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IV. Foreword 
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environment. Working on this research was based on a personal interest of automating and 

monitoring many processes in agriculture in real time. A special thanks goes out to J. Verrelst 

for providing the software package ARTMO and giving support to keep ARTMO up to the 

needs of this study. Hopefully this study adds to the potential of ARTMO and making it more 

popular in the remote sensing community. Another thanks goes out to B. Kooij for creating the 

front image. 

 

V. Abstract 

The estimation of leaf chlorophyll using canopy spectra with combined radiative transfer 

modelling and vegetation indices has not been researched intensively. However, estimation of 

leaf chlorophyll using spaceborne sensors (Sentinel-2 & VENµS) could provide interesting 

applications in precision agriculture. The aim of this research was to estimate leaf chlorophyll 

content of a potato crop using radiative transfer modelling and vegetation indices on simulated 

bands of two spaceborne sensors and CropScan spectral measurements. The vegetation indices 

used were: NDVI, CVI and TCARI/OSAVI. Firstly a sensitivity analysis was performed using 

PROSAIL and the vegetation indices. Secondly, the models were improved where possible 

using: Best Band Combination and model constraint. Thirdly, simple regression was performed 

on the outcome of the PROSAIL models. Finally, these regressions were validated on spectral 

field measurements of a potato field. Important outcomes of this research are: 1) the model that 

performed most optimal was the PROSAIL model based on TCARI/OSAVI after a model 

constraint improvement limiting the range of possible leaf angles for potatoes. 2) A ratio index 

using Sentinel-2 bands at 705nm and 1375nm, resembling the NDWI, was found to also be able 

to perform leaf chlorophyll estimation from canopy spectra.
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1. Introduction 

1.1. Precision Agriculture 

Precision farming is since the 1990’s an upcoming and popular new way of thinking about 

agriculture (Mulla, 2013), where more focus is laid upon sustainability and quality of the 

environment. Precision agriculture is a production system that promotes variable management 

practices within a field, according to site conditions (Seelan, Laguette, Casady, & Seielstad, 

2003). Many precision agriculture techniques and benefits are described in a review by Mulla 

(2013). Remote Sensing is a promising tool in precision agriculture as it is a non-destructive 

method of monitoring vegetation. Generally, remote sensing in precision agriculture uses two 

approaches; a physical and a statistical approach. The physical approach encompasses radiative 

transfer modelling using large models and parameterizing vegetation characteristics (Dawson, 

Curran, & Plummer, 1998; Jacquemoud & Baret, 1990; Jacquemoud et al., 2009). The statistical 

approach involves the creation of statistical models based on the spectral data itself. These 

statistical models can be based on spectral reflectance and vegetation index values. Vegetation 

indices play an important role at interpreting satellite data, these relate spectral information to 

vegetation properties. Usually used statistical models here are Simple Regression (Liu, Pattey, 

& Jégo, 2012; Magney, Eitel, Huggins, & Vierling, 2016), Multivariate Regression (Arenas-

Garcia & Camps-Valls, 2008; Hansen & Schjoerring, 2003; Lausch et al., 2013) and Machine 

Learning Algorithms (Omer, Mutanga, Abdel-Rahman, & Adam, 2016) . The approaches are 

used for the simulation and prediction of vegetation properties. Precision agriculture 

continuously aims to become more and more accurate using increasingly sophisticated sensors, 

large and detailed databases and better methodologies, such as improvements to previously 

mentioned approaches. An overview of technologies and trends in precision agriculture are 

described by Zhang, Wang & Wang (2002). Advances in precision agriculture have also led to 

an increase in performance of data collection (sensors, computing power, etc.). With these 

advances there is a transition from measuring crops in the field to measuring a crop in a field. 

Most models used to create crop predictions are based on canopy chlorophyll, where one would 

look at a whole field. Now, with current advancements a single crop can be assessed using leaf 

chlorophyll as a parameter for modelling. This increase in accuracy improves estimations in the 

plant nutrient balance, disease recognition, weed infestations (Thorp & Tian, 2004). An 

improvement to the current physical approach is increasing the precision of radiative transfer 

models by using leaf chlorophyll instead of canopy chlorophyll. 
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1.2. Radiative transfer models 

With the use of radiative transfer models one tries to model reality and estimate certain 

parameters which can be related to vegetation indices. In this particular research PROSPECT-

5 (Feret et al., 2008) and 4SAIL (Verhoef & Bach, 2007) are used. Both models are 

operationally used in precision agriculture. PROSPECT-5 is a radiative transfer model which 

is focused on the leaf level. PROSPECT-5 is based on PROSPECT; a model of leaf optical 

properties spectra (Jacquemoud & Baret, 1990). PROSPECT-5 is an improved version in which 

chlorophyll is separated from the carotenoids. 4SAIL (Verhoef, Jia, Xiao, & Su, 2007) is an 

improved version of the SAIL (Scattering by Arbitrary Inclined Leaves) model (Verhoef, 

1984). 4SAIL is a more numerical robust and speed optimized version of SAIL. It is also a 

radiative transfer model, but is based on canopy properties. There are numerous other variations 

and combinations, but these will not be used for this research. These two radiative transfer 

models are later on combined into PROSAIL (Verhoef, 2005). PROSAIL is currently the most 

popular radiative transfer model used in remote sensing (Jacquemoud et al., 2009). The model 

is designed to describe both spectral and directional variation of canopy reflectance as a 

function of leaf biochemistry and canopy structure.  

 

1.3. Vegetation indices 

Vegetation indices play an important role at interpreting satellite data, these relate spectral 

information to vegetation properties. Indices are calculated as ratios or as differences of several 

bands in the spectral regions: Visible spectrum (VIS), Near Infrared (NIR) and Shortwave 

Infrared (SWIR). Their applicability relies on its high correlation with biophysical parameters 

of plants (Wojtowicz, Wojtowics, & Piekarczyk, 2015) and low sensitivity to factors that make 

remote sensing data interpretation difficult, such as: atmosphere, soil background, viewing 

angle and non-green elements of vegetation (Huete, Justice, & Leeuwen, 1999). The 

Normalized Difference Vegetation Index (NDVI) has very common use in remote sensing 

(Rouse Jr, Haas, Schell, & Deering, 1974). This index is a ratio vegetation index, that calculates 

the difference and the sum of the red and NIR spectral regions, followed by the quotient of this 

difference and sum. A potential interesting vegetation index for leaf chlorophyll estimation, 

which is more focused on crops is the Transformed Chlorophyll Absorption in Reflectance 

Index (TCARI) divided by the Optimized Soil-Adjusted Vegetation Index (OSAVI). The index 

is based on the theory that leaf chlorophyll can be calculated by dividing canopy chlorophyll 

by the Leaf Area Index (LAI). TCARI is an index which is sensitive to canopy chlorophyll and 
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OSAVI is sensitive to LAI and insensitive to soil background.  TCARI/OSAVI is sensitive at 

low LAI, minimizes the soil background effect and is resistant to solar angle variations 

(Haboudane, Miller, Tremblay, Zarco-Tejada, & Dextraze, 2002). An especially interesting 

band configuration to predict crop chlorophyll with TCARI/OSAVI is centered at 705nm and 

740nm for Sentinel-2 (Clevers & Gitelson, 2013). Another interesting index is the Chlorophyll 

Vegetation Index (CVI) (Vincini, Frazzi, & D’Alessio, 2007). The CVI is developed 

specifically to predict leaf chlorophyll content and works well with planophile crops. CVI 

outperformed on canopy scale level as a predictor for leaf chlorophyll (Vincini, Amaducci, & 

Frazzi, 2014). 

