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Abstract 

Effective visualisation methods are important for the efficient use of uncertainty 
information for various groups of users. Uncertainty propagation analysis is often 
used with spatial environmental models to quantify the uncertainty within the 
information. A challenge arises when trying to effectively communicate the 
uncertainty information to non-experts (not statisticians) in a wide range of cases.  

Due to the growing popularity and applicability of the open source programming 
language R, this project aimed to develop R functions to effectively communicate 
spatial uncertainty to non-experts. The spatial uncertainty information was generated 
using Monte Carlo algorithms, the output of which is represented by an ensemble of 
model outputs (i.e. a sample from a probability distribution). Three visualisation 
methods, adjacent maps, glyphs and an interactive application, were chosen for 
implementation. To provide the most universal visualisation tools for non-experts, a 
survey was conducted on a group of 12 university students. This survey assessed the 
effectiveness of the selected methods for visualising uncertainty in spatial variables 
such as elevation and land cover. The adjacent maps and glyphs were used for 
continuous variables. Both allow for displaying maps with information about the 
ensemble mean and standard deviation. Adjacent maps were also used for categorical 
data, displaying maps of the most probable class, as well as its associated probability. 
The interactive applications included a graphical user interface, which in addition to 
displaying the previously mentioned variables also allowed for comparison of joint 
uncertainties at multiple locations. The survey indicated that users could understand 
the basics of the uncertainty information displayed using the three methods, with all 
three having an approximately equal preference. The implementation of the 
visualisations was done via calls to the ggplot2 package. This allowed the user to 
provide control over the content, legend, colours, axes and titles. The interactive 
methods were implemented using the shiny package allowing users to activate the 
visualisation of statistical descriptions of uncertainty through interaction with a plotted 
map. 

This research brings uncertainty visualisation to a broader audience through the 
development of tools for visualising uncertainty using open source software. 
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1.  Introduction 

1.1 Background 

Geospatial information is rarely error-free and subsequently an understanding of 
spatial uncertainty is important. Errors are hard to quantify, as the measured value 
may not be identical to the ‘true’ value. Uncertainty relates to the level of confidence 
about knowledge of the ‘true’ value and therefore is a subjective measure of the 
deviation of a measured value from the ‘true’ value (Heuvelink et al., 2007). When 
conducting an analysis of geospatial information, it is integral to take the uncertainty 
of the data into account (Zhang and Goodchild, 2002).  

When performing an operation using geodata, it needs to be taken into account that 
uncertainties in the input data will propagate through any operation (Heuvelink et al., 
1989). Furthermore, models themselves can also have related uncertainties, leading 
to extra factors to account for when analysing the propagation of uncertainties in the 
output. A frequently used method for the analysis of uncertainty propagation is the 
Monte Carlo method. Based on a random sample from a probability distribution 
function (pdf) of the variable containing uncertainty, a series of possible realisations 
of a model output are created. These are used to assess the uncertainty of the 
model. 

The uncertainty of outputs and data is beneficial for a range of different users 
including decision- and policy-makers, scientists and even the general public 
(Heuvelink et al., 2007). Communication of uncertainties is often done through 
visualisation of the data. However, there is no one-size-fits-all approach regarding 
the best way of communicating the uncertainty to the different users. Various studies 
(Senaratne et al., 2012, Kinkeldey et al., 2015, Spiegelhalter et al., 2011) have 
shown that when visualising the uncertainty, the preferred and most effective 
visualisation technique depends on the user group.  

Digital visualisation of geodata has its roots in traditional cartography. As such, many 
symbols and symbology techniques developed over centuries of cartography have 
been easily transferred to digital visualisation (Wood, 1994). Bertin (1967) developed 
seven visual variables (location, size, shape, orientation, colour hue, colour value 
and texture) as a way of using symbols to represent information. These were 
extended to 12 variables by both Morrison (1974) and MacEachren (1992) with 
colour saturation, arrangement, crispness, resolution and transparency added. Since 
the 1990’s the search for innovative and new techniques for visualising uncertainty 
has been ongoing. Many techniques have been developed through application of 
Bertin’s visual variables as well as the extensions by Morrison and MacEachren. This 
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includes various types of static maps, yet with the help of modern technology, 
traditional map techniques have also been augmented using image sequences as 
well as graphical user interfaces. This could lead to more efficient methods of 
communication of uncertainty as well as wide-scale distribution of visualisation 
techniques.  

1.2 Sources of uncertainty 

When visualising uncertainty, it is useful to know where the uncertainty is coming 
from and why. Defining uncertainty is difficult, as there is no universal definition due 
to it being subjective, field dependent and can concern different aspects of our 
knowledge about phenomena (Longley et al., 2005). In the field of Geographic 
Information Science (GIS), uncertainty is often used ‘to describe situations in which 
the digital representation is simply incomplete and as a measure of the general 
quality of the representation’ (Longley et al., 2015). MacEachren et al. (2005) refer to 
uncertainy when inaccuracy is not known objectively, as otherwise it could be 
expressed as error. When trying to represent uncertainty, one commonly used 
approach is using a probability density function (pdf) (Heuvelink et al., 2007). This 
has a number of advantages, as a pdf allows for modelling correlation between 
uncertainties as well as applying methods for uncertainty propagation analyses 
(Heuvelink, 1998). Using a pdf also allows for the uncertainty to be quantifiable. 
Foody & Atkinson (2002) use the definition of uncertainty being a ‘quantitative 
statement about the probability of error’. This definition of uncertainty will be used in 
this research, as in order to visualise spatial uncertainty, the uncertainty needs to be 
quantified in some sort of way.  

The uncertainty pipeline is a concept used to identify three stages where uncertainty 
is introduced (Wittenbrink et al., 1995, Pang et al., 1997, Pang, 2008). These stages 
are the acquisition stage, the transformation stage and the visualisation stage and 
can be seen in Figure 1. The acquisition stage corresponds to uncertainties in the 
initial data and as such to the input uncertainty. This can come from a range of 
sources. Input data can come from observations and measurements, as well as 
numerical modelling. Uncertainty can be sourced from inaccuracies in the measuring 
instruments, as well as simplification of models. Many measurements or model runs 
can be done multiple times. Averaging these can eliminate the random error 
component and reduce the uncertainty in acquisition. The transformation stage 
corresponds to any transformations done on the input data. This means the data 
undergoes some sort of transformation and includes simple things such as unit 
conversions, as well as more complicated processes such as resampling or the use 
of algorithms to change data types (Pang, 2008). Monte Carlo analysis can be used 
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to assess the uncertainty after transformations have been done on the data. 
Uncertainty introduced in the visualisation stage can have its origins in the rendering 
process, interpolations used during visualisation as well as during animation 
processes. This research will not focus on the uncertainty produced during the 
visualisation stage. However, it is important to realise that miscommunication through 
visualisation can also lead to uncertainty. This research aims to visualise uncertainty 
from the output of Monte Carlo analyses in a way that there is no miscommunication 
in the visualisation.  

Figure 1: The uncertainty pipeline describing stages where uncertainty is introduced. 
After Wittenbrink et al. (1995); Pang et al. (1997); Pang (2008).  

1.3 Spatial uncertainty 

When evaluating spatial uncertainty, it is important to evaluate the types of spatial 
uncertainty. Burrough and McDonnell (1998) differentiate between two types of 
uncertainty: positional and attribute. Positional uncertainty refers to uncertainties in 
the position of an object, which as an example can be expressed as x- and y-
coordinates. These uncertainties will often be produced in the acquisition stage, yet 
can also be a product of transformations. Attribute uncertainty refers to uncertainties 
in the attributes of an object. The attributes are generally the characteristics of the 
object and are mostly measured. This can for example be the height of a tree or the 
diameter of the tree measured at chest height. Once again, uncertainties in the 
attributes can originate from both the acquisition and transformation stage. In order to 
limit the scope of this research, only attribute uncertainty will be examined. As such, 
the measurement scales of attribute uncertainty are reviewed next. 

When reviewing attribute uncertainty, Heuvelink et al. (2007) divide it into four 
categories depending on the measurement scales. The first two divide the numerical 
scale into two parts: continuous and discrete. Continuous attributes can take any 
value within a range, whereas discrete attributes can only take certain values within a 
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range. Attributes such as the depth of water in a flood area are continuous; the 
number of trees in a parcel of land is a discrete attribute. The third is the categorical 
scale. Categorical attributes belong to some sort of group or category, an example is 
land cover. The final measurement scale is narrative attributes. These attributes are 
a bit more abstract, as they involve the textual description of an attribute. When 
categorising uncertainty, MacEachren el al (2005) do not include the narrative 
measurement scale and Pang et al. (1997) only evaluated the numerical scales. In 
order to limit the scope, this research will only focus on continuous and categorical 
data, as these can be outputs of Monte Carlo analyses. 

