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1.1	 THE MODEL COMPOUNDS OF THE PRESENT THESIS: 

ARISTOLOCHIC ACIDS
The present thesis focusses on the development of a non-animal based approach to predict in vivo 

kidney toxicity using aristolochic acids (AAs) as model compounds. AAs are important constituents 

of all Aristolochia species that have been consumed by humans as alternative medicine for more than 

2,500 years [1] to treat arthritis, gout, rheumatism and snake bites [2, 3]. AAs are nitrophenanthrene 

carboxylic acids and the most important congeners are 8-methoxy-6-nitrophenanthro-(3,4-d)-1,3-

dioxolo-5-carboxylic acid (AAI) and its 8-demethoxylated form (AAII) [4] which differ only in the 

presence or absence of a methoxy group as shown in Figure 1.1. The amount of AAs present in plants 

varies depending on the species, season, geographical location and other factors [5]. However, AAI 

is generally the major component in plant extracts containing AAs [6, 7].

	 Based on the evidence from epidemiological and experimental animal data, the 

International Agency for Research on Cancer (IARC) concluded that herbal remedies containing 

plant species of the genus Aristolochia are carcinogenic in humans and classified these preparations 

as group 1 carcinogens [8]. Furthermore, AAs are also listed among the most potent 2% of known 

carcinogens [8, 9].

Figure 1.1 Structural formulas of aristolochic acid I (AAI) and aristolochic acid II (AAII).

1.1.1	 Incidents and epidemiological data on aristolochic acids
As herbal medicine, the ancient Greek used Aristolochia plants to stimulate the process of childbirth 

and to prevent infections after giving birth [10]. Before 1982, AA-containing preparations were 

used in pharmaceutical preparations in Germany because of their anti-inflammatory properties 

[3]. Aristolochia species have also been used in treatment of bites and poisonings, as therapy for 

gastrointestinal problems and as general health care preparations [10]. However, products containing 
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AAs have been withdrawn from the market in Germany and many other countries [3] after AAs were 

identified to be carcinogenic in rats in 1982 [11, 12]. The risks of exposure to AAs became even more 

evident in the 1990s when more than 1800 Belgian women were accidently exposed to AAs via the 

use of weight loss pills [13]. More than 100 of these young women developed chronic renal failure 

and several of them developed renal and bladder cancer [13, 14]. These women were exposed to 

Aristolochia fangchi (containing AAs: 0.65 ± 0.56 mg/g of powder) instead of Stephaniae tetrandra 

because for both herbs the same Chinese nomenclature is used: Fang Ji [13, 14]. AAs have also been 

associated with chronic progressive renal diseases such as Chinese Herb Nephropathy and Balkan 

Endemic Nephropathy that became later known as Aristolochic Acid Nephropathy (AAN) [1].  AAN 

within the Balkan resulted from exposure to flour which was produced from wheat that had been 

contaminated with seeds of Aristolochia clematitis [15]. 

1.1.2	 ADME (absorption, distribution, metabolism and excretion)
To become genotoxic and carcinogenic, AAs need to be metabolized. The principal metabolic 

pathways for AAs have been established based on studies in rats, mice and humans [16]. Figure 1.2 

presents an overview of AA metabolism. AAI is metabolized by oxidative and reductive pathways 

while AAII is only metabolized by the reductive pathway [17]. Under aerobic conditions, AAI is 

O-demethylated by cytochrome P450 (CYP) 1A1/2 to a less toxic metabolite, aristolochic acid Ia 

(AAIa) [18, 19]. However, under anaerobic conditions, the nitro group is reduced to form aristolactam 

I, while AAII, which lacks the O-methoxy group, is converted to aristolactam II [3, 20]. This reaction 

is catalyzed by both cytosolic and microsomal enzymes, with NAD(P)H:quinone oxidoreductase 

(NQO1) being most efficient in nitroreduction [7, 21].

	 The O-demethylation pathway is considered a detoxification reaction to form AAIa as a 

major metabolite which will undergo subsequent conjugation reactions followed by excretion from 

the body via urine and feces [16, 18, 22]. Nitroreduction is related to bioactivation of AAI and AAII 

to DNA reactive intermediates that have been suggested to be the linked to the carcinogenicity of 

these compounds [23-25]. The DNA adducts formed were reported to be 7-(deoxyadenosin-N6-yl)

aristolactam I or II (dA-AAI or dA-AAII) and 7-(deoxyguanosin-N2-yl)aristolactam I or II (dG-AAI or dG-

AAII) [3, 22, 23, 26, 27] (Figure 1.3). dA-AAI was shown to be the most persistent adduct in the target 

tissue, i.e. the kidney [3, 28]. 

	 Although AAs can be bioactivated in other organs such as liver, the kidney has been 
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shown to be the major target organ for AA-induced toxicity, including AA-DNA adduct formation 

and tumor induction [29]. This tissue-specific toxicity has been suggested to be due to the fact that 

the capacity of the DNA repair processes in the kidney is lower than in other organs [25] and/or 

to the ability of the proximal tubular cells to take up and concentrate AAs and their metabolites, 

making the kidney more susceptible to AA-induced toxicity [29].

	 The conjugation of AAs has not been extensively studied so far, although AA metabolites 

have been found in the urine and feces in conjugated form either as glucuronides, sulfate or acetate 

esters [16, 19, 30]. In rats, about 83% from a total dose of AAI is excreted via urine or feces during 72 

hours after a single oral exposure but only 14% from an equivalent total dose of AAII is excreted via 

urine or feces [16], which may indicate that AAII circulates longer in the body than AAI.
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Figure 1.2 Metabolic pathways for bioactivation and detoxification of AAs. NR = nitroreduction, 

NQOI = NAD(P)H:quinone oxidoreductase, CYPs = cytochromes P450, UGTs = uridine 5’-diphospho-

glucuronosyltransferases, SULTs = sulfotransferases [based on 31, 32-34].
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Figure 1.3 Structure of AA DNA adducts; 7-(deoxyadenosin-N6-yl)aristolactam I (dA-AAI), 

7-(deoxyguanosin-N2-yl)aristolactam I (dG-AAI), 7-(deoxyadenosin-N6-yl)aristolactam II (dA-AAII) 

and 7-(deoxyguanosin-N2-yl)aristolactam II (dG-AAII) [based on 3, 34].

1.2	 TOXICITY OF ARISTOLOCHIC ACIDS

1.2.1	 Nephrotoxicity 
The kidney has been shown to be the principal target organ for AA toxicity [35, 36]. The acute toxicity 

of AAs was first established in rats and mice by Mengs (1987) [36]. Oral and intravenous administration 

of AAs at high doses led to death due to acute renal failure within 15 days. The predominant feature 

seen in the animals was severe necrosis of the renal tubules [36]. The blood urea nitrogen (BUN) and 

serum creatinine concentration are commonly used markers for the estimation of renal function. 

Upon exposure of rats [35, 37-39] or mice [40-44] to either AAI or to a mixture of AAs, the levels of 

BUN and serum creatinine increased significantly, reflecting AA-induced kidney toxicity. AAs have 

also been shown to cause acute hepatotoxicity, however the dose at which AAs cause acute kidney 

toxicity is much lower than the dose causing acute hepatotoxicity [45]. 

1.2.2	 Genotoxicity and mutagenicity
AAs have been shown to be genotoxic mutagens in both in vitro and in vivo assays [3]. AAs are able 

to induce reverse mutation in Salmonella typhimurium strains TA100 and TA1537 exposed in the 

absence or presence of a metabolic activation system (S9). However, when nitroreductase deficient 

strains of bacteria (TA100 NR) were exposed to AAs the compounds tested negative for mutagenic 

activities indicating that nitroreduction is a crucial step for the bioactivation of AAs to their ultimate 

mutagenic metabolite(s) [46]. Mutagenicity of AAs also depends on the oxygen tension as under 
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low oxygen tension AAI is 19 times more mutagenic than AAII while under standard culture 

conditions, AAI is only 4 times more mutagenic than AAII [47]. In vivo studies also showed that AAs 

are both mutagenic and clastogenic inducing both gene mutations and chromosomal aberrations 

[48, 49]. It has been found that the mutational frequency in the target tissues (kidney, bladder 

and forestomach) is significantly higher in AA-exposed lambda/lacZ transgenic mice containing 

the lacZ gene as a reporter gene for mutations [50] than in the control group and the sequence 

analysis revealed that AAs induced mainly A:T to T:A transversions [48] in the p53 tumor suppressor 

gene. Such mutations were also observed in the upper urinary malignancies in Balkan Endemic 

Nephropathy patients exposed to AAs [51, 52].

	 A powerful tool for elucidating mechanisms that may underlie chemical-induced 

carcinogenicity is to characterize and quantify DNA adduct formation, as DNA adducts in humans 

can serve as an early indicator for cancer risk [53]. Although DNA adducts are generally considered 

a biomarker of exposure [54, 55] rather than a biomarker of effect, it is also well recognized that 

increased levels of DNA adduct formation reflect a risk factor for cancer development. Both AAI and 

AAII form DNA adducts in vitro in different cell lines [56-59] and in in vitro incubations using rat liver 

S9 mix [25], or rat and human liver and kidney fractions (cytosol and microsomes) incubated with 

calf thymus DNA [7]. DNA adduct formation has also been observed in vivo in rats [23, 29, 60], mice 

[20, 32, 61] and humans [28, 62] when exposed to AAs. A frequently used method for detection of 

AA-DNA adducts is by 32P-postlabeling [20, 23, 29, 62]. However, this technique does not provide 

information on the structure of the adducts and may lead to underestimation of the adduct levels 

due to differences in hydrolysis and labeling efficiencies of normal and adducted nucleotides [63, 

64]. Thus, in the present thesis DNA adducts of AAs were identified and quantified using liquid 

chromatography coupled with electro spray ionization mass spectrometry (LC-ESI-MS/MS). By using 

this technique, more precise outcomes are obtained [63, 65] and the possible underestimation of 

DNA adduct formation as observed for the 32P-postlabeling method is no longer an issue.

1.2.3	 Carcinogenicity 
The carcinogenic properties of AAs are well documented in both humans (see 1.1.1; Incidents and 

epidemiological data on aristolochic acids) and experimental animals. The carcinogenic properties 

of AAs were first discovered by Mengs et al. (1982) [11] in studies in which male and female rats 

that were daily exposed to AAs by gavage at dose levels of 0, 0.1, 1 and 10 mg/kg bw/day showed 
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an increase in kidney tumor formation in a dose- and time-dependent manner. Mengs (1988) [66] 

further studied the tumor formation in mice that were daily exposed to AAs by gavage at dose 

level of 5 mg/kg bw/day showing the formation of kidney adenomas within 3 weeks of exposure.  

Schmeiser et al. (1990) [67] found that not only mixtures of AAs are carcinogenic but that also AAI 

alone can induce tumors in rats. In contrast, data on tumor induction upon exposure to AAII alone 

have not been documented.

1.3	 REGULATORY STATUS OF ARISTOLOCHIC ACIDS
After the Belgian incident, the European Agency for the Evaluation of Medicinal Products issued 

a position paper in October 2000, warning the European Union Member States ‘to take steps to 

ensure that the public is protected from exposure to aristolochic acids arising from the deliberate 

use of Aristolochia species or as a result of confusion with other botanical ingredients’ [68]. Risk 

management actions have been taken by the authorities of most EU Member States to prohibit 

the use of Aristolochia sp. especially in herbal medicine and cosmetic products. The sale of AA-

containing botanical products was significantly limited and also prohibited since 2000 in several 

other countries such as the USA, Australia, Canada, New Zealand and in many Asian countries (e.g. 

Japan) [29, 69]. However, in China not all products containing AAs are banned, for example, Fructus 

Aristolochiae can be used under prescription of Chinese medicine practitioners [70]. 

	 The Belgian incident emphasized the problems related to AAs and raised the question 

about the safety of plant food supplements (PFS), initiating risk management actions. However, it 

must be emphasized that the carcinogenic effects of AAs were already known [11, 12] before the 

Belgian incident. Indeed, the lack of effective surveillance systems for PFS [70] has been the primary 

cause for the Belgian incident. Despite all the warnings and the regulation, products containing AAs 

are still found on the market after 2001, for example in traditional medicinal products [69, 71-77] 

and in products available via online markets [78, 79], and are thus available for human consumption. 

This indicates a need for safety evaluation of PFS that might contain AAs. 

1.4	 RISK EVALUATIONS
There are several approaches for assessing risks of chemicals in foods that are both genotoxic and 

carcinogenic. For chemicals that are avoidable, a zero tolerance approach is recommended which 

implies that these compounds cannot enter the market and cannot be used. For chemicals that 
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are unavoidable, the ALARA principle suggesting to reduce the exposure to as low as reasonably 

achievable (ALARA) was introduced. This approach provides a qualitative approach to the risk but 

does not take into account the human exposure [80, 81]. The threshold of toxicological concern 

(TTC) approach is useful for chemicals that do not have carcinogenicity data to define the dose-

response relationship. The risk is considered negligible if the exposure is less than 0.15 µg/person 

per day for less potent carcinogens but it is not applicable to potent carcinogens that belong to one 

of the excluded chemical categories, such as aflatoxin-like compounds and N-nitroso compounds 

[80-83]. 

	 Another common approach to assess the risks of chemicals that are genotoxic and 

carcinogenic is by deriving a virtual safe dose (VSD) by extrapolating the animal carcinogenicity 

data obtained at high dose levels to low dose levels at which the additional lifetime cancer risk 

would be one in a million upon lifetime exposure. Based on this simple linear extrapolation, usually 

far outside the experimental dose, the VSD obtained is highly influenced by the shape of dose-

response curve and the model selected. Furthermore, the biological processes underlying cancer 

formation based on the selected model are unknown and interspecies differences are not taken into 

account when extrapolating the animal carcinogenicity data to the VSD for human [84]. Therefore, 

new approaches are needed to overcome these issues.

	 In order to harmonize the risk assessment of genotoxic carcinogens, the so-called margin 

of exposure (MOE) approach has been developed, using the ratio between a reference point derived 

from the dose-response data on tumor formation from an experimental or epidemiology study and 

the estimated human lifetime exposure [84]. By using this approach, the reference point (also called 

a point of departure (POD)) is no longer outside the experimental dose range. In order to derive 

the appropriate POD, the European Food Safety Authority (EFSA) agreed that a benchmark dose 

(BMD) approach is the most recommended approach [84, 85]. The BMD approach makes use of all 

the data points in the dose-response curve and better accommodates the uncertainties of fewer 

amounts of data [80, 84]. Commonly, the BMDL10 (the lower confidence limit of the BMD causing 

10% extra tumor incidence above background level) is chosen as a POD for calculating the MOE [84]. 

The MOE is calculated as the ratio between the BMDL10 and the estimated daily intake (EDI) for the 

relevant study population. EFSA considered that, when the MOE is more than 10,000, the chemical is 

considered as a low priority for risk management actions [84]. The threshold value of 10,000 includes 

i) a factor 100 for interspecies differences and human variability in biokinetics and biodynamics 

thus dealing with some of the criticism on the VSD approach, ii) a factor 10 for interindividual 
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uncertainties in cell cycle control and DNA repair, and iii) a factor 10 for the uncertainties arising 

from the fact that the used POD (e.g. BMDL10) is not equivalent to a no observed adverse effect level 

(NOAEL) and the effects can occur at lower dose [80, 84]. The MOE is calculated based on lifetime 

exposure. 

1.5	 PHYSIOLOGICALLY BASED KINETIC (PBK) MODELING-BASED 

REVERSE DOSIMETRY
To define the POD in risk assessment using the MOE approach requires animal carcinogenicity data 

to define the BMDL10. Also evaluation of other toxicological endpoints requires in vivo dose-response 

data. Therefore, the development of a mode of action-based approach without the use of animal 

testing is of interest. A novel alternative testing strategy that can potentially be used in quantitative 

risk assessment without animal testing, consists of translation of in vitro concentration-response 

curves to in vivo dose-response curves using PBK modeling-based reverse dosimetry [86-89]. By 

using this integrated in vitro-in silico approach, in vivo dose effect levels and PODs can be defined 

based on the in vitro effect levels that are assumed to represent the tissue or blood concentrations 

that would cause toxicity and are translated to in vivo dose levels. Previously, it was shown that 

PBK modeling-based reverse dosimetry can be used to predict in vivo dose-response curves and 

PODs for developmental toxicity from results obtained in the in vitro differentiation assay of the 

embryonic stem cell test [88-90] and also to predict in vivo DNA adduct formation [91-93]. By using 

the same approach, the present thesis aimed to investigate whether PBK modeling-based reverse 

dosimetry can convert in vitro concentration response-curves for AA-induced kidney toxicity to in 

vivo dose response-curves for kidney toxicity, thereby including a novel target tissue and endpoint 

for evaluation by this alternative testing strategy.

	 The PBK modeling-based reverse dosimetry approach to predict in vivo dose-response 

curves and a POD for risk assessment consists of the following steps: (1) establishment of an in vitro 

concentration-response curve for a selected relevant endpoint using an adequate in vitro model, (2) 

development of a PBK model describing the in vivo kinetics of the parent compound and relevant 

metabolites in relevant tissues, (3) evaluation of the PBK model against available literature data, (4) 

translation of the in vitro concentration-response curve into an in vivo dose-response curve using 

PBK modeling-based reverse dosimetry, (5) BMD analysis on the predicted in vivo dose-response 

data to obtain a POD for risk assessment, and (6) evaluation of the predicted POD against available 
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literature data. 

	 Step 1 involves the selection of an adequate in vitro model that can be used to determine 

the relevant in vitro concentration-response curves for the compound of interest. For the compounds 

studied in the present thesis, AAs, kidney toxicity and DNA adduct formation in selected kidney cells 

provided the models of choice. In the present thesis a selection was made for the LLC-PK1 cell line 

derived from pig proximal tubular cells. This LLC-PK1 cell line is routinely used to study nephrotoxic 

effects of chemicals in human because the cells exhibit many of the enzymatic and transport 

properties of the human proximal tubule cells [94, 95] which are the cells that represent the direct 

target of AAs [39]. The LLC-PK1 cell line also has been proven to be sensitive to AAI exposure [96] 

and was chosen in the present thesis to model the kidney toxicity and kidney DNA adduct formation 

of AAs. In addition to LLC-PK1 cells, cells from other kidney cell lines were used as well including 

the madin-darby canine kidney cell line (MDCK) and a rat proximal tubular cell line (NRK-52E). The 

comparison of the cytotoxicity of AAI in the LLC-PK1 cells to the AAI cytotoxicity in primary renal 

human cells and even to other cell types from other species described in the literature [96] reveals 

that the species differences in dynamics of AAI toxicity may be limited. Therefore, it was concluded 

that the LLC-PK1 cell line provides an adequate in vitro model for the present studies. 

	 In step 2, PBK models are developed. A PBK model consists of mathematical equations 

describing the absorption, distribution, metabolism and excretion of a chemical in the body. 

These models simulate the relationship between the external exposure levels and the internal 

concentrations of a chemical over time [97]. In a PBK model, target tissues are represented by 

individual compartments (e.g. liver and kidney) and the non-target tissues are lumped together in 

either a slowly (e.g. muscle and skin) or a richly (e.g. brain and spleen) perfused tissue compartment. 

Each compartment has its own physiological and anatomical parameters (e.g. tissue volumes and 

blood flows), physicochemical parameters (e.g. tissue/plasma partition coefficients) and kinetic 

parameters (e.g. kinetic constants for relevant biotransformation reactions of the chemical) for 

which parameter values need to be determined [97-100]. Physiological and anatomical parameter 

values can be obtained from literature while physicochemical and kinetic parameter values are 

chemical specific and therefore obtained either using in vivo data, using in silico modeling or using 

a suitable in vitro technique.

	 Step 3 includes PBK model evaluation and proceeds by the comparison of PBK model-

based predicted values with the in vivo data available to assess how the developed PBK model 

performs in predicting the in vivo situation. Once the performance of the model has been evaluated, 
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the model can be used to make predictions and translate in vitro concentration-response curves to 

in vivo dose-response curves using PBK modeling-based reverse dosimetry (step 4). 

	 In step 4 PBK modeling-based reverse dosimetry is applied. In this approach the 

concentration metric of the in vitro studies is set equal to the concentration in plasma or the 

relevant tissue in the PBK model, and then the PBK model is used in the reverse order to predict 

the corresponding dose level. The predictions can be performed using two approaches, including 

either the use of the maximum concentration (Cmax) or of the area under the concentration-time 

curve (AUC). In the first approach, each applied concentration in the in vitro experiment is set equal 

to Cmax in the blood or in a specific tissue as input in the PBK model to calculate the oral dose that 

results in this concentration. In the second approach, the AUC data are calculated by multiplying the 

applied concentration with the assay time [101] and the AUC-response curves are translated to the 

in vivo situation by assessing which oral doses are required to reach these AUC levels in the blood or 

in a specific tissue. 

	 In step 5, the reference values for risk assessment such as the BMD10 (the benchmark dose 

causing a 10% extra risk above background level) or BMDL10 values (the lower confidence limit of 

the BMD10) are obtained from the defined dose-response curves. To evaluate the potential of the 

PBK modeling-based reverse dosimetry approach to obtain a POD for risk assessment, the predicted 

PODs based on this approach can be compared with the PODs derived from in vivo literature data 

(step 6) in order to evaluate the predictive value of this approach.

1.6	 OBJECTIVES AND OUTLINE OF THE THESIS
The main objective of the present thesis was to investigate whether PBK modeling-based reverse 

dosimetry can convert in vitro concentration response-curves for AA-induced kidney toxicity to in 

vivo dose response-curves for kidney toxicity, thereby including a novel target tissue and endpoint 

for evaluation of this alternative testing strategy. The PBK models were developed based on kinetic 

parameters derived from in vitro incubations using relevant tissue fractions and/or available 

literature data. PBK modeling-based reverse dosimetry was used to translate the concentration-

response curves for cytotoxicity and DNA adduct formation of AAI and AAII in kidney cells in vitro to 

in vivo dose-response curves in rat, mouse and human. An additional objective was to investigate 

whether several years after the national restrictions on the presence of AAs in herbal remedies, the 

risks associated with consumption of AAs via PFS and herbal products is indeed negligible.
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	 Chapter 1, the current chapter, presents an overview of the basic principles that are of 

importance for the present thesis, including an introduction to the AAs as model compounds, 

incidents and epidemiologic data on the AAs, and their ADME characteristics and toxicity profile. 

Also, the regulatory status, the use of PBK modeling-based reverse dosimetry in risk assessment, 

and finally the aim and overall objectives of the thesis are introduced.

	 Chapter 2 presents the development of a PBK model for AAI in rat, mouse and human and 

the use of these models for the prediction of PODs for evaluation of the nephrotoxicity of AAI. To this 

end in vitro concentration-response curves for cytotoxicity were translated to in vivo dose-response 

curves for kidney toxicity using PBK modeling-based reverse dosimetry. The model performance 

was evaluated by comparison of the predictions to in vivo data available in the literature. Results 

obtained are expected to provide a possible proof-of-principle for using PBK modeling-based 

reverse dosimetry of in vitro toxicity data to predict a POD for in vivo nephrotoxicity.

	 Chapter 3 extends the PBK modeling-based reverse dosimetry approach for predicting 

kidney toxicity by AAI in chapter 2 to another endpoint, being AAI-DNA adduct formation in the 

kidney. The predicted levels for in vivo DNA adduct formation in rat, mouse and human kidney 

were compared to data on in vivo DNA adduct formation available from literature to evaluate the 

model outcomes. In order to provide insight in the possible implications of DNA adducts for tumor 

formation induced by AAI, the available in vivo tumor data in rats were used to derive the BMD10 

values for kidney tumor formation and the PBK model was used to predict the AAI-DNA adduct 

levels at these BMD10 values. 

	 The relative potency of the major AA congeners in Aristolochia species, AAI and AAII for 

inducing cytotoxicity and DNA adduct formation in vitro was studied in more detail in Chapter 

4. This chapter also describes the development of a new PBK model for AAI and AAII in rat and its 

use for extrapolating the concentration-response curves to dose-response curves and explaining 

differences observed between the two AAs.

	 Chapter 5 investigates whether several years after the banning of AAs in herbal remedies, 

the risks associated with potential exposure to AAs via PFS is indeed negligible. To this end an MOE-

based risk assessment was performed based on AA levels in PFS and herbal products reported in the 

literature and as detected in newly purchased PFS for this study via internet.  

	 Finally Chapter 6 summarizes the results obtained in the thesis, compiles the overall 

discussion and presents the future perspectives that follow from the results obtained. 

1

General introduction



Page | 20

References
1.	 Grollman, A.P., J. Scarborough, and B. Jelakovic, Aristolochic acid nephropathy: an 
environmental and iatrogenic disease. Advances in Molecular Toxicology, 2009. 3: p. 211-227.
2.	 Frei, H., F. Würgler, H. Juon, C. Hall, and U. Graf, Aristolochic acid is mutagenic and 
recombinogenic in Drosophila genotoxicity tests. Archives of Toxicology, 1985. 56(3): p. 158-166.
3.	 Arlt, V.M., M. Stiborova, and H.H. Schmeiser, Aristolochic acid as a probable human cancer 
hazard in herbal remedies: a review. Mutagenesis, 2002. 17(4): p. 265-277.
4.	 Kumar, V., A.K. Prasad, and V.S. Parmar, Naturally occurring aristolactams, aristolochic acids 
and dioxoaporphines and their biological activities. Natural Products Reports, 2003. 20(6): p. 565-583.
5.	 NTP, National Toxicology Program. Final report on carcinogens background document for 
aristolochic acids. Report on carcinogens background document for Aristolochic Acids, 2008(8-
5976).
6.	 Schmeiser, H.H., C.A. Bieler, M. Wiessler, C.v.Y. de Strihou, and J.-P. Cosyns, Detection of 
DNA adducts formed by aristolochic acid in renal tissue from patients with Chinese herbs nephropathy. 
Cancer research, 1996. 56(9): p. 2025-2028.
7.	 Stiborová, M., E. Frei, B. Sopko, K. Sopková, V. Marková, M. Laňková, T. Kumstýřová, 
M. Wiessler, and H.H. Schmeiser, Human cytosolic enzymes involved in the metabolic activation 
of carcinogenic aristolochic acid: evidence for reductive activation by human NAD (P) H: quinone 
oxidoreductase. Carcinogenesis, 2003. 24(10): p. 1695-1703.
8.	 IARC, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2002, World 
Health Organization. p. 68-128.
9.	 Stiborová, M., E. Frei, V.M. Arlt, and H.H. Schmeiser, The role of biotransformation enzymes in 
the development of renal injury and urothelial cancer caused by aristolochic acid: urgent questions and 
difficult answers. Biomedical Papers of the Medical Faculty of the University Palacky Olomouc Czech 
Republic, 2009. 153(1): p. 5-11.
10.	 Heinrich, M., J. Chan, S. Wanke, C. Neinhuis, and M.S. Simmonds, Local uses of Aristolochia 
species and content of nephrotoxic aristolochic acid 1 and 2—a global assessment based on bibliographic 
sources. Journal of Ethnopharmacology, 2009. 125(1): p. 108-144.
11.	 Mengs, U., W. Lang, and J.-A. Poch, The carcinogenic action of aristolochic acid in rats. 
Archives of Toxicology, 1982. 51(2): p. 107-119.
12.	 Mengs, U., On the histopathogenesis of rat forestomach carcinoma caused by aristolochic 
acid. Archives of Toxicology, 1983. 52(3): p. 209-220.
13.	 Vanherweghem, J.-L., C. Tielemans, D. Abramowicz, M. Depierreux, R. Vanhaelen-Fastre, M. 
Vanhaelen, M. Dratwa, C. Richard, D. Vandervelde, and D. Verbeelen, Rapidly progressive interstitial 
renal fibrosis in young women: association with slimming regimen including Chinese herbs. The lancet, 
1993. 341(8842): p. 387-391.
14.	 Vanhaelen, M., R. Vanhaelen-Fastre, P. But, and J.-L. Vanherweghem, Identification of 
aristolochic acid in Chinese herbs. The lancet, 1994. 343(8890): p. 174.
15.	 Debelle, F.D., J.-L. Vanherweghem, and J.L. Nortier, Aristolochic acid nephropathy: a 
worldwide problem. Kidney international, 2008. 74(2): p. 158-169.
16.	 Krumbiegel, G., J. Hallensleben, W. Mennicke, N. Rittmann, and H. Roth, Studies on the 
metabolism of aristolochic acids I and II. Xenobiotica, 1987. 17(8): p. 981-991.
17.	 Schmeiser, H., B. Pool, and M. Wiessler, Identification and mutagenicity of metabolites of 
aristolochic acid formed by rat liver. Carcinogenesis, 1986. 7(1): p. 59-63.
18.	 Shibutani, S., R.R. Bonala, T. Rosenquist, R. Rieger, N. Suzuki, F. Johnson, F. Miller, and A.P. 
Grollman, Detoxification of aristolochic acid I by O-demethylation: Less nephrotoxicity and genotoxicity 
of aristolochic acid Ia in rodents. Int. J. Cancer, 2010. 127(5): p. 1021-1027.
19.	 Chan, W., L. Cui, G. Xu, and Z. Cai, Study of the phase I and phase II metabolism of nephrotoxin 
aristolochic acid by liquid chromatography/tandem mass spectrometry. Rapid Communications in 
Mass Spectrometry, 2006. 20(11): p. 1755-1760.
20.	 Shibutani, S., H. Dong, N. Suzuki, S. Ueda, F. Miller, and A.P. Grollman, Selective toxicity of 
aristolochic acids I and II. Drug Metabolism and Disposition, 2007. 35(7): p. 1217-1222.

Chapter 1



Page | 21

21.	 Martinek, V., B. Kubickova, V.M. Arlt, E. Frei, H.H. Schmeiser, J. Hudecek, and M. Stiborova, 
Comparison of activation of aristolochic acid I and II with NADPH: quinone oxidoreductase, 
sulphotransferases and N-acetyltranferases. Neuro endocrinology letters, 2010. 32: p. 57-70.
22.	 Luan, Y., G. Xing, J. Ren, and J. Gu, Role of hepatic cytochrome P450 enzymes in the detoxication 
of aristolochic acid I; effects on DNA adduct, mutation, and tumor formation. Genes and Environment, 
2015. 37(1): p. 1.
23.	 Pfau, W., H.H. Schmeiser, and M. Wiessler, 32P-postlabelling analysis of the DNA adducts 
formed by aristolochic acid I and II. Carcinogenesis, 1990. 11(9): p. 1627-1633.
24.	 Pfau, W., H.H. Schmeiser, and M. Wiessler, Aristolochic acid binds covalently to the exocyclic 
amino group of purine nucleotides in DNA. Carcinogenesis, 1990. 11(2): p. 313-319.
25.	 Schmeiser, H., K.-B. Schoepe, and M. Wiessler, DNA adduct formation of aristolochic acid I 
and II in vitro and in vivo. Carcinogenesis, 1988. 9(2): p. 297-303.
26.	 Chan, W., H. Yue, W.T. Poon, Y.-W. Chan, O.J. Schmitz, D.W. Kwong, R.N. Wong, and Z. 
Cai, Quantification of aristolochic acid-derived DNA adducts in rat kidney and liver by using liquid 
chromatography–electrospray ionization mass spectrometry. Mutation Research/Fundamental and 
Molecular Mechanisms of Mutagenesis, 2008. 646(1): p. 17-24.
27.	 Rietjens, I.M.C.M., M.J. Martena, M.G. Boersma, W. Spiegelenberg, and G.M. Alink, Molecular 
mechanisms of toxicity of important food borne phytotoxins. Molecular nutrition & food research, 
2005. 49(2): p. 131-158.
28.	 Bieler, C.A., M. Stiborova, M. Wiessler, J.-P. Cosyns, C.v.Y. de Strihou, and H.H. Schmeiser, 
32P-post-labelling analysis of DNA adducts formed by aristolochic acid in tissues from patients with 
Chinese herbs nephropathy. Carcinogenesis, 1997. 18(5): p. 1063-1067.
29.	 Mei, N., V.M. Arlt, D.H. Phillips, R.H. Heflich, and T. Chen, DNA adduct formation and mutation 
induction by aristolochic acid in rat kidney and liver. Mutation Research/Fundamental and Molecular 
Mechanisms of Mutagenesis, 2006. 602(1): p. 83-91.
30.	 Chan, W., H.B. Luo, Y. Zheng, Y.K. Cheng, and Z. Cai, Investigation of the metabolism and 
reductive activation of carcinogenic aristolochic acids in rats. Drug Metabolism and Disposition, 2007. 
35(6): p. 866-874.
31.	 Rosenquist, T.A., H.J. Einolf, K.G. Dickman, L. Wang, A. Smith, and A.P. Grollman, Cytochrome 
P450 1A2 detoxicates aristolochic acid in the mouse. Drug Metabolism and Disposition, 2010. 38(5): p. 
761-768.
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ABSTRACT 
Aristolochic acids are naturally occurring nephrotoxins. This study aims to investigate whether 

physiologically based kinetic (PBK) model-based reverse dosimetry could convert in vitro 

concentration-response curves of aristolochic acid I (AAI) to in vivo dose response-curves for 

nephrotoxicity in rat, mouse and human. To achieve this extrapolation, PBK models were developed 

for AAI in these different species. Subsequently, concentration-response curves obtained from in 

vitro cytotoxicity models were translated to in vivo dose-response curves using PBK model-based 

reverse dosimetry. From the predicted in vivo dose-response curves, points of departure (PODs) 

for risk assessment could be derived. The PBK models elucidated species differences in the kinetics 

of AAI with the overall catalytic efficiency for metabolic conversion of AAI to aristolochic acid Ia 

(AAIa) being 2-fold higher by rat and 64-fold higher by mouse than human. Results show that the 

predicted PODs generally fall within the range of PODs derived from the available in vivo studies. 