 

1.4. Canopy chlorophyll to leaf chlorophyll 

There is a need to find better correlations between vegetation indices and vegetation properties, 

which could lead to better productivity estimations for environmental and agricultural 

applications (Herrmann et al., 2011). From a remote sensing perspective vegetation research is 

usually done at canopy level, because imagery is not detailed enough to measure at leaf level 

(Yoder & Pettigrew-Crosby, 1995). In precision agriculture it becomes more interesting to look 

at these slight variations in leaf chlorophyll to obtain a better understanding of the processes in 

individual plants. Canopy chlorophyll content is determined by the LAI and the leaf chlorophyll 

content (LCC) (Gitelson, 2005; Kooistra & Clevers, 2016). Current satellite image pixel sizes 

are still rather large for precision agriculture. Upcoming satellites like Sentinel 2 (10m) and 

VENµS (5.3m) have much better spatial resolution and have a larger potential for precision 

agriculture than for example Landsat 8 (30m). The transition from canopy reflectance spectra 

to leaf reflectance spectra is very complicated, because of variations in background reflectance 

and LAI confounded detection of very subtle differences in canopy reflectance due to changes 

in leaf chlorophyll concentration (Daughtry, 2000). Leaf chlorophyll is often measured using a 

handheld device called SPAD. Correlation between SPAD measurements and leaf chlorophyll 

have been found in the field (Jongschaap & Booij, 2004). The large scale difference between 

remote sensors measuring canopy chlorophyll and handheld sensors measuring leaf chlorophyll 

has caused that much research has been done on canopy chlorophyll content with remote 

sensing (Clevers & Gitelson, 2013; Clevers & Kooistra, 2014; Gitelson, 2005; Haboudane et 

al., 2002; Herrmann et al., 2011; Houborg et al., 2015; Nguy-Robertson et al., 2014; Vincini et 

al., 2007; Vincini, Frazzi, & D’Alessio, 2008), but there is much less research done on leaf 

chlorophyll content (Cohen et al., 2010; Vincini et al., 2014; Vincini & Frazzi, 2009, 2011).  
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1.5. Objective 

The objectives for this research are to find a relation between remote sensing observations and 

leaf chlorophyll content. To achieve this I will investigate which potential vegetation indices 

are most applicable to potato crops. Many methods used are revolving around either crop 

chlorophyll or leaf chlorophyll. This study will assess which method will best predict leaf 

chlorophyll contents. A software program (ARTMO) will be explored, which is adapted to 

performing calculations and simulations with spectral information, and to which extent this can 

aid the research. For application purposes it is interesting to compare two specific space borne 

sensors, because they have slightly different band configurations. To formulate these into 

research questions: 

- Which vegetation indices are most suitable for predicting leaf chlorophyll content as 

obtained from a sensitivity analysis using radiative transfer models in ARTMO? 

- What is the effect of spectral band definitions and different sensors on the selected 

vegetation indices and on their relationship with leaf chlorophyll content? 

- How can predictive models from radiative transfer modelling and validated on field 

measurements be improved to increase their accuracy? 
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2. Materials & Methods 

2.1. Materials 

2.1.1.  Van De Borne dataset (VDB) 

All data important to this study were collected at the Van De Borne (VDB) potato fields 

(Clevers & Kooistra, 2012). The VDB fields were located in the South of the Netherlands. 

Several plots were laid out there, of 30 by 30 meters, containing different nitrogen-containing 

fertilizer amounts and forms (Clevers & Kooistra, 2014). Spectroradiometric data was gathered 

using the CropScan Multispectral Radiometer (MSR16R); this sensor is referred to CropScan 

further along. It measured incoming and reflected radiation in 16 narrow spectral bands 

(Appendix Table 9). Calibration was performed by pointing the 28˚ FOV aperture towards the 

sun using an opal glass. Using this calibration, spectral reflectances were derived. The dataset 

included data on LAI, SPAD measurements (Vos & Bom, 1993) and spectral information from 

CropScan. SPAD data were converted to leaf chlorophyll with a potato specific model by 

Uddling (2007).  From the dataset everything else that was needed could be easily calculated. 

The measurements were taken in the years 2010, 2011, 2012 and 2013.  

 

2.1.2.  ARTMO 

The radiative transfer models and vegetation indices were collected in a program called 

Automated Radiative Transfer Models Operator (ARTMO) (Verrelst, Romijn, & Kooistra, 

2012). Its purpose was a collection of analysis methods for leaf and canopy models and spectral 

indices and functions as a toolbox. ARTMO let one very simply add new spectral indices which 

could be immediately translated to all sensors available, because it read the spectral band into 

the equation of the index introduced into ARTMO.  Furthermore, it included several tools to 

support this analysis. This program was used because its purpose fits into the methods that were 

used. It was also very capable of doing sensitivity analysis due to its fast computing power, 

which ensures that a large number of parameters can be varied. This improved the sensitivity 

analysis. 

 

2.1.3.  PROSAIL 

In the analysis the most relevant properties included in the radiative transfer models 

PROSPECT-5 and 4SAIL were varied within ARTMO. According to literature, these were 

LAI and leaf chlorophyll. The results from the PROSPECT-5 model were implemented in the 
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4SAIL model, which would therefore be a PROSAIL analysis. The step size to simulate a 

spectrum was defined by the spectral band of the sensors as described in Table 10 & Table 11 

of the Appendix. A step size of 1nm was possible, however, this would produce 378,180 

simulations with the variables presented below (Table 1). Therefore, it was chosen to only use 

the wavelengths given by the sensors’ configuration, which was supported by the objective to 

search for any differences between sensors. 

 

Table 1: Overview of parameters inputted in ARTMO used to create PROSAIL simulations 

PROSAIL parameters Nominal values 

Leaf structure parameter (N) 1.5, 2.0, 2.5  

Chlorophyll concentration (Cab) 5, 10, 15, 20, 30, 40, 50, 60, 70, 80 µg/cm2 

Carotenoids 7 µg/cm2 

Brown Pigments 0 

Water thickness (Cw) 0.0137 g/cm2 

Dry matter (Cm) 0.010 g/cm2 

Leaf Area Index (LAI) 0.5, 1.0, 1.5, 2, 3, 4, 5, 6 

Hot spot effect 0 

Leaf Angle Distribution (LAD) 0°, 45°, 90°  

Solar zenith angle 30°, 45°, 60° 

Diffuse/Direct radiation 0 

Soil coefficient 0 

Sun-view Azimuth angle 0° 

 

In Table 1 the different parameters are shown that were used for sensitivity analysis in 

PROSAIL. Leaf chlorophyll content was the most important variable in the analysis so this 

content had the largest number of steps. Carotenoids had a constant value, this was because 

around a wavelength of around 560nm its absorption coefficient value approaches zero, 

meaning that the effect of carotenoids from RGREEN onwards was very low. Brown pigments 

were kept at zero because a completely green plant was assumed. LAI was according to most 

literature a very important variable which explains the variation in canopy chlorophyll in a 

model. Leaf structure could be of interest for plants such as potato plants. Potato plants grow 

with a different leaf orientation throughout the season, this could potentially give interesting 

results regarding LAD and solar zenith angle. Rather extreme values of LAD were assumed, 

this was to assess how the models behaved under this extremity. Cw and Cm were values 

commonly used for potato crop simulations. Besides the LAI, LAD and solar zenith angle the 
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other 4SAIL parameters were kept constant, so that the effects of the more important parameters 

during sensitivity analysis were observed better. 

 

2.1.4.  Satellite systems (Sentinel-2, VENµS) 

Sentinel-2 and VENµS (Vegetation and Environment monitoring on a New Micro- Satellite) 

are two satellites which missions include monitoring of land systems such as agriculture and 

natural areas. Both contain multiple bands in the Visible (VIS) and Near InfraRed (NIR) 

wavelength regions. The design of the Sentinel-2 mission aimed at an operational multi-

spectral Earth-observation system that complemented the Land-sat and SPOT (Satellite Pour 

l'Observation de la Terre) observations and improved data availability for users (Drusch et al., 

2012). Sentinel-2 was launched on June 15th
 2015. It contains 13 bands of which 10 bands 

would be highly applicable for use in vegetation indices. These 10 bands are situated in the 

VIS and NIR regions (Appendix Table 10). It has a swath width of 290km by applying a total 

FOV of about 20˚. VENµS scientific objective is the provision of data for scientific studies 

dealing with the monitoring, analysis, and modelling of land surface functioning under the 

influences of environmental factors as well as human activities (Centre National d'Etudes 

Spatiales (CNES)). VENµS will be launched in June 2017. It contains 12 high spatial (5 to 10 

meter) and temporal (2 days) resolution bands. All bands of this sensor will be applicable on 

vegetation analysis and can be implemented in vegetation indices (Appendix Table 11).  

 

2.1.5.  Vegetation indices 

A detailed overview of the vegetation indices described in Section 1.3 is given in Table 2.  

