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1. Convective mass transfer in microfluidic devices is essential to 
predict phenomena occurring during large scale emulsification.  
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2. To control emulsification processes, droplet formation and 
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3. High speed movies need to be accompanied by frame rates, as 
microscopic pictures are by scale bars. 
 

4. The effect of food hypes is hyped. 
 

5. Referenda obstruct democracy. 
 

6. In the public debate opinions beat facts. 
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1.1. Emulsions 
Emulsions consist of two immiscible liquids of which one is dispersed in the other as 

droplets, for example oil-in-water or water-in-oil. Emulsions find their application in many 

industrial products from the fields of food, personal care, agrochemicals, pharmaceuticals, 

paint, and natural oil (Tadros 2005). In food, emulsions are naturally present (e.g., raw 

milk), or they are purposely manufactured (e.g., cream liqueurs, yoghurt, cheese, and ice-

cream) to structure products by interactions between emulsion droplets and/or with other 

ingredients (Friberg & Larsson 2004). 

Various phenomena may lead to the physical destabilisation of emulsions: creaming, 

sedimentation, flocculation, phase inversion, and coalescence, and these mechanisms 

depend amongst others on droplet size, size distribution, amount and type of emulsifier, 

mutual solubility of the two phases, and agitation (Tadros 2005). Coalescence, which is the 

focus of this thesis, results from the high surface free energy of the emulsion (∆G), which is 

energetically unfavourable and hence a driver for reduction of the total interfacial area (∆A)  

(Equation 1.1) (Friberg & Larsson 2004).  

 Δ𝐺𝐺 = 𝛾𝛾Δ𝐴𝐴 1.1 

where γ denotes interfacial tension, and ∆G is almost always positive, meaning that 

emulsions tend to physically destabilize and go back to their demixed state. 

For droplets to coalesce, the interfacial film between the droplets needs to drain to a certain 

thickness (Chan et al. 2011), for which the droplet contact time needs to exceed the film 

drainage time. Film drainage is induced by the capillary pressure (due to the pressure 

difference between the dispersed and continuous phase), and can be slowed down or 

prevented by the disjoining pressure (which results from van der Waals, steric and 

electrostatic interactions between film surfaces) (Stubenrauch & Von Klitzing 2003), and 

droplet contact time depends on the flow conditions of the continuous phase (Chesters 

1991). When contact time exceeds film drainage time, the film between droplets may 

rupture resulting in droplet coalescence, which is delayed or suppressed by increasing the 

continuous phase viscosity or surface elasticity (Friberg & Larsson 2004). 
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To stabilise emulsions against coalescence, emulsifiers are used because they lower the 

interfacial tension and thus the Gibbs free energy (Equation 1.1), and some of them also 

provide steric or electrostatic repulsion or increase the surface elasticity (Friberg & Larsson 

2004). Emulsifiers mostly consist of hydrophilic and hydrophobic groups, which allows 

them to spontaneously adsorb to an oil-water interface (McClements 2005). Food 

emulsifiers can be biobased (e.g., proteins, phospholipids, and lecithin) or synthetically 

produced (e.g., mono- and diglycerides and their derivatives, polysorbates, and sucrose 

esters) (Hasenhuettl & Hartel 2008), and most of them do not consist of pure components. 

Although the list of food-grade emulsifiers is long, their action in emulsions is mostly 

poorly understood, and the design of emulsions is still driven by trial and error 

investigations. Through the devices presented in this thesis we contribute to mechanistic 

understanding of emulsifier action during formation and coalescence of droplets.  

1.2. Emulsion production 
During emulsification three stages take place: droplet deformation, break-up, and 

coalescence (Lucassen-Reynders & Kuijpers 1992). Droplet deformation and break-up can 

result from shear forces that mostly act parallel, and inertial forces that mostly act 

perpendicular to the droplet (Walstra 2003). Coalescence may occur immediately after 

droplet formation or at a later stage during processing or storage, and in this thesis we focus 

on immediate coalescence. In general, for emulsion formulation the emulsification device 

and its characteristics (i.e., droplet break-up forces, energy usage, and throughput) are 

considered together with the product and ingredient characteristics (i.e, droplet size, 

viscosity of both liquids and the final emulsion, dispersed phase fraction, shear and 

temperature sensitivity of emulsifiers) (Schultz et al. 2004), although not that many design 

rules are available.  

Conventional emulsification devices are high-pressure homogenisers and colloid mills, but 

there are also systems such as membrane and microfluidic emulsification that are attracting 

more and more attention because of their low-energy usage. A comparison of the energy 

efficiency of various emulsification devices is shown in Figure 1.1; the emulsification 

processes are discussed in more detail in the following sections.  
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Figure 1.1. Energy efficiency of various emulsification devices: high pressure homogeniser (30% oil) (standard 
nozzle (○), microfluidizer nozzle (□), jet nozzle (◊), and orifice nozzle (Δ) (Stang et al. 2001)), colloid mill (30% 
oil) (—) (Karbstein & Schubert 1995), membrane emulsification (direct (20% oil (▲) and 50% oil (●) (Lambrich 
& Schubert 2005)) and pre-mix emulsification (5% oil) (♦) (van der Zwan et al. 2008)), and spontaneous 
microfluidics (grooved microchannel (x), straight-through microchannel (+), and edge-based droplet generation 
device (*) (30% oil) (Maan et al. 2011)).  

1.2.1. High-pressure homogeniser 

In a high-pressure homogeniser, a high pressure pump pushes the coarse pre-mix emulsion 

through a nozzle after which it decompresses (Figure 1.2A), and during this process 

typically up to 95% of the energy is dissipated as heat (McClements 2005). Different 

nozzles may be used; the standard and microfluidizer nozzle generate droplets through 

turbulent flow, and the jet and orifice nozzle operate in the laminar regime using shear to 

form small droplets (Stang et al. 2001). The residence time of droplets in the dispersing 

zone is typically 0.1-30 ms (Schultz et al. 2004), and droplet contact time in this zone is too 

short for coalescence to occur. At this stage of the process, the droplet size is determined by 

droplet formation only; however coalescence can occur further downstream in the 

homogeniser when contact time is longer, and therewith determine droplet size (Håkansson 

et al. 2009; Karbstein & Schubert 1995). When droplets leave the homogeniser, energy 

available for droplet collision decreases and thus coalescence rate decreases as well (Mohan 
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& Narsimhan 1997). In the food industry, high pressure homogenisers are mostly used for 

low viscous liquids, such as milk and cream (Rayner & Dejmek 2015). 

1.2.2. Colloid mill 

A colloid mill consists of a rotor and stator with a conical gap (Figure 1.2B), of which the 

surface is smooth or structured (Rayner & Dejmek 2015). Droplet formation results from 

laminar viscous, turbulent viscous, or turbulent inertial flow (Urban et al. 2006), and 

compared to the high-pressure homogeniser, the residence time in the dispersing zone is 

much longer (~0.1-1 s) (Schultz et al. 2004). Emulsions with higher viscosity can be 

processed (Maindarkar et al. 2014), but the resulting droplet size is larger. Typical products 

are mayonnaise-type emulsions that have a high dispersed phase fraction and are partly 

stabilised with proteins (Rayner & Dejmek 2015). 

1.2.3. Membrane emulsification 

During direct membrane emulsification, the dispersed phase is pushed through a membrane 

with micro-pores (Figure 1.2C), and shear is used to detach the droplets, either through a 

cross-flowing continuous phase, membrane rotation, or membrane vibration (Vladisavljevic 

et al. 2012). Applied shear is considerably lower than in a high pressure homogeniser or a 

colloid mill (Schröder et al. 1998), which improves energy efficiency (Figure 1.1) and 

decreases coalescence (Lee et al. 2013). Droplet formation can take as little as 15 ms (van 

der Graaf et al. 2004), and the process is mostly used for products with a low dispersed 

phase fraction. It is good to mention that monodisperse emulsions can be produced, and that 

this process is suitable for heat or shear sensitive ingredients, unlike the first two processes 

(Gijsbertsen-Abrahamse et al. 2004). 

An alternative for direct membrane emulsification is pre-mix membrane emulsification, 

during which a coarse emulsion is pushed through a membrane to break it up into smaller 

droplets (Figure 1.2D) (Lambrich & Schubert 2005). This process can be carried out at a 

higher flux compared to direct membrane emulsification and generates smaller droplets, but 

they are less uniform in size, which can be improved by repeated passage through the 

membrane. Since the entire emulsion is pushed through the membrane, this process is more 
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susceptible to fouling than direct emulsification (Vladisavljević & Williams 2005; Nazir et 

al. 2010). Alternatively, metal sieves with straight-through pores and packed beds of glass 

beads have been suggested, which are easier to clean and have a higher flux (Nazir et al. 

2011; Nazir, Boom, et al. 2013). The residence time in the dispersing zone for a single pass 

is around 8 μs for the metal sieve (Nazir, Schroën, et al. 2013) and around 0.01-0.3 s for the 

packed bed system (Nazir, Boom, et al. 2013), but repeated homogenisation cycles increase 

this time accordingly. 

1.2.4. Microfluidic emulsification 

In microfluidic emulsification two mechanisms may be used: spontaneous (Figure 1.2E) 

and shear-based (Figure 1.2F) droplet formation. In the former, Laplace pressure 

differences determine the droplet size (Maan et al. 2011), and this mechanism is used in 

straight-through and grooved microchannels, and edge-based droplet generation devices 

(Vladisavljevic et al. 2012). In the latter, droplet formation results from the shear exerted by 

the continuous phase flow (Vladisavljevic et al. 2012), as was the case in shear-based 

membrane emulsification. Droplet formation times range from 0.03-0.3 s for spontaneous 

devices (Kobayashi et al. 2008) to ~1 ms for shear-based systems (Nisisako & Torii 2008). 

With both mechanisms, highly monodisperse droplets can be formed, shear and temperature 

sensitive ingredients can be used, and spontaneous devices are claimed to be very energy 

efficient (Schroën et al. 2015). Various authors have attempted to up-scale these systems 

via parallelisation (Sahin 2016; Kobayashi et al. 2010; Nisisako et al. 2012), but the scale 

that is reached is not sufficient to warrant large-scale application in industry (i.e., tonnes per 

hour) at this moment. It is expected that these techniques at their current level of 

development may be used for the production of high-added value products that require 

monodisperse emulsions.  

From the description of the emulsification devices it is clear that they all have their own 

pros and cons, and levels of maturity. What they all do have in common is that droplet 

formation takes place at very short time-scales, and to design these processes also 

observation methods suited for this purpose need to be developed, since they are not readily 

available. 
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Figure 1.2. Schematic impression of various emulsification devices: A) homogeniser, B) colloid mill, C) direct 
membrane emulsification, D) pre-mix membrane emulsification, E) spontaneous microfluidic device (side view), 
and F) a shear-based microfluidic device (top view). 

1.3. Control of droplet size 
In general, droplet size determines emulsion shelf life and sensory attributes such as 

appearance, texture, and flavour, and it is therefore important to control this parameter 

(McClements 2005). Examples of common food emulsions and their typical droplet size 

and fat content are given in Table 1.1. To make these products and to keep them stable, 

emulsifiers are added (Stang et al. 1994), but at the time-scales encountered during 

emulsification, emulsifier adsorption and coalescence are very poorly understood, if at all. 

In order to break through this vicious circle, tools need to be developed to assess these 

time-scales, and derive scaling relations for emulsion product design. 
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Table 1.1. Characteristics of common food emulsions (McClements 2005). 

Product Droplet diameter (μm) Fat content (wt. %) 

Milk 0.4 0.5-3.3 

Fruit drinks < 0.3 < 0.1 

Pourable dressings 10-40 30-45 

Mayonnaise 1-40 75-84 

 
When emulsifier adsorption at the oil-water interface is fast, as is the case for low 

molecular weight surfactants, the interface may be stabilised before droplet collision and 

therewith preventing coalescence, whereas interface stabilisation with proteins is slower 

and thus may result in more coalescence (Figure 1.3) (Karbstein & Schubert 1995). To 

improve emulsification, the emulsification process mechanism need to be understood as 

function of the emulsifier adsorption rate at the oil-water interface. This implies that the 

effect of emulsifier coverage on droplet formation and coalescence stability need to be 

measured individually at the appropriate time-scales occurring during the emulsification 

process. Unfortunately, the tools for this have not been developed yet; coalescence is 

mostly estimated from the droplet size distribution in the eventually obtained emulsion, 

which does not allow decoupling of droplet formation and coalescence (Håkansson 2015). 

 

Figure 1.3. Emulsion droplet formation and emulsifier adsorption scenarios. Adapted from Karbstein and Schubert 
(1995). 
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1.4. Using microfluidics to understand emulsification 
Microfluidics have been used to gain better understanding of droplet formation during pre-

mix and direct membrane emulsification (van der Zwan et al. 2006; van der Graaf et al. 

2005; Schroën et al. 2016), and have the potential to predict emulsifier adsorption and 

emulsion stability during emulsification. Such measurements may be complex due to the 

extremely short time-scales related to droplet formation, collision, and emulsifier 

adsorption, but in principle they can be used to evaluate various process conditions and 

ingredient formulations. The time for droplet formation in industrial emulsification 

processes is typically in the sub-millisecond to second time-scale, and this is a time-scale 

that is achievable in microfluidics. In this thesis, various microfluidic methods are 

developed and discussed that describe specific parts of the emulsification process for a wide 

range of process conditions, and product ingredients.  

1.4.1. Emulsifier adsorption 

When emulsifiers adsorb, they position at the oil-water interface with the more hydrophobic 

parts in contact with the oil phase and the more hydrophilic parts in the aqueous phase, 

therewith reducing oil-water contact and through that the interfacial tension (McClements 

2005). Adsorption of surfactants, which have a distinct hydrophobic and hydrophilic group, 

is different from proteins, which have multiple groups that can have limited interface 

orientation flexibility because of intramolecular bonds that prevent full unfolding at the 

interface (McClements 2005). As mentioned, interfacial tension is a measure to quantify 

emulsifier adsorption, but to have predictive value for large-scale processes it would need 

to be known at the appropriate time-scales and under conditions that are dominated by 

convective emulsifier transport (Stang et al. 1994). However, in standard tensiometric 

devices such as the pendant drop tensiometer, surfactant adsorption is dominated by 

diffusion, and measurements can be done at time-scales that are in the order of seconds. To 

bridge this gap, microfluidic methods can be used. 

Microfluidic methods for interfacial tension measurements can be based on droplet size, 

pressure drop, or droplet deformability. In the first type, droplet formation and thus droplet 

size depends on the balance between the shear exerted by the continuous phase and the 
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interfacial tension that keeps the droplet attached to the to-be-dispersed phase. With this 

relation, interfacial tension at the moment of droplet formation was determined from the 

droplet size. For the measurements Steegmans et al. (2009) used a cross-flow Y-junction 

(Figure 1.4A), Wang et al. (2009) a cross-flow T-junction (Figure 1.4B), and Xu et al. 

(2012) a coaxial device (Figure 1.4C). Interfacial tension at the highest pressure drop was 

measured by Wang et al. (2014) (Figure 1.4D) based on the relation of pressure drop and 

radius of the growing droplet with the Laplace pressure inside the droplet, from which the 

interfacial tension was calculated. Brosseau et al. (2014) directed droplets through multiple 

expansion chambers where droplet deformation was recorded (Figure 1.4E), and the 

evolution of interfacial tension was measured based on the relation between droplet 

deformation and droplet velocity, interfacial tension, and droplet radius. An overview of 

droplet sizes and time-scales in these measurements is given in Table 1.2.  

 

Figure 1.4. Microscopic images during or after interfacial tension measurement based on: droplet size (A) 
(Steegmans, Warmerdam, et al. 2009), (B) (Wang, Lu, Xu & Luo 2009), and (C) (Xu et al. 2012); pressure drop 
(D) (Wang et al. 2014); and droplet deformation (E) (Brosseau et al. 2014). 

Table 1.2. Overview of microfluidic tensiometric methods. 

Reference Method Droplet diameter (μm) Time-scale (ms)a 

Steegmans et al. (2009) Size 8-13 0.5-10 

Wang et al. (2009) Size 160-270 20-70 

Xu et al. (2012) Size 10-180 1-130 

Wang et al. (2014) Pressure drop 400-800 10-8000 

Brosseau et al. (2014) Deformability 90-120 10-2000 
a time between start of droplet formation and the measurement 

With the method of Steegmans et al. (2009), the smallest droplets and time-scales can be 

assessed, possibly under conditions that are not dominated by diffusion (Wang, Lu, Xu & 

Luo 2009; Brosseau et al. 2014; Wang et al. 2016), which are both relevant for large-scale 
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processes. However, these effects need to be quantified; therefore, this is made the focal 

point of this thesis. 

1.4.2. Coalescence stability 

Microfluidics can also be used to perform coalescence measurements separately from 

droplet formation in flowing systems. Baret et al. (2009) used a flow focusing nozzle to 

produce water-in-oil droplets, followed by a channel of various lengths where surfactants 

can adsorb to the interface, after which the droplets enter the wider coalescence channel 

(Figure 1.5A). Krebs and co-workers (2012a; 2012b; 2013) used a T-junction to produce 

oil-in-water droplets followed by a coalescence channel (Figure 1.5B), and they obtained 

film drainage profiles and coalescence times by tracking droplets during collision and 

coalescence. In line with this, Fu et al. (2015) investigated bubble coalescence with a cross-

junction flow focusing device in combination with a funnel shaped coalescence channel 

(Figure 1.5C). The system developed by Krebs et al. (2012a; 2012b; 2013) was used to 

measure coalescence of oil-in-water emulsions, and because these are most abundant in 

food, this method is used in this thesis. 

 

Figure 1.5. Overview of microfluidic devices to study coalescence used by Baret et al. (2009) (A), Krebs et al. 
(2012a; 2013) (B), and Fu et al. (2015) (C).  
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1.5. Research aim and thesis outline 
The objective of this work is to use microfluidic methods to study emulsion formation and 

stability under conditions that are relevant for industrial emulsification processes. The Y-

junction approach of Steegmans et al. (2009) is used as a starting point to measure 

interfacial tension, and with the coalescence channel of Krebs et al. (2012b) emulsion 

stability to coalescence is elucidated. The starting point for the investigations are model 

systems that are extended to food-grade components, and their use is put in a wider 

perspective in the general discussion. The thesis outline is described per chapter below and 

a graphical representation is given in Figure 1.6. 

Chapter 2 provides a review of existing literature on cross-flow microfluidic 

emulsification. The mechanisms of emulsion production are discussed and an overview is 

provided on how microfluidic design, shear forces, and interfacial tension forces affect this 

process leading to various effects on droplet size, and this is the basis for the investigated 

microfluidic methods. 

Chapter 3 presents the microfluidic Y-junction that is used for interfacial tension 

measurements of a model system. The obtained values are compared with data from a drop 

tensiometer (a conventional, static, and supra-second time-scale device).  

In Chapter 4, the effect of continuous phase viscosity and velocity on the interfacial 

tension in the same microfluidic Y-junction is determined. Through these results, more 

insight is gained in the mass transfer conditions during Y-junction emulsification, including 

those for surfactants in the dispersed phase. 

Chapter 5 explores the adsorption behaviour of different food-grade surfactants (Tween 20 

and Span 20; water- and oil-soluble, respectively) with different dispersed phases (decane 

and hexadecane) in the Y-junction.  

Chapter 6 focusses on the use of the coalescence channel to measure the coalescence 

stability of emulsions stabilised with proteins (β-lactoglobulin, whey protein isolate and 

oxidised whey protein isolate) at various concentrations, pH values, and adsorption times. 

The general discussion in Chapter 7 provides an overview of the main results of the 

microfluidic research and the implications for industrial emulsification processes.   
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Figure 1.6. Graphical outline of this thesis per chapter.
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2.1. Abstract 
Background: The use of microfluidics is a relatively new route to produce emulsions. 

Advantages of this method include high energy efficiency, high droplet monodispersity, 

and potential use for the production of high added-value and fragile products. However, the 

current productivity is still rather low compared to what would be needed in an industrial 

setting.  

Scope and approach: In this review we discuss the mechanisms of emulsion droplet 

formation in cross-flow microfluidics, and how microfluidic design, shear forces and 

interfacial tension forces influence droplet formation. These combined insights will be used 

to discuss the potential of cross-flow microfluidics for the production of food emulsions. 

Key findings and conclusions: In order to make emulsions at large scale, the current devices 

need to be parallelised even more than shown in the successful examples known from 

literature. Besides, the behaviour of ingredients used in emulsion formulation need to be 

tested in greater detail; for example the effect of interfacial tension is captured in scaling 

relations, but dynamic interfacial tension behaviour not. For this, also microfluidic 

analytical tools have been suggested and the first positive results were obtained. As soon as 

these two requirements are met, microfluidics becomes a promising option for the 

production of high added-value emulsion food products. 
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2.2. Introduction 
Emulsions consist of a dispersion of one liquid into another in the form of droplets, both 

liquids being immiscible, for example oil and water. Because of the molecular 

incompatibility between both liquids, such a dispersion requires energy (∆G), of which the 

amount depends directly on the area of the liquid-liquid interface (∆A) and on the 

interfacial tension between both liquids (γ) (Equation 2.1).  

 Δ𝐺𝐺 = 𝛾𝛾Δ𝐴𝐴 2.1 

During emulsification, a large interfacial area is rapidly created; for example, 1 litre of 

droplets with a diameter of 1 µm corresponds to 6000 m2 droplet surface area. Accordingly, 

the free energy of the system increases (Equation 2.1), which favours coalescence. Surface-

active ingredients (i.e., surfactants or biopolymers) have an amphiphilic character, and 

adsorb at the oil-water interface, which lowers the interfacial tension and the corresponding 

free energy of the system. Droplets are only protected against coalescence when the 

interface is sufficiently covered with surface-active molecules. Insufficient adsorption 

together with turbulence in the emulsification system (hence, higher probability of collision 

between droplets) leads to rapid coalescence after droplet formation, resulting in a 

polydisperse emulsion (Jafari et al. 2008). This is typically the case in high-pressure 

homogenisers and rotor-stator systems that are used in industry (Schultz et al. 2004; Urban 

et al. 2006) and this can also lead to instability of the emulsions. In these traditional 

processes, high shear stresses are applied to disrupt the dispersed phase, but these processes 

are very energy inefficient because of the high energy dissipation. Generally, only 1-5 % of 

the energy is used for emulsification itself, the rest is dissipated as heat, which additionally 

may cause damage to the product (McClements 2005; van Dijke et al. 2010).  

To characterise the droplet size distribution, the coefficient of variation (CV) is often used, 

which is the standard deviation divided by the mean droplet size; monodisperse emulsions 

have a CV below 25%, whereas emulsions with a CV above 25% are regarded as 

polydisperse (Maan et al. 2011). With conventional emulsification systems polydisperse 

emulsions are obtained with a CV of around 40% (Maan et al. 2011). Alternatives to the 

traditional emulsification techniques are membrane, microchannel and microfluidic 
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emulsification (Vladisavljevic et al. 2012), that are known to prepare emulsions that are 

much more monodisperse.  

In literature, various arguments have been used to substantiate why monodisperse 

emulsions should be preferred: less emulsifier is needed for stabilisation and there is less 

lipid oxidation, there is no Ostwald ripening, less creaming and sedimentation, there is an 

effect on sensory perception, and it allows precise control of capsule loading level. The first 

argument depends on the actual size distribution; small droplets present in polydisperse 

emulsions have a large interfacial area, they therefore need a great amount of emulsifier for 

stabilisation and are more prone to lipid oxidation (Berton-Carabin et al. 2014). Ostwald 

ripening is not expected to be of great influence on emulsion stability since the diffusivity 

of the oil into the water phase is not expected to be that high, depending on the 

composition. It can be an issue, however, when the oil phase contains flavours or alcohol 

because the oil is now more water-soluble (McClements 2005). Gravitational separation, 

such as creaming or sedimentation, is influenced by the droplet size and is reduced in 

monodisperse emulsions with a small droplet size; in a polydisperse emulsion, larger 

droplets will cream and collide with smaller droplets and, when aggregates are formed as a 

result, creaming is further enhanced (McClements 2005). The effect of droplet size on 

sensory preference has been shown, albeit on emulsions that were not really monodisperse 

(Goudédranche et al. 2000); still this indicates that there is a need for tighter control on 

droplet size. These are all reasons to prefer monodisperse emulsions, but the truth of the 

matter is that nobody has been able to make these emulsions at sufficiently large scale so 

they could truly be tested. A derived field in which droplet size distribution is of great 

importance is encapsulation. It has been shown that the effect of cancer medication 

incorporated in emulsion droplets in animals and humans very strongly depends on the size 

of the droplets (Higashi et al. 1999). Basically, the droplet size determines in which organ 

the droplet is captured, and that co-determines the efficiency of the treatment. It could be 

expected that similar effects play a role in digestion of foods that contain capsules that 

should deliver a certain load at a specific location in the body (Zuidam & Nedović 2010).   

To make monodisperse emulsions, a frequently used approach is to directly disperse the to-

be-dispersed phase into the continuous phase. In direct membrane emulsification, the to-be-



                                                                                             Review cross-flow microfluidics 

                                                                                                                                               25 

dispersed phase is pushed through membrane pores into the continuous phase, and droplets 

are sheared off by the continuous phase that flows over the membrane. The applied shear is 

primarily used to make the droplet, and the shear is lower than in traditional methods, 

which makes it more energy efficient. Alternatively, also premix membrane emulsification 

may be used, as recently reviewed by Nazir and co-workers (2010), but that topic is 

considered outside the scope of the current paper. The use of membranes for emulsification 

in food applications was reviewed by Charcosset et al. (2004). Their main conclusion was 

that the membranes should be optimised (higher flux, uniform pore size and low pore 

density; all three criteria need to be met simultaneously) before the technique is suitable for 

industrial applications, which is in agreement with an earlier review by Gijsbertsen-

Abrahamse and co-workers (2004).  

