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Abstract 

Modelling of ammonia volatilisation in fertilised and flooded rice systems 

In flooded rice systems that are broadcast with urea, significant amounts of nitrogen (N) may 

be lost to the atmosphere in the form of ammonia (NH3). Many models with different 

complexities with regards to describing the process of NH3 volatilisation and the overall N 

dynamics in the systems are available. However, given the differences in local conditions, 

both too simple and too complex models may not be able to predict NH3 volatilisation 

correctly or may lead to large prediction uncertainties. Therefore, the main objective of this 

thesis is to provide a framework to determine an appropriate process-based model with 

corresponding uncertainty characteristics for estimating NH3 volatilisation in fertilised and 

flooded rice systems.  

As a first step in the selection of a model for a specific application, an overview on the 

modelling concepts and the performance of 14 models developed to simulate N dynamics in 

flooded soil systems is given. Next, in order to understand differences in modelling concepts 

for a specific process, co-validation was conducted at single process level: urea hydrolysis, 

NH3 volatilisation, and floodwater pH. Then, a new process-based model for estimating NH3 

volatilisation in fertilised and flooded rice systems, which is of a complexity appropriate for 

scarce soil N data, is presented and evaluated with field observations. For the flooded rice 

systems in the Philippines, conceptualisation of the two-step urea hydrolysis, partitioning 

between ammonium and NH3, and a time-varying rate coefficient of NH3 volatilisation in the 

proposed model improved the prediction of the net NH3 loss. Subsequently, a set-membership 

parameter estimation approach with soft-error-bounds was used to characterise the uncertainty 

in the parameter estimates in the proposed model. The set-membership approach is 

appropriate for poor quality data sets as it allows simultaneous consideration of the different 

sources of uncertainty affecting the model prediction, such as uncertainty in the model 

structure, parameters, and observations. Findings of this study can be used as criteria for 

stakeholders to make an informed selection of models, to modify the existing models for a 

specific purpose, and to interpret model-output responses critically. 

Keywords: ammonia volatilisation, nitrogen, flooded soil, flooded rice, dynamic modelling, 

parameter estimation, set-membership 



 



 

Nomenclature 

C  Carbon 

CEC  Cation exchange capacity 

CO2  Carbon dioxide 

DAT  Days after transplanting 

FPS  Feasible parameter-vector set 

N  Nitrogen 

N2  Dinitrogen 

NH3   Ammonia 

NH4
+
  Ammonium 

NO2
-
  Nitrite 

NO3
-
  Nitrate 

NO   Nitric oxide 

N2O  Nitrous oxide 

O2  Oxygen 

P  Phosphorus 

PAB  Photosynthetic aquatic biomass (i.e., algae) 
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1.1 General Introduction 

Rice is staple food for more than half of the world’s population (Redfern et al., 2012). In 

2012, about 156 million ha of rice were harvested worldwide, and about 88 % and 31 % of the 

global harvested area were in Asia and South East Asia, respectively (FAO, 2013). About 95 % 

of global rice production occurs on soil that is flooded during at least part of the rice-cropping 

period (Buresh et al., 2008). 

In South East Asia, rice is mainly cultivated by smallholder farmers, on harvested area of 

typically less than 4 ha per farmer (Hossain and Fischer, 1995, Molle and Srijantr, 2000, 

Estudillo and Otsuka, 2006, Aimrun et al., 2011, Kamaruddin et al., 2013). Rice cultivation is 

one of the central subjects of the economic policy and factors in national objectives in South 

East Asia (Redfern et al., 2012, Kamaruddin et al., 2013). 

Nitrogen (N) deficiency results in severe yield losses, hence, N is considered as one of the 

most important nutrients for rice crops (De Datta, 1986, Sinclair and Jamieson, 2006, Makino, 

2011). Although 78 % of the atmosphere is composed of dinitrogen (N2), it is neither in a 

chemically nor a biologically usable form, because of the strong triple bond (Galloway et al., 

2004). Unlike the non-reactive N2, N in the form of ammonia (NH3) is reactive and can be 

utilised as a source of N fertiliser. 

In the early 20th century, Fritz Haber invented the Haber-Bosch process to produce NH3 by 

reacting atmospheric N2 with hydrogen in the presence of iron at high pressure, approximately 

20 MPa, and high temperature, between 400 C and 500 C (Erisman et al., 2008, Zuberer, 

2005). This process consumes a lot of energy: about 875 cubic meters of natural gas is used to 

fix one metric tonne of NH3 (Zuberer, 2005). About 80 % of the total N manufactured via the 

Haber-Bosch process is used for producing agricultural fertilisers (Erisman et al., 2008). Of the 

total agricultural fertilisers produced, it is estimated that 14 % is used for rice production in the 

year 2010/11, comparable to the amount required for wheat (Heffer, 2013). 

1.2 Characteristics of flooded rice systems 

In Asia, flooded rice systems may have three distinct soil layers: plough, hard pan, and 

subsoil layers (Fig. 1). Hard pan is developed between the plough and subsoil layers, and is 
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found between 0.10 m to 0.30 m from the ground surface (Kundu and Ladha, 1999, Chen and 

Liu, 2002, Aimrun and Amin, 2009). 

 

 

 

 

 

 

 

Fig. 1 General characteristic of flooded rice systems 

The hard pan is formed in two ways; physical compaction due to repeated puddling of the 

plough layer, which is then followed by use of heavy machineries, or chemical precipitation 

of ferum, manganese, and silica (Sharma and De Datta, 1986). The hard pan has the lowest 

permeability compared to the other two layers, and, therefore, regulates the percolation rates 

in flooded rice systems (Aimrun and Amin, 2009). The hard pan may also restrict growth of 

rice roots beyond the layer (Aimrun and Amin, 2009). 

The overall percolation rate in flooded rice systems is site specific, ranging from 1 mm day
-1 

to as high as 30 mm day
-1

 (Sharma and De Datta, 1986, Nakasone et al., 2004, Tsubo et al., 

2005, Aimrun et al., 2010). Additionally, lateral seepage through the adjacent bund in flooded 

rice systems is also reported (Liang et al., 2014). 

In flooded rice systems, penetration of oxygen (O2) is reported only in the upper 1 mm to 6 

mm of the plough layer (Liesack et al., 2000, Nicolaisen et al., 2004). The limited O2 

penetration creates the thin aerobic layer at the surface of the plough layer (Patrick and 

Reddy, 1976, Reddy, 1982, Liesack et al., 2000). The plough layer is mainly anaerobic as O2 

in the layer rapidly depletes due to greater consumption of O2 by the crop and microbial 

activity compared to the renewal rate of O2 through the floodwater (Reddy, 1982, Liesack et 
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al., 2000). Additionally, micro aerobic zones are formed within the rhizosphere in the plough 

layer, due to active release of O2 by rice roots (Patrick and Reddy, 1976, Liesack et al., 2000, 

Nicolaisen et al., 2004, Kirk and Kronzucker, 2005). The characteristics of flooded rice 

systems described in this section affect the N pathways in the system. 

1.3 Nitrogen cycles in fertilised and flooded rice systems 

In addition to applied synthetic N, rice crops may obtain N via N2 biological fixation and 

organic N mineralisation (Ladha and Reddy, 2003). The rice crop absorbs N in the form of 

dissolved ammonium (NH4
+
)
 
or nitrate (NO3

-
) that are present within the rice crop root zone 

(Kirk and Kronzucker, 2005, Brady and Weil, 2008). In addition, the NH4
+ 

or NO3
-
 may 

undergo other pathways such as NH3 volatilisation, simultaneous nitrification and 

denitrification, leaching, dissimilatory NO3
-
 reduction to NH4

+
, and immobilisation of N 

(Patrick and Reddy, 1976, Reddy, 1982) (Fig. 2). 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Diagrammatic representation of possible N pathways in fertilised and flooded rice 

systems. Adapted from Reddy (1982), Jetten (2008), and Ward (2012). Red arrows indicate 

pathways of N sinks in the systems 
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In flooded rice systems, NH3 volatilisation is, in general, claimed to occur from the 

floodwater surface (Section 1.6). Nitrification is oxidation of NH4
+
 to NO3

-
, and, therefore it 

occurs in any of the three aerobic zones: the floodwater, the thin aerobic plough layer, or the 

rhizosphere (Reddy, 1982, Rao et al., 1984). Denitrification is reduction of NO3
- 
that results in 

N2O as the intermediate product, and N2 as the final product, and therefore takes place within 

the anaerobic plough layer (Reddy, 1982). Dissimilatory NO3
-
 reduction to NH4

+ 
also occurs 

in the anaerobic plough layer, and this process may limit the amount of NO3
-
 available for 

denitrification (Buresh and Patrick, 1978, Yin et al., 2002). In addition, anaerobic NH4
+
 

oxidation (Anammox), where NO2
-
 and NH4

+
 are directly converted into N2, was recently 

reported in flooded rice soil systems (Zhu et al., 2011). 

The transport of NH4
+
 and NO3

-
 between the floodwater and soil occurs by either diffusion or 

mass transfer with percolated water (Reddy, 1982). Unlike the positively charged NH4
+
, 

which may bind with the negatively charged clay particles, the negatively charged NO3
-
 is 

susceptible to leaching (Reddy, 1982). 

1.4 Synthetic nitrogen fertiliser types and application methods in flooded rice systems 

Synthetic N fertilisers can be of several forms: urea, NO3
-
, NH4

+
, or a combination of NO3

-
 

and NH4
+
 (e.g., potassium nitrate, ammonium sulphate, and ammonium nitrate). Due to pricy 

ammonium sulphate in the current market and potential use of ammonium nitrate as 

explosive, urea (CO(NH2)2; 460 g N kg
-1

) remains the primary source of N fertiliser in the 

market (Soares et al., 2012).  

NO3
- 

based fertilisers are not recommended in flooded rice systems due to potential N loss 

through denitrification in the anaerobic plough layer (Reddy, 1982). In flooded rice systems, 

urea continues to be the primary source of synthetic N. The conventional method for 

application is via broadcast of granular urea on the floodwater. Once urea is broadcast on the 

floodwater, urea is hydrolysed into NH4
+
, and the chemical equations are as follows 

(Palanivell et al., 2015): 

(NH2)2CO + 2H2O
𝑢𝑟𝑒𝑎𝑠𝑒
→    (NH4)2CO3 

(NH4)2CO3 +2H
+ → 2NH4

+ + CO2 + H2O       (1) 
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However, global estimates indicated that fertiliser N recovery by rice crop averages 46 % in 

rice systems (Ladha et al., 2005). In order to minimise loss of N to the environment (Section 

1.5), different fertiliser technologies were developed and tested in order to increase retention 

time of N in the rice systems, which allow the rice crop to absorb the released N. Among the 

technologies tested were split N fertiliser application, use of coated N fertilisers, use of 

specific enzyme inhibitors, deep placement of N fertiliser, and incorporation of N fertiliser 

into the soil via puddling (Vlek et al., 1980a, Vlek et al., 1980b, Craswell et al., 1981, Cao et 

al., 1984, Buresh et al., 1988, De Datta et al., 1988, Yang et al., 2013, Peng et al., 2015, Liu et 

al., 2015). 

1.5 Overall nitrogen losses in fertilised and flooded rice systems 

Table 1 shows the percentages of N loss via three major pathways in fertilised and flooded 

rice systems. The table demonstrates that N loss via NH3 volatilisation, denitrification and NO3
-
  

leaching in fertilised and flooded rice systems are equally important ranging from negligible to 

about 50 % or 60 % of total N applied.  

Table 1 Pathways of N in fertilised and flooded rice systems 

N pathway N loss of total N applied 

NH3 volatilisation Negligible to 60 % (Fillery et al., 1984, Fillery et al., 1986, Hayashi et al., 

2006, Lin et al., 2007, Liang et al., 2014, Chen et al., 2015) 

Denitrification Negligible to 50 % (Buresh and De Datta, 1990, Freney et al., 1990) 

NO3
-
  leaching Negligible to 60 % (Peng et al., 2015) 

N uptake by rice crop 35 to 50 % (De Datta et al., 1991, Liang et al., 2014, Fageria et al., 2014) 

 

In the following, each of the pathways is discussed in more detail. Firstly, ammonia (NH3) 

volatilisation from the floodwater is claimed as one of the major pathways of N losses in 

fertilised and flooded rice systems, when urea is broadcast on the floodwater and not followed 

with incorporation of the urea into the soil (Fillery et al., 1984, Fillery et al., 1986, Freney et al., 

1990, Buresh et al., 2008). In the year 1995, about 20 % of the 11.8 million tons of synthetic N 

yearly applied in flooded rice fields globally was estimated to be lost via NH3 volatilisation 

(Bouwman et al., 2002). In addition to economic losses, NH3 volatilisation from fertilised and 

flooded rice systems has negative effects on the environment, for instance acid rain and global 

warming (Sommer et al., 2004), and was also recently reported a potential concern in public 

health as NH3 reacts with other air pollutants to create tiny particles that can lodge in the 

lungs (Stokstad, 2014). In Sections 1.6 and 1.7, details on mechanisms of NH3 gas exchange in 
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crop systems and sources of variation in observations of NH3 flux, respectively, are further 

discussed. 

Secondly, the rate of denitrification is limited by the rate of nitrification (Section 1.3). The rates 

of these processes are likely to be site specific and depend on the population of microbes and 

irrigation practice. Accurate measurement of denitrification in the field is difficult because the 

final product is N2, and, thus, cannot be easily distinguished from the N2 that is naturally present 

in the atmosphere (De Datta et al., 1991, Groffman et al., 2006). Moreover, N2 may also be 

released via Anammox (Zhu et al., 2011). Nevertheless, high rate of N loss via denitrification is 

observed to occur in rice systems with intermittent flooding management (Akiyama et al., 2005, 

Zhao et al., 2011, Linquist et al., 2012). In continuously flooded soil, N loss via denitrification 

may be assumed negligible as nitrification may be limited. However, by running a semi-

physical model, Kirk and Kronzucker (2005) suggested that nitrification occurs in the 

rhizosphere under flooded condition, but the NO3
-
 resulting from the nitrification is quickly 

absorbed by rice roots. 

Thirdly, leaching is suggested to be limited to N in the form of NO3
-
 (Section 1.3). In flooded 

soils, NO3
-
 leaching is regulated by saturated hydraulic conductivity, which is dependent on the 

soil type and texture, and may range from 1 mm day
-1

 to 20 mm day
-1

 (Aimrun et al., 2007). 

Which of the three N pathways contributes to N losses appears to be dependent on physical and 

chemical properties of floodwater and soil, and the practised N and irrigation managements. 

Trade-off between these major pathways was also observed. For instance, Freney et al. (1990) 

demonstrated that when the rate of NH3 volatilisation was reduced by incorporating urea into 

the soil, the rate of nitrification increased. A low hydraulic saturated conductivity may cause 

accumulation of total ammoniacal-N in the floodwater after N application, which may be 

susceptible to NH3 volatilisation. These trade-off mechanisms may contribute to variation of N 

loss for all three N processes (Table 1). Other factors that could contribute to the large 

variations of N losses include the types of N fertiliser applied, rates, timing and methods of N 

fertiliser application, irrigation practices, methods of rice crop planting, or methods of 

measurements. 

1.6 Mechanisms of ammonia gas exchange in crop systems 

In order to infer the sinks and sources of NH3 in arable crop systems, the models that describe 
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the process of canopy gas exchange and the inverse Lagrangian analysis were proposed. The 

models of canopy gas exchange are often based on analogy to electrical resistances where the 

network of fluxes are described by resistances in series or parallel, resulting in several types 

of canopy resistance and canopy compensation point models (Erisman et al., 1994, Nemitz et 

al., 2000b, Denmead et al., 2008, Wichink Kruit et al., 2010, Massad et al., 2010). 

The single-layer canopy compensation point resistance model allows for bi-directional NH3 

flux through a stomatal pathway and a uni-directional or a bi-directional non-stomatal leaf 

pathway. The stomatal pathway is regulated by the stomatal resistance Rs and the stomatal 

compensation point 𝜒𝑠. The 𝜒𝑠 is the NH3 gas concentration in the sub-stomatal cavity. 

Assuming a scenario where the stomatal exchange is the only pathway, the NH3 is emitted 

through the stomata if the 𝜒𝑠 is greater than the canopy compensation point 𝜒𝑐, and NH3 is 

absorbed through the stomatal pathway when 𝜒𝑠 < 𝜒𝑐. The Rs is dependent on leaf 

morphology, leaf area index, photosynthetically active radiation, temperature, pH, and water 

status, whereas the 𝜒𝑠 is dependent on pH and concentration of NH4
+
 in the apoplast of a leaf, 

and the leaf surface temperature. The deposition of NH3 to leaf cuticles is regulated by the 

cuticular resistance Rw, which is dependent on leaf wetness, atmospheric NH3 concentration 

and temperature (Farquhar et al., 1980, Nemitz et al., 2000b, Massad et al., 2010, Wichink 

Kruit et al., 2010, Schrader et al., 2016). 

The multi-layer resistance models are needed if additional sinks and sources occur at different 

heights of the canopy or from sources other than canopy-like litters on the soil surface. In 

order to conceptualise the additional sinks and sources, more parameters were introduced in 

the multi-layer models. For instance, three additional parameters were conceptualised in order 

to describe bi-directional NH3 flux from the leaf litters on the soil surface (Nemitz et al., 

2000b), and more parameters were needed to describe NH3 flux from the soil surface (Pleim 

et al., 2013). 

Estimation of some of the parameters in the resistance models is highly uncertain and requires 

extensive sets of observations. For instance, Nemitz et al. (2000b) estimated the 

dimensionless NH3 emission potential of litter (Γl = [𝑁𝐻4
+]/[𝐻]+ in the leaf litter) on three 

occasions and Γl had values ranging from 3000 to 13000, and the value was suspected to vary 

between day and night time. Wichink Kruit et al. (2010) reported that the dimensionless 

potential NH3 emission of stomata (Γs = [𝑁𝐻4
+]/[𝐻]+ in the leaf apoplast), which regulates 
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the 𝜒𝑠, appears to be affected by crop physiology which is dependent on many factors such as 

crop growth stages, climate conditions and N fertiliser and irrigation practices, but 

dependencies of Γs on these factors have not been distinguished. Moreover, there is 

uncertainty in the estimated Γs due to the use of different measurement methods (Massad et 

al., 2010). It should also be noted that the results obtained through simulation of resistance 

models of crop gas canopy exchange could also contradict with the results obtained from 

inverse Lagrangian analysis as shown in Nemitz et al. (2000b). 

Nevertheless, by coupling the inverse Lagrangian analysis to models of crop gas exchange, 

insights in NH3 cycling in arable crop systems were obtained. For instance, Harper et al. 

(2000) reported that 79 % of the net NH3 loss was emitted from the surface of the corn leaves, 

and not through a stomatal pathway,  most likely from residues that remained on the surface 

of the leaves following overhead sprinkler application of dairy effluent, and 21 % of net NH3 

loss was emitted from the soil surface. Nemitz et al. (2000a) reported that the net NH3 loss in 

a field with a mature oilseed rape canopy (𝐿𝐴𝐼 = 5.3) was most likely due to NH3 emitted by 

the siliques and not by the leaves. Nemitz et al. (2000a) also showed that the volatilised NH3 

from the ground surface possibly from the decomposition of the leaf litters was recaptured by 

the lower half of the oilseed rape crop. Denmead et al. (2008) reported that 20 % of total NH3 

volatilised from the soil surface that was fertilised with urea was recaptured by the leaves of 

sugarcane (𝐿𝐴𝐼 = 2.0), and the amount of NH3 recaptured by the leaves increased when 𝐿𝐴𝐼 

increased, up to 𝐿𝐴𝐼 = 2.0. Ferrara et al. (2014) identified the soil in a sorghum field as the 

main emitter of NH3 after urea application as the soil compensation point is about 6 times 

greater than the canopy compensation point. These studies suggest non-stomatal pathways in 

arable crop systems. 

In contrast, for fertilised and flooded rice systems, Hayashi et al. (2008) suggested that the 

stomatal pathway contributed to the net NH3 loss, in addition to NH3 volatilisation from the 

floodwater surface. Hayashi et al. (2008) estimated the bi-directional NH3 mission or 

absorption through the stomata by subtracting the net NH3 loss measured using the wind 

tunnel approach from the NH3 volatilisation from the floodwater surface estimated using the 

Jayaweera and Mikkelsen (1990) model. Based on laboratory experiments, Kumagai et al. 

(2011) reported that the rate of NH3 emission through a stomatal pathway varied among 

different rice cultivars due to differences in concentrations of NH4
+
 in the leaves of the 

cultivars, which were partially dependent on glutamine synthetase activity. However, 
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compared to arable crop systems, little is known about the details of NH3 cycling within a rice 

crop canopy. In fertilised and flooded rice systems, the net NH3 loss, in general, is suggested 

to occur from the floodwater surface after an N fertiliser application (Fillery et al., 1984, Chen 

et al., 2015). 

NH3 volatilisation from the floodwater surface is regulated by five factors: concentration of 

total ammoniacal-N in the floodwater, wind speed, floodwater pH, temperature, and depth 

(Jayaweera and Mikkelsen, 1990). The floodwater pH governs partitioning of total 

ammoniacal-N into NH3 or NH4
+ 

(Reddy, 1982). At pH value greater than 8, N is 

predominantly present in the form NH3, and, thus, NH3 volatilisation is found to be 

substantial under this condition, provided concentrations of total ammoniacal-N in the 

medium are high (Reddy, 1982). The concentration of ammoniacal-N in the floodwater is 

directly affected by the floodwater depth (Jayaweera and Mikkelsen, 1990). At a higher wind 

speed and higher floodwater temperature, NH3 is stripped from the floodwater at a faster rate 

(Fillery et al., 1984, Fillery et al., 1986). However, the effect of wind speed on NH3 

volatilisation from the floodwater surface is reduced with increasing crop canopy cover 

(Fillery et al., 1984, Fillery et al., 1986). 

1.7 Measurements of NH3 loss from fertilised and flooded rice systems 

Two common types of methods for the measurement of NH3 fluxes are the micrometeorological 

and enclosure methods. The micrometeorological methods are advantageous because the 

methods minimise the external disturbance during sampling and integrate across 

heterogeneities in the experimental area (Freney et al., 1983, Sommer et al., 2004). Therefore, 

the measurements obtained using micrometeorological methods can be regarded as the net 

NH3 loss. Several micrometeorological methods such as the mass balance, ZINST, 

aerodynamic gradient, and eddy co-variance techniques have been discussed in Sommer et al. 

(2004) and Harper et al. (2005). The eddy covariance technique, which is one of the most 

direct and least error-prone micrometeorological methods, requires measurements of NH3 at 

high time resolution. This was recently made possible with substantial progress in the 

development of tunable laser absorption spectrometers and quantum cascade lasers (Ferrara et 

al., 2012). 

The enclosure methods can be categorised into three: static chambers, dynamic chambers, and 

wind tunnels. A static chamber is placed on the soil surface and without air flow through the 
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head-space (Sommer et al., 2004), whereas a dynamic chamber is typically with lids that can 

be removed through which air can be pumped out (Kissel et al., 1977). A basic design of a 

wind tunnel can be found in Lockyer (1984). These enclosure methods are developed to allow 

comparison of rates of NH3 volatilisation across treatments and locations, and only require a 

small area for implementation, e.g., 1 m
2
 area or less (Smith et al., 2007). 

The extraction air speed of a dynamic chamber is typically lower than the natural wind speeds 

observed in rice systems. The extraction of NH3 through the outlet of a dynamic chamber was 

reported to reach maximum at 15 exchange volume min
-1

, which approximated to wind speed 

less than 0.2 m s
-1

 (Kissel et al., 1977, Hayashi et al., 2008). Meanwhile, Fillery et al. (1984) 

reported wind speeds ranging from about 1 m s
-1

 to 8 m s
-1

 at 1.2 m above the floodwater. It 

may be possible to modify the chambers to match the external wind speed (Cabrera et al., 

2001), but Miola et al. (2015) expressed concern that the air flow dynamics and micro-climate 

within the static and dynamic chambers may significantly differ from natural field conditions. 

Meanwhile, good agreement was observed between the NH3 fluxes measured using the wind 

tunnel and the NH3 fluxes measured using the micrometeorological methods when wind speed 

in the wind tunnel was adjusted to match the ambient wind speed (Ryden and Lockyer, 1985, 

Smith et al., 2007, Sommer and Misselbrook, 2016). 

Unlike the micrometeorological methods, measurements obtained using static and dynamic 

chambers may be least representative of the net NH3 loss when the observed value based on 

small area is scaled up (Ni et al., 2015), and may represent only the rates of NH3 volatilisation 

from floodwater surface as it is unlikely that these chambers would contain rice seedlings due 

to their small volumes.  Meanwhile, a wind tunnel was modified by Hayashi et al. (2008) to 

contain eight rice seedlings in the wind tunnel in order to measure the net NH3 loss in a 

flooded rice system. 

Table 2 presents the percentage of NH3 loss of the total N applied measured using 

micrometeorological and enclosure methods in rice systems with the following 

characteristics: 1) urea was the source of N fertiliser, 2) urea was broadcast on the floodwater 

and without subsequent incorporation into the soil, and 3) the rice systems were flooded for 

several days after urea application. These conditions were claimed conducive to NH3 

volatilisation in fertilised and flooded rice systems (Section 1.6). Additionally, rate and time 

of urea-N application, and the regulating factors of NH3 volatilisation are also included in 
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Table 2. 

Although information in Table 2 is restricted to rice systems with conditions that are claimed 

conducive to NH3 volatilisation from the floodwater, still large variations in percentage of 

NH3 loss were observed. The large variation may be attributed to rates of urea-N application 

relative to rice crop growth stages, and physical and chemical properties of floodwater and 

soil. Other plausible causes are the different time, duration, and frequency of sampling, and 

resolution of NH3 concentration (Harper, 2005).  

Miola et al. (2015) expressed concern that the rates of NH3 volatilisation may be 

underestimated due to lack of air movement in the chambers, but Liu et al. (2015) reported 

both low and high NH3 loss at a late crop growth stage using static chambers, i.e., 24 % of 

total urea-N applied on 67 DAT and 50 % of total urea-N applied on 63 DAT (Table 2). 

Although extraction air speeds of the dynamic chambers are lower than natural wind speed 

observed in rice systems, high rates of NH3 volatilisation (greater than 40 % of N applied) 

were observed by Li et al. (2008) using the dynamic chamber methods (Table 2). Meanwhile, 

NH3 loss measured using the micrometeorological methods ranges from 3 % to 54 % of total 

N applied. Lower NH3 volatilisation in Griffith was possibly due to lower wind speed following 

urea application and high denitrification rate which is site specific (Freney et al., 1988, 

Humphreys et al., 1988). 

Despite the variation in measurements of NH3 volatilisation rates and regardless of methods 

of measurements, some data in Table 2 suggest substantial N loss via NH3 volatilisation in 

flooded soil systems with a young rice crop when high rate of urea is broadcast onto the 

floodwater and without subsequent incorporation into the soil, provided the environments are 

conducive to NH3 volatilisation and there is no competing N loss pathways (see Section 1.6). 

In addition, the percentages of NH3 volatilisation with respect to the total N applied appear 

dependent on the rate of urea application relative to the stage of rice crop growth. 

1.8 Mitigation of NH3 loss in fertilised and flooded rice systems 

As far as NH3 volatilisation is concerned, deep placement of urea between 0.07 m to 0.10 m 

from the flooded soil surface was recommended to substantially reduce NH3 volatilisation 

(Craswell et al., 1981, Cao et al., 1984, Liu et al., 2015).   
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Deep placement of urea reduced total ammoniacal-N in the floodwater, and, consequently, less 

NH3 is susceptible to volatilisation from the floodwater. Use of coated urea also reduces the 

risk of N leaching in soil with high permeability (light textured soil) (Vlek et al., 1980a, Peng et 

al., 2015). 

However, the advantages of N fertiliser technologies that were pointed out in research studies 

are often not enough to motivate smallholder rice farmers in developing countries to adopt the 

recommended technology (Fujisaka, 1994). For instance, in Peninsular Malaysia and possibly in 

other countries in Southeast Asia as well, the conventional broadcast of urea on the floodwater 

without incorporation into the soil is still widely adopted, regardless of the alternative 

application methods that were introduced since the 1980’s. The immediately incurring cost and 

the delayed and risky benefits possibly hinder technology adoption (Fujisaka, 1994).  

Without technical and financial support from local authorities of developing countries, and 

actual field demonstration where farmers can actively participate to learn and apply the 

recommended technology, local smallholder rice farmers are not likely convinced of the energy 

efficiency and other benefits of the recommended methods (Fujisaka, 1994, Corales et al., 

2015). Adoption of technology has to be on a significant scale to be economically and 

environmentally advantageous. Until then, NH3 volatilisation may remain significant in 

fertilised and flooded rice systems. 

1.9 Research challenges 

Earlier, we have deduced that the NH3 volatilisation from the floodwater is one of the major N 

loss pathways in fertilised and flooded rice systems that are broadcast with urea (Sections 1.6 

and 1.7). The importance of this process prompted the development of mathematical models 

to estimate NH3 volatilisation from the floodwater in flooded soil systems with or without a 

rice crop. 

Since the 1980’s, models for the estimation of NH3 volatilisation from the floodwater surface 

were developed either for scientific insights into the N dynamics of fertilised and flooded rice 

systems or as alternatives to tedious field and lab experiments (Rao et al., 1984, Jayaweera and 

Mikkelsen, 1990, Singh and Kirk, 1993, Chen et al., 2015). NH3 volatilisation is also 

conceptualised into N dynamics models that were developed for scenario studies in fertilised 

and flooded rice fields to make recommendations on management practices (Godwin and Singh, 
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1998, Li et al., 2004, Jing et al., 2010, Gaydon et al., 2012b), or to estimate the seasonal N 

balances (Chowdary et al., 2004, Antonopoulos, 2010). 

These models have varying complexities with regards to describing the process of NH3 

volatilisation. For instance, the process of NH3 volatilisation from the floodwater surface is 

merely approximated by a first-order process in the lumped-parameter model of Chowdary et 

al. (2004). In contrast, the NH3 volatilisation is detailed as a function of ambient wind speed, 

floodwater depth, pH, and temperature in models of Jayaweera and Mikkelsen (1990) and 

Gaydon et al. (2012b) (i.e., APSIM-Oryza).  

Some of these models also have varying complexities with regard to describing the overall N 

dynamics in the fertilised and flooded soil systems with or without a rice crop. For instance, 

NFLOOD by Rao et al. (1984) divided the floodwater and soil compartments into several 

vertical layers where solute transport between these layers is governed by diffusion. 

Meanwhile, Chowdary et al. (2004), Liang et al. (2007) and Antonopoulos (2010) assumed 

homogeneous compartments of floodwater and soil. Models by Jayaweera and Mikkelsen 

(1990) and Rao et al. (1984) did not conceptualise the effect of a rice crop. Rao et al. (1984) 

and Chowdary et al. (2004) assumed an additional N sink in the floodwater, i.e., nitrification, 

whereas in APSIM-Oryza nitrification is assumed negligible in flooded soil (Gaydon et al., 

2012b). 

With progress in the development of the models for simulating N dynamics in flooded soil 

systems, with and without a rice crop, the present challenges are, therefore, i) to evaluate 

which of the existing models have the appropriate model structure for estimating NH3 

volatilisation in fertilised and flooded rice systems that was broadcast with urea, ii) to propose 

modifications that will improve the model’s performance, and iii) to characterise the 

uncertainty in the model given poor quality field observational data sets and model structure 

inadequacy. Poor quality data refers to small number of observations or large errors in the 

observations, or both. 

Simpler process-based models are easy to understand and simulate, but these models may 

treat important mechanisms lightly. Meanwhile, complex process-based models detail out the 

systems, but these models may be over-parameterised to such an extent that some of the 

parameters cannot be estimated from the limited observational data sets available. Fig. 3 

summarises the trade-off between prediction error and model complexity, where an increase 
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in model prediction error is expected when a model is too simple or too complex.  The art of 

modelling is to find the optimal complexity for a given modelling purpose.  

 

 

 

 

 

 

 

Fig. 3 Training and prediction error for new observational data set (adapted from Dieterle 

(2003), after Martens and Naes (1989)) 

Selection of models should be based on users’ research objectives, concepts and structures of 

the models with respect to prior knowledge of the physical systems, and performances of the 

models (Norton, 1986, Jakeman et al., 2006, Bellocchi et al., 2010, Keesman, 2011, Bennett 

et al., 2013). To the best of our knowledge, many of the models that can simulate the NH3 

volatilisation from the floodwater have never been co-validated with one another. Co-

validation is the assessment of proximity of one model to alternative models by comparing the 

prediction of the models’ common outputs (Bellocchi et al., 2010). Therefore, evaluation 

criteria for selection of models for estimating NH3 volatilisation in fertilised and flooded rice 

systems are currently limited to the objectives of the models defined by the modellers, and 

performances of the models with respect to observational data sets. Although confidence in 

models can be increased by performing extensive evaluation against observational data sets 

(Bellocchi et al., 2010), this approach may be difficult when reliable observational data sets 

for thorough evaluation of models are limited.  

Ill-defined systems are characterised by unrepresentative (poor quality) observational data 

sets (Young et al., 1978), often attributed to measurement difficulties, and lack of physical a 

priori knowledge. As such, the fertilised and flooded rice systems can be characterised as ill-
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defined systems. The systems are complex with many interactive processes that vary with 

time and differ between locations. For instance, in the case of NH3 gas exchange in fertilised 

and flooded rice systems, the dominant pathways of NH3 loss, either from the floodwater 

surface or through the stomata of the rice crop, are not entirely known. The NH3 volatilisation 

from the floodwater surface is regulated by time-varying process variables (Section 1.6), but 

some of these variables were either reported at poor time resolution or not available at all. 