Table 2: Overview of vegetation indices used, with formulation 

Index Formulation Reference 

CVI 𝐶𝑉𝐼 =
𝑁𝐼𝑅 ∗ 𝑅𝐸𝐷

𝐺𝑅𝐸𝐸𝑁2  

(Vincini et al., 

2007) 

NDVI 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑉𝐼𝑆

𝑁𝐼𝑅 + 𝑉𝐼𝑆
 

(Jackson, 1983) 

TCARI/OSAVI 

𝑇𝐶𝐴𝑅𝐼

𝑂𝑆𝐴𝑉𝐼 =  
3[(𝑅700 − 𝑅670) − 0.2(𝑅700 − 𝑅550) (

𝑅700
𝑅670

⁄ )]

(1 + 0.16)
(𝑅800 − 𝑅670)

(𝑅800 +  𝑅670 + 0.16)⁄

⁄

 (Haboudane et 

al., 2002) 

 

Further along the report there will be more references to these indices concerning their position 

within the equation. Therefore, within CVI the position in the bands of: GREEN, RED and NIR 
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would be referred to as RGREEN, RRED and RNIR respectively. The same concept applied to NDVI 

where: VIS and NIR are referred to RRED and RNIR respectively. R stood for the reflection in a 

spectral band, RGREEN was therefore the reflection in a band of a sensor chosen to be on the 

position of GREEN within the CVI. TCARI/OSAVI was already defined using R for the 

reflectance in a spectral band. This definition was chosen, because the spectral bands were 

chosen by Haboudane et al. (2002) as such. If these spectral band choices were presented more 

‘freely’, such as NDVI, this would have large effects on further analysis in this study. Analysis 

of TCARI/OSAVI would be impossible, because the theory behind these specific bands would 

be neglected.  
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2.1.6. Process  

Figure 1 shows the flowchart illustrating the order of processes which are further described in 

Section 2.2. As shown below the vegetation indices (Section 2.1.5) and PROSAIL parameters 

(Section 2.1.3) were used in the sensitivity analysis (Section 2.2.1). Here a choice was made to 

improve (Section 2.2.2) or not, followed by the estimation of leaf chlorophyll content which 

was validated (Section 2.2.3) on the VDB dataset (Section 2.1.1). 

 

PROSAIL

Sensitivity analysis

Vegetation index Parameters

Performance of models 

(R2 & RMSE)

Model improvement

Build Regressions

Estimate leaf 

chlorophyll content

Validation (R2 & 

RMSEP)

Van De Borne 

Field Spectra

Can be improved

Not improved

 

Figure 1: Flowchart of processes described for estimating leaf chlorophyll content using RTM and vegetation indices 

(Section 2) 
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2.2. Methods 

The methods are subdivided into three parts. Firstly, a sensitivity analysis is performed using 

the different sensors (Section 2.1.4), the three vegetation indices (Section 2.1.5) and the 

suggested parameter variations (Section 2.1.3). Secondly, some of the outcomes of the initial 

sensitivity methods were found possible to improve. Two improvement methods were applied. 

After the improvements three models based on the different vegetation indices were created. 

Lastly, these three models were validated using the VDB spectra and known leaf chlorophyll 

contents (Section 2.1.1). 

 

2.2.1. Sensitivity analysis 

The PROSAIL model parameters and the vegetation indices (Table 2) were tested with a 

sensitivity analysis. The parameters (Table 1) were all loaded into ARTMO, which created 2160 

PROSAIL simulations with a forward simulation. These simulations were loaded into 

ARTMO’s ‘spectral indices’ package and the modelled parameter (leaf chlorophyll) was 

selected. This was followed by the selection of a vegetation index. ARTMO then computed 

how well the selected index performed. ARTMO presented a list of band combinations with 

several measures of error. This list was computed with 50% of the added data, where the 

selection of spectra was performed full-randomly. A part of this list is shown in Table 3 as an 

example. 

 

Table 3: Example of results taken from ARTMO 
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In this case the list is sorted by the Normalized Root Mean Square Error (NRMSE), so the 

sample on top has the best predictive power based on NRMSE. Within the list the band 

combination which most closely resembles the band combination of the selected vegetation 

index was selected manually. From the selection the user was able to collect data where a 

vegetation index was plotted against the selected parameter, leaf chlorophyll in this case. 

ARTMO was capable of giving results for any band combination provided. Another sensitivity 

analysis that was performed included several band selections of the sensors Sentinel-2 and 

VENµS. Because the bandwidth of these satellites are not equal this could cause issues for 

application purposes. Therefore, for instance for TCARI/OSAVI in Table 2 the band 

configuration might change within the index. The band combinations were obtained from 

either: Sentinel-2, VENµS or CropScan. The choice of band combinations is shown in Table 4. 

 

Table 4: Selected spectral bands for the different sensors per vegetation index 

 NDVI CVI TCARI/OSAVI 

RRED 

(nm) 

RNIR 

(nm) 

RGREEN 

(nm) 

RRED 

(nm) 

RNIR 

(nm) 

R550 

(nm) 

R670 

(nm) 

R700 

(nm) 

R800 

(nm) 

SENTINEL-2 665 842 560 665 842 560 665 705 783 

VENµS 620 865 555 667 865 555 667 702 782 

CROPSCAN 670 870 550 670 870 550 670 700 780 

 

All sensors had a minor difference with the wavelengths required in TCARI/OSAVI. These 

spectral bands were chosen for being in close proximity of the requirements.   Although VENµS 

had a spectral band at 667nm, which was closer to 665nm, a choice was made to use the spectral 

band at 620nm. This was to test the sensitivity of the models based on NDVI with slightly 

different spectral bands in the same spectral region. The estimations of leaf chlorophyll  were 

based on these spectral bands, so when validating between CropScan and one of the sensors 

there would be a minor systematic error between the estimated leaf chlorophyll based on the 

satellite sensor results and the measured leaf chlorophyll based on CropScan spectra. 

When the proper band combination for the selected vegetation index was selected, the data was 

exported to R-Studio. Here, three regression fits were performed (linear, exponential, 

logarithmic). From these fits the Root Mean Squared Error (RMSE) and R2 were calculated, 

using Equation 1 and Equation 2.  
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Equation 1: Root Mean Squared Error (of Prediction) 

𝑅𝑀𝑆𝐸(𝑃) =  √
1

𝑁
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑁

𝑖=1 , 

where, N = number of samples, 𝑦𝑖  = observed value and 𝑦̂𝑖 = predicted value 

Equation 2: Coefficient of determination 

𝑅2 ≡ 1 −  
∑ (𝑦𝑖 − 𝑦̂𝑖)2

𝑖

∑ (𝑦𝑖−𝑦̅)2
𝑖

, 

where 𝑦𝑖 = observed value, 𝑦̂𝑖 = predicted value and 𝑦̅ = mean of observed data 

The best regression fit was obtained from the fit with lowest RMSE, giving the most accurate 

result. The example in Table 3 showed a table sorted on NRMSE, but the RMSE was calculated 

outside of ARTMO. NRMSE is used to estimate the error between models using different 

scales, which was not the case for this study and thus the RMSE would suffice. An analysis 

with R2 was done to see if the model made a precise regression. RMSE was also used in the 

validation stage, but here it was referred to as Root Mean Squared Error of Prediction (RMSEP). 

To specify what is considered sufficient for both estimators of error a minimum R2 of 0.60 and 

minimum RMSEP of 50% of the observed mean are necessary. 

 

2.2.2.  Model improvement 

The sensitivity analysis showed that some models could be improved. Two improvements were 

devised specifically for the outcomes of the sensitivity analysis. The first was Best Band 

Combination (BBC), which used the computational power of ARTMO. The second was 

Constraint, which cut the broad variation of parameters loaded into PROSAIL to resemble a 

more detailed and realistic situation of a given type of canopy (crop). 