When evaluating attributes, one can also explore the concept that attributes can vary 
in both space and/or time. As such there are four categories of space-time variability. 
The first category contains attributes that are constant in both space and time. These 
include known constants as well as attributes that are assumed constant (Heuvelink 
et al., 2007). The next category includes attributes that vary in only space, yet not 
time. Alternatively, attributes can vary only in time, yet not in space. This means 
these attributes will only change over time without changing their position in space. 
Finally, attributes can also vary in both space and time. In order to limit the scope of 
this research, only attributes with spatial uncertainty will be considered. This means 
that at each location the attribute can take on a different value, which can in turn be 
uncertain. Furthermore, uncertainties in space can be correlated, which is elaborated 
on in Section 2.1. Temporal uncertainty and variability will not be taken into account 
as it adds an extra dimension of analysis, and as such falls out of the scope of this 
research. 

1.4 Uncertainty representation 

There are many different graphical variables that can be used to represent 
uncertainty. These variables include location, size, shape, orientation, colour hue, 
colour value, texture, colour saturation, arrangement, crispness, resolution and 
transparency. Using these variables, uncertainty can be added graphically to a map 
through encoding the uncertainty within the variable. There are various techniques 
used to represent uncertainty and this research splits these techniques into three 
categories: static techniques, dynamic techniques and interactive techniques. Static 
techniques involve one single map, on which the uncertainty is depicted using 
graphical variables. Dynamic techniques involve multiple maps, using a mechanism 
to shift from map to map. This shifting between maps highlights the areas of 
uncertainty. Interactive techniques involve the use of a graphical user interface where 
users can choose what information they want to have displayed, as well as a more 
detailed selection of areas.  
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While there are various visualisation methods in the three visualisation categories, 
three methods have been chosen for this research: adjacent maps, glyphs and an 
interactive application. The adjacent maps method presents two maps adjacent to 
each other. This allows for the first map to visualise the data, with the second map 
visualising the uncertainty on its own. Adjacent maps are one of the most popular 
methods for static representation of uncertainty. Gerharz and Pebesma (2009) and 
Senaratne et al. (2012) both found adjacent maps to be the most preferred method of 
the methods they tested. Glyphs are geometrically plotted specifiers that encode data 
values and information through their shape, colour, size, orientation and location 
(Pang et al., 1997, Potter, 2006). Using glyphs, the uncertainty of points can be 
placed on top of a map of the data. Senaratne et al. (2012) and Kinkeldey et al. 
(2014) both recognise glyphs as having high potential to display qualitative 
information. Interactive applications display uncertainty through an interactive 
environment where the user can in part decide what they want to see. Previous 
implementations have had mixed evaluations, with many having a large potential yet 
being tricky for the user to use intuitively (Gerharz and Pebesma, 2009, Sanyal et al., 
2010, Senaratne et al., 2012).  

1.5 Open source software 

Open source software (OSS) is software that has its source code freely distributed 
(Mockus et al., 2002) and is often developed, maintained and distributed on a 
voluntary basis (Lakhani and von Hippel, 2003). OSS has grown tremendously over 
the last 20 years, with the total number of open source software projects growing 
exponentially (Deshpande and Riehle, 2008). OSS is also abundant within the GIS 
domain, with the website FreeGIS.org currently listing 356 open source GIS software 
programs with a growing trend (Steiniger and Bocher, 2009). One OSS is the R 
Project, which is provides the R programming language and environment. R has 
advantages through its advanced statistical capabilities and high quality graphical 
output (Ripley, 2001). Furthermore, through the use of R packages, the software can 
be used for a variety of GIS analyses and visualisations. This research has chosen to 
visualise spatial uncertainty in R due to its strong graphical outputs and widespread 
use in the scientific community (Steiniger and Bocher, 2009).  

1.6 Problem Definition 

Although a range of uncertainty visualisation techniques are currently used, there is 
still a lack of a concrete framework for uncertainty visualisation. Johnson and 
Sanderson (2003) see this as a key research challenge and note “the realistic need 
to create a formal, theoretical error and uncertainty visualisation framework”. There 
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have been various proposed uncertainty visualisation frameworks over time including 
those by MacEachren (1992), Pang et al. (1997) and MacEachren et al. (2005). 
However, there is still no concrete knowledge about which visualisation techniques 
are most suitable for applications with spatial uncertainty.  

Complicating the development of creating an uncertainty visualisation framework are 
the varied outcomes of surveys evaluating the visualisation techniques. Spiegelhalter 
et al. (2011) found that “there are few reproducible experimental findings for 
assessing best practice in visualising uncertainty”. There are conflicting reports as to 
whether the effectiveness of various techniques differs between different user groups 
(MacEachren et al., 2005). However, two studies (MacEachren et al., 2005, 
Kinkeldey et al., 2015) have shown that incorporation of uncertainty in a decision-
making process depends on the user’s expertise. Furthermore, different types of 
users often have a discrepancy between their most preferred methods and the 
methods that were most effective (Senaratne et al., 2012, Kinkeldey et al., 2015, 
Spiegelhalter et al., 2011).  

As such, there is a need to discover the best visualisation techniques for specific 
users and to offer tools for using these. Previous studies (MacEachren et al., 2005, 
Kinkeldey et al., 2015) investigating the effectiveness of uncertainty visualisation 
have often only involved expert users and students. This research proposes to 
investigate uncertainty visualisation focussing on non-experts as the user group. A 
non-expert is defined as a user without specific knowledge in the field of spatial 
uncertainty propagation. With the rise of the Internet globally as well as open source 
software, there is an enormous amount of potential for the distribution of new 
knowledge to this non-expert field. As such, uncertainty visualisation has the 
potential to help not only policy- and decision makers, but also the general public. 
This research will aim to bring uncertainty visualisation to a broader audience 
through the development of tools for visualising uncertainty using open source 
software.  

1.7 Research objective and questions 

This thesis is undertaken to supplement the Quantifying Uncertainty in Integrated 
Catchment Studies (QUICS) project. As part of this project, a spatial uncertainty 
propagation package is being developed in the statistical software R. This package 
consists in part of uncertainty propagation algorithms and in part of visualisation of 
these uncertainties. This thesis thus has the main objective: 

“To implement and evaluate techniques for visualisation and communication of 
spatial uncertainty to a non-expert audience.” 
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In order to achieve this objective, two research questions have been defined: 

RQ1: How can adjacent maps, glyphs and an interactive application be implemented 
to visualise spatial uncertainty in visualisation functions in an R package? 

RQ2: How effective are the functions in communicating spatial uncertainty to a non-
expert user? 
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2. Methodology 

This chapter contains the methods used to implement the visualisation methods as 
functions in R and how they were evaluated. First, the statistical parameters for 
quantifying uncertainty are discussed. Thereafter, the way the chosen methods 
visualise uncertainty is briefly discussed before the implementation of the methods is 
discussed in more detail. The datasets used and targeted users are discussed before 
the evaluation process is finally discussed.  

2.1 Statistical modelling of uncertainty 

The data dealt within this research is continuous and categorical spatial data, as 
explained in Section 1.3. The spatial attributes in the datasets used are elevation for 
the Zlatibor DEM, inundation depth for the flooding case and land cover for the Soest 
case. These variables are uncertain, meaning their true value is unknown. In order to 
analyse the uncertainty, a series of possible realisations of the data was simulated 
using the Monte Carlo method. Each of these realisations has an equal probability of 
being the ‘true’ value.  

When evaluating spatial uncertainty it is important that the uncertainty can be 
quantified. Sanyal et al. (2010) use the term uncertainty metrics to denote the most 
important parameters derivatives used to quantify uncertainty. These are the 
ensemble mean, standard deviation, interquartile range and prediction intervals. This 
project also uses the ensemble mean, standard deviation and interquartile range, yet 
also the relative error as well as the concept of spatial correlation. The following 
statistics apply to the values at all locations within the continuous datasets. The 
categorical dataset used the class probability to quantify the uncertainty of each class 
at all locations.  