As in membrane emulsification, droplet formation in microfluidic devices is based on the 

shear of the continuous phase, that can be either in cross-flow direction, for example in T- 

and Y-junction microfluidic devices, or in co-axial direction, as in flow focusing devices 

(Anna et al. 2003; Cramer et al. 2004; Garstecki 2010; Vladisavljević et al. 2010). 

Alternatively, the so-called microchannel emulsification is based on spontaneous droplet 

formation as a result of Laplace pressure differences. Examples of such devices are 

straight-through microchannels, grooved microchannels or the edge-based droplet 

generation (EDGE) system, which were all recently reviewed for food applications by 

Maan et al. (2011). Droplet formation takes place in the absence of shear; therefore, the 

energy efficiency of such devices is high, especially compared to conventional 

emulsification methods (Maan et al. 2011), and this difference can be orders of magnitude. 

Besides, the produced emulsions are rather monodisperse, with CV’s as low as ~ 5% (Maan 

et al. 2011; Nisisako & Torii 2008). 

Microfluidic emulsification devices can be used, amongst others, as micro-reactors, as 

reviewed by Atalay et al. (2011), or as production devices for simple or multiple emulsions, 

foams, capsules and micro- and nanoparticles (Capretto et al. 2013; Charcosset 2009; Engl 

et al. 2008; Mazzitelli et al. 2013; Nisisako et al. 2005; Skurtys & Aguilera 2008; van 

Swaay & DeMello 2013; Vladisavljevic et al. 2012; Vladisavljević et al. 2013; J. T. Wang 

et al. 2011; Zhao 2013). Such multiphase colloidal systems are abundantly present in food 
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products, naturally or induced by processing. Oil-in-water (O/W) emulsion droplets are for 

example present in mayonnaise, milk and soups. Multiple emulsions, such as water-in-oil-

in-water (W/O/W) emulsions, are used to make a ‘light’ variant of these products as water 

replaces part of the fat phase, and can also be used to encapsulate components (Jiménez-

Colmenero 2013; Muschiolik 2007). Also air-in-oil-in-water (A/O/W) emulsions are 

suitable for this purpose (Brun et al. 2015). Examples of water-in-oil (W/O) emulsions are 

margarine and butter. Foams and other aerated products such as ice cream and some 

chocolates contain air-in-water or air-in-oil bubbles. Micro- and nanoparticles are present in 

foods as structural elements and in capsules, and may be used to stabilise so-called 

Pickering emulsions (Berton-Carabin & Schroën 2015; Dickinson 2010; Dickinson 2012).  

In this paper we will primarily focus on the formation of O/W and W/O emulsions in 

microfluidics, although most available information is on O/W emulsions. As the production 

of particles and microgels is often done through solidification of emulsion droplets, our 

review can also be used to describe the early stages of their preparation; the solidification 

process as such is considered outside the scope of the present article but more information 

on this can be found in a recent review on the production of food structures using 

microfluidics (Ushikubo et al. 2014). Examples related to foams and bubbles will also be 

discussed when relevant to the described concepts; more information about bubble and 

foam formation in microfluidics can be found in another recent review (Huerre et al. 2014). 

The main focus of this review is the use of cross-flow microfluidics for the production of 

food emulsions; droplet formation in microfluidic devices is discussed, starting from 

formation mechanisms in different regimes, followed by the influence of the microfluidic 

design (chip material and channel dimensions), process conditions (flow rate and viscosity 

of fluids) and ingredients as reflected in interfacial forces (interfacial tension, fluid 

elasticity and contact angle). An overview of all the reported parameters and the resulting 

droplet diameter (D) and dimensionless volume (Vd) used in this review can be found in the 

Appendix (Table A2.1). The potential of microfluidics for producing food emulsions will 

be discussed in the last section of this review. 
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2.3. Emulsification in cross-flow microfluidic devices 

2.3.1. Mechanisms of droplet formation and break-up 

The flow behaviour of fluids can be described by various dimensionless numbers. These 

numbers compare the relative importance of different physical properties; the viscous and 

interfacial forces are compared in the capillary number (Ca) (Equation 2.2), the inertial and 

viscous forces in the Reynolds number, the inertial and surface forces in the Weber number, 

and the gravitational and surface forces in the Bond number. Because the characteristic 

dimensions of microfluidic devices are small, the Reynolds, Weber and Bond numbers are 

also very small, and inertial and gravitational forces can be neglected (possibly with the 

exception of high flow rates). Hence, the dominant forces for emulsion formation are the 

viscous and interfacial forces, which are combined in the capillary number (Atencia & 

Beebe 2005; Baroud et al. 2010; Christopher et al. 2008; Gu et al. 2011):  

where ηc is the viscosity of the continuous phase, νc the velocity of the continuous phase, 

and γ the interfacial tension between both liquids.  

Forces involved in droplet break-up are the shear stress of the continuous phase on the 

emerging droplet, the interfacial tension force associated with the Laplace pressure 

difference over the droplet interface, and the pressure force from (partial) blockage of the 

post-junction channel by the emerging droplet (Christopher et al. 2008; Garstecki et al. 

2006). Detachment is a result of a misbalance between the interfacial tension force, which 

keeps the droplet attached to the to-be-dispersed phase, and the shear and pressure forces 

which, depending on the droplet formation mechanism, enhance detachment. Droplet 

formation starts with emergence of the droplet into the main channel, followed by an 

increase in shear force that pushes the droplet downstream, which results in thinning of the 

neck. When the neck becomes smaller than the channel depth, the interfacial tension force 

can no longer stabilise the neck and the droplet detaches (Garstecki et al. 2006; van der 

Graaf et al. 2005). Droplet emergence and detachment can occur in three regimes, namely, 

squeezing, dripping and jetting (Figure 2.1). A fourth situation may also be distinguished: 

 𝐶𝐶𝐶𝐶 =  
𝜂𝜂𝑐𝑐𝜈𝜈𝑐𝑐
𝛾𝛾

                         2.2 
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the parallel flow regime, in which droplets are no longer formed (De Menech et al. 2008). 

Transition between the regimes occurs upon increasing the capillary number (Chen et al. 

2012; Garstecki et al. 2006); going from squeezing to dripping, jetting and eventually 

parallel flow. The capillary number values related to the transitions may vary depending on 

the process parameters, as discussed later; but in all regimes, droplet formation frequency 

increases with capillary number (Christopher et al. 2008; Sivasamy et al. 2011).  

 

Figure 2.1. Squeezing (A), dripping (B) and jetting (C) regime.  

The shear force is often related to the flow rate ratio (Φ), which is the ratio of the dispersed 

(φd) and continuous phase flow rate (φc), and the viscosity ratio (λ), which is the ratio of the 

dispersed (ηd) and the continuous phase viscosity (ηc): 

Squeezing 

The squeezing regime starts with expansion of the droplet into the main channel after which 

the post-junction channel becomes blocked (Figure 2.1A) because the shear force is not 

strong enough to extend the droplet more (as would be the case in dripping and jetting). 

Because now the continuous phase can only flow through the gutters in the corners of the 

channel, the pressure upstream of the droplet increases, which results in squeezing of the 

neck and finally detachment of the droplet from the to-be-dispersed phase (Bashir et al. 

2014; De Menech et al. 2008; Fu et al. 2010; Garstecki et al. 2006; Vladisavljevic et al. 

2012; Wei Wang et al. 2011). As droplet break-up in the squeezing regime is dominated by 

the pressure force, the size of the droplets was thought to only depend on the flow rate ratio 

of both fluids (De Menech et al. 2008; Garstecki et al. 2006); however, experimental and 

 Φ =  
𝜑𝜑𝑑𝑑
𝜑𝜑𝑐𝑐

 2.3 

 λ =  
𝜂𝜂𝑑𝑑
𝜂𝜂𝑐𝑐

 2.4 
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numerical experiments showed that droplet size does depend on capillary number, albeit 

less than in the dripping regime (Chen et al. 2012; Christopher et al. 2008; Liu & Zhang 

2009). This indicates that in the squeezing regime effects of the interfacial tension force 

cannot be neglected.  

The transition from squeezing to dripping is marked by a critical capillary number (Cac) of 

~ 0.02 as found theoretically by both De Menech et al. (2008) and Liu and Zhang (2009), 

and experimentally verified by Tostado et al. (2011). In the work of Liu and Zhang (2009), 

the Cac was found to be independent of the flow rate ratio, contact angle and viscosity ratio. 

However, the Cac was about 10 times smaller in experimental work of Christopher et al. 

(2008), for which no explanation was given.  

Dripping 

In the dripping regime, the shear stress exerted by the continuous phase is large enough to 

deform the emerging droplet so it does not block the entire channel (Figure 2.1B). The neck 

that holds the droplet attached is stabilised by the Laplace pressure difference between the 

upstream and downstream end of the emerging droplet. Shear stress increases until the 

droplet reaches a critical size at which the shear stress exceeds the interfacial tension force 

and the droplet detaches (Chen et al. 2012). Increasing the capillary number within this 

regime will decrease the droplet volume (Chen et al. 2012; Christopher et al. 2008; De 

Menech et al. 2008; Fu et al. 2010; Garstecki et al. 2006; Gupta et al. 2009; van der Graaf 

et al. 2006; Xu et al. 2008).  

In literature, it has been suggested that droplet break-up in the dripping regime is 

completely shear-driven (Garstecki et al. 2006; Thorsen et al. 2001), but also that the 

droplet is to some extent confined by the channel walls (De Menech et al. 2008) and that 

makes droplet break-up also partly pressure-driven, as confirmed in experimental studies 

(Abate et al. 2012; Sivasamy et al. 2011); they found pressure fluctuations in the 

continuous phase, indicating that pressure forces occur and that droplet formation is a result 

of pressure and shear forces. The transition between both regimes is not that sharp and 

referred to as the transient or transition regime (Fu et al. 2010; Li et al. 2012; Xu et al. 

2008). 
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The transition from dripping to jetting, and from jetting to parallel flow, cannot be 

described with a single Cac as this number depends on the geometry of the junction (Guillot 

& Colin 2005), the flow rate ratio (Gupta et al. 2009), the viscosity ratio (Guillot & Colin 

2005; Gupta et al. 2009) and the wall wettability (Chen et al. 2012); more details are given 

later.  

Jetting and parallel flow 

In the jetting regime, droplet formation is forced to move more downstream (Figure 2.1C). 

The to-be-dispersed phase now has the form of a jet from which droplets detach at the end 

(Li et al. 2012; Yan et al. 2012). An even higher shear stress may even completely 

dominate the drag force, and parallel flow of the continuous phase and dispersed phase 

occurs, and no droplets are formed (Chen et al. 2012). 

Ballooning regime 

Tarchichi et al. (2013) reported an alternative droplet formation regime called ballooning 

that we do not think is relevant for food applications, but report to be complete. At very 

high interfacial tension of 100 mN/m, which does not occur in food, and a high viscosity 

ratio of 39, the droplet size was found independent of the flow rates of the dispersed and 

continuous phases, and the emerging droplet retained a circular shape. At first glance, these 

conditions may seem similar to those for spontaneous droplet formation. However, the ratio 

of droplet and dispersed phase channel width is significantly larger than normally found for 

microchannel emulsification (Sugiura et al. 2002; Sugiura et al. 2001).  

2.3.2. Parameters influencing the droplet size 

Microfluidic design 

Droplet size can, amongst others, be influenced by the construction material of the chip, 

channel dimensions (width and depth), and junction design (shape, geometry and angle), 

and this is discussed next.  

Chip material 

Fabrication of microfluidic devices was extensively reviewed by Vladisavljevic et al. 

(2013). Most devices are made from polymers (polydimethylsiloxane (PDMS), 
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polycarbonate (PC), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), 

or polystyrene (PS)), because such chips are easier to manufacture and less expensive than 

glass chips. These polymers are hydrophobic, so wetted by the oil phase, and suited for 

W/O emulsions (Derzsi et al. 2011). The choice for a polymer depends also on the chemical 

resistance, for which we refer through to the detailed overview of Becker and Locascio 

(2002). Besides, silica and glass chips can also be used to produce W/O emulsions after 

modification with silanes, which renders the surface, depending on the attached groups, 

more hydrophobic (Shui et al. 2009) or more hydrophilic (Cecchet et al. 2006). 

To produce O/W emulsions, hydrophilic surfaces such as silica and glass have extensively 

been used. Alternatively, hydrophobic polymer chips can me made hydrophilic through 

various methods such as plasma treatment, silanisation, chemical vapour deposition, layer-

by-layer deposition, surfactant treatment, protein adsorption, graft polymer coating and 

hydrosilylation-based surface modification, as reviewed by Zhou et al. (2012); although it 

should be mentioned that these modification methods are mostly not permanent.  

In general, there are some disadvantages connected to the use of polymeric microfluidic 

chips such as their deformability, which limits the accuracy of the channel design, and the 

pressure that can be applied. Finally, deformation due to the presence of the liquids may be 

an issue; for example, PDMS channels swell in the presence of organic liquids (Seemann et 

al. 2012), while glass/silica chips are chemically more resistant, although surface 

component interactions are an issue in any device, which can be prevented with surface 

modification. 

Channel dimensions 

A microfluidic junction consists of a continuous phase supply channel with width wc and 

dispersed phase supply channel with width wd, and the depth or height (h) of a microfluidic 

chip is mostly equal throughout the whole chip. Typical channel widths are 20-100 μm, the 

channel depth is mostly similar or smaller (5-100 μm). Often the dimensions are given as 

width ratio (Λ) and aspect ratio (Г): 

 Λ =  
𝑤𝑤𝑑𝑑
𝑤𝑤𝑐𝑐

 2.5 



Chapter 2 

32 

The channel dimensions influence the droplet volume and is co-determined by the process 

parameters, for which various scaling relations have been published where droplet volume 

is normalised (e.g., by wc
2h). To compare process conditions, parameters have been varied 

systematically, such as the width and aspect ratio, capillary number, flow rate ratio and the 

flow rates. The normalised droplet volume decreases with decreasing dispersed phase 

channel width, decreasing channel height, or increasing continuous phase channel width 

(Figure 2.2 and Table 2.1) (Christopher et al. 2008; Fries & Rudolf von Rohr 2009; 

Glawdel et al. 2012; Wehking et al. 2013; Gupta & Kumar 2010a).  

 

Figure 2.2. Non-dimensional droplet length (L/wc) as a function of the flow ratio (Φ) at different aspect ratios; 1.5 
(◊), 1 (∆) and 0.5 (□). Adapted from Gupta and Kumar (2010b). 

Table 2.1. An overview of the effect of change in width and aspect ratio and channel dimensions on the change in 
normalised droplet volume. The symbol ↑ stands for increase, and ↓ for decrease. 

Ratio Dimension Normalised droplet volume 

 Г↓ wc↑ 

 

h↓ 

↓ (Christopher et al. 2008; Fries & Rudolf von Rohr 2009; Gupta & Kumar 2010b; 

Wehking et al. 2013)  

↓ (Gupta & Kumar 2010a)  

 Λ↓ wd↓  ↓ (Fries & Rudolf von Rohr 2009; Glawdel et al. 2012)  

 

wc↑ 

Squeezing: ↓ (Christopher et al. 2008; Gupta & Kumar 2010b; Wehking et al. 2013) 

Dripping: ↑ (Gupta & Kumar 2010b)  
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In the squeezing regime, at low capillary number or a continuous phase flow rate more than 

twice the dispersed phase flow rate, the droplet volume is geometry independent (Gupta & 

Kumar 2010a). At increased continuous phase flow rate, the droplets become smaller due to 

increased shear on the emerging droplets (Fries & Rudolf von Rohr 2009; Yeom & Lee 

2011a). When the capillary number and the flow rate ratio are kept constant, the normalised 

droplet size is dependent on the geometry and increases with decreasing continuous phase 

channel width (Fries & Rudolf von Rohr 2009; Garstecki et al. 2006; Gupta & Kumar 

2010a; Wehking et al. 2013). 

When droplets are formed in the dripping regime, the normalised droplet volume decreases 

with decreasing continuous phase channel width (Gupta & Kumar 2010b), and increases 

with increasing capillary number (low shear and high interfacial tension). Droplets and 

bubbles formed in the squeezing or dripping regime decrease in size with decreasing the 

dispersed phase channel width (Christopher et al. 2008; Fries & Rudolf von Rohr 2009; 

Glawdel et al. 2012; Yeom & Lee 2011a), further it was found that the effect of the 

dispersed phase channel width on droplet volume is larger at low capillary number 

(Christopher et al. 2008). For the critical capillary numbers related to transitions between 

regimes; increasing the aspect ratio decreases Cac for transition from dripping to jetting and 

to parallel flow (Chen et al. 2012; Garstecki et al. 2006), whereas the transition from 

squeezing to dripping is hardly affected (Wehking et al. 2013).   

The smallest droplet size that can be produced with shear-based devices depends on 

technical limitations (Gupta & Kumar 2010a; Yeom & Lee 2011a). To the best of our 

knowledge, the most shallow channels (5 μm) were reported by Steegmans et al. (2009a). 

Although shallower and smaller channels can be made, this would lead to high operating 

pressures, which is not the case in spontaneous emulsification devices. Spontaneous devices 

with dimensions as small as 200 nanometres, which have been used in our lab, gave 

successful droplet formation (~1 µm) at relatively low pressure (unpublished results). 

Junction design 

Besides the traditional mode of operation with the dispersed phase injected perpendicular to 

the main channel (Figure 2.3A), the inlets can be swapped (Abate et al. 2009; Carrier et al. 

2014), or droplets can be made in a head-on configuration in which the continuous and 
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dispersed phases both enter through the main channel (Shui et al. 2009). To increase 

productivity, multiple T-junctions can be combined within one chip such as the cross-

junction (Dreyfus et al. 2003; Nisisako & Torii 2008; Tan et al. 2008) (Figure 2.3B) or the 

double pore T-junction (Wang, Lu, Xu, Tan, et al. 2009). Further, local changes have been 

suggested around the droplet formation point; capillaries have been used as the 

perpendicular channel (Figure 2.3C) (Wang, Lu, Xu, Tan, et al. 2009; Wei Wang et al. 

2011; Xu, Li, Chen, et al. 2006; Xu, Li, Tan, et al. 2006b; Xu, Luo, et al. 2006; Xu, Li, Tan, 

et al. 2006a), cylindrical channels have been used for bubbles (Ben Abdelwahed et al. 

2012), Venturi-shaped continuous phase channels (Figure 2.3D) were investigated by 

Lattice Boltzmann simulation (W Wang et al. 2011), and a bypass for the continuous phase 

was introduced (Figure 2.3E) that led to a narrower size distribution albeit also to a more 

complex droplet formation mechanism (van Steijn et al. 2013).  

Alternatively, Y-shaped junctions (Figure 2.3F) were used by Steegmans et al. (2009a). The 

break-up mechanism is different from that in T-junctions, leading to smaller droplets 

(Steegmans, Schroën, et al. 2009a); interestingly their size was not influenced by the angle 

of the junction (Steegmans, Schroën, et al. 2010; Yeom & Lee 2011a). For bubbles, it was 

reported that bubble volume decreased with increasing junction angle, which was attributed 

to differences in the initial width of the neck (Fries & Rudolf von Rohr 2009; Tan et al. 

2009).  

 

Figure 2.3. Images of a T-junction (A), cross-junction (Nisisako & Torii 2008) (B), capillary embedded T-junction 
(Xu, Li, Tan, et al. 2006a) (C), Venturi-shaped T-junction (W Wang et al. 2011) (D), T-junction with a bypass 
(van Steijn et al. 2013) (E), and Y-junction (Steegmans, Schroën, et al. 2009a) (F). 
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Shear forces 

Flow rate  

Changing the flow rate ratio (Equation 2.3) affects the droplet size through the shear rate. 

Besides, if surface active components are present, the flow rate ratio may affect surfactant 

transport and through that the interfacial tension, which in turn also influences the droplet 

size. In general: at a low flow rate ratio (Φ < 0.1), the droplet size is reported to be not 

influenced; at a higher flow rate ratio (Φ ≥ 1), droplet size increases linearly with the 

dispersed phase flow rate (Garstecki et al. 2006). The effect of the flow rate ratio is a 

function of the capillary number (Figure 2.4); in the squeezing regime, droplet (and bubble) 

size increases with increasing flow rate ratio (Bashir et al. 2014; De Menech et al. 2008; Fu 

et al. 2011; Gupta et al. 2009; Husny & Cooper-White 2006; Liu & Zhang 2009), while in 

the dripping regime at higher capillary number, this effect becomes less (Liu & Zhang 

2009). And in the jetting regime, droplet size suddenly decreases with increasing flow rate 

ratio (Chen et al. 2012). The flow rate ratio influences the detachment point, which moves 

further away from the injection point going from dripping, to squeezing, to jetting (Chen et 

al. 2012; Gupta et al. 2009; Liu & Zhang 2009; Tan et al. 2009; Tice et al. 2004; Wehking 

et al. 2013; Xu, Luo, et al. 2006). As expected, the frequency of droplet production 

increased with the flow rate ratio (Glawdel et al. 2012). The effect of flow rate ratio on 

droplet volume is summarised in Table 2.2. 

 

Figure 2.4. Droplet diameter as a function of the capillary number at flow rate ratios of 0.125 (□), 0.25 (○) and 0.5 
(∆) with the Cac indicated with the dashed line. Adapted from Liu and Zhang (2009). 
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Table 2.2. Effect of increasing the flow rate ratio on droplet volume. The symbol ↑ stands for increase, and ↓ for 
decrease. 

Conditions Effect on volume References 

Φ ≥ 1 V↑ linearly  (Garstecki et al. 2006)  

Φ < 0.1 No change in V (Garstecki et al. 2006) 

Squeezing V↑  (Bashir et al. 2014; De Menech et al. 2008; Gupta et al. 2009; Husny & 

Cooper-White 2006; Liu & Zhang 2009)  

Dripping V↑ (Liu & Zhang 2009)  

Jetting V↓ (Chen et al. 2012)  

 

Viscosity 

The viscosity and viscosity ratio (Equation 2.4) obviously also affect the capillary number 

as discussed previously (Gupta & Kumar 2010b); besides, other effects were also noted and 

these are summarised in Table 2.3. The viscosity of the aqueous phase is often increased by 

adding glycerol (Glawdel et al. 2012; Husny & Cooper-White 2006), while oil phase 

viscosity is adjusted by changing the oil type; frequently used oils are hexadecane (η = 3.5 

mPa∙s at 23 °C) (Steegmans, De Ruiter, et al. 2010) and silicone oils (η = 6 - 350 mPa∙s) 

(Christopher et al. 2008). Since viscosity is temperature dependent, this will influence 

droplet size depending on the temperature sensitivity of the used fluids (Ho et al. 2011; 

Murshed et al. 2008).  

Table 2.3. Effect of viscosity on droplet volume, production frequency and critical capillary number. The symbol ↑ 
stands for increase, and ↓ for decrease. 

Conditions Constant 

parameter 

Viscosity Effect References 

Squeezing Ca and Φ 

or φc and 

φd 

λ↑ No change 

in V 

(De Menech et al. 2008; Garstecki et al. 2006; Husny & 

Cooper-White 2006; Liu & Zhang 2009)  

Dripping Ca and Φ λ↑ V↓ 

Frequency ↓ 

(Christopher et al. 2008; De Menech et al. 2008; Gupta 

& Kumar 2010b; Gupta et al. 2009; Liu & Zhang 2009) 

Dripping φc and φd ηc or ηd ↑ V↓ 

Frequency ↑ 

(Bashir et al. 2014; Gu & Liow 2011; Ho et al. 2011; 

Husny & Cooper-White 2006; Yeom & Lee 2011b)  

Dripping 

to jetting 

φc and φd ηc or ηd ↑ Cac ↓ (Yeom & Lee 2011b; Guillot & Colin 2005)  
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Irrespective of the process parameters, the droplet size was found to be nearly independent 

of the viscosity ratio in the squeezing regime (Figure 2.5), because shear forces hardly 

influence droplet formation (De Menech et al. 2008; Garstecki et al. 2006; Husny & 

Cooper-White 2006; Liu & Zhang 2009). In the dripping regime, a smaller droplet size may 

be expected at lower viscosity ratio, because of the increased shear from the continuous 

phase. However, when the capillary number and flow rate ratio are kept constant, the 

droplet size increases (Figure 2.5) (Christopher et al. 2008; De Menech et al. 2008; Gupta 

& Kumar 2010b; Gupta et al. 2009; Liu & Zhang 2009). To keep the capillary number and 

flow rate ratio constant while increasing the continuous phase viscosity, the continuous and 

dispersed phase flow rate need to be decreased. The relative effect of the continuous phase 

flow rate is bigger than that of the continuous phase viscosity, resulting in less drag force 

that leads to larger droplets and a lower droplet formation frequency.  

 

Figure 2.5. Droplet diameter as a function of the capillary number at viscosity ratios of 0.125 (□) and 1 (◊). 
Adapted from Liu and Zhang (2009). 