 

2.2.2.1. Best Band Combination 

The Best Band Combination was obtained directly from ARTMO. Initially ARTMO calculated 

the best result for the applied fit. In Table 3 it can be seen that the best result for a linear fit for 

NDVI was obtained when spectral bands 705nm and 1375nm (Sentinel-2) were used. This 

spectral band combination was obtained by giving ARTMO the freedom to choose from all 

spectral bands the sensor contained. This method could give better results than the most 

commonly used bands for a given index. However, this method will not work well for an index 
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that has some physical basis, like the TCARI/OSAVI. TCARI/OSAVI required pre-determined 

spectral bands at a certain wavelength, because it was developed as a vegetation index that takes 

the ratio between a crop chlorophyll estimator (TCARI) and a LAI estimator (OSAVI) 

(Haboudane et al., 2002). If the spectral bands would be chosen freely from all present spectral 

bands of a sensor, this index would be used out of context, making interpretation very difficult. 

However, letting the band combination free is sometimes done for a simple ratio vegetation 

index such as NDVI. The index that resulted was referred to as a pseudo-‘index’. Interpretation 

of such combination could provide interesting results. 

 

2.2.2.2. Constraint 

The constraint improvement reduced a large range of a parameter into a more limited variation 

depending on what could be expected from the real situation. The constraint applied to the 

model in this study was a reduction in variation in the LAD parameter. The initial variation 

used was rather extreme concerning potato plants. Therefore, the range of LAD of 0˚ to 90˚ was 

adjusted to a more likely situation of 0˚ to 45˚. Because this parameter was of such interest the 

number of steps was also increased to four. The implemented LAD parameter in PROSAIL for 

the constrain improvement was 0˚, 15˚, 30˚ and 45˚. It followed that the number of forward 

simulations increased from 2160 to 2880 simulations. Such constrains could be applied to any 

of the parameters, however, this would make the model more specific to a certain vegetation, 

instead of giving a more generalized model. 

 

2.2.3. Validation  

Validation was done using the VDB data, as described in Section 2.1.1. For every year a 

separate dataset was created using the measured leaf chlorophyll and the CropScan spectra. 

These datasets were loaded into ARTMO. Again, using the ‘spectral indices toolbox’ the 

spectra were used to calculate the vegetation indices’ values. These results were exported to R 

Studio where they were compared to the results from the sensitivity analysis. Comparison was 

done by plotting the validation results with the sensitivity analysis results and check whether 

the points were on the regression curve. The model based on sensitivity analysis results was 

transferred in a simple way onto the VDB spectra. The scatterplots that were created referred 

to a model transfer in their title. It was acknowledged that this was not a ‘true’ transfer as 
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described in Fearn (2001). To test this, the vegetation index values of the validation were filled 

in the regression curves of the sensitivity analysis procedure. The estimations were then plotted 

against the measured values of the VDB spectra. However, for the Best Band Combination 

(Section 2.2.2.1) the model was built using the Sentinel-2 bands, which do not correspond at 

higher wavelengths with the CropScan sensor (Table 9 & Table 10). Therefore the model was 

validated using two band combinations. To simulate 705nm the wavelengths 700nm and 710nm 

were used and to simulate 1375nm the wavelengths 1050nm and 1650nm were used. Both 

combinations were investigated and plotted. No interpolation was performed. The R2 (Equation 

2) and RMSEP (Equation 1) were used to quantify the error.  
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3. Results 

The results are structured as depicted in Section 2.1.6. Firstly, the results of the sensitivity 

analysis and model improvements are shown and sorted by vegetation index. Secondly, the 

models are validated on the Van De Borne spectral dataset. 

 

3.1. Sensitivity Analysis 

The sensitivity analyses were carried out by ARTMO using the parameters described in Section 

2.1.3. Several improvements to the models were carried out according to the methods described 

in Section 2.2.2. 

 

3.1.1.  NDVI  

The NDVI-based sensitivity results are shown in Figure 2. 

 

A small difference in wavelengths can be recognized, because the VENµS sensor has an extra 

band in RRed (620nm) and the Sentinel-2 band in RNIR (842nm) is better centred in the NIR 

section of the spectrum than 865nm. These models are overall very sensitive to varying 

Figure 2: Simulated leaf chlorophyll concentration based on PROSAIL parameters using the NDVI index per sensor. Three 

different fitted functions are applied: linear, exponential and logarithmic. 
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parameters, excluding leaf chlorophyll in the higher leaf chlorophyll ranges. The NDVI values 

are very spread for every leaf chlorophyll interval (0.3-0.7 at 5 µgcm-2 and 0.3-1.0 at 80 µgcm-

2). Coefficients of determination are very low for all fits with a best fit of R2 = 0.38 for an 

exponential fit for the VENµS sensor. RMSE values are 20+ µgcm-2 for all fits, which is very 

high compared to the leaf chlorophyll range (5 – 80 µgcm-2). Predictions with this model are 

expected to be very poor. The models based on the VENµS sensor perform better than the 

Sentinel-2 based models with about RMSE values of about 2 µgcm-2 lower and much better R2 

values. The best fit for the NDVI Sentinel-2 based model and the NDVI VENµS based model 

is an exponential fit. 

 

 

Figure 3 shows the outcomes of the VDB spectra when overlaid with PROSAIL. Important to 

note here is that the band configuration of the VDB spectra is slightly different as described in 

Section 2.2.1. The leaf chlorophyll of the VDB plants is mostly in the range of 40 – 70 µgcm-

2. The years 2011, 2012 and 2013 are very clustered within this range, with only a few outliers 

at lower NDVI values. The year 2010 has a more scattered pattern. Many 2010 samples 

exceeded 80 µgcm-2 and the samples have a lower NDVI than the samples of the other years. 

Figure 3: Simulated leaf chlorophyll concentration based on the PROSAIL parameters using the NDVI per sensor, with the 

VDB spectra for all four sampled years. An exponential fit is applied. 
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Except for 2010 most points appear to fall within the sensitivity range of the upper leaf 

chlorophyll concentrations (40 – 80 µgcm-2).  

 

To improve the outcome of the NDVI sensitivity analysis a pseudo-NDVI is tested, as described 

in Section 2.2.2.1. The bands 705nm and 1375nm for Sentinel-2 and bands 620nm and 910nm 

for VENµS were chosen using ARTMO to decide which bands are the best combination for 

this analysis. These results are shown in Figure 4. 

 

There is a big difference between both sensors in this result. The main cause of this is likely the 

importance of the RNIR band (1375nm) in the Sentinel-2 sensor, which lacks in the VENµS 

sensor. The RMSE and R2 of the sensitivity analysis based on the NDVI in Sentinel-2 have 

improved in comparison to the traditional NDVI bands (RMSE = 20.00 µgcm-2
 (exponential 

fit) to RMSE = 12.40 µgcm-2 (linear fit) and R2 = 0.34 (exponential fit) to R2 = 0.75 (linear fit)). 

The relationship between leaf chlorophyll and NDVI has changed into a linear relationship from 

an exponential relationship. Only a linear relationship is presented, because after the best band 

combination improvement the best fit was a linear fit. However, the VENµS results still show 

a more exponential relationship and its results resemble the results of the previous analysis.  

Figure 4: Simulated leaf chlorophyll concentration after Best Band combination based on PROSAIL parameters using the 

NDVI index per sensor. A linear fit is applied.   
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Overall the model is rather sensitive to the parameters varied. There is still a high overall 

sensitivity to LAI and to lesser extent leaf chlorophyll. At higher concentrations of leaf 

chlorophyll the model becomes more insensitive to leaf chlorophyll. 

 

The VDB results have been plotted with the improved NDVI based model outcomes. Two plots 

are depicted according to Section 2.2.2.1 (Figure 5). Important to note here is that the spectral 

bands are slightly different, as was described in Section 2.2.3. 

 

The NDVI based models do not perform well for this analysis. In both plots the points do not 

align with the fitted line. Between 40 µgcm-2 and 60 µgcm-2 the points of the years 2011 and 

2013 seem to follow the fitted line. The NDVI based model with the VDB data using bands 

710nm and 1050nm appear slightly more accurate in this region than the NDVI based model 

with VDB bands 700nm and 1650nm. However, spread is too large to suggest anything about 

accuracy. Overall, most points are included in the parameter ranges, but for all years there are 

plenty of outliers. 

 

 

Figure 5: Simulated leaf chlorophyll concentration based on the PROSAIL parameters using the Best Band NDVI 

combinations, with the VDB spectra for all four sampled years. A linear fit is applied. 
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3.1.2. CVI 

The following sensitivity models are based on the CVI. The results are based on the method 

presented in Section 2.2.1. The outcome of the sensitivity analysis on the CVI based models is 

shown in Figure 6. 