The ensemble mean of the realisations at each location is an important variable. 
Since every value in the realisations has an equal probability of being ‘true’, the 
average value is used to predict the value of the unknown ‘true’ value. In a group of n 
realisations, the sample values are denoted as X with X = (x1, x2, x3, …, xn) for n 
realisations. Equation 1 shows how the mean, 𝒙𝒙� , is calculated. 

𝑥̅𝑥 =  1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖𝑛𝑛
𝑖𝑖=1          (Equation 1) 

The sample standard deviation is another important variable, as it denotes the 
uncertainty. The standard deviation is used to represent the spread of the values in 
the realisations for each location. The standard deviation, 𝒔𝒔𝒏𝒏, of the samples in X was 
calculated using Equation 2. 
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𝑠𝑠𝑛𝑛 =  �∑ (𝑥𝑥𝑖𝑖−𝑥̅𝑥)2𝑛𝑛
𝑖𝑖=1
𝑛𝑛−1

        (Equation 2) 

In order to calculate the interquartile range, it is first important to know the quantiles. 
The quantiles are calculated using the empirical quantile function (Jones, 1992) 
shown as Equation 3. The probability, p, is between 0 and 1, with the function I being 
a function that returns 1 if the condition within the square brackets is true and 0 
otherwise. 

𝑄𝑄𝑛𝑛(𝑝𝑝) =  𝑥𝑥1 + ∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)𝐼𝐼 �𝑖𝑖−1
𝑛𝑛

< 𝑝𝑝�𝑛𝑛
𝑖𝑖=2      (Equation 3) 

Using Equation 3, the interquartile range is then calculated using Equation 4. This is 
the range between the 25th and 75th percentile and gives an indication of the spread 
of the realisations.  

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑟𝑟𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑄𝑄𝑛𝑛(0.75) −𝑄𝑄𝑛𝑛(0.25)    (Equation 4) 

The relative error is the last metric and relates the size of the standard deviation 
relative to the mean. The relative error is calculated using Equation 5. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑠𝑠𝑛𝑛
𝑥̅𝑥

× 100       (Equation 5) 

Correlation, ρ, measures the joint variability of two random variables, X and Y. It is 
used to observe linear relationships between two points. Correlation is a number 
between -1 and 1, with values of -1 or 1 representing high correlation and 0 
representing no correlation. If there is positive correlation, high values of X will often 
appear with high values of Y. If the correlation is negative, high values of X will often 
appear with low values of Y. The correlation between X and Y is calculated using 
Equation 6.  

𝜌𝜌(𝑋𝑋,𝑌𝑌) =  ∑[(𝑋𝑋−𝑥̅𝑥)∗(𝑌𝑌−𝑦𝑦�)]
�∑(𝑋𝑋−𝑥̅𝑥)2∗∑(𝑌𝑌−𝑦𝑦�)2

       (Equation 6) 

Spatial correlation refers to the correlation between two points in space. As the 
distance between the points increases, the correlation between the two points 
decreases. A correlogram shows the correlation as a function of distance. Using a 
correlogram one can find the range of high spatial correlation between two points. 
Figure 2 shows two correlograms and a scatterplot of two points at a certain distance 
apart. The left diagram shows two points with low spatial correlation, with the right 
diagram showing two points of high spatial correlation at the same distance apart. 
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Figure 2: Scatterplots showing the correlation of two points the same distance apart 
but with different spatial correlation. 

To quantify the uncertainty in the categorical dataset, the class probability of each 
class was calculated at all locations. At each location, the number of realisations the 
class was present in was denoted as x. The probability for each class is then 
calculated as in Equation 7, with n denoting the total number of realisations. 

𝑝𝑝(𝑥𝑥) = 𝑥𝑥
𝑛𝑛
         (Equation 7) 

2.2 Selected visualisation methods  

The first method chosen was the adjacent maps method, which is the most simple of 
the three methods. Two maps were placed next to each other, displaying the 
predicted value map on the left and the uncertainty on the right for continuous data. 
For categorical data, the left map displayed the most likely class and the right map 
the associated class probability. The colour scheme chosen varied for the different 
data types. Since one of the test cases was a DEM, the colour scheme chosen for 
the predicted values is similar to the terrain colours colour palette found in R. Low 
values received a dark green colour, with the gradient transitioning to white for the 
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highest values. The uncertainty was coloured from black (lowest uncertainty) to white 
(highest uncertainty). This was chosen as white is easy to recognise as being 
uncertain (Gerharz and Pebesma, 2009). For the categorical data the most likely 
classes received random colours to highlight different classes on the map. The class 
probability map was also coloured from black to white, however with black having the 
highest probability and white the lowest. 

The second method was using glyphs to represent the uncertainty. Glyphs can 
encode data through various variables such as size, shape and colour (Pang et al., 
1997, Potter, 2006) and this method was only used for continuous data. Glyphs have 
been used widely for displaying uncertainty, with a wide variety of shapes and 
colours used. Shapes can be arbitrary, though smart choices of the shape can also 
help the user understand the uncertainty. They have been effective in communicating 
uncertainty (Potter, 2006, Sanyal et al., 2009) yet can become visually overwhelming 
if too many are displayed on one map (Pang, 2001). The base map of predicted 
values used the same terrain colour scheme described in the previous paragraph. A 
circular, black glyph was chosen as the default, with the uncertainty encoded in the 
area of the circle. The colour black was chosen as it is not included in the base map, 
with the circle not being colour-filled in order to still be able to read the base map. In 
order to avoid displaying too many glyphs, the user can choose the density of glyphs.  

The final method, the interactive application, displays the uncertainty in a single map, 
yet through interactivity more information about the uncertainties can be gained. 
Many interactive representations feature a clickable map where the user can display 
uncertainty information about a certain location or where the map is modified after 
clicking. Various implementations of interactive uncertainty visualisations (Pebesma 
et al., 2007, Potter et al., 2009, Sanyal et al., 2010) depended on a separate 
application, with a web tool created as part of the UncertWeb Project (Gerharz et al., 
2012). Two interactive applications were created, one for continuous data and the 
other for categorical data. The colouring schemes for the maps were identical to the 
colouring schemes used in the adjacent maps. The maps were also clickable, 
displaying additional information about the realisations, spatial correlation and class 
probabilities. These plots used the default R colouring schemes. 

2.3 Implementation of visualisation methods 

The implementation of the visualisation methods was split into three parts 
corresponding to the three methods used. Furthermore, the visualisation functions 
had to be applicable for both continuous and categorical data for the adjacent maps 
and interactive application methods. The plotting of the data was based upon the 
ggplot2 package. This package is an implementation of the grammar of graphics in R 
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(Wickham, 2006). Ggplot was chosen for its strengths in multi-layered plots as well 
as custom user layout.  

Four functions were created: one to plot adjacent maps, one to plot glyph maps, one 
to create an interactive application for continuous data and finally one to create an 
interactive application for categorical data. The interactive application functions 
depend on the shiny package and the RStudio environment to run (RStudio, 2013). 
Pseudo-code of the functions can be found in Appendix 1 through to Appendix 4. 
Table 1 shows the compatible data types, inputs as well as the outputs these 
functions create.  

 Overview of data and inputs for the uncertainty visualisation Table 1:
functions 

Function Adjacent maps Glyphs Interactive: 
continuous 

Interactive: 
categorical 

Data type Continuous/categorical Continuous Continuous Categorical 

Required 
inputs 

Simulations object Simulations 
object 

Density 

Simulations 
object 

Simulations 
object 

Optional 
inputs 

Title, x-axis, y-axis, 
legend labels 

Grid and axis ticks 

Colour palettes for the 
two maps 

Title, x-axis, 
y-axis, legend 
labels 

Grid and axis 
ticks 

Colour 
palettes for 
the two maps 

None None 

Output Two adjacent maps One map with 
glyphs 

Graphical 
user interface 

Graphical 
user interface 

A test class was created containing the expected characteristics of the data to be 
used with the functions. An overview of this test class is seen in Figure 3. An object 
of this class has slots for the realisations, mean, standard deviation, quantiles, most 
likely class, and class probability. The realisations slot was created to contain all the 
simulated outputs after a Monte Carlo simulation. For continuous variables, the mean 
and standard deviation slots contain the mean and standard deviation of the 
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realisations, with the quantiles slot containing the 5, 25, 50, 75 and 95 percentile of 
the realisations. For categorical variables, the most likely class slot contains the 
value of the class that is most likely in each cell, with the class probability slot 
containing the probability of the most likely class for each cell. All the objects in the 
slots were raster objects, taken from the raster package (Hijmans, 2012). The mean, 
standard deviation and most likely class slots were all of class RasterLayer. This 
means they were all single-layer raster layers. The remaining slots were all of class 
RasterBrick. RasterBrick objects allow for the storage of many single raster layers. 
This multi-layered approach allows for efficient storage of multiple raster layers. 
Furthermore, it simplifies the process of running calculations and statistics over a 
large dataset of similar rasters. The quantiles slot was a RasterBrick as it contains a 
raster layer for each quantile. The class probability slot had a layer for each class, 
containing the probabilities of each cell being the most likely cell from the 
realisations.  

