI) 

The TWI describes the wetness conditions in the study area: the tendency of a cell to accumulate water 

(Gruber and Peckham, 2009). To calculate the TWI, the following formula was used:  

 

          tan  ⁄  (2) 

 
where   is the local upslope contributing area and tan  the local slope angle (Sørensen et al., 2005). The 

contributing area is the basin area, the upslope area or the flow accumulation: the area where water 

aggregates (Gruber and Peckham, 2009).  

 

To compute the TWI for the study area, first the elevation data was used to derive a flow direction raster, 

of which in turn a flow accumulation raster could be obtained. The flow accumulation raster in m² gives 

the local upslope contributing area. Next, the slope in degrees was converted into radians (degree 

multiplied by π divided by 180°). Then the flow accumulation and the slope raster were used to conduct 

the TWI in the study area. The final TWI dataset is unit-less, and gives a relative measure: high values 

represent wet areas, or drainage depressions, whereas low values indicate dry areas such as ridges or 

crests (see figure E8 in Appendix E for the TWI values around Lake Naivasha in the study area). 

 
Soil pH 

The soil pH gives an indication about the acidity or alkalinity in the soil: a value below 7.0 is acid, whereas 

above 7.0 the soil is alkaline. The data of the pH values in the soil were obtained via ISRIC world soil 

information and the highest spatial resolution available was 250x250m. To use the dataset in the 

regression analysis, the average pH value was calculated for all soil depths (0-200 cm). The map shows 

that soil appears to be more acid than alkaline in the study area, and values range between 40 and 89 (see 

figure E9 in Appendix E). 

 
Cation Exchange Capacity (CEC)  

Soil quality is of importance for land use change. Soils hold on to nutrient reserves which are supplied to 

plants. The cation exchange capacity, or CEC, gives an indication about the fertility in the soil. It is the 

relative capacity of the soil to store one particular group of plants nutrients, the cations (Mengel, 1993). 
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Examples of nutrients are calcium, magnesium, aluminium, iron, zinc and copper. The more clay and 

organic matter in the soil, the higher the CEC, the higher the water holding capacity (CUCE, 2007).  

 

The CEC was obtained via ISRIC world soil information and the average value for all soil depths was 

calculated (0-200 cm). The variable is expressed in centimoles of charge per kilogram of exchanger 

(cmol(+)/kg). In the study area the values range between 4 and 52, with the counties on the Eastern side 

of the study area showing higher values than the counties on the Western side (see figure E10 in Appendix 

E). 

3.6.2 Socio-economic variables 

Socio-economic drivers of land use change were difficult to quantify due to the limited data available. In 

the end four predictor variables were conducted: population density, distance to roads, distance to towns 

and distance to rivers. 
 

Population density 

To get an indication about population growth and thereby population pressure, population density in the 

area was computed. Verburg et al. (2002) emphasize the importance of calculating the population density 

over larger areas: population can have effects on land use, not only locally, but in particular over certain 

distances. Statistical reports from the Kenya Central Bureau of Statistics were used to calculate the 

population density in the Mau forest complex (KNBS, 1979; 1989a; 1989b; 1999; 2009b). In Kenya 

population is measured once in a decade (in the years 1979, 1989, 1999 and 2009 respectively) and 

therefore data of four moments in time were used matching each time period of the land use maps (see 

table 3.5). 

Table 3.5: KCBS population census reports 

 
LUC TIME 
PERIOD 

STATISTICAL 
DATA REPORT 

1 1973 - 1984 1979 

2 1984 - 1994 1989 

3 1994 – 2003 1999 

4 2003 - 2013 2009 

 

The statistical data was only available on a county level. Currently, the Mau forest complex overlaps 12 

counties in Kenya (see figure F1 in Appendix F). However, over the past 40 years the administrative 

boundaries of the districts and/or counties in Kenya changed due to different policies and regulations. 

Older maps and reports helped identifying the original districts, the change of the districts, and the 

present counties (Hassan, 2013; Kariuku, 1989;  Muandu, 1999; Statoids, 2013; Trapman, 1974). Table F1 

in Appendix F shows an overview of the development of the districts and counties. The population density 

numbers per district and county that were extracted from the four population census can be found in 

Appendix F as well.  

 

Finally, for the regression analysis, the population density per county per time period was used. For the 

models of the overall period 1973-2013 a population density growth variable was calculated: the 

percentage change between 1979 and 2009. The maps of population density in 1979, 1989, 1999 and 

2009 in Appendix E reveal that population density in the study area increased over the years (figure E11, 

E12, E13, E14, and E15). In particular in the counties Kisumu, Kericho and Bomet population density 

increased. Figure E15 shows that the highest growth in population density occurred in the southern part 

of the study area (between 250 and 300%). 

 
Distance to roads 

The distance to a road gives an indication about the accessibility of an area. The data of the road network 

of Kenya was provided by the Centre for International Forestry Research. The dataset showed all the 

roads in the country classified from excellent to very poor roads. The roads that had a poor to very poor 
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surface condition (local bad accessible sandy roads) were excluded from this dataset. Next, the road 

network was used to calculate the Euclidean distance from a raster cell to the nearest road. It should be 

noted that when calculating the distance variables, the area outside the study area was considered as well 

(data of the whole country was used to calculate the Euclidean distances inside the study area). The 

resolution used was a cell size of 30x30m (based on the DEM, which is the smallest spatial unit in the 

analysis) (see Appendix E figure E16 for a map of the distance to roads). The map shows that the southern 

part of the study area is not easy accessible. 

 
Distance to towns 

The availability of markets in an area can influence how people use land and therefore the distance to 

towns (the centre for markets) was calculated. A spatial dataset of towns from the International Livestock 

Research Institute (ILRI, 2000) and a list of cities from the Population Census Report 2009 (KNBS, 2009a) 

were combined to create a dataset of towns with more than 10000 inhabitants. This threshold was used 

because there was almost no data available on population numbers of smaller towns. The created dataset 

of towns was used to calculate the Euclidean distance in a 30x30m resolution, and clipped according the 

extent of the study area. Figure E17 in Appendix E shows the towns in the area and the distances from 

each grid cell to the nearest town. 

 
Distance to rivers 

The distance to rivers can give an indication about the availability of irrigation, which can have an effect 

on land use. The river dataset was obtained via the World Resources Institute (WRI, 2016) and shows the 

main permanent and non-permanent rivers in Kenya. Next, the distance from each grid cell to the nearest 

river was calculated which resulted in an Euclidian distance map in a 30x30m resolution. Figure E18 in 

Appendix E reveals this distance to the rivers. 

 

3.7 LOGISTIC REGRESSION MODELLING 

3.7.1 Pre-processing dataset 

The logistic regression was performed on the land use segment level due to the nature of the dependent 

variables: land use segments (polygons). In similar studies the regression analysis was conducted on the 

pixel level because of the pixel based classification of the land use maps (see for instance Serneels and 

Lambin. 2001, Verburg et al, 2004, Yin et al., 2014). Because this study used object-based classification 

land use maps, the regression analysis was performed on this level: the land use objects.  

 

First, the land use maps were overlaid with the maps of the independent variables, which were of raster 

format. Next, the mean values of the independent variables per land use segment were calculated. 

Although a large part of the data was not normally distributed, and the median might have been a suitable 

measurement as well, descriptive statistics showed that the mean value represented the central tendency 

of the independent variables the best (see Appendix G for descriptive statistics and histograms). By use of 

zonal statistics the mean values of the independent variables were assigned to each land use segment. 

This resulted in a geodatabase with the mean values of every independent variable attached to the specific 

land use polygons. Finally eight datasets were produced: the two types of land use conversions (forest 

conversion and smallholder agricultural expansion) coupled to the independent variables for four time 

periods (1973-1984, 1984-1994, 1994-2003, 2003-2013). 

 
3.7.2 Exploratory data analysis 

Multi-collinearity, or the collinearity, between independent variables can influence the results of the 

regression analysis. When independent variables are highly correlated it is hard to separate out the 

predictive values of the variables (Ott and Longnecker, 2010). In addition, collinearity implies that 

regression coefficients will change as variables are added to or deleted from a regression model - the 

accuracy of the slope estimates decreases. For these reasons, multi-collinearity was tested with 

Spearman’s rank correlation coefficient and the Variance Inflation Factor (VIF). The first was chosen 
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because descriptive statistics showed that the data was partly non-parametric (see figures Appendix G for 

data distribution of the variables). Correlation above 0.8 needed extra attention. Secondly, the VIF 

measures how much the variance of a coefficient increases due to collinearity. A value of 1 points to no 

collinearity, whereas 10 or higher indicates that variables are highly correlated (Ott and Longnecker, 

2010: 689). Therefore, independent variables that revealed VIF values higher than 10 were excluded from 

the models (see also Rossiter and Loza, 2012). 

 
3.7.3 Statistical framework 

In this study a multiple logistic regression model was used to analyse the drivers of land use change in the 

Mau forest complex. Because the dependent or response variables were dichotomous - either land use 

changed or did not change, and the independent or explanatory variables were continuous, a multiple 

logistic regression model was used. In this way, the probability of the presence of a particular land use 

change process (the dependent variables), given a set of underlying drivers (the independent variables), 

could be computed. 

 

The dependent or response variable y was thus a binary variable. In case of forest conversion, the 

independent variable y = 1 if forest land use changed, and y = 0 if land use remained forest. If the response 

variable is binary, the distribution of y reduces to a single value, the probability p = Pr(y = 1) (Ott and 

Longnecker, 2010). To relate p (which ranges from zero to one) to a linear combination of the 

independent variables (which vary between -infinity to +infinity), the probabilities need to be 

transformed into an odds ratio (the ratio of the probability that an event happens to the probability that it 

does not happen) (Ott and Longnecker, 2010;). Values of the odds ratio vary between zero and infinity. 

However, mathematically this is still problematic, and a solution is to calculate the logarithm of the odds 

ratio (the log odds). In this way values will vary between -infinity to +infinity, when probabilities vary 

between zero and one (Rossiter and Loza, 2012).  

 
Simple logistic regression model 

Thus, in the logistic regression model the natural logarithm of the odds ratio is related to the independent 

variables by a linear model. When there is one independent variable,      is the probability that y equals 1 

when the independent variable equals x. The simple logistic regression model is given by: 

 

   (
    

      
)         (3) 

 

where the inverse transform p(x) is: 

 

       
       

        
 (4) 

 

For instance,      would be the probability of forest conversion to occur in an area exposed to x units of 

annual rainfall. The values    and    are estimated from the observed data by use of maximum likelihood 

estimation. Parameter    is the intercept or constant, which gives the estimation of the probability of the 

event associated with y = 1 when the explanatory variable x = 0. The slope parameter    measures the 

degree of association between the probability of the event occurring and the value of the independent 

variable x. 

 
Multiple logistic regression model 

Including multiple independent variables, then   ,   ,…    are the k predictor variables of the binary 

response variable y, the multiple logistic regression model is: 

 

   (
    

      
)                       (5) 

 

The probability values can be expressed in terms of the independent variables by: 
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 (6) 

 

where p(x) is the probability that the dependent variable y = 1 (e.g. forest conversion), parameter    is the 

intercept or constant (the log-likelihood of change when predictor variables are zero),         are the 

estimated coefficients of the predictor variables with values         (thus    is the slope of the log-

likelihood of change for predictor variable with value   ). The ratio 
    

      
  is the odds and   (

    

      
) is the 

log-odds of p(x). 

 

Thus, the probability of forest conversion can be given by predictor variables such as rainfall, 

temperature, distance to roads and distance to towns with values                 for a specific area. 

 
Odds ratio 

An important interpretation of the logistic regression is the odds ratio, which gives an indication about 

how much more likely (or unlikely) it is for the outcome to be present for a set of values of independent 

variables (Serneels and Lambin, 2001). If the predictor variable    increases with one unit, the odds of the 

event are multiplied by    , when the other predictor variables are held constant (Ott and Longnecker, 

2010). If the odds ratio is lower than 1, an increase in the predictor or independent variables by one unit 

means a decrease in the odds of the event. On the other hand, if the odds ratio is higher than 1, an increase 

in the predictor by one unit indicates an increase in the odds of the event. 

