Dietary fructo-oligosaccharides and inulin decrease resistance of rats to salmonella: protective role of calcium

S J M Ten Bruggencate, I M J Bovee-Oudenhoven, M L G Lettink-Wissink, M B Katan and R Van der Meer

Gut 2004;53;530-535
doi:10.1136/gut.2003.023499

Updated information and services can be found at:
http://gut.bmjournals.com/cgi/content/full/53/4/530

These include:

Rapid responses
You can respond to this article at:
http://gut.bmj journals.com/cgi/eletter-submit/53/4/530

Email alerting service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article

Topic collections
Articles on similar topics can be found in the following collections

- Basic sciences (439 articles)
- Nutrition and Metabolism (1024 articles)
- Infection (258 articles)

Notes

To order reprints of this article go to:
http://www.bmj journals.com/cgi/reprintform

To subscribe to Gut go to:
http://www.bmj journals.com/subscriptions/
Dietary fructo-oligosaccharides and inulin decrease resistance of rats to salmonella: protective role of calcium

S J M Ten Bruggencate, I M J Bovee-Oudenhoven, M L G Lettink-Wissink, M B Katan, R Van der Meer

Background: We have shown recently that rapid fermentable fructo-oligosaccharides (FOS) decreased resistance of rats towards salmonella. It is not known whether inulin (which is fermented more gradually) has similar effects or whether buffering nutrients can counteract the adverse effects of rapid fermentation.

Aims: To compare the effects of dietary inulin and FOS on resistance of rats to Salmonella enterica serovar Enteritidis and to determine whether calcium phosphate counteracts the effects of fermentation.

Methods: Male Wistar rats (n = 8 per group) were fed a human “Western style diet”. Diets with 60 g/kg cellulose (control), FOS, or inulin had either a low (30 mmol/kg) or high (100 mmol/kg) calcium concentration. After an adaptation period of two weeks, animals were orally infected with 2×10^9 colony forming units of Salmonella enterica serovar Enteritidis. Colonisation of salmonella was determined by quantification of salmonella in caecal contents. Translocation of salmonella was quantified by analysis of urinary nitric oxide metabolites in time.

Results: Inulin and FOS decreased intestinal pH and increased faecal lactobacilli and enterobacteria.

Moreover, both prebiotics increased the cytotoxicity of faecal water and faecal mucin excretion. Both prebiotics increased colonisation of salmonella in caecal contents and enhanced translocation of salmonella. Dietary calcium phosphate countered most of the adverse effects of inulin and FOS.

Conclusions: Both inulin and FOS impair resistance to intestinal infections in rats. This impairment is partially prevented by dietary calcium phosphate. The results of the present study await verification in other controlled animal and human studies.

Abbreviations: CFU, colony forming units; DP, degree of polymerisation; FOS, fructo-oligosaccharides; ICP-AES, inductively coupled plasma-atomic emission spectrophotometry; NOx, sum of nitrate and nitrite; PCR, polymerase chain reaction

Gastrointestinal infections induced by food borne pathogens are a major clinical problem. Survival of food borne pathogens within the intestinal tract can potentially be modulated by dietary prebiotics. Prebiotics, which include fructo-oligosaccharides (FOS) and inulin, are defined as non-digestible food ingredients that beneficially affect the host by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon that can improve the health of the host. Stimulation of the endogenous microflora by dietary prebiotics may inhibit colonisation of intestinal pathogens by production of organic acids and by competing for nutrients and mucosal adhesion sites. However, we showed previously that FOS decreases the resistance towards the invasive food borne pathogen Salmonella enterica serovar Enteritidis. Rapid fermentation of FOS by the intestinal microflora may lead to high luminal concentrations of organic acids. These organic acids may induce damage to the mucosal barrier and hence decrease resistance to intestinal pathogens.