 

The models based on the CVI for both sensors performed much better than the NDVI models. 

The sensitivity of the model can be better assessed than the NDVI-models’ sensitivity. The 

models for both sensors are insensitive for a change in parameters at low concentrations (< 40 

µgcm-2) of leaf chlorophyll. At higher concentrations sensitivity increases, because the spread 

of CVI at the leaf chlorophyll intervals increases. The best fit for both sensors is a logarithmic 

fit (R2
Sentinel-2

 = 0.77 and R2
VENµS = 0.76). The performance of the models is not significantly 

different between sensors (RMSESentinel-2 = 11.79 µgcm-2 and RMSEVENµS = 12.01 µgcm-2). A 

similar wavelength choice has been made for the NIR section of the spectrum as for the NDVI 

models (842nm instead of 865nm). 

Figure 6: Simulated leaf chlorophyll concentration based on PROSAIL parameters using the CVI index per sensor. Three 

different fitted functions are applied: linear, exponential and logarithmic. 
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In Figure 7  the VDB PROSAIL outcomes are plotted with the sensitivity results. Compared to 

the NDVI model the samples are spread less. A clear offset can be seen when comparing the 

modelled sensitivity with the VDB results. This could be caused by the large range of LAD. 

The trend of the VDB CVI values followed a linear fit instead of the modelled logarithmic fit. 

The CVI values of the VDB spectra are lower for the measured leaf chlorophyll than the model 

suggests. The CVI for the VDB spectra appears to have a more linear relationship with the leaf 

chlorophyll content instead of a logarithmic fit. 

 

  

Figure 7: Simulated leaf chlorophyll concentration based on the PROSAIL parameters using the CVI per sensor, with the 

VDB spectra for all four sampled years. A logarithmic fit is applied. 
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3.1.3.  TCARI/OSAVI 

The TCARI/OSAVI based models were plotted in Figure 8. TCARI/OSAVI requires a band 

with a wavelength of 800nm (Table 2). However, for this analysis bands RSentinel-2 = 783nm and 

RVENµS = 782nm are used.  

 

The TCARI/OSAVI appears to be less sensitive to higher leaf chlorophyll concentrations 

opposed to the CVI. TCARI/OSAVI shows much more spread at lower leaf chlorophyll 

concentrations. However, this spread might be caused by one of the parameters. It can be seen 

that the spread is caused by a break between model results. Around 30 µgcm-2 a divergence of 

the results can be seen, whereas most of the results fall within the exponential fit with higher 

TCARI/OSAVI values (0.5-1.0 at 5 µgcm-2), a part of the model results stay at a lower 

TCARI/OSAVI value (0.1-2.5 at 5 µgcm-2). There is almost no difference in sensors (R2
Sentinel-

2 = R2
VENµS = 0.60, RMSESentinel-2 = 15.90 µgcm-2 and RMSEVENµS = 16.00 µgcm-2). 

  

Figure 8: Simulated leaf chlorophyll concentration based on PROSAIL parameters using the TCARI/OSAVI index per 

sensor. Three different fitted functions are applied: linear, exponential and logarithmic. 
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To improve these results of this sensitivity analysis the parameter LAD was constrained 

according to Section 2.2.2.2. The result of this procedure are shown in Figure 9. 

 

 

After constraining the range of LAD much better results were achieved. For the model based 

on the Sentinel-2 sensor it was found that the RMSE decreased from RMSEunconstrained = 15.90 

µgcm-2 to RMSEconstrained = 7.47 µgcm-2. The R2 increased from 0.60 to 0.91. The model’s 

performance based on VENµS was similarly improved where RMSE decreased from 16.00 

µgcm-2 to 7.23 µgcm-2 and R2 increased from 0.60 to 0.92. The misfits in previous models were 

caused by the large range of LAD used to test sensitivity. At high leaf chlorophyll 

concentrations TCARI/OSAVI is quite insensitive to both LAI and leaf chlorophyll. It can be 

seen that the spread at these higher concentrations is small resembling insensitivity for LAI and 

the insensitivity in leaf chlorophyll can be assumed from the steepness of the fit. This steepness 

shows that the index value is not changing much, but the leaf chlorophyll is increasing in 

concentration. 

  

Figure 9: Simulated leaf chlorophyll concentration after constraint based on PROSAIL parameters using the TCARI/OSAVI 

per sensor. Three different fitted functions are applied: linear, exponential and logarithmic. 
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In Figure 10 the modelled and constrained TCARI/OSAVI is plotted with the VDB results.  

 

 

The VDB points nearly all fall within the range of the model. Again, the large leaf chlorophyll 

concentrations of the year 2010 have not been accounted for. The point cloud of the VDB data 

follows the fit rather well. However, there is a difference between sensors. The Sentinel-2 based 

model appears to perform a bit better at higher leaf chlorophyll concentrations (70-80 µgcm-2). 

The VDB points are closer to the fitted line than for the VENµS based model. On the other 

hand the VENµS based sensor seems to perform a little better at lower concentrations (40-50 

µgcm-2) than the Sentinel-2 based models, there are more points on the fitted line. 

  

Figure 10: Simulated leaf chlorophyll concentration based on the constraint PROSAIL parameters using the TCARI/OSAVI 

per sensor, with the VDB spectra for all four sampled years. An exponential fit is applied. 
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Figure 11 are two plots where the TCARI/OSAVI scale was reduced to 0 – 0.25 to investigate 

the regression in more detail. The year 2010 does not fit with the exponential regression curve 

as was already mentioned above. The year 2013 appears to fit less with the curve for the model 

based on the VENµS, because most of the points are clustered above the regression curve. The 

fit between the other two years (2011 and 2012) seems to be better, with less difference between 

sensors. 

 

3.2. Modelled Leaf Chlorophyll estimations 

The modelled regressions based on the results of the sensitivity analysis with PROSAIL were 

used to create estimations of leaf chlorophyll using the CropScan spectral measurements. These 

estimations were compared with the real leaf chlorophyll values found in the field. 

 

 

 

 

Figure 11: Simulated leaf chlorophyll concentration based on the constraint PROSAIL parameters using the TCARI/OSAVI per 

sensor, with the VDB spectra for all four sampled years on a smaller scale (0.0 - 0.25). An exponential fit is applied. 
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3.2.1. NDVI 

The following results are the outcomes of the modelled regression estimation according to 

Section 2.2.3. The leaf chlorophyll estimated by the NDVI based regressions are shown in 

Figure 12. 

 

The performance of the regression built from the NDVI based models in the previous section, 

Section 3.1, is not so good. Considering the results in Figure 2 this was expected. Especially 

for the years 2010 and 2011 most estimations are plotted in a horizontal pattern, not following 

the one to one line. This means that the model estimates the same leaf chlorophyll concentration 

at different index values. Results for 2013 are a little better, however, around 60 µgcm-2
 a lot 

higher concentrations are measured than estimated. Neither does it seem to estimate values 

higher than 60 µgcm-2. To further illustrate the performance of the regression the R2 and 

RMSEP are shown in Table 5:. 

 

 

 

Figure 12: Plots of estimations of leaf chlorophyll (µgcm-2 for the four measurement years of the VDB fields) built with the 

NDVI based model for the two different sensors: Sentinel-2 and VENµS. 
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Table 5: Comparison of measures of error: R2 and RMSEP of two different sensors: Sentinel-2 and VENµS, based on the leaf 

chlorophyll estimations created by the NDVI based model. 

 SENTINEL-2 VENUS 

 R2 RMSEP R2 RMSEP 

2010 0.381 44.32 0.389 45.10 

2011 0.243 12.52 0.244 12.33 

2012 0.179 16.47 0.175 16.88 

2013 0.189 15.82 0.189 16.20 

 

The year 2010 performs the least of all years. The R2
 is the highest, but Figure 12 showed a 

very horizontal pattern for this year, resulting in a better R2 than for the other years. RMSEP is 

high for all models considering the range of estimations are between 20 and 60 µgcm -2. 

Improvements to this method were made and the results of these were shown in Figure 13. 