 
Model fitting 

A few methods can be applied to fit the models: stepwise models, ‘best subset' models or predefined 

conceptual models. The latter is used by as Serneels and Lambin (2001) and was applied in this research 

as well. The conceptual framework (see chapter 2 and figure 2.1) indicated multiple independent 

variables (see paragraph 3.6) and these were all tested in the models. The other options for model fitting, 

such as using maximum likelihood and set-wise forward and backward elimination were also tested, 

however this did not improve the explanatory power of the models, and therefore full models were 

analysed to identify which variables were of significant influence to land use change. 

 
Evaluating models: the pseudo R-Square 

In regression modelling the R-Square is used as measure of predictive power: it gives an indication about 

the model performance or how well you can predict the dependent variables based on the independent 

variables (Allison, 2013). However, in logistic regression modelling is it not possible to compute an exact 

R-Square, and therefore the pseudo R-Square was used (it is called ‘pseudo’ because the measure looks 

similar as values range from 0 to 1). According to Serneels and Lambin (2001) the pseudo R-Square 

should be interpreted differently than in standard regression analysis: the values are generally lower. In 

this study the pseudo R-Square was tested with Cox & Snell R² and Nagelkerke R². The ratio in these 

measures gives an indication about to what degree the parameters of the model improve from the null 

model (predicting the dependent variable without independent variables) to the fitted model (predicting 

dependent variable with independent variables) (IDRE, 2011). A small ratio indicates a high improvement 

and thus a high R-Squared (IDRE, 2011). The first measure, Cox & Snell R², is given by: 

 

   
       (

  

  
)
   

 (7) 

 

where     is the value of the  likelihood of the intercept model (the null model without independent 

variables),    is the likelihood of the full model (the fitted model that is estimated) (Allison, 2013), and N 

the sample size. Cox and Snell R² has an upper bound that is not 1: if the model predicts perfectly, its value 

is lower than 1. To be precisely, the maximum possible value is       
    . A solution for this is 
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Nagelkerke R², which modifies Cox & Snell R² by dividing it by its maximum value (IDRE, 2011), so that 

values can range from 0 to 1, and is given by: 

 

   
  

   (
  
  

)
   

      
     (8) 

 

For every model both measures were computed. 
 
Evaluating models: ROC curve and AUC 

In addition to the pseudo R-Square, the goodness of fit was assessed with the receiving operating 

characteristic (ROC) curve (Rossiter and Loza, 2012; Serra et al. 2008; Verburg et al., 2002; Were et al., 

2014). The ROC is a plot of the sensitivity against the specificity. The sensitivity is the proportion of true 

positives, in this case the polygons that actually changed land use. The specificity is the proportion of false 

positives, which are the true negatives, in this case the correctly predicted no change polygons. The curve 

is plotted at a series of thresholds: 0.5 was selected as threshold, which means change is equally likely or 

not (Rossiter and Loza, 2012). 

 
The ROC graph shows on the y-axis the true positive rate – the sensitivity – and on the x-axis the false 

positive rate – the specificity. The model is accurate if the curve is close to the left top border: it predicts 

most true positives with a few false positives. If the curve comes close to the diagonal, the model is less 

accurate. The diagonal is the random case: if the models would predict at random, the chances would be 

equally like to be true or false positive (Rossiter and Loza, 2012). 

 

More specifically, the area under the curve (AUC) was used to evaluate the success of the logistic 

regression models. Basically it measures the success of the model in correctly classifying land use 

polygons that did and did not actually change. A value of 0.5 indicates a random model, whereas 1.0 

indicates a model without error (Serra et al., 2008; Verburg et al., 2002). According to Rossiter and Loza 

(2012), 0.6 can be considered sufficient, 0.7 good, 0.8 very good and 0.9 an excellent discriminatory 

power. 

 
Spatial autocorrelation: Moran’s I 

One assumption in multiple logistic regression analysis is that the data has to be statistically independent, 

and in particular for spatial land use analysis this is of importance (Millington et al., 2005; Overmars et al., 

2003). However, spatial data tend to be dependent, as Waldo Tobler stated in what he called the first law 

of geography: “everything is related to everything else, but near things are more related than distant 

things” (Tobler, 1970: 236). To overcome this problem and minimize spatial autocorrelation of the 

regression results, a random sample can be taken (Verburg et al., 2002). In this study all data was used, 

and for that reason the spatial autocorrelation of the regression results (the residuals) was tested with 

Global Moran’s I. The measure was calculated in ArcGIS. The values range between -1 and +1, with 

negative values indicating a dispersed pattern and positive values a clustered pattern of the data. Values 

around 0 indicate that the data is random: no clustering (ESRI, 2016). Figure 3.6 shows what the data 

looks like when dispersed, random or clustered. 

 

 
 

Figure 3.6: Data clustering (adjusted from ESRI, 2016) 

DISPERSED        RANDOM    CLUSTERED 
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4. RESULTS 

In this chapter first the outcome of the accuracy assessment and the analysis of the land use change 

dynamics are discussed. Then the results of the exploratory data analysis and the land use change models 

are described: the forest conversion models and the agricultural expansion models per time period and 

the overall period. 
 

4.1 ACCURACY ASSESSMENT 

The accuracy assessment showed an overall accuracy of the classified 2013 land use map of 74.2% with a 

Kappa coefficient of 0.62 (see table 4.1). These results indicate that there is a moderate agreement 

between the classified land use map and the reference data. 

 

Forest, smallholder agriculture and tea estates prove to be classified quite accurate: producer and user 

accuracies are above 70% (see table 4.1). Irrigated commercial agriculture on the other hand, shows very 

low accuracies: only 20% was correctly classified and 60% of the irrigated commercial agriculture 

segments was actually irrigated commercial agriculture. The table shows that there is a lot of confusion 

with smallholder agriculture. This low accuracy is not that problematic because irrigated commercial 

agriculture covers only 2.9% of the study area (see figure 4.1). In addition, the tree plantations class had 

low accuracies as well: only half of the polygons was correctly classified. Furthermore, rangeland shows a 

high producer accuracy, but a very low user accuracy: even though 85.8% of rangeland was correctly 

classified, only 55.2% of the rangeland polygons were actually rangeland - which suggests a substantial 

misclassification in the rangeland land use class. The confusion matrix shows that rangeland is mainly 

mixed with smallholder agriculture. 

 

The results of infrastructure, wetland and waterbodies were not considered because not enough sampling 

locations were assessed, and therefore results are not statistically valid (see Congalton and Green, 2008). 

 
 

Table 4.1: Confusion matrix land use map 2013 

CONFUSION MATRIX MAU FOREST 2013   

  GROUND TRUTH     

CLASSIFIED F SA IC TE TP R I WL WB TOTAL PRODUCER’S USER’S 

FOREST 133 5 0 0 0 27 0 1 0 166 80.1 80.1 

SMALLHOLDER AGRICULTURE 16 346 4 0 8 116 3 0 1 494 70.0 89.2 

IRRIGATED COMMERCIAL 
AGRICULTURE 

0 18 6 0 0 5 1 0 0 30 20.0 60.0 

TEA ESTATES 1 0 0 13 0 0 0 0 0 14 92.9 92.9 

TREE PLANTATION 1 3 0 1 10 3 0 0 0 18 55.6 52.6 

RANGELAND 14 16 0 0 1 187 0 0 0 218 85.8 55.2 

INFRASTRUCTURE 0 0 0 0 0 0 4 0 0 4 100.0 50.0 

WETLAND 1 0 0 0 0 1 0 1 0 3 33.3 50.0 

WATERBODIES 0 0 0 0 0 0 0 0 10 10 100.0 90.9 

TOTAL 166 388 10 14 19 339 8 2 11 957   

             

OVERALL ACCURACY 74.2%            

KAPPA 0.62            
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Figure 4.1: The land use types in the study area (in % of the total area) 

 

 
Figure 4.2: The change in km² per land use class 
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4.2 LAND USE DYNAMICS 

For each land use class the results of the land use dynamics analysis are described: the magnitude of 

change, the rate of change and the nature of the changes. 

4.2.1 Magnitude and rate of change 

In 2013, the dominant land use types in the study area are smallholder agriculture (50.7%), followed by 

rangeland (23.7%) and forest (17.7%). The first increased in area in the period 1973-2013, whereas the 

latter two decreased (figure 4.1 and table 4.3). In fact, figure 4.2 shows that forest, smallholder agriculture 

and rangeland have high magnitudes of change. 

  

Thus, a forest decline in the period 1973-2013 can be detected. To be precise, 1458.5 km² of forest was 

lost, which is a decline of 25.5% in a period of 40 years (see table 4.4 and 4.5). In the first time period 

(1973-1984) the rate of change was the highest (table 4.6). However, the tables show an on-going 

decrease of forest area: in the period 1973-2013 an annual decrease of 0.6% can be noticed. Smallholder 

agriculture on the other hand, shows an annual growth rate of 0.6%. In a 40-year period, smallholder 

agriculture increased by 2235.3 km², which is an increase of 22.4%. The highest increase can be detected 

in the period 1994-2003: 731.3 km² (table 4.4). In addition, irrigated commercial agriculture increased 

with 15.9% (95.7 km²). In particular in the period 1994-2003 the increase was high. Next, an overall 

increase of tea estates of 13% can be noticed, mainly in the period 1994-2003 with an annual growth rate 

of 1.4%. The tree plantations class shows an interesting change of its area: in the first period a high 

increase (63.3%), the second period a smaller increase (4.1%), while the third period shows a very large 

decrease (50.1%), and the last period an increase again (14.9%) (see also table 4.5). Over the 40 years 

tree plantation decreased with 10.9 km² (2.6%) – which is little. Moreover, rangeland shows a decline of 

14.4% and decreased mostly in the period from 1984-1994 (with 380.4 km²). Infrastructure is the land 

use class with the highest growth: an increase of 107.2%. It expanded from 59.4 km² to 123 km² (which is, 

as figure 4.1 showed, a very small part of the study area, namely 0.5%). Infrastructure expansion occurred 

mostly between 1984 and 2003: an annual growth rate between 3.7% and 3.9% can be detected (see table 

4.6). Last, waterbodies and wetland prove to be steady areas over time, the small changes for these classes 

can probably be related to classification errors. The decrease of wetlands by 1%, may be explained by 

drying off as well, however this needs further investigation. 

 

It can be concluded that forest and smallholder agriculture showed the highest magnitudes of change: the 

first a decrease of 25.5%, the second an increase of 22.4%. In addition, rangeland lost much of its area as 

well: a decrease of 14.4%. The change in the tree plantation class in the period 1973-1984 and the period 

1994-2003 were quite abrupt. Infrastructure showed an annual growth rate of 2.7% - by far the highest of 

the land use classes, and irrigated commercial agriculture and tea estates show a notable increase in 

period 3. The small variations of waterbodies and wetland can be attributed to classification errors.  