Figure 3: Overview of the test class “Simulations”.  

The adjacent map plotting function relies on the ggmap function from the ggplot2 
package. Its only required variable is an object of the test class. From this object it 
checks the data type and returns adjacent maps of the mean and standard deviation 
for continuous data and the most likely class and class probability for categorical 
data. Furthermore, the user is able to modify the title, x- and y-labels, the legend, 
presence of a grid, presence of axis ticks and labels and change the colouring of the 
plot.  

The glyphs plotting function also plots a ggmap object, requiring both an object of the 
test class containing continuous data as well as the density of the glyphs. It returns a 
map of the mean, with the standard deviation placed on the map using circular 
glyphs in a grid. An increase in the density leads to a small grid, with more 
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information displayed, yet can show effects of clustering. Additionally, the user can 
modify additional information for the plot in the same way the adjacent map function 
does.  

The interactive application combines the powerful plotting of the ggplot2 package 
with the simple creation of user interfaces using the shiny package. The 
functionalities of the two functions created using shiny are explained in Table 2. The 
continuous data application allows the user to see either the mean or standard 
deviation map. The user can visualise areas with a relative error above a certain 
value using a slider. The user can also view areas with a prediction interval of 90% 
larger than a certain range using a slider. Additionally, single-clicking the map 
displays a histogram of the realisations at that point. Double-clicking the map adds a 
scatterplot displaying the realisations of both the single- and double-clicked points. 
This allows for visualisation of spatial correlation. The categorical data application is 
simpler, initially only displaying the map of the most likely class. Single-clicking on 
this map displays a pie chart of the probabilities of the various classes at that specific 
point. 

 

 Functionalities of the two interactive application functions Table 2:

Function Interactive: categorical 

Single-clicking on 
map 

Displays pie chart of class probabilities of the realisations at 
that point 

Function Interactive: continuous 

Selecting Mean  Displays map of predicted values 

Selecting Standard 
Deviation  

Displays map of standard deviation 

Selecting Relative 
Error 

Displays slider bar. Cells with relative error higher than the 
value on the slider bar turn grey on the map 

Selecting Prediction 
Interval 

Displays numeric input. Cells with an interquartile range 
larger than the prediction interval turn grey on the map 

Single-clicking on 
map 

Displays histogram of realisations at that point 
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Double-clicking on 
map 

Displays scatterplot of realisations between single-clicked 
and double-clicked point 

2.4 Datasets 

The three visualisation methods were developed and tested in conjunction with three 
datasets. Seeing as functions for both continuous and categorical spatial data were 
being developed, two continuous datasets and one categorical dataset were chosen. 
Furthermore, the targeted end users were kept in mind throughout the development 
of the functions. The locations of these datasets can be seen in Figure 4. 

Figure 4: The locations of the three test datasets used 

The first dataset was a categorical dataset, containing 50 realisations of multiple land 
cover classes generated by sequential indicator simulation (De Bruin et al., 2004). 
The land cover data contains the various land covers for the Dutch municipality of 
Soest. The various classes included agriculture, trees, nature, water, built-up areas 
and infrastructure. However, during the development of the functions the land cover 
class was not important and these land covers were only treated with unique values 
(1-6) representing the land cover classes. In this dataset the original files were all of 
an ESRI ArcInfo Coverage data format. The realisations were converted to an ASCII 
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raster format with a cell size of 25m x 25m. This way they were easily used in the R 
programming environment. 

The second dataset used contained 100 realisations of a flooding case. These data 
contain the realisations of a flood event and was generated as an exercise in the 
Wageningen University course GRS-30306: Spatial Modelling and Statistics. It 
covers an area between the Maas and Waal rivers in the Netherlands. The model 
simulates the inundation depth of the floodplain six hours after a dike breach, with 
both the influx of water and the underlying DEM simulated and subsequently 
uncertain. The format of the data already was in an ASCII raster format with a cell 
size of 100m x 100m. 

The last dataset used contained 50 realisations of a digital elevation model (DEM) in 
the Zlatibor region, Serbia (Hengl et al., 2010). The data contained a DEM as well as 
control points with measured elevation data. Using the control points and the DEM, 
the errors at the control points were determined. From these errors, 50 realisations of 
the DEM were simulated using simple kriging. The format of the realisations was 
again an ASCII raster with a cell size of 30m x 30m. 

2.5 Users 

The users of the visualisation functions are intended to be non-experts. This has 
been defined as a user without specific knowledge in the field of spatial uncertainty 
propagation. Keeping this in mind the visualisation functions were kept to be as 
simple as possible. However, the interactive application was created with some more 
advanced users in mind, combining both simple visualisations of the core uncertainty 
data, yet also allowing for a more in depth analysis of the data through relative errors 
and prediction intervals. 

In order to find participants for the survey, fellow students were asked to complete 
the survey. Students were chosen as they fit the description of the non-expert target 
group. Furthermore, since the survey was hosted on one specific computer, it was 
convenient to have students studying in the same room complete the survey. 

2.6 Evaluation of the implemented visualisation methods 

The evaluation stage was intended to evaluate and receive feedback on the created 
functions. Moreover, it was intended to evaluate the level of understanding of the 
visualisations. The evaluation was done by use of an electronic survey, which non-
experts were then asked to complete. The results of the survey aim to give insight 
into which visualisation methods work the most effectively. 
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The survey was created using Google forms and as such hosted online. The full 
survey can be found in Appendix 5. The survey was completed on one computer, as 
in addition to the visualisations in the survey the interactive application was also 
evaluated. For this the interactive application had to be run through RStudio on the 
same computer. The survey was structured into four parts. The first three parts each 
evaluated the various visualisation methods for a specific dataset. The datasets used 
here were the Zlatibor DEM simulation, the flooding case study and the land cover 
simulations for the municipality of Soest. The last part allowed for feedback on the 
various visualisation methods.  

The part using the Zlatibor DEM first evaluated the understanding of both adjacent 
maps and glyphs through estimating values of the map for specific points. 
Furthermore, it asked the user for their preferences between the two types of 
visualisations. The questions using the interactive application aimed to evaluate the 
understanding of both the relative error, as well as the prediction interval 
functionalities of the application. Furthermore, it also evaluated the histogram and 
scatterplot functionalities of the application.  

The second part evaluated the flooding case study in a similar fashion to the Zlatibor 
DEM. Here questions were again asked regarding the understanding of the adjacent 
and glyph maps through asking the user for values to be estimated from the map for 
certain points. The user was then again asked to state the preference between the 
two methods. The interactive application was evaluated through using the histogram 
to determine areas of higher uncertainty.  

The third part evaluated the land cover simulations through the use of adjacent maps 
and the interactive application. The users were asked to estimate values from the 
maps as well as the probabilities of certain areas of the map using the interactive 
application.  

Finally the users were asked to provide their general evaluations of the various 
visualisation methods through a ranking scale as well as providing their own 
feedback on these methods.  
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3. Results 

The results are split into two parts. First the outputs of the visualisation functions are 
presented. The interactive application only is presented as a static screenshot of the 
application. Thereafter the results of the evaluation survey are presented. 

3.1 Application of the visualisation functions 

Figure 5 presents the output of the Adjacent Maps plotting function applied to the 
Zlatibor DEM dataset. It displays the predicted value, the mean, in the left plot and 
the standard deviation in the right plot. The right plot encodes the standard deviation, 
with areas of high values having a higher uncertainty compared to areas of low 
values.  

Figure 5: Zlatibor DEM predicted values and uncertainty using adjacent maps 

Figure 6 presents the output of the Glyphs plotting function applied to the same 
dataset. This single plot displays both the predicted value as the background map, 
with the standard deviation represented with the circular glyphs overlayed on top. 
Larger glyphs encode a larger uncertainty.  
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Figure 6: Zlatibor DEM predicted values and uncertainty using glyphs 

Figure 7 displays the interactive application for continuous data again using the 
Zlatibor test case. It shows a map of predicted values, together with a histogram of 
the realisations of a point and a scatter plot between the realisations of two points. 
The extra features are only displayed as buttons here, with the output of them not 
shown. 

