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Chapter 1 

General Introduction 

 

Studies of population dynamics form a central theme in ecology, wildlife 

conservation and management (Gaillard et al., 1998). Most population 

ecologists aim at identifying and explaining variabilities of vital demographic 

rates such as births, deaths, immigration and emigration, that influence 

change in population size (Tuljapurkar and Caswell, 2012). The variability of 

the demographic rates are affected by, among others, density-dependent 

factors (Sæther, 1997, Krebs, 2002). ‘’Density–dependent’’ refers to a 

population change where population growth rate declines with population 

density, other factors kept constant (Lotka, 1925, Fisher, 1930, Nicholson 

and Bailey, 1935, Andrewartha and Birch, 1954), and the relationship 

between population density and population growth rate can be non-linear 

(Sibly and Hone, 2002, Gaillard et al., 1998). This density-dependence 

hypothesis only accounts for the intrinsic demographic and biotic factors ( 

e.g., food resources, habitat quality, interspecific competition, predation) but 

does not consider abiotic factors (e.g., rainfall amount, diseases, earth 

quakes) which also affect population growth (Gaillard et al., 2000, Krebs, 

2002). In recent times, population ecologists generally agree that no 

predictive models of population dynamics can solely rely on the relationships 

between intrinsic rates and population density without considering the 

influence of  stochastic environmental factors (Krebs, 1995). Because of the 

variations  in environmental factors in time and space, studies of the same 

animal species in different environments hardly produce similar population 

growth patterns (Krebs, 2002), as exemplified  in salmon fishes (Walters, 

1987), birds (Both, 1998) and elephant (Moss, 2001, Gough and Kerley, 

2006).   
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Density-dependent population regulation occurs in a closed equilibrium 

system (Sinclair and Krebs, 2002, Sinclair, 2003, Gillson and Lindsay, 

2003). For instance, in ecosystems with reliable rainfall, stable food and 

water resources, animal populations persist at a steady state, often referred 

to as the  “ecological carrying capacity” (Krebs, 2002, Sibly and Hone, 2002). 

It is argued that animal populations can self-regulate at this steady state 

through negative feedback mechanisms when population is above or below 

the ecological carrying capacity (Krebs, 2002). In the absence of 

environmental changes or time-lags, population density will remain close to 

the ecological carrying capacity (Turchin, 1999, Sinclair, 1996, Sinclair and 

Krebs, 2002). The major drawback of equilibrium theory is that it does not 

account for environmental stochasticity such as floods, fires, tornados etc., 

that are common in natural systems (Reice, 1994). Indeed, most studies 

conducted in marine and terrestrial ecosystems on different taxa of plants 

and animals contradict the predictions of equilibrium theory (Connell, 1978, 

Peet et al., 1983, Sale, 1977, Reice, 1985, Reice, 1994). Also, in rangelands 

where rainfall is highly variable, the concept of ecological carrying capacity 

does not apply (Ellis and Swift, 1988, De Leeuw and Tothill, 1993, Gillson, 

2004, Vetter, 2005). The frequency of variability of environmental factors in 

the rangelands are very high, hence impeding equilibrium states from being 

attained (Reice, 1985). Such systems are best described to be governed by 

non-equilibrium dynamics (Illius and O’Connor, 1999).   

 

Non-equilibrium population models predict that plant composition and 

biomass are primarily driven by rainfall rather than by grazing pressure in 

tropical savannas (Ellis and Swift, 1988, Vetter, 2005). Furthermore, 

herbivore numbers maintained at low densities by frequent droughts in the 

tropics have little impact on vegetation change (Ellis and Swift, 1988, Illius 

and O’Connor, 1999, Sullivan and Rohde, 2002). In such a case, variability 

in rainfall is thought to be an important driver of tropical savanna ecology 

that determines spatial and temporal heterogeneity required for ecosystem 

diversity, stability and resilience (Walker and Noy-Meir, 1982, Walker, 1989, 

McNaughton et al., 1988).  
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The debate about the negative impacts of high elephant density through 

damage to woody vegetation and significant loss of tree cover has gone on for 

decades (Glover and Sheldrick, 1964, Myers, 1973, Cumming et al., 1997, de 

Beer et al., 2006), and the resultant habitat change is perceived as an 

undesirable disruption of equilibrium condition of tropical savannas 

(Cumming et al., 1997, Gillson and Lindsay, 2003), although a contrary view 

exists (Kerley and Landman, 2006, Kohi et al., 2011). These habitat 

modifications by elephant are a potentially irreversible threat to the savanna 

ecosystem and its biodiversity (Cumming et al., 1997). For wildlife managers, 

understanding the processes that govern ecosystems have very profound 

implications on their decision making: if ecosystems are governed by non-

equilibrium dynamics then a “laissez-faire management style” is appropriate 

(Van Aarde and Jackson, 2007, Guldemond and Aarde, 2008), but if 

equilibrium dynamics is prevalent, then a “command and control 

management style” is appropriate (Gillson and Lindsay, 2003, Owen-Smith 

et al., 2006, Guldemond and Aarde, 2008). The examples of management 

options based on an equilibrium view include controlling elephant numbers 

through culling, translocation, and administering of birth control 

contraceptives (Walker et al., 1987, Owen-Smith et al., 2006, Scholes and 

Mennell, 2008).  

 

 

Elephant population management in arid savannas in Africa 

 

There has been a growing concern about the survival of African elephant 

because of the threats from poaching, destruction of their habitat, competing 

land-uses and increased frequencies of droughts (Douglas-Hamilton, 1987, 

Blanc et al., 2005, Bouché et al., 2011, de Boer et al., 2013, Chase et al., 

2016). For this reason, African elephant  is listed as “Vulnerable” on the 

IUCN Red List (Blanc et al., 2007). African elephant populations vary across 

the continent, with the Southern Africa population increasing  (Bouché et 

al., 2011), and the Central and West Africa population declining to a level of 
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local extinction (Blanc et al., 2005, Bouché et al., 2011, Wittemyer et al., 

2014, Chase et al., 2016). As at 2013, the estimated African elephant 

numbers was about half a million (AESG, 2013). Southern Africa accounted 

for 55% of this population, followed by Eastern (28%) and Central African 

states (16%). The remaining population (1%) is spread out in 13 states in 

West Africa (AESG, 2013). The most recent continental wide census results 

of African elephant show that the population has reduced further by 8% to 

about 350,000 (Chase et al., 2016); again, the reduction is largely attributed 

to poaching and habitat loss. 

In regions where elephant density is high, there is a long standing perception 

and inconclusive debates that elephant have adverse impacts on habitats (de 

Beer et al., 2006, Guldemond and Aarde, 2008, Staub et al., 2013) and also, 

sometimes, on other species (Cumming et al., 1997) through their foraging 

behaviour of pushing over, uprooting and snapping trees (Staub et al., 

2013). The question of whether elephant numbers should be controlled or 

not has been the subject of debates for decades with contradicting 

proposition on how this should be addressed (Laws, 1970b, Caughley, 1976, 

Myers, 1973, Owen-Smith et al., 2006, Van Aarde and Jackson, 2007, 

Guldemond and Aarde, 2008). In some instances, elephant are culled or 

translocated to reduce the perceived  negative impact on woody trees and 

other species and to keep the population below the “ecological carrying 

capacity” (Whyte et al., 1998, Gillson and Lindsay, 2003, Owen-Smith et al., 

2006). Yet vegetation is also influenced by other factors such as drought, 

fire, and other herbivores (Prins and van der Jeugd, 1993, Skarpe et al., 

2004, Wiseman et al., 2004), leading to transformation of woodlands into 

grasslands (Illius and O’Connor, 1999, Van Langevelde et al., 2003). 

Therefore reduction of elephant numbers may not necessarily translate to 

regeneration of woody trees (Dublin, 1991, Pickett et al., 2003). Another 

management option is the provision of water to keep elephant population 

artificially dispersed, thus reducing the negative impacts of high elephant 

density on woody vegetation (Gillson and Lindsay, 2003). The drawback of 

water provision is that it results in homogenization of the landscape which is 
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not conducive for mega- and meso-herbivores (Hilbers et al., 2015). Culling 

of elephant and water provision are examples of management options based 

on equilibrium theory.  

 

Conversely, in non-equilibrium management approach, less human 

intervention is applied and habitat heterogeneity persists through the 

natural functioning of an ecosystem (Vetter, 2005, Van Aarde and Jackson, 

2007). For instance, herbivores adopt a seasonal grazing pattern, where 

some areas, especially near rivers, are foraged intensively in the dry season 

as other areas of low use get the window to regenerate, hence maintaining 

habitat heterogeneity (Owen-Smith et al., 2006, Van Aarde and Jackson, 

2007). Further, passive management such as corridors that interconnect 

suitable habitats for the dispersal of elephant and other herbivores are 

maintained for the same purpose (Hoare and Du Toit, 1999, Van Aarde and 

Jackson, 2007).   

 

Despite the criticism on the equilibrium approach of elephant population 

management, it remains the popular management option in most dry 

savannas, where rainfall is highly variable (Van Aarde et al., 2006, Van 

Aarde and Jackson, 2007). Reference to justify elephant population control 

is drawn from the mass elephant mortality that occurred during severe 

droughts in  tropical savannas such as Tsavo National Park in Kenya 

(Corfield, 1973, Myers, 1973, Phillipson, 1975), Chobe National Park in 

Botswana (Skarpe et al., 2004) and Hwange National Park in Zimbabwe 

(Dudley et al., 2001). The mass mortality of elephant was thought to be a 

negative consequence of elephant overpopulation (Owen-Smith et al., 2006). 

For instance, in Tsavo, over 5000 elephant died during prolonged droughts 

of the 1960s and 1970s (Corfield, 1973). This incident attracted immense 

global research interest to investigate the likely causes of such massive 

mortalities (Myers, 1973, Phillipson, 1975, Corfield, 1973, Laws and Parker, 

1968, Laws, 1970a, Laws, 1970b, Glover and Sheldrick, 1964). The ‘’Tsavo 

debate’’ was partly inconclusive because it was based on a one-off drought 

incident and the studies were conducted amidst that catastrophic drought 
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incident. However, elephant mortality continued to occur even during short 

droughts, though not in the magnitude of the 1960s and 1970s.  The 

frequency of these droughts have been increasing and it is predicted to 

increase into the future (Shrader et al., 2010, Yang et al., 2014). For 

instance, as recent as 2016, South African protected areas faced the worst 

droughts in its history and similar debate on how to address the 

consequences of droughts on elephant population took place (Peel and 

Anderson, 2016). The poignant question that arises is; what have we learnt 

after 50 years of Tsavo elephant mortality incidents? Proper management of 

the African elephant in tropical savannas requires a good understanding of 

their ecology - their distribution, density, movements, behaviour and 

human-induced impacts on their ecosystems (Kangwana, 1996, Owen-Smith 

et al., 2006, van Aarde et al., 2008, Scholes and Mennell, 2008, Moss et al., 

2011, Skarpe et al., 2014).  

The aim of my study was to address the question: Are elephant populations 

in tropical savannas affected by droughts? I studied elephant population 

change with respect to droughts in the Tsavo Conservation Area (TCA) and 

Amboseli National Park in Kenya, to gain a better understanding of drought-

related aspects of elephant ecology in a tropical savanna. The understanding 

of drought-related mortality and its impact on elephant populations require 

a long term dataset of elephant population change in relation to drought 

occurrences. I relied on the longest existing time-series data in Africa of a 

wild elephant population that has been consistently monitored for over 40 

years, where life-histories of 3000 individual elephant are known, from 

Amboseli National Park in Kenya. Besides, I analysed geo-referenced 

elephant mortality data collected daily for 10 years from the Tsavo 

ecosystem, Kenya. Moreover, I analysed 2-years data from 8 collared African 

elephant to investigate their movements patterns in response to seasonal 

water and forage distribution in the Tsavo ecosystem. I further explored how 

the findings of this study could be applied to elephant conservation in 

tropical savannas.  
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The study area 

This study was conducted in two locations: The Tsavo Conservation Area 

(comprising of Tsavo East National Park, Tsavo West National Park, Chyulu 

National Park, South Kitui National Reserve and the surrounding community 

owned ranches) and the Amboseli ecosystem (comprising of Amboseli 

National Park and the surrounding community owned ranches).  The  Tsavo 

Conservation Area  spans an area of  ~48,300 km2 and is  located at 2°- 4° S 

and 37.5°- 39.5° E in the southern part of Kenya (Omondi et al., 2008) 

(Figure 1). It is an arid ecosystem with bi-modal rainfall  from mid-March to 

May and from November to December (Omondi et al., 2008, Tyrrell and Coe, 

1974). The long dry season typically ranges from June through October, 

whereas the short dry season occurs from January to March (Leuthold and 

Leuthold, 1978, Tyrrell and Coe, 1974). The mean annual rainfall in Tsavo 

ranges from 250 to 500 mm (Ngene et al., 2014).   

Tsavo Conservation  Area is dominated by a flat and undulating terrain with 

an altitude range of 100-500m (Mukeka, 2010). Tsavo landscape is 

interrupted by granitic hills and inselbergs with the highest peak of Taita 

hills standing at ~2,220 metres above sea level (Mukeka, 2010). It has only 

one perennial river, the Galana River and two seasonal river, Tiva and Voi 

(Ayeni, 1975, Mukeka, 2010). Tsavo Conservation Area is home to over 

12,000 elephant, a third of all population of elephant in Kenya (Ngene et al., 

2011).  

The Amboseli ecosystem extends to over 3500 km2 (Western, 1975, Moss, 

2001), comprising of Amboseli National Park with an approximate area of 

390 km2, located between 37°E and 37° 30' E and 2° 30' and 2° 45' S in 

southern Kenya, and was established in 1974 (Okello et al., 2015). It abuts 

the Masai Ecosystem to the South (Prins, 1987). The remaining area 

comprises community owned conservancies and ranches. The Amboseli 

ecosystem is an arid area with a bimodal rainfall pattern; long rainy season 

lasts from March to May, while the short rains occur from November to 

December (Moss, 2001). The Amboseli ecosystem experiences two dry 

seasons, the long dry season lasting from June to October and the short dry 
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season from January to March  (Moss, 2001, Prins and Loth, 1988). Rainfall 

amounts range from 100-900mm annually with an average of 300mm 

annually (Moss et al., 2011). The vegetation is predominantly grassland 

interspersed with acacia woodland with permanent swamps (Moss et al., 

2011). The Amboseli ecosystem is home to about 1500 elephant (Okello et 

al., 2015). 

 

Figure 1: Geographic location of study Area in Kenya (Tsavo Conservation 

Area and the Amboseli National Park) 
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Thesis outline 

In my study, I aim to contribute to a better understanding of the elephant 

population dynamics in two important conservation areas in Kenya (The 

Tsavo Conservation Area and Amboseli National Park) with respect to severe 

drought conditions and to inform future elephant population management 

approaches in tropical savannas. 

 

I present four studies: The first two studies focus on the theme of spatial and 

temporal changes in elephant mortality in relation to variability in rainfall 

(Chapters 2 & 3). Chapter 2 describes the effects of drought duration and 

intensity on temporal elephant mortality patterns in Amboseli National Park, 

Kenya. I looked at drought effects based on the length and intensity of 

rainfall in contrast to past studies that analysed discrete seasonal and 

annual drought effects on elephant population (Dudley et al., 2001, Foley et 

al., 2008, Lee et al., 2011a). In chapter 3, I present the study on the effect of 

the length (number of consecutive dry months) and intensity (amount of 

rainfall) of the dry periods, the distance to water, forage and elephant density 

on spatial elephant mortality. My aim in this chapter is to investigate the 

factors that explain the spatial distribution of elephant mortality in a dry 

savanna using Tsavo as a case study.  In chapters 4 and 5, I investigate the 

movement response of African elephant to seasonal water and forage 

distribution in tropical savanna, using Tsavo Conservation Area as a case 

study. My purpose in these two chapters is to understand the relative 

importance of two critical resources in the dry season, water and forage 

distribution, in determining elephant habitat use. In chapter 4, I begin by 

investigating the movement response of African elephant to seasonal water 

distribution in Tsavo. I then follow in chapter 5 to present a study on forage 

site selection by elephant in a tropical savanna with a specific focus on 

forage quality and quantity. Finally in chapter 6, I discuss the themes of 

each chapter separately and synthesize the prominent issue that arises in 

each. I proceed to generalize the findings to a broader context of elephant 

population change in tropical savannas and its implication on the future 
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direction of elephant population management. I relate my findings to the on-

going debates about density-dependency versus density-independency in 

elephant population dynamics and about equilibrium versus non-

equilibrium dynamics in tropical savannas. Finally, I draw conclusions and 

identify gaps and recommendations for further research. 
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Chapter 2 

Temporal mortality patterns of African 

elephant (Loxodonta africana) in dry savannas 

is a reflection of past drought duration and 

intensity. 

Yussuf A. Wato, Ignas M.A. Heitkönig, Herbert H.T. Prins, Phyllis Lee, Cynthia 

Moss, Sipke E. van Wieren, Geoffrey Wahungu, & Frank van Langevelde. 

 

Abstract 

 

Most ecologists view dry savannas (rainfall less than 400mm year), to be 

governed by equilibrium dynamics. It is assumed that such systems can 

support only a certain maximum number of elephant. However, other 

studies suggest that savannas are non-equilibrium systems prone to drought 

that may result to crashes of elephant population, and the effects may vary 

with age or sex of the elephant. While half of the African elephant (Loxodonta 

africana) populations live in these dry savannas, the effects of drought 

duration and intensity on their population structure is unclear. Drought has 

been shown to cause juvenile elephant mortality but to have less effect on 

survival of adult elephant. Most previous studies have focused on inter-

annual variability and, rarely, on the duration and intensities of drought at a 

fine timescale of months that cause variability of forage availability to 

elephants. We hypothesized that the mortality of elephant is dependent on 

the duration and intensity of drought. In harsh conditions, elephant 

mortality is expected to be: (1) high among juvenile elephant and decrease 

with age, (2) higher in females than males; and, (3) mortality rates will 

increase with population size. We investigated the effects of drought duration 

and intensity on African elephant using a demographic data set of over 3000 
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individually known elephant, monitored for over four decades between 1972 

and 2012 at Amboseli National Park, Kenya. The increased occurrence of dry 

months (<20mm rain) increased the probability of elephant mortality. 

Similarly, elephant mortality increased slightly with an increase in the 

elephant population size, whereas the increase in previous year’s rainfall 

amounts reduced the risk of elephant death. Although the odds of dying was 

higher for male than female elephant, the mortality risk was dependent on 

the interaction between the age and the sex of elephant. Male elephant above 

25 years have significantly lower risks of mortality than females > 25 years. 

Overall, the risk of death reduced with the age of elephant, with the calves 

below 1 year of age having the highest mortality risk. We conclude that the 

effect of drought on elephant survival is more pronounced at a fine 

resolution of monthly variability of rainfall, and that elephant populations in 

dry savanna are driven by non-equilibrium dynamics.  

 

Introduction 

A central goal in population ecology is to understand the biotic and abiotic 

factors that explain changes in population sizes of wildlife (Gaillard et al., 

2000, Coulson et al., 2004). Wildlife population sizes are assumed to be 

regulated by equilibrium dynamics if the population is dominantly regulated 

by biotic factors through negative feedback mechanisms and, in the absence 

of environmental changes, population size remains at a steady state often 

referred to as the ecological carrying capacity (Turchin, 1999, Sinclair, 1996, 

Sinclair and Krebs, 2002). Conversely,  if the relative importance of abiotic 

factors is greater than biotic factors in causing population change, then 

populations are assumed to be controlled by non-equilibrium dynamics (Ellis 

and Swift, 1988, Oba, 2001, Gillson and Lindsay, 2003, Vetter, 2005). For 

example, it has been argued that tropical savannas experience non-

equilibrium dynamics as they are characterized by high variation in annual 

and seasonal rainfall (Rasmussen et al., 2006). Rainfall variability may result 

in scarcity of forage and water for wildlife, and if prolonged, in death of 
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animals (Wittemyer et al., 2005, Foley et al., 2008, Young and Van Aarde, 

2010).  