The critical capillary number for transition from squeezing to dripping is independent of the 

viscosity ratio but, at high values of the latter, transition from squeezing to dripping is more 

difficult to observe (De Menech et al. 2008; Liu & Zhang 2009). When the viscosity ratio is 

close to 1, the shear of the continuous phase on the emerging dispersed phase is reduced 

and jetting and parallel flow more readily occur. As a result, the critical capillary number 
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and critical flow rate ratio for transition to jetting and parallel flow are decreased (Gupta & 

Kumar 2010b; Gupta et al. 2009; Wehking et al. 2013).  

Interfacial forces 

Contact angle 

Whether an O/W or W/O emulsion is formed is determined by the wetting properties of the 

channel wall in shear-based emulsification; the fluid wetting the channel wall automatically 

becomes the continuous phase (Shui et al. 2009). The wettability of the wall is determined 

by the three-phase contact angle (θ) and is a function of the involved interfacial tensions as 

given in Young’s law: 

where γ1,wall, γ2,wall and γ1,2 are the interfacial tensions between liquid 1 - channel wall, liquid 

2 - channel wall and the two liquids, respectively (Bonn et al. 2009). 

O/W emulsions are formed in hydrophilic channels (e.g., glass or silica: θw < 90°), whereas 

W/O emulsions are formed in hydrophobic channels (e.g., PDMS: θo < 90°). When the 

contact angle is around 90° there is no preferential wetting which results in a parallel flow 

(Chen et al. 2012; Shui et al. 2009). The wettability of the channels can be changed by 

surface modification (Silvestrini et al. 2012; Jankowski et al. 2013), and by surfactants; 

O/W and W/O emulsions can be produced in the same microfluidic device as a result of 

changes in wettability due to surfactant adsorption (Dreyfus et al. 2003; Tan et al. 2008; 

Tostado et al. 2011; Xu, Li, Tan, et al. 2006a). Shui et al. (2009) reported that surfactants 

did not change wettability of their hydrophobic and modified hydrophilic borosilicate glass 

chips, and this could be because the surfactant did not have affinity for these surfaces. 

When the contact angle is not homogeneous across the wall, droplets might remain 

attached, while heterogeneous wetting may also be intentionally applied to trigger phase 

inversion at that specific spot (Shui et al. 2009). Several T-junctions with different wetting 

properties can be placed in series to form (complex) double emulsions (Nisisako et al. 

2005; Okushima et al. 2004). We refer the interested reader through to recent reviews on 

this specific matter (Choi et al. 2014; Engl et al. 2008; Zhao 2013). 

 cos(𝜃𝜃) =  
𝛾𝛾1,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 − 𝛾𝛾2,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

𝛾𝛾1,2
 2.7 
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Decreasing the continuous phase wettability only has a minor impact on droplet size. The 

interfacial tension force decreases because the curvature at the front edge of the droplet 

decreases, but this is balanced by a lower shear force because the surface of the emerging 

droplet is flatter (Bashir et al. 2014; Chen et al. 2012; Liu & Zhang 2009). At low capillary 

number the effect is larger, because the droplet has a larger contact area with the wall, and 

surface adhesive forces become more important (Bashir et al. 2014). The effect of contact 

angle in the squeezing regime is the same for bubbles as for droplets, as long as the liquid 

phase completely wets the channel wall; however, absence of such a pre-wetting film can 

lead to capillary instabilities and the formation of bigger bubbles. And in the dripping 

regime, the bubble will adopt a cylindrical shape (Ben Abdelwahed et al. 2012; Wielhorski 

et al. 2012). 

 

Interfacial tension 

The interfacial tension keeps droplets from detaching; at equal shear but lower interfacial 

tension, smaller droplets are obtained (the droplet size scales with the capillary number) 

(Bashir et al. 2014; Tan et al. 2009). The interfacial tension can be lowered by the 

adsorption of surface-active ingredients, or by adjusting the composition of the phases (i.e., 

addition of alcohol to the aqueous phase). In the latter case, the interfacial tension has an 

equilibrium value (e.g., constant over the process of droplet formation and detachment), 

while in the former case, the interfacial tension can have a value ranging between that of a 

fully covered interface and that of a completely bare interface. Adsorption of emulsifiers 

occurs in three steps: 1) Transport (e.g., diffusion or convection) of the molecules towards 

the sub-interface, 2) Adsorption of the emulsifier to the interface, 3) Possible structural 

reorganisation of the emulsifier at the interface (Stang et al. 1994), which is especially 

important for proteins (Zhai et al. 2013; Yano 2012). 

In microfluidics, droplet formation and emulsifier adsorption often occur at comparable 

time-scales. Hence, the actual interfacial tension during droplet formation depends on the 

adsorption rate of surfactants, and on the expansion rate of the droplet. When surfactant 

adsorption is slower than droplet formation, the interfacial tension is higher than the 

equilibrium interfacial tension (Baret et al. 2009; Steegmans, Warmerdam, et al. 2009; van 
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der Graaf et al. 2005), while in the opposite situation the interfacial tension will reach the 

equilibrium value, which is also the case at high surfactant concentrations (Tan et al. 2009; 

Tan et al. 2008). The actual value of the interfacial tension cannot be measured using 

conventional tensiometric devices; a drop tensiometer takes much longer than the droplet 

formation time to determine the value of the interfacial tension, but it can be measured with 

cross-flow microfluidic devices. Nguyen et al. (2007) and Wang et al. (2009) reported the 

use of T-junctions with which they could determine the interfacial tension in the 

millisecond range. Steegmans et al. (2009) used Y-junctions with which the interfacial 

tension within the sub-millisecond range could be determined; which are time-scales that 

are relevant in industrial emulsification devices (Walstra 2003). In general, low molecular 

weight emulsifiers (e.g., surfactants) have a higher diffusion coefficient and thus a shorter 

adsorption time compared to high molecular weight emulsifiers (e.g., proteins), resulting in 

a faster interfacial tension decrease (Glawdel & Ren 2012; Steegmans, Warmerdam, et al. 

2009; Wang, Lu, Xu & Luo 2009). This implies that, when operating in the dynamic 

interfacial tension regime, droplet size can be greatly influenced by surfactants. This can 

also be deducted from the small droplets formed with low molecular weight surfactants at 

high concentrations (Glawdel & Ren 2012).  

Surfactant and protein adsorption to the interface not only influences droplet formation, but 

also the subsequent stability of the formed droplet; droplet coalescence may be prevented 

through droplet-droplet repulsive interactions (i.e., electrostatic and/or steric repulsion), 

which primarily depend on the properties of the droplet surface. Depending on how fast the 

surface is covered, droplets will be more or less protected against coalescence, as 

demonstrated by Krebs and co-workers (2012b), who systematically varied process 

conditions and emulsion formulation in microfluidic devices, and related that to 

coalescence of droplets. It is worth mentioning that adsorption of surfactants during 

transport of the droplet through a microfluidic channel may give an uneven distribution 

over the interface, since surfactants are expected to accumulate at the upstream end of the 

droplet (Baret et al. 2009); it is not known whether that has an effect on droplet stability. 
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Fluid elasticity 

Husny and Cooper-White (2006) were the first to investigate the behaviour of non-

Newtonian fluids in cross-flow microfluidics by adding a polymer, polyethylene oxide 

(PEO), to the aqueous dispersed phase. The typical rapid pinch-off found for Newtonian 

fluids was not found for a non-Newtonian dispersed phase; instead, droplet detachment was 

retarded, and an elongated filament between the droplet and the dispersed phase was 

formed. The elongated filament formed a secondary droplet after detachment. Elongated 

filaments from a non-Newtonian dispersed phase were also reported by Li et al. (2013), but 

they found different structures at very low interfacial tension (<0.1 mN/m) in the presence 

of surfactants. The droplets deformed at the rear end and a tail was formed that further 

fragmented into tiny satellites.  

When using a non-Newtonian fluid as the dispersed phase, increasing the viscosity of the 

continuous phase resulted in a smaller droplets, as was the case for Newtonian fluids (Gu & 

Liow 2011; Husny & Cooper-White 2006). While the effect of the dispersed phase 

viscosity was dependent on the elasticity; upon increasing the dispersed phase viscosity 

droplet size decreased with a Newtonian dispersed phase, whereas droplet size increased 

with a shear thinning dispersed phase (Gu & Liow 2011).  

Fu et al. (2011) used a non-Newtonian fluid as the continuous phase for the production of 

gas bubbles, and found that bubble size increased non-linearly with the flow rate ratio. With 

a Newtonian fluid as continuous phase, bubble size increased linearly with the flow rate 

ratio, but this is most probably caused by different bubble formation mechanisms. Bubbles 

in the non-Newtonian fluid were formed in the dripping regime, whereas bubbles in the 

Newtonian fluid were formed in the squeezing regime leading to different effects on bubble 

size. 

2.3.3. Scaling relations and mechanistic models 

As discussed above, the effect of various parameters on the size of droplets (or bubbles) 

have been experimentally investigated and reported for T-junctions. In order to make the 

next step towards practical application, these results need to be summarised into scaling 
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relations. Some are already known from literature, and we summarize them here, but more 

work is needed in order to make them useful for food applications.  

Thorsen et al. (2001) were the first to report the formation of emulsion droplets in a 

microfluidic T-junction, and started with a droplet break-up model based on the balance of 

shear stress and interfacial tension: 

with r the radius of the droplet, γ the interfacial tension, ηc the viscosity of the continuous 

phase and ε the shear rate. This scaling law links droplet size to the reciprocal capillary 

number in the shear dominated dripping regime. Thorsen’s model was based on a one-step 

mechanism, but soon after other models were proposed that were based on a two-step 

mechanism where the growth and detachment phases both influence the final droplet 

volume, for example Van der Graaf et al. (2006): 

with Vcrit,ref the volume added during the growth phase at a capillary number of 1, tneck,ref the 

time detachment takes at a capillary number of 1, and m and n are fitting parameters that 

are device specific. Later work, in which data from various sources were combined, also 

stated that droplet formation occurs in two stages (Steegmans, Schroën, et al. 2009b). 

Garstecki et al. (2006) proposed a scaling relation for droplets produced in the squeezing 

regime: 

with L the length of the plug, wc the width of the continuous phase channel, Dneck the 

diameter of the neck, and Φ the flow rate ratio. Droplet size depends on the confined 

channel geometry and the flow rate ratio, however the model was limited to the used 

conditions (capillary numbers < 0.01, width ratio of the dispersed and continuous phase 

channel below 0.5, and height of the main channel smaller than the width).  

 𝑟𝑟 ~ 
𝛾𝛾
𝜂𝜂𝑐𝑐𝜀𝜀

 2.8 
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Christopher et al. (2008) proposed a model similar to that of Garstecki et al. (2006) for the 

transition between the squeezing and dripping regime; for this the model of Garstecki was 

extended with the capillary number and the channel width ratio: 

where b is the length of the emerging droplet, and Λ the channel width ratio. The length of 

the emerging droplet at detachment can be calculated with the capillary number: 

The model fits well with experimental data at low capillary number and when the viscosity 

of both phases are similar, but under-predicts the droplet volume at higher capillary 

numbers, and fails at high viscosity ratio, possibly as a result of a missing aspect ratio 

(Glawdel et al. 2012).  

The model was further extended by van Steijn et al. (2010), who moved towards a 

theoretical model for the squeezing regime, which also includes the influence of the device 

geometry: 
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where Vgrowth is the volume added during the growth phase, αΦ is the volume added during 

detachment, ϵ is a measure for the curvature of the corner at the junction and is 0 for the 

sharp-edged T-junctions that are discussed in this review, and Γ is the aspect ratio. The 

model is able to accurately predict droplet size for specific conditions, as experimentally 

verified by Schneider et al. (2011). They also pointed out that the model is based on 

experiments with an interfacial tension of 17.9 mN/m and that the change in droplet 

curvature is hard to predict, therewith limiting the use of the model (Schneider et al. 2011).  

Another two-step model with a growth and detachment phase was proposed by Yeom and 

Lee (2011b), who incorporated the viscosity effect of both phases in the volume added 

during detachment: 

with Dhead the diameter of the head of the emerging droplet, λ the viscosity ratio, υ the 

superficial velocity ratio (vd/vc), w the width of continuous and dispersed phase channels, 

and CA, CB, CC, m, and n were fitting parameters.  

Finally, Glawdel and co-workers (2012) developed a three-step model for the transitional 

squeezing to dripping regime where they included the effects of interfacial tension and flow 

conditions; their model consisted of a lag, filling, and necking stage. During the lag stage, 
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the interface recedes back into the dispersed phase supply channel. This stage is very short 

and is not of large influence on droplet volume (~ 0-5 %) but does influence droplet 

spacing and thus production frequency. The authors took the model of Christopher et al. 

(2008) as a starting point, and extended it to include the aspect ratio and the viscosity ratio 

to predict droplet size.  

2.4. Food perspective 

2.4.1. Production 

Clearly, there is a gap between fundamental research as carried out with microfluidics, and 

the application of that knowledge to complex, multi-component foods produced at large 

scale. Here we propose to speculate on the use of microfluidic techniques to get insights in 

the behaviour of food components at dimensions and time-scales that are otherwise not 

feasible. And although emulsification with cross-flow microfluidics is still quite new, the 

effect of channel dimensions, shear forces, and interfacial forces on droplet production has 

already been extensively studied, as summarised earlier. Based on this knowledge, we can 

tentatively extend these effects to what is expected for food-grade systems.  

Microfluidic devices 

Most food emulsions are O/W, and this implies that polymeric microchips would need to be 

hydrophilised in order to be used for O/W emulsion production. Alternatively, hydrophilic 

silica or glass chips can be used, but as glass traces cannot be monitored, these are not the 

first option for the production of food-grade emulsions. The preferred material for the food 

industry would be metal, because its use for food processing is widely accepted. First 

attempts have been made by Maan et al. (2013), who worked on semi-metal chips (glass 

coated with copper or copper/nickel); but eventually, chips will most probably need to be 

constructed in stainless steel in order to be useful for the food industry.  

If smaller droplets are required, as is customary for foods in which creaming would need to 

be prevented, the throughputs would considerably decrease since the channel size, that co-

determines the size of the droplets formed, would need to be accordingly decreased, leading 

to higher applied pressures (that are still much lower than in traditional emulsification). The 
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current channel dimensions are far from the technical limits (100 nm and less), so there is 

room to move closer to the targets relevant for food applications.  

Fluids and ingredients 

Food oils have a relatively high viscosity, but sunflower oil (η = 49 mPa∙s at 25 °C) and 

olive oil (η = 63 mPa∙s at 25 °C) are within the probed range (Abramovic & Klofutar 1998). 

Furthermore, food oils also contain other components than just triglycerides, such as anti-

oxidants, pigments, free fatty acids, mono- and diglycerides, and phospholipids (Gunstone 

2011), and such impurities may lead to a lower interfacial tension during emulsification, 

which will affect droplet formation, and possibly also droplet stability in a later stage. Also 

the very first steps were made using shear thinning liquids (Fu et al. 2011; Gu & Liow 

2011; Husny & Cooper-White 2006; Li et al. 2013) and the results showed that these 

liquids can be used and effects captured, but the field is not that developed. This holds even 

more for the behaviour of components in the interface, which can lead to specific 

rheological surface behaviour. This has not been investigated in microfluidic systems to the 

best of our knowledge. 

In microfluidic channels, low molecular weight surfactants have been used successfully 

before (Dreyfus et al. 2003; Shui et al. 2009; Tan et al. 2008; Tostado et al. 2011; Xu, Li, 

Tan, et al. 2006a); however adsorption of these components to the channel wall may alter 

wettability (Xu, Li, Tan, et al. 2006a). On the one hand, this may be an asset, as it can be 

used to intentionally modify the channels, however adsorption can also have a negative 

effect and emulsification may not even be possible anymore. Food proteins have thus far 

not been used in microfluidic devices, but it is known that proteins adsorb to glass and 

silica channel walls (Sharma et al. 2003), and this may make surface modification 

necessary to retain proper wettability.  

Besides surface-active ingredients, also colloidal particles can be used to physically 

stabilise emulsion droplets, which is referred to as Pickering emulsification (Dickinson 

2012). So far, the production of Pickering emulsions was only tested with a flow focusing 

microfluidic device, and the presence of particles did not alter the droplet formation 

mechanism (Priest et al. 2011), so that could be a convenient emulsion type to work with in 

combination with microfluidic devices. T-junctions were used to successfully produce 
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Pickering stabilised gas bubbles (Park et al. 2009). To the best of our knowledge, no bio-

based, food-grade particles have been used in microfluidic emulsification yet, but one could 

think of using cellulose crystals, chitin crystals, protein particles or starch particles 

(Dickinson 2012). Another option is to produce particles themselves within microfluidic 

devices (Berton-Carabin & Schroën 2015; J. T. Wang et al. 2011). 

Up-scaling 

Up-scaling of microfluidic devices in order to meet industrial demands is still a major 

challenge, and not much literature is available. Nisisako and co-workers (Nisisako & Torii 

2008; Nisisako et al. 2012) are one of the few reporting on up-scaling of cross-flow 

microfluidic devices. They presented a module with 144 droplet formation units, with 

which they were able to produce emulsion droplets with an average diameter of 91 μm and 

a coefficient of variation of 2%. Needless to say that this size is way too big for food 

applications, but it is a start. Spontaneous emulsification devices have also been scaled up 

to some extent, with as much as 196 EDGE devices working simultaneously, using food-

grade components, even though the throughputs were still relatively low. Straight through 

emulsification devices have also been scaled up within the group of Nakajima and 

Kobayashi in Japan (Vladisavljevic et al. 2012); more information on how various devices 

compare can be found in the work of Schroën and co-workers (2004).  

The industrial perspective of large scale microfluidic droplet generation has been reviewed 

by Holtze (2013). From this work, and our own analysis, it is clear that microfluidic devices 

seem far from implementation at an industrial scale. Yet, it should also be mentioned that 

other microstructured emulsification systems based on membranes have already been 

applied both in the pharmaceutical and food fields, although at relatively small scale and for 

products with high added value. One could also think of specialty products such as multiple 

emulsions, particles, gels and capsules that all can be made using microfluidic techniques, 

but have not yet been demonstrated at larger scale (Capretto et al. 2013; Charcosset 2009; 

Engl et al. 2008; Mazzitelli et al. 2013; Nisisako et al. 2005; Okushima et al. 2004; Skurtys 

& Aguilera 2008; van Swaay & DeMello 2013; Vladisavljević et al. 2013; Vladisavljevic et 

al. 2012; J. T. Wang et al. 2011; Zhao 2013). Examples of encapsulated components in 
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food are: polyphenols (Fang & Bhandari 2010), probiotic bacteria (Heidebach et al. 2012) 

and lipids (Corstens et al. 2015). 

Alternatively, novel production systems, such as metal sieves used in combination with 

glass beads, can also be used for high throughput production of emulsions containing food-

grade components (Nazir, Boom, et al. 2014). Such systems have proved suitable for the 

production of double emulsions (Sahin et al. 2014) and foams (Nazir, Maan, et al. 2014). 

Rotating systems, such as suggested by Schadler and Windhab (2006) and Aryanti et al. 

(2006), could also be interesting routes to push microstructured devices further towards 

application on a larger scale.  

2.4.2. Analytical tool 

Apart from the production of emulsions, microfluidics also have the potential to be used as 

an analytical tool to study the mechanisms of emulsification, including dynamic effects that 

occur at extremely short time-scales, as recently reviewed by us (Muijlwijk et al. 2015). As 

mentioned before, emulsification efficiency depends on the balance between the adsorption 

time of emulsifiers, and the collision events between droplets. Currently, only limited data 

is available on adsorption of food surfactants and proteins at the time-scale relevant for 

homogenisation (i.e., the sub-millisecond to millisecond range), and Y-junctions seem to be 

capable of probing that range (Steegmans, Warmerdam, et al. 2009). In this work, it was 

demonstrated that these devices can be used to capture dynamic interfacial tension effects 

of simple surfactants. It is expected that this method can also be used to capture the effect 

of shear thinning and shear thickening liquids on the emulsification mechanism, and 

possibly this can even be extended to surface rheology during emulsification.  

The stability of food emulsion droplets from the production stage to their end-use (i.e., the 

consumer’s plate) is essential for determining the shelf life of the product, and also for this 

microfluidic devices can be used. Stability tests are usually based on size measurements 

after production or storage, or after an accelerated test that is supposed to mimic long term 

storage. Using so-called microfluidic coalescence channels, the stability of emulsion 

droplets during production can be assessed on a single droplet level, and this has been 

demonstrated for simple surfactants (Krebs et al. 2012b; Krebs et al. 2012a). Accelerated 
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storage tests are also possible with microfluidics, for instance by using a micro-centrifuge 

(Krebs, Ershov, et al. 2013); it is expected that both tests can directly be applied to food 

surfactants at the stage of production. In our view, microfluidic devices make it possible to 

follow and model coalescence of droplets, and provide insight in the demulsification 

process; and in that respect they are useful tools to improve process conditions and/or 

ingredient formulation. Regarding storage of food, it should be mentioned that food 

products are complex, and generally they are non-equilibrium systems, with a viscoelastic 

matrix and interface, which makes it difficult to understand and control ageing phenomena; 

and this would be true for any analytical tool that is to be used. Obviously, the here 

discussed microfluidic tools can also be used to analyse the coalescence behaviour of aged 

products, and centrifugation may give an impression of the behaviour of aged products, but 

predicting the effect of aging ab initio will be extremely challenging. 

In summary, microfluidic tools have the potential to help optimise ingredient formulation of 

emulsions, and that is not only true for simple emulsions but also for more complex 

systems such as foods in which complex interfaces with viscoelastic behaviour are present. 

2.5. Conclusions 
The advantages of the use of microfluidics for emulsion production are the use of low shear 

and related to that less energy, and the production of well-defined emulsions with narrow 

size distribution. However, the technique is still in its early development stages, and most 

of the research so far has been conducted on model, non-food systems.  

Using food-grade materials will be the first step towards further use of microfluidics on 

large scale; first attempts at up-scaling by parallelisation have been undertaken, and 

microfluidics could be a promising option for the production of specialty products such as 

multiple emulsions, capsules, particles, gels and emulsions with low heat stability. 

Microfluidics can also be used as an analytical tool to investigate the early stages of 

emulsifier adsorption in depth, and to probe stability of emulsion droplets in great detail at 

short time-scales. This could lead to ab initio optimisation of formulation and process 

conditions of conventional food emulsion processes, and possibly give a further boost to 

up-scaling of microfluidics. 
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2.6. Appendix 
Table A2.1. Overview of reported channel dimensions, liquids and their viscosities, emulsifiers and interfacial tension and the resulting droplet diameter and dimensionless 
volume. 