Also, Section 1.7 gives an overview on the sources of variation in observation of NH3 loss.  

Calibration of soil N parameters in models are reported to be hindered by scarcity of soil N 

data as reported by Gaydon et al. (2012a), Katayanagi et al. (2013) and Liang et al. (2014). 

Earlier, Cassman et al. (2002) have already suggested that realistic prediction of soil N 

dynamics using models is difficult due to complexity of the interactive N processes. In field 

experiment, not all of the sinks of applied N would be measured simultaneously. For instance, 

an experiment that aims quantify crop production would measure the grain production and 

crop properties, but not the rate of denitrification and NH3 volatilisation. These limitations 

indicate that complex models cannot be easily evaluated for ill-defined systems, such as the 

fertilised and flooded rice systems. Furthermore, with limited data set, two models with 

different underlying fundamentals may easily fit the same data as demonstrated by Kircher et 

al. (1996) using two relatively simple environmental models. 

Given existing models that can simulate NH3 volatilisation in fertilised and flooded rice 

systems and that have different complexity, it is of interest to determine which of the models 

has the adequate model structure for a specific purpose. Complex models may be more 

‘correct’, but more data is needed to evaluate the models (Gupta et al., 2012).  

The overall objective of this thesis is, therefore, to determine an appropriate model structure 

with corresponding uncertainty characterisation for the estimation of NH3 volatilisation in 

fertilised and flooded rice systems. 

1.10 Research questions, approach, and outline 

To achieve the objective of this thesis, four relevant research questions were formulated, and 

answered in each technical chapter.  
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1) What are the modelling concepts in existing models developed to simulate N 

dynamics in flooded soil systems with or without a rice crop, and how were the 

performances of these models evaluated? 

Many models with the capability to estimate NH3 volatilisation from fertilised and 

flooded soil systems have been developed. In systems and control theory, a priori 

knowledge is gained through deduction, and not through empirical evidence 

(Keesman, 2011). Therefore, in Chapter 2, the first step starts with a critical evaluation 

of the a priori knowledge in terms of concepts and structures of 14 existing models for 

simulation of N dynamics in fertilised and flooded soil systems, with or without a rice 

crop. In this step, the aim is to understand how the overall N dynamics and transport in 

the systems were conceptualised. The 14 models are NFLOOD v.1 (Rao et al., 1984), 

NFLOOD v.2 (Reddy et al., 1990), J-M’s (Jayaweera and Mikkelsen, 1990), S-K’s 

(Singh and Kirk, 1993), CERES-Rice (Godwin and Singh, 1998), Chowdary’s 

(Chowdary et al., 2004), Nakasone’s (Nakasone et al., 2004), Yoshinaga’s (Yoshinaga 

et al., 2004), DNDC-Rice (Li et al., 2004), K-K’s (Kirk and Kronzucker, 2005), 

Liang’s (Liang et al., 2007), RIWER (Jing et al., 2010), RICEWNB (Antonopoulos, 

2010), and APSIM-Oryza (Gaydon et al., 2012a, Gaydon et al., 2012b). Similarities 

and differences in concepts underlying these models were identified, and motivations 

(hypotheses or theories) underlying the concepts were recognised. Also, an overview 

on the model performance with respect to relevant N dynamics components was given 

based on published reports (Chapter 2).  

However, independent data sets used for the evaluation of each model do not allow 

direct comparison of the model outcomes. Therefore, the next step is to investigate 

whether the differences in modelling concepts and structures would lead to substantial 

differences in model-output responses, which led to the next research question. 

2) How do the different concepts of mathematical models of urea hydrolysis and NH3 

volatilisation affect the model-output responses? 

Equifinality is defined as the capability of mathematical models to produce similar 

model-output responses (Bellocchi et al., 2010). Equifinality may also be one of the 

information criteria to aid model selection. However, equifinality of existing models 
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for the estimation of NH3 volatilisation has neither been evaluated at single process 

level nor at full model level. 

Co-validation of models may unravel equifinality among mathematical models and 

can be performed at two levels: at full (field) model level or at a single process level 

(Bellocchi et al., 2010). Co-validation at full model level is able to reveal 

equifinality of the full models with respect to common outputs that resulted from 

the integrated N processes, but two limitations of this approach are anticipated.  

First, the effects of different modelling concepts of an individual process may not 

be apparent due to interactive N processes. For instance, the amount of total 

ammoniacal-N in the floodwater is an input to mathematical models of NH3 

volatilisation. At full model level, the total ammoniacal-N may be regulated by 

different processes or process variables in different models. Second, co-validation 

at full model level is ideal for comparing models that are developed for the same 

objective as stated in Bellocchi et al. (2010). Consequently, not all models can be 

co-validated at full model level. For instance, it is not appropriate to co-validate the 

model by Chowdary et al. (2004) with the model by Jayaweera and Mikkelsen 

(1990). The former is developed for flooded soil systems with N uptake by the rice 

crop, while the latter was developed for flooded soil systems without a rice crop. 

Due to possible limited insights from co-validation at full model level, the first step 

is to perform co-validation at process level. Therefore, the mathematical models of 

urea hydrolysis and NH3 volatilisation from floodwater surface were extracted from 

the full models and co-validated at single process level in Chapter 3 with the aim to 

investigate equifinality between simple and complex process models. Urea 

hydrolysis was selected as the process that influences the rate of NH3 volatilisation 

via input of total ammoniacal-N in the floodwater following a urea application. 

Insights obtained from Chapters 2 and 3 are used to answer the next research 

question. 

3) Is a simple process-based model adequate for estimating NH3 volatilisation in 

fertilised and flooded rice systems?  

In-line with Einstein’s quote “Everything should be made as simple as possible, but 
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not simpler”, Young (1976) and Gaydon et al. (2012a) state that details should only be 

added when data allows validation of the extended model. Thus, simple process-based 

models tend to be appropriate for ill-defined systems because of the limited 

observational data sets for calibration and cross-validation of the models. However, 

one of the questions relevant prior to selection of models as posed by Bennett et al. 

(2013) is whether a simple model can substitute its complex counterpart, and if not, to 

what extent should the model be detailed? Therefore, in Chapter 4, the objective is to 

determine whether the simple process-based model has adequate model structure for 

the estimation of NH3 volatilisation in fertilised and flooded rice systems.  

Based on insights from Chapters 2 and 3, a new and relatively simple model for the 

estimation of NH3 volatilisation from fertilised and flooded rice systems was 

developed. The proposed model was calibrated and cross-validated with data sets from 

two locations in the Philippines and three locations in China. The performance of the 

proposed model was also co-validated with the lumped-parameter model by Chowdary 

et al. (2004). Limitations and advantages of the proposed model are discussed.  

However, an appropriate characterisation of the estimation uncertainties from a 

calibration step is still lacking. Hence, the last research question is formulated as 

follows: 

4) What are the uncertainties in the parameter estimates and what is an appropriate way 

to characterise these uncertainties under poor quality data? The poor quality data refer 

to either small number of observations, or large errors in the observations, or both. 

Applying an appropriate parameter estimation technique is important in developing 

models (Fig. 4). Probabilistic parameter estimation approaches are not adequate for 

small data sets, as these do not allow a detailed error characterisation in terms of 

probability density functions and correlations (Keesman, 1990, Walter and Piet-

Lahanier, 1990). Unlike the probabilistic parameter estimation approaches, the set-

membership (bounded-error) approach avoids any assumption beyond the structure of 

the model and the output error-bounds, and thus, is appropriate for ill-defined systems. 

Thus, in Chapter 5, we demonstrated how six parameters in the proposed model of 

Chapter 4, can be estimated based on two data sets from the Philippines, using a 

sampling-based set-membership approach. The estimates obtained from the approach 
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are compared with estimates obtained using conventional non-linear least-squares 

methods. 

The research approach is graphically summarised in Figure 4. In Chapter 6, a general 

discussion of this thesis and perspectives for further research are given. 

 

Fig. 4 Research approach of this thesis 
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Abstract 

Extensive modelling studies on nitrogen (N) dynamics in flooded soil systems have been published. 

Consequently, many N dynamics models are available for users to select from. With the current 

research trend, inclined towards multi-disciplinary research, and with substantial progress in 

understanding of N dynamics in flooded soil systems, the objective of this chapter is to provide an 

overview of the modelling concepts and performance of 14 models developed to simulate N dynamics 

in flooded soil systems. This overview provides breadth of knowledge on the models, and, therefore, is 

valuable as a first step in the selection of an appropriate model for a specific application. 

Keywords: Nitrogen model, nitrogen dynamics, flooded rice, flooded soil 
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2.1 Introduction 

Nitrogen (N) fertiliser is applied in flooded rice systems to increase grain production, but not 

all applied N will be absorbed by the rice crop (Fageria et al., 2014). Therefore, to limit costs 

and negative environmental outcomes, N losses from fertilised and flooded rice systems must 

be minimised. As an alternative to a conventional experimental approach, many semi-physical 

N dynamics models for simulating N dynamics in flooded soil systems have been developed 

over the last 30 years (Rao et al., 1984, Jayaweera and Mikkelsen, 1990, Reddy et al., 1990, 

Godwin and Singh, 1998, Chowdary et al., 2004, Li et al., 2004, Liang et al., 2007, 

Antonopoulos, 2010, Jing et al., 2010, Gaydon et al., 2012b). Simulations of system 

behaviour of these models under different conditions provide insights into the underlying 

mechanisms, and are useful in evaluating which management practices reduce N losses and 

increase grain production best. 

However, the interactive, non-linear and time-varying N processes in flooded soil systems 

resulted in models of different complexities. Consequently, model selection for a specific 

application is challenging. Fig. 1 shows the key ingredients with corresponding links required 

for the model selection procedure, and also illustrates that model selection commonly occurs 

in a loop. 

 

 

 

 

 

 

 

Fig. 1 The model selection loop adopted from Keesman (2011) 
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Jayaweera and Mikkelsen (1991) reviewed the concepts and performances of physically-

based models developed for the estimation of NH3 volatilisation in flooded soil systems 

without a rice crop and in absence of other N processes, as e.g. included in the models of 

Bouwmeester and Vlek (1981), Moeller and Vlek (1982), and Jayaweera and Mikkelsen 

(1990). Benbi and Richter (2003) reviewed the objectives and capabilities of about 20 soil N 

dynamics models, but none of the reviewed models were applied to simulate the N dynamics 

in flooded rice systems. Nieder and Benbi (2008) reviewed models of carbon (C) and N 

dynamics in a soil-plant-atmosphere system, but few models were selected to illustrate 

different modelling concepts. Giltrap et al. (2010) and Gilhespy et al. (2014) specifically 

reviewed the development and performances of DeNitrification-DeComposition (DNDC) 

variants. 

Current reviews either focus on N dynamics models not specific for understanding behaviour 

of flooded soil systems, or dedicated in understanding only one specific N process, or in 

demonstrating the capability of only one model, and, therefore, did not include comparison 

with alternative models. Therefore, an overview is needed that summarises key modelling 

concepts of models developed for simulating N dynamics in flooded soil systems, and 

provides insights to performances of these models with respect to observed data.   

The objective of this chapter is, therefore, to provide an overview of modelling concepts and 

performance of 14 models developed to simulate N dynamics in flooded soil systems. The 14 

models are NFLOOD v.1 (Rao et al., 1984), NFLOOD v.2 (Reddy et al., 1990), J-M’s 

(Jayaweera and Mikkelsen, 1990), S-K’s (Singh and Kirk, 1993a), CERES-Rice (Godwin and 

Singh, 1998), Chowdary’s (Chowdary et al., 2004), Nakasone’s (Nakasone et al., 2004), 

Yoshinaga’s (Yoshinaga et al., 2004), DNDC-Rice (Li et al., 2004), K-K’s (Kirk and 

Kronzucker, 2005), Liang’s (Liang et al., 2007), RIWER (Jing et al., 2010), RICEWNB 

(Antonopoulos, 2010), and APSIM-Oryza (Gaydon et al., 2012a, Gaydon et al., 2012b). With 

substantial progress in modelling of N dynamics in flooded soil systems since previously 

published multi-model reviews, this overview provides breadth of knowledge on available 

models for simulating N dynamics in flooded soil systems, and, therefore, is valuable as a first 

step in the selection of an appropriate model for a specific application.   

Some of these N dynamics models were integrated with a rice plant growth and development 

model, and a water balance model (Godwin and Singh, 1991, Li et al., 2004, Gaydon et al., 
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2012a). However, the conceptualisation of the rice plant growth and development models is 

not discussed in this chapter, which may require an extensive review on its own.  

In the following sections, backgrounds of the 14 models are given, followed by an overview 

of the key modelling concepts on N processes in flooded soil systems and the performance of 

the models. The chapter concludes with a discussion and conclusions section. 

2.2 Background of the models 

The general information on the 14 models and their acronyms, used throughout this chapter, 

are shown in Table A.1 in Appendix A. DNDC (Li et al., 1992), CERES (Jones and Kiniry, 

1986), and APSIM  (Holzworth et al., 2014) were originally developed to simulate N 

dynamics in upland agro-ecosystems. These models underwent continuous development over 

time, and eventually were adapted to simulate N dynamics in rice systems, and are referred to 

as DNDC-Rice (Li et al., 2004), CERES-Rice (Godwin and Singh, 1998), and APSIM-Oryza 

(Gaydon et al., 2012a, Gaydon et al., 2012b). RIWER (Jing et al., 2010) was developed to 

simulate N dynamics for rice-wheat cropping systems, but only components relevant to the 

rice system are discussed in this chapter. The remaining models presented in this chapter were 

developed specifically for flooded soil systems with or without rice crop. 

The minimum user input that is required to run the models is summarised in Table A.2. 

Additional input may be needed in order to simulate rice crop growth and development 

models with respect to N uptake, but detailing of this information is not within the scope of 

this chapter. The N transport and transformations conceptualised in all 14 models is 

summarised in Table A.3. 

2.3 Compartmental modelling  

A compartmental modelling approach is typically used to approximate a floodwater-soil 

continuum in a flooded rice field. In simpler models such as Chowdary’s, Liang’s, RIWER, 

and RICEWNB, the floodwater-soil continuum is divided only into two compartments, which 

are a floodwater compartment and a bulk reduced soil compartment. In these models, both 

compartments are assumed homogeneous (Table A.1), and the thin aerobic soil layer at the 

floodwater-soil interface is neglected, because of its relatively small thickness (Chowdary et 

al., 2004). 



Chapter 2 

36 

 

The floodwater is typically treated as a homogeneous compartment in all models discussed in 

this chapter, except in NFLOOD v.1 and v.2, and S-K’s, where the floodwater was discretised 

vertically into smaller compartments. The floodwater depth is derived on a daily basis from 

the mass balance of water fluxes in a rice field, or assumed to be constant when 

meteorological data is not available. 

In more complex models such as NFLOOD v.1 and v.2, S-K’s, CERES-Rice, and APSIM-

Oryza, the soil compartment is discretised vertically into several smaller compartments. In 

these models, each discretised soil compartment is assumed to be ideally mixed, and is 

categorised as either aerobic or anaerobic, at a given time, typically based on the calculated 

soil moisture content. Alternatively, the DNDC-Rice simulates the volume of aerobic and 

anaerobic microsites within each discretised soil compartment based on the soil redox 

potential. The soil redox potential was calculated using the Nernst equation on the basis of 

dominant oxidant and reductant concentrations in the soil (Li et al., 2004). 

2.4 Sources of nitrogen in flooded soil systems with rice crop 

Urea (CO(NH2)2; 460 g N kg
-1

) remains the primary source of N in the market (Soares et al., 

2012). Therefore, conceptualisation of hydrolysis of urea is relevant in models for simulating 

N dynamics in fertilised and flooded rice systems (Table A.4). Hydrolysis of urea is most 

often described by first-order kinetics, either with a constant rate coefficient (i.e., 

Chowdary’s, Liang’s, RIWER), or a time-varying rate coefficient that is governed by sub-

daily pH and temperature (i.e., CERES-Rice, APSIM-Oryza). Urea is either conceptualised to 

be fully hydrolysed in the floodwater (i.e., Chowdary’s, Liang’s, CERES-Rice, APSIM-

Oryza), or to be incorporated directly into the soil (i.e., CERES-Rice, APSIM-Oryza). Vlek 

and Craswell (1981) reported that, unless deep placement of urea is undertaken, still 50 % to 

60 % of applied urea entered the floodwater, despite incorporation into the soil. Thus, model 

simulations may substantially deviate from reality if the model assumes that all urea 

incorporated into the soil does not diffuse into the floodwater.  

The amounts of additional N supply from biological N2 fixation, rainfall or irrigation water 

are site specific. Biological N2 fixation, however, was considered only in DNDC-Rice, merely 

as a rate constant that was estimated from experiments. 
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In APSIM-Oryza, the dead photosynthetic aquatic biomass (PAB, i.e., algae) at the end of a 

rice crop was conceptualised as a source of C and N for the next cropping season. It was 

demonstrated that this conceptualisation was essential in simulating the performance of the 

International Rice Research Institute long-term continuous cropping experiment, and allows 

APSIM-Oryza to self-initialise the values of C and N at the beginning of each cropping 

season during long-term simulations (Gaydon et al., 2012a, Gaydon et al., 2012b). In order to 

estimate N obtained from dead PAB, growth of the PAB needs to be estimated. Currently, 

there are only two mathematical models that approximate the growth of PAB in fertilised and 

flooded rice systems (Gaydon et al., 2012b, Aschonitis et al., 2013). 

2.5 Inorganic nitrogen transport 

Transport of dissolved inorganic N (NH4
+
, NO3

-
, and urea) across the floodwater and soil 

compartments occurs via N percolation and/or N diffusion. In this chapter, N percolation 

refers to movement of dissolved N along with the soil water flow. As a result of 

compartmental modelling (Section 2.3), the N percolates out from one compartment to the 

compartment below. Diffusion, on the other hand, is driven by concentration gradients of 

dissolved inorganic N, which is described by Fick’s law, and can be either in the upward or 

downward direction. Table A.3 shows the conceptualised transport of dissolved inorganic N 

in the models discussed in this chapter. 

Leaching of N is conceptualised in CERES-Rice, Chowdary’s, Nakasone’s, Liang’s, 

RICEWNB, RIWER, and APSIM-Oryza, and applies only to NO3. The NH4
+
 is assumed to be 

bound to clay particles, whereas urea is assumed to be completely hydrolysed within the 

floodwater or soil compartment. 

2.6 Ammonia volatilisation  

Theoretically, only NH3 in the floodwater is susceptible to volatilisation, and the partitioning 

between NH4
+
 and NH3 is regulated by the floodwater properties, such as pH and temperature. 

However, in Chowdary’s, Liang’s, and RICEWNB, the NH3 volatilisation is described in 

terms of first-order kinetics with a constant rate coefficient, independent of the floodwater 

properties. In NFLOOD v.1, the NH3 volatilisation is also described in terms of first-order 

kinetics, but the partitioning between NH4
+
 and NH3 is approximated by a function of total 

ammoniacal-N concentration and floodwater pH.   
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In J-M’s, the NH3 volatilisation is also described in terms of first-order kinetics, but the 

volatilisation rate coefficient is expressed as the ratio of an overall mass transfer coefficient 

and floodwater depth. A function of the overall mass transfer coefficient is further derived on 

the basis of the two-film theory (i.e., a thin gas film and a thin liquid film), where the 

movement of NH3 through the thin films is assumed to occur via molecular diffusion. 

Consequently, the volatilisation rate coefficient is a function of floodwater depth and 

temperature, and wind speed (Jayaweera and Mikkelsen, 1990).  In the J-M’s, the partitioning 

between NH4
+
 and NH3 is approximated by total ammoniacal-N concentration, and floodwater 

pH and temperature. What distinguishes J-M’s from other models is that the floodwater depth 

has a two-fold effect, one through the dilution of floodwater NH4
+
-N

 
concentration, and the 

other directly through the volatilisation rate coefficient (Jayaweera and Mikkelsen, 1991). 

In CERES-Rice and APSIM-Oryza, NH3 volatilisation is described by regression equations 

which are functions of partial pressure of NH3 in floodwater, floodwater depth, and wind 

speed effect. The partial pressure of NH3 in floodwater is described as a function of NH3 

concentration in the floodwater and floodwater temperature (Denmead et al., 1982). Due to 

lack of measured wind speed, in CERES-Rice the wind speed effect is related to pan 

evaporation rate and leaf area index (Godwin and Singh, 1991), whereas in APSIM-Oryza, 

the wind speed effect is represented by a calibrated rate coefficient and pan evaporation rate 

(Gaydon et al., 2012b). 

In DNDC-Rice, the floodwater N dynamics is not conceptualised. Instead, NH3 volatilisation 

is described as a function of NH3 concentration in the soil water, soil temperature and soil 

water content (Li et al., 1994). Despite up to 60 % of total N applied is susceptible to NH3 

volatilisation (Fillery et al., 1984, De Datta et al., 1991), this process was not conceptualised 

in RIWER. 

2.6.1 Floodwater pH 

The diurnal trend of floodwater pH, where the floodwater pH typically peaks at about mid-

day, was observed by Fillery et al. (1984). The trend was hypothesised to be a result of 

consumption of CO2 through PAB photosynthesis during the day, and release of CO2 during 

respiration during the night. This phenomenon is conceptualised in S-K’s, CERES-Rice, and 

APSIM-Oryza to estimate the sub-daily floodwater pH value. 
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In CERES-Rice and APSIM-Oryza, the floodwater pH is approximated by a function that 

follows an absolute sine curve, and the pH magnitude is driven by PAB activity (Godwin and 

Singh, 1998, Gaydon et al., 2012b). The sub-daily PAB activity is defined by the most 

limiting among four factors: available light as a function of solar radiation and rice leaf area 

index (shading of floodwater), floodwater temperature, and inorganic N concentration and P 

presence in the floodwater. Each of these factors ranges from zero (no activity) to unity (most 

active). Additionally, the effect of urea hydrolysis on floodwater pH is included (Gaydon et 

al., 2012b). 

In S-K’s, the sub-daily floodwater pH was calculated from the number of protons added or 

consumed when there was a net change of HCO3
- 

or NH4
+
, due to processes like urea 

hydrolysis, NH3 and CO2 volatilisation, CO2 consumption by PAB, soil CO2 production, and 

transfer of protons between soil and floodwater (Singh and Kirk, 1993a). 

The ranges of floodwater pH simulated with CERES-Rice and APSIM-Oryza are between pH 

7.0 and 9.5 (Gaydon et al., 2012b). Singh and Kirk (1993b) assumed a soil pH of 7.0 for their 

simulation, which resulted in a floodwater pH that ranges between 7.5 and 9.0. However, this 

pH range is not always observed at other locations. For instance, floodwater pH on acid 

sulphate soils in Pathum Thani, Thailand, was consistently below pH 5, although 

measurements were made at mid-day, when the pH is typically at maximum (Snitwongse et 

al., 1988). Nevertheless, at pH lower than 6.5, the NH3 volatilisation is assumed negligible. 

The limitation of these models at low pH can be easily overcome by setting NH3 volatilisation 

to nil when floodwater pH is less than 6.5. What is important is that users must realise that the 

underlying concepts limit the application of the model to specific condition, i.e., rice systems 

with PAB growth. 

2.7 Mineralisation and immobilisation of nitrogen 

During decomposition of organic matter, inorganic N is released (mineralisation), and 

simultaneously a fraction of the available inorganic N is used for growth of microbial biomass 

(immobilisation).  

In simpler models, like NFLOOD v.1 and v.2, Yoshinaga’s, Chowdary’s, and RICEWNB, the 

net mineralisation and immobilisation of N are described by first-order kinetics and are 
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assumed to be one-step processes. In these models, the decomposition of organic matter was 

not detailed.  

However, in DNDC-Rice, CERES-Rice, RIWER, and APSIM-Oryza, the main assumption is 

that not all of the fresh organic matter is prone to decomposition, and, therefore, the fresh 

organic matter is, in general, categorised into three pools. Decomposition of each fresh 

organic matter pool occurs at different rate, and results in formation of soil microbial biomass, 

which creates the N immobilisation demand. Due to death of microbes, the soil microbial 

biomass can further decompose into a stable pool in either one (e.g., APSIM-Oryza) or 

several steps (e.g., DNDC-Rice). Typically, slower potential rates of decomposition are 

defined under flooded soil systems compared to non-flooded soil systems (Jing et al., 2010, 

Gaydon et al., 2012a). Details and flow diagram of the concepts for DNDC-Rice are given in 

Li et al. (1992), for RIWER in Jing et al. (2010), for CERES-Rice in Godwin and Singh 

(1998), and for APSIM in Keating et al. (2003). The net N mineralised or immobilised is 

calculated from the mass balance of N that resulted from the decomposition. Factors that 

regulate the rate of decomposition in these models are summarised in Table A.5. 

The decomposition of organic matter is assumed to take place below ground surface in 

DNDC-Rice (Li et al., 2004), RIWER (Jing et al., 2010), and CERES-Rice (Godwin and 

Singh, 1998). Alternatively, APSIM-Oryza conceptualised decomposition of fresh organic 

materials either on the soil surface (simulated by APSIM-SurfaceOM module), and if 

however the fresh organic materials are subsequently tilled into the soil, the materials 

decompose below ground surface (simulated by APSIM-SoilN module) (Gaydon et al., 

2012a, Gaydon et al., 2012b). The concepts used in the CERES group of models for 

simulating mineralisation and immobilisation of N, were adapted in APSIM (Keating et al., 

2003). The immobilisation N demand created is satisfied from inorganic N pool below ground 

surface under aerobic conditions, which is similar to the approach in CERES-Rice, or from 

inorganic N in the floodwater (simulated by APSIM-Pond module) under flooded soil 

conditions (Probert et al., 1998, Gaydon et al., 2012a, Gaydon et al., 2012b). 

2.8 Simultaneous nitrification and denitrification 

Nitrification and denitrification are described by first-order kinetics in NFLOOD v.1 and v.2, 

Chowdary’s, Yoshinaga’s, Nakasone’s, Liang’s, RICEWNB, RIWER, and CERES-Rice, 

whereas these processes are described by Michaelis-Menten kinetics in DNDC-Rice, K-K’s, 
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and APSIM-Oryza. These processes are further limited by additional factors in some of the 

models (Table A.6). For simplification, the limiting factors in RIWER, CERES-Rice and 

APSIM-Oryza are described as an index-factor, ranging between zero (no activity) and unity 

(most active). The growth and death of nitrifiers and denitrifiers are neglected in all of the 

discussed models, except in DNDC-Rice. 

In the different models, nitrification and denitrification are assumed to occur at different 

locations in the floodwater-soil profile (Table A.6). Chowdary’s assumed that the thin aerobic 

layer is insignificant, and therefore, they conceptualised the nitrification in the floodwater. In 

Yoshinaga’s, denitrification is conceptualised to occur at the floodwater-soil interface. This 

contradicts with the common perception that denitrification does not occur at the floodwater-

soil interface, where typically an aerobic layer at the floodwater-soil interface may form. The 

influence of rhizosphere on nitrification is excluded from all of the presented models, except 

in K-K’s. 

Both nitrification and denitrification are conceptualised in CERES-Rice and APSIM-Oryza. 

In APSIM-Oryza, under flooded condition, nitrification is halted under the assumption that O2 

is immediately lost from the soil profile, but denitrification continues (Gaydon et al., 2012a).  

2.9 Nitrogen uptake by rice crop 

Inorganic N uptake by rice is conceptualised in all models discussed in this chapter, except in 

NFLOOD v.1 and v.2, J-M’s, Nakasone’s, and Yoshinaga’s (Table A.3). Models that were 

developed to estimate grain production are coupled to a comprehensive rice plant growth and 

development model. For instance, DNDC-Rice is coupled to a generic crop growth and 

development model, MACROS (Penning De Vries et al., 1989), whereas RIWER and 

APSIM-Oryza are coupled to ORYZA2000 (Bouman et al., 2001), which is specifically 

developed for rice systems. CERES-Rice incorporates its own rice production model. 

However, details of these integrated models are out of the scope of this chapter. 

Models that were developed to estimate the overall N balances used a simpler approximation 

of N uptake by rice crop. For instance, the N uptake by rice crop in Chowdary’s and Liang’s 

is described as a function of established rice crop coefficient and daily evapotranspiration. In 

RICEWNB and K-K’s, the N uptake is described by Michaelis-Menten kinetics. In 

RICEWNB, the maximum rate of N uptake is limited by leaf area index, root distribution, and 



Chapter 2 

42 

 

temperature, where each of these limiting factors is expressed as an index-factor. 

Singh and Kirk (1993b) simulated that the urea and ammoniacal-N spread from the soil surface 

to 0.03 m below the soil surface in 7 days. Based on this calculation, Kirk and Solivas (1997) 

hypothesised that most of the broadcast N were absorbed by the dense root mat at the 

floodwater-soil interface. 

2.10 Ammonium adsorption and desorption in soil 

The NH4
+
 may reside in soil solution or be absorbed to clay particles. Several models 

conceptualised the adsorption and desorption (Table A.3). NH4
+ 

adsorption and desorption are 

complex and site-specific processes, and measurement method to discriminate between native 

(non-available) and recently absorbed (plant-available) NH4
+
 needs further research (Nieder et 

al., 2011). Detailing NH4
+
 adsorption and desorption in a field-scale model that already has 

many parameters (calibrated rate coefficients) will most likely lead to unidentifiable 

parameters (Keesman, 2011). From a systems theory point of view, an unidentifiable 

parameter does not have a unique value in a parameter estimation (calibration) step, and thus 

cannot be estimated uniquely. 

2.11 Performance of nitrogen dynamics models 

In this section, an overview of performance of each model with respect to observational data 

sets shown in Table A.7 is given. Only data sets relevant to N dynamics in flooded soil 

systems that are either continuously flooded or flooded during at least part of the rice 

cropping period are listed in the table as this chapter focuses on modelling of N dynamics in 

flooded soil systems. In addition to Table A.7, a comprehensive review on the performance of 

CERES-Rice for simulating rice crop grain production, aboveground biomass, and 

phenological variables based on 26 studies is already provided by Basso et al. (2016). 

Out of the 14 models presented in this chapter, only Chowdary’s, Liang’s, RICEWNB, 

DNDC-Rice, RIWER, CERES-Rice, and APSIM-Oryza are ready for simulation of N 

dynamics in fertilised and flooded rice systems, as N fertiliser as input and plant uptake by the 

rice crop are conceptualised in these models. 

Chowdary’s, Liang’s, and RICEWNB could be categorised as lumped-parameter models 

because all of the N processes in these models, except for N uptake by the rice crop, are 
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described by a first-order kinetics, independent of the environmental variables, such as pH 

and temperature. These lumped-parameter models are suitable for the estimation of the 

seasonal N balances in fertilised and flooded rice systems at the end of a cropping season, 

such as seasonal N uptake by rice crop, NH3 volatilisation, denitrification, mineralisation, 

immobilisation or NO3
-
 leaching (Table A.7). However, differences in the modelling concepts 

in each of these models must be evaluated for conditions at a study site. For instance, 

mineralisation and immobilisation are included in Chowdary’s, but not in Liang’s. N loss via 

surface runoff and lateral seepage are included in Liang’s, but not in Chowdary’s. In these 

models, the estimates of seasonal N balances are largely determined by the calibrated constant 

rate coefficients, which may change over time and location. Nevertheless, these models are 

appealing and comprehensible because of their simplicity, and given small data sets, these 

models are advantageous.  

For flooded soil systems without a rice crop, the J-M’s is valuable for simulating temporal 

(daily or sub-daily) NH3 volatilisation. This model has been evaluated for estimating temporal 

NH3 volatilisation from total ammoniacal-N solution (Table A.7). The regulators of NH3 

volatilisation, such as wind speed, floodwater temperature, pH, and depth are conceptualised 

in this model (Section 2.6), and, therefore, the model is appropriate for studying the 

mechanisms of NH3 volatilisation from the floodwater surface of a flooded soil system. The 

trade-off, however, is that the operation of the model requires several measured input data 

such as sub-daily concentrations of total ammoniacal-N in the floodwater, wind speed, 

floodwater pH, temperature, and depth which may not always be available, and, therefore, this 

may hinder simulation of J-M’s. A significant assumption underlying this model is that the 

rate of NH3 volatilisation equates to the change in total ammoniacal-N in the floodwater. 

Consequently, estimation of NH3 volatilisation from the floodwater using this model is 

currently limited to flooded soil systems without rice crops. 

The NFLOOD v.1, NFLOOD v.2, and S-K’s, were developed to simulate temporal N 

dynamics in both the floodwater and soil. NFLOOD v.2 was evaluated with temporal 

concentrations of NH4
+
 in the soil profile, but NFLOOD v.2 did not include NH3 volatilisation 

unlike NFLOOD v.1 (Table A.7). S-K’s has not been evaluated with observational data sets, 

but an advantage of the S-K’s model compared to all other models is its ability to simulate the 

diurnal floodwater pH based on the total ammoniacal-N and organic C balances in the 

floodwater and soil. 
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CERES-Rice, RIWER, and APSIM-Oryza offer estimation of temporal N content in the 

floodwater and soil, temporal N uptake by a rice crop, and the crop biomass (root, stem, leaf, 

grain). In order to operate these models, detailed input on rice varietal crop stages 

(phenology) is required. CERES-Rice and APSIM-Oryza have been rigorously evaluated for 

grain production (Table A.7 and Basso et al. (2016)). Unlike CERES-Rice and APSIM-Oryza, 

application of RIWER is currently limited to conditions where NH3 volatilisation is 

negligible. Of the three models, APSIM-Oryza can self-initialise the soil C and N values 

because it accounts for C and N inputs from PAB, and, therefore, the model can continuously 

simulate the N dynamics and the crop biomass for several cropping seasons without reset 

(Gaydon et al., 2012b). 