 

 

The outcomes of the improved NDVI based model regression are slightly better than the 

regression results of the regular NDVI based model shown previously. The points are slightly 

better positioned around the one to one line and the spread of the points is smaller. There is also 

Figure 13: Plots of estimations of leaf chlorophyll (µgcm-2) for the four measurement years of the VDB fields built with the 

‘best band’ NDVI based model for Sentinel-2. 
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less of a horizontal pattern to be observed. Especially the VDB data of 2011 in the NDVI based 

model regression using bands 710nm and 1050nm appear to perform much better, with only a 

visible saturation around 60 µgcm-2. However, this saturation is less apparent in the NDVI 

based model regression using bands 700nm and 1650nm, where some estimations are more than 

60 µgcm-2. The performance is again further illustrated by Table 6. 

 

Table 6: Comparison of measures of error: R2 and RMSEP of two different band configurations: 700-1650nm and 710nm-

1050nm, based on the leaf chlorophyll estimations created by the ‘best band’ NDVI based model. 

 700NM - 1650NM 710NM - 1050NM 

 R2 RMSEP R2 RMSEP 

2010 0.653 20.52 0.306 24.39 

2011 0.312 12.24 0.633 10.12 

2012 0.008 10.94 0.178 14.54 

2013 0.001 11.26 0.153 13.65 

 

Again, the NDVI based model regression (700nm – 1650nm) has a good R2  for the year 2010. 

In Figure 13 (700nm – 1650nm) it can be seen that the estimations for the year 2010 are 

scattered linearly, resulting in a good R2. However, this linear cluster of points for 2010 does 

not estimate leaf chlorophyll content well, because it is scattered far from the one-to-one line, 

resulting in a high RMSEP. The RMSEP values are overall rather high, therefore these models 

have a poor performance. The VDB data of 2011 are predicted quite well using bands 710nm 

and 1050nm, with the lowest RMSEP of 10.12 µgcm-2, a R2 of 0.63 and most points are 

positioned on the one to one line. However, for the two consecutive years R2 is very low and 

there is no correlation between estimated and measured values. 

 

3.2.2. CVI 

The CVI based model regressions were plotted in Figure 14. The bands used were similar to 

the previous band choice in the sensitivity analysis of Section 3.1.2. 
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The estimations for both sensors follow a horizontal pattern, showing very bad predictive 

performance. All VDB data follow this pattern. The data points are all positioned underneath 

the one to one line meaning that the model’s regression estimations are underestimated. These 

horizontal patterns cause the R2 to be rather good, the estimations are precise, but not accurate 

(Table 7). The RMSEP values of these regressions were worse than the RMSEP values of the 

regression of the NDVI based models (Table 6). 

 

Table 7: Comparison of measures of error: R2 and RMSEP of two different sensors: Sentinel-2 and VENµS, based on the leaf 

chlorophyll estimations created by the CVI based model. 

 SENTINEL-2 VENUS 

 R2 RMSEP R2 RMSEP 

2010 0.780 36.58 0.780 37.26 

2011 0.740 24.61 0.740 24.99 

2012 0.620 21.32 0.620 21.67 

2013 0.433 23.22 0.433 23.51 

 

Figure 14: Plots of estimations of leaf chlorophyll (µgcm-2) for the four measurement years of the VDB fields built with the 

CVI based model for the two different sensors: Sentinel-2 and VENµS. 
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3.2.3. TCARI/OSAVI 

The TCARI/OSAVI based models were plotted in Figure 15. However, for this analysis only 

the constrained TCARI/OSAVI model was used, because of its much more improved 

performance.  

 

TCARI/OSAVI appears to be performing the best out of all the indices used. The VDB data 

follow a pattern along the one to one line. The VDB data from the years 2011 and 2013 follow 

this one to one line very well. However, the VDB data from 2012 were slightly overestimated. 

The VDB data of 2010 were underestimated at higher concentrations of leaf chlorophyll. There 

is a minor difference between sensors, the results in the model regression based on Sentinel-2 

seem to be more overestimated than the results in the model regression based on VENµS. This 

can also be spotted in the model’s performance in Table 8. The R2 values are quite good except 

for the VDB data of 2013. For the VDB data of the years 2011-2013 RMSEP for the VENµS 

based model regression is lower than the Sentinel-2 based model regression. At a minimum 

RMSEP of 6.40 µgcm-2 around the mean of (~) 60 µgcm-2 it could be said this model regression 

is quite good. 

Figure 15: Plots of estimations of leaf chlorophyll (µgcm-2) for the four measurement years of the VDB fields built with the 

constraint TCARI/OSAVI based model for the two different sensors: Sentinel-2 and VENµS. 
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Table 8: Comparison of measures of error: R2 and RMSEP of two different sensors: Sentinel-2 and VENµS, based on the leaf 

chlorophyll estimations created by the constrained TCARI/OSAVI based model. 

 SENTINEL-2  VENµS 

 R2 RMSEP R2 RMSEP 

2010 0.586 16.42 0.586 19.90 

2011 0.650 8.87 0.650 7.66 

2012 0.564 9.94 0.563 6.40 

2013 0.377 6.80 0.376 7.32 
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4. Discussion 

4.1. NDVI 

The NDVI is a commonly used index in biomass and canopy estimations and its purpose in this 

research was to compare the wide use of this index with indices that are more specialised 

towards leaf property estimations. Therefore, the expectations of this index were low. The 

NDVI results gave an insight towards the effects of the spectral band definitions and different 

sensors. The results of the models based on the NDVI were improved with a Best Band 

Combination method, which opened an interesting idea towards estimating leaf chlorophyll by 

using a ratio index. 

The NDVI was clearly outperformed by the other two indices (CVI and TCARI/OSAVI). The 

sensitivity analysis showed that the model based on NDVI was highly sensitivity to most 

PROSAIL parameters (Figure 2). The spread over the leaf chlorophyll intervals was very high. 

The sensitivity of leaf chlorophyll itself seems to decrease at higher simulated leaf chlorophyll 

contents. NDVI is known to be highly sensitive to low LAI values (< 3) and saturate at higher 

levels of LAI (Asrar, Fuchs, Kanemasu, & Hatfield, 1984). Because the LAI range went until 

6 a large part of the spread could be attributed to this behaviour of NDVI at lower LAI values. 

Another cause of the spread could be caused by a rather extreme range of LAD. The range of 

LAD for the simulations was from planophile – spherical – erectophile. The effect of LAD was 

clearly observed in the TCARI/OSAVI sensitivity analysis (Figure 8 & Figure 9), however, it 

was less apparent in the NDVI sensitivity analysis after comparison. Due to this spread a proper 

regression model could not be created. As Table 5 presented the R2
 were all very low (< 0.40) 

for every fit tried (linear, exponential and logarithmic). The best fit for both sensors was an 

exponential fit (RMSESentinel-2 = 20 µgcm-2 and RMSEVENµS = 19.5 µgcm-2), but the RMSE is 

too high considering a mean of the leaf chlorophyll range of 42.5 µgcm-2. The NDVI based 

models were clearly not able to be used for predicting leaf chlorophyll. 

There was a slight difference in the selected spectral band definitions (Table 4). VENµS 

possesses a band with a wavelength 620nm which gave better results in the RED than 667nm 

in the Visible spectral region and the Sentinel-2 bands had a slightly better focus around the 

Red-Edge. However, for the results it made no real difference, considering the already high 

spread due to the sensitivity to the PROSAIL parameters. A small improvement of the 

regressions can be observed for the VENµS based results compared to the Sentinel-2 results. 

However, nothing conclusive can be said about these results, due to the large errors in: 

sensitivity, low R2 and large RMSE. The validation with the VDB spectra showed again the 
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effect of the large spread on the predictive power of the NDVI based models (Figure 3). Except 

for the year 2010, the VDB spectra are positioned in a rather vertically oriented point cloud at 

a NDVI value of 0.9. Although the exponential regression fit does fit some points, it can be 

clearly observed that the point cloud does not follow the regression line. The sampled year 2010 

showed some very high leaf chlorophyll contents which could not be explained by PROSAIL, 

because the maximum input value of the leaf chlorophyll parameter for the simulations was 80 

µgcm-2. The effect was likely caused by its treatment with increased nitrogen fertilization 

(Clevers & Kooistra, 2014) and is therefore out of scope of this research. 

