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Abstract 

 

The aim of this thesis was to document improvements in sustainability indicators of striped 

catfish (Pangasianodon hypophthalmus, Sauvage, 1878) production through the application 

of recirculation and waste treatment techniques. To be able to document improvements in 

sustainability, in each system studied the same set of twenty sustainability indicators were 

measured. Indicators related to the use of fingerlings, water, diesel oil, electricity, labor, 

chemicals and antibiotics. 

Also, indicators related to nutrient utilization efficiencies and waste discharge were 

monitored. In addition, a sampling scheme, allowing to calculate organic matter, nitrogen, 

phosphorous and chemical oxygen demand mass balances covering a full production cycle 

and applicable in different production systems, was developed. Overall, from a sustainability 

point of view, striped catfish culture in ponds compared well to other important aquaculture 

species.  

Although favorable, it was concluded that water, chemicals and antibiotics use, survival, and 

the amounts of waste discharged could be further reduced through recirculation and treatment 

of solid wastes. The realized improvements through RAS technology and waste treatment 

technology were quantified in lab or pilot scale experiments. Large improvements were 

realized for water, antibiotic and chemical use, survival, waste discharge and color grade of 

striped catfish fillets at harvest. In addition, in RAS, utilization efficiencies of nutrients 

supplied through feeding were improved. 

Solid wastes removed from ponds or RAS could be partially re-used by making compost or 

producing methane for generating electricity. Another approach tested was the integration of 

a denitrification reactor in the recirculation system, which allowed to decompose solid waste 

and reduce nitrogen discharge. Denitrification in RAS did not affect fish growth, nutrient 

retention efficiencies and the quality of the fish fillets produced, and thus also improved 

sustainability of striped catfish farming. 

In conclusion, application of recirculation and waste treatment techniques tested in this thesis 

improved the sustainability for striped catfish culture. The challenge remains to scale up RAS 

and waste treatment technology for striped catfish to the production volumes handled in 

outdoor ponds without raising production costs. 

  



 

 

 

 

 

Contents 
Chapter 1. General introduction 

 

7 

Chapter 2. Nutrient mass balance and water use in striped catfish 

(Pangasianodon hypophthalmus, Sauvage, 1878) pond culture: 

down-stream versus up-stream 

 

19 

Chapter 3. Nutrient mass balances, water quality and water use of striped catfish 

(Pangasianodon hypophthalmus, Sauvage, 1878) in flow-through 

and recirculation systems 

 

51 

Chapter 4. Biogas production and compost composition of sludge from striped 

catfish (Pangasianodon hypophthalmus, Sauvage, 1878) ponds and 

recirculating systems 

 

85 

Chapter 5. Effect of an upflow-sludge-blanket denitrification reactor on 

environmental sustainability of striped catfish production 

(Pangasianodon hypophthalmus, Sauvage, 1878) in recirculating 

aquaculture systems 

 

113 

Chapter 6. General discussion 

 

143 

References  

 

155 

Appendices  168 

 Summary 169 

 Acknowledgements 173 

 Curriculum vitae 175 

 Training and supervision plan 179 

 Colophon 180 



 

7 

 

CHAPTER 1 

 

 

General introduction 

 

 



Chapter 1 

 

8 

 

1.1. Striped catfish culture  

Striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) is a facultative air breather 

(Lefevre et al., 2011c), endemic to the Mekong basin in Cambodia, Laos, Thailand and 

Vietnam and the Ayeyawady basin of Myanmar. It has been introduced to many other Asian 

countries, including India, China, Bangladesh, Indonesia and the Philippines (FAO, 2010). 

Today, Vietnam is the largest producer of striped catfish in the world, producing 1.1 million 

tonne per year in 5,000 ha of ponds. The product is exported to more than 130 countries 

(MARD, 2014a). Initially, different culture system models were used, including poly and 

mono culture ponds, cages and pens (Figure 1.1). 

 

Figure 1.1:Striped catfish production by production system in Vietnam (MARD, 2014a) 

Today, striped catfish is raised in none aerated 2 to 6 m deep ponds, realizing productions of 

70 to 850 metric tonnes per ha per crop (Phan et al., 2009). Almost all ponds are located 

along tributaries of the Mekong river which is convenient to discharge nutrients to the river 
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and to transport feed, fingerling and market size fish to or from the farm. The amount of 

water used per kg fish produced ranges between 2.5 and 9.1 m
3 

(Anh et al., 2010; Bosma et 

al., 2009; Phan et al., 2009). Commercial floating 22 – 30% protein pellets are fed, realizing a 

feed conversion ratio ranging between 1.5 and 1.8 (Bosma et al., 2009; Phan et al., 2009).  

Per kg striped catfish produced, waste containing 46 g nitrogen (N) and 14 g phosphorous (P) 

is produced (De Silva et al., 2010). About 70% of striped catfish farmers discharge untreated 

effluents to the river. The remaining 30% of farmers discharge to rice fields or gardens (Phan 

et al., 2009), where part of the nutrients are reused. Discharging effluents pollute surface 

waters and increases the risk of horizontal disease transmission (Nguyen et al., 2007). 

Survival in striped catfish ponds is less than 70% mainly due to disease. More than 15 

diseases/syndromes are commonly occurring in striped catfish farming (Phan et al., 2009). 

Diseases are treated with different antibiotics and chemicals (Bosma et al., 2009; Rico et al., 

2013). However, consumers do not accept residues of antibiotics and chemicals in fish 

products leading to national and international laws and regulations that limit the number and 

amounts of chemicals and antibiotics farmers can use. When applying chemicals or 

antibiotics farmers are advised to ban application during the last 2 months before harvesting 

(BMP, 2009; MARD, 2011) . 

Consumers prefer white fillets, but fillets can have grades of pink or yellow colour (Sang et 

al., 2009). Only white fillets are of export quality and fetch a higher price (Khoi, 2011). The 

fillet colour of striped catfish produced in deep ponds in the Mekong Delta is predominantly 

white. The high depth and water turnover rate of the pond farming system in the Mekong 

delta might contribute to more white fillets (Phu et al., 2014). Farmers will be willing to 

switch to less polluting farming systems, provided the colour grade of the fillet is maintained.  

1.2. Aquaculture sustainability indicators  

Sustainability includes environmental, economic and social dimensions (Verreth and 

Oberdieck, 2009), and to monitor and compare sustainability performance indicators are 

required that are measurable and easy to apply at farm level. Basic indicators used to assess 

sustainability of aquaculture production systems are listed in Table 1.1 (Boyd et al., 2007; 

Verreth and Oberdieck, 2009). 
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Comparisons of sustainability indicators across species, farming systems and countries or 

regions is important to develop standards for sustainable aquaculture. For example, trout 

production in Europe consumes more water in raceways than in recirculating aquaculture 

systems (RAS) (d’Orbcastel et al., 2009b), water use per kg fish produced being a 

sustainability indicator. Combining the different sustainability indicators, fish production in 

RAS showed better sustainability than production in raceways, cages or ponds (Eding et al., 

2009). However, RAS technology has not been widely adopted due to high costs and the 

level of knowledge required (Ngoc et al., 2016a). Today, numerous fish farmers are willing to 

voluntarily adopt best management practices to reduce negative impacts from aquaculture on 

the environment and to better satisfy consumer demands for healthy and sustainable produced 

fish (Boyd et al., 2007; Ngoc et al., 2016a). 

Table 1. 1: Some basic sustainability indicators at farm level (Boyd et al., 2007; Verreth and 

Oberdieck, 2009) 

Parameter Specific objective/criterion Indicator Unit 

Utilisation resource efficiency: 

Fingerling use Reducing fish mortality – 

high survival 

Number of fingerling stocked per 

biomass harvested 

# fingerling per kg 

fish produced 

Feed use  Reducing feed input  Feed conversion ratio (FCR) kg feed per kg fish 

produced 

Energy use Reducing energy input  Energy input per biomass 

produced 

kWh per kg fish 

produced 

Chemicals use Reducing lime use if 

possible. No use of 

chemicals harmful to fish, 

animals, humans and 

environment 

Chemicals input per biomass 

produced 

g chemical per kg 

fish produced 

Water use 
Input: reducing amount of 

fresh water input to the 

production unit (reuse water 

as much as possible). 

Output: reducing amount of 

fresh water discharge 

(including nutrients, 

minerals and organic matter) 

Input: Volume water consumed 

per biomass produced 

 

Output: Volume water discharged 

per biomass produced, not taking 

into account seepage and 

evaporation 

l fresh water per kg 

fish produced 
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Table 1.1 (continued- 1): Some basic sustainability indicators at farm level (Boyd et al., 

2007; Verreth and Oberdieck, 2009) 

Parameter Specific objective/criterion Indicator Unit 

Land use Reducing surface area use Biomass produced per unit 

surface area. 

kg fish produced per 

m
2
 

 Maximize percentage of 

input nutrients into harvested 

biomass. 

Amount of input nutrient retained 

per amount of feed 

g nutrient (N, P, 

COD, DM) retained 

per kg feed 

Nutrients discharge:  

 Reducing discharge of 

nutrients. 

Amount of input nutrient 

discharged per biomass produced. 

g nutrient (N, P, 

COD, DM) 

discharged per kg 

feed. 

Reuse of nutrient:    

 Optimizing percentage of 

input nutrient into secondary 

crops harvested on farm 

Amount of input nutrient retained 

in biomass of secondary products 

per striped catfish biomass 

produced 

g nutrient (N, P, 

COD, DM) in 

secondary product 

harvested per kg feed 

Economy:    

Production costs/ 

labour use 

Maximize biomass produced 

per unit of labour 

Required labour time per biomass 

produced. 

h per kg fish 

produced. 

Reducing production 

losses 

Reduce disease threats 

during a production cycle 

Treatments per production cycle Number of treatments 

per production cycle 

DM: dry matter; COD: chemical oxygen demand; N: total nitrogen; P: total phosphorus. 

 

1.3. Nutrient mass balances 

By making nutrient mass balances, insight in the environmental impact of aquaculture is 

generated (Acosta-Nassar et al., 1994; Adhikari et al., 2014; Boyd, 1985; Funge-Smith and 

Briggs, 1998; Gross et al., 2000; Islam, 2005; Nhan et al., 2008; Papatryphon et al., 2005; 

Thakur and Lin, 2003; Thoman et al., 2001; Trépanier et al., 2002). In aquaculture, the main 

nutrients considered in mass balance studies are N, P, carbon (C), dry matter (DM) and 

chemical oxygen demand (COD) (Table 1.1) (Verreth and Oberdieck, 2009). 

Nutrients enter production units with the feed, fertilizers, intake water (including infiltration 

water, rainfall and run-off water) and fingerlings stocked. Nutrients leave farms with 

harvested products, with effluents (including discharge water, seepage loss and sludge 

collection) and are lost through respiration. Nutrient mass balances can be approached either 
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focusing on the animal or on the farming system. At animal level, the principal nutrients 

entering the system are applied with the feed, while outputs include uneaten feed, faeces and 

branchial and urinary loss (Meriac et al., 2014a). In addition, nutrients are retained in newly 

produced fish biomass.  

Nutrient mass balances are affected by culture system, feed composition, feeding practice, 

species or species combination and animal size (Acosta-Nassar et al., 1994; Adhikari et al., 

2014; Boyd, 1985; Funge-Smith and Briggs, 1998; Gross et al., 2000; Islam, 2005; Nhan et 

al., 2008; Papatryphon et al., 2005; Thakur and Lin, 2003; Thoman et al., 2001; Trépanier et 

al., 2002). In feed driven production systems, at animal level, the main nutrient input is feed. 

The choice of feed ingredients influences nutrient utilization and the amount and composition 

of wastes produced (Meriac et al., 2014a). In outdoor systems, natural foods are also 

produced, which depending on culture species and culture intensity contribute to production. 

In extensively managed fed systems, natural foods can be the principal source to production 

(Bosma and Verdegem, 2011). 

1.4. Recirculating aquaculture systems  

In a typical RAS, fish tanks are linked to one water purification unit, in which solid removal 

and biofiltration are the principal processes managed. Commonly used types of solid waste 

removal units include swirl separators, drum filters and sedimentation tanks. The main 

biofiltration process is the conversion of ammonia into nitrate through nitrification, with 

trickling filters, moving bed and bead filters as commonly used types of biofilters. In 

addition, each RAS has minimum one reservoir which provides a buffer water volume for 

system operation and is also often used to take in new water to compensate water losses 

(Eding et al., 2006; Timmons and Ebeling, 2010) (Figure 1.2). 

Fish excrete metabolic wastes (e.g. 50 – 80 % N of feed input) (Schneider et al., 2005) 

including non-faecal (34-53% N of feed) and faecal loss (30-39% N of feed input) 

(Bovendeur et al., 1987; Heinsbroek and Kamstra, 1990) in the fish tank. Part of the faecal 

loss is captured as solid waste in the solid removal unit. The efficiency of solid waste 

removal varies with the method applied (20 up to 90%), while the non-faecal loss is removed 

through biofiltration. Fine non settable organic substances can be decomposed, mostly 

aerobically but also partially anaerobically (Timmons and Ebeling, 2010).  
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Ammonia is highly toxic and is converted into more than 100 times less toxic nitrate in 

biofilters (Timmons and Ebeling, 2010). To avoid nitrate toxicity, 10 – 20% of the RAS 

water is daily replaced (Eding and Kamstra, 2002; Eding et al., 2009; Timmons and Ebeling, 

2010). Converting one g ammonia nitrogen into 1 g nitrate nitrogen (NO3-N) consumes 7.05 

g CaCO3 alkalinity. About 250 g sodium bicarbonate per kg feed is required to compensate 

the alkalinity loss resulting from nitrification, and preventing the pH to drop below 7 

(Timmons and Ebeling, 2010). 

 

 

 

Figure 1. 2: Basic RAS design, a solid removal unit and a bio-filter (trickling filter). 

Today, RAS technology is mainly applied indoors, but can also be applied outdoors with 

fresh, brackish or marine water (Timmons and Ebeling, 2010). Advantages include, year 

round operation, continuous maintenance of optimal water quality (d’Orbcastel et al., 2009b), 

Solid removal

unit
Sump tank

Trickling filter

Over flow 

Fish tank

Pump 
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limited space and water requirements, efficient use of labour due to high culture densities, 

high bio-security, control of nutrient waste streams and daily control on animal welfare and 

product quality (Timmons and Ebeling, 2010) (Table 1.2). RAS requires 10 to 450 times less 

surface area and 80 to 4000 times less water than fish production in ponds or raceways 

(Timmons and Ebeling, 2010). 

1.5. Anoxic (denitrification) and anaerobic sludge treatment in 

aquaculture 

Denitrifying microorganisms use nitrate as oxidizing agent when free oxygen is very low or 

absent and nitrate is present. During denitrification, nitrate is converted into nitrogen gas, by 

using either an external (e.g. acetic acid, ethanol, glucose) or an endogenous carbon source 

coming from solid organic waste trapped in the solid removal unit (Henze et al., 1997). The 

denitrification rate is optimal when the COD/N ratio ranges between 3 and 6 (van Rijn et al., 

2006). On average, when 1 g NO3-N is removed, 2.86 g COD from organic matter is 

consumed (Henze et al., 1997) and 3.57 g CaCO3 alkalinity is produced (Timmons and 

Ebeling, 2010). 

In RAS, a high NO3 concentration negatively influences growth, survival and osmoregulation 

(Bovendeur et al., 1987; Camargo et al., 2005; Davidson et al., 2011; Hamlin, 2006; Kamstra 

et al., 1998; Meriac et al., 2014a; Schram et al., 2014; van Bussel et al., 2012b; Westin, 

1974). Furthermore, discharge of NO3 rich water contributes to eutrophication of surface 

waters (Timmons and Ebeling, 2010). By integrating a denitrification reactor into RAS, NO3 

accumulation and discharge is reduced. This approach is effective (van Rijn et al., 2006), but 

also complex, explaining why few farmers apply denitrification. Nevertheless, in most RAS 

passive denitrification occurs accounting for 9 to 21% of the on-farm nitrogen loss (van Rijn 

et al., 2006). An additional advantage of denitrification in RAS is that the concentration of 

off-flavor producing microorganisms is reduced (Guttman and van Rijn, 2009). 
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1.5.1. Anaerobic sludge treatment  

Under anaerobic conditions neither dissolved oxygen nor nitrate is present. Numerous 

microbial species working in symbiosis are involved in the anaerobic degradation of organic 

matter (Table 1.2). 

Similar to agricultural solid waste, anaerobic decomposition of aquaculture sludge can be 

cost and energy efficient (Gebauer, 2004; Gebauer and Eikebrokk, 2006; Kuusik et al., 2014; 

Mirzoyan et al., 2012; Mirzoyan et al., 2008; Mirzoyan et al., 2010; van Rijn et al., 1995). 

Anaerobic breakdown is influenced by sludge composition (Mirzoyan et al., 2010), and runs 

best at temperatures between 24 and 35 
0
C. When targeting methane production, a higher 

methane yield is obtained at temperatures fluctuating between 11 and 30
0
C, compared to a 

constant temperature of 30
0
C (Mirzoyan, 2009). The retention time (RT) of sludge in an 

anaerobic digester (AD) ranges from 6 and 60 days. The dry matter fraction of sludge fed to 

an AD widely ranges between 0.07 and 12.3%. Sludge nutrient removal efficiencies during 

anaerobic breakdown of 80 – 100% for DM, 58 – 99.8% for OM, 34 – 99.6% for COD have 

been reported. Between 0.2 and 3.6 l CH4 can be produced per g COD. The fraction of CH4 in 

biogas varies from 4 to 80% (Gebauer, 2004; Gebauer and Eikebrokk, 2006; Kugelman and 

Van Gorder, 1991; Lanari and Franci, 1998; Mirzoyan, 2009; Mirzoyan et al., 2008).  

Chen et al. (1997) reported that in aquaculture, per kg feed applied between 0.1 and 0.5 kg 

sludge DM can be efficiently broken down in an AD, resulting in a low nutrient discharge 

and the production of CH4 as an energy source. However, in practice, collection and 

thickening of sludge before treatment is expensive. Therefore, broadly adopted use of 

anaerobic digestion in aquaculture remains a challenge.  

Table 1. 2: Division of bacteria over two biological anaerobic processes (Henze et al., 1997). 

Step Name Substrate(s) End product 

Acid production Acid –forming 

bacteria 

Carbohydrates, amino 

acids, lipids 

butyric acid, propionic 

acid 

Methane 

production 

Acetoclastic 

bacteria 

Acetic acid Methane, carbon 

dioxide 

Methane bacteria Hydrogen, carbon 

dioxide 

methane 
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1.5.2. Composting 

The end products of composting are CO2, water, minerals and compost. Composting passes 

first through a decomposition stage, followed by a stabilization stage (Diaz et al., 2011). 

During composting, microorganisms first degrade easily degradable organic matter (OM). 

Subsequently, less easily degradable molecules and metabolites are broken down during the 

stabilization stage (Diaz et al., 2011). Overall, during composting of municipal waste, crop 

residues or animal wastes, 30 to 60% of N, C and OM are lost through volatilization and 

leakage (Diaz et al., 2011; Eghball et al., 1997; Eneji et al., 2003; Goyal et al., 2005; Leifeld 

et al., 2002; Li et al., 2008; Michel et al., 2004; Sánchez-Monedero et al., 2001; Sommer, 

2001; Tran et al., 2011). 

Physical and chemical properties of the substrate, including particle size, molecule tertiary 

structure and the C/N ratio, affect composting. A substrate C/N ratio between 25 and 30 is 

considered best. If the C/N ratio is below 20, ammonia volatilization becomes very high 

(Diaz et al., 2011; Goyal et al., 2005). Forty to 50% of the energy released during breakdown 

of OM is utilized by microorganism to synthesize adenosine triphosphate (ATP). The 

remaining energy is released as heat, causing the temperature in the substrate to rise to 70 – 

90 
0
C. At lower temperatures of 30 to 45 

0
C, composting is more efficient, but then not all 

pathogens, potentially present in the wastes used as substrate for composting are pasteurized 

(Diaz et al., 2011).  

During composting, initially the pH drops below 5, but subsequently raises to 8.0 - 8.5 at the 

end of composting). The optimal pH for compositing fluctuates between 5.5 and 8.0 (Diaz et 

al., 2011; Leifeld et al., 2002). To prevent anaerobic fermentation during composting about 

0.15 m
3
 air is supplied each minute for each metric tonne substrate composted (Diaz et al., 

2011). 

During composting the moisture content in the substrate must be maintained at 40 – 60 % 

(Diaz et al., 2011; Eghball et al., 1997; Eneji et al., 2003; Goyal et al., 2005; Iranzo et al., 

2004; Michel et al., 2004). When the moisture content drops to a range between 8 and 12%, 

microbial activity becomes very low. However, when the moisture content is above 60%, 

then anaerobic breakdown or denitrification becomes the dominant process, reducing 

compost yield (Diaz et al., 2011). 

https://en.wikipedia.org/wiki/Adenosine_triphosphate
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Few studies report on the composting of aquaculture wastes (Adler and Sikora, 2004; Bui et 

al., 2015; James et al., 1998; Phung et al., 2009; Timmons and Ebeling, 2010). In RAS, 

where solid wastes are concentrated and removed, the dry matter content is low, ranging 

between 1.4 and 6% (Chen et al., 1997). Pond sludge is considered of low quality, due to a 

long residence time under mostly anaerobic conditions (Munsiri et al., 1996; Phu and Tinh, 

2012). Nevertheless, compost not only is valuable, but also pollution is reduced, and part of 

nutrients in the sludge are recuperated (Timmons and Ebeling, 2010).  

 

1.6. Thesis aim and content 

In comparison to other aquaculture species grown in outdoor systems, striped catfish culture 

in ponds is dependent on high and daily water exchange with the Mekong River to maintain 

water quality and discharge nutrients. This creates negative environmental impacts and 

reduces biosecurity. Frequent disease outbreaks force farmers to apply antibiotics and 

chemicals to reduce disease related losses. Application of these products raises public 

concerns about product quality, development of drug resistance in bacteria and health risks to 

consumers.  

Today, the Vietnamese government and western consumers aim to reduce these problems 

through regulations and certification, respectively. In this context, the aim of the thesis is to 

explore options to improve the sustainability of striped catfish culture by applying known 

environmental friendly production methods and waste treatment techniques and to qualify 

and quantify possible improvements made based on sustainability indicators as outlined in 

Table 1.1.  

This thesis started with the detailed monitoring of striped catfish production in ponds in the 

Mekong delta. Upstream and downstream ponds were monitored during a full production 

cycles, giving a detailed description of culture practices while quantifying environmental 

impacts using pre-defined sustainability indicators (Chapter 2). Next, striped catfish was 

raised in RAS and flow-through tanks, recording the same sustainability indicators and 

comparing fish performance (Chapter 3).  
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In Chapter 4, compost quality and methane yield from solid waste collected in ponds and 

RAS was compared, while in Chapter 5, the effect of integration of a denitrification reactor in 

RAS to break down solid wastes on fish performance and sustainability indicators was 

investigated. In Chapter 6, considering study outcomes, options to turn striped catfish 

farming into the first fully sustainable aquaculture industry are discussed and placed in 

context. 
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 Abstract 

Striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) farming is the biggest 

aquaculture industry in the Mekong Delta in Vietnam, with an estimated production of 1.1 

million metric tons from 5,500 ha of deep ponds. A key priority is to identify options to 

improve the sustainability of the industry. This study quantified sustainability indicators for 

two downstream and two upstream ponds along the Mekong River. The sustainability 

indicators considered were the use of fingerlings, water, diesel oil, electricity, labour, 

chemicals and antibiotics, and the utilization efficiency and discharge of dry matter, nitrogen 

and phosphorous per kg fish produced and per kg feed consumed. The results showed that in 

all ponds, the water quality remained favourable during the entire production period.  

The sustainability indicators were (expressed per kg fish and listed as downstream vs. 

upstream): 2.8 vs. 7.1 m
3
 water, 0.04 vs. 0.14 kWh energy, 0.06 vs. 0.11 hour human labour 

and 0.06 vs. 0.15 g antibiotics used (P < 0.05). The feed dry matter utilization efficiency was 

similar (28–30%, P>0.05) for both types of ponds. For nitrogen utilization efficiency was 44 

vs. 40% (P < 0.05) and for phosphorous 17.6–17.7% (P > 0.05). The discharge was 357–415g 

dry matter, 19.8–20.1g of nitrogen and 17.0–17.7g kg fish
-1

 (P > 0.05) of phosphorous. 

Through denitrification and fermentation in deep ponds removed 29–37% of dry matter and 

30–34% of nitrogen feed input. Developing (semi)closed systems that adopt elements from 

recirculation technology will improve both the culture performance and sustainability. 

 

 

Keywords: Pangasius, striped catfish, nutrient budget, water quality, waste effluent, mass 

balance 
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2.1. Introduction 

Striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) farming in the Mekong delta 

of Vietnam developed rapidly into one of the country’s major aquaculture industries (Phuong 

and Oanh, 2010). Having started as recently as the mid-nineties, today striped catfish is the 

country’s second most important export product (MoFi, 2005). In 2014, the total catfish 

production reached 1.1 million ton produced in 5,500 ha of ponds. Processed products have 

been exported to more than 150 countries (MARD, 2014a). 

With 70–800 metric ton (MT) ha
-1

 year
-1 

(Phan et al., 2009) striped catfish culture is intensive. 

Water quality is maintained through water exchange. Water use is an important sustainability 

indicator. The Aquaculture Stewardship Council (ASC) has set the not-to-exceed standard at 

5,000 l kg
-1

 striped catfish (ASC, 2012). Water use values reported in literature are either  20–

50% smaller (2,500–4,050 l kg
-1

 fish (Bosma et al., 2009; Phan et al., 2009)) or 82% larger 

(9,167 l kg
-1

 fish (Anh et al., 2010)). ASC indicators for nitrogen (N) and phosphorus (P) 

utilization are  27.5g N and 7.2g P discharge per kg fish (ASC, 2012). These ASC-indicator 

values are substantially lower than estimated values for nitrogen and phosphorus discharge 

reported in literature: 38–46g N kg
-1

(Anh et al., 2010; De Silva et al., 2010) and 9.9–14.4 g P 

kg
-1

 fish produced (De Silva et al., 2010).  

Today, common practice is to culture striped catfish in 2–6m deep earthen ponds close to the 

Mekong river (Phan et al., 2009). Striped catfish farming started upstream (US) before 

expanded to downstream (DS). Both US and DS farmers practice tidal water exchange. 

However, DS farmers have the advantage of (1) a larger tidal amplitude and a longer period of 

the day that tidal water exchange can be practiced and (2) less potential conflict with other 

types of land use (Bosma et al., 2009). In addition, DS farmers use less energy than US 

farmers, because in contrast to the latter, they must not pump to realize sufficient water 

exchange. However, higher water exchange might also result in more waste discharge. Thus, 

when analyzing the sustainability of current striped catfish farming technology, it is important 

to quantify the nutrient discharge related to water exchange. The objective of this study was to 

compare the effect of US and DS striped catfish farming (location) on water exchange, nutrient 

utilization efficiency and waste discharge. To improve the sustainability of striped catfish 
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production it is important to get insight in water and nutrient utilization over a complete 

culture period (ASC, 2012). Such a dataset, which to our best knowledge not yet available, is 

presented, differences between DS and US ponds are analyzed and options to improve 

sustainability of striped catfish farming are suggested. 

2.2. Materials and methods 

2.2.1. The experimental ponds  

 

Figure 2. 1 : The locations of studied striped catfish downstream (DS) and upstream (US) 

ponds, Mekong Delta, Vietnam 

Two DS ponds at the Phuoc Binh hamlet, Quoi Thien commune, Vung Liem district, Vĩnh 

Long province and two US ponds at the My Suong hamlet, Cao Lanh district, Dong Thap 

province, were monitored during a full production cycle. The DS and US ponds are 63.3 km 

apart in bird’s eye view (Figure 2.1). The DS ponds have a surface area of 1.11±0.1 ha, the US 

ponds 1.08±0.1 ha (Table 2.1). 
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2.2.2. Pond management  

 

 

 

 

Figure 2. 2: Schematic view of experimental striped catfish ponds. The number of sample 

locations for sludge (fixed) and water column samples (random) are shown. 

Oxygen measurements were taken at fixed depths at random locations. 

Evaporation and rain volume measurements were taken on the dike. Position of the 

sluice gate was 0.5 m above the bottom (inner sluice valve not shown). Pumps for 

water exchange were positioned on top of the dam next to the river, and located in 

the corner away from the sluice gate. When sludge was siphoned from the bottom, 

3 floating movable diesel pumps were used (see also Table 2.1). 
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Table 2. 1: Pond characteristics and management in downstream (DS) and upstream (US) 

ponds. 
Parameter Downstream Upstream 

Pond depth  3.4 ± 0.1 m 4.2 ± 0.1 m 

Pond 

surface area 
1.11 ± 0.1 ha 1.08 ± 0.1 ha 

Pumping 
Two diesel pumps (8 HP/pump) for emergency; 

no electrical pump.  

Electricity powered pumping station (30 HP), 

running for 5-8 hours per day at neap tide 

dropping to 1-2 hours per day at spring tide.  

Water 

exchange 

Based on tidal regime: water discharge at low 

tide and water intake at high tide. Three first 

months, daily 0 – 10% water exchange, 

increasing to 10 – 40% water exchange at 

harvest. After discharge, it takes 8-12 hours to 

fill the pond.  No water exchange possible 

during neap tide.   

Based on tidal regime + active pumping: water 

discharge at low tide and water intake at high 

tide. Two first months, 0 – 10% daily water 

exchange, increasing to 12 – 50% at harvest. 

After discharge, it takes 6-8 hours to fill the 

pond. During neap tide, water exchange 

through pumping.  

Liming 

Use 1,000 kg ha
-1

 CaCO3 for pond preparation 

and during culture liming to maintain pH and 

alkalinity (Figure 2. 2A). 

Use 2,100 kg ha
-1

 CaCO3 for pond preparation 

and during culture to maintain pH and 

alkalinity (Figure 2.2B). 

Sludge 

removal 

Three times 3,199 ± 842 m
3 
sludge (2.1% ± 0.4 

dry matter) was removed by 3 diesel suction 

pumps. Sludge was removed when sludge bed 

grew higher than 20 cm (checked by divers).  

Once 3,200 ± 212 m
3 
sludge (2.6% ± 0.6 dry 

matter) was removed by 3 diesel suction 

pumps. Sludge was removed when sludge bed 

grew higher than 20 cm (checked by divers). 

Labor use 

Per pond, 3 farm employees and one technician for monitoring. Farm activities include feeding, 

water exchange, fish health monitoring, water quality monitoring, sludge removal, fish transport, 

feed transport, log keeping, and accounting. The labor for transport, log keeping and accounting 

are classified as indirect labor. 

Chemical & 

antibiotic 

use 

Iodine (10%) (0.5-1 ppm), table salt (NaCl) (10-15ppm), and antibiotics: doxycycline (2.5-5 g kg
-1 

feed), oxytracycline (2.5-5g kg
-1 

feed) and florphenicol (2-6g kg
-1 

feed) during fish disease 

outbreaks. No antibiotics were used during 2 months before harvest (Figure 2.3A, 2.3B). 

Energy/fuel 

use 

Electricity from public grid for light during 

nighttime, on farm lodges, office and operation. 

Diesel for sludge removal and sometimes for 

emergency pumping.  

Electrical pumps for water exchange, light 

during nighttime, on farm lodges, office and 

operation. Diesel for sludge removal and 

sometimes for emergency pumping. 

 

Four new ponds, two at a DS and 2 at a US farm, operated following the farm’s protocol, were 

monitored during a full production cycle. Fish were stocked at a water depth between 2.5 and 

3.0 m. The water depth was raised to 3.4–4.2 m one month after stocking. This depth was 

maintained until harvest. In DS ponds, tidal water exchange was practiced, in US ponds a 

combination of tidal exchange and active pumping was practiced. No aeration was applied 

during culture. Pond management included control of water exchange, liming and sludge 

removal (Table 2.1 and Figure 2.2). 
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2.2.3. Fish, feed and feeding 

Table 2. 2: Diets (1-3) and pellet size (2.5, 4 and 8mm) used in culture period (1-3), of the 

striped catfish production cycle and analysed nutrient content on wet weight 

(ww) basis (g kg
-1

 feed). 

  
Period 1 Period 2 Period 3 

Parameter Unit downstream upstream downstream upstream downstream upstream 

Culture 

period 
day 1-59 1-59 60-122 60-122 123- harvest 123-harvest 

Pellet 

diameter 
mm 2.5 2.5 4.0 4.0 8.0 8.0 

Total feed Kg*10
3
 17.95 8.55 79.18 26.83 389.25 353.54 

Dry matter g kg
-1

feed 889.1 891.9 894.0 894.0 892.0 894.0 

Crude 

protein 
g kg

-1
feed 303.6 300.7 282.0 280.0 262.0 263.0 

Crude fat g kg
-1

feed 52.0 52.0 53.0 53.0 52.0 54.0 

Nitrogen-

free extract 

(NFE) 

g kg
-1

feed 406.3 405.9 419.0 416.0 431.0 424.0 

Fiber g kg
-1

feed 54.2 59.2 67.0 68.0 73.0 76.0 

Ash g kg
-1

feed 73.0 74.1 73.0 77.0 74.0 77.0 

Total-P g kg
-1

feed 13.3 13.2 13.2 13.5 14.0 13.4 

COD
(1)

 g kg
-1

feed 1,221.4 1,216.9 1,215.5 1,209.7 1,198.1 1,201.0 

Energy
(2)

 Kcal kg
-1

feed 4,157.7 4,137.5 4,132.8 4,112.9 4,073.7 4,083.5 

(1) COD content of the diet was calculated as described in Dalsgaard and Pedersen (2011). CODfeed = crude 

protein (g kg
-1

) * 1.77 + Crude fat (g kg
-1

) * 2.88 + NFE (g kg
-1

) * 1.16 + Fiber (g kg 
-1

) *1.16. 
(2)

 Energy 

content of the diet was calculated as 3.4 Kcal * g
-1

 COD according to Henken et al. (1986). 

Fingerlings were stocked at a density of 51.0 individuals m
-2

 in DS ponds and at 51.3 in US 

ponds, with a mean individual weight of 46g and 31g, respectively. The same commercial 

extruded feeds were applied in all ponds (Viet Thang Company, Dong Thap province, 

Vietnam). During each of three distinct periods during the culture cycle (day 1–59, 60–122, 

123–harvest), a diet with different composition and pellet size was fed (Table 2.2). The fish 

were hand-fed daily at 10 a.m. The farmers aimed to feed 2–3% of body weight d
-1

. For each 

distinct period, feed samples from 5 randomly selected 25-kg feed bags were pooled to 

determine the proximate composition (Table 2.2). 
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2.2.4. Sampling and measurement 

Sampling 

During the production cycle, pond influent (river water) and pond water were sampled 

biweekly. Water in each pond was sampled at five locations, after which samples were mixed 

into one composite sample following the procedure described by Nhan et al. (2008). The 

influent water was sampled next to the inlet sluice gate in the river. Water samples were 

collected in a PVC pipe (5.8 cm inner diameter), with the length adjusted to the pond depth, 

that was lowered vertically at each sampling site, covering the full water column. Once the 

pipe was in position, the bottom opening was closed by a stopper pulled in place with a rope 

passing through the pipe. In the river, a 3-m long pipe with the same diameter was used to 

sample the water column between 1.5 and 4.5 m depth (Figure 2.2). Rhizon pore water 

samplers (Eijkelkamp Agrisearch Equipment, Giesbeek, The Netherlands) were installed 0.3 m 

deep in the sediment at three randomly chosen locations in each pond to collect seepage water 

as described by Muendo et al. (2005). The collected rhizon water samples were mixed into one 

composite sample. Precipitation was measured daily at DS and US locations.  

Every fortnight, per pond 50 fish were caught by casting net and batch weighed to determine 

the average individual weight. Of these 50 fish, fifteen were randomly taken to determine 

proximate composition; the remaining fish were returned to the pond. At harvest, all fish were 

removed by a processor, of which 15 fish per pond were processed to record fillet yield and 

fillet coloration, and another 15 fish was analyzed for proximate composition.  

At three randomly selected locations in each pond, a 0.6-m
2
 circular sludge trap and a 0.4-m

2
 

ceramic tile, put horizontally on the sediment surface, were installed. Sludge traps were 

emptied on a weekly basis, because they would spill over when sampled biweekly. The 

amount of sludge collected was however reported on a biweekly basis. The areas with tiles 

were marked and sediment accumulating above each tile was left undisturbed until harvest. On 

the harvest day, the accumulated sludge above the tiles was quantified and analyzed. Farmers 

decided when to remove sludge accumulated at the bottom in the pond (Table 2.1). Sludge 

removal was done using a diesel powered suction pump. When this happened, a sludge sample 

was collected and the total volume removed recorded. Thus, the total amount and composition 

of the sludge removed could be determined.  
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2.2.5. Measurements and analyses 

Water 

Dissolved oxygen and pH were measured daily at 6 a.m. at 3.5m depth in the river next to the 

inlet of the sluice gate (Figure 2.3). Inside each pond, water temperature (
o
C), dissolved 

oxygen (mg.l
-1

), pH (multi-parameter meter HI9828, Hanna Instruments, Rhode Islands, USA) 

and secchi disk transparency (cm) (Alamazan and Boyd, 1978) were measured daily at 6 a.m. 

and 2 p.m. at 5 randomly chosen locations at 1, 2, 3 and 4 m depth (Figure 2.3). 

The collected water samples in river and ponds, including rain and seepage water were 

analyzed, all according to (APHA, 1999) for chemical oxygen demand (COD, dichromate 

reflux, 0.45 µm filter pore size), 5-day biological oxygen demand (BOD5), total organic carbon 

(TOC, high temperature combustion method), total carbon (TC, high temperature combustion 

method), carbon dioxide (free CO2 reacts with sodium hydroxide to form sodium bicarbonate), 

total alkalinity (titration with sulfuric acid and methyl orange indicator), total Kjeldahl 

nitrogen (Kj-N, Kjeldahl method), total ammonia nitrogen (TAN, colorimetric method), nitrite 

nitrogen (NO2-N, colorimetric method with diazotized sulfanilamide), nitrate nitrogen (NO3-N, 

cadmium reduction to nitrite and measurement nitrite), hydrogen sulfide (H2S, photometric 

method), total suspended solid (TSS, dried to constant weight at 103–105 
o
C), chlorophyll-a 

(spectrophotometer method), orthophosphate (PO4-P,ammonium molybdate and potassium 

antimonyl tartrate method) and total phosphorus (TP, photometric method). 