Figure 7: Zlatibor DEM predicted values shown in the interactive application 
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Figure 8 shows the interactive application for categorical data using the Soest land 
cover dataset. Using adjacent maps, the left map displays the most likely class for 
the region, with the right map displaying the class probabilities for a selected point. 

Figure 8: Most likely land cover classes for Soest shown in the interactive application 

3.2 Evaluation survey results 

Twelve students answered the survey; their responses have been split up into four 
categories. The first results are related to the adjacent maps method, the next results 
to the glyphs method. Thereafter, the results of the interactive applications are 
presented with the final results presenting the results about personal preferences of 
the test users group. The full data can be found in Appendix 6. 

3.2.1. Adjacent maps 

The results of using adjacent maps with the Zlatibor DEM dataset show a spread 
over the possible answers (Figure 9). To test the users’ understanding, they were 
asked to estimate the standard deviation of three given points on the predicted value 
map. The correct answer of Point A was 0–5, with the highest number of respondents 
choosing this answer. However, the point was located in a local area of low 
uncertainty, surrounded by areas of high uncertainty, explaining the high number of 
responses in the 15+ category. For point B, the correct answer was 5-10. Half the 
respondents answered this correctly, with the point located next to areas of high and 
low uncertainty. Point C had a correct answer of 5-10, with the majority of responses 
also in this category. 
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Figure 9: Frequency of selection of the standard deviation value for the indicated 
points in the Zlatibor DEM using adjacent maps 

Figure 10 shows the results of estimating values from the adjacent maps using the 
flooding test case. Point A was located in an area with a lot of noise of medium to 
high uncertainty, with the results reflecting this noise. Eleven of the twelve students 
managed to read the standard deviation of point B from the map correctly. Point C 
was located in a region of medium uncertainty, with the majority of students 
identifying this point correctly. 

Figure 10: Frequency of selection of the standard deviation value for the indicated 
points in the flooding case using adjacent maps 
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The last case tested using adjacent maps was the land cover case of the municipality 
of Soest. The students were asked to rank the three points in descending 
uncertainty. The correct answer C-A-B was given by six students, with another three 
identifying point C being the most certain. Figure 11 also shows that three students 
identified either point A of B as being the most certain. Point A was located in a 
region of high uncertainty, yet with the exact probability hard to read. Thus the 
spread between 0.6-0.8 and 0.8-1.0 in Figure 12 was expected. Point B was in an 
area of low probability with a lot of noise. Here again the spread of responses was 
expected. Point C was clearly in an area of high uncertainty with 11 of the 12 
students answering this question correctly.  

Figure 11: Frequency of ranking of probabilities for the indicated points in Soest using 
adjacent maps 
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Figure 12: Frequency of selection of the probabilities for the indicated points in Soest 
using adjacent maps 

3.2.2. Glyphs 

Using glyphs with the Zlatibor DEM case study showed to also give a spread in 
answers when asked to estimate the standard deviation of three points on the glyph 
map (Figure 13). The correct answer for point A was a standard deviation of 7.5-10, 
which most of the students answered correctly. However, this relies on interpreting 
the size of the glyphs with the legend, so the other results were expected. Point B 
had a correct answer of 10-12.5, which was also answered correctly in large. Point C 
was clearly in an area with low uncertainty, thus the correct answer from all the 
students was not unexpected. 
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Figure 13: Frequency of selection of the standard deviation value for the indicated 
points in the Zlatibor DEM using glyphs 

The glyphs were also used together with the flooding case study (Figure 14). This 
map had little local variations of uncertainty and subsequently the students answered 
the questions correctly to a large part. As seen in the bar plot in Figure 14, the 
standard deviation of Point A was correctly identified, with 11 out of 12 students also 
identifying the standard deviation of points B and C correctly. 

Figure 14: Frequency of selection of the standard deviation value for the indicated 
points in the flooding case using glyphs 
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3.2.3. Interactive application 

Using the interactive application, the users were asked to identify the percentage of 
the map with a relative error higher than one percent. As seen in Figure 15, all 
students answered this question correctly. Furthermore, they were also asked to find 
the threshold of the interquartile range which half the map exceeds. All but one of the 
students were able to identify this threshold correctly. 

Figure 15: Frequency of relative error and prediction interval estimations of the 
Zlatibor DEM using the interactive application 

Also using the Zlatibor DEM case study, the users were asked to identify the range of 
high spatial correlation between two selected points. As seen in Figure 16, the 
majority of students answered this question correctly with the spatial correlation 
decreasing rapidly at ranges larger than 5 cells between the points. 
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Figure 16: Frequency of the estimated range of spatial correlation between two points 
using the Zlatibor DEM study case 

Using the interactive application, users were also asked to evaluate the probability of 
an area being assigned Class two. Figure 17 shows that half the students answered 
the question correctly, with another 5 choosing for a higher probability. 

Figure 17: Frequency of the probability that an area was assigned Class two in the 
Soest study case 
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3.2.4. Personal preferences 

The respondents of the survey were asked to state their preference for the size of the 
glyphs shown in the map. As Figure 18 shows, there was no clear preference for the 
larger or smaller glyph size. Furthermore, they were also asked to state whether the 
glyphs displayed on the map made it more difficult to read the actual values from the 
map of predicted values. Figure 19 shows that half the respondents did find it harder, 
though the other half did not find added difficulty created through the glyphs.  

Figure 18: Frequency of glyph size preference for the Zlatibor DEM test case 

Figure 19: Frequency of users answers to whether adding glyphs complicates reading 
map values 
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There was not a clear preference for either of the two static methods evaluated 
(Figure 20). After using the two methods with the Zlatibor DEM dataset, the adjacent 
maps method had a slight preference over the glyphs method. However, as seen in 
Figure 20, after testing using the flooding dataset the glyphs method actually had a 
higher preference over the adjacent maps method. This suggests that both methods 
are applicable, though depending on the dataset one could be more appropriate. 

Figure 20: Preference of visualisation methods between adjacent maps and glyphs 
using two datasets 

The overall ease of comprehension for the three methods evaluated varied 
depending on the method. The disagree category was only chosen once for the 
glyphs and interactive application methods and no times for the adjacent maps 
method. Figure 21 also shows that the glyphs method had two thirds of preferences 
in the agree or slightly agree categories, suggesting an overall ease of 
comprehension. The adjacent maps had a fairly even spread between agree and 
slightly disagree. Finally the interactive application also had a spread between agree 
and no preference, with two answers ranked below no preference. In general, there 
was no strong trend towards agree or disagree, suggesting the methods are 
comprehensible but could be improved.  
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Figure 21: Perceived ease of comprehension of the three visualisation methods 
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4. Discussion 

This research resulted in four functions written in R to visualise spatial uncertainty to 
non-experts. Three different visualisation methods were used, which were then also 
evaluated by a group of students. This chapter discusses implementation of the 
methods, the results discovered for each of the visualisation methods evaluated, as 
well as limitations and recommendations for future improvements.  

4.1 Implementation of visualisation methods 

The adjacent maps method was the first method to be implemented. The overall 
output of the adjacent maps function is satisfactory, yet it can still be improved. The 
output maps of the adjacent maps function are not identical in size. The amount of 
plotting space for the two maps is identical. However, since the standard deviation 
legend is three characters longer than the predicted value legend, the plot size of the 
standard deviation map is adjusted to fit the map and legend in the allocated plotting 
space. This was only realised after the evaluation of the three methods. This could 
also make it harder to visually match two points across the maps.  

Using the adjacent maps function as a guideline, the glyph map function was then 
created. The sizing of the glyphs within the glyph map was readjusted multiple times 
before deciding to use the current layout. When adding the glyphs initially, the 
plotting function plots the glyphs with a large difference between the size of the 
largest and smallest glyph, regardless of the actual spread in values. This allows for 
quick visualisation of minimum and maximum values. However, it also can mislead 
the user into thinking that the largest uncertain value is many times bigger than the 
smallest value in cases where the spread of values is low. Keeping this in mind, it 
was chosen to relate the size of the glyph to the actual values. This does result in a 
minimal variety of sizes if the spread of values is small. However, it also returns a 
more true insight into the variation of the uncertainty. Furthermore, the user can 
adjust the density of the glyphs to their own liking. In cases of low spread of values, a 
higher density of glyphs could provide a more detailed insight of variation. 