This study provides proof of principle for a new method to predict a POD for in vivo nephrotoxicity 

by integrating in vitro toxicity testing with in silico PBK model-based reverse dosimetry.
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2.1 INTRODUCTION
In theory, in vivo dose-response curves and points of departure (PODs) for defining safe levels of 

exposure such as acceptable daily intakes (ADIs) or tolerable daily intakes (TDIs) in risk assessment 

can be obtained by translating in vitro data to in vivo dose-response curves using physiologically 

based kinetic (PBK) modeling-based reverse dosimetry. In such approaches in vitro effect 

concentrations are considered as surrogate tissue or blood concentrations that would cause toxicity 

in the in vivo situation and PBK models are used to calculate the corresponding in vivo dose levels 

that are needed to reach these surrogate tissue or blood concentrations. From the in vivo dose- 

response curves thus predicted, a POD for risk assessment like a benchmark dose (BMD) or lower 

confidence limit of the BMD (BMDL) can be calculated. Recently we have shown the first proofs-

of-principle for predicting in vivo dose-response curves for developmental toxicity from in vitro 

concentration-response curves obtained in the differentiation assay of the embryonic stem cell 

assay [1-3]. PODs within an order of magnitude of the experimentally determined values could be 

obtained, indicating accuracy in line with the variation between the PODs derived from different 

in vivo assays [1-3]. The aim of this study was to investigate whether PBK modeling-based reverse 

dosimetry could convert concentration-response curves for cytotoxicity in kidney cells in vitro to in 

vivo dose-response curves for nephrotoxicity in rat, mouse and human, and provide an adequate 

POD for the evaluation of nephrotoxicity in risk assessment. This was done using the nephrotoxin 

aristolochic acid I (AAI) as model compound. 

	 Aristolochic acids (AAs) are naturally occurring nephrotoxins derived from Aristolochia 

species. AA refers to a mixture of structurally related nitrophenanthrene carboxylic acids with the 

major compounds being 8-methoxy-6-nitrophenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAI, 

Figure 2.1) and its 8-demethoxylated form (AAII) [4]. Aristolochia herbs have been used since ancient 

times as alternative medicine to treat arthritis, gout, rheumatism, snakebites [5]. However, studies 

conducted over the years have associated AA with Chinese Herb Nephropathy and Balkan Endemic 

Nephropathy, later known as Aristolochic Acid Nephropathy (AAN) [6-8]. AA induced nephropathy 

was first identified in Belgium in 1991, where a group of patients consumed slimming pills 

containing extracts derived from roots of different Chinese herbs. Due to confusing nomenclature, 

there was a replacement of the herb Stephania tetranda (called Fang Ji) with Aristolochia fangchi, the 

latter containing AAs [9]. Over 100 young women suffered from kidney damage and several of them 

developed kidney and urinary tract cancer [9, 10]. 
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Fig. 2.1 Structural formula of aristolochic acid I.

	 Based on the Belgian incident, the European Agency for the Evaluation of Medicinal 

Products issued a position paper in October 2000 [11], warning European Union Member States “to 

take steps to ensure that the public is protected from exposure to aristolochic acids arising from the 

deliberate use of Aristolochia species or as a result of confusion with other botanical ingredients”. 

Based on this recommendation, risk management actions have been taken by the authorities of 

most EU Member States. Despite all the awareness and regulation, products containing AAs were 

still found to be present on the market for human consumption [12-14] and such products continue 

to be used as traditional herbal medicine in some countries. AAs are therefore still a public health 

concern. 

	 Within a natural mixture of AAs, AAI and/or its metabolites have been observed to be 

mainly responsible for the nephrotoxicity associated with AAN [15-18]. Carcinogenicity of AAI has 

been related to bioactivation of AAI to a DNA reactive intermediate, aristolactam I-nitrenium, upon 

nitroreduction [19-21]. This reaction is catalyzed by both cytosolic and microsomal enzymes, with 

NAD(P)H:quinone oxidoreductase (NQO1) being most efficient in cytosolic nitroreduction [22, 23]. 

Acute nephrotoxicity induced by AAI has been suggested to be linked to the direct cytotoxic effect 

of the parent compound. Effects include renal tubular lesions and subsequent cellular interstitial 

fibrosis [24]. Detoxification of AAI proceeds by demethylation catalyzed by cytochrome P450 (CYP) 

1A1/2 to a less toxic metabolite, AAIa [18] (Figure 2.2). The ability to demethylate AAI may determine 

its toxicity [25]. 

	 It is interesting to note that there are evidently certain species differences in the metabolic 

transformation of AA. Studies have shown that mice display a similar metabolic pattern as rats, but 

a metabolite pattern that is different from that observed in guinea pigs, rabbits, dogs and humans 
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[26]. Mice and rats also have a comparable carcinogenic response when exposed to AA [27, 28]. 

	 To achieve the aim of this study, PBK models were first developed for AAI in rat, mouse 

and human. Subsequently, concentration-response curves obtained from in vitro cytotoxicity 

models were translated to in vivo dose-response curves using PBK model-based reverse dosimetry 

from which PODs for evaluation of the nephrotoxicity of AAI could be derived. Combining in vitro 

cytotoxicity studies with PBK models that simulate the absorption, distribution, metabolism, and 

excretion of AAI in the specific species may thus allow prediction of in vivo dose-response curves, 

which could be used in the risk assessment to set a POD for evaluation of the nephrotoxicity of 

AAI. The outcome of this research may provide further support for the use of in vitro-in silico based 

alternative methods for risk assessment practice.

Fig. 2.2 Metabolic pathways for bioactivation and detoxification of aristolochic acid I (AAI), with the 

bold arrow showing the major metabolic route . NR = nitroreduction, NQO1 = NAD(P)H:quinone 

oxidoreductase, CYPs = cytochromes P450, UGTs = uridine 5’-diphospho-glucuronosyltransferases, 

SULTs = sulfotransferases. 
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2.2 MATERIAL AND METHODS

2.2.1 Chemicals 
Aristolochic acid I (AAI) was purchased from Sigma-Aldrich (St. Louis, MO, USA). The LLC-PK1 

porcine cell line (ATCC® CL-101TM) and the MDCK canine cell line (ATCC® CCL-34TM) were obtained 

from the American Type Culture Collection (ATCC). Dulbecco’s Modified Eagle Medium (DMEM), 

Eagle Minimum Essential Medium (MEM), phosphate buffered saline (PBS), and trypsin-EDTA 

were purchase from Gibco (Paisley, Scotland, UK) and fetal bovine serum from Lonza BioWhittaker 

(Walkersville, MD, USA). Dimethyl sulfoxide (DMSO) (>99.9%) was obtained from Acros Organics (Geel, 

Belgium), acetonitrile (ULC/MS grade) obtained from Biosolve (Valkenswaard, The Netherlands) and 

trifluoroacetic acid (TFA) (>99.8%) was purchased from Merck (Darmstadt, Germany). The reduced 

form of β-nicotinamide adenine dinucleotide phosphate (NADPH) was obtained from Sigma-

Aldrich. Pooled liver S9 from male Sprague-Dawley rats, male CD-1 mouse and mixed gender human 

were obtained from Sigma-Aldrich. Pooled intestinal and kidney S9 from Sprague-Dawley rats, CD-1 

mouse and mixed gender human were purchased from Xenotech (Lenexa, KS, USA).

2.2.2 General outline for PBK model-based reverse dosimetry approach
The in vitro PBK approach to predict in vivo dose-response curves and a POD for risk assessment 

using in vitro cytotoxicity data consisted of the following steps: (1) establishment of in vitro 

concentration-response curves of AAI in the LLC-PK1 and MDCK cell lines, (2) development of PBK 

models describing in vivo kinetic properties of AAI in rat, mouse and human using the kinetic 

parameters defined in the present study from in vitro assays or literature data, (3) evaluation of the 

PBK models against available literature data, (4) translation of the in vitro concentration-response 

curves into in vivo dose-response curves for acute kidney toxicity in rat, mouse and human using 

the PBK models, (5) BMD analysis on the predicted in vivo dose-response data to obtain a POD for 

risk assessment, and (6) evaluation of the predictive POD against available literature data.

2.2.3 In vitro kidney toxicity data 
Two types of kidney cell lines were used as starting point for determining in vitro concentration-

response curves for cytotoxicity. The LLC-PK1 cell line and the MDCK cell line were cultured in 75 cm2 

flasks at 37°C in a humidified atmosphere of 5% CO2 in DMEM (for the LLC-PK1 cell line) or MEM (for 
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the MDCK cell line) supplemented with 10% (v/v) fetal bovine serum. Cells were subcultured three 

times a week, using 1% (v/v) trypsin-EDTA to detach the cells.

	 Cytotoxicity was determined with the MTT assay [29] with minor modifications. In brief, 5 x 

104 cells/ml were seeded in 96-well plates. 24 Hours after plating, the cells were exposed to different 

concentration of AAI ranging from 0.5 to 250 µM (final concentrations), added from 200 times 

concentrated stock solutions in DMSO. Each concentration was tested in four replicates and three 

independent experiments were carried out. After 24 hours of treatment, MTT was added and cells 

were incubated for an additional 3 hours. Cells were lysed and the MTT formazan crystals formed 

were dissolved by addition of DMSO and the absorbance was measured at 562 nm using a microplate 

reader (SpectraMax M2, USA). Relative cell viability (%) was calculated as (mean absorbance of 

sample/ mean absorbance of vehicle control) x 100%. Cytotoxicity data were analyzed for significant 

effects compared to the control using a one way analysis of variance (ANOVA) performed using IBM 

SPSS Statistics software, version 22. 

 

2.2.4 In vitro incubations of AAI with rat, mouse and human S9 

homogenates to derive the kinetic parameters for the PBK model
Incubations were performed with rat, mouse, and human tissue fractions to measure kinetics of 

detoxification of AAI by its conversion into AAIa by intestine, liver and kidney. In vitro incubation 

mixtures contained in a final volume of 200 µl (final concentrations): 50 mM Tris-HCl (pH 7.4) 

containing 5 mM MgCl2, 1 mM NADPH and pooled liver S9 (1 mg protein/ml), intestine S9 (0.4 

mg protein/ml) or kidney S9 (0.25 mg protein/ml) from rat, mouse or human. After 1 min of pre-

incubation in a shaking water bath at 37°C, the reactions were started by the addition of AAI (0.5- 

250 µM) from 200 times concentrated stock solutions in DMSO. The reactions were carried out for 

30 min with all S9 homogenates except for the incubations with mouse intestinal S9, which were 

carried out for 6 min. Control incubations were performed without (1) S9 homogenate, (2) NADPH, 

or (3) AAI. The incubations were terminated by the addition of 50 µl ice-cold acetonitrile followed by 

centrifugation at 16 000 g for 5 min before analyses of the supernatant by UPLC (Waters Acquity). 

	 From each incubation, 3.5 µl of supernatant was injected into the UPLC (Waters Acquity) 

equipped with a Waters BEH C18 1.7 µm column, 2.1 x 50 mm (Waters, Ireland). A gradient was made 

with ultra-pure water containing 0.1% (v/v) TFA as solvent A and acetonitrile as solvent B. The flow 

rate was set to 0.6 ml/min. The starting condition was 80:20 (A:B), changing to 75:25 from 2 to 6 min, 
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then to 20:80 from 6 to 6.3 min, then to 0:100 from 6.3 to 7.3 min after which the starting condition 

were reset from 7.3 min to 8.0 min and the column was equilibrated at the starting condition for 

another 2 min. Detection was carried out with a photodiode array detector (Waters, Milford, MA, 

USA) at a wavelength of 240 nm. 

	 Due to unavailability of the authentic standard of AAIa in the market, the UV/Vis spectrum 

of the metabolite (AAIa) that was formed in S9 incubations with NADPH was compared with the 

UV/Vis spectrum of AAI revealing the same UV/Vis spectrum. Based on this observation, AAIa was 

quantified using the calibration curve for AAI. A similar procedure was previously applied by others 

[30]. Quantification of AAIa could thus be achieved by comparison of the peak area to the peak areas 

of the calibration curve of AAI, all at a wavelength of 240 nm. The data for the rate of formation of 

AAIa with increasing AAI concentration were fitted to the standard Michaelis-Menten equation, v = 

Vmax x [S] /(Km + [S]), with [S] being the substrate concentration, Vmax being the apparent maximum 

velocity, and Km being the apparent Michaelis-Menten constant. This was done with GraphPad 

Prism, 5.0 software (San Diego, CA, USA). 

2.2.5 PBK models for rat, mouse and human
A schematic diagram of the structure of the PBK models developed for the different species is shown 

in Figure 2.3. The final models include separate compartments for liver and intestine (as metabolizing 

compartments), kidney, fat, arterial blood, venous blood, rapidly perfused and slowly perfused 

tissue. Kidney toxicity of AAI is known to be due to the parent compound. This implies that the 

maximum concentration (Cmax) and the area under the curve (AUC) of AAI itself are the parameters 

that form the basis for the in vitro to in vivo extrapolation. Given this situation, the PBK model 

should adequately predict the kinetics of disappearance of AAI itself. Because the major metabolic 

pathway of AAI is its conversion to AAIa [18, 31, 32] and this metabolic conversion dominates the 

Cmax or AUC for AAI, the aim of the present study could be adequately achieved by modeling only 

this major biotransformation pathway of conversion of AAI to AAIa. Minor metabolic routes like the 

bioactivation by nitroreduction, although playing an important role in the carcinogenicity of AAI 

and an important challenge for future research, will not significantly affect the predicted Cmax and 

AUC for AAI.    

	 AAI was assumed to be taken up from the gastrointestinal tract following first order kinetics 

and absorbed directly by the liver. An absorption rate constant of 3.27 h-1 as reported by Su et al. 
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(2004) [33] for rat, was applied in all three models for rat, mouse and human as no specific absorption 

rate constants are available for mouse and human. No allometric scaling of the uptake constant was 

applied as the permeability of compounds across the intestinal barrier has been reported to be 

relatively constant across species [34]. In case of AAI, this consistency between species is supported 

by the fact that for beagle dogs, being a larger species than rats, an uptake constant that ranges 

between 1.9-3.1 h-1 has been reported [35], which is similar to the value obtained for rats.

	 All physiological parameters were obtained from literature [36]. The tissue/plasma 

partition coefficients for rat and human were calculated based on the log Kow using the method 

of Berezhkovskiy [37]. The log Kow value of AAI has been reported to be 4.45± 0.07 [38]. The tissue/

plasma partition coefficients for mouse were assumed to be the same as for rat. All physiological 

parameters and partition coefficients used in the PBK models are presented in Table 2.1.

	 On the basis of the in vitro kinetic data (see result section), conversion of AAI to AAIa was 

described in the liver (in all species) and intestine (in rat and mouse). The in vitro-derived Vmax values 

(nmol/min/mg S9 protein) for conversion of AAI by liver S9 fractions were scaled to the liver using 

the S9 protein yield of 143 mg/g liver as scaling factor derived previously based on the cytosolic and 

microsomal protein yield [39]. The Vmax values for conversion of AAI by intestinal S9 fractions were 

scaled accordingly using an estimated S9 protein yield of 11.4 mg/g small intestine as scaling factor 

[2, 40]. The in vivo Km values were assumed to equal the in vitro Km values.

	 The excretion parameters were determined by fitting the model to the in vivo kinetics 

data from Ren et al. (2014) [41]. The biliary and urinary excretion rate constants were estimated 

to be 35 and 0.5 h-1 for the rat. Allometric scaling was used to scale the obtained rate constants 

from rat to human and mouse. With respect to urinary excretion, the rate constants were scaled 

based on the differences in glomerular filtration rate (GFR) between the species [42] and for biliary 

excretion, the rate constants were scaled based on the differences in relative liver weight [43]. The 

scaled biliary and urinary excretion rate constants were 56.6 and 0.6 h-1 for the mouse model and 

26.8 and 0.1 h-1 for the human model. Although AAIa was shown to be excreted in the urine [18, 

32, 44], this excretion was not included in the current PBK model since only the formation of AAIa 

and not its excretion will be of influence on the prediction for the disappearance of the parent 

compound and thus the predicted Cmax and AUC for AAI. The set of differential equations describing 

the mass balance equations including a list of abbreviations used in the equations can be found 

in supplementary data A. The PBK model equations were solved with Berkeley Madonna (version 

8.3.18, UC Berkeley, CA, USA) using Rosenbrock’s algorithms for solving stiff systems. 
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Fig. 2.3 Schematic diagram of the PBK models for aristolochic acid I (AAI) in rat, mouse and human.  
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Table 2.1 

Parameters used in the PBK models for aristolochic acid I (AAI)

Parameters Values

rat mouse human

Physiochemical parametersa

Tissue/plasma partition coefficients

Fat/plasma 70.3 70.3b 54.8

Liver/plasma 7.3 7.3b 7.6

Kidney/plasma 6.6 6.6b 4.6

Small intestine/plasma 10.5 10.5b 9.6

Richly perfused tissues/plasma 7.3 7.3b 7.6

Slowly perfused tissues/plasma 4.1 4.1b 4.7

Physiological parametersc 

Body weight (kg) 0.25 0.025 70

Tissue volumes (% body weight)

Fat 7 10 21.4

Liver 3.4 5.5 2.6

Kidney 0.7 1.7 0.4

Intestine 1.4 2.5 0.9

Arterial blood 1.9 1.2 2.0

Venous blood 5.6 3.7 5.9

Richly perfused 3.5 0.8 5.0

Slowly perfused 67.6 65.1 51.7

Cardiac output (1/h/kg bw0.74) 15 15 15

Blood flow to tissue (% cardiac output)

Fat 7.0 9.0 5.2

Liver (excluding portal vein fraction) 13.2 6.7 4.6

Kidney 14.1 9.1 17.5

Intestine 11.8 18.3 18.1

Richly perfused 36.9 41.9 29.8

Slowly perfused 17.0 15.0 24.8

a Berezhkovskiy (2004) [37]

b assumed to be the same as for rat

c Brown et al. (1997) [36]
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2.2.6 PBK model evaluation		
For the model evaluation, a local sensitivity analysis was performed to evaluate the influential 

parameters on the model output. Normalized sensitivity coefficients (SC) were calculated for the 

predictions of maximum concentration (Cmax) and the area under the curve (AUC) of AAI in kidney 

tissue as the model output (C) using the following equation:

SC= (C’- C)/ (P’- P) * (P/C) 

Where C is the initial value of the model output and C’ is the modified value after changing the 

parameter value P, P is the initial parameter value and P’ is the modified parameter value [45]. On 

the basis of the literature, a 5% increase in parameter values was chosen, to analyze the effect of a 

change in a parameter. The sensitivity analysis was conducted for oral exposures to a single doses 

of 0.1 and 100 mg/kg bw of AAI. Each parameter was analyzed individually, keeping the other 

parameters to initial values. The impact of the most sensitive model parameters on the predicted 

BMDL10 values was subsequently studied by decreasing and increasing all sensitive parameters in 

the model with 10-fold, as worst case estimate of the uncertainty in the model predictions, and 

predicting the BMDL10 values based on the altered parameter set. Physiological parameters were 

kept the same in this analysis. 

	 In order to assess how the PBK models performed in predicting AAI plasma concentrations, 

the predicted AAI plasma concentrations obtained with the rat model were compared with plasma 

concentrations from in vivo kinetic studies in rat as reported in the literature [41]. Based on the 

current model, the full blood concentration of AAI was simulated, not the plasma concentration. 

Based on the blood to plasma partition ratio (B/P) as predicted with Simcyp software (https://

members.simcyp.com/account/tools/BP/), with the value of the fraction unbound being 0.0225 

[32], a log Kow of 4.45 [38], a pKa of 2.99 (calculated using Advanced Chemistry Development (ACD/

Labs) Software V11.02 (© 1994-2015 ACD/Labs), and the default values for plasma pH of 7.4 and 

hematocrit of 45 %, the predicted B/P is found to be 1.12. Based on this result, the correction from 

blood to plasma concentration was not considered necessary. 

2.2.7 Translation of the in vitro concentration-response curve to in 

vivo dose-response curves
Based on in vitro concentration-response curves from each cell line, the in vivo dose-response 

curves were predicted by PBK model-based reverse dosimetry. The predictions were done with two 
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approaches.

	 In the first approach each applied concentration from the cytotoxicity experiments was 

set equal to the maximum concentration (Cmax) of AAI in the kidney as input in the PBK model to 

calculate the oral dose that results in this concentration. In a second approach, the area under the 

curve (AUC) of AAI was used. To this end the in vitro concentration–response data were translated 

to AUC-response data, by multiplying the applied concentration with the assay time [46], based 

on the assumption that the concentration of AAI is constant in the incubations. This assumption 

underlying the calculation of the AUC was validated by measuring the time-dependent changes 

in the concentration of AAI in cell culture medium at two concentrations (10 µM and 200 µM) 

with both cell lines, showing no decrease in concentrations of AAI over 24 h of incubation. For 

the extrapolation of the in vitro AUC-response curves to the in vivo situation we assessed which 

oral doses are required in the PBK model to reach these AUC values in the kidney. By performing 

this exercise for each concentration (or AUC) used in the in vitro assay, the in vitro concentration–

response curves (or AUC-response curves) could be translated into in vivo dose-response curves.

2.2.8 BMD analysis of in vitro concentration-response data and of 

predicted in vivo dose-response data 
BMD modeling was applied on the in vitro concentration-response curves to obtain a BMCL10 

(lower limit of the 95% confidence interval of the benchmark concentration at 10% response) value 

for cytotoxicity and on the predicted in vivo dose–response data to determine BMDL10 values for 

nephrotoxicity. This BMD modeling was performed using all models for dichotomous data of the 

Environmental Protection Agency (EPA)’s Benchmark Dose Software (BMDS) version 2.5. Only models 

that met the requirements for acceptance of the model fit were considered for the determination 

of BMDL10 values. A similar BMD analysis was also performed for all predicted in vivo dose-response 

curves derived upon extrapolation of the concentration-response curves for in vitro cytotoxicity 

derived from the literature.

2.2.9 Evaluation of the in vitro PBK approach
To evaluate the potential of the in vitro-in silico approach to obtain a POD for risk assessment, the 

POD values predicted by the PBK model-based reverse dosimetry approach based (i.e. BMDL10 

values) were compared to PODs derived from in vivo acute kidney toxicity data from literature. 
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Exact numbers on oral bioavailability of AAI and possible AAI metabolism by gut microbiota are 

not known but it is generally described that upon oral administration, AAI is rapidly absorbed in the 

gastrointestinal tract and excreted to a large extent in urine [47]. This implies that deviations due 

to the influence of intestinal metabolism by the microbiota are expected to be limited. If a small 

amount of orally administered AAI would be metabolized by the microbiome the influence of this 

pathway on the overall outcome and predictions will depend obviously on the type of metabolites 

formed and their bioavailability. Therefore, the predictions based on different percentage of AAI 

bioavailability upon oral exposure were also studied assuming 0%, 10% or 30% reduction in 

bioavailability. 
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2.3 RESULTS

2.3.1 In vitro cytotoxicity data 
Figure 2.4a shows the concentration-response curve for the cytotoxicity of AAI in vitro as obtained 

with the LLC-PK1 and the MDCK cell line. The in-vitro BMCL10 was 1.4 µM for the LLC-PK1 cells and 

3.8 µM for the MDCK cells respectively (* p<0.05). Figure 2.4b shows that the in vitro concentration-

response curves obtained in the present study match well with most in vitro concentration-

response curves reported in the literature for AAI (pure or in a mixture with AAII), except for the 

data reported by Balachandran et al. (2005) [15] for LLC-PK1 and by Huljic et al. (2008) [48] for one of 

the experiments with primary porcine cells. These two data sets from literature were excluded from 

further analyses since they obviously deviate from all other data obtained.

	 Table 2.2 shows the BMCL10 values derived from the concentration-response curves 

depicted in Figure 2.4b. The lowest BMCL10 for cytotoxicity was found to be 0.3 µM and the highest 

was 22.5 µM. This variations may in part be due the mixture effect of AAs [48, 49]. Hsin et al. (2006) 

[49] and Huljic et al. (2008) [48] exposed cells to a mixture of AAI and AAII while other authors 

exposed cells to AAI only. This implies that some discrepancy between the data reported in these 

studies for the concentration dependent effects may be due to the fact that for the mixtures toxicity 

when expressed as a function of the total AA concentration may be somewhat less because AAII is 

known to be less cytotoxic than AAI [15, 50]. The outcome from Huljic et al. (2008) [48] for the second 

concentration-response curve for primary porcine cells was not considered for further analysis 

because the ratio between the BMC and the BMCL10 and the value was higher than 10 mainly due 

to inadequate distribution of the data points over the dose response curve especially in the lower 

concentration range making the BMD analysis unreliable.
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Fig. 2.4 Concentration response-curves for the cytotoxicity of AAI (µM) towards the LLC-PK1 (circles) 

and MDCK (squares) cell line upon 24 hours exposure (mean values ± SD) (a) and comparison of 

the data from figure (a) to concentration response-curves reported in literature (b). To allow BMD 

modeling the individual cytotoxicity data are presented in supplementary data B. One way ANOVA 

was used to test for significant difference  between treatment group versus control group in both 

cell lines (* p<0.05).  
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Table 2.2

BMCL10 values derived from the concentration-response curves depicted in Figure 2.4b. The 

concentration-response curves that met the criteria for model fit are presented in supplementary 

data C. 

Cell line BMCL10 (µM) Studies

LLC-PK1 1.4 – 1.6 Present study

MDCK 3.8 – 4.2 Present study

LLC-PK1 4.9 – 15.3 Hsin et al. (2006) [49]

MDCK 11.2 – 22.5 Hsin et al. (2006) [49]

MDCK 3.4 – 8.7 Liu et al. (2009) [50]

Primary rat renal cells 1.3 – 1.4 Huljic et al. (2008) [48]

Primary human renal cells 0.3 – 1.5 Huljic et al. (2008) [48]

2.3.2 In vitro kinetic data for rat, mouse and human
UPLC analysis of the in vitro incubations with AAI performed to derive the kinetic parameters for 

the PBK models revealed that rat and mouse liver and intestine S9 fractions were capable to convert 

AAI into AAIa. Only one metabolite was found, at a retention time of 5.5 min, which was absent in 

control incubations. For human samples, only liver S9 was able to form AAIa. No conversion of AAI 

was found in incubations with the kidney S9 fractions of the different species. In each incubation, 

metabolism followed Michaelis-Menten kinetics (Fig. 2.5). Table 2.3 displays the apparent Vmax and 

Km values obtained from these plots and the (scaled) catalytic efficiency (Vmax/Km) derived from 

them. The highest conversion of AAI to AAIa was observed for mouse. The total catalytic efficiency 

(sum of liver and intestine) for conversion of AAI by this species was 38-fold higher than for rat 

and 64-fold higher than for human. This higher catalytic efficiency for mouse was mainly due to a 

high metabolic conversion of AAI in the intestine, which was only a minor reaction in rat and not 

observed for human. The overall catalytic efficiency for metabolic conversion of AAI to AAIa by rat 

and human was comparable, being only 2-fold higher in rat than in human. 
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Fig. 2.5 AAI concentration-dependent rate of formation of AAIa by liver (a) and intestine (b) in 

incubations with rat (filled circle), mouse (filled square) and human (filled triangle) S9 fractions and 

NADPH as a cofactor. In the plots, each point represents the mean (± SD) of n=3 measurements. R2 

for the fit of the data to the Michaelis-Menten curve was 0.97, 0.88 and 0.94 for data with rat, mouse 

and human liver S9 and 0,96 and 0.96 for data with rat and mouse intestinal S9. 
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Table 2.3

Kinetic parameters for AAIa formation from AAI by pooled rat, mouse and human tissue fractions.

Species

Organ

Vmax

(nmol/min/mg protein in 

tissue fraction)a

Km (µM)a Catalytic efficiency (mL/

min/mg protein in tissue 

fraction)

Scaled Vmax (nmol/

min/g tissue)

Scaled catalytic efficiency 

(mL/min/g tissue)

Rat

Liver 0.012±0.0 24.8±3.0 4.8 x 10-4 1.7 0.07

Intestine 0.10±0.0 42.8±6.4 23 x 10-4 1.1 0.03

Kidney n.d.b n.d.b -

Mouse

Liver 0.03±0.0 13.1±3.4 25 x 10-4 4.7 0.36

Intestine 0.96 ±0.0 3.17 ±0.3 3030 x 10-4 10.9 3.45

Kidney n.d.b n.d.b -

Human

Liver 0.02±0.0 58.4±11.1 4.1 x 10-4 3.4 0.06

Intestine n.d.b n.d.b -

Kidney n.d.b n.d.b -

a the values are mean ± SD of three independent determinations.

b n.d. non-detected
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2.3.3 PBK model outcome
Figure 2.6 shows the plasma concentration-time curve of AAI as predicted by the developed rat 

PBK model compared to in vivo kinetic data obtained from the literature [41]. By fitting excretion 

parameters, a model could be obtained that showed no difference (1.1-fold) between the predicted 

and observed Cmax of AAI in plasma at a single oral dose of 25.3 mg/kg bw. The AUC derived from 

these data showed a 1.7-fold difference between the AUC predicted with the PBK model and the 

observed AUC obtained from the literature, being higher for the predicted value. Given these 

results, it is concluded that the model is fit for its purpose in spite of the fact that some kinetic steps 

are not included. The predicted Cmax and AUC values fall within the generally observed uncertainty 

in PBK model predictions.

Fig. 2.6 Rat PBK model evaluation by comparison of the PBK model-based predicted concentration 

time curve (solid line) and literature data (filled square symbols) [41] for AAI maximum plasma 

concentrations in rat after oral exposure to 25.3 mg/kg bw of AAI. 
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2.3.4 Sensitivity analysis of the PBK models
Four sensitivity analyses were performed, based on the maximum concentration (Cmax) or the AUC 

of AAI in the kidney tissue and exposure to a single oral dose of either 0.1 or 100 mg/kg bw of AAI. 

In all sensitivity analyses (supplementary data D) the volume of the liver, biliary excretion, and the 

partition coefficients for the liver and the kidney were the most influential parameters in all three 

PBK models, all expressing normalized sensitivity coefficients higher than 0.1 (in absolute value). 

The partition coefficient for the intestine and the uptake rate constant of AAI were furthermore 

observed to influence the Cmax in all models.

	 With regard to the different dose levels, the sensitivity analyses revealed that the influence 

of most PBK model parameters on the model outcomes did not change in a dose dependent 

manner, except for the parameters related to the intestine which were more influential at low 

oral dose levels compared to high oral dose levels in the mouse PBK model. Also the normalized 

sensitivity coefficients of several parameters in the mouse PBK model were dose dependent, namely 

body weight, volume and blood flow of the kidney. The major difference between the three models 

was that the parameters for the intestine were more influential in the mouse model than in the rat 

and human PBK models. 

	 The impact of the most sensitive model parameters on the predicted BMDL10 values was 

subsequently studied by decreasing and increasing all sensitive parameters in the model with 10-

fold, as worst case estimate of the uncertainty in these parameters, and predicting the BMDL10 values 

based on the altered parameter set. The results of this analysis are provided in supplementary data 

E and reveal that the predicted range of BMDL10 values can be about 8.0- to 20.2-fold higher for rat, 

3.5- to 26.4-fold higher for mouse and 3.4- to 27.7-fold higher for human. This range is considered 

acceptable as the BMDL10 predictions generally remain within one order of magnitude from the 

original predictions or differ maximally 30-fold. 