 For rainfall, the amount of rain water was measured daily by a 20-cm diameter according to 

Snowdon Rain Gauge (Mill, 1907) installed next to the ponds on each farm (Figure 2.2). 

Fish, feed and sludge 

Whole fish, feed and sludge were analyzed for DM, total Kj-N and TP. The DM was 

determined gravimetrically after drying at 105 
o
C for 24 hours (AOAC, 2000). Total Kj-N was 

analyzed by the Kjeldahl method (AOAC, 2000). The crude protein in feed was calculated 

from total Kj-N multiplied by 6.25.  

TP in whole fish, feed and sludge was analyzed spectrophotometrically following Kitson and 

Mellon (1944). Dead fishes collected during culture were weighed and counted, and the 
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associated nutrient content was calculated based on the biweekly measured proximate 

composition. 

The fifteen fish collected per pond at the end of the culture period were filleted manually by a 

professional expert from a processing company, and fillet percentage and color grade were 

determined according to Sang et al. (2012). The grade of fillet coloration was defined as white 

(score 1), pink (score 2) and yellow (score 3). 

2.2.6. Calculations and statistics 

Parameter units and calculation formulas are summarized in Table 2.3. Water use only 

considers pond-associated water use, not feed-associated water use (Verdegem and Bosma, 

2009; Verdegem et al., 2006). Sludge includes the removed and accumulated fractions. 

Differences in water quality parameters, fish performance parameters, nutrient inputs or 

outputs, resource utilization parameters (consumption or use of fingerlings, water, diesel oil, 

electricity, labour, chemicals (lime, NaCl, CuSO4 and Iodine), antibiotics, nutrients retained in 

fish (DM, P, N) and nutrient discharge (DM, P, N) between DS and US ponds were analyzed 

by One-Way ANOVA, followed by Tukey test in case of significant difference (P < 0.05).  

All statistical comparisons were first done using the individual weight at stocking as co-

variable. The latter was retained in the analysis when significant (P < 0.05). Daily and 

biweekly measurements were averaged over the culture period before ANOVA. Daily and 

biweekly measurements were used to make water and nutrient mass balances (Table 2.3). 
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Table 2. 3:Units and formulas 

Parameter  Unit  Formula 

Sustainability indicators*: 

Resource utilization efficiency:  

  -Fingerling use (FU) # kg-1fish FU  = (Ntot Initial - Ntot Final) / Gtot 

  -Water use (WU)  m3 kg-1fish WU = Vtot.inflow/ Gtot 

  -Diesel use (DU) ml kg-1fish DU  = Voil / Gtot 

  -Energy use (EU) kWh kg-1fish EU  = Eelectricity  / Gtot 

  -Labour use (LU) hr kg-1fish LU  = Ltime  / Gtot 

  -Chemical use (CU) g kg-1fish CU  = Mtot.chemical / Gtot 

  -Antibiotic use (AU) g kg-1fish AU  = Mtot.antibiotic / Gtot 

Nutrient utilisation efficiency:   

  -XR  (X=DM or P or N) g kg-1fish XR = 1000 * Xfish retained / Gtot 

Nutrient discharge (XD): g kg-1fish XD = 1000 * Xdischarge / Gtot 

  Xdischarge = Xeffluent + Xsludge - Xinfluent 
*Sustainability indicators were also expressed per kg feed-1 by dividing by FC instead of Gtot.  

Fish performance  

  Initial individual body weight 

(WInitial) 

g WInitial = W Initial sample  / n 

Final individual body weight (WFinal) g WFinal = WFinal sample  / n 

Total fish stocked in pond (Ntot. Initial) # Ntot Initial =1000 * Wtot Initial  / WInitial 

Total fish harvested from pond (Ntot. 

Final) 

# Ntot Final =1000 * Wtot.Final / WFinal 

Survival (S) % S = 100 * (Ntot.Final  / Ntot.Initial) 

Specific growth rate (SGR) % bw d-1 SGR = 100 * (lnWFinal -lnWInitial) / D 

Geometric mean body weight (Wg) g Wg = e((lnWFinal + lnW Initial)/2) 

Metabolic feeding rate (MFR) g kg-0.8d-1 MFR = 1000 * FC / [(Ntot.Final + Ntot.Initial) / 2] 

/ D / (Wg/1000)0.8 

Metabolic growth rate (MGR) g kg-0.8d-1 MGR = (WFinal - WInitial) / D / (Wg
/1000)0.8 

Total biomass gain (Gtot) kg Gtot = Wtot.Final - Wtot.Initial 

Feed conversion ratio (FCR) kg kg-1 FCR = FC / Gtot 

Biomass of fish mortality 

(GFish.mortality) 

kg  Daily accumulation  

Fillet yield (FY) % FY = 100 * ( FW / WFinal ) 

Fillet colour grade (FIG)   FIG = ( 1*nwhite + 2*npink + 3*nyellow ) / n 
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Table 2.3 (continued- 1): Units and formulas.  

Parameter  Unit  Formula 

Nutrient mass balances    

At fish level   

Nutrients in feed (Xfeed) kg Xfeed  =  (CX.feed /100) x FC 

Nutrients in fish retained (Xfish 

retained) 

kg Xfish retained  = (CX.Final fish * Wtot.Final)- (CX. 

Initial fish *Wtot.Initial) 

Nutrients in fish mortality (Xmortality) kg Xmortality = CX.fish.mortality *  Gfish.mortality 

Metabolic waste production (XMW) kg XMW = Xfeed - Xfish retained  - Xmortality 

At pond level  

Nutrient input (Xinput pond) kg Xinput pond = XMW  + Xinfluent 

Nutrient influent water (Xinfluent) kg Xinfluent =  [CX.inflow * Vtot.inflow] / 1000 

Nutrient output (Xoutput pond) kg Xoutput pond = Xeffluent + Xsludge+ Xunaccounted 

Nutrient in effluent (Xeffluent) kg Xeffluent = [(CX.outflow*Vtot.outflow) + (CX.seepage 

* Vtot.seepage)] / 1000 

Nutrient in sludge (Xsludge) kg Xsludge = [CX.sludge removal frequency  * Vtot.sludge 

removal frequency ] /1000 + (CX.remained sludge * 

Mtot.sludge) / 100 

Nutrient unaccounted (Xunaccounted) kg Xunaccounted = Xinputs - (Xeffluent + Xsludge) 

Vtot,inflow
 : total amount of inflow water culture cycle (m3), Voil : total volume of diesel oil utilisation whole culture cycle (L), 

Eelectricity: total electricity consumption culture cycle (kWh), Ltime : total time use of labour whole culture cycle (hour), 

Mtot.chemical: total amount of chemical (as limes, NaCl, CuSO4 or Iodine) whole culture cycle (g), Mtot.antibiotic: total antibiotics 

use in culture cycle (g), Xfish retained: DM, N or P retained in fish (g), Xdischarge: DM, N or P discharge (kg), W Initial sample
: initial 

fish biomass of sample (kg), WFinal sample: fish biomass of sample at harvest (kg), Wtot.Initial: total initial fish biomass at 

stocking day by weight (kg), Wtot.Final: total fish biomass at harvest day by weight (kg), n: number of fish samples (#), FW: 

weight of complete skinless fillet after removing fat and red muscle following standard process for export market(g), nwhite: 

number of white fillet fish, npink: number of pink fillet fish (#), nyellow: number of yellow fillet fish (#), CX.feed: Nutrient (DM, 

N or P) concentration (%), FC: cumulative feed (kg), CX.Final fish: Nutrient (DM, N or P) concentration in whole final fish body 

(%), CX.Initial fish: Nutrient (DM, N or P) concentration in whole initial fish body (%), CX.inflow: Nutrient (DM, N or P) 

concentration in inflow water (g m-3), CX.outflow: Nutrient (DM, N or P) concentration in outflow water (g m-3), Vtot.outflow: total 

volume of outflow water (m3), CX.seepage: Nutrient (DM, N or P) concentration in outflow water (g m-3), Vtot.seepage: total 

volume of seepage water (m3), CX.sludge removal frequency: Nutrient (DM, N or P) concentration in sludge removal frequency 

during culture cycle (g m-3), Vtot.sludge removal frequency:total volume of sludge removal frequency during culture cycle (m3), 

CX.remained sludge: Nutrient (DM, N or P) concentration in remained dry matter of sludge in pond at harvest day (%), Mtot.sludge : 

total remained dry matter of sludge in pond at harvest day (kg). 
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2.3. Results 

 

2.3.1. Water quality 

Mean values per water quality parameter for the whole production cycle are summarized in 

Table 2.4.  

Pond influent (river water). No significant differences (P > 0.05) were observed in pond 

influent between DS and US locations for pH, TAN, NH3-N, NO2-N, NO3-N, PO4-P, TP, 

alkalinity, CO2, TC, TOC, TSS, Chlorophyll-a, COD and BOD5 (Table 2.3). Significant 

differences (P < 0.05) were observed in pond influent water between DS and US ponds for 

oxygen at 2m depth (4.9 vs. 4.7 mg l
-1

), total Kj-N (3.2 vs. 6.2 mg l
-1

) and salinity (0.4 vs. 0.06 

ppt).    

Pond water. No significant differences (P > 0.05) were observed in pond water between DS 

and US ponds for morning pH and for Kj-N, TAN, NO3-N, H2S, PO4-P, CO2, TC, TOC, 

Chlorophyll-a, COD and BOD5. However, pond morning and afternoon water temperature, 

NO2-N, TP, alkalinity, TSS and salinity in DS ponds was significantly higher than in US 

ponds. The afternoon pH, morning oxygen concentrations at 1, 2 3 and 4m, afternoon oxygen 

concentrations at 1, 2 and 3m, morning and afternoon water transparency, and NH3-N were 

lower in DS ponds than in US ponds. 

Pond influent (river water) versus pond water. There were no significant differences between 

DS pond influent (river water) and corresponding pond water for NH3-N, NO3-N, PO4-P, CO2, 

and salinity and between US pond influent (van Rijn and Rivera) water and corresponding 

pond water for Kj-N, NH3-N, NO2-N, NO3-N, PO4-P, CO2, TOC and salinity. Mean 

concentrations in pond influent (river water) were always lower than in the pond water for 

TAN, TP, alkalinity, TC, chlorophyll-a, COD and BOD5 and higher for pH, oxygen and TSS 

(P < 0.05). At DS locations, concentrations in influent (river water) were lower than in 

corresponding ponds for Kj-N, TAN, NO2-N, TP, alkalinity, TC, TOC, Chlorophyll-a, COD 

and BOD5. The same was observed in US ponds for TAN, TP, alkalinity, TC, Chlorophyll-a, 

COD and BOD5 (P<0.05). Concentrations in DS and US pond influent (river water) were 

similar to concentrations observed in DS and US-ponds for NO3-N, PO4-P and CO2, 

respectively. 
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 Table 2. 4: Water quality in pond influent (from river) and in downstream and upstream ponds, averaged over a full production cycle and 

location. Values are mean ± S.D. 

Parameter 
 Influent Downstream pond Influent Upstream pond  

Unit Mean ±SD Min-Max Mean ±SD Min-Max Mean ±SD Min-Max Mean ±SD Min-Max p-value 

Temperature 
 

  
 

   
 

 
 

- morning 
o
C - - 30.4

a
±1.1 28.0-33.0 - - 29.5

b
±1.6 27.0-33.0 0.001 

- afternoon 
o
C - - 31.6

a
±1.3 29.0-35.0 - - 30.9

b
±1.2 28.0-33.0 0.001 

pH 
 

  
 

   
 

 
 

- morning 
 

6.4
ab

±0.2 6-7 6.3
c
±0.3 6.0-7.0 6.4

a
±0.2 5.7-7.0 6.2

c
±0.4 5.6-7.2 0.012 

- afternoon 
 

  6.6
b
±0.4 6.0-7.9   6.7

a
±0.6 5.7-7.0 0.001 

Oxygen 
 

  
 

   
 

 
 

morning 
 

  
 

   
 

 
 

- 1m depth mg l
-1

   1.5
b
±0.7 0.7-3.8   1.9

a
±0.6 0.6-3.6 0.001 

- 2m depth mg l
-1

 4.9
a
±0.9 2-6.8 1.2

d
±0.6 0.5-3.4 4.7

b
±1 2.0-6.8 1.6

c
±0.5 0.6-3.5 0.001 

- 3m depth mg l
-1

   0.8
b
±0.4 0.2-2.7   1.4

a
±0.4 0.5-3.4 0.001 

- 4m depth mg l
-1

   0.5
b
±0.1 0.3-0.7   1.1

a
±0.4 0.5-3.2 0.001 

afternoon 
 

  
 

   
 

 
 

- 1m depth mg l
-1

   1.9
b
±0.1 1.6-10.6   2.2

a
±0.1 1.9 -9.0 0.001 

- 2m depth mg l
-1

   1.5
b
±0.1 1.0-8.7   1.8

a
±0.1 1.2-8.7 0.008 

- 3m depth mg l
-1

   1.0
b
±0.1 0.8-7.2   1.3

a
±0.1 1.2-18.6 0.001 

- 4m depth mg l
-1

   - -   0.8±0.1 0.5-3.0 - 

Transparency 
 

  
 

   
 

 
 

- morning cm   24.6
b
±6.8 14.0-47.0   30.2

a
±4.4 20.0-50.0 0.001 

- afternoon cm   24.2
b
±5.0 15.0-48.0   28.2

a
±4.5 20.0-42.0 0.001 

Kj-N mg l
-1

 3.2
bc

±1.8 0.5-7.3 9.9
a
±8.9 3.0-45.7 6.2

ab
±3.9 2.0-16.7 7.1

ab
±3.7 1.6-22.8 0.001 

TAN mg l
-1

 0.19
cd

±1.8 0.01-0.7 1.4
a
±1.3 0.3-5.6 0.2

c
±0.4 0.01-1.9 1.2

ab
±1.1 0.03-5.5 0.001 

NH3-N mg l
-1

 0.0
bd

 0.0-0.001 0.01
b
±0.0 0.0-0.02 0.01

abc
±0.02 0.0-0.7 0.02

a
±0.0 0.0-0.1 0.001 

NO2-N mg l
-1

 0.02
bd

±0.02 0-0.7 0.3
a
±0.3 0.0-1.4 0.03

bf
±0.06 0.0-0.2 0.1

b
±0.1 0.0-1.04 0.001 

NO3-N mg l
-1

 0.5
a
±0.3 0.1-1 0.4

a
±0.3 0.3-1.0 0.3

a
±0.2 0.1-1.0 0.4

a
±0.3 0.02-0.5 0.300 
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Table 2.4 (continued- 1): Water quality in pond influent (from river) and in downstream and upstream ponds, averaged over a full production 

cycle and location. Values are mean ± S.D. 

Parameter 
 

Influent Downstream pond Influent Upstream pond 
 

 
Unit Mean ±SD Min-Max Mean ±SD Min-Max Mean ±SD Min-Max Mean ±SD Min-Max p-value 

H2S mg l
-1

 - - 0.2
a
±0.1 0.01-0.5 - - 0.1

a
±0.2 0.0-0.8 0.615 

PO4-P mg l
-1

 0.04
a
±0.02 0.01-0.1 0.4

a
±0.5 0.0-1.7 0.4

a
±1.7 0.0-7.5 0.4

a
±0.5 0.01-1.5 0.400 

TP mg l
-1

 0.5
cd

±0.3 0.2-1.0 2.4
a
±1.2 0.4-5.9 0.7

c
±0.3 0.2-1.6 1.5

b
±1.0 0.2-5.1 0.001 

Alkalinity mg l
-1

 50.7
bc

±8.6 40.3-65.3 61.6
a
±9.8 48.9-83.2 43.0

cd
±9.2 28.9-60.3 51.1

b
±8.7 40.2-67.3 0.001 

CO2 mg l
-1

 34.3
a
±12.8 17.8-65.7 42.4

a
±28.1 7.4-106.9 28.2

a
±14.2 4.4-59.5 30.9

a
±19.3 1.2-68.3 0.057 

TC mg l
-1

 13.7
d
±5.5 5.6-27.3 28.9

b
±16.3 10.2-103.2 14.8

cd
±4.6 5.6-27.3 30.4

ab
±24.1 7.0-129.4 0.001 

TOC mg l
-1

 2.3
bd

±2.2 0.5-9.4 8.4
a
±11.5 1.03-64.9 3.2

abc
±2.3 0.8-9.4 6.3

ab
±5.4 1.3-29.9 0.015 

TSS mg l
-1

 182.9
ab

±47.7 139.7-335.1 80.8
c
±33.6 31.8-155.8 221.3

a
±51.2 122.4-306.8 49.3

d
±21.5 17.5-122 0.001 

Chlorophyll-a µg l
-1

 6.0
c
±3.2 2.1-11.6 114.3

a
±73.5 23.3-267.8 5.7

cd
±2.3 1.9-10.2 100.0

ab
±45.9 27.9-189.8 0.001 

COD mg l
-1

 6.0
c
±1.5 3.5-9.7 19.4

a
±5.7 11.5-29.4 6.9

cd
±1.4 4.3-8.8 19.4

ab
±5.1 7.9-29.0 0.001 

BOD5 mg l
-1

 5.4
c
±0.9 4.2-7.2 15.4

a
±5.0 9.1-23.7 4.9

cd
±1.1 3.2-6.8 15.0

ab
±4.2 7.0-24.0 0.615 

Salinity ppt 0.4
a
±0.3 0.1-1.2 0.4

a
±0.3 0.1-1.2 0.06

b
±0.02 0.04-0.08 0.06

b
±0.02 0.04-0.08 0.002 
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2.3.2. Growth performance 

 

 Table 2. 5: Fish performance and feeding in striped catfish ponds. Values are mean ± S.D; n 

= 2. 

Parameter  
               DS pond                  US pond  

 
Unit Mean ± SD Mean ± SD p-value 

Area ha 1.11 ± 0.1 1.08 ± 0.1 0.767 

Water depth m 3.40 ± 0.1 4.20 ± 0.1 0.015 

Culture period day 234.00 ± 6.0 277.00 ± 3.0 0.013 

Initial BW g ind
-1

 46.00 ± 0.7 31.00 ± 0.0 0.001 

Final BW g ind
-1

 791.00 ± 14.1 875.00 ± 63.6 0.210 

Initial number fish (x10
3
) # 600.00 ± 183.8 553.50 ± 1.4 0.755 

Final number fish (x10
3
)

* 
# 446.70 ± 62.6 282.30 ± 3.9 0.066 

Initial biomass
* 

MT 27.40 ± 7.9 15.70 ± 0.4 0.171 

Final biomass
 

MT 352.80 ± 43.1 247.10 ± 21.4 0.090 

Yield kg fish m
-2

 31.80 ± 3.9 22.90 ± 2.0 0.117 

 kg fish m
-3

 9.30 ± 0.4 5.50 ± 1.2 0.054 

Total feed MT 486.40 ± 15.0 381.00 ± 28.8 0.044 

Survival 
* 

% 76.40 ± 13.0 51.00 ± 0.6 0.110 

Geometric mean BW g 190.70 ± 3.2 164.60 ± 6.0 0.032 

Specific growth rate (SGR) % bw d
-1

 1.24 ± 0.0 1.21 ± 0.4 0.746 

-SGR in period 1 % bw d
-1

 0.82 ± 0.2 0.95 ± 0.2 0.575 

-SGR in period 2 % bw d
-1

 1.19 ± 0.6 1.34 ± 0.2 0.764 

-SGR in period 3 % bw d
-1

 1.45 ± 0.1 1.24 ± 0.1 0.191 

Feed conversion ratio (FCR)  -  1.50 ± 0.1 1.65 ± 0.0 0.211 

Metabolic feeding rate (MFR) g kg
-0.8

 d
-1

 17.70 ± 2.2 20.60 ± 0.9 0.223 

Metabolic growth rate (MGR) g kg
-0.8

 d
-1

 12.30 ± 0.4 12.90 ± 0.7 0.270 

FCR (metabolic)
* 

' 1.47 ± 0.1 1.60 ± 0.0 0.316 

Fillet percentage % 35.50 ± 1.2 35.20 ± 1.7 0.465 

Fillet colour grade 1-3
 

1.47 ± 0.6 1.20 ± 0.5 0.071 

Parameters with a significant (P < 0.05) co-variable effect of individual weight at stocking are indicated by ‘*’. 

Period 1: day 1 -59, Period 2: day 60 -122, Period 3: day 123 – harvest. 

 

Fish behaviour during feeding was monitored and feeding was stopped when fish showed low 

appetite. In DS ponds, this resulted in realized feeding rates of 1.0±0.4, 2.3±0.5 and 2.5±0.2 
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percent body weight d
-1

, respectively, during culture days 1 through 59, 60 through 122, and 

123 until harvest. In US ponds, realized feeding rates were 1.1±0.2, 0.8±0.1 and 1.7±0.8 

percent body weight d
-1

, respectively, during culture days 1 through 59, 60 through 122, and 

123 until harvest. 

 

In all ponds, fish were harvested when above 700 g average individual weight, which is 

considered the minimum market size. The total harvested biomass was 352.8±43.1 MT in DS 

ponds and 247.1±21.4 MT in US ponds. Total feed load was higher in DS ponds when 

compared with US ponds (P < 0.05). Growth was similar between DS and US ponds (P > 

0.05). Also survival, FCR, fillet dress out percentage and fillet coloration were similar 

between US and DS ponds (P > 0.05) (Table 2.5).  

 

2.3.3. Nutrient mass balances in striped catfish ponds 

 

Dry matter mass balance. Feed DM input was 434 MT in DS and 341 MT in US-ponds. Of 

this, 28–30% was retained in fish biomass in DS and US ponds (P > 0.05). Assuming all feed 

was consumed, the feed not retained in fish biomass was metabolic waste. At pond level, DM 

input was the sum of DM in metabolic waste and in influent water (Table 2.6). Mekong water 

provided 33% of the DM input in DS ponds and 56% in US ponds, which was significantly 

different (P < 0.05). The largest fraction of DM input was removed by pumping out sludge, 

which was similar between DS and US ponds (46% in DS ponds, 58% in US ponds, P > 0.05). 

Unaccounted DM was also similar between DS and US ponds (37% in DS and 29% in US 

ponds, P > 0.05). 
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Table 2. 6: Dry matter (DM) mass balance in downstream and upstream striped catfish ponds 

per production cycle. Values in 10
3 

kg are mean ± S.D.; n = 2. 

Mass balance 

component 
DS pond US pond 

 

 
Mean ± SD % Mean ± SD % p-value 

At fish level          

DM in feed 434.0
a 

± 13.4 100.0 340.6
a 

± 25.8 100.0 0.045 

-DM in retained in fish 123.7
a 

± 14.0 28.5 88.1
 

± 8.6 25.9 0.092 

-DM in fish mortality 4.7
a 

± 2.1 1.1 6.2
a 

± 0.9 1.8 0.415 

-DM metabolic waste 305.6
a 

± 2.8 70.4 246.3
b 

± 17.1 72.3 0.040 

At pond level          

DM input 453.9
b 

± 10.4 100.0 557.9
a 

± 28.2 100.0 0.039 

-DM metabolic waste 305.6
a 

 2.8 67.3 246.3
b 

 17.1 44.1 0.040 

-DM in influent 148.3
b 

± 13.1 32.7 311.6
a 

± 11.1 55.9 0.006 

DM Output          

-DM in effluent 74.5
a 

± 5.9 16.4 68.7
a 

± 0.5 12.3 0.295 

-DM in sludge 209.5
a 

± 35.7 46.2 325.6
a 

± 22.6 58.4 0.060 

-DM unaccounted 169.9
a 

± 31.3 37.4 163.6
a 

± 5.1 29.3 0.806 

 

Phosphorous mass balance. More P was administrated with the feed in DS ponds than in US 

ponds (P < 0.05). On average, 18% of feed-P was retained in fish biomass including dead fish 

in both DS and US ponds. The remaining 82% became metabolic waste (Table 2.7). Of the 

combined P input through metabolic waste and river influent water, 34% in DS ponds and 

38% in US ponds was discharged with effluent water. In the P mass balance, 0.8 and 2.0% 

remained unaccounted in DS and US ponds, respectively, at the end of the production cycle. 

The largest fraction of P was removed with sludge pumped out of the pond (65% of metabolic 

waste in DS and 59% in US ponds, P > 0.05). 

 

 

 

 

 

 



Nutrient mass balance and water use in striped catfish pond culture: down-stream versus up-stream 

 

37 

 

Table 2. 7:   Phosphorous (P) mass balance in downstream and upstream striped catfish ponds 

per production cycle. Values in 10
3
 kg are mean ± S.D.; n = 2. 

 

Mass balance component 
DS pond US pond 

 

 
Mean ± SD % Mean ± SD % p-value 

Fish level          

P in feed 6.73
a 

± 0.20 100.0 5.11
b 

± 0.38 100.0 0.034 

-P retained in fish 1.09
a 

± 0.11 16.2 0.77
a 

± 0.88 15.1 0.082 

-P in fish mortality 0.10
a 

± 0.03 1.5 0.13
a 

± 0.06 2.5 0.261 

-P metabolic waste 5.54
a 

± 0.07 82.5 4.20
b 

± 0.30 82.2 0.025 

Pond level  
 

  
  

  
 

P input 6.00
a 

± 0.07 100.0 5.13
a 

± 0.46 100.0 0.119 

-P metabolic waste 5.54
a 

± 0.07 92.3 4.20
b 

± 0.30 81.9 0.025 

-P in influent 0.46
a 

± 0.01 7.7 0.93
a 

± 0.16 18.1 0.055 

P output          

-P in effluent 2.05
a 

± 0.27 34.2 1.96
a 

± 0.20 38.2 0.746 

-P in sludge 3.90
a 

± 0.18 65.0 3.05
a 

± 0.30 59.2 0.075 

-P unaccounted 0.05
a 

± 0.01 0.8 0.11
a 

± 0.04 2.1 0.152 

 

Nitrogen mass balance. More N was administrated with the feed in DS ponds than in US 

ponds (P < 0.05) (Table 2.8). The percentage of feed-N retained in fish including dead fish 

was similar in DS and US ponds, fluctuating between 39 to 44% (P > 0.05). The remaining 56 

to 60% of feed-N became metabolic waste. Of the combined N input through metabolic waste 

and influent water, 57–59% was discharged with effluent water, 9–11% pumped out with 

sludge, and 30–34% remained unaccounted. 

 

These results were similar for DS-ponds and US-ponds (P > 0.05) (Table 2.8). Assuming the 

N-unaccounted volatilized, then in DS ponds 44% of the metabolic waste volatilized. In US 

ponds 53% volatilized. In consequence, 56 and 47% of the metabolic waste was discharged to 

the Mekong River from DS and US ponds, respectively. 
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Table 2. 8: Nitrogen (N) mass balance in downstream and upstream striped catfish ponds 

per production cycle. Values in 10
3
 kg are mean ± S.D; n = 2.  

Mass balance component 
DS pond US pond  

Mean ± SD % Mean ± SD % p-value 

Fish level 
  

  
 

 
 

 
 

N in feed 20.78
a 

± 0.69 100.0 16.13
b 

± 1.22 100.0 0.043 

  -N in fish retained 8.22
a 

± 0.84 39.6 5.88
a 

± 0.58 36.5 0.082 

  -N in fish mortality 0.96
a 

± 0.67 4.6 0.50
a 

± 0.02 3.1 0.441 

  -N in metabolic waste 11.60
a 

± 0.52 55.8 9.76
a 

± 0.67 60.4 0.092 

Pond level  
 

  
 

 
 

 
 

N input 15.07
a 

± 0.87 100.0 17.03
a 

± 0.12 100.0 0.088 

  -N in metabolic waste 11.60
a 

± 0.52 77.0 9.76
a 

± 0.67 57.3 0.092 

  -N in influent 3.47
b 

± 0.35 23.0 7.27
a 

± 0.55 42.7 0.014 

N output 
  

  
 

 
 

 
 

  -N in effluent 8.51
a 

± 1.17 56.5 10.0
a 

± 0.15 58.7 0.215 

  -N in sludge 1.42
a 

± 0.91 9.4 1.89
a 

± 0.22 11.1 0.557 

  -N unaccounted 5.139
a 

± 1.12 34.1 5.15
a 

± 0.21 30.2 0.991 

 

 

2.3.4. Pond management 

 

Pond management indicators are presented in Table 2.9. Use of water, electricity, labour, 

lime, salt and antibiotics per kg fish produced was respectively 61, 75, 45, 66, 49, and 60% 

lower in DS ponds than in US ponds (P < 0.05). However diesel oil use and sludge removal 

frequency per kg fish produced were respectively 113% and 200% higher in DS ponds than in 

US ponds (P < 0.05). No differences between DS and US ponds were observed for CuSO4 and 

iodine use (P > 0.05). The period of no antibiotics use before harvesting was 133 days in DS 

ponds and 126 days in US ponds (Figure 2.3). 
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Table 2. 9: Pond management indicators expressed per kg feed (ww) consumed and per kg        

fish produced for downstream and upstream striped catfish ponds. Values are 

mean ± S.D.; n = 2. 

Parameter  DS pond US pond  

 Unit Mean ± SD Min-Max Mean ± SD Min-Max 
p-

value 

Resource use           

Fingerlings use # kg
-1

fish 1.70 ± 0.30 1.50-1.90 2.20 ± 0.20 2.10-2.40 0.161 

Water use 
m

3
 kg

-1
feed 1.90 ± 0.10 1.80-1.90 4.30 ± 0.10 4.30-4.40 0.001 

m
3
 kg

-1
fish 2.80 ± 0.10 2.70-2.90 7.10 ± 0.0 7.12-7.14 0.001 

Diesel oil use 
ml kg

-1
feed 1.10 ± 0.10 1.10-1.20 0.50 ± 0.01 0.40-0.60 0.013 

ml kg
-1

fish 1.60 ± 0.30 1.40-1.80 0.75 ± 0.03 0.70-0.80 0.048 

Electricity use 

kWh kg
-

1
feed 

0.02 ± 0.01 0.02-0.03 0.09 ± 0.01 0.08-1.00 0.007 

kWh kg
-1

fish 0.04 ± 0.01 0.03-0.04 0.14 ± 0.01 0.10-0.15 0.004 

Labour use 
hr kg

-1
feed 0.05 ± 0.00 0.046-0.05 0.07 ± 0.01 0.06-0.07 0.030 

hr kg
-1

fish 0.06 ± 0.00 0.050-0.07 0.11 ± 0.01 0.10-0.12 0.035 

Chemical use           

Lime (CaCO3) 
g kg

-1
feed 8.50 ± 0.30 8.30-8.70 25.40 ± 2.70 23.50-27.30 0.013 

g kg
-1

fish 14.40 ± 3.60 11.80-16.90 41.90 ± 5.10 38.30-45.50 0.025 

Salt (NaCl) 
g kg

-1
feed 7.10 ± 0.60 6.60-7.40 12.00 ± 0.90 11.40-12.60 0.023 

g kg
-1

fish 10.60 ± 1.70 9.40-11.80 20.90 ± 0.30 20.70-21.10 0.014 

CuSO4 
g kg

-1
feed 0.03 ± 0.02 0.01-0.04 0.04 ± 0.01 0.03-0.06 0.235 

g kg
-1

fish 0.04 ± 0.02 0.02-0.05 0.09 ± 0.01 0.06-0.11 0.226 

Iodine 
g kg

-1
feed 0.16 ± 0.06 0.12-0.20 0.20 ± 0.12 0.20-0.21 0.173 

g kg
-1

fish 0.30 ± 0.08 0.17-0.33 0.40 ± 0.01 0.04-0.43 0.165 

Antibiotic use 
g kg

-1
feed 0.04 ± 0.01 0.03-0.05 0.09 ± 0.01 0.08-0.97 0.020 

g kg
-1

fish 0.06 ± 0.01 0.05-0.07 0.15 ± 0.01 0.14-0.16 0.020 

Nutrient use 

efficiency 
          

DM retained % 29.5 ± 2.8 27.5-31.5 27.7 ± 0.5 27.3-28.0 0.451 

N retained % 44.2 ± 0.7 43.7-44.6 39.5 ± 0.4 39.2-39.8 0.014 

P retained % 17.7 ± 1.4 16.7-18.7 17.6 ± 0.4 17.3-17.9 0.973 

Nutrient 

discharge 
          

DM discharge g kg
-1

fish 414.7 ± 42.0 384.6-444.9 356.5 ± 19.3 342.8-370.2 0.221 

 g kg
-1

feed 278.2 ± 49.9 242.9-313.6 216.5 ± 14.9 205.9-227.1 0.236 

N discharge g kg
-1

fish 19.8 ± 2.0 17.2-22.9 20.1 ± 4.0 18.4-21.2 0.943 

 g kg
-1

feed 13.3 ± 1.7 12.1-14.5 12.0 ± 1.4 11.1-13.0 0.493 

P discharge g kg
-1

fish 17.0 ± 1.6 15.8-18.1 17.7 ± 0.2 17.6-17.8 0.579 

 g kg
-1

feed 11.3 ± 0.2 11.2-11.4 10.7 ± 0.1 10.7-10.8 0.054 

Sludge removal 

frequency 
# cycle

-1
 3   - 1    - 
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Figure 2. 3: Daily feed load, fish mortality, antibiotics, and chemicals use during the culture period in DS ponds (A) and US ponds (B).  
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2.4. Discussion 

 

First the main outcomes of the sampling program were compared to reported values, followed 

by an analysis of observed differences between DS and US ponds. Secondly, the sustainability 

indicators for striped catfish pond culture were compared to reported indicators for other 

species, and options for improvement were explored.  

 

2.4.1. Pond performance  

None of the measured water quality parameters in the DS and US pond influent exceeded the 

limits set by the Vietnamese Ministry of Agriculture and Rural Development for striped 

catfish pond farming (MARD, 2003). Fish grew in 234–277 days from 31–46 g to 791–875g. 

The FCR over the full production cycle was on average 1.5 in DS ponds and 1.7 in US ponds, 

in agreement with earlier reported FCRs for striped catfish farming in the Mekong delta 

(Bosma et al., 2009; Phan et al., 2009). Observed differences in survival between DS and US 

ponds were possibly due to differences in management and water regime in the two locations. 

In all ponds, the fraction of input-P remaining unexplained over the complete production 

cycle remained below 2%, which is lower than reported by Adhikari et al. (2014) and Thakur 

and Lin (2003). A higher fraction of DM and N remained unexplained in the mass balance, 

because, contrary to P, not all possible sinks were measured. It is assumed that the 

unaccounted fractions of DM and N in the mass balances were mainly volatilized as CO2 and 

N2, respectively (Adhikari et al., 2014; Boyd, 1985; Funge-Smith and Briggs, 1998; Gross et 

al., 2000; Lin et al., 1997), and that other fractions in the mass balances were quantified with 

the same accuracy as for phosphorous.  

 

2.4.2. Water exchange and water quality 

Water exchange was one of the main factors influencing pond water quality. Water use in US 

ponds was 7.1 m
3
 kg

-1
 fish, which was 2.5 times higher than the 2.8 m

3
 kg

-1
fishexchanged in 

DS ponds. Higher daily water exchange with the Mekong River in US ponds concurred with 

significantly lower pond concentrations for Kj-N, NO2-N, total P, alkalinity, CO2 and 

chlorophyll-a compared to US ponds. The observed difference in Kj-N concentration of 3.2 

mg l
-1 

in influent in DS ponds compared to 6.2 mg l
-1

 in US ponds resulted in 16% additional 

protein load per kg feed in US ponds. Considering Kj-N concentrations in influent water, an 



Nutrient mass balance and water use in striped catfish pond culture: down-stream versus up-stream 

 

43 

 

estimated 58g additional protein (13%) per kg feed entered DS ponds and 161g (58%) per kg 

feed entered US ponds. This might – depending on settling properties, in-pond water retention 

time and degradability – impact oxygen availability for fish and microbial respiration. If 

completely decomposed, 1 g protein consumes 1.77 g oxygen (Dalsgaard and Pedersen, 

2011), which indicates an additional oxygen demand of 102 and 285 g O2 kg feed
-1

 in DS and 

US ponds, respectively. If only 10% of this protein would be degraded in the pond it means 

35% and 59% more oxygen in DS and US ponds, respectively, will be required than the 

amount supplied by the influent water. Hence, the exchange water significantly increased 

pond oxygen demand. 

 

The low difference in oxygen concentration of 4.9 mg l
-1

 in influent water to DS ponds versus 

4.7 mg l
-1

 to US ponds, had a negligible effect on striped catfish growth performance. During 

the production cycle, growth performance remained favourable, even with DO dropping 

below 2 mg O2 l
-1

 at 1m depth within 2 months after stocking. This is possible because striped 

catfish is an facultative air-breather (Lefevre et al., 2011c) for which dissolved oxygen in the 

water is less important for maintaining growth. To indicate this, we assumed an conservative 

oxygen consumption of 200 g O2 per kg feed intake by striped catfish, similar to the air 

breathing African catfish (Clarias gariepinus) (Eding and Weerd, 1999). This concurs with a 

feed based oxygen consumption by striped catfish of 37.4 g O2 m
-2

 d
-1

. For the pond culture 

conditions in the current study the oxygen supply was estimated to be 0.96 g O2 m
2
 day

-1
 

through water exchange, 21.5 g O2 m
2
 day

-1
 through primary production and 3 g O2 m

2
 day

-1
 

through the water surface oxygen exchange. Oxygen consumption in the water column was 

estimated at 10.47 g O2 m
2
 day

-1
 and 12.42 g O2 m

2
 day

-1
 in the sediment. This leads to an 

oxygen deficit of 34.82 g O2 m
2
 day

-1
, equalling 93% (34.82/37.4 * 100%) of the oxygen 

requirement of striped catfish in the pond (Table 2.10). This in part explains why the fish 

remained close to the surface, also in deep ponds (Lefevre et al., 2011b). Striped catfish 

prefers under non-fed conditions to consume oxygen from the water column provided there is 

sufficient oxygen (Lefevre et al., 2011c). However, under fed conditions, results show that 

striped catfish in the Mekong delta is produced under dissolved oxygen deficient conditions. 