Reference 
wd (μm) 
wc (μm) 
h (μm) 

angle 
(°) Disperse phase Continuous phase ηd (mPa s) 

ηc (mPa s) Emulsifier γ 
(mN/m) 

D 
(μm)a Vd (-)b 

(Christopher et al. 2008)  
65-375 
150 
50 

90 water silicone oil 1 
6-350 - 45.6 ND 0.3-2 

(Garstecki et al. 2006) 

50 and 
100  
50-200 
33 and 79 

90 water silicone oil 0.9  
10 and 100 2% emulsifier ND 20-45  0.8-9.3 

(van der Graaf et al. 
2005)  

24 
303  
5 

90 hexadecane water, 2.5-49% 
ethanol-water 

ND 
1-2.65 

0.25-1% SDS, 0.001-1% 
Tween20 4.8-44 5-7.5  0.008-0.03 

(Tostado et al. 2011)  

200  
300 
hd=50 
hc=200 

90 water corn oil 1 
67 0.001-0.01% CTAB 0.1-24 41-178 0.13-10.5 

(Thorsen et al. 2001)  
35 
35  
6.5 

90 water decane, tetradecane 
and hexadecane 

1 
ND 0.5-2% span80 ND 10 - 40 4.2-269 

(Li et al. 2012)  
100  
100  
80 

90 glycerin silicone oil 1 
ND - 12.5 27-33 0.8-1.6 

(Tarchichi et al. 2013)  

10-50  
50 and 
100  
23-72 

90 silicone oil water 39 
1 - 100 34-88 1.8-32 

(Shui et al. 2009)  
20 
20  
20 

90 hexadecane water ND 
1 

0.2% SDS, 0.1% 
Tween80, 0.02% Span80 

< 0.1 - 
50 ND ND 

(Wehking et al. 2013)  
55-150  
111-300  
100 

90 water, FC-43, alumina 
oxide suspensions silicone oil 1-20 

10-100  - 5.4-43 39-65 1-1.2 
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Reference 
wd (μm) 
wc (μm) 
h (μm) 

angle 
(°) Disperse phase Continuous phase ηd (mPa s) 

ηc (mPa s) Emulsifier γ 
(mN/m) 

D 
(μm)a Vd (-)b 

(Glawdel et al. 2012)  
33-100  
100  
30-60 

90 10-70% glycerol-
water  silicone oil 1.21-17.1 

10.2 - 34-37 21-30  1-2 

(Yeom & Lee 2011a)  
30-90 
90-270  
38-92 

30-
150 24% glycerol-water PFO/FC-3283 2.7 

2.3 - 10 70-240  1-2 

(Steegmans, Schroën, et 
al. 2009a)  

23 
23  
5 

97 hexadecane water, 9-66% 
ethanol-water 

3.3 
0.9-2.6 - 9.6-41 4-16  0.8-52 

(Abate et al. 2009)  
15  
15  
15 

90-
135 water HFE-7500 oil 0.9 

0.77 
1.8% ammonium 
carboxylate 2-5 4-5 0.6-1.5 

(Steegmans, De Ruiter, 
et al. 2010)  

13-20  
13-20 
5 

97 

40% pentane-
hexadecane, 
hexadecane, 60% 
capric acid-
hexadecane, paraffin 
oil 

water, 20-50% 
glycerol-water, 9-
28% ethanol-water 

1-105 
1-6.2 - 12-55 4-20  1-148 

(Steegmans, Schroën, et 
al. 2010)  

18-24  
18-23 and 
303  
5 

49-
131 hexadecane water, 9-66% 

ethanol-water 
3.5 
1-2.7 - 7-41 4-30 0.6-57 

(Husny & Cooper-White 
2006)  

27.5 
275  
100 

90 

water, 50 wt. % 
glycerol-water, 
polyethylene oxide-
glycerol-water 

silicone oil 1 and 6 
5-50 - ND 41-59 0.3-0.9 

(Yeom & Lee 2011b)  
90 
90  
90 

90 PFO/FC-3283 (1:10), 
PFO/PPP (1:10) 

24-64% glycerol-
water 

2.7 and 19 
2.3 and 18 - 10.6-

13.4 80-130 24-101 

(Gu & Liow 2011)  

200  
400  
hd=100 
hc=200 

90 
water, 30+50 wt.% 
glycerol-water, 0.01-
0.5 % xanthan gum 

canola oil, paraffin 
oil, silicone oil 

0.18-5.5 
ND 0.5% Tween80 6.5-12.7 100-

400  1-67 

(Glawdel & Ren 2012)  
50 and 
100 
100  

90 water silicone oil 1 
ND 

0.5-3% SDS, 0.1-2% 
Tween20 

9.4 and 
10.3 20-31  0.5-2 
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Reference 
wd (μm) 
wc (μm) 
h (μm) 

angle 
(°) Disperse phase Continuous phase ηd (mPa s) 

ηc (mPa s) Emulsifier γ 
(mN/m) 

D 
(μm)a Vd (-)b 

50 

(Steegmans, 
Warmerdam, et al. 2009)  

18 
18  
5 

97 hexadecane water, 9-28% 
ethanol-water 

3.5 
1-3 

0.03-3% SDS, 0.025-5% 
synperonic PEF108 5-41 8-13 0.2-0.8 

(Li et al. 2013)  
100  
100  
60 

90 
sodium salicylate-
water, 
polyacrylamide-water 

silicone oil 0.25-1.2 
69.5 

cetyltrimethylammonium 
chloride 0.04-9.7 ND ND 

(Garstecki et al. 2006)  
50 
50-200  
33 

90 nitrogen water, 52-62 % 
glycerol-water 

- 
0.9-11 2% Tween20 35-72 ND ND 

(Fu et al. 2010)  
120 
120  
40 

90 nitrogen water, 25-62% 
glycerol- water 

- 
0.92-10.2 0.1-0.5% SDS 31.5-72 26-34  1-2.3 

(Fries & Rudolf von 
Rohr 2009)  

67-400  
200-400  
150-230 

45-
135 nitrogen ethanol - 

65-500 - ND 9-20  0.004-0.03 

(Fu et al. 2011)  
120 
120  
40 

90 nitrogen 
0.1-0.5% 
polyacrylamide-
water 

ND - ND ND ND 

a D is the unrestricted three dimensional droplet diameter 
b Vd=V/wc

2h 
ND = not determined 
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3.1. Abstract  
To understand droplet formation and stabilisation, technologies are needed to measure 

interfacial tension at micrometer range and millisecond scale. In this paper, 

microtechnology is used, and that allows us to access these ranges and derive a model for 

surfactant free systems. The predicting power of the model was tested, and we found that it 

can be used to accurately (validated with > 60 experiments) describe droplet size for a wide 

range of flow rates, interfacial tensions, and continuous phase viscosities.  

The model was used next to determine interfacial tensions in a system with hexadecane and 

sodium dodecylsulfate (SDS) solutions, and it was found that the model can be used for 

droplet formation times ranging from 0.4 to 9.4 milliseconds while using a wide range of 

process conditions.  

The method described here differs greatly from standard interfacial tension methods that 

use quiescent, mostly diffusion-limited situations. The effects that we measured are much 

faster due to enhanced mass transfer; this allows us to assess the typical time-scales used in 

industrial emulsification devices. 
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3.2. Introduction 
Many products (e.g., milk, mayonnaise, dressings, paint, and shampoo) are emulsion-based 

systems. They are generally made using high shear devices that induce fast droplet break-

up (i.e., in the sub-millisecond range) in the presence of surfactants (Walstra et al. 2005). 

Surfactants have two roles: they decrease the oil-water interfacial tension so that small 

droplets can be formed, and they further stabilise the droplets through formation of an 

interfacial layer that provides steric and/or electrostatic repulsion (Walstra et al. 2005). 

Surfactant adsorption can be divided into three steps: 1) transport (e.g., diffusion and/or 

convection) of the molecules towards the sub-interface, 2) diffusion through the sub-

interface, 3) kinetic adsorption of the surfactant at the interface (Brösel & Schubert 1999).  

Depending on the interface expansion rate and surfactant adsorption time, the interfacial 

tension can be higher than the equilibrium interfacial tension during emulsification. The 

interfacial tension may even be equal to the interfacial tension of the corresponding bare 

liquid-liquid interface when surfactant adsorption takes more time than droplet formation. 

Conversely, when the adsorption time is in the same order of magnitude or faster than 

droplet formation, the interfacial tension ranges between that of a bare interface and that of 

a fully covered interface (i.e., the equilibrium interfacial tension).  

During large scale emulsification, surfactant adsorption occurs at similar time-scales as 

droplet break-up (Walstra et al. 2005), therefore also immediate coalescence can occur 

when the interface is not timely stabilised, and this leads to over-processing (Jafari et al. 

2008). Quantifying interfacial tension could be of great significance for emulsification 

processes, since this provides information on the adsorption time of surfactants and, related 

to that, the time needed for interface stabilisation. The interfacial tension can be measured 

with commercial techniques such as the oscillating jet and maximum bubble pressure 

method, that are both able to measure in the millisecond range (Miller et al. 1994). 

Microfluidic devices can also be used for interfacial tension measurements (Wang, Lu, Xu 

& Luo 2009; Brosseau et al. 2014; Xu et al. 2012; Wang et al. 2014; Steegmans, 

Warmerdam, et al. 2009). The tensiometric measurements of Wang et al. (2009) and 

Steegmans et al. (2009) were both conducted in cross-flow microfluidic devices and were 

based on the relation between droplet size and interfacial tension; the former is able to 

measure in the millisecond range and the latter in the sub-millisecond range, due to 

differences in geometry. The method of Xu et al. (2012), with a coaxial microfluidic 
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device, is based on the same principle as those of Steegmans et al. (2009) and of Wang et 

al. (2009). Other microfluidic methods to measure the interfacial tension are based on 

droplet deformability after formation (Brosseau et al. 2014) and on the pressure drop during 

droplet formation (Wang et al. 2014). Only the method of Steegmans et al. (2009) was able 

to measure the interfacial tension in the sub-millisecond to millisecond time-scale.  

Please note that the conditions in most traditional methods used to elucidate interfacial 

tension are quiescent: the interfacial area remains the same and there is no flow of the 

surrounding liquid. In microfluidic methods adsorption during droplet formation is most 

probably measured under enhanced mass transfer conditions. Fast droplet break-up may 

cause the formation of eddies, resulting in local non-laminar flow conditions and thus 

convective transport towards the sub-surface. Transport towards the sub-surface is, 

therefore, assumed to be fast and adsorption is determined by diffusion through the sub-

surface and interface expansion rate. Diffusion through the sub-surface might be enhanced 

during Y-junction emulsification because the shear force from the continuous phase reduces 

the sub-surface thickness (Rayner et al. 2005) and because of the curved interface (Anna 

2016). To distinguish the two methods, the interfacial tension measured under dynamic 

mass transfer conditions is referred to as the acting interfacial tension (γa). 

In the present work, we used droplet formation in a microfluidic Y-junction as was done by 

Steegmans et al. (2009), and we evaluated the droplet formation mechanism in detail. Van 

der Graaf et al. (2006) proposed a two-step model to describe droplet formation in a cross-

flow T-junction device, comprising of a growth and detachment step (Equation 3.1). The 

volume added during both steps depended on the capillary number (Ca), which is the 

balance between shear and interfacial tension forces (Equation 3.2), and the volume added 

during the detachment step scaled linearly with the dispersed phase flow rate. 

where Vcrit,ref and tneck,ref are the reference critical volume and necking time, x a fitting 

parameter, ηc the continuous phase viscosity, vc the continuous phase velocity, γ the 

interfacial tension, and φd the dispersed phase flow rate. 

 𝑉𝑉 = 𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑐𝑐𝑟𝑟𝑟𝑟Cax + 𝑡𝑡𝑛𝑛𝑟𝑟𝑐𝑐𝑛𝑛,𝑐𝑐𝑟𝑟𝑟𝑟𝜑𝜑𝑑𝑑Cax 3.1 

 Ca =
𝜂𝜂𝑐𝑐𝑣𝑣𝑐𝑐
𝛾𝛾

 3.2 
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In the work of Steegmans et al. (2009a) a Y-shaped junction was used, and for the rather 

limited experimental conditions that were probed it was suggested that the droplet size 

could be described with a one-step model, corresponding to Equation 3.1 without the 

detachment step. Since we aim to extend the process conditions considerably compared to 

those used in earlier investigations, we consider both models, and investigate which one 

describes our situation best.  

The current research aims to measure the acting interfacial tension in the sub-millisecond to 

millisecond range under dynamic mass transfer conditions. To do so, the method of 

Steegmans et al. (2009) was used as a starting point, and further refined for a wide range of 

experimental conditions. The model for droplet formation in Y-junctions was statistically 

validated using > 60 experiments. As a proof of concept, adsorption of sodium 

dodecylsulfate (SDS) at the oil-water interface was measured for various flow rates at the 

specified time-scales.  

3.3. Experimental  

3.3.1. Materials 

Anhydrous hexadecane > 99% pure (Sigma-Aldrich, USA) was used in all experiments as 

the dispersed phase. Water was first filtered and deionised with a Milli-Q system (Q-POD 

with Millipak Express 40 0.22 μm filter, Merck Millipore, USA). For the continuous phase, 

water, 9 and 28 wt. % ethanol solutions, 20 and 30 wt. % glycerol solutions, and 20 and 25 

wt. % sucrose solutions were used. Ethanol was 99.9% pure (Merck, USA), glycerol > 99% 

pure (Acros Organics, USA) and sucrose ≥ 99.0% pure (Fluka, Germany). Sodium 

dodecylsulfate > 99% pure (Sigma-Aldrich, USA) was used as surfactant in aqueous 

solutions of 0.01, 0.05, 0.1, 0.3, 0.5 and 1 wt. %. For microfluidic experiments, all aqueous 

liquids were filtered with a 0.2-μm cellulose filter (13/0.2 RC, Whatman Spartan, UK) 

before use. 
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3.3.2. Methods 

Characterisation of dispersed and continuous phases 

Viscosity 

The viscosity of the tested continuous phases (η) was measured in duplicate with a 

rheometer (MCR 502, Anton Paar, Austria) equipped with a Couette cell (C-DG26,7/T200, 

Anton Paar, Austria). The average viscosity was calculated from 20 measurements during 

rate sweeps between 1 and 100 s-1 at 20 ºC (Table 3.1). Each measurement was taken at the 

end of a period, the period time decreased from 20 s to 5 s during the experiment.  

Interfacial tension 

Equilibrium interfacial tension at the hexadecane-continuous phase interface was measured 

with an automated drop tensiometer (ADT, Teclis ITconcept, France) (Table 3.1). A rising 

oil droplet of 3-25 μL was formed at the tip of a syringe in a cuvette filled with 25 mL 

aqueous solution at 20 ºC.  

Table 3.1. Viscosity and interfacial tension against hexadecane at 20 ºC. 

Sample η (mPa∙s) γow (mN/m) 

Water 0.98 44.0 

9.0 wt. % Ethanol-water 1.42 31.6 

28.0 wt. % Ethanol-water 2.52 16.0 

20.0 wt. % Glycerol-water 1.78 41.1 

30.0 wt. % Glycerol-water 2.52 36.7 

20.0 wt. % Sucrose-water 2.07 42.7 

25.0 wt. % Sucrose-water 2.42 42.0 

0.01 wt. % SDS 1.01 29.6b 

0.05 wt. % SDS 1.00 20.8b 

0.1 wt. % SDS 1.00 13.5b 

0.3 wt. % SDS 1.06 8.3b 

0.5 wt. % SDS 1.09 7.9b 

1.0 wt. % SDS 1.09 6.2b 

Hexadecane 3.47a - 

a From reference (Griesbaum et al. 2012) 
b Equilibrium interfacial tension 
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Microfluidic set-up 

Microfluidic Y-junction device 

Borosilicate glass chips were used for the microfluidic experiments (Micronit 

Microfluidics, The Netherlands). Channels with a width (w) and depth (z) of 19 and 5.3 μm, 

respectively, were etched in the lower plate onto which the upper plate with inlets was 

annealed. The junction of the continuous and dispersed phase channel had a Y-shape with 

an angle of 97º between the continuous and dispersed phase channel. The distance from the 

junction to the collection area was 0.45 mm (Figure 3.1).  

 

Figure 3.1. Outline of the used microfluidic Y-junction: A) continuous phase channel, B) dispersed phase channel, 
C) post-junction channel, and D) collection area.  

Droplet formation experiments 

The microfluidic chip was placed in a chip holder (Micronit Microfluidics, The 

Netherlands). The continuous and dispersed phase entered the chip through capillaries of 

fused silica (Polymicro Technologies, USA) with an inner diameter of 150 μm, and with an 

inline microfilter of 0.5 μm placed in the middle (M-120X, IDEX Health and Science, 

USA). The continuous phase capillary was connected to a glass syringe of 1 mL (SGE, 

Australia), and the dispersed phase capillary was connected to a 1.5-mL microtube with a 

microfluidic adapter (Elveflow, France). The continuous phase flow rate (50-300 μL/h) was 

controlled with a syringe pump (NE-300, Prosense, The Netherlands). The dispersed phase 

pressure (1-6.3 bar) was controlled with the OB1 MkII pressure & flow controller 

(Elveflow, France).  

Images were recorded with a high-speed camera (MotionPro Y4-S2, IDT, USA) connected 

to an inverted light microscope (Axiovert 200 MAT, Carl Zeiss, The Netherlands). Per 

experiment, two movies were recorded of 1000 images each. The first one was recorded at 

a variable frame rate (typically between 1000 and 90,000 s-1), which corresponds to 25 

frames per droplet, and is needed for accurate determination of the droplet size and flow 

rates. The second movie was recorded at a set frame rate of 70,000 s-1 for droplet formation 
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mechanism analysis, which is needed to distinguish between the dripping, transition and 

jetting regime.  

Image analysis 

Droplet size, flow rates, and droplet formation characteristics were determined with a 

custom-written script in Matlab R2010a with the image processing toolbox (Mathworks, 

USA). 

Droplet size 

The area of 30 droplets was determined. Droplets were disk-shaped because the channel 

depth was smaller than the droplet diameter. The two-dimensional droplet area (A2D) was 

measured and used to calculate the two-dimensional droplet diameter (D2D) from which the 

droplet volume (V) was calculated with Equation 3.3 where z is the channel depth 

(Steegmans, Schroën, et al. 2009a). The average coefficient of variation was 0.6%, which 

implies that the droplets are very monodisperse. 

Flow rates 

The dispersed phase was pushed in the microfluidic channel at pressures between 1.0 and 

6.3 bar. The flow rate was determined using image analysis; the droplet formation time 

(tdrop) was taken from the number of frames needed for 25 droplets to be formed at a given 

frame rate (frec), and the dispersed phase flow rate (φd) was subsequently calculated from 

the average droplet volume and the droplet formation time (Steegmans, Schroën, et al. 

2009a): 

where ni is the frame number just after detachment of the previous droplet, ni+25 the frame 

number just after detachment of the 25th droplet. 

The actual continuous phase flow rate (φc) was experimentally determined for each 

recording, assuming that the velocity in the post-junction channel is equal to the average 

 𝑉𝑉 =
𝜋𝜋𝜋𝜋
4

(𝐷𝐷2𝐷𝐷 − 𝜋𝜋)2 +
𝜋𝜋2𝜋𝜋2

8
�𝐷𝐷2𝐷𝐷 − �1 −

4
3𝜋𝜋
� 𝜋𝜋� 3.3 

 𝑡𝑡𝑑𝑑𝑐𝑐𝑔𝑔𝑑𝑑 =
𝑛𝑛𝑐𝑐+25 − 𝑛𝑛𝑐𝑐

25𝑓𝑓𝑐𝑐𝑟𝑟𝑐𝑐
 3.4 

 𝜑𝜑𝑑𝑑 =
𝑉𝑉

𝑡𝑡𝑑𝑑𝑐𝑐𝑔𝑔𝑑𝑑
 3.5 
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velocity of 30 droplets (Steegmans, Warmerdam, et al. 2009). The average coefficient of 

variation for the continuous phase flow rate was 0.5%. 

Droplet formation mechanism characteristics 

The images recorded at 70,000 frames s-1 were used, and every second-to-last frame before 

detachment was analysed. The length of the neck (Lneck) and the length of the head (Lhead) 

measured from the junction corner were determined with the Matlab script (Figure 3.2). 

The relative neck length (Lneck,r) was calculated with Equation 3.6, and based on that a 

distinction could be made between the different regimes.  

 

Figure 3.2. Picture of the second-to-last frame before detachment of a droplet with Lneck and Lhead indicated. 

Expansion rate 

For determination of the expansion rate (θ), the images recorded at 70,000 frames s-1 were 

analysed with a custom-written script in Matlab 2015b with image processing toolbox 

(Mathworks, USA). The circumference (O) and the droplet area touching the top of the 

channel wall (Atop) were determined (Figure 3.3). The surface area of a droplet at the start 

(Astart) and at the end of formation (Aend) and the droplet formation time (Δt) were used to 

calculate the expansion rate: 

 

 𝐿𝐿𝑛𝑛𝑟𝑟𝑐𝑐𝑛𝑛,𝑐𝑐 =
𝐿𝐿𝑛𝑛𝑟𝑟𝑐𝑐𝑛𝑛
𝐿𝐿ℎ𝑟𝑟𝑤𝑤𝑑𝑑

∙ 100% 3.6 

 𝐴𝐴 = 𝑂𝑂𝜋𝜋 + 2𝐴𝐴𝑐𝑐𝑔𝑔𝑑𝑑 3.7 

 𝜃𝜃 =
𝑙𝑙𝑛𝑛 � 𝐴𝐴𝑟𝑟𝑛𝑛𝑑𝑑𝐴𝐴𝑠𝑠𝑐𝑐𝑤𝑤𝑐𝑐𝑐𝑐

�

∆𝑡𝑡
 3.8 
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Figure 3.3. Determination of circumference (O) and top area (Atop) at the start and end of droplet formation. 

3.4. Results and discussion 

3.4.1. Droplet formation 

The volume of hexadecane droplets formed in pure water increased with the dispersed 

phase flow rate (Figure 3.4). Up to a dispersed phase flow rate of 12 μL/h, the droplet 

volume scaled linearly with the dispersed phase flow rate. Upon further increasing the 

dispersed phase flow rate, the increase in volume was not linear anymore, indicating that 

the droplet formation mechanism changed considerably.  

 

Figure 3.4. Experimentally determined droplet volume (VE) at a water flow rate of 75.7 ± 1.5 μL/h (■) and 92.2 ± 
1.5 μL/h (●) as a function of the dispersed phase flow rate (φd) with linear fits through data measured in the 
dripping and transition regime. 
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At low dispersed phase flow rates, droplets were formed at the junction without complete 

blockage of the downstream channel (Figure 3.5). This droplet formation modus is referred 

to as the dripping regime (De Menech et al. 2008). At increasing dispersed phase flow rate, 

the forming droplets started to move downstream when the droplet formation mechanism 

first changed to the transition regime, and next towards the jetting regime, in which droplets 

are formed faster. Transition to the jetting regime occurs at higher dispersed phase flow 

rates when the inertial forces exceed the surface tension force (Pathak 2011) and eventually 

parallel flow would occur, which is outside the scope of this paper. 

The droplet formation regimes are reflected in the relative neck length (Lneck,r) of the 

emerging droplet (Figure 3.5). In the dripping regime, the neck length is less than 1% and it 

increases to at most 13% in the transition regime, and to even higher values for jetting; 

corresponding to dispersed phase flow rates of 8 μL/h, and 12 μL/h, respectively for this 

data set. The droplet volume increased linearly until a dispersed phase flow rate of 12 μL/h 

(Figure 3.4), indicating that the transition regime did not affect the dependency of droplet 

size on dispersed flow rate, but the jetting regime did.  

Steegmans et al. (2009a) stated that the dispersed phase had no influence on the droplet size 

(one-step mechanism); it is expected that for the tested conditions the necking phase was so 

rapid that any effect of disperse phase flow could rightfully be neglected. Our observations, 

that were done for a much wider range of conditions, showed that droplet size increased 

linearly with the dispersed flow rate, which is in line with computational fluid dynamic 

results for T-junctions (Chen et al. 2012). These effects can be described with the two-step 

model of Van der Graaf et al. (2006); therefore that model was developed further.  

To be complete, the contact angle has only a small effect on the resulting droplet size; the 

decreased curvature at the front of the droplet causes a decrease in interfacial tension force 

but this decrease is balanced by the lower shear force resulting from the flatter droplet 

surface (Muijlwijk, Berton-Carabin, et al. 2016), and therefore the contact angle is no part 

of the models used here and in other sources in literature. We took utmost care that the 

variability in droplet size did not become too large (i.e., >1%); if this happened the 

microfluidic devices underwent extensive cleaning. It is safe to state that during the 

experiments, the channels were homogeneous hydrophilic, also in the presence of SDS. But 

this is a clear point of attention when doing experiments with microfluidic devices.  
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A 

 

B 

 

Figure 3.5. A) Second-to-last-frame-before-detachment of droplets formed in water at a flow rate of 75.7 (left) and 
92.2 (right) μL/h. B) The relative neck length (Lneck,r) in the second-to-last-frame-before-detachment of droplets 
formed in water at flow rates of 75.7 (■) and 92.2 (●) μL/h. The error bars indicate the standard deviation. 

3.4.2. Model definition in the absence of surfactants 

Model definition 

In Figure 3.4, the linear fits have a Y-axis intercept that corresponds to the volume of the 

droplet during the growth phase, and a certain slope that corresponds to the droplet growth 

as a function of the dispersed phase flow rate (φd) during the detachment phase. We found 
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that the volume added during the growth phase scaled with the inverse square root of the 

capillary number (Ca); which is the ratio of the shear force that tries to remove the droplet, 

and the interfacial tension force that tries to keep the droplet attached, and the volume 

added during the detachment phase scaled with the reciprocal velocity of the continuous 

phase at the junction (vc):  

where b and c are constants; the values are calculated from the linear fits in Figure 3.4 for 

oil droplets formed in pure water. In the Appendix (Table A3.1), additional statistical 

information and the parameter values are given; parameters were not correlated, and had 

narrow 95% confidence intervals (1-3%), all indicative for the model’s robustness. 

The dependency that we found here is less strong as found in the work of van der Graaf and 

co-workers (2006) for T-junctions (-0.75); and that most probably has to do with the angle 

under which the flows meet. Scaling of the volume with the inverse square root of the 

capillary number was also found for cross-flow membrane emulsification (van der Graaf et 

al. 2004; Boom & Schroën 2011); in which droplets were formed via a one-step 

mechanism, which corresponds to the first part of the model, and is often suggested in 

literature. As mentioned previously, under conditions where droplet break-off occurs very 

rapidly, the ratio of shear force and interfacial tension force (Ca) determines the size of the 

droplet formed (2009a). 

Model validation 

The predictive power of the model was tested for various continuous phase compositions 

and process conditions, and only droplets with a relative neck length below 13% (i.e., 

dripping and transition regime) were used for validation. Please note that the model was 

used to predict the outcome of these measurements, it was not fitted to the data. The model 

parameters b and c that were fitted for hexadecane droplet formation in water were used to 

predict the droplet size for the experiments described here. We specifically highlight the 

effect of continuous phase flow rate, and of interfacial tension and continuous phase 

viscosity in the next two sections. 

 𝑉𝑉 = b�
1
𝐶𝐶𝐶𝐶

+
𝑐𝑐
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Continuous phase flow rate 

The model predictions were compared to data obtained for continuous phase flow rates 

ranging from 54 to 171 μL/h (Figure 3.6). The applied dispersed phase pressure was 3 bar, 

and resulted in an average dispersed phase flow rate of 5.4 ± 0.8 μL/h. Droplet size 

decreased with increasing continuous phase flow rate, because of the resulting increased 

shear force. The effect of the continuous phase flow rate on the droplet volume was well 

predicted by the model; and the model can be used over a broad range of continuous phase 

flow rates. 

  

Figure 3.6. Experimentally determined (■) and calculated (□) volume of droplets formed in water at different 
continuous phase flow rates. Microscope images of the second-to-last-frame before detachment are depicted at the 
right. 