2.3.5 Translation of the in vitro concentration-response curves to in 

vivo dose-response curves
Figure 2.7 shows the predicted in vivo dose-response curves for kidney toxicity of AAI in rat, mouse 

and human obtained by converting the in vitro concentrations-response curves from either the 

LLC-PK1 and the MDCK cell line (Figure 2.4a) by PBK-model based reverse dosimetry. Each plot 

in Figure 2.7 shows four predicted dose-response curves, derived from the in vitro cytotoxicity 
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concentration-response curves obtained with respectively the LLC-PK1 and MDCK cell lines in the 

present study (Figure 2.4a) using either the Cmax or the AUC. Use of the Cmax resulted in curves that 

are 15.0- to 23.7-fold lower compared with  the curves obtained when using the AUC. The difference 

in the curves obtained using the LLC-PK1 or MDCK cell data varied by only 1- to 1.4-fold. Table 

2.4 presents the BMDL10 values derived from the predicted dose-response curves. The predicted 

BMDL10 values obtained for the three species were within the same order of magnitude. Based on 

the Cmax approach,  the predicted range of BMDL10 values was observed to be on average 1.2-fold 

higher for human than for rat and 2.3-fold lower for human than for mouse. Based on the AUC, 

the predicted BMDL10 values derived from the dose-response curves for human were on average 

1.0-fold higher for rat and 2.9-fold lower for human than for mouse. These results suggest that the 

sensitivity of humans for AAI induced kidney toxicity may be more comparable with rat than with 

mouse, although the difference falls within the 10-fold uncertainty factor generally used to account 

for interspecies differences [51].

	 Similar to the PBK-model based predictions defined using the concentration-response 

curves determined in the present study, predictions were also made using the in vitro concentration-

response curves for cytotoxicity of AAI as reported in the literature. The results obtained are 

presented in Table 2.5. The same trends were observed from these analyses, revealing that the range 

of BMDL10 values for human based on Cmax are about 1.4-fold higher than the range of predicted 

BMDL10 values for rat and about 1.9-fold lower than the predicted BMDL10 values for mouse. Based 

on the AUC, the range of BMDL10 values derived from the dose-response curves for human were 1.1-

fold lower than the predicted BMDL10 values for rat and about 2.7-fold lower than predicted BMDL10 

values for mouse. The predicted BMDL10 values based on the in vitro concentration response-curves 

from the literature where in the same range as predicted using the cytotoxicity curves of the present 

study. 

2.3.6 Evaluation of the in vitro-PBK model-based predicted PODs for 

in vivo and human kidney toxicity
To evaluate the outcomes of the predicted PODs for in vivo kidney toxicity, the BMDL10 values 

presented in Table 2.4 and 2.5 were compared to in vivo reported data for acute kidney toxicity 

of AAI as available in the literature. Table 2.6 and 2.7 present an overview of literature data on the 

acute kidney toxicity in rat (Table 2.6) and mouse (Table 2.7), measuring for example urinary BUN 
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and creatinine concentrations as a measure of acute toxicity. Table 2.6 and 2.7 also present the PODs 

that were derived from these studies. BMD analysis of these literature data revealed that the data 

sets were not suitable for calculation of BMDL10 values due to the limited number of data points and 

an inadequate distribution of the data points over the dose response curves. As a result, table 2.6 

and 2.7 list the NOAEL values or range of estimated NOAEL to LOAEL values that could be derived 

as POD from these in vivo data. When only a LOAEL was available, the NOAEL was derived using the 

classical approach, dividing the LOAEL by a factor of 10. 

	 Figure 2.8 presents a comparison of the predicted median BMDL10 values obtained in the 

present study to the estimated PODs from the literature data for either rat (Figure 2.8a) or mouse 

(Figure 2.8b) based on Cmax. From this comparison it follows that, given the uncertainty in the PODs 

derived from the sometimes-limited in vivo data, the PODs derived from the predicted dose-

response curves for the rat and mouse based on Cmax fall well within the range of PODs that can be 

derived from the available in vivo studies. The results presented in Figure 2.8 reveal a 2.3- to 55.6-

fold difference between the range of experimental PODs and the predicted BMDL10 values in the rat 

model (Figure 2.8a) and 1.5- to 163.8-fold in the mouse model (Figure 2.8b), when performing the 

extrapolation based on Cmax. Is it noted that the in vivo data available for mice resulted from studies 

with ip or iv dosing regimens. This implies high and even up to 100% bioavailability. In our modelling, 

AAI was assumed to be 100% bioavailable upon oral administration allowing comparison to iv or 

ip administration. In addition, the predictions for the mouse model were also made assuming that 

0% (current data), 10% or 30% of the orally administered AAI would not become bioavailable due 

to for example metabolism by the intestinal microbiota. The predicted PODs at the reduced levels 

of bioavailability amounted to 1.1- and 1.3-fold higher than the currently predicted values at 10% 

and 30% intestinal microbiome metabolism respectively. Clearly also in this situation the PODs are 

in line with the in vivo data.

	 Interestingly, the current human model could also be validated using available human 

data. The study of Yang et al. (2012) [52] describes 13 patients diagnosed with acute kidney injury 

(acute AAN) from exposure to AA. The doses that caused acute AAN were reported to range from 

0.09 to 4.49 mg/kg bw/day. The predicted human dose-response curves for kidney toxicity of AAI 

(Figure 2.7c) predict kidney toxicity in human to occur in the same range with BMD10 values at 1.9-

2.1 mg/kg bw/day and 4.4-5.3 mg/kg bw/day when data are predicted based on the Cmax from the 

LLC-PK1 and MDCK cell line respectively.  

	 The prediction based on the AUC approach, the differences amounted to 1.1- to 111.3-fold 
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for the rat model and more than one order of magnitude for the mouse model different compared 

with the in vivo PODs (supplementary data F). These results suggest that extrapolation based on 

Cmax is the most appropriate method to predict acute nephrotoxicity, which may be corroborated by 

the fact that acute toxicity is generally a result of high exposure resulting from peak concentrations 

[53]. Altogether the results obtained reveal that our in vitro-in silico PBK model- based reverse 

dosimetry approach provides data that match the results from in vivo animal experiments well.
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Fig. 2.7 Predicted in vivo dose-response curves for acute kidney toxicity in rat (a), mouse (b) and 

human (c). The solid lines represent the predicted in vivo dose-response curves based on data from 

the LLC-PK1 cell line and the dashed lines represent the predicted dose-response curves based on 

data from the MDCK cell line. The black lines represent the predictions based on the Cmax and the 

grey lines the predictions based on the AUC. 
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Table 2.4 

Predicted BMDL10 values derived from dose-response curves predicted using PBK-model based 

reverse dosimetry, based on either Cmax or AUC, to translate the in vitro concentrations response 

curves as obtained in the present study to the in vivo situation (Figure 2.4a).

Cell line Approach Predicted BMDL10 (mg/kg bw) Studies

Rat Mouse Human 

LLC-PK1 Cmax 0.8-1.0 2.5-2.9 1.0-1.2 Present study

MDCK Cmax 2.2-2.5 6.3-6.8 2.8-3.1

LLC-PK1 AUC 15.5-18.4 47--.8-56.7 15.9-18.8

MDCK AUC 42.3-46.7 126.9-138.5 43.3-47.9
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Table 2.5

Predicted BMDL10 values derived from dose-response curves predicted using PBK-model based 

reverse dosimetry, based on either Cmax or AUC, to translate the in vitro concentrations response 

curves obtained from the literature (Figure 2.4b). 

Cell line Approach Predicted BMDL10 (mg/kg bw) Studies

Rat Mouse Human 

LLC-PK1 Cmax 3.7-9.0 8.3-19.2 4.7-11.5 Hsin et al. 

(2006) [49]

MDCK Cmax 7.3-13.2 16.4-28.1 16.8-22.9 Hsin et al. 

(2006) [49]

MDCK Cmax 2.3-5.1 5.8-11.2 2.9-4.3 Liu et al. 

(2009) [50] 

Primary rat renal 

cells

Cmax 0.4-0.8 2.1 – 2.3 0.97-1.05 Huljic at al. 

(2008) [48] 

Primary human 

renal cells

Cmax 0.4-0.9 1.1-2.3 0.5-1.1 Huljic et al. 

(2008) [48]

LLC-PK1 AUC 68.9-169 189.9-409.9 70.7-153.5 Hsin et al. 

(2006) [49] 

MDCK AUC 137.5-216.3 377.0-590.9 141.2-255.0 Hsin et al. 

(2006) [49]

MDCK AUC 43.5-96.1 123.5-260.1 44.6-98.8 Liu et al. 

(2009) [50] 

Primary rat renal 

cells

AUC 14.3-15.6 43.7-48.0 14.6-15.9 Huljic et al. 

(2008) [48] 

Primary human 

renal cells

AUC 7.7-16.2 22.4-47.0 7.9-16.6 Huljic et al. 

(2008) [48]
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Table 2.6

In vivo rat acute kidney toxicity data of AAI obtained from the literature.

Species Exposure 

route

Dosea

(mg/kgbw/day)

Markers of kidney toxicity Type of exposure AA composition POD (mg/

kgbw/day)

Figure Reference

Rat Oral 0, 50 BUN & Creatinine 

concentration

single n.a.b < 50 2.8a Chen et al. 

(2006) [54]

Rat Oral 0, 7.7, 38.5, 77a BUN & Creatinine 

concentration

single 78% AAI, 22% 

AAII

38.5 c 2.8a Mengs and 

Stotzem (1993) 

[28]

Rat Oral 0, 10 BUN, Creatinine 

concentration, AST, ALT & 

ALP activities

repeated (7 

times exposed 

over 19 days)

AAI only < 10 2.8a Yeh et al. (2008) 

[55]

Rat SC 0, 4a Creatinine concentration 

& urinary protein

repeated (daily 

exposed of 35 

days)

40% AAI, 60% 

AAII

< 4 2.8a Lebeau et al. 

(2005) [56]

a adjusted dose = dose x percentage of AAI

b n.a. non-available

c absolute NOAEL value

BUN = blood urea nitrogen, AST = aspartate amino transferase , ALT = alanine amino transferase , ALP = alkaline phosphatase
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Table 2.7

In vivo mouse acute kidney toxicity data of AAI obtained from the literature.

Species Exposure 

route

Dosea (mg/

kgbw/day)

Markers of kidney toxicity Type of exposure AA composition POD (mg/

kgbw/day)

Figure Reference

Mouse IP 0, 10 BUN & Creatinine 

concentration

single AAI only < 10 2.8b Xue et al. (2008) 

[57]

Mouse IP 0, 10 BUN & Creatinine 

concentration

single AAI only < 10 2.8b Xiao et al. 

(2008) [58]

Mouse IP 0, 10, 20 BUN & Creatinine 

concentration

single AAI only < 10 2.8b Chen et al. 

(2011) [59]

Mouse IV 0, 4.1a Creatinine concentration, 

urinary protein & NAG

repeated (5 days 

exposed)

41% AAI, 59% 

AAII

< 4.1 2.8b Huang et al. 

(2013) [60]

Mouse IP 0, 0.6, 6a BUN & Creatinine 

concentration

repeated (5 times 

per week for 3 

months)

60% AAI, 40% 

AAII

< 0.6 2.8b Yuan et al. 

(2011) [61]

a adjusted dose = dose x percentage of AAI

BUN = blood urea nitrogen, NAG = N-Acetyl-β-D-glucosaminidase. 
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Fig. 2.8 BMDL10 values for acute kidney toxicity of AAI in rat (a) and mouse (b) predicted by the in vitro PBK based-reverse dosimetry approach based on the 

Cmax for LLC-PK1 cell line (vertical solid line), MDCK cell line (vertical dashed line) and predicted based on in vitro literature data (solid squares) as compared 

to absolute PODs (filled circle) and estimated POD (horizontal capped lines)* values derived from in vivo kidney toxicity studies as shown in Table 2.6 and 

2.7 by oral, SC-, IP- or IV- injection exposure. 

*range of estimated POD= estimated NOAEL to LOAEL 
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2.4 DISCUSSION
The aim of the present study was to investigate whether physiologically based kinetic (PBK) 

modeling-based reverse dosimetry could convert concentration-response curves for cytotoxicity 

in kidney cells in vitro to in vivo dose-response curves for nephrotoxicity in rat, mouse and human, 

and provide an adequate POD for the evaluation of nephrotoxicity in risk assessment. This was done 

using the nephrotoxin aristolochic acid I (AAI) [5, 8, 62] as model compound. 

	 In a first step, the in vitro cytotoxicity of AAI was determined. The most widely used 

cell lines to study kidney toxicity in vitro are human kidney-2 (HK-2), madin-darby canine kidney 

(MDCK) and pig kidney (LLC-PK1) cell lines [15, 49, 50, 58, 63]. It has been reported that the cytotoxic 

potency of AAI may vary between different cell lines and the most sensitive cell line to study AAI 

cytotoxicity was reported to be the LLC-PK1 cell line [15, 64], which is derived from the proximal 

tubular epithelial cell line of the pig. It is noted that the target organ of AAI is kidney and more 

specific the proximal tubular area [56, 65, 66]. However, results of the present study reveal that for 

the two different kidney cell lines a similar cytotoxic potency was observed. Huljic et al. (2008) [48] 

suggested the use of primary porcine renal cortex cells to investigate the AA toxicity. Whether the 

predictive power of the in vitro-in silico approach can be refined to a further extent by using primary 

kidney cells instead of kidney cell lines remains to be investigated.

	 In a second step, the present study defined PBK models for AAI in rat, mouse and human. 

The performance of the rat model could be validated based on data from Ren et al. (2014) [41], 

comparing the predicted plasma levels of AAI to the reported levels in vivo. Based on this approach, 

there was no difference in the Cmax predicted and actually observed for AAI and an only 1.7-fold 

difference between the AUC predicted by the PBK model and the AUC actually observed upon a 

single oral dose of 25.3 mg/kg bw of AAI. Thus, this model adequately predicts the plasma level 

of AAI in rat. It is important to note that in the present study, almost all PBK model parameters 

were either obtained from literature or derived using in vitro techniques, thereby contributing to 

reduction, refinement and replacement in animal testing. Of course the approach requires further 

work before it can fully replace the animal studies such as for example studies that demonstrate that 

by this approach also the target organ and type of adverse effect can be predicted so that it can be 

applied without upfront knowledge of the target organ or mode of action.

	 In a final step the PBK models defined were used to translate the in vitro concentration-

response curves to in vivo dose-response curves for kidney toxicity. From these predicted in vivo 
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dose-response curves, BMDL10 values were derived that can be used as POD that provides a suitable 

starting point for risk assessment. The outcomes indicate that our predicted BMDL10 values based on 

Cmax in the rat model differed about 2.3- to 55.6-fold from the range of experimental PODs derived 

from available in vivo studies. In the mouse model, the difference was larger, amounting to 1.5- 

to 163.8-fold. However, when comparing the BMD10 values predicted to the dose levels reported 

to actually cause AAN in human, the predicted values causing human kidney toxicity are within 

the range of real human data. Close analysis of the differences between the predicted and in vivo 

reported PODs revealed that especially repeated dose studies seem to result in somewhat lower 

PODs than the values predicted by our model and observed in the literature for single dose studies. 

These lower PODs could not be explained by accumulation of AAI in the kidneys, as AAI was observed 

to be swiftly metabolized and (directly) excreted by all species and inclusion of repeated doses in 

the PBK models did not lead to higher predicted concentrations of AAI in the kidneys nor lower 

BMDL10 values (data not shown). Irrespective of the dosing regime, it should be noted that there 

is already substantial variation in the PODs derived from all in vivo studies, and that the BMDL10 

values defined based on our novel in vitro and PBK model-based approach seem to fall within this 

variation. This conclusion holds especially when taking into account the fact that the quality of the 

reported in vivo data hampered definition of an accurate POD given that often there was only one 

dose of AAI being tested while that dose appeared to be an effect level, making estimation of the 

POD inaccurate. 

	 Taking all these aspects into account it is concluded that the novel in vitro and PBK model-

based approach provides PODs for risk assessment with a similar level of uncertainty as observed in 

the experimental animal data. Also, combining in vitro cytotoxicity with PBK model-based reverse 

dosimetry provides a promising approach to predict acute nephrotoxicity in vivo. The PBK modeling 

approach also has uncertainties as the models rely on various assumptions (e.g. estimation of tissue 

partition coefficients, interspecies scaling of absorption/excretion rates, unaccounted for metabolic 

pathways, etc) that may need to be further validated. It remains to be considered whether extra 

assessment factors may be required to cover these uncertainties once the proposed in vitro-PBK 

based method would be used for definition of PODs. 

	 In toxicological risk assessment, rodent data could be used as the POD to set the safe level 

for human consumption. Usually, to accommodate for interspecies differences, a 10-fold uncertainty 

factor has been used to allow for interspecies differences, with a factor of 4.0 for species differences 

in kinetics and a factor of 2.5 for species differences in dynamics [67]. The PBK model-based 
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approach allows prediction of dose-response curves for human taking interspecies differences in 

kinetics already into account. The application of the PBK model based-reverse dosimetry approach 

may thus reduce the uncertainty factor for species differences from 10 to 2.5 when the POD would 

be predicted using the human PBK model. The current study demonstrated that our predicted 

BMDL10 value differed about 1.8-fold between rat and human and about 1.9-fold between mouse 

and human, corroborating that species differences in kinetics may indeed amount to about 4-fold. 

Furthermore, when the in vivo dose-response curve would be defined using a human cell model, 

we can even argue that the factor of 2.5 for the species differences in dynamics is also not needed 

anymore. Altogether, the uncertainty factor of 10 for interspecies species may then no longer be 

needed. The current PBK models indicate that rat may be a better model for AAI toxicity in human 

than mouse because of a higher degree of similarity in the kinetics for its detoxification. It is also 

important to stress that for the specific case of AAI, the POD for nephrotoxicity could be used to 

estimate the chances on nephrotoxicity at given levels of exposure (the ratio of the POD and the 

estimated daily intake should be >100) but not to define a TDI given that the compound is also 

a genotoxic carcinogen for which no TDI can be defined.  Whether the in vitro-in silico approach 

could also be used to define a BMDL10 for a genotoxicity/carcinogenicity endpoint and support a 

risk assessment for the carcinogenicity of AAI based on the so called Margin of Exposure approach 

[68] remains to be established.  

	 In conclusion, by integrating the in vitro-in silico approach with the reverse dosimetry 

approach, nephrotoxicity of AAI could be predicted within an order of magnitude accuracy and 

within the variability also observed between different in vivo studies. The results obtained also 

indicate that rat may be a better model for studying AAI kidney toxicity than mouse because of a 

higher degree of similarity in the kinetics for its detoxification.
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Supplementary data A. Mass balance equation and parameter specifications of PBK model for 

aristolochic acid I in the rat

Compound			   abbreviation

Aristolochic acid I			   AAI

Aristolochic acid Ia			  AAIa

Compartment (Tissue (T))		  abbreviation

Small intestine			   I

Liver				    L

Kidney				    K

Slowly perfused tissue		  S

Richly perfused tissue		  R

Fat compartment			   F

Arterial				    A

Venous				    V

Variable							       Unit	            abbreviation

Blood flow rate to tissue					     lh-1		  Q(T)

Cardiac output						      lh-1		  QC

Concentration of AAI in tissue or blood			   µM		  C(T)AAI

Partitioning coefficient tissue:blood AAI			   -		  P(T) AAI

Volume of tissue or blood					     l		  V(T)

Amount AAI in tissue or blood				    µmol		  A(T) AAI

Maximum rate of formation metabolite, AAIa in tissue		  µmol h-1		  Vmax(T)AAIa

Michaelis-Menten constant for formation metabolite, AAIa in tissue	µM		  Km(T) AAIa 

Uptake rate AAI in intestine					     h-1		  Ka

Excretion rate in bile					     h-1		  Kbile

Excretion rate in urine					     h-1		  Kurine

Small intestine

dAIAAI/dt=dUptakeAAI/dt +QI*(CAAAI-CIAAI/PIAAI)-[(VmaxIAAIa*CIAAI/PIAAI )/(KmIAAIa+CIAAI/PIAAI )] 
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Uptake of AAI from GI tract

dUptakeAAI/dt=-dAGIAAI/dt=ka*AGIAAI

AGIAAI(0)=Oral dose

CIAAI=AIAAI/VI

Liver compartment

dALAAI/dt=QL*CA+QI*CIAAI/PIAAI-(QL+QI)*CLAAI/PLAAI-(VmaxLAAIa*CLAAI/PLAAI)/(KmAAIa+CLAAI/PLAAI)-

dEbAAI/dt

CLAAI=ALAAI/VL

Excretion rate in bile

dEbAAI/dt=Kbile*AL

Eb(0)=0

Kidney compartment

dAKAAI/dt=QK*(CAAAI-CKAAI/PKAAI )-dEuAAI/dt

CKAAI=AKAAI/VK

Excretion rate in urine

dEuAAI/dt=Kurine*AK

Eu(0)=0

Slowly perfused tissue

dASAAI/dt=QS*(CAAAI-CSAAI/PSAAI)

CSAAI=ASAAI/VS

Richly perfused tissue

dARAAI/dt=QR*(CAAAI-CRAAI/PRAAI)

CRAAI=ARAAI/VR

Fat compartment

dAFAAI/dt=QF*(CAAAI-CFAAI/PFAAI)
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CFAAI=AFAAI/VF

Arterial blood compartment

CAAAI=CVAAI

Venous blood compartment

dAVAAI/dt=(QF*CFAAI/PFAAI)+(QK*CKAAI/PKAAI)+(QR*CRAAI/PRAAI)+(QS*CSAAI/PSAAI)+(QL+QI)*CLAAI/PLAAI 

-QC*CVAAI

CVAAI=AVAAI/VV
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Supplementary data B. In vitro cytotoxicity data of AAI based on the experiments of the present study and literature studies. For the in vitro literature data, 

the results from the graphs were extracted with Plotdigitizer software (Boston, MA)

Cell line Method Exposure time (hr) Concentrations of AAI (µM) Mean of cytotoxicity (%) Studies

LLC-PK1 MTT assay 24 0, 0.5, 1, 5, 10, 50, 100, 150, 

200, 250 

0, 6.5, 5.2, 11.5, 20.3, 33.5, 45.0, 52.0, 58.4, 

65.3

Present study

MDCK MTT assay 24 0, 0.5, 1, 5, 10, 50, 100, 150, 

200, 250

0, 1.2, 5.3, 6.0, 16.8, 24.1, 39.3, 37.0, 41.3, 

63.6

Present study

LLC-PK1 Neutral red 

assay

48 1, 2, 9, 32, 100 15, 24, 52, 90, 95 Balachandran et al. 

(2005) [15]

LLC-PK1 MTT assay 24 0, 50, 100, 200, 300 0, 23, 58, 70, 79 Hsin et al. (2006) 

[49]

MDCK MTT assay 24 0, 50, 100, 200, 300 0, 17, 39, 57, 68 Hsin et al. (2006) 

[49]

MDCK MTT assay 24 5, 25, 75, 150, 300 4, 23, 50, 64, 75 Liu et al. (2009) [50]

Primary renal 

cells of porcine 

MTT assay 24 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 

50, 100, 500

6, 2, 0, 1.1, 1, 3.8, 8.9, 30.9, 47.9, 60 Huljic et al. (2008) 

[48]

Primary renal 

cells of porcine

Cell number 

counting

24 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 

25, 100, 500

-1, 4.1, 3.5, 9.4, 14.2, 32.2, 42.5, 75.4, 84.8, 

92.4

Huljic et al. (2008) 

[48]

Primary renal 

cells of rat 

Cell number 

counting

24 0.01, 0.1, 0.5, 5, 10, 25, 50, 

100, 1000

-9, 0.4, 1.1, 18, 24.9, 35.1, 47.3, 54.6, 78.1 Huljic et al. (2008) 

[48]

Primary renal 

cell of human

Cell number 

counting

24 0.01, 0.1, 1, 5, 10, 50, 100, 

500, 1000

-9.2, -8.3, -3.2, 11.6, 20.8, 35.6, 38.6, 60, 

71.7

Huljic et al. (2008) 

[48]
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Supplementary data C. Table 1-Results from a BMC analysis for in vitro cytotoxicity of AAI towards LLC-PK1 cell line upon for 24 hours exposure by MTT 

assay  (present study) using BMDS software version 2.5, a BMD of 10% and default settings. The data used as input for the BMC analysis are presented in 

Figure 2.4b.

Model Restriction No. of 

parameters

Log Likelihood p-value Accepteda BMC10 (µM) BMCL10 (µM)

Reduced 1 -608.875 - - - -

Full 10 -464.687        - - - -

Gamma none 2 -465.583 1.0 Yes 2.6 1.4

Logistic nab 2 -495.601         0.0 No

LogLogistic none 2 -466.682 0.8 Yes 2.8 1.6

LogProbit none 2 -467.663         0.6 Yes 2.5 1.6

Multistage none 3 -474.421         0.0 No

Probit nab 2 -493.941         0.0 No

Weibull none 2 -465.866         0.9 Yes 2.7 1.5

Quantal-Linear nab 2 -478.907         0.0 No

a Fitted model not significantly different than the full model at p<0.05.

b not applicable
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Supplementary data C. Table 2-Results from a BMC analysis for in vitro cytotoxicity of AAI towards MDCK cell line upon for 24 hours exposure by MTT assay  

(present study) using BMDS software version 2.5, a BMD of 10% and default settings. The data used as input for the BMC analysis are presented in Figure 

2.4b.

Model Restriction No. of 

parameters

Log Likelihood p-value Accepteda BMC10 (µM) BMCL10 (µM)

Reduced 1 -544.921         - - - -

Full 10 -416.919        - - - -

Gamma none 2 -423.438         0.1 Yes 7.1 4.1

Logistic nab 2 -446.132         0.0 No

LogLogistic none 2 -426.433         0.05 Yes 6.4 3.9

LogProbit none 2 -424.641         0.05 Yes 5.9 3.8

Multistage none 3 -431.04 0.0 No

Probit nab 2 -444.247         0.0 No

Weibull none 2 -423.636         0.1 Yes 6.9 4.2

Quantal-Linear nab 2 -432.852 0.0 No

a Fitted model not significantly different than the full model at p<0.05.

b not applicable
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Supplementary data C. Table 3- Results from a BMC analysis for in vitro cytotoxicity of AA towards LLC-PK1 cell line upon for 24 hours exposure by MTT 

assay  (Hsin et al., 2006) using BMDS software version 2.5, a BMD of 10% and default settings. The data used as input for the BMC analysis are presented 

in Figure 2.4b.

Model Restriction No. of 

parameters

Log Likelihood p-value Accepteda BMC10 (µM) BMCL10 (µM)

Reduced 1 -344.972         - - - -

Full 5 -234.439         - - - -

Gamma none 2 -238.096         0.06 Yes 11.9 4.9

Logistic nab 2 -262.246         0.0 No

LogLogistic none 2 -236.682         0.2 Yes 19.8 12.1

LogProbit none 2 -236.744         0.2 Yes 21.5 13.5

Multistage none 2 -237.22         0.1 Yes 13.9 11.2

Probit nab 2 -261.959         0.0 No

Weibull none 2 -237.944         0.07 Yes 12.2 6.2

Quantal-Linear nab 1 -238.629         0.08 Yes 17.2 15.3

a Fitted model not significantly different than the full model at p<0.05.

b not applicable
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Supplementary data C. Table 4-Results from a BMC analysis for in vitro cytotoxicity of AA towards MDCK cell line upon for 24 hours exposure by MTT assay  

(Hsin et al., 2006) using BMDS software version 2.5, a BMD of 10% and default settings. The data used as input for the BMC analysis are presented in Figure 

2.4b.

Model Restriction No. of 

parameters

Log Likelihood p-value Accepteda BMC10 (µM) BMCL10 (µM)

Reduced 1 -327.28 - - - -

Full 5 -243.482         - - - -

Gamma none 2 -244.291 0.7 Yes 22.3 11.2

Logistic nab 2 -260.866         0.0 No

LogLogistic none 2 -243.845         0.9 Yes 27.8 17.2

LogProbit none 2 -243.772         0.9 Yes 30.3 19.5

Multistage none 2 -244.099         0.7 Yes 22.8 17.7

Probit nab 2 -259.673         0.0 No

Weibull none 2 -244.26         0.7 Yes 22.3 12.4

Quantal-Linear nab 1 -244.389         0.8 Yes 25.5 22.5

a Fitted model not significantly different than the full model at p<0.05.

b not applicable
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Supplementary data C. Table 5-Results from a BMC analysis for in vitro cytotoxicity of AAI towards MDCK cell line upon for 24 hours exposure by MTT assay  

(Liu et al., 2009) using BMDS software version 2.5, a BMD of 10% and default settings. The data used as input for the BMC analysis are presented in Figure 

2.4b.

Model Restriction No. of 

parameters

Log Likelihood p-value Accepteda BMC10 (µM) BMCL10 (µM)

Reduced 1 -341.935         - - - -

Full 5 -261.612         - - - -

Gamma none 2 -264.59         0.1 Yes 6.4 3.4

Logistic nab 2 -283.314         0.0 No

LogLogistic none 2 -262.071         0.8 Yes 8.6 5.5

LogProbit none 2 -261.881         0.9 Yes 8.7 5.8

Multistage none 3 -261.986         0.7 Yes 10.4 8.7

Probit nab 2 -283.299         0.0 No

Weibull none 2 -263.777         0.2 Yes 6.7 3.9

Quantal-Linear nab 2 -268.828         0.0 No

a Fitted model not significantly different than the full model at p<0.05.

b not applicable
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Supplementary data C. Table 6-Results from a BMC analysis for in vitro cytotoxicity of AA towards primary rat kidney cortex cell upon for 24 hours exposure 

by cell number counting (Huljic et al., 2008) using BMDS software version 2.5, a BMC of 10% and default settings. The data used as input for the BMD 

analysis are presented in Figure 2.4b.

Model Restriction No. of 

parameters

Log Likelihood p-value Accepteda BMC10 (µM) BMCL10 (µM)

Reduced 1 -504.03         - - - -

Full 8 -367.216         - - - -

Gamma none 2 -382.504         0.0 No

Logistic nab 2 -443.136         0.0 No

LogLogistic none 2 -371.231         0.2 Yes 2.1 1.3

LogProbit none 2 -369.54         0.6 Yes 2.2 1.4

Multistage none 3 -383.886         0.0 No

Probit nab 2   -442.885         0.0 No

Weibull none 2 -376.732         0.0 No

Quantal-Linear nab 2 -431.176         0.0 No

a Fitted model not significantly different than the full model at p<0.05.

b not applicable
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Supplementary data C. Table 7- Results from a BMC analysis for in vitro cytotoxicity of AA towards primary human cell upon for 24 hours exposure by cell 

number counting (Huljic et al., 2008) using BMDS software version 2.5, a BMD of 10% and default settings. The data used as input for the BMC analysis are 

presented in Figure 2.4b.

Model Restriction No. of 

parameters

Log Likelihood p-value Accepteda BMC10 (µM) BMCL10 (µM)

Reduced 1 -403.135 - - - -

Full 6 -345.659         - - - -

Gamma none 2 -346.849         0.7 Yes 1.1 0.3

Logistic nab 2 -357.805         0.0 No

LogLogistic none 2 -346.497         0.8 Yes 2.5 1.2

LogProbit none 3 -346.456         0.7 Yes 3.2 1.5

Multistage none 3 -350.346         0.0 No

Probit nab 2 -357.774         0.0 No

Weibull none 2 -346.521         0.8 Yes 1.8 0.7

Quantal-Linear nab 2 -353.831         0.0 No

a Fitted model not significantly different than the full model at p<0.05.

b not applicable
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Supplementary data D. Normalized sensitivity coefficients for parameters of the PBK model for rat 

(a), mouse (b) and human (c) on Cmax and AUC values in kidney tissue from single oral dose of 0.1 mg/

kg bw and 100 mg/kg bw. Normalized sensitivity coefficients ≥ 0.1 are presented. BW= bodyweight, 

VLc= volume of liver, VKc = volume of kidney, VIc = volume of intestine, QKc = blood flow to kidney, 

QIC = blood flow to intestine, PLA = partition coefficient of liver, PKA = partition coefficient of 

kidney, PRA = partition coefficient of richly perfused tissue, PIA = partition coefficient of intestine, 

Ka = uptake rate constant from gastrointestinal tract, Kbile = excretion rate via bile constant, S9PI 

= intestinal S9 protein yield, VmaxIAAAc and KmIAAc = the maximum rate of formation and the 

Michaelis-Menten constant for formation of AAIa in intestine.
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Supplementary data E. Influence of the most sensitive parameters in the PBK model on the 

predictions of the BMDL10 for rat, mouse and human as predicted based on LLC-PK1 (a) and MDCK (b) 

cell lines based on reverse dosimetry. The analysis was performed by increasing and decreasing the 

most sensitive parameters (with the exception of physiological parameters) 10-fold, representing 

a worst-case estimate of the uncertainty in the model parameters. The sensitive parameters for rat 

and human models changed were partition coefficients of liver, kidney, intestine and richly perfused 

tissue, uptake rate constant from gastrointestinal tract and excretion rate via bile constant. In case 

of mouse models, all the sensitive parameters changed were similar with rat and human models 

except for the partition coefficient of richly perfused tissue that were not included. However, the 

intestinal S9 protein yield and intestinal kinetics parameters were included in mouse model. Both 

increasing and decreasing the most sensitive parameters resulted in higher BMDL10 values. In case 

of increasing the most sensitive parameters with 10-fold, the kidney concentration of AAI went 

down as AAI was faster excreted by urinary and biliary excretion and retained longer in different 

tissues (due to higher partition coefficients). Therefore higher dose levels needed to be simulated 

in order to match the peak kidney concentrations with the in vitro effect concentrations within 

the reverse dosimetry approach, resulting in higher predicted BMDL10 values. When decreasing 

the most sensitive parameters, the predicted BMDL10 values also increased as a result of lower 

predicted kidney concentrations of AAI. In this case the lower kidney concentrations were a result of 

lowering the partition coefficients, resulting in a higher fraction of AAI that is available for metabolic 

conversion.
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Supplementary data F. BMDL10 values for acute kidney toxicity of AAI in rat (a) and mouse (b) predicted by the in vitro PBK based-reverse dosimetry 

approach based on the AUC for LLC-PK1 cell line (vertical solid line), MDCK cell line (vertical dashed line) and predicted based on in vitro literature data 

(solid squares) as compared to absolute PODs (filled circle) and estimated POD (horizontal capped lines)* values derived from in vivo kidney toxicity 

studies as shown in Table 2.6 and 2.7 by oral or IP exposure. 