 
Table 4.3: The area of the land use classes in km² 

 

 

 

AREA IN KM² 

  1973 1984 1994 2003 2013 

FOREST 5724.0 5236.8 4950.5 4586.9 4265.4 

SMALLHOLDER AGRICULTURE 9981.2 10352.2 10950.2 11681.5 12216.4 

IRRIGATED COMMERCIAL AGRICULTURE 602.0 611.4 625.5 690.2 697.7 

TEA ESTATE 289.5 293.4 301.5 338.2 326.9 

TREE PLANTATION 415.6 678.7 706.2 352.4 404.7 

RANGELAND 6666.1 6504.5 6120.4 5977.5 5705.0 

INFRASTRUCTURE 59.4 60.8 83.3 112.6 123.0 

WATERBODIES 207.6 208.0 208.0 207.6 207.6 

WETLAND 156.4 156.0 156.0 154.9 154.9 
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Table 4.4: The change of the area of the land use classes in km² 

 
Table 4.5: The change of the area of the land use classes in % 

 
 

 Table 4.6: The annual rate of change of the land use classes in % 

 

AREA CHANGE IN KM² 

  1973-1984 1984-1994 1994-2003 2003-2013 TOTAL PERIOD 

FOREST -487.2 -286.3 -363.6 -321.4 -1458.5 

SMALLHOLDER AGRICULTURE 370.9 598.1 731.3 534.9 2235.3 

IRRIGATED COMMERCIAL AGRICULTURE 9.4 14.1 64.6 7.5 95.7 

TEA ESTATE 3.9 8.1 36.7 -11.4 37.4 

TREE PLANTATION 263.1 27.6 -353.9 52.4 -10.9 

RANGELAND -161.6 -384.1 -142.9 -272.5 -961.1 

INFRASTRUCTURE 1.42 22.6 29.2 10.4 63.7 

WATERBODIES 0.43 0 -0.4 0 0 

WETLAND -0.42 0 -1.1 0 -1.5 

AREA CHANGE IN % 

  1973-1984 1984-1994 1994-2003 2003-2013 TOTAL PERIOD 

FOREST -8.5 -5.5 -7.3 -7.0 -25.5 

SMALLHOLDER AGRICULTURE 3.7 5.8 6.7 4.6 22.4 

IRRIGATED COMMERCIAL AGRICULTURE 1.6 2.3 10.3 1.1 15.9 

TEA ESTATE 1.4 2.8 12.2 -3.4 12.9 

TREE PLANTATION 63.3 4.1 -50.1 14.9 -2.6 

RANGELAND -2.4 -5.9 -2.3 -4.6 -14.4 

INFRASTRUCTURE 2.4 37.1 35.1 9.3 107.2 

WATERBODIES 0.2 0.0 -0.2 0.0 0.0 

WETLAND -0.3 0.0 -0.7 0.0 -1.0 

ANNUAL RATE OF CHANGE IN % 

  1973-1984 1984-1994 1994-2003 2003-2013 TOTAL PERIOD 

FOREST -0.9 -0.5 -0.8 -0.7 -0.6 

SMALLHOLDER AGRICULTURE 0.3 0.6 0.7 0.5 0.6 

IRRIGATED COMMERCIAL AGRICULTURE 0.1 0.2 1.1 0.1 0.4 

TEA ESTATE 0.1 0.3 1.4 -0.3 0.3 

TREE PLANTATION 5.8 0.4 -5.6 1.5 -0.1 

RANGELAND -0.2 -0.6 -0.3 -0.5 -0.4 

INFRASTRUCTURE 0.2 3.7 3.9 0.9 2.7 

WATERBODIES 0.0 0.0 0.0 0.0 0.0 

WETLAND 0.0 0.0 -0.1 0.0 0.0 
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4.2.2 Nature of changes 

Figure 4.3 shows the nature of the main land use changes in the period 1973-2013 based on the change 

matrices (see table 4.7 and in Appendix H table H1, H2, H3 and H4 for change matrices). The foremost 

land use change in a 40-year time period was forest to smallholder agriculture: a conversion of 1343.7 

km² (see table 4.7). Furthermore, forest lost to rangeland, tree plantations and tea estates. The second 

large conversion in the study area was from rangeland to smallholder agricultural land use: 988.9 km². 

Moreover, rangeland lost to irrigated commercial agriculture, tree plantations and forest. The last 

important change was smallholder agriculture gaining area from tree plantations (mainly in period 3): 

149 km². Thus, smallholder agriculture gained at the expense of forest (1343.7 km²), rangeland (988.9 

km²) and tree plantations (149.0 km²). Based on these key changes, three processes could be identified: 

forest conversion (figure 4.3a), rangeland conversion (figure 4.3b) and smallholder agricultural expansion 

(figure 4.3c). 

 

Then, two other changes are noteworthy. First, irrigated commercial agriculture gained area from 

smallholder agriculture, mainly in the third period (see table H3 in Appendix H). Second, the dynamics 

and rate of change analysis showed that infrastructure had the highest annual growth rate, which is, 

according to table 4.7, primarily at the expense of smallholder agriculture. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.7: Change matrix indicating the nature of land use change period 1973-2013 

1973 - 2013 (IN KM²)                       

 
 

1973 
  

 F SA CA TE TP R I WB WL TOTAL GAIN 

2013 Forest 4165.4 72.0 0 0 3.7 24.4 0 0.0 0 4265.4 100.1 

 
Smallholder Agriculture 1343.7 9734.1 0 0.8 149.0 988.9 0 0.0 0 12216.4 2482.3 

 
Irrigated Commercial Agriculture 2.3 49.8 602.0 0 0 42.1 0 1.5 0 697.7 95.7 

 
Tea Estates 47.6 6.3 0 268.5 4.5 0 0 0.0 0 326.9 58.3 

 
Tree Plantations 75.3 44.4 0 20.1 240.1 24.9 0 0.0 0 404.7 164.7 

 
Rangeland 89.1 20.3 0 0 15.1 5580.5 0 0.0 0 5705.0 124.5 

 
Infrastructure 0.7 54.3 0 0 3.2 5.4 59.3 0.0 0 123.0 63.7 

 
Waterbodies 0 0 0 0 0 0 0 154.9 0 154.9 0.0 

 
Wetland 0 0 0 0 0 0 0 0.0 207.6 207.6 0.0 

TOTAL 
 

5724.0 9981.2 602.0 289.5 415.6 6666.1 59.3 156.4 207.6 24101.7 
 

LOSS 
 

1558.6 247.0 0 21.0 175.5 1085.6 0 1.5 0 
  

FOREST 

SMALLHOLDER AGRICULTURE 

RANGELAND 

TREE PLANTATIONS 

TEA ESTATES 

RANGELAND 

SMALLHOLDER AGRICULTURE 

COMMERCIAL AGRICULTURE 

TREE PLANTATIONS 

FOREST 

FOREST 

SMALLHOLDER AGRICULTURE RANGELAND 

TREE PLANTATIONS 

Figure 4.3a: Forest conversion Figure 4.3b: Rangeland conversion 

Figure 4.3c: Smallholder agriculture expansion 
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4.2.3 Spatial pattern changes 

The land use maps of the study area in 1973 and 2013 are shown in figure 4.4 (see figures in Appendix I 

for land use maps of the years 1984, 1994 and 2003). When comparing the land use change maps, growth 

in infrastructure, urban in particular, can be noted. The top arrow shows an extensive increase of urban 

area around Lake Nakuru. A second spatially notable change is a decrease of forest and tree plantations in 

favour of smallholder agriculture in the central part of the study area: in Nakuru county (the second arrow 

in figure 4.4). In addition, the Southern part of the study area, Narok county, shows clearly visible land use 

changes: an expansion of smallholder agriculture at the expense of mainly forest and rangeland. 

 

Furthermore, the land use change maps for every time period (see Appendix J) revealed that land use 

changes are quite spread out over the study area, with the most Northern and Southern rangeland parts 

most steady over time. The maps show that the main changes occurred in and around the forest blocks – 

the central part of the study area, overlapping multiple counties – which can be observed in figure 4.4 as 

well. However, when focusing on the most important land use changes (forest conversion, rangeland 

conversion, smallholder agriculture expansion), more variation can be detected. In period 1 the western 

parts of Nakuru and Baringo show much deforestation. The northern parts of Narok and western parts of 

Nakuru experience most forest conversions and smallholder agricultural expansion during every time 

period (see the maps in Appendix K).  

1973 2013 

Figure 4.4: Land use changes 1973-2013 
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4.3 EXPLORATORY DATA ANALYSIS 

The accuracy assessment previously described and the land use dynamics analysis, were essential steps 

before regression modelling. Based on these results the dependent variables could be identified (see 

paragraph 3.5). Besides the dependent variables, multiple independent variables were selected (see 

paragraph 3.6), and this section describes the exploratory data analysis: the collinearity between variables 

was analysed (see 3.7.2 for methods). 

 
In general, Spearman’s rank correlation coefficient (table 4.8) shows low correlations between the 

independent variables. However, high correlations between the population density variables and between 

temperature and elevation (-0.97) were detected. The population density variables were never used 

together as input. The temperature and elevation variables were reconsidered in every model, and 

depending on the VIF value, either elevation or temperature was excluded. In addition, Spearman’s rho 

indicates that there is a stronger correlation between rainfall and soil pH (-0.81), TWI and slope (-0.79), 

and rainfall and population density (0.75-0.76). As a consequence, in every statistical model the 

correlations were reassessed. 

 

Besides Spearman’s rho, the multi-collinearity was tested with the VIF. As mentioned in the methodology, 

a threshold of 10 was applied. Thus, the variables that were strongly correlated according to Spearman, 

and showed VIF values that exceeded 10, were excluded from the models. For the both models this 

resulted in discarding either temperature or elevation (see the regression models tables 4.9, 4.10, 4.11, 

4.12 and 4.13 for the variables that were included and the VIF values of the variables). The other 

independent variables all showed VIF values below 10, with most of them around 1, which points to no 

correlation.  

 

Table 4.8 Spearman’s rho 

  
  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

1 Rainfall 1.00 
               

 

2 Temperature -0.10 1.00 
              

 

3 Elevation 0.24 -0.97 1.00 
             

 

4 Slope 0.24 -0.18 0.24 1.00 
            

 

5 Aspect North 0.06 0.06 -0.03 0.06 1.00 
           

 

6 Aspect East -0.13 -0.03 0.03 -0.06 -0.05 1.00            

7 Curvature -0.01 -0.03 0.05 0.07 -0.01 0.02 1.00 
         

 

8 TWI -0.21 0.20 -0.28 -0.79 -0.01 0.02 -0.46 1.00 
        

 

9 Soil pH -0.81 0.35 -0.47 -0.33 0.02 0.05 -0.01 0.32 1.00 
       

 

10 Soil CEC -0.36 -0.36 0.30 0.06 -0.04 0.08 0.02 -0.06 0.33 1.00 
      

 

11 
Distance 
Towns 

-0.27 -0.18 0.17 0.07 -0.05 0.05 0.01 -0.07 0.14 0.26 1.00 
     

 

12 
Distance 
Roads 

-0.17 -0.09 0.05 0.02 -0.03 0.04 0.02 -0.03 0.05 0.04 0.30 1.00 
    

 

13 
Distance 
Rivers 

-0.11 -0.12 0.10 0.02 0.03 -0.03 -0.01 0.00 0.06 0.03 -0.18 -0.06 1.00 
   

 

14 
Population 
Density ‘79 

0.76 0.08 0.03 0.07 0.08 -0.11 -0.04 -0.05 -0.56 -0.30 -0.39 -0.16 0.00 1.00 
  

 

15 
Population 
Density ‘89 

0.76 0.08 0.03 0.07 0.08 -0.11 -0.04 -0.05 -0.55 -0.30 -0.39 -0.16 0.00 1.00 1.00 
 

 

16 
Population 
Density ‘99 

0.76 0.08 0.03 0.07 0.08 -0.11 -0.04 -0.05 -0.55 -0.30 -0.39 -0.16 0.00 1.00 1.00 1.00  

17 
Population 
Density ‘09 

0.75 0.07 0.04 0.06 0.08 -0.11 -0.04 -0.05 -0.55 -0.29 -0.38 -0.17 0.00 1.00 1.00 1.00 1.00 
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4.4 TIME PERIOD 1: 1973-1984 

The results of the forest conversion and agricultural expansion models for the first period are shown in 

table 4.9. The regression coefficients ( ), the odds ratio and the VIF values of the independent variables in 

two land use change models are shown. In case      , the probability that the events occurs (e.g. forest 

conversion or agricultural expansion) increases, when the value of the independent variable increases. 

When     , the probability that the event occurs decreases, when the value of the independent 

increases. In particular the odds ratio of each independent variable is of importance when interpreting the 

models. It gives an indication about the effect of the variable and tells something about how much more 

likely or unlikely it is for the outcome to be present given the independent variables. It can be understood 

in a similar way as  : if the odds ratio is higher than 1, one unit increase in the explanatory variable, 

increases the odds of forest conversion (the darker colours in the table). However, if the odds ratio is 

lower than 1, one unit increase of the independent variable, decreases the odds of the event occurring 

(lighter colours in the table). For example, table 4.9 shows that if predictor variable rainfall increases with 

one unit (which would be 1 mm in this case), the odds of the event are multiplied by 0.97 (which points to 

a decrease in the odds), when the other k – 1 predictor variables are held constant (see also paragraph 

3.7.3 for methods of the statistical framework). Furthermore, the number of polygons of land use change 

included are mentioned (N), the pseudo R-Square measures Nagelkerke R² and Cox and Snell R², the AUC 

goodness of fit measure, and Moran’s I for spatial autocorrelation. The remainder of this section describes 

the results of the forest model first, followed by the agricultural expansion model. 