This observation means that striped catfish can be produced under low water exchange 

conditions, because only 7% of the oxygen demand per kg feed (=14 g O2 kg 
-1

feed) was 

provided. Assuming surface aeration is negligible then at 30 
o
C a flow rate of 7 to 8 m

3
 kg

-
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1
feed day

-1
 should be sufficient to cover the water oxygen demand of striped catfish (influent 

concentration 7.2 mg O2 l
-1

 (95% saturated), effluent 4.5 mg O2 l
-1

). A higher flow rate of 12 

m
3 

kg
-1

 feed was reported for African catfish by Eding and Kamstra (2002), to control oxygen 

and ammonia and assuming the fish consumed 300 g O2 kg feed
-1

.   

 

The average H2S concentration was 0.1–0.2 mg l
-1

, and similar in DS and US ponds, with 

peak concentrations reaching 0.5–0.8 mg l
-1

 (Table 2.4). Considering the NO3-

Nconcentrations in the ponds were low (0.3–0.5 mg l
-1

), diffusion of NO3-N into the 

flocculent bottom layer was too low to prevent H2S formation under oxygen depleted 

conditions. The large water volume and daily exchange in the ponds helped in keeping H2S 

concentrations low. The sludge removal frequency was sufficient in maintaining a favourable 

water quality as in our study no correlation was found between fish growth or fish mortality 

and H2S concentration (P > 0.05). Nevertheless, the H2S concentration increased (H2S (mg l
-1

) 

= 0.0016*culture day - 0.0192; r
2
 = 0.5649; P < 0.05) during culture and was similar between 

DS and US locations (P > 0.05). Furthermore, the observed H2S concentrations always 

remained below threshold concentrations reported to affect fish growth and fillet meat quality 

(Linh, 2011). H2S concentrations were measured biweekly, and occasionally reached a peak 

value of 0.8 mg l
-1

. Linh (2011) reported an LC10 for striped catfish of 0.83 mg l
-1

 over a 60 

day observation period. Daily monitoring of H2S concentrations and investigating possible 

chronical effects of low H2S on striped catfish survival over the full production cycle requires 

further research.  

 

The NO2-N concentration was never higher than 1 mg l
-1

, which is much lower than reported 

safe levels for striped catfish (Huong et al., 2011). The higher salinity of influent water to DS 

ponds (0.4 ppt; min–max: 0.1–1.2) compared to US ponds (0.06 ppt; min-max: 0.04–0.08) 

might have been beneficial. The latter increased survival in chinook salmon smolts 

significantly after a stress test; resulted in lower cortisol stress response and faster recovery 

from stress; reduced NO2 toxicity (DS pond water: 0.3±0.3 mg l
-1

 NO2-N; US pond water: 

0.1±0.1 mg l
-1

); improved the release from the blood of ammonia and other pollutants; cleared 

the gills from excess mucus; improved the release of ammonia from the blood; prevented the 

loss of body salt and aided body salt recovery; and increased the production of mucus, a 

higher mucus turnover helping to eliminate parasites (Clifford et al., 1977; Tomasso et al., 
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1979). The tendency to observe better survival (P = 0.11) and yield (P=0.12) in DS ponds 

compared to US ponds might have been related to higher pond salinity (P < 0.05). 

Table 2. 10: Estimated oxygen mass balance of an average downstream pond, based on 

average water quality, feed input and fish biomass considering the complete 

production cycle. 

Parameter g O2 m
2 day-1 

% of fish 

respiration Reference 

 Input Sink Input Sink 

Fish respiration (200 g O2 kg feed-1; 

average feed load 187 g feed m2 day-1) 
 37.40  100.0 

Eding and Weerd 

(1999) 

Water exchange (4.9 – 1.2 = 2.7 g  

O2 m
-3, 0.36 m3 m-2) 

0.96  2.60  Present study 

Water column respiration (based on 

BOD5 measurement) 
 10.47  28.0 Present study 

Gross photosynthesis (assuming 3% 

chl-a in algae DM; 3.47 g O2 g C  

fixed-1) 

21.51  57.05  

Desortová (1981); 

Drapcho and Brune 

(2000) 

Surface gas exchange (2 m s-1 wind 

speed at 300C) 
3.00  8.00  

Boyd & Tucker 

(2012) 

Sediment oxygen demand (based on 

BOD5 measurement) 
 12.42  33.20 Present study 

DO deficit 34.82 93.10 Present study 

 

 

2.4.3. Water quality maintenance for fish growth  

Fish grew in 234–277 days from 31–46 g to 791–875g. The FCR over the full production 

cycle was on average 1.5 in DS ponds and 1.7 in US ponds, in agreement with earlier reported 

FCRs for striped catfish farming in the Mekong delta (Bosma et al., 2009; Phan et al., 2009). 

The fact that the specific growth rate (SGR) increased in DS ponds during the production 

cycle (Table 2.5) is contradictory to normal culture conditions for other fish species, including 

striped catfish. Temperature remained close to optimal during the culture period, and cannot 

explain the increase in SGR during culture. Fish mortality due to disease was high during 

period 1 (Table 2.2) and when disease occurred, feeding was lowered or even suspended 

(Phan et al., 2009). Ponds were not fed 15 and 17% of culture days in DS and US ponds, 
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respectively (Figure 2.3A & 2.3B). The larger feed input deficiency in US ponds concurred 

with a culture period of 277 days compared to 234 days in DS ponds. A longer culture period 

concurs with a higher labour and energy use, and delays income from fish sales. In this study, 

the longer culture period concurred with reduced feeding during disease treatment, either by 

application of antibiotics or CuSO4 (Fig 3A & 3B). Improving biosecurity, stocking disease 

free fingerlings, controlling pathogens (incl. parasites) in the exchange water (Phan et al., 

2009) and reducing transmission by possible hosts (Bondad-Reantaso et al., 2005), would 

contribute to better growth and feed utilization. Disease control in striped catfish pond culture 

remains a challenge, considering it is an open system connected with the Mekong River.  

  

Striped catfish farmers prefer 1-ha 2–6 m deep ponds located along channels and rivers 

accessible by ships to supply feed and to transport harvested fish to the processing plant (Phan 

et al., 2009). The culture cycle starts with 2–3 m water depth during the first month, 

subsequently raising the depth to the maximum pond depth and maintaining this depth until 

the end of the production cycle. In deep ponds, water movement above the bottom is small, 

resulting in negligible resuspension of settled sludge. Fish driven resuspension is also 

negligible as the fish stays close to the surface. The farmer checks the height of the sludge 

layer above the sediment, and removes it when it becomes too high. Water exchange pipes are 

situated at ± 2 m depth, allowing to exchange large volumes of surface water, with minimum 

disturbance of the deep-water layers in the pond, especially the flocculent layer. By 

exchanging the surface water and disturbing the bottom water as little as possible, in-pond 

resuspension is minimal so that gill damage due to a high suspended solids water load is 

avoided. The choice to culture striped catfish in 4–6 m deep ponds developed as an adaptation 

to the semi-tidal conditions in the Mekong delta with two 3-hour tidal water exchange periods 

daily, allowing to use the first period to discharge and the second period to take in water. In 

consequence, between tides, the pond water volume is smaller than when the pond is full. By 

using deep ponds the risks of resuspension and a high suspended solid concentration in the 

water column is reduced thereby reducing risks of gill damage during the period of low water 

level. The sludge is removed when the conditions in the flocculent layer switch from a 

situation favoring denitrification to anaerobic fermentation. Through denitrification, a large 

fraction of the waste is volatilized in situ, keeping pollution per kg fish produced low (Phu 

and Tinh, 2012). Assuming that 2.86 g of COD is used to remove 1 g NO3-N by 
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denitrification and that oxidation of 1 g OM (organic matter)  requires 1.42 g oxygen (Henze 

et al., 1997), 14698 and 14818 kg of OM COD (30–39g COD kg feed
-1

 or 21–27g OM kg 

feed
-1

) was on average removed from the DS and US ponds, respectively (Table 2.8; 

unaccounted N). Averaging for the whole pond area, 1.72 and 1.98 g NO3-N m
-2 

day
-1

 was 

removed daily in US and DS ponds, respectively. This concurs with 4.95 and 5.66 g COD 

removal m
-2 

day
-1

, and 0.11 and 0.13 equivalents of alkalinity production m
-2 

day
-1

 (1 mole 

NO3-N removal equals 0.91 alkalinity equivalents, Henze et al, 1997) in US and DS ponds, 

respectively. The alkalinity production compensated a daily application of 9.1 and 10.8 g 

NaHCO3 m
-2 

day
-1

 (1 alkalinity equivalent equals 83 g NaHCO3) in US and DS ponds, 

respectively. 

 

2.4.4. Sustainability indicators   

Fingerling use. The mortality (calculated as the difference between the number of fingerlings 

stocked and fish harvested) of striped catfish in this study was higher than reported for 

channel catfish production in ponds, trout in raceways and tilapia in recirculation systems 

(Table 2.11). As discussed in section 4.3, reducing disease related mortality is important. 

Because the mortality occurred mainly during the first two months of the production cycle and 

fingerlings are cheap, farmers do not consider lowering mortality a priority. However, when 

taking into account the reduction in feeding days, the high variation in feed input (Figure 2.3) 

and the longer culture period, then the lack of disease free fingerlings and the higher feed 

conversion ratio than necessary turns out to be costly to the industry. Developing culture 

methods to produce fingerlings in closed recirculation systems could be instrumental in 

producing disease free and high quality fingerlings. This needs to coincide with avoiding 

contamination during transport to the grow-out ponds.  

Water use. Water use per kg production in aquaculture varies over a broad range from 0.15 to 

more than 100 m
3
 per kg fish produced (Verdegem and Bosma, 2009). This was 20–77 times 

smaller than for trout production in raceways and 3–14 times smaller than for intensive 

shrimp ponds (Table 2.11). Water use in semi-intensive channel catfish ponds was similar 

with striped catfish production in the Mekong delta. The water use is further reduced in 

recirculating aquaculture systems (RAS), where it was 12 -30 times lower than for striped 

catfish pond culture (Table 2.11) (Verreth and Oberdieck, 2009).   
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Fossil energy use. On-farm (fossil) energy use to produce 1 kg of striped catfish was 6–113 

times lower than the other cultures listed in Table 2.11. This shows that culturing an air 

breeding species in ponds with tidal water exchange required considerable less on-farm 

energy input than any other type of fish culture (Boyd and Gross, 2000; Boyd and Tucker, 

1998 ; d’Orbcastel et al., 2009a; Verreth and Oberdieck, 2009).  

N-utilization efficiency. The N utilization efficiency of the feed was higher in striped catfish 

compared to channel catfish, shrimp, tilapia and trout culture (Table 2.11). Better N utilization 

efficiencies were obtained by integrating cultures or by switching to RAS using high quality 

feed (Table 2.11). N-discharge per kg fish produced from striped catfish ponds was 1.6–6.8 

times lower than for other mono-cultures listed in Table 2.11. These differences in discharge 

when compared other species are much higher than for N utilization efficiency. A unique 

feature of the 4–6 m deep striped catfish ponds is the occurrence of denitrification at the 

bottom, which significantly reduced N-discharge. The present practice of the industry is to 

discharge directly to the river. If however, the sludge would be treated before discharge, then 

striped catfish farming would actually remove OM from the river. This would not be the case 

for N and P, because the majority of these nutrients are discharged with the effluent. In a lab 

scale experiment Anh and Mai (2009) reduced the TSS load in the effluent close to 20% by 

passing it through a stabilization pond operated with a retention time of 1 hour. 

P utilization efficiency. The P utilization efficiency of the feed in striped catfish ponds was 

better than for shrimp or trout. However, the opposite was true for channel catfish and tilapia 

in RAS. Possibly, the use of plant ingredients in striped catfish feeds, lowered the P 

availability for fish growth (Cao et al., 2008; Gatlin et al., 2007; Hung et al., 2015; Kumar et 

al., 2012). Nevertheless, P discharge per kg striped catfish produced was similar to intensive 

culture of trout, channel catfish and shrimp, and higher than in polyculture ponds (Table 

2.11). In semi-extensive polyculture ponds, a larger fraction of P accumulated in the sediment 

(Nhan et al., 2006; Nhan et al., 2008). In the deep striped catfish ponds 58 to 60% of the 

metabolic waste of P accumulated in the system or was taken out during sludge removal. If 

this P could be trapped in sedimentation ponds (Anh et al., 2010), transformation into 

fertilizer would become an option (Da et al., 2015; Phung et al., 2009). In addition, reducing 

the P content in the feed and improving P availability, as was done in trout feeds (Ketola and 

Richmond, 1994) could also contribute to a further reduction of P discharge.  
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Table 2. 11: Some key sustainability indicators of different species culture. 
Species  

Culture 

system 

Mortality Water use Energy use Labour use N retained P retained N discharge P discharge 

 
(%) m

3
 kg

-1
fish

 
kWh kg

-1
 

fish
 

hr kg
-1

fish
 

% of input % of input g kg
-1

fish
 

g kg
-1

fish
 

Striped 

catfish 
Pond 

23.6-

49
(1)

 
2.8-7.1

(1) 
0.04-0.14

(1)
 0.06-0.11

(1) 
43.7- 44.3

(1) 
17.6 - 17.7

(1) 
19.8-20.1

(1) 
17.0-17.7

(1)
 

Channel 

catfish 
Pond 6

(12)
 3.7

(2) 
0.9

(3) 
- 18.3-34.8

(4) 
20.4

(4) 
29.1

(5) 
10.6-15.4

(5) 

Tilapia RAS 0.5
(6)

 0.24
(6)

 1.8
(6)

 0.013
(6)

 32
(6)

 43
(6)

 45.9
(6)

 8.3
(6)

 

Trout FT 0.1
(7)

 148-215
(8) 

1-1.7
(7) 

- 18.9
(8) 

13.2
(8) 

73.3-124.2
(8,13) 

11.0-25.6
(8,13) 

Intensive 

shrimp  
Pond 22-50

(10)
 20-40

(9) 
4.5

(11) 
- 22.8-30.7

(10)
 10.5-12.8

(10)
 36.5-102

(10) 
11.6-18

(10) 

Salmon Cages - - - - 28.2-30.0
(14) 

17.7-19.6
(14) 

80.0-84.7
(14) 

16.7-18.9
(14) 

(1): This study, (2): Boyd (2005), (3):Boyd et al. (2000), (4):Gross et al. (2000), (5):Gross et al. (1998), (6):Verreth and Oberdieck (2009), (7):d’Orbcastel et al. 

(2009b),(8):Foy and Rosell (1991),(9):Yoo and C.E.Boyd. (1994), (10): Thakur and Lin (2003), (11): Boyd and Tucker (1998 ), (12): Gross et al. (1998), 

(13):Warrer-Hansen (1982),Sumari (1982) and Solbe (1982):Hall et al. (1992) with commercial feed,(14) . 
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2.5. Conclusions and recommendations 

 

Considering the sustainability indicators energy use, labour use and N and P retention and 

discharge, striped catfish production in deep ponds in the Mekong delta performed well in 

comparison to other aquaculture species and systems (Table 2.11). By developing the 2–6 m 

deep pond culture systems, striped catfish farmers made maximum use of the unique 

topography and water regime in the Mekong delta, allowing them to keep on-farm energy and 

labour inputs low, while realizing nutrient efficiencies that compare well to other major 

aquaculture species. This in part explains the success of striped catfish farming. Nevertheless, 

further improvements remain possible. The intensity of striped catfish farming makes it an 

excellent candidate to develop RAS technology that includes full control of waste streams 

resulting from culture (d’Orbcastel et al., 2009a). An additional advantage of culturing in 

RAS would be the reduction in water exchange with the Mekong River, which will minimize 

horizontal transmission of pollutants, parasites or diseases originating from other farms along 

the Mekong River. 
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Abstract  

This study compared sustainability indicators on animal and production performance, and 

calculated nitrogen (N), dry matter (DM), chemical oxygen demand (COD) and phosphorous 

(P) mass balances in flow-through (FT) and recirculation aquaculture systems (RAS) for 

striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878). Fish were cultured indoors 

in 0.85 m
3
 tanks that were part of RAS and FT systems, using a standard commercial grow-

out feed during one full production cycle (207 days).  

 

All possible sources and sinks of nutrients were measured, except gas exchange. A similar 

feed conversion ratio (FCR 1.25-1.27), survival (93-96%) and product quality (e.g. fillet 

dress out percentage and color grade) were realized in RAS and FT. However, RAS 

performed significantly better than FT in sustainability indicators, using less water, showing 

higher nutrient utilization efficiencies and discharging less. Respectively 52, 57 and 74% of 

the N, DM and COD input in RAS could not be accounted in the mass balances. It was 

concluded that striped catfish culture in RAS is more sustainable than present pond and FT 

farming practices, and therefore merits further testing and gradual upscaling by the industry 

in the Mekong Delta. 

 

 

 

 

Key words: recirculating aquaculture system, pangasius, striped catfish, nutrient budget, 

water quality, flow-through system 
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3.1. Introduction  

 

Striped catfish (Pangasianodon hypophthalmus, Sauvage, 1878) is one of the key aquaculture 

products of Vietnam. Today, striped catfish is produced in 2-6 m deep earthen ponds in the 

Mekong Delta of Vietnam. In 2014, the total catfish production reached 1.1 million metric 

tons, using 5,500 ha of ponds. Processed striped catfish products have been exported to over 

150 countries (MARD, 2014a). Pond production of striped catfish relies on 2 to 7 m
3
 of 

water, exchanged with the Mekong river system, per kg fish produced (Nhut et al., 

Submitted-a). 

 

The latter exchange is a potential source of pollutants, parasites and diseases and hence a 

threat to biosecurity. Disease related mortality is common and farmers rely on antibiotics and 

chemicals to minimize disease related mortality (Bosma et al., 2009; Nhut et al., Submitted-

a). Although striped catfish production in ponds is effective, retaining on average 38% of 

nitrogen (N) and 14% of phosphorous (P) supplied with feed in fish biomass, and converting 

46 – 51% of dietary N into N2 gas through denitrification, the farms still discharge 

considerable amounts through water exchange and sludge removal (De Silva et al., 2010; 

Nhut et al., Submitted-a). Sludge removed from striped catfish ponds has a high mineral 

content and is diluted which limits options to re-use it as a fertilizer (Phu and Tinh, 2012).  

 

Considering sustainability indicators, including water and fossil energy use, human labor, 

discharge of dry matter (DM), N, P, and use of CuSO4, NaCl, iodine and antibiotics per kg 

fish produced, striped catfish farming in the Mekong delta performs equally well or better 

than other important culture species like tilapia, shrimp or trout (Nhut et al., Submitted-a). 

Striped catfish farming has the advantage of being intensive, producing on average > 200 MT 

per ha per year. Considering a feed conversion ratio in striped catfish ponds of 1.6 (Bosma et 

al., 2009), on average 320 MT of feed is applied per ha per year. In general, a 26% protein 

feed, containing 1.4% P by weight is used, resulting annually in 13,300 kg N and 4,480 kg P 

input per ha. Hence, the waste amount per unit surface area is very high, making striped 

catfish a good candidate to be grown in recirculating aquaculture systems (RAS). RAS 

technology has been adopted to minimize environmental impact from waste discharge, 

improve sustainability and enhance production (d’Orbcastel et al., 2009a; Verreth and 



Chapter 3 

 

54 

 

Oberdieck, 2009). In addition, biosecurity will be improved due to reduced or fully 

eliminated water exchange with the river. 

The aim of this study was to estimate production, sustainability indicators and DM, N, COD 

and P mass balances for striped catfish grown in flow-through tanks (FT) and RAS covering 

a full production cycle from fingerling to market size. 

 

3.2. Materials and methods  

 

3.2.1. Experimental design  

 

Figure 3. 1: A schematic of flow-through tanks (FT; A) and recirculating aquaculture 

systems (RAS; B) (not to scale). Sampling point ( + ); WS: water sampling; MWS: makeup 

water sampling; INF: inflow; OUF: outflow; SD: sludge discharge; SDS: sludge discharge 

sampling; WD: water discharge; WDS: water discharge sampling. 
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Table 3. 1:Components of flow-through tanks (FT) and recirculating aquaculture systems 

(RAS).  n=3. 

System component Type Unit FT RAS  

Fish tank water volume Round fiberglass tank: Ø 

1.2m, height 0.75m, with 

central drain 

m
3
 0.85 0.85 

Water flow through fish tank  m
3
hr

-1
 0.46±0.0

1 

3.8±0.

0 

Swirl separator volume Stainless steel: inner diameter 

(0.85m), inner surface area 

(0.57m
2
) 

m
3
 0.26 0.26 

Moving bed reactor Round fiberglass tank with 

central drain 

m
3
  0.53 

-Bio-media Bio-media type Helix 12mm 

PN10: SSA (834m
2
m

-3
) 

Fleuren&Nooijen, the 

Netherlands. 

m
3
  0.20 

-Specific surface area 

 bio-media 

 m
2
m

-3
  834 

-HSL
*
 moving bed reactor  md

-1 
 53.6 

Trickling filter reactor     

-Bio-media Bio-blok
®

-200 (EXPO-NET 

Danmark ) 

m
3
  1.40 

-Specific surface  m
2
m

-3
  200 

-HSL
*
 trickling filter  md

-1 
 200 

Sump tank Round composite m
3
  0.58 

Overflow tank Stainless steel: 100cm x 

100cm x 20cm (W x L x H) 

m
3
  0.20 

Pipe volume  PVC pipe, Ø 90 mm L 12.7 38.1 

Total system volume   m
3
 1.12 2.23 

HRT
*
  hr 2.4±0.01 0.6±0.

0 

Flow meter Type Z-4004, Ningbo KIO, 

China 

unit 1 1 

Water meter ASAHI WVM 1/2" - 

Thailand 

unit 1 1 

Pump 250W/50Hz, EBARA ITALY 

- Submerged pump 

unit  1 
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*
 HSL = hydraulic surface load; Ø: diameter. HRT: Hydraulic retention time in system. 

Three replicate RAS and 3 FT tank systems, each holding an 850-L fish tank were purposely 

build for this experiment. Each RAS contained a fish tank, a swirl separator, a moving bed 

reactor, a trickling filter with overflow tank, and a sump with one pump, whereas each FT 

contained the same type of fish tank and swirl separator as the RAS. Water from a reservoir 

pond was passed first through a settling tank and subsequently through a 1200 m
2 

sand bed 

filter pond, before being pumped into a 200 m
3
 concrete overhead reservoir tank, from where 

it flowed by gravity to the RAS and FT tanks (Figure 3.1). One 1.5-kWh air-blower provided 

aeration to all fish tanks and moving bed reactors. Lay-out and connections between 

components in RAS and FT are shown in Figure 3.1, Table 3.1 and Table 3.5. All  

experimental units were operated indoors and exposed to natural day light through large 

windows at National Breeding Centre for Southern Freshwater Aquaculture of the Research 

Institute for Aquaculture No2 (RIA2) in Vietnam. The photoperiod was extended to 16 hours 

light using artificial light in the early morning and evening. 

 

3.2.2. Experimental operation  

 

In total, 1560 striped catfish fingerlings were obtained from RIA2. To remove possible 

ectoparasites, the fingerling were upon arrival stocked in 10 ‰ saline water in a concrete 

quarantine tank and treated with 37% formalin applied at 30 mg l
-1

 each 24hours during 7 

consecutive days.  

 

Two weeks before stocking fingerling in the RAS, the development of nitrifying bacteria in 

trickling filters and moving bed reactors was stimulated by adding daily ammonium chloride 

and sodium bicarbonate. Prior to stocking, the amount of total ammonia nitrogen (TAN) 

removed daily in each RAS was checked if sufficient to remove the amount of TAN released 

in each system due to the feed load applied on day one of the growth cycle. This was the 

case, so the fingerlings were stocked. To make water quality uniform between systems at the 

moment of stocking, the water volume in all systems was replaced with water from the 

overhead tank. In RAS, on days when fish showed low appetite, 3 - 10 % of the 

systemvolume was exchanged. In FT tanks water was exchanged continuously (Figure 3.2). 

The culture period was 207 days, starting on 17 November, 2011. In all systems, 260 

http://vienthuysan2.org.vn/index.php/en/introduction/National-Breeding-Centre-for-Southern-Freshwater-Aquaculture/National-Breeding-Centre-for-Southern-Freshwater-Aquaculture-6/
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fingerlings were stocked. For calculations in FT, a total system volume of 1.12 m
3 

was used, 

representing the combined water volume in the fish tank, swirl separator and connection 

pipes.  

 

Table 3. 2: Proximate composition of feed for striped catfish (in percentage of dry weight). 

Feed
1
 composition Unit Value 

Pellet diameter
2 

  -period 1- 60 days mm 2.0 - 2.5 

-period 61-207days mm 4.0 - 4.5 

Dry matter % 90.0 

Crude protein % 26.8 

Crude lipid % 7.0 

Carbohydrate % 49.0 

Ash  % 7.2 

AIA
* 

% 1.8 

Gross energy KJ g
-1

DM
 

8.8 

* Acid Insoluble Ash; DM: dry matter. 
1
Feed is provided by Vinhhoan Corporation, National Road 30, Ward 11, 

Cao Lanh City, Dong Thap Province, Vietnam. 
2
The same composition of feed was applied during the full 

culture period. Pellet size during the first 60 days had a 2.0-2.5 mm diameter, and from day 61 onwards a 4.0-

4.5mm diameter. 

 

In RAS, the combined water volume of all components totaled 2.23 m
3
 (Table 3.1). Fish 

density and average body weight at stocking in FT and RAS are given in Table 3.5. Each day, 

fish were fed ad-libitum by hand at 9a.m. and 1, 5 and 9p.m. The same standard commercial 

striped catfish pond diet was used in RAS and FT (Table 3.2) during the whole culture 

period. Feeding behaviour was observed during feeding and feeding was stopped when fish 

showed low appetite to avoid sinking uneaten feed pellets to accumulate in the swirl 

separator. 
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Figure 3. 2: Amount of water exchanged per kg feed per day in flow-through tanks (FT; B) 

and recirculating aquaculture systems (RAS; A). Values are mean; n=3. 

 

Sampling 

 

Starting the day of stocking, a semi-monthly sampling scheme was adopted. Fish in the tanks 

were constantly moving and touching the tank wall which could be felt laying hands on the 

outer tank surface. Any noise or movement around the systems made the fish move faster, 
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indicating a high sensitivity to disturbance. Therefore, to minimize disturbance, no samples 

was taking directly from the fish tank. The sampling points in FT and RAS are shown in 

Figure 3.1. In both FT systems and RAS, samples were collected of outflow water from the 

fish tank when entering the swirl separator and at the bottom outlet of the swirl separator. In 

FT, samples of water coming from the reservoir tank just before entering the fish tank were 

also collected.  

 

In RAS, samples were collected from an outlet connecting the bottom outlet of the moving 

bed reactor and of the sump tank, and of the make-up water coming from the reservoir tank 

before entering the sump tank. On each bi-monthly sampling day, samples were collected at 

all sampling points in all systems before the first feeding of the day, except for bottom 

samples from the swirl separator (explained below). In addition, when 3 – 10 % of RAS 

water was exchanged, the discharged water was sampled and the volume recorded.  

 

On semi-monthly sampling days, 15 fish were collected randomly from each RAS and FT, 

anaesthetized (MS22-Sigma, 50 mg l
-1

tricaine methanesulfonate (98%)) and batch weighed to 

estimate the average body weight. After measuring, 12 fish were returned to the fish tank and 

three fish were culled and pooled to determine the proximate composition (crude protein 

(CP), total phosphorus (TP), crude lipid (CL), carbohydrate, dry matter (DM) and ash). These 

data were used to document proximate body composition of striped catfish in function of 

individual fish biomass. 

 

At harvest, all fish per system were counted and batch weighed to determine the average 

individual body weight. In addition, 15 fish were anaesthetized and processed to record fillet 

yield, fillet coloration and off-flavour. 

Sludge was collected from the swirl separators in RAS and FT every 4 hours to quantify the 

daily sludge production. In addition, on semi-monthly sampling days, the 4-hr samples were 

kept at 4
o
C, pooled at the end of the day and homogenized to analyze DM, organic matter 

(OM), ash, chemical oxygen demand (COD), total organic carbon (TOC), total carbon (TC), 

N and TP. During the culture period, feed was collected on day 1, 61 and 180 to measure 

DM, TP, CP, CL, gross energy, carbohydrate, acid insoluble ash (AIA) and ash. 
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3.2.3. Measurements and analyses 

 

Water 

Dissolved oxygen (mg l
-1

) (DO), pH and water temperature (
o
C) were measured daily at 8 

a.m. in swirl separators and make-up water, using a multi-parameter meter HI9828, Hanna 

Instruments, Rhode Islands, USA.  

Semi-monthly collected water samples from swirl separators and make-up water were 

analyzed following APHA (1999) for COD (dichromate reflux), 5-day biological oxygen 

demand (BOD5), salinity (Salinity Refractometer Model 2493 Master-S/Mill M – Atago- 

Japan), TOC (high temperature combustion method on acidifying sample to inorganic 

carbon), TC (high temperature combustion method), carbon dioxide (CO2,free CO2 reacts 

with sodium hydroxide to form sodium bicarbonate), total alkalinity (TA, titration with 

sulfuric acid and methyl orange indicator), Kjeldahl N (TKN; Kjeldahl method), TAN 

(colorimetric method), NO2-N (colorimetric method with diazotized sulfanilamide), NO3-N 

(cadmium reduction to nitrite and measurement of nitrite), hydrogen sulfide (H2S, 

photometric method), total suspended solid (TSS, dried to constant weight at 103 - 105 
o
C), 

chlorophyll-a (spectrophotometer method), orthophosphate (PO4-P,ammonium molyndate 

and potassium antimonyl tartrate method) and TP (photometric method).  

 

Fish, feed and sludge 

Whole individual fish was analyzed for DM, CP, CL, TP and ash. Before analysis, feed rests 

in stomach and intestine were removed, and then each fish was minced and homogenized. 

Observed dead fish were collected, weighted and counted, and the associated nutrient content 

was calculated based on the semi-monthly measured proximate composition. The fifteen fish 

collected per system at the end of the culture period were filleted by hand by an employee of 

Vinh Hoan company
1
, and fillet yield and color grade were determined according to Sang et 

al. (2012). The grade of fillet coloration was defined as white (score 1), pink (score 2) and 

yellow (score 3). Off-flavor of fillet was determined by an employee of a processing 

company, and was defined as good-flavor (score- 1) and off-flavor (score 2). Feed also 

minced and homogenized for proximate composition (DM, TP, CP, CL, carbohydrate, acid 

                                                 
1
VinhHoan Corporation, National Road 30, Ward 11, Cao Lanh City, Dong Thap Province, Vietnam. 
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insoluble ash (AIA) and ash). Sludge was homogenized to analyze DM, OM, TP, TC, TOC, 

Kjeldahl N and ash. 

The DM was calculated by gravimetric analysis after drying at 105 
o
C for 24 hours (Foy and 

Rosell, 1991). The ash in whole fish, feed and sludge were analyzed according to APHA 

(1999). The OM in sludge was calculated as the weight difference between DM and ash 

content (after burning at 550
o
C) according to APHA (1999). The TKN was analyzed by the 

Kjeldahl method (Foy and Rosell, 1991). The CP in feed was calculated by 6.25 x TKN. 

COD in sludge was analyzed according to APHA (1999). 

The TP in whole fish, feed and sludge was analyzed spectrophotometrically following Kitson 

and Mellon (1944). The CL in whole fish and feed were analyzed by acid-hydrolysis Soxhlet 

method (AOAC, 2000). For sludge, the TC was determined by high temperature combustion 

method, the TOC by high temperature combustion method on acidified samples according to 

APHA (1999).  

The carbohydrate in feed was determined as the difference in DM content minus CP, ash and 

fat. The AIA in feed was analyzed according to AOAC (2000). 

 

3.2.4. Calculations and statistics 

 

Calculations 

 

Details of calculations related to water quantity and quality, chemical application, energy 

consumption, fish growth and production, nutrient utilization and nutrients mass balances in 

FT and RAS are given in Table 3.3. 
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Table 3. 3: Units and formulas. 

Parameter Unit Formulas 

Resource utilisation 
  

Water use (WU) l kg
-1

fish
 

WU = Vtot inflow/ (Wtotfinal - Wtotinitial) 

 
l kg

-1
feed

 
WU = Vtot inflow/ FC 

Chemical use (CU) l kg
-1

fish
 

CU = Mtot chemical/ (Wtotfinal - Wtotinitial) 

 
l kg

-1
feed

 
CU = Mtot chemical / FC 

Energy use (EU) kWhkg
-1

fish
 

EU = Etot electricity/ (Wtotfinal - Wtotinitial) 

 kWhkg
-1

feed
 

EU = Etotelectricity/FC 

Labour use (LU) hrkg
-1

 fish
 

LU = total labour hours / (Wtot final - Wtot initial) 

 hrkg
-1

feed
 

LU = total labour hours / FC 

Fingerlings use (FU) #kg
-1

fish 
 

FU = Ntot initial/ (Wtotfinal - Wtotinitial) 

Nutrient utilisation   
N, TP, DM and total COD in 
fish biomass 

  

- Initial fish (Nuinitial fish) g Nuinitial fish= 1000 * CNu initial fish /100 * Wtotinitial 

- Final fish (Nufinal fish) g Nufinal fish= 1000* CNu final fish /100 * Wtotfinal 

- Mortality (Numortality) g 
Numortality = 1000 * CNu fish mortality/100 * Wtot 

mortality 
Nutrient utilisation efficiency 
(NuUE) of N, P, DM and COD  

%
 

NuUE = [{(Nufinal fish-Nuinitial fish)/1000} /{CNu in 

feed * FC / 100}] * 100 
Waste discharge   

Nutrient discharge in FT 
(NuDF)of N, P, DM and COD 

gkg
-1

fish NuDF = [[(CNufeed /100 * FC*1000)*{1-(NuUE / 
100)}] -Numortality]/ (Wtotfinal-Wtotinitial) 

Nutrient discharge in RAS 
(NuDR)of N, P, DM and COD 

gkg
-1

fish NuDR = [(CNuoutflow * Vtotoutflow / 1000) + (CNu dry 

sludge * Mtot sludge) – (CNuinflow *Vtotinflow / 1000)]/ 
(Wtotfinal - Wtot initial) 

Fish growth performance   

Total initial fish biomass 
(Wtot initial) 

kg Wtot initial = Ntot initial * WI initial 

Total final fish biomass 
(Wtot final) 

kg Wtotfinal = Ntot final * WI final 

Initial density (ID) kgm
-3

 ID = Wtot initial/ Vtot fish tank 

Final density (FD) kgm
-3

 FD = Wtot final / Vtot fish tank 

Total dead fish biomass 
(Wtot mortality) 

kg Wtot  mortality = cumulative weight of dead fish in 
kg 

Survival (SR) % SR = 100* Ntot final/Ntot initial 

Mortality (M) % M = 100 – SR 

Geometric mean body weight 
(Wg) 

g Wg = e
[(ln(WIfinal * 1000) + ln(WIinitial * 1000))/2] 

Specific growth rate (SGR) %bwd
-1

 SGR = 100*(lnWI final-lnWI initial)/D 
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Table 3.3 (continued- 1): Units and formulas. 

Parameter Unit Formulas 

Feed conversion ratio (FCR) - FCR = FC/(Wtotfinal - Wtotinitial) 

Metabolic feeding rate (MFR) g kg
-0.8

d
-1

 [1000*FC/ {(Ntot.initial+Ntot.final)/2}] * 

{(Wg/1000)
-0.8

} /D 

Metabolic growth rate (MGR) g kg
-0.8

d
-1

 (WIfinal - WIinitial) * {(Wg/1000)
-0.8

} /D 

Harvested fish quality   

Fillet yield (FY) % FY = 100*(FW/WI final * 1000) 

Fillet colouration (FIC) # FIC = {(1*nwhite)+ (2*npink)+(3*nyellow)} /n 

Off-flavor (OFL) # OFL = {(1*ngood-flavor) + (2*noff-flavor)} /n 

tCOD in feed and fish   

COD crude protein
a
 (CODCP) g O2g

-1
CP

 
CODCP =1.66* CP 

COD crude fat
a
 (CODCF) g O2g

-1
CF

 
CODCF =2.78* CF 

COD carbohydrate 
b
 (CODSt)

 
g O2g

-1
Carbo

 
CODSt =1.19*Carbo 

tCODfeed (fish) g O2g
-

1
feed(fish) 

tCODfeed(fish) = CODCP + CODCF + CODcarbo 

Nutrients mass balance    

At fish level   

Nutrient in feed (NUfeed) gkg
-1

feed
 

NUfeed = [(CNufeed /100) * FC * 1000]/FC 

Nutrient retained in fish (NUfish 

retained) 

gkg
-1

feed
 

NUfish retained= [{(CNufinal fish /100)* Wtotfinal} - 

{(CNuinitial fish/100)* Wtotinitial} * 1000]/FC 

Nutrient in dead fish (NUfish 

mortality) 

gkg
-1

feed
 

NUfishmortality = (CNu mortality /100 )* Wtot mortality * 

1000 /FC 

At system level   

Input (NUinput) gkg
-1

feed
 

NUinput = NUMW + NUinfluent 

Nutrient not retained in fish 

(NUMW) 

gkg
-1

feed
 

NUMW = NUfeed – (NUfish retained + NUfishmortality) 

Nutrient in influent (NU influent) gkg
-1

feed
 

NUinfluent = CNuinflow *Vtotinflow /1000 /FC 

Output (NUoutput) gkg
-1

feed
 

NUoutput =NUeffluent + NUsludge + NUunaccounted 

Nutrient in effluent in RAS 

(NUeffluent RAS) 

gkg
-1

feed
 

NUeffluentRAS = CNuoutflow * Vtotoutflow / 1000 / FC 

Nutrient not measured in FT 

(NUeffluent FT) 

gkg
-1

feed
 

NUeffluent FT  = NUMW + NUinfluent - NUsludge 

Nutrient in sludge (NUsludge) gkg
-1

feed
 

NUsludge = (CNu dry sludge /100)* Mtot sludge /FC 

Nutrient not measured in RAS 

(NU no measurement ) 

gkg
-1

feed
 

NU no measurement = NUinput- NUeffluent - NUsludge 

aBased on Henken et al. (1986), bstoichiometric oxygen demand calculated according to Tchobanoglous et al. (2004). 

tCODfeed(fish): total COD in feed consumption and whole fish (gO2g
-1 feed(fish)); CF: crude fat (g); CNu dry sludge: nutrients 

percentage of N,TP, DM and COD in sludge (% of dry sludge); CNu final fish: nutrient percentage of N, TP, DM and COD in 

fish harvested (% of wet body weight); CNu in feed: nutrient percentage of N, TP, DM and COD in feed (% of dry feed); 

CNuinflow: nutrient concentration in N,TP, DM and COD in influent water (gm-3); CNu initial fish: nutrient percentage of N, TP, 

DM and COD in fish stocked (% of wet body weight); CNu mortality: nutrient percentage of N, TP, DM and COD in dead fish 

(% of wet body weight); CNuoutflow: nutrient concentration in N,TP, DM and COD in discharge water (g m-3); CP: crude 

protein (g); D: days of culture period (d); Etot electricity: total electricity consumption including light, air-blower, water 

pumping and other activities during full production cycle per experimental unit (kWh); FC: cumulative feed input (kg); FW: 

average weight of complete skinless fillet from one individual after removing fat and red muscle following standard process 
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for export market (g); Mtot chemical: total amount of chemicals applied including sodium bicarbonate and sodium chloride (g); 

Mtot sludge: total weight of dry sludge (g); n: number of fish in sample (#); ngood-flavor: number of fish in sample with no off-

flavor (#); noff-flavor: number of fish with off-flavor (#); npink: number of fish with pink fillet (#); Ntot final: total number of fish 

harvested (#); Ntot initial: total number of fish stocked (#); nwhite: number of fish with white fillet (#); nyellow: number of fish 

with yellow fillet (#); Nudead fish: amount of N, P, DM or COD in fish biomass collected during production cycle (g); Nufinal 

fish: amount of N, P, DM or COD in fish biomass harvested (g); Nuinitial fish: amount of N, P, DM or COD in fish biomass 

stocked (g);  St: starch (g); Carbo: Carbohydrate (g); total labour hours: accumulative hours of human labour per 

experimental unit during full production cycle (hr); Vtot fish tank: water volume fish tank (m3); Vtot inflow:total water volume 

during culture period (l); Vtotoutflow :total volume of water discharge (l); WIinitial: individual initial body weight (kg); WIfinal: 

individual final body weight (kg). 