 

The effects of harsh abiotic conditions on animals can be observed through 

changes in their body condition (Loison et al., 1999), reduction in the 

probability of conception and successful reproduction (Rasmussen et al., 

2006, Moss et al., 2011, Bouwhuis et al., 2010), and increase in mortality 

rates (Foley et al., 2008, Lee et al., 2013). For many species, it has been 

shown that the effect of changes in abiotic factors on their mortality vary 

with the age and the sex of the animal (Gaillard et al., 2000). For instance, 

the survival of infant red deer (Cervus elaphus) decreased with increase in 

snow depth (Albon et al., 1983), and the mortality of adult mountain goats 

(Oreamnos americanus) increased with low temperature and snow depth 

(White et al., 2011). In roe deer (Capreolus capreolus) during severe winters, 

more females survived than males, and the survival of an individual 

decreased after 7 years of age (Gaillard et al., 1993).  Although most studies 

on effects of climate variability on wildlife have focused on short-lived 

mammals, the recent availability of long-term data have resulted in studies 

on the effect of climate variability on long-lived animals such as elephants. 

 

During dry periods, high juvenile elephant mortality is common (Moss, 2001, 

Leggett, 2006, Foley et al., 2008, Trimble et al., 2009, Lee and Moss, 2011, 

Moss et al., 2011), whereas adult elephant are thought to be buffered against 

drought-induced mortality (Gaillard et al., 2000, Young and Van Aarde, 

2010, Lee et al., 2011a). Among the juvenile elephant, the male calves born 

in dry years have reduced life expectancy and reduced body sizes as they 

grow to maturity, termed the cohort-effect (Lee et al., 2013). Incidences of 

drought-induced adult elephant mortality have also been recorded in severe 

droughts in the past few decades (Corfield, 1973, Dudley et al., 2001, Owen-

Smith et al., 2006, Foley et al., 2008). Asian elephants (Elephas maximus) 

showed the highest survival rates during the wettest months for all ages and 

sexes (Mumby et al., 2013). This was also found for African elephant where 
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mortality decreased in the wet season (Moss et al., 2011, Lee et al., 2011a). 

For instance, the highest population growth rate of elephant at Addo 

National Park coincided with El Niño (increased) rainfall (Gough and Kerley, 

2006) whereas, the highest mortality occurred during severe droughts at 

Samburu National Reserve (Wittemyer et al., 2005). 

 

Despite these findings, the effect of the duration and intensity of dry periods 

on adult elephant mortality is still debated (Wato et al., 2016) and remains 

inconclusive (Dudley et al., 2001, Moss et al., 2011). Some of these studies 

were based on a single drought event (Dudley et al., 2001, Foley et al., 2008), 

whereas others spanned multiple drought events of over 30 years (Moss et 

al., 2011, Lee et al., 2013). In contrast to the increased juvenile mortality 

during dry periods, the few studies that specifically investigated drought-

related adult elephant mortality reported more deaths in wet years than in 

dry years (Moss et al., 2011, Dudley et al., 2001). For example, in Hwange, 

comparative mortality between two drought years showed that high adult 

elephant mortality occurred in the year that registered high annual rainfall 

(Dudley et al., 2001). From this counterintuitive result, it appears that adult 

elephant mortality may not be related to whether it rains or not, but rather, 

the amount, intensity and distribution of the rainfall (Dudley et al., 2001). 

Supporting this argument, Rasmussen et al. (2006) reported that months 

with less than 20mm of rainfall had low Normalized Difference Vegetation 

Index (NDVI), that indicated too little plant production to sustain elephant 

energetic requirements. If this is the case, we do not expect elephant 

population in dry savannas to be regulated by density-dependent factors, 

but rather be controlled by the climatic factors such as rainfall variability. 

  

In contrast to the role of rainfall, other studies suggest that elephant 

population in dry savannas may be governed by equilibrium dynamics. The 

case-studies invoked to illustrate density-dependent elephant mortalities 

include Tsavo National Park in Kenya (Corfield, 1973, Myers, 1973, 

Phillipson, 1975), Chobe National Park in Botswana (Skarpe et al., 2004), 
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Hwange National Park in Zimbabwe (Dudley et al., 2001) and other tropical 

savannas (Foley et al., 2008). In the Tsavo case, where over 5000 elephant 

mortalities were reported in the severe drought of the 70s (Corfield, 1973), 

the explanations inclined towards density-dependent effects implying that 

food availability was not sufficient to sustain the elephant                                                                                                                                                   

(Owen-Smith et al., 2006, Van Aarde and Jackson, 2007). Other studies 

reported positive correlation between calf mortalities and  density in 

elephant (Moss et al., 2011), and other long-lived mammals (Gaillard et al., 

1998, Gaillard et al., 2000, Eberhardt, 2002), suggesting the existence of 

equilibrium dynamics. Although dry savannas are generally assumed to be 

governed by non-equilibrium dynamics (Vetter, 2005, von Wehrden et al., 

2012), elephant populations in these areas are managed based on assumed 

equilibrium population dynamics (Gillson and Lindsay, 2003, Van Aarde and 

Jackson, 2007). The question remains as to whether non-equilibrium 

dynamics play a role in elephant population dynamics in dry savannas. 

 

To separate the role of non-equilibrium and equilibrium dynamics in 

elephant populations, we explore effects of the duration and intensity of dry 

periods and population density on adult elephant mortality. We tested 

whether elephant mortality depends on a) the duration and intensity of dry 

periods, b) the age and sex of elephant, and c) the size of the elephant 

population. We hypothesized that in dry periods, elephant mortality would 

be high a) in juvenile elephant and decreases with age, b) in females as 

opposed to males given reproductive costs, and  c) would increase with 

population size. The rainfall in Amboseli ecosystem show high variability in 

both the duration and intensity (Croze and Lindsay, 2011). To test our 

hypotheses, we used the long-term rainfall records of Amboseli ecosystem at 

monthly resolution to capture rainfall variability. We used data from 

elephant that died of natural causes only and excluded those that died of 

any other causes such as injury and poaching.  
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Materials and methods 

Study area 

Amboseli National Park with an approximate area of 390 km2, is located 

between longitude 37°E and 37° 30' E and Latitude 2° 30' and 2° 45' S in 

southern Kenya, and was established in 1974 (Okello et al., 2015). The 

entire Amboseli ecosystem where elephant roam extends to over 3500 km2 

(Western, 1975, Moss, 2001) (Figure 1). The rainfall pattern is bimodal and 

the long rainy season lasts from March to May, while the short rains occur 

from November to December (Moss, 2001). Amboseli experiences two dry 

seasons, the long dry season lasting from June to October and the short dry 

season from January to March (Moss, 2001). Rainfall amounts range from 

100-600 mm annually with an average of about 300 mm annually (Altmann 

et al., 2002). The vegetation is predominantly grassland interspersed with 

acacia woodland along permanent swamps (Moss et al., 2011). 
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Figure 1: Geographical location of Amboseli National Park and the 

surrounding Community owned ranches in Kenya 
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Elephant demographic and rainfall data 

The free-ranging elephant in Amboseli have been monitored continuously 

since 1972, and records of over 3000 individually known elephant are 

maintained in the Amboseli Elephant Research Project’s (AERP) database 

(Moss, 2001, Moss and Lee, 2011). Births of elephant between 1972 and 

1975 are known with a precision of 3-6 months, and from 1976 with a 

precision of 2 weeks to 3 months (Lee et al., 2013). Since the elephant herds 

are monitored routinely and every herd must be seen and counted at least 

once in a month, mortality of each elephant is known with a precision of 1-3 

months (Moss, 2001), although the death of male elephants may take longer 

to discover especially during the dry periods when they roam further from 

the park. The Amboseli elephant population is ideal for studies of 

demographic change as they range over an unfenced area of 3500 km2,  are 

not heavily poached, and they have been relatively unaffected by land-use 

changes and habitat compression as a result of human population increase 

(Moss, 2001, Moss and Lee, 2011). Therefore, we excluded the effect of 

human activities in the analysis and focussed on disentangling the effects of 

abiotic controlling factors from density-dependent regulatory factors. The 

detailed monitoring protocol for this elephant population is described in 

Moss (2001).  

 

Rainfall data were obtained from three different rain gauges  from 1972  

(Lindsay, 2011). Between 1972-82, rainfall data were obtained from Ol-Tukai 

meteorological station, whereas the rainfall data from 1982 were collected by 

the Amboseli Elephant Research Projects (AERP) meteorological station 

(Lindsay, 2011), both within Amboseli NP. Missing data were supplemented 

by records from the Amboseli Baboons Research Project (Altmann et al., 

2002, Lindsay, 2011). Because rainfall amounts in the entire ecosystem is 

similar to Amboseli National Park (Moss et al., 2011), we used rainfall data 

from the three rain gauges to represent rainfall amounts in the entire 

elephant ranges in the study area. Various measures of rainfall variability 

have been used in behavioural ecology studies such as measures of  rainfall 
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evenness, the annual coefficient of variation across months, and the number 

of dry months in a given year (Bronikowski and Webb, 1996), although there 

is  no a priori  criterion to select any of these measures and the choice is 

guided by the purpose of the study. We based our rainfall variability 

measure on long-term studies that compared rainfall amounts with forage 

availability (Altmann et al., 2002, Rasmussen et al., 2006).  We classified 

months into “a dry month” if it had less than 20mm of rainfall and “a dry 

season” if the cumulative rainfall in four consecutive months was below 150 

mm based on the duration of a typical long dry season in Amboseli 

ecosystem. We used “150 mm” based on the average lowest rainfall amount 

calculated from 50 dry seasons spanning over 25 years in Amboseli 

ecosystem (Moss, 2001, Altmann et al., 2002, Moss et al., 2011). Drought in 

this paper refers to four or more consecutive months with cumulative rainfall 

of less than 150 mm.  

 

Data analysis 

We used the total number of dead elephant by age classes as the dependent 

variable. The explanatory variables we used in modelling elephant mortality 

included: elephant age classes and sex, seasonal rainfall amount, monthly 

rainfall amount, cumulative monthly rainfall amount, and annual elephant 

population size. We categorized age classes as young calves (0-12 months), 

older calves (13-24 months), immatures (2-8 years), young adults (9-24 

years), prime reproductive adults (25-49) and old adults (50+). The 

cumulative monthly rainfall amount accounted for effects of past rainfall on 

elephant mortality in the analysis. We used cumulative monthly rainfall 

iteratively in the analysis starting with the month preceding each elephants’ 

death and successively added the previous months to the model. In the final 

model, we included the sum of precipitation amounts for each of the 17 

months preceding each elephant death because its inclusion resulted in the 

lowest AIC. We initially used a Poisson Generalized Linear Model (GzLM) for 

the analysis as it is appropriate for modelling count data such as elephant 

mortality (Zuur et al., 2010). Since the results from Poisson model showed 
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over-dispersion and the data had many zeros (Figure 2), we replaced it with a 

zero-inflated GzLM to model elephant mortality (Cameron and Trivedi, 1998, 

Zuur et al., 2010). Furthermore, we assessed multi-collinearity between the 

rainfall variables and the other variables by calculating their variance 

inflation factor (VIF) values, and we excluded all variables with VIF greater 

than five (Zuur et al., 2010).  

We assessed all two-way interactions between independent variables and 

retained only significant interactions in the final GzLM model. We generated 

all possible candidate models from the global model and performed model 

selection for all the competing models by comparing their AIC values (Royall, 

1997, Anderson and Burnham, 2002). Using the above criteria, we selected 

the best approximating model with the lowest AIC. For the ease of 

interpretation of results, we calculated the odds of dying of elephant based 

on their age, sex and all the other variables selected (Zuur et al., 2010). All 

the analyses were done in R 3.2.0 software (Team, 2010) 

 

Results 

A total of 1347 elephant were reported to have died of natural causes 

between 1972-2012 at Amboseli National Park. Of these deaths, 198 were 

adult elephant (>25 years), 217 were sub-adults (9-25 years), and the rest 

were < 9 years. The annual percentage of mortality differed between years, 

with the highest reported mortality in 2009 (~30%). Amboseli elephant 

population is estimated at about 1145 based on the recent census of 2013 

(Okello et al., 2015). 

 

The best model included the variables with seasonal rainfall, monthly 

rainfall, age, sex, population size, cumulative rainfall of the 17 months 

preceding each elephant death and age and sex interactions (Table 1). 

Elephant odds of dying were 1.31 times higher in the dry months (rainfall < 

20mm)  and 1.24 times higher in the dry season (rainfall <150 mm) (Table 2). 

There was a very small, but highly significant increase in elephant mortality 
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with an increase in yearly elephant population size (P < 0.001, see odds 

ratio, Table 2), whereas the risk of elephant mortality significantly decreased 

(P < 0.001) as the cumulative rainfall prior to each elephant’s death 

increased. The effect of cumulative rainfall was significant from seven 

months to seventeen months preceding each elephant’s death. Although the 

odds of dying for the male elephant were 1.66 times higher than for the 

females, this risk was dependent on the interaction between the age and the 

sex of an elephant.  Generally, the risk of dying decreased with the age of an 

elephant, and male elephant between 25 to 49 years of age had a lower risk 

of dying of natural causes as compared to females of similar age (Table 2).  

 

 

Figure 2: Frequency of recorded dead elephant per month from 1972-2012 

at Amboseli ecosystem showing zero-inflation  
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Table 1: The best four models (with the lowest AIC values) from the 

competing models explaining natural elephant mortality. AIC - the Akaike 

Information Criteria values; AIC (∆i) - the difference between the AIC value of 

each model and the best model; and the AIC (Wi) - the ratio of delta AIC (∆i ) 

values for each model relative to the whole set of candidate models. t0+17 -the 

sum of rainfall amounts for the 17 months preceding each elephant death. 

M1 with lowest AIC was selected for the final analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Models GLzM model  AIC AIC (∆i) AIC (Wi) 

M1 

Season, month, age, sex, population,  

rain t0+17, age x sex 
 

5225 0.00 0.423 

M2 
Age, sex, population,  
rain t0+17, age x sex 
 

5230 5.11 0.040 

M3 
Month, age, sex, population,  
rain t0+17, age x sex 

 

5232 6.52 0.020 

M4 
Season, age, sex, population 
  

5261 35.42 0.000 
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Table 2: Summary statistics of zero-inflated GzLM model (count part): β = 

regression coefficient, odds ratio, CI = confidence interval of the odds ratio, 

the dependent variable = number of dead elephant 

 

* P<0.05; **P<0.01; *** P<0.00; Reference variables represented by [*] in β column         

To disentangle the sex-age interaction effect further, we combined elephant 

mortality data for the males and the females below 25 years separately as 
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they were not significantly different (Table 2), and then built a model of age-

sex interaction with the two age classes (> 25 years and < 25 years). Male 

elephant between 25 to 49 years of age had a lower risk of dying of natural 

causes as compared to females of similar age (Figure 3). 

 

 

Figure 3:  A partial regression showing the interaction between mortality of 

elephants of different age classes by sex (Black = Female, Grey = Male)  

 

Discussion 

In this study, we investigated whether elephant populations in the dry 

savannas are regulated by equilibrium dynamics through biotic factors or 

controlled by non-equilibrium dynamics through drought, and if so, how the 

effects vary with the age and the sex of the elephant. The results of a 40 year 

analysis covering 5 drought cycles and a doubling of population size showed 

that both juvenile and adult elephant mortality is high after periods of dry 

months. Although male elephant have a higher risk of dying than female 

elephant, this risk is dependent on the interaction between the sex and the 

age of an elephant. Male elephant over the age of 25 years showed a lower 

risk of mortality during the dry months. There is a very small (odds ratio of 

1.01) but significant increase in elephant mortality associated with an 
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increase in yearly elephant population. Overall, the risk of mortality in 

elephant decreased with increasing age with calves below one year showing 

the highest risk of mortality.  The results indicate that drought duration and 

intensities play an important role in elephant mortality, hence pointing to 

the dominance of non-equilibrium dynamics in understanding the 

population dynamics of the largest and longest-living vertebrates in dry 

savannas.  

Consistent with our hypothesis, the mortality of both calves and adult 

elephant was significantly higher in dry (<20mm) than wet months (>20mm) 

(e.g., Wato et al. (2016). While there is evidence that calves are at greatest 

risks of dying during drought (Moss, 2001, Foley et al., 2008), some studies 

have suggested that there is no relationship between adult elephant 

mortality and drought (Young and Van Aarde, 2010, Moss and Lee, 2011). 

Indeed, one could expect that elephants with their enormous body mass 

would be sufficiently buffered against climate variability. The difference 

between our results and those of other previous studies is due to the 

temporal resolution at which we measured the dry period; inter-annual vis-

a-vis the monthly rainfall amounts. Similarly, Dudley et al. (2001) reported 

that the effective duration of rainy season appeared to be the best predictor 

of severity of drought-induced mortality among elephant but not the total 

annual precipitation. Furthermore, a study of Asian elephants found that 

elephant survival was related to intra-annual rainfall variability, with the 

highest survival rates during the wettest months that had the greatest 

available forage (Mumby et al., 2013). Similar trends have been observed for 

other mammalian species. For instance, a drought experienced in 2007-2009 

in the Amboseli ecosystem caused the decline of many species of mammals 

such as common waterbuck (Kobus ellipsiprymnus), baboon (Papio anubis), 

cape buffalo (Syncerus caffer), common warthog (Phacochoerus africanus), 

lesser kudu (Tragelaphus imberbis) and elephant although the total annual 

rainfall in this period was close to those reported in other years. 

Surprisingly, these mortalities occurred despite the availability of perennial 

swamps in Amboseli that may cushion herbivores from drought-induced 
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mortality, underscoring the importance of rainfall variability in wildlife 

survival (Okello et al., 2015). In dry savanna, the duration and the 

intensities of droughts thus may be more important in determining wildlife 

survival than annual rainfall variability (Lindsay, 1994).   

Our analysis showed that calves below one year had the highest risk of 

mortality due to drought, consistent with many other studies of large 

mammals (Gaillard et al., 1998, Gaillard et al., 2000, Moss, 2001, Foley et 

al., 2008, Moss et al., 2011, Lee et al., 2013, Eberhardt, 2002). High juvenile 

mortality in large mammalian species has been associated with predation, 

drought, harsh winters, low birth weight and stunted growth due to 

nutritional deficiency among many other causes (Gaillard et al., 2000, 

Forchhammer et al., 2001, Lee and Moss, 2011, Lee et al., 2013). For 

example, drought in early life resulted in reduced growth rates for males and 

higher mortality for both sexes in elephant (Lee et al., 2013). In Soay sheep 

(Ovies aries),  warm, wet and windy winters preceding juveniles birth affected 

the newborn’s future survival, related to mothers' compromised physical 

condition (Forchhammer et al., 2001). Furthermore, Young and Van Aarde 

(2010) reported that the weaned young elephant have a higher risk of 

mortality in dry periods compared to wet seasons. Taken together, all these 

studies are consistent in showing high mortality in elephant calves during 

drought. Moreover, elephant risk of mortality decreased with increasing age, 

as in many other mammals, independent of the main proximate causes of 

mortality, and regardless of whether mortality is density-dependent or 

density-independent (Gaillard et al., 1998, Gaillard et al., 2000). 

We found that male elephant have a comparatively higher risk of mortality 

than female elephant. An adult male elephant could weigh up to 7 tonnes 

while a female elephant weighs up to 4 tonnes (Moss, 2001, Moss et al., 

2011). Male elephant have prolonged growth until they attain the age of 50 

and females grow for at least three quarters of the post-maturity 

reproductive lifespan (Moss et al., 2011).  Thus, the male elephant need to 

consume more forage  than do female elephant to  meet their additional 

energy cost (Lee, 2011).  Furthermore, the male elephant have to incur 
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additional energetic costs in annual reproductive musth phase (Poole and 

Moss, 1981). During musth, they spend less time feeding and drinking and 

more time in daily movements searching for the females, and incurring costs 

of contests and fights (Poole et al., 2011). Together, these factors may reduce 

male’s energetic intake, making them more susceptible to death than female 

elephants in long dry periods. The energetic requirements for females are 

however also high, especially during the period of peak lactation (Moss and 

Lee, 2011). Females with calves under 2 years of age may be especially 

energy limited and thus both their calves and the females are more 

susceptible to negative energy balance and death (Moss and Lee, 2011). 

However, peak lactation is unlikely to coincide with drought for all females in 

the population, resulting in a lower risk of death across females in the 

population as a whole.  