 
Table 4.9: Forest conversion and agricultural expansion models for period 1 

PERIOD 1 FOREST CONVERSION MODEL AGRICULTURAL EXPANSION MODEL 

  β Odds ratio VIF β Odds ratio VIF 

Rainfall -0.030*** 0.97 3.45 -0.005 1.00 4.05 

Temperature¹ - - - - - - 

Elevation¹ 0.002*** 1.00 2.14 0.002*** 1.00 2.54 

Slope -0.164*** 0.85 2.04 -0.011 0.99 2.88 

Aspect North -0.143 0.87 1.04 -0.001 1.00 1.07 

Aspect East 0.846*** 2.33 1.05 -0.328 0.72 1.08 

Curvature 0.155 1.17 1.48 0.110 1.12 1.61 

TWI -0.867** 0.42 4.10 0.042 1.04 3.17 

Soil pH -0.122*** 0.89 3.56 -0.032 0.97 4.06 

CEC -0.074*** 0.93 2.06 -0.090*** 0.91 1.43 

PopDens_79 -0.006*** 0.99 2.29 -0.005 1.00 2.45 

Distance_Towns -0.047*** 0.95 1.47 0.035*** 1.04 1.32 

Distance_Roads 0.058** 1.06 1.12 -0.021 0.98 1.15 

Distance_Rivers 0.023 1.02 1.19 0.012 1.01 1.21 

Intercept 14.030***   -1.928   

        

N 4721   1789   

Nagelkerke R²  0.20   0.19   

Cox & Snell R² 0.11   0.10   

AUC 0.766   0.769   

Moran’s I 0.168   0.276   

¹Either temperature or elevation was excluded due to multi-collinearity 

*p <0.05, **p<0.01,*** p<0.001 
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4.4.1 Forest conversion model 

The table shows that the effects of rainfall, elevation, slope, aspect east, TWI, soil pH, soil CEC, population 

density, distance to towns and distance to roads are significant. Aspect north, curvature and distance to 

rivers are not. According to table 4.9 an increase of one unit in aspect east and distance to roads, increases 

the odds of a forest conversion: the odds are multiplied by 2.33 and 1.06. Furthermore, an increase of 

rainfall, slope, TWI, soil pH, CEC, population density and distance to towns, decreases the odds of forest 

conversion occurring in the first period (odds are multiplied with 0.97, 0.85, 0.42, 0.89, 0.93, 0.99 and 0.95 

respectively). The odds ratio of 1.00 for elevation indicates that an increase of one unit (meters) has no 

effect on the likelihood of forest conversions. 

 
The pseudo R-Square (measured with Nagelkerke R² and Cox & Snell R²) indicates that the model 

explained between 11% and 20% of the variability in forest conversions (see table 4.9). In addition, the 

discriminating power of the model is good: the AUC gives a value of 0.766. Figure 4.5 shows the receiving 

operating characteristic (ROC) curve, which  indicates that the model is quite accurate: the curve reaches 

towards the left top and is not close to the diagonal (which represents the random case). Thus, the power 

of the model to correctly classify the areas that actually changed and that did not change is satisfactory. 

Furthermore, Moran’s I indicates that the spatial autocorrelation is weak, but positive (0.168). 

4.4.2 Agricultural expansion model 

Only three variables were statistically significant in the agricultural expansion model: elevation, soil CEC 

and distance to towns. For every one unit of increase of  distance to towns, the odds of agricultural 

expansion multiplied by 1.04. In contrast, the soil CEC variable, shows that one unit of increase results in a 

decrease of the likelihood of occurrence of agricultural expansion. And for this model as well, elevation 

neither increases of decreases the chance of agricultural expansion to occur. 

 

The agricultural expansion model shows a good discriminatory power (AUC = 0.769). The ROC curve 

indicates that the model is accurate as well: the curve is close to the left-hand top border (see figure 4.5). 

The pseudo R-Square shows that between 10% and 19% of variation in the agricultural expansion model 

has been explained. Moran’s I shows a quite weak but positive spatial autocorrelation (0.276) : the 

residuals tend to be more clustered than dispersed. 

 

Figure 4.5: ROC curve showing the performance of the forest conversion model (left, yellow curve) and the 
agricultural expansion model (right, green curve) in period 1 
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4.5 TIME PERIOD 2: 1984-1994 

 

Table 4.10: Forest conversion and agricultural expansion model period 2 

PERIOD 2 FOREST CONVERSION MODEL AGRICULTURAL EXPANSION MODEL 

  β Odds ratio VIF β Odds ratio VIF 

Rainfall 0.014* 1.01 3.33 0.001 1.00 4.30 

Temperature¹ -0.028*** 0.97 2.50 - - - 

Elevation¹ - - - 0.003*** 1.00 2.76 

Slope 0.010 1.01 2.28 0.063* 1.07 3.35 

Aspect North -0.678*** 0.51 1.04 -0.140 0.87 1.08 

Aspect East 0.616*** 1.85 1.06 -0.479** 0.62 1.05 

Curvature 0.932 2.54 1.45 1.645* 5.18 1.74 

TWI 0.754* 2.13 3.89 1.062** 2.89 3.93 

Soil pH 0.029 1.03 4.13 0.095*** 1.10 4.93 

CEC -0.067** 0.93 1.95 -0.130*** 0.88 1.34 

PopDens_89 -0.006*** 0.99 2.26 -0.001 1.00 2.25 

Distance_Towns 0.019* 1.02 1.48 0.007 1.01 1.33 

Distance_Roads -0.037 0.96 1.14 -0.086* 0.92 1.14 

Distance_Rivers -0.115*** 0.89 1.17 -0.021 0.98 1.21 

Intercept -3.892   -18.658***   

        

N 4128   2058   

Nagelkerke R²  0.10   0.19   

Cox & Snell R² 0.04   0.11   

AUC 0.725   0.756   

Moran’s I 0.114   0.225   

¹Either temperature or elevation is excluded due to multi-collinearity 

*p <0.05, **p<0.01,*** p<0.001 

4.5.1 Forest conversion model 

In the second time period rainfall, temperature, aspect east, TWI, soil CEC, population density, distance to 

towns and distance to rivers prove to be statistically significant. One unit increase of rainfall, aspect east, 

TWI and distance to towns indicate an increase in the likelihood of forest conversion (see table 4.10). The 

odds of forest conversion are multiplied by 1.01, 1.85, 2.13 and 1.02 respectively. An increase in one unit 

of temperature, aspect north, soil CEC, population density, and distance to rivers significantly decrease the 

likelihood of forest conversion: the odds are multiplied by 0.97, 0.51, 0.93, 0.93, 0.99 and 0.89 

respectively. 

 

Nagelkerke R² and Cox & Snell R² indicate that the model only explains between 4% and 10% of the 

variability in the occurrence of forest conversion – which is very weak. The ROC curve and the AUC 

(0.725) show that the model’s discriminatory power is acceptable. Last, Moran’s I shows a weak and 

positive autocorrelation of the residuals: 0.114. 

4.5.2 Agricultural expansion model 

The biophysical variables  slope, curvature, TWI and soil pH have a significant effect on the likelihood of 

agricultural expansion to occur. The odds ratios are 1.07, 5.18, 2.89 and 1.10 respectively. On the other 

hand, an increase in one unit of aspect east, soil CEC and distance to roads decreases the odds of 

agricultural expansion by 0.62, 0.88 and 0.92. Elevation is of importance in this model, although it neither 
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increases or decreases the odds of agricultural expansion. Rainfall, aspect north, population density, 

distance to roads and distance to rivers show to have no significant effect in the second period. 

The pseudo R-Square indicates that between 11% and 19% of the variance has been explained. The ROC 

curve shows an acceptable performance of the model (see figure 4.6) and the AUC is 0.756 which indicates 

that the power to differentiate the actual agricultural expansions was good. Moran’s I indicates a weak 

positive spatial autocorrelation: 0.225. 

 

Figure 4.6: ROC curve showing the performance of the forest conversion model (left, yellow curve) and the 
agricultural expansion model (right, green curve) in period 2 
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4.6 TIME PERIOD 3: 1994-2003 

 

Table 4.11: Forest conversion and agricultural expansion model period 3 

PERIOD 3 FOREST CONVERSION MODEL AGRICULTURAL EXPANSION MODEL 

  β Odds ratio VIF β Odds ratio VIF 

Rainfall 0.003 1.00 3.26 0.008 1.01 3.05 

Temperature¹ -0.025*** 0.98 2.48 - - - 

Elevation¹ - - - 0.003*** 1.00 2.11 

Slope 0.002 1.00 2.27 -0.030 0.97 1.64 

Aspect North -0.429*** 0.65 1.04 0.437*** 1.55 1.04 

Aspect East 0.571*** 1.77 1.06 0.437 0.91 1.04 

Curvature 1.066* 2.90 1.44 -0.097 0.39 1.27 

TWI 1.031*** 2.81 3.90 -0.935 1.19 2.89 

Soil pH -0.014 0.99 4.16 0.176 0.99 3.33 

CEC -0.037* 0.96 1.96 -0.006*** 0.93 1.83 

PopDens_99 -0.001 1.00 2.18 -0.067* 1.00 2.06 

Distance_Towns 0.017** 1.02 1.47 -0.037*** 0.96 1.34 

Distance_Roads 0.054** 1.06 1.16 0.048* 1.05 1.10 

Distance_Rivers -0.059** 0.94 1.17 0.028 1.03 1.21 

Intercept -2.936   -6.331**   

        

N 3874   3075   

Nagelkerke R²  0.12   0.32   

Cox & Snell R² 0.07   0.23   

AUC 0.707   0.788   

Moran’s I 0.159   0.157   

¹Either temperature or elevation is excluded in the models due to multi-collinearity 

*p <0.05, **p<0.01,*** p<0.001 

 

4.6.1 Forest conversion model 

Table 4.11 shows that in the third period an increase of one unit of aspect east, curvature, TWI, and 

distance to towns and roads, indicate an increase in the odds of forest to change. The odds ratio are 1.77, 

2.90, 2.81, 1.02 and 1.06 respectively. Temperature, aspect north, soil CEC and distance to rivers indicate a 

decrease in the likelihood of forest conversion. The distance variables are becoming more important 

compared to the first two periods. Moreover, the variables rainfall, slope, soil pH and population density 

were not statistically significant in this time period. 

The pseudo R-Square shows an explanatory power of the model between 7% and 12%. The ROC curve 

indicates a moderate performance, just as the AUC shows: 0.707 (see figure 4.7). Moran's I indicates a 

weak and positive spatial autocorrelation of the residuals (0.157). 

4.6.2 Agricultural expansion model 

Three biophysical variables prove to be statistically significant in the agricultural expansion model in the 

third period: elevation, aspect north and soil CEC. In addition, the socio-economic variables population 

density, distance to towns and distance to roads are significant as well. 

 

One unit increase of aspect north and distance to rivers increases the odds of agricultural expansion. The 

odds are multiplied with 1.55 and 1.05. In contrast, an increase of soil CEC and distance to towns 
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decreases the odds of agricultural expansion. Elevation and population density are of importance for 

agriculture expansion, however the odds ratio of 1.00 indicates that there is almost no effect on the 

increase of decrease of the likelihood of agricultural expansion. 

The agricultural expansion model in the third period shows the highest pseudo R-Square of all agricultural 

models: between 23% and 32% of the variance is explained. The ROC curve reaches the top-left border 

which indicates that the model uses little false positives for prediction (see figure 4.7). The AUC clarifies 

this as well: 0.788 is a good score. The spatial autocorrelation is positive and weak (Moran’s I = 0.157). 
 