 

Statistics 

 

Water quality parameters were averaged over the complete culture period. The daily or semi-

monthly sludge production and waste discharge were summed over the complete culture 

period, as were water, chemical and energy use. Fish growth parameters and mass balances 

were calculated by experimental unit. The amount of sludge collected by feeding load and the 

body composition (CP, CL, DM, TP and Ash) by whole fish wet body weight were analysed 

by regression. Results for FT and RAS were compared by one-way ANOVA (P < 0.05) with 

the SPSS version 11.  
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3.3. Results  

3.3.1. Water quality in flow-through tanks (FT) and recirculating aquaculture systems 

(RAS) 

 

Table 3. 4: Water quality in flow-through tanks (FT) and recirculating aquaculture systems 

(RAS). n=3. 

Parameter 

 

Unit 

 

FT RAS p-value 

Mean   ± SD
 

Mean   ± SD  

Daily water quality (n= 207):         

pH 
 

7.5
b
 ± 0.3 7.7

a
 ± 0.3  0.001 

Temperature 
o
C 31.7

a
 ± 1.1 28.7

b
 ± 1.1  0.001 

Dissolved oxygen mgl
-1 

3.2
b
 ± 1.3 5.4

a
 ± 0.9 0.001 

Semi-monthly water quality 

(n=30): 
        

Alkalinity 

mg 

CaCO3 

l
-1 

246.7
a
 ± 1.4 134.8

b
 ± 20.0 0.001 

Carbon dioxide (CO2) mgl
-1 

14.3
a
 ± 0.7 17.5

a
 ± 1.9 0.081 

Total nitrogen (TN) mgl
-1 

4.3
b
 ± 0.4 58.8

a
 ± 4.0  0.001 

Total ammonia nitrogen (TAN) mgl
-1

 1.5
a
 ± 0.1 1.0

b
 ± 0.1  0.001 

Nitrite nitrogen (NO2-N) mgl
-1

 0.2
b
 ± 0.1 0.7

a
 ± 0.1  0.001 

Nitrate nitrogen (NO3-N) mgl
-1

 3.2
b
 ± 0.7 52.8

a
 ± 2.4 0.001 

Total phosphorus (TP) mgl
-1

 1.4
b
 ± 0.8 24.1

a
 ± 5.4 0.003 

Orthophosphate (PO4-P) mgl
-1

 0.5
b
 ± 0.1 20.7

a
 ± 5.3 0.002 

Total suspended solids (TSS) mgl
-1

 6.6
b
 ± 0.8 31.9

a
 ± 0.3 0.001 

Chemical oxygen demand (COD) mgl
-1

 35.1
a
 ± 0.4 32.2

a
 ± 1.4  0.061 

Total organic carbon (TOC)  mgl
-1

 9.3
b
 ± 0.2 16.7

a
 ± 1.8 0.001 

Total carbon (TC) mgl
-1

 78.2
a
 ± 1.1 58.8

b
 ± 5.0 0.002 

Biological oxygen demand (BOD5) mgl
-1

 5.0
b
 ± 0.1 16.6

a
 ± 0.3  0.001 

Hydrogen sulfide (H2S) mgl
-1

 0.01
b
 ± 0.0 0.11

a
 ± 0.0 0.001 

Salinity ‰ 0.0
b
 ± 0.0 2.6

a
 ± 0.1  0.001 

SD = standard deviation. Means with different superscript within each row are significantly different (P < 0.05). 
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Figure 3. 3: Accumulation of TN (A), NO3-N (B), TP (C) and TSS (D) in recirculation 

systems (RAS) and flow-through (FT). Values are mean ± SD; n=3. 

Water quality parameters were different between FT and RAS (P < 0.05), except for CO2 (P > 

0.05) and chemical oxygen demand (COD) (P > 0.05) (Table 3.4). The temperature, 

alkalinity, TAN and TC were lower in RAS than in FT (P < 0.05). In contrast, pH, DO, TN, 

NO2-N, NO3-N, P, TSS, BOD5, H2S and salinity were higher in RAS than in FT (P < 0.05). 
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In RAS, TN, NO3-N, TP and TSS accumulated during the culture period (Figure 3.3). In FT, 

these nutrients did not accumulate. 

3.3.2. Fish performance  

 

3.3.2.1. Fish growth 

 

Striped catfish grew slower and ate less in RAS than in FT (P < 0.05). Survival and feed 

conversion ratio (FCR) were similar in FT and RAS (P > 0.05). Fish quality parameters were 

also similar between systems (P > 0.05) (Table 3.5). 

Table 3. 5: Striped catfish performance parameters in flow-through tanks (FT) and 

recirculating aquaculture systems (RAS). n=3. 

Parameter Unit FT RAS 
p-

value 

  
Mean   ± SD Mean  ± SD  

Fish growth:         

Average body weight g ind
-1

 15.6 ± 1.0 18.0 ± 2.6  

Stocking density kg m
-3

 4.8 ± 0.3 5.5 ± 0.8 0.196 

Fish per experimental unit # system
-1 

260   260    

Final individual weight g ind
-1

 738.60
a
 ± 274.90 659.40

b
 ± 297.60 0.040 

Fish density at harvest kg m
-3

 196.60
a 

± 9.90 171.40
a 

± 12.60 0.053 

Survival % 95.76
a 

± 1.76 93.84
a 

± 2.69 0.359 

Specific growth rate % bw d
-1

 1.86
a
 ± 0.04 1.74

b
 ± 0.06 0.040 

Feed conversion ratio - 1.27
a 

± 0.10 1.25
a 

± 0.10 0.716 

Feeding rate g kg
-0.8

d
-1

 25.62
a
 ± 0.38 21.80

b
 ± 1.08 0.005 

Growth rate g kg
-0.8

d
-1

 20.87
a
 ± 0.94 18.27

b
 ± 0.92 0.027 

Fish quality:         

Fillet percentage % 37.80
a
 ± 1.40 37.20

a
 ± 2.00 0.502 

Fillet coloration
* 

- 1.00  - 1.00  - - 

Off-flavor
* 

- 1.00  - 1.00  - - 

* Off-flavor of fillet was defined as good-flavor (score 1) and off-flavor (score 2). Fillet coloration was defined as white 

(score 1), pink (score 2) and yellow (score 3). S.D. = standard deviation. Means with different superscript within each row 

are significantly different (P < 0.05). 
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3.3.2.2. Fish body composition  

 

The fish body composition in RAS and FT was similar (P > 0.05) and changed with fish size 

(Figure 3. 4). Regression explained at least 83% of the variation in the data set. 
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Figure 3. 4: Compositions of whole striped catfish body in flow-through tanks (FT) and 

recirculation aquaculture systems (RAS). The line of dry matter, crude protein, 

crude lipid (A) and ash, total phosphorus (TP) (B), bw: whole striped catfish 

body (g) (on wet weight basis). 

The amounts of sludge (dry weight) collected from the swirl separator and feed (wet weight) 

given each day in FT and RAS are shown in Figure 3.5. On average, 161.0 ±7.2 g sludge was 

collected per kg feed in RAS and 180.4 ± 0.3 g in FT (P < 0.05).The sludge collected in RAS 

had a lower organic and higher ash content than FT sludge (P < 0.05). The concentrations of 

N and P in sludge were similar between FT and RAS (P > 0.05) (Table 3.6). 
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Figure 3. 5: Relationship of amount of dry sludge collected and accumulative feed load in 

flow-through (FT) (C) and in recirculating aquaculture systems (RAS) (D). 

Daily amount of dry sludge collected and cumulative feed load in FT (A) and in 

RAS (B). 

 Table 3. 6: Sludge composition (in g
-1

kg dry sludge) in flow-through tanks (FT) and 

recirculating aquaculture systems (RAS). n=3. 

Parameter FT RAS p-value 

 
Mean  ± SD Mean  ± SD  

Organic matter 610.4
a 
 ± 57.8 578.6

b 
 ± 58.7 0.011 

Total organic carbon 335.3
a 
 ± 34.0 313.1

b 
 ± 33.6 0.002 

Total carbon 344.8
a 
 ± 34.0 328.1

b 
 ± 31.7 0.018 

Total COD 867.2
a 
 ± 81.5 821.7

b 
 ± 83.4 0.010 

Ash 389.5
b 
 ± 57.8 421.4

a 
 ± 58.7 0.011 

Total nitrogen 30.3
a 

± 6.5 28.4
a 

± 7.6 0.219 

Total phosphorus 25.2
a
 ± 4.3 25.7

a
 ± 5.3 0.605 

SD = standard deviation. Means with different superscript within each row are significantly different (P < 

0.05). 

 

 

 

Dry sludge (g)  = 0.161* feedload (g) + 0.0865

R² = 0.9595

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000 2500

D
r
y
 s

lu
d

g
e
 
(g

)

Feedload (g)

(D)



Chapter 3 

 

72 

 

 

3.3.3. Sustainability indicators in flow-through and recirculating aquaculture systems  

 

The total water use in RAS was 120 times smaller than in FT. In FT, 99.8% of the water used 

was discharged, while in RAS this was 56.4% (Table 3.7). Of the remaining water 

consumption in RAS, 30% was lost through evaporation and 12% was discharged during 

harvest at the end of the production cycle. About 45l evaporated per kg feed applied in RAS 

(Table 3.7). 

Table 3. 7: Water budgets (l) in flow-through (FT) tanks and recirculating aquaculture 

systems (RAS) averaged over the full production cycle. n=3. 

 FT RAS p-value 

Parameter Mean ± SD % Mean ± SD %  

          

Water filling  1 120 ± 0 0.05 2 193 ± 0 11.51  

Water intake 2 286 001
a 

± 61 702 99.95 16 868
b 

± 5 985 88.49 0.001 

Total 2 287 121
a 

± 61 702 100.0 19 061
b 

± 5 985 100.0  0.001 

Water output          

Harvest drainage 1 120
 

± 0 0.05 2 193 ± 0 11.51  

Water discharge 2 282 456
a 

± 61 702 99.80 10 757
b 

± 5 945 56.43 0.001 

Water evaporation 3 185
b 

± 0 0.14 5 812
a 

± 0 30.49  0.001 

Water sampling 28 ± 0 0.00 28 ± 0 0.14  

Water unaccounted 333
a 

± 32 0.01 271
a 

± 113 1.42 0.398 

Total 2 287 121 ± 5 984 100.0 19 061 ± 6 171 100.0 0.001 

SD = standard deviation. Means with different superscript within each row are significantly different (P < 0.05). 

Water use per kg fish produced or kg feed consumed in RAS was 100 times lower than in FT 

(P < 0.05) (Table 3.8). In contrast, energy, NaCl, NaHCO3 and labour use in RAS was higher 

than in FT (P < 0.05). Similar amounts of N, P and DM per kg fish produced or per kg feed 

applied were retained in fish in FT and RAS (P > 0.05). Nevertheless, compared to RAS, 

twice as much N, P and DM were discharged per kg fish produced in FT (P < 0.05). For 

COD, the discharge in FT was even 4 times higher than in RAS (P < 0.05).  
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Table 3. 8:Sustainability indicators in flow-through tanks (FT) and recirculating aquaculture 

systems (RAS). n=3. 

Parameter Unit FT RAS p-value 

  
Mean  ± SD Mean   ± SD  

Water use l kg
-1

fish
 

14749.6
a
 ± 743.0 146.3

b
 ± 59.2 0.001 

 
l kg

-1
feed

 
11033.3

a
 ± 171.4 109.8

b
 ± 35.5 0.001 

Energy use kWh kg
-1

fish
 

6.7
b
 ± 0.3 13.6

a
 ± 0.2 0.001 

 
kWh kg

-1
feed

 
5.0

b
 ± 0.1 10.5

a
 ± 0.5 0.001 

Nutrient retention in fish  

-Nitrogen 
g kg

-1
fish

 
28.3

a 
± 0.9 27.4

a 
± 0.5 0.206 

g kg
-1

feed
 

21.2
a 

± 1.3 20.7
a 

± 1.1 0.588 

-Phosphorus 
g kg

-1
fish

 
3.7

a 
± 0.1 3.7

a 
± 0.1 0.832 

g kg
-1

feed
 

2.7
a 

± 0.10 2.8
a 

± 0.20 0.625 

-DM 
g kg

-1
fish

 
381.2

a 
± 9.3 374.0

a 
± 5.4 0.311 

g kg
-1

feed
 

285.9
a 

± 21.3 282.2
a 

± 16.8 0.821 

-COD 
g kg

-1
fish

 
758.4

a 
± 17.3

 
765.0

a 
± 28.9 0.752 

g kg
-1

feed
 

559.2
a 

± 22.4
 

576.6
a 

± 26.8 0.437 

Waste discharge         

-Nitrogen 
g kg

-1
fish

 
29.0

a
 ± 1.5 13.7

b
 ± 3.5 0.020 

g kg
-1

feed
 

21.0
a
 ± 1.2 10.3

b
 ± 1.9 0.001 

-Phosphorus 
g kg

-1
fish 14.5

a
 ± 0.5 11.9

b
 ± 1.5 0.040 

g kg
-1

feed 10.7
a
 ± 0.1 8.9

b
 ± 0.5 0.003 

-DM 
g kg

-1
fish 826.2

a
 ± 41.4 348.7

b
 ± 40.9  0.001 

g kg
-1

feed 603.7
a
 ± 21.7 261.6

b
 ± 23.4 0.001 

-COD 
g kg

-1
fish 826.1

a
 ± 50.0 199.5

b
 ± 19 0.001 

g kg
-1

feed 608.4
a
 ± 21.0 149.9

b
 ± 4.5  0.001 

NaCl 
g kg

-1
fish 12.0

b
 ± 0.6 15.2

a
 ± 1.2 0.014 

g kg
-1

feed 9.7
b
 ± 0.3 12.5

a
 ± 0.3 0.001 

NaHCO3 
g kg

-1
fish 0.0

b
  - 43.6

a
 ± 1.3  0.001 

g kg
-1

feed 0.0
b
  - 36.0

a
 ± 2.4 0.001 

Antibiotic use  No   No    

Labor use 
hr kg

-1
fish

 
1.35

a 
± 0.07 1.56

a 
± 0.13 0.073 

hr kg
-1

feed
 

1.00
b
 ± 0.01 1.17

a
 ± 0.04 0.001 

 SD = standard deviation. Means with different superscript within each row are significantly different (P < 0.05). 
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3.3.4. Nutrients mass balance  

 

3.3.4.1. Nitrogen mass balance  

 

Per kg feed, similar amounts of N were retained in fish biomass (incl. dead fish) in FT and 

RAS (P > 0.05) (Table 3.9). However, N input in FT was 2.6 times higher than in RAS (P < 

0.05), due to supply of N with the exchange water. In FT, about 8% of N input was N 

unaccounted, while in RAS, 52% of the N input remained unaccounted. Less N was 

discharged in RAS with effluent and with sludge than in FT (P < 0.05).   

 

Table 3. 9: Nitrogen mass balance (in g kg
-1

 feed) in flow-through (FT) tanks and 

recirculation aquaculture systems (RAS). n=3. 

Parameter FT RAS p-value 

 

 

Mean 

 

± SD % 

 

Mean 

 

± SD %  

Fish level     
 

    

N in Feed 43.0   100 43.0   100.0 - 

-N in fish retained 21.2
a 

± 1.3 49.3 20.7
a 

± 1.1 48.1 0.588 

-N in fish mortality 0.8
a 

± 0.4 1.9 0.9
a 

± 0.5 2.1 0.726 

-N not retained in fish 21.0
a 

± 0.6 48.8 21.4
a 

± 1.1 49.8 0.857 

System level     
 

    

N input 57.2
a
 ± 6.0 100 21.7

b
 ± 0.9 100.0 0.001 

-N not retained in fish 21.0
a 

± 0.6 37.6 21.4
a 

± 1.1 98.6 0.857 

-N in influent 36.2
a
 ± 5.6 63.3 0.3

b
 ± 0.1 01.4  0.001 

N output          

-N in sludge 5.2
a 

± 0.5 9.1 4.5
a 

± 0.5 20.7 0.155 

-N in effluent
 

48.2
a 

± 2.1 83.0 6.0
b 

± 2.2 27.6 0.001 

-N not measured
 

4.5
b 

± 0.8 7.9 11.2
a 

± 1.5 51.6 0.012 

Values of N not retained in fish and N not measured was calculated. Values of remaining all parameters were measured.SD = 

standard deviation. Mean with different superscript within each row are significantly different (p < 0.05). 
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3.3.4.2. Dry matter mass balance  

 

Per kg feed, similar amounts of DM were retained in fish biomass (incl. dead fish) in FT and 

RAS (P > 0.05) (Table 3.10). In FT, the influent water accounted for 5.8% of the DM input, 

while in RAS this was negligible (P < 0.05). A higher fraction of the DM input was present as 

sludge (incl.sludge removed from swirl separator and sludge accumulated in bio-filters, sump 

and overflow tank) in RAS than in FT (P < 0.05). However, by weight,  more sludge was 

collected per kg feed from the in swirl separator in FT than in RAS (P < 0.05). About 57% of 

the DM input in RAS remained unaccounted, most likely due to in situ digestion, while 12% 

of the DM input was unaccounted in FT. 

Table 3. 10: Dry matter mass balance (in g kg
-1

feed) in flow-through tanks (FT) and recirculating 

aquaculture systems (RAS). n=3. 

Parameter FT RAS p-value 

 

 

Mean 

 

± SD % 

 

Mean 

 

± SD %  

Fish level     
 

    

DM in feed 900   100.0 900   100.0 - 

-DM in fish retained 285.9
a 

± 21.3 31.8 282.2
a 

± 16.8 31.4 0.821 

-DM in fish mortality 10.4
a 

± 5.5 1.2 12.1
a 

± 6.2 1.3 0.735 

-DM not retained in fish 603.7
a 

± 6.3 67.1 605.7
a 

± 16.8 67.3 0.357 

System level     
 

    

DM input 641.0
a
 ± 3.9 100.0 606

b
 ± 16.9 100.0 0.019 

-DM not retained in fish 603.7
a 

± 6.3 94.2 605.7
a 

± 16.8 99.9 0.357 

-DM in influent 37.3
a
 ± 2.7 5.8 0.3

b
 ± 0.1 0.1  0.001 

DM output          

-DM in sludge 182.7
b
 ± 5.2 28.5 259.0

a
 ± 23.0 42.7 0.013 

-DM in effluent
 

380.4 ± 4.8 59.3 2.9 ± 0.6 0.6 0.015 

-DM not measured 77.9 ± 4.7 12.2 344.0 ± 11.7 56.7 0.001 

Values of DM not retained in fish and DM not measured was calculated. Values of remaining all parameters were measured. 

SD = standard deviation. Mean with different superscript within each row are significantly different (p < 0.05). 
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3.3.4.3. Phosphorus mass balance 

In FT and RAS alike (P > 0.05), about 21% of P supplied with the feed was retained in life 

and dead fish biomass. The remaining 79 % of P fed became waste (Table 3.11). However, 

due to P loading through influent water, the total P input in FT was higher than in RAS (P < 

0.05). On average, per kg of feed consumed,10.7 and 9.3g P were discharged from FT and 

RAS, respectively. In RAS, 15% of the P input could not be traced back and is reported as P 

unaccounted (Table 3.11). 

Table 3. 11: Phosphorus mass balance (in g kg
-1

feed) in flow-through and recirculating 

aquaculture systems (RAS). n=3. 

Parameter FT RAS p-value 

 

 

Mean 

 

± SD % 

 

Mean   

 

± SD %  

Fish level     
 

    

P in Feed 13.50   100 13.50   100 - 

-P in fish retained 2.70
a 

± 0.10 20.0 2.80
a 

± 0.20 20.7 0.625 

-P in fish mortality 0.10
a 

± 0.06 0.7 0.13
a 

± 0.07 1.0 0.609 

-P not retained in fish 10.70
a 

± 0.10 79.3 10.57
a 

± 0.20 78.3 0.625 

System level     
 

    

P input 19.80
a
 ± 0.4 100 10.68

b
 ± 0.27 100 0.047 

-P not retained in fish 10.70
a 

± 0.10 54.0 10.57
a 

± 0.20 99.0 0.625 

-P in influent 9.10
a
 ± 0.50 46.0 0.11

b
 ± 0.0 1.0 0.001 

P output          

-P in sludge 4.45
a
 ± 0.13 22.5 4.05

b
 ± 0.16 37.9 0.031 

-P in effluent 14.94
a 

± 1.3 75.4 4.98
b 

± 0.65 46.6 0.017 

-P not measured 0.41
b 

± 0.16 2.1 1.65
a 

± 0.35 15.4 0.031 

Values of P not retained in fish and P not measured was calculated. Values of remaining all parameters were measured.  

SD = standard deviation. Mean with different superscript within each row are significantly different (p < 0.05). 

3.3.4.4.COD mass balance 

In both FT and RAS, about half of the COD supplied with the feed was retained in fish 

biomass, and was similar in both systems (P > 0.05). Nevertheless, the amount of COD 

discharged per kg feed consumed in RAS was 24 times smaller than in FT (P < 0.05). In 
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RAS, nearly 75% of the COD input which was not retained in fish biomass could not be 

traced back and is reported as not measured. 

Table 3. 12: COD mass balance (in g kg
-1

feed) in flow-through (FT) and recirculation 

aquaculture systems (RAS). n=3. 

Parameter FT    RAS    
p-

value 

 

 

Mean  

 

± SD % 

 

Mean  

 

± SD %  

Fish level     
 

    

COD in Feed 1188.9   100.0 1188.9   100.0 - 

-COD in fish retained 559.2
a 

± 22.4 47.0 576.6
a 

± 26.8 48.5 0.437 

-COD in fish mortality 21.3
a 

± 9.0 1.8 24.4
a 

± 13.0 2.1 0.753 

-COD not retained in fish 608.4
a 

± 22.4 51.2 587.9
a 

± 26.7 49.4 0.437 

System level     
 

    

COD input 649.2
a
 ± 23.0 100.0 588.3

b
 ± 26.9 100.0 0.023 

-COD not retained in fish 608.4
a 

± 22.4 93.7 587.9
a 

± 26.7 99.9 0.437 

-COD in influent 40.8
a
 ± 0.7 6.3 0.4

b
 ± 0.1 0.1  0.001 

COD output          

-COD in sludge 155.7
a
 ± 3.7 24.0 130.9

b
 ± 6.2 22.3 0.004 

-COD in effluent 386.3 ± 24.3 59.5 19.4 ± 10.2 3.3 - 

-COD not measured 107.2
b 

± 11.7 16.5 438.0
a 

± 21.2 74.4 0.032 

Values of COD not retained in fish and COD not measured was calculated. Values of remaining all parameters were 

measured. SD = standard deviation. Mean with different superscript within each row are significantly different (p < 0.05). 

3.4. Discussion  

 

3.4.1. Water quality in FT and RAS 

 

Temperature, pH and dissolved oxygen, H2S, TAN, nitrite, nitrate and TSS concentrations 

remained favourable for striped catfish during the full culture period in both FT and RAS. 

Temperature in RAS was always slightly above 27
o
C, which is optimal for striped catfish 

(Phuc et al., 2015). In FT, the temperature was on average 3
o
C higher than in RAS (P < 0.5), 

because in the latter the trickling filter acted as cooling tower. In ponds, where temperature 
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fluctuates seasonally, temperature can drop below 26
o
C, resulting in reduced appetite (Nhut 

et al., Submitted-a). 

 

The dissolved oxygen concentration was 2.2 mg l
-1 

higher in RAS than in FT (P < 0.05) and 

3.7 mg l
-1

 higher than in ponds (Nhut et al., Submitted-a). According to Lefevre et al. 

(2011c), striped catfish benefits from higher oxygen availability. However, comparing RAS 

and FT, higher oxygen availability in RAS did not result in better growth, production or feed 

conversion (P > 0.05). Although a pond feed was fed in our RAS and FT, striped catfish grew 

slower in ponds (Nhut et al., submitted). This could have been caused by the higher oxygen 

concentration in RAS and FT than in ponds (Lefevre et al., 2011a), but it could also be that 

more feed was lost in ponds. More research is needed on oxygen consumption by striped 

catfish in culture systems.  

 

Higher H2S concentrations were observed in RAS than in FT during the production cycle, 

although the observed levels in RAS (Table 3. 4) were still much lower than the 0.96 mg H2S 

l
-1

 reported by Linh (2011). Four hours for sludge retention in the swirl separator and sludge 

accumulated in components of RAS (bottom of the moving bed biomedia reactor (MBBR), 

sump tank, overflow tank and pipe) can produced H2S through passive denitrification, while 

water in FT was one-way flow. According to Linh (2011) reported that maintaining 0.96 mg 

H2S l
-1

  reduced 40% striped catfish growth and survival and reduced fillet quality. The 

concentrations of TAN and nitrite were also below reported threshold levels for striped 

catfish (Huong et al., 2011; Nguyen et al., 2014) and on average lower than observed in RAS 

for African catfish and tilapia culture (Akinwole and Faturoti, 2007; Bovendeur et al., 1987; 

Shnel et al., 2002). A possible explanation is the accumulation of sludge under the moving 

bed reactor in our RAS, which facilitated denitrification. 

 

Under the low water exchange conditions in RAS, on average 4.5 g N was discharged with 

the exchange water while 11.2 g N was not accounted, the bulk of which was converted into 

N2 gas by denitrification (Bovendeur et al., 1987). In consequence, accumulation of NO3-N 

was low, reaching maximum 89 mg NO3-N l
-1

 during the production cycle (Figure 3.3B). 

Nitrate nitrogen tolerance levels for striped catfish have not been reported yet in literature, 

but numerous other species were investigated including rainbow trout (Davidson et al., 2011), 
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sturgeon (Hamlin, 2006), chinook salmon and rainbow trout fingerlings (Westin, 1974), 

juvenile turbot (Van Bussel et al., 2012a), eel (Kamstra and Heul., 1998) and tiger shrimp 

larvae (Muir et al., 1991). Reported chronic, acute and sub-lethal levels of NO3-N vary with 

development stage and species (Camargo et al., 2005). The 89 mg NO3-N l
-1

 reached in our 

study was below recommended safe levels in RAS for African catfish (Bovendeur et al., 

1987; Schram et al., 2014) and eel (Eding et al., 2006). 

 

The concentration of total suspended solids in RAS (Table 3.4) was lower and different in 

composition than in ponds (Nhut et al., Submitted-a). The TSS ash content in ponds was 

above 90% compared to less than 50% in RAS. The higher TSS ash content in ponds 

concurred with a 1.6 times lower COD in the rearing water than in RAS. In ponds, suspended 

solids enter with the exchange water. During the rainy season concentrations > 200 mg TSS l
-

1
 in intake water to ponds were observed (Nhut et al., Submitted-a). 

 

The 31 mg TSS l
-1

 average concentration in RAS with striped catfish was higher than for 

African catfish (Akinwole and Faturoti, 2007), Arctic char and rainbow trout (Davidson and 

Summerfelt, 2005) in RAS. Solid removal efficiencies in RAS depend on the method(s) used, 

and faeces consistency. Faeces of striped catfish are low in solid matter, diffuse easily in the 

water column and contain mainly non-settable particles. Both in FT and RAS, only 17% of 

the dry matter in feed was removed in the swirl separators, which is low compared to other 

fish species (Couturier et al., 2009; Davidson and Summerfelt, 2005; Piedrahita, 2003; 

Summerfelt and Penne, 2005). More research on the physical properties of striped catfish 

faeces is required to improve solids removal of striped catfish in RAS. 

 

3.4.2. Fish performance and quality 

 

Striped catfish grew slower in RAS than in FT which could be due to the higher NO3-N 

concentration and lower temperature in RAS. Continuous exposure to a high nitrate 

concentration for example reduced growth in African catfish (Schram et al., 2014) and turbot 

(Van Bussel et al., 2012a). Growth of warm water fish improves with increasing temperature 

up to a few degrees below the upper lethal temperature (Corey et al., 1983; Heap and Thorpe, 

1987; Talbot, 1993). For instance, channel catfish grew faster when the temperature was 3
0
C 
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above average (Buentello et al., 2000), while striped catfish kept at 6‰ salinity grew 2.1 

times better at 35
o
C than at 30

o
C (Phuc et al., 2015).  

Striped catfish survival was 30% higher in RAS (this study) than in ponds (Nhut et al., 

Submitted-a). Factors that might contribute to the lower performance in ponds include 

fingerling quality, dependence on large volumes of high quality exchange water and 

limitations on water quality control, including diurnal or seasonal temperature or dissolved 

oxygen fluctuations (Bosma et al., 2011; Dung et al., 2008; Nguyen et al., 2007; Phan et al., 

2009). In RAS and FT, mortality was highest during the first months of the production cycle, 

a fact commonly observed in the striped catfish industry (Phan et al., 2009). In Vietnam, 

obtaining healthy pathogen free fingerlings is difficult, with about 15 different diseases 

occurring frequently (Nguyen et al., 2007; Phan et al., 2009). When disease occurs, farmers 

reduce or even suspend feeding to avoid feed wastage and maintain water quality, thus 

reducing production output. Stocking infected fingerling also affected production in our FT 

and RAS. However, the stocking density was higher than in ponds in our FT and RAS units, 

making it easier and more cost effective to apply treatment. Disease related mortality 

occurred during the first weeks of culture but was effectively controlled, observing no disease 

related mortality during the rest of the culture period in both FT and RAS. However, 

considering 100 times less water was exchanged per kg fish produced in RAS (0.14 m
3
) 

compared to FT (14 m
3
) (Table 3.8) the risk of importing new infections is much less and 

bio-security measures are easier to apply.  

 

Striped catfish produced in our FT and RAS was of export quality (Sang et al., 2012; Sang et 

al., 2009): fillets were 100% white with no trace of off-flavour and a fillet yield of 37-38% 

(Table 3.5). In contrast, striped catfish harvested from traditional ponds yielded 53 - 93% 

white fillets and off-flavour was regularly reported (Phu et al., 2014). Nitrifying biofilters in 

RAS are potential production sites of geosmin and 2-methylisoborneol (MIB), substances that 

cause off-flavour (Guttman and van Rijn, 2008). Occurrence of “earthy’’ or ‘’musty’’ off-

flavour due to geosmin and MIB, respectively, is commonly reported in RAS (Bai et al., 

2013; Burr et al., 2012; Guttman and van Rijn, 2008, 2009; Schrader et al., 2010; Tucker, 

2000; Tucker and van der Ploeg, 1999). So, the expectation was that off-flavour would 

develop during the production cycle in our RAS. Possibly, the high frequency of sludge 

removal through 4-hr interval in swirl separator, every 10-day in the MBBR and sump tank 
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kept the concentration of decomposing wastes in the system as source of off-flavours 

compounds sufficient low, not only in FT but also in RAS. In addition, denitrification 

occurred in our RAS (Table 3.9), which could have reduced significantly geosmin and MIB 

concentrations (Guttman and van Rijn, 2009). Besides sludge removal, high water exchange 

rates in FT also reduced potential exposure of striped catfish to geosmin or MIB. Brown and 

Boyd (1982) reported off-flavour in channel catfish in ponds with a high concentration of 

algae and COD and not in ponds with few algae and low COD. This concurs with our 

exchange water in FT where chlorophylla concentration was very low (data not reported).  

 

3.4.3. Sustainability indicators 

Table 3. 13: Key sustainability indicators in striped catfish culture systems. 

Indicator Unit RAS FT Conventional pond 

Resource utilisation efficiency 
    

Mortality % 6.2
(1)

 4.2
(1)

 36.3
(2) 

Fingerlings #kg
-1

fish
 

1.8
(1) 

1.6
(1) 

1.9
 (2)

 

Feed kg feed kg
-1

fish
 

1.25
(1) 

1.27
(1)

 1.6
(2)

;1.69
(6)

 1.86
(3)

 

Water use l kg
-1

fish
 

146.3
(1) 

14,749.6
(1) 2,800-7,100

(2)
; 2,500

(3)
; 

4,02
(4)

;9,13
(5) 

Energy use kWh kg
-1

fish
 

13.6
(1) 

6.7
(1) 

0.09
(2)

; 0.043
(3) 

Antibiotic gkg
-1

fish No use No use 0.15
(3) 

Labour hrkg
-1

fish
 

1.56
(1)

 1.35
(1)

 0.06-0.11
(2) 

Nutrient utilisation efficiency 
    

Nitrogen %  48.1
(1)

 49.3
(1)

 38.3
(2) 

Phosphorus %  20.7
(1)

 20.0
(1)

 14.3
(2) 

Dry matter %  31.4
(1)

 31.8
(1)

 28.5
(2) 

COD %  48.5
(1)

 47.0
(1)

 - 

Waste discharge 
    

Nitrogen gkg
-1

fish
 

13.7
(1)

 29.0
(1)

 18.5
(2)

;46
(6) 

Phosphorus g kg
-1

fish
 

11.9
(1)

 14.5
(1)

 16.7
(2)

;14.4
(6) 

Dry matter gkg
-1

fish
 

348.7
(1)

 826.2
(1)

 359.6
(2) 

COD g kg
-1

fish 199.5
(1)

 826.1
(1)

 - 
(1) This study, (2) pond study (Nhut et al., Submitted-a), (3) Bosma et al. (2011), (4) Phan et al. (2009),(5) Anh et al. (2010), 

(6) De Silva et al. ( 2010). 

 

In contrast to ponds (Nhut et al., Submitted-a), a small amount of chemicals and no 

antibiotics were used in our RAS. About 36 g sodium bicarbonate was applied per kg feed to 

maintain pH which is less than normally applied in RAS (Timmons, 2002). By contrast, in 

ponds, 8 disinfectants, 4 parasiticides and 20 antibiotics are commonly applied in Vietnam to 

striped catfish ponds to fight disease (Rico et al., 2013). On average, 0.15 g antibiotics are 
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applied per kg striped catfish produced in ponds (Bosma et al., 2011). Farmers can eliminate 

residual antibiotics from fish tissue within 2-5 days after application, minimizing risks to 

consumers (Danyi et al., 2011). Nevertheless, the discharge and accumulation of antibiotic 

residues remains a risk factor for the development of bacterial resistance (Dung et al., 2008; 

Nguyen et al., 2007; Sarter et al., 2007a) and remains a major concern for the striped catfish 

industry. 

 

Water use per kg striped catfish produced in our RAS was 17 – 62 times lower than water use 

in traditional ponds (Anh et al., 2010; Bosma et al., 2009; Phan et al., 2009). The low water 

use per kg production in RAS also reduced the volume of discharge water. Small volumes 

can be treated in smaller facilities, allowing better control on effluent quality, while more 

attention can be given to water quality and minimizing contamination risks. RAS technology 

thus allows to target future improvement of the present ASC standard on water use in striped 

catfish culture (ASC, 2012) . 

 

The recirculating flow in RAS was 45 – 91 m
3
 per kg feed per day which was 6 – 8 times 

higher than in FT. The fact that fish production was similar in FT and RAS suggests that 

water flow and associated pumping costs can be reduced. The experimental RAS was 

overdesigned causing energy use to be higher than reported in commercial RAS for tilapia, 

African catfish and European eel (Eding and Kamstra, 2002; Verreth and Oberdieck, 2009). 

Daily monitoring and water sample and sludge collection every 4 hours also made labour use 

in this experiment much higher than in commercial RAS farms. In the Netherlands one 

person can operate a tilapia RAS with an annual production capacity of 100 MT (Verreth and 

Oberdieck, 2009) or an 250 MT African catfish RAS (Eding, personal communication). With 

striped catfish, reaching labour efficiencies as for African catfish could be set as a long-term 

target for the industry. 

 

Overall, RAS production improves water quality and minimizes environmental impacts from 

aquaculture, as shown for rainbow trout in Europe (d’Orbcastel et al., 2009a; d’Orbcastel et 

al., 2009b). The same was observed for striped catfish production in experimental scale RAS. 

Nutrient retention efficiency and discharge are important sustainability indicators (Verreth 

and Oberdieck, 2009). High N, P, COD and DM retention efficiencies were realized in 
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experimental FT and RAS, compared to traditional ponds. The combination of better 

survival, fast growth and low feed conversion ratio in RAS partially explains the high 

nutrient retention efficiencies realized in our FT and RAS. It would be interesting to explore 

if these retention efficiencies can be further improved by applying improved diets (Eding and 

Kamstra, 2001; Eding and Kamstra, 2002; Eding et al., 2009). Future research should focus 

on improvement of nutrient retention efficiencies and shortening of the production cycle, as 

for instance was done for production of tilapia in RAS (Eding et al., 2009). A major 

advantage of RAS was the high reduction in waste discharge (Table 3.13) due to within 

system mineralization of organic waste. The reported waste discharge from striped catfish 

ponds was much higher than in our RAS (De Silva et al., 2010). 