Interfacial tension and continuous phase viscosity 

The model was further used to describe data obtained at various interfacial tensions (15-46 

mN/m as a result of the use of ethanol, glycerol, or sucrose in the continuous phase), 

continuous phase viscosities (1-2.6 mPa s), continuous phase flow rates (50-126 μL/h), and 

dispersed phase flow rates (0.8-14 μL/h). Again, only droplets formed in the dripping and 

transition regimes were considered for validation. The model captured all aspects well, as 

shown in Figure 3.7, in which the measured values from more than 60 experiments are 

plotted against the predicted values. This clearly shows how well suited this model is to 

predict the size of droplets formed in continuous phases that had very different properties 

than the water that was initially used to generate the data upon which the parameters were 

fitted.  
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Figure 3.7. Parity plot of droplets formed in: water (■), 9% ethanol (▲), 28% ethanol (●), 20% glycerol (♦), 30% 
glycerol (+), 20% sucrose (○) and 25% sucrose (X). The dashed line represents the line of parity. 

3.4.3. Acting interfacial tension in the presence of surfactants 

The next step was to estimate the interfacial tension during droplet formation in the 

presence of SDS. To do so, we rewrote Equation 3.9; and the interfacial tension at the 

moment of droplet break-up (i.e., acting interfacial tension) could now be calculated from 

the measured droplet size: 

Oil droplets were formed in a continuous phase of 0.5 wt. % SDS in water (Figure 3.8). The 

average continuous phase flow rate was 113 ± 5 μL/h and the dispersed phase flow rate 

varied from 0.9 to 13.8 μL/h. The acting interfacial tension increased with the dispersed 

phase flow rate; the droplet formation time was shorter, resulting in less time for surfactant 

adsorption to take place. However, the calculated acting interfacial tension decreased at 

dispersed phase flow rates above 6 μL/h, which was not expected. The point at which this 

happened coincided with the change in droplet formation mechanism from dripping to 

transition regime where the relative neck length was no longer zero (Figure 3.8). In the 
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dripping regime, the initial surface area just after droplet formation is constant because the 

dispersed phase coiled back inside the dispersed phase channel. In the transition regime, the 

dispersed phase stayed at the junction after droplet detachment, and the initial surface area 

increased, which allows surfactant adsorption that influences the analysis (Appendix, 

Figure A3.1). Alternatively, increased build-up of surfactants in the neck may occur, which 

is beyond the scope of the current paper; therefore it was decided to analyse only droplets 

formed in the dripping regime (Lneck,r < 1%). 

  
Figure 3.8. Calculated acting interfacial tension (left) and the relative neck length (right) of 0.5 wt. % SDS. The 
error bars indicate the standard deviation of the relative neck length.  

The acting interfacial tension was calculated for droplet formation times between 0.4 and 

9.4 ms, for different concentrations of SDS (Figure 3.9). The values ranged between the 

interfacial tension of the bare hexadecane-water interface (γwater) and the equilibrium 

interfacial tension between hexadecane and SDS solution (γsds). The acting interfacial 

tension increased with expansion rate, and the interfacial tension was lower at higher 

concentrations, as expected. 

0

10

20

30

40

50

0 5 10 15

γ a
 (m

N
/m

) 

φd (μL/h) 

0

5

10

15

0 5 10 15

L n
ec

k,
r (

µm
) 

φd (μL/h) 



                                                                                                          Microfluidic tensiometer 

                                                                                                                                               71 

 

Figure 3.9. Acting interfacial tension of 0.01 (●), 0.05 (Δ), 0.1 (♦), 0.3 (□), 0.5 (▲) and 1 (○) wt. % SDS as a 
function of the expansion rate. The equilibrium interfacial tensions between hexadecane and water (γwater) and 1 
wt. % SDS (γsds) are indicated as dashed lines.  

It is possible that the continuous phase is depleted during the measurement because of the 

large surface area in the microfluidic Y-junction. Alvarez et al. (2012) have set-up a 

criterion to evaluate the significance of depletion. Depletion effects can be neglected when: 

where C is the surfactant bulk concentration, A the surface area, V the volume of the 

surrounding liquid, and Γ∞ the maximum surface packing concentration, which was 3.9∙10-

11 mol/cm2
 for SDS (Alvarez et al. 2012). The average surface area during droplet formation 

and the volume of continuous phase flowing past the emerging droplet was calculated for 

data in Figure 3.9. For most of the experimental data depletion effects can be safely 

neglected. Based on this criterion, depletion effects may only have been significant for the 

experiments with 0.01 wt. % SDS (Appendix, Figure A3.2).  

The acting interfacial tensions from Figure 3.9 are plotted together with interfacial tensions 

measured with a drop tensiometer in Figure 3.10. Not only the probed time-scales were 

very different, also the time needed to reach the equilibrium interfacial tension in the 
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microfluidic system was much shorter than in the drop tensiometer. Adsorption in the ADT 

is diffusion-limited because of the absence of flow. Whereas the Y-junction most likely 

operates under enhanced mass transfer conditions, as discussed earlier.  

 

Figure 3.10. Interfacial tension of 0.01 (●), 0.05 (Δ), 0.1 (♦), 0.3 (□), 0.5 (▲) and 1 (○) wt. % SDS measured with 
a microfluidic Y-junction and a drop tensiometer (solid lines). The equilibrium interfacial tensions between 
hexadecane and water (γwater) and 1 wt. % SDS (γsds) are indicated as dashed lines. 

The situation in the Y-junction is as close as it can be to those occurring in industrial 

emulsification devices that have convective transport of surfactants to the sub-surface. The 

results presented here are therefore expected to be relevant for large-scale operation. How 

these effects can be linked, is part of further investigations; here we only want to point out 

that microfluidic devices are very well suited to probe micrometer and millisecond scales 

during emulsification, which is otherwise not possible.  

3.5. Conclusions 
The size of emulsion droplets formed in the dripping regime in a microfluidic Y-junction 

can be accurately predicted with a two-step model consisting of a growth step and a 

detachment step of which the first step is similar to models developed for unconfined 

droplet formation in membrane emulsification (van der Graaf et al. 2004; Boom & Schroën 

2011). The droplet volume scales with the inverse square root of the capillary number, and 

scales linearly with the dispersed phase flow rate. The model can be used to describe the 
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dripping regime and the transition regime for a wide range of flow rates, interfacial 

tensions, and continuous phase viscosities. With this model, the acting interfacial tension 

during droplet formation in Y-junctions was calculated. Only the adsorption of SDS was 

measured; other surfactants are part of ongoing research. 

The microfluidic tensiometric method described here can measure at droplet formation 

times of 0.4 - 9.4 ms. The possibility to probe this time-scale makes this method stand out 

from other microfluidic tensiometric methods that are only able to measure in the range of 

milliseconds to seconds (Wang, Lu, Xu & Luo 2009; Brosseau et al. 2014; Wang et al. 

2014; Xu et al. 2012). This, together with the enhanced mass transfer conditions, brings the 

experimental settings close to those used in industry, and in this respect the methods could 

mean a break-through in emulsification process design.  
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3.6. Appendix 
Table A3.1. Fitting parameters b and c with the 95% confidence intervals and correlation coefficient of data 
presented in Figure 3 and the average values used for the model. 

 φc = 75.7 μL/h φc = 92.2 μL/h Average 

b (10-18 m3) 95.4 ± 1.0 100.8 ± 1.5 98.1  

c (10-6 m) 45.9 ± 1.4 46.9 ± 2.1 46.4  

Correlation coefficient -0.933 -0.866  

 

 
 

Figure A3.1. The starting surface area of emerging droplets and microscope images of the second-to-last-frame 
before detachment and the first frame after detachment where Atop,start is indicated in red. 

 
Figure A3.2. Critical SDS concentration for each data point of 0.01 (●), 0.05 (Δ), 0.1 (♦), 0.3 (□), 0.5 (▲) and 1 
(○) wt. % SDS. The area above the dashed line indicates the region where depletion is significant and the area 
below where depletion effects can be safely neglected.
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4.1. Abstract  
Surfactant adsorption during emulsification can be quantified by measuring the acting 

interfacial tension with a Y-junction microfluidic device. To obtain insight in the surfactant 

transport mechanism to the interface, the effect of shear force on the acting interfacial 

tension was assessed by systematically varying the continuous phase viscosity and velocity. 

Varying the continuous phase viscosity did not affect the acting interfacial tension, 

indicating that surfactant adsorption during Y-junction emulsification is not diffusion-

limited. The acting interfacial tension was inversely dependent on the continuous phase 

velocity, which indicates that surfactant adsorption is governed by convective mass transfer 

resulting from the continuous phase velocity. The acting interfacial tension can be 

measured in the sub-millisecond time-scale and under convective transport conditions with 

the Y-junction. These conditions are relevant to industrial emulsification and cannot be 

assessed with conventional tensiometric techniques (e.g., drop tensiometer) where 

surfactant adsorption is mostly driven by diffusion. We believe, therefore, that this method 

can be used to understand emulsifier adsorption during industrial emulsification, which can 

in turn, be used to rationally design emulsion formulations and processes. 
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4.2. Introduction 
Emulsions are commonly produced with high-pressure homogenisers, colloid mills, rotor-

stator type stirrers, and ultrasonicators (Walstra 2003), which make droplets at very short 

time-scales (i.e., sub-millisecond scale) (Brösel & Schubert 1999). Destabilisation of the 

emulsion through immediate coalescence may be prevented through surfactant adsorption 

at the oil-water interface (Jafari et al. 2008), and it is therefore important to understand 

surfactant adsorption in such short time-scales. 

Microfluidic devices can be used as a research tool to study the formation of emulsion 

droplets and their subsequent physical stability (Muijlwijk, Berton-Carabin, et al. 2016; 

Krebs et al. 2012b). It is customary to investigate droplet size as function of the geometry 

of the channels (Wehking et al. 2013; Gupta & Kumar 2010b), and the viscosity ratio has 

been linked to changes in droplet formation mechanism (Wehking et al. 2013), but the 

effect of surface active components on droplet formation has only been reported very 

sparingly. Recently we have shown that a microfluidic Y-junction device can be used to 

measure the change in interfacial tension resulting from surfactant adsorption in the sub-

millisecond to millisecond time-scale (Muijlwijk, Hinderink, et al. 2016). In this device, 

droplet formation depends on the balance between the shear force exerted by continuous 

phase, and the interfacial tension. More precisely, we found that the droplet volume (V) 

depends on the properties of the interface (i.e., interfacial tension (γ)), of the continuous 

phase (i.e., continuous phase viscosity (ηc)), and on the processing conditions (i.e., 

continuous phase velocity (vc) and dispersed phase flow rate (φd)) (Equation 4.1). This 

relation implies that from the measured droplet volume the acting interfacial tension (γa), 

which is the interfacial tension at the moment of droplet detachment, can be calculated 

(Equation 4.2).  

In earlier work, the fitting parameters b and c were determined for hexadecane droplets 

formed in water, and the model was then successfully validated using other continuous 
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phase liquids that differed in viscosity and led to a wide range of oil-water interfacial 

tensions (Muijlwijk, Hinderink, et al. 2016). 

The findings in this work indicated that this tensiometric method operates under active 

mass transfer conditions resulting in fast surfactant transport towards the sub-surface 

(Muijlwijk, Hinderink, et al. 2016), as also described by Wang et al. (2009; 2016). And 

subsequent diffusion through the sub-surface is possibly also fast because of the narrow 

sub-surface resulting from the continuous phase shear force (Muijlwijk, Hinderink, et al. 

2016). This makes this method very different from existing tensiometric methods (e.g., 

drop tensiometer) that operate under quiescent conditions and are generally limited by 

surfactant mass diffusion (Lin et al. 1990).  

Under industrial emulsification conditions, surfactant transport is dominated by convection 

(Brösel & Schubert 1999), and tensiometric methods used to understand surfactant 

adsorption under industrial conditions would need to include these effects. In that respect, 

the Y-junction method is rather unique, and in this paper we will try to quantify these 

effects (Muijlwijk, Hinderink, et al. 2016). When convection dominates, the continuous 

phase viscosity should not substantially affect the acting interfacial tension, but surfactant 

mass transport should increase with continuous phase velocity (Baroud 2008), contrary to 

diffusion-limited systems in which the viscosity of the continuous phase should affect the 

interfacial tension through its effect on the diffusion coefficient (Staggemeier et al. 2005). 

This is systematically investigated in this paper, which helped us to elucidate surfactant 

behaviour and adsorption mechanism during Y-junction emulsification. 

4.3. Experimental  

4.3.1. Materials 

Hexadecane (≥ 99% pure from Sigma-Aldrich, USA) was used as the dispersed phase. 

Water was filtered and deionised with a Milli-Q system (Q-POD with Millipak Express 40 

0.22 μm filter, Merck Millipore, USA). For the continuous phase sodium dodecylsulfate 

(SDS > 99% pure from Sigma-Aldrich, USA) solutions of 0.1 wt. % were prepared in 

water, in 10 and 20 wt. % sucrose solutions (≥ 99% pure, Fluka, Germany), or in 20 and 30 

wt. % glycerol solutions (> 99% pure, Acros Organics, USA). For microfluidic 

experiments, all aqueous solutions were filtered with a 0.2-μm cellulose filter (13/0.2 RC, 
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Whatman Spartan, UK) before use. For the experiments with the oil-soluble surfactant, 0.3 

and 0.5 wt. % Span 20 (≥ 44% pure, Sigma-Aldrich, USA) in hexadecane was prepared and 

used as the dispersed phase, and water was used as the continuous phase. 

4.3.2. Methods 

Viscosity and interfacial tension 

Viscosity of the aqueous solutions and their equilibrium interfacial tension with hexadecane 

was measured in duplicate at 20 ºC as described previously (Muijlwijk, Hinderink, et al. 

2016), and the monomer diffusion coefficient of SDS was calculated with the Stokes-

Einstein equation (Table 4.1) (Staggemeier et al. 2005). 

Table 4.1. Viscosity (η), diffusion coefficient of SDS monomers (D), and interfacial tension against hexadecane 
(γ) of various aqueous solutions at 20 ºC. 

Sample 
η 

(mPa s) 

D 

(10-10 m2/s) 

γ (mN/m)a 

water 0.1% SDS 

water 0.98 7.2 44.0 13.5 

10 wt. % sucrose 1.41 5.0 42.2 12.5 

20 wt. % sucrose 2.07 3.4 42.7 12.1 

20 wt. % glycerol 1.78 4.0 41.1 12.7 

30 wt. % glycerol 2.52 2.8 36.7 13.2 

a ± 0.6 mN/m 
 

Microfluidic set-up 

Borosilicate glass chips (Micronit Microfluidics, The Netherlands) were used with a width 

(w) and depth (z) of around 20 and 5 μm, respectively. The dispersed and continuous phase 

channels met in a Y-shape with an angle of 97º. Droplets were formed and recorded as 

described previously (Muijlwijk, Hinderink, et al. 2016). Droplet volume (V), droplet 

formation time (tdrop), dispersed phase flow rate (φd), continuous phase flow rate (φc) and 

velocity (vc), and relative neck length (Lneck,r) were measured with a custom-written script 

for image analysis in Matlab R2010a with the image processing toolbox (Mathworks, 

USA). The acting interfacial tension was calculated with Equation 4.2. The expansion rate 

(θ) was measured with a custom-written script in Matlab 2015b with the image processing 

toolbox (Mathworks, USA). The expansion rate is defined as the increase in surface area 

over time calculated:  
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where Astart and Aend is the surface area of a droplet at the start and end of formation and Δt 

the formation time. 

4.4. Results and discussion 

4.4.1. Continuous phase viscosity 

The viscosity of the continuous phase was changed by the addition of sucrose and glycerol, 

which also affected the equilibrium interfacial tension (Table 4.1). To isolate the effect of 

viscosity, the normalised interfacial tension (γn) was calculated from the acting interfacial 

tension (γa), and both equilibrium interfacial tensions: 

where the equilibrium interfacial tension in presence of 0.1 wt. % SDS measured with the 

ADT was used as the minimum interfacial tension (γmin) and the plateau value in the 

appendix (Figure A4.1) was used as the maximum interfacial tension (γmax).  

The normalised interfacial tension is plotted as a function of the expansion rate in Figure 

4.1. At low expansion rates, when droplets were formed slowly, the normalised interfacial 

tension was low. With increasing expansion rate, the normalised interfacial tension 

increased, since less time for surfactant adsorption was available, until it reached the 

maximum normalised interfacial tension when the interface was devoid of surfactant. The 

addition of sucrose and glycerol to the continuous phase resulted in a viscosity increase 

from 1.0 to 2.5 mPa∙s, leading to a decrease in calculated diffusion coefficient for SDS 

molecules from 7.2∙10-10 to 2.8∙10-10 m2/s (Table 4.1). The sucrose and glycerol curves 

coincided with the water curve, which indicates that the normalised interfacial tension was 

independent of continuous phase viscosity.  
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Figure 4.1. Normalised interfacial tension at the aqueous phase-hexadecane interface for 0.1 wt. % SDS solutions 
in water (□), 10 wt. % sucrose (Δ), 20 wt. % sucrose (○), 20 wt. % glycerol (◊), and 30 wt. % glycerol (+), as a 
function of the expansion rate. The average continuous phase velocity was 0.3 m/s. 

4.4.2. Continuous phase velocity 

As shown in Figure 4.1 and in previous work (Muijlwijk, Hinderink, et al. 2016), the acting 

interfacial tension increases with the expansion rate, and since the expansion rate can be 

manipulated by both flows it was difficult, yet important, to keep it constant. The acting 

interfacial tension was measured at an expansion rate of 1.5∙103 s-1 by setting the dispersed 

and continuous phase flow rates for 0.05, 0.1, and 0.5 wt. % SDS (Figure 4.2). The acting 

interfacial tension in the presence of SDS decreased with increasing continuous phase 

velocity, which indicates that high continuous phase velocity favours surfactant adsorption 

at the moment of droplet formation. 

The effect of the continuous phase velocity on the acting interfacial tension was also 

measured with the oil-soluble surfactant Span 20, which was dissolved in the to-be-

dispersed oil phase (Figure 4.3). The acting interfacial tension was measured over a range 

of expansion rates and the continuous phase velocity was kept constant during each series 

of experiments. Increasing the continuous phase velocity resulted in a lower acting 

interfacial tension, indicating that surfactant adsorption was promoted at high continuous 

phase velocities, and high surfactant concentrations, which is similar to the effect found 

with the water-soluble surfactant SDS (Figure 4.2). 
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Figure 4.2. Acting interfacial tension of hexadecane droplets formed in 0.05 (Δ), 0.1 (◊), and 0.5 (Δ) wt. % SDS at 
an average expansion rate of 1.5∙103 s-1 as a function of the continuous phase velocity.  

 

Figure 4.3. Acting interfacial tension of 0.3 wt. % Span 20 in hexadecane at a continuous phase velocity of 0.3 
(▲) and 0.7 (Δ) m/s and 0.5 wt. % Span 20 at a continuous phase velocity of 0.3 (●) and 0.5 (○) m/s as a function 
of the expansion rate. 
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4.4.3. Adsorption mechanism 

The fact that the acting interfacial tension was independent of the continuous phase 

viscosity but was dependent of the continuous phase velocity needs further discussion in 

relation to the underlying surfactant transport mechanism, as done in this section. 

It is well known that surfactant adsorption can be divided in three steps: 1) transport 

towards the sub-interface, 2) diffusion through the sub-surface, and 3) kinetic adsorption at 

the surface (Brösel & Schubert 1999). There are two possible transport mechanisms of 

surfactants towards the sub-interface: diffusion and convection. If the dominant transport 

mechanism is diffusion, a decrease in adsorption would be expected upon increasing the 

continuous phase viscosity, especially at short time-scales (Staggemeier et al. 2005). In this 

case, the lower diffusion coefficient resulting from the increased viscosity (Table 4.1) did 

not change the acting interfacial tension (Figure 4.1), which indicates that convection 

dominates transport towards the sub-interface rather than diffusion.  

To verify that convection is the dominating mass transport mechanism, the Péclet number 

(Pe) was calculated: 

 𝑃𝑃𝑒𝑒 =
𝑣𝑣𝑐𝑐𝐿𝐿
𝐷𝐷

 
4.5 

where vc is the continuous phase velocity, L the characteristic length scale (in this case the 

channel depth), and D the diffusion coefficient of the surfactant. A Péclet number above 

one indicates convection is dominating and a Péclet number below 1 indicates diffusion is 

dominating (Baroud 2008). For vc=0.2 m/s, L=5∙10-6 m, and D=7∙10-10 m2/s, which is the 

condition corresponding to the lowest Péclet number, the value is 1.4∙103, thereby 

indicating that convective transport is dominant when the surfactant is present in the 

continuous phase, as illustrated in Figure 4.4A. The Péclet number and thus mass transport 

towards the interface, increases with increasing the continuous phase velocity as also 

experimentally verified (Figure 4.2). 

When the surfactant molecules were solubilised in the oil phase, the continuous phase 

velocity also influenced surfactant adsorption (Figure 4.3), and this may be due to the flow 

outside a forming droplet that can create circulation zones inside the droplet (Baroud 2008; 

Lee et al. 2012; Wang et al. 2015). The velocity in the to-be-dispersed phase is highest near 

the interface, scales linearly with the velocity of the continuous phase (Lee et al. 2012), and 
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is less pronounced for higher viscosity of the to-be-dispersed phase (Lee et al. 2012). For 

the conditions tested here, a low inner velocity is expected but the Péclet number is still 

above one as long as the inner velocity is above 1.4∙10-4
 m/s. Thus, convection in the to-be-

dispersed phase determines surfactant mass transfer towards the interface when surfactants 

are present in the dispersed phase, as shown graphically in Figure 4.4B.    

 

Figure 4.4. Effect of continuous phase flow on adsorption of surfactants adsorbing from the continuous phase (A) 
and from the dispersed phase (B).  

In summary, when emulsion droplets form, surfactant molecules need to adsorb at the 

interface, and for low molecular weight surfactants this is expected to be fast (Wang et al. 

2016), unlike macromolecules that need to rearrange before adsorption. The transfer 

through the sub-surface is, therefore, expected to be rate-limiting for SDS. Only when the 

sub-surface layer is thinner than the distance over which mass transfer takes place, 

surfactant adsorption is determined by convective flow and mass transfer time (Wang et al. 

2016). There was no effect of viscosity, and thus transport through the sub-surface is not 

expected to influence adsorption in this case. This is most likely because the sub-surface 

thickness was reduced by the shear force exerted on the emerging droplet (van der Graaf et 

al. 2005). Besides, when the surfactant concentration exceeded the CMC (i.e., for 0.1% 

SDS in 20% sucrose (Acharya et al. 1999)), the acting interfacial tension as function of 
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expansion rate was not affected, indicating that disintegration of micelles did not play a role 

in the observed effects.  

To be complete, besides inducing flow within the forming droplet, the shear exerted by the 

continuous phase may drag surfactants along the oil-water interface, resulting in a higher 

surfactant concentration at the tip of the droplet (Eggleton et al. 2001; Anna & Mayer 

2006), that may generate small droplets through tip streaming under specific conditions 

(e.g., Capillary number ~ 0.5, viscosity ratio ~ 0.1) (Anna & Mayer 2006; De Bruijn 1993). 

However, it is not likely that this has played any role since there was no effect of the 

continuous phase viscosity on the acting interfacial tension. In case there are surface 

tension gradients, these can induce Marangoni flow by which surfactant molecules are 

distributed along the interface (Levich & Krylov 1969). For the conditions used here, the 

Marangoni flow velocity can maximally be 1∙10-3 m/s (Dunér et al. 2016; Johnson et al. 

2008), which is negligible compared to the used continuous phase velocity that is orders of 

magnitude higher (0.3 - 4.4 m/s). 

4.5. Conclusions 
The microfluidic Y-junction allowed us to elucidate the mechanisms governing surfactant 

transport during emulsion formation. Because the acting interfacial tension decreased with 

increasing the continuous phase velocity, and was independent of the continuous phase 

viscosity, it could be concluded that convection dominates surfactant adsorption. 

Surprisingly, increasing the continuous phase velocity not only promoted surfactant 

adsorption when surfactant molecules were present in the continuous phase, but also when 

they were present in the dispersed phase, which is most probably due to an increase in 

internal flow velocity.  

With these insights, the next step was made toward a tool that can predict interfacial tension 

under conditions relevant to industrial processes. We have shown previously that the Y-

junction method is able to measure the acting interfacial tension in the sub-millisecond to 

millisecond time-scale, corresponding to the time-scales in process lines. In the present 

study, we have shown that we can measure it under conditions that are primarily governed 

by convective mass transfer, as would also be the case in industrial processes. We believe 

that this method will lead to better understanding of large scale emulsification.  
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4.6. Appendix  

 

Figure A4.1 Acting interfacial tension at the aqueous phase-hexadecane interface for 0.1 wt. % SDS solutions in 
water (□), 10 wt. % sucrose (Δ), 20 wt. % sucrose (○), 20 wt. % glycerol (◊), and 30 wt. % glycerol (+), as a 
function of the expansion rate.  
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5.1. Abstract  
Microfluidic devices are known for their accurate control of emulsification, but are less 

known for their suitability to investigate involved dynamic mechanisms. We previously 

showed that a microfluidic Y-junction can be used to measure interfacial tension in the 

millisecond time-scale, at high interface expansion rates, and under convective mass 

transport. In the present work, we further use this device to elucidate and compare dynamic 

adsorption behaviour of water- or oil-soluble surfactants, in combination with different 

alkanes. We found that oil viscosity affects adsorption of the oil-soluble surfactant Span 20 

because surfactant transport is influenced by viscosity through the internal velocity. 