 

Figure 4.7: ROC curve showing the performance of the forest conversion model (left, yellow curve) and the 
agricultural expansion model (right, green curve) in period 3 
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4.7 TIME PERIOD 4: 2003-2013 

 

Table 4.12: Forest conversion and agricultural expansion model period 4 

PERIOD 4 FOREST CONVERSION MODEL AGRICULTURAL EXPANSION MODEL 

  β Odds ratio VIF β Odds ratio VIF 

Rainfall -0.024** 0.98 3.16 -0.003 1.00 3.36 

Temperature¹ - - - - - - 

Elevation¹ 0.001*** 1.00 2.05 0.002*** 1.00 2.18 

Slope -0.110*** 0.90 2.09 0.002 1.00 1.81 

Aspect North 0.257 1.29 1.04 0.123 1.13 1.03 

Aspect East 0.508*** 1.66 1.05 -0.549*** 0.58 1.04 

Curvature -0.129 0.88 1.48 0.670 1.95 1.34 

TWI -0.863* 0.42 4.48 -0.689*** 0.50 3.70 

Soil pH -0.146*** 0.86 3.75 0.030* 1.03 3.87 

CEC 0.070** 1.07 2.04 0.002 1.00 1.68 

PopDens_09 -0.007*** 0.99 2.11 -0.008*** 0.99 2.16 

Distance_Towns 0.040*** 1.04 1.47 -0.033*** 0.97 1.36 

Distance_Roads 0.084*** 1.09 1.17 0.137*** 1.15 1.10 

Distance_Rivers -0.082** 0.92 1.19 -0.052* 0.95 1.19 

Intercept 11.087***   -2.281**   

        

N 3321   3390   

Nagelkerke R²  0.28   0.16   

Cox & Snell R² 0.13   0.09   

AUC 0.833   0.738   

Moran’s I 0.218   0.225   

¹Either temperature or elevation is excluded in the models due to multi-collinearity 

*p <0.05, **p<0.01,*** p<0.001 
 

4.7.1 Forest conversion model 

In the last period two biophysical variables significantly increase the odds of forest conversion to occur: 

every one unit increase of aspect east and soil CEC multiplies the odds by 1.66 and 1.07 (see table 4.12). 

The distance variables are again of importance in the forest model: the probability of forest conversion 

increases by 4% (odds ratio of 1.04) and 9% (odds ratio of 1.09) for every meter increase in distance to 

towns and roads. On the other hand, an increase in one unit of the variables rainfall, slope, TWI, soil pH, 

population density and distance to rivers significantly decrease the odds of forest conversion to occur. 

And once more, elevation does not increase or decrease the odds of conversion. Aspect north and 

curvature prove to be not statistically significant. 

The forest conversion model in the fourth period shows the highest pseudo R-Square of all the forest 

conversion models: between 13% and 28% of the variance is explained by this model. The ROC curve and 

the AUC (0.833) indicate that the model is accurate. The curve is close to the top left border which means 

that it predicts true positives with a few false positives (see figure 4.8). Moran’s I is weak and positive 

(0.218), which means that the residuals tend to be more clustered than random. 
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4.7.2 Agricultural expansion model 

The variables elevation, aspect east, TWI, soil pH and the socio-economic variables prove to be significant, 

whereas rainfall, slope, aspect north, curvature and soil CEC are not. In the last time period only soil pH 

and distance to roads increase the odds of agricultural expansion to occur: the odds are multiplied with 

1.03 and 1.15. Noteworthy is the change of the latter variable: compared to the third period, distance to 

roads shows a higher odds ratio in the fourth period. For every 1 meter increase in distance to roads to 

probability of agricultural expansion increases by 5% in the third period (odds ratio of 1.05) and 15% in 

the fourth period (odds ratio of 1.15). 

Furthermore, one unit increase of aspect east, TWI, population density, distance to towns and distance to 

rivers, decreases the likelihood of agricultural expansion. The odds are multiplied with 0.58, 0.50, 0.99, 

0.97 and 0.95 respectively. Elevation shows an odds ratio of 1.00 and thus no effect on expansion of 

agriculture. 

The explanatory power of the model is weak: between 9% and 16% of the variability of agriculture 

expansion is explained by the model. The ROC curve and the AUC indicate a satisfactory model: AUC = 

0.738. The spatial autocorrelation is positive and quite weak: Moran’s I = 0.225. 

 

Figure 4.8: ROC curve showing the performance of the forest conversion model (left, yellow curve) and the 
agricultural expansion model (right, green curve) in period 4 
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4.8 OVERALL TIME PERIOD: 1973-2013 

Table 4.13 shows the results of the forest conversion and agricultural expansion model of the overall 

period: 1973-2013. These last two models used the exact same variables as the other models except for 

the population density variable: the change of population density between the first and last period in 

percentages was introduced in this model.  

Table 4.13: Forest conversion and agricultural expansion model period 1973 - 2013 

ALL PERIOD FOREST CONVERSION MODEL AGRICULTURAL EXPANSION MODEL 

  β Odds ratio VIF β Odds ratio VIF 

Rainfall 0.004 1.00 3.33 0.024*** 1.02 2.33 

Temperature¹ - - - - - - 

Elevation¹ 0.001*** 1.00 2.55 0.002*** 1.00 1.92 

Slope -0.055*** 0.95 3.77 -0.008 0.99 2.78 

Aspect North -0.255** 0.77 1.06 0.325** 1.38 1.04 

Aspect East 0.870*** 2.39 1.06 -0.443*** 0.64 1.04 

Curvature 0.804* 2.23 1.97 -0.276 0.76 1.68 

TWI 0.121 1.13 4.48 -0.048 0.95 3.59 

Soil pH² -0.099*** 0.91 3.33 0.000 1.00 1.00 

CEC² -0.004 1.00 1.86 - - - 

PopDens_%Change 0.013*** 1.01 2.35 0.013*** 1.01 2.14 

Distance_Towns -0.005 1.00 1.53 -0.009 0.99 1.28 

Distance_Roads 0.059*** 1.06 1.12 -0.009 0.99 1.07 

Distance_Rivers -0.014 0.99 1.17 0.028 1.03 1.21 

Intercept -0.294   -9.129***   

        

N 4721   3377   

Nagelkerke R²  0.27   0.36   

Cox & Snell R² 0.20   0.27   

AUC 0.764   0.775   

Moran’s I 0.164   0.170   

¹In both models temperature is excluded due to multi-collinearity with elevation 

²In the agricultural expansion model CEC is excluded due to multi-collinearity with soil pH 
*p <0.05, **p<0.01,*** p<0.001 

 

4.8.1 Forest conversion model 

In the forest conversion model of the overall period, the variables elevation, slope, aspect North, aspect 

East, curvature, soil pH, population density change and distance to roads are significant, while rainfall, 

TWI, CEC, distance to towns and distance to rivers have no significant influence on deforestation in the 

study area (see table 4.13). An increase of one unit aspect east, curvature, population density growth and 

distance to roads multiplies the odds of forest conversion by 2.39, 2.23, 1.01 and 1.06 respectively. On the 

other hand, an increase is one unit slope, aspect north and soil pH, decreases the chance that deforestation 

occurs. The odds ratio of 1.00 for elevation indicates that an increase of one unit (meters) has almost no 

effect on the likelihood of forest conversions. 

Nagelkerke R² and Cox & Snell R² indicate that the model explained between 20% and 27% of the 

variability in the presence of forest conversions (see table 4.13). In addition, the discriminating power of 

the model is good: the AUC gives a value of 0.764. Figure 4.9 shows the ROC curve, which  indicates that 

the model is quite accurate: the curve reaches towards the left top and is not close to the diagonal (which 



38 
 

Forest Overall Period Agriculture Overall Period 

represents the random case). Thus, the power of the model to correctly classify the areas that actually 

changed and that did not change is satisfactory. Furthermore, Moran’s I indicates that the spatial 

autocorrelation is weak, but positive (0.164). 

4.8.2 Agricultural expansion model 

The agricultural expansion model on the other hand, shows only five significant variables. An increase in 

rainfall, aspect North and population density, multiplies the odds of agricultural expansion by 1.02, 1.38 

and 1.01. An increase is aspect East decreases the chance of change by 0.64. And again, elevation has 

almost no effect on the land use change. 

The results of the pseudo R-Squares are the highest of all the agricultural expansion models: between 27% 

and 36% of the variance is explained by this model (which is still weak). The AUC of 0.775 indicates that 

the model’s discriminatory power is good, which is also visible in figure 4.9: the ROC curve is not close to 

the diagonal. Moran’s I gives a value of 0.170: the residuals tend to be more clustered than dispersed, 

however the spatial autocorrelation is weak. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 4.9: ROC curve showing the performance of the forest conversion model (left, yellow curve) and the 
agricultural expansion model (right, green curve) in the overall period 1973-2013 
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4.9 SUMMARY OF THE MODELLING RESULTS 

Table 4.14, figure 4.10 and figure 4.11 show an overview of the underlying drivers that significantly 

contributed to land use change in the Mau forest complex. Depending on the model and the time period, 

some drivers increased the odds of a land use change to occur (+ in the table), while other drivers 

decreased the odds of a land use change to occur (- in the table). Elevation was statistically significant in 

both models, however the effect of the variable was little and the likelihood of land use change neither 

increased or decreased much (+/- in table). 

 

Based on the results it can be concluded that for the forest conversion model, both biophysical and socio-

economic factors were of importance. Rainfall, aspect East (in all periods), curvature, TWI, soil CEC, 

population density, distance to towns and distance to roads increased the odds of forest conversion and in 

particular the distance variables became more important in more recent time periods. On the other hand, 

the agricultural expansion model revealed that fewer variables were significantly contributing to 

agricultural land use change: the climatic factor temperature was not significant in any time period. The 

other biophysical drivers in this model mainly have an influence in the second time period, whereas the 

socio-economic factors are more important in the third and fourth time period. In particular a larger 

distance to roads results in an increase of the likelihood of agricultural expansion between 1994 and 

2013.  

 

Both models show the highest explanatory power in the overall model: the period 1973-2013 (see table 

4.14). However, for agriculture only a few variables were significant: rainfall, elevation (almost no effect), 

aspect and population density. Noteworthy is that in these overall models another population density 

variable was introduced, namely the change of population density in percentages between the first and 

the last period. The results of both models show that this variable has a significant effect in the land use 

changes in the Mau forest in the period 1973-2013: the higher the growth in population density, the more 

likely forest conversion or agricultural expansion occurs. 

 

Table 4.14: Overview model performance and odds 

 FOREST CONVERSION MODEL AGRICULTURAL EXPANSION MODEL 

 73-84 84-94 94-03 03-13 ALL 73-84 84-94 94-03 03-13 ALL 

Rainfall - + 
 

-      + 

Temperature 
 

- - 
 

      

Elevation +/- 
  

+/- +/- +/- +/- +/- +/- +/- 

Slope - 
  

- -  +    

Aspect North 
 

- - 
 

-   +  + 

Aspect East + + + + +  -  - - 

Curvature 
  

+ 
 

+  +    

TWI - + + -   +  -  

Soil pH - 
  

- -  +  +  

Soil CEC - - - +  - - -   

Population Density - - 
 

- +   +/- - + 

Distance_Towns - + + +  +  - -  

Distance_Roads + 
 

+ + +  - + +  

Distance_Rivers 
 

- - -     -  

           

Pseudo R² 0.11–0.20 0.04–0.10 0.07-0.12 0.13– 0.28 0.20-0.27 0.10-0.19 0.11-0.19 0.23–0.32 0.09–0.16 0.27-0.36 

+ = increase in the odds, - = decrease in the odds, +/- = negligible effect 
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Figure 4.10: Results odds ratio (increase/decrease) per time period forest  conversion model 

Figure 4.11: Results odds ratio (increase/decrease) per time period agricultural expansion model 
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5. DISCUSSION 

This chapter first discusses the uncertainty in the data, then the land use changes and the proximate 

drivers, and finally the land use change models and the underlying drivers. 

5.1 UNCERTAINTY IN THE DATA 

The results of the accuracy assessment, land use dynamics analysis and the regression modelling 

demonstrated that there was uncertainty in the data that was used. First, the accuracy assessment showed 

poor results, namely an overall accuracy of 74.2%, which is below the 85% threshold generally applied 

(see Foody, 2012). Not to mention the low producer’s and user’s accuracies of some land use classes, 

which should in general not be lower than 70% (some classes were below 50%) (Foody, 2012). Low 

accuracies can usually be explained by errors in the classification, and in this study some concerns 

regarding the land use classification maps can be identified. The resolution of the Landsat data is coarse: 

60 by 60 meters for the 1970s and 30 by 30 meters for the other time periods, which indicates that 

misclassification already occurs due to the large pixel size: some land use classes that are smaller than the 

pixels size (such as rivers and roads) are missed in these coarse resolutions. Nevertheless, for the 40-year 

period of this research, this was the most accurate data available. In addition, the dates of the images that 

were selected for classification are disputable because seasonality was not considered, which might have 

resulted in misclassifications. The weather in the Mau forest complex  follows a bimodal rainfall pattern 

and experiences rain and dry seasons. Some images were selected in the dry season, while others were 

selected in the rain season, which makes distinguishing between different land uses types difficult. 