The risk of dying proves to be not only dependent on the sex of the elephant 

but also on the age of an individual elephant. Male elephant over the age of 

25 years have a significantly lower risk of natural mortality. This finding may 

be explained by the social organization in elephant (Archie et al., 2006, 

Archie et al., 2011) and the foraging strategy of male elephant at different 

ages (Lindsay, 1994, Lindsay, 2011, Lee et al., 2011a). A male elephant 

remains with its family group usually up to about the age of 10-15 years (Lee 

et al., 2011b). As the  male matures, he undergoes a transition in the way it 

uses space depending on age and sexual state (Rasmussen et al., 2006). 

After dispersal, young males remain highly sociable both with female groups 

and other male groups (Evans and Harris, 2008). As they grow older and 

mature sexually, usually at about 25-30 years, their foraging range increases 

and they begin to take more risks and disperse to unfamiliar habitats to seek 

for forage and mates (Chiyo et al., 2011). Although this risk taking behaviour 

may sometimes expose male elephant to mortality risks(Poole et al., 2011), 

this strategy may have advantages such as accessing distant foraging 

grounds such as crops (Chiyo et al., 2011) and water points in dry season 

(Lindsay, 2011, Lee et al., 2011b). The higher survival of older male elephant 

in the dry season may be explained by difference in total energy and protein 
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intake of males and females, the time spent feeding and the nutrient content 

of forage (Lindsay, 2011). Difference in foraging strategies between the sexes 

are common in other sexually dimorphic species like red deer (Cervus 

elaphus) (Gordon, 1989) and moose (Alces alces) (Miquelle et al., 1992), 

among many others. Generally, foraging strategies between sexes in many 

species are more pronounced during periods of food scarcity, and the driving 

force in the differences appears to be energy need requirements, reproductive 

status of an individual, body sizes and the social context, all of which differ 

between sexes (Miquelle et al., 1992, Shannon et al., 2006).  

The effects of non-equilibrium dynamics on elephant mortality through 

drought duration and intensities appeared more important than the effects 

of elephant population density. We conclude that both juvenile and adult 

elephant are sensitive to drought but the risk of dying is dependent on the 

interaction between the age and the sex of an elephant. The effects of 

drought are more pronounced when measured at a fine resolution of 

monthly rainfall variability than the annual rainfall variability. In view of 

predictions that the frequency of dry spells may increase globally, and 

particularly in Africa (Ogutu and Owen-Smith, 2003, Yang et al., 2014), most 

elephant populations will be exposed to long periods of drought as a 

mortality agent. We conclude that non-equilibrium dynamics remains an 

important factor that controls elephant population dynamics and should 

therefore form the basis of elephant population management in dry 

savannas. 

 

 

 



35 
 

Chapter 3 

Prolonged drought results in starvation of 

African elephant (Loxodonta africana) in arid 

savannas. 

 

Yussuf A. Wato, Ignas M.A. Heitkönig, Sipke E. van Wieren, Geoffrey 
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Abstract 

Elephant inhabiting arid and semi-arid savannas often experience periods of 

drought, which, if prolonged, may cause mortality. During dry periods, 

elephant aggregate around water sources and deplete local forage 

availability. However, the relationships between adult elephant mortality and 

both high local elephant density and forage availability close to water during 

dry periods remain unexplored. We hypothesized that elephant mortality is 

higher: a) when dry periods are longer, b) closer to water points, and c) in 

areas with higher local elephant density. Using nine years of elephant 

carcass data from Tsavo Conservation Area in Kenya, we analysed the 

probability of adult elephant mortality using maximum entropy modelling 

(MaxEnt). We found that elephant carcasses were aggregated and elephant 

mortality was negatively correlated with four months cumulative 

precipitation prior to death (which contributed 41% to the model), 

Normalised Difference Vegetation Index (NDVI) (19%) and distance to water 

(6%), while local elephant density (19%) showed a positive correlation. Three 

seasons (long dry, short dry and short wet seasons) showed high probability 

of elephant mortality, whereas low probability was found during long wet 
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seasons. Our results strongly suggest that elephant starve to death in 

prolonged drought. Artificial water holes may lead to lower mortality, but 

also to larger populations with subsequent high browsing pressure on the 

vegetation. Our results suggest that elephant populations in arid and semi-

arid savannas appear to be controlled by drought-induced mortalities, which 

may be the best way of controlling elephant numbers without having to cull.  

 

 Introduction  

Human-induced climate change is threatening wildlife communities globally 

(Thuiller et al., 2006). For example, incidents of drought have occurred more 

frequently globally and particularly, in tropical savannas (Collier et al., 

2008). Recent studies predict that failure of long rains in East Africa may 

become a frequent occurrence in the future (Yang et al., 2014). Although 

drought is an integral part of arid and semi-arid systems, prolonged periods 

without rainfall may result in mass die-offs of wildlife (Knight, 1995). To 

prevent mass wildlife die-offs due to the predicted increase in drought 

periods, there is a need to better understand the causes of drought-induced 

mortality. In this paper, we aim to unravel the drought-related causes of 

mortality of the African elephant (Loxodonta africana). Although some 

studies have investigated elephant mortalities as a result of drought 

(Caughley et al., 1985, Moss, 2001, Foley et al., 2008), and the effect of 

environmental factors such as spatial and temporal variability in drinking 

water, food distribution (extrinsic drivers) and local population density 

(intrinsic driver) (Young and Van Aarde, 2010), few studies have focussed on 

long-term drought events, particularly on adult elephant mortality. This is 

because elephant mortality data were mainly from unpredictable, 

opportunistic single-drought events, whereas long-term, consistent records 

of elephant mortality are rare (Dudley et al., 2001, Foley et al., 2008), but 

see (Aleper and Moe, 2006).  

 

Continent-wide declines in African elephant populations are attributed 

largely to elephant poaching for ivory (Prins et al., 1994, Kahindi et al., 2010, 
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Bouché et al., 2011, Burn et al., 2011, Maingi et al., 2012, Wittemyer et al., 

2014, Chase et al., 2016) and loss of habitat associated with increased 

human population (Douglas-Hamilton, 1987, de Boer et al., 2013, Chase et 

al., 2016), but rarely to abiotic factors such as rainfall variability. Given the 

predicted increase in drought periods, the mortality of wildlife will likely rise, 

especially for species that are relatively more water dependent than others 

and those that require large amounts of daily food (Okello et al., 2015). For 

instance, in Kenya’s Amboseli National Park, the droughts of 2007 and 2009 

drastically reduced the population of large mammals, and species such as 

wildebeest (Connochaetes taurinus) declined by over 50% (Okello et al., 

2015). Elephant mortality as result of drought over the past few decades 

remains unprecedented (Corfield, 1973, Dudley et al., 2001, Walker et al., 

1987, Foley et al., 2008). For example, drought is suspected to have 

contributed substantially to the elephant population drop in Tsavo from 

35,000 elephant in 1974 (Cobb, 1976, Blanc et al., 2007) to below 12,000 

elephant in 2011(Ngene et al., 2011).  

 

Given their large body size and long generation time, survival of an adult 

elephant may be buffered against temporal variation in limiting resources 

(Gaillard et al., 1998, Gaillard et al., 2000, Prins and Van Langevelde, 2008, 

Moss and Lee, 2011). In the dry season, for instance, elephant shift their diet 

from a predominance of grass towards increasing amounts of woody browse 

(Lindsay, 1994, Moss et al., 2011, Kohi et al., 2011). This diet shift enables 

elephant to cope with prolonged drought. However, elephant feeding 

requirements and the dispersed distribution of resources in savannas may 

cause heterogenous elephant aggregation across the landscape (Wittemyer et 

al., 2007, Chamaille-Jammes et al., 2008). Consequently, at high densities, 

elephant may deplete local forage resources, often in the proximity of 

waterholes and rivers, particularly during the dry season (De Beer et al., 

2006, Chamaillé‐Jammes et al., 2008). Several previous studies identified 

distance to water as the primary environmental factor influencing the 

density of elephant during the dry season (Verlinden and Gavorv, 1998, 

Maingi et al., 2012), but the relationships between adult elephant mortality 
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and both high local elephant density and forage availability close to water 

during dry periods remain unexplored. 

 

We investigated whether elephant natural mortality varies seasonally, 

whether elephant carcasses are clustered around water points, and what are 

the relationships between observed patterns of elephant mortality and 

precipitation, distance to water, forage and local elephant density? Water is 

scarce in arid and semi-arid savannas and most seasonal rivers and water 

holes dry up during prolonged droughts. Consequently, elephant, especially 

the breeding herds, are constrained to close proximity of the remaining 

permanent water sources (O’Connor et al., 2007, Young and Van Aarde, 

2010). We hypothesized that elephant mortality will be higher: a) when dry 

periods are longer, b) closer to water points, and c) in areas with higher local 

elephant density. 

 

 Materials and Methods 

 

 Study area 

We conducted this study in the Tsavo Conservation Area (~48,300 km2), 

located at 2 - 4° S and 37.5 - 39.5° E in the southern part of Kenya (Omondi 

et al., 2008). It is an arid ecosystem with bi-modal rainfall from mid-March 

to May and from November to December (Omondi et al., 2008, Tyrrell and 

Coe, 1974). The long dry season typically ranges from June through October, 

whereas the short dry season occurs from January to March (Leuthold and 

Leuthold, 1978, Tyrrell and Coe, 1974). The mean annual rainfall in Tsavo 

ranges from 250 to 500 mm (Ngene et al., 2014). Tsavo Protected Area is 

dominated by a flat and undulating terrain with a difference in altitude of 

100-500m that is interrupted by granitic hills and inselbergs with the 

highest peak of Taita hills standing at ~2,220 metres above sea level 

(Mukeka, 2010). The perennial Galana River flows at the foot of the Yatta 

plateau situated in the northern part of Tsavo Conservation Area. The 

vegetation consists of remnants of Commiphora-Acacia woodlands that 

dominated the landscape in the past and is thought to have been thinned by 
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elephant (Bax and Sheldrick, 1963, Leuthold and Sale, 1973, Cobb, 1976). 

Tsavo Conservation Area hosts a third of Kenya’s estimated 38,000 elephant 

(Omondi et al., 2008, Ngene et al., 2011). 

 

Data 

We extracted adult elephant mortality data from the Tsavo Conservation 

Area database. These data were generated from daily foot-and-vehicle patrols 

that were carried out by security personnel in Tsavo Protected Area for nine 

consecutive years (2004-2012). The study area was historically divided into 

five sections for ease of patrol (Figure 1). A team comprising of between 5-25 

rangers patrolled each of these sections daily using a combined vehicle-and-

foot patrol. Furthermore, the park authorities received information on 

elephant mortalities from local people and tourists; these reports were also 

accepted if the carcass was confirmed by one of the patrol teams. We used 

elephant carcasses that were approximately less than four months old in our 

analysis. Most carcasses were fresh and were estimated to be less than a 

month old. A few were estimated to be more than 4 months old and these 

carcasses at least had remnants of skins and the bones not fully 

disintegrated, which enabled us to estimate the approximate death date. The 

elephant carcasses we used in this paper are from elephant of ages ranging 

from 3 years to 60 years (estimated ages) and over 80% of the carcasses were 

from adult elephant. 

 

The following information was recorded for each carcass: date, area name, 

sex (for fresh carcasses), likely cause of death, estimated age, and GPS 

coordinates. An elephant was assumed to have died of a natural cause if the 

carcass had no snare, spear, gun or poison arrow wound and if it was 

declared by the resident veterinary officer that it had not died of any disease. 

Although climatic conditions such as temperature change or lack of 

sufficient food in dry periods play a role in wildlife susceptibility to diseases 

(Harvell et al., 2002), we excluded all elephant deaths due to diseases, which 

were <1% of the total recorded mortalities, and used only records of 
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mortality other than poaching and diseases in our analysis. In total, we used 

221 elephant carcasses in this study (Figure 1C). 

 

Analysis of wildlife mortality data may violate a number of assumptions that 

underlie standard statistical tests. This is because there are many sources of 

biases from, for instance, variable patrol efforts (Burn et al., 2011, Huso, 

2011) and imperfect carcass detection. The sources of bias were reduced by 

dividing the study area into sections and conducting systematic carcass 

searches with equal search efforts (number of rangers and duration of patrol) 

(no differences between the sections: ANOVA, F =2.24, P > 0.05). 

Furthermore, the big size of the elephant carcass, its immobility, the open 

savanna landscape that dominates the Tsavo ecosystem, the strong smell 

from the rotting cadaver, vultures overflying and feeding on fresh carcasses, 

and the intensive and systematic patrols collectively minimized the bias as a 

result of imperfect detectability. We therefore assumed minimal detectability 

bias (MacKenzie and Royle, 2005), and used maximum entropy modelling 

with MaxEnt, which is a rigorously proven inference procedure based on 

presence-only data that yields least-biased predictions of occurrences (Harte 

and Newman, 2014). 
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Figure. 1. Maps of 1A) Kenya showing the location of Tsavo Conservation 

Area (TCA), 1B) the five management sectors of TCA where security patrols 

were carried out, 1C) elephant carcass locations, 1D) major rivers and, 1E) 

kriged rainfall amount of January 2009; dark shades representing high 

rainfall amount (see text for explanation). 

 

We mapped all the water sources in the study area and categorized them as 

permanent (perennial rivers – Figure 1D – and boreholes) or seasonal (rain-

fed ephemeral water pools and seasonal rivers). Permanent water sources 

have a water supply throughout the year, whereas seasonal water sources 

hold water for a maximum of four months in the rainy season (Ayeni, 1975). 

Boreholes are located near tourist facilities and supply water throughout the 

year. Using ArcGIS Spatial Analyst Tool (ESRI, 2011), we made a map with 
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the distance from grid cells (resolution of 250 m), including the elephant 

mortality locations, to the permanent rivers, boreholes and seasonal water 

sources separately. To reduce edge effects (Griffith, 1985), we generated a 

10km buffer around the study area and used it to clip the spatial extent of 

all other subsequent maps used in this study.  

 

We obtained monthly rainfall data from rain gauges distributed in different 

sites in the study area to capture the variation in rainfall amounts across the 

study area. We classified seasons in the study area into long wet, short wet, 

long dry and short dry seasons following Wittemyer et al. (2005) and Moss et 

al. (2011). We created point maps from rain gauge records for all the months 

where elephant mortality had occurred. Using kriging (ESRI 2011), we 

developed a rainfall grid (resolution of 250 m) for each of these months (see 

Fig. 1E as an example). We extracted rainfall values from these rainfall grids 

for all 221 elephant carcasses at the time of their estimated death. To 

account for effects of past rainfall amounts on elephant mortality, we also 

kriged the rainfall values from rain gauge records for one, two, three, four 

and five months prior to each elephant’s death. We calculated the 

cumulative rainfall from one month up to five months prior to each death 

and linked the values to the particular elephant carcass. 

 

Several studies analysing the relationships between elephant and vegetation 

have successfully applied the satellite-derived Normalised Difference 

Vegetation Index (NDVI) as a proxy for available forage (Loarie et al., 2009, 

Maingi et al., 2012). We used the NDVI images from the MODIS product 

(MOD13Q1), which is a 16-day composite of highest-quality pixels from daily 

images available at a spatial resolution of 250 m. The MODIS NDVI images 

were downloaded from the USGS Land Processes Distributed Active Archive 

Center (LP DAAC). For all 221 elephant mortality records, we extracted NDVI 

values at the time of each elephant’s death.  

 

The variable for local elephant density was derived from 2005, 2008 and 

2011 total aerial elephant censuses conducted in Tsavo Conservation Area in 
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the dry season (Omondi et al., 2008, Ngene et al., 2011). We generated 

kernel-density surfaces using ArcGIS Spatial Analyst Tool (ESRI, 2011) for 

local population densities of elephant in Tsavo on the basis of these three 

elephant censuses, and averaged the kernel density grid values. We then 

extracted a single estimated elephant density value for each of the 221 

elephant mortality locations. 

 

 Data analysis 

We used point pattern analysis to evaluate whether the spatial pattern of 

elephant carcasses in Tsavo Conservation Area was random, clustered or 

dispersed (Wong and Lee, 2005) and to evaluate the distances at which the 

clustering is most pronounced using Moran’s I in ArcGIS’s incremental 

spatial autocorrelation tool (ESRI, 2011). Besides, we modelled the 

occurrence of an elephant carcass as a function of distance to water, NDVI, 

local elephant density, season and amount of precipitation in preceding 

months using MaxEnt v. 3.3.3e. MaxEnt has been used widely in analysis of 

presence-only data (Phillips et al., 2006, Phillips and Dudík, 2008, Elith et 

al., 2011). MaxEnt relates environmental variables at presence locations with 

random locations in the whole study area and generates a spatial probability 

distribution of occurrence (Phillips et al., 2006, Coppes and Braunisch, 

2013, Ngene et al., 2014), in our case the probability of carcass occurrence 

which we call probability of elephant mortality in the paper. We used the 

area under the curve (AUC) of the receiver operating characteristic (ROC) plot 

(Phillips and Dudík, 2008) to assess the accuracy of the model. We used the 

default convergence threshold of 10-6, maximum number of iterations of 

5000 and the default logistic model to ensure that predictions gave estimates 

between 0 and 1 of the probability of elephant mortality in the study area. 

We generated 10,000 random points using Geospatial Modelling 

Environment (GME) (Beyer, 2004) from the entire study area that we used as 

background data in the MaxEnt modelling. For these 10,000 random points, 

we extracted data on local elephant density and distance to the nearest 

source of water. As we had time series of rainfall and NDVI, we randomly 

selected 20 elephant carcasses that represented different dates from 2004 to 
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2012. For each of these dates, we randomly drew 500 points from the rainfall 

and NDVI maps so that we could link rainfall and NDVI data to each of the 

random locations.  

 

We ran our model using a 10-replicate cross-validation setting. We randomly 

selected 70% of the elephant mortality locations as training data and used 

the remaining 30% for testing the resulting model. We tested for the 

correlations between all variables and found that all rainfall variables were 

correlated (r > 0.5). In the final model, we selected the rainfall variable that 

had the highest contribution in explaining the occurrence of elephant 

carcasses. There was also a correlation between NDVI and rainfall (r > 0.5) 

but we accounted for this in our analysis by showing results of each 

variables separately holding all other variables constant. 

  

Results 

 

Results from the Moran’s I analysis (Moran’s I = 0.316, Z score 6.74, P < 

0.05) showed that elephant mortality mainly occurred within a distance of 1 

to 8 km from each other in the Tsavo Protected Area, with maximum 

clustering occurring at a distance of ~8 km (Fig. 2). Our MaxEnt model had 

an AUC of 0.956 (Fig. 3). 

 



45 
 

 

Figure. 2. Incremental spatial autocorrelation of elephant-carcass locations 

for the 2004–2012 period showing clustered elephant mortality pattern in 

the Tsavo Protected Area. The graph’s peak at ~8 km indicates the distance 

of highest clustering of elephant carcasses. 

 

 

Figure. 3. The Area Under the Curve (AUC) of the best fitting model using 

MaxEnt to predict probability of natural elephant mortality in Tsavo 

Protected Area. 
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The four months cumulative precipitation prior to an elephant’s death (41% 

contribution), NDVI (19% contribution) and the distance to nearest 

permanent rivers (6% contribution) negatively correlated with the mortality 

of elephant, whereas local elephant density (19% contribution) showed a 

small positive correlation with elephant mortality (Figure 4). Furthermore, 

with exception of the long wet season, all other seasons showed a high 

probability (>0.5) of elephant mortality (Fig. 5). Based on this analysis, the 

probability of finding an elephant carcass is not uniform in Tsavo 

Conservation Area (Fig. 6), and the highest mortality occurs around 

permanent water and at low NDVI values. 

 

We tested for the change in NDVI values with an increase in distance from 

the Galana River (at 5 km interval from 1km to 50 km) for the driest 

recorded month of September 2009. NDVI was the lowest in this month and 

much lower than at the end of wet season. NDVI values were not 

significantly different with an increase in distance from the Galana river 

(ANOVA, F = 0.362, P = 0.90), suggesting that food availability was equally 

low close to the river compared to further away from the river.  
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Figure. 4. The probability of elephant mortality in Tsavo as function of 

several environmental variables: (a) NDVI, (b) distance to permanent water, 

(c) local elephant density, and (d) cumulative precipitation for the past four 

months . For each panel, all environmental variables other than the one for 

which the effect is shown were kept at their average sample value in the 

MaxEnt model. The curves show the mean response of the 10 replicate 

MaxEnt runs and the mean ± one standard deviation (shades). 
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Figure. 5. Probability of elephant mortality for each of the four seasons in 

Tsavo Protected Area for the period 2004-2012. 