 

3.4.4. Nutrient mass balances 

 

Unfortunately, N2 and CO2 volatilization were not measured in RAS. More than 50% in input 

N and DM could not be traced back in the mass balance budgets (Table 3.9 and 3.10) which 

was most likely due to volatilization. The losses of N and DM were higher than observed in 

traditional striped catfish ponds (Nhut et al., Submitted-a). In contrast, in FT the amount of 

unaccounted waste was much less, because time for volatilization was negligible while 

discharge through sludge and exchange water was monitored in detail. The latter losses 

accounted for 54% of N, 45% of DM and COD and 17% of P of the input nutrients not 

retained in fish. Specially, in FT and RAS, 183 – 259 g DM was collected in sludge per kg 

feed, containing 10 – 12 % of N and 30 – 33% of P applied with the feed. The sludge is 

relatively easy to collect and ways to recuperate or reuse these nutrients could be explored. 

The N, P and OM concentrations in sludge collected from FT and RAS were higher than 

reported for traditional striped catfish ponds (Phu and Tinh, 2012). Promising options to 

explore include reuse as agricultural or aquacultural fertilizer(Adler and Sikora, 2004; Birch 

et al., 2010; James et al., 1998; Phung et al., 2009) and energy recuperation through 

methanogenesis (Kugelman and Van Gorder, 1991; Lanari and Franci, 1998; Mirzoyan and 

Gross, 2013; Mirzoyan et al., 2012; Mirzoyan et al., 2008; Mirzoyan et al., 2010; Mshandete 

et al., 2004).  
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3.5. Conclusions and recommendations 

 

Growth and nutrient utilization efficiency was higher in experimental small-scale FT and 

RAS than reported for striped catfish production in ponds when using a normal 26% protein 

pond diet and stocking 325 fingerlings per m
3
, which is 32 times higher than in ponds. 

Production of striped catfish in our RAS showed promising improvements on the 

sustainability indicators water use and discharge of N, P, DM and COD per kg feed or per kg 

fish produced (Table 3.8). However, fossil energy and human labour input were high, due to 

over dimensioning of the biofilter capacity (and associated pumping capacity) and the high 

sampling frequency.  

 

Future research should focus on RAS up scaling to commercial size and lowering energy 

requirements. In FT, the water turnover rate in the culture tanks was 8 times smaller, realizing 

better growth and production than in RAS. This suggest that there is room to develop 

recirculating systems for striped catfish production with a much lower recirculation flow than 

used in this experiment, thus lowering energy requirements and costs. In addition, research on 

sludge reuse as fertilizer or for biogas production will help to further improve sustainability. 
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Abstract 

This paper compares the quantity and quality of solid waste obtained from traditional ponds 

and recirculating aquaculture systems (RAS) for striped catfish, evaluating also methane and 

compost production. Striped catfish sludge was collected from four commercial ponds along 

the Mekong river and three indoor RAS. The amount of sludge of dry matter produced per kg 

fish production in ponds was 6 times higher than in RAS. However, the concentration of 

nutrients in solid waste from RAS was much higher, leading to better compost quality and 

higher methane yield than with sludge from ponds. Methane yield of striped catfish solid 

waste in RAS systems was 201 l CH4 per kg COD added with 52.7% CH4 in biogas, 

compared to 125 l CH4 per kg COD added in ponds, with 46.8% methane in biogas. The 

higher methane production from RAS sludge concurred with higher digestibility of COD: 

57.5% for RAS and 37.5 for ponds. 

 

 

 

Keywords: striped catfish, sludge, compost, methane, biogas, energy 
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4.1. Introduction  

In 2014, 1.1 million metric tons of striped catfish was produced in the Mekong delta in 5,500 

ha of earthen ponds. Processed pangasius products have been exported to over 150 countries 

(MARD, 2014). With the goal to improve sustainability, culture in recirculating aquaculture 

systems (RAS) has been successfully tested in an indoor pilot scale RAS (Nhut et al., 

Submitted-b). 

In grow-out ponds, 22-35% protein diets are used, realizing a feed conversion ratio (FCR) of 

1.7 -1.8 (Bosma et al., 2009; Phan et al., 2009). The sludge collected or discharged from ponds 

contains uneaten feed, faeces and residues of chemicals applied during culture (Phu and Tinh, 

2012). Today, 65% of farms discharge effluents, including sludge, directly to the Mekong river 

and 35% discharge to rice fields or gardens (Phan et al., 2009). For each kg of striped catfish 

produced, 2.5 to 9.1m
3 

water is discharged (Anh et al., 2010; Bosma et al., 2011; Phan et al., 

2009). The concentration of wastes in these effluents is low: e.g. Anh et al. (2010) reported 22 

mg l
-1

biological oxygen demand at five days (BOD5), 27 mg l
-1

 chemical oxygen demand 

(COD), 61 mg l
-1 

total suspended solid (TSS), 4 mg l
-1 

total nitrogen (TN) and 1 mg l
-1 

total 

phosphorus (TP) in striped catfish pond effluents. Although these effluents are highly diluted, 

water volumes discharged are large, with farms discharging 60 to 90% of N (Anh et al., 2010) 

and 30% of P (Nhut et al., Submitted-a) supplied through feeding. Combined, striped catfish 

farms in the Mekong delta discharge annually 18,500 tonnes N and 9,300 tonnes P (Nhut et al., 

Submitted-a). 

The sludge accumulating at the bottom of the pond contains 6 and 57% of N and P supplied 

with the feed, respectively. If pond effluents would be passed through a sedimentation pond, 

part of the nutrients could be trapped and re-used. Unfortunately, this technology is not widely 

adopted by the striped catfish industry in the Mekong delta. The direct effluent discharged such 

as nutrients, transmission of pathogens, residual antibiotics and chemicals from opened 

aquaculture systems can lead to stress ecological systems of surround environment (Folke and 

Kautsky, 1992). Particularly, striped catfish ponds locate along the Mekong River. Its effluent 

can effect on community heath in the Mekong delta through using water with contamination of 

residual drugs, chemicals and pollution. 

The amount of sludge that can be collected is different between fish species or production 

systems. The sludge production ranges from 0.2 to 0.5 kg dry sludge per kg fish produced 

(Chen et al., 1997). A part of the nutrients and energy contained in sludge could be re-used, 
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either through composting or methanogenic fermentation. Composting is done by mixing 

sludge with rice straw, a resource which is available year round in large quantities in the 

Mekong delta (Phung et al., 2009). However, sludge collected from ponds contains inorganic 

soil particles, and this might limit methane production. The latter is less a problem with sludge 

collected from RAS, where the concentration of volatile solids is sufficiently high to consider 

on-farm methane production (Gebauer, 2004; Gebauer and Eikebrokk, 2006; Mirzoyan and 

Gross, 2013; Mirzoyan et al., 2012; Mirzoyan et al., 2008; Mirzoyan et al., 2010). 

The aim of this study was to quantify and qualify sludge production in striped catfish ponds and 

RAS during grow-out, and to determine and compare compost and methane production of the 

collected pond and RAS sludge. 

 

4.2. Materials and methods 

 

4.2.1. Ponds and RAS for production and sludge collection 

 

Sludge production and composition were determined in four commercial striped catfish ponds 

and three indoor RAS during a full production cycle. Two ponds were located upstream in 

Dong- Thap province and two downstream in Vinh Long province. The ponds were 3.5 – 4.5 m 

deep. Pond design and operation was described in detail by Nhut et al. (Submitted-a). Detailed 

information on RAS design and operation was presented in Nhut et al. (Submitted-b). Figure 

4.1 and Table 4.1 summarize and compare pond and RAS design and operation. 
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Figure 4. 1:Characterization of traditional striped catfish ponds (A) and recirculating 

aquaculture systems (B) used for solid waste collection. WS: water sampling; MWS: makeup 

water sampling; SD: sludge discharge; WDS: water discharge sampling; (+) sampling point. 
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Table 4. 1: Characterization of the fish ponds (Spond) and recirculating aquaculture systems 

(SRAS) used for solid waste collection. Values are mean ± standard deviation 

(S.D.).  
Parameter 

 
Unit Spond SRAS 

  Mean ± SD Mean ± SD 

System information: 
  

  
 

  

Replicates # 4   3   

Total culture surface area m
2
 10,946 ± 212 0.85 ± 0.0 

Culture depth m 3.8 ± 0.6 0.8   

Volume m
3
 41,529 ± 5,388 0.85 ± 0.0 

System operation: 
  

  
 

  

Culture period days 255   207   

Sludge removal frequency # crop
-1

 1 or 3
* 

  1,242
** 

  

Stocking density kg m
-3

 0.6 ± 0.3 4.7 ± 0.7 

Final density kg m
-3

 7.7 ± 4.1 171.4 ± 12.6 

Initial individual weight g ind
-1

 38.5 ± 18.7 18.0 ± 2.6 

Final individual weight g ind
-1

 833 ± 376 658.4 ± 30.8 

Total fish biomass kg system
-1

 299,972 ± 74,741 145.7 ± 10.7 

Total feed  kg system
-1

 433,673 ± 74,529 176.3 ± 5.4 

Feed conversion ratio - 1.53 ± 0.14 1.25 ± 0.1 

Feed composition (in ww)        

Dry matter %  89.25 ± 0.2 90.1 ± 0.3 

Total nitrogen % 4.5 ± 0.3 4.2 ± 0.1 

Total carbon % 43.6 ± 1.5 53.2 ± 1.5 

Carbohydrate % 47.0 ± 1.7 51.4 ± 1.9 

Total COD g kg
-1

feed 1210.4 ± 9.3 1,188 ± 5.1 

Ash % 7.5 ± 0.2 7.2 ± 0.2 

Total phosphorus % 1.3 ± 0.1 1.4 ± 0.2 

Total Ca  mg kg
-1

feed
 

23,500 ± 1,643.2 25,019  ± 689.2 

Total Mg mg kg
-1

feed 3,667 ± 516.4 4,030 ± 361.4 

Total K mg kg
-1

feed 2,450 ± 821,6 2,011 ± 105.6 

Influent water        

Make up water use m
3
 kg

-1
feed 3.1 ± 1.7 0.11 ± 0.04 

 m
3
kg

-1
fish 5.0 ± 3.0 0.15 ± 0.06 

pH - 6.4 ± 0.2 8.1 ± 0.1 

Salinity g l
-1

 0.2 ± 0.2 0.0   

TN mg l
-1

 4.7 ± 2.1 1.3 ± 0.7 

TC mg l
-1

 14.3 ± 0.8 55 ± 20.0 

COD mg l
-1

 6.5 ± 0.6 3.1 ± 1.1 

TP mg l
-1

 0.4 ± 0.1 0.5 ± 0.9 

TSS mg l
-1

 202.1 ± 27.2 1.8 ± 0.5 

Spond: Sludge in traditional striped catfish ponds, SRAS: sludge in striped catfish RAS systems, ww: wet weight. In ponds, 

feed composition changed with culture phase. In RAS, the same feed was used during the full production cycle. *One time per 

crop cycle in downstream ponds, three times per crop cycle in upstream ponds. ** Six times of sludge collection per day in 

RAS. 
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4.2.2. Sludge sampling from ponds and RAS 

At three randomly assigned locations in each pond, a 0.6-m
2
 circular sludge trap, and at six 

randomly assigned locations a 0.4-m
2
 ceramic tile, placed horizontally at the sediment surface, 

was installed. Sludge traps were emptied weekly, but the amount of sludge collected is reported 

semi-monthly. A weekly sampling frequency was necessary, because the traps could spill over 

if sampled semi-monthly. Each tile and sludge trap location was marked by a 6-m bamboo 

pole, with one end fixed in the sediment and the other end visible above the water surface. The 

sediment accumulating on 3 tiles was left undisturbed until harvest, when the amount of sludge 

accumulated above the tiles was quantified and analyzed. The sludge accumulating above the 

other 3 tiles was collected semi-monthly, for sludge composition analysis. 

The farmers removed bottom sludge in their ponds each time the sludge bed became higher 

than 25 cm, using a diesel powered suction pump. When this happened, a sludge sample was 

collected and the total volume of sludge pumped out was recorded, so that the total amount and 

composition of the sludge removed could be qualified and quantified. During sludge removal, 

the locations with ceramic tiles and sediment traps were not disturbed. 

The sludge in RAS was collected every four hours from the bottom section of the swirl 

separator (Figure 4.1). The collection interval was short to prevent the development of floating 

sludge through gas development and subsequently sludge wash-out from the swirl separator. 

The amount of sludge collected at 4-hour intervals is also reported semi-monthly. 

The sludge collected semi-monthly from above the tiles in each pond was mixed into one 

composite 1-l sample which was kept cooled (4
o
C) conditions for 4 hours during transport to 

the laboratory where it was analyzed for pH, electric conductivity (EC, mS cm
-1

), ash, volatile 

solids (VS), total carbon (TC), total organic carbon (TOC), chemical oxygen demand (COD), 

total phosphorus (TP) and total nitrogen (TN) (expressed as percentage of dry matter (DM), 

unless mentioned differently). During the last two months of the production cycle, total calcium 

(Ca), total magnesium (Mg), and total potassium (K) in sludge were measured semi-monthly 

(mg kg
-1

 DM). At the end of the culture period, sludge accumulated above the three 

undisturbed tiles in each pond was collected by a 90-mm inner-diameter circular core and dried 

at room temperature while in the core. When dry, 5 cm layers were cut starting at the top (0-5 

cm, 5-10 cm, 10-15 cm, 15-20 cm and 20-25 cm) and homogenously mixed per horizon per 

pond to analyze TOC, TC, TN and TP (% DM). Each day, the RAS sludge collected at 4-hr 

intervals was pooled and analyzed for DM. Semi-monthly, a 1-L sludge samples per RAS was 
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collected per RAS and analyzed for pH (-), EC (mS cm
-1

), ash, VS, TC, TOC, COD, TP and 

TN (expressed as percentage of DM, unless mentioned differently).  

4.2.3. Determination of composting potential of sludge 

The composition of sludge collected from striped catfish ponds (Spond) and RAS (SRAS) and 

of rice straw (RS) used to make compost is given in Table 4.2. Pond sludge was collected 

during the last two months of the production cycle according to Nhut et al. (Submitted-a); Nhut 

et al. (Submitted-b). Per pond, the same amount of sludge (moisture content 60%) was used for 

composting. Similarly, sludge collected from each RAS was dried at room temperature until 

60% moisture content. Fresh rice straw (RS) was collected in Vinh Long province, and dried at 

room temperature until 60% moisture content and cut into 2-3cm long pieces.  

Table 4. 2: Composition of sludge and rice straw before composting (on dry weight basis, 

unless stated differently). All sludge and rice samples were standardised to a dry matter content 

of 40%. 

Parameter Unit RS Spond SRAS 

  Mean ± SD Mean ± SD Mean ± SD 

pH - -   6.5 ± 0.0 6.7 ± 0.1 

EC mScm
-1

 -   0.8 ± 0.2 2.7 ± 0.1 

DM % ww 40.3 ± 0.4 40.2 ± 0.6 40.8 ± 0.8 

VS % 84.0 ± 0.8 15.6 ± 0.3 65.6 ± 0.7 

Ash % 16.0 ± 0.8 84.4 ± 0.3 34.4 ± 0.7 

TC % 38.4 ± 0.6 5.6 ± 0.3 31.1 ± 0.9 

TN % 1.36 ± 0.02 0.47 ± 0.0 2.2 ± 0.1 

TP % 0.15 ± 0.01 0.28 ± 0.0 2.9 ± 0.1 

C:N ratio g g
-1

 28.2 ± 0.6 11.7 ± 0.5 13.9 ± 0.7 

Total Ca mg kg
-1

 2,066 ± 306 7,633 ± 57 10,966 ± 25 

Total Mg mg kg
-1

 450.7 ± 26 3,833 ± 208 3,533 ± 58 

Total K mg kg
-1

 16,833 ± 513 1,566 ± 351 353 ± 10 

RS: rice straw, Spond: sludge in striped catfish ponds (n = 4), SRAS: sludge in striped catfish RAS (n = 3).  

Values are mean ± standard deviation (S.D.),ww: wet weight. 

Equal quantities of sludge from each pond were homogeneously pooled, and subsequently 

divided into 3 equal portions. The same was done with sludge collected from RAS. Then each 

portion of Spond or SRAS was mixed with rice straw and referred to as Spond+RS and 

SRAS+RS. The Spond+RS was a homogenous 1:1 (DW basis) mixture of sludge and rice 



Methane production potential and compost composition of sludge from striped catfish ponds and recirculating 

systems 

93 

 

straw. For the SRAS+RS treatment the ratio sludge: rice straw ratio was 1:2. In this way, the 

C:N ratio in mixture was raise to 20 or higher (Table 4.6). Per treatment 3 batches of compost 

were made. Per experimental unit, 3kg Spond+RS or SRAS+RS mixture was put in a 

polystyrene box (height 40cm x length 40cm x width 40cm) with holes in cover and sides for 

air ventilation. During composting, moisture was checked every 4 days and adjusted to about 

60%. The compost was mixed before closing the box. The composting experiment was 

terminated after 60 days. Three random samples of final compost in each treatment were 

collected and kept at 4
0
C during transportation to the laboratory for composition analysis. 

4.2.4. Determination of methane production potential of sludge 

Pond sludge (Spond) was collected during the final 2 months of the production cycle, RAS 

sludge (SRAS) during the final month of the production cycle. Equal amounts of sludge 

collected in four ponds were homogeneously pooled into one composite sample. The same was 

done with sludge collected from three RAS systems. The initial composition of Spond and 

SRAS is given in Table 4.3. 

Table 4. 3: Composition of sludge, inoculum and sludge-inoculum mixture for the biogas 

reactor (on wet weight basis, unless started differently)  

Parameter  Unit Spond SRAS I Spond+I SRAS+I  

pH  
 

6.9 6.7 7.9 7.5 6.9 

EC mScm
-1 

0.5 1.8 0.7 0.6 1.2 

Alkalinity mgCaCO3l
-1 

- - - 1,807.3 2,321.4 

DM % 6.0 6.0 6.0 6.0 6.0 

VS % 0.3 3.6 3.1 2.0 3.3 

Ash  % 5.7 2.4 2.9 4.0 2.7 

TKN  mgl
-1 

342.0 1,698.0 2,765.0 1,795.8 2,338.2 

TAN mg l
-1 

58.7 290.3 442.4 305.3 397.5 

NO3-N mg l
-1 

1.1 2.4 3.1 1.8 2.5 

COD  mg l
-1

 5,488 51,683 27,789 27,427.4 29,915 

TP  mg l
-1 

203.0 1,500.0 1,342.0 886.4 1,405.2 

Spond: sludge collected from traditional striped catfish ponds, SRAS: sludge collected from the swirls separator in 

striped catfish RAS, Spond +I: sludge in traditional striped catfish ponds with inoculum, SRAS +I: Sludge in 

striped catfish RAS with inoculum. 

Digested sludge from a pig biogas plant in Ho Chi Minh City, Vietnam, was used as inoculum. 

The digester had been operating under mesophilic conditions for 2 years, prior to the 
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experiment. The collected inoculum was homogenously mixed and incubated during 7 days at 

36
o
C to deplete residual biodegradable organic matter (OM) and degassed to remove residual 

methane. After degassing, the inoculum was stored at 4
o
C until use. The inoculum is further 

referred to as ‘I’ and its initial composition is given in Table 4.3. 

Different substrates were used to measure methane production:(1) 200ml Spond + 300ml ‘I’ 

(Spond+I), (2) 200ml SRAS + 300ml ‘I’ (SRAS+I) and (3) 200 ml distilled water + 300ml ‘I’ 

(Control). All samples were standardized to a dry matter content of 6%. All treatments were 

executed in triplicate according to Angelidaki et al. (2009). The initial composition of Spond+I 

and SRAS+I are given in Table 4.3. 

Nine 550 ml incubation bottles were used, each filled with 500 ml substrate (either Spond+I, 

SRAS+I or Control) leaving 50ml headspace. Each bottle was closed with a butyl rubber 

stopper that was hold in place with an aluminum clamp according to Angelidaki et al. (2009). 

Pure N2 gas was flushed 2 minutes through the bottles before and after filling. The bottles were 

incubated at 36 ± 2
o
C during 63 days under dark condition. During incubation, the bottles were 

constantly shaken at 72-75 strokes per minute, except during sampling and biogas volume 

measurements.  

At the end experiment, after 63 days, samples were taken to analyze the composition. The 

amounts of CH4 and CO2 produced were daily measured during the experiment.  

4.2.5. Sample analysis  

Sludge and compost samples were analyzed for pH, EC, DM, TSS, TS (total solids), VS, COD, 

total Kjeldahl nitrogen (Kj-N), TP, TC, NH4-N and NO3-N. The pH was measured by pH 

electrode (model Hi99121-HANNA). The EC was measured by conductivity meter (HI98331- 

Hanna for Soil Test). The total suspended solid (TSS, dried to constant weight at 103 - 105 
o
C) 

was measured according to APHA (1999). The DM or TS was weighed after drying at 105
o
C 

for 24 hours (Foy and Rosell, 1991). The VS was calculated as the weight difference between 

DM and ash content (after burning at 550
o
C) according to APHA (1999). The chemical 

oxidation demand (COD) was measured according to APHA (1999). Total Kj-N was analyzed 

by the Kjeldahl method (Foy and Rosell, 1991). The TP in sludge was analyzed 

spectrophotometrically following Boyd and Tucker (1998 ).The TC was determined by high 
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temperature combustion method, TOC by high temperature combustion method on acidified 

samples, NO2-N bydiazotized sulfanilamide method, NO3-N by cadmium reduction to nitrite 

method according to APHA (1999). Total Ca, total K and total Mg were measured by atomic 

absorption spectrophotometer (Hatachi 180-60) after extraction in 1N ammonium acetate 

(pH7). 

Biogas production was determined daily as displaced water volume (in ml) (Figure 4.2). Biogas 

included CH4, CO2and other gases. The volume of biogas was measured as displaced water 

collected daily in the graduated cylinder. Two ml biogas was taken directly by syringe from the 

headspace and the CH4 and the CO2 concentrations were measured by gas chromatography 

(Shimadzu GC, Japan). The methane production was recalculated according to standard 

temperature and pressure (XSTP) according to Hansen et al. (2004).  

 

 

 

Figure 4. 2: Daily measurement of biogas volume by inverted bottle filled with water. 

 
4.2.6. Formulas and calculations  

Details of calculations related to compost, methane potential, energy and nutrients lost during 

composting are given in Table 4.4. 

Graduated cylinder 

Valve 

Head space

Gas tube

Inverted bottle filled water
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Table 4. 4: Summary of formulas for calculating in experiments 

Parameter  Unit Formulas  

Volatile solids (VS) g VS = Dry matter –  Ash  

Nutrient loss (NL) % NL =100* [ (NUinitial – NUfinal) / NUinitial] 

Mineral loss (ML) % ML =100* [ (Minitial – Mfinal) / Minitial] 

Feed conversion ratio (FCR) - FCR = FC/ (Wtotal final fish bw– Wtotal initial fish bw) 

CH4substrate production (VCH4) ml d
-1 

VCH4 = VCH4, S +I– VCH4, I 

CO2 substrate production (VCO2) ml d
-1 

VCO2 = VCO2, S+I– VCO2, I 

CH4substrate percentage (% 

CH4) 
% % CH4= 100* VCH4/ Vbiogas 

CO2substrate percentage (% 

CO2) 
% % CO2= 100* VCO2/ Vbiogas 

Other gas percentage (% other 

gases) 
% % Other gases= 100% -% CO2 - % CH4 

XSTP  XSTP=Xm *[Tstandard*Pm/Tm*Pstandard] 

CH4 / VSadded l CH4g
-1

VS
 

CH4/VSadded = [VCH4cumulative/ 1000 /VSadded] 

CH4/CODadded l CH4g
-1

COD
 

CH4/CODadded = [VCH4cumulative/1000 / CODadded] 

CH4/TSadded l CH4g
-1

TS
 

CH4/TSadded= [VCH4cumulative/1000 / TSadded]  

TSremoval % 
TSremoval= 100 *[ VS +I *( CinitialTS inS+ I - CfinalTS inS 

+I) ] / ( VS+I*  CinitialTS inS+I ) 

VSremoval % 
VSremoval= 100 * [ VS +I * ( CinitialVS inS + I  - CfinalVS 

inS + I ) ] / ( VS +I  *  CinitialVS inS + I ) 

CODremoval % 
CODremoval= 100 * [ VS +I * ( CinitialCOD inS + I  - 

CfinalCOD inS + I ) ] / ( VS +I  *  CinitialCOD inS + I ) 

Compost potential    

Per kg fish produced (COF) kg kg
-1

fish
 COF = [(Sdm kg

-1
 FB + F * kg

-1
 Sdm) / (100%-

Mstinitial)] – Dig * [(Sdm kg
-1

 FB + F * kg
-1

 Sdm) / 

(100%-Mstfinal)] 

Per kg feed consumption 

(COpF) 
kg kg

-1
feed

 
COpF = COF/FCR 

Methane potential    

Per kg fish produced (MF) l CH4 kg
-1

fish
 

MF =CH4.gVS
-1

*gVS.kg
-1

 fish settled / FB 

Per kg feed consumption (MpF) l CH4 kg
-1

feed MpF = CH4.g VS
-1

*gVS.kg
-1

 feed settled 

Energy potential kWh E
(1)

 

Per fish produced (EF) kWh kg
-1

fish EF = E*(MF/1000) 

Per feed consumption (EpF) kWh kg
-1

feed EpF =E*(EpF/1000) 
(1) Theoretical energy content of methane gas according to Henze et al. (1997), E = 9.7 kWh/m3 CH4, VCH4 potential: volume of 

methane production for energy production calculation (m3), VCH4, S + I: volume of methane production from test on substrate 

including inoculum (ml.d-1), VCH4, I: volume of methane production from inoculums reactor (ml.d-1), VCO2, S+I: volume of CO2 

measurement in reactor with substrate including inoculum (ml.d-1),VCO2, I: volume of CO2 measurement in reactor with 

inoculum (ml.d-1), NUinitial: amount of VS, TOC, TN or TP in initial sludge in reactor (mg), NUfinal: amount of VS, TOC, TN or 

TP in final sludge in reactor (mg), Minitial: amount of Ca, K or Mg in initial sludge in reactor (mg), Mfinal: amount of Ca, K or 
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Mg in sludge in final sludge in reactor (mg), FC: cumulative feed input (kg), Wtotal final fish bw: total fish biomass at harvest (kg, 

wet weight), Wtotal initial fish bw: total fish biomass at stocking (kg, wet weight),Vbiogas: volume of biogas production (ml.d-1), 

VCO2: volume of CO2 production from substrate (ml.d-1), VCH4 cumulative: accumulative methane production during experimental 

period 63 days  (ml); VSadded: total volatile solids in substrate added for test (g), CODadded: initial total chemical oxygen 

demand in substrate added for test (g); TSadded : corrected for control reactor (g), XSTP: volume gas content at standard 

temperature (oC) and pressure (ml), Pm: atmospheric pressure during measurement of gas production during experiment (bar), 

Xm: gas volume at room temperature (oC) (ml), Tstandard : standard temperature, 0oC (32oF), Tm : room temperature in (36oC) 

96.8oF, Pstandard: standard pressure (bar),  COP: Final compost production (kg in wet weight), FB: fish biomass produced (kg), 

VS + I
: total volume of substrate including inoculum in reactor (l), CinitialTS inS + I: initial total suspended solids concentration of 

substrate including inoculum in reactor (mg l-1), CinitialTS inS + I: final total suspended solids concentration of substrate including 

inoculum in reactor (mg l-1), Cfinal lVS in S + I: initial volatile solids concentration of substrate including inoculum in reactor (mg l-

1), CfinalVS in S + I: final volatile solids concentration of substrate including inoculum in reactor (mg l-1), CinitialCOD in S + I: initial 

chemical oxygen demand concentration of substrate including inoculum in reactor (mg l-1), CfinalCOD inS + I: final chemical 

oxygen demand concentration of substrate including inoculum in reactor (mg l-1). Sdm: sludge of dry matter in pond-sludge or 

RAS-sludge (kg); F: rice straw: sludge ratio on dry weight in initial composting with F=1 for pond-sludge and F=2 for RAS-

sludge; Mstinitial: moisture content in initial composting for pond-sludge or for RAS-sludge (%); Mstfinal : moisture content in 

final compost for pond-sludge or for RAS-sludge (%); FCR: feed conversion ratio, 1.53 for ponds and 1.25 for RAS (kg feed 

consumed/ kg fish produced); Dig: percentage of dry matter lost during composting for pond-sludge or for RAS-sludge (%). 

 

Statistics  

Treatment effects (pond vs. RAS) on nutrient concentrations in compost, nutrient removal 

during composting, methane production potential and biogas composition of the bio-methane 

production test were analyzed by one-way ANOVA, followed by Tukey test in case of 

significant difference (P < 0.05). 

4.3. Results  

4.3.1. Sludge production  

The weight of sludge of dry matter collected per kg fish produced was 6 times higher in ponds 

than that in RAS (P < 0.05). The dry sludge collected per kg fish produced declined with 

increasing average fish body weight in ponds, whereas this ratio slightly increased with fish 

body weight in RAS (Figure 4.3A). On average, 1.2 ± 0.50 and 0.2 ± 0.04 kg sludge of dry 

matter per kg fish produced was collected in ponds and RAS, respectively. The amount of 

volatile solids collected per kg fish produced in ponds and RAS was similar and increased with 

fish body weight (Figure 4.3B). 
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Figure 4. 3:Average sludge dry matter (A) and volatile solids (B) production (on dry weight 

basis) by average individual fish weight (on wet weight basis) in striped catfish 

ponds and RAS. Values are mean. n = 3 for RAS and n = 4 for ponds.BW: fish 

body weight. 

4.3.2. Sludge composition in striped catfish ponds and RAS systems 

Table 4. 5: Sludge composition (on dry weight basis) in striped catfish ponds (n=4) and RAS 

(n=3). Values are mean ± standard deviation (S.D.) 

Parameter Unit Spond SRAS p-value 

  Mean ± SD Mean ± SD  

pH - 6.70
a 

± 0.2 6.43
b 

± 0.1 0.001 

EC mScm
-1 

0.75
b 

± 0.5 2.72
a 

± 0.1 0.001 

COD % 8.70
b 

± 3.8 82.52
a 

± 8.7 0.001 

Ash % 93.80
a 

± 2.8 42.14
b 

± 5.9 0.001 

VS % 6.20
b 

± 2.8 57.86
a 

± 5.9 0.001 

TOC % 3.40
b 

± 1.5 31.31
a 

± 3.4 0.001 

TC % 3.50
b 

± 1.3 32.82
a 

± 3.2 0.001 

TN % 0.35
b 

± 0.1 2.84
a 

± 0.8 0.001 

TP % 0.33
b 

± 0.2 2.57
a 

± 0.5 0.001 

Total Ca mg kg
-1 

7,633
b 

± 57 10,966
a 

± 25 0.000 

Total Mg mg kg
-1

 3,833
a 

± 208 3,533
a 

± 58 0.074 

Total K mg kg
-1

 1,566
a 

± 351 353
b 

± 10 0.004 

Mean with different superscript letter within rows are significantly different (P < 0.05). Spond: sludge in striped catfish ponds, 

SRAS: sludge in RAS. 

 

Sludge DM production in pond  = -0.0012 *BW + 2.1127
R² = 0.7683

Sludge DM production in RAS = 0.0001* BW + 0.1136
R² = 0.6459
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Sludge collected in ponds was different from sludge collected in RAS (P < 0.05). Pond sludge 

DM contained on average 94% ash compared to 42% for RAS, while RAS sludge contained 9- 

times more volatile solids (P < 0.05). Moreover, the percentage TN, TP and TOC in RAS 

sludge was close to 10 times higher than in ponds sludge DM (P < 0.05) (Table 4.5). In ponds, 

the concentration of TC and TOC per kg sludge DM in the sludge bed changed significantly 

with depth. The amount of TOC in sludge in the top 0 – 5 cm was 23g per kg sludge DM and 

gradually declined with depth reaching 13 g kg
-1

 dry sludge in the 20 – 25 cm depth layer 

(Figure 4.4). The amount of TN content varied between 2 and 5 g per kg dry sludge showing an 

irregular pattern with depth, while TP was 1.4 – 1.7 g per kg dry sludge and similar between 

the 5 cm depth layers.  

 

Figure 4. 4: Sludge composition change in accumulative sludge layers in striped catfish ponds. 

Values are mean, n=4. 

4.3.3. Compost composition 

Composting decreased the VS content by 36 – 40 % and the TOC with 31 – 53 %. The TN 

percentage during composting dropped less, showing a 16 – 18 % decline. Nutrient losses were 

similar for ponds and RAS sludge (P > 0.05). Because the TN loss due to composting was 

smaller than the TOC loss, the C:N ratio dropped from 20 – 23 to 13 – 14 (Table 4.6). 
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Table 4. 6: Compost composition on dry weight basis, except for moisture (wet weight basis) 

and RS: sludge ratio. Values are mean ± S.D., n= 3. 

Parameter Unit Spond+RS SRAS+RS p-value 

  Mean ± SD Mean ± SD  

Initial composition         

RS: Sludge ratio g g
-1

 1   2   - 

Moisture % ww 59.8 ± 1.2 59.2 ± 2.5 0.589 

pH - 6.9 ± 0.1 6.8 ± 0.1 0.313 

EC mScm
-1

 2.2
b
 ± 0.1 3.3

a
 ± 0.1 0.001 

VS % 49.8
b
 ± 0.4 77.9

a
 ± 0.7 0.001 

Ash % 50.2
a
 ± 0.4 22.1

b
 ± 0.4 0.001 

TOC % 22.0
b
 ± 0.2 36.0

a
 ± 0.5 0.001 

TP % 0.2
b
 ± 0.02 1.1

a
 ± 0.01 0.001 

TN % 0.9
b
 ± 0.01 1.7

a
 ± 0.01 0.001 

C: N ratio g g
-1

 20.0
b
 ± 0.1 23.4

a
 ± 0.3 0.001 

Total Ca mgkg
-1

 4,850.0 ± 132.3 5,033.3 ± 207.4 0.266 

Total Mg mgkg
-1

 2,142.0
a
 ± 91.3 1,478.2

b
 ± 15.8 0.001 

Total K mgkg
-1

 9,200.0
b
 ± 173.2 11,339.8

a
 ± 347.0 0.001 

Final composition 
  

  
 

   

Moisture % 56.3
a 

± 2.1 58.9
a 

± 1.7 0.574 

pH - 7.3
a
 ± 0.1 7.6

b
 ± 0.1 0.001 

EC mScm
-1

 2.0
b
 ± 0.1 3.2

a
 ± 0.1 0.001 

VS % 31.6
b
 ± 2.0 46.5

a
 ± 0.3 0.001 

Ash % 68.4
a
 ± 2.0 53.5

b
 ± 0.3 0.001 

TOC % 10.4
b
 ± 1.0 17.5

a
 ± 1.5 0.002 

TP % 0.2
b
 ± 0.01 1.1

a
 ± 0.01 0.001 

TN % 0.8
b
 ± 0.01 1.4

a
 ± 0.01 0.005 

C : N ratio g g
-1

 13.5
a 

± 1.0 13.0
a 

± 1.9 0.728 

Total Ca mgkg
-1

 4,823.3
a 

± 40.4 4,985.3
a
 ± 103.7 0.065 

Total Mg mg kg
-1

 2,135.7
a
 ± 29.8 1,473.7

b
 ± 118.2 0.001 

Total K mg kg
-1

 9,167.0
b
 ± 152.9 11,320.3

a
 ± 5.7 0.001 

Nutrient loss
* 

  
  

 
   

DM % 38.7
b 

± 0.3 44.4
a 

± 0.4 0.001 

VS % 36.6
a 

± 3.9 40.3
a 

± 0.4 0.171 

TOC % 52.7
a 

± 4.4 51.4
a 

± 4.5 0.732 

TN % 15.9
a 

± 3.8 17.9
a 

± 10.1 0.764 

TP % 0.2
a 

± 2.5 0.6
a 

± 3.0 0.111 

Trace mineral loss
* 

  
  

 
   

Total Ca % 0.5
a 

± 3.2 0.8
a 

± 5.2 0.931 

Total Mg % 0.2
a 

± 3.6 0.2
a 

± 9.1 0.994 

Total K % 0.4a ± 0.6 0.1a ± 3.1 0.898 

Mean with different superscript letter within rows are significantly different (P < 0.05). * % nutrient and trace mineral loss 

between initial and final composition divided by the initial composition (expressed as percentage). Spond+RS : sludge 

collected from striped catfish ponds mixed with rice straw, SRAS+RS: sludge  collected from striped catfish RAS mixed with 

rice straw . 
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The TP percentage dropped 0.2 – 0.6 % during composting, while the pH increased by 0.2 and 

1.3 units in Spond+RS and SRAS+RS, respectively. Mineral losses were small and similar 

between Spond+RSand SRAS+RS(P> 0.05). For nearly all parameters, the nutrient content was 

higher in RAS-compost than in pond-compost (P<0.05), reflecting the quality of the composted 

sludge. 

4.3.4. Methane potential  

The CH4volume obtained after fermentation was 0.26 l per g VS from RAS-sludge, compared 

to 0.17 l obtained from pond-sludge (P < 0.05). The CH4 production per g TS from RAS-sludge 

was 15 times higher than for pond-sludge (P < 0.05) (Table 4.7). 

Table 4. 7: Quantity and quality of biogas from digestion of sludge in striped catfish ponds and 

RAS. 

Parameter Unit Spond SRAS p-value 

 
 

Mean ± SD Mean ± SD  

Methane yield 
 

       

-per TS added l CH4g
-1

TS 0.010
b 

± 0.00 0.157
a 

± 0.02 0.001 

-per VS added l CH4g
-1

VS 0.165
b 

± 0.04 0.264
a 

± 0.04 0.019 

-per COD added l CH4g
-1

COD 0.125
b 

± 0.01 0.201
a 

± 0.03 0.017 

Biogas quality         

-CH4 % 46.80
b 

± 6.1 52.70
a 

± 5.7 0.001 

-CO2 % 49.54
a 

± 5.7 43.7
b 

± 4.9 0.001 

-Other gases % 3.66
a 

± 1.4 3.60
a 

± 1.2 0.984 

Mean with different superscript letter within rows are significantly different (P < 0.05). Spond: sludge in traditional pangasius 

ponds, SRAS: sludge in pangasius RAS systems, n=3. 