DNDC-Rice was developed mainly to predict greenhouse gas emissions (N2O and NO) and 

NH3 loss in fertilised and flooded rice systems. In comparison to other models, the DNDC-

Rice has been rigorously evaluated with N2O emissions from fertilised and flooded rice 

systems (Table A.7), but not for NH3 volatilisation. Overall, DNDC-Rice is able to produce 

good estimates of seasonal N2O emissions, but at times, poor performance in simulating the 

temporal trends of N2O was observed (Table A.7). The model does not simulate the N 

dynamics in the floodwater, which in theory is a vital component for estimating NH3 

volatilisation in a flooded soil system. The extent to which neglecting of the floodwater N 

dynamics affects the estimation of NH3 volatilisation has not been quantified nor compared 

against experimental data. Therefore, the performance of DNDC-Rice for estimating NH3 

volatilisation is a subject for further assessment.  

Nakasone’s and Yoshinaga’s are limited to simulating temporal concentrations of inorganic N 

in the soil and floodwater, respectively (Table A.7). The total N uptake by a rice crop was not 

conceptualised in Yoshinaga’s. Despite this debatable modelling concept, simulation of the 

model for flooded soil systems with a young rice crop resulted in a good fit between observed 

and simulated inorganic N concentration in the floodwater. It is most plausible that the 

conceptualised phytoplankton N uptake from the floodwater compensated for the absence of 

rice crop N uptake. 

2.12 Discussion and conclusions 

Each model presented in this chapter produces multiple outputs, but Table A.7 shows that not 

all of the outputs were evaluated with observational data sets. Furthermore, each model was 
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evaluated with observational data sets obtained from different experiments, conducted at 

different location and time. Consequently, outcomes of evaluation of these models cannot be 

directly compared with each other. Furthermore, model evaluation based on data fitting alone 

is not always ideal, because two models of different fundamentals can fit the same data set as 

demonstrated in Kirchner et al. (1996), especially if the model is over-parameterised and data 

is scarce. Co-validation is the assessment of the difference between models with respect to the 

values of their common output, and may provide insights on behaviour of models (Bellocchi 

et al., 2010, Bennett et al., 2013), and, thus, is the next step in order to quantify discrepancies 

of simulated outputs by models with different fundamentals, and limitation of each model, 

preferably under range of site conditions. Under scarce data conditions, evaluating output 

trends and systems behaviour using synthetic data sets that mimic typical site conditions 

could be an alternative. 

Detailed modelling of soil N dynamics easily results in complex models, but the model 

component related to the soil N dynamics is also the component least evaluated against 

measurement. Table A.7 shows that, except for NFLOOD v.2, RICEWNB, and RIWER, the 

temporal soil inorganic N simulated by other models are not evaluated with measured soil N 

data, mainly due to scarcity of data. Notice also from Table A.7 that for the evaluation of 

RICEWNB, the measured soil N data set is small; only three measurements of soil total 

inorganic N were recorded after the first N fertiliser application, and another three 

measurements following the second application.  

To the best of our knowledge, detailed spatial and temporal soil inorganic N variation was 

published only in two papers (Makarim et al., 1991, Dobermann et al., 1994). In Dobermann 

et al. (1994), the experimental plot received a total of 200 kg N ha
-1

; 80 kg N ha
-1

 was 

incorporated into the soil for basal application and 120 kg N ha
-1

 was broadcasted into the 

floodwater in three equal splits. Dobermann et al. (1994) observed low concentration of 

NH4
+
-N, ranging from 0 mg N L

-1 
to 3 mg N L

-1
, in soil solutions that were extracted using 

three techniques: soil solution extracted using a rhizon soil solution sampler (diameter of 2.3 

mm and a pore size of 0.1 µm), soil solution extracted by centrifuging field-moist soil (9000 

rpm for 15 minutes), and solution obtained with a standard cation displacement technique (3 g 

of field moist soil in 30 mL of 2 M KCl). Similarly, low concentrations of NH4
+
-N, ranging 

from 0 mg N L
-1 

to 3 mg N L
-1

, were observed by Makarim et al. (1991). 
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At low concentrations of NH4
+
-N, the temporal dynamics may be masked by the spatial 

variation (Dobermann et al., 1994). Based on this setback, in combination with interactive soil 

N processes (e.g., mineralisation, immobilisation, nitrification, denitrification, and NH4
+
 

adsorption and desorption), we infer that validation of field scale models for simulating N 

dynamics in fertilised and flooded rice systems against measured temporal inorganic soil N 

content may not be informative with respect to the model structure adequacy. Although soil N 

processes contribute to the overall N dynamic in the systems, due to lack of relevant data for 

evaluation of these processes, it is debatable whether these processes should be detailed in 

existing field-scale models. It was already suggested by Cassman et al. (2002) that a realistic 

prediction of soil N dynamics using models is difficult due to complexity of the interactive 

soil N processes.  

Other potential processes such as anaerobic ammonium oxidation (Zhu et al., 2011), 

dissimilatory reduction of NO3
-
, or biological N2 fixation, were as yet not conceptualised in 

any of the 14 models. Regardless of this, notice that some of the outputs of the models have 

been successfully validated against observational data sets (Section 2.11). Conceptualising 

these neglected processes may emulate the actual system, but the model may become over-

parameterised. Consequently, parameters may become unidentifiable, and experimental 

(parameter) values may not be representative for all sites. 

There is a traditional trade-off between simple and complex models. The rate coefficients in 

simpler models may be identifiable, i.e., will lead to a unique set of parameter estimates in a 

calibration step, but the model may not accurately predict the changing future behaviour 

(Beck, 1981). Meanwhile, the model can be used for a wide range of applications and future 

predictions, but estimation of the rate coefficients may require more data sets (Beck, 1981). 

Observational data sets from flooded rice systems are typically small – not all of the process 

variables are measured in a particular experiment, because experiments, in general, were not 

specifically designed for evaluation of a model. The observations are seldom true values due 

to measurement errors. Confalonieri et al. (2016) state the need for conceptual and 

mathematical frameworks that considers multiple sources of uncertainty in the prediction, 

such as uncertainty in the model structure, parameters, and observations that are used as input 

to the model or calibration data set. For small data sets, a probabilistic estimation is not 

adequate because detail error characterisation in terms of probability density function is 

hindered (Keesman and Van Straten, 1990). Alternatively, a set-membership (bounded-error) 
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parameter estimation can be used to evaluate a model (Walter, 1990, Norton, 1994, Norton, 

1995, Milanese et al., 1996, Nurulhuda et al., 2015).  

NH3 volatilisation is claimed as one of the major pathways for N loss, but may range from 2 

% through 60 % of total N applied (Fillery et al., 1984, Fillery et al., 1986). NH3 volatilisation 

is conceptualised in 9 out of 14 models presented. We observed that the conceptualisations of 

NH3 volatilisation in these models vary (Section 2.6). Therefore, to increase confidence in 

existing models, future research should investigate whether these different concepts would 

result in different model outputs, and under what conditions. The floodwater pH is one the 

key regulators of NH3 volatilisation, and can be estimated by several models (Section 2.6.1). 

Therefore, the accuracy of the floodwater pH prediction, and to what extent the accuracy does 

affect the predicted NH3 volatilisation by each model, is subject to further research. 

Interest in the roles of PAB is recently rekindled with modelling work progressing towards 

understanding of the contribution of PAB in nutrient cycles in flooded rice systems (Gaydon 

et al., 2012b, Aschonitis et al., 2013). Therefore, a better understanding of how potential PAB 

growth rates vary with location and environment will increase the confidence in models that 

had already included a sub-model of PAB activity, such as CERES-Rice and APSIM-Oryza. 

Given the set of N dynamics models considered with their different concepts, it is challenging 

for the researcher to choose a model for evaluating static and dynamic management strategies 

in rice farming to support farmers, producers and researchers, in their decision making.  In 

this chapter, however, we have provided a basis to assist the researcher in choosing based on 

definition of key focal processes 
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Table A.4 Types of N fertiliser and methods of application in all 14 models 

d
 If floodwater is absent, APSIM-Oryza by default incorporates applied N into the top soil layer 

 

Table A.5 Factors that regulate rate of organic matter decomposition  

Model   Factors 

DNDC-Rice 

 

 

CERES-Rice 

 
RIWER 

APSIM-Oryza  

Decomposition of FOM below ground surface: pool size (N availability) and 

its specific potential decomposition rate coefficient, and soil properties such 

as clay content, temperature, water content, and depth 

Decomposition of FOM below ground surface (first-order kinetics): soil 

temperature, soil water content, and C:N ratio  

Decomposition of FOM below ground surface: soil water content 

Decomposition of FOM on soil surface (first-order kinetics): residue types, 

soil temperature, soil water content, C:N ratio, and residue coverage 

Decomposition of FOM below ground surface (first-order kinetics): soil 

temperature, soil water content, and C:N ratio  

Turnover between labile microbial biomass and stable organic matter (first-

order kinetics): soil temperature and water content 

FOM is fresh organic matter 
  

  

Model 

Inorganic fertiliser type 
Fertiliser application method in a rice 

field 

Urea NH4
+
 based NO3

-
 based 

Broadcasted into 

floodwater 

Incorporated 

into flooded soil 

NFLOOD v.1 - - - - - 

NFLOOD v.2 - √ - - √ 

J-M’s - √ - √ - 

S-K’s √ - - √ √ 

CERES-Rice √ √ √ √ √ 

Chowdary’s √ - - √ - 

Nakasone’s - - √ √ (mixed in water) - 

Yoshinaga’s - √  √ - 

DNDC-Rice √ √ √ - √ 

K-K’s - - - - - 

Liang’s √ - - √ - 

RICEWNB - - - - √ 

RIWER √ - - √ √ 

APSIM-Oryza
d
 √ √ √ √  √  
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Table A.6 Factors that regulate rates of nitrification and denitrification 

Model Nitrification Denitrification 

 Limiting factors  Location Limiting factors Location 

NFLOOD 

v.1 

- Aerobic soil layer 

near ground 

surface 

C Bulk soil 

NFLOOD 

v.2 

- Aerobic soil layer 

near ground 

surface 

C Bulk soil 

CERES-Rice Soil moisture content, 

soil temperature 

Unsaturated soil 

layer 

Soil moisture content, 

soil temperature, C 

Saturated 

soil layer 

Chowdary’s - Floodwater - Bulk soil 

Nakasone’s Pore water velocity Bulk soil Pore water velocity Bulk soil 

Yoshinaga’s Floodwater depth and 

temperature 

Floodwater-soil 

interface 

Floodwater depth and 

temperature 

Floodwater-

soil interface 

K-K’s O2 Rhizosphere O2 Rhizosphere 

Liang’s - Floodwater - Bulk soil 

RICEWNB - Bulk soil - Bulk soil 

RIWER Soil moisture content Bulk soil Soil moisture content, 

soil temperature 

Bulk soil 

APSIM-

Oryza 

Soil moisture content, 

soil temperature and 

pH 

Unsaturated soil 

layer 

Soil moisture content, 

soil temperature, C 

Saturated 

soil layer 

In all models, concentrations of NH4
+
 and NO3 are main limiting factors for nitrification and 

denitrification, respectively 
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Abstract 

Evaluating model-output behaviour resulting from different modelling concepts is vital prior to 

adopting a specific model. Therefore, in this chapter, we co-validate existing modelling concepts of 

urea hydrolysis, ammonia (NH3) volatilisation, and floodwater pH, using a numerical-experimental 

approach. Despite detailing of the time-varying rate coefficient of urea hydrolysis in APSIM-Oryza, 

rates of urea hydrolysis simulated using APSIM-Oryza can be approximated by a first-order kinetics 

model, by adjusting its constant rate coefficient. For estimation of NH3 volatilisation in flooded soil 

systems without a rice crop, the intricate Jayaweera and Mikkelsen (1993a) model can be 

approximated by the simpler NFLOOD v.1 model, by adjusting the constant rate coefficient in 

NFLOOD v.1. The modelling concepts of floodwater pH in APSIM-Oryza and Singh and Kirk 

(1993a) led to significantly different outputs, but each model offered advantages for different 

applications. 

Keywords: Nitrogen dynamics, numerical experimentation, urea hydrolysis, ammonia volatilisation, 

floodwater pH, flooded rice, flooded soil, APSIM-Oryza, Jayaweera and Mikkelsen, NFLOOD 
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3.1 Introduction 

Extensive modelling studies of nitrogen (N) dynamics in flooded soil systems, with or without 

a rice crop, have been published (Rao et al., 1984, Jayaweera and Mikkelsen, 1990a, Reddy et 

al., 1990, Godwin and Singh, 1998, Chowdary et al., 2004, Antonopoulos, 2010, Gaydon et 

al., 2012b). These models were developed for prediction and scenario studies, either to aid 

decision making in management of rice farming systems, or for scientific understanding. 

The N dynamics in fertilised and flooded rice systems is complex with many interactive 

processes, including ammonia (NH3) volatilisation, nitrification, denitrification, 

mineralisation of organic N, immobilisation of inorganic N, biological dinitrogen fixation, N 

transport in the soil, and rice crop N uptake (Reddy, 1982). Due to different modelling 

objectives, different assumptions were adopted by modellers to approximate the N processes 

in flooded rice systems. Consequently, the N processes were approximated by modelling 

concepts of different complexities. The question remains whether the differences in modelling 

concepts would result in substantial differences in model behaviours. This is a relevant 

question prior to adoption of the models, as inferred from Bennett et al. (2013). 

To answer this question, the mathematical modelling concepts presented in literature can be 

evaluated with respect to observational data sets, or behaviours of the mathematical models 

can be presented using synthetic data sets and co-validated with each other (Bellocchi et al., 

2010, Keesman, 2011, Bennett et al., 2013). Some of the existing N dynamics models for 

flooded rice systems have been evaluated by comparing outputs of the models to 

observational data sets (Chowdary et al., 2004, Antonopoulos, 2010, Gaydon et al., 2012a). 

However, selection of observational data sets is commonly driven by the modelling 

objectives. Therefore, each of these models was evaluated using different sets of data, which 

varied in terms of measured process variables, treatments applied, or site conditions during 

observations (Chowdary et al., 2004, Antonopoulos, 2010, Gaydon et al., 2012a, Gaydon et 

al., 2012b, Katayanagi et al., 2013). When different data sets are used, the validation 

outcomes of two models cannot be directly compared. 

A posteriori model evaluation is powerful, provided the observational data sets are 

sufficiently large, reliable, and representative of the system (Bennett et al., 2013). However, 

flooded rice systems can be characterised as ill-defined systems, where observational data sets 

are small, in terms of the number of measured process variables, and the number of observed 
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data points for each process variable. As an alternative, a priori evaluation of ill-defined 

complex systems, with tangling feedbacks, may provide additional insights pertinent to 

adoption of the model (Bennett et al., 2013). 

Numerical experimentation can be performed at different scales: at full model scale, where all 

processes interact, or at a single process scale (Bellocchi et al., 2010). For complex systems 

with tangling feedbacks, such as fertilised and flooded rice systems, where an output of one 

process is an input for another process, or a process may have multiple inputs, the behaviour 

of a single process, simulated by two full models of different complexities, cannot be 

compared, due to interferences by the tangling feedbacks. For an ‘apple to apple’ comparison, 

the tangling feedbacks can be isolated to make them commensurable at process scale. 

In this chapter, we restrict ourselves to processes in the floodwater that are relevant to NH3 

volatilisation. Hydrolysis of urea occurs in the floodwater typically when urea is broadcast on 

the floodwater, without subsequent incorporation into the soil. Under this condition, the NH3 

volatilisation was claimed as one of the major causes of N loss in fertilised flooded rice 

systems, which could reach up to 60 % of total N applied (Fillery et al., 1984, De Datta et al., 

1991). The NH3 volatilisation is regulated by wind speed and floodwater properties, such as 

the concentration of total ammoniacal-N in the floodwater, floodwater pH, temperature, and 

depth (Bouwmeester and Vlek, 1981, Denmead et al., 1982, Jayaweera and Mikkelsen, 1990a, 

De Datta et al., 1991). Based on observational data sets, Fillery et al. (1984) hypothesised that 

the photosynthetic activity (PAB) activity regulates the diurnal trend of floodwater pH. This 

hypothesis was conceptualised to simulate the hourly floodwater pH in CERES-Rice (Godwin 

and Singh, 1998), and later adopted in APSIM-Oryza (Gaydon et al., 2012b). PAB activity as 

one of the regulators of diurnal floodwater pH was also conceptualised by the Singh and Kirk 

(1993a) model as one of the regulators of diel fluctuations in floodwater pH. 

The objective of the chapter is to co-validate existing modelling concepts of urea hydrolysis, 

NH3 volatilisation, and floodwater pH, using a numerical-experimental approach. Urea 

hydrolysis and NH3 volatilisation are two dominant N processes in the floodwater, whereas 

floodwater pH is a process variable that regulates urea hydrolysis and NH3 volatilisation. 

Hypothetically, differences in modelling concepts is expected to produce different outputs, 

but to what extent? In conventional sensitivity analysis the effects of variation in model-input-

variables and parameters on outputs of an individual model are studied (Rao et al., 1984, 
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Singh and Kirk, 1993b). The focus of this chapter, however, is to assess the effects of 

different modelling concepts on the common outputs under typical conditions observed in 

flooded rice systems. Findings may be used by users to make an informed decision on which 

modelling concept would be suitable for their application, and to assess whether a more 

intricate modelling concept could be substituted by a simpler concept, without significant loss 

in model performance. 

In Section 3.2, the modelling concepts with the respective equations, followed by the 

description of the conditions for scenario studies, are presented. The results are presented and 

discussed in Section 3.3. Finally, conclusions are drawn in Section 3.4.  

3.2 Materials and methods 

Co-validation of models at a process scale allows an ‘apple to apple’ comparison. To co-

validate models at process scales, the relevant equations were extracted from the full models. 

The selected equations were simulated using synthetic data sets for the described scenarios, 

and simulation results were compared. Simulations were performed in MATLAB R2012a. 

3.2.1 Modelling concepts of urea hydrolysis in the floodwater 

Unlike the other types of inorganic N fertilisers, like ammonium sulphate that instantaneously 

dissociates into ammonium (NH4
+) and sulphate once in water, urea is hydrolysed into NH4

+. 

Urea hydrolysis is typically described by first-order kinetics, either with a constant rate 

coefficient or time-varying rate coefficient. 

3.2.1.1 First-order urea hydrolysis with constant rate coefficient 

For a constant floodwater depth, first-order urea hydrolysis in floodwater with a constant rate 

coefficient is mathematically described by the differential equation: 

= −                 (1) 

where,  is a constant rate coefficient of urea hydrolysis (time-step-1), and  is the amount 

of urea in the floodwater (kg N ha-1). The total amount of urea hydrolysed during the time 

interval [ , ],  (kg N ha-1), is calculated as = − . The rate coefficient 

of urea hydrolysis was assumed constant in models of Kirk and Solivas (1997), Chowdary et 
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al. (2004), Jing et al. (2010) (i.e., RIWER), and Antonopoulos (2010) (i.e., RICEWNB). 

3.2.1.2 First-order urea hydrolysis with time-varying rate coefficient 

Alternatively, the rate of urea hydrolysis in the floodwater is regulated by the time-varying 

rate coefficient given by (Godwin and Singh, 1998, Gaydon et al., 2012b): 

= ×                (2) 

where,  is floodwater urea hydrolysis rate (kg N ha-1 time-step-1),  is the amount 

of urea in the floodwater (kg N ha-1), and  is the time-varying rate coefficient of urea 

hydrolysis (time-step-1), which is described by empirical relationships and expressed in 

variable names of APSIM-Oryza, and is given by (Gaydon et al., 2012b): 

= max ( _ℎ ,  ) ×         (3) 

where, _ℎ = 0.008 + (0.005 ×  %) (time-step-1), and = 0.1 ×

 (time-step-1).  % is the percentage of organic carbon in the top soil layer, and 

= min ( , , , ) is the PAB activity index factor that ranges from zero 

through unity (see Gaydon et al. (2012b)). The variable  is the available light index,  is 

the floodwater temperature index,  is the floodwater N index, and  the floodwater 

phosphorus (P) index (see Appendix C for full equations).  ranges from 0 to 0.9. 

= 0.04 × ( + 0.2), is dimensionless and ranges from 0 through 0.9, where  

is the interpolated floodwater temperature in ̊C, for a specific time-step.   

3.2.1.3 Scenario studies of urea hydrolysis 

To simulate the dynamics of urea hydrolysis, the first-order kinetics model with constant rate 

coefficient (Eq. 1) was simulated for two scenarios: = 0.0333 two-hours-1 (Scenario 1.1, 

Table 1), and = 0.0667 two-hour-1 (Scenario 1.2, Table 1), which are the minimum and 

maximum values suggested by Chowdary et al. (2004). 

Next, to study the dynamics of urea hydrolysis simulated by APSIM-Oryza (Eqs. 2 and 3) 

under typical conditions in tropical flooded rice systems seven scenarios were simulated  

(Scenarios 1.3 to 1.9, Table 1). 
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For all scenarios, the synthetic floodwater temperatures (Appendix A) were used as input to 

simulate  in , and  (Eq. 3). The floodwater depth was assumed 

constant at 0.10 m. A solar radiation of 16.5 MJ m-2 day-1
 was used to calculate  for all 

scenarios. The solar radiation was the average observed at Los Baños (Freney et al., 1981). 

Scenarios 1.3 and 1.4 were simulated for soil organic C percentages of 0 % and 20 %, 

respectively. The rice crop canopy cover, and N and P content in the floodwater, were 

assumed not limiting. Therefore, = 0.0 for the calculation of , which is close to 1.0, 

= 1.0, and = 1.0. 

Scenarios 1.5 and 1.6 assumed flooded soil systems with young rice crop. Therefore, =

1.0, assuming sufficient light is available for photosynthetic activity. To emulate the effect of 

a typical trend of total ammoniacal-N in the floodwater on the , the concentrations of total 

ammoniacal-N in floodwater observed in a flooded rice systems, for the duration from 14 

days through 27 days after transplanting, in Los Baños (Fillery et al., 1984), were interpolated 

on a two-hourly basis, and used as input (see Fig. A.3, Appendix A, for observational data set 

at Los Baños). The observed data at Los Baños represents the actual temporal trend of total 

ammoniacal-N observed in fertilised and flooded rice systems. The percentage of soil organic 

C was set to 2.2 % and 10 % for Scenarios 1.5 and 1.6, respectively. For both scenarios, the 

supply of P was assumed not limiting, = 1.0. 

Similar conditions as in Scenarios 1.5 and 1.6 were used in Scenarios 1.7 and 1.8. However, 

Scenarios 1.7 and 1.8 assumed flooded systems with rice crop in a more advanced stage of 

development. In this case, = 3.0. 

All previous scenarios assumed that the supply of P was not limiting, = 1.0. Thus, 

Scenario 1.9 was simulated assuming an insufficient supply of P, = 0.5. Other factors 

were assumed not limiting, and thus, = 0.0, and = 1.0.  

Next, by applying an initial input of 150 kg urea-N ha-1, the rates of hydrolysed urea and the 

storage of urea-N in the floodwater were simulated using for urea hydrolysis with constant 

rate coefficient (Eq. 1), and with a time-varying rate coefficient (Eq. 2 and 3). Eq. 1 was 

simulated for = 0.0333 two-hour-1 and = 0.0667 two-hour-1, and Eqs. 2 and 3 were 

simulated using  that resulted from Scenarios 1.3 to 1.9. Eq. 1 was solved via numerical 

integration using the function ode45, with a simulation time-step of 0.1 hour, whereas Eqs. 2 
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and 3 were solved using an Euler Forward scheme, with a simulation time-step of 2.0 hours. 

3.2.2 Modelling concepts of ammonia volatilisation from the floodwater 

The total ammoniacal-N in the floodwater, which was produced through hydrolysis of urea, is 

susceptible to NH3 volatilisation, if conditions permit. The NH3 volatilisation is typically 

described by a first-order process, with either a constant rate coefficient or a time-varying rate 

coefficient. Instead of process-based equations, the NH3 volatilisation can also be calculated 

from regression equations. 

3.2.2.1 First-order ammonia volatilisation with constant rate coefficient 

The NH3 volatilisation can be described by first-order kinetics with constant rate coefficient 

and given by: 

= + [ ]                 (4) 

where,  is NH3 volatilisation (kg N ha-1),  is a constant rate coefficient of NH3 

volatilisation (time-step-1), [ ] is total ammoniacal-N concentration in the floodwater (kg N 

m-3), and = 10000  is volume of floodwater per hectare of land (m3) with  the 

floodwater depth (m). This concept did not include the partitioning of NH4
+ and NH3, and was 

applied in Chowdary et al. (2004) and Antonopoulos (2010).  

Rao et al. (1984), with their model called NFLOOD, also conceptualised NH3 volatilisation in 

terms of first-order kinetics, but in their study, the amount of potentially volatilised NH3 was 

regulated by floodwater pH, through partitioning of NH4
+ and NH3 in the floodwater, given 

by (Rao et al., 1984): 

= +
( )

[ ]                (5) 

where,  is NH3 volatilisation (kg N ha-1),  is the rate coefficient of NH3 volatilisation 

(time-step-1), = 5.8 × 10( ), and [ ] is total ammoniacal-N concentration in the 

floodwater (kg N m-3). The variable  is the floodwater pH. Note that the concentration of 

NH3
 in the floodwater is given by 

( )
[ ]. 
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3.2.2.2 First-order ammonia volatilisation with a time-varying rate coefficient 

In Jayaweera and Mikkelsen (1990a), the N dynamics in the floodwater with a time-varying 

rate coefficient were described by: 

= − [ ] + [ ][ ]          

[ ]
= + [ ] − [ ][ ] − [ ]           (6) 

where, [ ] is concentration of NH4
+ in floodwater (mol N L-1), [ ]  is concentration of 

NH3 in floodwater (mol N L-1), [ ] = 10  is hydrogen concentration (mol H+ L-1),  is 

association constant (mol N-1 L time-step-1),  is dissociation constant (time-step-1), and   

is the time-varying rate coefficient of NH3 volatilisation (time-step-1). Full equations for 

calculation of = ( ), = ( , ), and = ( , , , ) are given in 

Appendix B, with  floodwater temperature,  floodwater depth,  floodwater pH, and 

 wind speed. 

By using Eq. 6, and assuming 
[ ]

= 0 at equilibrium, and using [ ] = [ ] + [ ], 

the rate of change in NH4
+ concentration in the floodwater is given by Jayaweera and 

Mikkelsen (1990a): 

[ ]
=

([ ] [ ])

[ ]
[ ] − ([ ] − [ ])        (7) 

where, [ ] is concentration of total ammoniacal-N in floodwater (mol N L-1). Jayaweera and 

Mikkelsen (1990a) approximated the rate of NH3 volatilisation by the rate of change in NH4
+ 

concentration in the floodwater (Eq. 7), assuming there are no other N leakages. In the study 

of Jayaweera and Mikkelsen (1990a), [ ] and  were measured, whereas [ ], , , 

and  were calculated (Appendix B). 

Instead of using [ ] =
[ ]

 from Eq. 6, which is derived by assuming 
[ ]

= 0, 

(Jayaweera and Mikkelsen, 1990a) used: 

[ ] =
( . )

( . )
× [ ]            (8) 
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which includes effects of floodwater temperature (K) and pH. 

In Eq. 6, note that the rate of NH3 volatilisation (mol N L-1 time-step-1) is defined by 

[ ]. Substituting Eq. 8 into this term, resulted in the rate of NH3 volatilisation given by: 

[ ]
=

( . )

( . )
[ ]           (9) 

[ ] is NH3 volatilisation in mg N L-1, and [ ] is also in mg N L-1. In this chapter, and 

unlike the procedure proposed by Jayaweera and Mikkelsen (1990a), we solved Eq. 9 as an 

alternative to Eq. 6, because Eq. 9 is in a more straightforward form. Instead of working in the 

unit of molar concentration (mol N L-1), we worked in the unit of mass concentration (mg N 

L-1). This was possible as calculation of [ ] was no longer required. Nevertheless, the effect 

of time-varying rate coefficient of NH3 volatilisation conceptualised in the Jayaweera and 

Mikkelsen (1990a) model (Eq. 6) were retained in Eq. 9. 

3.2.2.3 NH3 volatilisation using regression equations  

In CERES-Rice (Godwin and Singh, 1998), NH3 volatilisation is described by a regression 

equation given by (APSIM-Oryza, 2015): 

= (0.036 × ℎ3 ) + 

0.0082 + (0.000036 × ℎ3 × ) ×     (10) 

where,  is the NH3 volatilisation (kg ha-1 two-hour-1), ℎ3  is the partial pressure of 

NH3, and  is floodwater depth. The  in Eq. 10 is expressed as a function of pan 

evaporation rate and LAI (McGechan and Wu, 2001). 

Eq. 10 is adopted in APSIM-Oryza, but the effect of wind speed is slightly modified by 

removing the effect of , and is given by (Gaydon et al., 2012b): 

= (0.036 × ℎ3 ) + 

0.0082 + (0.000036 × ℎ3 × ) × ( × )    (11) 

where,  is the dimensionless calibrated constant,  is pan evaporation rate (mm 
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two-hour-1), and  is floodwater depth (mm); note the difference in unit of  compared 

with other models. 

The partial pressure of NH3 above the floodwater, ℎ3  (Eq. 11), in APSIM-Oryza is 

calculated using equations given by (APSIM-Oryza, 2015): 

ln ℎ = 155.559 −
.

− 25.6767 ln + 0.035388        (12) 

ℎ =                  (13) 

ℎ3 = [ ] ×
.

               (14) 

ℎ3 = 0,
×

              (15) 

[ ] =
.

. × [ ]            (16) 

where,  is floodwater temperature (K), [ ] is concentration of NH3 in the floodwater 

(mg N L-1), and [ ] is concentration of total ammoniacal-N in floodwater (mg N L-1). 

Definitions and units of ℎ  and ℎ3  are not available in the source code, but we infer that 

ℎ  is the Henry’s constant, and ℎ3  is molar concentration of NH3 in floodwater (mol N 

L-1). 

Alternatively, in Denmead et al. (1982), the ℎ3  is given by: 

 ℎ3 =
. ×[ ]×

.
.

                      (17) 

where, ℎ3  is in mbar,  in K, and [ ] in mg N L-1. The [ ] is also calculated 

using Eq. 16. However, the trends of ℎ3  simulated using Eq. 15 differed from those of 

Eq. 17. 

3.2.2.4 Scenario studies of NH3 volatilisation 

To simulate all equations, the initial total ammoniacal-N content in the floodwater was set to 

150 kg N ha-1 day-1. The initial total ammoniacal-N mass was converted to equivalent units of 

concentration, when necessary. In all simulations, the only N loss was assumed through NH3 
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volatilisation.  

The NH3 volatilisation described by first-order kinetics with a constant rate coefficient (Eq. 4) 

was simulated for = 0.0292  hour-1 (Scenario 2.1, Table 1), so that all NH3 was volatilised 

within seven days, for comparison with outputs simulated using the Jayaweera and Mikkelsen 

(1990a) model. For the same reason, the constant rate coefficient of NFLOOD v.1 was set at 

= 0.3333 hour-1 (Scenario 2.2, Table 1). The time-varying NH3 volatilisation rate 

coefficient of Jayaweera and Mikkelsen (1990a) was calculated for two wind speeds, i.e., 6.5 

m s-1 (Scenario 2.3) and 4.5 m s-1 (Scenario 2.4). The APSIM-Oryza was first simulated using 

= 0.40, which was a value obtained through calibration by Gaydon et al. (2012b). 

However, simulation results that were obtained by defining = 0.15 was selected 

for display (Scenario 2.5). In these simulations the evaporation rate = 4 mm day-1.  

For all simulations, floodwater depth was assumed constant at 0.10 m. Synthetic floodwater 

pH and temperatures (Appendix A) were used as inputs for simulating Scenario 2.2 to 2.5 

(Table 1). Eqs. 4, 5, and 9 are in continuous-time form. These equations were solved via 

numerical integration using the function ode45, with a simulation time step of 0.1 hour. Eq. 

11 to 16, however, are in regression form, and, thus, were computed using an Euler Forward 

scheme, with a simulation time step of 2.0 hours. 

3.2.3 Modelling concepts of floodwater pH 

Notice that floodwater pH and temperature are needed to calculate [ ] in the floodwater. 

However, modelling of floodwater temperature is not a part of this study. Therefore, synthetic 

floodwater temperature profiles were used (Appendix A). In the following, equations for the 

floodwater pH will be presented.  

Currently, only two models (Godwin and Singh, 1998, Singh and Kirk, 1993a) are available 

to estimate the floodwater pH in a flooded rice system. The routine developed by Godwin and 

Singh (1998) was adopted in APSIM-Oryza by Gaydon et al. (2012b). In APSIM-Oryza, the 

floodwater pH is approximated by a function that follows an absolute sine curve, and is given 

by (Gaydon et al., 2012b): 

̅ = 7 + 0.5 + (2 × ) ×
. ×

                 (18) 
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where,  is the PAB activity that is defined in Appendix C, and time index =

1,2, … ,12. At time 12:00 hours: = 6. 

The effect of urea hydrolysis on floodwater pH was added whenever the urea hydrolysis rate 

(in floodwater) was greater than 0.05 kg N ha-1 two-hour-1 (Gaydon et al., 2012b): 

= ̅ +
×( _ )

                          (19) 

where, _ ℎ = ( ) is calculated using equations given in Appendix C.  

The model developed by Singh and Kirk (1993a) can also predict the diurnal fluctuations in 

floodwater pH. The sub-daily floodwater pH was calculated from the number of protons 

added or consumed when there was net change of HCO3
- or NH4

+, due to processes like urea 

hydrolysis, NH3 and CO2 volatilisation, CO2 consumption by PAB, soil CO2 production, and 

transfer of protons between soil and floodwater. The diurnal uptake or release of CO2 by the 

PAB in the floodwater within 24 hours was approximated by a sine curve (Singh and Kirk, 

1993a).  