 

Besides the aforementioned classification issues, the low accuracy can be written to the fact that the 

assessment itself was repeated and adjusted from a previous research. Although a systematic sampling 

procedure was applied (the samples were selected at equal intervals of 5 km), the exact methods were not 

transparent and the sampling size of the land use classes was not considered. When doing an accuracy 

assessment the sampling scheme should precisely be examined: random, systematic, stratified random or 

cluster sampling (Foody, 2012). Next to that, it is essential to select and calculate the sample size per land 

use class. For instance, this accuracy assessment checked for three land use classes (waterbodies, 

wetlands and infrastructure) less than 20 points, which makes the results not statistically valid (Congalton 

and Green, 2008). In this study we tried to improve the classification by incorporating other data and 

context: a fieldwork was organised to decrease the errors in the reference points. However, a pitfall here 

is that the reference data was collected in 2016 and the remote sensing data used was from 2013. Ground 

data should be collected close in time to the remote sensing data because landscapes can change fast 

(Congalton and Green, 2008). 

 

The last source of uncertainty in the data could lie in the independent variables. For the climatic variables 

rainfall and temperature, values over a 50 year period in a  coarse resolution were used: pixels of 925 by 

925 meters. Because of the average values of the climatic data, the influence of variations could not be 

tested, which is a drawback as climatic variations might explain land use change (Kiage et al., 2007). A 

coarse resolution was the case for the soil variables as well: a spatial resolution of 250 meters. The 

elevation data and its derivatives have the highest spatial resolution: 30 by 30 meters, which makes it the 

most accurate data. In addition, the demographic variable population density showed a lot of uncertainty. 

In Kenya the administrative boundaries of the districts and counties changed over the past 40 years which 

made it difficult to trace back the exact population numbers per county. Moreover, the final population 

density numbers have a low spatial resolution: the data is on a county scale. The datasets of the road 

network, the rivers and towns, which were used to calculate Euclidean distances, are not perfectly reliable 

because they were created based on different data sources. Thus, all biophysical data, except the 

geomorphological data (elevation and its extracts), and all socio-economic data indicate a high degree of 

uncertainty. Nonetheless, the data collected, used and created, was the best available data.  
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5.2 LAND USE CHANGES AND THE PROXIMATE DRIVERS 

The study revealed that three main land use change processes could be identified in the Mau forest 

complex in the period 1973-2013: forest and rangeland showed high losses, while smallholder agriculture 

increased in extend (see figure 4.3, table 4.5 and table 4.7).  These results are consistent with a study of 

Olang and Kundu (2011) in the same area, and similar to studies in the Eastern Mau forest reserve and the 

Lake Nakuru drainage basin (Were et al., 2013), the Vihiga district which is close to the study area 

(Mutoko et al. 2014) and the River Njoro watershed which falls within the study area (Baldyga et al., 

2007). The most important land use change in the study area was a conversion from forest to smallholder 

agriculture. Hence, smallholder agriculture can be considered the most important proximate driver of 

deforestation in the Mau forest complex in every time period. Moreover, larger scale agriculture is a 

proximate driver of deforestation: forest lost area to tree plantations in the period 1973-1984 and to tea 

estates in the first three periods (1973 till 2003) (Appendix H). These findings are in agreement with 

several studies that identified agriculture as proximate driver of deforestation in African countries 

(Hosonuma et al., 2012; Kissinger et al. 2012). 

 

Because of the outcome of the accuracy assessment (and the poor quality of the classification), the results 

of the land use dynamics analysis had to be interpreted with caution. Even though land use classes as 

rangeland, irrigated commercial agriculture and infrastructure showed notable changes, due to the low 

accuracies, we decided not to interpret the results nor use them in the land use change models. In the end 

only the most accurate land use classes and the related changes were used: forest conversion and 

agricultural expansion (see paragraph 3.5). It was expected that in this way the models would show the 

most reliable results and would give the best indication about the main underlying drivers of land use 

change. 

5.3 THE UNDERLYING DRIVERS 

The driving forces of the change processes were identified by use of logistic regressions models and the 

results demonstrated that different biophysical and socio-economic factors were of importance for forest 

conversion and smallholder agricultural expansion. In general the model performances were weak and 

revealed low pseudo R-Squares. Nagelkerke R² and Cox and Snell R² indicated that the weakest models 

were able to explain between 4% and 10% of the variability, whereas the best performing models – the 

overall models - explained between 27% and 36% of the variability in the presence of a land use 

conversion (table 4.14). In the first place, these low scores can be explained by the poor data quality of 

both the dependent and independent variables (the badly classified land use maps and coarse resolution 

data of the drivers - as discussed in paragraph 5.1). In addition to that, the models take local conditions 

into account, while drivers are able to operate over larger distances. For example, population can have 

effects over larger distances. In fact, Verburg et al. (2002) argue that considering multi-scale 

characteristics might improve model performance. We tried to overcome this problem, by calculating a 

population density over a larger area, nevertheless in the end the variable showed no significant 

contribution to most of the models due to a resolution that was too coarse. 

 

Another reason for the low explanatory power of the models is that many other drivers are able to explain 

the forest conversions or agricultural expansions as well. These drivers could not be incorporated in the 

models because of the absence of spatial data and the difficulties of quantifying some of the variables. For 

example, factors that are missing in the models are: poverty, technological changes, environmental 

governance and policies, international drivers and behaviour of people (see Appendix D for possible 

underlying drivers). Literature showed that economic, social, cultural and political underlying drivers 

influence each other, they interact and do not operate independently (see Geist and Lambin (2002); 

Kissinger et al. (2010)). It is not possible to capture all these interactions in models, the models give an 

indication of the drivers that can contribute to land use change, however they do not give a cause-effect 

relationship. A growth in population does not by itself explain a land use change, other drivers should 

always be considered, and to incorporate all possible other drivers is nearly impossible. 
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Especially the changes of policy and governance is an important driver for the Mau forest because most 

loss of forest can be written to unplanned settlements and illegal extraction of resources (logging and 

charcoal burning) (UNEP, 2011). In particular in the 1990s and beginning of 2000s a lot of forest area was 

lost due to these weak environmental policies (Klopp and Sang, 2011; KWS, 2009).  Being aware of these 

drivers is essential and therefore in future research these drivers should be addressed as well: not in a 

quantitative, but in a qualitative way (see recommendations paragraph 6.2). 

5.3.1 Forest conversion 

For the forest conversion model several remarks can be made with regard to the underlying drivers. First, 

the goodness of fit of the forest model improves over time: the model better explains the forest conversion 

in the last decade than in the periods before. In particular all socio-economic variables are of  significance 

in the period 2003-2013, even though some of the effects are small. An important explanation is that 

humans, and human induced actions, appear to have more effect on land use changes now than in the past. 

Another reason is that in the last period the data of the independent variables used in the models is more 

accurate and up to date. Most datasets of the independent variables correspond with more recent periods, 

whereas little data was available from earlier time periods (e.g. no road network data in the 1970s). 

 

Second, the results showed that in every period, the more eastern-facing the aspect is, the higher chance of 

forest conversion: the east-facing slopes appear to have a higher chance of deforestation. This cannot be 

explained by the sun side as at the equator the sun goes straight overhead and shines almost equally at all 

slopes. However, it might be explained by the fact that in Kenya the East and South-Eastern slopes are 

wetter due to moist winds from the Indian Ocean, and therefore may be more suitable for agriculture.  

 

Then, the forest conversion model demonstrated an important influence of the topographical wetness 

index. In the second and third period (1984-1994 and 1994-2003) an increase in TWI demonstrated an 

increase in the odds of forest conversion, whereas for the first and last period the inverse was true. The 

land use change analysis showed that smallholder agriculture increased the most in the second and third 

periods (see figure 4.2). It appears that forest conversions, and mainly the change from forest to 

smallholder agriculture, are closely related to a high TWI, or a high degree of wetness. 

 

A last notable result of the forest conversion model is that in the period 1994-2003 and 2003-2013 the 

accessibility factors distance to towns and roads become more important: the further from roads and 

towns, the more likely that deforestation occurs, and the closer to roads and towns, the less likely 

deforestation occurs. Many factors could possibly explain this as socio-economic variables are closely 

related to each other. Population growth may be related to this: in the Mau forest complex population 

increased enormously in the last few decades (see Appendix F). The results of the overall model revealed 

this as well: the higher the growth of population density, the more likely deforestation occurs. When more 

people need forest products and smallholder agricultural products for their livelihood, or need to be 

better connected to the larger urban areas, this may lead to deforestation. 

5.3.2 Smallholder agricultural expansion 

Overall, in the agricultural expansion model, many variables are not significantly contributing to the land 

use changes (see table 4.14). In the second period, mainly biophysical drivers explain expansion, whereas 

in the other periods socio-economic factors are important. More exactly, the biophysical factors that were 

of influence in the second time period were the drainage factors. Curvature and the wetness index have a 

large effect on smallholder agricultural expansion. The more convex (curve outward) the surface and the 

wetter the area, the higher the chance of agricultural expansion in the period 1984-1994. 

 

Another interesting outcome is that the models showed that distance to roads becomes more important in 

the period 1994-2003 and 2003-2013 which is consistent with a study of Were et al. (2014) in the Eastern 

Mau forest reserve and Lake Nakuru drainage basin. The influence of this driver can probably be 
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attributed to the changes in Narok county. The analysis of the spatial pattern of the land use changes, 

showed that in particular Narok county experienced a high degree of agricultural expansion at the 

expense of forest and rangeland (Southern part study area see figure 4.4), and that the county was badly 

accessible in terms of road infrastructure (see figure E11 in Appendix E). An outcome that may be related 

to population growth as well: the model of the overall period revealed that population density is one of the 

main drivers of agricultural expansion, and in particular Narok county experienced the highest growth in 

population density in the period 1973-2013 (an increase between 250% and 300%, see figure E15 in 

Appendix E). 

 

Furthermore, a similar result to the forest conversion model is that the socio-economic factors become 

more important over time: in the period 2003-2013 all socio-economic factors are of significant influence 

on agricultural expansion. Another resemblance is that in the agricultural expansion model of the overall 

period a significant influence of population density was detected, whereas the models of the intermediate 

periods did not reveal that trend. The effect of this variable may be stronger in the overall period because 

land use changes in the period 1973-2013 are larger. 
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6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 CONCLUSIONS 

The main land use changes in the Mau forest complex in the period 1973-2013 were a loss of  forest and 

rangeland, while smallholder agriculture expanded. To be more precise, the foremost land use change in 

the study area was a conversion from forest to smallholder agriculture. Hence, smallholder agriculture can 

be considered the most important proximate driver of deforestation in the Mau forest complex in every 

time period analysed. The conversions occurred around the borders of the forest blocks, with the 

northern parts of county Narok experiencing most changes.  

 

Based on the accuracy assessment and land use change dynamics analysis two land use change models 

were identified: forest conversion and smallholder agricultural expansion. The regression analysis 

showed that biophysical and socio-economic factors were significant driving forces in both models. 

Underlying drivers such as aspect East, curvature, the topographical wetness index, population density 

change, distance to towns and distance to roads increased the odds of forest conversion, and in particular 

the distance variables became more important in more recent time periods (1994-2003 and 2003-2013). 

In the agricultural expansion model, biophysical factors mainly had an influence in the second time period 

(1984-1994), while the socio-economic underlying drivers were more important in the third and fourth 

time period (1994-2003 and 2003-2013). Especially in county Narok a larger distance to roads resulted in 

an increase of the likelihood of agricultural expansion. In the overall period 1973-2013, both the forest 

conversion and agricultural expansion model showed that a growth in population density increased the 

chance of land use change. 

 

6.2 RECOMMENDATIONS 

Several recommendations can be formulated that would result in better outcomes or improve future 

research. First, to reduce uncertainty in data, in particular with regard to the classified land use data, a 

pixel based classification method, and thereby pixel based land use maps, would be more suitable in a land 

use change driver analysis. In this study a pixel level analysis was not possible due to the nature of the 

land use maps:  object based classification maps. Because of the use of land use segments (polygons) some 

of the data of the independent variables with higher resolutions was lost: values of central tendency had 

to be calculated per land use polygon. Almost all the independent variables were of raster format and 

therefore pixel based land use maps would have reduced the loss of data of the independent variables. In 

addition, if a pixel based classification was used, a sample could have been taken for the regression 

modelling, which would have reduced the spatial autocorrelation of the data as well.  