The daily volume of CH4, CO2, and other gases obtained from digestion of RAS-sludge and 

pond-sludge increased quickly until day 9 – 10 and then declined gradually becoming 

negligible small after 63 days (Figure 4.5). The percentage of CH4 in RAS-sludge biogas was 

6% higher than pond-sludge biogas (P < 0.05), the latter containing 6% more CO2 in the biogas 

mixture (Figure 4.6). 

After 63 days of incubation, the amount of nutrients in RAS-sludge with inoculum (SRAS+I) 

was higher than in pond-sludge with inoculum (Spond+I) (P <0.05), except for TP and NO3-N 
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(P > 0.05). The VS and COD digestion efficiencies were1.5 and 1.6 times higher, respectively, 

for RAS-sludge than for pond-sludge (P < 0.05) (Table 4.8). 

 

Figure 4. 5: Mean of daily biogas production in 550 ml digestion bottles from striped catfish 

pond-sludge (Spond) and RAS-sludge (SRAS). n = 3. CH4-SRAS + inoculum: 

volume (ml) of methane gas from RAS-sludge with inoculum, CH4-Spond + 

inoculum: volume (ml) of methane gas from pond-sludge with inoculum, 

Biogas-SRAS + inoculum: volume (ml) of biogas from RAS-sludge with 

inoculum, Biogas-Spond + inoculum: volume (ml) of biogas from pond-sludge 

with inoculum, CO2-SRAS + inoculum: volume (ml) of carbon dioxide from 

RAS-sludge with inoculum, CO2-Spond + inoculum: volume (ml) of carbon 

dioxide from pond-sludge with inoculum. 

The amount of compost obtained per kg fish produced and per kg feed consumed was higher in 

ponds than in RAS, although not significantly different (P < 0.05), while the volume of 

methane produced per kg fish produced and per kg feed consumed was higher in RAS than in 
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ponds (P < 0.05). The energy yield from methane with RAS-sludge was more than 2.5 higher 

than with pond-sludge (P < 0.05) (Table 4.9). 

Table 4. 8: Change in sludge composition after incubation (wet weight basis). 

Parameter Unit Spond + I SRAS + I p-value 

  Mean ± SD Mean ± SD  

Final sludge 
  

  
 

   

pH 
 

7.7
b 

± 0.1 8.2
a 

± 0.1 0.008 

EC mScm
-1

 0.7
b 

± 0.1 1.4
a 

± 0.1 0.001 

Alkalinity mgCaCO3l
-1 

1,976
b 

± 156 2,416
a 

± 30 0.001 

DM % 5.4
a 

± 0.2 4.0
b 

± 0.2 0.001 

VS % 1.2
a 

± 0.1 1.3
a 

± 0.1 0.101 

COD mg l
-1

 18,799
b
 ± 73 20,606

a
 ± 1,040 0.040 

TN mg l
-1 

1,448
b 

± 18.2 1,874
a 

± 15.5 0.001 

TAN mg l
-1 

209.6
b 

± 7.3 282.0
a 

± 2.5 0.001 

NO3-N mg l
-1 

0.6
a 

± 0.03 0.5
a 

± 0.2 0.101 

TP mgl
-1 

836
a 

± 2.0 1,455
a 

± 20 0.749 

Digestion efficiency         

-VS removal % 38.3
b 

± 2.8 59.6
a 

± 1.7 0.001 

-COD removal % 37.2
b 

± 0.5 57.5
a 

± 2.0 0.001 

Mean with different superscript within row are significantly different (P < 0.05). Spond + I: pond-sludge with inoculum, SRAS 

+ I: RAS-sludge with inoculums, (n = 3). 

Table 4. 9: Compost, methane and energy potential obtained with sludge collected from 

striped catfish ponds and RAS. 

Parameter Unit Pond RAS p-value 

  Mean ± SD Mean ± SD  

Compost potential 
 

       

-per fish produced kg kg
-1

fish 3.7
a
 ± 1.6 0.87

b
 ± 0.02 0.034 

-per feed consumption kgkg
-1

feed 2.4
a
 ± 1.1 0.70

b
 ± 0.02 0.043 

Methane potential 
  

  
 

   

-per fish produced l kg
-1

fish 13.9
b 

± 8.5 33.5
a 

± 1.8 0.012 

-per feed consumption l kg
-1

feed 8.7
b 

± 5.0 25.3
a 

± 1.1 0.003 

Energy potential 
  

  
 

   

-per fish produced kWhkg
-1

fish 0.15
b 

± 0.1 0.33
a 

± 0.02 0.012 

-per feed consumption kWhkg
-1

feed 0.08
b 

± 0.1 0.25
a 

± 0.01 0.003 
Mean with different superscript within each row are significantly different (P < 0.05). 
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Figure 4. 6: Change in biogas composition (% of total volume) during incubation period 

(day). CH4-Spond: % CH4 in biogas mixture from pond-sludge, CH4-SRAS: 

% CH4 in biogas mixture from RAS-sludge (4.6A). CO2-Spond: % CO2 in 

biogas mixture from pond-sludge, CO2-SRAS: % CO2 in biogas mixture from 

RAS-sludge (4.6B). Other gases-Spond: % other gases in biogas mixture from 

pond-sludge, Other gases-SRAS: % other gases in biogas mixture from RAS-

sludge (4.6C). 
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4.4. Discussion  

4.4.1. Quantity and quality of sludge in striped catfish culture systems 

By weight, 6 times more sludge of dry matter was discharged per kg fish produced from ponds 

than from RAS. However, similar quantities of volatile solids were discharged from ponds and 

RAS per kg fish produced. The difference in weight is due to a high soil content in pond- 

sludge. Farmers exchange pond water with the Mekong River each day, with inflowing water 

delivering on average 202 mg l
-1 

TSS (Nhut et al., Submitted-a). Per kg fish produced in ponds, 

2 – 7 m
3
 of water is exchanged with the river. Assuming an average water exchange of 5 m

3
 per 

kg fish produced, then about 1000 g TSS enters the pond, while with out-flowing water only 

300 g TSS is discharged. Including feed inputs, about 1,200 g TS accumulates in striped catfish 

ponds per kg fish produced (Nhut et al., Submitted-a), which is more than usually reported for 

pond fish culture (Chen et al., 1997).  

Striped catfish produces dilute faeces, which are quickly dispersed through the water column 

and difficult to trap. In RAS, 17% of feed dry matter was collected by a swirl separator placed 

directly after the fish tank, collecting sludge every 4 hours (Nhut et al., Submitted-b). The 

quantity of faeces collected daily as sludge from swirl separators in RAS and flow-through 

tanks fluctuated between 12 and 20 % of the feed input (on wet weight basic) (Nhut et al., 

Submitted-b) and was difficult to predict. In ponds, numerous factors can affect sludge 

production, including for example location, season, tidal regime, day of culture cycle, fish 

density and biomass, water exchange frequency, etc. Nhut et al. (Submitted-a) observed a peak 

in VS accumulation in ponds after 3 months of culture when the feed load passed 200 – 250 kg 

ha
-1

 d
-1

 and algae could not compete for nutrients with bacteria, died off and settle, to the pond 

sediment. 

The VS, COD, TOC, TC and TN concentrations in sludge of dry matter change due to 

decomposition (Adhikari et al., 2014; Boyd, 1985; Boyd, 1995; Chen et al., 1997; Gross et al., 

1998; Gross et al., 2000), as shown by differences in concentration at different depths in the 

undisturbed sludge bed sampled at the end of the culture period. With depth, the TC and TOC 

concentrations decreased. This was also expected for TN (Boyd, 1995), but this could not be 

observed in our study. The TP concentrations did not change with depth, which is in line with 

results of Munsiri et al. (1996). Similar concentrations of VS, TOC, COD, TN and TP for 



Chapter 4 

 

106 

 

striped catfish ponds were reported by Phu and Tinh (2012), for channel catfish by Boyd 

(1995), and for trout in raceways by Stephen et al. (1999). 

According to Shrestha et al. (2008), concentrations of Ca, Mg, and K in the Mekong river in 

Vietnam are low, with 0.73-0.86 mg Ca l
-1

, 0.38-1.30 mg Mg l
-1

 and 0.04 -0.12 mg K l
-1

. Soils 

in the Mekong delta at a depth of 20 - 50 cm contain 1378 mg Ca kg
-1

, 432 mg Mg kg
-1

 and 164 

mg K kg
-1 

(Quang and Guong, 2011). However, in this study, the main supply of Ca, Mg, and 

K was through feeding (Table 4.1), and the observed concentrations in sludge were higher than 

previously reported in striped catfish ponds (Phu and Tinh, 2012), freshwater prawn ponds and 

carp ponds (Wudtisin, 2006). The reason why in our study Ca, Mg and K concentrations were 

higher is unclear, and merits further study. Possible factors involved are concentrations in the 

diet, the stage of culture cycle during sampling, the sampling method, the depth and the sample 

size (Munsiri et al., 1996).  

4.4.2. Compost quality, nutrient loss during composting and applicability 

The pH, EC, TC, TP and TN concentrations reported by Phung et al. (2009) were similar to the 

pond-compost (Spond+RS) concentrations in our study, the biggest exception being Ca levels, 

which were much higher in our study (Table 4.10). The compost produced by Phung et al. 

(2009) allowed saving 30 kg N fertilizer input per ha in rice cultivation. The nutrient content in 

RAS-compost (SRAS+RS) was higher than in pond-compost. Both types of compost obtained 

in our study compared well to compost produced from cattle manure (Eghball et al., 1997), but 

were less nutrient rich than poultry manure (Abdelhamid et al., 2004), pig manure (Abdelhamid 

et al., 2004; Roca-Pérez et al., 2009; Tran et al., 2011) and sewage (Roca-Pérez et al., 2009) 

based composts. The compost based on sludge from striped catfish RAS is a good product due 

to a favourable macro-nutrients content and the fact that in RAS the use of drugs and chemicals 

is minimal (James et al., 1998). 

During composting, the pH and EC slightly increased. This could be the result of inorganic-N 

release during composting (Sánchez-Monedero et al., 2001). Slight changes (positive or 

negative) in pH during composting were also reported by Sánchez-Monedero et al. (2001) and 

Eghball et al. (1997), depending on the type of compost made. The TOC, VS and TN decreased 

significantly, while losses of TP, Ca, Mg, and K were negligible. These changes are  related to 

the compost processing methods applied (Eghball et al., 1997; Goyal et al., 2005; Tran et al., 
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2011). In our study, composting was done in a partially covered box with holes for air 

exchange. Most likely, when left uncovered VS and N losses would have been higher. The TN 

loss during composting pig manure was 25– 30% when compost was covered compared to 63– 

73 % when not covered (Tran et al., 2011). In general, composting studies with uncovered 

storage report higher TN losses than obtained in our study (Eghball et al., 1997; Sánchez-

Monedero et al., 2001; Sommer, 2001; Tran et al., 2011). The VS loss in this experiment was in 

line with some previous studies (Eghball et al., 1997; Li et al., 2008; Sommer, 2001). Because 

TC loss was higher than TN loss during composting the C/N ratio declined. In contrast, 

negligible amounts of TP minerals were lost during composting (Eghball et al., 1997). As 

expected, TP did not volatilise during composting. 

Considering the compost composition (Table 4.6), compost production per kg fish (Table 4.9) 

and the total striped catfish production in the Mekong Delta, 4.02 million tonnes compost, 

containing 36 thousand tonnes of TN and 8 thousand tonnes of TP can be produced from pond-

sludge. If producing striped catfish in RAS, then 0.96 million tonnes compost would be 

produced, containing 16.3 thousand tonnes of TN and 10.6 thousand tonnes of TP, would be 

obtained. Although less compost would be produced from RAS, the ash content is lower, 

collection easier and transport costs are smaller than for pond-compost. Per kg fish produced in 

RAS, 0.87 kg compost with a present market value of US$ 0.02 ($VND 700 kg compost
-1

) can 

be produced. This value would be enough to cover 50% of the pumping and aeration costs in 

RAS for striped catfish in pond (0.8 kWh per kg fish produced equaling US$ 0.06 ($VND 

1.300 kg fish
-1

)) (Nhut et al., 2015).The compost can also be applied to other crops than rice 

(Casado-Vela et al., 2007; Casado-Vela et al., 2006; Phung et al., 2009; Pilar et al., 2005), and 

would lower nutrient discharge to surface waters by 10%, hence improving sustainability 

(Verreth and Oberdieck, 2009). Considering that a major fraction of the reused compost 

nutrients will not volatilize, the greenhouse gas emission potential would also be reduced 

(Mirzoyan et al., 2010; Møller et al., 2004; Picot et al., 2003; Zhang et al., 2013). The 

composting RAS-sludge and pond-sludge are feasible and simple method and can be applied 

for striped catfish farms in the Mekong delta. This compost is considered better than utilisation 

of fresh sludge to plant because it can control quality and quantity for plants. Currently, some 

gardens have utilised direct effluent and fresh sludge, but its nutrient quality and quantity have 

not controlled lead to unpredictable production of gardens. 
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4.4.3. Methane potential production  

The pH, alkalinity and TAN concentration in pond and RAS sludge were below the threshold 

levels that would inhibit methane production (Angelidaki and Ahring, 1993; Chen et al., 2008; 

Hansen et al., 1998; Speece, 1996). For free ammonia, anaerobic microbes are inhibited at a 

concentration above 1,100 mg NH3l
-1 

(Hansen et al., 1998). The substrate to inoculum ratios 

(VS weight basis) were 0.8 for SRAS+I, and 0.08 for Spond+I, which were sufficient 

considering that our goal was to combine a high digestibility of VS with methane yield.  

The methane yield from RAS-sludge (SRAS+I) was higher than from pond-sludge (Spond+I) 

(Table 4.7). Although the inoculum to substrate ratio (VS weight basis) in Spond+I was 10 

times higher than in SRAS+I, the fraction of VS and COD removed from pond-sludge was 

smaller than for RAS-sludge. This was not high; possible causes might include a high hydrogen 

sulfide concentration during digestion or because of chemical and drug residues present in the 

pond-sludge. A 50% inhibition occurred with H2S concentrations of 60 to 240 mg l
-1

 in the 

digester (Speece, 1996). In addition, the pond-sludge accumulated over a 2 months period, 

hence a large fraction of easily degradable VS was already mineralized leaving only organic 

matter that is difficult to digest, e.g. lignin compounds (Stinson and Ham, 1995). Typically, one 

kg of commercial striped catfish feed contains more than 200 g of soybean and 400g wheat 

flour (Hien et al., 2010). Non–starch polysaccharides (NSP) containing lignin, hemicellulose 

and cellulose, which have low digestibility, are present in soybean meal and wheat flour. 

Meriac et al. (2014b) reported that one kg of rainbow trout feed comprised 150 g soybean meal 

and 175 g wheat flour. The COD of the NSPs in the trout’s faeces represented 65 % of the total 

COD in the faeces. Presence of soybean meal in fish diets could also explain why 

decomposition of collected fish faeces was 58% less than for faeces based on soybean meal 

free diets (Mirzoyan, 2009). Overall, the methane production  potential of solids collected from 

striped catfish, trout, salmon and striped bass ponds is similar (Gebauer, 2004; Gebauer and 

Eikebrokk, 2006; Kugelman and Van Gorder, 1991; Lanari and Franci, 1998) (Table 4.11). 

When compared to waste from terrestrial animals, the methane yield (ml CH4 g
-1

 VS) from 

striped catfish sludge collected in RAS is lower than for piglet manure, cattle slaughter waste, 

and duckweed while it is higher than for manure from sow, cow, buffalo, rabbit, sheep, goat, 

chicken, slaughter waste from pig and fish, household waste and grass and cassava residues (Cu 
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et al., 2015) because manure from terrestrial animals is richer in nutrients and COD, and 

contains less ash. 

The methane and carbon dioxide fraction in biogas depends on the proximate composition of 

the sludge. Wellinger et al. (2013)reported a yield of 60% CH4: 40% CO2for protein, 72% CH4: 

28% CO2 for lipid and 50% CH4 : 50% CO2 for carbohydrate. Striped catfish feed is a mixture 

of ingredients with specific apparent digestibility coefficients (ADC) (Hien et al., 2010; Hung 

et al., 2003). The high C and low N fractions in striped catfish pond-sludge accounted for the 

observed ratio in the biogas produced of 47% CH4 and 50% CO2, while the higher N fraction in 

RAS-sludge increased this ratio to 53% CH4: 44% CO2. 

One kg striped catfish produced in RAS could produce 33.5 l CH4 which represents 0.33 kWh 

potential energy yield per kg fish produced. With pond-sludge, 13.9 l CH4was obtained per kg 

fish produced, which represents a potential energy yield of 0.14 kWh per kg fish produced. 

Assuming 300 tonnes striped catfish is annually produced per ha in ponds in the Mekong delta 

(MARD, 2014a), 42,000 kWh can be obtained per ha from pond-sludge. If all striped catfish in 

the Mekong delta would be produced in RAS, then the potential energy yield would be 99,000 

kWh per ha. One year has 8,760 hours, thus the potential energy yield corresponds to a constant 

energy supply slightly above 11.3kW. The electricity yield from methane is around 30% 

(Henze et al., 1997), so a 3.4 kW power source could be realized. It can compensate about 10-

12% electricity consumption for aeration and pump in RAS for striped catfish culture.
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Table 4. 10: Nutrient content of different types of compost from animal waste. 

Compost pH 
EC  

mS cm
-1

 
VS % TC % C/N TP % TN % 

Ca 

mg kg
-1

 

Mg 

 mg kg
-1

 

K  

mg kg
-1

 
Reference 

Spond + RS 
7.3 2 31.6 10 14 0.2 0.8 4,823 2,136 9,167 [1] 

Spond + RS 
7.4 2.4 - 9 - 0.4 0.9 84 2,540 11,600 [2] 

SRAS + RS 
7.6 3.2 46.5 18 13 1.1 1.4 4,985 1,474 11,320 [3] 

Scattle manure 
7.7 7.4 19.2 10 - 0.9 1.1 13 5.6 12,000 [4] 

Spoultry manure 
8.0-8.7 3.6-4.3 70-75 35-37 9-13 - 2.7-4.1 - - - [5] 

Spig manure 
- - 63-72 58-63 

 
1.5-3.8 1.7-3 - - 13,400 [6] 

Ssewage 
6.8-7.2 3.7-3.8 48-53 18-23 10-11 2.5-2.7 1.9-2.3 - - - [7] 

Spond + RS: sludge in striped catfish ponds mixed with rice straw (this study) [1] Spond + RS: sludge in traditional striped catfish ponds mixed with rice straw (Phung et al. (2009) [2] SRAS + 

RS: sludge in striped catfish RAS mixed with rice straw (this study) [3] Scattle manure: Beef cattle feedlot manure (result of experiment in 1992) (Eghball et al. (1997) [4] Spoultry manure: 

Poultry manure + rice straw+oilseed rape cake (Abdelhamid et al. (2004) [5] Spig manure: Pig manure + rice straw (Tran et al. (2011) [6] Ssewage: Sewage + rice straw(Roca-Pérez et al. (2009) 

[7]. 
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Table 4. 11: Methane production from different types of aquaculture sludge. 

     

Digestion efficiency 

(%)     

Sludge T(
o
C) 

HRT 

(day) TS (%) Salinity TS VS COD 

CH4 

(%) 

CH4 

(l g
-1

 COD add) Reference 

Spond 36 60 6 Fresh 11.6 38.3 37.2 46.8 0.125 [1] 

SRAS 36 60 6 Fresh 32.7 59.6 57.5 52.7 0.201 [2] 

SAtlantic salmon RAS 35 10-20 4-6 Fresh - - 57-71 36-71 0.13-0.16 [3] 

Strout 24-25 22-38 1.4-2.4 Fresh - 93-97 - >80 0.20-0.25 [4] 

Ssalmon RAS 35 30 8.2-10.2 Brackish - 47-62 35-55 49-58 0.11-0.18 [5] 

Sstriped bass RAS 30 6-8 0.4 Brackish - 92-98 99.6 4-53 0.04-3.6 [6] 

Spond: sludge in traditional striped catfish ponds this study [1],SRAS: sludge in striped catfish RAS this study [2],SAtlantic salmon RAS : sludge Atlantic Salmon RAS Kugelman and Van 

Gorder (1991)[3], Strout: Rainbow trout RAS  Lanari and Franci (1998) [4],Ssalmon RAS: sludge in Salmon RAS Gebauer (2004) [5], Sstriped bass RAS: sludge striped bass RAS Mirzoyan 

(2009)[6]. 
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4.4.4. Research constraints 

Small quantities of compost were produced under controlled indoor conditions. Compost 

yield under open field conditions should also be evaluated to predict yields under field 

conditions. Quality and quantity of compost from sludge in striped catfish ponds in this study 

can not assume for during a full production cycle.  

4.5. Conclusions and recommendations 

Sludge production in striped catfish ponds was 1.2 kg per kg fish produced, which is mainly 

due to a high mineral content in the sludge, originating from suspended soil particles in the 

daily water intake. Although 6 times less sludge is produced in RAS, the concentration of VS 

in the sludge is much higher, making it a good resource to produce compost or energy from 

methane. Nevertheless, the quality and quantity of methane from striped catfish sludge was 

lower than for animal manures and the resulting electricity yield is low. Therefore, 

composting the pond-sludge or RAS-sludge is presently considered the best option to reuse 

part of the nutrients trapped in the sludge from striped catfish culture systems. Another option 

that still could be explored is denitrification. A disadvantage of denitrification is that volatile 

solids are mainly volatilized, while advantages are that water exchange with the river can be 

reduced further and that less liming material is needed. 
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Abstract 

The effect of integrating an upflow-sludge-blanket denitrification reactor (USB) in a 

recirculating aquaculture system (RAS) for striped catfish (Pangasianodon hypophythalmus, 

Sauvage,1878) production on water quality, water exchange, fish performance and 

environmental sustainability was assessed. Four identical RAS were used, of which 2 RAS 

served as control treatment (RAS) and 2 RAS were extended with a USB denitrification 

reactor (RAS+USB). Fish performance (e.g. growth, survival, feed conversion ratio (FCR)) 

and fish quality (fillet percentage, fillet color and off-flavour) were similar in RAS and 

RAS+USB treatment (P > 0.05). Per kg fish produced (RAS vs. RAS+USB), less water (175 l 

vs. 77) and less NaHCO3 (176 vs. 86 g) were consumed in the RAS+USB treatment. Also, 

less dry matter (288 vs. 80 g), less nitrogen (21 vs.7 g) and less phosphorous was discharged 

(10 vs. 9 g) (P < 0.05). In the RAS-USB treatment 40% of feed dry matter was unaccounted 

and 9% of feed nitrogen was lost. Integrating an USB-reactor in RAS reduced nutrient 

discharge with effluent from RAS, increased volatilization of N2 gas and concentrated 

phosphorous in the sludge blanket, from where it can be discharged for further treatment. The 

low water consumption in RAS and the very low in RAS+USB treatment allow a better 

control on biosecurity than what is presently possible in pond culture systems. 

 

 

 

 

Keywords: denitrification, recirculating aquaculture systems, sustainability, striped catfish, 

pH control. 
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5.1. Introduction 

When the striped catfish (Pangasianodon hypophythalmus, Sauvage, 1878) culture developed 

in the late 20
th

 century, various culture systems were used, including cages, pens and ponds, 

relying on river trash fish as an important food input (Phuong and Oanh, 2010). Quite 

quickly, the preferred culture system became deep ponds receiving formulated feed and 

exchanging water with the river to maintain water quality (Nhut et al., submitted-a).  

Presently, about 1.1 million metric tons is produced annually in the Mekong delta using 5000 

ha of ponds divided over 5400 farms (MARD, 2014a). Striped catfish ponds range in size 

from 0.08 to 2.2 ha, are 2 to 6m deep and are situated close to the river or channels to 

facilitate water exchange, delivery of feed from the feed factory and transport of fingerlings 

to the farmers and market sized fish to the processing plant. Pond production varies between 

70 and 850 tons ha
-1

 crop
-1 

(Phan et al., 2009). Striped catfish diets usually contain 90% dry 

matter (DM), 22-30% crude protein (CP) and 1-1.35% total phosphorus (TP), realizing a feed 

conversion ratio of 1.7 – 1.9 (Bosma et al., 2009; Phan et al., 2009). The fish are produced 

with a nutrient utilization efficiency of 38% for nitrogen (N), 14% for phosphorous (P) and 

29% for DM administrated with the feed (Nhut et al., submitted-a). On average, 19 g N, 17g 

P and 360 g DM is discharged per kg fish produced (Nhut et al., submitted-a). The production 

of one kg of fish in pond culture requires 0.043 - 0.09 kWh energy (Bosma et al., 2009) and a 

water exchange of 2.5 - 9.1 m
3
 with the river (Anh et al., 2010; Bosma et al., 2009; Phan et 

al., 2009). 

Western consumers demand that farmed fish products are sustainably produced (Verreth and 

Oberdieck, 2009). Therefore, the sector initiated research on sustainability. One way to 

improve sustainability is the use of Recirculation Aquaculture System (RAS) technology. 

Nhut et al. (submitted-b) showed that striped catfish can be successfully grown in RAS, using 

only 146 l of water per kg fish produced, with a nutrient utilization efficiency of 48% for N 

and 21% for P, a discharge of 14 g N and 12 g P per kg fish produced, and a survival of 94% 

(Nhut et al., submitted-b). The excellent fish performance and relatively low environmental 

impact of striped catfish production in RAS can be further improved by integrating a 

denitrification reactor within the RAS (Eding et al., 2009; Timmons and Ebeling, 2010; van 

Rijn et al., 2006). A denitrification reactor can be fueled with the carbon (C) in faecal solid 
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waste to remove nitrate nitrogen (NO3-N) form the water of a RAS. Advantages of such a 

denitrification reactor include a further reduction of the solid fecal waste discharge and a 

lower water exchange than in conventional RAS while a favorable water quality can be 

maintained. An additional advantage of denitrification in RAS is that less sodium bicarbonate 

(NaHCO3) is required to maintain alkalinity and pH than in a conventional RAS (Eding et al., 

2009; Timmons and Ebeling, 2010; van Rijn et al., 2006). In this study, an upflow-sludge-

blanket denitrification reactor (USB-DR) was integrated into a conventional striped catfish 

RAS (further referred to as RAS+USB). The objective was to compare and quantify striped 

catfish performance, water quality and waste discharge in RAS without (RAS) and RAS with 

denitrification (RAS+USB). 

5.2. Materials and Methods 

5.2.1. Experimental design 

Four identical RAS were used, two conventional RAS and two conventional RAS extended 

with an USB-DR (RAS+USB) (Figure 5.1). In this experiment the RAS was the experimental 

unit. 

5.2.2. Experimental RAS and system maintenance 

Experimental RAS. Each RAS contained an 850-l circular PVC tank with a central bottom 

drain and a net cover to prevent fish from escaping. From the fish tank water was flowing 

(2.4 m
3
 h

-1
) by gravity to a 260-l swirl separator (inlet pipe inner diameter 63 mm; inner 

diameter separator 0.85m, inner surface area 0.57 m
2
, hydraulic surface load (HSL) 118 m

3
 

m
-2

 day
-1

). The swirl separator in each RAS+USB was equipped with a stirrer (30 seconds 

stirring, 30 minutes pause, stirrer velocity 7 rpm) to prevent solid waste from clogging and to 

prevent degrading sludge to be washed out due to gas bubble formation causing the waste to 

float. In conventional RAS, water from the swirl-separator flowed to the central bottom inlet 

of a 303-l moving bed biofilm reactor, with an installed biofilter surface area of 167m
2 

(Bio-

media type Helix 12mm PN10; specific biofilter surface area 834 m
2
 m

-3
, Fleuren & Nooijen 

company, the Netherlands). A 8l-bottle connected with bottom outlet of swirl separator to 

harvest sludge every 3 hours.  
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From the moving bed biofilter, the water flowed to a 580-l sump, from where it was pumped 

(250W/50Hz, Ebara, Italy) across a 1.3 m
3
 trickling filter (dimensions: height 140 cm, cross 

sectional area 0.93 m
2
; Bio-blok

®
-200, EXPO-NET, Denmark, specific biofilm surface area 

200 m
2
 m

-3
, HSL 150 m

2
 m

-3
 d

-1
). The inflow water to the trickling filter was spread 

homogeneously over the cross-sectional area through a PVC water distribution grid. The 

outflow water of the trickling filter was collected in a 200-l sump from where it flowed back 

to the fish tank, while surplus water returned to sump. A water inlet valve, connected to a 

water meter (GMK-15, range accuracy (m
3
h

-1
) ± 2%, ASAHI company, Bangkok, Thailand) 

to record replacement water, was connected to sump. The supply water came from a 200 m
3
 

overhead storage tank.  

Upflow Sludge Blanket Denitrification Reactor (USB-DR). The USB-DR is a 2.15 m high 

transparent cylinder with a 0.38 m inner diameter. The solid waste accumulating at the 

bottom of the swirl separator was pumped (Masterflex peristaltic pump console drive model; 

6-600 rpm; pump house Masterflex easy load II; tubing masterflex 18 Norprenea; Applikon, 

Schiedam, the Netherlands) with a flow of 807 l d
-1

 to the bottom section of the USB-DR. 

The flow through the USB-DR concurred with a HSL of 7.1 m
3
 m

-2
 day

-1
. Water overflowed 

at the top of the USB-DR into a collection channel from where it flowed back into the swirl 

separator through central tube by gravity. Difference in height of top of the USB-DR and top 

of swirl separator was a meter (Figure 5.2). In this way, solids escaping from the USB-DR 

could be recaptured. The stirrer in the USB-DR was a rectangular 210 x 39 cm open frame 

connected with a central rod to a rotor. Formation of nitrogen gas bubbles could be observed 

through the transparent wall of the reactor. The stirring promoted nitrogen gas removal from 

the sludge bed and ensured mixing of reactor influent with the sludge blanket. 
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Figure 5. 1:Experimental set up of a conventional Recirculating Aquaculture System (RAS-

treatment). WS: water sampling; SD: sludge discharge; SDS: sludge discharge 

sampling; WD: water discharge; WDS: Water discharge sampling; (+) sampling 

point. 

 

Figure 5. 2:Experimental set up of a conventional recirculating aquaculture system with an 

upflow sludge blanket denitrification reactor (RAS + USB). P1, 2, 3, 4, 5: are 

valves to discharge or sample USB-DR sludge. WS: water sampling; WD: water 

discharge; MWS: Water makeup sampling; (+) sampling point. 
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Table 5. 1: RAS and RAS + USB volume, flow rate and retention time through RAS 

components. 

System component Volume (L) Flow rate (l/h) Retention time 

(h) 

Fish tank 850 2400 0.35 

Swirl separator 260 2434 0.11 

Moving Bed Biofilm Reactor 303 2400 0.13 

Sump 1 580     

Sump 2 200     

USB - Denitrification reactor 243 33.6 7.23 

Total system volume    RAS  2193     

Total system volume    RAS+USB 2436     

System maintenance. The biofilters in each RAS were fully matured at the start of the 

experiment, as prior to the experiment, striped catfish had been cultured non-stop for 210 

days in the systems. Before starting the experiment the solid waste that had accumulated at 

the bottom of the biofilters was removed. The water meter of each system was checked daily 

at 8.00 a.m. to quantify the amount of water added during the experiment. Through water 

exchange the NO3-N concentration was kept below 100 mg l
-1

. Daily, sludge accumulated at 

the bottom of moving bed biofilm reactor, sump (1) and sump (2) was siphoned out and 

poured back to the swirl separator by hand to recapture at 8 a.m. to reduce passive 

denitrification. At the same time, the swirl separators were cleaned by hand to make sure that 

all remaining sludge was removed (RAS) or entered the denitrification reactor (RAS+USB). 

5.2.3. Fish and feeding 

Fish. Each RAS was stocked with genetically improved striped catfish fingerlings obtained 

from Research Institute for Aquaculture No2 (RIA 2, Ho Chi Minh City, Vietnam) that had 

been grown in RAS. Before the start of the experiment, the fish were acclimated to the 

conditions in the culture systems for two weeks. At the start of the experiment, the fish 

biomass was adjusted to ~125 kg per system. Detailed information on duration of the 

experiment and fishes stocked are presented in Table 5.1. 
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Table 5. 2: Experimental conditions for the two treatments: conventional recirculating 

aquaculture systems (RAS) and the conventional RAS extended with an upflow 

sludge blanket denitrification reactor (RAS+USB). 

Treatment RAS RAS + USB 

Replicates 2 

Experimental period (day) 56 

Number of fish stocked per system (#) 202 ± 4.2  201 ± 1.4  

Initial individual fish weight (g) 621.8 ± 13.0  623.5 ± 5.0 

Feed and feeding. Fish were fed an 8-mm extruded floating pellet (Vietthang company, 

Vietnam) by hand at 1:00, 5:00, 9:00, 13:00, 17:00 and 21:00 hours, carefully looking for 

signs of satiation. The system in which fish had the smallest appetite at that particularly 

feeding time, determined the amount of feed given to the other systems. By doing this 

consequently fish in each system received the same amount of feed. The proximate 

composition of the feed is given in Table 5.2. 

Table 5. 3: Feed composition as analyzed (in g kg
-1

 feed on wet weight (ww)).  

Parameter Unit g kg
-1

 feed 

Dry matter g kg
-1

 feed   894.0 

Crude protein g kg
-1

 feed   263.0 

Crude fat g kg
-1

 feed     52.2 

Nitrogen-free extract (NFE)
(1)

 g kg
-1

 feed   448.0 

Fiber g kg
-1

 feed     57.3 

Ash g kg
-1

 feed     73.5 

Acid insoluble ash (AIA) g kg
-1

 feed     18.0 

Total-P g kg
-1

 feed     13.2 

Chemical oxygen demand (COD) g kg
-1

 feed 1202.0 

(1) NFE (g/kg feed, ww) = 1000 - protein – fat – fiber – ash – water.  (2) COD content of the diet was calculated as described 

in Dalsgaard and Pedersen (2011). CODfeed = crude protein (g kg-1) * 1.77 + Crude fat (g kg-1) * 2.88 + NFE (g kg-1) * 1.16 

+ Fiber (g kg -1) *1.16.  
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5.2.4. Measurements and analysis 

Sampling 

Feed and fish were sampled at the start (15 fish from base population) and end (5 fish per 

experimental unit) of the experiment for proximate analysis. Fish were not fed for 24 hours 

prior to sampling, and sampled fish was euthanized by 50 mg l
-1

tricaine methanesulfonate 

(98%) (Sigma-Aldrich, Missouri, US). Per system, at stocking and harvest, fish were counted 

and batch weighed. At harvest, 15 fish per experimental system were sampled for 

determination of fillet yield, fillet coloration and off-flavour. Per RAS unit, every four hours 

the solid waste accumulated at the bottom of the swirl separator was collected and quantified 

(reported on a daily basis). The composition of the solid waste collected was determined 

weekly on a pooled and homogeneously mixed sample of the solid waste collected during 

that week. 

Water samples were taken weekly from the overhead storage tank and collection locations in 

each recirculation system (sampling points are shown in Figure 5.1 and 5.2) and stored at 4
o
C 

to laboratory to analyse total alkalinity, total ammonia nitrogen (TAN), nitrite nitrogen (NO2-

N), nitrate nitrogen (NO3-N), total phosphorus (TP), chemical oxygen demand (COD), total 

nitrogen (TN) and total suspended solids (TSS). Temperature, oxygen dissolved (DO) and pH 

of water were measured in overhead storage tank and fish tanks directly. Water discharged 

from each recirculation system was separately stored at 4
o
C and analysed for TN, TP, COD 

and TSS. 

Weekly, a 24-hour sampling was conducted in each system, taking samples at 9:00, 13:00, 

17:00, 21:00; 1:00 and 5:00 9:00 hours. The first sample of each 24-hour measurement was 

taken at 9.00. The 24-hour water samples were taken from effluent, the fish tanks and the 

inlet and outlet of each USB-DR. Water samples were analyzed for COD, TA, TKN, TAN, 

NO2-N, NO3-N, TSS, PO4-P and TP according to standard methods (APHA, 1999). During 

each 24-hour measurement no system water was discharged and no make-up water added. 
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Analysis 

Water analysis. Dissolved oxygen (mg l
-1

), pH and water temperature (
o
C) were measured 

daily at 9.00 a.m. in the reservoir, effluent of the fish tanks and in the inlet and outlet of each 

USB-DR (multi-parameter meter HI9828, Hanna Instruments, Rhode Islands, USA). 

Water samples from fish tanks, USB inlet, USB outlet and discharge water were analyzed 

(APHA, 1999) for COD (dichromate reflux), total alkalinity (TA; titration with sulfuric acid 

and methyl orange indicator), Kjeldahl N (TKN; Kjeldahl method), total ammonia nitrogen 

(TAN; colorimetric method), nitrite nitrogen (NO2-N; colorimetric method with diazotized 

sulfanilamide), nitrate nitrogen (NO3-N;cadmium reduction to nitrite and measurement of 

nitrite), TSS (dried to constant weight at 103 - 105 
o
C), orthophosphate (PO4-P;ammonium 

molybdate and potassium antimonyl tartrate method) and TP (photometric method).  

Fish, feed and sludge analysis. Whole fish was analyzed for DM, CP, CL, TP and ash. Whole 

fish samples for composition analysis ensured empty feed in stomach and intestine, 

individual fish was minced and homogenized for composition analysis. Dead fish during 

culture were collected, weighted and counted and analyzed body composition. The fifteen 

fish collected per system at the end of the culture period were filleted by hand by an 

employee of the processing Vinh Hoan company
2
, and fillet yield and color grade were 

determined according to Sang et al. (2012). The grade of fillet coloration was defined as 

white (score 1), pink (score 2) and yellow (score 3). Off-flavor of fillet was determined by an 

employee of a processing company, and was defined as good-flavor (score 1) and off-flavor 

(score 2). Feed was minced and homogenized for proximate composition (DM, TP, CP, CL, 

carbohydrate, acid insoluble ash (AIA) and ash). Sludge was homogenized to analyze DM, 

TP, chemical oxidation demand (COD), Kjeldahl N and ash. The DM was calculated by 

gravimetric analysis after drying at 105 
o
C for 24 hours (Foy and Rosell, 1991). The ash in 

whole fish, feed and sludge were analyzed according to APHA (1999).The TKN was 

analyzed by the Kjeldahl method (Foy and Rosell, 1991). The CP in feed was calculated by 

6.25 x TKN. The CL in whole fish and feed were analyzed by acid-hydrolysis Soxhlet 

method (AOAC, 2000). The carbohydrate in feed was determined as the difference in DM 

content minus CP, ash and fat. The AIA in feed was analyzed according to AOAC (2000). 