3.2.3.1 Scenario studies of floodwater pH 

The modelling concept of floodwater pH in APSIM-Oryza was evaluated for different scenarios 

of flooded soil systems. Due to the complexity of the floodwater pH routine developed by 

Singh and Kirk (1993a), we did not simulate their routines. Furthermore, a detailed sensitivity 

analysis of Singh and Kirk (1993a) model for flooded soil system without rice crop has 

already been performed by Singh and Kirk (1993b). 

In this study, the diurnal fluctuations in floodwater pH simulated using APSIM-Oryza were 

compared to the simulation results reported by Singh and Kirk (1993b) for three scenarios: 1) 

Unfertilised flooded soil system without rice crop, 2) fertilised flooded soil system without rice 

crop and without N sink, and 3) fertilised flooded soil system without rice crop and with two N 

sinks, which were NH3 volatilisation and transport of N between soil and floodwater. For 

simulation of floodwater pH routine of APSIM-Oryza, and to meet the conditions described by 

Singh and Kirk (1993b), the inputs were generated as follows. 

To simulate APSIM-Oryza for the unfertilised flooded soil system without rice crop (Scenario 

3.1 to 3.3, Table 1),  was assumed to be zero. This system was simulated for three values 
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of total ammoniacal-N background concentrations, namely 0 mg N L-1, 2 mg N L-1, and 6 mg 

N L-1. The non-zero background concentrations were assumed contributed by traces of N in 

the irrigation water. However, note that Singh and Kirk (1993b) assumed a background 

concentration of 0 mg N L-1.  

To simulate the diurnal fluctuations in floodwater pH using APSIM-Oryza for a fertilised 

flooded soil system without rice crop, and without N sink (Scenario 3.4, Table 1),  was 

again assumed to be zero. The system was broadcasted with 40 kg urea-N ha-1 at 12:00 hours, 

following the amount described in Singh and Kirk (1993b). The difference in application time 

was noted in the analysis (Section 3.3). The urea hydrolysis was described by a first-order 

kinetics model with a time-varying rate coefficient that was driven by the PAB activity and 

percentage of soil organic C (Eq. 3). A constant floodwater depth of 0.05 m was assumed, 

following the value described in Singh and Kirk (1993b). The concentration of total 

ammoniacal-N in the floodwater, which was regulated by the rate of urea hydrolysis, was 

used to calculate the two-hourly floodwater N index ( , Eq. C.1 Appendix C). 

In order to simulate the changes in the floodwater pH using APSIM-Oryza for a fertilised 

flooded soil system with conditions comparable to the system described by Singh and Kirk 

(1993b) (Scenario 3.5, Table 1), the daily peaks of total ammoniacal-N concentrations in the 

floodwater predicted by Singh and Kirk (1993b) were used for estimating the floodwater N 

index ( ). For the unplanted system, = 0.0. The effect of urea hydrolysis on the 

floodwater pH (Eq. 19) was not included in this simulation. 

In addition to the previously mentioned scenarios, the floodwater routine of APSIM-Oryza was 

simulated for two more scenarios: 1) Fertilised and flooded rice system with young rice crop, 

and 2) fertilised and flooded rice systems with more developed rice crop. Details of these 

scenarios are described in the following. 

To assess the performance of the floodwater pH routine of APSIM-Oryza in fertilised and 

flooded rice systems (Scenario 3.6, Table 1), concentrations of total ammoniacal-N in the 

floodwater, for the duration from 14 days after transplanting through 27 days after 

transplanting, at Los Baños, Philippines (Fillery et al., 1984), were selected and used to 

calculate the floodwater N index ( ). The temporal dynamics of total ammoniacal-N 

concentrations in the floodwater was a result of interacting N processes (i.e., N transport into 

soil for rice N uptake, NH3 volatilisation, and other N sources/sinks), and, thus, were considered 
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an adequate representation of actual fertilised and flooded rice systems. The system was 

broadcasted with 60 kg N ha-1 without subsequent incorporation in the soil. Two-hourly rates of 

urea hydrolysis were calculated (Eqs. 2 and 3), and subsequently used to calculate the effect of 

urea hydrolysis on the floodwater pH (Eq. 19). A mean solar radiation of 16.5 MJ m-2 day-1 

was assumed, in order to calculate the two-hourly available light index ( ).  was 

assumed to be 2.0, to represent a system with young rice crop (at 14 days after transplanting). 

To observe the effect of rice crop growth stage on the floodwater pH, the simulation was 

repeated for = 3.0, to represent an increase in crop canopy cover in a system with more 

advanced growth stage (Scenario 3.7, Table 1).  

For all systems simulated using APSIM-Oryza, the  was calculated as a function of 

floodwater temperature (Eq. C.1 in Appendix C, with synthetic floodwater temperatures given 

in Appendix A), and = 0.5, because phosphorus was not applied. The percentage of soil 

organic C in the top soil was set at 2.2 %, which was the concentration defined in APSIM-

Oryza (Gaydon et al., 2015, pers. comm.). Eq. 19 and 18 were computed using an Euler 

Forward scheme, with simulation time-step of 2.0 hours. 

3.3 Results and discussion 

3.3.1 Scenario studies of urea hydrolysis in floodwater 

Fig. 1a shows the dynamics of the rate coefficient of urea hydrolysis (  or ) simulated 

using conditions typically reported in tropical flooded rice systems. Chowdary et al. (2004) 

assumed a constant , which ranged from 0.0333 two-hour-1 to 0.0667 two-hour-1, 

throughout a cropping season. Unlike Chowdary et al. (2004), in APSIM-Oryza, the time-

varying rate  was regulated by three factors, namely the PAB activity ( ), 

percentage of organic C in the soil top layer (  %), and floodwater temperature ( ) 

(Eq. 3).  

Calculations showed that when floodwater temperature is 22.3 ̊C or above,  is 

constant at 0.9. The synthetic floodwater temperatures used in all simulations ranged from 

25 ̊C to 38 ̊C. Therefore,  is constant at 0.9 in all simulations. Consequently, 

 only affects the magnitude, but not the trend of . This indicates that  

can be fixed at 0.9 for simulations of tropical flooded rice systems, to simplify the model of 

APSIM-Oryza. The trend of  simulated by APSIM-Oryza can either vary with time or 
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remain constant, depending on the PAB activity or soil organic C % (Fig. 1a, Table 1). 

The PAB activity had no effect on hydrolysis of urea when the soil organic C was about 20 % 

or greater (Scenario 1.4, Fig. 1a). Unless buffered by a high percentage of soil organic C, 

lower urea hydrolysis rate was observed in the first few hours after application of urea; 

Scenario 1.5 versus 1.6, and Scenario 1.7 versus 1.8. The lower urea hydrolysis rate was due 

to a gradual build-up of total ammoniacal-N in the floodwater (Fig. A.3, Appendix A), which 

limited the effect of PAB activity on urea hydrolysis,  (Eq. 3). For low soil organic 

C, higher values of  during the first four days after urea application were observed in a 

flooded system with young rice crop (Scenario 1.5, Fig. 1a), compared with a flooded system 

with more developed rice crop (Scenarios 1.7, Fig. 1a). The  was lower in the system with 

more developed rice crop due to lower available light for PAB activity ( ), which was a 

function of leaf area index ( ). After four days, the values of  of both scenarios 

converged, due to limited N content in the floodwater ( ) in both systems. On the contrary, 

when the percentage of organic C in the top soil layer was high enough to buffer the effect of 

crop growth stage (Scenarios 1.6 and 1.8, Fig. 1a), fewer or smaller discrepancies between 

values of  of a flooded system with young rice crop, and those of a flooded system with 

more developed rice crop, were observed.  

By using the simulated two-hourly rate coefficients of urea hydrolysis (Fig. 1a), and assuming 

an impulse input of 150 kg N ha-1, the rates of urea hydrolysis (Fig. 1b) and the total urea-N 

in the floodwater  (Fig. 1c) were simulated. Largest discrepancies between rates of hydrolysed 

urea simulated with various scenarios were observed within the first day after urea application 

(Fig. 1b). The discrepancies were basically due to variation in trends and magnitudes of  or 

 (Fig. 1a). 

However, about two days after urea application, the discrepancies among models were 

significantly reduced (Fig. 1b), despite the variation in  or  (Fig. 1a). The amount of 

urea-N in the floodwater was highest in the beginning of urea application, and was reduced to 

about less than half of the total urea-N applied after one to two days. More precisely, for 

constant , this occurred after ln 0.5 /  days. This demonstrates that accurate estimation of 

the rate coefficient of urea hydrolysis is crucial right after application of urea.  



Chapter 3 

90 
 

0 2 4 6 8 10
0

0.02

0.04

0.06

0.08

0.1

Time after urea application, day

R
at

e 
co

ef
fi

ci
en

ts
 o

f
ur

ea
 h

yd
ro

ly
si

s,
 tw

o-
ho

ur
-1

 

 a)

0 2 4 6 8 10
0

50

100

150

200

Time after urea application, day

R
at

es
 o

f 
ur

ea
 h

yd
ro

ly
si

s,
kg

 N
 h

a-1
 tw

o-
ho

ur
-1

b)

0 2 4 6 8 10
0

50

100

150

Time after urea application, day

T
ot

al
 u

re
a-

N
 in

 f
lo

od
w

at
er

,
kg

 N
 h

a-1

c)

 

Fig. 1 a) Rate coefficients of urea hydrolysis, b) rates of urea hydrolysis, and c) the 
corresponding total urea-N in the floodwater after urea hydrolysis, in a fertilised and flooded 
soil system with an initial condition of 150 kg N ha-1 in the floodwater: Scenario 1.1 (dash 
orange line), Scenario 1.2 (solid orange line), Scenario 1.3 (dash grey line), Scenario 1.4 
(solid grey line), Scenario 1.5 (dash green line), Scenario 1.6 (solid green line), Scenario 1.7 
(dash blue line), Scenario 1.8 (solid blue line), Scenario 1.9 (solid red line) 
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Fillery et al. (1984) reported that urea hydrolysis was completed within seven days. In our 

simulation, almost all applied urea was completely hydrolysed on the fifth day after urea 

application for all scenarios, except for Scenario 1.1 and for Scenario 1.7 (Fig. 1c, Table 1). 

Unless buffered by a high percentage of soil organic C in top soil layer, a flooded system with 

more developed rice crop ( = 3.0) required more than seven days to complete hydrolysis 

of urea (Scenario 1.7). Meanwhile, a flooded system with 20 % of top soil organic C required 

the shortest time to complete urea hydrolysis, irrespective of the PAB activity (Scenario 1.5, 

Fig. 1c). 

The results revealed the importance of good estimates of percentage of organic C in top soil 

layer, for reliable simulations with APSIM-Oryza. Notice that the conceptualisation of the 

PAB activity resulted in fluctuations of the simulated rates of hydrolysed urea within a day 

(Scenarios 1.5 and 1.6, Fig. 1b). However, these fluctuations were relatively small in 

magnitudes compared with the daily average values, and, thus, were expected to have a 

negligible effect on the daily rates of urea hydrolysis.  

Notice that the model outputs simulated by APSIM-Oryza for Scenario 1.7 overlapped the 

model output simulated by a first-order kinetics model with a constant rate coefficient, 

= 0.0333 two-hour-1. The rate of urea hydrolysis simulated using a first-order kinetics 

model with a constant = 0.0333 two-hour-1 (Scenario 1.1) was also comparable to that of 

APSIM-Oryza when percentage of soil organic C was set to 12.3 % and = 1.0 (results 

not shown). The results demonstrate that the main difference between the modelling concepts 

of first-order kinetics of urea hydrolysis with a constant rate coefficient and that of APSIM-

Oryza lies in the conceptualisation of soil organic C % and  in APSIM-Oryza. 

Discrepancies between simulated rates of urea hydrolysis were more prominent within the 

first two days after application of urea (Fig. 1b). The discrepancies suggest that the hourly 

measurements of urea-N and total ammoniacal-N in the floodwater within two days after urea 

application are essential for validation of urea hydrolysis in the floodwater. However, 

considering many time-varying N sinks in actual flooded rice field systems, quantification of 

hourly rates of urea hydrolysis may require complex experimental set ups. Therefore, from a 

modelling point of view, further detailing of the urea hydrolysis process is not needed, as data 

sets may not allow validation of detailed dynamics descriptions of the urea hydrolysis 

process. 
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3.3.2 Scenario studies of NH3 volatilisation from floodwater surface 

In the Jayaweera and Mikkelsen (1990a) model, the time-varying rate coefficient of NH3 

volatilisation ( ) was calculated as a function of five factors, namely the total ammoniacal-N 

concentration, wind speed, floodwater depth, pH, and temperature. For various combinations 

of the five factors,  ranged from 0.0033 hour-1 through 9.000 hour-1 (Jayaweera and 

Mikkelsen, 1990b). However, assuming typical conditions in a tropical flooded rice system at 

mid-day, we calculated a  value of about 0.3411 hour-1. The values of  calculated using 

the Jayaweera and Mikkelsen (1990b) model were higher compared with the values 

recommended in Chowdary et al. (2004), which ranged from = 8.333 × 10  hour-1 to 

= 0.0029 hour-1, and in Antonopoulos (2010), which ranged from = 0.0013 hour-1 to 

= 0.0333 hour-1. Fig. 2a, as a result of evaluations of Scenarios 2.1 to 2.5 (Table 1), 

shows that for complete volatilisation of the total ammoniacal-N in the floodwater by the 

seventh day, the rate coefficient of NH3 volatilisation for NFLOOD v.1 ( = 0.3333 hour-1, 

Scenario 2.2) was higher than that of the first-order kinetics with a constant rate coefficient 

( = 0.0292 hour-1, Scenario 2.1). 

A smaller value of the rate coefficient was required when the NH3 volatilisation was 

described by a first-order kinetics model with a constant rate coefficient, as NH3 was 

continuously volatilised at every time-instant. When the partitioning of NH4
+ and NH3 was 

conceptualised, the rate coefficient of NH3 volatilisation required a higher value, because the 

amount of NH3 in the floodwater susceptible to volatilisation is regulated by floodwater pH, 

and, thus, resulted in diurnal trend of NH3 volatilisation. This analysis demonstrates that the 

underlying concepts of an NH3 volatilisation model determine the appropriate values of the 

rate coefficient of NH3 volatilisation. Hence, it is vital to understand the modelling concepts, 

prior to adopting or comparing values of the NH3 volatilisation rate coefficient. 

The diurnal trend of NH3 volatilisation as observed in Fillery et al. (1986) cannot be simulated 

by a first-order kinetics model with a constant rate coefficient (Eq. 4), unless the effect of 

NH4
+ and NH3 partitioning in the floodwater was conceptualised, as in NFLOOD v.1 (Eq. 5, 

Fig. 2b). The Jayaweera and Mikkelsen (1990a) model, which includes conceptualisation of 

NH4
+ and NH3 partitioning and the time-varying rate coefficient ( ), was also able to 

simulate the diurnal trend in NH3 volatilisation (Fig. 2b). 
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Fig. 2 a) Total NH3 volatilisation, b) the corresponding two-hourly rates of NH3 volatilisation, 
and c) the corresponding daily rates of NH3 volatilisation, in a fertilised and flooded soil 
system with an initial condition of 150 kg N ha-1 in the floodwater: Scenario 2.1 (orange solid 
line), Scenario 2.2 (blue solid line), Scenario 2.3 (green solid line), Scenario 2.4 (green dash 
line), and Scenario 2.5 (red dash line)  
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More importantly, notice that the trends of the two-hourly NH3 volatilisation rates simulated 

by the NFLOOD v.1. and the Jayaweera and Mikkelsen (1990a) model were comparable (Fig. 

2b). At first, we run the Jayaweera and Mikkelsen (1990a) model for wind speed, 6 m s-1, and 

observed discrepancies in the magnitude of each daily peak (Scenario 2.3, Fig. 2b). We 

suspected that this discrepancy was due an overestimation of the wind speed. Therefore, the 

simulation with the Jayaweera and Mikkelsen (1990a) model was repeated with wind speed 

reduced from 6 m s-1 to 4.5 m s-1. As a result, our hypothesis was confirmed as the peaks 

simulated using the Jayaweera and Mikkelsen (1990a) model fitted the peaks simulated using 

the NFLOOD v.1 model (Scenario 2.2 versus 2.4, Fig. 2b). The corresponding time-varying 

rate coefficient of NH3 volatilisation simulated using the Jayaweera and Mikkelsen (1990a) 

model ranged from = 0.20 hour-1 to = 0.23  hour-1. These values were slightly lower 

than the estimate used in NFLOOD v.1, which was = 0.3333 hour-1. 

Despite the comparable outputs, note the differences in modelling concepts underlying the 

NFLOOD v.1. and the Jayaweera and Mikkelsen (1990a) model (Sections 3.2.2.1 and 

3.2.2.2). To simulate partitioning between NH4
+ and NH3 in the floodwater, both floodwater 

pH and temperature were used in the Jayaweera and Mikkelsen (1990a) model, and only 

floodwater pH was used in NFLOOD v.1. The rate coefficient of NH3 volatilisation in 

NFLOOD v.1 is a constant, whereas the rate coefficient of NH3 volatilisation in the Jayaweera 

and Mikkelsen (1990a) model is time-varying. Unlike all other models discussed in this 

chapter, the floodwater depth is inversely proportional to the rate coefficient of NH3 

volatilisation in the Jayaweera and Mikkelsen (1990a) model. However, in this numerical 

experiment, the floodwater depth was assumed constant.  

The effect of wind speed was conceptualised in the Jayaweera and Mikkelsen (1990a) model, 

but not in the NFLOOD v.1. Wind speed is an important regulator of NH3 volatilisation (Vlek 

and Craswell, 1981), but wind speed data is often not available. Consequently, newer models, 

such as CERES-Rice (Godwin and Singh, 1998) and APSIM-Oryza (Gaydon et al., 2012b), 

approximated wind speed by other measurable variables, i.e. pan evaporation or . 

The simulation results suggest that, in the absent of wind speed data, the NH3 volatilisation 

routine in NFLOOD v.1 may be substituted by the Jayaweera and Mikkelsen (1990a) model. 

For different constant wind speeds, Table 2 provides the corresponding values of rate 

coefficient of NH3 volatilisation for NFLOOD v.1, which would produce outputs comparable 
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with those simulated by the Jayaweera and Mikkelsen (1990a) model. 

Table 2 Corresponding constant NH3 volatilisation rate coefficients for NFLOOD v.1 ( ), 
for constant wind speeds, that would produce rates of NH3 volatilisation similar to those 
simulated using the Jayaweera and Mikkelsen (1990a) model 

Wind speed (m s-1)    Values of  (hour-1) 
2     0.12 
4     0.26 
5     0.50 
8      0.80 

 

Note that the time-shift observed for APSIM-Oryza was due to the Euler Forward 

discretisation scheme (Scenario 2.5, Fig. 2b). Results show that by fitting the trend of two-

hourly NH3 volatilisation rates produced by APSIM-Oryza to those of NFLOOD v.1 (Fig. 

2b), we overestimated the amount of total ammoniacal-N that was left in the floodwater on 

the final day (Fig. 2a). By fitting the amount of total ammoniacal-N left in the floodwater, we 

overestimated the rate of NH3 volatilisation within the first day after urea application. This 

result suggests that the NH3 volatilisation routine of APSIM-Oryza is not comparable with 

those of the NFLOOD v.1 and Jayaweera and Mikkelsen (1990a) models.  

To investigate whether the daily NH3 volatilised simulated by the discussed models were 

comparable, the rates of daily NH3 volatilisation were calculated from 18:00 hours to 18:00 

hours (Fig. 2c). Results show that the first-order kinetics model with a constant rate 

coefficient (Scenario 2.1) estimated higher daily rates of NH3 volatilisation in comparison 

with the NFLOOD v.1 (Scenario 2.2) and Jayaweera and Mikkelsen (1990a) (Scenario 2.4) 

models, during the first two days, after which the discrepancies were reduced (Fig. 2c). 

3.3.3 Scenario studies of floodwater pH 

In addition to wind speed, floodwater pH and temperature are also key regulators of NH3 

volatilisation. The floodwater temperature can easily be measured and was pre-defined in this 

study (Appendix A). Also, the floodwater pH can easily be measured. However, semi-physical 

modelling of the floodwater pH dynamics allows understanding of the underlying mechanisms, 

reduces the number of input data required for simulation, and allows prediction of NH3 

volatilisation. So far, NH3 volatilisation was calculated for a fixed NH3 volatilisation rate 

coefficient or time-varying rate coefficient, with pre-defined two-hourly floodwater pH (Fig. 

A.1). 
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In this section, the modelling concepts of floodwater pH in APSIM-Oryza were evaluated for 

different settings of flooded soil systems (Scenarios 3.1 to 3.7, Table 1). For selected scenarios, 

the diurnal fluctuations in floodwater pH simulated using APSIM-Oryza were compared with 

those of the Singh and Kirk (1993a) model.  

First, we consider unfertilised flooded soil systems without rice crop (Scenarios 3.1 to 3.3, 

Table 1). For this system, the diurnal floodwater pH simulated using APSIM-Oryza followed 

an absolute sine curve, with daily peaks occurring at 12:00 hours (Fig. 3a). For this system, 

the magnitude of floodwater pH, which is dependent on the PAB activity index ( ), was 

regulated by the floodwater N index ( ) throughout ten days after urea application. Unlike 

APSIM-Oryza, in which the PAB activity was approximated as index factor regulated by the 

most limiting of factors ( , , , ), the PAB activity in Singh and Kirk (1993a) model 

is pre-defined as a rate constant of CO2 consumption by PAB at mid-day, which can be 

calibrated to suit local conditions.  

For an unfertilised flooded soil systems without rice crop and without PAB activity, 

simulation of the Singh and Kirk (1993a) model resulted in a floodwater pH of about 8.2 that 

stayed constant within 24 hours (Singh and Kirk, 1993b). This pH value was higher than 

those simulated using APSIM-Oryza for low PAB activity (i.e., = = 0.1, Fig. 3), 

where the diurnal fluctuations in floodwater pH were within the neutral range. The Singh and 

Kirk (1993a) model was able to produce higher pH levels despite zero PAB activity because 

the floodwater pH dynamics were calculated on the basis of the number of protons added, not 

only due to net change in NH4
+, but also in HCO3

-, in floodwater and soil (Singh and Kirk, 

1993b).  

Unlike the Singh and Kirk (1993a) model, APSIM-Oryza was never able to simulate a 

constant floodwater pH because the diurnal fluctuations in floodwater pH were assumed to 

follow an absolute sine curve (Eq. 18). Singh and Kirk (1993a) approximated the uptake or 

release of CO2 by the PAB in the floodwater by a sine curve, but the floodwater pH, using the 

Singh and Kirk (1993a) model, can be either constant (zero PAB activity) or follow a sine 

curve (non-zero PAB activity) (Singh and Kirk, 1993b).  

For an unfertilised flooded soil system without rice crop, but now with PAB activity defined 

as 5.6 nmol dm-3 s-1 CO2 consumption rate at mid-day, the trend of floodwater pH within 24 

hours simulated by Singh and Kirk (1993b) followed a sine curve, with increasing values 
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from pH 7.8 at 6:00 hours, to about pH 9.0 at about 13:30 hours, and gradually decreasing to 

about pH 7.8 at about 20:00 hours. APSIM-Oryza, however, cannot simulate daily peaks 

higher than pH 8.5, because the PAB activity was limited by zero phosphorus supply, i.e., 

= 0.5 (Fig. 3b).  
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Fig. 3 a) Diurnal fluctuations in floodwater pH simulated using APSIM-Oryza: Scenario 3.1 
(dash line), Scenario 3.2 (brown solid line), and Scenario 3.3 (black solid line), and b) the 
corresponding indexes that regulate the PAB activity: Floodwater N indexes for Scenario 3.1 
(dash line), Scenario 3.2 (brown solid line), and Scenario 3.3 (black solid line), and the 
floodwater temperature index for all scenarios (blue solid line). These scenarios were 
performed for unfertilised and flooded soil systems 

The PAB activity in APSIM-Oryza was predictably low, given low concentration of total 

ammoniacal-N. In contrast, a higher rate of PAB activity can be pre-defined in the Singh and 
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Kirk (1993a) model, regardless of the total ammoniacal-N concentration.  

In the next set of scenarios (Scenarios 3.4 to 3.5, Table 1), we consider fertilised flooded soil 

systems without rice crop, first without N sinks, and second with N sinks (i.e., NH3 

volatilisation and N transport into the soil). The latter (Scenario 3.5, Table 1) was selected for 

comparison with the results by Singh and Kirk (1993b). 

In a flooded soil system without rice crop, without N sink, and which was broadcasted with 

40 kg N ha-1 at 12:00 hours, the simulated floodwater pH using APSIM-Oryza followed an 

absolute sine curve (Fig. 4a). Initially, the magnitude of diurnal fluctuations in floodwater pH 

was limited by the slow build-up of total ammoniacal-N concentration (Fig. 4b). About 12 

hours after urea application, the concentration of total ammoniacal-N in the floodwater 

exceeded 15 mg N L-1. Thus, the floodwater N index ( ) was no longer a limiting factor as 

there was no N sink. Consequently, one day after urea application, the floodwater pH peak 

increased from about pH 8.5 to slightly above pH 9.0. At this point, floodwater phosphorus 

content became the most limiting factor to the PAB activity, due to absent of phosphorus 

supply (i.e., = 0.5). If phosphorus was applied ( = 1.0), the floodwater temperature 

index ( ) would be the most limiting factor to PAB activity. 

Notice that the rate of urea hydrolysis had an additional effect on the magnitude of floodwater 

pH (Eq. 19). The rates of urea hydrolysis were highest at about 12 hours after urea application 

(about 1.7 kg N ha-1 two-hour-1), and gradually decreased towards zero in about six days after 

urea application. As the rates of urea hydrolysis declined, a slight decrease in the daily peaks 

of floodwater pH from first through six days after urea application was observed (Fig. 4a). A 

noticeable decrease in daily peak of floodwater pH was observed seven days after urea 

application due to completion of urea hydrolysis (Fig. 4a). 

By using the Singh and Kirk (1993a) model, Singh and Kirk (1993b) predicted the diurnal 

floodwater pH in a fertilised flooded soil system with N sinks. In their simulations, the NH3 

volatilisation and N transport into the soil were included as the only N sinks. We wished to 

simulate and compare the diurnal floodwater pH of a similar system using APSIM-Oryza. 

However, due to differences in modelling concepts of NH3 volatilisation, between the 

APSIM-Oryza and Singh and Kirk (1993a) models, different rates of NH3 volatilisation may 

result. The rates of NH3 volatilisation affect the estimates of floodwater pH by both models. 

Consequently, the estimates of floodwater pH obtained using APSIM-Oryza cannot be 
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compared to those of Singh and Kirk (1993b). 
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Fig. 4 a) Diurnal floodwater pH simulated using APSIM-Oryza and b) the factors that 
regulate the PAB activity for Scenario 3.4: Floodwater temperature index ( , blue solid 
line), available light index ( , dash grey line), floodwater N index ( , green solid line), 
and floodwater P index ( , red solid line). Scenario 3.4 considers a fertilised and flooded 
soil system that was broadcast with 40 kg urea-N ha-1, and with no N sink. = 0.0, 

= 0.5 

Alternatively, daily peaks of total ammoniacal-N concentrations in the floodwater, predicted 

by Singh and Kirk (1993b), were used for estimating the ‘effective’ floodwater N index ( ) 

in APSIM-Oryza. The daily peak of total ammoniacal-N concentration were highest (about 

2.8 mg N L-1) on the second day after urea application, and subsequently, the daily peak 

gradually declined to about 1.1 mg N L-1 ten days after urea application (Singh and Kirk, 
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1993b). To calculate the  in APSIM-Oryza, the concentration of total ammoniacal-N was 

assumed constant throughout a day, and was approximated by the daily peak. Fig. 5a shows 

the resulting diurnal fluctuations in floodwater pH of the fertilised flooded soil system with N 

sinks which is comparable with the system defined in Singh and Kirk (1993b). For this 

system, the  was the most limiting factor to PAB activity (Fig. 5b).  
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Fig. 5 a) Floodwater pH simulated using APSIM-Oryza and b) the factors that regulate the 
PAB activity for Scenario 3.5: Floodwater temperature index ( , blue solid line), available 
light index ( , grey dash line), floodwater N index ( , green solid line), and floodwater P 
index ( , red solid line). Scenario 3.5 considers a fertilised and flooded soil system that was 
broadcast with 40 kg urea-N ha-1, and with N sinks. = 0.0, and = 0.5 

The daily peaks of the floodwater pH gradually decreased two days after urea application, as a 
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result of continual decrease of total ammoniacal-N content in the floodwater. This result 

contradicts with Singh and Kirk (1993b), who predicted steady rise of daily peaks of 

floodwater pH, four days after urea application as the rates of NH3
 volatilisation decreased. 

In a fertilised flooded system with young rice crop ( = 1.0, Scenario 3.6, Table 1), the 

simulated floodwater pH using the APSIM-Oryza’s routine followed an absolute sine curve 

(Fig. 6b). The diurnal fluctuations in floodwater pH of this system were relatively similar to 

those of the fertilised flooded soil system without N sink (Fig. 4a). The major difference was 

the slightly lower magnitude of the overall floodwater pH from first through fourth day after 

urea application due to shading effects by the leaves ( = 3.0, Scenario 3.7, Table 1), 

which affected the PAB activity ( ) through the available light index ( ) (Fig. 6). Four 

days after urea application, the floodwater N content became the most limiting factor to the 

PAB activity in the fertilised flooded systems with young and more developed rice crop (Fig. 

6). 

The effects of rice crop growth stages, which were reflected by the leaf area index, on the 

diurnal fluctuations in floodwater pH, were not conceptualised in the Singh and Kirk (1993a) 

model. Nevertheless, these effects can be included by defining different rates of PAB activity 

(the rate of CO2 consumption at mid-day) for different rice growth stages. 

Data showed that urea hydrolysis is typically completed within six days after urea application 

(see Fillery et al., 1984). Therefore, the effect of urea hydrolysis on floodwater pH was 

activated only within six days. Data also showed that the concentration of total ammoniacal-N 

was highest within the first three or four days after urea application (Fillery et al., 1984). 

These observations indicate that accurate prediction of floodwater pH, for estimation of NH3 

volatilisation is specifically crucial within the first four days after urea application. 

Validation of the floodwater pH dynamics is a challenge because it is difficult to determine 

whether the difference in the pH levels was due to error in the model structure, or noises in 

the measurements (e.g., floodwater inhomogeneity, instruments accuracy). This raises the 

question whether the measurements are representative, or what would be the appropriate 

tolerance? Field measurements (Fillery et al., 1984) showed that for the same treatment, the 

variation in the daily peaks was only about 0.6 pH. To define a model-output-error tolerance 

smaller than pH 0.6 implies that a high accuracy model is required to satisfy this tolerance. 

We conclude a good match, in absolute terms, between model output and observational data is 
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impossible to achieve. Instead, our focus should be on trends. 
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Fig. 6 a) Floodwater pH simulated using APSIM-Oryza for a fertilised and flooded system 
that was broadcast with 60 kg urea-N ha-1, and = 0.5, and b) the PAB activity factor, 

. Scenario 3.6 considers young rice crop ( = 2.0, blue solid line), and Scenario 3.7 
considers well developed rice crop ( = 3.0, red dash line) 

Indeed, the floodwater pH dynamics are a result of number of protons added or consumed due 

to various processes. Physical modelling of these processes would result in an intricate model, 

i.e., the Singh and Kirk (1993a) model. The strength of the Singh and Kirk (1993b) model is 

that the model was based on balances of carbonate and ammoniacal species, making it more 

robust for a wider range of scenarios, i.e., fertilised or unfertilised flooded soil system. The 

Singh and Kirk (1993a) model has many rate coefficients that must be pre-determined, but 

this model is valuable for hypothesis testing in analysing NH3 loss reduction strategies (see 
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Singh and Kirk, (1993b) for details). Meanwhile, the APSIM-Oryza offers straightforward 

routines to estimate diurnal floodwater pH, which is then used for estimation of the diurnal 

fluctuation in NH3 volatilisation. Moreover, the floodwater pH routine in APSIM-Oryza can 

easily be integrated with other models. 

3.4 Conclusions 

A numerical-experimental approach was used to compare different modelling concepts of 

urea hydrolysis, NH3 volatilisation, and floodwater pH. We found that the main difference 

between the modelling concepts of first-order kinetics of urea hydrolysis with a constant rate 

coefficient and that of APSIM-Oryza lies in the conceptualisation of soil organic C % and leaf 

area index in APSIM-Oryza. The rates of urea hydrolysis produced by APSIM-Oryza can be 

approximated by adjusting the fixed urea hydrolysis rate coefficient of the first-order model to 

suit the local conditions, with respect to organic C % or leaf area index. Despite substantial 

differences in modelling concepts of NH3 volatilisation between the Jayaweera and Mikkelsen 

(1993a) and NFLOOD v.1 models, the rates of NH3 volatilisation simulated using the 

Jayaweera and Mikkelsen (1993a) model can be approximated by adjusting the fixed rate 

coefficient of NH3 volatilisation in NFLOOD v.1. We found that the wind speed in the 

Jayaweera and Mikkelsen (1993a) model was proportional to the fixed rate coefficient in 

NFLOOD v.1. Differences in modelling concepts of floodwater pH in APSIM-Oryza and the 

Singh and Kirk (1993a) model, led to outputs that were significantly differed. New 

observational data may be used to investigate which model is more reliable under what 

conditions. 
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Appendix A. Synthetic data sets used for simulation of models 
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Fig. A.3 Concentrations of ammoniacal-N in floodwater of a fertilised and flooded rice 
system from 14 to 27 days after transplanting, at Los Baños, Philippines, digitised from 
Fillery et al. (1984). The system was broadcasted with 60 kg urea-N ha-1  
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Appendix B. Selected equations from the Jayaweera and Mikkelsen (1990a) model 

Time-varying rate coefficient of NH3 volatilisation 

The time-varying rate coefficient of NH3 volatilisation in hour-1, =    (B.1) 

where, 

 is floodwater depth in cm, and =
  

 
 , is in cm hour-1. 