*range of estimated POD= estimated NOAEL to LOAEL
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ABSTRACT 
Aristolochic acid I (AAI) is a well-known genotoxic kidney carcinogen. Metabolic conversion of 

AAI into the DNA reactive aristolactam-nitrenium ion is involved in the mode of action of tumor 

formation. This study aims to predict in vivo AAI-DNA adduct formation in the kidney of rat, mouse 

and human by translating the in vitro concentration-response curves for AAI-DNA adduct formation 

to the in vivo situation using physiologically based kinetic (PBK) modeling-based reverse dosimetry. 

DNA adduct formation in kidney proximal tubular LLC-PK1 cells exposed to AAI was quantified 

by LC-ESI-MS/MS. Subsequently, the in vitro concentration-response curves were converted to 

predicted in vivo dose–response curves in rat, mouse and human kidney using PBK models. Results 

obtained revealed a dose-dependent increase in AAI-DNA adduct formation in the rat, mouse and 

human kidney and the predicted DNA adduct levels were generally within an order of magnitude 

compared to values reported in the literature. Then, in vivo tumor data in rats were used to derive 

a BMD10 (benchmark dose producing a defined 10% extra risk, above background level) value for 

kidney tumor formation and the PBK model was used to predict the AAI-DNA adduct levels at these 

BMD10 values. Levels of DNA adducts predicted at the BMD10 value for kidney tumor formation in 

rats amounted to 4-11 adducts in 108 nucleotides. Predicted DNA adduct levels are within the range 

of variation observed when analyzing different animal studies. Therefore, the combined in vitro-PBK 

modeling approach contributes to the reduction, refinement and replacement of animal testing. 
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3.1 INTRODUCTION
The development of science-based non-animal testing strategies in human safety assessment of 

chemicals is an important challenge. Current efforts in this area focus on the development and use 

of in vitro alternative testing strategies using cells in culture resulting in concentration-response 

curves. However, concentration-response curves from in vitro models are of limited use for human 

risk and safety assessment, because risk assessment requires in vivo dose-response curves from 

which points of departure can be derived. A novel alternative testing strategy that can be used 

to solve this discrepancy between in vitro and in vivo data involves the translation of in vitro 

concentration-response curves to in vivo dose-response curves using physiologically based kinetic 

(PBK) modeling-based reverse dosimetry [1-6]. By using this integrated in vitro-in silico approach, 

in vivo dose-response levels and points of departure for risk assessment can be defined based on in 

vitro concentration-response curves. Previously, we reported proofs of principle for this approach, 

including the prediction of in vivo DNA adduct formation of alkenylbenzenes [7] or α,β-unsaturated 

aldehydes [8, 9] and the prediction of in vivo developmental toxicity of glycol ethers [4], phenol 

[5] and retinoic acid [6]. In a recent study, we translated in vitro concentration-response curves for 

cytotoxicity of aristolochic acid I (AAI) in LLC-PK1 or MDCK cells to in vivo dose-response curves for 

kidney toxicity from which we derived BMDL10 values (benchmark dose 10% lower confidence limit) 

that can be used as points of departure for risk assessment [1]. Given that the ultimate critical effect 

of AAI toxicity is not only kidney toxicity but also DNA adduct formation resulting in AAI-induced 

mutagenesis and carcinogenesis, the aim of the present study was to translate in vitro concentration-

response curves for DNA adduct formation in a kidney cell line to in vivo dose response-curves for 

DNA adduct formation in the kidney of rat, mouse and human. Over the past years, a number of in 

vivo studies has been carried out to evaluate the dose-dependent DNA adduct formation in the 

kidney of rats [10-14] and mice [15-17] exposed to AAI or a mixture of aristolochic acids (AAs). Also 

human studies on AA kidney DNA adduct formation in patients with Aristolochic Acid Nephropathy 

(AAN) are available [13, 18], enabling validation of the predictions made. 

	 AAs are main components in all Aristolochia species that have been used as a traditional 

medicine to treat arthritis, gout, rheumatism and snake bites [19, 20]. However, products containing 

AAs were prohibited after Mengs and colleagues discovered the carcinogenic effects of AAs in rats 

[21, 22]. The risks of exposure to AAs became even more evident in 1993 when more than 1800 

Belgian women were accidentally exposed to AAs via slimming pills [23] and later, more than 100 
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of these young women developed chronic kidney failure, developing into cancer of the kidneys 

and the urinary tract in several patients [23, 24]. These medical disorders were associated with the 

presence of kidney AA-DNA adducts [25]. A large body of evidence suggests that AA-induced DNA 

adduct formation, followed by cellular proliferation and fixation of mutations, is responsible for 

cancer development in AA-treated animals [20, 26] and humans [20, 27].

	 AAs are nitrophenanthrene carboxylic acids and the most studied congeners are 

8-methoxy-6-nitrophenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAI, Figure 3.1) and its 

8-demethoxylated form (AAII) [28]. It was found by Schmeiser and coworkers, that not only mixtures 

of AAs were found to be carcinogenic but that AAI alone could induce tumors in rat [29]. AAI is 

the major component in the mixtures of AAs [25, 30]. Formation of the N-hydroxyaristolactam 

metabolite of AAI is considered to lead to DNA adduct formation, whereas formation of aristolochic 

acid Ia (AAIa) is considered as a detoxification reaction (Figure 3.2) [31]. Nitroreduction of AAI leads to 

formation of N-hydroxyaristolactams, which is catalyzed by both cytosolic and microsomal enzymes 

of which NAD(P)H: quinone oxidoreductase (NQOI) is the most important enzyme [30, 32-34]. This 

reaction generates a reactive nitrenium intermediate, which can bind to DNA, and results in the 

formation of AAI-DNA adducts [14, 35] (Figure 3.2). The major adduct formed is 7-(deoxyadenosin-

N6-yl)aristolactam I (dA-AAI), which has also been found to be the most persistent adduct in the 

kidney tissue [13, 20]. Although AAI may be bioactivated in other organs such as the liver, the kidney 

has been shown to be the major target organ for AAI-induced toxicity including AAI-DNA adduct 

formation and tumor induction [10]. This tissue specific toxicity has been suggested to be due to 

the fact that the capacity of the DNA repair processes in the kidney is lower than in other organs 

[36] and/or to the ability of the proximal tubule cells to take up and concentrate AAs and their 

metabolites, making the kidney more susceptible to AA-induced toxicity [10]. 
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N6-yl)aristolactam I (dA-AAI), which has also been found to be the most persistent adduct in the 

kidney tissue [13, 20]. Although AAI may be bioactivated in other organs such as the liver, the kidney 
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[36] and/or to the ability of the proximal tubule cells to take up and concentrate AAs and their 
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Fig. 3.1 Structural formula of aristolochic acid I (AAI).  

	 As indicated, the aim of the present study was to predict in vivo AAI-DNA adduct formation 

in the kidney of rat, mouse and human by extrapolation of in vitro concentration-response curves 

for AAI-DNA adduct formation to the in vivo situation using PBK modeling-based reverse dosimetry. 

By defining dose-response curves for rat, mouse and human, using only in vitro and in silico 

methods, the outcome of this study may provide new insights in alternative methods for human risk 

assessment, especially with respect to possible species-dependent differences in dose-dependent 

DNA adduct formation and related carcinogenicity.
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Fig. 3.2 Metabolic pathways for detoxification, bioactivation and DNA adduct formation of 

aristolochic acid I (AAI). NR = nitroreduction, NQOI = NAD(P)H:quinone oxidoreductase, dA-AAI = 

deoxyadenosine AAI, dG-AAI = deoxyguanosine AAI, CYPs = cytochromes P450, UGTs = uridine 

5’-diphospho-glucuronosyltransferases, SULTs = sulfotransferases.
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3.2 MATERIAL AND METHODS

3.2.1 Chemicals 
Aristolochic acid I (AAI) was purchased from Sigma-Aldrich (Zwijndrecht, NL). The LLC-PK1 porcine 

cell line (ATCC® CL-101TM) was obtained from the American Type Culture Collection (ATCC). 

Dulbecco’s Modified Eagle Medium (DMEM), phosphate buffered saline (PBS) and trypsin-EDTA were 

purchased from Gibco (Paisley, Scotland, UK) and fetal calf serum (FCS) from Lonza BioWhittaker 

(Walkersville, MD, USA). Deoxyadenosine (dA), deoxyguanosine (dG), N,N-dimethylformamide 

(DMF), zinc powder, phosphodiesterase I from Crotalus adamanteus (venom phosphodiesterase), 

phosphodiesterase II from bovine spleen (spleen phosphodiesterase), nucleus PI and alkaline 

phosphatase were purchased from Sigma-Aldrich. Dimethyl sulfoxide (DMSO) (>99.9%) was 

obtained from Acros Organics (Geel, Belgium). Acetonitrile (ACN; ULC/MS grade) was obtained from 

Biosolve BV (Valkenswaard, The Netherlands). Formic acid and ethanol were obtained from VWR 

Merck (Darmstadt, Germany). 

3.2.2 General outline for PBK model-based reverse dosimetry approach
Development of the in vitro-PBK approach to predict in vivo dose-response curves for DNA adduct 

formation consisted of the following steps: (1) establishment of in vitro concentration-response 

curves for AAI-dependent DNA adduct formation in the LLC-PK1 cell line, (2) translation of the in 

vitro concentration-response curves into in vivo dose-response curves for DNA adduct formation 

in rat, mouse and human using established PBK models [1] describing in vivo kinetics of AAI in rat, 

mouse and human, and (3) evaluation of the predictions against available in vivo data.   

3.2.3 In vitro DNA adduct formation in LLC-PK1 cells
The LLC-PK1 cell line was cultured in 75 cm2 flasks at 37°C in a humidified atmosphere of 5% CO2 in 

DMEM supplemented with fetal calf serum (10% v/v). Cells were subcultured three times a week, 

using 1% (v/v) trypsin-EDTA to detach the cells. Cytotoxicity was evaluated using the MTT assay as 

previously described [1]. 

	 A total of approximately 1 x 106 cells/flask were seeded. At confluency of 80-90%, the 

cells were exposed for 24 h to AAI at different concentrations ranging from 0.5 to 20 μM (final 

concentration in the DMEM without serum) added from 200 times concentrated stock solutions in 
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DMSO. In line with previous studies [37, 38], exposure of cells to AAI was performed in serum-free 

medium to prevent binding of AAI to serum proteins, which would decrease the free concentration 

of AAI to which the cells were exposed [39].

	 To obtain a sufficient amount of DNA, all concentrations of AAI were tested in duplicate 

and the duplicate samples were pooled. After the exposure to AAI, cells were scraped in 5 mL PBS, 

collected in a 10 mL tube and centrifuged at 1500 rpm for 5 min. The pellets were stored at -20°C 

until DNA isolation. For DNA isolation, a QIAamp DNA Mini Kit from Qiagen (Hilden, Germany) was 

applied according to the procedure as recommended by the supplier. The yield and purity of the 

extracted DNA were determined using Nanodrop 1000 technology by measuring the absorbance 

ratio A260/280 nm. DNA samples with an absorbance ratio of 1.8-2.0 were considered pure. 

Digestion of DNA was performed as previously described [40] with minor modifications. In short, 40 

µL P1 buffer (300 mM sodium acetate, 1 mM ZnSO4, pH 5.3), 20 µL SPDE (spleen phosphodiesterase) 

solution (0.001 U/ µL), and 10 µL nuclease PI (0.5 U/ µL in water) were added to 50 µg DNA and 

incubated for 4 h at 37°C. Then, 40 µL PA buffer (500 mM Tris, 1 mM EDTA, pH 8.0), 20 µL VPDE 

(venom phosphodiesterase) solution (0.0002 U/ µL in water), and 15 µL alkaline phosphatase (0.27 

U/ µL) were added and the sample was incubated for another 2 h at 37°C. The hydrolyzed samples 

were evaporated to dryness and reconstituted in 50 µL water. The samples were kept at -80°C until 

analysis using Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (LC-ESI-

MS/MS). 

3.2.4 Synthesis of dA-AAI and dG-AAI adducts
The synthesis of the dA-AAI and dG-AAI adducts was performed by reaction of AAI with dA or dG 

using a modification of the protocol described previously [15]. In short, 100 μL of AAI in DMF (10 

mM) was mixed with 80 mg of preactivated zinc dust (<150 µm, 99.95%). Then, 1000 μL of dA or dG 

dissolved in potassium phosphate (50 mM, pH 5.8) were added to the AAI / zinc dust mixture to give 

a final concentration range that varied from 0 to 100 μM. After incubation in the dark at 37°C for 16 

h, the samples were put on ice for 30 min and centrifuged at 15 000 rpm for 10 min. The efficiency of 

the synthesis (% of dA or dG that reacted) was determined by analysis of the supernatant by HPLC on 

a Waters Alliance system with PDA-detection (260 nm) and a Grace Alltima C18 150 x 4.6 mm column 

measuring the unreacted dA or dG. Elution of dA was performed isocratically with 90% ammonium 

formate (10 mM) and 10% acetonitrile, and elution of dG with 95% and 5% of the same solutions 
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respectively, at a flow of 0.8 ml/min. The methods included a washing step with 100% acetonitrile 

before the new injection. The final amount of dA-AAI and dG-AAI in the calibration curve samples 

were assumed to be 2% of the starting material as previously reported [15]. The synthesized adduct 

samples obtained were used in LC-ESI-MS/MS to define a calibration curve for the quantification of 

dA-AAI and dG-AAI adducts in the cell studies.

3.2.5 LC-ESI-MS/MS method for detection and quantification of dA-

AAI and dG-AAI 
The LC-ESI-MS/MS method for detection and quantification of dA-AAI and dG-AAI was adapted 

from Yun et al. (2012) [15] LC-ESI-MS/MS was performed on a Perkin Elmer 200 series HPLC System 

(Perkin Elmer, Waltham, MA) coupled to an API 3000 system (Applied Biosystem, Foster city, CA) as 

previously described [41, 42]. In brief, 10 μL of sample was injected on an Agilent Zorbax Extend-C18 

column, 2.1 x 50 nm, 3.5 Micron 80 A (Basel, Switzerland), with a Zorbax guard column. A gradient 

was made with ultra-pure water containing 0.1% formic acid as solvent A and 100% acetonitrile as 

solvent B. The flow rate was set to 0.3 mL/min. In a total run of 15.5 min, the starting condition was 

90:10 (A:B) for 1 min followed by changing to 50:50 in 2.5 min, then to 0:100 in 1 min and remaining 

at 0:100 for another 2 min before returning to the starting condition over 1 min and keeping these 

conditions for 8 min to allow the column to re-equilibrate at room temperature. 

	 The mass spectrometric analysis in the positive ion mode was optimized with the following 

settings: nebulizer gas (air) at 10 psi, curtain gas (nitrogen) at 10 psi, ion spray voltage at 4000 V, 

collision energy (CE) at 28 eV, ion source temperature at 400°C, declustering potential set at 69 V, 

focusing potential at 175 V, entrance potential at 13 V, and collision cell exit at 15 V. Nitrogen was 

used as sheath gas turbo, ion spray, with a pressure of 7000 L/h. The dwell time per transition was 

0.05 sec. A divert valve was used in order to discard the gradient after elution of the peak. The mass 

spectrometer was operated in MRM mode with the following m/z transitions; 543427 for dA-AAI 

and 559443 for dG-AAI.

	 Data analysis of the calibration series and the samples was performed using the Analyst 

software version 1.5 (Applied Biosystem, Foster city, CA). Calibration curves were derived by plotting 

the peak area of synthesized dA-AAI or dG-AAI against the concentration of dA-AAI or dG-AAI and 

were used to determine the amount of DNA adducts in the samples of AAI-exposed cells. The 

amount of dA-AAI or dG-AAI detected in the samples was related to the total amount of digested 
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DNA detected in each sample and adjusted for the mass conversion of double strands DNA per 1000 

nucleotides (nts) that correspond to 607.6 g/mol, in order to quantify the number of adducts per 108 

nts. 

3.2.6 PBK models for rat, mouse and human		
In our previous work [1], PBK models were developed that describe the toxicokinetics of AAI in rat, 

mouse and human. In the present work, the same PBK models were used to convert concentrations 

to dose levels that would induce the DNA adducts levels observed in vitro. To this purpose an 

equation describing the AAI concentration dependent DNA adduct formation in LLC-PK1 kidney 

cells in vitro was added to the kidney compartment of the PBK model. In this way, the kinetic 

parameters for bioactivation of AAI to its DNA adduct forming metabolite were implicitly included 

in the combined in vitro-in silico model, since this takes place in the LLC-PK1 cells in vitro. 

	 The set of differential equations describing the mass balance equations can be found 

in supplementary data A. The PBK model equations were solved with Berkeley Madonna (version 

8.3.18, UC Berkeley, CA, USA) using Rosenbrock’s algorithms for solving stiff systems. A sensitivity 

analysis was performed to evaluate the influential parameters on the model output. Normalized 

sensitivity coefficients (SC) were calculated for the area under the curve (AUC) of the AAI venous 

blood concentration in the kidney as the model output (C) using the following equation:

SC=(C’-C)/(P’-P)*(P/C)							       [1]

where C is the initial value of the model output, C’ is the modified value after changing parameter 

value P, P is the initial parameter value and P’ is the modified parameter value [43]. A 5% increase 

in parameter values was chosen to analyze the effect of a change in a parameter. The sensitivity 

analysis was conducted for oral exposure to single doses of 0.1 and 100 mg/kg bw of AAI to simulate 

the influential of low and high dose levels to the model output.  

3.2.7 Translation of in vitro concentration-response curves to in vivo 

dose-response curves
Based on the in vitro concentration-response curve for AAI-DNA adduct formation in LLC-PK1 kidney 

cells, the in vivo dose-response curves for DNA adduct formation in the kidney of rat, mouse and 

human were predicted by PBK modeling-based reverse dosimetry. To this end, the concentration-

response data from the in vitro DNA adduct formation experiment, were translated to AUC-
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response data by multiplying the concentration with the exposure time (24 h). The extrapolation of 

the in vitro free AUC-response curve to the in vivo situation was done by assessing which oral doses 

are required in the PBK model to reach equivalent free AUC values of the AAI venous blood in the 

kidney as conventional marker of the biological active concentration in a tissue that can be linked 

to toxicodynamic data [44, 45].

	 Since AAI has a high binding affinity to protein [39], this leads to the differences in the free 

fraction of AAI in vitro, where medium without serum was used, as compared to the in vivo situation, 

where high protein levels are present [46, 47]. We have also measured the DNA adduct formation 

in cells exposed in the presence of FCS and the results confirm that protein binding significantly 

decreases the DNA adduct formation (data not shown) and should thus be taken into account. A 

correction for difference in free fraction between the in vitro and in vivo situation was included by 

multiplying the in vitro concentrations, obtained in absence of proteins, with a correction factor 

that amounted to 4.6. This factor was taken from Dickman et al. (2011), who showed that the free 

fraction of AAI in conditions resembling plasma is about 4.6 times lower than the free fraction in 

vitro in culture conditions where no proteins are added [39]. 

	 Based on these assumptions the following equation was used to describe the formation of 

dA-AAI and dG-AAI adducts as a function of the AUC of the AAI venous blood concentration in the 

kidney in the PBK model:

DNA=A*AUCVKAAI  								        [2]

‘DNA’ is the amount of DNA adducts (number of adducts/108 nts) formed, ‘A’ is the slope, calculated 

based on the data from the in vitro experiments in which the in vitro AUC values were plotted 

against the amounts of DNA adducts that are formed within the in vitro experiment, measured in 

absence of albumin (see Results section). The in vitro AUC values were multiplied by 4.6 to account 

for the differences in free fraction between the in vitro an in vivo situation. ‘AUCVKAAI’ represents 

the AUC of the AAI venous blood concentration in the kidney (CVK), defined as the total kidney 

concentration (CK) divided by the kidney:plasma partition coefficient (Pk:p). 

	 The PBK model allows estimation of the DNA adduct formation with different oral doses 

of AAI. The prediction of DNA adduct formation based on the AUC approach has been done before 

in other PBK or dynamic modeling-based predictions [40]. Based on the current state-of-the-art, 

predictions on DNA adduct formation were made for the kidney as a whole. Yet, for some of the in 

vivo data used for evaluations DNA adduct levels were reported for specific regions of the kidney 

and species differences region specific occurrence of DNA adducts might occur. This may lead to a 

3

A PBK model-based reverse dosimetry of AAI to predict DNA adduct formation



Page | 90

source of uncertainty in the model predictions as indicated in the discussion section. 

3.2.8 Evaluation of the PBK modeling-based reverse dosimetry 

approach to predict in vivo DNA adduct formation
To evaluate the potential of the in vitro-in silico approach to obtain a dose-response curve for in vivo 

DNA adduct formation of AAI, the DNA adduct formation predicted by the PBK modeling-based-

reverse dosimetry approach were compared to data on in vivo DNA adduct formation in rat [10, 11, 

14], mouse [15-17] and human kidney [13, 18] available from literature.

3.2.9 Prediction of AAI-DNA adduct formation at the BMD10 for kidney 

tumor formation
In order to relate the predicted formation of DNA adducts with tumor formation induced by AAI, the 

BMD10 (the benchmark dose resulting in a 10% extra risk, above background level) calculated based 

on kidney tumor incidence data [21] was used in further analysis. Supplementary data B present the 

results from the BMD analysis and reveal a BMD10 value of 0.05-0.15 mg/kg bw/day. The PBK models 

were used to predict the number of adducts formed in 108 nts at these BMD10 values.  The dose 

level in human that would result in the adduct level at the BMD10 in a carcinogenicity study in rats 

[21] was calculated and compared with the estimated intake levels and related tumor incidences in 

Belgian patients.
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3.3 RESULTS

3.3.1 In vitro DNA adduct formation data 
Figure 3.3a shows the concentration response-curve for AAI-DNA adduct formation upon exposure 

of the LLC-PK1 cells to increasing concentrations of AAI. The LC-ESI-MS/MS chromatogram for 

543427 and 559443 transitions of hydrolyzed DNA isolated from LLC-PK1 cells exposed to AAI 

shows that the dA- and dG-AAI adducts eluted at 3.5 min and 3.1 min respectively. These experimental 

data show a concentration-dependent increase in both dA-AAI and dG-AAI DNA adduct formation 

at increasing concentrations of AAI up to 20 µM (the highest concentration tested). At 20 µM of AAI, 

the level of dA-AAI DNA adducts formed after 24 h of incubation amounted to 530000 ± 180000 

adducts/108 nts (average ± SD of three independent experiments). Formation of dG-AAI adducts 

was 66-fold lower than the formation of dA-AAI adducts (8000 ± 2000 adducts/108 nts at 20 µM 

AAI). The results obtained reveal a linear relationship between the concentration and the level of 

adduct formation observed; dA-AAI = 24875*[AAI] (r2=0.98) and dG-AAI = 385*[AAI] (r2=0.96). As the 

formation of dG-AAI adducts was low and almost negligible compared to dA-AAI adduct formation, 

only formation of dA-AAI adducts was used for further analyses.

	 Figure 3.3b shows the in vitro concentration-response curve obtained in the present study 

for AAI concentration dependent dA-AAI DNA adduct formation in the LLC-PK1 cells as compared 

to in vitro concentration-response curves reported in the literature. This comparison reveals higher 

dA-AAI DNA adduct levels detected in the present study than dA-AAI DNA adduct levels detected 

before as reported in the studies available in literature. It is also of interest to note that the results 

presented in Figure 3.3b indicate that DNA adduct formation reported so far is higher in kidney cell 

lines as compared to non-kidney cell lines.
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Fig. 3.3 Concentration response-curves for dA-AAI (circle) and dG-AAI adduct formation (triangle) in 

LLC-PK1 cells upon 24 hours exposure to increasing concentrations of AAI (µM), expressed in no of 

adducts/108 nts as quantified by LC-ESI-MS/MS (mean values ± SD) (a) and comparison to 

concentration response-curves reported in literature quantified by 32P-postlabeling (b). The black 

symbols show data from kidney cell lines and the grey symbols show data from non-kidney cell 

lines. The linear equation was fit through the origin.
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3.3.2 Sensitivity analysis of the PBK models
Sensitivity analyses were performed at a low and high dose level (0.1 and 100 mg/kg bw of AAI) 

to identify the key parameters that influence the model outcome (AUC of the AAI venous blood 

concentration in the kidney). In both sensitivity analyses (supplementary data C) the volume of the 

liver, biliary excretion and the partition coefficient of the liver were the most influential parameters 

in the PBK models for all three species, all expressing normalized sensitivity coefficients higher than 

0.1 (in absolute value). The sensitivity analyses also revealed that parameters related to the intestine 

(volume of the intestine, blood flow to intestine, S9 protein yield, the maximum rate of formation of 

aristolochic acid Ia metabolite and the Michaelis-Menten constant for formation of aristolochic acid 

Ia metabolite) had a large influence on the model output only in the mouse PBK model, which were 

more influential at low oral dose levels compared to high dose levels. Also the body weight in the 

mouse PBK model was the sensitive parameter at low oral dose levels. 

3.3.3 Translation of the in vitro concentration-response curve to in 

vivo dose-response curves
We assumed that the AUC and not the Cmax is the most appropriate dose metric related to AAI-

induced DNA adduct formation because DNA adduct formation will depend more on cumulative 

exposure than on the maximum exposure concentration in the tissue of interest [48]. Therefore, 

the concentration-response curve of dA-AAI adduct formation (Figure 3.3a), was converted to an 

AUCAAI(in vitro) response curve (Figure 3.4) by multiplying the concentration by the time of incubation 

(24 h). The AUCAAI(in vitro) response curve presented in Figure 3.4 can be described by a linear equation 

through the origin by:

DNAdA=1036.5 *AUCAAI							       [3]

in which DNAdA represents the amount of dA-AAI DNA adducts (no of adducts/ 108 nts) formed in 

the kidney cells at a certain AUCAAI (h*µmol/L) of AAI. A correction factor for protein binding was 

applied to this in vitro concentration-response equation (see materials and methods section) to 

account for the differences in free fraction between the in vitro and in vivo situation. When including 

this correction, the following equation was obtained:  

DNAdA=225* AUCAAI							       [4]

This equation was incorporated in the PBK models, by defining that the corrected AUC of AAI in vitro 

should equal the AUC of the AAI venous blood in the kidney in the PBK model (see equation [2] of 
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the Materials and Methods section), thus providing a link between the PBK model and the equation 

for DNA adduct formation in vitro and defining a PBK model that can predict DNA adduct formation 

as a function of the AAI dose. Given the fact that cells of the LLC-PK1 cell line are able to repair the 

DNA adduct formation [49, 50], the current equation implicitly represent not only the formation of 

DNA adducts but also repair. 

	 Figure 3.5 shows the predicted in vivo dose-response curves for DNA binding of AAI in 

rat, mouse and human obtained by converting the in vitro AUC-response curve for DNA adduct 

formation in LLC-PK1 cells (Figure 3.4) by PBK modeling-based reverse dosimetry. The predicted 

DNA adduct formation reveals that the species differences in kinetics result in DNA adduct formation 

being 1.4-fold lower in rat kidney compared with human kidney and 3.7-fold lower in mouse kidney 

than in human kidney at similar dose levels per kg body wt. These results indicate that the sensitivity 

of human for AAI-induced DNA adduct formation may be more comparable to rat than to mouse.

Fig. 3.4 dA-AAI adduct formation in LLC-PK1 kidney cell line expressed in no of adducts/108 nts as 

a function of AUCAAI(in vitro) (hours*µmol/L), and quantified by LC-ESI-MS/MS (mean values ± SD). The 

linear equation was fit through the origin
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Fig. 3.5 PBK model-based reverse dosimetry predicted in vivo dose-response curves for DNA adduct 

formation in the kidney of rat (grey dashed line), mouse (black dashed line) and human (black solid 

line)

3.3.4 Evaluation of the in vitro-PBK model-based predictions of in vivo 

DNA adduct formation by AAI in the kidney
To evaluate the outcomes of the in vitro-PBK model based predictions for dose dependent AAI-

DNA adduct formation in the kidney, the predicted dose-response curves for DNA adduct formation 

were compared to dose dependent DNA adduct formation in the kidney of rat, mouse and human 

as reported in the literature. Table 3.1, 3.2 and 3.3 and Figure 3.6, 3.7 and 3.8 present an overview 

of in vivo literature data on DNA adduct formation in rat (Table 3.1, Figure 3.6), mouse (Table 3.2, 

Figure 3.7) and human (Table 3.3, Figure 3.8) expressed as number of adducts per 108 nts.  From 

the overview of all in vivo data, it appears that the reported literature data on in vivo DNA adduct 

formation vary significantly. Data for rats show 3 orders of magnitude difference in the levels of 

DNA adducts detected at similar dose levels between the different studies and relatively low levels 

of AAI-DNA adduct levels in especially the studies reported by Bieler et al. (1997) [13] and Chan 

et al. (2008) [12]. This difference cannot be ascribed to the generally lower levels obtained with 
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32P-postlabeling than with LC-MS/MS methods since the data reported by Chan et al. (2008) [12] 

were obtained using LC-MS/MS. The differences may be due to the duration of exposure given that 

both the Bieler et al. (1997) [13] and Chan et al. (2008) [12] studies measured DNA adduct formation 

after a single exposure as compared to repeated longer exposure for the other studies. However, 

the fact that the levels in the mouse studies by Yun et al. (2012) [15] and Arlt et al. (2011) [17] that 

were both obtained after single exposure and detection by 32P-postlabeling differed also 2 orders of 

magnitude seems to contradict this explanation. Given that the reasons underlying this unusually 

large discrepancy between different in vivo studies for the rats remain unclear and the fact that data 

reported by Bieler et al. (1997) [13] and Chan et al. (2008) [12] seem out of line with all other in vivo 

data (Figure 3.6) we decided to exclude these data from further evaluation of our predictions. 

	 Figure 3.6 presents a comparison of the predicted dose-dependent DNA adduct formation 

by the rat model as compared to the remaining rat literature data. Our predicted values were 1.7- to 

3.1-fold lower than data from the studies from Mei et al. (2006) [10] and Dong et al. (2006) [11] and 

17.7-fold higher than data from Pfau et al. (1990) [14] in which DNA adduct formation was quantified 

by 32P-postlabeling. Figure 3.7 presents a similar comparison for data from mice and reveals that our 

predicted DNA adduct levels were 15.7- to 36.4-fold lower as compared to mouse literature data 

from Yun et al. (2012) [15] and Shibutani et al. (2007) [16] while the predicted DNA adduct level was 

11.1-fold higher than data reported by Arlt et al. (2011) [17].

	 Data reported for Belgian patients were used to evaluate the human model, although it 

should be kept in mind that there might be large uncertainty in the estimated dose levels. The 

uncertainties in intake estimates are often a reality in human data derived from intoxication 

incidents. Nonetheless, such intoxication incidents provide a valuable source of human data as 

experiments with defined dose levels and exposure regimes are, for ethical reasons, not allowed 

for a compound like AAI. As AA-DNA adducts in human tissues show a long term persistence with 

after 89 months after the discontinuation of exposure, levels of AA-DNA adducts still being elevated 

above background [27], a direct link with exposure might still be made. Figure 3.8 presents the dose 

dependent AAI-DNA adduct formation predicted for human kidney and reveals that the predicted 

DNA adduct formation was 2.3- to 85.1-fold lower as compared to the levels of AAI-DNA adducts 

detected in kidney tissue of patients with AAN. From this comparison it follows that the in vitro-

in silico based prediction provides data that match relatively well with the DNA adduct results 

presented in available in vivo studies.
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Fig. 3.6 Comparison of PBK model-based reverse dosimetry predicted dose dependent DNA adduct 

formation (straight line) in the kidney of rats exposed orally to AAI to data on in vivo AAI-DNA 

adduct formation in the kidney of rats as taken from literature. See Table 3.1 for specifications of the 

experimental conditions for the in vivo studies
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Table 3.1

DNA adduct formation in kidney of rats exposed to AAI as obtained from the literature 

Species Exposure 

route

AA composition Dose a (mg/kg 

body wt/day)

Exposure 

duration

Adduct 

type

No of 

adducts/108 nts

Method Figure Reference

Rat Oral 50% AAI 0, 2.5, 15 a 1 d dA 0, 0.09, 0.4 LC-ESI/MS 3.6 Chan et al. 