 

Actually, a recommendation for this particular research would be to start over: produce new land use 

maps. Carefully consider the remote sensing images that will be used: examine seasonality, spatial and 

temporal resolutions. For better data quality, and for better driver analysis results, possibly adjust the 

time period of the research: study a 20-year or 30-year period instead of a 40-year period. This study 

showed that in particular in earlier periods there are difficulties to obtain high quality data, and therefore 

studying a more recent and smaller time period results in more reliable independent variables. Moreover, 

consider the conditions of this specific area and the possible difficulties for classifying (e.g. the mixing of 

rangeland and smallholder agricultural land use classes). Last, use a pixel based classification method and 

create new land use maps, apply a statistically sound accuracy assessment where both sampling scheme 

and size are well-thought-out, and organise a fieldwork close in time to the reference points. 

 

In addition, incorporating other variables in the models would improve results. To do this more time is 

necessary, because more and better resolution spatial data is needed. Also incorporating variables that 

consist of multi-scale characteristics is important. Include drivers that operate over larger distances, on 

higher scales: not only local, but consider regional, national and international forces that may influence 
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land use change. For example, economic demands from outside the country, such as the export of tea 

products (because the tea industry is an important economic sector in the study area), or on a national 

level the gross domestic product of the population. Yet important is that this data should be of a high 

spatial resolution for the results to be significant. 

 

Moreover, another regression method could be applied. For example, multinomial regression modelling 

considers all land use changes. It uses a categorical dependent variable instead of a binary dependent 

variable. This research showed poorly classified land use classes - only the forest and smallholder 

agriculture class could be used for analysis - and therefore this option could not be tested. However future 

research might benefit from these methods (see Lin et al., 2014). 

 

Finally, a qualitative assessment is highly recommended: visit the area, conduct a fieldwork and 

interviews, and try to obtain expert knowledge. It is essential to have knowledge of the context of an area 

because in this way it is easier to identify land use change processes and helps to select and decide what 

factors might contribute to land use change. A qualitative assessment may help identifying other drivers, 

and the relevance of the independent variables can be checked based on interviews and field observations. 

In this way cultural and political drivers can be assessed as well. Also the evaluation and interpretation of 

the outcome of a research is challenging without visiting an area. 

 

In conclusion, this research shows the importance of assessing data quality in land use change driver 

analysis and demonstrates that land use change and its drivers show different spatial-temporal trends 

(see figure 4.1 and 4.2 for land use changes, figure 4.4 for spatial patterns of the changes, and figures 4.10 

and 4.11 for the drivers per time period). The work provides an overview of spatial-temporal knowledge 

of the drivers of land use change in the Mau forest complex, which is essential for national policy making 

and for mitigation policy programs such as REDD+. In addition, the models that were developed function 

as a good base for other land use change driver analysis. The study reveals that in a 40-year period the 

socio-economic drivers increase in importance, which means there is a need for better understanding the 

socio-economic aspects behind land use change. Therefore, future research and policy should be time and 

space specific and focus more on the socio-economic drivers of land use change.  
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APPENDICES 

APPENDIX A – FIELDWORK PLAN 

 

Figure A1: Map fieldwork plan 
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APPENDIX B – CLASSIFICATION SCHEME AFRICOVER 

 

Table B1: Classification scheme Africover land use classes 

AFRICOVER AFRICOVER CLASS DESCRIPTION LU CLASS DESCRIPTION 

2TC-B Closed Trees - Bamboo F Forest 

2TC8 Closed trees with shrubs F Forest 

5UR Rural settlements                                                                                              I Infrastructure 

5Q Quarry                                                                                                 I Infrastructure 

5A Airport                                                                                         I Infrastructure 

5U Urban areas (general)                                                                                                  I Infrastructure 

HD57 Irrigated Herbaceous Crop, Large to Medium Fields IC Commercial Agriculture 

HM57 Irrigated Herbaceous Crop, Medium Fields IC Commercial Agriculture 

HD57-s 
Irrigated Herbaceous Crop, Large to Medium Fields - 
Sugarcane 

IC Commercial Agriculture 

HM57-s Irrigated Herbaceous Crop, Medium Fields - Sugarcane IC Commercial Agriculture 

2WP6 Open general woody with herbaceous  R Rangeland 

2TV28 
Very open trees (broadleaved deciduous) with closed to open 
shrubs 

 R Rangeland 

2TP8 Open general trees with shrubs, woodland with shrubs  R Rangeland 

2WC7 Closed woody with sparse trees  R Rangeland 

2TO28 
Open trees (broadleaved deciduous) with closed to open 
shrubs 

 R Rangeland 

2TO268 
Open trees (broadleaved deciduous) with closed to open 
herbaceous and sparse shrubs 

 R Rangeland 

2TC8 Closed trees with shrubs  F Forest  

2TV268 
Very open trees (broadleaved deciduous) with closed to open 
herbaceous and sparse shrubs 

 R Rangeland 

GRZ-r 
Cultivated Aquatic or Regularly Flooded Areas, Cereals, Rice - 
Small, Medium, Large Fields       

IC Commercial Agriculture 

2SP6 Open general shrubs with closed to open herbaceous R Rangeland 

2SOJ67 Open shrubs with closed to open herbaceous and sparse trees R Rangeland 

2SVJ67 
Very open shrubs with closed to open herbaceous and sparse 
trees 

R Rangeland 

2SV6 Very open shrubs with closed to open herbaceous R Rangeland 

2SCJ7 Closed shrubs with sparse trees R Rangeland 

2SCJ Closed shrubs R Rangeland 

2H(CP) Closed to very open herbaceous R Rangeland 

2H(CP)8 Closed to very open herbaceous with sparse shrubs R Rangeland 

2H(CP)78 Closed to very open herbaceous with sparse trees and shrubs R Rangeland 

SR47V-t Rainfed Shrub Crop, Small Fields - Tea SA Smallholder Agriculture 

SR47V Rainfed Shrub Crop, Small Fields                                                                        SA Smallholder Agriculture 

HM4 Rainfed Herbaceous Crop, Medium Fields                                                                      SA Smallholder Agriculture 

HD4-w Rainfed Herbaceous Crop, Large to Medium Fields - Wheat SA Smallholder Agriculture 

HD4 Rainfed Herbaceous Crop, Large to Medium Fields SA Smallholder Agriculture 

HL4-w Rainfed Herbaceous Crop, Large Fields - Wheat SA Smallholder Agriculture 
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HL4 Rainfed Herbaceous Crop, Large Fields                                                                            SA Smallholder Agriculture 

TR47V Rainfed Tree Crop - Small Fields SA Smallholder Agriculture 

HR4 Rainfed Herbaceous Crop, Small Fields                                                                       SA Smallholder Agriculture 

HR57-s Irrigated Herbaceous Crop, Small Fields - Sugarcane SA Smallholder Agriculture 

SL47V-c Rainfed Shrub Crop, Large Fields - Coffee SA Smallholder Agriculture 

SL47V-t Rainfed Shrub Crop, Large Fields - Tea TE Tea Estate 

TL47PL Forest Plantation - Large Fields TP Tree Plantation 

8WP Natural Lakes                                                                           WB Water 

7WP Artificial Lakes or Reservoirs                                                                                             WB Water 

8WN2 Lake shore                                                                                           WB Water 

4H(CP)F8 
Closed to very open herbaceous with sparse shrubs on 
temporarily flooded land - fresh water 

WL Wetland 

4H(CP)FF 
Closed Herbaceous (on permanently flooded land - Fresh 
Water) 

WL Wetland 

4HCF Closed herbaceous on temporarily flooded land - fresh water WL Wetland 

4TPF6 
Open general trees with closed to open herbaceous on 
temporarily flooded land - fresh water 

WL Wetland 

4WPF6 
Open general woody with closed to open herbaceous on 
temporarily flooded land - fresh water 

WL Wetland 
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APPENDIX C – VALIDATION GRID 

Figure C1: Validation grid Mau Forest Complex 
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APPENDIX D – UNDERLYING DRIVERS 

 

Table D1: Drivers of land use change identified in literature* 

DRIVER GROUP INDEPENDENT VARIABLE 

ENVIRONMENTAL/BIOPHYSICAL 

elevation 

slope 

aspect 

curvature 

soil type 

soil quality 

soil pH 

soil CEC 

average humidity 

rainfall 

temperature 

geological (rock type, sediment type) 

erosion (degree of erosion) 

topographical wetness index 

ECONOMIC 

GDP per capita 

annual income/GDP growth 

market growth 

poverty 

accessibility of the area/to markets 

distance to roads 

distance to urban centres 

distance to rivers/permanent water 

travel time centre/harbour 

DEMOGRAPHIC 

population growth/density 

urban population growth  

rural population growth 

migration 

TECHNOLOGICAL 

net agricultural trade per capita 

% of agricultural production exported 

production animal products 

bioenergy 

agro-technological change 

technological level of farmers 

CULTURAL 
public attitudes 

values and beliefs 

INSTITUTIONAL 

percentage of protected areas 

change in land tenure 

reform measures/policy change 

 
* Aguiar et al. (2007), Alexander et al. (2015), Braimoh and Onishi (2007), DeFries et al. (2010), Geist and 

Lambin (2002), Huang et al. (2007); Jaimes et al. (2010), Kiage et al. (2007), Kissinger et al. (2012), Long 

et al. (2007), Mottet et al. (2006), Mutoku et al (2014), Serra et al. (2008), Serneels and Lambin (2001), 

Seto and Kaufmann (2003), Verburg et al. (2002), Were et al. (2014) 
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APPENDIX E – MAPS INDEPENDENT VARIABLES 

 

INSERT FIGURES HERE 

Figure E1: Rainfall Figure E2: Temperature 

Figure E3: DEM Figure E4: Slope 
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Figure E5: Aspect north Figure E6: Aspect east 

Figure E7: Curvature Figure E8: TWI 
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Figure E9: Soil pH Figure E10: Soil CEC 
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Figure E11: Population density 1979 Figure E12: Population density 1989 

Figure E13: Population density 1999 Figure E14: Population density 2009 
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Figure E16: Distance to roads 

Figure E17: Distance to towns  Figure E18: Distance to rivers 

Figure E15: Population density growth 1973 - 2013 
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APPENDIX F – POPULATION NUMBERS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F1: The counties the study area overlaps 

 

Table F1: The development of the counties in the study area 1973-2013 

PROVINCE 
DISTRICTS/COUNTIES 

ORIGINAL 1999 2009 

 
 
 
 
 

RIFT VALLEY 

Baringo Baringo Baringo 

  Koibatek (1995)   

Elgeyo-Marakwet Keiyo Elgeyo-Marakwat 

  Marakwet (1994)   

Kericho Kericho Kericho 
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  Bomet (1992) Bomet 

  Buret (1998)   

Nakuru Nakuru Nakuru 

Nandi Nandi Nandi 

Narok Narok Narok 

  Trans-Mara   

Uasin Gishu Uasin Gishu Uasin Gishi 

NYANZA 

Kisumu Kisumu Kisumu 

  Nyando (1998)   

Kisii Kisii Central Kisii 

  Gucha (1995) Nyamira 

  Nyamira (1992)   

CENTRAL 

Nyandurua Nyandurua Nyandurua 

Kiambu Kiambu Kiambu 

  Thika   

 