Both inulin and FOS are composed of linear chains of fructose units, linked by β(2→1) bonds and often terminated by a glucose unit. The number of fructosyl moieties ranges from 2 to 60 for inulin and from 2 to 7 for FOS. In vitro fermentation experiments revealed that molecules with a degree of polymerisation (DP) >10 are fermented, on average, half as quickly as molecules with a DP of <10. Thus the possible adverse consequences of rapid fermentation might be more pronounced with FOS than with inulin.

The consequences of excessive fermentation can potentially be inhibited by dietary calcium phosphate. Calcium forms an insoluble complex with phosphate in the upper small intestine. This complex increases the buffering capacity throughout the intestinal lumen. Thus it can be speculated that dietary calcium phosphate counteracts the effects of rapid fermentation of inulin and FOS.

The aim of the present study was to compare the effects of FOS and inulin on the resistance of rats to the invasive pathogen Salmonella enterica serovar Enteritidis. In addition, we determined whether dietary calcium phosphate can counteract the effects of rapid fermentation.

METHODS
Diets, infection, and dissection of the animals
The animal welfare committee of Wageningen University and Research Centre (Wageningen, the Netherlands) approved the experimental protocol. Specific pathogen free male Wistar rats (WU, Harlan, Horst, the Netherlands), eight weeks old, with a mean body weight of 276 (2) g, were housed individually in metabolic cages. All animals were kept in a temperature (22–24°C) and humidity (50–60%) controlled environment in a 12 hour light-dark cycle. Animals (n = 8 per diet group) were fed restricted quantities (13 g/day; 266 kJ/day) of a purified diet. Restricted food intake was necessary to prevent differences in food consumption and hence differences in vitamin and mineral (especially calcium) intake. The control diet contained (per kg) 200 g acid casein, 552 g glucose, 160 g palm oil, 40 g corn oil, 20 g cellulose, 49 g mineral mix (without calcium), and 14 g vitamin mix according to AIN93 recommendation. The experimental diets were supplemented with 60 g/kg cellulose (Arbocel type...
The supernatants were diluted with 0.5 g/l CsCl and analysed by ICP-AES (Varian). To measure phosphate, dry ashed faeces was destructed (15 minutes at 180°C) with a perchloric acid (70%)/hydrogen peroxide (30%) mixture (5:1 vol/vol, total volume 600 μl). Subsequently, samples were centrifuged for two minutes at 14 000 g. The supernatants were diluted with 0.5 g/l CsCl and analysed by ICP-AES (Varian).

Mucin was extracted from freeze dried faeces and quantified fluorimetrically, as described previously. Interfering oligosaccharides of dietary origin were removed by filtration. Standards solutions of N-acetylgalactosamine (Sigma, St Louis, Missouri, USA) were used to calculate the amount of oligosaccharide side chains liberated from mucins. Therefore, faecal mucins are expressed as μmol oligosaccharide equivalents.

Analyses of faecal water

Fresh faeces were freeze dried and reconstituted with double distilled water to obtain faecal water with a physiological osmolarity of 300 mosmol/l. Samples were mixed, incubated for one hour at 37°C, and subsequently centrifuged for one hour at 14 000 g (Hettich, Micro-rapid 1306, Tuttinglen, Germany). Cytotoxicity of faecal water was determined with an erythroyte assay, as previously described, and validated earlier with intestinal epithelial cells. Incubations were of physiological ionic strength (300 mosmol/l) and buffered at pH 7.0 (final 100 mmol/l 3-N-morpholino-propanesulfonic acid; Sigma) to prevent acid induced haemolysis.

Analyses of urine samples

Complete 24 hour urine samples were collected starting one day before infection until six days after infection. Oxytetracycline (1 mg; Sigma) was added to the urine collection vessels of the metabolic cages to prevent bacterial deterioration. The concentration of NOx (sum of nitrate and nitrite) was determined using a colorimetric enzymatic kit (No 1746081; Roche Diagnostics, Mannheim, Germany). Briefly, urinary nitrate is reduced to nitrite by nitrate reductase. Subsequently, nitrite reacts with sulphanilamide and N-(1-naphthyl)-ethylene-diamine dihydrochloride, resulting in a red diazo dye, which was measured spectrophotometrically at 540 nm.