(2008) [12]

Rat Oral 40% AAI 0, 0.04, 0.4, 4 a 3 m dA 0, 9.2, 53.5, 911.4 32P-postlabeling 3.6 Mei et al. 

(2006) [10]

Rat Oral AAI only 0, 5 7 d dA 0, 886 32P-postlabeling 3.6 Dong et al. 

(2006) [11]

Rat Oral AAI only 0, 5 1 d dA 0, 6.7 32P-postlabeling 3.6 Bieler et al. 

(1997) [13]

Rat Oral AAI only 0, 10 5 d Total 

adducts (dA 

& dG)

0, 42 32P-postlabeling 3.6 Pfau et al. 

(1990) [14]

a adjusted dose = dose x percentage of AAI 
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Fig. 3.7 Comparison of PBK model-based reverse dosimetry predicted dose dependent AAI-DNA 

adduct formation (straight line) in the kidney of mice exposed orally to AAI to data on in vivo AAI-

DNA adduct formation in the kidney of mice as taken from literature. See Table 3.2 for specifications 

of the experimental conditions for the in vivo studies
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Table 3.2 

DNA adduct formation in kidney of mice exposed to AAI as obtained from the literature

Species Exposure 

route

AA 

composition

Dose(mg/

kg body 

wt/day)

Exposure 

duration

Adduct 

type

No of 

adducts/108nts

Method Figure Reference

Mouse IP AAI only 0, 0.1, 1 1 d dA 0, 43.9, 1020 (i)

0, 61.6, 717 (ii)

UPLC-ESI/MS (i) & 

32P-postlabeling (ii)

3.7 Yun et al. 

(2012) [15]

Mouse Oral AAI only 0, 2.5 9 d dA 0, 1720 32P-postlabeling 3.7 Shibutani 

et al. (2007) 

[16]

Mouse Oral AAI only 0, 50 1 d Total 

adducts 

(dA& dG)

0, 125.7 32P-postlabeling 3.7 Arlt et al. 

(2011) [17] 
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Fig. 3.8 Comparison of PBK model-based reverse dosimetry predicted dose dependent AAI-DNA 

adduct formation in the kidney of humans (straight line) exposed orally to AAI to data on AAI-DNA 

adduct formation in AAN patients as taken from the literature. See Table 3.3 for specifications for the 

human studies where study from Bieler et al. [13] presents data based on the estimated range of 

exposure from different individuals
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Table 3.3 

DNA adduct formation in kidney tissue of patients with AAN as obtained from the literature

No of 

case(s)

Exposure 

route

Age 

(year)/ 

sex

Dose (mg/kg 

body wt/day) a

Exposure 

duration 

(month)

Adduct 

type

No of 

adducts/108 

nts

Method Figure Reference

1 Oral 32/F 0.0086-0.017 19 dA 17 32P-postlabeling 3.8 Bieler et al. (1997) [13]

1 Oral 28/F 0.0086-0.017 13 dA 76 32P-postlabeling 3.8 Bieler et al. (1997) [13]

1 Oral 27/F 0.0086-0.017 20 dA 71 32P-postlabeling 3.8 Bieler et al. (1997) [13]

1 Oral 42/F 0.0086-0.017 21 dA 25 32P-postlabeling 3.8 Bieler et al. (1997) [13]

1 Oral 42/F 0.0086-0.017 23 dA 7 32P-postlabeling 3.8 Bieler et al. (1997) [13]

1 Oral 56/F 0.0086-0.017 19 dA 7 32P-postlabeling 3.8 Bieler et al. (1997) [13]

18 Oral na b 0.01 ± 0.0014 15 ± 1.4 dA 3.0 32P-postlabeling 3.8 Nortier et al. (2000) [18]

19 Oral na 0.013 ± 0.0013 12 ± 1.1 dA 3.1 32P-postlabeling 3.8 Nortier et al. (2000) [18]

a Dose is estimated based on the consumption of AAI by patients who took formula II, estimated to contain 2 mg/g of AAI from Stefania tetranda powder 

[23], 3 times a day and 70 kg body wt

b n.a. non-available 
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3.3.5 Predicted AAI-DNA adduct formation at the BMD10 for tumor 

formation 
The PBK models now available allow quantification of AAI-DNA adduct formation at any dose level 

of interest. In a next step the models were used to predict the level of AAI-DNA adducts formed 

at dose levels causing a significant increase in kidney tumor incidence above background levels. 

To achieve this, data from Meng et al. (1982) [21] on kidney tumor formation in rats exposed to 

AAs were used to calculate the BMD10 value for tumor formation (supplementary data B). Due to 

unavailability of kidney tumor data from mice and humans that allow dose response modeling 

by BMD analysis, only a BMD10 based on the rat study could be used in this analysis. The BMD10 

values of the accepted dose-response curves were used individually as input in the rat PBK model 

to predict DNA adduct formation at these dose levels. The predicted levels of AAI-DNA adduct 

formation at the BMD10 values for tumor formation thus obtained ranged from 4-11 adducts in 108 

nts (supplementary data B). The human PBK model predicts that this level of kidney DNA adducts 

that may result in 10% tumor incidence would be reached at dose levels of 0.04-0.11 mg/kg bw/day, 

which is in line with the fact that at dose levels that are about 4-fold lower (0.01-0.03 mg/kg bw/day) 

5% of Belgian patients exposed to AAs suffered from end stage nephropathy [51] with ~50% (~2.5% 

of patients) developing cancer in the urinary tract [18, 52].
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3.4 DISCUSSION
The objective of the present study was to demonstrate whether PBK modeling-based reverse 

dosimetry of in vitro concentration-response curves for DNA adduct formation upon exposure to 

AAI could accurately predict in vivo dose-response curves for AAI-DNA adduct formation in the 

kidney of rat, mouse and human. The current study demonstrated that combining in vitro DNA 

adduct formation data with a PBK model for AAI kinetics is a promising approach to predict the DNA 

adduct formation in vivo.  Given that PBK models can be developed for different species including 

human, the approach even allows prediction of dose response curves for AAI-dependent DNA 

adduct formation in the kidney of humans.

	 In vitro DNA adduct formation was determined using LLC-PK1 cells, which are proximal 

tubular cells from pig kidney that have been frequently used to assess in vitro AAI-induced- toxicity 

[37, 53, 54]. Although AAI-DNA adduct formation in pig cells may differ from AAI-DNA adduct 

formation in kidney cells of rat, mouse and human, we reasonably predicted the DNA adduct levels 

for these three using this cell line. The LLC-PK1 cell line is routinely used to study nephrotoxic effects 

of chemicals in humans because the cells exhibit many of the enzymatic and transport properties 

of human proximal tubule cells [55, 56] which are the cells that represent the direct target of AAI 

[57]. Furthermore, comparison of the cytotoxicity of AAI in the LLC-PK1 cells to the AAI cytotoxicity 

in primary renal human cells and even to the cytotoxicity in other cell types from other species 

described in the literature [1, 58] reveals that species differences in dynamics of AAI toxicity may 

be limited. In addition, in our previous study, in vitro toxicity data on AAI in LLC-PK1 cells provided 

adequate input for PBK model-based prediction of in vivo kidney toxicity of AAI [1]. Therefore, in 

the approach taken in the present study, species differences in AAI dynamics were assumed to be 

limited and species differences in kinetics were taken care of by using species-specific PBK models. 

	 The present study revealed dA-AAI to be the major adduct formed in vitro after exposure 

of LLC-PK1 cells to AAI, which is in line with the major AAI-induced DNA adduct formed in rat [13, 

59], mouse [15, 16] and human [13]. An overview of literature data revealed that the AAI DNA adduct 

formation in the LLC-PK1 kidney cells was higher than that in HepG2 (human hepatoma) [60], MCF-

7 (human mammary carcinoma) [61] or GM00637 (human fibroblast) [38] cells exposed at similar 

concentrations. It is interesting to note this clear difference in adduct levels when comparing cells 

from different organs (i.e. kidney versus non-kidney) since these in vitro results are in line with 

kidney being the target organ for AAI-induced tumor formation [20, 62].
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	 In order to translate the in vitro concentration-response curve to in vivo dose-response 

curves, PBK model-based reverse dosimetry was used. To this end the previously developed PBK 

models for AAI kinetics in rat, mouse and human [1] were combined with in vitro data obtained in 

the present study for the AAI concentration dependent formation of the AAI-DNA adducts in LLC-

PK1 cells. The in vivo dose-response curves thus obtained for rat, mouse and human were compared 

to available data in the literature to evaluate the predictions. These literature data revealed large 

differences between different studies in the levels of kidney AAI-DNA adduct formation at comparable 

dose levels. Rat data reported in literature varied over three orders of magnitude, a difference that 

is hard to explain. This observation however illustrates the variation that can be obtained between 

different in vivo studies reporting dose-response behavior for the same endpoint. For the rat, 

mouse and human models, the PBK model-based predictions for DNA adduct formation, were at 

best 1.7-fold lower, 11.1-fold higher and 2.3-fold lower than the rat, mouse and human literature 

data respectively. It is important to note that for the in vivo studies that reported lower values than 

the levels predicted by the PBK model-based approach the AAI-DNA adducts were quantified by a 

32P-postlabeling technique. This comparison reveals that the levels of dA-AAI DNA adducts detected 

by LC-ESI-MS/MS in the present study were higher than the levels detected by 32P-postlabeling 

in the studies available so far in literature indicating that LC-ESI-MS/MS method is more efficient 

than post-labeling, an observation that is in line with studies on DNA adduct formation by other 

compounds detected by LC-MS or 32P-postlabeling techniques [63-65]. 32P-postlabeling may lead 

to underestimation of the adduct levels due to differences in hydrolysis and labeling efficiencies of 

normal and adducted nucleotides [63, 66]. In addition, when standard compounds are not available, 

quantification in the 32P-postlabeling method is less accurate, unless the compounds are chemically 

synthesized which can be quite labor intensive [67]. In recent years the development of LC coupled 

to MS as alternative to detect and quantify the DNA adduct levels is well documented [67, 68]. By 

using this method more accurate and precise outcomes are obtained [63, 64, 69]. The use of LC-MS 

in the current study and the possible underestimation of 32P-postlabeling method for DNA adduct 

levels might be an important factor for the apparent lower levels detected in vivo as compared 

to the PBK model-based predictions when using 32P-postlabeling to quantify the number of DNA 

adducts.

	 The application of quantification of DNA adducts in humans has been proposed to serve 

as an early indicator of cancer risks and can be used to better evaluate species differences in risk 

assessment. It is important to note that the presence of DNA adducts is considered a biomarker of 

3

A PBK model-based reverse dosimetry of AAI to predict DNA adduct formation



Page | 106

exposure rather than a biomarker of effect [70]. This is due to the fact that a majority of the DNA 

adducts may be non-mutagenic and/or may be repaired by repair mechanisms. In our PBK model-

based predictions this DNA repair was taken into account at least to some extent given that it is 

implicitly included in the concentration-response curves generated in the LLC-PK1 cells that will 

have supported repair of the AAI-DNA adduct while exposed in vitro. In spite of the fact that DNA 

adduct formation is not a biomarker of effect, an increase in the level of DNA adducts is generally 

considered to be related to an increase in the risk on developing cancer [71]. The PBK models were 

therefore used to predict the levels of AAI-DNA adducts at the BMD10 for actual tumor formation to 

link doses that cause cancer in animal studies to in vivo human DNA adduct formation. Levels of 

DNA adducts predicted at the BMD10 for kidney tumor formation in rats amounted to 4-11 adducts 

in 108 nts. Using the human PBK model, we predicted that the level of kidney DNA adducts that may 

result in 10% tumor incidence would be reached at dose levels of 0.04-0.11 mg/kg bw/day. This is 

about 4-fold higher than the estimated dose to which Belgian patients were exposed (0.01-0.03 mg/

kg bw/day) of which 5% suffered from end stage nephropathy [51] with ~50% (~2.5% of patients) 

developed cancer in the urinary tract [18, 52].  

	 Although the in vitro-PBK modeling approach presented in the present study has 

uncertainties in its predictions due to many assumptions in the parameters used in the model [1] 

and possible differences in toxicodynamics between the in vitro and the in vivo situation, the results 

of the present study show that these effects are likely to be limited since predictions made for the 

various species using the data from the LLC-PK1 cells already quite adequately match the in vivo 

data for the different species. The results reveal that the variation between different experimental 

studies reporting DNA adduct formation in kidney in the same species appear to vary three orders 

of magnitude. The predicted level of AAI-adduct formation in the kidney falls within this range and 

the difference between the predictions and the actual in vivo data is smaller than this variation 

between studies. Deviations observed between predicted and actually observed values may be due 

to several factors. These include the fact that at the present state-of-the-art DNA adduct levels as 

well as the predictions made are directed at whole kidney tissue, while the actual formation of DNA 

adducts and tumors may vary between species in the different regions of the tissue [72]. Another 

factor causing the deviations may be due to possible species differences in bioactivation of AAI 

to N-hydroxyaristolactam I and in DNA repair mechanisms, which were not covered in the in vitro 

DNA-binding studies. Finally of course experimental variations in DNA adduct level measurements, 

quantification techniques and uncertainties in exposure scenarios as observed to occur may also 
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explain part of these deviations. 

	 Based on the results obtained it can be concluded that the novel in vitro-PBK approach 

predicts DNA adduct formation with a similar or even lower level of variation than observed when 

comparing different experimental animal studies, thereby contributing to the reduction, refinement 

and replacement in animal testing.

ACKNOWLEDGEMENTS
This research was supported by the Ministry of Education of Malaysia (Project number- KPT (BS) 

860828565598).

 

3

A PBK model-based reverse dosimetry of AAI to predict DNA adduct formation



Page | 108

References
1.	 Abdullah, R., W. Alhusainy, J. Woutersen, I.M.C.M. Rietjens, and A. Punt, Predicting points of 
departure for risk assessment based on in vitro cytotoxicity data and physiologically based kinetic (PBK) 
modeling: the case of kidney toxicity induced by aristolochic acid I. Food and Chemical Toxicology, 
2016. 92: p. 104-116.
2.	 DeJongh, J., M. Nordin-Andersson, B. Ploeger, and A. Forsby, Estimation of systemic toxicity 
of acrylamide by integration of in vitro toxicity data with kinetic simulations. Toxicology and Applied 
Pharmacology, 1999. 158(3): p. 261-268.
3.	 Verwei, M., J.A. van Burgsteden, C.A. Krul, J.J. van de Sandt, and A.P. Freidig, Prediction of 
in vivo embryotoxic effect levels with a combination of in vitro studies and PBPK modelling. Toxicology 
Letters, 2006. 165(1): p. 79-87.
4.	 Louisse, J., E. de Jong, J.J. van de Sandt, B.J. Blaauboer, R.A. Woutersen, A.H. Piersma, 
I.M.C.M. Rietjens, and M. Verwei, The use of in vitro toxicity data and physiologically based kinetic 
modeling to predict dose-response curves for in vivo developmental toxicity of glycol ethers in rat and 
man. Toxicological Sciences, 2010. 118(2): p. 470-484.
5.	 Strikwold, M., B. Spenkelink, R.A. Woutersen, I.M.C.M. Rietjens, and A. Punt, Combining 
in vitro embryotoxicity data with physiologically based kinetic (PBK) modelling to define in vivo dose–
response curves for developmental toxicity of phenol in rat and human. Archives of Toxicology, 2013. 
87(9): p. 1709-1723.
6.	 Louisse, J., S. Bosgra, B.J. Blaauboer, I.M.C.M. Rietjens, and M. Verwei, Prediction of in vivo 
developmental toxicity of all-trans-retinoic acid based on in vitro toxicity data and in silico physiologically 
based kinetic modeling. Archives of Toxicology, 2015. 89(7): p. 1135-1148.
7.	 Punt, A., A. Paini, A. Spenkelink, G. Scholz, B. Schilter, P. van Bladeren, and I.M.C.M. Rietjens, 
Evaluation of interindividual human variation in bioactivation and DNA adduct formation of estragole 
in liver predicted by physiologically based kinetic/dynamic (PBK/D) and Monte Carlo modeling. Chemical 
Research in Toxicology, 2016. 29(4): p. 659-668.
8.	 Kiwamoto, R., I.M.C.M. Rietjens, and A. Punt, A physiologically based in silico model for trans-
2-hexenal detoxification and DNA adduct formation in rat. Chemical Research in Toxicology, 2012. 
25(12): p. 2630-2641.
9.	 Kiwamoto, R., A. Spenkelink, I.M.C.M. Rietjens, and A. Punt, A physiologically based in silico 
model for trans-2-hexenal detoxification and DNA adduct formation in human including interindividual 
variation indicates efficient detoxification and a negligible genotoxicity risk. Archives of Toxicology, 
2013. 87(9): p. 1725-1737.
10.	 Mei, N., V.M. Arlt, D.H. Phillips, R.H. Heflich, and T. Chen, DNA adduct formation and mutation 
induction by aristolochic acid in rat kidney and liver. Mutation Research/Fundamental and Molecular 
Mechanisms of Mutagenesis, 2006. 602(1): p. 83-91.
11.	 Dong, H., N. Suzuki, M.C. Torres, R.R. Bonala, F. Johnson, A.P. Grollman, and S. Shibutani, 
Quantitative determination of aristolochic Acid-derived DNA adducts in rats using 32p-postlabeling/
polyacrylamide gel electrophoresis analysis. Drug Metabolism and Disposition, 2006. 34(7): p. 1122-
1127.
12.	 Chan, W., H. Yue, W.T. Poon, Y.-W. Chan, O.J. Schmitz, D.W. Kwong, R.N. Wong, and Z. 
Cai, Quantification of aristolochic acid-derived DNA adducts in rat kidney and liver by using liquid 
chromatography–electrospray ionization mass spectrometry. Mutation Research/Fundamental and 
Molecular Mechanisms of Mutagenesis, 2008. 646(1): p. 17-24.
13.	 Bieler, C.A., M. Stiborova, M. Wiessler, J.-P. Cosyns, C.v.Y. de Strihou, and H.H. Schmeiser, 
32P-post-labelling analysis of DNA adducts formed by aristolochic acid in tissues from patients with 
Chinese herbs nephropathy. Carcinogenesis, 1997. 18(5): p. 1063-1067.
14.	 Pfau, W., H.H. Schmeiser, and M. Wiessler, 32P-postlabelling analysis of the DNA adducts 
formed by aristolochic acid I and II. Carcinogenesis, 1990. 11(9): p. 1627-1633.
15.	 Yun, B.H., T.A. Rosenquist, V. Sidorenko, C.R. Iden, C.-H. Chen, Y.-S. Pu, R. Bonala, F. Johnson, 
K.G. Dickman, and A.P. Grollman, Biomonitoring of aristolactam-DNA adducts in human tissues 
using ultra-performance liquid chromatography/ion-trap mass spectrometry. Chemical Research in 

Chapter 3



Page | 109

Toxicology, 2012. 25(5): p. 1119-1131.
16.	 Shibutani, S., H. Dong, N. Suzuki, S. Ueda, F. Miller, and A.P. Grollman, Selective toxicity of 
aristolochic acids I and II. Drug Metabolism and Disposition, 2007. 35(7): p. 1217-1222.
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Supplementary data A. Mass balance equation and parameter specifications of PBK model for 

aristolochic acid I in the rat

Compound			   abbreviation

Aristolochic acid I			   AAI

Aristolochic acid Ia			  AAIa

Compartment (Tissue (T))		  abbreviation

Small intestine			   I

Liver				    L

Kidney				    K

Slowly perfused tissue		  S

Richly perfused tissue		  R

Fat compartment			   F

Arterial				    A

Venous				    V

Variable							       Unit	            abbreviation

Blood flow rate to tissue					     lh-1		  Q(T)

Cardiac output						      lh-1		  QC

Concentration of AAI in tissue or blood			   µM		  C(T)AAI

Partitioning coefficient tissue:blood AAI			   -		  P(T) AAI

Volume of tissue or blood					     l		  V(T)

Amount AAI in tissue or blood				    µmol		  A(T) AAI

Maximum rate of formation metabolite, AAIa in tissue		  µmol h-1		  Vmax(T)AAIa

Michaelis-Menten constant for formation metabolite, AAIa in tissue	µM		  Km(T) AAIa 

Uptake rate AAI in intestine					     h-1		  Ka

Excretion rate in bile					     h-1		  Kbile

Excretion rate in urine					     h-1		  Kurine

Small intestine

dAIAAI/dt=dUptakeAAI/dt +QI*(CAAAI-CIAAI/PIAAI)-[(VmaxIAAIa*CIAAI/PIAAI )/(KmIAAIa+CIAAI/PIAAI )] 
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Uptake of AAI from GI tract

dUptakeAAI/dt=-dAGIAAI/dt=ka*AGIAAI

AGIAAI(0)=Oral dose

CIAAI=AIAAI/VI

Liver compartment

dALAAI/dt=QL*CA+QI*CIAAI/PIAAI-(QL+QI)*CLAAI/PLAAI-(VmaxLAAIa*CLAAI/PLAAI)/(KmAAIa+CLAAI/PLAAI)-

dEbAAI/dt

CLAAI=ALAAI/VL

Excretion rate in bile

dEbAAI/dt=Kbile*AL

Eb(0)=0

Kidney compartment

dAKAAI/dt=QK*(CAAAI-CKAAI/PKAAI )-dEuAAI/dt

CKAAI=AKAAI/VK

CVKAAI=CKAAI/PKAAI 

dAUCVKAAI/dt=CVKAAI

Excretion rate in urine

dEuAAI/dt=Kurine*AK

Eu(0)=0

DNA adduct formation

DNA=A*AUCAAI

‘DNA’ is the amount of DNA adducts (number of adducts/108 nts) formed due to specific binding 

of AAI to either deoxyadenosine nucleosides or deoxyguanosine nucleosides at a certain ‘AUCAAI’ 

(hours*µmol/L) of AAI, and ‘A’ is the slope, respectively, calculated based on the data from the in 

vitro experiments.
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Slowly perfused tissue

dASAAI/dt=QS*(CAAAI-CSAAI/PSAAI)

CSAAI=ASAAI/VS

Richly perfused tissue

dARAAI/dt=QR*(CAAAI-CRAAI/PRAAI)

CRAAI=ARAAI/VR

Fat compartment

dAFAAI/dt=QF*(CAAAI-CFAAI/PFAAI)

CFAAI=AFAAI/VF

Arterial blood compartment

CAAAI=CVAAI

Venous blood compartment

dAVAAI/dt=(QF*CFAAI/PFAAI)+(QK*CKAAI/PKAAI)+(QR*CRAAI/PRAAI)+(QS*CSAAI/PSAAI)+(QL+QI)*CLAAI/PLAAI 

-QC*CVAAI

CVAAI=AVAAI/VV
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Supplementary data B.

Results from a BMD analysis of the data for kidney tumor formation in rats [21] exposed to AA using BMDS software version 2.5, a BMD of 10% and default 

settings. BMD10 values were used as a dose to calculate the amount of DNA adducts formed, predicted by PBK model-based reverse dosimetry

Model Restriction No of 

parameters

Log Likelihood p-value Accepted a BMD10 (mg/kg 

body wt/day)

BMDL10 (mg/

kg body wt/

day)

PBK-Predicted 

number of adducts 

in 108 nts at BMD10

Reduced 1 -22.2921 - - - -

Full 4 -15.5048 - - - -

Gamma none 4 -15.6056 0.9042 No 0.06 0.003

Logistic na b 2 -16.3038 0.5144 Yes 0.15 0.10 11

LogLogistic none 2 -15.5861 0.9528 No 0.05 0.004

LogProbit none 2 -15.5422 0.9781 No 0.05 0.005

Multistage none 2 -15.6008 0.9499 Yes 0.05 0.01 4

Probit na b 2 -16.2417 0.9888 Yes 0.13 0.09 10

Weibull none 2 -15.6055 0.5387 No 0.05 0.003

Quantal-Linear na b 1 -15.6056 0.9409 Yes 0.05 0.03 4

a Criteria for acceptance included p-value >0.05 and the ratio between BMD10 and BMDL10 <10

b not applicable
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Supplementary data C. Normalized sensitivity coefficients for parameters of the PBK model for rat 

(a), mouse (b) and human (c) on AUC values in blood from single oral dose of 0.1 mg/kg bw and 

100 mg/kg bw. Normalized sensitivity coefficients ≥ 0.1 are presented. VLc= volume of liver, VIc = 

volume of intestine, BW = body weight, QIC = blood flow to intestine, PLA = partition coefficient 

of liver, Kbile = excretion rate via bile constant, S9PI = intestinal S9 protein yield, VmaxIAAAc and 

KmIAAc = the maximum rate of formation and the Michaelis-Menten constant for formation of AAIa 

in intestine.
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ABSTRACT 
Aristolochic acids (AAs) are chemicals present in Aristolochia species, which have been reported 

to cause kidney cancer in rats, mice and humans, via the formation of AA-DNA adducts. The aim of 

this study was to assess whether in vivo DNA adduct formation upon AA exposure can be predicted 

without the use of animal experiments. To achieve this aim, the kidney proximal tubular cell lines 

LLC-PK1 and NRK-52E were exposed to increasing concentrations of a mixture of AAI and AAII (1:1) 

for 24 hours, after which DNA adducts were quantified by LC-MS/MS. Subsequently, the in vitro 

concentration-response curves were converted to predicted in vivo dose–response curves for AAI- 

and AAII-DNA adduct formation in the rat kidney using a PBK model describing AAI and AAII kinetics 

in rats. The results obtained showed a concentration-dependent linear increase in AAI- and AAII-

DNA adduct levels in both cell lines, showing slightly higher DNA adduct levels in LLC-PK1 cells 

compared to NRK-52E cells. The predicted in vivo DNA adduct levels obtained using PBK modeling-

based reverse dosimetry of the in vitro data were compared to data on AA-DNA adduct formation 

in rats in vivo. This analysis revealed that the predicted DNA adduct levels fell within the range of 

DNA adduct levels reported in vivo, though the in vivo studies showed remarkably large differences. 

The ratio between dA-AAI and dA-AAII adducts detected in vitro was 355-fold higher than reported 

in the in vivo rat studies (ratio in vitro = 213, ratio in rats in vivo = 0.6). The dA-AAI/dA-AAII ratio 

predicted using PBK modeling-based reverse dosimetry (ratio = 75) was lower than observed in 

vitro but still on average 125-fold higher than the ratio observed in vivo in rats. Interestingly, human 

data show 18- to 70-fold higher levels of dA-AAI adducts than dA-AAII adducts in aristolochic acid 

nephropathy patients, indicating larger differences in dA-AAI/dA-AAII ratios in humans compared to 

rats. This indicates that the difference between in vitro and in vivo AAI- and AAII-DNA adduct ratios 

can only in part be explained by differences in in vivo kinetics, and that other –as yet unidentified- 

factors may contribute as well, but also that the discrepancy between the difference in DNA adduct 

formation of AAI and AAII in the in vitro and the in vivo situation is still an unresolved issue that needs 

further investigation. It is concluded that PBK model-based conversion of in vitro data to in vivo data 

for AA-derived DNA adduct formation is feasible but needs further refinement to also adequately 

predict the relative differences between the two AAs, while also the discrepancy between the values 

reported in vivo needs to be resolved.
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4.1 INTRODUCTION
Aristolochic acids (AAs) are nitrophenanthrene carboxylic acids of which the most studied 

congeners are 8-methoxy-6-nitrophenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAI) and 

6-nitrophenanthro-(3,4-d)-1,3-dioxolo-5-carboxylic acid (AAII) [1] which differ only by the methoxy 

group that is present in AAI but not in AAII as shown in Figure 4.1. AAI is metabolized by oxidative 

and reductive pathways while AAII, because of the lack of the methoxy group, only by reductive 

pathways [2]. An overview of the metabolic pathways of AAI and AAII is presented in Figure 4.2. 

Under aerobic conditions, AAI is O-demethylated by cytochrome P450 1A1/2 to aristolochic acid Ia 

(AAIa) which is considered a detoxification route given that the hydroxyl moiety introduced in the 

molecule provides a reaction center for effective conjugation and urinary elimination [3-5]. Under 

anaerobic conditions, the nitro groups in AAI and AAII are reduced to form respectively aristolactam 

I and aristolactam II [6, 7]. This reaction is catalyzed by both cytosolic and microsomal enzymes, 

with NAD(P)H:quinone oxidoreductase (NQO1) being most efficient in cytosolic nitroreduction [8, 

9]. Nitroreduction is accompanied by bioactivation of the AAs to cyclic nitrenium ions that are able 

to form covalent DNA adducts (Figure 4.2) [10, 11].

	 Several in vitro studies report that AAI is more cytotoxic than AAII [12-15] and a similar 

difference in toxicity has been reported in in vivo studies [7, 16]. The relative difference in potential 

of AAI and AAII for formation of DNA adducts and induction of mutations and kidney tumors is less 

well established. Also the relative potential for in vitro DNA adduct formation of AAI as compared 

to that of AAII is not well documented yet. The single literature reference available reported a study 

of DNA adduct formation of a mixture of AAs (the ratio of AAI and AAII not specified) in OK cells, 

which are kidney cells derived from opossum, exposed in vitro showing that 10-fold higher DNA-AAI 

adducts than DNA-AAII adducts were found [17]. In vivo studies showed equal formation of DNA 

adducts at similar oral dose levels of AAI and AAII in mice [7] or higher (2- to 5-fold) AAII-DNA adduct 

levels than AAI-DNA adduct levels in rats and mice [18-20]. For human aristolochic acid nephropathy 

(AAN) patients, 18- to 70-fold higher levels of dA-AAI than dA-AAII adducts were reported [21, 22]. 

Factors that may contribute to the discrepancy between the in vitro and in vivo situation in relative 

AAI-DNA and AAII-DNA adduct levels may relate to differences in toxicokinetics and toxicodynamics 

in the in vitro compared to the in vivo situation. 

	 In a previous study, we translated the in vitro concentration-response curve for AAI-DNA 

adduct formation in LLC-PK1 cells to in vivo dose-response curves for DNA adduct formation in the 
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kidney of rat, mouse and human using physiologically based kinetic (PBK) modeling-based reverse 

dosimetry [23]. The predicted in vivo AAI-DNA adduct levels fell within the (large) range of in vivo 

AAI-DNA adduct levels reported in the literature, showing the proof-of-principle that DNA adduct 

levels may be predicted using PBK modeling-based reverse dosimetry. However, real-life exposure 

to AAs is often to a mixture of AAI and AAII, rather than to AAI alone, and both AAI- and AAII-DNA 

adducts may play a role in the development of cancer. Therefore, the aim of the present study was 

to determine the DNA adduct formation of AAI and AAII in kidney cells in vitro and to translate the 

obtained in vitro concentration-dependent DNA adduct formation to the in vivo situation using 

PBK modeling-based reverse dosimetry, in order to assess whether in vivo DNA adduct formation 

upon AA exposure can be predicted without the use of animal experiments. To achieve this aim, the 

kidney proximal tubular cell lines LLC-PK1 and NRK-52E were exposed to increasing concentrations 

of a mixture of AAI and AAII (1:1) for 24 hours, after which DNA adducts were quantified by LC-MS/

MS. Subsequently, the in vitro concentration-response curves were converted to predicted in vivo 

dose–response curves for AAI- and AAII-DNA adduct formation in the rat kidney using a PBK model 

describing AAI and AAII kinetics in rat, and predicted DNA adduct levels were compared to DNA 

adduct levels in vivo as reported in the literature. 