Conversely, adsorption of the water-soluble surfactant Tween 20 was not affected by oil 

viscosity. When comparing surfactant adsorption rates, it was clear that surfactant structure 

became more important when more surfactants were present at the interface; Tween 20 

adsorption was slower than Span 20 because of steric repulsion at the interface. 
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5.2. Introduction 
At an industrial level, emulsions are made in very large quantities, using devices that 

mostly impose large shear forces on droplets that are consequently broken up into smaller 

ones (Walstra 2003). To characterise droplet formation, and to tentatively predict their size, 

dimensionless numbers are used, such as the Capillary number, Weber number, and 

Ohnesorge number (Rayner & Dejmek 2015). What all these numbers have in common is 

that a value for the interfacial tension needs to be inserted, but the decision on which value 

to use is far from trivial. Droplet formation typically takes place at sub-millisecond time-

scales, while interfacial tension measurements are not possible at such time-scales using 

conventional methods. The droplet volume tensiometer, which is the standard measurement 

technique, can measure at time intervals that are in the order of seconds or just below, 

which is thus an order of 3 slower than the time-scales relevant for large scale 

emulsification.   

Although microfluidic and microstructured devices can be used for monodisperse emulsion 

production (Muijlwijk, Berton-Carabin, et al. 2016; Vladisavljevic et al. 2012), the current 

low throughputs limit their application (Schroën et al. 2015). Yet, since droplet formation 

in these devices can be very fast (Bremond & Bibette 2012; Baret 2012), they are of interest 

to investigate processes at time-scales relevant to the industrial scale. Recently, we have 

shown that it is possible to measure the interfacial tension during droplet formation in the 

sub-millisecond to millisecond time-scale with a microfluidic Y-junction (Muijlwijk, 

Hinderink, et al. 2016). Others have also used microfluidics for this purpose, albeit 

exploring slightly longer time-scales (Brosseau et al. 2014; Wang et al. 2016; Xu et al. 

2012; Wang et al. 2014). The steps beyond initial emulsifier adsorption can also be 

investigated by microfluidics, for example whether emulsifiers efficiently stabilise the oil-

water interface and prevent droplet coalescence (Krebs et al. 2012b; Krebs, Schroën, et al. 

2013; Baret et al. 2009). Through these methods, more insights can be generated on how 

and how fast the interface is covered and stabilised by emulsifiers, which will ultimately 

help to optimise processing conditions and emulsion formulation.  

In the present work, we focus on the initial stages of emulsifier adsorption using a 

microfluidic Y-junction, for which a relation between the interfacial tension at the moment 

of droplet formation (the acting interfacial tension) and the droplet size was derived using a 

balance between the continuous phase shear force and the interfacial tension. The acting 
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interfacial tension (γa) can be calculated from the droplet volume (V), continuous phase 

velocity (vc), dispersed phase flow rate (φd), continuous phase viscosity (ηc), and chip 

specific fitting parameters b and c with Equation 5.1 as described in detail in earlier work 

(Muijlwijk, Hinderink, et al. 2016).  

At a low expansion rate, emulsifier adsorption can take place over a longer period of time  

because droplet formation is slower, resulting in lower acting interfacial tensions 

(Muijlwijk, Hinderink, et al. 2016). In previous work, we focussed on effects occurring in 

the continuous phase, and showed that the adsorption process is greatly influenced by the 

convective mass transport conditions (Muijlwijk, Huang, et al. 2016). Others have indicated 

that the dispersed phase viscosity also influences droplet size (Husny & Cooper-White 

2006; Gu & Liow 2011; Yeom & Lee 2011b; Zhang & Stone 1997; Nie et al. 2008), as 

does the droplet formation regime (Pathak 2011; Wehking et al. 2013), yet without 

establishing a direct link with the dynamic behaviour of surfactants.  

In this paper, we systematically vary the viscosity of the oil phase and the droplet 

expansion rate, while using Span 20 and Tween 20 as oil- and water-soluble emulsifiers, 

respectively.  

5.3. Experimental  

5.3.1. Materials 

As dispersed phase, decane (≥ 99% pure from Sigma-Aldrich, USA), dodecane (≥ 99% 

pure from Sigma-Aldrich, USA), or hexadecane (99% pure from Sigma-Aldrich, USA) was 

used either pure or with 0.05, 0.3, or 0.5 wt. % Span 20 (sorbitan monolaurate, Sigma-

Aldrich, USA). As continuous phase, filtered and deionised water (Milli-Q system Q-POD 

with Millipak Express 40 0.22 μm filter, Merck Millipore, USA) was used, either pure or 

with 0.05, 0.1, 0.3, or 0.5 wt. % Tween 20 (polyoxyethylenesorbitan monolaurate, Sigma-

Aldrich, USA). For model validation, liquid systems with a constant interfacial tension 

were used; the continuous phase consisted of pure water or of mixtures with 5, 9, or 28 wt. 

 𝛾𝛾𝑤𝑤 = 𝜂𝜂𝑐𝑐𝑣𝑣𝑐𝑐 �
𝑉𝑉 − 𝑐𝑐

𝑣𝑣𝑐𝑐
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% ethanol (99.9% pure from Merck, USA). All aqueous liquids were filtered with a 0.2 μm 

cellulose filter (13/0.2 RC, Whatman Spartan, UK) before use in microfluidic experiments.  

5.3.2. Methods 

Interfacial tension  

Equilibrium interfacial tensions were measured at 20 ºC with a droplet volume tensiometer 

(ADT, Teclis IRconcept, France) as described previously (Muijlwijk, Hinderink, et al. 

2016) and the results are shown in Table 5.1 and Table A5.1 in the Appendix.  

Table 5.1. Equilibrium interfacial tension measured at 20 °C with a droplet volume tensiometer. All measurements 
were done in duplicate and standard deviations were ≤ 0.6 mN/m. 

 

 

Microfluidic set-up 

Borosilicate glass chips (Micronit Microfluidics, The Netherlands) were used with a width 

and depth of 20 and 5 μm, respectively. The dispersed and continuous phase channels meet 

under an angle of 97º in a Y-shape junction. Droplets were formed and recorded as 

described previously (Muijlwijk, Hinderink, et al. 2016).  

Droplet volume (V), droplet formation time (tdrop), dispersed phase flow rate (φd), 

continuous phase flow rate (φc) and velocity (vc), relative neck length (Lneck,r), and 

expansion rate were measured with a custom-written script for image analysis in Matlab 

with image processing toolbox (Mathworks, USA) as described previously (Muijlwijk, 

Hinderink, et al. 2016). These parameters are needed to calculate the acting interfacial 

tension through Equation 5.1, and for this only measurements in the dripping regime (Lneck,r 

< 1%) were used. It is good to mention that parameters b and c were determined with very 

  γ (mN/m) 
Surfactant Concentration (wt. %) Hexadecane Decane 

None 0 44.0 48.3 

Tween 20 

0.05 7.3 7.9 

0.1 6.7 7.6 

0.3 6.8 6.8 

0.5 6.6 6.9 

Span 20 

0.05 7.6 7.2 

0.3 5.9 5.5 

0.5 5.2 4.3 
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high accuracy before each experiment using a liquid system with a static interfacial tension; 

more details can be found in (Muijlwijk, Hinderink, et al. 2016).  

5.4. Results and discussion 

5.4.1. Effect of dispersed phase viscosity on droplet formation 

Model determination and validation 

To establish model parameters b and c of Equation 5.1, experiments were done with only 

water and the respective oil (Appendix, Figure A5.1). For both decane and dodecane, the 

droplet volume increased linearly with increasing the dispersed phase flow rate, as was 

previously found for hexadecane (Muijlwijk, Hinderink, et al. 2016). The model parameters 

could be determined with great accuracy, and the parameters were not correlated 

(Appendix, Table A5.2). The values may indicate that the b parameter is fairly constant, 

and that the c parameter is oil-dependent, but given small differences in channel dimensions 

between the different micro-chips, we cannot confirm that this conclusion holds.  

The models were validated through experiments carried out with water/ethanol mixtures 

that had a range of viscosities and interfacial tensions (Appendix, Table A5.1), and the 

experimentally determined droplet volumes (VE) were compared with the predicted values 

(VC) (Appendix, Figure A5.2). From the excellent agreement found for both oils we 

concluded that the two-step model is valid for a broader range of process conditions than 

previously investigated, therewith facilitating in depth exploration of surfactant adsorption. 

Droplet formation 

The Y-junction model (Equation 5.1) is derived for the dripping regime where droplet 

formation occurs at the junction (i.e., Lneck,r < 1%) (Muijlwijk, Hinderink, et al. 2016). The 

dispersed phase viscosity has a pronounced effect on droplet formation, as illustrated in 

microscopy images taken just before droplet detachment at an almost constant dispersed 

phase flow rate of 11-12 μL/h (Figure 5.1). The relative neck length increased with 

increasing oil viscosity for a given dispersed phase flow rate and resulted in an earlier 

change in droplet formation regime from dripping to transition and ultimately jetting as 

indicated by the dashed lines in Figure 5.1. Such changes have been linked to the viscosity 

ratio, which is the ratio of dispersed phase and continuous phase viscosity; at higher 

viscosity ratio the drag force increases and the droplets are more rigid, resulting in an 



                                                                        Effect of emulsifier structure and oil viscosity 

                                                                                                                                               97 

increased shear at the boundary of the two fluids (Milliken et al. 1993; Pathak 2011; 

Wehking et al. 2013). The forming droplet becomes more deformed (i.e., longer neck), 

resulting in an earlier change of droplet formation regime from dripping to jetting. This has 

also been found for T-junctions (Gupta & Kumar 2010b; Yeom & Lee 2011b; Wehking et 

al. 2013), co-flowing devices (Cramer et al. 2004), flow-focusing devices (Nie et al. 2008), 

and vertical capillaries (Zhang & Stone 1997).  

 

 

Figure 5.1. The relative neck length for decane (♦), dodecane (●) and hexadecane (■) droplets formed in water as a 
function of the dispersed phase flow rate and microscope images of the second-to-last frame before detachment at 
a dispersed phase flow rate of 11-12 μL/h, showing a distinct difference in neck length from the junction. 

5.4.2. Surfactant adsorption 

Water-soluble Tween 20 

The acting interfacial tension when Tween 20 was dissolved in the continuous water phase 

was measured with hexadecane or decane as the oil phase, and plotted as a function of the 

interface expansion rate (Appendix, Figure A5.3). Since the equilibrium interfacial tension 
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of the bare liquid-liquid interfaces and of those saturated with emulsifiers are different for 

the two liquids (Table 5.1), we normalised the data with Equation 5.2; the normalised 

interfacial tension (γn), which can be interpreted as relative surface coverage at the moment 

of droplet formation, was calculated from the acting interfacial tension (γa), the minimum 

(γmin), and the maximum interfacial tension (γmax).  

As expected, the normalised interfacial tension increased with expansion rate and decreased 

with surfactant concentration (Figure 5.2), which is in line with earlier observations 

obtained for sodium dodecylsulfate (Muijlwijk, Hinderink, et al. 2016). The normalised 

interfacial tension increased with increasing dispersed phase viscosity, which is most 

notable for the highest tested Tween 20 concentrations in the continuous phase (0.3 and 0.5 

wt. %). Intercalation of surfactant hydrophobic groups and the oil hydrocarbon groups is 

easier when the hydrocarbon tail is shorter (Peltonen et al. 2001), and this can explain the 

difference in adsorption of water-soluble surfactants between the oils.  

 

Figure 5.2. Normalised interfacial tension of 0.05 (■□), 0.1 (▲Δ) 0.3 (♦◊) and 0.5 (●○) wt. % Tween 20 against 
hexadecane (closed symbols) and decane (open symbols) as a function of the expansion rate. 
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Oil soluble Span 20 

Span 20 has the same hydrophobic tail as Tween 20 but has a smaller head group and is 

thus more hydrophobic and is oil-soluble (Appendix, Figure A5.4). The acting interfacial 

tension was plotted against the expansion rate for various Span 20 concentrations in the oil 

phase (Appendix, Figure A5.5), and used to plot the normalised interfacial tension (Figure 

5.3). The normalised interfacial tension was a function of the Span 20 concentration, as 

expected, and of the used oil. As discussed previously, intercalation of Span 20 molecules 

was expected to occur more readily for decane compared to hexadecane; however, the 

differences between the oils for Span 20 were much greater than found for Tween 20, and 

thus another mechanism needs to be considered.  

 

Figure 5.3. Normalised interfacial tension of 0.05 (■□), 0.3 (♦◊) and 0.5 (●○) wt. % Span 20 in hexadecane 
(closed symbols) and in decane (open symbols) against water as a function of the expansion rate. 

When surfactants are present in the dispersed phase, convective mass transport towards the 

interface can take place because the continuous phase velocity induces an internal fluid 

circulation (Muijlwijk, Huang, et al. 2016), and this internal velocity is reported to be 

inversely proportional to the dispersed phase viscosity (Lee et al. 2012). To check whether 

this explains the differences, the data were re-plotted in Figure 5.4 with the expansion rate 

normalised for viscosity ratio (θn) calculated: 
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This makes the data obtained for the different oils to practically collapse for the same 

surfactant concentration, which indicates that changes in convective emulsifier transport are 

responsible for adsorption differences between the two oils. This also implies that 

adsorption from the dispersed phase can be increased by changing to a less viscous oil, or 

by influencing the viscosity ratio with the temperature. The small differences that still exist 

between the two curves in Figure 5.4 are probably because of intercalation differences, as 

described in the previous section. 

 

Figure 5.4. Normalised interfacial tension of 0.05 (■□), 0.3 (♦◊) and 0.5 (●○) wt. % Span 20 in hexadecane 
(closed symbols) and in decane (open symbols) against water as a function of  the normalised expansion rate. 

Comparison of Tween 20 and Span 20 

To compare adsorption of Tween 20 and Span 20, the data from Figure 5.2 and Figure 5.3 

are compiled in Figure 5.5. The lowest normalised interfacial tensions were found for Span 
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for which the data points are much closer together as a result of intercalation effects. When 

comparing data for Span 20 and Tween 20, also other differences can be noticed. Although 

the interfacial tension was expected to go to that of the bare surface for high expansion rate 

(as is visible in the 0.05 wt. % graphs), this is not the case at 0.5 wt. % and for some curves 

at 0.3 wt. %. Next to that, the normalised interfacial tension with Span 20 in decane was 

lower than with Tween 20 for the lowest expansion rates, and the increase in interfacial 

tension at higher expansion rates was more pronounced for Span 20 than for Tween 20. 

These differences between surfactants became less upon decreasing the surfactant 

concentration. 

  

 

 

Figure 5.5. Normalised interfacial tension of Tween 20 against hexadecane (▲) and decane (Δ), and water against 
Span 20 in hexadecane (●) and decane (○) as a function of the expansion rate with a surfactant concentration of 
0.05, 0.3, and 0.5 wt. %.  
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Span 20 and Tween 20 have the same hydrophobic group but the head group of Tween 20 

is much larger (Appendix, Figure A5.4), which results in differences in equilibrium 

molecular surface area: 90 Å2 for Tween 20 and 40 Å2 for Span 20 when measured at the 

gas-liquid interface (Berton et al. 2012), which is expected to be a reasonably good 

indicator for the oil-water interface. Tween 20 adsorption is hindered by steric repulsion 

between the polyoxyethylene groups (Berton et al. 2012), while Span 20 has a smaller head 

group and thus less hindrance during adsorption is expected, and this leads to 

comparatively steeper curves for Span 20. Upon increasing the expansion rate or upon 

decreasing surfactant concentration, the interface becomes less crowded, and hindrance 

between surfactant head groups becomes less important, therewith diminishing differences 

in adsorption behaviour between Span 20 and Tween 20. 

5.5. Conclusions 
The microfluidic Y-junction can be used to elucidate effects occurring during 

emulsification, including those related to the molecular structure of surfactants and 

convective mass transfer. We found that when surfactants adsorb from the continuous phase 

at a certain expansion rate, the surface coverage increases with decreasing hydrocarbon 

chain length of the oil, because of easier intercalation of the surfactant alkyl chains. When 

surfactants adsorb from the dispersed phase, surfactant transport results from internal flow 

within the dispersed phase, which is driven by continuous phase flow that scales with 

dispersed phase viscosity.  

By using dimensionless interfacial tension values, adsorption of Span 20 and Tween 20 

could be compared and we were able to measure small differences in adsorption resulting 

from the surfactant structure in combination with the oils that were used. To the best of our 

knowledge, the effect of dispersed phase viscosity and surfactant structure on the acting 

interfacial tension at such very short time-scales, and under convective mass transport 

conditions, has not been described before. In that respect, the microfluidic Y-junction is 

unique, since it allows measuring at time-scales and transport conditions very close to those 

used in industrial emulsification and these insights are, therefore, expected to be of great 

significance for improvement of emulsion formulation and process optimisation. 
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5.6. Appendix 
Table A5.1. Viscosity and interfacial tension with decane and dodecane at 20 ºC. 

Fluid 
η  

(mPa∙s) 

γdecane 

(mN/m) 

γdodecane  

(mN/m) 

γhexadecane  

(mN/m) 

Water 0.98a 48.3 52.7 44.0a 

5.0 wt. % Ethanol-water 1.24 - 38.6 - 

9.0 wt. % Ethanol-water 1.42a 30.7 31.7 - 

28.0 wt. % Ethanol-water 2.52a 14.9 - - 

Decane 0.93b - - - 

Dodecane 1.50b - - - 

Hexadecane 3.47b - - - 

a. From reference (Muijlwijk, Hinderink, et al. 2016) 
b. From reference (Griesbaum et al. 2012) 

  
Figure A5.1. Experimentally determined volume (VE) of decane (left) (◊) and dodecane (right) (○) droplets formed 
in water as a function of the dispersed phase flow rate (φd) with linear fits of which the parameters are in Table 
A5.2. 

Table A5.2. Reference volume (b) and fitting constant (c) with the 95% confidence intervals and correlation 
coefficient of the fits for decane and dodecane determined with the linear fits in Figure A5.1. 

 Decane Dodecane 

b (10-18 m3) 97.5 ± 1.8 98.6 ± 0.6 

c (10-6 m) 34.8 ± 1.7 39.4 ± 0.8 

Correlation coefficient -0.936 -0.888 
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Figure A5.2. Parity plot of decane (left) and dodecane droplets (right) formed in: water (□), 5 wt. % (◊),  9 wt. % 
(Δ) and 28  wt. % (○) ethanol. The dashed line represents the line of parity. 

 

Figure A5.3. Acting interfacial tension of 0.05 (■□), 0.1 (▲Δ) 0.3 (♦◊) and 0.5 (●○) wt. % Tween 20 against 
hexadecane (closed symbols) and decane (open symbols) as a function of the expansion rate. The equilibrium 
interfacial tensions between water and hexadecane (γhexadecane-water) and decane (γdecane-water) are indicated as dashed 
lines. 
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Figure A5.4. Molecular structures of Tween 20 (w + x + y + z = 20) and Span 20, from Berton et al. (2012). 

 

Figure A5.5. Acting interfacial tension of 0.05 (■□), 0.3 (♦◊) and 0.5 (●○) wt. % Span 20 in hexadecane (closed 
symbols) and in decane (open symbols) against water as a function of the expansion rate. The equilibrium 
interfacial tensions between water and hexadecane (γhexadecane-water) and decane (γdecane-water) are indicated as dashed 
lines. 
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6.1. Abstract  
Emulsion droplet formation occurs in milliseconds to seconds when emulsifier adsorption is 

often not yet completed, therewith allowing coalescence to take place. Because of these 

short time-scales, it is difficult to quantify adsorption and coalescence during processing. A 

microfluidic device can be used to measure coalescence shortly after droplet formation in 

laminar flow, and this device was used to assess coalescence of oil-in-water emulsions 

stabilised with dairy proteins (β-lactoglobulin, whey protein isolate, and oxidised whey 

protein isolate). Different microfluidic designs were used to vary the protein adsorption 

time prior to droplet collision. 

Coalescence stability depended on protein concentration (0.0002-0.02 wt. %) and 

adsorption time (11-173 ms): emulsion droplets were stable at low protein concentrations 

(as low as 0.005 wt. % β-lactoglobulin), as long as the time allocated for protein adsorption 

was sufficient (in this case 31 ms). Protein type was also important for coalescence 

stability: emulsions stabilised with whey protein isolate were less stable than those with β-

lactoglobulin, and coalescence stability further decreased upon protein oxidation. 

Regarding the effect of pH (3.0-8.0), coalescence stability was lowest around the protein’s 

isoelectric point.  

With the coalescence channel we demonstrated the importance of adsorption time and 

interface composition for coalescence stability at low protein concentrations. Coalescence 

can be measured at small time-scales and in high detail since coalescence measurements are 

decoupled from droplet formation. The microfluidic coalescence channel can be used as an 

analytical tool to gain better understanding of fluid interface stabilisation during 

emulsification, and to develop emulsion formulations ab initio. 
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6.2. Introduction 
Emulsions are dispersions of two immiscible liquids, and food emulsions are generally 

produced using rotor-stator systems or high-pressure homogenisers (Stang et al. 2001). 

During emulsification a large amount of interface is created, which increases the Gibbs free 

energy of the system. Because thermodynamics strive to minimise the latter, coalescence is 

often encountered and this occurs when the contact time between colliding droplets exceeds 

the time for interfacial film drainage followed by film rupture. From a process efficiency 

perspective, coalescence during emulsification should be prevented, for example by 

emulsifier adsorption at the droplet surface before droplet collision (Jafari et al. 2008). 

However, the time-scale for droplet formation, emulsifier adsorption, and droplet collision 

during emulsification is in the millisecond to second range (Schultz et al. 2004). 

Coalescence quantification is not possible with existing methods that measure longer-term 

coalescence stability of equilibrated systems, and therefore non-equilibrium and faster 

measurements are needed. 

Microfluidics offer new routes to study emulsions in for processing relevant length- and 

time-scales (Schroën et al. 2015; Muijlwijk, Berton-Carabin, et al. 2016). In previous work 

we looked for example at interfacial tension effects occurring at the sub-millisecond to 

millisecond time-scale during droplet formation (Muijlwijk, Hinderink, et al. 2016; 

Muijlwijk, Huang, et al. 2016). Coalescence was also probed with microfluidics, for 

example with the coalescence channel, where emulsion droplets are formed and 

subsequently collide in a wider channel and, when not sufficiently stabilised, coalesce. Up 

to now, stability of oil-in-water droplets (Krebs et al. 2012b), water-in-oil droplets (Baret et 

al. 2009), and air-in-water bubbles (Fu et al. 2015) have been measured in model systems, 

but food-grade emulsifiers have not been used before to the best of our knowledge. Proteins 

are often used for that purpose and for such emulsifiers, which have a high molecular 

weight and are composed of mixed molecules, it is crucial to understand how fast these 

emulsifiers stabilise emulsions and whether the process can be optimised in terms of 

ingredient formulation, processing conditions, and process equipment. 

In this article, we measured coalescence of oil-in-water droplets stabilised by dairy proteins 

with different purity or level of chemical modification: β-lactoglobulin, whey protein 

isolate, and oxidised whey protein isolate. We used a device where emulsion droplets were 

made at a T-shaped junction, then travelled through an adsorption channel of various 
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lengths, before entering a coalescence channel. The effect of adsorption time before 

collision on droplet coalescence was quantified based on droplet size through image 

analysis, and also the effect of pH on the coalescence of β-lactoglobulin stabilised 

emulsions was determined. 

6.3. Materials and methods 

6.3.1. Sample preparation 

A 10 mM phosphate buffer was prepared with sodium dibasic phosphate (Na2HPO4), 

sodium monobasic phosphate (NaH2PO4), phosphoric acid (H3PO4 85%) (all from Sigma-

Aldrich, USA), and purified water (Millipore Milli-Q system, Q-POD with Millipak 

Express 40 0.22 μm filter, Merck Millipore, USA) at pH 7.0, and for the pH experiments at 

pH 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0. Protein solutions were prepared in phosphate buffer 

and were filtered with a 0.45 µm filter (Millipore, USA) before use. β-lactoglobulin was 

purified to 91.2% protein (measured with the Dumas method (FlashEA 1112 analyser, 

Thermo Scientific, USA) with a nitrogen conversion factor of 6.29) from whey protein 

isolate containing 97.5% protein (Bipro, Davisco, USA). For purification, the whey protein 

isolate solution was adjusted to pH 2 and a sodium chloride concentration to 14%, and after 

stirring the solution was diluted and centrifuged. The sodium chloride concentration of the 

supernatant was adjusted to 23% and centrifuged again. The pH of the pellet was adjusted 

to 7, after which it was dialysed and freeze-dried for storage (Mailliart & Ribadeau-Dumas 

1988). To oxidise whey protein isolate, the protein solution in phosphate buffer at pH 7.0 

was subjected to metal-catalysed oxidation for 48 hours (Berton-Carabin et al. 2016), which 

resulted in a carbonyl content of 39.1 mmol/kg soluble protein (the measurement was based 

on the derivatization of carbonyls with 2,4-dinitrophenylhydrazine (Berton-Carabin et al. 

2016)). The conductivity of 0.02 wt. % β-lactoglobulin solution (9.6∙10-2 S/m) was 

comparable to that of 0.02 wt. % whey protein isolate solution (9.9∙10-2 S/m) (both in 10 

mM phosphate buffer at pH 7.0). Hexadecane 99% (Sigma-Aldrich, USA) was used as the 

dispersed phase. All chemicals were used as received, unless specified differently.  

