Monitoring vegetation dynamics using MERIS fused images

Raul Zurita-Milla⁽¹⁾, G. Kaiser⁽²⁾, J. Clevers⁽¹⁾, W. Schneider⁽²⁾ and M.E. Schaepman⁽¹⁾

⁽¹⁾ Wageningen University, The Netherlands
 ⁽²⁾ University of Natural Resources and Applied Life Sciences, Austria

Mapping and monitoring heterogeneous landscapes: spatial, spectral and temporal unmixing of MERIS data

Raúl Zurita-Milla 17th September 2008

Overview

Monitoring vegetation dynamics Data fusion Complex landscapes Study area and datasets MERIS fused images Results Image quality MERIS vegetation indices Validation Conclusions

Monitoring vegetation dynamics (I)

Earth system

- Carbon cycle
- Biosphere $\leftarrow \rightarrow$ Climate
- Time series of VIs
 - AVHRR
 - SPOT-VEGETATION
- Other applications
 - Forecasting crop yield
 - Monitoring habitats
 - Epidemiology

New sensors, new products

MODIS

 EVI (MOD13) → minimizes canopy background and atmospheric effects

MERIS

• MTCI \rightarrow canopy chlorophyll content • MGVI \rightarrow FAPAR MGVI = f(R8* R13*)

Complex landscapes (I)

 Coarse and medium spatial resolution sensors cannot capture all the details/dynamics of complex landscapes

 Landsat-like sensors have a past track record in monitoring vegetation dynamics at sufficient spatial but, in general, not temporal resolution

Complex landscapes (II)

Objective:

Evaluate the synergetic use of MERIS FR images and (existing) high spatial resolution datasets for monitoring heterogeneous (and frequently cloudy) landscapes.

Landsat TM 10 July 2003

Materials: high spatial resolution

Landsat TM 10 July 2003

LGN5

Grassland Arable land Natural vegetation Deciduous forest Coniferous forest Water Built-up areas Bare soil

Materials: MERIS FR data

18/02

31/05

08/12

06/08

Methodology (I)

18/02 16/04 31/05 14/07 06/08 15/10 08/12

Methodology (II): study area

Methodology (I)

18/02 16/04 31/05 14/07 06/08 15/10 08/12

Methodology (III): the LMM

$$pv = m_1 \cdot f_1 + m_2 \cdot f_2 + m_3 \cdot f_3 + m_4 \cdot f_4 + e$$

:

$$pv = m_1 \cdot f_1 + m_2 \cdot f_2 + m_3 \cdot f_3 + m_4 \cdot f_4 + e$$

$$pv_i = \sum_{c=1}^{nc} (\mu_{ci} \cdot f_c) + e_i \qquad i = 1, 2, ..., nb$$

$$0 \le f_c \le 1 \qquad \sum_{c=1}^{nc} f_c = 1.0$$

$$\mathbf{PV}_{(nbx1)} = \mathbf{M}_{(nbxnc)} \cdot \mathbf{F}_{(ncx1)} + \mathbf{E}_{(nbx1)}$$

nb: number of bands*nc:* number of classes (endmembers)

Methodology (IV): unmixing-based data

fusion Data fusion:

k: neighborhood size nc: number of classes

$$(\mathbf{PV}_{(k^{2} \times 1)} = (\mathbf{F}_{(k^{2} \times nc)} \cdot (\mathbf{M}_{(nc \times 1)} + \mathbf{E}_{(k^{2} \times 1)})$$

Low Resolution High Resolution (MERIS FR) (LGN)

Low Resolution downscaled

"Energy Unconstrained"

$$0 < \mu_{ci} \le L^i_{Sat}$$

Zurita-Milla et al. (2008). IEEE GRSL, 5, 453-457

Methodology (V): points of attention

Image co-registration

• Manual image-to-image \rightarrow not operational

WAGENINGEN UNIVERSITY WAGENINGEN UR

Methodology (V): points of attention

Image co-registration

- Manual image-to-image \rightarrow not operational/ errors
- Re-projection issues
- AMORGOS (3.0)
- Duplicates removal
 - Pixel size = f (swath)

Fractional cover estimation

•
$$PV_{(k^2 \times 1)} \in F_{(k^2 \times nc)} \cdot M_{(nc \times 1)} + E_{(k^2 \times 1)}$$

- Fraction aggregation threshold (5%)
- PSF effects

Methodology (VI): image quality

At 300m

$$ERGAS = 100 \frac{h}{l} \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{N} \frac{M_{i}}{N} \sum_{i=1}^{N} \left(\frac{1}{N} \frac{M_{i}}{N} \right) \right)}$$

high and the low spatial resolution

images.

N is the number of spectral bands involved in the fusion.

M is the mean value of the MERIS band-i.

RMSEi is the root mean square error computed between the band-*i of* the <u>MERIS</u> image and its corresponding band of the <u>degraded fused</u> image.

At 25m (only for July!)

Where: M is the mean value of the TM band-*i*.

RMSE_i is computed between the band-*i* of the <u>TM</u> image and its (spectrally) corresponding band of the <u>fused</u> image.

Results (I): a quick look

RGB color composite of a subset of the MERIS FR image (a), fused image (b), and the TM image (c)

Results (II): image co-registration

Results (III): Quality assessment (25 m)

5% aggregation changed < 0.6% of the LGN5 pixels

Results (IV): Quality assessment (300 m)

Monitoring vegetation dynamics (I)

MTCI

Monitoring vegetation dynamics (I) MTCI

Monitoring vegetation dynamics (I)

MGVI

Monitoring vegetation dynamics (II)

MGVI

Monitoring vegetation dynamics (III)

MTC

"Quality check" "Validation"

Monitoring vegetation dynamics (IV)

MGVI

Conclusions

- The unmixing-based data fusion approach succeed in synthesizing MERIS fused images with a very good spectral quality
- The NDVI, MTCI and MGVI profiles extracted from the temporal series of fused images show consistent patterns for each of the land cover types under study.

 Monitoring vegetation dynamics (phenology) at high spatial and temporal resolution is possible by combining time series of MERIS FR data with high spatial resolution images.

Thank you for your attention!