                                                 
2
VinhHoan Corporation, National Road 30, Ward 11, Cao Lanh City, Dong Thap Province, Vietnam. 
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The TP in whole fish, feed and sludge was analyzed spectrophotometrically following Kitson 

and Mellon (1944). COD in sludge was analyzed according to APHA (1999). 

5.2.5. Calculations and statistics 

 

Calculations 

 

Details of calculations of resource use, nutrient utilization efficiency, waste discharged, fish 

performance indicators, fish quality at harvest, COD in feed and fish, nutrient mass balance at 

fish and system level, and USB-DR performance indicators are given in Table 5.4. 

Table 5. 4: Units and formulas used to calculate resource use, nutrient utilization efficiency, 

waste discharged, fish performance indicators, fish quality at harvest, COD in 

feed and fish, nutrient mass balance at fish and system level, and USB-DR 

performance indicators. 

Parameter Unit Formulas 

Resource use 
  

Fingerlings use (FU) # kg
-1

fish 
 

FU = Ntot initial / (Wtot final - Wtot initial) 

Water use (WU) l kg
-1

fish
 

WU = Vtot inflow / (Wtot final - Wtot initial) 

 
l kg

-1
feed

 
WU = Vtot inflow / FC 

NaHCO3 use (CU) g kg
-1

fish
 

CU = Mtot NaHCO3 / (Wtot final - Wtot initial) 

 
l kg

-1
feed

 
CU = Mtot NaHCO3 / FC 

Energy use (EU) kWh kg
-1

fish
 

EU = Etot electricity / (Wtot final - Wtot initial) 

 kWh kg
-1

feed
 

EU = Etot electricity / FC 

Nutrient utilisation efficiency   

Nutrient in fish biomass (MR) 

 (B =initial, final or dead fish, 

R=DM, N, P or COD) 

g MR = 1000 * CR in fish / 100 * Wtot B 

Utilisation efficiency (XR) (R = 

DM, N, P or COD) 

%
 

XR = [(MRfinal –MRinitial ) /1000 ] / [CR 

in feed /100* FC ] * 100 

 

 

 

 

Table 5.4 (continued- 1): Units and formulas used to calculate.  
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Parameter 

 

Unit 

 

Formulas 

Waste discharged   

Waste removed (WR) 

 

g kg
-1

fish WR = [(CR effluent * Vtot effluent ) + (CR in 

dm sludge / 100* Wtot dm sludge ) – (CR 

influent* Vtot influent ) ] / (Wtot final - Wtot 

initial) 

Fish performance indicators   

Total initial fish biomass 

(Wtot initial) 

kg Wtot initial = Ntot initial * WI initial 

Total final fish biomass (Wtot final) kg Wtot final = Ntot final * WI final 

Initial density (ID) kg m
-3

 ID = Wtot initial / Vtot fish tank 

Final density (FD) kg m
-3

 FD = Wtot final / Vtot fish tank 

Total dead fish biomass 

(Wtot mortality) 

kg Wtot  mortality = cumulative weight of 

dead fish in kg 

Survival (SR) % SR = 100* Ntot final / Ntot initial 

Geometric mean body weight 

(Wg) 

g Wg = e 
[(ln(WI final * 1000) + ln( WI initial * 

1000))/2] 

Specific growth rate (SGR) % bwd
-1

 SGR = 100 * (lnWI final - lnWI 

initial) / D 

Feed conversion ratio (FCR) - FCR = FC / (Wtot final - Wtot initial) 

Metabolic feeding rate (MFR) g kg
-0.8

d
-1

 [1000 * FC / {(Ntot.initial + 

Ntot.final) / 2}] * {(Wg / 1000)-0.8} / 

D 

Metabolic growth rate (MGR) g kg
-0.8

d
-1

 (WIfinal - WIinitial) * {(Wg / 1000)-

0.8} / D 

Fish quality at harvest   

Fillet percentage (FY) % FY = 100 * (FW / WI final * 1000) 

Fillet colouration (FIC) # FIC = {(1*nwhite) + (2*npink) + 

(3*nyellow)} / n 

Off-flavor (OFL) # OFL = {(1*n good-flavor) + (2*noff-

flavor)} / n 

COD in feed and fish   

COD crude proteina (CODCP) g O2 g
-1

CP CODCP = 1.77* CP 

COD crude fata (CODCF) g O2 g
-1

CF CODCF = 2.88* CF 

COD Nitrogen free extract (NFE) 

(CODNFE)a 

g O2 g
-1

 NFE CODNFE = 1.16*NFE 

Nutrients mass balance    

At fish level   

Nutrient in feed (NRfeed) 

(R = N, P, DM or COD) 

g kg
-1

feed NRfeed = [(CR feed / 100) * FC * 

1000] / FC 

Nutrient retained in fish (NRfish 

retained) 

g kg
-1

feed NRfish retained = (MRfinal –

MRinitial) /FC 

 

Nutrient in dead fish (NRfish 

mortality) 

g kg
-1

feed NRfish mortality = (CR mortality 

/100) * Wtot mortality * 1000 / FC 
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Table 5.4 (continued- 2): Units and formulas used to calculate. 

Parameter Unit Formulas 

At system level 
  

Input (NRinput) g kg
-1

feed NRinput = NRno retained + NRinfluent 

Nutrient no retained in fish 

(NRno retained) 
g kg

-1
feed 

NRno retained = NRfeed – (NRfish 

retained + NR mortality) 

Nutrient in influent (NR influent) g kg
-1

feed 
NRinfluent = CR inflow * Vtot inflow / 

1000 / FC 

Output (NRoutput) g kg
-1

feed 
NRoutput = NReffluent + NRsludge + 

NRno measured 

Nutrient in effluent (NReffluent ) g kg
-1

feed 
NReffluent = CR outflow * Vtot 

outflow / 1000 / FC 

Nutrient in sludge (NRsludge) g kg
-1

feed 
NRsludge = (CR dm sludge / 100) * 

Mtot dm sludge / FC 

Final sludge in USB (NRfinal 

USB) 
g kg

-1
feed 

NRfinal USB = [CR wet sludge * Vtot 

wet sludge /1000] / FC 

Removal in USB (NRremoval USB) g kg
-1

 feed
 

NRremoval USB = FRUSB * [CR inlet USB – 

CRoutlet USB] / FC 

Nutrient no measured (NRno 

measured) 

g kg
-1

 feed
 

NR no measured = NRinput - NReffluent - 

NRsludge 

USB-DB performance   

Hourly nutrient removal (NRUSBhr 

removal) 

g kg feed hr
-1

 NRhr removal = FRUSB T * [CR inlet USB T – 

CRout USB T] / FCT 

NO3-N removal (NRUSB NO3-N 

removal) 

g kg
-1

 feed NRUSB NO3-N removal = FRUSB * [(CNO3-N 

inlet USB – CNO3-N outlet USB) + 5/3 (CNO2-N 

inlet USB – CNO2-N outlet USB)] / FC 

Solid removal (SR) g kg
-1

 feed SR = [Mtot dm sludgein RAS without USB 

– NRfinal USB] / FC  
aBased on Dalsgaard and Pedersen (2011). CNO2-N inlet USB: NO2-N concentration in inlet USB (g m-3), CNO2-N outlet USB: NO2-N 

concentration in outlet USB (g m-3), CNO3-N inlet USB: NO3-N concentration in inlet USB (g m-3), CNO3-N  outlet USB: NO3-N 

concentration in outlet USB (g m-3), CR effluent: nutrient (DM, N, P or COD) concentration in effluent water (g m-3), CR in dm 

sludge : nutrient (DM, N, P or COD) concentration in dry matter sludge (%),CR in feed : nutrient (DM, N, P or COD) 

concentration in feed (%), CR in fish: concentration of nutrient (DM, N, P or COD) in initial or final fish (%), CR influent : 

nutrient (DM, N, P or COD) concentration in influent water (g m-3), CR inlet USB: nutrient (N, P or COD) concentration inlet of 

USB (g m-3), CR inlet USB T : nutrient (N, P or COD) concentration inlet of USB at time of determination (g m-3), CRoutlet USB T: 

nutrient (N, P or COD) concentration outlet of USB at time of determination (g m-3), CR mortality: nutrient concentration in 

fish mortality (%),CRoutlet USB: nutrient (N, P or COD) concentration outlet of USB (g m-3), CR wet sludge : nutrient 

concentration in wet sludge (g m-3), COD: chemical oxygen demand, D: days of culture period (d), Etot electricity : total 

electricity consumption including light, air-blower, water pumping and other activities during full production cycle per 

experimental unit (kWh), FC: cumulative feed input (kg), FCT: cumulative feed at time of determination (kg), FRUSB: flow 

rate USB (l d-1), FRUSB T: flowrate of USB at time of determination (l d-1), FW: average weight of complete skinless fillet 

from one individual after removing fat and red muscle following standard process for export markets (g), Mtot NaHCO3: total 

amount of NaHCO3 applied (g), Mtot sludge: total weight of dry sludge (g), MRfinal: total amount of nutrient in final fish 

biomass (g), MRinitial : total amount of nutrient in initial fish biomass (g), n: number of fish in sample (#), ngood-flavor: number 

of fish in sample with no off-flavor (#), noff-flavor: number of fish with off-flavor (#),npink: number of fish with pink fillet (#), 

Ntot final : total number of fish harvested (#), Ntot initial : total number of fish stocked (#), nwhite: number of fish with white fillet 

(#), nyellow: number of fish with yellow fillet (#),Vtot effluent: total effluent water volume (l), Vtot inflow: total water volume 
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during culture period (l), Vtot influent: total influent water volume (l), Vtot wet sludge: total sludge volume of wet sludge (l), WI 

final: individual final body weight (kg), WI initial : individual initial body weight (kg),Wtot B : total initial or final fish biomass 

(kg), Wtot dm sludge: total amount of dry matter sludge (g), Wtot mortality: total mortality fish biomass (kg). 

Statistics 

 

Water quality parameters were averaged over the culture period. The daily sludge production 

and waste discharge were summed over the culture period, as were water use, chemicals 

applied and energy use. Fish growth parameters and mass balances were calculated by 

experimental unit. Results for RAS and RAS+USB were compared by one-way ANOVA. 

Significant difference is given based on Tukey test. Differences in water quality parameters, 

fish performance parameters, nutrient inputs or outputs, and resource utilization parameters 

(consumption or use of fingerling, water, electricity and sodium bicarbonate, nutrient retained 

in fish (DM, N, P, COD) and nutrient discharge (DM, N, P, COD)) between RAS and 

RAS+USB were analyzed by one-way ANOVA. Daily and weekly measurements were 

averaged over the culture period before ANOVA. The daily and weekly measurements were 

used to calculate the nutrient mass balances (Table 5.4). 

 

 

5.3. Results 

 

5.3.1. Water quality 

 

Water temperature, pH, TAN (Figure 5.3A) NO2-N (Figure 5.3B) and hydrogen sulphide 

concentrations in the fish tanks of RAS and RAS+USB were similar (P > 0.05), while 

dissolved oxygen, TN, NO3-N (Figure 5.3C), TA (Figure 5.3D) and COD were lower, and 

TSS (Figure 5.3E) and TP (Figure 5.3F) were higher in RAS+USB than in RAS (P < 0.05) 

(Table 5.5). The highest concentrations of NO3-N were observed during experimental week 2 

in RAS and week 4 in RAS+USB (Figure 5.3C). TA was higher in RAS+USB than in RAS 

already from the first days of the experiment (P < 0.05) (Figure 5.3D).  
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Table 5. 5: Weekly water quality in RAS and RAS + USB. Values are mean ± S.D.; n=2. 

    RAS RAS + USB 

p-value Parameter Unit Mean ± SD Mean ± SD 

Temperature  
o
C 28

a 
± 0.1 28.1

a 
± 0.1 0.558 

pH of water 

Influent mg l
-1

 8.3 ± 0.1 8.3 ± 0.1 

 Fish tank  mg l
-1

 7.2
a 

± 0.1 7.3
a 

± 0.1 0.259 

Inlet USB mg l
-1

 

   

7.6 ± 0.1 

 Outlet USB mg l
-1

 

   

7.9 ± 0.1 

 Dissolved oxygen 

Influent mg l
-1

 3.8 ± 0.2 3.8 ± 0.2 

 Fish tank mg l
-1

 4.7
a 

± 0.1 4.4
b 

± 0.1 0.047 

Inlet USB mg l
-1

 

   

1.5 ± 0.1 

 Outlet USB mg l
-1

 

   

0.6 ± 0.1 

 Total ammonia nitrogen 

Influent mg l
-1

 0.04 ± 0.06 0.04 ± 0.06 

 Fish tank mg l
-1

 0.33
b 

± 0.1 0.43
a 

± 0.1 0.221 

Inlet USB mg l
-1

 

   

1.74 ± 0.1 

 Outlet USB mg l
-1

 

   

0.21 ± 0.1 

 Nitrite nitrogen 

Influent mg l
-1

 0.04 ± 0.03 0.04 ± 0.03 

 Fish tank mg l
-1

 0.43
b 

± 0.2 0.47
a 

± 0.1 0.780 

Inlet USB mg l
-1

 

   

0.52 ± 0.1 

 Outlet USB mg l
-1

 

   

2.03 ± 0.1 

 Nitrate nitrogen 

Influent mg l
-1

 1.2 ± 1.24 1.2 ± 1.24 

 Fish tank mg l
-1

 82.9
a 

± 2 62.8
b 

± 4 0.001 

Inlet USB mg l
-1

 

   

60.1 ± 1 

 Outlet USB mg l
-1

 

   

39.3 ± 1.3 

 Total nitrogen  

Influent mg l
-1

 3.5 ± 0.7 3.5 ± 0.7 

 Fish tank mg l
-1

 84.9
a 

± 0.3 65.2
b 

± 0.3 0.001 

Inlet USB mg l
-1

 

   

90.1 ± 2.2 

 Outlet USB mg l
-1

 

   

68.3 ± 2.1 
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Table 5.5 (continued- 1): Weekly water quality in RAS and RAS + USB. Values are mean ± 

S.D.; n=2. 

    RAS RAS + USB 

p-value Parameter Unit Mean ± SD Mean ± SD 

Total alkalinity 

Influent mg l
-1

 258.6 ± 5.3 258.6 ± 5.3 

 In fish tank mg l
-1

 113.7
b 

± 3.0 147.9
a 

± 3.3 0.009 

Inlet USB mg l
-1

 

   

154.1 ± 6.8 

 Outlet USB mg l
-1

 

   

245.7 ± 6.1 

 Chemical oxygen demand 

Influent mg l
-1

 5.32 ± 0.9 5.32 ± 0.9 

 Fish tank mg l
-1

 41.1
a 

± 2.4 31.8
b 

± 1.9 0.049 

Inlet USB mg l
-1

 

   

309.8 ± 2.5 

 Outlet USB mg l
-1

 

   

233.8 ± 3.1 

 Total suspended solids 

Influent mg l
-1

 3.2 ± 0.5 3.2 ± 0.5 

 Fish tank mg l
-1

 49.9
b 

± 1.0 65.7
a 

± 2 0.010 

Inlet USB mg l
-1

 

   

162.7 ± 1 

 Outlet USB mg l
-1

 

   

40.2 ± 2.1 

 Total phosphorus 

Influent mg l
-1

 1.74 ± 

 

1.25 

   Fish tank mg l
-1

 18.2
b 

± 1.6 24.3
a 

± 0.6 0.038 

Inlet USB mg l
-1

 

   

33.2 ± 2.9 

 Outlet USB mg l
-1

 

   

29.4 ± 1.5 

 Hydrogen sulphide 

Influent mg l
-1

 0 

  

0 

   Fish tank mg l
-1

 0.16
b 

± 0.01 0.24
a 

± 0.1 0.301 

Inlet USB mg l
-1

 

   

0.32 ± 0.1 

 Outlet USB mg l
-1

 

   

0.51 ± 0.1 
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Figure 5. 3: Weekly water quality in RAS without denitrification reactor (RAS) and RAS with 

denitrification reactor (RAS+USB): Total ammonia nitrogen (A), nitrite nitrogen (B), 

nitrate nitrogen (C), total alkalinity (D), total phosphorous (F) and total suspended 

solids concentration (E). Values are mean ± S.D.; n=2. 
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5.3.2. Fish growth performance  

Survival, specific growth rate and final body weight of striped catfish in RAS and RAS+USB 

were similar (P > 0.05) (Table 5.6). Also, the percentage fillet yield, meat colour and off-

flavour were similar between RAS and RAS+USB (P > 0.05). 

Table 5. 6: Fish growth performance and fish quality in RAS and RAS+USB. Values are 

mean ± S.D.; n=2. 

Parameter   RAS RAS + USB p-value 

   Unit Mean ± S.D. Mean  ± S.D. 

Fish growth performance         

Culture period d 56.0 ± 0.0 56.0 ± 0.0 - 

Initial BW g 621.8
a 

± 13.0 623.5
a 

± 5.0 0.879 

Final BW g 921.0
a 

± 198 949.0
a 

± 173.0 0.059 

Initial number fish # 202.0
a 

± 4.2 201.0
a 

± 1.4 0.782 

Final number fish # 199.0
a 

± 3.5 196.0
a 

± 2.8 0.890 

Initial biomass kg 125.6
a 

± 1.0 125.3
a 

± 1.1 0.860 

Final biomass kg 183.2
a 

± 1.3 186.0
a 

± 3.0 0.120 

Initial density kgm
-3

 147.7
a 

± 0.1 147.4
a 

± 0.1 0.086 

Final density kgm
-3

 230.0
a 

± 4.2 230.6
a 

± 3.3 0.890 

Total feed kg 80.2 ± 0.0 80.2 ± 0.0 - 

Survival % 98.5
a 

± 0.3 97.2
a 

± 2.1 0.672 

Geometric mean body 

weight g 756.7
a 

± 12.0 769.2
a 

± 3.6 
0.295 

Specific growth rate % bwd
-1

 0.7
a 

± 0.0 0.8
a 

± 0.0 0.084 

Feed conversion rate kg kg
-1

 1.39
a 

± 0.1 1.34
a 

± 0.1 0.096 

Metabolic feeding rate g kg
-0.8

d
-1

 9.0
a 

± 0.1 8.9
a 

± 0.1 0.233 

Metabolic growth rate g kg
-0.8

d
-1

 6.7
a 

± 0.2 7.2
a 

± 0.1 0.063 

Fish quality 

Fillet percentage % 37.1
a 

± 0.3 37.2
a 

± 0.1 0.682 

Meat colouration - 1.0 ± 0.0 1.0 ± 0.0 - 

Off flavour  - 1.0 ± 0.0 1.0 ± 0.0 - 

RAS: recirculating aquaculture system without USB; RAS+USB: recirculating aquaculture with a denitrification reactor 

(USB). Mean with different superscript within each row are significantly different (P < 0.05).S.D.: standard deviation.  
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5.3.3. Nutrient mass balances  

 

5.3.3.1. Nitrogen mass balance 

On average, 49% of the N in the feed was retained in fish biomass (P > 0.05). The amount of 

N discharged with effluent in RAS+USB was 25% of the N discharge in RAS (P < 0.05) 

(Table 5.7). 

Table 5. 7: Nitrogen mass balance in RAS and RAS+USB. Values are mean ± S.D.; n=2. 

 
Unit RAS RAS + USB p-value 

Parameter 
 

Mean ± SD % Mean ± SD % 
 

At fish level 
 

    
     

-N in feed g kg
-1

feed 42.1 ± 0.0 100.0 42.1 ± 0.0 100.0 - 

-N in fish retained g kg
-1

feed 20.6
a 

± 1.0 48.9 20.7
a 

± 0.7 49.2 0.142 

-N in fish mortality g kg
-1

feed 0.2
a 

± 0.1 0.5 0.2
a 

± 0.3 0.5 0.979 

-N not retained in fish g kg
-1

feed 21.3
a 

± 1.0 50.6 21.2
a 

± 1.0 50.3 0.179 

At system level 
 

    
     

N input g kg
-1

feed 21.9   100.0 21.5 
  

100.0 - 

-N not retained in fish g kg
-1

feed 21.3
a 

± 1.0 97.5 21.2
a 

± 1.0 98.6 0.179 

-N in influent g kg
-1

feed 0.6
a 

± 0.0 2.5 0.3
b 

± 0.01 1.4 0.001 

N output 
 

    
     

-N in daily sludge removal
* 

g kg
-1

feed 4.9 ± 0.1 22.4 No discharge at al 

-N in effluent g kg
-1

feed 10.7
a 

± 0.8 48.9 2.6
b 

± 0.0 12.1 0.003 

-N in final sludge in USB g kg
-1

feed    0.0 2.9 ± 0.2 13.5 - 

-N removal in USB g kg
-1

feed    0.0 12.3 ± 0.1 56.3 - 

-N not measured g kg
-1

feed 6.3
a 

± 1.0 28.8 3.7
a 

± 0.6 18.1 0.594 
* Throughout the experiment sludge that settled in the swirl separator was discharged with an interval of four hours. RAS: 

recirculating aquaculture system without USB; RAS+USB: recirculating aquaculture with an USB-denitrification reactor. 

Mean with different superscript within each row are significantly different (P < 0.05).S.D.: standard deviation.  

 

 

5.3.3.2. Phosphorus mass balance 

 

On average, 21% of P fed was retained in fish biomass (P > 0.05). At the end of the 

experiment, 54% of the dietary P in the RAS +USB treatment not retained in fish biomass, 

accumulated in the USB-DR (assuming that all sludge P is originating from dietary P). In 

RAS, 51% of the dietary P not retained in fish biomass was removed with the sludge (Table 

5.8). 
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Table 5. 8: Phosphorus mass balance in RAS and RAS+USB. Values are mean ± S.D.; n=2. 

  Unit RAS  RAS + USB p-value 

Parameter    Mean ± SD % Mean ± SD % 
 

At fish level 
 

    
     

-P in feed g kg
-1

feed 13.2 ± 0.0 100.0 13.2 ± 0.0 100.0 
 

-P in fish retained g kg
-1

feed   2.6
a 

± 0.1   19.7   2.9
a 

± 0.2   22.0 0.183 

-P in fish mortality g kg
-1

feed   0.3
a 

± 0.1     2.3   0.3
a 

± 0.1     2.3 0.982 

-P not retained in fish g kg
-1

feed 10.3
a 

± 0.1   78.0 10.0
a 

± 0.2   75.8 0.233 

At system level 
 

     
  

 
 

P input g kg
-1

feed 10.7   100.0 10.2 
  

100.0 
 

-P not retained in fish g kg
-1

feed 10.3
a 

± 0.1   96.3 10.0
a 

± 0.2   98.0 0.233 

-P in influent g kg
-1

feed   0.4
a 

± 0.0     3.7   0.2
b 

± 0.0     2.0 0.001 

P output 
 

     
  

 
 

-P in daily sludge 

removal
* 

g kg
-1

feed   5.3 ± 1.0   49.6 No discharge at al 

-P in effluent g kg
-1

feed   2.5
a 

± 0.2   30.8 1.2
b 

± 0.1   11.8 0.001 

-P in final sludge in USB g kg
-1

feed        0.0 5.4 ± 0.3   52.9 
 

-P not measured g kg
-1

feed   2.9
a 

± 0.9   27.1 3.6
a 

± 0.2   35.3 0.209 

* Throughout the experiment sludge that settled in the swirl separator was discharged with an interval of four hours. RAS: 

recirculating aquaculture system without USB; RAS+USB: recirculating aquaculture with an USB-denitrification reactor. 

Mean with different superscript within each row are significantly different (P < 0.05). S.D.: standard deviation.  

 

 

5.3.3.3. Dry matter mass balance 

 

On average, 36% of the DM fed was retained in fish biomass (P > 0.05). About 2.2 times 

more DM was discharged with the effluent in RAS than in RAS+USB (P < 0.05) (Table 5.9). 
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Table 5. 9: Dry matter mass balance in RAS and RAS + USB. Values are mean ± S.D.; n=2. 

  Unit RAS RAS + USB 
p-

value 

Parameter    Mean ± SD % Mean ± SD %   

At fish level 
 

    
     

-DM in feed g kgfeed
-1

 894.0 ±   0.0 100.0 894.0 ±   0.0 100.0 - 

-DM in fish retained g kgfeed
-1

 307.0
a 

± 11.4   34.3 331.7
a 

±   7.7   37.1 0.124 

-DM in fish mortality g kgfeed
-1

     2.7
a 

±   0.1     0.3     2.8
a 

±   3.9     0.3 0.984 

-DM not retained in fish g kgfeed
-1

 584.3
a 

± 11.4   65.4 559.5
a 

± 11.7   62.6 0.163 

At system level 
 

    
     

DM input g kgfeed
-1

 584.9   100.0 559.8 
  

100.0 
 

-DM not retained in fish g kgfeed
-1

 584.3
a 

± 11.4     9.9 559.5
a 

± 11.7   99.9 0.163 

-DM in influent g kgfeed
-1

     0.6
a 

±   0.0     0.1     0.3
b 

±   0.1     0.1 0.001 

DM output 
 

    
     

-DM in daily sludge 

removal
* 

g kgfeed
-1

 201.0 ±   7.2   34.4 No discharge at al 

-DM in effluent g kgfeed
-1

     7.1
a 

±   0.5     1.2     3.2
b 

±   0.1    0.6 0.006 

-DM in final sludge in 

USB 
g kgfeed

-1
        0.0   56.8 ±   5.4  10.1 - 

-DM removal in USB g kgfeed
-1

       0.0 144.5 ±   5.4 25.8 - 

-DM not measured g kgfeed
-1

 376.8
a 

± 11.7  64.4 355.3
a 

± 11.6 63.5 0.202 

* Throughout the experiment sludge that settled in the swirl separator was discharged with an interval of four hours. RAS: 

recirculating aquaculture system without USB; RAS+USB: recirculating aquaculture with an USB-denitrification reactor. 

Mean with different superscript within each row are significantly different (P < 0.05). S.D.: standard deviation.  

 

 

 

5.3.3.4. COD mass balance 

 

On average, 49% of the COD supplied with the feed was retained in harvested fish biomass 

(P > 0.05). In RAS, 27.3 and 3.7% of the COD not retained in fish biomass was discharged 

with sludge and effluent, respectively. The COD discharged with the RAS effluent was 3.6 

times higher than the discharge from RAS+USB (P > 0.05). At the end of the experiment, the 

sludge remaining in the USB-DR was 14.1% of the COD not retained in fish biomass (Table 

5.10). Only 1% of the COD waste input was discharged with the effluent in the RAS+USB. 
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Table 5. 10: COD mass balance in RAS and RAS+USB. Values are mean ±S.D.; n=2. 

  

Parameter  

Unit RAS RAS + USB 
p-

value 

  Mean ± SD % Mean ± SD %   

At fish level 
 

    
     

-COD in feed g kg
-1

feed 1202 ±   0.0 100 1202 ± 0.0 100 
 

-COD in fish retained g kg
-1

feed 574.0
a 

±   3.8   47.8 594.9
a 

± 11.7 49.5 0.140 

-COD in fish mortality g kg
-1

feed   23.5
a 

± 25.2     2.0 26.1
a 

± 8.7   2.2 0.456 

-COD not retained in 

fish 
g kg

-1
feed 604.5

a 
± 29.0   50.2 581

a 
± 2.9 48.3 0.888 

At system level 
 

    
     

COD waste input g kg
-1

feed 605.5   100.0 581.4
 

  
100 

 
-COD not retained in 

fish 
g kg

-1
feed 604.5

a 
± 29   99.8 581

a 
± 4.3 99.9 0.888 

-COD in influent g kg
-1

feed     1.0
a 

± 0.1     0.2 0.4
b 

± 0.0 0.1 0.001 

COD output 
 

    
     

-COD in daily sludge 

removal
* 

g kg
-1

feed 165.1 ± 19   27.3 No discharge at al 

-COD in effluent g kg
-1

feed   22.4
a 

±   0.4     3.7
 

  6.3
b 

± 0.02   1.1 0.003 

-COD in final sludge in 

USB 
g kg

-1
feed     81.8 ± 5.0 14.1 

 

-COD removal in USB g kg
-1

feed     34.4 ± 1.1   5.9 
 

-COD not measured g kg
-1

feed 418
a 

± 29.5   69.0 458.9
b 

± 3.7 78.9 0.011 

* Throughout the experiment sludge that settled in the swirl separator was discharged with an interval of four hours. RAS: 

recirculating aquaculture system without USB; RAS+USB: recirculating aquaculture with an USB-denitrification reactor. 

Mean with different superscript within each row are significantly different (P < 0.05). S.D.: standard deviation. 

 

5.3.4. Sustainability indicators  

 

Less water, energy and NaHCO3 was used per kg fish produced or per kg feed consumed in 

RAS+USB than in RAS (P < 0.05). Fingerling use was similar between RAS and RAS+USB 

(P > 0.05). No antibiotics were applied during the experimental period (Table 5.11). The 

percentages of DM, N, P and COD retained in fish biomass (including dead fish) were similar 

between RAS and RAS+USB (P > 0.05). However, significantly smaller quantities of DM, 
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N, P and COD were discharged per kg fish produced and per kg feed consumed in RAS+USB 

than in RAS (P < 0.05) (Table 5.11). 

Table 5. 11: The key sustainability indicators of striped catfish culture in RAS and RAS + 

USB. Values are mean; n=2. 

Parameter  Unit RAS RAS + USB p-value 

    Mean ± SD Mean ± SD   

Resource utilisation efficiency 

 

      

 

  

   

    
Fingerling use 

#  kg
-1

fish 3.7
a 

± 0.1 3.3
a 

± 0.2 0.090 

#  kg
-1

feed 2.5
a 

± 0.1 2.5
a 

± 0.2 0.782 

Water use 
l kg

-1
fish 175.4

a 
± 1.8 77.1

b 
± 3.9 0.003 

l kg
-1

feed 126.2
a 

± 1.5 37.7
b 

± 1.9 0.001 

NaHCO3 use 
g kg

-1
fish 175.6

a 
± 6.5 86.3

b 
± 5.1 0.003 

g kg
-1

feed 119.2
a 

± 1.6 64.6
b 

± 1.3 0.001 

Antibiotic use 

 

No    No 
   

Nutrient utilisation efficiency 

 

   
    

DM retained in fish % 34.6
a 

± 1.3 37.4
a 

± 0.9 0.124 

N retained in fish % 49.4
a 

± 2.4 49.7
a 

± 1.5 0.142 

P retained in fish % 20.0
a 

± 0.7 24.3
a 

± 1.4 0.183 

COD retained in fish % 49.8
a 

± 0.3 50.0
a 

± 2.3 0.230 

Waste discharge 

 

   
    

DM discharge 
g kg

-1
fish 288.4

a 
± 59.1 80.0

b 
± 0.7 0.001 

g kg
-1

feed 207.5
a 

± 87.0 59.7
b 

± 0.2 0.001 

N discharge 
g kg

-1
fish 20.9

a 
± 0.6 7.0

b 
± 0.7 0.001 

g kg
-1

feed 15.0
a 

± 0.5 5.2
b 

± 0.3 0.002 

P discharge 
g kg

-1
fish 10.3

a 
± 0.4 8.6

b 
± 0.1 0.023 

g kg
-1

feed 7.4
a 

± 0.3 6.4
a 

± 0.3 0.072 

COD discharge 
g kg

-1
fish 259.2

a 
± 24.1 101.2

b 
± 6.3 0.012 

g kg
-1

feed 186.5
a 

± 20.8 75.5
b 

± 0.7 0.021 

RAS: recirculating aquaculture system without USB; RAS+USB: recirculating aquaculture with a denitrification reactor 

(USB). Mean with different superscript within each row are significantly different (P < 0.05). S.D.: standard deviation.  
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5.4. Discussion  

 

5.4.1. Water quality 

 

The water temperature of 28
o
C was in the optimal range for denitrification (Timmons and 

Ebeling, 2010) (Park, 2000) and is also favourable for feeding and appetite of striped catfish 

(Phuc et al., 2015). From the start of the experiment no water exchange was applied until the 

maximum allowable nitrate concentration of 100 mg nitrate-N l
-1

 was reached. This 

concentration was reached two weeks earlier in RAS (week 2) when compared with 

RAS+USB. Nitrate-N concentration in the fish tanks of RAS and RAS+USB was maintained 

between 60 and 100 mg l
-1 

(Figure 5.3c) from the second week of the experiment onwards 

and is significantly lower than the 140 mg/l advised for African catfish (Bovendeur et al., 

1987; Schram et al., 2014). However, from this experiment it cannot be concluded that the 

nitrate-N concentration did not affect growth performance in both treatments. During this 

experiment, the total alkalinity was maintained above 100 mg l
-1

 by sodium bicarbonate 

addition. From the second week of the experiment onwards, the total alkalinity in RAS+USB 

was overall 30 mg l
-1 

higher than in RAS (Figure 5.3D). In RAS+USB on average, 0.65 

equivalents of alkalinity (54.6 g NaHCO3) was added per kg feed, which was 0.78 alkalinity 

equivalents less (64.6 gNaHCO3) when compared with RAS. The lower alkalinity supply in 

RAS+USB can be explained by the 12.3 g nitrate-N removal per kg feed due to 

denitrification (Table 5.7) when assuming denitrifiers assimilate ammonium and 0.91 

alkalinity equivalents is produced per mole Nitrate-N removed (Henze, 1991).  

 

5.4.2. Fish performance and quality  

 

As expected, to maintain the Nitrate-N concentration below 100 mgl
-1

 water renewal in 

RAS+USB was much lower (77 versus 175 l kg
-1

 feed) than in RAS (Table 5.11, P > 0.05) 

with no apparent effect on growth, survival, FCR and product quality (Table 5.6, P > 0.06). 

Similar effects in RAS with or without a denitrification reactor were reported for Nile tilapia 

(Eding et al., 2009). Nitrifying biofilters in RAS are potential production sites of geosmin and 

2-methylisoborneol (MIB), substances that cause off-flavour (Guttman and van Rijn, 2008). 

Occurrence of “earthy’’ or ‘’musty’’ off-flavour due to geosmin and MIB, respectively, is 



Chapter 5 

 

138 

 

commonly reported in RAS with nitrifying biofilters (Bai et al., 2013; Burr et al., 2012; 

Guttman and van Rijn, 2008, 2009; Schrader et al., 2010; Tucker, 2000; Tucker and van der 

Ploeg, 1999). It was therefore unexpected that although the biofilters in all systems had been 

operating for more than 210 days before the start of the experiment, no off flavour was 

detected in harvested fish. Nevertheless, in a pilot outdoor commercial RAS relying on a 

combination of septic tank and nitrification for water purification and targeting a production 

of 100 kg m
-2 

(data not presented), off-flavour developed. If this happens, integration of 

denitrification in RAS might reduce geosmin and MIB concentrations (Guttman and van 

Rijn, 2009). Because no off-flavour developed during our experiment, the effect of 

denitrification on off-flavour could not be verified, and therefore, follow-up experiments are 

recommended. 

 

H2S will be produced under low redox conditions and nitrate availability (10 – 50 mg l
-1

) in 

an USB-DR (Timmons and Ebeling, 2010). Linh (2011) reported that a H2S concentration 

above 0.96 mg l
-1

 concurs with a higher percentage of striped catfish getting slightly yellow 

fillets. This was not the case in our study with 100% white fillet (Table 5.6), where in all 

systems the H2S concentration in fish tank remained below 0.24 mg l
-1

 (Table 5.5).  

 

5.4.3. Nutrient mass balance and USB-DR efficiency  

 

The retention into fish biomass of N, P, DM and COD supplied with feed was 49, 22 – 24, 34 

– 37 and 48 – 50%, respectively (Tables 5.7 through 5.10), which is higher than for nutrient 

retention efficiencies realized in the same fish size (600-900g individual
-1

) in traditional 

ponds (Nhut et al, submitted-a). Reported nutrient retention efficiencies for channel catfish in 

ponds (Gross et al., 1998; Gross et al., 2000), tilapia in RAS, excepting for P (Eding et al., 

2009), trout in race ways (d’Orbcastel et al., 2009b) and shrimp in ponds (Thakur and Lin, 

2003) were also lower than the efficiencies realized in this experiment. Higher efficiencies of 

nutrient retention can be achieved when fish raises from 10 to 900 g per individual. 

Of the nitrogen supplied with the feed, 7 % accumulated and 29% was removed in the USB-

DR. Only 12% (6.9% final sludge in 6.1% USB-DR + 6.1% effluent – 1% influent) of the 

nitrogen fed was discharged from RAS + USB with the effluent, compared to 36% from RAS 

(sludge 12% + effluent 25% - 1% influent) (Table 5.7). The nutrients removed from RAS 

with the sludge, or from RAS+USB with the sludge accumulating in the denitrification 
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reactor can be collected and reused through composting (Phung et al., 2009). In consequence, 

in RAS a higher fraction of the nitrogen supplied with the feed can be re-used as compost 

than in RAS+USB. However, the amount of nitrogen discharged with the effluent in RAS is 

more than two times higher than the nitrogen potentially recuperated as compost. 

 

In RAS, 15% of the nitrogen supplied with feed, remained unaccounted. In RAS+USB this 

was 9% (Table 5.7). The assumption is that this is mainly due to volatilisation of N2-gas 

through passive denitrification occurring in the swirl separator and in biofilters, sumps and 

pipes of each system. (van Rijn et al., 2006) contributed 9 – 21% nitrogen loss to passive 

denitrification in RAS, which concurs with our results. Nitrogen loss due to passive 

denitrification in our RAS, from which sludge was removed every 4 hours, was low. 

Removing sludge less frequently, resulted in unaccounted nitrogen removal percentages of 

23.3% for Indian major carp (Adhikari et al., 2014), 65% for African catfish (Bovendeur et 

al., 1987), 57% for channel catfish (Boyd, 1985) and 36% for shrimp (Thakur and Lin, 2003). 