Statistical analysis

Results are expressed as means (SEM). A commercially available package (Statistica 6.1; StatSoft Inc., Tulsa, Oklahoma, USA) was used for all statistics. We tested for differences between the low calcium/control, FOS, and inulin groups. In addition, we tested for differences between the high calcium groups and their low calcium counterparts. In case of normally distributed data, differences between means were tested for significance using one way ANOVA, followed by Fisher's protected least significant difference test (two sided). Differences were considered statistically significant when p<0.05. When data were not normally distributed, differences between means were tested for significance using a Kruskall-Wallis ANOVA, followed by the non-parametric Mann-Whitney U test (two sided). Bonferroni correction was made for the number of comparisons (n = 6). Differences were considered statistically significant when p<0.05.

RESULTS

Animal growth and food intake

One animal in the high calcium/FOS group was excluded from all study results because of oropharyngeal reflux of the salmonella suspension, resulting in pneumonia. Before infection, there were no differences in animal growth between the diet groups. Mean animal growth was 1.26 g/d.

Biochemical analyses of faeces

Total faecal lactic acid was measured using a colorimetric enzymatic kit (Boehringer Mannheim, Germany), as described previously. To measure calcium, faeces were treated with 50 g/l trichloroacetic acid for one h at room temperature and centrifuged for two minutes at 14 000 g. The supernatants were diluted with 0.5 g/l CsCl and analysed by ICP-AES (Varian). To measure phosphate, dry ashed faeces was destructed (15 minutes at 180°C) with a perchloric acid (70%)/hydrogen peroxide (30%) mixture (5:1 vol/vol, total volume 600 μl). Subsequently, samples were centrifuged for two minutes at 14 000 g. The supernatants were diluted with 0.5 g/l CsCl and analysed by ICP-AES (Varian).

Mucin was extracted from freeze dried faeces and quantified fluorimetrically, as described previously. Interfering oligosaccharides of dietary origin were removed by filtration. Standards solutions of N-acetylgalactosamine (Sigma, St Louis, Missouri, USA) were used to calculate the amount of oligosaccharide side chains liberated from mucins. Therefore, faecal mucins are expressed as μmol oligosaccharide equivalents.

Analyses of faecal water

Fresh faeces were freeze dried and reconstituted with double distilled water to obtain faecal water with a physiological osmolarity of 300 mosmol/l. Samples were mixed, incubated for one hour at 37°C, and subsequently centrifuged for one hour at 14 000 g (Hettich, Micro-rapid 1306, Tuttinglen, Germany). Cytotoxicity of faecal water was determined with an erythroyte assay, as previously described, and validated earlier with intestinal epithelial cells. Incubations were of physiological ionic strength (300 mosmol/l) and buffered at pH 7.0 (final 100 mmol/l 3-N-morpholino-propanesulfonic acid; Sigma) to prevent acid induced haemolysis.

Analyses of urine samples

Complete 24 hour urine samples were collected starting one day before infection until six days after infection. Oxytetracycline (1 mg; Sigma) was added to the urine collection vessels of the metabolic cages to prevent bacterial deterioration. The concentration of NOx (sum of nitrate and nitrite) was determined using a colorimetric enzymatic kit (No 1746081; Roche Diagnostics, Mannheim, Germany). Briefly, urinary nitrate is reduced to nitrite by nitrate reductase. Subsequently, nitrite reacts with sulphanilamide and N-(1-naphthyl)-ethylene-diamine dihydrochloride, resulting in a red diazo dye, which was measured spectrophotometrically at 540 nm.