  

Fig. 4.1 Structural formula of aristolochic acid I (AAI) and aristolochic acid II (AAII).
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Fig. 4.2 Metabolic pathways for detoxification, bioactivation and DNA adduct formation of 

aristolochic acid I (AAI) and aristolochic acid II (AAII). NR = nitroreduction, NQOI = NAD(P)

H:quinone oxidoreductase, dA-AAI = deoxyadenosine AAI, dG-AAI = deoxyguanosine AAI, dA-AAII 

= deoxyadenosine AAII, dG-AAII = deoxyguanosine AAII, CYPs = cytochromes P450, UGTs = uridine 

5’-diphospho-glucuronosyltransferases, SULTs = sulfotransferases [based on 24, 25-27]
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4.2 MATERIAL AND METHODS

4.2.1 Chemicals
AAI or AAII were obtained from Sigma-Aldrich (Zwijndrecht, NL) and a mixture of AAs (50% AAI 

and 50% AAII) was purchased from Enzo Life Sciences (Farmingdale, NY, USA). The LLC-PK1 porcine 

kidney cell line (ATCC® CL-101TM) and NRK-52E rat kidney cell line (ATCC® CRL-1571TM) were obtained 

from the American Type Culture Collection (ATCC). Dulbecco’s Modified Eagle Medium (DMEM), 

phosphate buffered saline (PBS) and trypsin-EDTA were purchased from Gibco (Paisley, Scotland, 

UK) and fetal calf serum (FCS) from Lonza BioWhittaker (Walkersville, MD, USA). 2’-Deoxyadenosine 

(dA), 2’-deoxyguanosine (dG), N,N-dimethylformamide (DMF), zinc powder, phosphodiesterase I 

from Crotalus adamanteus (venom phosphodiesterase), phosphodiesterase II from bovine spleen 

(spleen phosphodiesterase), nucleus PI and alkaline phosphatase were purchased from Sigma-

Aldrich. Dimethyl sulfoxide (DMSO) (>99.9%) was obtained from Acros Organics (Geel, Belgium). 

Acetonitrile (ACN; ULC/MS grade) was obtained from Biosolve BV (Valkenswaard, The Netherlands). 

Formic acid and ethanol were obtained from VWR Merck (Darmstadt, Germany). 

4.2.2 In vitro DNA adduct formation 
DNA adduct formation was determined using a method as previously described [23]. In brief, a total 

of approximately 1 x 106 cells/ 75 cm2 culture flask were seeded. When reaching a confluency of 

80-90%, the cells were exposed for 24 hours to the AA mixture at different concentrations ranging 

from 0.5 to 20 μM AAs (final concentration of total AAs) added from 200 times concentrated stock 

solutions in DMSO to DMEM without serum. To obtain a sufficient amount of DNA, for all AA 

concentrations, two samples were pooled. After the exposure to AAs, cells were scraped in 5 mL PBS, 

collected in a 10 mL tube and centrifuged at 1500 rpm for 5 min. The pellets were stored at -20°C 

until DNA isolation. For DNA isolation, a QIAamp DNA Mini Kit from Qiagen (Hilden, Germany) was 

applied according to the procedure as recommended by the supplier. The yield and purity of the 

extracted DNA were determined using Nanodrop 1000 technology by measuring the absorbance 

ratio of 260/280. DNA samples with an absorbance ratio of 1.8-2.0 were considered pure and were 

used for further analysis. Digestion of DNA was performed as previously described [23]. The samples 

were kept at -80°C until Triple Quadrupole Liquid Chromatography Mass Spectrometer (LC-MS/MS) 

analysis.
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4.2.3 Synthesis of dA-AAI, dG-AAI, dA-AAII and dG-AAII adducts
The synthesis of the DNA adduct standards dA-AAI, dG-AAI, dA-AAII and dG-AAII was performed via 

a reaction of AAI or AAII with dA or dG using a modification of the protocol described previously 

[23, 28]. In short, 100 μL of AAI or AAII in DMF (10 mM) was mixed with 80 mg of preactivated zinc 

powder (<150 µm, 99.99%). Then, 1 mL of dA or dG dissolved in potassium phosphate (50 mM, 

pH 5.8) were added to the AAI- or AAII-zinc dust mixture to give a final concentration range that 

varied from 0 to 100 μM. After incubation in the dark at 37°C for 16 hours, the samples were put on 

ice for 30 min and centrifuged at 15 000 rpm for 10 min. The approximate overall yields of adducts 

were assumed to be 2% of the starting material as previously reported [28]. The synthesized adduct 

samples obtained were used in LC-MS to define a calibration curve for the quantification of dA-AAI, 

dG-AAI, dA-AAII and dG-AAII adducts in the cell studies.

4.2.4 LC-MS/MS method for detection and quantification of dA-AAI 

and dG-AAI 
The LC-MS/MS method for detection and quantification of dA-AAI, dG-AAI, dA-AAII and dG-AAII 

was adapted from Abdullah et al. [23]. LC-MS/MS analysis was performed on a Nexera X2 Ultra 

High Performance Liquid Chromatography (UHPLC) system coupled to an LC-MS/MS (LC-MS-8040; 

Shimadzu Benelux, ‘s Hertogenbosch, the Netherlands). In brief, 5 μL of sample was injected on 

a Phenomenex Kinetex-C18 column, 50 x 2.1 mm, 1.7 µm (Utrecht, the Netherlands), with a 

Phenomenex Security Guard ULTRA pre-column. A gradient was made with ultra-pure water 

containing 0.1% (v/v) formic acid as solvent A and 100% acetonitrile containing 0.1% (v/v) formic 

acid as solvent B. The flow rate was set to 0.3 mL/min. In a total run of 12.0 min, the starting condition 

was 95:5 (A:B) for 1 min followed by changing to 0:100 in 6 min and remaining at 0:100 for another 

0.5 min before returning to the starting condition over 0.1 min and keeping these conditions for 4.4 

min to allow the column to re-equilibrate at room temperature. 

	 The mass spectrometric analysis in the positive ion mode was optimized with the following 

settings: nebulizer gas flow at 2 L/min, drying gas flow at 15 L/min, DL temperature at 250°C, heat 

block temperature at 400°C and CID gas at 230 kPa. The dwell time per transition was 33 msec. A 

divert valve was used in order to discard the eluate in the first minute (e.g. removal of salts) and after 

finishing MS measurement. The mass spectrometer was operated in MRM mode with the following 

m/z transitions; 543427 for dA-AAI, 559443 for dG-AAI, 513397 for dA-AAII and 529413 for 
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dG-AAII. The collision energy used to obtain the daughter fragments was 20 eV for dA-AAI and dA-

AAII, 28 eV for dG-AAI and 11 eV for dG-AAII.  

	 Data analysis of the calibration series and the samples was performed using the 

LabSolutions software version 5.8 (Shimadzu Corporation, Kyoto, Japan). Calibration curves were 

derived by plotting the peak area of respective synthesized adducts against the concentration of 

dA-AAI, dG-AAI, dA-AAII or dG-AAII and were used to determine the amount of DNA adducts in the 

samples of AA-exposed cells. The amount of dA-AAI, dG-AAI, dA-AAII or dG-AAII detected in the 

samples was related to the total amount of digested DNA detected in each sample and adjusted for 

the mass conversion of double strands DNA per 1000 nucleotides (nts) that correspond to 607.6 g/

mol, in order to quantify the number of adducts per 108 nts. 

4.2.5 PBK models for AAI and AAII in rat
In our previous work [29], PBK models were developed that describe the toxicokinetics of AAI in 

rat, mouse and human. In the present study, the developed rat PBK model was used as a starting 

point to establish a new PBK model for AAI and AAII in rat with some modifications. The schematic 

representation of the PBK model structure is shown in Figure 4.3. Both AAI and AAII were assumed 

to be taken up from the gastrointestinal tract following first order kinetics and directly transported 

to the liver. The same absorption rate constant of AAI of 3.27/h [30] was applied to the AAII model. 

All physiological parameters were kept similar as previously described [29]. The tissue/plasma 

partition coefficients of rat were calculated based on the log Kow values reported to be 4.45 ± 0.07 for 

AAI and 3.99 ± 0.06 for AAII [31] using the method of Berezkhovskiy (2004) [32]. The tissue/plasma 

partition coefficients used in the PBK models for both compounds are presented in Table 4.1. The 

metabolic clearance rates of AAI and AAII was described in the liver compartment by fitting a first 

order rate constant for hepatic clearance to correctly predict the in vivo blood levels of AAI and AAII, 

respectively, as reported by Ren et al. (2014) [33]. The metabolic clearance rates were estimated to 

be 3.9 L/h for AAI and 1.5 L/hr for AAII. In the study of Ren et al. (2014) rats were exposed to a mixture 

of AAI and AAII via dosing to Aristolochiae Fructus of which AAII levels were assumed to be 13-fold 

lower than AAI levels based on the ratio of AAs observed in the commercial samples of Aristolochiae 

Fructus [34]. 

	 To enable the models to predict DNA adduct formation in the kidney an equation 

describing the AAI and AAII concentration-dependent DNA adduct formation in LLC-PK1 and NRK-
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52E kidney cells in vitro was added to kidney compartment of the PBK model, as described in the 

next section. In this way, the kinetic parameters for bioactivation of AAI and AAII to its DNA adduct 

forming metabolite in the kidney were implicitly included in the model.

	 A set of differential equations describing the mass balance equations of the model is 

included in the Supplementary data A. The PBK model equations were solved with Berkeley Madonna 

(version 8.3.18, UC Berkeley, CS, USA) using Rosenbrock’s algorithms for solving stiff systems. A local 

sensitivity analysis was performed to identify influential parameters for the model output. To this 

purpose, normalized sensitivity coefficients (SC) were calculated with respect to the area under the 

curve (AUC) of AAI and AAII in the plasma as the model output (C) using the following equation:

SC= (C’- C)/ (P’- P)* (P/C) 

where C is the initial output of the model output and C’ is the modified output after changing 

the parameter value P. P is the initial parameter value and P’ is the modified parameter value (5% 

increase). The sensitivity analysis was conducted for an oral exposure to single dose of 0.1 and 100 

mg/kg bw of AAI and AAII representing a low and a high dose of AA.
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Fig. 4.3 Schematic representation of the PBK models for aristolochic acid I and II in rat.

Table 4.1

Tissue/plasma partition coefficients used in the PBK model for AAI and AAIIa

AAI AAII

Fat/plasma 70.3 24.0

Liver/plasma 7.3 4.0

Kidney/plasma 6.6 3.7

Small intestine/plasma 10.5 5.8

Richly perfused tissues/plasma 7.3 4.0

Slowly perfused tissue/plasma 4.1 2.4

a Predicted using equation described by Berezhkovskiy (2004) [32] 
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4.2.6 PBK modeling-based reverse dosimetry  of in vitro data to the in 

vivo situation
The in vitro concentration-response curve for AAI- and AAII-DNA adduct formation in both kidney 

cell lines were translated into in vivo dose-response curves for DNA adduct formation in the kidney 

of rat using PBK modeling-based reverse dosimetry. The following equation was used to describe 

the formation of either dA-AAI, dG-AAI, dA-AAII or dG-AAII adducts as a function of the AUC for AAI 

or AAII in the blood concentration in the kidney in the PBK model:

DNA=A*AUCAAI or AAII

With DNA being the amount of DNA adducts (number of adducts/108 nts) formed due to specific 

binding of AAI or AAII to either deoxyadenosine nucleosides or deoxyguanosine nucleosides 

dependent on the AUC of AAI or AAII (hours*µmol/L) in the kidney blood and A is the slope, which 

was calculated based on AUC-dependent DNA adduct formation data from the in vitro experiments. 

The description of dA-AAI, dG-AAI, dA-AAII and dG-AAII adduct formation in the kidney in the PBK 

model was made assuming that the relation between the AUC and the DNA adduct level of AAI or 

AAII in vitro is equal to the AUC and the DNA adduct level of AAI or AAII in vivo. The in vitro AUC 

values were multiplied by 4.6 to account for the differences in free fraction between in vitro and 

in vivo situation as previously described [23]. The PBK model allows estimation of the DNA adduct 

formation with different oral doses of AAI or AAII. 

4.2.7 Evaluation of the PBK modeling-based reverse dosimetry 

approach to predict in vivo DNA adduct formation
To evaluate the potential of the in vitro-in silico approach to predict a dose-response curve for in vivo 

DNA adduct formation of AAI and AAII, the DNA adduct formation predicted by the PBK modeling-

based reverse dosimetry approach was compared to data on in vivo DNA adduct formation in rats 

available from the literature [18, 35, 36]. 
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4.3 RESULTS

4.3.1 In vitro DNA adduct formation of AAI and AAII in kidney cells 
To obtain concentration-response curves for DNA adduct formation of AAI and AAII in kidney cells, 

LLC-PK1 and NRK-52E cells were exposed to a mixture (1:1) of AAI and AAII. By exposing the cells 

to the AA-mixture in the same incubation the best comparison between the relative DNA binding 

potency may be obtained. At the concentrations used AAI and AAII were shown to not influence 

each other in the formation of DNA adducts when assessing data on DNA adducts formed upon 

exposure to a mixture of AAs as compared to data on DNA adducts formed upon exposure to 

either AAI or AAII alone (data not shown). The LC-MS/MS chromatogram for 543427, 559443, 

513397 and 529413 transitions of the synthesized reference compounds show that the dA- and 

dG-AAI adducts eluted at 6.02 min and 5.56 min, respectively, and that the dA- and dG-AAII adducts 

eluted at 5.75 min and 5.46 min, respectively. The hydrolyzed DNA isolated from LLC-PK1 and NRK-

52E cells exposed to the same concentration of AAs reveals formation of all four adducts at different 

levels (Figure 4.4). Figure 4.5 shows the concentration response-curves for AAI- and AAII-DNA 

adduct formation upon exposure of the LLC-PK1 and NRK-52E cells to increasing concentrations 

of AAs. These experimental data show an increased formation of all four DNA adducts at increasing 

concentrations of AA-mixture up to 20 µM (the highest concentration tested). The results obtained 

reveal a linear relationship between the AA concentration applied and the level of adduct formation 

observed which can be described by the linear equations presented in Table 4.2. Results obtained 

reveal that DNA adduct levels were higher in LLC-PK1 cells than in NRK-52E cells. The data also show 

that dA-AAI levels were 112-fold higher than dA-AAII levels and dG-AAI levels were 75-fold higher 

than dG-AAII levels in LLC-PK1 cells. In NRK-52E cells, dA-AAI levels were 314-fold higher than dA-

AAII levels and dG-AAI levels were 125-fold higher than dG-AAII levels.
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Fig. 4.4 LC-MS/MS chromatogram of AA-DNA adducts in LLC-PK1 cells exposed to 20 µM AAs (50% 

AAI and 50% AAII). The peak marked with an asterisk was present in all samples at a similar level. 
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Fig. 4.5 Concentration response-curves for dA-AAI/AAII adducts (a) and dG-AAI/AAII adducts (b) in 

LLC-PK1cells (black lines) and NRK-52E cells (grey lines) upon 24 hours exposure to increasing 

concentration of AAs (µM), expressed in no of adducts/108 nts as quantified by LC-MS/MS (mean 

values ± SEM). The linear regression line was fit through the origin.
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Table 4.2

Linear equations describing the formation of DNA adducts in LLC-PK1 cells and NRK-52E cells as a 

function of AA concentration.

DNA adduct Linear equations a

LLC-PK1 NRK-52E

dA-AAI DNA=1.9x105*[AAI] (r2=0.97) a DNA=1.1x105*[AAI] (r2=0.98)

dG-AAI DNA=1.5x104*[AAI] (r2=0.99) DNA=7.0x103 *[AAI] (r2=0.94)

dA-AAII DNA=1.7x103*[AAII] (r2=0.99) DNA=3.5x102*[AAII] (r2=0.89)

dG-AAII DNA=2.0x102*[AAII] (r2=0.98) DNA=5.6x101*[AAII] (r2=0.80)

a DNA represents the amount of dA- or dG-AAI or AAII DNA adducts (no of adducts/ 108 nts) formed 

in the kidney cells at a defined concentration of AAI or AAII (µM). 

4.3.2 PBK model evaluation
Figure 4.6 shows the plasma concentration-time curves of AAI and AAII as predicted by the developed 

rat PBK model compared to in vivo kinetic data obtained from literature [33]. It must be noted that 

PBK model values for hepatic clearance of AAI and AAII were chosen to fit these in vivo data and the 

model could not be evaluated against other in vivo kinetic data, because these are not available. A 

sensitivity analysis was performed at a low and a high dose level (0.1 and 100 mg/kg bw/day of AAI 

and AAII) to identify the key parameters that influence the model outcome of interest (AUC of AAI 

and AAII blood concentration in the kidney). In both sensitivity analyses (supplementary data B) 

the body weight and clearance rate constant of AAI and AAII in the liver were the most influential 

parameters in the PBK models, all expressing normalized sensitivity coefficients higher than 0.1 (in 

absolute value). The sensitivity analyses also revealed that the sensitivity of the model parameters 

was the same at low and at high dose levels.
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Fig. 4.6 PBK model-based prediction of AAI and AAII plasma levels (AAI-solid line; AAII-dashed line) 

and the literature data [33] on AAI and AAII plasma levels (AAI-filled circle symbols; AAII-filled square 

symbols) in rats after oral exposure to 25.3 mg/kg bw of AAI and 2.0 mg/kg bw of AAII.

4.3.3 Translation of the in vitro concentration-response curve to in 

vivo dose-response curves
The concentration-response curves of DNA adduct formation (Figure 4.5), were converted to AUCAAI 

or AAII (in vitro) response curves by multiplying the concentration by the time of incubation (24 hours). 

Subsequently the AUC values were corrected for the differences in protein levels in the in vitro and 

in vivo situation, since the in vitro studies have been performed in the absence of serum, whereas in 

the in vivo situation (kidney blood) plasma proteins are present. For this correction, it was assumed 

that the free fraction of AAI and AAII in the in vitro situation is 4.6-fold higher than their free fraction 

in plasma, as previously described in our previous study [23]. The AUCAAI or AAII response curves 

thus obtained are presented in Figure 4.7 and can be described by linear regression lines through 

the origin of which the equation are presented in Table 4.3. 

	 These equations were incorporated in the PBK models to predict in vivo DNA adduct 

formation. To this end, it was assumed that a certain AUCAAI or AAII in the kidney blood in vivo 

equals a certain AUCAAI or AAII in vitro. This approach provides a link between the PBK model and 

the equation for DNA adduct formation in vitro and defines a PBK model that can predict DNA 

adduct formation as a function of the AAI or AAII dose. Figure 4.8 shows the predicted in vivo dose-

response curves for DNA adduct formation of AAI and AAII in rat obtained by converting the in vitro 

AUC-response curve for DNA adduct formation in LLC-PK1 and NRK-52E cells (Figure 4.7) to the in 

vivo situation by PBK modeling-based reverse dosimetry.
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Fig. 4.7 AUC-dependent dA-AAI/AAII adduct (a) and dG-AAI/AAII adduct (b) levels in the rat kidney 

based on in vitro data from LLC-PK1 cells (black lines) and NRK-52E cells (grey lines) expressed in no 

of adducts/108 nts. The linear equation was fit through the origin.
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Table 4.3

Linear equations describing the formation of DNA adducts as a function of AUC based on the AUC-

response curves after correction for differences in free fraction in vitro compared to in vivo.

DNA adducts Cell line Linear equations a

dA-AAI LLC-PK1 DNA=1.7x103* AUCAAI

NRK-52E DNA=9.9x102* AUCAAI

dG-AAI LLC-PK1 DNA=1.3x102* AUCAAI

NRK-52E DNA=6.3x101* AUCAAI

dA-AAII LLC-PK1 DNA=1.5x101* AUCAAII

NRK-52E DNA=3.1* AUCAAII

dG-AAII LLC-PK1 DNA=1.8*AUCAAII

NRK-52E DNA=0.5* AUCAAII

a DNA represents the amount of dA- or dG-AAI or AAII DNA adducts (no of adducts/ 108 nts) formed 

in the kidney cells at a certain AUCAAI (hour*µmol/L) of AAI or AAII. 
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Fig. 4.8 PBK modeling-based reverse dosimetry predicted in vivo dose-response curves for DNA 

adduct formation of AAI and AAII in the kidney of rats.

4.3.4 Evaluation of the PBK modeling-based predictions of in vivo 

DNA adduct formation of AAI and AAII in the rat kidney
To evaluate the predictions for AA dose-dependent AAI- and AAII-DNA adduct formation in the 

kidney in vivo, the predicted dose-response curves for DNA adduct formation were compared to 

in vivo data on AA dose-dependent DNA adduct formation in the kidney of rats as reported in the 

literature. Table 4.4 presents an overview of in vivo literature data on DNA adduct formation in rats 

and humans expressed as number of adducts per 108 nucleotides. From the overview of all in vivo 

data reported in rat studies, it appears that the reported literature data on in vivo AA-DNA adduct 

formation in rat kidney vary up to 3 orders of magnitude at similar exposure. Figure 4.9 presents a 

comparison of the predicted DNA adduct formation based on translation of in vitro data from LLC-

PK1 and NRK-52E cells as compared to the in vivo data from the literature. Especially the data from 

Chan et al. (2008) [36], who only measured dA adducts, seem out of line with other in vivo data. 
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	 The predicted dA-AAI adduct levels match the DNA adduct levels reported in vivo by Mei 

et al. (2006) [35] and Dong et al. (2006) [18], but were more than 3 orders of magnitude higher than 

the data reported by Chan et al. (2008) [36] (Figure 4.9a). The predicted dG-AAI adduct levels match 

the data of Dong et al. (2006) [18], but were 17- to 75-fold lower than the levels reported by Mei et 

al. (2006) [35] (Figure 4.9b). The predicted dA-AAII adduct levels did not match any of the three in 

vivo datasets, but fell within the available in vivo data: predicted dA-AAII levels were 44- to 512-fold 

lower than the data of Mei et al. (2006) [35] and Dong et al. (2006) [18], and 26- to 196-fold higher 

than the data of Chan et al. (2008) [36] (Figure 4.9c). Levels of predicted dG-AAII adducts did not 

match the single in vivo dataset available [18], but were 165- to 593-fold lower (Figure 4.9d).

4.3.5 Comparison of relative dA-AAI/dA-AAII levels in vitro compared 

to in vivo and predicted in vivo
In our in vitro studies, the level of AAI-DNA adduct formation was higher than AAII-DNA adduct 

formation at similar concentrations, which was also observed in AAN patients, whereas such 

differences have not been reported for the rat in vivo situation. To further analyze these differences, 

Figure 4.10 shows an overview of the ratio between the dA-AAI-adducts and the dA-AAII-adducts 

obtained in our in vitro studies, in the in vivo studies as reported in the literature and also as predicted 

using the in vitro-PBK modeling-based reverse dosimetry approach. dA-adducts were chosen for 

this analysis, because they were shown to be the major adducts formed in vivo [6, 22]. Figure 4.10 

shows that the ratio between dA-AAI adducts and dA-AAII adducts in vitro was 112 for the LLC-PK1 

cells and 314 for the NRK-52E cells, whereas the average ratio amounts to 0.6 in rat in vivo, resulting 

in an on average 355-fold higher ratio in vitro compared to rat in vivo. The ratio predicted using PBK 

modeling-based reverse dosimetry was lower than observed in vitro amounting to 40 based on the 

LLC-PK1 data and 110 based on the NRK-52E data, but was still on average 125-fold higher than the 

ratio for rat in vivo. This indicates that the difference between in vitro dA-AAI- and dA-AAII adduct 

formation compared to in vivo AAI- and AAII-DNA adduct formation, can only in part be explained 

by differences in in vivo kinetics, and that other -as yet unidentified- factors may contribute as well. 

It is of interest to note, however, that the PBK model-based predicted ratios of 40 (based on the LLC-

PK1 data) and of 110 (based on the NRK-52E) for the level of dA-AAI to dA-AAII adducts is better in 

line with the ratio of 18 to 70 reported for AAN patients who took the herbal remedy containing AAs 

(Table 4.4) (Figure 4.10) [21, 22].
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Table 4.4

Data on DNA adduct formation in kidney of rats and humans exposed to either AAI, AAII or a mixture of AAs, as obtained from the literature. 

Species Exposure 

route

AA 

composition

Dose a (mg/kg 

body wt/day)

Exposure 

duration

Adduct 

type

No of adducts/108 

nts

Method Figure Reference

Rat Oral 50% AAI & 

50% AAII

0, 2.5, 15 a 1 d dA-AAI

dA-AAII

0, 0.09, 0.4

0, 0.16, 0.62

LC-ESI/MS 4.9

4.10

Chan et al. (2008) [36]

Rat Oral 40% AAI & 

56% AAII

0, 0.04, 0.4, 4 a

0, 0.056,0.56, 5.6 a

3 m dA-AAI

dG-AAI

dA-AAII

0, 9.2, 53.5, 911.4

0, 35.6, 266.5, 1676.6

0, 49.1, 384.6, 2010.3

32P b 4.9,

4.10

Mei et al. (2006) [35] 

Rat Oral AAI or AAII 0, 5 7 d dA-AAI

dG-AAI

dA-AAII

dG-AAII

0, 886

0, 98

0, 3380

0, 800

32P b 4.9,

4.10

Dong et al. (2006) [18]

Human Oral AAI and AAII na c na dA-AAI

dA-AAII

na d

na d

LC-ESI/MS 4.10 Grollman et al. (2007) 

[21]

Human Oral AAI and AAII 0.0086-0.017 19-21 m dA-AAI

dA-AAII

7-76 e

0.6-3.1 e

32P b 4.10 Bieler et al. (1997) [22] 

a adjusted dose = dose x percentage of AAI or AAII

b 32P-postlabeling 

c not available

d ratio between dA-AAI and dA-AAII estimated to be >70, n=1

e averaged ratio between dA-AAI and dA-AAII was calculated from 6 patients, n=6
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Fig. 4.9 Comparison of PBK model-based reverse dosimetry predicted dose dependent formation of dA-AAI (a), dG-AAI (b), dA-AAII (c) and dG-AAII (d) 

adducts (straight lines) in the kidney of rats exposed orally to AAI or AAII to data on in vivo AA-DNA adduct formation in the kidney of rats as reported in 

the literature. See Table 4.4 for specifications of the experimental conditions for the in vivo studies. 
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Fig. 4.10 Relative dA-AAI levels compared to dA-AAII levels (dA-AAI/dA-AAII ratio) in the in vitro 

situation, the in vivo situation, predicted using PBK modeling-based reverse dosimetry and in AAN 

patients.
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4.4 DISCUSSION
Over the past decades, there is increasing interest in the development of methods that allow in 

vitro-in vivo extrapolation. PBK modeling-based reverse dosimetry has been shown to successfully 

relate in vitro concentrations to in vivo doses [29, 37-39]. The present study aimed to assess the 

DNA adduct formation of AAI and AAII in kidney cells in vitro and the possibility of predicting in 

vivo DNA adduct formation of AAI and AAII in the kidney in vivo without the use of animals. To this 

end, in vitro concentration response curves of dA-AAI, dG-AAI, dA-AAII and dG-AAII adducts were 

obtained in kidney cells in vitro, and subsequently translated to predicted in vivo dose-response 

curves for AA-induced DNA adduct formation in rats using PBK modeling-based reverse dosimetry. 

These predicted DNA adduct levels were compared to in vivo DNA adduct levels as reported in 

the literature in order to evaluate the approach. The analysis of the in vivo data revealed a large 

discrepancy between the different values reported in vivo, thereby hampering the evaluation of 

the predictions made. The results of this study also show that AAI-DNA adduct levels are about 

100-fold higher than AAII-DNA adduct levels in vitro, whereas levels of AAI- and AAII-DNA adducts 

have been reported to be quite similar in rats in vivo. This discrepancy between the in vitro and 

in vivo situation could be partly resolved by taking possible differences in in vivo toxicokinetics 

into account, although a difference in the predicted AAI/AAII DNA adduct ratio versus the AAI/AAII 

DNA adduct ratio observed in in vivo rat studies remained. This indicates that other factors may be 

responsible for causing the discrepancies between the in vitro and in vivo situation.

	 For AAI-DNA adducts, the predicted DNA adduct levels match the data of dA-AAI from 

Mei et al. (2006) [35] and Dong et al. (2006) [18] and the data of dG-AAI from Dong et al. (2008) 

[18]. For AAII-DNA adducts, the predicted DNA adduct levels did not match any in vivo dataset, 

but fell within the range of data reported for dA-AAII adducts, while the values for dG-AAII adducts 

were underpredicted compared to the single dataset available. In general, the evaluation of the 

predictions appeared to be hampered by the fact that the DNA adduct levels as reported in vivo in 

rats deviate by more than 3 orders of magnitude at similar AA exposure levels (Table 4.4 and Figure 

4.9). The factors that may contribute to these large differences may be differences in techniques 

used for analysis (32P-postlabeling vs LC-MS), the use of AAI and AAII in mixtures vs pure AAI or AAII, 

the exposure duration, and differences in methods used for AA-adduct quantification and definition 

of calibration curves, the latter possibly caused by the fact that the respective DNA adducts have to 

be chemically synthesized by a method with only limited yield [28]. 
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	 Comparing the DNA adduct formation of AAI and AAII in vitro shows that AAI-DNA adducts 

are 112- and 314-fold higher than AAII-DNA adducts in cell lines derived from the pig and rat kidney, 

respectively. A higher formation of AAI-DNA adducts has also been found before in opossum kidney 

cells in which AAI-DNA adducts were 10-fold higher than AAII-DNA adducts [17]. AAI has also 

been reported to induce an 11-fold higher number of dA-adducts than AAII in in vitro enzymatic 

incubations of calf thymus DNA using xanthine oxidase, which is involved in catalyzing the reductive 

reaction that leads to the formation of reactive intermediates that binds to DNA [40]. However, as 

shown in Table 4.4 and Figure 4.9, DNA adduct levels of AAI and AAII in the kidney of exposed rats 

are very similar. On the other hand, it was demonstrated that the level of dA-AAI adducts was about 

18- and 70-fold higher than dA-AAII adducts in AAN patients who took herbal remedy containing 

AAs [21, 22]. These data indicate differences between the in vitro and the in vivo situation, but also 

possible interspecies differences. Differences between the in vitro and in vivo ratio may be due to 

possible differences in ADME processes of AAI compared to AAII in vivo [20]. Possible differences in 

clearance was taken into account in the present study when predicting DNA adduct levels in rats 

using PBK modeling-based reverse dosimetry. Using this approach, the discrepancy between the 

in vitro and in vivo situation was reduced 3-fold but still remained substantial, indicating that other 

-as yet unidentified- factors may be responsible for causing the discrepancies between the in vitro 

and in vivo situation. It is likely that the presence of the O-methoxy group in AAI, which is absent in 

AAII, may play a key role in the differences between AAI and AAII, resulting in a higher clearance of 

AAI. The half-life of DNA adducts depends on the chemical stability of the adduct, but also on repair 

processes and the absence or presence of cell death upon exposure to the chemical. To date, there 

is no information regarding the stability and biological consequences of dA-AAI versus dA-AAII 

adducts in vivo [35, 41]. Also, possible differences in oxygen tension could play a role in differences 

in relative numbers of AAI- and AAII-DNA adducts in the in vitro compared to the in vivo situation 

[42]. Especially the level of bioactivation to a DNA reactive intermediate via nitroreduction of these 

two chemicals has been reported to be different under aerobic and anaerobic conditions [11, 40]. 

This points at the need to further study the potential differences between different in vitro models 

to be used for the combined in vitro-PBK modeling approach. 

	 In the present study, LLC-PK1 cells and NRK-52E cells were used to measure in vitro 

DNA adduct formation. The LLC-PK1 cell line is a porcine cells line that is routinely used to study 

nephrotoxic effects of chemicals in humans because the cells exhibit many of the enzymatic and 

transport properties of the human proximal tubule cells [43, 44] which are the cells that represent 
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the direct target of AAI [45]. The NRK-52E cell line is a rat cell line and may therefore be a better 

model to predict DNA adduct levels in rats. However, although we found differences in DNA adduct 

levels in LLC-PK1 cells compared to NRK-52E cells, it cannot be concluded that predictions based on 

one of these cell lines is better, given the large variation in the DNA adduct levels reported in vivo. 

Interestingly, AA-DNA adduct levels formed upon AA exposure in different in vitro models, including 

non-kidney cells, have been reported to differ up to 3 orders of magnitude [23], indicating the large 

variation in the results also obtained in in vitro models. More understanding of the mechanisms 

underlying these differences is required in order to select a model that best resembles the in vivo 

situation. Furthermore the ratio of AAI- and AAII-DNA adducts may also vary with the in vitro model 

used, which is an interesting topic for further studies.