 

Figure. 6. Predicted probability of elephant mortality in Tsavo Protected 

Area, based on the MaxEnt model. Dark shades represent high probability 

(close to permanent water, Figure 1D) and light shades representing low 

probability. 



49 
 

 Discussion 

Elephant are bulk feeders and require large amount of food to survive 

(Barnes, 1983, Jachmann and Bell, 1985, Jachmann, 1989, Osborn, 2004). 

They are also water dependent and must drink water frequently; mostly 

every two days (De Knegt et al., 2011, Skarpe et al., 2014). In arid and semi-

arid savannas where both water and forage are deficient in the dry season, 

elephant are faced with two major challenges: starvation or dehydration. The 

results of this study show that elephant mortality was high during long 

drought periods, i.e., at least four consecutive months with low or no rainfall 

(< 150mm). Moreover, elephant carcasses were aggregated and elephant 

mortality was high in areas with high local elephant density, low NDVI and 

in close proximity to permanent rivers. With the predicted increasing 

frequency of droughts in (East) Africa (Collier et al., 2008,  Yang et al., 2014), 

these findings are vital for effective conservation of the African elephant.  

 

Although drought-related elephant mortality is frequently observed (Dudley 

et al., 2001, Foley et al., 2008, Moss et al., 2011), and short-term studies on 

the role of extrinsic (environmental) and intrinsic (density-dependent) factors 

exists (Young and Van Aarde, 2010), long-term studies focussing on adult 

elephant are rare. This has been a major issue in understanding the 

repercussions of the infamous Tsavo Elephant disaster of the 1970s which 

often has been interpreted solely as the outcome of ‘overpopulation’ and has 

been used as a proof of density dependency in elephant (Myers, 1973, 

Corfield, 1973). Our results support the role of high densities especially 

around permanent water during dry seasons. It has been observed that 

elephant aggregate in the proximity of rivers, particularly during the dry 

season (O’Connor et al., 2007, Young and Van Aarde, 2010). This ‘crowding’ 

effect can lead to depletion of local food resources (De Beer et al., 2006, 

Chamaillé-Jammes et al., 2008) and probably a high elephant mortality 

around water points. These observations corroborate with our finding that 

carcasses are aggregated and that mortality probability of elephant is higher 

closer to water.  
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In our study, permanent rivers, specifically the Galana and Tiva rivers, seem 

to be the determinants for the heterogeneous distribution of elephant in the 

Tsavo landscape with high densities consistently recorded in close proximity 

to these rivers during the dry season. Our results further suggest that 

elephant mortalities are not likely to be explained by dehydration as 

elephant aggregate around permanent water, but that elephant mortalities 

are likely due to starvation. Our data shows that NDVI is low during dry 

periods close to rivers and further away. Although NDVI does not give any 

information about plant species composition and availability of palatable 

plants, it has previously been used as a proxy measure of available forage 

(Rasmussen et al., 2006, Young et al., 2009, Young and Van Aarde, 2010). 

Our findings therefore support the hypothesis that forage limitation in 

prolonged drought may result in elephant starvation (Gough and Kerley, 

2006, Young and Van Aarde, 2010), which appears to be intensified by local 

density. Effects of diseases and poaching are ruled out due to the selection of 

the carcasses. 

 

We found a large effect of the cumulative precipitation of four months before 

an elephant’s death. Similarly, Dudley et al. (2001) reported that it is the 

effective duration of the rainy season and not the total annual precipitation 

that determines elephant mortality during dry periods. A typical long dry 

season in Tsavo Conservation Area lasts for 5 months (June-October) 

(Omondi et al., 2008, Ngene et al., 2014). Rasmussen et al. (2006) showed 

that NDVI, which is a proxy measure of available browse, peaks at around 

80 days after the onset of the rains. This implies that by the end of the long 

rainy season in May, there is probably sufficient forage and water for 

elephant, which may remain available up to about 3 months into the dry 

period (Rasmussen et al., 2006). Therefore, elephant have to cope with the 

remaining two dry months of declining food availability assuming that the 

short rains (November-December) come on time. Elephant is a coarse feeder 

and can survive for long on poor quality forage and during the long dry 

season when the fibre content of the grass is high, they switch to browse and 

herbs (Beekman and Prins, 1989, Moss et al., 2011). Sometimes the amount 
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of rainfall in the long wet season may be too low to yield enough plant 

growth and fill the water points or the short rains may come late. Our 

results imply that, if the period of dry months extends beyond three months, 

it may lead to starvation of elephant, especially when local elephant density 

is high.  

For the nine years that this study covered, each year had an annual rainfall 

of over 250 mm, which is the average minimum rainfall reported for the 

Tsavo Conservation Area (Ngene et al., 2014). However the highest 

cumulative elephant deaths occurred in October of the year 2009. This year 

had the lowest rainfall during the long wet season, yielding 69 mm of annual 

rainfall. Because aboveground net primary production in arid and semi-arid 

environments is closely related to the amount of precipitation (Rosenzweig, 

1968, Rasmussen et al., 2006, Moss et al., 2011), the amount of rainfall 

during the long wet season in 2009 may not have been enough to produce 

sufficient woody browse to take elephant through the long dry season. This 

finding suggests that the long wet season determines the number of months 

that the forage will remain available in the long dry season before elephant 

succumb to starvation. Although we expected that the five months 

cumulative precipitation would show an even stronger correlation with 

elephant mortality, its effect was likely smaller than when considering four 

months cumulative precipitation: forage insufficiency did not last more than 

four months in the entire period that was covered by this study. 

Although this study was conducted in Tsavo Conservation Area, the findings 

from this study can be generalized to other arid and semi-arid savannas 

where elephant occur. Because water is a key determinant of elephant 

distribution in these areas (Verlinden and Gavorv, 1998), it has long been 

used as management tool to manipulate impact of elephant on the 

vegetation, for example in Kruger National Park in South African (Smit and 

Grant, 2009, Smit and Ferreira, 2010, Hilbers et al., 2015). Although 

artificial water holes may lead to lower mortality, it is argued that the 

increase of water points is indirectly causing vegetation degradation by 

attracting and building up elephant densities around them (Smit and 
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Ferreira, 2010). The closure of artificial waterholes in Kruger National Park 

to induce spatial redistribution of elephant in the landscape have resulted in 

increased elephant densities around large perennial rivers and large 

seasonal rivers as compared to smaller streams and areas far removed from 

rivers (Smit and Ferreira, 2010). Because there are few artificial water holes 

in the Tsavo Conservation Area, the trends in elephant distribution show 

opposite patterns to Kruger National Park, with very high elephant densities 

and mortalities around the perennial rivers.  

 

Even though prolonged droughts usually result in high elephant mortality, 

the resilience of these dry ecosystems may perhaps improve as a result of 

these deaths that release the vegetation from high browsing pressure and 

give it a window to regenerate. Our results suggest that elephant populations 

in arid and semi-arid savannas appear to be controlled by drought-induced 

mortalities, which may be the best way of controlling elephant numbers 

without having to cull. This implies that arid and semi-arid savannas may in 

fact be sustained by growth and crashes of herbivore populations, which is 

predicted by the non-equilibrium hypothesis for rangelands (e.g., Vetter, 

2005): non-equilibrium rangelands are thought to be mainly determined by 

stochastic abiotic factors, especially variable rainfall, which result in highly 

variable and unpredictable primary production, and population sizes of large 

herbivores rarely reach equilibrium with their fluctuating resource base. 

Maintaining these system as natural as possible may therefore keep 

elephant populations in savannas sustained for posterity.  
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Chapter 4 

Movement patterns of African elephant 

(Loxodonta africana) in dry savannas suggest 

that they have information on the location of 

the dispersed water sources. 

Yussuf A. Wato, Ignas M.A. Heitkönig,  Herbert H.T. Prins, Geoffrey Wahungu , 

Shadrack Ngene2, Steve Njumbi & Frank van Langevelde 

 

Abstract 

The movement strategy of an animal determines its efficiency in exploiting 

heterogeneous resources in a landscape. Water is a scarce resource in semi-

arid savannas where over half of the African elephant (Loxodonta africana) 

population occurs and may therefore influence their movement strategies.  

To maximise resource use efficiency, a random search is expected for an 

animal with no information on the location of the target resource. On other 

hand, a more direction-oriented ballistic walk is expected for an animal with 

information on the target resource. For elephant to survive in a dry savanna, 

they are likely to have information on the location of the few available water 

sources, especially in the dry season, and this will be reflected in their 

movement pattern. We therefore hypothesized that elephant movement 

patterns are ballistic and show a stronger directional-orientation towards 

water sources in the dry season compared to the wet season. We investigated 

the movement paths of four male and four female collared elephant with 

hourly GPS fixes in Tsavo National Park, Kenya in 2012-2013. Consistent 

with our predictions, the movement paths of elephant had longer step 

lengths, longer squared net displacement distances and were strongly 

directional towards water sources for both sexes in the dry season as 

compared to the wet season. We argue that African elephant have 
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information on the location of dispersed water resources, enabling them to 

survive with scarce resources in dry savannas. These results can be used in 

conservation and management of wildlife, through for instance, protection of 

preferred water sources. 

 

Introduction 

 

Animals’ movement paths represent behavioural and ecological processes, 

such as navigation, migration, dispersal and food searching (Benhamou, 

2004) and the distribution of the resources. For instance, the movement 

strategies used by an animal when foraging in a landscape with dispersed 

resources would be different from those of animals foraging in an area with 

clustered resources (Bartumeus, 2009). It is generally hypothesized that 

animals increase tortuosity of their movement paths in areas with high 

resource density (Bartumeus et al., 2005, Hengeveld, 2007, Bartumeus, 

2009). Consequently, the net displacement of the animal decreases and the 

time spent in utilising these resources increases, leading to efficient resource 

use (Turchin, 1991). On the other hand, straight and less tortuous 

movement paths with high net displacement are more efficient in landscapes 

with dispersed resources (Turchin, 1998, De Knegt et al., 2007, Roshier et 

al., 2008). Therefore, analysis of animals’ movement paths can give a useful 

insight on the relationship between the resource distribution and foraging 

efficiency. 

 

Previous studies on movement path analysis were mostly carried out on 

insects, birds, and small mammals (Turchin, 1991, Viswanathan et al., 

1996, Atkinson et al., 2002). However, recent advances in radio-telemetry 

have made it possible to collect vast quantities of movement data in space 

and time for both large terrestrial and marine mammals (Austin et al., 2004, 

Boyce et al., 2010). Although the movement parameters to be measured 

varies with the objectives of the study (Marsh and Jones, 1988), generally, 

parameters such as the distance covered between successive  relocations, 
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the turn angles, the directionality of the track and the relationship of the 

track with properties of the environment that the animal passes through 

form the basis of movement path analysis (Root and Kareiva, 1984, Marsh 

and Jones, 1988, Hengeveld, 2007, Dray et al., 2010, Calenge and Calenge, 

2015). These movement patterns may in turn determine the frequency with 

which the animal will encounter the object of interest which may be forage, 

water, mates or escape from predation (Marsh and Jones, 1988). To increase 

resource use efficiency, a random search is expected for a forager with no 

information on the location of the target resource, whereas a more direction-

oriented ballistic walk is expected for a forager with information on the target 

resource (Valeix et al., 2010). Knowledge on how animals move within their 

environment can give critical insight on animal’s behaviour that may be used 

in the effective management and conservation of species under study. 

 

Water is a scarce resource in semi-arid savanna, where over half of the 

African elephant (Loxodonta africana) population occurs, and may therefore 

influence the movement strategies used by elephant. Elephant are water 

dependent and they usually have to drink water every two to three days 

(Stokke and Du Toit, 2002, Redfern et al., 2005, Smit et al., 2007). To 

survive in dry savannas, it is therefore critical for elephant to be able to 

efficiently find the sparsely distributed water sources, especially during dry 

season. Based on the elephant’s water requirements and the scarcity of 

water during the dry season, we expect that the movement pattern of the 

elephant will reflect these seasonal contrasts in water distribution. Although 

it is not in doubt that the distance to water is a primary environmental factor 

influencing habitat use by elephant (Verlinden and Gavorv, 1998, Smit et al., 

2007, Chamaille‐Jammes et al., 2007, Hilbers et al., 2015), it remains 

unclear how the behavioural responses of elephant change as a result of 

water scarcity(Chamaille-Jammes et al., 2008). Here, we analyse the 

movement paths of four male and four female elephants to address the 

hypothesis that elephant movement patterns are ballistic and show a 

stronger directional-orientation towards water sources in the dry season 

compared to the wet season. We predict that the movement path for the male 
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and female elephant are less tortuous, have longer step lengths, longer 

displacement distances and smaller turning angles and will depict strong 

directionality towards water sources in the dry season than in the wet 

season. Past reports indicate that elephant remember and re-visit previously 

visited sites (De Beer and Van Aarde, 2008, Prins and Van Langevelde, 2008, 

De Knegt et al., 2011) and pass on the information of their historical 

migration routes through generation (Moss et al., 2011, McComb et al., 

2001). Thus, longer step-lengths and higher directionality of elephant 

movement paths towards water sources in the dry season is an indication 

that elephants use information to travel to these water sources.  

 

We used radio-telemetry data from GPS collared elephant in Tsavo 

Conservation Area to investigate the differences in elephant movement 

pattern between a wet and a dry season. During the wet season, there is 

abundant water for wildlife in the Tsavo ecosystem (Omondi et al., 2008, 

Mukeka, 2010). However, this area has sparsely distributed permanent 

water sources in the dry season when the only available water sources for 

wildlife are reduced to two perennial rivers, three boreholes, and a few water 

pools constantly refilled by the hoteliers and neighbouring community 

ranches (Ayeni, 1975). Water has been identified as key resource that affects 

elephant distribution and their spatial habitat use (Chamaille‐Jammes et al., 

2007, Harris et al., 2008, Smit and Grant, 2009). For instance, in drier 

environments, elephant take an average of 3 days to drink water and the 

duration of re-visiting water points differ between sexes (Stokke and Du Toit, 

2002), with bull elephant drinking every 3–5 days while breeding herds every 

2–4 days (Viljoen, 1989, Leggett, 2006). Furthermore, the breeding herds 

have been reported to forage close to the proximity of water sources in dry 

season compared to the male elephant (Harris et al., 2008). 
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Method 

Study area 

We conducted this study in the Tsavo Conservation Area in Kenya, a semi-

arid ecosystem spanning  an area of ~48,300 km2, located at 2° - 4° S and 

37.5° - 39.5° E in the southern part of Kenya (Omondi et al., 2008, Ngene et 

al., 2012). The area is characterized by a bi-modal rainfall  with long rains in 

mid-March to May, short rains in November to December (Tyrrell and Coe, 

1974) and a mean annual rainfall of 250 to 500 mm(Tyrrell and Coe, 1974, 

Prins and Loth, 1988). The two rainfall seasons are separated by a five 

months long dry season typically ranging from June through October (Tyrrell 

and Coe, 1974, Leuthold and Leuthold, 1978, Omondi et al., 2008). There 

are two permanent rivers in Tsavo (Galana and Tsavo) and several seasonal 

rivers, with Voi and Tiva rivers flowing for a short time in the rainy season 

(Ayeni, 1975). Other sources of water are the numerous natural waterholes 

which fill up with water during rainy season. Some of these waterholes can 

hold water throughout the short dry season (January-March) but all the 

natural waterholes dry up around July-August during the long dry season 

(June to October) (Ayeni, 1975, Mukeka, 2010). In addition, there are three 

wind pumped boreholes and a few water reservoirs located around tourist 

facilities and community owned ranches with constant water supply for 

animals in the peak of the dry months. 

 

Elephant GPS data 

We monitored four female and four male elephant fitted with satellite-linked 

GPS collars between March 2012 to June 2013 in the Tsavo National Park in 

Kenya. The individuals that were collared were randomly selected from five 

sectors in the Tsavo Conservation Area to represent elephant movement 

patterns across the entire Park. The procedure for fitting GPS collars are 

described in Ngene et al. (2012). The GPS collars transmitted hourly fixes 

and the data were automatically transmitted to a web-linked database at the 

Tsavo East Research Station in Kenya.  The GPS had an error of ~10 meters 

for relocation fixes and some hours had missing values caused by 

obstruction of signals by, for instance, heavy cloud cover or dense tree 
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canopies. In our analysis we considered only the successive time steps with 

GPS fixes. 

 

We analysed elephant movement patterns for the males and the females in 

two seasons: the long dry season (June to October 2012) and the long wet 

season (March to May 2013). These two seasons are distinctly different in the 

amount of rainfall and would therefore show the relationship between the 

change in movement pattern related to water availability.  

 

Figure 1: The black dots are hourly GPS fixes for a male elephant a) in the 

dry and b) the wet season; and for a female elephant c) in the wet and d) the 

dry season. In both sexes the individuals’ movement paths seem to be tightly 

anchored on a river in the dry season. 
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Data analysis 

We calculated the distance covered by each elephant per hour based on the 

hourly GPS fixes. We recorded the distance between successive hours to 

represent a single movement path (i.e., step-length) based on the methods 

described by (Root and Kareiva, 1984, Marsh and Jones, 1988, Hengeveld, 

2007). We calculated the turn angle as a measure of the change of direction 

between successive steps with a zero degrees turn corresponding to 

locomotion on a straight line without change of direction, a negative angle 

representing a turn to the left and a positive angle representing a turn to the 

right (Calenge and Calenge, 2015). We then analysed the distribution of step 

lengths, turning angles and squared net displacement distances (NDD) for 

both sexes and seasons with AdehabitatLT animal movement analysis 

package in R (Calenge and Calenge, 2015). We calculated the parameters of 

turn angle distributions such as the mean resultant length and the mean 

direction using CircStats package Version 0.2-4 in R (Lund and Agostinelli, 

2015).  The mean direction vector represents the mean orientation of the 

turn angles while the mean resultant length shows the strength of 

directionality  and the concentration of the angles distribution around the 

mean (R = 0 represents a dispersed turn angles distribution and R = 1 shows 

that all angles are equal to the mean direction vector) (Lund and Agostinelli, 

2015). We only analysed the movement paths that were directed towards the 

nearest water source to focus on the effects of water on movement path. In 

order to establish whether the directionality changed with distance from the 

water source, or whether proximity had no effect, we also stratified our 

analysis to 5, 10 and 15 km from the water source. We analysed the effect of 

the fixed variables, season, sex and distance from the nearest water source, 

on elephant’s movement pattern using linear mixed effects models (LMMs). 

We used the ID of the elephant as a random effect variable to account for 

variation due to individual differences. We also checked for the interaction 

effects between sex and season in our analysis. We performed this analyses 

using the R packages lme4 (Bates et al., 2013). 
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Results 

The step-lengths per hour for the elephant were significantly longer in the 

dry season compared to the wet season (Table 1a). The step-lengths changed 

with distance from the nearest water point, with the step-lengths further 

from the water (15 km) being significantly shorter than those closer to water 

points (5 and 10 km) (Table 1a). Even though both male and female elephant 

have a longer step-lengths in the dry season as compared to the wet season, 

the results showed a significant interaction effect of sex and season (Figure 

1a). The male elephant have a longer step-lengths than the females in the 

dry season. Similarly, the squared net displacement distance for the 

elephant were significantly longer in the dry season compared to the wet 

season (Table 1b). The squared net displacement distances were significantly 

longer further away from water (15 and 10 km) as compared to distance 

closer to the water (5 km) (Table 1b). Furthermore, the squared net 

displacement distance was also significantly affected by the interaction 

between the sex and the season with squared net displacement distances in 

the dry season being longer than the wet season. Moreover, squared net 

displacement distances of males were longer than the females in both the 

wet and the dry season (Figure 1b). However, the turn-angles for both sexes 

were large in both the wet and the dry season and did not show any 

significant difference between the seasons. 
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Table 1: Fixed effect variables with coefficients = β, CI = confidence interval 

and p-value = P from the LMM model. Main effect coefficients indicate the 

separate effects of sex, season and distance (km) from the nearest water 

source on the movement pattern of the male and the female elephant. 