The present experiment lasted 56 days, during which time in the trickling tower was not 

cleaned. This was also the case in a previous experiment, which lasted 207 days, concurring 

with 25% unaccounted nitrogen loss (Nhut et al., submitted-b). 

 

The USB-DR performed trapping P in sludge (5.4 g P kg
-1

 feed). Incorporation of an USB-

DR had no effect on the percentage of dietary P retained in fish biomass, which was on 

average 23 % in RAS and RAS+USB (Table 5.8). In RAS, all P removed with sludge 

collected in the swirl separator (40% of dietary P, Table 5.8) can be re-used through 

composting (Nhut et al., submitted-c). The same most likely holds for the similar amount of 

sludge accumulating in the USB-DR (41% of dietary P, Table 5.8), making RAS and 

RAS+USB potentially equally efficient for re-using P not retained in fish biomass for crop 

production (Da et al., 2015; Phung et al., 2009). Twenty two percent of dietary P in RAS and 

27% in RAS+USB (Table 5.8) remained unaccounted. In part, this might be due to sludge 

accumulation in the biofilters and pipes (van Rijn et al., 2006), which was not quantified in 

this study. This should be checked in a follow-up experiment, and if containing a substantial 

amount of nutrients, could also be composted or transferred to the denitrification reactor. The 

principal advantage of incorporating a denitrification reactor in RAS is that 52 % less P is 

discharged with effluent (Table 5.8). This reduction concurs with a 70% reduction in water 
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use (Table 5.11) and a 70% higher P concentration in RAS+USB compared to RAS (Figure 

5.3F).  

 

About 36% of feed DM was retained in fish biomass in RAS and RAS+USB (P > 0.05) 

(Table 5.9). In RAS, 22 % of feed DM was discharged as sludge and 1% was discharged with 

the effluent. In RAS+USB, no sludge was discharged, 0.6% of feed DM was discharged with 

effluent, and 7% accumulated in the denitrification reactor. The rest of DM fed, 42% in RAS 

and 56% in RAS+USB were not explained by measurements but was due to respiration by 

biological degradation and accumulation in the system volume. The apparent DM 

digestibility of the striped catfish feed was 72% (data not reported), hence the 22.5% of 

dietary DM collected in the swirl separator in RAS (Table 5.9) represented 80% of the 

undigested feed. The observed DM loss due to respiration and denitrification in RAS and 

RAS+USB of 41% (P > 0.05, Table 5.9) concurs with (Heinsbroek and Kamstra, 1990) for 

European eel in RAS, but is higher than reported by (Bovendeur et al., 1987) for African 

catfish in RAS. The mass balance of COD reveals a similar pattern, with about 50% of the 

COD in the feed was not retained in fish biomass in RAS and RAS+USB (P > 0.05, Table 

5.10). In RAS+USB, only 0.5% of the COD in the feed was discharged with effluent, while 

37 – 43% was unaccounted, mainly due to accumulation in components of system, respiration 

and breakdown of organic matter in the systems (Heinsbroek and Kamstra, 1990).  

  

The denitrification reactor in RAS+USB removed 12 g N per kg feed applied, representing 

29% of the feed input and 58% of the N not retained in fish biomass (Table 5.7) which is 

excellent. Meriac (2014), using a conceptually similar RAS+USB system for trout as in this 

study, removed 48% of the dietary N not retained in fish biomass. The N removal  efficiency 

of a USB-DR can be highly variable, as it is influenced by numerous factors, including 

sludge retention time, quantity of raw sludge material, quality and quantity of carbon 

resource, mixing frequency in the reactor, salinity and temperature (van Rijn et al., 2006). 

The daily production of sludge per kg feed was about 165 COD g (Table 5.10) and 21.5 g N 

was not retained in fish biomass (Table 5.7), resulting in a COD/N ratio of 7.6 in the USB-

DR input. This is considered input ratio for a denitrification reactor is slightly higher than 

optimal value for complete nitrate reduction to elemental nitrogen (van Rijn et al., 2006). In 

the USB, 34.4 g COD (Table 5.10) and 12.2 g N (Table 5.7) were removed to ending up in 



Effect of an upflow-sludge-blanket denitrification reactor on environmental sustainability of striped catfish production in 

recirculating aquaculture systems 

 

141 

 

yield of bacteria biomass production, corresponding to a COD/N ratio of 2.8 of bioavailable 

waste. This is close to the theoretical COD/N ratio of 2.86 reported by (Henze et al., 1997).  

 

5.4.4. Sustainability indicators 

 

Integrating an USB-DR in RAS resulted in a 70% reduction in water use and a 54% smaller 

input of NaHCO3 (Table 5.11). The latter was expected as per mole N denitrification 

produces 1 equivalent alkalinity while nitrification consumes 1.98 equivalents alkalinity 

(Henze et al., 1997). At the current cost price of NaHCO3 (0.53 $ kg
-1

 NaHCO3) this results 

in a saving of 56 $ US per MT striped catfish produced. 

 

The water use in RAS+USB was 77 l kg
-1 

fish produced, which is very low. Water use in 

ponds in the Mekong delta is 53 – 158 times higher (Anh et al., 2010; Bosma et al., 2009; 

Phan et al., 2009).  The ASC standard allows a 132 times higher water use for striped catfish 

production in ponds (ASC, 2012) than the realized water use in RAS+USB. An important 

advantage of a low water exchange in RAS and RAS+USB is that it reduces risks for 

contamination (e.g. disease, toxins) and thus improves biosecurity (Nhut et al., submitted-b).    

 

Electricity use for pumping (for water exchange, water recirculating and sludge movement), 

aeration, stirring of sludge blanket and light was 18% higher in RAS+USB than in RAS. This 

is slightly less than the increased electricity consumption due to additions of an USB-DR to a 

tilapia RAS in the Netherlands, where the water was also heated (Eding et al., 2009). The 

latter was not necessary in the Mekong delta where the water temperature is close to optimal 

temperature for striped catfish culture. It should be noted that the electricity consumption in 

this experiment was higher than required, as the biofilters were larger than necessary, 

operating at an internal flow rate of 41 m
3
 per kg feed applied, where a flow rate of 8 – 10 m

3
 

kg
-1

feed is sufficient for raising striped catfish in RAS (Nhut et al., submitted-b).  

 

In both RAS and RAS+USB no chemicals and drugs were applied. The average survival 

during the experiment was 98% (Table 5.6, P > 0.05). High mortalities are reported in pond 

culture, due to 15 types of diseases/syndromes (Phan et al., 2009). Twelve antibiotics and 22 

chemicals are commonly used to reduce mortality due to disease (Bosma et al., 2009; Rico et 
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al., 2013; Rico and Van den Brink, 2014). Producing in RAS and RAS+USB can be part of a 

strategy to reduce losses due to disease and chemical and antibiotic use in striped catfish 

culture. Three times less N and 1.6 times less P were discharged per kg fish produced from 

RAS+USB than from traditional ponds (De Silva et al., 2010). Considering N and P 

discharge, the RAS+USB performed better than trout in flow through tanks, and channel 

catfish and shrimp in ponds (d’Orbcastel et al., 2009b; Eding et al., 2009; Gross et al., 1998; 

Gross et al., 2000; Thakur and Lin, 2003), and was comparable to the discharge from a tilapia 

RAS integrated with USB (Eding et al., 2009).  

 

5.5. Conclusions and commendations  

 

Striped catfish production and fish quality indicators in RAS+USB and RAS were 

comparable. With a water consumption of 38 l per kg feed, the NO3-N concentration was 

maintained below 100 mgl
-1

 in RAS+USB. The low water exchange facilitates maintaining 

biosecurity and contributes to minimizing pollution from aquaculture. Because the small 

volume of waste flows, wastes are easy to collect and treat before discharge. Future research 

should focus on RAS+USB upscaling to commercial size. 
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The aim of the thesis was to document improvements in sustainability of striped catfish 

production through the application of environmentally friendly production methods and waste 

treatment techniques.  

6.1. Sustainability indicators in striped catfish culture systems 

To establish a baseline on sustainability of striped catfish production in 3-5 m deep ponds in 

the Mekong delta, water and nutrient flows in four ± 1 ha-production ponds were monitored 

during a full production cycle (Chapter 2). The obtained information allowed to calculate 20 

sustainability indicators either expressed per kg striped catfish produced or per kg feed 

consumed. These sustainability indicators, expressed per kg fish produced are summarized in 

Table 6.1. The same sustainability indicators were calculated for production in flow-through 

tanks (FT), RAS (Chapter 3), RAS with a denitrification reactor (Chapter 5) and an outdoor 

RAS-pond trial
3
. In addition, the effect of composting and biogas production from solid 

waste collected in ponds and RAS on the overall nutrient use efficiency was explored 

(Chapter 4).  

 

Table 6. 1: Sustainability indicators in striped catfish culture systems. 

Indicator Unit Pond  FT  RAS 
RAS 

+USB 

RAS-

pond 

Resource utilization 

efficiency  
    

 
  

Mortality % 36.3
 

 4.2  6.2 2.8 18.2 

Fingerlings # kg
-1

fish
 

1.9  1.6
 

 1.8
 

3.3 1.5 

Feed kg feed kg
-1

fish
 

1.6  1.3  1.3
 

1.3 1.4 

Water use l kg
-1

fish
 

4,900  14,750
 

 146.3
 

77.1 419 

Energy use kWh kg
-1

fish
 

0.1
 

 6.7
 

 13.6
 

9.6 0.8 

Chemical 
 

  
 

 
  

 

Lime (CaCO3) g kg
-1

fish
 

28.2  0  0 0 11.3 

     Salt (NaCl) g kg
-1

fish 15.8  12.0  15.2 14.7 16.4 

     NaHCO3 g kg
-1

fish 0  0  43.6 86.3 0 

     CuSO4 g kg
-1

fish 0.1  0  0 0 0 

Iodine g kg
-1

fish 0.4  0  0 0 0 

Antibiotic g kg
-1

fish 1.5  0  0 0 0.02 

                                                 
3
 The trial was done in a 200 m

2
 1.8 m deep tank, in which a moving bed biofilter and septic tank was installed. 

The recirculation flow was created through aeration and airlifts. The trial was successful, reaching production 

targets. Because there were no replicates, the results were not presented in peer reviewed manuscripts.  
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Table 6.1 (continued- 1): Sustainability indicators in striped catfish culture systems. 

Indicator Unit Pond  FT  RAS 
RAS 

+USB 

RAS-

pond 

Labour hr kgfish
-1 

0.1
 

 1.4  1.6 1.5 0.1 

Fillet percentage % 35.4  37.8  37.2 37.2 37.8 

Color grade 1-3 1.3  1.0  1.0 1.0 1.0 

Off-flavor - No  No  No No No 

Nutrient utilization efficiency 
 

    
 

  

Nitrogen % feed input 38.3
 

 49.3  48.1 49.7 49.4 

Phosphorus % feed input 14.3
 

 20.0  20.7 24.3 23.2 

Dry matter % feed input 28.5
 

 31.8  31.4 37.4 35.5 

COD % feed input -  47.0  48.5 50.0 54.1 

Waste discharge 
 

    
 

  

Nitrogen g kg
-1

fish
 

18.5
 

 29.0  13.7 7.0 10.6 

Phosphorus g kg
-1

fish
 

16.7
 

 14.5  11.9 8.6 9.7 

Dry matter g kg
-1

fish
 

359.6
 

 826.2  348.7 80 86.4 

COD g kg
-1

fish -  826.1  199.5 101.2 126.2 

Compost 
 

    
 

  

Available nitrogen 
% compost 

DM 
0.8  -  1.4 - - 

Available phosphorus 
% compost 

DM 
0.2  -  1.1 - - 

Ash 
% compost 

DM 
68.4  -  53.5 - - 

Methane         

Methane 
% CH4 in 

biogas 
46.8  -  52.7 - - 

 
L CH4 g

-1
 VS 

added 
0.2  -  0.3 - - 

FT: flow-through; RAS: recirculating aquaculture system; RAS+USB: RAS integrated with a denitrification reactor; DM: 

dry matter; VS added: volatile solids in initial RAS-sludge or pond-sludge (Chapter 5). The value in pond is mean of four 

ponds (Chapter 2). The value in RAS and FT is mean of 2 systems (Chapter 3). The value in RAS+USB is mean of two 

systems (Chapter 5). The fillet color grade varied from 1 to 3, 1 indicating the highest quality (Chapter 2 and 3). RAS-pond: 

outdoor pilot RAS with floating moving bed biofilter and septic tank installed in 1.8 deep pond (data from one trial without 

replication). 

Based on the sustainability indicators, RAS+USB had the smallest environmental impact, 

using less water and discharging less wastes than the other striped catfish production systems 

studied. Energy consumption in RAS was high, but was considerably reduced moving to a 
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larger scale in the pilot RAS-pond trial, in which all water movement was created through 

airlifts. 

The highest water use and waste discharge occurred in FT. These systems are no longer 

allowed under Vietnamese law, mainly due to environmental concerns (MARD, 2014c). 

Although ponds performed better than FT, survival, water use, chemicals use, antibiotics use, 

nutrients utilisation efficiency and wastes discharge in ponds could be further improved by 

applying RAS technology. Upscaling of RAS technology for striped catfish remains a 

challenge. The RAS-pond pilot system performed equally well on all sustainability indicators 

in RAS, except for water use and mortality. Considering the full production cycle, 419 l of 

water was consumed per kg fish produced. Mortality in the RAS-pond was higher than in FT, 

RAS and RAS+USB, because no pathogen free striped catfish fingerlings were available for 

stocking and the transport from the hatchery to the RAS-pond by accident happened to be 

very long, which most likely reduced the condition of the fingerlings at the moment of 

stocking. The mortality was high during the first month after stocking, but dropped to similar 

levels as in RAS and RAS+USB during the remainder of the culture period after treatment.  

 

Water use and its consequences 

For pond culture of striped catfish, large volumes of pond water are daily replaced through 

tidal exchange or active pumping. On most farms, influents and effluents are exchanged 

without treatment. Therefore, pond production and rearing conditions are influenced by the 

quality of the intake water, while the discharge of pond effluents affect the water quality in 

the river. More than 90% of the daily water exchange in ponds is used to maintain water 

quality, the remainder being used to compensate water losses due to evaporation and seepage. 

In our study, upstream ponds used much more water than downstream ponds, in spite of the 

fact that farms in the latter location depend more on pumping than on tidal/gravitational 

exchange.  

 

The water quality in the Mekong river changes during the year. In addition, there is always a 

risk that the river carries high loads of nutrients, residual chemicals (Toan et al., 2013) and 

antibiotics (Rico et al., 2013; Rico and Van den Brink, 2014) originating from neighboring 

aquaculture or agriculture operations. Particularly, during the rainy season, runoff from large 

expanses of agricultural land in the upstream catchment area, negatively affects water quality. 
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The Mekong river carries heavy metals (Minh et al., 1997), persistent organic pollutants 

(Minh et al., 2007), pesticides and agriculture wastes (Toan et al., 2013). Intrusion of salt 

water during the dry season occurs today deeper inland than before, in part due to sea level 

rise (Anh et al., 2014; Nguyen and Savenije, 2006) and could reduce striped catfish 

production in the future (Renaud and Kuenzer, 2012). The Vietnamese government, 

recognizing lack of fresh water as a treat to the striped catfish industry, therefore prioritized 

the development of a semi-closed farming system (MARD, 2015). Production in RAS is 

considered a good option to reduce water use. Reliance on high water exchange increases the 

risk for horizontal disease transmission (Anh et al., 2010; Madsena et al., 2015; Phan et al., 

2009). Although treatment of influent water to reduce, for instance trematode, infection in the 

striped catfish fingerling ponds has been proposed (Madsena et al., 2015), the large volumes 

exchanged in grow-out ponds make treatment of intake water costly and labor intensive. 

Treatment of influent and effluent water to and from striped catfish grow-out ponds is often 

propagated (Anh et al., 2010; ASC, 2012; BMP, 2009; Phan et al., 2009), but it is rarely 

applied. Applying RAS, the water use per kg fish produced was reduced 38 times compared 

to ponds. By exchanging smaller water volumes it becomes possible to remove or decrease 

pathogens from farm influents and effluents, reducing disease related mortality. Considering 

the fact that in Vietnam experts in RAS are few and investment costs are high, interest in 

recirculation technology in Vietnam is small (Ngoc et al., 2016a; Ngoc et al., 2016b). 

Treating influent water in a large reservoir that acts as a stabilization pond and passing 

effluents through a sedimentation pond was suggested as a cheaper and more practical 

solution (Anh et al., 2010), but is also not adopted, mainly because land along the Mekong 

river is expensive.  

 

 Mortality, chemical and antibiotic use 

Pathogen free striped catfish fingerlings are practically unavailable in Vietnam. This in part 

contributes to the frequent occurrence of diseases in grow-out ponds, especially shortly after 

stocking (Phan et al., 2009). The highest amounts of antibiotics and chemical are applied to 

ponds at the start of the culture period (Phan et al., 2009). The daily water exchange is a route 

for re-infection, also after treatment, and disease reoccurrence is frequent, as also observed in 

our ponds study (Chapter 2). Diminishing water exchange might help in reducing disease 

related mortality. In RAS, disease related mortality occurred only during the first month of 

the grow out period and then stopped. In ponds, the mortality was highest during the first 
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months of the culture period, but during the rest of the culture period small numbers of dead 

fish were collected daily. The total disease related mortality in RAS was 6 times smaller than 

in ponds. According to Ngoc et al. (2016b) fingerlings represent about 10% of the total 

variable cost. Considering that in ponds the total fish mortality was 36 %, this represents 

3.6% of the variable costs or a loss of 16,000 $US per ha per production cycle. Other variable 

costs include feed, transportation, chemicals, antibiotics and labor. Higher survival in RAS 

would reduce fingerling costs by 13,600 US$ (Chapter 3). By integrating a denitrification 

reactor in RAS, the cost for NaHCO3 and NaCl would be further reduced by 50% (Chapter 5). 

About 20 antibiotics and 12 chemicals are commonly applied in striped catfish ponds (Rico et 

al., 2013). Per kg fish produced, the applied quantities are smaller than for other cultures 

(Chapter 2), however, because culture density in ponds is very high, and the amounts applied 

per unit surface area are high. Chemical and antibiotic application come with environmental 

risks (Rico and Van den Brink, 2014) and the possibility of development of antibiotic 

resistance (Rico and Van den Brink, 2014; Sarter et al., 2007b). 

 

Energy consumption 

In striped catfish pond culture, pumping is only needed when tidal water exchange is 

insufficient to maintain water quality and is thus relatively cheap. In RAS, the highest amount 

of electricity was consumed for pumping water over the trickling filter and for aeration of the 

moving bed reactor (Chapter 3). Because the cost for aeration in a moving bed reactor is less 

than for pumping water over a trickling filter, we recommended to use moving bed reactors 

for biofiltration in striped catfish RAS. In RAS, aeration in the moving bed biofilter kept the 

dissolved oxygen above 2 mg O2 l
-1

 (Chapter 3) which was higher than in ponds (Chapter 2). 

Systems with moving bed reactors can be kept shallow, which is advantageous for striped 

catfish because the fish is then always close to the surface where it takes oxygen from the air 

(Lefevre et al., 2011b) and releases CO2. In a pilot system with a moving bed biofilter and 

without trickling filter, the electricity consumption was 0.8 kWh kg
-1

 fish produced (Nhut et 

al., 2015). If biogas would be produced from the sludge collected in RAS then close to half of 

the energy needed for biofiltration can be recuperated (Chapter 4). 

 

Solid waste reuse as valuable products 

Solid waste collected in the RAS is a valuable resource to produce compost or bio-methane 

gas. Producing compost is  cheap and simple, making it a good option to re-use part of the 
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nutrients otherwise lost during culture. In the Mekong delta, rice straw is available in large 

quantities, and farmers often burn it. Thus, using rice straw for making compost from solid 

wastes collected during striped catfish culture is a logical thing to do. The value of compost 

can compensate about 50% of the pumping costs in RAS. In addition, it can partially replace 

the huge amounts of inorganic fertilizer applied to rice fields and gardens in the Mekong 

delta (Hach, 2012). In addition, replacing inorganic fertilizer partially with compost would 

considerably reduce greenhouse gas emissions from rice farming (Favoino and Hogg, 2008 ). 

Methane yields from solid organic aquaculture wastes are small (Chapter 4), which is also the 

case for striped catfish production. So the amount of electricity produced is small (see section 

on energy consumption). However, RAS-sludge can be easily collected, so in cases where 

composting is not an option it can be considered. The ash remaining after digestion could still 

be a source of phosphorous. 

 

Fish quality 

Vietnam exported striped catfish already to more than 130 countries. The standard export 

market requires white and lean fillets that are pathogen free without traces of residual 

chemicals and antibiotics (Anh et al., 2010). Processing and exporting firms check striped 

catfish quality at farm gate. Criteria include fillet color, fillet dress out weight percentage, no 

traces of micro-microsporidian in meat, average body weigh equal to or above 700g, 

uniformity of individual weight, absence of off flavor and no traces of forbidden residual 

chemicals and antibiotics. Based on these criteria the price is negotiated. Fish not meeting 

export criteria fetch a lower price and can still be sold locally. Fish quality is considered  a 

key indicator of economic sustainability (Verreth and Oberdieck, 2009). The quality of 

striped catfish is closely related to pond management and culture technology. For instance, 

the high water exchange during pond culture is believed to contribute to a high portion of 

white fillets in the population (Anh et al., 2010; Phu et al., 2014). A low dress out weight and 

high fat body content reduces fillet yield and increases the amount of waste remaining after 

processing. If not processed before disposal, high amounts of N, P, DM, BOD and COD 

contribute to pollution resulting from farming (Anh et al., 2010). The quality of striped 

catfish produced in RAS (Chapter 3) was better than in ponds (Chapter 2). In ponds, the 

quality of striped catfish produced is less predictable, as options to control water exchange 

and water quality are limited (Phu et al., 2014). In RAS, the farmer can control water quality 

making the farming outcome more predictable. It should be noted that in the flow through 
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systems (FT) a similar product quality was achieved as in RAS (Chapter 3), but the high 

water consumption (14m
3
 kg

-1
fish) and waste discharge, makes this culture system not a 

sustainable option for the future. 

 

Feed and nutrients utilization efficiency 

Feed accounted for 87-91% of the total variable cost in striped catfish pond culture (Ngoc et 

al., 2016b). During grow out, diets containing 22 – 30 % protein are used, which is lower 

than for most other fish species produced in aquaculture. The average feed conversion ratio 

of the industry of 1.86 (Bosma et al., 2011; Phan et al., 2009) is high compared to 

carnivorous fish species, but in the same range as for omnivorous species and better than for 

crustacean culture (Pahlow et al., 2015). Using similar feeds in pond and RAS (Chapter 3), 

the feed conversion ratio in RAS was 19% lower than in ponds (Chapter 2). Most likely, by 

developing RAS feeds there is room to improve the feed conversion further. 

 

Waste discharge 

The amount of waste discharged per kg fish produced increased with the amount of water 

used (all Chapters): discharge of nutrients was highest in the FT systems and lowest in the 

RAS+USB. In ponds, 30-34% of nitrogen and 29-37% of dry matter supplied through feeding 

volatized into N2 and CO2, respectively, making them intermediate between the FT and the 

RAS for waste discharge. The use of sedimentation ponds (Anh et al., 2010; Anh and Mai, 

2009; ASC, 2012; BMP, 2009), turning pond sludge into compost (Phung et al., 2009), 

discharge the sludge directly to gardens (Da et al., 2015), or anaerobic digestion of the sludge 

for biogas production (Chapter 4) or denitrification (Chapter 5) all have been suggested to 

diminish discharge of nutrients from striped catfish ponds. Because water volumes exchanged 

with the river are large, a large sedimentation pond is needed, which is expensive considering 

land prices along the river. In addition, most farmers would need to invest in extra pumping 

capacity, which is costly to install and operate. Therefore, the best option to minimize sludge 

discharge is to grow striped catfish in RAS+USB. Whether sludge collected from the USB 

reactor will also produce good quality compost, needs further research. It can be considered 

an advantage that once the sludge is collected, the scale of processing facilities can be 

adjusted to farm size. 
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6.2. Water quality 

The water quality in the ponds, FT, RAS and RAS+USB is summarized in Table 6.2.  

Overall, water quality in ponds was worse than in RAS. For instance, the oxygen 

concentration in FT, RAS, RAS+USB and RAS-Pond was much higher than ponds, and 

concurred with less disease related mortality, faster growth and better feed conversion ratios. 

Although production volumes of striped catfish are high, insight in optimal water quality for 

striped catfish grow-out is still limited, especially about interactions between different 

parameters, and more research on this aspect is highly recommended. 

 

Table 6. 2:Summary of water quality in striped catfish culture systems 

Parameter 
 

Downstrea

m pond 

Upstrea

m pond FT 

RA

S 

RAS+US

B 

RAS-

pond Unit 

Temperature 

   

31.7 28.7 28.1 30.1 

- morning 
o
C 30.4 29.5 

    - afternoon 
o
C 31.6 30.9 

    pH 

   

7.5 7.7 7.3 7.1 

- morning - 6.3 6.2 

    - afternoon - 6.6 6.7 

    Oxygen 

   

3.2 5.4 4.4 3.7 

morning 

       - 1m depth mg l
-1

 1.5 1.9 

    - 2m depth mg l
-1

 1.2 1.6 

    afternoon 

       - 1m depth mg l
-1

 1.9 2.2 

    - 2m depth mg l
-1

 1.5 1.8 

    Transparency 

      

49.8 

- morning cm 24.6 30.2 

    - afternoon cm 24.2 28.2 
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Table 6.2 (continued- 1): Summary of water quality in striped catfish culture systems 

  Parameter 

 

Downstrea

m pond 

Upstrea

m pond FT RAS 

RAS+US

B RAS-pond 

Total Nitrogen mg l
-1

 9.9 7.1 4.9 58.8 65.2 53.7 

TAN mg l
-1

 1.4 1.2 1.5 1 0.33 6.4 

NO2-N mg l
-1

 0.3 0.1 0.2 0.7 0.47 1.1 

NO3-N mg l
-1

 0.4 0.4 3.2 52.8 62.8 39.1 

H2S mg l
-1

 0.2 0.1 0.01 0.11 0.24 0.02 

PO4-P mg l
-1

 0.4 0.4 0.5 20.7 

 

3.2 

TP mg l
-1

 2.4 1.5 1.7 24.1 24.3 12.8 

Alkalinity mg l
-1

 61.6 51.1 

246.

7 

134.

8 113.7 85.6 

CO2 mg l
-1

 42.4 30.9 14.3 17.5 

 

19.1 

TC mg l
-1

 28.9 30.4 78.2 58.8 

  TOC mg l
-1

 8.4 6.3 3.3 16.7 

  TSS mg l
-1

 80.8 49.3 6.6 31.9 65.7 58.3 

Chlorophyll-a µg l
-1

 114.3 100 

   

11.3 

COD mg l
-1

 19.4 19.4 8.8 32.2 31.8 25.2 

BOD5 mg l
-1

 15.4 15 5 16.6 

 

29.1 

Salinity ppt 0.4 0.06 0 2.6 0.4 1.3 

FT: flow-through system; RAS: indoor recirculating aquaculture system; RAS+USB: indoor RAS integrated with a 

denitrification reactor; RAS-pond: outdoor pilot RAS with floating moving bed biofilter and septic tank installed in 1.8 deep 

pond (data from one trial without replication).  

 

6.3. Nutrients mass balances in systems 

By making nutrient mass balances on DM, N, P and COD
4
 for the ponds, FT, RAS and 

RAS+USB (Chapter 2, Chapter 3 and Chapter 5) nutrient flows through different production 

systems could be compared and sustainability indicators calculated. Based on these data, the 

impact of production system on pollution and sustainability could be quantified. For instance, 

the fraction of nutrients in influents and effluents were high in the ponds and FT, while 

negligible in recirculation systems. However in RAS systems, more nutrients volatilize 

contributing to greenhouse gas emissions. Comparing effects of the different types of nutrient 

losses on global or regional scales was outside the scope of this thesis, but also needs further 

research. The detailed data sets provided in this thesis, provide a good basis to contribute to 

broader studies on sustainability, for instance through life cycle analysis (Bosma et al., 2011). 

 

                                                 
4
 COD mass balance was calculated for RAS, Flow through and RAS+USB, excluding for traditional ponds in 

this thesis. 
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6.4. Recommendations for future research  

The thesis research showed that recirculation technology reduces the environmental impact of 

striped catfish production at farm level. By shifting from pond systems in which water quality 

is maintained through water exchange to closed systems based on RAS technology, striped 

catfish will become one of the most sustainably produced aquaculture products, satisfying 

consumer and market demands for environmental responsible produced farmed fish. In 

addition, the low water consumption in RAS would allow the industry to adapt to the 

anticipated future reduction in year round freshwater availability in the Mekong delta of 

Vietnam, caused by climate change. Currently, about 5000 ha of 4-6 m deep ponds are used 

for grow-out striped catfish production in the Mekong delta. These ponds are high value 

assets. Therefore, the industry is interested in developing RAS in deep pond first. However, 

developing RAS technology for 4-6 m deep pond is difficult, because it is expensive to create 

the water movement required for collecting sludge and maintaining water quality, while 

minimizing water use. RAS in shallow ponds or tanks would require much less energy to 

concentrate and remove sludge and maintain water quality, and therefore, is preferred above 

RAS in 4-6 m deep ponds. If and how the striped catfish industry and Vietnamese 

government can mobilize the resources necessary to change from deep to shallow ponds is a 

key question to be addressed with priority.  

Developing policies supporting and facilitating adoption of RAS technology for striped 

catfish production in the Mekong delta should be considered. Striped catfish producers 

recognize that RAS technology will make farming success more predictable and bio-secure. 

However, besides high investment costs, lack of education and experience with recirculation 

technology and high energy consumption, while consumers are not willing to pay a premium 

price for sustainably produced striped catfish make that few producers believe the industry 

will adopt RAS technology quickly (Ngoc et al., 2016a). The Vietnamese government is 

more convinced, and already approved research and development programs for striped catfish 

culture in RAS (MARD, 2014b). The government could play an intermediate role in 

promoting sustainably produced striped catfish as a quality product deserving a premium 

price, by linking producers, processors and retailors in a platform to work with NGOs and 

governments to develop labels informing consumers. 
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The RAS technologies tested in this thesis project were only first trials, copying systems 

successfully applied with other fish species. The filter units installed and water flows applied 

were larger than required for striped catfish culture. Although production in the trials was 

satisfactory, energy and labor requirements were high. More research is now needed to adapt 

RAS technology to the species. Important to consider is domestication of striped catfish to 

RAS environments and development of genetically improved breeds. This effort is linked to 

the development of disease and pathogen free production lines of fingerlings to stock in 

grow-out ponds. Stocking healthy fingerlings in RAS will considerably reduce disease related 

mortality, and thus make the application of antibiotics and chemicals sporadic events 

compared to the common use today throughout the industry. Once the sector succeeds in 

establishing bio-secure striped catfish production in RAS, attention can also be given to fish 

welfare and product quality, important issues linked to consumer acceptance. Topic related to 

fish welfare include continuous provision of optimal water quality, noise and vibration free 

culture environments, and feeding and housing conditions which minimize stress. This also 

includes the development of RAS feeds for striped catfish, fulfilling fish nutrient and energy 

requirements while minimizing pollution.  Finally, the development of finishing diets, to 

influence for instance texture, taste and DHA (docosahexaenoic acid) and EPA 

(eicosapentaenoic acid) content (Bell et al., 2004) of fillets could also be considered. 

6.5. Main conclusions 

From a sustainability point of view, striped catfish culture in ponds compared well to other 

important aquaculture species (Chapter 2). Nevertheless, water, chemicals and antibiotics use, 

survival, and the amounts of waste discharged could be further reduced through recirculation 

and treatment of solid wastes (Chapters 3, 4 and 5). All RAS systems investigated were 

shallow systems. To merge recirculation technology into pond systems the 4-6 m depth 

makes it costly to generate flows required to pass, concentrate and treat organic wastes in the 

water treatment units that are part of the RAS. Abandoning deep ponds and producing in 

shallow ponds with biofiltration and sludge collection and treatment will be costly and thus 

challenging. However, if the necessary investments could be made, in combination with a 

further fine-tuning and cost reduction, producing striped catfish in RAS might become as cost 

effective as producing in deep ponds. Additional advantages of producing in outdoor low 

water exchange systems, is that pollution will become minimal and that stocking disease free 

fingerlings will become economically advantageous. 
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Summary  

Intensifying aquaculture production while meeting societal and consumer demands for 

sustainable production is challenging. Technically it is possible to culture fish without 

discharging nutrients, but this is most often not done due to the costs involved. The aim of 

this thesis was to document possible improvements in sustainability of striped catfish 

production through the application of recirculation technology and waste treatment 

techniques. To be able to document improvements in sustainability, a set of sustainability 

indicators which can be measured on all types of farm was compiled. Twenty sustainability 

indicators were measured including environmental, economic and social dimensions, and 

considering the use of fingerlings, water, diesel oil, electricity, labor, chemicals and 

antibiotics. Also, indicators related to nutrient utilization efficiencies and wastes discharge 

were monitored. In addition, a sampling scheme, necessary to measure organic matter, 

nitrogen, phosphorous and chemical oxygen demand (COD) mass balances during a full 

production cycle, applicable in different production systems, was developed.  

Striped catfish is the most important aquaculture species in the Mekong delta of Vietnam. It 

is produced in 4-6 m deep ponds along the Mekong river. During this thesis project, besides 

measuring sustainability indicators and nutrient mass balances in ponds, striped catfish 

production in flow-through tanks and in recirculating aquaculture systems (RAS) with or 

without denitrification, was monitored during a full grow-out production cycle. In addition, 

the yields of methane and compost from solid wastes collected from ponds and RAS without 

denitrification were compared. By measuring or calculating the effects on sustainability 

indicators and nutrient mass balances the room available to improve sustainability of striped 

catfish production was explored.  

In ponds, water use per kg fish produced was 2.8 m
3
 in downstream and 7.1 m

3
 upstream 

ponds. This water exchange rate was sufficient to maintain favorable water quality during 

production. However, daily water exchange with the river is also a route for entrance of 

pollutants or diseases. To contain disease related mortality, 0.1 to 0.2 g antibiotics were 

applied per kg fish produced. Still, mortality was 24 – 49%, with the bulk of mortality 

occurring during the first months of the production cycle. Considering pond diets with 26 – 
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30% protein were used, the realized dry matter utilization efficiency of 28 – 30% was good. 

For nitrogen, the utilization efficiency was 40 – 44 % and for phosphorous 17.6 – 17.7 %. Per 

kg fish produced, the combined discharge through exchange water, drainage water and sludge 

removal was 357 – 415 g dry matter, 19.8 – 20.1 g nitrogen and 17.0 – 17.7 g phosphorous. 

Due to denitrification and fermentation occurring at the bottom in the 4 – 6 deep ponds, 29 – 

37 % of the dry matter (DM) and 30 – 34 % of nitrogen applied with the feed volatilized 

(Chapter 2). In flow-through tanks (FT) and RAS, these losses were reduced by trapping 

solid wastes from the water flow leaving the fish tank in the swirl separator (Chapter 3). 

Better water quality in RAS and FT concurred with better survival (93-96%) and feed 

conversion efficiencies (FCR 1.3) than in ponds (FCR 1.6). Water consumption in RAS was 

100 and 19 – 49 times smaller than in FT and ponds, respectively. Similar amounts of solid 

waste were trapped in the swirl separators of RAS and FT, but in RAS, a considerable 

fraction of solid waste not trapped in the swirl separator accumulated under the biofilter, 

where passive denitrification occurred. Therefore, nitrogen, DM and COD discharge in RAS 

were significantly lower than in FT. Overall, sustainability indicators were better in RAS than 

in ponds. In addition, the solid waste collected from the swirl separator in RAS or from the 

bottom in ponds, was used to produce either compost or methane gas (Chapter 4). Although 

on a weight basis six times more sludge was collected from ponds (1200 g dry matter per kg 

fish produced) than from RAS (200g dry matter per kg fish produced), the amount of organic 

matter collected per kg fish produced was similar in RAS and ponds. The quality of compost 

produced from RAS-sludge was better than for compost based on pond-sludge. Considering 

methane (CH4) production, 125 and 201 L CH4 per kg COD was produced from pond and 

RAS sludge, respectively. The amount of methane produced was comparable with other types 

of aquaculture, but was lower than for example for pig manure.  

Using solid waste collected in the swirl separator as carbon source in a denitrification reactor, 

the goal was to further reduce water use while maintaining the nitrate concentration below 

100 mg per L (Chapter 5). For each kg of feed applied in RAS, 11.2 g NO3-N, 12.3 g total 

nitrogen (TN), 145 g COD and 145 g DM was removed in the denitrification reactor, while 

53 g CaCO3 alkalinity was produced. The latter allowed to reduce the amount of sodium 

bicarbonate required to maintain the pH in RAS. The water use in RAS with denitrification 
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dropped to 38 L per kg fish produced, while the NO3-N concentration in the fish tank 

remained below 100 mg per L. Adding a denitrification reactor to RAS did not affect fish 

growth, nutrient retention efficiencies and the quality of the fish fillets produced. In 

consequence, integrating a denitrification reactor in RAS further improved the sustainability 

of striped catfish farming. 

Overall (Chapter 6), from a sustainability point of view, striped catfish culture in ponds 

compared well to other important aquaculture species. Nevertheless, water, chemicals and 

antibiotics use, survival, and the amounts of waste discharged could be further reduced 

through recirculation and treatment of solid wastes. All RAS systems investigated were 

shallow systems. To merge recirculation technology into pond systems the 4-6 m depth 

makes it costly to generate the flows required to move wastes towards water treatment units 

of the recirculation system where it is concentrated and can be collected for further treatment. 

Abandoning deep ponds and producing in shallow ponds with biofiltration and sludge 

collection and treatment is however costly. Further cost reduction in outdoor RAS systems is 

possible through the development of special RAS feeds and striped catfish breeds, a further 

reduction of the feed conversion ratio to below 1.0, shortening the grow-out period, and 

valorization of compost or energy produced on solid wastes. Combined, these improvements 

could make production of striped catfish in RAS more cost effective than producing in deep 

ponds. Additional advantages of producing in outdoor low water exchange systems, is that 

pollution will become minimal and that stocking disease free fingerlings will become 

economically advantageous. 
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