The interactive application functions built upon the knowledge gained from the 
previous two functions. Initially, only one function was to be built, which automatically 
recognised the data type and adjusted the user interface accordingly. However, due 
to the different needs regarding the user interface depending on the data types, it 
was decided to create two functions. This also had the benefit of keeping the code as 
succinct and efficient as possible. The interactive application functions do have a 
shortcoming that they are not very portable. The outputs of the adjacent maps and 
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glyphs functions can be printed and taken anywhere. However, the interactive 
application functions depend on an open RStudio environment. As such, a computer 
containing the data and RStudio is always required. The interactive applications 
could also be hosted on a website, yet this would also need an available server and 
website. 

4.2 Evaluation of visualisation methods 

Using adjacent maps was the first method to also be evaluated. Overall, the results 
of the adjacent map evaluation for the DEM case study, the flooding case study and 
the land cover case study were positive. They showed a general trend of 
understanding being able to read off the uncertainty from the adjacent maps. Values 
of points located in clear areas of a certain range of uncertainty were easily obtained. 
This was the case at both the upper and lower ends of the uncertainty scale. 
However, points with uncertainty values in a more central range of the scale were 
harder to distinguish correctly. This was seen across all three case studies. Gerharz 
and Pebesma (2009) found similar results, with adjacent maps easy to understand 
yet harder to perform in tasks where quantification was required. Furthermore, the 
probability map of the land cover case study had large areas where the probabilities 
were noisy. This makes it especially difficult to read off uncertainty values. The 
colouring chosen for the uncertainty visualisation may have influenced these added 
difficulties of values in the middle ranges. White was chosen to represent areas of 
high uncertainty, as it is easy to recognise and comprehend (Gerharz and Pebesma, 
2009), with black representing areas of low uncertainty. However, it may be difficult 
to differentiate between different values of grey shades and values in the middle 
range of the scale. Hengl (2003) also found that the colours in the gradient to white 
are harder to distinguish. In order to improve this, a larger visual range for colour 
differentiation could be used.  

The glyphs method was the next method evaluated and resulted in fairly similar 
results. In general, the results were positive, with the concept generally understood 
and easy to read off. The results also showed less spread between the answers 
compared to the adjacent maps. Once again, the points selected at the upper or 
lower end of the glyph scale were the easiest to distinguish. In both the DEM and 
flooding case studies, the point placed between the smallest glyph size returned 
correct results for all participants. Values in the middle of the scale again seemed 
harder to read off precisely. Kunz et al. (2011) found glyphs were hard to implement 
in datasets with great variation due to the scaling of the glyphs. This research agrees 
with this finding, as the scaling makes for difficult reading in the middle ranges. 
Furthermore, the DEM case study had four categories of glyph sizes in the legend, 
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with the flooding case study only having three categories of glyph sizes in the legend. 
The spread in the results for the two points placed in the middle ranges was larger for 
the DEM case study compared to the flooding case study. This suggests that more 
glyph sizes provided on the scale make it more difficult to correctly differentiate 
between the subtle differences in the glyph sizes. The different glyph densities were 
also briefly evaluated. The results showed that there was no preference for glyph 
density, suggesting that this could be manually customised for each use case.  

The interactive application was evaluated by giving the users direct tasks using the 
relative error, prediction interval and cross-correlation for the continuous data. Class 
probabilities per point were used for the categorical data. In general, these statistics 
were well received, as shown by the positive results. All users answered the relative 
error question correctly and all but one answered the prediction interval question 
correctly. However, it cannot be said that the statistical concepts are understood, as 
the users were only assessed on reading the value for a statistic from the 
visualisation. In the evaluation, the questions were more of a step-by-step guide of 
the use of the functionality, so the outcomes were expected. The spatial correlation 
scatterplot yielded good results, with the deviances from the correct answer 
potentially coming from a user’s perception of cell size and level of correlation still 
regarded as ‘highly correlated’. Finally, the probability that an area belonged to a 
certain land cover class was also evaluated. Half the respondents answered this 
correctly, yet five also incorrectly estimated it too high. This may be due to the 
majority of points having high confidence and the user’s interpretation of how to 
include the areas of lower confidence.  

The evaluation survey also aimed to get an insight into user preferences between the 
different methods. The two static methods were ranked into first and second 
preference for both the DEM case study and the flooding case study. For the DEM 
case study, the adjacent maps were slightly preferred. However, for the flooding case 
study the glyphs were slightly preferred. From these results it is assumed that neither 
method has a strong preference over the other. The preference of the maps could 
change depending on the user as well as the data set used to create the outputs. 
Furthermore, when evaluating the ease of comprehension of all three visualisation 
methods used, none of the methods returned only negative results. All three methods 
displayed a spread of opinions across the range from agreeing that the method is 
easy to comprehend to disagreeing. This suggests that the tools are easy to 
comprehend to some users and subsequently the user could choose which method 
suits him or her best. 
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4.3 Limitations 

This evaluation survey was not without its limitations. It only gathered 12 responses 
and due to this small sample size, only large contrasts would have turned out to be 
significant if significance testing were done. More importantly the sample used was 
also not a random sample from the population. The population was the group of non-
experts, which covers anybody without specific knowledge in the field of spatial 
uncertainty propagation. This evaluation only used students, who are part of the 
target group but not random. Due to these reasons, no tests of significance were 
undertaken. Nevertheless, the results give valuable, general insights into what extent 
non-users can understand the visualisation methods.  

The adjacent maps method relies highly on users being able to spatially correlate 
points and areas across two maps. The map of predicted values and the map of 
standard deviation were of slightly different sizes for both the DEM and flooding case 
studies. This may have remained unnoticed during the students’ participation in the 
survey, though could have influenced their responses slightly. If the evaluation were 
to be done again, the map size would be adjusted to have equal size maps. 

The survey only evaluated the output of the functions and did not include any use of 
the functions within the R environment. Calling the functions within an R script using 
provided data was not evaluated, though it is expected to be simple if the user has 
some basic knowledge using the R software. This is due to the functions conforming 
to other functions used within the R software. 

Finally, it was also not evaluated if the users could use the functions in a context for 
their own use. The evaluation survey did not include any questions regarding 
decision making based on the outputs. This is an important step, as the outputs are 
intended as information to base decisions upon. Furthermore, it was also not 
evaluated if the statistical concepts such as relative error, prediction interval, cross 
correlation and class probabilities were understood. If understood, these additional 
concepts implemented in the interactive application have the potential to provide 
more information about the data and its uncertainty. 

4.4 Recommendations 

In order to statistically backup the results found in this study, the evaluation survey 
would have to be redistributed to a true random sample and a larger sample size. 
However, this has its challenges in both selecting a random sample and then 
receiving answers from the sample. As this is possibly not feasible, the results do still 
give a general indication of the potential of these functions.  
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The functions themselves also have large potential for expansion. The statistical 
information displayed in the interactive application (prediction interval, relative error) 
could also be added to the adjacent maps in the form of additional plots. The 
prediction interval could also be expanded to include the 90% and 95% prediction 
interval instead of only the interquartile range. In order to analyse the data sets to a 
larger degree, the Jensen-Shannon divergence could be included. This divergence 
measures the similarity between two probability distributions (Melville et al., 2005) 
and could be used in addition to the current scatter plot of correlation. The Jensen-
Shannon divergence has previously been used by Tellenbach et al. (2009) and Xu et 
al. (2010). Topographic extensions such as base maps and contour lines could also 
be added to give the user a better sense of location. It is recommended that if extra 
functionalities are added that they do not make the functions more complicated to 
use. Rather, they provide additional optional functionalities, with the default options 
still kept as simple as possible. 

The implementation of the test class was done using raster objects created from the 
raster package. This package depends in turn on the sp package (Hijmans, 2012). 
As such, it could be investigated to see if the test class could also be created using 
sp objects, eliminating an additional dependent library in the functions. Furthermore, 
the functions could also potentially be extended using the ellipsis parameter. This 
parameter allows for the input of any number of named or unnamed arguments. 
These are then passed onto functions later on. Since the visualisation functions use 
ggplot2 to plot the output, the ellipsis could potentially be used for more personal 
customisation of the output plots. However, this would require the user to have 
detailed knowledge in the functionality of the ggplot2 package. 
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5. Conclusions 

This project was intended to provide non-experts a platform to communicate and 
understand spatial uncertainty. The three methods, adjacent maps, glyphs and an 
interactive application, were implemented as functions in R. All three provide a 
useful, easy to understand output. 