Interaction coefficients show the combined effect of sex and season on the 

elephant movement pattern; the dependent variables; a) step-length b) net 

displacement distances. 

a) Step-length 

 

b) Net Displacement Distance 

 

Significant codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ , [***] represents the reference 

variable 

The mean resultant length of the turning angles for males showed strong 

directionality in the dry season compared to the wet season (Figure 2). 
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Similarly, the female elephant’s turning angles showed strong directionality 

in the dry season compared to the wet season. The resultant mean length of 

the turning angles for females were in the same range with males in wet 

season but much lower than the males in the dry season, although not 

significantly different (Figure 2). 

 

Figure 1: Partial regression coefficients for a) the step-length, and (b) 

squared net displacement distances for the male and the female elephant 

movement paths in the wet (black bars) and the dry (grey bars) season. The 

distance of the trajectories were in km. 
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Figure 2: Directionality of the elephant movement pattern in the wet and dry 

season for a) males and b) females for different distances to water sources. 

Rho = 0 represents a dispersed turn angles distribution, hence indicates 

weak directionality, and R = 1 shows that all angles are equal to the mean 

direction vector, hence indicates strong directionality. Females were not 

recorded to be at 15 km from the nearest water point in the dry season (b). 

 

The range of water re-visitation frequency was 1-4 days for the females and 

2-5 days for the male elephant in the dry season  

 

Discussion 

 

The study of animal  movement  patterns in relation to resource distribution 

is one of the novel ways to link behaviour of individuals to the spatial 

distribution of resources (Schick et al., 2008, Giuggioli and Bartumeus, 

2010). Resource distribution varies in space and time, and can occur in a 

spectrum ranging from over-dispersed, random, in patches or highly 

aggregated clusters (Prins and Van Langevelde, 2008, De Knegt et al., 2011). 

We examined the role of water distribution on the movement pattern of 

elephant. In this study, we show how elephant movement pattern changes as 

a result of seasonal changes in water distribution. The results support our 

predictions that both the male and the female elephants’ movement paths 
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are less tortuous resulting in longer step lengths, and longer net 

displacements distances in the dry season compared to the wet season. 

Furthermore, the mean length of the turning angle showed strong 

directionality towards water sources for both the sexes in the dry season.  

Tsavo Conservation Area is an ecosystem experiencing pronounced scarcity 

of water and in the long dry season, two perennial rivers and three boreholes 

serve as the primary water source for wildlife. Most wildlife species, and 

particularly elephant, require regular water intake (Stokke & du Toit 2002; 

Redfern et al. 2005) and have to travel between the foraging sites and 

watering points to meet their energy and water requirements. For instance, 

in Kruger National Park, elephant drink water every two days during the dry 

season (Young, 1970), and other studies show that duration of water re-

visitation is sex dependent (Viljoen, 1988; Leggett, 2006). Their movement 

paths are expected to be influenced by water distribution, and elephant 

appear to have information about the water locations. Therefore, regular re-

visitation of watering points may explain the long step-lengths and net 

displacement distances and the strong directionality towards water sources 

in the dry season. The use of information about the location of the water 

sources is especially apparent when they show this behaviour at long 

distances from the water sources. A few studies have found a relationship 

between resource distribution and the movement patterns of other wildlife 

species (Prins, 1996, Loureiro et al., 2007, Valeix et al., 2010). For instance, 

in a study of lions in arid savannas, their step-lengths and net displacement 

distances were longer as they headed towards waterholes with high 

aggregation of prey species (Valeix et al., 2010). Similarly, the study of 

Eurasian badgers showed that their movement paths were less tortuous as 

they headed towards their dens and latrine sites (Loureiro et al., 2007).    

During the wet season, there is abundant forage and water for wildlife in 

Tsavo ecosystem (Omondi et al., 2008, Mukeka, 2010). In addition to the 

perennial rivers that flow throughout the year, most of the  natural  

waterholes across Tsavo ecosystem fill up with water during rainy season 

(Tyrrell and Coe, 1974, Ayeni, 1975). Some of these waterholes have water 
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throughout the rainy season and may extend to the short dry season 

(January-March) (Ayeni, 1975), hence  elephants are not water limited then.  

Thus, the step-lengths and net displacement distances can be shorter in the 

wet season. Similar movement patterns have been reported for foragers in 

sites of abundant resources. For instance, the movement paths of lions 

hunting close to a waterhole where there are high prey species congregation, 

had a short step-length and net-displacement distances and was more 

tortuous  than when they are further away from a waterhole (Valeix et al., 

2010). 

Although water is limiting for both sexes in the dry season, female elephant 

rarely moved further than 10 km from the nearest water source to forage in 

the dry season while male elephant accessed forage sites beyond 15km. This 

agrees with other studies (O’Connor et al. 2007, Young and Van Aarde 

2010). Furthermore, in the dry season, the directionality of movement path 

for male elephant was much stronger than the female elephant. This is in 

line with past studies that reported that breeding herds rarely roam far away 

from drinking water in drier environments (Viljoen, 1988; Leggett, 2006). In 

these mixed herds, the increased costs associated with moving long 

distances to far foraging sites may be especially stressful for infants and 

juveniles (Lee and Moss, 1986, Loveridge et al., 2006) and could lead to 

increased calf mortality (Foley et al., 2008, Loveridge et al., 2006, Young and 

Van Aarde, 2010). Our results support the hypothesis that elephant initially 

seek habitats closer to water in the dry season, regardless of the distribution 

of food (Illius, 2006, de Beer et al., 2006, Chamaille‐Jammes et al., 2007, 

Evans and Harris, 2008). However, if there are many water sources, elephant 

choose those water sources with more vegetation and avoid those that are 

not associated with suitable vegetation (Harris et al., 2008). 

The difference between male and female elephant movement patterns may be 

also be explained by elephants’ social organization (Moss et al., 2011, Archie 

et al., 2011) and the difference in foraging strategy between the sexes (Lee et 

al., 2011a). The foraging range of a male elephant is larger than the females 

as they take more risks and disperse to unfamiliar habitats to seek for forage 
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and mates (Lee et al., 2011a, Skarpe et al., 2014). This foraging behaviour 

may have advantages such as accessing far foraging grounds and water 

points in dry season (Lindsay, 2011, Lee et al., 2011a). Moreover, the mixed 

herd comprises of individuals of different ages and the group’s movement is 

affected by, for instance, calves that may not be able to move fast and far 

from water sources like the adult elephant (Ngene et al 2010). The large 

herds also spread widely while foraging and probably, while heading to the 

water sources to drink. Conversely, the bulls move and forage alone or in a 

bachelor herd without calves to retard their speed (Ngene et al., 2010). Thus, 

bulls may travel far to forage but also walk in a less spread formation 

towards the watering point. The difference in foraging strategies among 

different sexes are common in other sex-dimorphic species like the red deer 

(Gordon, 1989), moose (Miquelle et al., 1992), among many others. 

Generally, the differences in foraging strategies in many species appears to 

be driven by factors such as energy need requirements, reproductive status 

of an individual, body sizes and the social context, all of which differ between 

sexes (Miquelle et al., 1992, Lindsay, 2011). 

This study shows a positive correlation between water distribution and its 

consequences on the movement path of the elephant. It supports other 

studies and models that indicated that animals often adjust their movement 

pattern in relation to critical and scarce resources. Our findings reveal that 

elephants’ movement paths are ballistic and show strong directionality in dry 

season driven by water distribution. We demonstrate that environmental 

variables can be used to predict general movement patterns of large 

herbivores and the findings can be used in conservation and management of 

wildlife, through for instance, protection of preferred water sources. 
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Chapter 5 

Elephant in dry savannas choose a forage site 

with high forage biomass in the dry season 

and high nutrients in the wet season.  

 

Yussuf A. Wato, Ignas M.A. Heitkönig, , Herbert H.T. Prins, Geoffrey Wahungu, 

Shadrack Ngene, Edward Kohi, Steve Njumbi & Frank van Langevelde 

 

Abstract 

African elephant (Loxodonta africana) is generally considered to be a bulk 

feeder and thus non-selective. However, recent studies indicate that elephant 

is able to forage selectively, but the level at which it makes foraging decision 

is still debated. In this study, we investigated the effect of forage biomass 

and nutrient concentrations on forage site selection by elephant in a semi-

arid ecosystem. We collared four female and four male elephant in Tsavo 

National Park, Kenya in 2013-2015. We then (i) mapped their seasonal 

activity ranges, (ii) determined areas of high and low use, and finally (iii) 

determined elephant forage site choice based on nutrient concentration in 

forage and biomass of the forage. The results show that elephant chose sites 

with high forage biomass in the dry season whereas forage nutrients, 

particularly the nitrogen concentration and the grass biomass, appear to 

determine forage site choice by elephant in the wet season. Comparing the 

sexes, female elephant chose sites with higher forage biomass whereas male 

elephant chose sites with high nutrients. The results of this study can be 

used to identify suitable land for the establishment of new protected areas 

and for zoning existing protected areas for elephant conservation. 
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Introduction 

African elephant (Loxodonta africana) are the largest terrestrial mammals, 

and they are generally considered to be bulk feeders and thus, non-selective 

(Van Soest, 1981, Lindsay, 2011, Shrader et al., 2012). Over half of the free-

ranging African elephant live in semi-arid savannas. These savanna 

ecosystems are characterised by diverse plants species with varying 

structure ranging from grasses, shrubs and trees (Scholes and Archer, 

1997). In such ecosystems, forage resources to satisfy herbivore nutrient and 

energy requirements are rarely homogeneously distributed since there are 

many factors that affect the forage quality and quantity (Knox et al., 2012). 

These factors includes soil types (Heitkonig and Owen‐Smith, 1998, Craine 

et al., 2009), geology (Grant and Scholes, 2006, De Knegt et al., 2011), 

slopes and catenas (De Knegt et al., 2011), amounts of rainfall (Prins and 

Van Langevelde, 2008) among other factors (e.g., (Olff et al., 2002). Thus, 

forage quality and quantity vary between seasons, plant species and different 

plant growth stages (Beekman and Prins, 1989, Knox et al., 2012). 

Consequently, herbivores have to search for and forage on different plant 

species, from different patches, and sometimes from different seasonal 

ranges  to meet all of their requirements (Prins and Van Langevelde, 2008, 

Young and Van Aarde, 2010). Previous studies report that elephant initially 

choose a foraging area with high food availability irrespective of plant species 

composition (De Knegt et al., 2011, Shrader et al., 2012), and then 

selectively forage on more nutritious plants within the selected foraging site 

(Holdo, 2003, Pretorius et al., 2011). This explanation is invoked for heavy 

browsing on some plant species in a landscape (Babaasa, 2000).  

 

Most of the dry savannas have typically a wet and dry season, and this 

seasonality appears to play an important role on elephant’s forage site 

choice. For instance, elephant feed mostly on abundant and nutritious grass 

in the wet season (Beekman and Prins, 1989, Lindsay, 1994, Osborn, 2004, 

Cerling et al., 2007, Skarpe et al., 2014). During dry seasons, the grass 

becomes moribund and many plant species shed leaves to conserve water 

and reduce evapotranspiration (Osborn, 2004, Do et al., 2005). Hence, 
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elephant shift their diet from a predominance of grass towards increasing 

amounts of woody browse to meet their energetic requirements (Lindsay, 

1994, Moss et al., 2011, Kohi et al., 2011, Kos et al., 2012). Browse is 

sparsely distributed in a savanna landscape and therefore, elephant must 

spend more energy in searching for sites with sufficient browse (Young and 

Van Aarde, 2010). Consequently, to minimise this energy expenditure, 

elephant will probably choose a site with a high biomass of forage in the dry 

season (Prins and Van Langevelde, 2008, Ngene et al., 2010, De Knegt et al., 

2011). In contrast, during the wet season, forage is abundant (Wittemyer et 

al., 2007, Ngene et al., 2010) and hence, elephant movements are less 

limited by the availability of forage (Chamaille‐Jammes et al., 2007). 

Therefore, we expect elephant distribution to be influenced more by selection 

of forage sites with a higher plant quality that can satisfy their nutrient and 

energy requirements at minimal effort in the wet season.  

 

The persistence of a large herbivore in an area is not only linked to forage 

abundance but also forage quality (Olff et al., 2002). While forage abundance 

increases linearly with rainfall, the leaf tissue nutrient content that indicates 

forage quality has been shown to increase at low rainfall as long as the 

plant-available nutrients is high (Olff et al., 2002). Since dry savannas have 

variable rainfall and plant-available nutrients, plants in some sites are often 

limited by nitrogen or phosphorous (Augustine et al., 2003, Cech et al., 

2008, Pretorius et al., 2011). Therefore, a herbivore species in these 

ecosystem will choose a foraging site based on the availability of forage 

quality that meets its energetic needs (Olff et al., 2002). For instance, in an 

experiment of different nutrient additions in soils of a homogeneous tree 

stand, it was shown that elephant were able to choose nutrient-rich patches 

at the scale of 100 m2 with the patch choice strongly correlated to nitrogen 

content in plants (Pretorius et al., 2011).  

 

The use of telemetry has made it possible to describe the link between 

animal movement patterns and the distribution of key resources (forage and 

water) at a fine temporal and spatial scale (Douglas-Hamilton, 1987, 
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Murwira et al., 2010, Ngene et al., 2010, Pittiglio et al., 2012). Most studies 

use remote sensing data as a proxy of forage availability (Mueller et al., 

2008, Pettorelli et al., 2011) such as NDVI (Pettorelli et al., 2011, de Boer et 

al., 2013), to infer choice and selectivity of forage sites (Loarie et al., 2009). 

However, despite its popularity, NDVI is a poor proxy measurement of forage 

quality, particularly in semi-arid areas (Huete, 1988, Huete et al., 2002) and 

it neglects how plant species composition and their nutrient concentrations 

influence elephant distribution (Ferwerda et al., 2006, Skidmore et al., 

2010). Therefore, measuring the biomass and nutrients concentrations of 

plants in the field yields a more robust representation of forage site choice by 

herbivores.  

 

The foraging decisions of mammalian herbivores is influenced by their body 

size (Demment and Van Soest, 1985), with smaller herbivores being more 

selective than larger herbivores (Gordon and Illius, 1994). This difference 

also exists within conspecifics based on behavioural differences between the 

sexes and the age classes (Woolley et al., 2009). For instance, male elephant 

have prolonged growth (Moss et al., 2011), and have to incur additional 

energetic costs in the annual reproductive musth phase where they spend 

less time foraging and more time searching for the females, hence incurring 

energetic costs of contests and fights (Poole et al., 2011). Thus, the male 

elephant may need to consume more forage biomass than the female 

elephant to meet these additional energy cost (Lee et al., 2011).  However, 

the energetic requirements for females are also high especially during the 

period of peak lactation (Moss and Lee, 2011).  Because of these behavioural 

and social-organizational differences between male and female elephant 

(Lindsay, 2011), we tested the differences in forage site selection between the 

sexes. 

 

In this study, we investigated the effect of forage biomass and leaf tissue 

nutrient contents on forage site choice by elephant in a semi-arid ecosystem. 

Specifically, we investigated (i) the seasonal activity ranges of 8 satellite-

linked GPS collared elephant, (ii) areas of high and low use, and (iii) how 
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they are linked to sites visited by these elephant that differ in quality and 

quantity of food over the seasons. We hypothesize that the choice of a 

foraging site by elephant is determined by: 1) forage quality during the wet 

season, 2) forage biomass during the dry season, and (iii) forage with higher 

nutrient concentration for female elephant and with higher biomass for male 

elephant. 

Methods 

We monitored eight elephant (4 females and 4 males) fitted with satellite-

linked GPS collar in a wet and a dry season from 2012 to 2014 in Tsavo 

Conservation Area, Kenya.  The procedure for fitting GPS collars is described 

in Ngene et al. (2012). The collars had a battery life of 24 months and were 

set to record elephant position every hour, with 24 fixes per elephant per 

day. The GPS signals were sometimes obstructed by weather condition such 

as cloud cover or thick vegetation canopy and failed to take the hourly 

coordinates (Hebblewhite et al., 2007). We used only those fixes which had 

GPS coordinates in our analysis with the mean number of fixes per elephant 

in the dry season (± standard deviation) being 3270±392 and in the wet 

season 2015±71. 

 

Data were retrieved from collared elephant via a satellite link and uploaded 

automatically on online software provided by Africa Wildlife Tracking (AWT). 

We calculated the kernel density to visualize the intensity of forage site use 

for each elephant (Rodgers and Kie, 2010). A kernel density measures the 

density of GPS fixes within the foraging area of each elephant, and uses this 

to estimate which areas an individual uses most frequently.  First, we 

mapped total foraging area of each GPS collared elephant where GPS fixes 

occurred 90% of the time irrespective of the frequencies of the fixes. Within 

the total foraging area, we then identified areas where GPS fixes occurred 

50% of the time, referred to in this paper as “the high use area” (Figure 

1).  We sampled vegetation in the high-use areas of each of the 8 GPS collar-

fitted elephant. We converted the high use area into a polygon (ESRI, 2011) 

and divided the polygon into equal grids measuring 20 X 20 meters (Figure 
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1). We then randomly selected 25 grids for each of the 8 collared elephant; 

hence we sampled a total of 400 grids (200 in the wet and 200 in the dry 

season).  

 

 

 

Figure 1: The foraging range of one of the collared elephant (Emusaya male) 

in the dry season showing the sampling protocol. The red polygons 

represents high-use area while the grey polygons represents the total 

foraging area. 25 grids of 20x20m were randomly selected for vegetation 

sampling. 

 

Browse biomass estimation 

 

We used the individual trees in the grids as a sampling unit. The mean 

number of trees (± standard deviation) sampled at sites of high use for each 

elephant was 692±334 in the dry season and 880±346 in the wet season 

and, we sampled a total of 114 plant species. Within each sampled grid, we 

recorded all the tree species and measured their browseable leaf biomass 

using the biomass estimate from the canopy volume (BECVOL; (Smit, 1996, 

Smit, 2014). To calculate browseable biomass for each individual tree, we 

measured the following parameters: tree height, height of maximum canopy 
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diameter, height of first leaves or potential leaf bearing stems, maximum 

canopy diameter, and the base diameter of the foliage at height of first leaves 

or potential leaf bearing stems (Smit, 1996). To account for tree shape 

variation (Smit, 1996), we segmented the tree canopy into parts; as the top 

part is dome shaped, we calculated the volume using the formula for a half 

ellipsoid (Smit, 1996, Kohi et al., 2011). Depending on the lower shape of the 

canopy of each tree, we used a formula of a cone frustum or a cylinder to 

calculate its volume (Smit, 1996, Kohi et al., 2011). We then used Smit’s 

(1996) generic equation for broad-leaved and microphyllous tree species to 

calculate the available browseable biomass per tree.  

 

Leaf nutrient analysis 

We hand-picked leaves from each of the sampled trees and stored them in 

paper bags, which we oven dried at 70°C for 48h. We then ground the dried 

leaves and sieved them through a 1mm sieve. Finally, we analysed the 

powdered leaves samples at the chemical laboratory of the Resource Ecology 

Group in Wageningen University, The Netherlands. We analysed the nitrogen 

(N) and phosphorous (P) concentrations of the leaves through digestion in a 

mixture of sulfuric acid, salicylic acid and selenium (Novozamsky et al., 

1983). We then measured N and P with a Skalar San-plus autoanalyzer 

(Breda, The Netherlands) as described by Kohi et al. (2011 

 

Grass biomass 

To estimate available grass biomass, we randomly laid 100m transects in the 

high-use areas of the collared male and female elephant and divided each 

transect into six points at intervals of 20m. We then randomly selected two 

points from the six points on each transect and used a disc-pasture meter to 

estimate the grass biomass. We harvested the grass under the disc, air-

dried, and stored them in paper bags. We then estimated the grass biomass 

in the Kenyatta University laboratory using the standard procedures 

described by ’t Mannetje (2000). In total we laid 80 transects (40 in wet and 

40 in dry season), from which we harvested a total of 160 grass samples. The 
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transects where grass biomass was measured overlapped with 50 % of the 

grids where the tree biomass were measured.  