Dimensionless Henry’s law constant,  , with gas constant = 8.315 × 10  MPa 

m3 mol-1 K-1,  is floodwater temperature in K, and =
[ ]   

, with partial pressure of 

NH3 in the gas phase in equilibrium with the solution in MPa, = 18.62exp − , 

and [ ]  is molar concentration of NH3 in solution in mol N m-3. 

Dimensionless mole fraction of NH3 in floodwater solution, 

=
[ ]/ .

[ ]/ .  ( )[ ]/ .  / .
 , where [ ] is total ammoniacal-N 

concentration in mg N L-1,   is density of water in g cm-3 for a respective floodwater 

temperature, and dimensionless fraction of NH3, = , with dimensionless 

temperature factor, = 0.0897 + , where  is floodwater temperature in K. 

Gas phase exchange constant for NH3 in cm hour-1, = 19.0895 + 742.3016. , and 

liquid phase exchange constant for NH3 in cm hour-1, =
.

. . . 1.6075, with 

 is wind speed in m s-1. See Jayaweera and Mikkelsen (1990a) for the complete model and 

its derivation. 

Association and dissociation constants 

The association constant in s-1, = 3.8 × 10 − 3.4 × 10 + 7509700  (B.2) 

The dissociation constant in mol N s-1, = × , where = 10    (B.3) 
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Appendix C. Selected equations from APSIM-Oryza (Gaydon et al., 2012b) 

PAB activity 

= min( , , , )           (C.1) 

where, 

available light index, = 1 − exp −
.

, with = × (1 − ) ×

exp (−0.65 × ) , where  is mean solar radiation in MJ m-2 day-1, and =

0.05, 

floodwater temperature index, = 0.0667 − 1.0 for 15˚C ≤ ≤ 30˚C
−0.0667 + 3.0 for 30˚C < ≤ 45˚C

, with  

is floodwater temperature in ˚C, 

floodwater nitrogen index, =
[ ]

.
+ 0.1,  with [ ] is concentration of total 

ammoniacal-N in the floodwater in mg N L-1 or ppm, 

and floodwater phosphorus index, =
0.5 when phosphorus is absent
1.0 when phosphorus is applied  

, ,  and  range from zero through unity 

Effect of urea hydrolysis on floodwater pH  

_ ℎ = min (10 − log ( ))         (C.2) 

where, = ×
.

,  

and =
×

 

where, _ ℎ  is the effect of urea hydrolysis on floodwater pH (Eq. 19),  is 

molar concentration of hydrolysed urea mol N L-1,  is concentration of hydrolysed 

urea in mg N L-1,   is rate if hydrolysed urea in kg N ha-1 (Eq. 2 and 3), and  is 

floodwater depth in mm (APSIM-Oryza, 2015) 
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Abstract 

The objective of the chapter is to present and evaluate a process-based model for estimating ammonia 

(NH3) volatilisation in fertilised and flooded rice systems, which is of a complexity appropriate for 

scarce soil nitrogen (N) data. Based on model and data integration, urea hydrolysis in the floodwater 

was approximated by two first-order kinetics, and the uptake of N by rice crop was lumped with other 

N sinks and approximated by a sigmoid curve in the proposed model. The lumped N sink term avoids 

assumptions on soil parameters beyond what can be identified from the limited soil N data. The model 

was falsified by some data sets, but was also in good agreement with other data sets. Inadequate model 

structure may have led to the falsification of the model, but uncertainty in observations and in 

parameters could also have led to the falsification. For the flooded rice systems in the Philippines, 

conceptualisation of the partitioning between ammonium and NH3 and a time-varying rate coefficient 

of NH3 volatilisation in the proposed model improved the prediction of the net NH3 volatilisation.   

Keywords: Nitrogen model, ammonia volatilization, flooded soil, rice field  
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4.1 Introduction 

About 95 % of global rice production occurs on rice systems with soil flooded during at least 

part of the rice cropping period (Buresh et al., 2008). In flooded rice systems that are broadcast 

with urea, and without subsequent incorporation into the soil, ammonia (NH3) volatilisation 

can be as high as 56 % of total synthetic nitrogen (N) applied (Freney et al., 1981, De Datta et 

al., 1991, Freney and Denmead, 1992, Cai, 1997, Buresh et al., 2008). In the year 1995, about 

20 % of the 11.8 million tons of synthetic N yearly applied in flooded rice fields globally was 

estimated to be lost via NH3 volatilisation (Bouwman et al., 2002). 

Initiatives to minimise NH3 volatilisation in flooded rice systems are not straightforward. For 

instance, deep placement of urea super granules in the flooded soil was shown to substantially 

reduce NH3 volatilisation in fertilised and flooded rice systems (Craswell et al., 1981, Cao et al., 

1984, De Datta et al., 1988, Liu et al., 2015), but the method may increase the risk of N leaching 

in flooded soils with high permeability (light-textured soils) (Vlek et al., 1980). Furthermore, 

deep placement of urea is also laborious. As long as feasible N fertilisation strategies are not 

demonstrated to farmers, and challenges in technology transfer are not critically addressed 

(Fujisaka, 1994, Corales et al., 2015), NH3 volatilisation may remain significant in fertilised and 

flooded rice systems. 

Currently, there are many mathematical models that can estimate NH3 volatilisation in 

fertilised and flooded soil systems, with or without a rice crop, ranging from relatively simple 

process-based models, such as suggested by Bouwmeester and Vlek (1981), Chowdary et al. 

(2004), Liang et al. (2007), and Antonopolulos (2010), to complex process-based models, like 

the model by Singh and Kirk (1993), or a mix of both process-based and empirical regression 

equations, for instance, models by Jayaweera and Mikkelsen (1990), (CERES-Rice) by 

Godwin and Singh (1998), and (APSIM-Oryza) by Gaydon et al. (2012). These models are 

either used for estimation to replace intricate experimental set-ups, to obtain scientific 

insights, or to aid decision making in management of rice systems. Reliable estimation of NH3 

volatilisation is important as this process can be a major pathway of N losses (Buresh et al., 

2008) and partially determines the amount of total ammoniacal-N available for uptake by the 

rice crop. 

NH3 volatilisation in fertilised and flooded rice systems is dependent on key regulators such 

as the amount of total ammoniacal-N in the floodwater, wind speed, and floodwater pH, 



Chapter 4 

112 
 

temperature, and depth (Fillery et al., 1984, Fillery et al., 1986, Jayaweera and Mikkelsen, 

1991). However, these process variables are not always conceptualised in the existing models. 

Assumptions underlying the modelling concepts depend on the objective of the model, and 

availability of observational data sets for calibration and validation of the models. 

The lumped-parameter model by Chowdary et al. (2004) is one of the simplest process-based 

models for predicting NH3 volatilisation in fertilised and flooded rice systems. Over the years, 

more lumped-parameter models were developed and evaluated with seasonal data sets, see, 

for instance, the work by Liang et al. (2007), Antonopoulos (2010), and Liang et al. (2014). In 

lumped-parameter models, many of the N processes including NH3 volatilisation are 

described by first-order kinetics, and each process is regulated by a constant rate coefficient. 

Such a modelling concept, process-based and yet kept simple, is appealing for ill-defined 

flooded rice systems with complex interactive N processes. According to Young (1978), a 

system is ill- or badly-defined when the size and complexity of the system prevent a full 

understanding a priori and when planned experimentation is difficult, if not impossible, and 

where observational data sets for calibration and cross-validation of models are often small. 

Nevertheless, unlike the more detailed models, for instance the one by Jayaweera and 

Mikkelsen (1990), the one by Singh and Kirk (1993), CERES-Rice by Godwin and Singh 

(1998), and APSIM-Oryza by Gaydon et al. (2012), the models by Chowdary et al. (2004), 

Antonopoulos (2010) and Liang et al. (2014) did not conceptualise the key regulators of NH3 

volatilisation, which drive the partitioning between ammonium and NH3. Furthermore, 

evaluation of the performance of lumped-parameter models are currently limited to total NH3 

volatilisation measured at the end of a cropping season (Chowdary et al., 2004, Liang et al., 

2007, Antonopoulos, 2010, Liang et al., 2014). Therefore, it is not known whether these 

simpler models are also suitable for estimating NH3 volatilisation after each urea (split) 

application, as the key regulating factors of NH3 volatilisation were not conceptualised. It is 

also not known whether the estimation of NH3 volatilisation using these models can be 

improved by conceptualising some of the key regulators. 

In order to simulate NH3 volatilisation in fertilised and flooded soil systems with a rice crop, 

other dominant N losses should be conceptualised in a model, for instance N uptake by the 

rice crop. This point of view sometimes led to detailed modelling of soil N dynamics (Rao et 

al., 1984, Singh and Kirk, 1993, Gaydon et al., 2012), including nitrification, denitrification, 
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mineralisation, and immobilisation processes (Rao et al., 1984, Chowdary et al., 2004, Liang 

et al., 2007, Antonopoulos, 2010). Detailed modelling of soil N dynamics may easily result in 

an over-parameterised model, as observational data sets for the calibration of the unknown 

rate coefficients (parameters) are inadequate. 

Model development is an iterative process (Jakeman et al., 2006, Bellocchi et al., 2010, 

Bennett et al., 2013). Improvement of a model that aims at a right balance between a priori 

knowledge and data information content includes re-structuring the model in order to reduce 

the number of parameters (calibrated rate coefficients), or addition, omission or simplification 

of processes or process variables (Keesman, 2011). 

In this chapter, by selecting and re-structuring modelling concepts from several existing N 

dynamics models, our objectives are to present and evaluate an alternative process-based 

model that can capture trends of NH3 volatilisation in fertilised and flooded rice systems, and 

is of a complexity that matches the scarcity of soil N data. The performance of the proposed 

model is assessed using temporal cumulative NH3 volatilisation data and co-validated against 

the model by Chowdary et al. (2004). 

4.2 Materials and methods 

4.2.1 Modelling concepts 

Our starting point is the N dynamics modelling concept of Chowdary et al. (2004), in which 

urea hydrolysis and NH3 volatilisation are described by first-order kinetics, each with a 

constant rate coefficient. The modelling concept of our proposed model is shown in Fig. 1. 

4.2.1.1 Water balance of a flooded rice field 

The water balance of a flooded rice field, allowing a time-varying floodwater depth, is given 

by: 

= + − −          (1) 

where,  is floodwater depth (m),  is rainfall (m day-1),  is irrigation (m day-1),  is 

evapotranspiration (m day-1), and  is floodwater loss (m day-1) due to surface runoff and 

percolation (m day-1). 
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Fig. 1 Modelling concepts of the proposed model.  is floodwater loss due to surface runoff 
and percolation,  is rainfall,  is irrigation,  is evapotranspiration,  is floodwater depth, 

 is rate of urea-N applied, [ ] is concentration of dissolved urea, [ ] is slow urease 
activity, [ ] is concentration of total ammoniacal-N, [ ] is concentration of 
ammonium, [ ] is concentration of ammonia,  is cumulative ammonia volatilisation, 
and  is total N sink  

4.2.1.2 Urea hydrolysis 

Urea is widely used in flooded rice system (Soares et al., 2012), and resulted in higher NH3 

volatilisation compared to other forms of N sources (Fillery et al., 1986). Estimation of the 

urea hydrolysis rate is vital as the process pre-determines how much total ammoniacal-N is 

available in the floodwater, and how much is susceptible to NH3 volatilisation. In our model, 

hydrolysis of urea is conceptualised in the floodwater, assuming urea is broadcast on the 

floodwater without subsequent incorporation into the soil. Initially, urea hydrolysis is 

described as a one-step process. 

One-step urea hydrolysis 

The mass balance of urea-N with the one-step urea hydrolysis described in terms of first-order 

kinetics is given by 

[ ]
= (+ − [ ] + [ ]{− − + })     (2) 

where,  is rate of urea-N applied (kg m-2 day-1), [ ] is concentration of urea-N in 

floodwater (kg m-3), and  is urea hydrolysis rate coefficient (day-1). The one-step first-order 

kinetics is conceptualised in most N dynamics models (Kirk and Solivas, 1997, Chowdary et 
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al., 2004, Jing et al., 2010). Note that solute concentration, i.e., [ ], multiplied with 

{− − + } represents the dilution effect as a result of changes in floodwater depth (see 

Appendix A for derivation of Eq. 2).  

In this chapter, it will be shown that calibration of the model with observational data suggests 

that urea hydrolysis may be described as a two-step process in flooded rice systems with low 

urease activity. 

Two-step urea hydrolysis 

Thus, as an alternative to the one-step urea hydrolysis, the two-step urea hydrolysis was 

conceptualised, as rapid disappearance of urea in the floodwater is not followed by rapid 

appearance of ammoniacal-N in the floodwater, presumably due to low urease activity in the 

floodwater. The first step is given by Eq. 2. This first step is followed by second step which is 

given by 

[ ]
= (+ [ ] − [ ] − [ ]{− − + })    (3) 

where, [ ] is an interim state that emulates low urease activity in floodwater (kg m-3), which 

slows down the overall urea hydrolysis rate, and  is the second step urea hydrolysis rate 

coefficient (day-1). 

4.2.1.3 Ammonia volatilisation 

Chowdary et al. (2004), Antonopoulos (2010) and Liang et al. (2014) conceptualised NH3 

volatilisation by a first-order process, but the partitioning between NH4
+ and NH3 in the 

floodwater was not conceptualised. Theoretically, partitioning between NH4
+ and NH3 must be 

conceptualised as only NH3 is susceptible to volatilisation, and to capture the diurnal trend of 

NH3 volatilisation, as observed by Craswell et al. (1981), Fillery et al. (1984), and Fillery et al. 

(1986) in fertilised and flooded rice systems. Therefore, we adopted the concept of Jayaweera 

and Mikkelsen (1990) to approximate the partitioning between NH4
+ and NH3 in the floodwater. 

Thus, the cumulative NH3 volatilisation,  (kg N ha-1), is calculated as follows 

= + [ ]           (4) 
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where, [ ] is concentration of total ammoniacal-N in the floodwater (kg N m-3),  is rate 

coefficient of NH3 volatilisation (day-1), and = 10000 , is the volume of floodwater per 

hectare of land in m3. Furthermore, 

=           (5) 

where,  is fraction of NH3-N from total ammoniacal-N (dimensionless), and  is 

floodwater temperature factor (dimensionless), given by:  

= 0.0897 +
.

         (6) 

with  is the floodwater temperature (C̊). Eq. 6 relating  to  was derived by regression 

analysis (Jayaweera and Mikkelsen, 1990). 

4.2.1.4 Total nitrogen sink 

To estimate NH3 volatilisation in fertilised and flooded rice systems, N uptake by the rice 

crop cannot be neglected. Conventionally, modellers assumed that the inorganic N in the 

floodwater must first enter the soil compartment, prior to N uptake by rice crop (Singh and 

Kirk, 1993, Chowdary et al., 2004, Godwin and Singh, 1998, Gaydon et al., 2012). Such an 

approach increases model complexity due to the need to approximate percolation and 

diffusion rates of inorganic N (Rao et al., 1984, Singh and Kirk, 1993, Gaydon et al., 2012), 

and motivates conceptualisation of other soil N processes, i.e., denitrification, organic N 

mineralisation, inorganic N immobilisation, and fixation and de-fixation of NH4
+ (Rao et al., 

1984, Reddy et al., 1990, Chowdary et al., 2004, Antonopoulos, 2010). 

Although such details are valuable for scientific understanding, and may increase the scope of 

applications of the model, the parameters related to the interactive soil N processes 

(simultaneous nitrification and denitrification, organic N mineralisation, inorganic N 

immobilisation, and fixation and defixation of NH4
+) in the soil may be unidentifiable, given 

limited and non-informative soil N data sets. Studies of Makarim et al. (1991) and 

Dobermann et al. (1994) have demonstrated low concentrations of inorganic nitrogen (from 0 

to 3 mg N L-1) in fertilised and flooded rice systems. Given these low concentrations of soil 

inorganic N and the inhomogeneity of the soil compartment, soil available N data most likely 
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lead to unidentifiable parameters, and therefore, may not warrant proper calibration or 

validation of the interactive soil N dynamics (Cassman et al., 2002). 

Large recovery of broadcast N fertiliser, without incorporation into the soil, was observed by 

Cassman et al. (1998), where for 100 kg N ha-1 applied on 42 DAT, about 8 to 10 kg N ha-1 day-

1 was absorbed by the rice crop. By simulating the Singh and Kirk (1993) model, Kirk and 

Solivas (1997) showed that urea-N and ammoniacal-N do not penetrate too deep into the 

flooded soil; at most within 0.03 m from the flooded soil surface. Therefore, Kirk and Solivas  

(1997) hypothesised that most of the broadcast N must be absorbed by the dense root mat at the 

floodwater-soil interface.  

The efficient N uptake observed by Cassman et al. (1998) and the hypothesis by Kirk and 

Solivas (1997), together with the scarce and low accuracy of soil N data suggested that the N 

uptake by rice crop, and other N losses (i.e., simultaneous nitrification and denitrification), 

can be lumped into one total N sink term. The fact that rice roots accumulate within the top 20 

cm (Cassman et al., 2002) and these rice roots can be seen protruding at the floodwater-soil 

surface strengthens our conceptualisation. 

Thus, the total N sink is conceptualised as an out flux directly from the floodwater. By 

assuming a dominant contribution of N uptake by rice crop on the total N sink term, the term is 

described by a sigmoid curve, in which the variable  (dimensionless) describes the trend of 

total N sink over time and follows from 

= (1 − )          (7) 

where,  defines the rate of change in   (day-1). The total N sink increases with rice crop 

growth stage as N uptake by the rice crop increases. Consequently, the cumulative N sink, 

 (kg N ha-1), follows from 

 
= + [ ]         (8) 

where,  is the rate coefficient of total N sink (day-1), which drives the magnitude of total 

N sink, and [ ] and  are defined in Eq. 4. However, still an expression for [ ] is 

missing. 
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4.2.1.5 Total ammoniacal-nitrogen in floodwater 

The concentration of total ammoniacal-N in floodwater ([ ] in kg N m-3) is regulated by 

floodwater depth (Eq. 1), and rates of urea hydrolysis (Eqs. 2 to 3), NH3 volatilisation (Eqs. 4 

to 6), and N sink (Eqs. 7 to 8) (Fig. 1), and is given by: 

[ ]
= (+ − [ ] − [ ] − [ ]{− − − })  (9) 

where, = [ ] for one-step urea hydrolysis, or = [ ] for two-step urea 

hydrolysis (Eqs. 2 to 3). Hence, the cumulative NH3 volatilisation (Eq. 4) can be calculated 

from Eqs. 1 to 7, and 9. 

4.2.2 Model evaluation 

4.2.2.1 Secondary data sets 

Observational data sets reported by Fillery et al. (1984) and Li et al. (2008) were digitised and 

used for evaluation of the model (Table 1). 

In experiments related to the observational data sets DSetLB84 and DSetM84, urea was 

applied at three time instants: 1) just before transplanting of rice seedlings, 2) at about 14 or 

21 days after transplanting (DAT), and 3) at about 27 or 52 DAT. The observed state 

variables are sub-daily concentrations of urea-N, concentrations of total ammoniacal-N and 

NH3 fluxes. Fillery et al. (1984) reported the rate of NH3 volatilisation (kg N ha-1 hour-1), but 

we transformed this into temporal cumulative NH3 volatilisation with a time interval of half a 

day. 

The observed floodwater pH values in the study by Fillery et al. (1984) were interpolated and 

used as data inputs to the model. The floodwater pH was measured only between 6:00 hours 

and 22:00 hours. Therefore, the floodwater pH between 22:00 hours and 6:00 hours was 

assumed constant at 7.0 for each day (Appendix B). Different floodwater temperatures were 

observed for DsetLB84 and DSetM84 (Table 1), but details were not reported in Fillery et al. 

(1984). Thus, as a first guestimate, we used the same synthetic floodwater temperature as 

model input data for both locations. Floodwater temperature was assumed constant at 25 ˚C at 

between 20:00 hours and 6:00 hours, and gradually reaches a maximum temperature of 40 ˚C 

at 12:00 hours at both locations (Appendix B). The floodwater pH and temperature were used  
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to calculate the fraction of NH3 from total ammoniacal-N in the floodwater using Eqs. 5 and 

6. For DSetM84 and DSetLB84, the floodwater depth was assumed constant at 0.035 m, 

which was the average observed for DSetM84 and DSetLB84 due to lack of meteorological 

data. 

In experiments related to the observational data sets DSetYH, DSetJX, and DSetCS, urea was 

also applied at three time instants: 1) just before transplanting of rice seedlings, 2) at about 10 

DAT, and 3) at about 38 DAT. At each location, urea was applied at four rates for each 

application, i.e., 18, 36, 54, and 72 kg N ha-1. Li et al. (2008) reported daily rates of NH3 

volatilisation after each urea application. Frequent observations of total ammoniacal-N 

concentration, and floodwater pH and temperature were not reported in Li et al. (2008). For 

DSetYH, DSetJX and DSetCS, the floodwater depth was reported to vary between 0.10 to 

0.80 m, and, thus, we assumed an average floodwater depth of 0.045 m. 

For all data sets, urea was broadcast and incorporated into the soil just before transplanting, 

but observations at this stage were not used in the model evaluation as the model was 

developed to simulate the effect of urea application in the floodwater without subsequent 

incorporation into the soil. The effect of urea application, just before transplanting of 

seedlings, on the soil N content, was assumed negligible after several days.  

In the following, the sources of uncertainty introduced when retrieving the data are addressed. 

Errors may be introduced after careful digitisation (extraction) of the data from figures 

provided by Fillery et al. (1984) and Li et al. (2008). For DSetLB84 and DSetM84, the dates 

of urea applications were reported, but not the exact time of the applications. The exact date 

of transplanting of rice seedlings was also not provided. Despite these limitations, these two 

data sets were selected because other pertinent details that are relevant to NH3 volatilisation, 

especially the floodwater pH and dynamics of urea-N and total ammoniacal-N concentrations, 

were well documented. The missing information was carefully estimated based on other 

information provided. 

Fillery et al. (1984) measured NH3 volatilisation using one of the micrometeorological 

methods, whereas Li et al. (2008) used the dynamic chamber method. The 

micrometeorological methods measure net flux of NH3 volatilisation and do not alter the 

environment, and, thus, the observations are more representative of the net flux in rice 

systems compared to observations obtained using chamber methods (Sommer et al., 2004). 
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Despite the limitations of the dynamic chamber methods, data sets reported by Li et al. (2008) 

were selected for evaluation of the model because these data sets are recent, included four N 

treatments at each location, and excluded the effect of time and location dependent wind 

speed on the observed NH3 loss from the floodwater surface, and, thus, allowed for evaluation 

of the model performance across locations and treatments. Furthermore, observations of NH3 

volatilisation using micrometeorological methods are scarce. From 90 peer-reviewed 

publications, Zhou et al. (2016) reported that since the 1990’s 96 % of the NH3 loss 

measurements over Chinese cropland were measured using dynamic or static chamber 

methods. See for instance, Li et al. (2008), Xu et al. (2012), and Chen et al. (2015). 

Li et al. (2008), Xu et al. (2012), Cao et al. (2013), and Chen et al. (2015) reported standard 

errors ranging from about 2 kg N ha-1
 to about 5 kg N ha-1 for daily cumulative NH3 

volatilisation observed using static and dynamic chamber methods. Cao et al. (2013) and Liu 

et al. (2015) reported standard errors ranging from about 2 mg N L-1 to about 5 mg N L-1, and 

occasionally as large as 15 mg N L-1 (Cao et al., 2013) for observed concentrations of total 

ammoniacal-N in the floodwater. 

4.2.2.2  Calibration and cross-validation of model 

The model (Eqs. 1 to 9) was run using MATLAB R2012a. The differential equations were 

solved using the function ode45. The simulation time-step was half-hourly and the simulation 

run time was about 0.3 hours on a machine with INTEL® CORE™ i7-3612QM CPU @ 

2.10GHzprocessor and 8 GB RAM memory. For all simulations, the floodwater depth was 

assigned a constant value, and, thus, the dilution effect, with − − + = 0, was 

subsequently omitted from the equations. 

The proposed model was calibrated using three different data sets, and after each calibration 

the model was cross-validated. The term cross-validation denotes evaluation of the model 

with respect to observations that were not used during calibration.  

First, the model was calibrated using DSetM84 (Table 1). The initial conditions of all states 

variables were assumed zero on the day of transplanting, except for the initial . Five 

unknown rate coefficients ( , , , , ) and  were calibrated manually from 

DSetM84. The calibrated model was then cross-validated using DSetLB84. 
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Second, the proposed model was re-calibrated using both DsetLB84 and DSetM84. By 

calibrating the model using two data sets simultaneously, the number of training data was 

increased, and, thus, more constraints on the possible values of the estimated coefficients 

were expected. Again, the initial conditions of all states variables were assumed zero on the 

day of transplanting, except for . The five unknown rate coefficients and  were gradually 

varied to fit the observations at DsetLB84 and DSetM84 simultaneously. The calibrated 

model was then cross-validated using DSetYH T3 (54 kg urea-N ha-1 per application). 

Third, the proposed model was re-calibrated using only DSetYH T3, as it appeared that the 

rate coefficients needed to be calibrated for site specific conditions. The calibrated model was 

then cross-validated using the rest of DSetYH, DSetJX and DSetCS. In addition, the 

calibrated model was also cross-validated using DSetM84 and DSetLB84. 

4.2.2.3 Accuracy of the model 

For each of the three aforementioned calibration steps, the root mean square errors (RMSE), 

as an estimate of the standard deviation of the residuals, and the least-squares coefficient of 

determination (R2), were calculated for three observational data: urea-N concentration, 

ammoniacal-N concentrations, and cumulative NH3 volatilisation. 

The RMSE and R2 are defined as 

RMSE =
∑

  

= 1 −
∑ −

∑ − y
 

where,  is observed data,  is the model output,  is the mean value of the observational 

data set, and  is number of observed data. 

4.2.2.4 Co-validation of models 

Co-validation with competitive models is an alternative to model cross-validation (Bellocchi 

et al., 2010). The modelling concepts developed by Chowdary et al. (2004) were selected to 

co-validate our model with respect to their common outputs: concentrations of urea-N in the 
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floodwater, concentrations of total ammoniacal-N in the floodwater, and cumulative NH3 

volatilisation.  

As the differential equations were not given in Chowdary et al. (2004), we reproduced the 

equations based on the modelling concepts described by the authors. In Chowdary et al. 

(2004), NH3 volatilisation is only affected by the interactive processes in the floodwater. 

Hence, co-validation of the models involves only the floodwater N dynamics. Thus, only 

mathematical equations related to the floodwater N dynamics are given (Appendix C). All N 

processes are described by first-order kinetics, each with a constant rate coefficient. The 

model developed by Chowdary et al. (2004) was calibrated to fit observations in DSetM84. 

4.2.2.5 Sensitivity analysis 

The sensitivity of a predicted model outputs, , , with respect to an estimated rate 

coefficient, ∈ { , , , , }, is defined as 
,

≅
,

, where  is a time instant, 

Δ , ≔ , 1.1 ̂ − , 0.9 , and Δ ≔ 1.1 − 0.9 = 0.2 . Next, the sensitivity 

matrix (Appendix D) for the multiple model output case was calculated for three process 

variables, namely , = [ ], , = [ ], and , = , for DSetM84 and 

DSetLB84. The estimation covariance matrices and corresponding eigenvalue 

decompositions, to detect dominant combinations of rate coefficients (see Keesman, 2011 for 

details), follow from the corresponding sensitivity matrix, a weighting matrix, , and 

estimated variance of residuals, . The matrices for each of the two data sets are presented in 

supplements S1. 

Simulations of [ ], [ ], and  were performed using observed floodwater pH and 

synthetic floodwater temperature as inputs to Eq. 5. The residuals ( ) are defined as the 

difference between observed data, ( ) and predicted model output, ( , ) at time , given 

the estimated parameter vector . The values of the rate coefficients and ( ) were taken 

from the re-calibration step and are given in Table 2. 

To assess sensitivity of the predicted NH3 volatilisation with respect to its key process 

variables, the floodwater pH, temperature, and depth were varied by ±0.5 unit, ±5 ̊C, and 

±0.02m, respectively. 
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4.3 Results and discussion 

4.3.1 Evaluation of proposed model 

Our model contains five unknown rate coefficients ( , , , , )  and an initial state 

of , which must be estimated from observational data sets. In addition to measurement 

errors, structural errors between model output and observational data sets were also foreseen. 

For instance, discrepancies between simulated and observed concentrations of total 

ammoniacal-N in the floodwater can be caused by variation in floodwater depth, which was 

not captured as a model input. In this study, a constant floodwater depth was assumed for 

simulation due to lack of meteorological data. If not directly measured, floodwater depth is 

typically estimated from water balance equation (Eq. 1). However, it is unlikely for flooded 

rice systems to have homogeneous field gradients, and thus variation of floodwater depth 

across a field is expected. This variation implies that exact values of floodwater depth cannot 

be determined for a flooded rice system, while it may affect the prediction of urea-N and total 

ammoniacal-N concentrations in the floodwater. Thus, in this study, instead of merely data 

fitting, including process knowledge allows us  to predict and interpret the observed trends 

and relative magnitudes. 

In order to measure NH3 volatilisation, different measurement methods were used by Fillery 

et al. (1984) and Li et al. (2008) (Section 4.2.2.1). Therefore, it is expected that  may not be 

compared directly and need to be adjusted. 

4.3.1.1 First evaluation of the proposed model 

First, the model with one-step urea hydrolysis (Section 4.2.1.2) was calibrated with DSetM84, 

by gradually varying the five unknown coefficients, and . The rates of applied urea-N ( ) 

corresponds to 80 and 40 kg urea-N ha-1 day-1, at 21 and 52 DAT, respectively (Table 1). As a 

result, good fit of initial peak and decay rate of urea-N was observed for = 0.9 day-1 (Fig. 

2a). 

By assuming a one-step urea hydrolysis (Eq. 2), however, a surge of total ammoniacal-N was 

observed (Fig. 2b), despite the fact that reasonable amount of total N sink was considered 

(about 50 % of total N applied was withdrawn from the floodwater). The sudden surge of total 

ammoniacal-N predicted by the model contradicts with the observations where the total 
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ammoniacal-N in the floodwater only reached a peak concentration of about 15 mg N L-1 

(Fig. 2b).  
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Fig. 2 a) Concentration of urea-N in floodwater as a result of one-step urea hydrolysis where 
applied urea-N was assumed to dissolved within one day and = 0.90 day-1, and b) the 
corresponding concentration of total ammoniacal-N in floodwater 

The effect of dilution by changing floodwater depth was overruled, as consistent 

overestimation of total ammoniacal-N concentration was observed after fertilisations on 21 

and 52 DAT.  Notice also that the total ammoniacal-N concentration peak was about 15 mg N 

L-1 despite the different rates of applied urea-N on 21 and 52 DAT. The relatively low and 

steady peaks of total ammoniacal-N concentrations for several days suggest potential delay in 

the conversion from dissolved urea ([ ]) to ammoniacal-N ([ ]), which was in agreement 

with Fillery et al. (1986), who also hypothesised slow urease activity at these locations. 

In order to conceptualise slow urease activity, urea hydrolysis was described by two first-

order processes in series (Eqs. 2 and 3). The  in the total N sink term was arbitrarily set at 

0.40 (Eqs. 7 and 8), and the coefficient of NH3
 volatilisation was assumed constant, = 5.0 

day-1. However, by assuming a constant  throughout the cropping season, the proposed 

model overestimated the observed cumulative NH3 volatilisation at 52 DAT onwards (not 

shown).  

We suspected that the wind speed had considerable effect on NH3 volatilisation, especially 

before panicle initiation. Thus,  was split into two stages: = 12.0 day-1 at 21 DAT 

onwards (before panicle initiation), and = 4.0 day-1 at 52 DAT onwards (about panicle 

initiation). As a result of the two-step urea hydrolysis and the time-varying , the 
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simulated concentrations of urea-N and total ammoniacal-N in the floodwater, and cumulative 

NH3 volatilisation trends followed the observed trends better (Fig. 3). 
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Fig. 3 Model calibration with DSetM84 (Table 2): a) Concentration of urea-N in floodwater, 
b) concentration of total ammoniacal-N in floodwater, and c) cumulative NH3 volatilisation 

The RMSE values are about 12.24 mg N L-1 for urea-N concentration, about 4.96 mg N L-1 

for total ammoniacal-N concentration, and about 1.33 kg N ha-1 for cumulative NH3 

volatilisation, respectively. The R2 for the estimation of urea-N concentration, total 

ammoniacal-N concentration, and cumulative NH3 volatilisation were 0.86, -0.31, and 0.99, 

respectively. 

The negative R2 indicated that the sum of squares of residuals (∑ ( − )) is greater than the 

total sum of squares (∑ ( − y)). The proposed model may be over-parameterised as such 

that the added process (two-step urea hydrolysis) cannot explain the trend of total 

ammoniacal-N concentration. However, by assuming only a one-step urea hydrolysis, surge 

of total ammoniacal-N concentration was observed despite reasonable amount of N sink was 

assumed (Fig. 2b). Therefore, the hypothesis of two-step urea hydrolysis due to slow urease 
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activity was assumed reasonable for now. The calibrated coefficients using DSetM84 are 

given in Table 2 (Column 2).  