The adjacent maps and glyphs methods were implemented in R as functions based 
upon the ggplot2 package. They provide the user a ready-to-use output, with 
additional options to customise the labels, titles and legends. The interactive 
application was implemented as two separate functions using the shiny and ggplot2 
packages; one for continuous data and one for categorical data. These functions 
allow for basic visualisation similar to the adjacent maps, yet also allow for more 
detailed insights into the uncertainty of the data. This is done by using the additional 
statistics relative error, prediction interval and spatial correlation for continuous data 
and class probabilities for categorical data. 

After evaluation of the functions using a survey two main conclusions about the 
effectiveness of the functions were found: 

The three methods were generally well understood and effective, with the lower 
and upper extreme uncertainties easy to recognise. Uncertainties in the middle 
of the range were harder to identify. These were due to noise, difficulty in 
differentiating between greyscale colours and difficulty in differentiating between 
subtle differences in glyph sizes. 

No single method had a strong preference over the other methods. The 
adjacent maps and glyphs methods received approximately equal preference 
from the test users. As such, the user can choose from the available 
visualisation methods and choose the method most suited to their dataset and 
liking.  
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Appendices 

Appendix 1: Adjacent map pseudo-code 

load libraries 
 
  #' Visualise Spatial Uncertainty using Adjacent Maps 
  #'  
  #' Allows for visualising spatial uncertainty in both continuous and 
  #' categorical data using Adjacent Maps. For continuous data it provides 
maps 
  #' of mean and standard deviation of realisations. For categorical data, 
the 
  #' function provides maps of the most likely class and the associated 
  #' probability. 
  #'  
  #' @param simulations Object of class simulations 
  #' @param title,xlab,ylab,legend Character vector giving plot title, x 
axis  
  #'   label, y axis label and legend respectively. To be provided in 
format  
  #'   c("plot1", "plot2). 
  #' @param grid Logical. Add grid to background of graph 
  #' @param axis Logical. Add axis ticks and labels to graph 
  #' @param mean_col,std_col \code{\link[grDevices]{colorRampPalette}}. 
Colours 
  #'   to be used for plotting the mean and standard deviation of 
continuous 
  #'   data respectively. 
  #'    
  plotAdjacent <- function(simulations, title = NULL, xlab = NULL,  

   ylab = NULL,legend = NULL, grid = T, axis = T, 
   mean_col = NULL, std_col = NULL) 

 
    # Check if simulations is of correct class 
    if simulations object not of correct class 
      stop 
     
    #Check if titles provided for both graphs 
    if titles not provided for both graphs 
      warning titles should be provided 
     
    #Check if labels provided for both graphs 
    if labels not provided for both graphs 
      warning labels should be provided 
     
    #Check if legends provided for both graphs 
    if legend not provided for both graphs 
      warning legends should be provided 
 
    # Set background grid and axis ticks/labels 
    Initialise gridlines, axis ticks and text to be shown 
 
    #Define theme 
    Initialise theme for title, legend, background, axes 
 
    # Plot for continuous data 
    if of continuous data 
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      Convert mean and standard deviation to data frames 
      Set default colour palette for mean and standard deviation 
      Set default legend labels for continuous data 
      Create mean and standard deviation plots 
      Arrange plots adjacently 
 
    # Plot for categorical data 
    if of categorical data 
      Convert most likely class and class probabilities to data frames 
      Set default colour palette for class probability and most likely 
class 
      Default legend labels for categorical data 
      Create most likely class and class probability plots 
      Arrange plots adjacently 
 
 

Appendix 2: Glyph map pseudo-code 

load libraries 
 
  #' Visualise Spatial Uncertainty using Glyphs. 
  #'  
  #' Allows for visualising spatial uncertainty for continuous data using 
  #' glyphs. 
  #'  
  #' @param simulations Object of class simulations containing continuous 
data 
  #' @param density Numeric. Gives spacing of density of glyphs. 
  #' @param title,xlab,ylab Character vector giving plot title, x axis 
label and 
  #'   y axis label respectively. 
  #' @param grid Logical. Add grid to background of graph 
  #' @param axis Logical. Add axis ticks and labels to graph 
  #' @param mean_col \code{\link[grDevices]{colorRampPalette}}. Colours to 
be 
  #'   used for plotting the mean values of the realisations. 
  #' @param glyph_col Character giving the colour of the glyphs 
representing the 
  #'   standard deviation of the realisations. 
  #' @param legend Character giving the legend titles. To be provided in 
format  
  #'   c("legend1", "legend2"). 
  #'    
  plotGlyphs <- function(simulations, density, title = NULL, xlab = NULL,  
                         ylab = NULL,grid = T, axis = T, mean_col = NULL,  
                         glyph_col = NULL, legend = NULL) 
    # Check if simulations is of correct class 
    if simulations argument not of correct class 
      stop 
   
    # Check if simulations is of continuous data 
    if not continuous data 
      stop 
    # Check if density is of correct class 
    if density argument not a number 
      stop 
   
    #Check if legends provided for graph and glyphs 
    if legends not provided for both graphs 
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      warning legends should be provided 
   
    Convert mean to data frame 
    Aggregate standard deviation and create data frame 
 
    # Set background grid and axis ticks/labels 
    Initialise gridlines, axis ticks and text to be shown 
     
    #Define theme 
    Initialise theme for title, legend, background, axes 
   
    Set colour palette for mean and colour for glyph 
    Set default legend labels 
 
    Create mean plot 
    Add standard deviation glyphs to mean plot 
    Return plot 

Appendix 3: Interactive application for continuous data pseudo-code 

#' Interactively Visualise Categorical Spatial Data 
#'  
#' Allows for visualising spatial uncertainty for categorical data in an  
#' interactive interface. Allows for more knowledge about class 
probabilities at 
#' a certain location. If data contains NA values, consider changing these 
to 
#' NaN values for a more insightful visualisations. 
#'  
#' @param x Object of class simulations. Must contain continuous data. 
#'    
#' @return Interactive application to visualise the data. 
 
interactiveContinuous <- function(x){ 
  require libraries 
   
  # Check if x is of correct class 
  if object x not of class simulations 
  stop 
   
  # Check if x is of categorical data 
  if not categorical data 
  stop 
   
  Create user interface using shiny 
  Add title 
  Add sidebar with radiobuttons 
  Add conditional panels that appear after clicking previous buttons 
  Add three plot output panels 
 
  Create server using shiny 
   
  Convert mean, standard deviation to data frames 
  Calculate relative error 
  Initialise theme for title, legend, background, axes 
   
  if relative error radio button clicked 
    create slider input panel 
       
  if prediction interval radio button clicked 
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    create numeric input panel 
       
  if Mean radio button clicked 
    if Relative error radio button clicked 
      modify mean data frame to remove values that do not fulfil condition 
    if prediction interval radio button clicked 
      modify mean data frame to remove values that do not fulfil condition 
       
    create first plot from mean data frame 
 
  if Standard deviation radio button clicked 
    if Relative error radio button clicked 
    modify standard deviation data frame to remove values that do not 
fulfil condition 
    if prediction interval radio button clicked 
    modify standard deviation data frame to remove values that do not 
fulfil condition 
         
    create first plot from mean data frame 
     
  if first plot single-clicked on 
    retrieve realisations of clicked point 
    create histogram of realisations in second plot 
   
  if first plot double-clicked on 
    if first plot also single clicked on 
    retrieve realisations of single and double-clicked points 
    create scatterplot between realisations of both points 
       

Appendix 4:  Interactive application for categorical data pseudo-code 

#' Interactively Visualise Continuous Spatial Data 
#'  
#' Allows for visualising spatial uncertainty for continuous data in an  
#' interactive interface. Options include basic map of predicted values and  
#' standard deviation, as well as observing relative error and prediction  
#' intervals. 
#'  
#' @param x Object of class simulations. Must contain continuous data. 
#'    
#' @return Interactive application to visualise the data. 
 
interactiveCategorical <- function(x)  
  require libraries 
   
  # Check if x is of correct class 
  if object x not of class simulations 
    stop 
   
  # Check if x is of categorical data 
  if not categorical data 
    stop 
 
  Create user interface using shiny 
  Add title, sidebar and two plot output panels 
   