 

Data analysis 

We analysed whether browseable tree, and grass biomass and nutrient 

concentrations (nitrogen and phosphorous) determined elephant forage site 

selection using linear mixed effects models (LMMs). Partial regression 

coefficients were used to understand the differences between browseable tree 

biomass and grass biomass and nutrient concentrations between sites 

visited by the male and the female elephant during the wet and the dry 

season. We used sex and season as fixed effect variables, the individual 

elephant, the grids and tree species as random effect variables and 

browseable tree and grass biomass and nutrient concentrations in the forage 

as the dependent variables. We also checked for the interaction effects of sex 

and season in our analysis. We performed this analyses using R (Team, 

2014) with the R packages lme4 (Bates et al., 2013).  

Results  

Generally, elephant chose areas with a higher amount of browseable tree 

biomass in the dry season compared to the wet season (Table 1a). Forage site 

choice by elephant was dependent on the interaction between the sex of the 

elephant and the season, with the female elephant choosing sites with a 

higher browseable tree biomass in the dry season compared to the sites 

selected by the male elephant (Figure 2a). 
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Table 1: Fixed effect variables with coefficients = β, Confidence interval = CI 

and p-value = P from the LMM model for a) browseable tree biomass, b) 

Nitrogen concentration in the browse, and c) grass biomass. Main effect 

coefficients indicate the separate effects of sex and season on the forage site 

choice by the male and the female elephant. Interaction coefficients show the 

combined effect of sex and season on the choice of forage site by elephant.  

a) browseable tree biomass 

b) Nitrogen 
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c) grass biomass 

 

Significant codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ , [***] represents the reference variable 

There was no significant difference in the nitrogen concentration of the 

forage in the sites chosen by the males and the female elephant (Table 1b). 

However, the sites chosen by both sexes had forage with significantly higher 

nitrogen concentration in the wet season compared to the dry season (β = 

267, t = 3.6, p < 0.001) (Table 1b). Forage phosphorous concentration was 

not different in the sites chosen by the males and the female elephant in 

both wet and dry seasons. 

Grass biomass was significantly higher in the sites selected by both the 

female and the male elephant in the wet season compared to the dry season 

(β = 30, SE = 4.3, t = 7.0, p <0.001) (Table 1c). However the site selection 

was dependent on the interaction between the sex of the elephant and the 

season, with female elephant choosing areas with significantly more grass 

biomass compared to male elephant in the wet season (β = -19, SE = 6.0, t = 

-3.2,   p = 0.002, Figure 2b).  
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Figure 2: Partial regression coefficients for the a) browseable tree biomass 

and (b) grass biomass in the sites selected by the male and the female 

elephant in wet and dry season. 

Discussion 

The aim of this study was to understand what determines the forage site 

choice by free living elephant in the wet and dry season, and if the forage site 

choice was different between sexes. Our approach was to map areas that 

recorded low and high residence time for collared elephant and to sample the 

leaf nutrient contents and measure biomass of all trees and grass found in 

these foraging sites, hence eliminating the possibility of any bias of assumed 

plant preference by elephant. We found that there is a difference in forage 

site choice between male and female elephant in the wet and dry seasons. 

Although both the sexes chose sites with a higher tree biomass in the dry 

season and sites with a higher grass biomass and leaf nitrogen 

concentration in the wet season as expected, the results show an interaction 

between sex and season.  In the dry season, female elephant chose sites with 

a higher amount of browse biomass as compared to the sites selected by 

male elephant. Similarly, in the wet season, female elephant selected forage 

sites with a higher grass biomass as compared to the sites selected by the 

male elephant. However, leaf nitrogen concentration determined forage site 
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choice for male and female elephant in the wet season, thus it was not a 

discriminatory factor for explaining forage site choice between the sexes. 

During the dry season, the availability and abundance of food and the 

nutrient content to satisfy the requirements for large herbivores like the 

elephant become scarce (Babaasa, 2000, Prins and Van Langevelde, 2008, 

Owen-Smith and Chafota, 2012). Therefore, in the dry period, the value of a 

plant to a herbivore is not only determined by the energy content in the plant 

but also the increased energy costs to find it (Pretorius et al., 2012). Our 

results show that female elephant chose forage sites with a high browseable 

biomass in the dry season, thus they appeared to maximise the energy 

gained from the browse while at the same time minimising energy that is 

expended to search for nutritious browse that is sparsely distributed. 

Previous studies reported that elephant reduce the energy costs incurred 

searching for the sparsely distributed nutritious food and increase their 

energy intake by consuming more of the most abundant but sometimes, less 

nutritious food (Pretorius et al., 2012). For female elephant that are in mixed 

herds of different age and sex, the strategy of moving less and feeding on 

more available food may be advantageous for the group (Ngene et al., 2010, 

Lindsay, 2011). However, male elephant can roam more and increase their 

chances of finding more nutritious forage even in the dry season as they are 

not slowed down by herd speed (Lindsay, 1994, Ngene et al., 2010, Lindsay, 

2011). 

 

In the wet season, the availability and abundance of nutritious plant species 

increases, hence reducing the energy demand required by elephant to search 

and feed on these plants (Loarie et al., 2009). However, the link between 

rainfall and availability of nutrients in forage is never linear, as leaf tissue 

nitrogen content decreases with plant available moisture and increases with 

plant-available nutrients (Olff et al., 2002). Rainfall amounts and soil fertility 

are heterogeneous in a savanna landscape, and so is the spatial distribution 

of forage quality (De Knegt et al., 2011, Pretorius et al., 2012). During the 

wet season, the demand for all nutrients increases as elephant replenish the 
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deficient nutrients required for the biochemical reactions that drives their 

metabolism (Brown et al., 2004, Parker et al., 2009). Although trees are 

sparsely distributed compared to grasses, we found that both sexes of 

elephant chose sites with browse of a higher nitrogen content in the wet 

season. Elephant are hindgut fermenters and are less effecient at digesting 

their food, hence they incur high losses of nutrients in the faeces (Clauss et 

al., 2003). Thus, they chose sites with plant species that have high nutrient 

concentration (Jachmann and Bell, 1985, Pretorius et al., 2011, Pretorius et 

al., 2012). Consistent with our finding, Pretorius et al. (2012) found that 

elephant maximized their nitrogen intake in the wet season. Since plants 

consist of low nitrogen to fibre and carbohydrates ratio (White, 1978, 

Mattson, 1980), whereas animals need nitrogen to build structural proteins 

in their body, elephant need to spend more time foraging on these plants to 

get enough nitrogen to satisfy their requirements.  

 

Compared to the males, the female elephant foraged more in areas with a 

higher grass biomass in the wet season (Osborn, 2004).  Grass is abundant 

in the wet season and it has higher nutrient content and lower toxin and 

fibre content (Lindsay, 1994), hence it provides a higher return per unit 

foraging time than browse (Osborn, 2004). This result indicated that female 

elephant appear to choose a site based on forage biomass and availability.  

However, grass lacks certain essential nutrients and it becomes moribund 

and less nutritious quickly in the dry season. Although both grass and 

browse are abundant in the wet season, woody trees are sparsely distributed 

compared to grass.  Despite that, browse has a higher and diverse nutrient 

content than grass and the nutrients remain available in the dry season 

(Jachmann, 1989).  The male elephant consumed less grass as opposed to 

female elephant in the wet season suggesting that they foraged more on 

browse that is rich in nutrients. Our results are in line with Osborn (2004) 

who observed that the male elephant appeared to choose forage based on 

their nutrient content rather than the availability. Male elephant roam far 

and wide to forage as compared to females (Chiyo et al., 2011) and can 

therefore forage on sparsely distributed trees, and access browse on tall 
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trees by pushing them over (Lindsay, 2011).  Furthermore, male elephant 

have been reported to crop-raid in the transitional period between the wet 

and the dry season, perhaps to seek for more nutritious forage when grass 

begins to dry and drop in nutrient content (Osborn, 2004). The difference in 

forage decisions based on gender has been reported in other studies. For 

instance, Woolley et al. (2009) found that diet quality differed between 

elephant of different sexes, ages and body sizes.  

 

We conclude that forage biomass is the primary determinant of forage site 

choice for elephant in the dry season whereas nutrients, particularly leaf 

tissue nitrogen concentration and grass biomass, determined forage site 

choice by elephant in the wet season. Comparing the sexes, female elephant 

are driven more by forage biomass as compared to male elephant where 

nutrients appear to be more important in forage site choice. In view of the 

current challenges of increased human-elephant conflicts and the reduction 

of space for wildlife as a result of competing alternative land-uses, the 

results of this study can be used to identify suitable land to establish new 

protected areas and to zone existing protected areas for elephant 

conservation. This could be done through regular assessments of forage 

quality and quantity within the landscapes based on elephant forage site 

preferences.  
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Chapter 6 

Synthesis 

African Elephant in a Cleft Stick 
Choosing between starving or dying from thirst in 

arid savanna. 

 
Elephant have been studied extensively as they are the largest extant 

terrestrial mammal, a charismatic species, have a high economic and 

ecological value, and a complex social behaviour (Scholes and Mennell, 

2008, Moss et al., 2011). Studies on wildlife populations, especially on the 

African elephant, have attracted immense attention because of the long 

standing perception that an increase in elephant numbers have an adverse 

impact on vegetation (Glover and Sheldrick, 1964, Laws, 1970b, Myers, 

1973, Ben-Shahar, 1993, de Beer et al., 2006, Guldemond and Aarde, 2008, 

Staub et al., 2013), and sometimes, on other species (Cumming et al., 1997, 

Kohi et al., 2011) through their foraging behaviour of pushing over, 

uprooting and snapping trees (Staub et al., 2013).  

Consequently, elephant population management has been debated for 

decades with contradicting propositions on how it should be addressed 

(Laws, 1970b, Caughley, 1976, Myers, 1973, Barnes, 1983, Owen-Smith et 

al., 2006, Van Aarde and Jackson, 2007). Most rangeland and wildlife 

ecologists view arid and semi-arid savannas, where over half of the elephant 

population in Africa occur, to be governed by equilibrium dynamics (Sinclair, 

2003, Gillson and Lindsay, 2003, Vetter, 2005, Junker et al., 2008). Based 

on the equilibrium view, it is assumed that the ecosystem has an ecological 

carrying capacity that can only support a certain maximum desirable 

number of elephants (Sinclair, 2003).  Once this number is surpassed, 

elephant populations are perceived to cause undesirable habitat modification 
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and significant loss of woody vegetation (Barnes, 1983, Calenge et al., 2002). 

Hence, management intervention such as  provisioning of water supplies, 

culling or translocation is deemed necessary to keep elephant populations 

artificially close to  the presumed “ecological carrying capacity” or to disperse 

and possibly reduce the perceived negative impacts (Van Aarde and Jackson, 

2007). Conversely, in areas where elephant population are on the decline 

through various causes such as poaching (Douglas-Hamilton, 1987, Prins et 

al., 1994, Wittemyer, 2011, Chase et al., 2016), human-wildlife conflicts, 

disease outbreaks or natural causes such as drought (Dudley et al., 2001, 

Foley et al., 2008), the interest of wildlife managers is to reverse the trend. 

This is usually done through, for instance, reduction of elephant deaths by 

intensifying anti-poaching surveillance and disease control through 

veterinary services. However, the ecological carrying capacity is, in itself,  

difficult to determine in a natural ecosystem such as tropical savannas 

(Owen-Smith et al., 2006). Tropical savannas are characterized by a highly  

variable rainfall which deems ecological carrying capacity a doubtful basis 

for population control (Gillson and Lindsay, 2003).  

While some causes of elephant mortality such as poaching can be managed, 

drought induced mortality is hard to control. The case studies invoked to 

indicate the adverse effects of severe droughts and the negative 

consequences of elephant overpopulation on vegetation include Tsavo 

National Park in Kenya (Corfield, 1973, Myers, 1973, Phillipson, 1975), 

Chobe National Park in Botswana (Skarpe et al., 2004), Hwange National 

Park in Zimbabwe (Dudley et al., 2001) and other tropical savannas (Foley et 

al., 2008). The “Tsavo Elephant Problem” where about 5000 drought induced 

mortality were reported in the 1960s and 1970s (Corfield, 1973), for 

instance, attracted immense global research interest. Most studies 

investigating Tsavo elephant mortality inclined towards the explanation that 

the cause of death was probably due to high elephant population that had 

little food to sustain it, basing their arguments on equilibrium view (Owen-

Smith et al., 2006, Guldemond and Aarde, 2008). There is however, a 

contrary view that the mass elephant death could be a natural event that 
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happens in such arid ecosystem whenever prolonged drought occurs, 

suggesting that tropical savannas are non-equilibrium systems (Caughley, 

1976). Non-equilibrium dynamics predicts that plant composition and 

biomass in tropical savannas are primarily driven by rainfall and not by 

grazing pressure, that animal numbers are kept at low densities by frequent 

droughts, and that herbivory has little impact on vegetation change (Ellis 

and Swift, 1988, Illius and O’Connor, 1999, Sullivan and Rohde, 2002). The 

Tsavo debate was not concluded partly because it was based on only one 

drought incident, but also research interest slowed down as occurrence of 

severe droughts declined. However, elephant mortality continued to occur 

even during short droughts though not in the magnitude of the 1960s and 

1970s, and the frequency of these droughts have been increasing and is 

predicted to increase into the future (Shrader et al., 2012, Yang et al., 2014), 

and that is the basis of my motivation to undertake this study.  

The understanding of drought related elephant mortality and its impact on 

elephant population require a long term dataset of population change in 

relation to drought occurrences. I relied on the best existing data in Africa of 

wild elephant population that has been consistently monitored for over 40 

years where life histories of over 3000 individual elephants are known, at 

Amboseli National Park in Kenya. Further, I also analysed geo-referenced 

elephant mortality data collected daily for 10 years from Tsavo ecosystem. In 

this thesis, I present four studies; two of these are based on the long-term 

data and focussed on the theme of spatial and temporal changes in elephant 

mortality in relation to drought length (months of dry season) and intensity 

(rainfall amount) in chapter 2 and 3.  The other two studies are based on 

short-term data covering the movement response of African elephant to 

seasonal water and forage distribution in the landscape (chapters 4 and 5). 

First, I will discuss the themes of each chapter separately and synthesize the 

prominent issue that arises in each. Secondly, I will proceed to generalize the 

findings to a broader context of elephant population change in tropical 

savannas. Finally, I will draw conclusions and identify gaps and 

recommendations for further research. 
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Drought-related elephant mortality with respect to age and sex 

The result of this study corroborates other past studies that calves (<2years) 

are more susceptible to drought caused mortality in elephant and the risk of 

dying decreased with age (Foley et al., 2008, Guldemond and Aarde, 2008, 

Lee et al., 2011a, Moss, 2001). Further to what is already known from the 

past studies, this study indicates that the effect of drought induced mortality 

for the adult elephant is sex and age dependent with males older than 25 

years being less likely to die as compared to females of the same age (chapter 

2). This is a new finding as past research suggested the effect of droughts on 

adult male and female elephant were insignificant (Moss, 2001, Lee et al., 

2011a). This new finding may have arisen because of the resolution of the 

analysis of my study which focused on the length and severity of drought as 

opposed to past studies that restricted their analysis to seasonal and inter-

annual differences in rainfall patterns (Lindsay, 1994, Moss, 2001, Lee et al., 

2011a).  

Drought and spatial elephant mortality 

Based on a model from observed spatial elephant mortality in Tsavo 

Conservation Area for 10 years, the findings of chapter 3 indicate that 

elephant carcasses were aggregated and elephant mortality was negatively 

correlated with four months cumulative precipitation prior to death, forage 

availability and distance to water, while local elephant density showed a 

positive correlation. This finding rules out dehydration as the cause of 

elephant mortality in Tsavo ecosystem even during drought. Analysis of 

forage availability in areas near and further away from the permanent river 

in Tsavo Conservation area did not show significant difference in the driest 

season. This finding suggests that however far from the river the elephant 

would have foraged, there would be no gain in more forage, and perhaps, it 

may be more beneficial to forage close to the water source to minimise 

energy expended in foraging further away from the river.  Hence, in a 

prolonged drought, elephant mortalities may have occurred as a result of the 

forage quality and quantity that may have dropped too low to meet their 

energetic requirements. However, elephant are known to migrate for long 
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distances and it has also been suggested that they can remember and re-

visit previously visited sites (De Beer and Van Aarde, 2008, Prins and Van 

Langevelde, 2008, De Knegt et al., 2011) and pass on the information of their 

historical migration routes through generation (Moss et al., 2011, McComb 

et al., 2001). It therefore still remains unclear from this investigation, why 

they remained near a water source with no sufficient forage and eventually 

starved to death. Perhaps, the fidelity to a watering point is too strong and it 

takes a long time for elephant to explore other watering points unknown to 

them, or it may be likely that elephant may avoid moving into the unknown 

area and instead adopt a strategy to stay close to water, conserve energy, 

and wait for the rain. It may also mean that the historical migratory routes 

that linked elephant to other areas with better forage have been blocked by 

other land uses such as farms and human settlements. Past studies have 

reported that some species exhibit site fidelity, such as breeding-site fidelity 

(Switzer, 1993). 

Habitat utilization by elephants in relation to forage distribution 

In a landscape where the water sources and rich foraging sites are few and 

far apart, hundreds of kilometres in the case of Tsavo ecosystem, the activity 

time budget for the elephant include movement between the water sources 

and the foraging sites. How far they go to forage from the water source will 

be determined by the distribution of forage relative to water sources and the 

amount of energy that the elephant is able to spend moving between the 

foraging and watering sites. Animals optimize their energy expenditure, 

hence, they will use the foraging site that are close enough to water so that 

they are able to re-visit the water source as frequently as they require. The 

questions that can be explored are; what is “a close enough” foraging site for 

elephant? and, what determines selection of a foraging site for elephant – is 

it the forage nutrient concentrations or forage biomass?  

Allometric studies show that forage selection is inversely related to body size 

(Demment and Van Soest, 1985). Based on their large body size, it was 

generally believed that elephant can survive on a less nutritious but a high 

biomass forage (Shrader et al., 2010, Shrader et al., 2012), and are therefore, 
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less susceptible to starvation. In Tsavo ecosystem and other tropical 

savannas, high elephant mortalities were recorded close to rivers during 

periods of prolonged droughts (Corfield, 1973, Dudley et al., 2001, Foley et 

al., 2008). In all these cases, other causes of deaths such as diseases and 

poaching were ruled out, thus the likely cause of these mortalities may be 

starvation.  

The unanswered questions are: was there interspecific competition for forage 

due to high elephant density? Were there no better foraging sites these 

elephant could migrate to? Were the better foraging sites too far for the 

elephant to utilize and re-visit the few watering points? Was the vegetation 

already very low in nutrients or biomass, enough to meet elephant 

physiological requirements? Through analysis of seasonal elephant 

movement data, my study shows how available vegetation biomass and 

nutrients influenced elephant habitat utilization in tropical savannas. 

Whereas elephant selected foraging sites based on biomass available in the 

dry season, our findings showed that forage quality is important for the 

elephant in the wet season (chapter 4). Comparing the sexes, females 

selected areas with a higher forage biomass compared to the males. This 

result may be explained by the difference in social organisation and foraging 

strategies between the sexes (Lindsay, 2011). In human-elephant conflict 

incidences, for instance, male elephant raid crops more than mixed herd 

(Sitati et al., 2003). Therefore, the crop raiding incidences by the male 

elephant may be due to the search for quality forage, and these sites may be 

farms close to Tsavo Conservation Area. In addition, males foraged alone or 

in small bull groups except during the breeding season when they join mixed 

herds (van Aarde et al., 2008, Moss et al., 2011). This social behaviour 

allows male elephant to access far foraging sites because when foraging 

alone or in a small all-male groups they are not slowed down by calves as 

when they would be foraging in mixed herds.   
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Elephant movement pattern in relation to water 

Movement strategy of an individual organism determines its chances to 

survive, as animals must move to forage (Stephens, 2007, De Knegt et al., 

2011), provision (Stephens, 2007, Prins and Van Langevelde, 2008), disperse 

or migrate to favourable habitats (Kot et al., 1996, Wikelski et al., 2003). By 

determining the fate of an individual, movement ultimately affects 

population dynamics of animals (Turchin, 1991, Huisman, 2014). In chapter 

5, I explored how water scarcity affect elephant seasonal movement patterns 

(in a peak wet and dry season).  It is not in doubt that water is a major 

constraining factor for elephant in tropical savannas and to a large extent, 

influence elephant distribution and local elephant densities (Chamaille‐

Jammes et al., 2007, Chamaillé‐Jammes et al., 2008, Smit et al., 2007, Smit 

and Grant, 2009, Young and Van Aarde, 2010). In dry seasons, large 

elephant congregations are found around the few water sources causing 

heavy browsing and creating “piospheres” around them (Smit and Ferreira, 

2010, Chamaillé‐Jammes et al., 2009, Shrader et al., 2010). To spread 

elephant distribution across landscapes, one prescription is water 

provisioning by sinking boreholes and digging water pans (Smit et al., 2007). 