6.3.2. Microfluidic experiments 

Custom-designed microchips (Micronit Microfluidics, The Netherlands) were made from 

glass and the channels had a uniform depth of 45 µm. The chip contained three sections: a 
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T-junction, a meandering channel, and a wider coalescence channel (Figure 6.1). Oil 

droplets were formed at the T-junction (width = 100 μm) where the continuous and 

dispersed phase intersect. The emulsion then passed through the meandering channel during 

which adsorption of emulsifiers at the surface of oil droplets may occur; the residence time 

of the formed emulsion being directly proportional to the length of this channel. The length 

of the adsorption channel was varied from 1.6 to 25.6 mm and an overview of the used 

designs is given in the Appendix (Figure A6.1). For the sets of experiments in which the 

adsorption time was kept constant, an adsorption channel length of 14.8 mm was used. 

After the adsorption channel, the emulsion entered the wider coalescence channel (width = 

500 μm) where droplets collided and possibly coalesced.  

 

Figure 6.1. Layout of the microfluidic chip with an adsorption channel length of 14.8 mm. Other designs are 
depicted in the Appendix Figure A6.1. The rectangles indicate the regions from which images were recorded with 
examples of recorded microscope images. 

Water and oil were dosed into the microfluidic device using a pressure system (OB1, 

Elveflow, France) and the flow was controlled with flow sensors (FS2 and FS4, Elveflow, 

France) that were connected to the chip with fused silica capillaries with an inner diameter 

of 150 μm (Polymicro Technologies, USA). The continuous phase flow rate was 40 μL/min 

(pressure ~1.5 bar) and the dispersed phase flow rate was 2 μL/min (pressure ~1.2 bar), 

unless otherwise stated, and the resulting droplet diameter was 57 μm. The actual oil 

volume fraction was determined by image analysis, and was 25%. This fraction is actually 

higher than the theoretical fraction that can be calculated from the applied flow rates, which 

can be explained by the fact that the droplets are squeezed between the walls of the 

microchip, and therefore tend to reside longer in the system compared to the more easily 

flowing continuous phase. The extra channel connected to the coalescence channel can be 
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used to adjust the flow rate but was blocked during these experiments (indicated with ‘X’ in 

Figure 6.1). A chip holder (Fluidic Connect 4515, Micronit Microfluidics) was used to 

place the chip under the light microscope (Axiovert 200 MAT, Carl Zeiss B.V.) that was 

connected to a high-speed camera (MotionPro Y4-S2). Images were recorded at the T-

junction, at the inlet of the coalescence channel, and at the outlet (i.e., 2.6 cm from the 

inlet). Per measurement, 1000 images were recorded in triplicate at a rate of 30 frames per 

second. The images were processed and the two-dimensional area of each droplet was 

obtained with a custom-made ImageJ macro.  

6.3.3. Coalescence frequency 

From the obtained mean area (Af) and the mean initial droplet area (Ai), the mean number of 

coalescence events (Ncoal) during the experiment was calculated: 

An example of the obtained size distribution from one measurement is given in the 

Appendix (Figure A6.2). The residence time inside the coalescence channel (tres) was 

calculated from the length of the coalescence channel (Lcoal), which was 2.6∙10-2 m in these 

experiments, and the mean drop velocity (vdrop), from which the mean coalescence 

frequency (fcoal) was calculated: 

Using the work of Krebs et al. (2012b), we chose to work at a vdrop of 1.3∙10-2 m/s at a total 

flow rate of 42 μL/min. 

6.3.4. Interfacial tension 

Interfacial tension was measured in triplicate with an automated drop tensiometer (ADT, 

Teclis ITconcept, France). A rising hexadecane droplet of 10 μL was formed at the tip of a 

syringe in a cuvette filled with 25 mL 0.1 wt. % β-lactoglobulin or whey protein isolate 

aqueous solution at 20 ºC. Interfacial tension was measured for 100 s by analysing the 

profile of the droplet using the Laplace equation. 

 𝑁𝑁𝑐𝑐𝑔𝑔𝑤𝑤𝑤𝑤 =  
𝐴𝐴𝑟𝑟
𝐴𝐴𝑐𝑐

 − 1 6.1 

 𝑡𝑡𝑐𝑐𝑟𝑟𝑠𝑠 =  
𝐿𝐿𝑐𝑐𝑔𝑔𝑤𝑤𝑤𝑤
𝑣𝑣𝑑𝑑𝑐𝑐𝑔𝑔𝑑𝑑

 6.2 

 𝑓𝑓𝑐𝑐𝑔𝑔𝑤𝑤𝑤𝑤 =  
𝑁𝑁𝑐𝑐𝑔𝑔𝑤𝑤𝑤𝑤
𝑡𝑡𝑐𝑐𝑟𝑟𝑠𝑠

 6.3 
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6.4. Results and discussion 
In this section we first describe various factors that influence emulsion stabilisation with 

proteins. The droplet size in emulsions made by traditional techniques is the result of 

formation and subsequent coalescence, but the microfluidic systems used here allow 

decoupling of formation and coalescence and this allows for further understanding of 

emulsification processes. Our thoughts about this are given throughout this section.  

6.4.1. Coalescence stability of emulsion droplets stabilised with β-
lactoglobulin  

The mean coalescence frequency as a function of the β-lactoglobulin concentration in the 

aqueous phase is, together with corresponding microscope images from the outlet of the 

coalescence channel, depicted in Figure 6.2. As expected, coalescence frequency decreased 

with increasing β-lactoglobulin concentration, but droplets were stable (i.e., fcoal < 0.02 s-1) 

in the coalescence channel from a concentration of 0.005 wt. % onward, which is much 

lower than expected and normally used for stable emulsion preparation (as discussed later).  

  

Figure 6.2. Mean coalescence frequency and microscope images from the outlet of the coalescence channel. The 
error bars indicate the standard deviation of the three recordings taken per measurement, most of them being 
within data markers. The adsorption time before entering the coalescence channel was 100 ms. 
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Effect of flow rate 

Coalescence was also measured as a function of the total flow rate, which ranged from 31 

to 72 μL/min (Figure 6.3); the used continuous and dispersed phase flow rates and resulting 

oil fraction are in given the Appendix (Table A6.1). With 0.0005 wt. % β-lactoglobulin, the 

coalescence frequency was inversely related to the total flow rate, while stable droplets 

were obtained independent of this flow rate with 0.005 wt. % β-lactoglobulin. The flow rate 

can affect coalescence in three ways: 1) Residence time in the coalescence channel is 

longer at lower flow rates, and thus there is higher chance for droplets to coalesce but, 

because coalescence frequency is normalised, this will not affect the coalescence frequency 

as such. 2) At lower total flow rate, the contact time of colliding droplets may become 

longer (Krebs et al. 2012b; Zhou et al. 2016), and thus more coalescence is expected when 

the collision time exceeds the time for film drainage. 3) Besides, at low flow rate 

convective transport of proteins towards the interface will be reduced (Muijlwijk, Huang, et 

al. 2016), and this may reduce surface coverage, potentially leading to more coalescence. 

  

Figure 6.3. Mean coalescence frequency with 0.0005 (♦) and 0.005 (▲) wt. % β-lactoglobulin as a function of the 
total flow rate and microscope images from the outlet of the coalescence channel. The adsorption time was 100 
ms. The error bars indicate the standard deviation of the three recordings taken per measurement, most of them 
being within data markers. 
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length was varied from 1.6 to 25.6 mm and the residence time in this channel, referred to as 

adsorption time (tads), accordingly increased from 11 to 173 ms at a total flow rate of 42 

μL/min (Appendix Figure A6.1). Coalescence frequency is shown together with 

microscope images taken at the coalescence channel outlet in Figure 6.4. At low 

concentration, stability improved by increasing adsorption time, but droplet coalescence 

was still observed in the chip with the longest adsorption time. At higher protein 

concentrations (i.e., ≥ 0.005 wt. %), droplets were unstable in the chip with the shortest 

adsorption time, and were completely stable against coalescence when adsorption time was 

sufficient (i.e., ≥ 31 ms). Note that droplets formed with ≤ 0.001 wt. % β-lactoglobulin 

were very unstable against coalescence for the shortest channels, and for clarity these data 

points were omitted from Figure 6.4, but are in the Appendix (Figure A6.3). 

Besides the adsorption time, it is important to point out that the number of curves in the 

design may have influenced mass transfer (Jiang et al. 2004), and therewith coalescence 

frequency. The 11 ms channel has no curve, while the 31 and 65 ms channels have 1 curve, 

and the 100 and 173 ms channels have 3 curves (Appendix Figure A6.1). When looking at 

Figure 6.4, the values for coalescence frequency for the 31 and 65 ms seem to be at similar 

levels, as is the case for the 100 and 173 ms channels, and this could point to an increase of 

mass transfer with the number of curves.  

  

Figure 6.4. Mean coalescence frequency as a function of the adsorption time with 0.0005 (♦), 0.001 (■), 0.005 
(▲), and 0.01 (●) wt. % β-lactoglobulin and microscope images from the outlet of the coalescence channel. The 
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error bars indicate the standard deviation of the three recordings taken per measurement, some of them being 
within data points.   

Coalescence was also measured at the inlet of the coalescence channel after an adsorption 

time of 11 ms (Figure 6.5). The mean number of coalescence events was very low for the 

highest protein concentrations, and no difference was found between the inlet and the 

outlet, whereas the number of coalescence events increased for the lowest concentrations. 

There is a clear interplay between adsorption time and protein concentration in relation to 

coalescence early on in the channel and at the outlet. Sufficient time for adsorption is a 

requirement to create stable emulsions throughout the channel; if this time is too short 

before droplets enter the coalescence channel, some coalescence will occur early on and 

stabilisation may still occur inside the coalescence channel, therewith arresting further 

coalescence. To be complete, upon coalescence the surface coverage will increase, which in 

turn will facilitate stabilisation. 

 

Figure 6.5. Mean number of coalescence events at the inlet (dotted bars) and outlet (solid bars) of the coalescence 
channel. The adsorption time before entering the coalescence channel was 11 ms. 

Discussion of the outcomes for β-lactoglobulin stabilised emulsions 

For the experimental conditions used here (droplets of 57 μm in diameter and an oil volume 

fraction of 0.25), 0.006 wt. % β-lactoglobulin is theoretically needed for monolayer surface 

0

5

10

15

20

0.0005 0.001 0.005 0.01

N
co

al
 (-

) 

[β-lactoglobulin] (wt. %) 



                                                                            Coalescence of protein-stabilised emulsions 

                                                                                                                                             117 

coverage (considering a surface load of 1.7 mg β-lactoglobulin m-2
 at the tetradecane-water 

interface (Courthaudon et al. 1991), which is close to the monolayer surface load of 1.65 

mg/m2 determined by Tcholakova et al. (2002)). Droplets in the coalescence channel were 

already stable at a concentration of 0.005 wt., which is close to the theoretical value for 

monolayer coverage. 

Droplet stability at such low concentrations was, to our knowledge, not reported before. For 

emulsions prepared by high-pressure homogenisation, at least 30% β-lactoglobulin in 

excess was needed to protect against coalescence for 48 to 72 h (Berton et al. 2011). Please 

note that the calculation of the protein excess concentration corrects for the larger surface 

area of droplets prepared with the high-pressure homogeniser compared to the microfluidic 

droplets. The higher protein concentration needed for high-pressure homogenisation 

compared to microfluidic emulsification is most probably due to differences in the 

emulsification conditions. First, collision in the microfluidic channel results from laminar 

shear forces (Krebs et al. 2012b), while in high-pressure homogenisers there is also 

turbulent flow (Håkansson et al. 2016; Urban et al. 2006), and more stabilisation may be 

needed in the latter case. Second, in the coalescence channel measurements took 2 s, while 

emulsions are generally processed and stored for a longer time. Although we think that 

when droplets are stable within this time interval this is most probably also the case for 

longer times, it is advisable to investigate this further. More insight in the physical stability 

of droplets produced at such low emulsifier concentrations could be gained with other 

microfluidic devices, for example with the micro-centrifuge that can be used to study 

enhanced gravity-induced coalescence (Krebs et al. 2012c; Krebs, Ershov, et al. 2013). 

Third, and most strikingly, the time allowed for emulsifier adsorption before droplets 

interact is rather different: in the coalescence channel emulsifier adsorption time is 11-173 

ms, while this time is 0.1-30 ms in high-pressure homogenisers (Schultz et al. 2004)). 

Basically droplet formation and coalescence are de-coupled in this microfluidic device, 

while droplet formation and coalescence compete at very short time-scales in the 

homogeniser, leading to a situation where more protein is needed to reach a stable droplet.   

To sum up, the flow conditions in our microfluidic channel in combination with the 

substantial adsorption time before droplet collision, and most probably enhanced mass 

transfer induced by the channel curves, resulted in stable droplets at low protein 

concentrations. To reduce coalescence without increasing protein concentration, the time 
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allowed for emulsifier adsorption before droplet collision and/or protein mass transfer need 

to be increased. In literature it is claimed that the former can be achieved by adjusting the 

high pressure homogeniser valve (Kolb et al. 2001).  

Effect of pH on coalescence stability  

The pH is known to affect emulsion stability greatly, and this was tested using emulsions 

made with 0.005 wt. % β-lactoglobulin (Figure 6.6). Coalescence frequency was lowest at 

pH 8.0 and highest around the pI, which is at pH 4.8 (Delahaije et al. 2014). Based on the 

microscope images, droplets at pH 4.0 and 5.0 also seemed to be more deformable than 

those at pH 3.0, 7.0, and 8.0. Coalescence could not be measured at pH 5.0 because the 

emulsion was highly unstable and coalesced droplets formed long oil strands.  

Around the pI, the global protein charge is zero and there is minimum electrostatic 

repulsion between proteins, and protein-covered droplets are able to approach closely, 

which can result in coalescence. At pH values further away from the pI, there is more 

electrostatic repulsion between protein molecules, which has been related to increased 

coalescence stability of protein-covered droplets (Tcholakova et al. 2005), and that is in line 

with our findings. Next to that, the interfaces were more deformed around the pI (Figure 

6.6) and this might indicate a less strong viscoelastic network that provides less protection 

against coalescence, as discussed further on in section 6.4.2. 

  

Figure 6.6. Mean coalescence frequency and microscope images from the outlet of the coalescence channel with 
0.005 wt. % β-lactoglobulin in buffer at different pH values (* pH 5.0 could not be measured). The error bars 
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indicate the standard deviation of the three recordings taken per measurement. The adsorption time before entering 
the coalescence channel was 11 ms.  

6.4.2. Coalescence stability of emulsion droplets stabilised with whey protein 
isolate 

β-lactoglobulin is the main component of whey protein isolate, and is often used for 

research purposes but, because of the high costs for isolation, whey protein isolate is the 

ingredient of choice in industrial applications, and coalescence stability with whey protein 

isolate is therefore relevant (Figure 6.7). At the lowest whey protein isolate concentrations 

tested (i.e., ≤ 0.002 wt. %), droplets were highly unstable, and very large coalesced droplets 

were observed at the outlet of the coalescence channel. Stability increased with adsorption 

time and with increasing whey protein isolate concentration. Droplets were stable when the 

residence time in the adsorption channel was sufficient (i.e., 100 ms for 0.01 wt. % and 65 

ms for 0.02 wt. %).  

  

Figure 6.7. Mean coalescence frequency and microscope images from the outlet of the collision channel with 
0.001 (♦), 0.002 (■), 0.01 (▲), and 0.02 (●) wt. % whey protein isolate. The error bars indicate the standard 
deviation of the three recordings taken per measurement, some of them being within data points.    

Comparison with β-lactoglobulin stabilised emulsions 

When using whey protein isolate, a higher protein concentration and a longer adsorption 

time were needed to stabilise droplets against coalescence (100 ms for 0.01 wt. % whey 

protein isolate, Figure 6.7) compared with β-lactoglobulin (31 ms for 0.005 wt. % β-
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lactoglobulin, Figure 6.4). This observation is interesting, as the functional properties of 

whey protein isolate are often attributed to those of its main component, β-lactoglobulin, 

and very few studies have systematically compared whey protein isolate and β-

lactoglobulin in that respect. It is thus interesting to speculate on the possible mechanisms 

involved. The interfacial tension of β-lactoglobulin and whey protein isolate at the water-

hexadecane interface were determined (Appendix Figure A6.4), and no differences were 

found between them, but the electrostatic interactions, viscoelastic, or steric properties of 

the interfacial layer may have been different.  

As mentioned previously when discussing the effect of pH, charge can stabilise droplets 

through repulsive electrostatic interactions that prevent droplets from coming into close 

contact (Tcholakova et al. 2006). In our experiments, the pH was fixed at 7.0 and at this pH 

the charge of β-lactoglobulin is similar to that of whey protein isolate (Lam & Nickerson 

2015; Lam & Nickerson 2014), and the conductivity of the protein solutions was 

comparable (section 6.3.1), therefore it is not likely that electrostatic interactions are 

responsible for the observed differences between β-lactoglobulin- and whey protein isolate-

stabilised emulsions. 

A more viscoelastic protein network reduces film drainage (Bhamla et al. 2014; Tambe & 

Sharma 1991) and tends to resist dilatational deformation (Bos & van Vliet 2001; Murray 

2011), and thus decreases coalescence (Amine et al. 2014). A stronger interfacial 

viscoelastic network is formed with β-lactoglobulin compared to α-lactalbumin, which is 

also present in whey protein isolate, because of the establishment of S-S bonds between β-

lactoglobulin molecules at the interface (Dickinson et al. 1989). And when a protein 

mixture is used, as is the case for whey protein isolate, this interfacial layer is less strongly 

connected than for pure proteins (Dalgleish 1997). It should be mentioned that these 

differences were reported for equilibrated films that take hours to form, and these 

conditions were most probably not met in the short microfluidic experiments, but our 

findings might be indicative of the fact that these effects occur very early on in film 

formation. In order to determine this, interfacial rheology would need to be determined in 

the millisecond time-scale, which may be possible through interfacial mobility 

measurement with microfluidics (Martin et al. 2011; Schwalbe et al. 2011; Erk et al. 2012), 

but this is considered outside the scope of the present work. 
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To sum up, it is difficult to pinpoint the exact reason for the difference in coalescence 

stability between β-lactoglobulin- and whey protein isolate-stabilised emulsions. Most 

likely, β-lactoglobulin forms an interfacial film with a higher viscoelasticity or stronger 

steric repulsion that provides better protection against coalescence at these time-scales 

compared to whey protein isolate. In the whey protein isolate interface, also other whey 

proteins such as α-lactalbumin, bovine serum albumin, and immunoglobulins may be 

present besides β-lactoglobulin, and they may weaken the interfacial protein network, 

whereas the β-lactoglobulin interface has a homogeneous composition.  

6.4.3. Effect of whey protein oxidation on coalescence stability 

Oxidation of dairy proteins can occur during processing as a result of heat treatment, light 

exposure, or presence of oxygen (Fenaille et al. 2005), and may also vary between batches. 

Upon whey protein isolate oxidation, aggregates and peptides are formed and the protein 

interfacial network becomes less elastic (Berton-Carabin et al. 2016). Up to a certain 

protein oxidation level, the oil-water interfacial tension in the presence of oxidised whey 

protein isolate decreases faster than with non-oxidised whey protein isolate because the 

formed peptides adsorb more rapidly (Berton-Carabin et al. 2016). Oxidised proteins can 

change the emulsifying ability and emulsion stability index (Kong et al. 2013), and it is thus 

important to quantify the effect of protein oxidation on coalescence.   

The mean coalescence frequency with corresponding microscope images of hexadecane 

droplets stabilised with oxidised whey protein isolate is in Figure 6.8. Coalescence stability 

of droplets with the lowest oxidised whey protein concentration (i.e., 0.001 wt. %) was very 

poor: many droplets could not even be measured because they were larger than the 

measurement window, therefore these data are not shown. Coalescence stability increased 

with increasing protein concentration but droplets were only stable when 0.02 wt. % 

oxidised whey protein isolate was used in the longest adsorption channel.  
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Figure 6.8. Mean coalescence frequency and microscope images from the outlet of the coalescence channel with 
0.002 (■), 0.01 (▲) and 0.02 (●) wt. % oxidised whey protein isolate (0.001 wt. % could not be measured). The 
error bars indicate the standard deviation of the three recordings taken per measurement, some of them being 
within data points.   

Protein oxidation clearly decreased coalescence stability: in the longest adsorption channel, 

0.01 wt. % whey protein isolate was needed to stabilise against coalescence (Figure 6.7) 

compared to 0.02 wt. % oxidised whey protein isolate (Figure 6.8). In line with what was 

discussed previously, mixed interfaces may be less protective against coalescence due to 

changes in electrostatic interactions, surface viscoelasticity, or steric interactions, and in the 

case of oxidised protein even more components are present. Peptides have an effect on the 

droplet surface charge (Smulders 2000), but it is unknown what effect the peptides formed 

during protein oxidation have on electrostatic emulsion stability. Surface viscoelasticity 

was shown to change upon oxidation (Berton-Carabin et al. 2016), but as discussed 

previously it is unclear how fast this viscoelastic protein layer is formed. A third possible 

explanation is that the oxidised protein interface provides less steric repulsion, for example 

because the interface, at least for certain interfacial domains, is thinner in presence of 

peptides (McClements 2005), or because peptides more readily desorb from the interface 

than proteins (Smulders 2000).  

Integrating all the present outcomes on coalescence stability of emulsions stabilised by β-

lactoglobulin, whey protein isolate, and oxidised whey protein isolate, there seems to be a 

trend that more heterogeneous (in composition and/or structure) interfaces are less stable 
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against coalescence than homogeneous interfaces. Further investigations will be needed to 

assess the underlying mechanisms. 

6.5. Conclusions 
This work highlights the importance of protein concentration and adsorption time for 

coalescence stability of emulsions. When the adsorption time was 31 ms or longer, a β-

lactoglobulin concentration slightly below the concentration needed for full surface 

coverage was sufficient to stabilise the interface against coalescence. Emulsions stabilised 

with β-lactoglobulin were more stable than emulsions stabilised with whey protein isolate, 

and coalescence stability decreased upon protein oxidation. The reason for these differences 

is not yet fully elucidated, but our results may indicate that a homogeneous protein-

stabilised interface offers better protection against coalescence than a heterogeneous 

interface.  

The results obtained with the microfluidic coalescence channel demonstrate the importance 

of adsorption time and interface composition for emulsion droplet stability during 

processing. With this device, it is possible to measure coalescence separately from droplet 

formation, which can give new insights in the stabilisation of fluid interfaces by proteins 

and other emulsifiers. For larger scale industrial emulsification, higher protein 

concentrations are used and our results indicate that this process could be optimised 

considerably when taking the time needed for interface stabilisation as a starting point. 
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6.6. Appendix 

 

Figure A6.1. Design of the different coalescence chips with the length of the adsorption channel indicated for each 
design and the corresponding residence time at a continuous phase flow rate of 40 μL/min and a dispersed phase 
flow rate of 2 μL/min. 

  

Figure A6.2. Example of a droplet size distribution and coalescence event distribution of an experiment with 0.005 
wt. % β-lactoglobulin. The adsorption time was 11 ms. 
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Table A6.1. Used dispersed, continuous, and total flow rate and measured volume fraction for data presented in 
Figure 6.3. 

φd (µL/min) φc (µL/min) φtotal (μL/min) Φ (-) 

1.4 30 31 0.28 

1.7 40 42 0.25 

1.9 50 52 0.24 

2.1 60 62 0.24 

2.2 70 72 0.24 

 
Figure A6.3. Mean coalescence frequency events of the coalescence channel as a function of the residence time 
with 0.0005 (♦), 0.001 (■), 0.005 (▲), and 0.01 (●) wt. % β-lactoglobulin. The error bars indicate the standard 
deviation of the three recordings taken per measurement. 

 

Figure A6.4. Interfacial tension of 0.1 wt. % β-lactoglobulin (—) and whey protein isolate (—) with hexadecane. 
Measurements were done in triplicate and for clarity only one measurement is shown for each sample, which is 
representative for the other measurements.  
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7.1. Introduction 
The focus of this thesis was to use microfluidic methods to study emulsifier adsorption and 

coalescence stability of emulsions. The underlying thought was to gain better understanding 

of emulsion formation and physical stability during processing. This information is 

expected to help optimise processes with respect to ingredient formulation and processing 

conditions, and will form a scientific basis for new process design. The main challenge was 

to investigate the aspects mentioned earlier at very short time-scales, and in this chapter the 

most important findings will be discussed and related to industrial emulsification.  

7.2. Main findings 
A literature review about the dependency of cross-flow microfluidic emulsification on 

microfluidic design, shear forces, and interfacial tension forces is given in Chapter 2. From 

the available designs, the Y-junction microfluidic device was chosen to measure interfacial 

tension at very short time-scales, and the method and model development are described in 

Chapter 3. The acting interfacial tension at the moment of droplet break-up was measured 

based on the known relation with droplet size, and measurements were done at short time-

scales (0.4-9.4 ms), and high expansion rates (100-2000 s-1). From the findings in this 

chapter, it became clear that emulsifier transport was fast, therefore the mass transfer 

conditions were investigated further in Chapter 4, in which we found that mass transfer in 

the Y-junction was dominated by convection (both in the continuous and dispersed phase). 