Table 2 Estimates of parameters  

Parameter Calibration with 
DSetM84 

Calibration with 
DSetM84 & DSetLB84 

Calibration with 
DSetYH T3 

 (day-1) 
 (day-1) 

 (day-1) 
 (day-1) 
 (day-1) 
 (day-1) 

 (dimensionless) 

0.90 
0.50 
0.05 
2.00 
12.0 
4.00 
0.40 

0.80 
0.60 
0.02 
2.00 

16.00a, 6.00b 

4.00 a, 5.00b 

0.70 

0.80 
0.60 
0.07 
6.00 
6.00 
6.00 
0.02 

a For DSetM84 
b For DSetLB84 

Next, the model and the calibrated coefficients were validated with DSetLB84. Cross-

validation of the model with DSetLB84 resulted in reasonable fits for observed urea-N (Fig. 

4a) and total ammoniacal-N concentrations (Fig. 4b), but bad fit of NH3 volatilisation (Fig. 

4c). Thus, as yet, our hypothesis with respect to urea hydrolysis is not falsified by the trends 

observed by Fillery et al. (1984). 

The bad fit of NH3 volatilisation in Fig. 4c indicated the model did not capture some 

dominant underlying processes. The RMSE values for the calibration of urea-N concentration, 

total ammoniacal-N concentration, and cumulative NH3 volatilisation were 10.65 mg N L-1, 

4.22 mg N L-1, and 7.80 kg N ha-1, respectively. The R2 for urea-N concentration, total 

ammoniacal-N concentration, and cumulative NH3 volatilisation were 0.91, 0.13, and -0.57, 

respectively. 

In this case, we suspected the neglected effect of wind speed in Muñoz and Los Baños. 

Therefore, the rate of  and  were adjusted to fit the observed NH3 volatilisation in 

DSetLB84 (Fig. 4d, with = 6.0 day-1 and = 5.0 day-1), while values of other rate 

coefficients were maintained (Table 2). As a result, better fit of cumulative NH3 volatilisation 

was obtained, where R2 is 0.96 (Fig. 4d). However, the fit for total ammoniacal-N 

concentration resulted in an R2 of -0.52. 

4.3.1.2 Second evaluation of the proposed model 

To assess whether the misfits in the cross-validation step were due to model structure errors or 

just a local minimum problem (see Keesman, (2011)), the proposed model was re-calibrated 
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with DSetM84 and DSetLB84, simultaneously. If a combination of the unknown rate 

coefficients that reasonably fit all observed trends of DSetM84 and DSetLB84 can be found, 

the model structure is not yet falsified by the observed trends. 
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c) d)
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Fig. 4 Model validation with DSetLB84: a) Concentration of urea-N in floodwater, b) 
concentration of total ammoniacal-N in floodwater, c) cumulative NH3 volatilisation for 

= 12.0 day-1 and = 4.0 day-1, and d) cumulative NH3 volatilisation for = 6.0 
day-1 and = 5.0 day-1 

The values of re-calibrated coefficients are summarised in Table 2. In order to fit the model 

outputs to the observational data sets of DSetM84 and DSetLB84 simultaneously, as in the 

previous subsection,  was assumed to be time-varying for each of the two rice crop growth 

stages, namely  and . The model with re-calibrated coefficients produced trends and 

magnitudes comparable to observations (Fig. 5). 

The re-calibrated rate coefficient = 16.0 day -1 for DSetM84 was about 2.7 times larger 

than = 6.0 day-1 for DSetLB84. The average of the difference between the minimum 

and maximum wind speeds observed for DSetM84 and DSetLB84 were 7.0 ms-1 and 2.0 ms-1, 

respectively (Table 1). Thus, the average wind speed calculated for DSetM84 was 3.5 times 
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larger than that of DSetLB84. Fillery et al. (1986) suggested that the NH3 volatilisation is 

linearly related to wind speed, but in this study, the increase in  was not exactly linear 

with wind speed. 
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Fig. 5 Model re-calibration with DSetM84 and DSetLB84, simultaneously (Table 2): a) 
Concentration of urea-N in floodwater, b) concentration of total ammoniacal-N in floodwater, 
and c) cumulative NH3 volatilisation for DSetM84. d) Concentration of urea-N in floodwater, 
f) concentration of total ammoniacal-N in floodwater, and g) cumulative NH3 volatilisation 
for DSetLB84 

The higher rate coefficient for DSetM84 ( = 16.0 day-1) compared to that of DSetLB84 

( = 6.0 day-1) suggested importance of wind speed in making reliable estimation of NH3 
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volatilisation, and thus, implies that the NH3 volatilisation rate coefficient in any model, 

simple or complex, is site specific, and can vary temporally. 

However, notice that for DSetLB84, the estimate of  is only slightly greater than the 

estimate of  (Table 2). The values are also comparable to estimate of  for DSetM84. 

We can only hypothesise that the slight differences in the estimates of  indicated that the  

is only sensitive (time-varying) in systems with high wind speed (e.g., > 4 ms-1) and a young 

rice crop. For systems with low wind speed, a constant  may suffice as the N uptake by rice 

crop competes efficiently with NH3 volatilisation as the crop develops over time. Without 

further details on the wind speed, crop variety and physiology (leaf area index) at both 

locations, further interpretation is not possible. Nevertheless, the time-varying rate coefficient 

of NH3 volatilisation suggests uncertainty in estimating NH3 volatilisation using a first-order 

kinetics regulated by a constant rate coefficient, see for examples, Rao et al. (1984), 

Chowdary et al. (2004), Antonopoulos (2010), and Liang et al. (2014). 

Next, the calibrated model was validated with DSetYH. The average wind speed varied 

between the locations (Table 2), but we assumed = 6 day-1 throughout the crop growth 

stages at all locations because the daily NH3 volatilisation rates of DSetYH were measured 

using the enclosure method. The simulation resulted in poor fit between simulated and 

observed cumulative NH3 volatilisation, especially after urea application on 10 DAT (Fig. 6). 

The poor fit indicated either a model structure error, or a site specific condition which 

requires re-calibration of the parameters that are related to the N sink term ( ,  and ).  

4.3.1.3 Third evaluation of the proposed model 

The model was then manually re-calibrated with DSetYH T3 (54 kg urea-N ha-1 per 

application) (Fig. 7a). The calibrated model was then validated with the rest of DSetYH, 

DSetJX and DSetCS (Figs. 7a to d). The observed average wind speed differed among the 

three locations (Table 2), but we assumed = 6 day-1 throughout the varying crop growth 

stages at all locations because the daily NH3 volatilisation rates were measured via the 

enclosure approach. 
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Fig. 6 Simulated and observed (dots) cumulative NH3 volatilisation for DSetYH that received 
split urea-N applications on 10 DAT and 38 DAT at a rate of a) 18 kg urea-N ha-1, b) 36 kg 
urea-N ha-1, c) 54 kg urea-N ha-1, and d) 72 kg urea-N ha-1 per application 

Fig. 7 shows that re-calibration of the rate coefficients related to the N sink term ( , , ) 

resulted in reasonable estimations of cumulative NH3 volatilisation compared to previous 

validation in Section 4.3.1.2 (Fig. 6). Although poor fits were observed for some data sets, 

good fits were also obtained, in particular for DSetCS. Discrepancies between simulations and 

observations were more prominent when the urea application rate was highest, i.e., 72 kg N 

ha-1 per application. Several factors may have contributed to the bad fit. Firstly, the proposed 

model structure may be inadequate. Li et al. (2008) hypothesised that the variations in NH3 

loss from the floodwater surface may also be due to the different values of soil cation 

exchange capacity for the three locations, but this effect was not modelled. The cation 

exchange capacity value is highest for DSetJX and lowest for DSetYH. Increase in floodwater 

depth was shown to reduce NH3 volatilisation (Freney et al., 1988). However, the floodwater 

depth was assumed constant at 0.045 m for all simulations. Moreover, the effect of floodwater 

depth on NH3 volatilisation cannot be captured by the model (Section 4.3.1.5). These factors 

would have led to bad fit. Secondly, the observations have high uncertainty due to 
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measurement methods. The NH3 loss measured using the enclosure method is based on a 

small area and is prone to error when scaled up (Ni et al., 2015). Observations by Li et al. 

(2008) showed that the cumulative NH3 volatilisation varied across the three locations, despite 

similar urea application rates at all locations. Thirdly, the model input data may be incorrect. 

In all simulations, the same synthetic floodwater pH was used while in reality the floodwater 

pH may have differed across the locations. The discrepancies can be addressed by adjusting 

the values of floodwater pH, in particular the peak of pH at mid-day, which will increase the 
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Fig. 7 Calibration of the proposed model with DSetYH that received two split application at a 
rate of a) 54 kg N ha-1 per application (T3), and validation of proposed model with DSetYH, 
DSetJX, and DSetCS that received two split application at a rate of b) 18 kg urea-N ha-1 (T1), 
c) 36 kg urea-N ha-1 (T2), and d) 72 kg urea-N ha-1 (T4) per application. Simulations (solid 
lines) and observations of DSetYH (red dots), DSetJX (green dots), and DSetCS (blue dots) 

daily rates of NH3 volatilisation estimated by the proposed model. Any of these three factors 

could contribute to the bad fit. Furthermore, errors in the observations would also lead to 

uncertainty in the parameters. 
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Cross-validation of the calibrated model with DSetM84 and DSetLB84, however, resulted in 

poor fit between observed and simulated cumulative NH3 volatilisation (results not shown). 

By adjusting values of  and , a better fit of cumulative NH3 volatilisation was 

obtained, but the model overestimated concentrations of total ammoniacal-N in the 

floodwater. It is plausible that the site specific rates of N leaching or vertical seepage, or other 

dominant N processes resulted in site specific values for  ,  and , as suggested in the 

preceding section. 

4.3.1.4 Co-validation of proposed model 

In addition to cross-validation and re-calibration on independent data sets, performance of the 

proposed model was compared to a model of different fundamentals with respect to the 

common outputs. The model by Chowdary et al. (2004) was selected for co-validation, as its 

complexity is comparable with the proposed model, in terms of the number of parameters, but 

differed in the modelling concepts. Both models were simulated for DSetM84 as this data set 

has frequently observed concentrations of urea-N and total ammoniacal-N, and floodwater pH 

and temperature. 

The model proposed in this study has six parameters, whereas the model by Chowdary et al. 

(2004) has six parameters. Both models conceptualised NH3 volatilisation by first-order 

kinetics, but Chowdary et al. (2004) neglected the partitioning between NH3 and and NH4
+ in 

the floodwater. On the other hand, Chowdary et al. (2004) detailed the soil N dynamics, 

whereas the proposed model simplified the N transport into the soil and the soil N dynamics 

into a lumped N sink term.  The model developed by Chowdary et al. (2004) was also the 

starting point of the model proposed by Liang et al. (2007, 2014). 

In the model of Chowdary et al. (2004), the N dynamics in the floodwater are regulated by 

four processes: Urea hydrolysis, nitrification, percolation, and NH3 volatilisation. Table 3 

(second column) shows the estimates of three parameters and other inputs calibrated by 

Chowdary et al. (2004) using data sets from India. By using the estimates as reported by 

Chowdary et al., (2004) resulted in bad fit for DSetM84 (results not shown). Therefore, the 

estimates were re-calibrated for DSetM84. 

The urea hydrolysis rate was calibrated to fit observed urea-N in the floodwater. Nitrification 

rate was given a slightly higher value than the estimate reported in Chowdary et al. (2004). 
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Percolation rate was assumed about 10 mm day-1, and consequently, the NH3 volatilisation 

rate coefficient was adjusted to fit the observed total ammoniacal-N and cumulative NH3 

volatilisation in DSetM84 (Table 3). 

Table 3 Estimates of parameters of Chowdary et al. (2004) model 
Parameter Chowdary et al. (2004)  Calibrated for DSetM84 

 (day-1) 
 (day-1) 
 (day-1) 

Percolation rate (mm day-1) 
Floodwater depth (m)  

0.744  
0.070 to 0.080  
0.030 to 0.060 
8.4 
0.050   

0.800 
0.100 
0.400 
10 
0.035  

 is first-order urea hydrolysis rate coefficient in the floodwater,  is first-order nitrification rate 
coefficient in the floodwater, and  is first-order volatilisation rate coefficient from the floodwater 
surface 

The model of Chowdary et al. (2004) was able to correctly predict the urea-N concentration in 

the floodwater (Fig. 8a), but the model could not properly predict the trend of total 

ammoniacal-N in floodwater and cumulative NH3 volatilisation observed in DSetM84 (Figs. 

8b and c). Notice the overestimation of total ammoniacal-N concentration by about 4 times 

compared to the observations. Although percolation rate was increased from 10 mm day-1 to 

as high as 20 mm day-1, it was not enough to reduce the overestimated peak of total 

ammoniacal-N in the floodwater to the observed levels. The result either supports the concept 

of two-step urea hydrolysis for rice systems with low urease activity, or there is a non-linear 

N out flux from the floodwater, and, thus, assuming constant percolation and nitrification 

rates may not reflect the actual N out flux from the floodwater.  

Studies showed that total NH3 volatilisation at the end of a cropping season can be estimated 

using a first-order kinetics model independent of floodwater pH and wind speed (Chowdary et 

al., 2004, Liang et al. 2007., Antonopoulos, 2010, Liang et al., 2014), but our results suggest 

that such modelling concepts may over and under estimate the cumulative NH3 volatilisation 

at the end of each split urea application (Fig. 7c), as NH3 volatilisation is also regulated by 

wind speed and floodwater properties. 

To summarise, we can conclude that  is robust as it was validated with frequently observed 

urea-N concentration, and is within the range reported by Chowdary et al. (2004). The second 

step urea hydrolysis parameter  may be site-specific and should be further assessed with 

observations of total ammoniacal-N concentrations. By conceptualising the two-step urea 

hydrolysis, the simulated total ammoniacal-N concentrations were less than 60 mg N L-1, 
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which is in line with the observations of total ammoniacal-N reported by Fillery et al. (1984) 

and Chen et al. (2015), who found concentrations of total ammoniacal-N less than 50 mg N L-

1 in the floodwater of flooded rice systems. The parameters , ,  and  require site-

specific calibration. 
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Fig. 8 Calibration of Chowdary et al. (2004)’s model concept with DSetM84: a) 
Concentration of urea-N in floodwater, b) concentration of total ammoniacal-N in floodwater, 
and c) cumulative NH3 volatilisation 

4.3.1.5 Sensitivity analysis of the proposed model 

A sensitivity analysis of the model based on an eigenvalue decomposition of the covariance 

matrix (Eq. D.1) will show which parameters or combination of parameters dominate the 

model outputs.  

The eigenvalue decomposition of the covariance matrices calculated using DSetM84 

(Supplement S1) showed that the proposed model is least sensitive to   and =

[ , ] because the corresponding eigenvalues and weights in the eigenvectors are the 

largest compared to that of other rate coefficients. However, the model is most sensitive to  
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and a combination of   and   (see Keesman (2011) for details on this subject).  

regulates decay of urea-N concentration, while  delays conversion of urea-N to 

ammoniacal-N. The parameter  controls the steepness of the sigmoid curve, , which 

regulates the total N sink. For DSetLB84, we obtained similar results (Supplement S1). 

In addition to the sensitivity analysis of the parameters, we further investigated the effect of 

floodwater properties, such as floodwater pH, temperature, and depth, on estimation of NH3 

volatilisation. It appeared that NH3 volatilisation, is sensitive to changes in floodwater pH 

(Figs. 9a and b), and temperature (Figs. 9c and d). The estimated NH3 volatilisation is not 

sensitive to floodwater depth (Figs. 9e and f), because the floodwater compartment was 

conceptualised as a single homogenous compartment. This means that the observations and 

claims by Freney (1988), Hayashi (2006) and Win (2009) that the floodwater depth could 

regulate the rate of NH3 volatilisation, cannot be simulated and studied by models that assume 

a single homogeneous floodwater compartment as, for instance, in the proposed model and 

models by Chowdary et al. (2004), Antonopoulos (2010) and Liang et al. (2014). The 

floodwater depth would have an effect on the estimated NH3 volatilisation if the floodwater 

compartment was discretised into several homogeneous layers, but this would significantly 

increase the complexity of the model, and, thus, to potential over-parameterisation. 

4.4  Conclusion 

Relevant existing modelling concepts were integrated to develop a model, for the estimation 

of NH3 volatilisation in fertilised and flooded rice systems that is of appropriate complexity 

for small data sets. Two new concepts were introduced in the proposed model. First, the 

lumped N sink term avoids assumptions on soil N parameters beyond what can be identified 

from the limited observational data sets, and avoids detailed modelling of diffusion and 

percolation of N. Second, urea hydrolysis is typically approximated by first-order kinetics, but 

integration of model and observational data sets suggested that the process is better 

approximated by two-first order kinetics in series for flooded rice systems with low urease 

activity. The model was falsified by some data sets, but was also in good agreement with 

other data sets. Inadequate model structure may have led to the falsification of the model, but 

uncertainty in observations and in parameters could also have led to the falsification. 

Nevertheless, for the flooded rice systems in the Philippines, conceptualisation of the 

partitioning between ammonium and NH3 and a time-varying rate coefficient of NH3 
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volatilisation in the proposed model improved the prediction of the net NH3 volatilisation. 
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Fig. 9 Sensitivity analysis of model with respect to floodwater properties using values of 
coefficients obtained via simultaneous re-calibration for DSetM84 (Table 2, thin red line): a) 
concentration of total ammoniacal-N, and b) cumulative NH3 volatilisation, when floodwater 
pH was increased by 0.5 unit (thick grey line) and reduced by 0.5 unit (black dotted line), c) 
concentration of total ammoniacal-N, and d) cumulative NH3 volatilisation, when floodwater 
temperature was increased by 5 ̊C (thick grey line) and reduced by 5 ̊C (black dotted line), and 
e) concentration of total ammoniacal-N, and f) cumulative NH3 volatilisation, when 
floodwater depth was increased by 0.02 m (thick grey line) and reduced by 0.02 m (black 
dotted line)  
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Calibration of unknown parameters even in a relatively simple model is challenging as 

available observational data sets are of poor quality in terms of errors in measurements, small 

number of (time-series) observations, and other relevant observations such as floodwater pH 

and temperature are rarely reported, and, therefore, a parameter estimation approach that 

considers all of these uncertainties is valuable for such systems. 
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Appendix A. Derivation of Eq. 2 

The derivation of the mass balance of urea-N in the floodwater starts with, 

[ ]
= + − [ ] − [ ]      (A.1) 

where, ,  is rate of urea-N applied (kg m-2 day-1), [ ] is concentration of urea in 

floodwater (kg m-3),  is urea hydrolysis rate coefficient (day-1), and  is floodwater loss (m 

day-1) due to surface runoff and percolation. =  is volume of floodwater per the land 

area (m3), where,  is land area (m2), and  is floodwater depth (m). 

Note that 
[ ]

= +[ ] +
[ ]

       (A.2) 

The water balance in the floodwater is given by 

= A = + + − −       (A.3) 

where,  is rainfall (m day-1),  is irrigation (m day-1),  is evapotranspiration (m day-1), and 

 is floodwater loss (m day-1) due to surface runoff and percolation. Equate Eq. A.2 to Eq. 

A.1 as follows 

+[ ] +
[ ]

= + − [ ] − [ ]  

[ ]
= + − [ ] − [ ] − [ ]     (A.4) 

Substitute Eq. A.3 into Eq. A.4 

[ ]
= + − [ ] − [ ] + [ ] − − +  +     (A.5) 

Note that = /  (m), and thus, 

[ ]
=

 
(+ − [ ] + [ ]{− − + }) which gives us Eq. 2  
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Appendix B. The model input data presented in this study 

The model input data used in this study is presented in Fig. B. 
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Fig. B.1 Model input data for DSetM84: a) Synthetic floodwater temperature, b) observed 
(dot) and interpolated (solid line) floodwater pH, and c) calculated fraction of NH3 from total 
ammoniacal-N in floodwater 
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Fig. B.2 Model input data for DSetLB84: a) Synthetic floodwater temperature, b) observed 
(dot) and interpolated (solid line) floodwater pH, and c) calculated fraction of NH3 from total 
ammoniacal-N in floodwater 
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Fig. B.3 Model input data for DSetYH, DSetJX and DSetCS in one day: a) Synthetic 
floodwater temperature, b) synthetic floodwater pH, and c) calculated fraction of NH3 from 
total ammoniacal-N in floodwater. The same trends repeat on each day throughout the 
simulation. 
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Appendix C. The model of Chowdary et al. (2004) 

Modelling concepts of the floodwater N dynamics described by Chowdary et al. (2004) were 

reproduced as sets of differential equations, and solved using the ode45 function in 

MATLAB. 

[ ]
= + [ ] +          (C.1) 

where, [ ] is concentration of urea-N in the floodwater (kg N m-3),  is rate of urea-N 

applied in the floodwater (kg N ha-1 day),  is rate coefficient of urea hydrolysis (day-1), and 

 is floodwater depth (m). 

[ ]
= + [ ] − [ ] − [ ] − [ ]     (C.2) 

where, [ ] is concentration of total ammoniacal-N in the floodwater (kg N m-3),  is 

percolation rate (m day-1),  is rate coefficient of NH3 volatilisation (day-1), and  is rate 

coefficient of nitrification (day-1).  

[ ]
= + [ ] − [ ]       (C.3) 

where, [ ] is concentration of NO3
- in the floodwater (kg N m-3). 

This model (Eqs. C.1 to C.3) was simulated with a daily time interval.  

  



Chapter 4 

146 
 

Appendix D. The sensitivity matrix 

The sensitivity matrix ( ) is defined by 

≔  

, , , , ,

⋮ ⋮ ⋮ ⋮ ⋮
, , , , ,

, , , , ,

⋮ ⋮ ⋮ ⋮ ⋮
, , , , ,

, , , , ,

⋮ ⋮ ⋮ ⋮ ⋮
, , , , ,

   (D.1) 

where, = [ ] (Eq. 2), = [ ] (Eq. 9),  and =  (Eq. 4), and  is number of 

model output evaluations. 
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Supplement S1. Eigenvalues and eigenvectors 

DSetM84 

In the following, the estimation covariance matrix and the corresponding eigenvalue 
decomposition for DSetM84 are presented. The covariance matrix of the estimated rate 
coefficients ( , ,  , , ) is given by  

 =         

with ( ) defined by Eq. D.1,  a weighting matrix, and  the estimated variance of 
residuals. The weighting matrix is a diagonal matrix with elements inversely proportional to 
the corresponding variances of the residuals. For details see (Keesman, 2011). The estimation 
variance of an individual rate coefficient ( ) is found from the corresponding th diagonal 
element of  , which is given by  

 =

0.1123 −0.0322 0.2116 −0.0078 0.3312
−0.0322 0.0793 0.1551 −0.0015 −0.2140
0.2116 0.1551 2.3753 −0.0758 2.9858

−0.0078 −0.0015 −0.0758 0.0047 −0.0381
0.3312 −0.2140 2.9858 −0.0381 14.8770

  

For further interpretation, we define the eigenvalue decomposition   as 

  := Λ          

where, the corresponding eigenvalues (diagonal of Λ) are given by 

(Λ) = [15.5645 1.7355  0.1215  0.0259 0.0012]  

and, the corresponding eigenvectors are given by 

   =

−0.0239 0.0789 . − . −0.0572
0.0113 0.1172  − .  − .  −0.1513

−0.2210  . −0.0092 0.1306 0.0594
0.0035 −0.0379 −0.0349 −0.1647 .

− . −0.2194 −0.0249 −0.0264 −0.0103

  

Each element of vector (Λ) is related to a corresponding column of matrix . Each 
column in matrix  contains weighting factors related to a rate coefficient, in the following 
order: , ,  , , and . 
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DSetLB84 

The estimation covariance matrix with corresponding eigenvalue decomposition for 
DSetLB84 are given by 

The covariance matrix is given by  

 =

 0.0404 −0.0213 0.0473 −0.0060 −0.0095
−0.0213 0.0312 0.0036 0.0031 0.0323
0.0473 0.0036 0.4245 −0.0296 0.1871

−0.0060 0.0031 −0.0296 0.0027 −0.0017
−0.0095 0.0323 0.1871 −0.0017 0.6973

    

where, the corresponding eigenvalues (diagonal of Λ) are given by 

(Λ) = [0.7941 0.3394 0.0511 0.0113 0.0001]  

and, the corresponding eigenvectors are given by 

   =

−0.0164 0.1575 . − . 0.0092
−0.0393 −0.0484 − . − . −0.0888
−0.4543 . −0.1302 0.0770 0.0749
0.0189 −0.0778 −0.0559 −0.0649 .

− . −0.4491 0.0817 0.0040 −0.0134

  

Each element of vector (Λ) is related to a column of matrix . Each column in matrix  
contains weighting factors related to a rate coefficient, in the following 
order: , ,  , , and . 
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Abstract 

A set-membership (bounded-error) estimation approach can handle small and poor quality data sets as 

it does not require testing of statistical assumptions which is possible only with large informative data 

sets. Thus, set-membership estimation can be a good tool in the modelling of agri-environmental 

systems, which typically suffers from limited and poor quality observational data sets. The objectives 

of the chapter are (i) to demonstrate how six parameters in an agri-environmental model, developed to 

estimate NH3 volatilisation in flooded rice systems, were estimated based on two data sets using a set-

membership approach, and (ii) to compare the set-membership approach with conventional non-linear 

least-squares methods. Results showed that the set-membership approach is efficient in retrieving 

feasible parameter-vectors compared with non-linear least-squares methods. The set of feasible 

parameter-vectors allows the formation of a dispersion matrix of which the eigenvalue decomposition 

reflects the parameter sensitivity in a region. 

Keywords: Set-membership approach, bounded-error, parameter estimation, uncertainty analysis, 

model calibration, ammonia volatilization, flooded rice  
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5.1 Introduction 

Nitrogen (N) deficiency results in severe yield reduction, and, thus, N is considered as one of 

the most important nutrients for rice crops (Makino, 2011). However, about 20 % of the 11.8 

million tons of N yearly applied in flooded rice systems globally was estimated to be lost via 

ammonia (NH3) volatilisation (Bouwman et al., 2002). In the process of making N fertilisers, 

about 875 cubic metres of natural gas are used in producing one metric tonne of NH3 (Zuberer, 

2005). Therefore, NH3 volatilisation is a waste of natural resource. NH3 volatilisation also has 

negative effects on the environment, and is recently claimed by Stokstad (2014) as a concern for 

public health. 

In order to minimise NH3 volatilisation in fertilised and flooded rice systems, a number of 

models have been developed to study the mechanism of NH3 volatilisation, or have been  used 

as an integrated decision making tool for management of the systems (Rao et al., 1984, 

Jayaweera and Mikkelsen, 1990, Singh and Kirk, 1993, Godwin and Singh, 1998, Chowdary et 

al., 2004, Antonopoulos, 2010). Many of these models comprise a number of parameters that 

need to be estimated from observational data sets.   

Thus, applying an appropriate parameter estimation technique is important in developing 

models. For specific application to environmental models we refer to, for instance, Beck ( 

2002), Jakeman et al. (2006), Wang and Garnier (2012), and Marsili-Libelli (2016). Numerous 

experiments have been conducted in flooded rice systems to measure NH3 volatilisation and 

its regulating process variables, such as wind speed, floodwater pH and temperature over time 

(Fillery et al., 1984, Fillery et al., 1986, De Datta et al., 1991, Chen et al., 2015). However, 

from the perspective of probabilistic parameter estimation, these time series are considered 

small. Estimation of the parameters may also be hampered by interactive N processes, leading 

to strongly correlated parameter estimates. Probabilistic parameter estimation approaches are 

not adequate for small and poor quality data sets, as these do not allow a detailed error 

characterisation in terms of probability density functions and correlations (Keesman, 1990, 

Walter and Piet-Lahanier, 1990). 

Alternatively, parameters can be estimated using a set-membership (bounded-error) approach. 

Unlike the classical methods, which result in an optimal parameter-vector, the set-

membership approach with its bounded-error characterisation aims to find equally acceptable 

parameter-vectors, represented by a so-called feasible parameter-vector set (FPS) (Schweppe, 
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1968, Belforte and Milanese, 1981, Norton, 1987, Walter and Piet-Lahanier, 1990, Norton, 

1994, Milanese et al., 1996). Another advantage is that the approach avoids any assumptions 

beyond the structure of the model and the output error-bounds (Keesman and Van Straten, 

1990). The set-membership approach has recently been used for applications other than 

environmental systems (Amairi, 2015, Cerone et al., 2015). However, for the set-membership 

estimation of parameters in environmental models we refer to Keesman (1990), Keesman and 

Van Straten (1990), Milanese and Novara (2004), Mocenni and Vicino (2006), Keesman et al. 

(2013), and Nurulhuda et al. (2015). 

The objective of the chapter is to demonstrate how six parameters in an agri-environmental 

model, developed to estimate NH3 volatilisation in flooded rice systems, can be estimated 

based on two data sets from two different locations, using a sampling-based set-membership 

approach, and to compare the approach with conventional non-linear least-squares methods. 

In the following section, a procedure for set-membership estimation and a description of the 

model are given. 

5.2 Background 

5.2.1 Non-linear set-membership parameter estimation 

In this study, the starting point was the general non-linear parametrised model  

= ( ) +            (1) 

where,  is a vector of  samples of observed outputs of the system,  ( ) consists of the 

corresponding output samples from an underlying (possibly non-linear, spatially distributed, 

dynamic) simulation model, and  is the N-dimensional error vector. In our application, as 

described in Sections 5.2.2 (model) and 5.3.1 (data), we have time series of three observed 

system outputs. Consequently, in this case and in terms of the model structure (1),  is an N-

dimensional vector of the time series stacked on top of each other. Furthermore, the 

parametrised model (Eq. 1) is non-linear in the -dimensional parameter-vector . 

The set-membership framework takes the -dimensional prediction error vector  to be 

bounded within a specified range. In what follows, e is assumed to have the same bounds 

(symmetric to about zero for convenience) over each element ek. This amounts to bounding 

the infinity norm, i.e., the largest absolute value of ek  for k = 1, ..., N: 
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‖ ‖ ≤            (2) 

where  is a fixed positive number. This error characterisation leads to the hypercubic 

acceptable-error set 

Ω ≔ ∈ ℝ : ‖ ‖ ≤          (3) 

Note that the set-membership concept also allows bounding in other norms and of other 

aspects of model behaviour, see e.g., Young et al. (1978) and Keesman (1989). The related 

measurement uncertainty set, containing all model-output vector values  consistent with the 

observations  and with Eq. 2, is defined as 

Ω ≔ ∈ ℝ : ‖ − ‖ ≤         (4) 

This set also is a hypercube, but now centred around . The feasible parameter-vector set 

(FPS) is given by  

Ω ≔ ∈ ℝ : ‖ − ( )‖ ≤         (5) 

The set-membership estimation problem is to further characterise the FPS, given the model 

(Eq. 1), the observed data  and the output error-bounds (Eq. 2), without any assumption of a 

uniform or any other distribution between the bounds. 

The image set of the entire parameter-space is defined as 

Ω ≔ ∈ ℝ : = ( ); ∈ ℝ         (6) 

This comprises all responses that can be produced by the model. The image set of the FPS, 

the unfalsified (feasible) model-output set, is given by 

Ω ≔ ∈ ℝ : = ( ); ∈ Ω = Ω ∩ Ω       (7) 

As shown by Eq. 7, it is generally a subset of the measurement uncertainty set (Eq. 4), since 

the model may not be capable of producing all trajectories allowed by the observations and 

the model-output error-bounds. 
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Thus, instead of trying to find an optimal value of the parameter-vector, as in least-squares or 

in statistical estimation, the goal of set-membership parameter estimation is to find the FPS 

(Ω ) consistent with the model and the data, subject to the specified error-bounds. This 

approach avoids any assumptions beyond the structure of the model and the output error-

bounds. 

Before continuing with refinements in the estimation procedure, let us graphically summarise 

a sampling-based set-membership estimation method (Fig. 1), thus combining Eqs. 1 through 

7 with a one-step sampling based algorithm, as presented in Section 5.3.3. 

 

 

 

 

 

 

 

 

Fig. 1 Graphic illustration (Venn diagram) of one-step sampling-based set-membership 
parameter estimation. Ω  (Eq. 5) is the discrete feasible parameter-vector set, Ω  (Eq. 6) is 
the image set of the entire parameter space, Ω  (Eq. 7) is the discrete unfalsified model-output 
set, and Ω  (Eq. 4) is the measurement uncertainty set centred around the measured output 
vector y 

5.2.2 Model for estimation of ammonia volatilisation in flooded rice systems 

The proposed model for the estimation of ammonia volatilisation in fertilised and flooded rice 

systems is described in Chapter 4. Similar to Chowdary et al. (2004), the proposed model 

assumes first-order kinetics reactions to describe NH3 volatilisation. Partitioning between 

ammonium and ammonia in the floodwater, which was lacking in the model of Chowdary et 

al. (2004), is an important process in regulating NH3 volatilisation in flooded rice systems, 

and, therefore, was conceptualised in the proposed model. 

Ω   

 space-
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The model has six state variables: concentration of urea-N in floodwater [ ] in kg N m-3, an 

interim state that emulates low urease activity in floodwater [ ] in kg N m-3, concentration 

of total ammoniacal-N in floodwater [ ] in kg N m-3, dimensionless trend of total N sink 

over time , cumulative N sink  in kg N ha-1, and cumulative NH3 volatilisation  

in kg N ha-1. The initial conditions are defined by [ ] = 0 kg N m-3, [ ] = 0 kg N m-3, 

[ ] = 0 kg N m-3, = 0 kg N ha-1, and = 0 kg N ha-1, on the day of 

transplanting. Model simulations always begin on the day of transplanting.  