Statistical analysis

Results are expressed as means (SEM). A commercially available package (Statistica 6.1; StatSoft Inc., Tulsa, Oklahoma, USA) was used for all statistics. We tested for differences between the low calcium/control, FOS, and inulin groups. In addition, we tested for differences between the high calcium groups and their low calcium counterparts. In case of normally distributed data, differences between means were tested for significance using one way ANOVA, followed by Fisher's protected least significant difference test (two sided). Differences were considered statistically significant when p<0.05. When data were not normally distributed, differences between means were tested for significance using a Kruskall-Wallis ANOVA, followed by the non-parametric Mann-Whitney U test (two sided). Bonferroni correction was made for the number of comparisons (n = 6). Differences were considered statistically significant when p<0.05.
output of these minerals was substantially higher in the high calcium groups.

In addition, low calcium/inulin and FOS increased the cytotoxicity of faecal water (fig 1) and stimulated daily faecal mucin excretion in the low calcium groups before infection (fig 2). Both cytotoxicity and faecal mucin excretion were inhibited by dietary calcium.

Colonisation and translocation of salmonella
Both inulin and FOS increased salmonella numbers in caecal contents six days after infection (fig 3). Dietary calcium did not affect colonisation of salmonella in the caecum. Major differences were observed in the effects of low calcium/inulin and FOS on translocation of salmonella, as measured by the infection induced urinary NOx excretion in time (fig 4). Both low calcium/inulin and FOS increased urinary NOx excretion in time. At day 6 after infection, urinary NOx excretion was threefold higher in the low calcium/inulin group and fourfold higher in the low calcium/FOS group compared with the low calcium/control group. Dietary calcium inhibited translocation of salmonella to a large extend in the FOS group. Total infection induced urinary NOx excretion (corrected for baseline output) for the low calcium groups was 122 (12) μmol/6 days in the control group, 290 (59) μmol/6 days in the inulin group, and 448 (66) μmol/6 days in the FOS group. Total NOx excretion for the high calcium counterparts was 104 (13) μmol/6 days in the control group, 174

Table 1 Effect of dietary fructo-oligosaccharides (FOS), inulin, and calcium on faecal lactate, calcium, and phosphate excretion before infection:‡

<table>
<thead>
<tr>
<th></th>
<th>Lactate (μmol/day)</th>
<th>Calcium (μmol/day)</th>
<th>Phosphate (μmol/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low calcium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>2.4 (0.3)</td>
<td>109 (13)</td>
<td>113 (8)</td>
</tr>
<tr>
<td>Inulin</td>
<td>6.9 (1.6)</td>
<td>28 (3)*</td>
<td>64 (6)*</td>
</tr>
<tr>
<td>FOS</td>
<td>6.4 (2.1)</td>
<td>36 (6)*</td>
<td>60 (5)*</td>
</tr>
<tr>
<td>High calcium</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>9.4 (2.6)</td>
<td>766 (30)*</td>
<td>468 (40)*</td>
</tr>
<tr>
<td>Inulin</td>
<td>21.3 (4.3)</td>
<td>619 (39)*</td>
<td>374 (29)*</td>
</tr>
<tr>
<td>FOS</td>
<td>26.9 (7.9)</td>
<td>615 (33)*</td>
<td>367 (42)*</td>
</tr>
</tbody>
</table>

*Significantly different from the low calcium/control group (p<0.05); ‡Significantly different from its low calcium counterpart (p<0.05); †Lactic acid was measured using a colorimetric enzymatic kit. Calcium and phosphate were analysed by ICP-AES. Results are expressed as mean (SEM) (n=7 in the high calcium FOS group and n=8 in the other diet groups).
Prebiotics, calcium, and salmonella infection

(40) µmol/6 days in the inulin group, and 217 (41) µmol/6 days in the FOS group.

DISCUSSION

This study showed that inulin and FOS significantly stimulated intestinal colonisation and translocation of salmonella to extraintestinal sites. These adverse effects were largely inhibited by dietary calcium phosphate.