To improve the model a Best Band Combination was tried (Section 2.2.2.1). The analysis based 

on the VENµS spectral bands was only slightly improved by this method. However, the 

sensitivity analysis based on Sentinel-2 was greatly improved, RMSE decreased from 20 µgcm-

2 to 12.4 µgcm-2, and the best fit became linear. The wavelengths for this improvement were 

705nm and 1375nm. This resulted in a different ratio index as defined in Equation 3. 

Equation 3: Formulation of an undefined ratio index, using a SWIR and a Red-Edge band 

𝑅𝑎𝑡𝑖𝑜 𝑖𝑛𝑑𝑒𝑥 =
𝜆1375 −  𝜆705

𝜆1375 +  𝜆705
  

 

The wavelength of 705nm is positioned just at the start of the Red-Edge region and the 

wavelength 1375 is positioned between NIR and MIR, and is used for cirrus detection. So, leaf 

chlorophyll seems to be better predicted by a normalized difference between a water sensitive 

band and a Red-Edge band. Defined as such, it is related to the Normalized Difference Water 

Index (NDWI) (Gao, 1996). In the Red-Edge region the reflectance of leaf chlorophyll rapidly 

changes from low reflectance to high. In the water sensitive reflective signal in vegetation a 

rapid decline from high reflectance to low reflectance can be observed. The Red-Edge band is 

known to be very sensitive to leaf chlorophyll (Kooistra & Clevers, 2016). The 1375nm band 

is very close to 1400nm, where the atmosphere does not transmit any radiation, hence the use 

in cirrus detection. Gao (Gao, 1996) used the spectral bands 860nm (NIR) and 1240nm for the 

NDWI. The major difference between these two related indices is the use of Red-Edge spectral 

band (705nm) instead of a spectral band in NIR (860nm).  

When validating the VDB spectra with the outcome of the improved NDVI based model the 

results are much better. However, due to the CropScan configuration the 1375nm cannot be 

fully tested. Therefore, two different CropScan spectral bands were used to validate the model. 
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The wavelengths used were 1050nm and 1650nm, which were positioned on the NIR vegetation 

reflectance plateau and in the SWIR region respectively. The VDB spectra were following the 

regression line much better than the unimproved NDVI models. The difference between the 

wavelengths chosen for RNIR do not have a large effect on the predictive power of the improved 

models. Further investigation of the output of ARTMO revealed that both combinations were 

usually best or second best based on the RMSE. Although the regression has definitely 

improved, the eventual validation shows that the estimations are not very good (Figure 13). One 

band combination (710nm – 1050nm) for the year 2011 does look promising (Table 6) with a 

R2 = 0.633 and RMSEP = 10.12 µgcm-2. The other predictions show either a low R2 or high 

RMSEP. RMSEP is considered most important when estimating leaf chlorophyll content. It 

was previously seen that R2
 can be good, but this only suggests that the estimations are linearly 

clustered. Therefore, R2 is not the best estimator of error in these predictions. RMSEP on the 

other hand gives a much better estimation of error of prediction. RMSEP calculates the 

difference between observed and measured and gives a result in the same unit as the estimation. 

The result of RMSEP is then a mean of all differences, this error is much more important for 

predictive models than how the estimations correlate to another (R2). In Figure 13 it can be 

observed that there is a saturation effect caused by the model’s inability to predict larger leaf 

chlorophyll contents ( >80 µgcm-2), which were not taken into account for PROSAIL. 

Furthermore, it can be seen in Figure 5 that around 60 µgcm-2 would be underestimated, because 

the VDB spectra are on the left of the regression line. This means that leaf chlorophyll contents 

are actually higher than the model suggests for a certain NDVI value. Therefore, the model will 

predict lower leaf chlorophyll values when using this simulated regression. 

 

4.2. CVI 

CVI was proposed as an index which had an enhanced sensitivity to leaf chlorophyll and was 

insensitive to LAI. The index would be especially effective at low LAI values. The index should 

fit the purpose of leaf chlorophyll estimation. The results of CVI initially looked more 

promising than the results of the models based on NDVI. A relation was found, but it did not 

fit the VDB validation spectra. The big advantage of CVI is its practicality in precision 

agriculture, because it uses spectral bands which are used by most agricultural monitoring 

systems. 
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The CVI showed to be insensitive to LAI at lower leaf chlorophyll contents ( < 50 µgcm-2). The 

spread of points in Figure 6 is minimal in this lower leaf chlorophyll range. CVI is designed to 

be insensitive to LAI (Vincini et al., 2007), which corresponds with the behaviour of CVI in 

this research. However, CVI appears to become more sensitive to LAI at higher leaf chlorophyll 

contents. Kooistra & Clevers (2016) found with ANOVA analysis on a simulated dataset with 

PROSAIL that CVI explained variation in leaf chlorophyll content rather poorly (60.3%) and 

that this variation is explained more by LAI (16.3%) compared to other ratio indices used. This 

could suggest that at higher leaf chlorophyll content the effects of LAI become stronger, 

resulting in more spread and sensitivity to LAI. In Figure 6 it can also be seen that CVI is rather 

insensitive to leaf chlorophyll. The points in the scatterplot at lower levels of leaf chlorophyll 

are plotted on top of each other. This means that with increasing leaf chlorophyll content the 

CVI value does not change. This insensitivity was not expected and was not found in previous 

research (Vincini et al., 2007, 2008; Vincini & Frazzi, 2009, 2011). Their research usually used 

a limited range of leaf chlorophyll content and no or a small range of LAD values. A reason for 

this could be the crop, because potato was not investigated in these previous works. However, 

at higher leaf chlorophyll content the CVI does become more sensitive to leaf chlorophyll 

content, which corresponds with Vincini et al. (2014). Similarly to the models based on NDVI 

the large range of LAD had no effect on the outcome of the PROSAIL model. 

The results showed no difference in performance of the models based on the different sensors. 

The CVI required three spectral bands which were positioned in the RGREEN, RRED and RNIR. 

Sentinel-2 and VENµS both have spectral bands which are attributed to these regions. Figure 6 

showed that the best fit through the modelled points was a logarithmic fit (R2
Sentinel-2 = 0.77 and 

R2
VENµS = 0.76). A linear fit was also sufficient (R2

Sentinel-2 = 0.62 and R2
VENµS = 0.62) which 

were similar results to the performance of the regression found in Kooistra & Clevers (2016) 

(R2 = 0.64). The small difference is due to the high R2 for the sampled year 2014 (R2
2014 = 0.84), 

which was not included in this research.  

Validating the proposed model based on CVI showed that the model would not be able to 

properly predict the leaf chlorophyll content of the VDB spectra. A logarithmic fit was created 

through the modelled leaf chlorophyll content, however, the VDB spectra are located on the 

left side of the regression curve (Figure 7). This means that for the VDB spectra much lower 

values are calculated at higher leaf chlorophyll content. This does suggest that there is a relation 

between the VDB spectra and leaf chlorophyll concentration, because there appears to be a 

linear relation. In Figure 14 this linear relation is presented more clearly. The logarithmic 
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regression built with the PROSAIL model based on CVI always underestimates the actual 

measured leaf chlorophyll content in the VDB spectra. However, there is potential for an 

empirical linear relation instead of using the simulated relationship based on PROSAIL. Table 

7 shows that for all sampled years except 2013 the R2 is quite good for both sensors. This 

relation has not been further explored, because it was not within the scope of this research to 

attempt a purely statistical approach to create empirical models.  

 

4.3. TCARI/OSAVI 

The most promising of the indices chosen was TCARI/OSAVI. The index was designed to be 

used for leaf chlorophyll content estimations, because it follows the idea of correcting for LAI 

in a reflectance signal, by dividing an index sensitive to canopy chlorophyll by an index 

sensitive to LAI. TCARI/OSAVI is less practical than CVI, because it is constructed as a more 

complex ratio index compared to CVI. The spectral bands in TCARI/OSAVI cannot be chosen 

as ‘freely’ as in CVI, because of its theoretical base. Information of four spectral bands is 

required to use this spectral index, of which two are located in the Red-Edge spectral region. 

Therefore, spectral band selection was expected to have a large effect on the performance of 

the models based on TCARI/OSAVI. 