Most protected areas in Africa, particularly, the southern African parks, have 

practiced this for decades and indeed succeeded in spreading elephant 

across landscapes. However, in the recent studies, water provisioning has 

been reported to cause homogenisation of landscapes which is not good for 

wildlife, and particularly, elephant (Hilbers et al., 2015). Moreover, utilization 

of water sources is uneven with some water sources heavily used than 

others, hence elephant impacts on vegetation differ around these watering 

points. For example, in Kruger National Park, permanent rivers attract 

higher elephant densities than smaller water pans (Smit and Ferreira, 2010). 

Although there is a general consensus that water influences elephant 

distribution and their survival, there are many questions that remain to be 

studied (Hilbers et al., 2015). For instance, how do elephant select which 

water source to visit? What mechanisms do they use to locate these water for 

re-visitation – is it back-tracking, using landmarks or dead reckoning? Do 



88 
 

they have site fidelity where they prefer to drink water? Do they have 

information about their landscapes and watering points or do they randomly 

search for these water sources? The historical reports that elephant took 

over 50 years to colonize Kruger may perhaps, be something to do with how 

elephant slowly familiarize and discover water sources unknown to them in a 

new environment (Whyte et al., 2003). 

The results from chapter 4 indicates that elephant have strong fidelity to a 

particular water source. Male elephant remained at a distance of about 20 

km from the nearest water source while the female elephant foraged to a 

maximum of about 10 km way from the water and only moved further than 

this distances in the wet season. All the individuals re-visited only one 

particular water source. The strong directionality of elephant movement from 

a distance of 15km (rho > 0.5) as they re-visited their watering source in the 

peak dry season suggest that elephant have information on location of their 

water sources. Whether they use land marks, back-tracking or dead 

reckoning to find the water source was not investigated in this study. During 

wet seasons, the individual elephant I studied migrated as far as 100 km to 

forage and they used temporary water pans and seasonal rivers. They all 

returned back to a permanent water source just before the onset of the dry 

season. The timing to return to the permanent water source in the dry 

season was so precise and the whole trek happened in a span of two days 

with movement clearly directed to the river. Again, whether the same water 

pans are used during all the wet seasons or whether elephant randomly 

search for these water pans before they found them the first time is an area 

that require further research and outside the scope of my study. 

Drought and elephant population change: Is non-equilibrium dynamics 

at play? 

Elephant are bulk feeders and require large amount of food to survive 

(Barnes, 1983, Jachmann and Bell, 1985, Jachmann, 1989, Osborn, 2004). 

They are also water dependent and must drink water frequently; mostly 

every two days (De Knegt et al., 2011). Tropical savannas are deficient in 

both water and forage especially in dry seasons and therefore, elephant are 
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faced with two major challenges; starvation or dehydration. However, 

elephant have existed in these dry ecosystems for a long time and this 

implies that they have probably adapted mechanisms to survive. The 

question is, how do they cope with scarcity of water and food although they 

require both in very high quantities? 

Tropical savannas are characterized by variable rainfall (Huenneke and 

Noble, 1996, Prins, 1996), a typical characteristic of a non-equilibrium 

system. Although it is conceivable that as animal population increases, the 

resources they depend on would be limiting (Sinclair and Krebs, 2002), two 

aspects make density-dependent regulation difficult to observe in elephant 

populations in tropical savannas: First, elephant are the largest and long-

lived terrestrial mammals (Moss et al., 2011), thus there is a long time lag 

before the effect of density on population occurs making negative feedback 

between population numbers and resources unlikely. Second, the frequent 

droughts in tropical savannas probably reduce elephant numbers before the 

population reaches a point where food could become limiting, hence there 

may be no opportunity for density dependent regulation to develop. This may 

explain why there are many reports of density dependent regulation in 

mammalian species, mostly from the stable temperate environments 

(Gaillard et al., 1993, Gaillard et al., 1998), and rare evidence of density 

dependent regulation in African elephant populations (Van Aarde et al., 

1999, Sinclair, 2003, Junker et al., 2008). From these studies, water is the 

key resource that determines elephant distribution while food is secondary 

in habitat selection (de Boer et al., 2013). After a permanent water source is 

secured, then food quality and quantity becomes important for elephant 

habitat selection. Even so, forage biomass is the currency of choice in dry 

seasons and forage quality becomes important mostly in wet season. 

 

Prolonged droughts usually result in high elephant mortality, but the 

resilience of these tropical savannas may perhaps be as a result of these 

deaths that release the system from high browse pressure and give it a 

window to regenerate (Prins and van der Jeugd, 1993). If that is the case, 
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then drought induced elephant mortality may not be a bad thing. The 

findings from my studies strongly suggests that the tropical savannas may in 

fact be a non-equilibrium system sustained by growth and crashes of 

herbivore populations.  

Recent studies have brought to the fore the failure of drought mitigation 

measures such as water provision, culling, fencing, translocation and others 

to address drought induced elephant mortality. In Tsavo Conservation Area 

where these studies were conducted, the drying of Voi river and the 

subsequent establishment of three boreholes to supply water for wildlife 

turned that part of Tsavo to a “desert” in complete contrast to northern 

section of the park where the system was let to be. The drying up of Voi river 

has also resulted to high elephant population on the only remaining Galana 

river and, consequently, increased elephant mortality around this river. We 

can argue that manipulation of ecosystems, may in some instances, lead to 

elephant mortality in the long-term.  Therefore, dry ecosystems may better 

be managed as a “laissez faire”. This option is however, challenged by the 

anthropogenic factors that interfere with the natural ecosystem such as 

closing up of historical migratory corridors used by elephant to access dry 

season foraging sites or siltation and drying up of the rivers that lead to re-

distribution of elephant populations across the landscape. Anthropogenic 

factors will keep changing tropical savannas, hence, some level of active 

management is indeed inevitable. I argue that these management efforts 

should be directed to try and revive human-altered ecosystems, such as, 

opening up corridors through land use planning and restoration of rivers, as 

opposed to opening up artificial water sources. Supporting initiatives to 

mitigate the negative effects of climate change such as planting of trees, 

reducing greenhouse gas emission and others may be a long-term global 

agenda for elephant and other wildlife species survival.  

The modern day park managers have a daunting challenge to address issues 

such as mass elephant deaths in drought, increased human wildlife conflicts 

or changes in wildlife use of the landscape which may all be symptoms of 

wrong management interventions taken in the past or interference by 
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anthropogenic factors that may have changed the natural functioning of a 

non-equilibrium system. Apart from field experience gained at work, park 

managers need to make evidence-based conservation decisions that rely on 

research results. Such investigations can be ecological, social sciences, 

economics studies or even historical investigations. This argument is clearly 

exemplified by the most recent severe drought in South Africa in 2016 that is 

raising a debate similar to the one in Tsavo 50 years ago - on whether to cull 

2000 elephant or not? The pertinent question that arises is; what have we 

learnt after 50 years of Tsavo elephant mortality incident? The findings from 

these studies can be used to contribute to the direction that should be taken 

to address the long standing elephant management challenges in tropical 

savannas into the future (A copy of my response to address challenges of 

drought on mega-herbivores management in South African in 2016 based on 

this thesis  is attached). 

Finally, as Poole (1996) observed, “ Literally hundreds of studies on African 

elephant (Loxodonta africana) have been carried out across the African 

continent. We have learned more about elephant than, perhaps, any other 

large undomesticated African mammal, and yet we are just beginning to 

understand their complex lives”. Although this study has come up with 

important findings that will influence the management of African elephant 

population in tropical savannas, a lot of research questions remain 

unanswered as highlighted in the synthesis of each chapters and I 

recommend future follow-up studies. In conclusion, I argue that tropical 

savannas are non-equilibrium systems and should be managed as such. I 

further propose that maintaining tropical savannas as natural as possible is 

better for elephant populations to prosper for posterity as opposed to 

interventions such as culling or water provisioning.  
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My response to a proposal to cull 2000 elephants in South African 

Private Reserves to save other herbivores in the severe drought 

experienced in the year 2016 

 

“THE HERBIVORE-DROUGHT PROBLEM” IN THE ASSOCIATION OF 

PRIVATE NATURE RESERVES (APNR), WITH A FOCUS ON ELEPHANT – 

MAY 2016. 

Summary of the problem and the proposed solution as per the APNR 

report: 

The APNR is presently faced with the challenge of maintaining herbivore 

biomass which is thought to be way above the threshold that can be 

supported by the reserve’s available resources (especially food because there 

is enough water from artificial watering sources), and this is feared to cause 

rangeland degradation. The probable reason for the increased herbivore 

density (especially elephant) in APNR is the provision of excessive surface 

water and opening of the fence between the reserve and Kruger National 

Park, hence allowing free movement of the herbivores. The result is a decline 

in the spatial heterogeneity of the natural resources in the reserve and 

extensive grass mortality which is exacerbated by the current drought. To 

address this challenge, one of the proposed solution is to reduce elephant 

numbers because they are highly successful and competitive species and 

consequently, may result to increased mortalities of other herbivores, 

especially the endangered white rhinoceroses (Cerathotherium simum). The 

current conservation debate is to find options to reduce the elephant 

population. The favoured proposal is to cull at least 2000 elephant. 

THE TSAVO EXPERIENCE 

The effects of severe drought and the perceived negative consequences of 

elephant over-population on vegetation is best illustrated in the mass 

elephant die-offs that occurred in Tsavo Conservation Area in Kenya in the 

1960s and 1970s. During the single drought event of the 1970s, called The 
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“Tsavo Elephant Problem”, over 5000 elephant died and this attracted 

immense global research interest. Most studies then inclined towards the 

explanation that the cause of mass elephant mortalities were probably due 

to high elephant population that had little forage resources to sustain it. 

Therefore, culling was recommended to reduce the population. However, 

culling did not happen. Part of my PhD thesis investigated the drought 

induced spatial mortality pattern of elephant in Tsavo to explore the role of 

elephant density (alongside other factors such as food availability and water) 

in explaining these mortality patterns. 

The findings of my study indicate that elephant carcasses were aggregated 

and elephant mortality was negatively correlated with four months 

cumulative precipitation prior to death, forage availability and distance to 

water, while local elephant density showed a positive correlation. This 

particular finding rules out dehydration as the cause of elephant mortality in 

Tsavo because the mass elephant mortality occurred around one of the 

perennial rivers in the ecosystem. Analysis of forage availability close to or 

further away from the river did not show significant difference in the driest 

season. This finding suggests that however far from the river the elephant 

would have foraged, there would be no gain in more forage, and perhaps, it 

may be more beneficial to forage close to water source and minimise energy 

expenditure searching for a foraging site far removed, which is equally of 

poor quality.  Hence, in a prolonged drought, it may be the forage quality 

and quantity that may have dropped too low to meet elephant food 

requirements. However, elephant are known to migrate for long distances 

and it has also been suggested that they can remember and re-visit previous 

ranging areas and pass on the information on their historical migration 

routes for generations. Why did the elephant not migrate then?  One 

explanation is the historical migratory routes that linked elephant to other 

areas with better forage have been blocked by other land uses such as farms 

and human settlement, which is evident around Tsavo Conservation Area; 

Or may be all areas around Tsavo experienced severe drought.  
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Tsavo Conservation Area is different from Kruger and the reserves that 

surrounds it in terms of artificial water provision. Although there are several 

water pans (both natural and artificial) that spread across the 20,000 km2 of 

Tsavo landscape, these water pans only hold water in the wet season and dry 

up before the onset of the dry season. A few boreholes (5 in total out of 

which only 3 are working currently in the whole of Tsavo) supply water 

throughout the year. In addition, there is one permanent dam that was dug 

over 50 years ago and is now completely covered with silt, hence hardly 

holds water in the dry season. Therefore, elephant distribution is restricted 

to the few rivers (2-permanent and 2-seasonal) and the 3-boreholes during 

the dry season with local elephant densities sometimes going to as high as 

15 elephants per square kilometre around this water sources. The ranches 

surrounding Tsavo National Parks were mostly established for livestock 

farming but a few of them are slowly embracing wildlife conservation as an 

alternative land use. The ranchers provide artificial water supplies for their 

livestock and this attracts elephant as well during the dry seasons. Again, 

the density of elephant in this ranches have never been an issue because the 

water supplies are not many and also human disturbances, including 

wildlife poaching, is high in these ranches hence, deterring elephant 

numbers there. The important role these ranches play is to provide habitat 

connectivity between Tsavo National Parks (Tsavo East and Tsavo West) and 

Mkomanzi National Reserve at the border of Kenya and Tanzania. 

In Tsavo, elephant have never been culled to control their numbers, even 

after the massive die-offs in the severe droughts of 1960s and 1970s. Like 

Kruger, Tsavo also hosts other species of herbivores such as Impalas, 

Buffaloes, Zebras, Giraffes, Eland and other meso-herbivores.  Although the 

severity is low, Tsavo has experienced many short drought events since the 

1970s, the latest being in the year 2009 where more than 300 elephant died. 

The population of elephant in Tsavo dropped to a low of 5,000 around the 

late 80s (because of droughts but also increased poaching). However, in 

1989 to date, poaching of elephant has reduced significantly, and the 

population has grown to over 12,000 in the latest census done in 2013. This 
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is despite the few short drought events the population has experienced in the 

past few years.  The vegetation, especially woody trees, were negatively 

impacted on by high elephant density in the 1960s and 1970s, just before 

the drought. Today, the northern parts of Tsavo East National Park, which 

had the highest elephant population, and also experienced the greatest 

vegetation change due to high elephant density, has the thickest woody 

vegetation. This part has one of the permanent rivers which all wildlife 

species depends on, especially in the dry season. In contrast, the Southern 

part of Tsavo East National Park, where the three boreholes are still 

functional, has turned to an open grassland with hardly any trees and 

appears to be “a desert” within a park especially during dry season when all 

vegetation dry up and elephant (and other wildlife species) density increases 

around these boreholes. 

Lessons Learnt 

The tropical savannas are deficient in both water and forage especially in the 

dry season and therefore, elephant (and other wildlife species) are faced with 

two major challenges; starvation or dehydration. However, elephant (and 

other mega and meso-herbivores) have existed in these dry ecosystems for a 

long time and this implies that they have probably adapted mechanisms to 

survive. The question is how do they (elephants and other herbivores) cope 

with water and food scarcity and yet they require both in very high 

quantities? 

Even though prolonged droughts usually result in high elephant mortality, 

the resilience of these dry ecosystems may perhaps be as a result of these 

deaths that release the system from high browse pressure and give it a 

window to regenerate. If that is the case, then drought induced elephant 

(and may be other herbivores) mortality may not be a bad thing. The trend 

strongly suggests that tropical savannas may in fact be a non-equilibrium 

system sustained by growth and crashes of herbivore population. 

Maintaining the system as natural as possible may therefore keep elephant 

(and other herbivores) populations in savannas sustained for posterity. 



96 
 

Manipulation of the wildlife numbers or their habitats by for instance, 

culling, translocation or water provisioning, may temporarily appear to solve 

the immediate symptoms of “wildlife over-population” as we perceive it, but it 

will eventually result to other problems in the long-term. The evidence is 

clear in the effect of water provisioning which is now resulting in declines of 

the spatial heterogeneity of landscape resources by attracting highly water 

dependent species to congregate in an area. One may argue that it’s better to 

cull than to let wildlife species die of starvation, which is indeed a valid 

point. But again, the question is: Do we know which individuals will survive 

or succumb to starvation, so that we develop a criteria that selects only 

those individuals for culling? Probably the old, sick or weak individuals may 

be selected based on logic, but practically, identifying these individual 

animals in the field is not easy. In nature, those individuals that survive 

drought have traits that make them survive and it is best if those genes are 

passed on. Furthermore, if the forage quality and availability goes so low 

because of drought to the point that it cannot sustain herbivores’ survival, 

culling of elephant may not solve drought induced mortality of those 

herbivores. 

The challenge APNR faces today is similar to Tsavo 50 years ago, but APNR’s 

case is complicated even more by management actions (such as water 

provision and opening up of fences) that is not easy to reverse quickly, yet 

the need for the solution to this challenge is urgent. The cost of saving 

rhinos (and other herbivores) will come at a cost of culling elephant, which 

may solve the current symptoms of perceived negative impact on vegetation 

and competition for forage by elephant. However, in the long term, droughts 

will occur and a similar challenge will recur again. I therefore propose a long 

term solution to this current drought related challenge than to cull elephant. 

I argue that maintaining these dry savannas as natural as possible is better 

for elephant and other herbivores to prosper for posterity compared to short-

term interventions such as culling or water provisioning.  
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Summary  

Elephant population studies have become important especially because of 

the long standing perception that high elephant densities have negative 

impact on vegetation and other wildlife species. Thus, in areas of high 

elephant density, managers attempt to re-distribute them or keep their 

numbers low through provision of water, translocation or culling. These 

approaches are thought to keep the population within the limits that can be 

sustained by the ecosystem, termed “the ecological carrying capacity”, a 

management option hinged on equilibrium theory. Equilibrium systems are 

considered stable, with resources and the animals that depend on them 

being at balance with each other. This stability is rarely the case in tropical 

savannas where the rule appears to be “a flux of nature” rather than “a 

balance of nature”.  

Tropical savannas, where over half of the African elephant live, are prone to 

constant environmental fluctuations, especially prolonged droughts, and 

hence there is a growing understanding that populations of wildlife species 

and their communities are rarely at equilibrium. Therefore, it is critical to 

understand how the constant environmental flux in this system affects 

wildlife populations and the implication for their management. In this thesis, 

the central focus is to investigate the role of drought occurrences on 

elephant population dynamics in tropical savannas. To address this 

question, it is important to have a good understanding of the historical 

changes of elephant population in relation to drought events and the ecology 

of elephant in semi-arid savannas - their distribution and density, their 

movements and behaviour. For the historical data, I analysed the best 

existing long-term data in Africa of wild elephant population that has been 

consistently monitored for over 40 years where life histories of over 3000 

wild individual elephant are known, at Amboseli National Park in Kenya. In 

addition, I also analysed geo-referenced elephant mortality data collected 

daily for 10 years from Tsavo Conservation Area. Further, I analysed 2 years 

data from 8 GPS collared African elephant to investigate their movement 

response to seasonal water and forage distribution in Tsavo Ecosystem. 
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First, I investigated the temporal effects of drought duration (number of 

consecutive dry months) and intensity (amount of rainfall) on elephant 

population structure in Amboseli National Park, Kenya. The result 

corroborates findings from past studies that calves (<2years) are more 

susceptible to drought caused mortality and the risk of dying decreased with 

age. A new finding in this study reveals that the effect of drought induced 

mortality for the adult elephant is sex and age dependent, with males older 

than 25 years being less likely to die as compared to females of the same 

age. This new result is because of the resolution of analysis in this study 

which focused on the length and severity of drought as opposed to past 

studies that restricted their analysis to seasonal and inter-annual 

differences in rainfall pattern. As they grow older and sexually mature, the 

foraging range of male elephant increase and they begin to take more risks 

and disperse to unfamiliar habitats to seek for quality forage and mates. 

Generally, foraging strategies between sexes in many species are more 

pronounced during periods of food scarcity, and the driving force in the 

differences appears to be driven by energy need requirements, reproductive 

status of an individual, body sizes and the social context, all of which differ 

between sexes. 

In the next study, I investigated the spatial pattern of elephant mortality in 

relation to drought occurrences in Tsavo National Park using MaxEnt. The 

results shows that elephant carcasses were aggregated and elephant 

mortality was negatively correlated with four months cumulative 

precipitation prior to death, forage availability and distance to water, while 

local elephant density showed a positive correlation. This finding rules out 

dehydration as the cause of elephant mortality in Tsavo as the river where 

the carcasses were aggregated is perennial. Furthermore, forage availability 

was low close to water sources and did not show a significant difference 

close to or further away from the river despite high elephant density around 

the river.  Hence, these elephant mortalities may have occurred as a result of 

starvation. 
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I went further to focus on two main limiting resources for elephants, namely 

forage and water, and their effect on elephant-habitat utilization in semi-arid 

savannas. I first investigated how water source distribution affect elephants’ 

seasonal movement patterns. Results indicate that male elephant moved 

maximally 20 km away from the nearest water source in the dry season 

while the female elephant foraged to a maximum of about 10 km and only 

moved further than this distances in the wet season. The strong 

directionality of elephant movement from a distance of 15km towards water 

sources (rho > 0.5) as they re-visited their watering source in the dry season 

suggest that elephant have information on location of the water sources. 