The acting interfacial tension in the presence of food-grade emulsifiers (Tween 20 and Span 

20) was reported in Chapter 5 for different dispersed phases (alkanes of various chain 

lengths). Besides droplet formation, droplet stability to coalescence in the presence of 

proteins (β-lactoglobulin and whey protein isolate) was investigated in Chapter 6 with a 

microfluidic coalescence channel, and it was found that for the conditions probed, stable 

emulsions may be obtained at concentrations just below monolayer surface coverage.  

7.3. Relevance for emulsification 
As discussed in Chapter 1, emulsification is most efficient when there is minimal 

coalescence, which implies that emulsifiers should stabilise the interface before droplet 

collision. Typical time-scales for emulsifier adsorption are given in Table 7.1 for each of 

the emulsification devices described in Chapter 1. For the high-pressure homogeniser and 

colloid mill this is the time droplets spend in the dispersing zone, for pre-mix membrane 
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emulsification the time droplets spend inside the membrane, and for direct membrane 

emulsification and microfluidic emulsification the droplet formation time. Adsorption time 

in the coalescence channel is relatively long and therefore it is expected that is represents 

phenomena occurring in colloid mills, direct membrane emulsification, and spontaneous 

microfluidic emulsification, whereas the Y-junction can be used to study faster processes 

such as the high-pressure homogeniser, premix membrane emulsification, and shear-based 

microfluidic emulsification.  

Table 7.1. Time-scale for emulsifier adsorption in various emulsification devices. 

Emulsification device Adsorption time-scale (s) 

High-pressure homogeniser 10-4 - 10-2 (Schultz et al. 2004) 

Colloid mill 10-1 – 100 (Schultz et al. 2004) 

Direct membrane emulsification 10-2 (van der Graaf et al. 2004) 

Pre-mix membrane emulsification 10-6 – 10-1 (Nazir, Boom, et al. 2013; Nazir, Schroën, et al. 2013) 

Spontaneous microfluidic emulsification 10-2 – 10-1 (Kobayashi et al. 2008) 

Shear-based microfluidic emulsification 10-4 (Nisisako & Torii 2008) 

Y-junction  10-4 - 10-2  

Coalescence channel  10-2 - 10-1 

 

In Chapter 6 we have shown that the time allocated for emulsifiers to adsorb determines 

emulsion stability against coalescence. Other results in literature point in the same 

direction: 1) Karbstein and Schubert (1995) reported that emulsions formed with colloid 

mills were more stable against immediate coalescence than emulsions formed in toothed 

disc dispersing machines and high-pressure homogenisers, and they argue that this results 

from the longer emulsifier adsorption time in the colloid mill. 2) A high-pressure 

homogeniser equipment was improved by Kolb et al. (2001) who designed a high-pressure 

valve (combined orifice valve) with a turbulence chamber to prolong the time spent by 

droplets in the dispersing zone (where collision time is too short for coalescence) from 0.1-

3 to 0.5-30 ms (Schultz et al. 2004), and this indeed resulted in less coalescence compared 

to the normal orifice valve (Figure 7.1). However, the direct effect of adsorption time on 

coalescence during processing could not be quantified in these studies because droplet 

formation and coalescence could not be decoupled in the measurements. Our microfluidic 

method can do so, and indeed shows that adsorption time is key for coalescence stability. It 

is thus possible that such measurements can help to optimise emulsification devices, as they 
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could allow prediction of the necessary adsorption time to minimise coalescence for various 

emulsifier types and concentrations.  

 

Figure 7.1. High-pressure homogeniser with an orifice valve (A) and a combined orifice valve (B). Adapted from 
Kolk et al. (2001). 

7.4. Microfluidic tools for research on multiphase food systems 
From the above, it becomes clear that microfluidics can be used as analytical methods to 

understand emulsification processes, as demonstrated throughout this thesis. The use of 

food ingredients in microfluidics is discussed in Chapter 2, and experimental data can be 

found in Chapters 5 and 6. In this section, we discuss the potential of the Y-junction, 

coalescence channel, and other microfluidic devices for food emulsion research. 

7.4.1. Proteins as emulsifiers 

In the food industry, proteins are often used to stabilise emulsions; therefore their early 

adsorption behaviour is very relevant, as also illustrated in Chapter 6, in which adsorption 

time was highlighted. The typical adsorption time for proteins was found to be around 30 

milliseconds, which is outside the time range that can be probed with the Y-junction (i.e., < 

10 ms) (Chapter 3). For such measurements, other microfluidic methods that are discussed 

in Chapter 2 can be considered.  

Proteins can not only adsorb at the oil-water interface, but also at the microfluidic channel 

wall (Sharma et al. 2003) and thereby they may also influence emulsification (Schroën et 

al. 2016; Sahin et al. 2016). As long as the channels remain hydrophilic, which is needed 

for O/W emulsification, droplet size is not affected (Chapter 2). However, when bovine 

serum albumin (BSA) or β-casein were used in the coalescence channel, droplet formation 

was distorted and coalescence measurements were inhibited, possibly because the channels 

became partly hydrophobic, whereas β-lactoglobulin could be used for measurements. 

These effects may be related to the adsorbed amount or protein tertiary structure; at a 
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hydrophilic surface more BSA adsorbs compared to β-lactoglobulin (Brzozowska et al. 

2010), and flexible proteins (β-casein) adsorb rather freely, whereas rigid proteins (β-

lactoglobulin and BSA) need to unfold to expose their inner hydrophobic groups (Walstra 

2003). In contrast to the coalescence channel experiments, BSA and β-lactoglobulin could 

be used successfully in spontaneous emulsification devices (use of β-casein was not 

reported), however also in these channels proper droplet formation depended on the used 

emulsifier-oil combination (Sahin et al. 2016; Saito et al. 2005). The main difference is the 

droplet formation mechanism and the surface contact area with the droplets, which is high 

in the coalescence channel, while droplets move freely after formation in spontaneous 

emulsification devices. However, whether these factors are indeed responsible for the 

differences in the compatibility of proteins in microfluidic channels is unclear.  

In food matrices, proteins are often used in the presence of other emulsifiers. For example 

when used with different proteins, this may affect emulsion coalescence stability as shown 

in Chapter 6.  Proteins are also used together with low molecular weight emulsifiers, which 

affects interfacial behaviour because of competitive adsorption between them (Pugnaloni et 

al. 2004) and possibly droplet coalescence stability. Relatively new is the use of protein-

polysaccharide complexes to stabilise emulsions, for which stability needs to be further 

assessed (Evans et al. 2013). Coalescence stability of these systems can be elucidated with 

microfluidics; the ingredient mixture is used as the continuous phase, or the second 

ingredient (emulsifier or polysaccharide) is added in the coalescence channel via a channel 

designed for that purpose after droplets are formed and stabilised with the first ingredient. 

The flexibility of microfluidic design makes it possible to add additional emulsifiers at any 

point after droplet formation. Another option is to include hydrophobic emulsifiers (e.g., 

mono-diglycerides or lecithins) in the to-be-dispersed oil phase.  

7.4.2. Interfacial mobility 

Microfluidic devices can also be used to measure interfacial mobility (Martin & Hudson 

2009; Martin et al. 2011), and dilatational interfacial rheology (Schwalbe et al. 2011; Erk et 

al. 2012), which are important parameters to quantify because of their role in droplet 

coalescence stability: interface immobilisation reduces film drainage (Martin et al. 2011), 

and film rupture can be seen as dilatational deformation (Bos & van Vliet 2001). For such 

measurements, particle movement at the interface is tracked (Figure 7.2A), and from these 
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images interfacial mobility was determined (Figure 7.2B). The same method was used to 

measure dilatational interfacial rheology, and the time-scale for such measurements is 0.5-

20 s. When this time-scale is brought down to the millisecond time-scale, which is the time-

scale relevant for the microfluidic coalescence channel, this would provide more insight on 

the effect of interfacial mobility and viscoelasticity on coalescence stability shortly after 

droplet formation, as discussed in Chapter 6. 

A 

 

 

 

 

B 

 

Figure 7.2. Superimposed images of a flowing droplet illustrating the internal flow pattern with streak lines that 
visualise polystyrene tracer particle motion at the oil-water interface (A), and from which the internal drop 
circulation was measured as a function of the interfacial tension for different butanol concentrations (0 (*), 0.5 
(X), 1 (▲), 2 (■), and 5 (♦) %) (B). From Martin et al. (2011) and Martin and Hudson (2009). 

7.4.3. Particles as stabilisers 

Besides standard food emulsifiers such as proteins and surfactants, colloidal particles are an 

interesting new class of interface stabilisers. Particles that are partly wetted by oil and water 

can adsorb at the oil-water interface; the energy needed for desorption depends on their 

three-phase contact angle and on the particle size. When desorption energy is larger than 
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the thermal energy, particles are irreversibly adsorbed and the interface is stabilised against 

coalescence, which is referred to as Pickering stabilisation (Berton-Carabin & Schroën 

2015). Adsorption of particles requires convective mass transfer (Anna 2016; Berton-

Carabin & Schroën 2015), and microfluidic devices that operate under convective mass 

transfer conditions are therefore expected to be useful for Pickering emulsion formation. 

Because of this, the coalescence channel may be used to determine when and where 

particles, but also proteins and surfactants, adsorb at the interface by fluorescence 

microscopy, as shown previously by Baret et al. (2009) for surfactants. Also the effect of 

the adsorption channel length and number of curves can be measured, as was done in 

Chapter 6 for proteins, and therewith important design parameters can be elucidated. 

Although inorganic particles have been used in microfluidic channels to stabilise foams 

(Kotula & Anna 2012) and emulsions (Priest et al. 2011), the use of bio-based particles has 

not been published yet, and microfluidic devices will be instrumental in speeding up the 

formulation of Pickering emulsions.  

7.4.4. Storage stability 

Coalescence stability of emulsions under enhanced gravity can be measured with a micro-

centrifuge (Krebs, Ershov, et al. 2013). For these measurements, a rectangular dead-end 

channel containing an emulsion is placed on a custom-made centrifuge and microscope 

images are recorded with a high-speed camera during centrifugation. Coalescence time and 

extent can be determined from the microscope images as shown in Figure 7.3. The increase 

in droplet size and the evolution of the oil layer is visualised, from which the amount of 

coalesced oil is quantified. With this set-up, it is possible to measure coalescence of highly 

packed emulsions under enhanced gravity. Depending on the centrifugation speed (relative 

radial accelerations of 0.9 to 4000 g can be reached), this information can be used to predict 

stability under processing and storage shelf life conditions. Also temperature dependency of 

coalescence stability can be measured with the micro-centrifuge as shown by Feng et al. 

(2014). 
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Figure 7.3. Microscope images of the micro-centrifuge sample chamber taken during centrifugation (A), and the 
amount of coalesced oil of the bulk (○), at the front (Δ), and in the total sample (□) (B). Adapted from Feng et al. 
(2014). 

7.4.5. Foams 

Since foam is also a two phase colloidal system, it can be expected that the learnings taken 

from emulsions can, at least to some extent, be applied to foams. Many food products 

contain air bubbles, for example whipped cream, beer, bread, ice cream, mousse, and 

aerated chocolate (Campbell & Mougeot 1999), and these products may destabilise due to 

drainage, Ostwald ripening, or coalescence, of which the latter is the least understood 
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destabilisation mechanism (Langevin 2015). Although microfluidics have been used to 

produce and study foams (Huerre et al. 2014), only few foams with food-grade ingredients 

were produced with microfluidics (Ahmad et al. 2012; Wang et al. 2010), and microfluidic 

research on coalescence stability of bubbles is limited (Fu et al. 2015; Wu et al. 2014; Yang 

et al. 2012). 

As a proof of concept, we measured coalescence stability of air bubbles in the presence of 

β-lactoglobulin with the coalescence channel. Bubbles with a diameter of 54 μm with a 

volume fraction of 10% were produced, and coalescence frequency and microscope images 

from the outlet are depicted in Figure 7.4. As expected, coalescence frequency decreased 

with increasing protein concentration. With 0.1 wt. % β-lactoglobulin a few bubbles still 

coalesced, and with 1 wt. % no coalescence was measured anymore. Compared to 

emulsions, for which only 0.005 wt. % β-lactoglobulin was needed for stabilisation 

(Chapter 6), a much higher concentration was needed for foams (> 0.1 wt. %). This may be 

caused by a higher affinity of protein for oil than for air resulting in a higher interfacial 

protein concentration with a more compact and protective structure at the oil-water 

interface (Pradines et al. 2009; Maldonado-Valderrama et al. 2005). 

  

Figure 7.4. Mean coalescence frequency of air bubbles and microscope images from the outlet of the collision 
channel. The error bars indicate the standard deviation of the three recordings taken per measurement, some of 
them being within data markers. The adsorption time was 100 ms.  

 

0

1

2

3

4

5

0 0.01 0.1 1

f co
al

 (s
-1

) 

[β-lactoglobulin] (wt. %) 



Chapter 7                                                                                                                     

136 

This foam experiment shows that it is possible to form protein-stabilised air bubbles in a 

microfluidic device and subsequently measure their coalescence stability. The layout is 

flexible in the choice of gas, emulsifier, or particle and we think that formulation of foam 

systems could be greatly facilitated by early evaluation with the microfluidic coalescence 

channel.  

7.5. Concluding remarks 
Microfluidic devices can be used to study emulsion formation and stability under 

conditions relevant to industrial emulsification processes. With these devices, one can 

separate or combine measurements on interfacial tension during droplet formation, interface 

mobility, emulsion coalescence stability, and emulsion storage stability, to obtain a better 

understanding on the effect of ingredient formulation and processing conditions on 

emulsion formation and subsequent stability. With such information, industry can screen 

and evaluate ingredients for their potential to stabilise interfaces. The advantage of 

microfluidic devices over existing methods are the use of low fluid amounts, which reduces 

ingredient costs and allows screening of new ingredients that are not available in bulk yet. 

Microfluidics can also reduce production costs: 1) When it is known what type of 

emulsifier or mixture is best to use and how much of that is needed to form and stabilise 

emulsions, ingredient formulation can be optimised. 2) When the effect of processing 

parameters on emulsion formation and stability is known, processing parameters can be 

optimised to reduce coalescence and thereby increase energy efficiency. And when 

designing new emulsification processes, such as microfluidic devices or other 

microstructured devices, even more detailed information can become available for 

optimising the design through microfluidic measurements. Therefore, we envision that the 

microfluidic devices presented in this thesis, but also other devices yet to be developed, will 

lead to faster ingredient screening, lower ingredient usage, and more energy efficient 

production of emulsions. 
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Emulsions are dispersions of one liquid in another that are commonly used in various 

products, and methods such as high-pressure homogenisers and colloid mills are used to 

form emulsions. The size and size distribution of emulsion droplets are important for the 

final product properties and thus need to be controlled. Rapid coalescence of droplets 

during emulsification increases droplet size and widens the size distribution, and therefore 

needs to be prevented.  

To increase stability of emulsions, emulsifiers are added to adsorb at the oil-water interface 

before droplets collide. The time allowed for emulsifier adsorption is typically in the range 

of sub-milliseconds to seconds and to optimise emulsification processes, emulsifier 

adsorption and coalescence stability need to be measured in this time-scale, for which the 

microfluidic methods described in this thesis were developed.  

Chapter 2 provides an overview of existing literature on cross-flow microfluidic 

emulsification. The effects of various parameters such as microfluidic design, shear forces, 

and interfacial tension forces on droplet formation and the resulting droplet size are 

discussed, as well as the use of microfluidics to produce food-grade emulsions. Based on 

this evaluation, the methods to elucidate interfacial tension and coalescence stability are 

chosen, and these are presented in the next chapters.  

To measure emulsifier adsorption in the sub-millisecond time-scale, a tensiometric method 

was developed using a cross-flow microfluidic Y-junction, which is described  in Chapter 

3. This method is based on the relation between droplet size and interfacial tension at the 

moment of droplet formation, which is referred to as the acting interfacial tension. The 

acting interfacial tension of a system with hexadecane as the dispersed phase and sodium 

dodecylsulfate (SDS, a model surfactant) solutions as the continuous phase was 

successfully measured for droplet formation times ranging from 0.4 to 9.4 milliseconds and 

with high expansion rates (100-2000 s-1). Comparison of these results with data from a drop 

tensiometer (a conventional, static, and supra-second time-scale method) indicates that 

mass transport in the microfluidic Y-junction is fast and probably not limited by diffusion. 

Emulsifier mass transport conditions were further investigated in Chapter 4. The 

continuous phase viscosity and velocity were systematically varied and the effect on the 

acting interfacial tension in presence of water-soluble SDS was measured. We found that 

the acting interfacial tension was independent of the continuous phase viscosity, but was 
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inversely dependent on continuous phase velocity. Both aspects led us to conclude that 

convective emulsifier transport in the continuous phase determines the acting interfacial 

tension in the Y-junction. When using oil-soluble surfactant Span 20 (dissolved in 

hexadecane), the acting interfacial tension also decreased with increasing continuous phase 

velocity, and we therefore concluded that convection also dominated mass transport of 

emulsifiers dissolved in the to-be-dispersed phase. 

The Y-junction method was used in Chapter 5 to elucidate the effect of the dispersed phase 

viscosity on adsorption of the food-grade emulsifiers Tween 20 (dissolved in the 

continuous water phase) and Span 20 (dissolved in the dispersed oil phase). A reduction in 

dispersed phase viscosity sped up adsorption of Tween 20, probably because the shorter 

hydrocarbon made intercalation of the hydrophobic surfactant tail at the interface easier. 

Dispersed phase viscosity had an even greater effect on adsorption of Span 20 because 

convective transport towards the interface was increased.  

Next to interfacial tension, also coalescence can be measured with microfluidics and a 

microfluidic collision channel was used in Chapter 6 to measure emulsion coalescence 

stability shortly after droplet formation under flow. Coalescence of emulsions stabilised 

with proteins was measured at various concentrations, pH values, and adsorption times. We 

found that protein concentrations just below the concentration needed for monolayer 

surface coverage may be used effectively. β-lactoglobulin-stabilised emulsions were most 

stable. Emulsions stabilised with whey protein isolate (with as main component β-

lactoglobulin), were less stable and when these proteins were oxidised, this led to reduced 

stability, therewith indicating that also the oxidative state of proteins needs to be considered 

in emulsion formulation.  

The relevance of our work for microfluidic research and industrial emulsification processes 

is discussed in Chapter 7. Microfluidic devices can be used to study emulsion formation 

and stability under conditions relevant to industrial emulsification processes; at short time-

scales and with convective mass transport. In this thesis we used various food-grade 

ingredients, and with that application in that field has come closer. We expect that the 

findings on emulsions can also be applied on foams. With the discussed microfluidic 

devices different aspects that are important for emulsion formation can be decoupled: for 

example interfacial tension during droplet formation and emulsion coalescence stability. 

Furthermore, microfluidic methods are available to for example gain insight in emulsion 
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interface mobility and emulsion storage stability, and we envision that all these microfluidic 

methods will lead to faster ingredient screening, lower ingredient usage, and more energy 

efficient emulsion production. 
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Emulsies zijn dispersies van een vloeistof in een andere die worden gebruikt in 

verschillende producten, en om emulsies te maken worden methodes zoals hogedruk 

homogenisatoren en colloïdmolens gebruikt die ervoor zorgen dat druppels verkleind 

worden. Behalve opbreken van druppels treed ook snelle coalescentie van druppels op 

tijdens emulgeren, en dit vergroot de druppelgrootte en -distributie. Deze eigenschappen 

zijn belangrijk voor de uiteindelijke emulsie-eigenschappen en moeten daarom worden 

beheerst. 

Om de stabiliteit van de gevormde emulsies te verhogen worden emulgatoren toegevoegd, 

en die adsorberen idealiter op het olie-wateroppervlak voordat de druppels met elkaar in 

contact komen. Voor emulgatoradsorptie is typisch een tijdsbestek van sub-milliseconden 

tot seconden nodig, en om het emulgeerproces te optimaliseren moet emulgatoradsorptie en 

coalescentie stabiliteit worden gemeten op deze tijdschaal, en dat kan met de 

microfluïdische methoden beschreven in deze thesis. 

Hoofdstuk 2 verschaft een overzicht van de bestaande literatuur op het gebied van 

langsstroom-emulgeren met microfluïdische systemen. De effecten van verschillende 

parameters zoals het microfluïdisch design, afschuif-, en grensvlakspanningskrachten op 

druppelvorming en de uiteindelijke druppelgrootte worden bediscussieerd, alsmede het 

gebruik van microfluïdische methoden om emulsies te produceren geschikt voor toepassing 

in levensmiddelen. Gebaseerd op deze evaluatie zijn methodes gekozen om 

grensvlakspanning en coalescentie stabiliteit te meten, en deze zijn beschreven in de 

volgende hoofdstukken. 

Om emulgatoradsorptie te meten in de sub-milliseconden tijdschaal is een tensiometrische 

methode ontwikkeld waarbij een langsstroom-microfluïdische Y-splitsing wordt gebruikt, 

zoals beschreven in Hoofdstuk 3. Deze methode is gebaseerd op de relatie tussen 

druppelgrootte en de grensvlakspanning op het moment van druppelvorming, de heersende 

grensvlakspanning genaamd. De heersende grensvlakspanning is succesvol gemeten voor 

een systeem bestaande uit hexadecaan (disperse fase) en natriumdodecylsulfaat (SDS, een 

model emulgator) oplossingen (continue fase) voor druppelvormingstijden variërend van 

0.4 tot 9.4 milliseconden en met hoge expansiesnelheden (100-2000 s-1). Vergelijking van 

deze resultaten met data verkregen met een druppeltensiometer (een conventionele, 

statische methode die meet in het seconden bereik) duidt aan dat massatransport in de 
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microfluïdische Y-splitsing dusdanig snel is dat die waarschijnlijk niet gelimiteerd wordt 

door diffusie. 

De massatransportcondities zijn verder onderzocht in Hoofdstuk 4. De viscositeit en 

snelheid van de continue fase zijn systematisch gevarieerd en het effect op de heersende 

grensvlakspanning in de aanwezigheid van wateroplosbaar SDS is gemeten. We hebben 

gevonden dat de heersende grensvlakspanning onafhankelijk is van de viscositeit, en 

omgekeerd evenredig met de snelheid van de continue fase. Door beide aspecten 

concluderen wij dat convectief emulgatortransport de acterende oppervlaktespanning in de 

Y-splitsing bepaalt. Voor het olie-oplosbare Span 20 (opgelost in hexadecaan) daalt de 

acterende oppervlaktespanning bij toenemende snelheid van de continue fase, en dat geeft 

aan dat ook massatransport van emulgatoren opgelost in de te dispergeren fase door 

convectie wordt gedomineerd. 

De Y-splitsing methode is gebruikt in Hoofdstuk 5 om het effect van de disperse fase-

viscositeit op adsorptie van emulgatoren geschikt voor toepassing in levensmiddelen, 

Tween 20 (opgelost in de continue waterfase) en Span 20 (opgelost in de disperse oliefase), 

te verhelderen. Bij lagere viscositeit van de disperse fase neemt adsorptie van Tween 20 

toe, waarschijnlijk omdat de kortere koolwaterstofketen intercalatie op het 

emulsieoppervlak vergemakkelijkt. De viscositeit van de disperse fase heeft een additioneel 

effect omdat convectief transport van Span 20 naar het emulsieoppervlak verhoogd wordt 

bij lagere viscositeit. 

Naast de grensvlakspanning kan ook coalescentie worden gemeten met microfluïdische 

methoden en in Hoofdstuk 6 wordt de coalescentiestabiliteit kort na druppelvorming onder 

stroming bepaald. Coalescentie van emulsies gestabiliseerd met eiwitten is gemeten voor 

verschillende concentraties, pH waarden, en adsorptietijden. We hebben gevonden dat 

oppervlakken die naar verwachting een bedekking hebben die net onder monolaag 

bedekking ligt al effectief beschermd worden tegen coalescentie. β-lactoglobuline-

gestabiliseerde emulsies waren het meest stabiel. Emulsies gestabiliseerd met wei eiwit 

isolaat (met als hoofdbestanddeel β-lactoglobuline) waren minder stabiel, en als deze 

eiwitten waren geoxideerd leidde dit tot een verdere reductie van stabiliteit. Dit geeft aan 

dat ook de oxidatieve staat van eiwitten van belang is voor emulsieformulering. 
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De relevantie van ons werk voor microfluïdisch onderzoek en industriële 

emulgeerprocessen is bediscussieerd in Hoofdstuk 7. Microfluïdische methoden kunnen 

worden gebruikt om emulsievorming en -stabiliteit onder condities relevant voor industriële 

emulgeerprocessen te onderzoeken; dat wil zeggen gebruikmakend van korte tijdschalen en 

met convectief massatransport. In dit proefschrift zijn verschillende ingrediënten gebruikt 

die geschikt zijn voor toepassing in levensmiddelen, en daarmee is toepassing in dat veld 

dichterbij gekomen. We verwachten dat deze vindingen ook kunnen worden toegepast op 

schuim. Met de besproken microfluïdische methoden kunnen verschillende aspecten die 

van belang zijn tijdens emulsievorming ontkoppeld worden: bijvoorbeeld 

grensvlakspanning tijdens druppelvorming en stabiliteit van emulsies tegen coalescentie. 

Verder zijn er microfluïdische methoden waarmee bijvoorbeeld inzicht kan worden 

verkregen in oppervlaktemobiliteit en emulsiestabiliteit tijdens opslag, en we voorzien dat 

al deze microfluïdische methoden zullen leiden tot snellere ingrediëntscreening, verlaging 

van ingrediëntgebruik, en een efficiëntere emulsieproductie. 
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