TCARI/OSAVI performed well under the initial PROSAIL parameters as presented by Table 

1. The index was insensitive to LAI at higher leaf chlorophyll contents and more sensitive to 

LAI at lower leaf chlorophyll contents (Figure 8). At 70-80 µgcm-2 the sensitivity analysis 

showed that the model was also insensitive to leaf chlorophyll change, but the insensitivity was 

not as strong as for the model built based on CVI. At lower leaf chlorophyll content more 

variation can be observed. A specific area can be seen in the bottom left of both plots in Figure 

8 as described in Section 3.1.3. This particular spread will be explained below. As Haboudane 

et al. (2002) acknowledge in their research the sensitivity of TCARI to LAI increases in early 

growth stages of vegetation, which can be related to low leaf chlorophyll content. By combining 

with OSAVI this effect is drastically reduced. However, the index still shows some sensitivity 

to LAI at lower leaf chlorophyll content. The same is found in the results of this research. 

However, the index performs much better than the other indices concerning LAI sensitivity, 

which was also found by Wu et al. (2008). For further prediction of leaf chlorophyll these 

models are not yet applicable. 
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The spectral band definition of TCARI/OSAVI was not as ‘free’ as the other two indices. This 

means that TCARI and OSAVI are both defined by carefully calculated ratios between indices 

(Kim, Daughtry, Chappelle, McMurtrey, & Walthall, 1994; Rondeaux, Steven, & Baret, 1996). 

Because both sensors possessed relevant spectral bands to be used for TCARI/OSAVI no real 

differences were found between both sensor (Figure 8). An exponential fit is found for both 

models based on the different sensors (R2
Sentinel-2 = 0.60 & R2

VENµS = 0.60), which was also 

found by Wu et al. (Wu et al., 2008). Haboudane et al. (2002) and Kooistra & Clevers (2016) 

found that TCARI/OSAVI was logarithmically related to leaf chlorophyll content. The 

logarithmic fit in Figure 8 scores almost as well as the exponential fit (R2
Sentinel-2 = 0.58 & 

R2
VENµS = 0.58). 

As mentioned before, there was a small divergence of spread in Figure 8 which was caused by 

the extreme range in LAD. To improve these models based on TCARI/OSAVI the PROSAIL 

parameter LAD was constrained to a more realistic LAD range (Section 2.2.2.2). The 

improvement had a positive effect on the results of these models (Figure 9). Apparently 

TCARI/OSAVI is sensitive to LAD at lower leaf chlorophyll content. This suggests that for 

field measurements LAD has to be taken into account for prediction of leaf chlorophyll. The 

performance of TCARI/OSAVI was now comparable to Haboudane et al. (2002) (R2 = 0.98), 

Wu et al. (Wu et al., 2008) (R2 = 0.88) and Kooistra & Clevers (2016) (R2 = 0.88). 

Validation with the VDB data showed that a good model was built for both sensors (Figure 10 

and Figure 11). It is important to note that the VDB spectra do not have low leaf chlorophyll 

content, so the model was not validated for low leaf chlorophyll content. The VDB spectra seem 

to be linearly correlated with leaf chlorophyll content (Table 8), but this linearity can also be 

observed in Figure 9 at higher leaf chlorophyll content ( > 40 µgcm-2) in the model. At this 

higher leaf chlorophyll content it was assumed that TCARI/OSAVI was insensitive to leaf 

chlorophyll and LAI. The VDB spectra are located within the parameter variation of the results 

of the PROSAIL model (Figure 11). It could be that the VDB spectra would be better fitted 

with the PROSAIL model if the leaf chlorophyll parameter had a larger range. The results are 

also slightly affected by the spectral band differences between the spaceborne sensors (Sentinel-

2 and VENµS) and CropScan. In Figure 15 the outcome of the leaf chlorophyll predictions are 

plotted. Both models based on TCARI/OSAVI are able to predict leaf chlorophyll well (RMSEP 

< 10 µgcm-2), except for the sampled year 2010 (Table 8). The sampled year 2010 was 

addressed in Section 4.1. In Figure 15 an underestimation similar to the underestimations made 
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by the models based on NDVI can be observed. This is again most likely due to the model’s 

inability to properly predict leaf chlorophyll content over 80 µgcm-2.  
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5. Conclusion 

TCARI/OSAVI was the best vegetation index for predicting leaf chlorophyll content from 

canopy spectra after constraining the LAD parameter. Sensitivity analysis with PROSAIL in 

ARTMO showed that TCARI/OSAVI was insensitive to LAI, which made it a capable 

vegetation index to estimate leaf chlorophyll from canopy (crop) spectra using radiative transfer 

modelling. The computing power of ARTMO opened up many possibilities for radiative 

transfer modelling, where a lot of parameters and ranges of parameters could be varied.  

Spectral band definitions had different effects per sensor. NDVI was affected by choosing 

different spectral bands, which gave cause to the improved ‘pseudo’ NDVI. CVI was much less 

affected by different spectral band definitions as was TCARI/OSAVI. However, 

TCARI/OSAVI required specific spectral bands which could not easily be varied in the 

sensitivity analysis. The relationship between leaf chlorophyll content and a vegetation index 

differed per vegetation index. TCARI/OSAVI had the best relationship with leaf chlorophyll 

content, which has also been confirmed by other works. It is acknowledged that the relationship 

of CVI has to be further explored as there appears to be a linear relationship, but it could not be 

explained by the PROSAIL model. 

Two improvements were applied to the models initially created by PROSAIL. Best Band 

combination had a large effect on the performance of the models based on NDVI. It changed 

the relationship of an inaccurate exponential model to a rather accurate linear model. The 

spectral band definition changed from a RED and NIR band to a Red-Edge and water sensitive 

band, as related index of the NDWI, but this relationship has to be explored further. CVI was 

not improved by using either method (Best Band combination & Constraint), but as mentioned 

before it could be improved with empirical analysis of the linear relationship found. 

TCARI/OSAVI was greatly improved by constraining the LAD parameter in PROSAIL. By 

doing so, the accuracy of the PROSAIL models based on TCARI/OSAVI increased to the point 

that these models could be used for leaf chlorophyll estimation. 
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6. Recommendations 

 

ARTMO proved to be very capable of performing sensitivity analysis. Not only by doing RTM, 

but it also contains MLA and other powerful statistical procedures. These were not explored in 

this research. However, it is strongly recommended to explore these methods, as they could 

increase the effectiveness of RTM and sensitivity analysis of vegetation indices. It was also 

possible in ARTMO to create models for every nanometer in the spectrum. Considering the 

interesting finding of the ratio index which resembled the NDWI, this could provide more 

possibilities for undiscovered vegetation indices. 
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8. Appendix 

 

Table 9: CropScan specifications 

SPECTRAL 

BAND  

POSITION (NM) 

BANDWIDTH 

(NM) 

490 7.3 

530 8.5 

550 9.2 

570 9.7 

670 11 

700 12 

710 12 

740 13 

750 13 

780 11 

870 12 

940 13 

950 13 

1000 15 

1050 15 

1650 200 

 

Table 10: Sentinel-2 specifications 

BAND 

NAME 

MIN MAX CENTER FWHM 

BAND1 433.000 453.000 443 20 

BAND2 457.500 522.500 490 65 

BAND3 542.500 577.500 560 35 

BAND4 650.000 680.000 665 30 

BAND5 697.500 712.500 705 15 

BAND6 732.500 747.500 740 15 

BAND7 773.000 793.000 783 20 

BAND8 784.500 899.500 842 115 
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BAND8A 855.000 875.000 865 20 

BAND9 935.000 955.000 945 20 

BAND10 1360.000 1390.000 1375 30 

BAND11 1565.000 1655.000 1610 90 

BAND12 2100.000 2280.000 2190 180 

 

Table 11: VENuS specifications 

BAND 

NAME 

MIN MAX CENTER FWHM 

BAND1 400.000 440.000 420 40 

BAND2 423.000 463.000 443 40 

BAND3 470.000 510.000 490 40 

BAND4 535.000 575.000 555 40 

BAND5 600.000 640.000 620 40 

BAND6 652.000 682.000 667 30 

BAND7 690.000 714.000 702 24 

BAND8 734.000 750.000 742 16 

BAND9 774.000 790.000 782 16 

BAND10 845.000 885.000 865 40 

BAND11 900.000 920.000 910 20 

 

 