The general opinion is that inulin and FOS may increase resistance to intestinal infections by selectively stimulating the growth and/or activity of one or a limited number of bacteria in the colon. Indeed, previous studies showed that inulin and FOS stimulated intestinal bifidobacteria and lactobacilli in rats and humans. Although lactobacilli were stimulated in the present study by inulin and FOS, our results, as well as those of others, do not support the concept of selective stimulation because intestinal enterobacteria, which are associated with gut derived septicemia, were also stimulated. The endogenous microflora is known to be important for host resistance. However, the effects of inulin and FOS on resistance to intestinal bacterial infections have rarely been investigated in vivo studies. The few previously published studies showed inconsistent effects of oligosaccharides on colonisation of salmonella. In the present study, inulin and FOS increased salmonella colonisation in the caecum, despite stimulation of the intestinal microflora. These results do not confirm the results obtained in a previous study of our group. However, there is one important difference: in the previous study, salmonella was administered to animals in a fed state while in the present study the salmonella suspension was given after an overnight fast (that is, on an acidic empty stomach). This may have provoked an acid tolerance response in salmonella which may have increased its virulence and subsequent survival within the caecum and colon. Apart from the increase in colonisation, both prebiotics markedly stimulated salmonella translocation to extraintestinal sites, as measured by urinary excretion of NOx metabolites. Urinary NOx is a sensitive and quantitative biomarker of intestinal bacterial translocation which correlates with organ cultures and severity of systemic infectious diseases in rats and humans. The increased colonisation and translocation of salmonella in the present study, concomitant with decreased animal growth after infection, indicates that the infection was worse in the low calcium/inulin and FOS groups. These data confirm the results of our previous studies in which FOS increased translocation of salmonella.

Why do inulin and FOS increase translocation of salmonella? Fermentation of both inulin and FOS results in the production of organic acids in the distal gut, indicated by the high faecal lactate concentration and the low caecal pH. Accumulation of organic acids and other fermentation metabolites may lead to irritation and impairment of the mucosal barrier. The intestinal mucosa responds to these irritating components by increasing mucus excretion. Indeed, inulin and FOS increased faecal mucus excretion in the present study. In addition, previous studies showed that fermentable fibres increase faecal mucin excretion. Thus rapid fermentation of FOS and inulin may impair the mucosal barrier in the distal gut. Translocation of salmonella is believed to occur through ileal Peyer's patches but this issue is still debated. Impairment of the barrier by rapid fermentation of inulin and FOS might expand the possibilities for salmonella to translocate in the distal gut, para- or
transcellularly. Surprisingly, the effects of inulin and FOS were similar. Probably both prebiotics were equally rapidly fermented in the distal gut resulting in damage to the mucosal barrier. In addition, although organic acids inhibit growth of salmonella in vitro, prebiotic induced alterations in organic acid concentrations may increase salmonella virulence and hence increase translocation.

Most adverse effects of inulin and FOS were inhibited by dietary calcium. Calcium forms an insoluble complex with phosphate in the upper small intestine. Dietary fructo-oligosaccharides dose-dependently increase translocation of salmonella in rats. Gut 2003;51:625-629.

In conclusion, the present study shows that FOS and inulin, and fructo-oligosaccharide (FOS) groups after an oral challenge with 2 x 10^9 colony forming units of Salmonella enterica serovar Enteritidis on day 0 in the (A) low calcium groups and (B) high calcium groups. Results are expressed as mean (SEM) (n = 7 in the high calcium FOS group and n = 8 in the other diet groups). *Significantly different from the low calcium/control group at that time point (p < 0.05); †significantly different from its low calcium counterpart at that time point (p < 0.05).

Acknowledgements
The authors wish to thank Wim van Doesburg for analytical analysis and the biotechnicians working at the Small Animal Centre of Wageningen University for expert biotechnical assistance.

References
Prebiotics, calcium, and salmonella infection

353

34 Levrat MA, Remézy C, Demigné C. High propionic acid fermentations and mineral accumulation in the cecum of rats adapted to different levels of inulin. J Nutr 1991;121:1730–7

www.gutjnl.com