Unlike the other state variables, the initial condition for  ( ) is not known and therefore, is 

treated as an additional parameter that needs to be estimated. In addition, the proposed model 

contains five unknown parameters:  rate coefficient of first step urea hydrolysis (day-1),  

rate coefficient of second step urea hydrolysis (day-1),  trend of S (day-1),  rate 

coefficient of total N sink term (day-1), and  rate coefficient of NH3 volatilisation (day-1). 

Later, it will be shown that  needs to be split into two parameters: , the volatilisation 

rate coefficient after the first urea application after transplanting, and , the volatilisation 

rate coefficient after the second urea application after transplanting (at about panicle 

initiation). The model requires four inputs: rate of urea-N application, floodwater temperature, 

pH, and depth. 

5.3 Materials and methods 

5.3.1 Secondary data sets 

In order to estimate the unknown parameters in the model, field observations in rice fields in 

Los Baños and Muñoz, Philippines, collected by Fillery et al. (1984), were used. At Los 

Baños, 60 kg N ha-1 was applied before transplanting, 60 kg N ha-1 on 14 days after 

transplanting (DAT), and 30 kg N ha-1 on 27 DAT (about panicle initiation). At Muñoz, 80 kg 

N ha-1 was applied before transplanting, 80 kg N ha-1 on 21 DAT, and 40 kg N ha-1 on 52 

DAT (about panicle initiation). At both sites, urea was used as the fertiliser. Note that in 

Chapter 4, Los Baños and Muñoz data sets are referred as DSetLB84 and DSetM84, 

respectively. 

Note that the proposed model is limited to flooded soils with broadcast application of urea 

without subsequent incorporation into the soil. Therefore, observations before transplanting 

were not used in this study. 
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The observed floodwater pH values in the study by Fillery et al. (1984) were interpolated and 

used as data inputs to the model. Note that the floodwater pH was measured only between 

6:00 hours and 22:00 hours. Therefore, the floodwater pH between 22:00 hours and 6:00 

hours was assumed constant at 7.0 for each day. 

Furthermore, Fillery et al. (1984) reported only the ranges of daily floodwater temperature at 

Los Baños (from 21 ̊C to 40 ̊C) and Muñoz (from 17 ̊C to 34 ̊C). Due to lack of hourly values 

and for simplification, the floodwater temperature at both locations was assumed constant at 

25 ̊C between 20:00 hours and 6:00 hours, and to gradually reach a maximum temperature of 

40 ̊C at 12:00 hours. Details on the floodwater pH and temperature as data inputs to the model 

are given in Appendix A. 

Fillery et al. (1984) also reported that the floodwater depth was maintained between 0.03 m 

and 0.04 m. Due to lack of meteorological data to calculate the time-varying floodwater 

depth, the floodwater depth was assumed constant at 0.035 m for all simulations. 

Three observed process variables, namely concentration of urea-N in floodwater, 

concentration of total ammoniacal-N in floodwater, and hourly rate of NH3 volatilisation, 

were used to estimate the six unknown parameters: , , , , , and  (  and 

). 

For Los Baños, Fillery et al. (1984) reported 17 observations of urea-N concentrations and 49 

observations of total ammoniacal-N concentrations after the first urea application after 

transplanting, and 35 observations of total ammoniacal-N concentrations after the second urea 

application after transplanting. Fillery et al. (1984) also reported the rate of NH3 volatilisation 

(kg N ha-1 hour-1), but we transformed this to cumulative NH3 volatilisation with a time 

interval of 0.5 day-1, resulting in 15 and 10 observations of cumulative NH3 volatilisation after 

the first and second urea applications, respectively. 

For Muñoz, Fillery et al. (1984) reported 32 observations of urea-N concentrations and 55 

observations of total ammoniacal-N concentrations after the first urea application after 

transplanting, and 26 observations of urea-N concentrations and 31 observations of total 

ammoniacal-N concentrations after the second urea application after transplanting. The same 

approach used for Los Baños was applied to obtain the cumulative NH3 volatilisation, 
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resulting in 17 and 10 observations after the first and second urea applications after 

transplanting, respectively. 

In the following, the sources of uncertainty introduced when retrieving the data are addressed. 

The dates of urea applications were reported, but not the exact time of the applications. The 

exact date of transplanting of rice seedlings was also not provided. The missing information 

was carefully estimated based on other information provided. Errors may also be introduced 

after careful digitisation (extraction) of the data from figures provided by Fillery et al. (1984). 

Despite these limitations, these two data sets were selected because other pertinent details that 

are relevant to NH3 volatilisation, especially the floodwater pH and dynamics of urea-N and 

total ammoniacal-N concentrations, were well documented. 

As a starting point for our choices of the error-bounds in the set-membership approach, we 

used the following reference studies. For instance, Li et al. (2008), Xu et al. (2012), Cao et al. 

(2013), and Chen et al. (2015) reported standard errors ranging from about 2 kg N ha-1
 to 

about 5 kg N ha-1 for daily cumulative NH3 volatilisation observed using static and dynamic 

chamber methods. Cao et al. (2013) and Liu et al. (2015) reported standard errors ranging 

from about 2 mg N L-1 to about 5 mg N L-1, and occasionally as large as 15 mg N L-1 (Cao et 

al., 2013) for observed concentrations of total ammoniacal-N in the floodwater.  

The prediction errors for seasonal NH3 volatilisation simulated using model of Chowdary et 

al. (2004) for a rice system in Pantnagar, India is 0.81 kg N ha1 and using model of Liang et 

al. (2007) for rice systems in Shuangqiao, China ranged from 4.70 kg N ha-1 to 16.57 kg N 

ha1. 

5.3.2 Exploratory parameter estimation 

The six unknown parameters, , , , , , and , were gradually varied to fit the 

observational data sets of Los Baños and Muñoz, simultaneously. Initially, we assumed  

was constant throughout the crop growth stage, but this resulted in a bad fit between model-

output and the corresponding observed data. Therefore, based on physical knowledge,  was 

divided into two stages:  and  after the first and second urea applications after 

transplanting, respectively. Note that the second fertiliser application after transplanting was 

at about panicle initiation stage. The  at Muñoz was estimated about 2.7 times larger than 

the  at Los Baños due to greater wind speed at Muñoz than at Los Baños (Fillery et al., 
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1984). However, for both sites, the effect of wind speed was reduced at about panicle 

initiation. For Muñoz, the  was estimated about 4.0 times lower than  and for Los 

Baños it was estimated about 1.2 times lower. The exploratory estimates obtained for Los 

Baños and Muñoz are given in Table 1, and were used as the basis for defining the a priori 

parameter region needed for applying the sampling-based set-membership estimation 

approach. 

Table 1 The exploratory estimates obtained via simultaneous calibration for Los Baños and 
Muñoz 
Parameter  Exploratory estimates    

 (day-1)  0.80    
 (day-1)  0.60    

 (day-1)  0.02 
 (day-1)  2.00 

 (dimensionless) 0.70 
 (day-1)  16.00a,  6.00b 
 (day-1)  4.00a,  5.00b 

a Muñoz  
b Los Baños 

5.3.3 Set-membership parameter estimation 

The flow chart of the set-membership approach, as applied in this study, is summarised 

graphically in Fig. 2. First, an a priori p-dimensional hypercubic parameter region was 

constructed, where  is the number of estimated parameters in the model. In order to define 

the bounds of the a priori parameter region, the exploratory estimates in Table 1 were used as 

the ‘mid-points’. 

Subsequently, a Latin-hypercube sampling scheme was used to sample  parameter-vectors 

from the p-dimensional hypercube in the parameter-space. The set of a priori parameter-

vectors is represented by the ×  matrix .  

Next, the model was simulated with each of the  sampled parameter-vectors. Discrepancies 

between simulated model-outputs and the observed outputs were determined by calculating 

the prediction error ( ) = ( ) − ( ), where ( ) is the simulated model-output and ( ) is 

observed output at time .  

Initially, a hard-bound condition as in Eq. (5) was assumed, where a parameter-vector was 

accepted only when all of the prediction errors in absolute terms were not greater than the pre-
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defined error-bound , i.e.  ‖ ‖ ≤ . However, as for finding feasible parameter-vectors 

very large error-bounds for each of the time series were required, a soft error-bound condition 

(see also Lahanier et al. (1987); Walter and Pronzato, (1997)) was introduced, allowing  % 

of the prediction errors to be larger than  with > 0. The tolerance  was gradually 

increased in order to retrieve some feasible parameter-vectors. The discrete approximations of 

FPS were collected in an ×  matrix , where  is the number of feasible parameter 

samples. 

 

 

 

 

 

 

 

 
 
 
Fig. 2 Flow chart of the set-membership approach as applied in this study 

In the following sections, the unknown parameters in a process-based model, namely 

, , , , , , and , were estimated using a sampling-based set-membership 

approach with soft error-bounds (Fig. 2) and using conventional non-linear least-squares 

methods.  

All simulations in this study were performed using MATLAB software. The model given in 

Chapter 4 was solved using the differential equation solver ode45, which numerically 

integrates the differential equations. The computational time for a single simulation run is 

about 0.27 and 0.41 minute on a machine with INTEL® CORE™ i7-3612QM CPU 

@2.10GHzprocessor and 8 GB RAM memory for Los Baños and Muñoz, respectively. 
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5.3.4 Estimation of   

Preliminary analysis revealed that  can be calibrated independently of other unknown 

parameters as  could be estimated from observations of concentrations of urea-N in the 

floodwater ( ) only. In the following, boldface symbols are used to indicate a vector or a 

matrix, and thus, e.g., ≜ [ ⋯ ] . By estimating  independently of the 

other unknown parameters, the dimension of the parameter-vectors was reduced in the next 

estimation step (Section 5.3.5). In order to estimate , only Eq. 2  in Chapter 4 needed to be 

simulated. 

Based on the exploratory estimate of  as the ‘mid-point’ (Table 1), the parameter interval of 

 was defined from 0.5 to 1.0. A Latin-hypercube sampling scheme was used to sample 500 

a priori parameter-vectors. These 500 sampled parameter-vectors were used to simulate urea 

hydrolysis (Eq. 2 in Chapter 4) for Los Baños, and subsequently for Muñoz. 

The prediction errors for the concentrations of urea-N for each location were calculated, and 

put in the prediction error vectors  and , respectively. The subscript  corresponds 

to observations after the first urea application after transplanting, and subscript  

corresponds to observations after the second urea application after transplanting (at about 

panicle initiation). At Los Baños, urea-N concentration in the floodwater at  was not 

observed by Fillery et al. (1984). 

Based on the information presented in Section 5.3.1, the error-bound was chosen as ≔ 5 

mg N L-1. The  was about 5 % of the maximum scale of the urea-N concentration. First, a 

hard error-bound condition was assumed with ≤  and ≤ , but no 

feasible parameter-vectors was found. Subsequently, a soft error-bound condition was applied 

by gradually increasing , the percentage of  that violates the condition ≤  and 

≤ . Feasible parameter-vectors were retrieved for the condition where at least 30 

% of the elements in each of the vectors must satisfy the error-bound. 

5.3.5 Estimation of other parameters 

Next, the other six unknown parameters, , , , , , and , were estimated using 

the set-membership approach. Based on the feasible range of  in Section 5.4.1 and the 
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least-squares results in Table 4 (Section 5.4.2),  was set at 0.8. As concentrations of urea-N 

in the floodwater were not informative for estimating , , , ,   and , only 

concentrations of total ammoniacal-N in the floodwater ( ) and the cumulative NH3 

volatilisation ( ) were used for estimating these six parameters. 

The parameter intervals of these parameters were defined based on the exploratory estimates 

in Table 1. First, for Los Baños, a Latin-hypercube sampling scheme was used to sample 1000 

parameter-vectors from the six-dimensional a priori parameter region. The sampling 

procedure was conducted two times, and each was labelled as replicates 1 and 2. The sampled 

parameter-vectors of replicates 1 and 2 were used to simulate the dynamic system behaviour 

at Los Baños. 

Similar to Section 5.3.4, the prediction errors for the concentrations of total ammoniacal-N 

and cumulative NH3 volatilisation for each location were calculated, i.e.  and ,  

and , respectively. 

Based on the information given in Section 5.3.1, the error-bounds for total ammoniacal-N 

concentrations and cumulative NH3 volatilisation were chosen as ≔ 5 mg N L-1, and 

≔ 5 kg N ha-1, respectively. The  was about 20 % of the maximum scale of the total 

ammoniacal-N concentration, and the  was about 4 % of the maximum scale of cumulative 

NH3 volatilisation. 

A soft error-bound condition was required for elements in , and a hard-bound condition was 

applied for elements in . The soft error-bound condition for elements in  requires that at 

least 90 % of the elements in each of the vectors satisfies the error-bound . The same 

procedure was repeated for the rice system at Muñoz. 

Based on the outcomes of the above analysis, the following steps were taken in order to 

increase the number ( ) of parameter samples found to be feasible. For Los Baños, sampling 

was repeated for the same parameter intervals, but with = 2000. However, for Muñoz, the 

a priori parameter region was modified due to a low value of  . The parameter intervals for 

the modified a priori parameter region were defined by the lower and upper bounds of the 

feasible parameter-vectors that resulted from replicates 1 and 2 of Muñoz. Subsequently, 

= 1000 parameter-vectors were sampled from the modified a priori parameter region. In 
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order to retrieve the feasible parameter-vectors from the sampled parameter-vectors, the same 

error-bound conditions for  and  were applied. 

5.3.6 Eigenvalue decomposition of dispersion matrix of FPS 

The results from an eigenvalue decomposition of the dispersion matrix characterising the FPS 

can be interpreted in terms of the parameter sensitivities (Keesman, 2011). The following 

steps were taken in order to derive the 6 × 6 dispersion matrix, where the parameter  was 

excluded from the eigenvalue decomposition analysis as the parameter was estimated 

separately. 

All feasible parameter-vectors in the FPS were compiled in the ×  matrix ≔

[       ]. Next, the mean of the feasible parameter-vectors for 

each parameter, , ̅, , , , and , was calculated. Then, the feasible 

parameter-vectors were translated to the origin by subtracting from each element of matrix  

the corresponding mean. Thus, − , where  = [ ] is 

also an ×  matrix. 

The dispersion matrix of the translated feasible parameter-vectors was subsequently defined 

as ( − ) ( − ). The orientation and shape of the ellipsoidal approximation of the set of 

translated feasible parameter-vectors were found from an eigenvalue decomposition of the 

dispersion matrix, i.e., ( − ) ( − )V=VD, with V the eigenmatrix and D a diagonal 

matrix of the eigenvalues. 

5.3.7 Non-linear least-squares methods 

The non-linear least-squares methods minimise the sum of squares of residuals, and require 

initial guesses of the unknown parameters. Similar to the set-membership approach,  was 

estimated using urea-N concentrations in the floodwater observed at both Los Baños and 

Muñoz. For the estimation of , the Levenberg-Marquardt algorithm was applied. Four 

initial guesses, i.e., = 0.3, = 0.8, = 0.9, and = 1.3, were specified. 

For the estimation of the other parameters ( , , , , , ), total ammoniacal-N 

concentrations in the floodwater and cumulative NH3 volatilisation observed at Los Baños 

were used. Three algorithms, which are Levenberg-Marquardt, Trust-reflective region, and 
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the well-known Nelder-Mead simplex method, were selected for the non-linear least squares 

estimations. Similar to the set-membership approach, we fixed ≔ 0.8. The exploratory 

estimates in Table 1 were used as initial guesses. 

In MATLAB, the Levenberg-Marquardt and Trust-reflective-region algorithms were 

performed using the function lsqnonlin, whereas the Nelder-Mead simplex algorithm was 

performed using the function fminsearch. Unlike the function fminsearch, lsqnonlin directly 

provides a Jacobian matrix for the calculation of the covariance matrix of the estimates. 

The standard deviation of each parameter estimate was calculated from the corresponding 

Jacobian matrix as follows. The estimated variance of the prediction error is given by: 

=
1
−

( ) 

where,  is number of observations,  is number of estimated parameters, and ( ) is the 

prediction error at time . The ×  covariance matrix is then given by: 

Cov =   

where,  is the ×  Jacobian matrix. The variances of the estimates are found on the 

diagonal of matrix Cov . The standard deviation of each estimate is the square root of the 

respective variance, and the off-diagonal elements are the covariances between estimates. 

5.4 Results and discussion 

In this chapter, we demonstrate the estimation of seven parameters in a model developed for 

the estimation of NH3 volatilisation in fertilised and flooded rice systems based on two 

observational data sets from two locations using a sampling-based set-membership approach, 

leading to feasible parameter-vectors in the FPS, and using conventional non-linear least-

squares methods for comparison. 

5.4.1 Set-membership estimation approach 

One state variable, namely the concentration of urea-N in the floodwater, was only 

informative for the urea hydrolysis rate and, therefore, was used for estimating . In the 
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estimation of , 300 feasible parameter-vectors were retrieved from 500 sampled parameter-

vectors using Los Baños and Muñoz data sets simultaneously. The a priori  interval, based 

on the findings of Chowdary et al. (2004), ranged from 0.5000 to 1.0000, whereas the feasible 

 retrieved using the set-membership estimation approach ranged from 0.7009 to 0.9998. 

The simulated model-outputs, using the feasible estimates of , and corresponding smallest 

prediction errors (between observed data and simulated set of model-outputs), are given in 

Fig. 3. Non-zero sequences of the smallest prediction error indicate a structural modelling 

error for the chosen error-bound. Increasing the error-bound  will increase the range of the 

feasible  estimates and subsequently increase the range of feasible model-outputs and 

consequently reduce the gap between observations and the range of feasible model-outputs. 

However, fine-tuning of the error bounds is beyond the scope of this study, and we refer to 

Keesman (1991) for a deeper analysis of this. 

The other two state variables, namely concentration of total ammoniacal-N in the floodwater 

and cumulative NH3 volatilisation, were used to estimate the other parameters, i.e., 

, , , , ,  and .  Results are summarised in Table 2. 

For computation, an average of 4.6 and 6.8 hours on a machine with INTEL® CORE™ i7-

3612QM CPU @2.10GHzprocessor and 8 GB RAM memory were needed to retrieve feasible 

parameter-vectors from  = 1000 a priori parameter-vectors for Los Baños and Muñoz, 

respectively. The longer computation time for Muñoz was due to a longer simulation time 

span, i.e. 0 to 60 days after transplanting (DAT) for Muñoz compared with 0 to 34 DAT for 

Los Baños. 

Notice that for each data set, comparable numbers of feasible parameter-vectors were 

retrieved from replicates 1 and 2. Replicates 1 and 2 each consisted of = 1000 a priori 

parameter-vectors. For Los Baños, about 10 % of 1000 a priori parameter-vectors were 

retrieved as feasible parameter-vectors from replicates 1 and 2. For Muñoz, less than 1 % of 

1000 a priori parameter-vectors were retrieved as feasible parameter-vectors from replicates 1 

and 2.  

The question remained whether = 1000 was sufficient to sample a six-dimensional a 

priori parameter region. Visualisation of discrete (subsets of) FPS may reveal the complex 
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shape of the set, and how parameters in the FPS relate to each other, but this approach is 

limited to at most a four-dimensional parameter space (Nurulhuda et al., 2015). 
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Fig. 3 Simulated model-outputs (lines) using 300 feasible estimates of  compared to 
observed urea-N concentration in the floodwater (dots) from Fillery et al. (1984).  For Los 
Baños a) from 12 to 24 DAT, and for Muñoz c) from 20 to 32 DAT, and e) from 50 to 62 
DAT. The respective smallest prediction errors for Los Baños b) from 12 to 24 DAT, and for 
Muñoz d) from 20 to 32 DAT, and f) from 50 to 62 DAT, where the smallest prediction error 
is the smallest distance between observed data and simulated set of model-outputs and 
multiplied with +1 or 1 when the data is overestimated or underestimated, respectively 
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For Los Baños, when the sampled parameter-vectors were increased from = 1000 to 

= 2000, the number of feasible parameter-vectors retrieved almost doubled from those 

retrieved for replicates 1 and 2 (Table 2). However, notice that the percentage retrieved from 

the 2000 sampled parameter-vectors remained at 10 %, similar to the percentage retrieved for 

replicates 1 and 2. Notice also that the lower and upper bounds of the feasible parameter-

vectors retrieved from = 2000 were comparable to those retrieved from replicates 1 and 

2, with = 1000. Thus, it is inferred that in this case with = 1000 using a Latin 

hypercube sampling scheme may be sufficient. 

Increasing the number of sampled parameter-vectors may ensure a thorough search within an 

a priori parameter region. However, a trade-off between computational time and the number 

of sampled parameter-vectors to cover the a priori parameter region was observed. Therefore, 

an efficient sampling scheme is crucial for a sampling-based set-membership estimation 

approach (see Keesman (1990) for details). 

The number of feasible parameter-vectors retrieved for Muñoz was ten times lower than for 

Los Baños. Notice that the feasible parameter-vectors region of Muñoz was more constricted 

compared to that of Los Baños and, thus, may lead to smaller percentage of feasible 

parameter-vectors retrieved. In an attempt to increase the number of feasible parameter-

vectors for Muñoz, a second a priori parameter region was defined using the lower and upper 

bounds of the feasible parameter-vectors that resulted from replicates 1 and 2 of Muñoz 

(Table 3). 

Table 3 The second a priori parameter region for Muñoz data set in an attempt to increase the 
number of feasible parameter-vectors 
Parameter  A priori parameter interval   Feasible parameter-vectors 
interval       

 (day-1)  (0.4000, 0.6000)    (0.4002, 0.5867) 
 (day-1)  (0.0100, 0.0800)    (0.0115, 0.0729) 

 (day-1)  (2.0000, 8.0000)    (2.0083, 7.4737) 
( ) (dimensionless) (0.1000, 0.8000)    (0.1849, 0.7594) 

 (day-1)  (11.0000,16.0000)    (13.2259, 15.9228) 
 (day-1)  (2.0000, 10.0000)    (2.0322, 9.6021) 

         = 28 (2.8 % of ) 

≔ 0.8 for this simulation and = 1000 

As a result, the number of the feasible parameter-vectors for Muñoz was increased to about 3 

% of 1000 sampled parameter-vectors. Notice that the corresponding lower and upper bounds 

of the feasible parameter-vectors did not change significantly from the lower and upper  
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Fig. 4 Model-outputs (lines) simulated using 369 feasible parameter-vectors compared to observed data (dots) 
for Los Baños: a) Total ammoniacal-N concentration in floodwater from 12 to 24 DAT and b) from 26 to 34 
DAT, c) cumulative NH3 volatilisation from 12 to 24 DAT and d) from 26 to 34 DAT. Model-outputs simulated 
using 37 feasible parameter-vectors compared to observed data for Muñoz: e) Total ammoniacal-N concentration 
in floodwater from 20 to 32 DAT and f) from 50 to 60 DAT, g) cumulative NH3 volatilisation from 20 to 32 
DAT and h) from 50 to 60 DAT. Observed data were obtained from Fillery et al. (1984) 
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bounds of the second a priori parameter region. Thus, the number of feasible parameter-

vectors may be increased by increasing the number of sampled parameter-vectors . 

The model-outputs simulated using a total of 369 feasible parameter-vectors retrieved for Los 

Baños and a total of 37 feasible parameter-vectors retrieved for Muñoz are given in Fig. 4. 

The respective smallest prediction error at each observed time instant is given in Fig. 5.  

Notice from Fig. 5 that especially for concentrations of total ammoniacal-N in the floodwater 

cannot be predicted well by the model and more specifically after the second urea application 

after transplanting (at about panicle initiation). Overall, the model performed better for Los 

Baños than for Muñoz. Again, increasing the error-bound, in this case  and , will reduce 

the gap between observations and the range of feasible model-outputs. 
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Fig. 5 Smallest prediction errors for Los Baños data set from 12 to 32 DAT: a) correspond to 
concentrations of total ammoniacal-N in the floodwater and b) correspond to cumulative NH3 
volatilisation, and for Muñoz data set from 20 to 60 DAT: c) correspond to concentrations of 
total ammoniacal-N in the floodwater and d) correspond to cumulative NH3 volatilisation 
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5.4.1.1 Eigenvalue decomposition of the dispersion matrix 

The eigenvalue decomposition analysis for Los Baños was based on 369 feasible parameter-

vectors retrieved from a total of 4000 sampled parameter-vectors. The eigenvalue 

decomposition analysis for Muñoz was based on 37 feasible parameter-vectors retrieved from 

a total of 3000 sampled parameter-vectors (see Appendix B). Among the six parameters, the 

eigenvalue decomposition of the dispersion matrices that characterises the FPS of both Los 

Baños and Muñoz indicated that the model was most sensitive to , followed by  and . 

The model was least sensitive to  Los Baños and  for Muñoz. 

5.4.2 Non-linear least squares method 

First,  was estimated using the Levenberg-Marquardt algorithm using Los Baños and 

Muñoz data sets simultaneously. Four initial guesses of  were defined, and the values of the 

estimated  ranged from 0.7491 to 0.8473 (Table 4). The relatively small standard 

deviations compared to the estimates of  indicated that the estimates were reliable. Notice 

that the estimates of , using the Levenberg-Marquardt algorithm, were within the range of 

feasible  estimates, obtained from the set-membership approach with soft error-bound 

conditions (Section 5.4.1). 

Second, , , , , , and  were estimated using three non-linear least-squares 

methods using only the Los Baños data set. The estimates and the respective standard 

deviations are also shown in Table 4. The Levenberg-Marquardt and Trust-reflective-region 

algorithms took from 0.22 hours to 0.67 hours to estimate the parameters. The Nelder-Mead 

algorithm was stopped after about 2.5 hours, giving the following estimates:  = 0.6116 

day-1, = 0.0201 day-1, = 2.0926 day-1, = 0.6950, = 5.9342 day-1, =

4.9822 day-1), which as for the Trust-reflective region algorithm did not deviate much from 

the initial guesses in Step 2. Thus, in step 2 neither Nelder-Mead nor Trust-reflective region 

algorithm converged. 

Notice from Table 4 that especially the estimates obtained using the Levenberg-Marquardt 

algorithm deviated significantly from the initial guesses compared to those estimated using 

Trust-reflective-region algorithm. Furthermore, Step 3 in Table 4 shows that the new initial 

guesses led to new estimates and thus indicate the existence of local minima. Also, notice the 

large standard deviations of the estimates of  and , which indicate a strong correlation 
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between these parameter estimates and was confirmed by the correlation matrix of the 

estimates. 

Table 4 Parameters estimated using non-linear least-squares method  
Parameter Initial     Estimate     
   guess  Levenberg-Marquardt   Trust-reflective-region  
Step 1  

 (day-1) 0.3  0.7491 ± 0.0301 (SSQ: 13381)   -    

  0.8  0.7951 ± 0.0276 (SSQ: 11493)  -   
  0.9   0.8473 ± 0.0230 (SSQ: 12018)  - 
  1.3   0.7953 ± 0.0278 (SSQ: 11493)  -    
 
Step 2    

 (day-1) 0.6000  0.5325 ± 0.0234   0.6000 ± 0.0025  
 (day-1) 0.0200  0.1053 ± 0.1030   0.0200 ± 0.0005  

(day-1) 2.0000  2.8900 ± 1.1020   1.9998 ± 0.0026 
 (-)  0.7000  0.2253 ± 0.1202   0.7000 ± 0.0037  

 (day-1)  6.0000  10.1069 ± 0.4489   6.0000 ± 0.2676  
 (day-1) 5.0000  2.2007 ± 2.2033    5.0000 ± 6.2085  

    (SSQ: 374.86)    (SSQ: 1173.40) 
 
Step 3    

 (day-1) 0.6000  0.6843 ± 0.0411   0.6276 ± 0.0435  
 (day-1) 0.2000  0.1708 ± 1.4394   0.2643 ± 0.3579  

(day-1) 2.0000  2.1454 ± 0.3156   2.1694 ± 0.1412  
 (-)  2.0000  3.0083 ± 118.69   8.6334 ± 9.8734  

 (day-1)  10.0000  10.2616 ± 0.4192   10.2211 ± 0.4372  
 (day-1) 2.0000  6.1104 ± 1.6590   2.2118 ± 1.6679  

    (SSQ: 270.70)    (SSQ: 305.09) 

SSQ is the residual sum of squares provided by resnorm via lsqnonlin command in MATLAB 

Note from Table 2 (Los Baños data set)  that the estimates obtained using the Levenberg-

Marquardt algorithm in Table 4 were within the range of feasible parameter-vectors retrieved 

using the set-membership estimation, except for , which was out of the a priori parameter 

region, and for the unreliable estimate of  in step 3. These results imply that feasible 

parameter-vectors retrieved using the set-membership estimation will include estimates 

obtained from non-linear least-squares methods, provided appropriate error-bound conditions 

were defined. 

Fig. 6 shows the simulated model-outputs using the estimates obtained using the Levenberg-

Marquardt and Trust-reflective-region algorithms for Los Baños. These results show the 

effects of local minima on the model responses and once more show the difficulty in fitting 

the Los Baños data for 26 to 34 DAT. 
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Fig. 6 Simulated model-outputs using estimates (Step 2 in Table 4) obtained using the 
Levenberg-Marquadt (blue solid lines) and Trust-reflective-region (red dash lines) algorithms 
for Los Baños: a) concentrations of total ammoniacal-N in floodwater from 12 to 24 DAT, 
and b) from 26 to 34 DAT, and c) cumulative NH3 volatilisation from 12 to 24 DAT, and d) 
from 26 to 34 DAT 

5.4.3 Trade-off between hard and soft error-bound conditions 

First, hard error-bound conditions with = 5 mg N L-1, = 5 mg N L-1, and = 5 kg N 

ha-1 were applied on the three state variables, and thus, for a parameter-vector to be an 

element of FPS, ‖ ‖ ≤  for all  and = 1,2,3. However, by applying the hard error-

bound conditions on the three state variables, no feasible parameter-vectors were retrieved for 

the estimation of  and the other six parameters.  

These negative results could be due to errors in model structure, which may result from 

simplifications of the complex agri-environmental system with interactive biological and 

chemical processes, and/or errors in observational data sets, which may arise from digitisation 

(extraction) of the data from figures provided in Fillery et al. (1984), or inaccurate assumption 

on the exact timing of urea application. Such problems are not always avoidable for complex 

agri-environmental systems, where many interactive processes occur and detailed field and 
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lab work are time consuming, laborious, and can be costly for developing countries with 

limited funds. 

Detailed analysis showed that some elements in prediction error vectors that correspond to 

concentrations of urea-N and total ammoniacal-N violated the specified error-bounds  and 

, but almost all elements in the prediction error vectors that correspond to cumulative NH3 

volatilisation obeyed the specified error-bound  (see Fig. 5b, d). 

There are at least three possible ways to deal with unknown error-bounds. Choose: 1) hard 

error-bounds which are provisional (exploratory), in the absence of good information on the 

error sources and their properties, and adjust if necessary by trial and error, 2) soft-bounds 

each of which attaches a penalty to any error falling within a range between two specified 

values for that bound, i.e., over that range feasibility varies from 1 (perfectly feasible) and 

zero (infeasible) (Keesman and Van Straten, 1987), or 3) the soft error-bound conditions as 

demonstrated in this chapter. 

In order to retrieve some feasible parameter-vectors, we opted to introduce the soft error-

bound conditions. It was found that the first option required very large error-bounds to 

identify a non-empty FPS, i.e., > 25 mg N L-1 and ε > 10  mg N L-1. Therefore, in this 

study, soft error-bound conditions were applied for two state variables, which were 

concentrations of urea N and total ammoniacal-N in the floodwater, by gradually increasing 

the number of time instants for which the model-output violated the specified error-bounds, 

until some feasible parameter-vectors were retrieved. 

For the estimation of , for at least 30 % of the sample time instants , the following holds: 

≤  and ≤ . Nevertheless, even with the high tolerance on the error, the 

quality of estimation obtained via a set-membership approach was comparable with  

conventional methods, in particular for the Los Baños data set, after the first urea application 

after transplanting (Fig. 3a) and for Muñoz after the second urea application after 

transplanting (Fig. 3c). For the estimation of , , , , , and , for at least 90 % 

of the sample time instants, the followings hold: ≤  and ≤ . 

It was discovered that whenever a soft error-bound condition was applied, the prediction 

errors of different time-series should be grouped in different vectors. In this case, the 
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prediction errors were separated into two vectors which were  and  in order to ensure 

the prediction errors that corresponded to the first and second urea applications were equally 

accounted for in the soft error-bound conditions. 

By applying the soft error-bounds conditions, we allowed the interaction between model and 

data to determine when to increase the error-bound, rather than pre-specifying a larger error-

bound. Thus, for ill-defined systems with significant model structure inadequacies, a trade-off 

between hard error-bounds and soft-bound conditions should be considered. 

5.4.4 Comparison of parameter estimation methods 

One of the fundamental differences between the set-membership approach and the non-linear 

least-squares estimation method is that the former aims at finding multiple feasible parameter-

vectors by specifying the maximally allowed prediction errors (specifically under a hard 

error-bound condition), whereas the latter aims at finding one optimal parameter-vector which 

minimises the sum of squares of prediction errors. However, Keesman (2011) states that in 

general a global minimum in numerical minimisation procedures, such as the non-linear least-

squares methods, cannot be guaranteed (see Table 4).  

Furthermore, the presence of structural modelling errors (see Fig. 3), as is quite common in 

practical applications, most likely lead to biased parameter estimates  and hamper the finding 

of a global minimum. Hence, an estimate of the covariance matrix evaluated at the biased 

parameter estimate (Section 5.3.7) will merely give a crude approximation of the uncertainties 

in the estimates. Even for the estimation of the single parameter  from 75 observations of 

urea-N concentration the Levenberg-Marquardt algorithm gave four different estimates (Table 

4), depending on the initial guesses in Step 2 and 3.  

The estimation of , , ,  ,  and  from two observed state variables, further 

emphasised this situation, as the estimates did not only depend on the initial guesses, but also 

on the type of search algorithm used, as demonstrated in Section 5.4.2. 