Next, I investigated the factors that determine selection of a foraging site for 

elephant with a focus on forage nutrients or biomass. Because of their large 

body size, it is thought that elephant can survive on a less nutritious but 

high biomass of forage. The results from this study shows that elephant 

selected foraging site based on forage biomass in dry seasons, whereas they 

selected areas with higher nutrients in the wet season. Moreover, females 

selected sites with a higher forage biomass as compared to males. This result 

may be explained by the difference in social organisation and foraging 

strategies between the sexes. In the previous studies on human-elephant 

conflict, for instance, male elephant raided crops more than the mixed herd, 

perhaps to seek for high quality forage. 

Together, the four studies in this thesis strongly suggest that elephant starve 

to death in prolonged drought contrary to the past studies that reported that 

adult elephant are less affected by drought. Even though prolonged droughts 

usually result in higher elephant mortalities, the resilience of semi-arid 

savannas may perhaps be as a result of these deaths that release the system 

from high browsing pressure and give it a window to regenerate. If that is the 

case, then drought induced elephant mortality may be a better way to 

regulate elephant numbers than culling. This finding strongly suggests that 

semi-arid savannas may in fact be a non-equilibrium system sustained by 

growth and crashes of herbivore populations. Maintaining the system as 

natural as possible may therefore keep elephant populations in savannas 
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sustained for posterity. The modern day park managers have daunting 

challenges such as mass elephant deaths in drought, increased human-

wildlife conflicts or changes in wildlife use of the landscape which may all be 

symptoms of wrong management interventions taken in the past or negative 

impacts of anthropogenic activities that have tipped the natural functioning 

of a non-equilibrium system. Therefore, park managers should undergo 

regular trainings on new conservation techniques and they should apply 

evidence-based science to make informed long term decision. 
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Muhtasari 

Tafiti za idadi na wingi wa tembo zimekuwa za msingi sana hasa kwa 

sababu kumekuwa na mtizamo wa muda mrefu kwamba wingi wa tembo 

kwa eneo una matokeo hasi kwenye uoto wa asili na aina nyingine za 

wanyama. Hivyo wahifadhi wengi hujaribu kuwatawanya tembo au 

kupunguza idadi yao kwa kuwahamisha, kuuwa baadhi ya makundi au 

kuweka maji maeneo mengine.  

Mbinu hizi zinatazamiwa kuthibiti ongezeko la idadi ya tembo ukilinganisha 

na uwezo wa eneo la kuwahifadhi kiikolojia. Huu ni usimamizi unaolenga 

sheria ya usawa au usawazo. Mbinu hii ya usawazo ndio inakisiwa kuwa 

nafuu na yenye msimamo mzuri kwa rasilimali na wanyama 

wanayoitegemea katika hali ya usawa. Lakini usawa huu hauonekana 

maeneo ya tropika savanna ambapo muono wa sheria ni ule wa badiliko la 

asili na sio usawazo wa asili. 

 

Uwanda wa tropika savana ambao una zaidi ya nusu ya idadi ya tembo 

waliopo barani Afrika, unakabiliwa na mabadiliko ya tabia nchi, haswa ya 

muda mrefu wa ukame. Hivyo basi ni muhimu kuelewa ni vipi mabadiliko 

haya ya asili yanaathiri idadi ya wanyama pori na athari zake juu ya 

usimamizi wa wanyama. Lengo langu kuu ni kutafiti ni vipi ukame unaathiri 

idadi ya tembo katika uwanda wa tropika barani Africa. Ili kuweza 

kushughulikia hili swala, ni muhimu kuwa na ufahamu wa mabadiliko ya 

kihistoria ya idadi ya tembo, uhusiano wake na ukame na pia ikolojia ya 

tembo katika sehemu kame za savanna – wingi na mtawanyiko wake, na 

mwenendo wao. Nilichambua madhara ya ukame kwa tembo nikitumia 

takwimu za zamani za tembo waliofanyiwa utafiti kwa takriban zaidi ya 

miaka arobaini ambapo historia ya zaidi ya tembo elfu tatu zajulikana katika 

mbuga ya Amboseli nchini Kenya. Vilevile, nilifanya uchambuzi wa mizoga 

ya tembo zilizokuwa zinajulikana kijiografia (geo-referenced) na takwimu za 

hiyo mizoga zilikusanywa kila siku kwa muda wa miaka kumi kwa mbuga ya 

Tsavo. Halikadhalika, nilifanya uchambuzi zaidi wa takwimu za tembo 
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kupitia kifaa cha GPS kwa takribani miaka mbili ili kuweza kutafiti harakati 

ya tembo kutokana na maji ya misimu na liishe katika mbuga ya Tsavo. 

Kwanza nilifanya uchambuzi ya uhusiano wa muda (miezi iliyofuatana ya 

ukame) na kiwango ya mvua kwa idadi ya tembo nikitumia takwimu 

zilizokusanywa kwa zaidi ya miaka arobaini ya ndovu kutoka mbuga ya 

Amboseli. Matokeo yanalingana na utafiti uliofanywa tangu awali kwamba 

watoto wa tembo chini ya miaka miwili ndio wanaoathiriwa zaidi na ukame 

na wengi wao wanakufa. Vifo vya watoto wa tembo vinapungua pindi 

wanapozidi kukuwa. Utafiti mpya unaonyesha kwamba chanzo cha vifo vya 

tembo aliyepevuka kutokana na ukame unategemea jinsia na umri wa 

ndovu. Tembo jike wanaathriwa zaidi na vifo vinavyosababishwa na ukame 

wakilinganishwa na tembo dume wa umri sawa. Matokeo haya mapya 

umetokana na mbinu yetu ya utafiti uliyolenga urefu na ukali wa ukame 

kinyume na matokeo ya hapo awali ambayo imeweka vikwazo uchambuzi 

wake kwa mvua ya misimu na ile ya baina ya miaka. Pindi ndovu 

wanapokuwa kiumri na kubaleghe, jinsia ya kiume hutawanyika katika 

makazi mapya ili kupata liishe bora na pia wenzi. Kwa jumla, mikakati ya 

kuchagua eneo la liishe baina ya jinsia ya wanyama pori hujitokeza zaidi 

wakati wa upungufu wa chakula, na tofauti hizi hutokana na mahitaji ya 

nguvu, hadhi ya uzazi, ukubwa wa mwili na mazingira ya kijamii. 

Katika utafiti wangu mwingine, nilifanya uchambuzi wa madhara ya ukame 

kwa tembo katika mbuga ya Tsavo kwa kutumia hisabati aina ya MaxEnt. 

Matokeo yameonyesha kuwa idadi kubwa ya mizoga ya tembo ilikusanyika 

kwenye maeneo yenywe madimbwi vya maji. Vilevile, kuna uhusiano wa vifo 

vya ndovu na upungufu wa mvua hasa katika miezi minne kabla ya vifo 

vyao, kuwepo kwa liishe bora na umbali wa dimbwi la maji. Vifo vya tembo 

vilikuwa vingi kwa eneo lililokuwa na idadi kubwa ya tembo. Matokeo 

yanaonyesha thahiri ya kwamba ukosefu wa maji sio sababu kuu ya vifo vya 

tembo katika mbuga ya Tsavo kwa kuwa mizoga mingi ilipatikana karibu na 

sehemu ambapo ina mito ya kudumu. Ama chakula kilichopo karibu na 

madimbwi ya maji ya kudumu hakikuonyesha tofauti kuu na chakula 
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kilicho mbali na madimbwi. Hivyo basi, kuna uwezekano kwamba vifo vya 

tembo vilisababishwa na njaa.   

Niliangazia kwa undani, rasilimali mbili muhimu zinazoathiri mnyama 

tembo katika sehemu kame za uwanda wa savanna, nazo ni chakula na 

maji. Kwanza nilifanya utafiti jinsi chimbuko la maji na mgawanyiko wake 

unavyoathiri harakati ya mnyama tembo. Matokeo yaliashiria kwamba 

tembo wa jinsia ya kiume hawaendi zaidi ya umbali wa kilometa ishirini 

kutoka kwa dimbwi  la maji lililoko karibu yao kutafuta chakula wakati wa 

ukame ilhali wenzao wa jinsia ya kike walifuata chakula kwa umbali wa 

kilometa kumi pekee wakati wa msimu wa ukame. Mwelekezo dhabiti wa 

harakati ya mnyama ndovu kutoka umbali wa kilomita kumi na tano kutoka 

kwenye dimdwi la maji (rho >0.5) na wanavyozuru sehemu zilizo na 

madimbwi wakati wa ukame ni ishara mwafaka kwamba mnyama ndovu 

anazo hisia kuhusu ni wapi maji yanapopatikana. 

Aidha, nilifanya upelelezi sababu zinazoelekeza uchaguzi wa sehemu za 

chakula kwa tembo nikilenga virutubisho vya lishe na majani. Imedhaniwa 

ya kwamba mnyama tembo anaweza kuishi na lishe pungufu mradi apate 

majani yawe mengi. Utafiti huu unaonyesha kwamba mnyama tembo 

huchagua sehemu za majani mengi wakati wa misimu kame ilhali  

wanachagua sehemu zilizo na wingi wa madini lishe za majani wakati wa 

misimu ya mvua. Halikadhalika, kuna tofauti ya tembo wa kike na wa kiume 

kwa taratibu wanavyotumia kuchagua sehemu za liishe. Tembo wa kike 

huchagua sehemu za majani mengi na  wale wa kiume huchagua sehemu 

zenye madini bora. Utafiti wa hapo awali unaolenga mizozano baina ya 

tembo na binadamu, inaonyesha kwamba tembo wa jinsia ya kiume 

walionekana wanavamia mimea zaidi, ili waweze kupata lishe bora.  

Kwa pamoja, tafiti hizi nne zinaashiria kwamba mnyama tembo hufa njaa 

nyakati za kiangazi tofauti na tafiti za awali zinazoarifu kwamba tembo zilizo 

balehe haziathiriwi na ukame. Ingawa ukame wa muda mrefu huathiri sana, 

tembo na hata kusababisha vifo, usajiri wa savanna kame unatokana na vifo 

hivi ambavyo hukomboa mfumo shinikizo na kuipa fursa mpya ya kuzalisha. 

Utafiti huu unaashiria kwamba mfumo ya vifo vya tembo wakati wa ukame 
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umewezesha savanna kuthabiti tembo kwa miaka mingi. Wasimamizi wa 

wanyama pori wa savanna wako na changamoto chungu nzima kubadili 

mbinu ya kulinda na kuhifadhi mnyama tembo kulingana na matokeo ya 

utafiti huu mpya ili kufanya uamuzi wa kudumu.  

 

  



114 
 

Samenvatting 

Onderzoek naar olifantenpopulaties is steeds belangrijker geworden, vooral 

vanwege de langdurige perceptie dat een hoge olifantendichtheid een 

negatieve invloed heeft op de vegetatie en andere wilde diersoorten. In 

gebieden waar veel olifanten voorkomen proberen beheerders ze daarom te 

herverdelen of hun aantallen laag te houden door middel van overplaatsing, 

jacht, of het voorzien in drinkwaterplaatsen. Deze aanpak zou 

olifantenpopulaties binnen de grenzen moeten houden van wat het 

ecosysteem aankan, de zogenaamde “ecologische draagkracht”, een 

beheermethode die stoelt op de evenwichtstheorie. Volgens deze theorie is 

een systeem in evenwicht stabiel, omdat de bestaansmiddelen en de dieren 

die hiervan afhankelijk zijn in balans zijn met elkaar. Zulke stabiliteit is 

echter zeldzaam in tropische savannes, waar continue verandering eerder 

regel is, en natuurlijk evenwicht een uitzondering. 

Tropische savannes herbergen meer dan de helft van alle Afrikaanse 

olifanten, maar zijn gevoelig voor continue ecologische schommelingen, 

vooral langdurige droogte. Er is een toenemend bewustzijn dat populaties 

wilde dieren en hun gemeenschappen zelden in evenwicht zijn, en het is 

daarom essentieel om te begrijpen hoe de constante ecologische 

veranderingen in savanne ecosystemen van invloed zijn op populaties wilde 

dieren en wat de implicaties zijn voor wildbeheer. In dit proefschrift staat de 

rol van droogte in de populatiedynamica van olifanten in tropische savannes 

centraal. Om deze rol te begrijpen, is een goed inzicht vereist in de 

historische veranderingen in olifantenpopulaties in relatie tot droogte, maar 

ook kennis van de ecologie van olifanten in halfdroge savannes, zoals hun 

distributie, dichtheid, migratiepatronen, en gedrag. Voor de historische data 

heb ik de beste langdurige dataset van wilde olifantenpopulaties in Afrika 

gebruikt. Deze dataset omvat de levensgeschiedenis van meer dan 3000 

individuele wilde olifanten uit Amboseli National Park, Kenia, die over een 

periode van ruim 40 jaar consequent gevolgd zijn. Ook heb ik gegevens 

geanalyseerd over de vindplaatsen van olifantenkarkassen die de afgelopen 

10 jaar dagelijks zijn gedocumenteerd in het Tsavo Conservation Area. 
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Daarnaast heb ik data geanalyseerd van 8 olifanten uit Tsavo die, uitgerust 

met een GPS zender, 2 jaar lang gevolgd zijn om te begrijpen hoe hun 

migratiepatronen afhangen van de seizoensgebonden distributie van water 

en voedsel. 

In het eerste hoofdstuk onderzocht ik de temporele effecten van droogte (het 

aantal opeenvolgende droge maanden) en de intensiteit van droogte 

(hoeveelheid neerslag) op de structuur van olifantenpopulaties in Amboseli 

National Park, Kenia. De resultaten bevestigen die van eerdere studies: 

kalveren (<2 jaar oud) zijn vatbaarder voor sterfte veroorzaakt door droogte 

en dit risico wordt kleiner naarmate de dieren ouder zijn. Een nieuwe 

bevinding uit mijn studie is dat sterfte door droogte bij volwassen olifanten 

afhankelijk is van geslacht en leeftijd, waarbij mannetjes van meer dan 25 

jaar oud een minder grote kans hebben om te overlijden aan de gevolgen van 

droogte dan vrouwtjes van dezelfde leeftijd. Deze resultaten konden worden 

gevonden dankzij de hoge resolutie van mijn analyse, waarbij ik me 

concentreerde op zowel de lengte als intensiteit van droogte, in tegenstelling 

tot eerdere studies die hun analyse beperkten tot seizoensgebonden en 

jaarlijkse schommelingen in neerslag. Wanneer mannelijke olifanten ouder 

worden en geslachtsrijp, wordt hun foerageergebied groter en nemen ze meer 

risico’s door te verspreiden naar onbekende leefgebieden om te zoeken naar 

kwaliteitsvoer en partners. In het algemeen geldt voor veel diersoorten dat de 

verschillen in foerageerstrategieën tussen mannelijke en vrouwelijke dieren 

sterker zijn tijdens periodes van voedselschaarste. Deze verschillen lijken te 

worden gedreven door de energiebehoefte, voortplantingsstatus, 

lichaamsgrootte en sociale context, welke verschillen tussen geslachten. 

In de tweede studie heb ik MaxEnt gebruikt om de relatie tussen droogte en 

de ruimtelijke patronen van olifantensterfte in Tsavo National Park te 

onderzoeken. De resultaten tonen aan dat olifantenkarkassen geaggregeerd 

waren en dat mortaliteit negatief gecorreleerd was met vier maanden 

cumulatieve neerslag voorafgaand aan sterfte, voedselbeschikbaarheid en 

afstand tot water, in tegenstelling tot lokale olifantendichtheid, welke een 

positieve relatie had met deze variabelen. Deze bevindingen sluit uitdroging 
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uit als de voornaamste oorzaak van olifantensterfte in Tsavo omdat de rivier 

waar de karkassen geaggregeerd waren het hele jaar door water heeft. 

Bovendien was voedselbeschikbaarheid laag zowel dichtbij waterbronnen als 

verder weg, ondanks hoge olifantendichtheden rondom rivieren. Dit 

suggereert dat de geanalyseerde olifantensterfte het gevolg was van 

uithongering.  

Vervolgens spitste ik me toe op twee belangrijke maar limiterende 

hulpbronnen van olifanten, namelijk voedsel en water, en hun effect op het 

habitatgebruik van olifanten in halfdroge savannes. Eerst heb ik onderzocht 

hoe de distributie van waterbronnen de seizoensgebonden migratiepatronen 

van olifanten beïnvloedt. De resultaten laten zien dat mannelijke olifanten 

zich maximaal 20 km verwijderden van waterbronnen tijdens het droge 

seizoen, terwijl vrouwelijke olifanten maximaal 10 km van de dichtstbijzijnde 

waterbron foerageerden en deze afstand alleen vergrootten tijdens het natte 

seizoen. De sterke gerichtheid waarmee olifanten zich binnen 15 km naar 

een waterbron begaven (rho > 0.5) tijdens het droge seizoen suggereert dat 

olifanten informatie hebben over de exacte locatie van deze waterbronnen. 

Vervolgens heb ik onderzoek gedaan naar de factoren die de keuze voor een 

foerageergebied bepalen, met een focus op nutriënten en biomassa. Men 

denkt dat olifanten vanwege hun grootte, en daarmee hun grote 

voeropnamecapaciteit, in staat zijn op een minder nutriëntenrijk dieet te 

leven. De resultaten van deze studie laten zien dat olifanten in het droge 

seizoen foerageergebieden selecteerden die een hoge biomassa hebben, 

terwijl ze in het natte seizoen foerageergebieden selecteerden die een hoge 

nutritionele waarde hebben. Bovendien selecteerden vrouwelijke olifanten 

gebieden met een hogere biomassa dan mannelijke olifanten, waarschijnlijk 

vanwege verschillen in sociale organisatie en foerageerstrategieën. Uit 

studies naar conflicten tussen olifanten en mensen bleek bijvoorbeeld dat 

het vooral de mannelijke olifanten waren die gewassen beschadigden, 

wellicht op zoek naar voedsel met een hoge nutritionele waarde. 

Bij elkaar laten de vier studies uit dit proefschrift zien dat olifanten sterven 

van uithongering tijdens droogte, in tegenstelling tot eerdere studies die 
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suggereerden dat volwassen olifanten minder gevoelig zijn voor droogte. 

Hoewel langdurige droogte normaliter in hoge olifantensterfte resulteert, is 

de veerkracht van halfdroge savannes wellicht te danken aan deze sterfte 

doordat het systeem hierdoor minder belast wordt door overbegrazing en 

kans krijgt om te regenereren. Als dat het geval is, dan zou olifantensterfte 

door droogte een betere beheermethode zijn dan jacht. De bevindingen uit 

deze studie zijn een sterke aanwijzing dat halfdroge savannes een systeem 

vormen dat niet in evenwicht is en wordt gekarakteriseerd door snelle groei 

en dramatische afnames van populaties herbivoren. Het zo natuurlijk 

mogelijk houden van halfdroge savannes kan daarom bijdragen aan het 

behouden van olifantenpopulaties voor toekomstige generaties. Huidige 

beheerders worden geconfronteerd met enorme uitdagingen, zoals massale 

olifantensterfte tijdens droogte, toegenomen conflicten tussen mensen en 

wilde dieren, en veranderingen in de manier waarop wilde dieren hun 

natuurlijke leefgebied gebruiken. Dit kunnen symptomen zijn van verkeerd 

beheer uit het verleden of negatieve gevolgen van menselijke activiteiten die 

de natuurlijke werking van een niet-evenwichtssysteem hebben doen 

kantelen. Beheerders zouden daarom regelmatige trainingen moeten volgen 

over nieuwe natuurbeschermingsmaatregelen en gebruik moeten maken van 

empirisch onderbouwde studies om gefundeerde lange termijn beslissingen 

te nemen. 
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