Table F2: The area in km² per district/county 

PROVINCE 
DISTRICTS/COUNTIES AREA IN KM² 

ORIGINAL 1999 2009 1969/79 1989 1999 2009 

RIFT VALLEY 

Baringo Baringo Baringo 9,885 10,954 8,646 11,015.30 

  Koibatek (1995)       2,306   

Elgeyo-Marakwet Keiyo Elgeyo-Marakwat 2,279 3,049 1,439 3,029.80 

  Marakwet (1994)       1,588   

Kericho Kericho Kericho 3931 4,940 2,111 2,479.00 

  Bomet (1992) Bomet     1,882 2,471.30 

  Buret (1998)       955   

Nakuru Nakuru Nakuru 5769 7,190 7,242 7,495.10 

Nandi Nandi Nandi 2745 2,784 2,899 2,884.20 

Narok Narok Narok 16115 18,002 15,098 17,933.10 

  Trans-Mara       2,846   

Uasin Gishu Uasin Gishu Uasin Gishi 3378 3,218 3,328 3,345.20 

NYANZA 

Kisumu Kisumu Kisumu 2093 2,077 919 2,085.90 

  Nyando (1998)       1,168   

Kisii Kisii Central Kisii 2,196 2,198 649 1,317.50 

  Gucha (1995) Nyamira     661 899.3 

  Nyamira (1992)       896   

CENTRAL 

Nyandurua Nyandurua Nyandurua 3,528 3,373 3,304 3,245.30 

Kiambu Kiambu Kiambu 2,448 2,587 1,324 2,543.40 

  Thika       1,960   

 

 

Table F3: Population numbers per district/county 

PROVINCE 
DISTRICTS/COUNTIES POPULATION 

ORIGINAL 1999 2009 1969 1979 1989 1999 2009 

RIFT VALLEY 
Baringo Baringo Baringo 161,741 203,792 286,490 264,978 555,561 

  Koibatek (1995)         138,163   



63 
 

Elgeyo-
Marakwet 

Keiyo Elgeyo-Marakwat 159,265 148,868 216,487 143,865 369,998 

  
Marakwet 
(1994) 

        140,629   

Kericho Kericho Kericho 479,135 633,348 900,934 468,493 758,339 

  Bomet (1992) Bomet     724,186 382,794 724,186 

  Buret (1998)         316,882   

Nakuru Nakuru Nakuru 290,853 522,709 849,096 1,187,039 1,603,325 

Nandi Nandi Nandi 209,068 299,319 433,613 578,751 752,965 

Narok Narok Narok 125,219 210,306 398,272 365,750 850,920 

  Trans-Mara         170,591   

Uasin Gishu Uasin Gishu Uasin Gishi 191,036 300,766 445,530 622,705 894,179 

NYANZA 

Kisumu Kisumu Kisumu 400,643 482,327 664,086 504,359 968,909 

  Nyando (1998)         299,930   

Kisii Kisii Central Kisii 675,041 869,512 1,137,054 491,786 1,152,282 

  Gucha (1995) Nyamira       460,939 598,252 

  Nyamira (1992)         498,102   

CENTRAL 

Nyandurua Nyandurua Nyandurua 176,928 233,302 345,420 479,902 596,268 

Kiambu Kiambu Kiambu 475,576 686,290 909,762 744,010 1,623,282 

  Thika         645,713   

 

 

Table F4: Population density per district/county 

PROVINCE 
DISTRICTS/COUNTIES POPULATION DENSITY 

ORIGINAL 1999 2009 1969 1979 1989 1999 1999* 2009 2009* 

RIFT VALLEY 

Baringo Baringo Baringo 15 19 32 31 36.8 50 50 

  Koibatek (1995)         60       

Elgeyo-Marakwet Keiyo 
Elgeyo-
Marakwat 

52 49 71 100 94.0 122 122 

  Marakwet (1994)         89       

Kericho Kericho Kericho 97 128 182 222 236.1 306 306 

  Bomet (1992) Bomet       203   293 293 

  Buret (1998)         332       

Nakuru Nakuru Nakuru 40 73 118 164 163.9 214 214 

Nandi Nandi Nandi 75 108 156 200 199.6 261 261 

Narok Narok Narok 7 12 22 24 29.9 47 47 

  Trans-Mara         60       

Uasin Gishu Uasin Gishu Uasin Gishi 59 93 138 187 187.1 267 267 

NYANZA 

Kisumu Kisumu Kisumu 193 232 320 549 385.4 465 465 

  Nyando (1998)         257       

Kisii Kisii Central Kisii 307 396 517 758 657.7 875 790 

  Gucha (1995) Nyamira       698   665   

  Nyamira (1992)         556       

CENTRAL 

Nyandurua Nyandurua Nyandurua 52 69 102 145 145.2 184 184 

Kiambu Kiambu Kiambu 184 265 352 562 423.2 638 638 

  Thika         329       

*the average population density of the total counties in the original districts 
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APPENDIX G – DESCRIPTIVE STATISTICS 

 

Table G1: Descriptive statistics independent variables 

 min max mean 
standard 
deviation 

Rainfall 51.92 148.20 95.14 21.50 

Temperature 106.61 246.45 164.34 26.38 

Elevation 974.02 3068.73 2126.13 423.64 

Slope 0.33 48.81 9.05 4.87 

Aspect north -0.99 0.98 0.01 0.36 

Aspect east -1.00 1.00 -0.05 0.41 

Curvature -1.36 2.80 0.00 0.13 

TWI 4.35 10.97 6.36 0.42 

Soil pH 46.96 138.89 60.36 6.53 

Soil CEC 9.31 68.39 25.86 4.67 

Distance to Towns 0.34 49.09 19.27 10.30 

Distance to Roads 0.00 19.89 2.14 2.12 

Distance to Rivers 0.03 15.94 3.04 2.72 

Population Density ‘79 12.0 396.0 62.9 50.3 

Population Density ‘89 22.0 517.0 95.0 69.6 

Population Density ‘99 30.0 658.0 125.2 90.5 

Population Density ‘09 47.0 790.0 164.8 113.1 

 

 

Data distribution and histograms  

Geophysical variables
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Socio-economic variables
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APPENDIX H – NATURE OF LAND USE CHANGES 

 

Table H1: Change matrix indicating the nature of land use change period 1 

1973 – 1984 (IN KM²)                       

 
 

1973 
  

 F SA CI TE TP R I WB WL TOTAL GAIN 

1984 Forest 5197.7 32.4 00 0.0 0.6 6.0 0.0 0.0 0.0 5236.8 39.1 

 
Smallholder Agriculture 275.8 9829.9 0.0 0.0 4.3 242.2 0.0 0.0 0.0 10352.2 522.3 

 
Irrigated Commercial Agriculture 0.0 0.0 602.0 0.0 0.0 9.4 0.0 0.0 0.0 611.4 9.4 

 
Tea Estates 6.1 0.0 0.0 287.3 0.0 0.0 0.0 0.0 0.0 293.4 6.1 

 
Tree Plantations 134.3 107.5 0.0 2.2 383.7 50.9 0.0 0.0 0.0 678.7 295.0 

 
Rangeland 110.0 10.0 0.0 0.0 27.0 6357.5 0.0 0.0 0.0 6504.5 146.9 

 
Infrastructure 0.0 1.4 0.0 0.0 0.0 0.0 59.3 0.0 0.0 60.8 1.4 

 
Waterbodies 0.0 0.0 0.0 0.0 0.0 0.0 0.0 156.0 0.0 156.0 0.0 

 
Wetland 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4 207.6 208.0 0.4 

TOTAL 
 

5724.0 9981.2 602.0 289.5 415.6 6666.1 59.3 156.4 207.6 24101.7 
 

LOSS 
 

526.3 151.3 0.0 2.2 31.9 308.6 0.0 0.4 0.0 
  

 

Table H2: Change matrix indicating the nature of and use change period 2 

1984 - 1994 (IN KM²)                       

 
 

1984 
  

 F SA CI TE TP R I WB WL TOTAL GAIN 

1994 Forest 4936.2 6.2 0.0 0.0 0.0 8.0 0.0 0.0 0.0 4950.5 14.2 

 
Smallholder Agriculture 266.1 10289.7 0.0 0.0 34.7 359.6 0.0 0.0 0.0 10950.2 660.5 

 
Irrigated Commercial Agriculture 0.0 5.7 611.4 0.0 0.0 8.5 0.0 0.0 0.0 625.5 14.1 

 
Tea Estates 11.1 3.4 0.0 284.9 0.0 2.2 0.0 0.0 0.0 301.5 16.7 

 
Tree Plantations 1.5 13.0 0.0 8.6 612.8 70.3 0.0 0.0 0.0 706.2 93.4 

 
Rangeland 21.8 11.5 0.0 0.0 31.2 6055.8 0.0 0.0 0.0 6120.4 64.5 

 
Infrastructure 0.0 22.6 0.0 0.0 0.0 0.0 60.8 0.0 0.0 83.3 22.6 

 
Waterbodies 0.0 0.0 0.0 0.0 0.0 0.0 0.0 156.0 0.0 156.0 0.0 

 
Wetland 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 208.0 208.0 0.0 

TOTAL 
 

5236.8 10352.2 611.4 293.4 678.7 6504.5 60.8 156.0 208.0 24101.7 
 

LOSS 
 

300.5 62.4 0.0 8.6 65.9 448.6 0.0 0.0 0.0 
  

 

Table H3: Change matrix indicating the nature of and use change period 3 

1994 - 2003 (IN KM²)                       

 
 

1994 
  

 F SA CI TE TP R I WB WL TOTAL GAIN 

2003 Forest 4561.6 0.7 0.0 0.0 14.5 10.1 0.0 0.0 0.0 4586.9 25.3 

 
Smallholder Agriculture 304.6 10867.1 0.0 0.3 288.5 220.9 0.0 0.0 0.0 11681.5 814.4 

 
Irrigated Commercial Agriculture 0.4 50.2 625.5 0.0 0.0 12.5 0.0 1.5 0.0 690.2 64.6 

 
Tea Estates 22.1 4.7 0.0 301.2 8.8 1.4 0.0 0.0 0.0 338.2 37.0 

 
Tree Plantations 0.0 0.0 0.0 0.0 345.6 6.7 0.0 0.0 0.0 352.4 6.8 

 
Rangeland 61.7 7.1 0.0 0.0 44.8 5863.9 0.0 0.0 0.0 5977.5 113.6 

 
Infrastructure 0.0 20.4 0.0 0.0 4.0 4.8 83.3 0.0 0.0 112.6 29.2 

 
Waterbodies 0.0 0.0 0.0 0.0 0.0 0.0 0.0 154.5 0.4 154.9 0.4 

 
Wetland 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 207.6 207.6 0.0 

TOTAL 
 

4950.5 10950.2 625.5 301.5 706.2 6120.4 83.3 156.0 208.0 24101.7 
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LOSS 
 

388.9 83.1 0.0 0.3 360.6 256.5 0.0 1.5 0.4 
  

 

Table H4: Nature of and use change period 4 

2003 - 2013 (IN KM²)                       

 
 

2003 
  

 F SA CI TE TP R I WB WL TOTAL GAIN 

2013 Forest 4183.8 51.4 0.0 0.2 2.1 27.9 0.0 0.0 0.0 4265.4 81.7 

 
Smallholder Agriculture 382.0 11553.0 0.0 0.8 20.3 260.3 0.0 0.0 0.0 12216.4 663.4 

 
Commercial Agriculture 1.9 2.7 690.2 0.0 0.0 2.9 0.0 0.0 0.0 697.7 7.5 

 
Tea Estates 0.4 0.0 0.0 326.0 0.5 0.0 0.0 0.0 0.0 326.9 0.9 

 
Tree Plantations 2.4 41.2 0.0 11.2 322.8 27.1 0.0 0.0 0.0 404.7 81.9 

 
Rangeland 16.4 23.4 0.0 0.0 6.6 5658.7 0.0 0.0 0.0 5705.0 46.3 

 
Infrastructure 0.0 9.9 0.0 0.0 0.0 0.5 112.6 0.0 0.0 123.0 10.4 

 
Waterbodies 0.0 0.0 0.0 0.0 0.0 0.0 0.0 154.9 0.0 154.9 0.0 

 
Wetland 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 207.6 207.6 0.0 

TOTAL 
 

4586.9 11681.5 690.2 338.2 352.4 5977.5 112.6 154.9 207.6 24101.7 
 

LOSS 
 

403.1 128.5 0.0 12.2 29.5 318.8 0.0 0.0 0.0 
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APPENDIX I – SPATIAL PATTERN LAND USE CHANGES 

1973 1984 

1994 2003 
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APPENDIX J – LAND USE CHANGE MAPS 

2003-2013 

1973-1984 1984-1994 

1994-2003 
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APPENDIX K – LUC MAPS MAIN CONVERSIONS 

1973-1984 1984-1994 

1994-2003 2003-2013 