  Create server using shiny 
   
  Convert most likely class and class probabilities to data frames 
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  Initialise theme for title, legend, background, axes 
   
  Create plot of most likely class 
   
  if plot is clicked on 
    retrieve realisations of clicked point 
    count occurrence of each class 
    create pie chart of the occurrences of each class 

Appendix 5: User evaluation survey 

The online survey can be found at 
https://docs.google.com/forms/d/12NjQFBXzC2UM8lZJqwEcxMU_xmcpNjvhe_jp95Q
vfho/formResponse  

 

  

https://docs.google.com/forms/d/12NjQFBXzC2UM8lZJqwEcxMU_xmcpNjvhe_jp95Qvfho/formResponse
https://docs.google.com/forms/d/12NjQFBXzC2UM8lZJqwEcxMU_xmcpNjvhe_jp95Qvfho/formResponse
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Appendix 6: User evaluation survey results 

 

Number

1
2
3
4
5
6
7
8
9

10
11
12 5 - 10 5 - 10 5 - 10 7.5 - 10 7.5 - 10 5 - 7.5

5 - 10 15+ 5 - 10 7.5 - 10 10 - 12.5 5 - 7.5
0 - 5 10 - 15 5 - 10 10 - 12.5 7.5 - 10 5 - 7.5

0 - 5 5 - 10 10 - 15 7.5 - 10 7.5 - 10 5 - 7.5
0 - 5 5 - 10 5 - 10 7.5 - 10 7.5 - 10 5 - 7.5

10 - 15 5 - 10 10 - 15 10 - 12.5 10 - 12.5 5 - 7.5
15+ 10 - 15 5 - 10 10 - 12.5 10 - 12.5 5 - 7.5

0 - 5 10 - 15 5 - 10 7.5 - 10 10 - 12.5 5 - 7.5
15+ 5 - 10 10 - 15 7.5 - 10 10 - 12.5 5 - 7.5

15+ 15+ 5 - 10 12.5 - 15 10 - 12.5 5 - 7.5
15+ 10 - 15 5 - 10 7.5 - 10 10 - 12.5 5 - 7.5

What is the approximate 
standard deviation at 
each point? [Point A]

What is the approximate 
standard deviation at each 
point? [Point B]

What is the approximate 
standard deviation at each 
point? [Point C]

What is the approximate 
standard deviation at 
each point? [Point A]

What is the approximate 
standard deviation at each 
point? [Point B]

What is the approximate 
standard deviation at 
each point? [Point C]

0 - 5 5 - 10 10 - 15 7.5 - 10 10 - 12.5 5 - 7.5
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Number

1
2
3
4
5
6
7
8
9

10
11
12

Left map Yes 1 2 5% 20
Left map Yes 1 2 5% 20

Right map No 1 2 5% 20
Left map No 2 1 5% 20

Left map Yes 2 1 5% 20
Left map No 2 1 5% 20

Right map Yes 1 2 5% 20
Left map No 2 1 5% 20

Right map No 1 2 5% 30
Left map No 2 1 5% 20

Right map Yes 1 2 5% 20
Right map Yes 1 2 5% 20

From which map is 
easier to read off 
uncertainty values?

Does the uncertainty 
visualisation make it 
harder to read the map?

Please rank your preferred 
visualisation methods 
[Adjacent Maps]

Please rank your 
preferred visualisation 
methods [Glyphs]

What percentage of the 
map has a relative error 
higher than 1%?

At what value of the 
threshold of the 
interquantile range is the 
greyed-out area of the 
map larger than 50%?

Number

1
2
3
4
5
6
7
8
9

10
11
12 Yes 5 pixels 200 - 300 0 - 100 100 - 200 0 - 100

Yes 5 pixels 200 - 300 0 - 100 100 - 200 0 - 100
Yes 5 pixels 200 - 300 0 - 100 100 - 200 0 - 100

Yes 5 pixels 200 - 300 0 - 100 100 - 200 0 - 100
Yes 15 pixels 100 - 200 0 - 100 0 - 100 0 - 100

Yes 5 pixels 200 - 300 0 - 100 100 - 200 0 - 100
Yes 15 pixels 100 - 200 0 - 100 0 - 100 0 - 100

No 5 pixels 100 - 200 0 - 100 100 - 200 0 - 100
No 5 pixels 200 - 300 0 - 100 100 - 200 0 - 100

No 15 pixels 100 - 200 0 - 100 100 - 200 0 - 100
Yes 5 pixels 200 - 300 300+ 200 - 300 0 - 100

Do the histograms of a 
selected point give a 
better understanding of 
the distribution of the 
realisations compared to 

  

At what distance are the 
pixels in areas of high 
uncertainty still 
correlated?

What is the approximate 
standard deviation at each 
point? [Point A]

What is the approximate 
standard deviation at 
each point? [Point B]

What is the approximate 
standard deviation at each 
point? [Point C]

What is the approximate 
standard deviation at 
each point? [Point A]

Yes 5 pixels 200 - 300 0 - 100 100 - 200 0 - 100

Number

1
2
3
4
5
6
7
8
9

10
11
12

200 - 300 100 - 200 1 2 Left C - B - A
200 - 300 100 - 200 1 2 Left C - A - B

200 - 300 100 - 200 1 2 Left C - A - B
200 - 300 100 - 200 2 1 Left C - B - A

200 - 300 100 - 200 2 1 Left A - C - B
200 - 300 100 - 200 2 1 Left C - A - B

200 - 300 100 - 200 2 1 Center C - B - A
100 - 200 0 - 100 2 1 Left C - A - B

200 - 300 100 - 200 1 2 Left B - C - A
200 - 300 100 - 200 2 1 Left A - B - C

200 - 300 100 - 200 2 1 Left C - A - B
200 - 300 100 - 200 2 1 Center C - A - B

What is the approximate 
standard deviation at 
each point? [Point B]

What is the approximate 
standard deviation at each 
point? [Point C]

Please rank your preferred 
visualisation methods 
[Adjacent Maps]

Please rank your 
preferred visualisation 
methods [Glyphs]

Using the single-click to 
explore the realisations, 
which areas of the map 
have the least realisations 
with values?

Please rank the letters in 
the image above from 
highest class probability 
to lowest class 
probability
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Number

1
2
3
4
5
6
7
8
9

10
11
12 Medium 0.6 - 0.8 Medium 0.6 - 0.8 High 0.8 - 1 25% 3 5

High 0.8 - 1 Low 0.4 - 0.6 High 0.8 - 1 75% 4 1
Medium 0.6 - 0.8 Low 0.4 - 0.6 High 0.8 - 1 95% 1 2

Medium 0.6 - 0.8 Low 0.4 - 0.6 High 0.8 - 1 95% 4 2
High 0.8 - 1 Low 0.4 - 0.6 High 0.8 - 1 95% 1 2

High 0.8 - 1 Low 0.4 - 0.6 High 0.8 - 1 75% 3 4
High 0.8 - 1 Medium 0.6 - 0.8 High 0.8 - 1 75% 2 1

Low 0.4 - 0.6 Medium 0.6 - 0.8 High 0.8 - 1 95% 3 1
Low 0.4 - 0.6 Medium 0.6 - 0.8 High 0.8 - 1 75% 2 4

Medium 0.6 - 0.8 Low 0.4 - 0.6 High 0.8 - 1 75% 1 1
High 0.8 - 1 Low 0.4 - 0.6 High 0.8 - 1 75% 4 2

What is the approximate 
class probability at each 
point? [Point A]

What is the approximate 
class probability at each 
point? [Point B]

What is the approximate 
class probability at each 
point? [Point C]

How confident are you 
that the pixels assigned 
class two in the bottom 
area of the map are 
actually class two?

Using Adjacent Maps to 
communicate and 
visualise uncertainty is 
easy to comprehend.

Using Glyphs to 
communicate and 
visualise uncertainty is 
easy to comprehend.

High 0.8 - 1 Medium 0.6 - 0.8 Low 0.4 - 0.6 95% 4 4

Number

1
2
3
4
5

6
7

8
9

10
11
12 3 Equal to other 

representations

3 Equal to other 
representations

1 Yes
1 Yes
2 Yes
3 Yes

1 Yes
2 Yes
1 Yes

3 Equal to other 
representations

5 Yes

Using an interactive 
application to 
communicate and 
visualise uncertainty is 
easy to comprehend.

Does an interactive 
application make 
understanding the 
uncertainty easier?

4 Yes
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