In this case, six unknown parameters were estimated from concentrations of urea-N and total 

ammoniacal-N. Although it is ideal to have sufficient observed process variables, lack of 

detailed data sets is typical for complex agri-environmental systems where only few state 

variables can be observed in experiments due to technical challenges and time, labour and 
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cost constraints. In fact, some agri-environmental models were only evaluated against 

seasonal data sets, see Chowdary et al. (2004) and Liang et al. (2014). 

However, as an alternative to the non-linear least-squares methods with corresponding 

estimate of the covariance matrix, a set-membership approach offers an efficient and 

transparent method in retrieving a potentially non-convex and non-connected set of feasible 

parameter-vectors that directly reflects the uncertainty in the estimates. Taking the Los Baños 

case, for instance, the set-membership estimation approach took an average of 4.6 hours to 

simulate for 1000 sampled parameter-vectors. The non-linear least-squares methods may only 

evaluate at most 21 vectors with initial guess within 4.6 hours, assuming 0.22 hours per 

optimisation (see Section 5.4.2 for details on computational time). 

5.5 Conclusion  

A set-membership (bounded-error) estimation approach can be a good tool in modelling agri-

environmental systems as the approach retrieves sets of feasible parameter-vectors that 

directly reflect the uncertainty in the estimates. An additional advantage of a sampling-based 

set-membership estimation approach is that it allows for sensitivity analysis of parameters in a 

parameter region. However, a sampling-based set-membership approach, although easy to 

implement, requires an efficient sampling scheme to ensure a good coverage of samples in the 

a priori parameter region.  
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Appendix A. Model input data for Los Baños and Muñoz 
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Fig. A.1 a) Synthetic floodwater temperature, and b) observed (dot) and interpolated (solid 
line) floodwater pH for Los Baños, and c) synthetic floodwater temperature that ranges from 
25 ̊C to 40 ̊C, and d) observed (dot) and interpolated (solid line) floodwater pH for Muñoz 
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Appendix B. Eigenvalue decomposition of the dispersion matrix of the feasible 

parameter-vectors 

Los Baños 

All of the feasible parameter-vectors for  Los Baños in Table 2 were combined and put into 
the ×  matrix  with corresponding ×  averaged matrix  (Section 5.3.6 for details). 
Eigenvalue decomposition of ( − )T ( − ) resulted in the following eigen matrix  

=

−0.0136 . −0.1972 0.0087 0.0011 0.0027
. 0.0193 0.0269 −0.0037 −0.0007 0.0003

0.0069 −0.0276 −0.0947 . 0.2115 −0.0508
0.0296 −0.1950 − . −0.0943 −0.0250 0.0229

−0.0006 0.0004 0.0180 0.0472 0.0309 .
−0.0000 0.0001 0.0048 0.2142 − . 0.0200

 

and, the corresponding eigenvalues are given by  

( ) = [0.1 4.5  9.1 1194.8 2001.2 2476.5]                   

Each element in vector ( ) is related to a column of matrix V. Each row in matrix V 
indicates a parameter weighting, in the following order from top to bottom: 

, , , , ,  and . 

Muñoz 

Similary, all of the feasible parameter-vectors for Muñoz in Tables 2 and 3 were combined as 
above. Eigenvalue decomposition of ( − )T ( − ) resulted in the following eigenvectors 

=

0.1107 − . −0.0319 0.0114 0.0030 0.0037
− . −0.1129 0.0740 −0.0056 0.0089 0.0009
−0.0149 0.0007 −0.0625 0.2828 − . 0.0045
−0.0764 0.0240 − . 0.0320 0.0755 −0.0071
−0.0001 0.0106 0.0507 . 0.2772 0.1560
0.0000 0.0023 −0.0148 −0.1506 −0.0389 .

 

and, the corresponding eigenvalues are given by  

( ) = [0.0070 0.0812 0.6038 27.313 69.880 179.13]                

Similarly, each element in vector ( ) is related to a column of matrix V. Each row in 
matrix V indicates a parameter weighting, in the following order from top to bottom: 

, , , , ,  and . 
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6.1 Introduction 

The ammonia (NH3) losses in fertilised and flooded rice systems range from about 2 % to 60 % 

of total N applied. The net NH3 loss may not be solely contributed by NH3 volatilisation from 

the floodwater surface, but also through a stomatal pathway. However, modelling studies of 

the latter pathway are hindered due to lack of studies on sinks and sources of atmospheric 

NH3 in fertilised and flooded rice systems. Except for Hayashi et al. (2008), researchers in 

general claimed that the net NH3 loss to the atmosphere was due to volatilisation from the 

floodwater (Chapter 1). As a result, existing models for simulating the N dynamics in 

floodwater and soil of a rice system conceptualise NH3 volatilisation only from the floodwater 

surface (Chapter 2). Since models are approximations of the actual systems, not all 

hypotheses on N processes in the overall systems are conceptualised in models. Consequently, 

models with different underlying concepts are available to estimate NH3 volatilisation from 

the floodwater surface in fertilised and flooded soil systems. To the best of our knowledge, 

many of these models have not been co-validated with one another with respect to their 

performance in estimating NH3 volatilisation in fertilised and flooded rice systems.  

With progress in the development of the models for simulating N dynamics in flooded soil 

systems, with and without a rice crop, the main objective of this thesis was, therefore, to 

determine an appropriate process-based model structure for estimating NH3 volatilisation in 

fertilised and flooded rice systems that were broadcast with urea. 

In this thesis, evaluation of model structure adequacy is discussed under the major assumption 

that the net NH3 loss occurs only through NH3 volatilisation from the floodwater surface. 

Despite this limitation, the findings presented in this thesis are important as several models in 

Chapter 2 are currently being used to estimate NH3 loss in fertilised and flooded rice 

systems. Resistance models have been used to estimate sinks and sources of atmospheric NH3 

in arable crop systems (Chapter 1), but these models were not studied in this thesis as we, 

and many other researchers in this field, focused on models that were able to simulate the N 

dynamics in the floodwater and soil. 

6.2 Research approach of this thesis 

In this thesis, first, a priori knowledge was evaluated in Chapter 2 where the differences and 

similarities of concepts and structures of 14 existing models, and the reported performances of 
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the models in simulating the N dynamics in flooded soil systems were examined. The chapter 

provides a basis to assist the researcher in choosing a model based on the definition of key 

focal processes. Second, equifinality of the mathematical models of urea hydrolysis and NH3 

volatilisation at single process level was determined for conditions observed in tropical 

fertilised and flooded rice systems in Chapter 3.  Complex models cannot be easily evaluated 

for ill-defined systems. Meanwhile, simple process-based models would have fewer unknown 

parameters that need to be calibrated from the limited observational data sets, but the 

adequacy of the model structure for the estimation of NH3 volatilisation needed to be 

examined.  Therefore, the third step was to investigate the adequacy of a simple process-based 

model for the estimation of NH3 volatilisation from the floodwater surface in fertilised and 

flooded soil systems. Several simple lumped-parameter models are described in Chapter 2, 

but insights from Chapter 3 indicated that the structures of the existing models were not 

adequate in estimating the trend of cumulative NH3 volatilisation from fertilised and flooded 

rice systems. Therefore, a new model was proposed in Chapter 4 as an improvement to 

existing lumped-parameter models. The proposed model was calibrated, and subsequently 

falsified by some data sets. Although typically positive outcomes in validation are sought, 

falsification of the model improved our understanding of the limitation of the model structure. 

Some of the unknown parameters in the model were gradually varied to fit the data (Chapter 

4), but this calibration approach was not systematic. Meanwhile, conventional least-squares 

methods are not appropriate for poor data conditions, for instance, large errors in observations 

or small number of observations. Thus, as the fourth step, the set-membership approach was 

used to estimate the unknown parameters and to characterise the uncertainty in the parameter 

estimates in Chapter 5. As an alternative to the non-linear least-squares methods with 

corresponding estimate of the covariance matrix, a set-membership approach offers an 

efficient and transparent method in retrieving a potentially non-convex and non-connected set 

of feasible parameter-vectors that directly reflects the uncertainty in the estimates. The set-

membership approach further allows for sensitivity analysis of parameters in a parameter 

region. 

6.3 Model structure adequacy for the estimation of NH3 volatilisation in fertilised and 

flooded rice systems 

Prior to this thesis, it was not clear whether existing models for the estimation of NH3 

volatilisation significantly differ from one another, as relevant models was validated with 
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independent data sets (Chapter 2). The systematic and integrated approach in this thesis 

revealed limitations and advantages of different modelling concepts and structures for the 

estimation of NH3 volatilisation in fertilised and flooded rice systems which previously may 

not have been discernible. In addition to Table A.7 in Chapter 2 which presented the 

performance of the model, the findings presented in this section can be used as criteria for 

stakeholders to make an informed selection of models, to modify the existing models for a 

specific purpose, and to interpret model-output responses critically. 

Co-validation of model structures for the estimation of NH3 volatilisation from the floodwater 

revealed that the partitioning between NH3 and NH4
+
 must be conceptualised in order to 

capture the diurnal trend of NH3 volatilisation observed by Fillery et al. (1984) and Fillery et 

al. (1986). The partitioning is regulated by floodwater pH and temperature. In Chapter 3, it is 

found that the prediction of NH3 volatilisation is sensitive to the range of floodwater pH, but 

not sensitive to the range of floodwater temperature typically found in tropical flooded rice 

systems. Neglecting the floodwater temperature effect on the partitioning of NH3 and NH4
+ 

did not result in significant differences in the estimates of NH3 volatilisation, as demonstrated 

in the case of the Rao et al. (1984) model.  

In contrast, Jayaweera and Mikkelsen (1990a), Hayashi et al. (2008), and Chen et al. (2015) 

suggested that an increase in floodwater temperature has either an exponentially or a linearly 

increasing effect on the cumulative NH3 volatilisation. Usually, sensitivity analysis of a model 

is performed by varying only one process variable at a time. Consequently, in the case of 

analysing the sensitivity of NH3 volatilisation with respect to the floodwater temperature, the 

floodwater pH was assumed constant, which may amplify the effect of floodwater 

temperature on NH3 volatilisation. However, if the diurnal trends of both floodwater pH and 

temperature, which change at hourly time interval and typically peak at mid-day, are 

considered, the anticipated effect of increasing floodwater temperature on cumulative NH3 

volatilisation was small, as shown in Chapter 3. 

In Chapter 3, two models that can simulate the diurnal trends of floodwater pH were 

compared. Estimation of the floodwater pH using a simple model has a limited working pH 

range as the model directly assumes the floodwater pH would follow a sinusoidal trend, but 

trying to describe the underlying mechanisms resulted in highly intricate model, for instance, 

the model by Singh and Kirk (1993) (Chapter 3). It is concluded that the floodwater pH 
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should be measured in-situ using a pH probe and simply treated as disturbance input in 

models. 

In models by Chowdary et al. (2004), Liang et al. (2007), Antonopoulos (2010), and the 

model proposed in this thesis, the floodwater is assumed a single well-mixed compartment. In 

these models, the cumulative NH3 volatilisation is proportional to the mass of NH3 in a single 

floodwater compartment, and therefore, is irrelevant to the changes in concentrations of total 

ammoniacal-N. Thus, a change in the floodwater depth does not affect the rate of NH3 

volatilisation (Chapter 4). This result contradicts with studies by Freney et al. (1988), 

Hayashi et al. (2006), Hayashi et al. (2008), and Win et al. (2009) who indicated that 

increasing floodwater depth would minimise the rate of NH3 volatilisation. 

APSIM-Oryza and CERES-Rice also assume a single well-mixed floodwater compartment, 

but the rate of NH3 volatilisation is estimated using an empirical equation which is a function 

of floodwater properties, including floodwater depth. In the model of Jayaweera and 

Mikkelsen (1990a), the floodwater is also assumed to be a single well-mixed compartment, 

but formation of a two-film layer at the floodwater surface is conceptualised. However, the 

effect of floodwater depth appears twice because of the assumption made by Jayawera and 

Mikkelsen (1990a) in order to solve the full differential equations, which finally resulted in 

Eq. 7 in Chapter 3. The first effect of floodwater depth is through the concentration of the 

total ammoniacal N which is measured and then used as input to the model. The second effect 

is through the direct relationship between floodwater depth and rate of NH3 volatilisation as a 

result of the two-film theory. However, in Chapter 3 the assumption were actually removed 

(Eq. 9 in Chapter 3).  

Simulation of the model by Jayaweera and Mikkelsen (1990a) for flooded soil systems 

without a rice crop showed that an increase in floodwater depth significantly minimised NH3 

volatilisation (Jayaweera and Mikkelsen, 1990b). However, the decrease in cumulative NH3 

volatilisation predicted by the model of Jayaweera and Mikkelsen (1990b) was larger than the 

field observations by Freney et al. (1988). Direct comparison is not impartial because results 

were simulated or measured under different environmental properties. However, what is 

important is that both model and data pointed out that floodwater depth would minimise the 

floodwater depth, but to what extent is not known. 

In models by Bouwmeester and Vlek (1981), Moeller and Vlek (1982), and Singh and Kirk 
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(1993) and in the model NFLOOD v.1, the floodwater compartment is divided into several 

vertically segmented layers, where N transport across the layers is assumed via molecular 

diffusion. Based on this concept, the floodwater depth would minimise the rate of NH3 

volatilisation by increasing the time required for dissolved ammoniacal-N from the flooded 

soil surface to reach the floodwater surface, prior to volatilisation. This concept may hold in 

laboratory experiments, but under field conditions, mixing of floodwater may occur either by 

vertical convection due to heat from ambient temperatures (Leuning et al., 1984, Hayashi et 

al., 2008), or water flow through the cracks in the soil or bunds (Freney et al., 1983). 

The actual state of the floodwater in flooded rice systems, thus as a well-mixed compartment 

or a compartment with several vertically segmented layers, is not known. This knowledge is 

crucial to selecting which model has adequate structure for estimating net NH3 loss, and to 

address if increasing floodwater depth would reduce the net NH3 loss.  

Wind speed must be conceptualised in models for reliable estimate of the net NH3 loss. In 

models that approximated NH3 loss by first-order kinetics with a constant parameter (Rao et 

al., 1984, Chowdary et al., 2004, Antonopoulos, 2010), the effect of wind speed on NH3 

volatilisation is implicitly captured by the calibrated constant parameter. Therefore, a time-

varying rate coefficient of NH3 volatilisation is required in order to include wind speed that 

varies with time and locations (Chapter 3 and Chapter 4). Meanwhile, Gaydon et al. (2012a) 

showed that APSIM-Oryza is able to estimate total N loss (NH3 volatilisation and 

denitrification) in fertilised and flooded rice systems fairly well in experimental plots that 

received different N treatments. Further investigation revealed that the empirical equation 

used to estimate the net NH3 volatilisation in APSIM-Oryza is sensitive to the time-varying 

pan evaporation rate. The effect of wind speed NH3 volatilisation before panicle initiation is 

well approximated by the pan evaporation rate. This advantage of APSIM-Oryza did not stand 

out in Chapter 2 and would have been revealed in the co-validation step in Chapter 3 if the 

pan evaporation rate was selected as one of the study variables. 

In the modelling studies presented in this thesis, the net NH3 loss is assumed only through 

NH3 volatilisation from the floodwater surface. However, other studies have indicated that a 

crop can also be a sink and a source of atmospheric NH3 (Section 1.6, Chapter 1). To the best 

of our knowledge, there is only one study that attempted to infer the sinks and sources of NH3 

in fertilised and flooded rice systems. Hayashi et al. (2008) suggested that 70 % (3.01 kg N 
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ha
-1

) of the net NH3 loss occurred through a stomatal pathway and only 30 % (1.29 kg N ha
-1

) 

volatilised from the floodwater surface following application of 10 kg urea-N ha
-1

 on 66 days 

after transplanting (DAT). However, following application of 10 kg urea-N ha
-1 

on 119 DAT, 

they reported that the net NH3 loss from the system was negligible and the rice leaves became 

a sink for NH3.  

At an early rice crop growth stage, the crop canopy is sparse. Thus, NH3 in the surrounding air 

within the canopy may be transported by the wind to the atmospheric layer above the crop 

canopy. This process may prevent build-up of NH3 concentrations in the air within the 

canopy, and, therefore, may be conducive to NH3 emission through a stomatal pathway. At a 

later growth stage, the crop canopy becomes dense. Therefore, NH3 concentrations in the air 

within the canopy may be protected from being transported to the air. Consequently,  build-up 

of NH3 concentration in the air within the canopy may occur, as observed by Harper et al. 

(2000) in a fertilised corn field. Subsequently, the NH3 concentrations within the crop canopy 

may exceed the concentrations of NH3 in the leaves. Under this condition, it is likely that the 

leaves become a sink of NH3. 

However, several studies in crop systems other than rice suggested NH3 emission through 

non-stomatal pathways (Section 1.6, Chapter 1), and, thus, contradict with results reported 

by Hayashi et al. (2008). NH3 cycling within crop canopies appears to depend simultaneously 

on structure and density of the crop canopy (Denmead et al., 2008), opening of stomata 

affected by crop water status (Chaves et al., 2016), rate and timing of N fertiliser application 

(Table 2, Chapter 1), floodwater or soil properties which may affect availability of NH3 

susceptible to volatilisation (Chen et al., 2015), and the whole-plant N dynamics, in particular 

rate of N uptake, level of glutamine synthetase activity that affects assimilation of NH4
+
 by 

the crop that was shown to vary among cultivars, and the N remobilisation from senescing 

leaves to growing leaves or grain which may differ among plants (Kumagai et al., 2011, 

Yoneyama et al., 2016). All these factors may contribute to the contradicting observations in 

fertilised and flooded rice systems compared to the other crop systems, and may also affect 

the ratio between NH3 volatilisation from the floodwater and NH3 gas exchange through the 

stomatal pathway reported by Hayashi et al. (2008).  

Models that detailed the soil N processes and N uptake by rice crop are presented in Chapter 

2. However, calibration of soil N parameters is hindered by scarcity of soil N data as reported 
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by Gaydon et al. (2012a), Katayanagi et al. (2013) and Liang et al. (2014). Cassman et al. 

(2002) have already stated that realistic prediction of soil N dynamics using models is 

difficult due to the complexity of the interactive soil N processes. Therefore, as an alternative 

to the existing concepts, a total N sink term was proposed as a result of iterative modelling 

loops in order to avoid detailed modelling of soil N processes for cases with scarce soil N 

data, is a simple way to approximate the effect of all N sink including the N uptake by a rice 

crop (Chapter 4). This simple concept can be incorporated into the model of Jayaweera and 

Mikkelsen (1990a) which is currently limited to application in flooded soil systems without N 

sink, except for NH3 volatilisation. One can argue that the simple concept is inadequate and 

each soil N process is indeed complex (Nieder et al., 2011, Van der Laan et al., 2014, 

Vereecken et al., 2016), but Cartwright et al. (2016) stated that increasing model complexity 

which superficially appears more credible may eventually lead to a type of black box model. 

Urea hydrolysis pre-determines the amount of total ammoniacal-N that is available in the 

floodwater, and subsequently susceptible to NH3 volatilisation. Many modellers assume first-

order urea hydrolysis (Singh and Kirk, 1993, Chowdary et al., 2004, Gaydon et al., 2012b), 

but from model and data integration, we learnt that a system with low urease activity is better 

approximated by two first-order reactions in series. The disappearance of urea-N in the 

floodwater can be explained by the first-step first order reaction, but there appear to be several 

days delay in build-up of total ammoniacal-N, which can be explained by assuming the 

second-step first order reaction (Chapter 4). The model proposed in Chapter 4 was only 

tested with two observational data sets in the Philippines, and, therefore, it may be possible 

that the delay in urea hydrolysis is site-specific.  

In Chapter 3, co-validation was performed between a first-order urea hydrolysis term with a 

constant rate coefficient and a time-varying rate coefficient. The time-varying rate coefficient 

is a function of three factors: leaf area index, organic C percentage, and floodwater 

temperature. However, in Chapter 5, the feasible parameter 𝐾ℎ estimated from three sets of 

observational data ranged from about 0.7 to about 1.0 day
-1 

(0.05 to 0.08 two-hour
-1

). The 

wide range of feasible 𝐾ℎ values indicates that it is not feasible to accurately estimate the 𝐾ℎ 

per time instant due to uncertainty in the observations. Thus, first-order kinetics with a 

constant rate coefficient is adequate to approximate the hydrolysis of urea in the floodwater. 
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6.4 Co-validation of models 

Li et al. (2015) validated DNDC-Rice, CERES-Rice and APSIM-Oryza with respect to their 

common output (i.e., rice grain production) along with another 10 crop growth and 

development models (both generic and specific for rice crop), and found that none of these 

models consistently provided reliable predictions of rice grain production across four sites 

with different climatic conditions, management practices, rice cultivars and years. 

Confalonieri et al. (2016) further showed that differences in model structures could result in 

similar prediction, while similar structures could lead to large differences in model outputs.  

This unexpected result is probably because the models are relatively complex, leading to 

interaction within sub-components of the models, where the output of one process may be an 

input to multiple process, and subsequently affect the overall model behaviours. Full model 

co-validation may indeed reveal the interactions of subcomponents of models each with 

different concepts, but the effect of different modelling concepts of a specific process can 

only be revealed if co-validated at single process level. This drawback of full model co-

validation was already hypothesised in research question 3 in Chapter 1. 

Therefore, in Chapter 3, in order to understand differences in modelling concepts for a 

specific process, co-validation was conducted at single process level: urea hydrolysis, NH3 

volatilisation, and floodwater pH. Chapter 3 revealed how different modelling concepts 

affect the trends and magnitudes of common model-outputs. Very recently, Camargo et al. 

(2016) presented a similar approach to study the simulation of water uptake in six crop 

models. 

6.5 Estimation of unknown parameters 

Uncertainty in the model structure is not the only source of prediction uncertainty, uncertainty 

in the parameters is another source. In a crop modelling context, Nissanka et al. (2015) state 

that it is still common to fit parameter against data through trial-and-error, possibly either due 

to the technical difficulty in coupling models to statistical software or the importance of 

parameter uncertainty is not generally recognised. See for instance, the supplementary 

materials in Li et al. (2015), where parameters in several crop models were gradually varied to 

fit the data sets. The trial-and-error approach only emphasises on the goodness of fit and does 

not characterise the uncertainty in the parameters. 
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Estimation of parameters in crop models (including the N dynamics component) is 

challenging. The characterisation of parameter uncertainty using the classical methods 

requires assumptions on mean, variances, and/or probability density function of the model 

errors, which cannot be satisfactorily tested with small number of observations (Keesman and 

Van Straten, 1990). Furthermore, the model errors for the different model outputs may be 

correlated, and, thus, a method like the ordinary least-squares is not appropriate. Additionally, 

measurement error is also present in the observations. Thus, there is a need for a framework 

that simultaneously considers prediction uncertainty as a result of different sources, namely 

uncertainty in model structure, parameters, and observations that are used as model inputs and 

calibration data sets (Confalonieri et al., 2016).  

In Chapter 5, the sampling-based set-membership approach with soft-bound is presented as 

an alternative method to estimate parameters in potentially over-parameterised model from 

poor quality data sets. The approach allows simultaneous consideration of the different 

sources of uncertainty affecting model prediction, such as uncertainty in the model structure, 

parameters, and observations. Wallach et al. (2016) proposed a two-step ordinary least-

squares procedure to transform the observations so that model errors become uncorrelated and 

homoscedastic. However, the set-membership approach offers the advantage of avoiding any 

assumptions beyond the model structure and the model-output-error. Confalonieri et al. 

(2016) generated a number of possible series of observations from the means and standard 

deviations of the original observations in order to account for the uncertainty in the 

observations. This aspect is directly considered in the set-membership approach through the 

pre-defined error-bounds in Chapter 5. Furthermore, in Chapter 5, it is shown that the 

estimation of parameters using optimisation algorithm such as the Nelder-Mead simplex and 

Trust-reflective region does not always converge, as demonstrated for the proposed model. 

The set-membership approach does not require use of built-in optimisation algorithms. See 

Chapter 5 for a detailed discussion on the advantages of the set-membership approach 

compared to the non-linear least-squares methods in estimating parameters from poor quality 

data sets. In summary, the sampling-based set-membership approach is a valuable method for 

estimating parameters from poor quality data sets. 

6.6 Research outlooks 

Models may not stay validated forever, as process-based models are derived based on 
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generalised assumptions, whereas empirical models typically have a pre-determined working 

range. Instead of fully relying on positive outcomes from validation of models with 

observational data sets, understanding the limitations of the modelling concepts, as 

demonstrated in this thesis, is important as it is not the model that provides users the answers, 

but it is the modeller that implicitly dictates the outputs of the models, by defining the 

underlying concept and structure. The approach proposed in this thesis, from understanding 

models and structures of existing models, to co-validation at single process level followed by 

model restructuring, calibrating and validating, can also be extended to other N processes, 

such as soil organic matter dynamics, or even to other complex and ill-defined systems. 

Due to lack of field observations that distinguish between NH3 volatilisation from floodwater 

surface and NH3 emission through a stomatal pathway (Section 1.7, Chapter 1), detailed 

modelling of the latter process is not yet possible. Zhou et al. (2016) reported 96 % of 

observations in China were obtained using the chamber methods, see Table 2 in Chapter 1. 

The next step is to infer sinks and sources of atmospheric NH3 in fertilised and flooded rice 

systems by using advanced methods such as the inverse Lagrangian dispersion analysis or 

application of resistance models (Section 1.7, Chapter 1). Identifying sinks and sources may 

lead to reassessment of structure adequacy of current N dynamics models and methods that 

are recommended for N management in flooded rice systems.  

If NH3 exchange through the stomata pathway is significant, then many existing process-

based N dynamics model developed for flooded rice systems are wrong from the physical 

science perspective, but still some of these models have functional adequacy for estimating 

the net NH3 loss (Chapter 2). Unlike the models discussed in Section 6.3, the resistance 

models allow estimation of bi-directional NH3 gas exchange from multiple sinks and sources 

(Section 1.7, Chapter 1). The two-layer canopy compensation resistance model (foliage-litter 

model) presented by Nemitz et al. (2000) or Massad et al. (2010) could be adapted to simulate 

the NH3 cycling in the flooded rice systems. The litter or soil component in the model should 

be modified to approximate the NH3 volatilisation from the floodwater surface. However, the 

challenge lies in the calibration of the parameters in the resistance model. For instance, a 

constant dimensionless NH3 emission potential Γ (Section 1.6, Chapter 1) is not adequate to 

account for the effect of diurnal floodwater pH on NH3 volatilisation from the floodwater 

surface. Therefore, future research challenges include data acquisition for insights on sinks 

and sources of NH3 and parameterisation of the resistance models for fertilised and flooded 
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rice systems, and conceptualisation of the new insights in existing N dynamics models, i.e. 

APSIM-Oryza and CERES-Rice, which are currently used to recommend management 

practices. 

Deep placement of urea super granules at a depth between 0.07 m and 0.10 m from the soil 

surface is recommended in order to reduce NH3 volatilisation from the floodwater surface, but 

an evaluation of this method was conducted using the chamber methods or the 15-N tracer 

technique (Craswell et al., 1981, Cao et al., 1984, De Datta et al., 1988, Chien et al., 2009, Liu 

et al., 2015), and, therefore, is not representative of net NH3 flux in flooded rice systems 

(Section 1.7 in Chapter 1). If indeed the dominant pathway for atmospheric NH3 is through a 

stomatal pathway, deep placement may not be able to reduce the net NH3 flux, unless coated 

or super granule urea or slow release fertiliser is used. Photosynthetic aquatic biomass (PAB) 

can be a vital source of C and N for the next cropping season (Gaydon et al., 2012a). 

However, presence of PAB in the floodwater may contribute to NH3 volatilisation as the 

floodwater pH may be increased by the PAB activity. Therefore, a study which infers both 

sinks and sources of atmospheric NH3 can assess the benefits and drawbacks of PAB presence 

in the systems. 

In Chapter 4, model simulation indicated that wind speed before panicle initiation may 

significantly affect the net NH3 volatilisation. Suitable hedge plants can be planted on the 

bund of rice systems as a barrier to wind (Nordstrom and Hotta, 2004, Cornelis and Gabriels, 

2005), and hypothetically minimise NH3 volatilisation. This approach requires only a one-

time establishment, and therefore, is less laborious. Modelling studies are needed to 

investigate effects of height and porosity of the hedge plants, and of size and orientation of the 

rice plot on the wind dynamics within the plot (e.g., Schwartz et al. (1995)). However, it 

should be noted that reducing NH3 volatilisation does not guarantee minimisation of total N 

loss from the systems, as interdependence of NH3 volatilisation and other N loss pathways are 

possible (Section 1.5, Chapter 1). 
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Summary 

In flooded rice systems that are broadcast with urea and not followed by incorporation of the 

urea into the soil, significant amounts of nitrogen (N) may be lost to the atmosphere in the 

form of ammonia (NH3). The NH3 loss to the atmosphere represents monetary loss and has 

negative effects on the environment. Currently, many mathematical models are available for 

predicting NH3 volatilisation from the floodwater in fertilised and flooded rice systems. These 

models are used to estimate the seasonal N balances as alternatives to tedious field and lab 

experiments, for scientific insights into the N dynamics of fertilised and flooded rice systems or 

for scenario studies in order to make recommendations on management practices. However, 

these models have varying complexities with regards to describing the process of NH3 

volatilisation and the overall N dynamics in the systems. Therefore, the main objective of this 

thesis is to determine an appropriate process-based model with corresponding uncertainty 

characterisation for estimating NH3 volatilisation in fertilised and flooded rice systems. In this 

thesis, evaluation of model structure adequacy is discussed under a major assumption that the 

net NH3 loss occurs only from the floodwater surface. 

In Chapter 2, an overview on the modelling concepts and the performance of 14 models 

developed to simulate N dynamics in flooded soil systems is given. The 14 models were 

NFLOOD v.1 (published by Rao et al.), NFLOOD v.2 (published by Reddy et al.), J-M’s 

(published by Jayaweera and Mikkelsen), S-K’s (published by Singh and Kirk), CERES-Rice 

(published by Godwin and Singh), Chowdary’s (published by Chowdary et al.), Nakasone’s 

(published by Nakasone et al.), Yoshinaga’s (published by Yoshinaga et al.), DNDC-Rice 

(published by Li et al.), K-K’s (published by Kirk and Kronzucker), Liang’s (published by 

Liang et al.), RIWER (published by Jing et al.), RICEWNB (published by Antonopoulos), and 

APSIM-Oryza (published by Gaydon et al.). The overview revealed lack of co-validation 

among these models. Thus, it remained vague whether the differences in modelling concepts 

would result in substantial differences in the behaviour of the models, which led to Chapter 3. 

In Chapter 3, mathematical models of urea hydrolysis, NH3 volatilisation, and floodwater pH 

were extracted from the full models and co-validated at single process level with the aim to 

investigate equifinality between simple and complex process models. Equifinality is defined 

as the capability of mathematical models to produce similar model-output responses. Results 

showed that, despite detailing of the time-varying rate coefficient of urea hydrolysis in 
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APSIM-Oryza, rates of urea hydrolysis can be approximated by a first-order kinetics model 

with constant rate coefficient. The intricate Jayaweera and Mikkelsen (1993a) model, which 

describes NH3
 
volatilisation based on the two-film theory, can be approximated by the simpler 

NFLOOD v.1 model, by adjusting the a priori given constant rate coefficient in NFLOOD 

v.1. The diurnal trend of NH3 volatilisation typically observed in fertilised and flooded rice 

systems, however, could not be simulated by a first-order kinetics model with a constant rate 

coefficient, unless the effect of NH4
+
 and NH3 partitioning in the floodwater was 

conceptualised. The modelling concepts of floodwater pH in APSIM-Oryza and in the model 

of Singh and Kirk led to significantly different outputs. 

In Chapter 4, a new process-based model for predicting the NH3 volatilisation in fertilised 

and flooded rice systems, and of a complexity that matches the scarcity of soil N data, is 

presented. Based on model and data integration, urea hydrolysis in the floodwater was 

approximated by two first-order kinetics, and the uptake of N by rice crop was lumped with 

other N sinks and approximated by a sigmoid curve in the proposed model. The model was 

falsified by some data sets, but was also in good agreement with other data sets. Inadequate 

model structure may have led to the falsification of the model, but uncertainty in observations 

and in parameters could also have led to the falsification. In this chapter, the characterisation 

of the uncertainty in the parameter estimates was still lacking as the parameter estimates were 

calibrated using a trial-and-error approach. 

In Chapter 5, uncertainty in the parameter estimates in the model proposed in Chapter 4 were 

characterised using the set-membership parameter estimation approach with soft-error-

bounds. Results showed that the set-membership approach is efficient in retrieving feasible 

parameter-vectors compared with non-linear least-squares methods. In fact, the non-linear 

least-squares methods do not always converge and often led to local minima. The set of 

feasible parameter-vectors allows the formation of a dispersion matrix of which the 

eigenvalue decomposition reflects the parameter sensitivity in a region.  

In Chapter 6, perspectives of modelling to estimate NH3 volatilisation in fertilised and 

flooded rice systems are given. The systematic and integrated approach in this thesis revealed 

advantages and limitations of different modelling concepts and structures for the estimation of 

NH3 volatilisation in fertilised and flooded rice systems. Additionally, future research 

possibilities are discussed. 
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Glossary 

A priori knowledge Knowledge that is gained through deduction, and not through 

empirical evidence (Keesman, 2011).  

Ill-defined system Size and complexity of the system prevent a full understanding 

a priori and when planned experimentation is difficult, if not 

impossible, and observational data sets are often small (Young 

et al., 1976).  

Parameter Rate coefficient in a model that is estimated from observational 

data sets. 

Unidentifiable parameter A parameter that does not have a unique value in a parameter 

estimation calibration step (Keesman, 2011).  
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