	 Altogether, it is concluded that PBK model-based conversion of in vitro data to in vivo data 

for AA derived DNA adduct formation is feasible but needs further refinement to also adequately 

predict the relative differences between the two AAs, while also the discrepancy between the 

different values reported in vivo needs to be resolved.
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Supplementary data A. Mass balance equation and parameter specifications of PBK model for 

aristolochic acid I or II in the rat 

Compound			   abbreviation

Aristolochic acid I or II 		  AA

Compartment (Tissue (T))		  abbreviation

Small intestine			   I

Liver				    L

Kidney				    K

Slowly perfused tissue		  S

Richly perfused tissue		  R

Fat compartment			   F

Arterial				    A

Venous				    V

Variable						      Unit		  abbreviation

Blood flow rate to tissue				    lh-1		  Q(T)

Cardiac output					     lh-1		  QC

Concentration of AAI in tissue or blood		  µM		  C(T)AA

Partitioning coefficient tissue:blood AAI or II		  -		  P(T) AA

Volume of tissue or blood				    l		  V(T)

Amount AAI or II in tissue or blood			   µmol		  A(T) AA

Uptake rate AAI or II in intestine			   h-1		  Ka

Clearance of AAI or II in liver				    lh-1		  CAAL

Small intestine

dAIAA/dt=dUptakeAA/dt+QI*(CAAA-CIAA/PIAA)

 

Uptake of AAI from GI tract

dUptakeAA/dt=-dAGIAA/dt=ka*AGIAA

AGIAA(0)=Oral dose
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CIAA=AIAA/VI

Liver compartment

dALAA/dt=QL*CA+QI*CIAA/PIAA -(QL+QI)*CLAA/PLAA -dClearanceAA/dt

CLAA=ALAA/VL

Clearance of AAI or II 

dClearanceAA/dt=CAAL*CLAA/PLAA 

CAAL(0)=0

Kidney compartment

dAKAA/dt=QK*(CAAA-CKAA/PKAA)

CKAA=AKAA/VK

CVKAA=CKAA/PKAA 

dAUCVKAA/dt=CVKAA

DNA adduct formation

DNA=A*AUCAA

‘DNA’ is the amount of DNA adducts (number of adducts/108 nts) formed due to specific binding 

of AAI or AAII to either deoxyadenosine nucleosides or deoxyguanosine nucleosides at a certain 

‘AUCAA’ (hours*µmol/L) of AAI or AAII, and ‘A’ is the slope, respectively, calculated based on the data 

from the in vitro experiments.

Slowly perfused tissue

dASAA/dt=QS*(CAAA-CSAA/PSAA)

CSAA=ASAA/VS

Richly perfused tissue

dARAA/dt=QR*(CAAA-CRAA/PRAA)

CRAA=ARAA/VR
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Fat compartment

dAFAA/dt=QF*(CAAA-CFAA/PFAA)

CFAA=AFAA/VF

Arterial blood compartment

CAAA=CVAA

Venous blood compartment

dAVAA/dt=(QF*CFAA/PFAA)+(QK*CKAA/PKAA)+(QR*CRAA/PRAA)+(QS*CSAA/PSAA)+(QL+QI)*CLAA/PLAA-

QC*CVAA

CVAA=AVAA/VV 
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Supplementary data B. Normalized sensitivity coefficients for parameters of the PBK model for rat 

exposed to AAI (a) and AAII (b) on AUC values in the kidney blood from single oral dose of 0.1 mg/

kg bw and 100 mg/kg bw. Normalized sensitivity coefficients ≥ 0.1 are presented. BW= bodyweight, 

CAAL= clearance of AA in liver.
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ABSTRACT 
After the incidences with induction of Aristolochic Acid Nephropathy upon use of herbal weight 

loss preparations that accidentally contained aristolochic acids (AAs), several countries defined 

national restrictions on the presence of AAs in food, including plant food supplements (PFS) and 

herbal products. This study investigates whether the risks associated with exposure to AAs via PFS 

and herbal products are at present indeed negligible. Data reported in literature on AA levels in 

PFS and other herbal products and obtained from a new series of PFS in the present study were 

used to calculate the estimated daily intakes (EDIs) and corresponding margin of exposure (MOEs). 

Available literature data revealed that 206 out of 573 samples were found to contain aristolochic 

acid I (AAI) and/or aristolochic acid II (AAII). The results obtained from recently collected PFS revealed 

that both AAI and AAII were detected in three out of 18 analysed PFS at levels up to 594.8 and 

235.3 µg/g, respectively, being in line with the levels reported in literature. The EDIs resulting from 

intake of these PFS resulted in MOEs that were generally below 10,000 corroborating the priority 

for risk management. Although these results refer to PFS collected by targeted sampling strategies, 

the data reveal that AA-containing PFS are still freely available. When considering that the use of 

these samples may be limited to shorter periods of time, the EDIs might be lower, but MOE values 

would still be lower than 10,000 for more than 50% of the AA-containing PFS and herbal products. 

In conclusion, the presence of AAs in PFS and herbal products even several years after instalment 

of the legal restrictions still raises concern especially for people who frequently use the respective 

PFS and herbal products.
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5.1 INTRODUCTION
Plant food supplements (PFS) and other herbal products are widely distributed for their perceived 

health benefits. It is important to note that most of these traditional botanical products have 

never been the subject of thorough pre-marketing toxicological safety assessment as required for 

example for modern pharmaceuticals or food additives [1, 2]. Based on their traditional use for long 

periods of time, these botanical preparations are often assumed to be safe. However, this is not 

always the case. A recent inventory on the possible presence of botanical ingredients that may be 

a safety concern because they are genotoxic and carcinogenic revealed concerns over especially 

alkenylbenzenes, pyrrolizidine alkaloids and aristolochic acids (AAs) [3], the latter group being 

the topic of the present study. AAs have been proven to cause nephrotoxicity, genotoxicity and 

carcinogenicity and have been classified by the IARC in Group 1 meaning that there is sufficient 

evidence that they cause tumours in humans [4]. 

	 AAs are found in plants from the Aristolochiaceae family which are also known to be 

one of the oldest traditional remedy systems used worldwide [5]. AAs derived from Aristolochia 

species occur as a mixture of two structurally related nitrophenanthrene carboxylic acids, including 

aristolochic acid I (AAI) and aristolochic acid II (AAII) (Figure 5.1) [4]. Aristolochia herbs have been 

used in obstetrics and for the treatment of snake bites [6], as a therapy for arthritis, gout, rheumatism 

and for festering wounds [7]. Aristolochia species are also commonly used in Chinese traditional 

medicines. The dry fruits of Aristolochia contorta Bge. and Aristolochia debilis Seib.et Zucc., named 

Madouling in the Chinese Pharmacopoeia, are used to treat respiratory diseases, while the herb 

parts known as Tianxianteng are used as an anti-rheumatic agent [8]. 

Fig. 5.1 Structural formula of aristolochic acids (AAs) 
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	 Due to the anti-inflammatory properties of AAs, AA-containing preparations have been 

developed as pharmaceutical preparations in Germany [7] until studies proved that AAs were 

carcinogenic in rats [9]. Studies conducted over the years have associated AAs with Chinese Herb 

Nephropathy and Balkan Endemic Nephropathy, later known as Aristolochic Acid Nephropathy 

(AAN) [10]. In 1991, a unique form of nephropathy was reported in Belgium. Over 100 young 

women suffered from kidney damage leading to kidney transplantation [11], and with the lesions 

developing into renal and bladder cancer in several patients [12, 13]. It was recognised that these 

adverse effects were the result of prolonged intake of a Chinese herb-based weight loss preparation 

which contained Aristolochia fangchi instead of Stephania tetranda because both plants are known 

under the same name, ‘Fang Ji’ in Chinese folk medicine [12].

	 After the occurrence of this dramatic episode, similar cases were reported in other 

European countries such as France, Spain, Germany, the UK, and also in the United States [14]. The 

responsible botanical preparations were marketed and sold in different forms: as dietary products 

in the form of pills or herbal infusions, for medicinal purposes such as reducing eczema, curing 

hepatitis B, arthritis and rheumatisms, and as pain relievers [14]. Subsequent to the Belgian incident, 

the European Agency for the Evaluation of Medicinal Products issued a position paper in October 

2000 warning European Union Member States ‘to take steps to ensure that the public is protected 

from exposure to aristolochic acids arising from the deliberate use of Aristolochia species or as a 

result of confusion with other botanical ingredients’ [8]. Subsequently, most European Union 

Member States have restricted the use of Aristolochia species as well as of Stephania species in 

botanical products [8]. In the Netherlands, AAs became regulated as herbal preparations in the 

Commodities Act ‘Herbal preparations’. Within this Act, the presence of AAs and their derivatives 

have been prohibited from being marketed since 2001 [15]. In 2001, the USFDA advised consumers 

to stop using products containing AAs [16]. The sale of AA-containing botanical products was also 

prohibited in several other countries such as Australia, Canada and New Zealand, and in many 

Asian countries (e.g., Japan) [4, 15, 17]. In spite of this, PFS and traditional medicines containing AAs 

appear to be still available in the markets [15, 18-21]. 

	 In the present study, the data on AA levels in PFS and other herbal products were collected 

from the literature and we provide an update on the presence and level of AAs in PFS purchased via 

online markets. The aim was to investigate whether after the Belgium incident and the subsequent 

regulatory awareness and measures taken, the risks associated with exposure to AAs via PFS and 

herbal products are indeed negligible. Based on the AA levels thus obtained estimated daily intakes 
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(EDIs) were established enabling risk assessment by the MOE approach to evaluate the risk from 

exposure to AAs from PFS purchased online from all over the world. Including the levels of AAs in 

PFS and other herbal products reported since 1990 was of interest given that the respective papers 

did not perform a risk assessment. 

5.2 MATERIALS AND METHODS

5.2.1 Literature search for food samples containing AAs 
Data from literature studies included in the present study were selected based on the following 

criteria: (1) the study reported on products that were collected from the early 1990s until 2016 and 

included analyses of AAs in herbal products, Chinese medicinal products or food supplements for 

oral use; and (2) the tested products represented commercially available products obtained from 

the local market, products ordered online or supplements taken by patients with AAN. Based on the 

collected data, the average percentage of samples that tested positive for the presence of AAI and/

or AAII was calculated for each study over the years.

5.2.2 Collection of samples for analysis 
A total of 18 PFS from different brands were purchased from different online sources. A targeted 

sampling approach was applied collecting samples containing botanicals of concern. Product 

information and the respective botanical ingredients of concern as indicated on the label of each 

product are summarised in Table 5.1. 

5.2.3 Chemicals
AAI and AAII were purchased from Sigma-Aldrich (Zwijndrecht, The Netherlands). Dimethyl sulfoxide 

(DMSO) (>99.9%) was obtained from Acros Organics (Geel, Belgium). Methanol and acetonitrile 

(ULC/MS grade) were obtained from Biosolve (Valkenswaard, The Netherlands). Trifluoroacetic acid 

(TFA) (>99.8%) was purchased from Merck (Darmstadt, Germany). 

5.2.4 Methanol extraction
To quantify the AA content in the PFS samples, methanol extracts were prepared by adding 1 g of 

sample to 10 ml of methanol followed by sonication for 20 min at RT. The methanol extracts were 
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centrifuged for 5 min at 50,000 rpm and the supernatants were collected for ultra-performance 

liquid chromatography (UPLC) analysis of AA levels. The extraction efficiency was evaluated by 

spiking 1 g of samples S2 and S9 (Table 1) with different concentrations of AAI and AAII before 

starting the whole extraction procedure as described above. The average percentage of recovery 

was used to correct the levels of AAI and AAII in the PFS.

5.2.5 UPLC analysis
To quantify the presence of AAs, 3.5 µl of undiluted samples were analysed by UPLC (Waters 

Acquity) equipped with a Waters BEH C18 1.7 µm column, 2.1 x 50 mm (Waters Ireland) as described 

previously [22] with minor modifications. In short, a gradient was made with ultra-pure water 

containing 0.1% (v/v) TFA as solvent A and acetonitrile as solvent B. The flow rate was set to 0.6 ml/

min. The starting condition was 80:20 (A:B), changing to 75:25 from 1 to 3 min, then to 20:80 from 

3 to 5 min, and keeping the gradient at this condition for 1 min. Then the gradient was modified to 

0:100 from 6 to 7.3 min and retained for another 0.2 min after which the starting condition was reset 

from 7.5 to 8 min and kept at that level for another 1 min to equilibrate the column. Detection was 

carried out with a photodiode array detector (Waters, Milford, MA, USA) and chromatograms were 

analysed at 240 nm.

5.2.6 Estimated daily intakes (EDIs) of AAs resulting from the use of 

PFS and herbal products
The exposure estimation of AAs from current PFS was based on the recommended daily intake 

of the PFS as indicated by the suppliers (Table 1). EDIs were estimated using a body weight of 70 

kg, the default value for adult body weight as proposed by EFSA [23]. Since the PFS samples that 

tested positive appeared to contain both AAI and AAII, a combined exposure assessment and risk 

assessment was performed. Based on the similarity in the mode of action and target organ toxicity 

for both AAs, the combined exposure by dose addition was calculated based on the direct addition 

for AAI and AAII by assuming an equal potency for both AAs. For PFS and other herbal products 

for which AA levels were reported in the literature, EDIs were calculated using the same approach 

assuming consumption of 0.25 g of AA-containing products, three times a day [12] and 70 kg bw.
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5.2.7 Calculation of Margin of Exposure (MOE) values
Considering the fact that AAs are genotoxic and carcinogenic, a harmonised approach called the 

margin of exposure (MOE) is recommended to judge if risk management actions are required [24]. 

The MOE is a dimensionless ratio between the BMDL10 (lower confidence bound of the benchmark 

dose giving 10% extra cancer incidence) and the EDI. The BMDL10 values were calculated from 

data on the induction of kidney tumours by AAs in rats [9] using all models for dichotomous data 

using the Environmental Protection Agency's (EPA) Benchmark Dose Software (BMDS) version 2.5. 

The doses and the duration of treatment were adjusted to the standard lifespan (104 weeks), as 

discussed by Paini et al. (2011) [25]. Only models that met the requirements for acceptance of the 

model fit were considered for the determination of BMDL10 values. The MOE-based risk assessment 

was performed for the PFS and herbal products containing AAs in the newly collected samples and 

the samples for which data were found in literature. 
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Table 5.1 

Product description of the PFS analysed in the present study.

Sample No Product name Product presentation Dosage Suspected botanical ingredient Country of 

origin

S1 Slimonil men Capsule 1-2 capsules, 2 times per day Aristolochia indica India

S2 Marul Lupului-Antiinflamator Plant leaf 1 teaspoon per day Aristolochia clematitis Romania

S3 Zhu Po Hou Zao San Globule 0.45-0.6 g, 2-3 times per day Asarum heterotropoides China

S4 Aristolochia clematitis C100 Globule 5-30 globules per day Aristolochia clematitis Germany

S5 Ba Zheng San Capsule 3-6 capsules, 3 times per day Aristolochia (Guan Mu Tong) China

S6 Long Dan Xie Gan Wan Globule 0.5-1 pack, 2 times per day Aristolochia manshuriens China

S7 Jingzhi Kesou Tanchuan Wan Capsule 1 capsule, 2 times per day Aristolochia; xinxin China

S8 Slimonil Women Capsule 1-2 capsules, 2 times per day Aristolocia indica India

S9 Lotiune Marul Lupului Tincture 1 teaspoon, 3 times per day Aristolochia clematitis Romania

S10 Fang Ji Huang Qi Tang Capsule 3-6 capsules, 3 times per day Stephania root (Han Fangji) USA

S11 Varanadi Kwatham Tablet 3 tablets, 2 times per day Aristolochia bracteolate India

S12 Yangxue Qingnao Keli Globule 1 pack, 3 times per day Xi Xin China

S13 DaHuang Plant stem No information provided Da Huang China

S14 Zhengtian Wan Globule 1 pack, 2-3 times per day Xi Xin China

S15 Fangxieye Plant leaf 3-6 g per day Folium Sennae China

S16 Tong Cao Plant stem No information provided Aristolochia; Xi Xin China

S17 Akabea Moist Heat Tablet 3 tablets, 3-4 times per day Akabea trifoliate caulis (Mu Tong) USA

S18 Aristolochia clematitis D12 Tablet 1 tablet per day Aristolochia clematitis Germany
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5.3 RESULTS

5.3.1 Literature search for PFS and other herbal products containing 

AAs
Figure 5.2 presents an overview of published data on levels of AAs in botanical samples collected 

from 1990 to 2016 [13, 15, 20, 21, 26-39]. In total, 206 out of 573 (36.0%) samples were positive for 

the presence of AAI, AAII or both AAs (supplementary data A). From 573 samples, 55 samples were 

purchased via online markets [20, 21], of which 12 samples (22%) tested positive for the presence 

of AAI and/or AAII. The other samples were purchased from local markets in different countries, 

including Belgium [13, 26], China and/or Japan, Korea and Taiwan [27, 28, 30-34, 36, 38], Australia 

[29], Hong Kong [35, 39], the Netherlands [15], and Switzerland [37]. Figure 5.2 presents an analysis 

of these data plotting the number (Figure 5.2a) and percentage (Figure 5.2b) of AA-containing 

samples against their time of collection. The results obtained show that there is no specific trend or 

a reduction in the percentage of positive samples over the years. 

5.3.2 Chemical analysis of AAs in recently collected PFS
Figure 5.3 presents part of a UPLC chromatogram of a methanol extract from a PFS revealing the 

presence of both AAs, with AAI eluting at 4.3 min and AAII at 4.2 min. The accuracy of the method 

was evaluated by calculating the recovery of AAs from spiked samples. The average recovery was 

92% for both AAI and AAII, and this was used to calculate the levels of AAI and AAII in the PFS 

samples using the calibration curves defined using commercially available reference compounds.  

Of the 18 PFS analysed, three samples (16.7%) tested positive and contained both AAI and AAII 

at levels that ranged from 2.1 to 594.8 and from 0.6 to 235.3 µg/g respectively (Table 5.2). For all 

these PFS, the level of AAI was 2.5-3.5-fold higher than AAII supporting the fact that AAI is a major 

component in Aristolochia species [40, 41]. Among the three positive samples, S2 (plant leaf ) had 

the highest AA levels followed by S9 (tincture) and S4 (globule). All samples that tested positive for 

AAs contain an ingredient called Aristolochia clematitis that is commonly known as Birthwort. 
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Fig. 5.2 Total number of plant food supplements and other herbal products containing AAs (a) and 

percentage of positive samples (mean values ± SD) (b) over the years. The details of each study are 

presented in supplementary data A.
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Fig. 5.3 UPLC chromatogram of the methanol extract of sample S2 (declared to contain Aristolochia 

clematitis). Peaks marked with an asterisk (*) were not identified. The chromatogram was obtained 

at a wavelength of 240nm.

Table 5.2 

Levels of aristolochic acid I (AAI) and aristolochic acid II (AAII) in positive samples of PFS (n=3 

independent analyses).

Sample No. Aristolochic acids (µg/g)

AAI AAII

S2 594.8 ± 126.7 235.3 ± 57.0

S4 2.1 ± 0.4 0.6 ± 0.0

S9 14.4 ± 0.8 5.7 ± 0.2

5.3.3 EDI for combined exposure to AAs resulting from the consumption 

of PFS and herbal products 
A combined exposure to AAI and AAII was calculated based on adding the levels of both AAI and 

AAII as such. The EDIs of AAs resulting from consumption of PFS for a 70-kg person based on the 

recommended daily intake as indicated on the label of the respective supplement (Table 5.1) are 

presented in Table 5.3. The EDIs amounted to 1.7 x 10-3 -30 µg/kg bw/day. 

	 From the 206 positive AA-containing PFS and other herbal products reported in 
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the literature, for only 159 samples were the actual levels of AAs available for further analysis 

and calculation of an EDI. For these 159 samples, EDIs were calculated and presented in the 

supplementary data A. 

Table 5.3 

Estimated daily intakes (EDIs) of AAs. 

Sample No. Recommended daily intake (g) 

of the PFS

EDI(µg/kg bw/day) a

S2 2.5 30

S4 0.04-0.25 1.7-11 x 10-3

S9 4.5 1.3

a EDI of AAI + EDI of AAII

5.3.4 Risk assessment of exposure to AAs from consumption of PFS 

and herbal products using the MOE approach
In a next step the MOEs were calculated based on the EDIs and the lowest BMDL10 of 10 µg AAs/kg 

bw/day (Table 5.4) estimated from data reported for kidney tumour formation by a mixture of AAs 

(71% of AAI and 21% of AAII) upon oral exposure [9] in rats. The MOE values thus obtained for S2, 

S4 and S9, presented in Table 5.5, were below 10,000, indicating a priority for risk management [24].

	 In addition, MOE values were also calculated for the collected literature data presented 

in supplementary data A [13, 15, 19-21, 26, 27, 29-35, 39]. Figure 5.4 shows the calculated MOEs 

based on the three samples analysed in the present study and the 159 samples reported in the 

literature for which actual levels of AAs were available enabling calculation of the respective EDIs. 

For 95.7% of these samples, the EDIs resulted in an MOE lower than 10,000, indicating a priority for 

risk management. It is interesting to note that of this 95.7%, about 64.2% of these PFS result in EDIs  

that indicate an MOE value lower than 10, indicating that the dose to which humans will be exposed 

when using these PFS will be in the range of the dose levels that caused kidney tumour formation 

in rats. 

	 Considering that the exposure to AAs will not be lifelong but may be limited to shorter 

time intervals, and applying Haber’s rule [42] to calculate the risk for shorter-than-lifetime exposure, 

EDIs may be two to three orders of magnitude lower than assuming lifetime exposure. Since the 

labels of the respective products do not indicate a specific time period for use of the PFS, but rather 
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indicate taking the preparation as recommended by a physician, i.e., until the disease is cured, it 

was assumed that 2 weeks would be a realistic minimum estimate for the period of use for the PFS.  

Assuming 2 weeks' exposure, the MOE values would be 75 years x 52 weeks per year divided by 2 

weeks =1950 times lower. Taking this shorter exposure period into account, about 51.8% of the 

positive samples would still give rise to MOE values lower than 10,000 (Figure 5.4).   

 

5

Risk assessment of PFS and herbal products containing AAs



Page | 166

Table 5.4 

Results from a BMD analysis of the data for kidney tumour formation in rats [9] exposed to AAs using BMDS software version 2.5, a BMD of 10% and default 

settings based on assumption of equal potency of AAs. 

Model Restriction No of 

parameters

Log Likelihood p-value Accepted a BMD10 (µg/kg 

body wt/day)

BMDL10 (µg/kg 

body wt/day)

Reduced 1 -22.2921 - - - -

Full 4 -15.5048 - - - -

Gamma none 4 -15.6056 0.9042 No 60 3

Logistic n.a. b 2 -16.3038 0.5144 Yes 150 100

LogLogistic none 2 -15.5861 0.9528 No 50 4

LogProbit none 2 -15.5422 0.9781 No 50 5

Multistage none 2 -15.6008 0.9499 Yes 50 10

Probit n.a. b 2 -16.2417 0.9888 Yes 130 90

Weibull none 2 -15.6055 0.5387 No 50 3

Quantal-Linear n.a. b 1 -15.6056 0.9409 Yes 50 30

a Criteria for acceptance included p-value >0.05 and the ratio between BMD10 and BMDL10 <10

b not applicable
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Table 5.5 

MOE values of AAs resulting from the consumption of PFS.

Sample No. MOE 

S2 0.3

S4 900-5800

S9 8

Fig. 5.4 Number of samples with respective MOE values assuming a lifetime or 2 weeks of exposure 

to AAs based on samples analysed in the present study and reported in the literature. The MOE was 

calculated by dividing the lowest BMDL10 of AAs of 10 µg/kg bw/day for kidney tumour formation by 

the EDI of AAs from the PFS and other herbal products. 
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Table 5.6 

DNA adduct formation in the kidney of rats exposed to either AAI, AAII or a mixture of AAs obtained 

from the literature.

AA Dose (mg/kg bw/

day)

Total no of 

adducts/108 nts b

Slope of the 

curve for DNA 

adduct formation 

versus dose c

Reference

AAI 

AAII

0, 2.5, 15 a 0, 0.09, 0.4 

0, 0.16, 0.62

0.03 

0.04

Chan et al. (2008) [43] 

AAI 

AAII

0, 0.04, 0.4, 4 a 

0, 0.056,0.56, 5.6 a

0, 44.8, 320, 2588 

0, 49.1, 348.6, 2010

641.3 

348.7

Mei et al. (2006) [44] 

AAI 

AAII

0, 5 0, 984 

0, 4180

196.8 

836.0

Dong et al. (2006)[45] 

AAI 

AAII

0, 10 0, 42 

0, 80

4.2 

8.0

Pfau et al. (1990) [46] 

a adjusted dose = dose x percentage of AAI or AAII

b Total number of adducts presented was based on the total number of deoxyadenosine and 

deoxyguanosine adducts formed upon exposure to AAI or AAII

c Slope was calculated using the reported DNA adduct level at each tested dose level and assuming 

zero adduct formation at zero dose. 
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5.4 DISCUSSION
In the present study, a risk assessment for AAs resulting from the intake of PFS and herbal products 

was performed using the MOE approach. An overview of the level of AAs present in PFS and other 

herbal products from 1990 to 2016 showed that 206 out of 573 (36.0%) samples collected and 

analysed contained AAs. In order to determine the current exposure to AAs from the intake of PFS, 

18 samples were purchased online and three of these 18 (16.7%) samples were shown to contain AAI 

at levels up to 594.8 µg/g and AAII at levels up to 235.3 µg/g. It is interesting to note that although 

Aristolochia sp. have been banned from being present in food including food supplements, AAs can 

still be found in some of the PFS. This conclusion is in line with what was found for other PFS samples 

and analysed after instalment of the ban in the Netherlands, the UK, the United States, Canada and 

Australia in 2001 [4, 15, 16], and in Taiwan in 2003 [47].

	 The results clearly confirmed that PFS containing AAs are still available on the market and 

easily accessible to the public despite the ban. The amount of AAs detected in the positive samples 

was comparable and within the range of what was reported based on an analysis of samples on the 

Dutch market 9 years ago [15] and also for samples collected in other countries including China, 

Australia, Japan, Korea, Taiwan and the United States [18-21, 27, 29]. The levels detected were also 

comparable with the levels of AAs found in the weight-loss regimen given to Belgian patients who 

developed AAN resulting in EDIs of 7-31 µg/kg bw/day [13, 26]. When analysing the number of 

positive samples over the years, there was no specific trend showing a reduction in the percentage 

of positive samples found to contain AAs. In fact, for the current PFS that were obtained via the 

online market, the percentage of positive samples (16.7%) was in the same order of magnitude 

as the positive percentage found for the samples purchased online in 2004 (24.0%) [20] and in 

2013 (20.0%) [21]. It is of interest to note that AA-containing supplements could be accessible via 

the internet in countries that have regulations when ordered from countries that did not take any 

measures. The two positive products (S2, plant leaf and S9, tincture) were from Romania while the 

globule (S4) was from Germany where measures have been taken. All these three positive samples 

were prepared from Aristolochia Clematitis, a common plant in the wheat plantation in the Balkan 

region identified as the causative agent of Balkan Endemic Nephropathy [10]. EFSA has included 

this plant in the compendium of botanicals reported to contain toxic substances of concern [48] and 

all species of Aristolochia are prohibited to be present in food and PFS for sale in the Netherlands, 

the UK, the United States, Canada and Australia [4, 15, 16]. 
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	 In the current study, the calculation of MOEs for kidney tumour formation was based on 

the BMDL10 derived from rat data [9]. This rat study tested a mixture of AAs (71% of AAI and 21% 

of AAII) upon oral exposure. However, the composition of AAs in PFS and herbal products varies 

and can be different. The results of the present study showed levels of AAI that were 2.5-3.5-fold 

higher than AAII, in line with the mixture tested in the rodent bioassay. The composition could 

be different depending on the species [34] and part of the plant used [39]. In the present study 

combined exposure was applied to estimate the EDI of AAs by simple dose addition. In theory, one 

could consider taking into account that the potency of AAI and AAII for DNA adduct formation and 

cancer induction may be different [43-46] and use a so-called toxic equivalency (TEQ) approach for 

the risk assessment. This TEQ approach would require the definition of toxic equivalency factors 

(TEFs). Table 5.6 shows an overview of the currently available data on relative potencies of AAI and 

AAII for relevant endpoints that could be of use in defining such TEFs. From this overview it can be 

concluded that data available for the definition of the TEFs are limited but seem to indicate that the 

difference in the relative potency of AAI and AAII would be small. This implies that when a combined 

AA exposure would be corrected using the TEQ approach, the overall MOE would be comparable 

when using the simple dose addition or a TEQ approach. Calculation of the MOEs for a lifetime 

exposure to AAs via PFS included in the present study resulted in MOEs that were below the default 

of 10,000 for 95.7% of all AA-containing samples. The default of 10,000 includes a factor 100 for 

interspecies differences and human variability in biokinetics and biodynamics, a factor of 10 for 

inter-individual uncertainties in cell cycle control and DNA repair, and another factor of 10 for the 

uncertainties arising from the fact that using the BMDL10 is not equivalent to no observed adverse 

effect level (NOAEL) and the effects can occur at a lower dose [24, 49]. For 64.2% of the samples 

MOEs were even below 10 indicating the dose to which humans will be exposed when using these 

PFS and herbal products will be in the range of the dose levels inducing kidney tumour formation 

in rats. The results obtained confirm the priority for risk management of AA-containing PFS. When 

considering that the MOE was calculated based on lifetime exposure while the use of these PFS may 

be limited to shorter periods of time, the EDIs might be two to three orders of magnitude lower, e.g., 

1950 times lower upon 2 weeks of exposure. However, even in this situation MOEs would still be 

lower than 10,000 for more than 50% of the AA-containing PFS and other herbal products. 

	 In conclusion, although the use of botanicals and botanical ingredients containing or 

suspected to contain plant species of the genus Aristolochia are no longer permitted in the market in 

many countries in the world, consumers are not yet fully protected from exposure to AA-containing 
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PFS and other herbal products. Taken together, the present study indicates that exposure to AAs 

via PFS and other herbal products in the human populations even after several years of instalment 

of the legal restrictions is still of concern and a priority for further risk management, especially for 

people who frequently use the respective food supplements and herbal products.
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Supplementary data A

Estimated daily intakes of AAs and corresponding MOEs

No AAI 

(µg/g)

AAII 

(µg/g)

AAI + 

AAII 

(µg/g)

EDI (µg/

kg bw/

day)a 

MOE for 

kidney 

tumour 

formationb  

No of 

positive 

samples/ 

total 

samples 

Collection 

year

References

1 919 82 1001 10.7 0.9 25/190 

(5/38 per 

year) g

2002-

2006

[15]

2 1453 303 1756 18.8 0.5

3 1281 394 1675 17.9 0.6

4 936 212 1148 12.3 0.8

5 50 11 61 0.7 15.3

6 74 33 107 1.1 8.7

7 12 NDd 12 0.1 77.8

8 524 21 545 5.8 1.7

9 9 ND 9 0.1 103.7

10 456 144 600 6.4 1.6 21/27 2001 [19]

11 547 188 735 7.9 1.3

12 668 198 866 9.3 1.1

13 451 257 708 7.6 1.3

14 437 414 851 9.1 1.1

15 548 412 960 10.3 1.0

16 83 115 198 2.1 4.7

17 42 99 141 1.5 6.6

18 60 101 161 1.7 5.8

19 24 93 117 1.3 8.0

20 39 124 163 1.7 5.7

21 28 <1 28 0.3 33.3

22 26 79 105 1.1 8.9

23 <1 94 94 1.0 9.9

24 <1 76 76 0.8 12.3

25 23 78 101 1.1 9.2

26 24 95 119 1.3 7.8

27 22 <1 22 0.2 42.4

28 22 <1 22 0.2 42.4

29 30 148 178 1.9 5.2

30 598 94 692 7.4 1.3
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31 0.07c ND 0.07 1.0 10.0 6/25 2004 [20]

32 0.05c ND 0.05 0.7 14.0

33 0.48c 0.4 0.88 12.6 0.8

34 0.4c 0.35 0.75 10.7 0.9

35 0.16c 0.06 0.22 3.1 3.2

36 0.6 c 0.32 0.96 13.7 0.7

37 1010 180 1190 12.8 0.8 9/37 1999 [27]

38 1080 120 1200 12.9 0.8

39 790 80 870 9.3 1.1

40 3010 210 3220 34.5 0.3

41 1690 140 1830 19.6 0.5

42 8820 1000 9820 105.2 0.1

43 2220 220 2440 26.1 0.4

44 1430 60 1490 16.0 0.6

45 1030 40 1070 11.5 0.9

46 0.105 0.028 0.133 1.4x10-3 7017.5 6/30 2013 [21]

47 0.056 ND 0.056 6.0x10-4 16666.7

48 0.018 ND 0.018 1.9x10-4 51851.9

49 0.045 ND 0.045 4.8x10-4 20740.7

50 0.013 ND 0.013 1.4x10-4 71794.9

51 3.316 0.557 3.873 4.2x10-2 241.0

52 2000 200 2200 23.6 0.4 2/3 1990-

1992

[26]

53 NAe NA 650 f 7.0 1.4 11/12 1990-

1992

[13]

54 NA NA 1800 f 19.3 0.5

55 NA NA 2900 f 31.1 0.3

56 944.6 50.1 994.7 10.7 0.94 8/8 2007 [33]

57 802.6 148.7 951.3 10.2 0.98

58 511.5 29.4 540.9 5.8 1.73

59 7.6 ND 7.6 0.1 122.81

60 119.7 6.8 126.5 1.4 7.38

61 0.2 ND 0.2 2.1x10-3 4666.7

62 0.4 ND 0.4 4.3x10-3 2333.3

63 0.5 ND 0.5 5.4x10-3 1866.7

64 41 ND 41 0.4 22.8 6/34 2003 [29]

65 195 33 228 2.4 4.1

66 943 59 1002 10.7 0.9

67 ND 28 28 0.3 33.3
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68 8 8 16 0.2 58.3

69 40 210 250 2.7 3.7

70 11.1 5.4 16.5 0.2 56.6 12/12 2005 [30]

71 27.4 24 51.4 0.6 18.2

72 201.9 54.3 256.2 2.7 3.6

73 101.1 34.1 135.2 1.4 6.9

74 2724.5 200.1 2924.6 31.3 0.3

75 66.5 34.7 101.2 1.1 9.2

76 3376 725.4 4101.4 43.9 0.2

77 101.8 37.7 139.5 1.5 6.7

78 297.9 43.5 341.4 3.7 2.7

79 79.8 31.5 111.3 1.2 8.4

80 41 25.8 66.8 0.7 14.0

81 26.1 8.8 34.9 0.4 26.7

82 5 16 21 0.2 44.4 24/62 2006 [31]

83 8 ND 8 0.1 116.7

84 40 2 42 0.5 22.2

85 ND 3 3 0.0 311.1

86 120 10 130 1.4 7.2

87 10 1 11 0.1 84.8

88 40 3 43 0.5 21.7

89 15 2 17 0.2 54.9

90 20 ND 20 0.2 46.7

91 8 ND 8 0.1 116.7

92 20 ND 20 0.2 46.7

93 50 ND 50 0.5 18.7

94 65 8 73 0.8 12.8

95 85 10 95 1.0 9.8

96 5 15 20 0.2 46.7

97 150 12 162 1.7 5.8

98 45 5 50 0.5 18.7

99 5 ND 5 0.1 186.7

100 5 3 8 0.1 116.7

101 32 4 36 0.4 25.9

102 10 0 10 0.1 93.3

103 ND 8 8 0.1 116.7

104 40 ND 40 0.4 23.3

105 100 10 110 1.2 8.5
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106 980 350 1330 14.3 0.7 3/6 2006 [32]

107 270 46 316 3.4 3.0

108 230 53 283 3.0 3.3

109 0.19 NA 0.19 2.0x10-3 4912.3 18/18 2008 [39]

110 2.16 NA 2.16 2.3x10-2 432.1

111 11.91 NA 11.91 0.1 78.4

112 5.3 NA 5.3 0.1 176.1

113 0.93 NA 0.93 1.0x10-3 1003.6

114 6.14 NA 6.14 0.1 152.0

115 2.21 NA 2.21 2.4x10-2 422.3

116 220.96 NA 220.96 2.4 4.2

117 254.04 NA 254.04 2.7 3.7

118 201.65 NA 201.65 2.2 4.6

119 440.61 NA 440.61 4.7 2.1

120 1903.31 NA 1903.31 20.4 0.5

121 36.42 NA 36.42 0.4 25.6

122 535.4 NA 535.4 5.7 1.7

123 544.41 NA 544.41 5.8 1.7

124 0.04 NA 0.04 4.3x10-4 23333.3

125 0.03 NA 0.03 3.2x10-4 31111.1

126 0.03 NA 0.03 3.2x10-4 31111.1

127 597 57 654 7.0 1.4 33/33 2013 [34]

128 713 65 778 8.3 1.2

129 257 19 276 3.0 3.4

130 981 59 1040 11.1 0.9

131 770 41 811 8.7 1.2

132 636 66 702 7.5 1.3

133 928 55 983 10.5 0.9

134 642 53 695 7.4 1.3

135 755 66 821 8.8 1.1

136 898 82 980 10.5 1.0

137 336 30 366 3.9 2.6

138 343 34 377 4.0 2.5

139 337 23 360 3.9 2.6

140 283 ND 283 3.0 3.3

141 653 44 697 7.5 1.3

142 808 34 842 9.0 1.1

143 606 38 644 6.9 1.4
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144 450 62 512 5.5 1.8

145 814 25 839 9.0 1.1

146 519 15 534 5.7 1.7

147 343 31 374 4.0 2.5

148 296 27 323 3.5 2.9

149 338 32 370 4.0 2.5

150 330 30 360 3.9 2.6

151 252 23 275 2.9 3.4

152 566 39 605 6.5 1.5

153 668 56 724 7.8 1.3

154 730 62 792 8.5 1.2

155 510 35 545 5.8 1.7

156 283 13 296 3.2 3.2

157 778 101 879 9.4 1.1

158 679 49 728 7.8 1.3

159 331 24 355 3.8 2.6

160 ND ND 0/10 2014 [35]

a EDI is estimated based on consumption of 0.25 g of AA, 3 times a day and 70 kg bw

b The lowest BMDL10 value for AA-induced kidney tumour formation, 10 µg AAs/kg bw/day 

c Calculated in mg/day

d ND non-detected

e NA non-available

f Calculated based on assuming that the supplement only contained AAI

g Number of positives samples/ total samples per year is averaged for five years  
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6.1 DISCUSSION OF THE RESULTS 
This thesis aimed to provide additional evidence for an alternative testing strategy that can be used 

in quantitative risk assessment contributing to the 3Rs (Replacement, Reduction and Refinement) 

of animal studies. The novel method is based on extrapolation of in vitro concentration-response 

curves obtained with cell line models to in vivo dose-response curves using physiologically based 

kinetic (PBK) modeling-based reverse dosimetry. From the predicted in vivo dose-response curves, 

points of departure (PODs) for risk assessment like a benchmark dose (BMD) or lower confidence 

limit of the BMD (BMDL) can be derived. So far, the approach has been shown to be able to predict 

in vivo developmental toxicity [1-3]. This thesis focused on testing the novel approach for a different 

target organ and toxicological endpoint, aiming to predict kidney toxicity and kidney DNA adduct 

formation by the nephrotoxic, genotoxic and carcinogenic aristolochic acids (AA) as the model 

compounds. 

	 In Chapter 2, the in vitro cytotoxicity of aristolochic acid I (AAI) was determined in two 

different kidney cell lines derived from pig kidney (LLC-PK1) and madin-darby canine kidney 

(MDCK). Then, PBK models were developed that describe the absorption, distribution, metabolism 

and excretion (ADME) of AAI in rat, mouse and human. The kinetic parameters were collected by 

performing in vitro incubations using relevant rat, mouse and human tissue fractions. This revealed 

that overall catalytic efficiency (scaled to a whole liver) for metabolic conversion of AAI to a less 

toxic metabolite, AAIa by rat and human was comparable between the different species, being 

only 2-fold higher in rat than human. The defined PBK models were used to translate the in vitro 

concentration-response curves for cytotoxicity to in vivo dose-response curves for nephrotoxicity 

of AAI. The BMDL10 values that were derived from the predicted in vivo dose-response curves reveal 

that the predicted PODs generally fall within the range of PODs derived from in vivo literature 

data on kidney toxicity of AAI. The combined in vitro-PBK modeling approach provided PODs for 

risk assessment with a similar level of uncertainty as observed in the experimental animal studies, 

supporting the future possibilities of this approach in risk assessment replacing or reducing animal 

based testing. 

	 The same PBK models were subsequently used in Chapter 3 to translate in vitro 

concentration-response curves for AAI-DNA adduct formation to in vivo dose-response curves for 

AAI-DNA adduct levels in the kidney. The predicted in vivo AAI-DNA adduct levels in the rat, mouse 

and human kidney were within an order of magnitude compared to the values reported in the 
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literature, the latter showing large inter-study variations. In addition, based on the predictive model 

obtained it could be estimated that at the BMD10 value for AAI-induced tumor formation in the rat 

kidney, the AAI-DNA adduct levels in the rat kidney would amount to 4-11 adducts in 108 nts. The 

human model predicted that to obtain this level of DNA adduct formation in human kidney, human 

exposure levels of 0.04 to 0.11 mg/kg bw/day would be required, which are similar to dose levels 

estimated for the exposure of Belgian patients exposed to AAs that developed cancer in the urinary 

tract. 

	 Given that exposure to AAI is often accompanied by the presence of AAII [4-6], the objective 

of Chapter 4 was to investigate the DNA adduct formation of AAI and AAII in kidney cells and to 

translate the in vitro data to the in vivo situation using PBK modeling-based reverse dosimetry. In 

addition, the relative levels of AAI- and AAII-DNA adducts were determined. The predicted in vivo 

AAI- and AAII-DNA adduct formation in the rat kidney fell within the wide range of DNA adduct 

levels reported in in vivo studies. Furthermore, the results obtained showed a remarkable difference 

in relative level of DNA adduct formation of AAI and AAII in the in vitro model that appeared not 

to be reflected in vivo where similar levels of DNA adduct formation are observed. Converting the 

in vitro data to in vivo dose-response curves by PBK modeling-based reverse dosimetry reveals 

that the discrepancy between the in vitro and in vivo data can only in part be explained by the 

differences in the ADME characteristics of the two AAs as described in the PBK model. The difference 

between DNA adduct formation of AAI and AAII in the in vitro and the in vivo situation remains an 

unresolved issue that needs further investigation.

	 The accidental exposure to AAs via consumption of slimming pills in Belgium, which 

caused kidney toxicity and kidney cancer with detectable levels of DNA adducts in the kidney 

of patients [7, 8] resulted in the banning of AA-containing food and food supplements from the 

market [9-11]. In spite of the ban, plant food supplements (PFS) and herbal products containing AAs 

are still available on the market [4, 5, 12-15], but the levels of AAs reported in literature so far are 

without an accompanying risk assessment. In Chapter 5 of the thesis, the current state-of-the-art 

was investigated by analysing an additional series of PFS also performing a risk assessment on use 

of these PFS based on the margin of exposure (MOE) approach. The results obtained revealed that 

even 15 years after the ban, which was installed in the Netherlands, United Kingdom, USA, Canada 

and Australia in 2001 [4, 9, 10], AA-containing PFS and herbal products are still available on the 

market especially via Internet. The results obtained revealed that three out of the 18 analyzed PFS 

contained AAs. The estimated MOEs that would result from daily use of these and the previously 
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analyzed 159 AA-containing PFS and herbal products were generally below 10,000 indicating a 

concern if the PFS or herbal products would be consumed on a daily basis over longer periods of 

time. When considering that the use of these samples may be limited to shorter periods of time, for 

example 2 weeks, the MOE values would increase but for more than 50% of the positive samples 

they would still be below 10,000. These results also revealed that in spite of the ban installed more 

than 15 years ago, consumers can still be exposed to AA-containing PFS and herbal products, and 

AA-containing products still raise concern especially for people who frequently use the products.

6.2 GENERAL DISCUSSION AND FUTURE PERSPECTIVES
The present thesis demonstrated the potential of the combined in vitro and PBK modeling-based 

reverse dosimetry approach to derive in vivo dose-response curves for kidney toxicity and DNA 

adduct formation of AAs. The results of the present thesis can be discussed in a wider perspective 

especially taking into account the possibilities and limitations of the novel approach, together with 

some important considerations for future studies. The topics to be considered when discussing the 

present results include;

     The in vitro system selected for studying kidney toxicity.

     Critical analysis on the current novel PBK modeling-based reverse dosimetry approach.

     Use of DNA adduct formation in cancer risk assessment.

     Implementation of the combined in vitro PBK modeling-based reverse dosimetry approach in 

risk assessment.

     Future perspectives.

 

6.2.1 The in vitro system selected for studying kidney toxicity 
In vitro models have been used widely in toxicology studies. Selection of the appropriate cell model 

is one of the most important issues especially when performing in vitro studies to elucidate the 

mechanism of action of chemicals and when the in vitro data are to be used for translation to the 

human situation. The LLC-PK1 cell line derived from the kidney of a juvenile male Hampshire pig is 

routinely used to study nephrotoxic effects of chemicals in humans because the cells exhibit many 

of the enzymatic and transport properties of the human proximal tubule cells [16, 17] which are 

the cells that represent the direct target of AAI [18]. The LLC-PK1 cell line has also been proven to 

be sensitive to AAI exposure [19]. However, when extrapolating the results from LLC-PK1 cells to 
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humans, one needs to be cautious about the interspecies differences in dynamics. Theoretically, one 

could argue that the approach could be further optimized by using human cell-based kidney model 

to generate in vitro data that better predicts the human situation.

	  However, comparison of the cytotoxicity of AAI in the LLC-PK1 cells to the AAI-induced 

cytotoxicity in primary renal human cells and even to the cytotoxicity in other cell types from other 

species described in the literature [19] reveals that the in vitro concentration-response curve for 

LLC-PK1 do not only match those for primary human kidney cells but also those for primary rat cells, 

primary porcine kidney cells and cells from the MDCK cell line, the kidney cells derived from canine 

(see figure 6.1, based on Chapter 2, Figure 2.4b). These results reveal that species differences in 

dynamics of AAI toxicity may be limited, and that in this case the LLC-PK1 cells provide an adequate 

model to predict in vivo kidney toxicity in humans. 

Figure 6.1 (Based on Figure 2.4b). Concentration response-curves for the cytotoxicity of AAI (µM) 

towards the LLC-PK1 and MDCK cell line upon 24 hours exposure (mean values ± SD) compared 

to data on concentration response-curves reported in literature for other cell models including 

primary human renal cells. For further details and references see Chapter 2 [20].

 

	 Another aspect that needs to be considered with respect to the selection of an in vitro 

system for studying kidney toxicity is that many chemicals may be transported to the kidney by 

active transporters expressed in the epithelium of proximal tubule cells. Organic anion transporters 

(OATs) were shown to be involved in the transport of AAI to the kidney [21]. However, AAI can also 

enter the cells through transport mechanisms other than transport via OATs, for example by simple 
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diffusion [21]. In order to investigate the impact of transporters in the kidney in the uptake and 

excretion of AAs in kidney cells, transfected cells such as madin-canine kidney II (MDCK II), Chinese 

hamster ovary (CHO), human embryonic kidney (HEK 293) and HeLa [22] cell lines could be used 

because they may express the kidney transporter proteins of interest. The in vitro transporter kinetic 

studies may also include studies on individual transporter(s). However, the scaling of the expression 

and the activity of kidney transporter in an in vitro model to the in vivo situation needs to be defined 

to a further extent before such data will proof to be of value.    

	 For a better understanding of kidney function using in vitro models, a recent development 

on ‘next-generation’ in vitro models of the kidney can be considered. Such models may incorporate 

more physiologically representative in vitro systems for studying kidney function, for example using 

the co-culture of multiple cell types, 3D cell culture systems and/or the use of so-called ‘kidney-on-

a-chip’ devices using microfluidic culturing techniques [22]. Such devices that enhance the in vivo-

like complexity and functionality [23], may provide even better predictive in vitro models to study a 

complex organ such as the kidney.

6.2.2 Critical analysis on the current novel PBK modeling-based 

reverse dosimetry approach
In Chapter 2, the predictions of in vivo PODs were made by extrapolation from in vitro concentration-

response curves to in vivo dose-response curves using PBK modeling-based reverse dosimetry. In 

this reverse dosimetry approach, the applied in vitro concentration and the maximum concentration 

(Cmax) of AAI in the kidney as input in the PBK model were assumed to be equal. In this chapter, the 

LLC-PK1 and MDCK cells were exposed to AAI in medium with 10% of fetal calf serum (FCS). It is 

well established that serum in culture medium may significantly decrease the unbound fraction of 

a chemical in an in vitro systems [24]. It is important to take this protein binding into account in the 

PBK model because only the fraction that is freely available in the target organ is assumed to cause 

an effect. Figure 6.2 shows the level of AAI-DNA adduct formation when the cells were exposed 

to AAI in medium with and without the presence of 10% FCS. These results confirm that protein 

binding significantly decreases the DNA adduct formation and should thus be taken into account 

in the combined in vitro-PBK modeling approach. Therefore, prior to extrapolation to the in vivo 

situation, the correction for protein binding needs to be incorporated by multiplying the in vitro 

concentration with a correction factor based on the difference between the fraction of unbound 
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AAI in cell culture medium and the fraction of unbound AAI in plasma (Chapters 3 and 4). Both when 

exposing cells with or without FCS such a correction for protein binding in plasma is required since 

the in vitro protein conditions whether with or without FCS never fully match the in vivo situation.  

 Figure 6.2 Comparison between concentration response-curves for dA-AAI adduct formation in 

LLC-PK1 cells exposed for 24 hours to AAI in medium without FCS (filled circles) and in medium with 

FCS (filled squares).

	 An applied concentration of chemicals in vitro may also be different from the concentration 

at the target site and/or in the cells [24] due to non-specific binding to the plastic of well plates, 

evaporation or degradation of chemicals over time during the experimental exposure [25]. The cell 

density is also an important factor to take into account because studies showed that cell density 

may influence the free fraction of chemicals [26, 27]. Higher density of cells has been shown to 

lower the observed toxicity due to a decrease in number of chemical molecule per cell to cause 

the toxicity. To overcome these challenges, application of a non-binding material of well plates to 

reduce the binding to plastic, use of plate sealers to minimize the evaporation and use of fixed 

number of cells for all experiments may be essential, depending on the compound under study 

[25]. In addition, the in vitro free concentration can be modeled using physicochemical properties 

of the compounds for in vitro-in vivo extrapolation as suggested by Gülden and Siebert (2003) [28] 

and Kramer at al. (2015) [29]. In the present study, differences in the free fraction in vitro and in vivo 

were taken into account by applying a correction factor for differences in protein concentrations as 

presented in Chapter 3 and 4.

	 Another important issue when translating the in vitro concentration-response curves 
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to in vivo dose-response curves is to choose the relevant dose metric for the extrapolation. The 

predictions can be made based on two approaches. The first approach is by translating the in vitro 

concentration-response curve to an in vivo dose-response curve by setting an in vitro concentration 

equal to the Cmax in the kidney or blood as presented in Chapter 2 of this thesis. The second 

approach relates the in vitro concentration to the area under the kidney or blood concentration-

time curve (AUC) by multiplying the applied concentration with the assay time [30] assuming that 

the concentration of the chemical is constant in the incubations over time as done in Chapter 2-4. 

The dose metric that is commonly used for in vitro-in vivo extrapolation is dependent on the type 

of reactions and interactions expected to be relevant for the compound under investigation. For 

reversible reactions, the Cmax may present a suitable dose metric while for irreversible reactions, the 

AUC might be preferable [25]. 

	 In order to derive the POD for risk assessment, BMD modeling is applied to the defined 

dose-response curves. There are two options in order to derive the POD; the first option is to translate 

the whole in vitro curve and then perform the BMD modeling while in the second option the BMD 

modeling is performed on the in vitro concentration-response curve providing a benchmark 

concentration (BMC) value that is subsequently translated to a corresponding BMD value. When the 

kinetics are linear with the dose, the outcome of these two approaches will be similar, but when the 

kinetics are not linear with the dose, the first approach that translates the whole in vitro curve to an 

in vivo dose response curve before the BMD modeling is applied, is the preferred option. This is the 

approach applied in the present thesis (Chapter 2-4). 

	 An effort to study in vitro nephrotoxicity to mimic the in vivo situation for defining PODs 

for risk assessment is an important challenge. In the present thesis, cytotoxicity of AAs was studied 

using the MTT assay which is a common method to detect cell viability. However, toxic effects in vivo 

may not be related to cell death but to cell dysfunction that subsequently leads to specific effects in 

the respective tissue. In spite of this, the predicted in vivo PODs in this thesis were within an order 

of magnitude from in vivo studies (Chapter 2) that used classical approaches for the detection of 

acute kidney toxicity by measuring the blood urea nitrogen (BUN) and creatinine concentration. Use 

of omics approaches, such as transcriptomics (global mRNA changes), proteomics (global protein 

changes) and metabolomics (global metabolites changes) may provide promising future approaches 

to model more specific and sensitive endpoints. The measurement of molecular markers of specific 

proteins in in vitro systems may include for example proteins involved in stress response (such as 

nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase 1 (HO-1)) or markers related 
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to kidney injury (such as kidney injury marker 1 (KIM-1)) and use of concentration-response curves 

based on these biomarkers may further improve the accuracy of the predictions [23]. Important to 

keep in mind in such an approach is that the selected biomarker should be considered as a reflection 

of an adverse effect.

6.2.3 Use of DNA adduct formation in cancer risk assessment
The quantification of DNA adduct formation is considered a biomarker of exposure rather than a 

biomarker of effect [31] although a significant association of increased DNA adduct formation with 

increased tumor formation has been frequently observed [32, 33]. However, the correlations are 

not necessarily linear [34]. The level of DNA adducts in the body is determined by processes such 

as absorption, distribution, metabolic activation, detoxification, reactivity of the compound and its 

reactive metabolite(s), and by DNA repair. 

	 The development of the current PBK models to predict the DNA adduct formation in vivo 

is one step closer to the ultimate adverse effect to predict the tumor formation than predicting the 

formation of the ultimate DNA reactive metabolite as such. Prediction of the DNA adduct formation 

should preferably include a description of the stability and repair of the DNA adducts. When 

including an equation that describes the DNA adduct formation in a relevant in vitro cell model 

these parameters of formation and stability of the DNA adducts are implicitly included in the PBK 

model. However, the present study only assessed the DNA adduct levels upon a 24-hour exposure. 

Studying the DNA adduct levels at earlier and later time points may provide more information on the 

stability of the AA-induced DNA adducts. A next endpoint to consider would be the mutagenicity 

of the DNA adducts formed and/or the possible use of gene expression that has been related to 

genotoxicity and/or tumor formation as biomarkers of effect. Another important factor that needs 

to be included in this tumor formation model is to incorporate the repeated dose exposure that 

might lead to accumulation and persistence of DNA adducts over time in a specific organ. 

6.2.4 Implementation of the combined in vitro PBK model-based 

reverse dosimetry approach in risk assessment
Figure 6.3 shows the general framework of the combined in vitro PBK modeling-based reverse 

dosimetry approach to predict in vivo dose-response curves that can be used in risk assessment. 

The results of the present thesis show that the prediction of PODs for kidney toxicity and kidney 
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DNA adduct formation obtained by integrating in vitro toxicity data with in silico PBK model-

based reverse dosimetry do not deviate more from in vivo studies than the variations observed 

between PODs and DNA adduct formation derived from different in vivo studies. Thus, this thesis 

concludes that this approach is not better, but provides a suitable alternative, with a similar level of 

uncertainty as observed in experimental animal data. Therefore this method provides an alternative 

that would contribute significantly to the 3Rs of animal use and the relevance of in vitro data for 

safety evaluation in humans.

Figure 6.3 General framework for applying in vitro concentration-response curves with PBK 

modeling-based reverse dosimetry for the prediction of in vivo dose-response curves to set PODs 

for risk assessment (adapted from [1, 3, 35]). 

	 In principle, the derived PODs for nephrotoxicity could be used to set a safe exposure level 

(ADI or TDI). For the specific case of AAI the POD for nephrotoxicity could be used to estimate the risk 

on nephrotoxicity at given levels of exposure (the ratio of the POD and the estimated daily intake 

should be >100) but not to define a TDI given that the compound is also a genotoxic carcinogen for 

which no TDI can be defined. The in vitro-in silico approach could also be used to define a BMDL10 

for a genotoxicity/carcinogenicity endpoint and support a risk assessment for the carcinogenicity 

of AAs based on the so called Margin of Exposure approach as recommended by the European Food 

Safety Authority [36]. However, for setting the PODs for carcinogenic chemicals, further efforts are 

required for additional or other endpoints for the in vitro assays that can be accepted as biomarkers 

for this in vivo effect. Alternatively the PBK models may be used to facilitate read-across from a 

chemical for which in vivo carcinogenicity data and a related BMDL10 are available to a chemical that 
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is bioactivated by the same pathway and acts by the same mode of action on a similar target organ 

but for which no tumor data are available. In this way PBK modeling was used to estimate a BMDL10 

for elemicin by read-across from data on the related alkenylbenzenes estragole and methyleugenol 

[37], and for apiole and myristicin from data on safrole [38, 39].

	 An attempt to correlate the DNA adduct levels with the doses that cause tumor formation 

could be undertaken by using the PBK model to predict the number of DNA adducts formed at the 

BMD10 values based on actual tumor formation data in animal experiments as done in the study 

presented in Chapter 3. The present thesis also revealed that the public is still exposed to AA-

containing PFS and herbal products from the market above the dose levels that can be considered 

as safe (Chapter 5). The human PBK model developed in the present thesis might be used to predict 

the expected number of DNA adducts to be formed upon intake of AAs from these PFS and herbal 

products. Figure 6.4 presents the predicted DNA adduct levels based on estimated daily intake (EDI) 

of AAs from PFS and herbal products as compared to the DNA adduct levels reported for the Belgian 

patients with Aristolochic Acid Nephropathy (AAN) and urothelial carcinoma in some patients [7, 

40]. This outcome reveals that exposure to AAs from some PFS and herbal products are at the same 

range of AAs to which Belgian patients were exposed. 

Figure 6.4 Comparison of PBK modeling-based reverse dosimetry predicted DNA adduct formation 

based on the estimated daily intake (mg/kg bw/day) of AAs from PFS and herbal products from this 

thesis and obtained from literature (Chapter 5) (filled circles) and detected in the kidneys of Belgian 

patients with Aristolochic Acid Nephropathy (filled triangles). 
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	 It is also important to note that for risk assessment purpose reliable in vivo data are 

required. However, in this present study, it was shown that the in vivo data for especially DNA 

adduct formation by AAs deviate by more than 3 orders of magnitude at similar AA exposure levels. 

The factors that may contribute to these large differences may be due to the different methods used 

for analysis (32P-postlabeling vs LC-MS), the use of AAI and AAII in mixtures vs pure AAI or AAII, the 

exposure duration and variability in AA-adduct quantification and definition of calibration curves 

given the fact that the respective DNA adducts have to be chemically synthesized by a method 

with only limited yields [41]. In spite of all these uncertainties for the in vivo dose-response data 

predicted using in vitro-PBK modeling based reverse dosimetry, the uncertainty level was shown to 

be smaller than differences emerging from the comparison of different in vivo studies, which further 

supports that the in vitro-PBK model based approach may provide a reliable method to be used in 

risk assessment practice. 

6.2.5 Future perspectives.
The ultimate goal of the development of in vitro PBK modeling-based reverse dosimetry is to replace 

animal testing in risk assessment in the near future. 

	 One factor that needs future consideration before this in vitro PBK modeling-based 

reverse dosimetry approach for predicting PODs can be applied in the risk assessment relates to 

the question of whether use of the approach would need extra uncertainty factors. An additional 

uncertainty factor may be needed depending on the in vitro toxicity assay selected for studying 

the toxicity. In current risk assessment practice, an uncertainty factor of 10 is used to account for 

interspecies differences. This factor consists of a factor of 4.0 for species differences in kinetics and 

2.5 for species differences in dynamics [42]. When using a human PBK model for making the in 

vitro-PBK model based reverse dosimetry predictions the factor of 4 for interspecies differences in 

kinetics could be eliminated. When using an adequate human in vitro model also the interspecies 

factor of 2.5 for differences in toxicodynamics may be redundant. This would leave the uncertainty 

factor of 10 for interindividual differences and leave room for introduction of perhaps an additional 

uncertainty factor to take into account the uncertainties of the combined in vitro-PBK modeling 

approach. To actually provide the basis for such a definition of default uncertainty factors generation 

of far more proofs of principle for different endpoints and target organs might be essential to define 

the in vitro-PBK model approach related uncertainties to a further extent.
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	 Another factor that needs further future investigation is the difference in toxic potency 

between AAI and AAII which turned out to be different in vitro as compared to the in vivo situation 

(Chapter 4). Also the possible difference in the stability and mutagenic potency of the different DNA 

adducts is of interest. 

	 A next question that is of interest is how many years it might take to implement this 

in vitro-PBK model based method to replace animal testing in risk assessment? This is a difficult 

question to answer because at present, in vivo data are still considered as the ‘gold standard’ for 

the identification of toxicity. In order to apply the outcome from the in vitro PBK modeling-based 

reverse dosimetry approach in (regulatory) decision-making, more data from diverse chemicals and 

toxicity endpoints should be gathered and evaluated. When doing so especially development of 

an adequate in vitro assay to detect non-genotoxic carcinogenicity will be required as well, which 

presents a huge challenge in itself. 

6.3 CONCLUSIONS
This thesis presents an alternative approach for defining dose-response curves in risk assessment 

without the use of in vivo animal testing. Combining in vitro toxicity data with kinetic processes 

described in a PBK model is a promising approach to contribute to alternatives for animal testing in 

toxicity assessment. This thesis has demonstrated that the combined in vitro PBK modeling-based 

reverse dosimetry approach adequately predicted the in vivo nephrotoxicity and can also predict 

the in vivo kidney DNA adduct formation of AAs as model compounds. The results obtained revealed 

the possibility of this combined in vitro-in silico approach to determine a POD for a chemical and 

solving the problem of how to use in vitro data for risk assessment. In addition, this thesis illustrated 

that AAs are still present in PFS and herbal products available in the market even after several years 

of the installment of legal restrictions, and that AAs can even be present at levels that indicate a 

priority for risk management actions especially for people who frequently use the respective PFS 

and herbal products. Altogether, this thesis provided further support for the use of in vitro-in 

silico based alternative tools for risk assessment practice studying effects on the kidney as a novel 

endpoint and using model compounds not included in the approach so far.
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SUMMARY
This PhD thesis aimed to provide additional evidence to demonstrate the potential of an integrated 

testing strategy using in vitro assays with physiologically based kinetic (PBK) modeling based-

reverse dosimetry to predict in vivo toxicity without animal testing. Kidney toxicity was chosen as 

the toxicity endpoint and aristolochic acids (AAs) were selected as model chemicals. AAs are natural 

nephrotoxic, genotoxic and carcinogenic chemicals present in Aristolochia species. PBK models 

for rat, mouse and human were developed for aristolochic acid I (AAI) based on kinetic parameter 

values derived from in vitro incubations using relevant tissue fractions. Then, in vitro concentration-

response curves for cytotoxicity of AAI were obtained in kidney cell lines and translated to in vivo 

dose-response curves for kidney toxicity using PBK modeling-based reverse dosimetry. The points of 

departure (PODs) obtained from these predicted in vivo dose-response curves generally fell within 

the range of PODs derived from in vivo literature data on kidney toxicity of AAI. The same PBK models 

were subsequently used to translate the in vitro concentration-response curves for AAI-DNA adduct 

formation to in vivo dose-response curves for kidney AAI-DNA adduct formation. The predicted 

in vivo AAI-DNA adduct formation in the rat, mouse and human kidney varied within an order of 

magnitude compared to the in vivo values reported in the literature. The PBK models were also used 

to predict the dose level that would be required in humans to obtain the level of DNA adducts in 

rats at the BMD10 (the benchmark dose causing a 10% extra risk above background level) value for 

AAI-induced tumor formation in the rat kidney. This analysis revealed that the dose level required 

to induce the level of DNA adduct formation that equals the DNA adduct level at the BMD10 were 

similar to AA doses estimated to be taken in Belgian patients that developed urinary tract cancer. 

Given that the exposure to AAI is often accompanied by the presence of AAII, in a next study the 

relative formation of DNA adducts by these two major AA congeners was investigated. The results 

revealed that the relative higher formation of AAI-DNA adducts as compared to AAII-DNA adducts 

observed in vitro was not reflected in vivo where the levels formed upon exposure to equal dose 

levels were relatively similar. PBK model based translation of the in vitro data to the in vivo situation 

revealed that PBK model based prediction of in vivo DNA adduct formation is feasible. However, 

predicted AAI-DNA adduct levels were higher than predicted AAII-DNA adduct levels, indicating 

that the difference between the in vitro and in vivo AAI-/AAII-DNA adduct ratios could only in part 

be explained by differences in in vivo kinetics of AAI compared to AAII. The discrepancy between 

the difference in DNA adduct formation of AAI and AAII in the in vitro and the in vivo situation is an 
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issue that needs further investigation to also adequately predict the relative differences between 

the two AAs. In a final chapter this thesis aimed to investigate the possible risks associated with 

exposure to AAs based on AA levels measured in plant food supplements (PFS) and herbal products. 

This is of interest given the restrictions on the presence of AAs in food, installed in various countries 

including The Netherlands, after the incidences with induction of Aristolochic Acid Nephropathy 

upon use of herbal weight loss preparations that accidentally contained AAs. The risk assessment 

of PFS and herbal products containing AAs purchased via online markets revealed that consumers 

can still be exposed to AA-containing PFS and herbal products and that the corresponding levels 

of exposure raise concern especially for people who frequently use the products. Altogether, this 

thesis presented further support for the use of combined in vitro-PBK modeling based alternative 

tools for risk assessment and revealed the continued risks posed by AAs present in PFS and herbal 

products. 
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