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Extended lifespan: towards healthy aging 

The average lifetime increased during the last century, with an average global in-

crease in life expectancy of more than 10 years between 1970 and 2010 [4]. The pro-

portion of individuals aged 60 years and older is estimated to increase from 11% in 

2008 to more than 20% of the world population by 2050 [5]. About half of the total 

global deaths occurred among elderly people (≥65-year-old) in 2010 [4]. Aging is con-

sidered to be part of the normal biological cycle, and possibilities to extend the 

lifespan by preventing or reverting age-related changes have been studied since dec-

ades [11]. This ‘luxury’ of life extension, however, presents major challenges to society 

and public health care [12-14], because life extension is accompanied by an increase 

in cancer and chronic (inflammatory) diseases. Two out of three elderly people in the 

United States have multiple chronic diseases [17]. Common age-related diseases and 

their economic impact are listed in Table 1.  

 

Table 1. Common age-related diseases or conditions, their cause and/or risk factors, the role of the 
immune system in each of these diseases, and estimated economic impact.  

Disease Cause of 
death rank 

Costs
1
 Cause/risk factors

2
 Immune system 

involvement 
Ref. 

CVD 1 445 Diet and lifestyle Endothelial dysfunction  
and inflammation 

[18, 19] 

      
Cancer 2 125 Chemicals, diet and  

lifestyle, hormones,  
infection, physical  
agents, pollution,  
radiation 

Immune escape 
Immuno-editing 

[20-22] 
 

      
COPD 3

3
 50 Chemicals, diet  

and lifestyle, pollution 
Inflammation [23, 24] 

      
AD 6 226

4
 Amyloid-β aggregates Microglia dysregulation [25-28] 

      
T2D 7 245

5
 Diet and lifestyle Inflammation  

(auto-inflammatory) 
[29-31] 

      
PD 14 34 Idiopathic Inflammation [32, 33] 
      
Arthritis - 128 Diet and lifestyle Inflammation  

(incl. autoimmune) 
[34, 35] 

      
Osteoporosis - 22 Diet and lifestyle,  

hormones 
Osteoclast activation [36, 37] 

      
Sarcopenia - 18.5 Diet and lifestyle,  

hormones, increased  
fat mass and  
insulin resistance 

Elevated circulating 
cytokines 

[38-40] 

1
Annual costs in the USA only, and expressed in billion US dollars. All cost estimates are from data between 

2000-2015 and include direct and indirect costs; 
2
Genetics and aging were not accounted for, as they are 

shared risk factors for any of the listed diseases; 
3
Includes other chronic lung diseases; 

4
Includes other 

dementias; 
5
Includes type 1 diabetes (accounting for 5% of total diabetes patients). Abbreviations used: AD 

= Alzheimer’s disease; COPD = chronic obstructive pulmonary disease; CVD = cardiovascular disease; PD 
= Parkinson’s disease; T2D = type 2 diabetes.  
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In total, these chronic diseases pose an economic burden to the United States of more 

than 1 trillion US dollars per year. In addition to age-related diseases, a reduced effi-

cacy of vaccinations and an increased susceptibility to infections occur, which all to-

gether negatively impact quality of life and further increase the economic burden [41-

43]. Improving the health span (also defined as ‘healthy aging’) should therefore be 

pursued rather than or simultaneous with extended lifespan [44]. 

The immune system is involved in many age-related diseases (Table 1). The immune 

system becomes deregulated with age, developing a low-grade inflammation (‘inflam-

maging’). Because the immune system protects organisms against all types of patho-

gens and deteriorates with aging, it is crucial to find applicable interventions to rein-

force immunity. Interventions aimed at the immune system will contribute to solve the 

‘luxury problem’ of aging, and support healthy aging.  

This thesis will focus on the effects of immune aging (‘immunosenescence’) and the 

application of treatments to enhance the function of the aging immune system. 

 

Causes of aging 

In order to apply treatments that enhance the aging immune system, it is important to 

understand the causes of aging. Lopéz-Otin et al (2013) defined nine hallmarks of ag-

ing: genomic instability, telomere attrition, epigenetic alterations, loss of protein home-

ostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, 

stem cell exhaustion, and altered intercellular communication [11].  

DNA becomes increasingly susceptible to damage and degradation due to the short-

ening of telomeres, resulting in widespread tissue atrophy with severe depletion of 

tissue stem-cell reserves [45, 46]. Shortening of telomeres activates cellular growth 

arrest, senescence, and apoptosis, and induces metabolic and mitochondrial com-

promise [47]. An increased frequency of chromosome translocations causes a higher 

risk of transformation. Via tumor suppressor genes, cells can prevent transformation 

by undergoing senescence. In the senescent state, cells do not divide anymore but 

remain metabolically active [45, 48, 49].  

Mitochondrial DNA mutations due to high oxidative stress lead to damage and death 

in various types of cells [50], including hematopoietic stem cells (HSC) [45]. Oxidative 

stress causes DNA damage, but is also induced by DNA damage [51].  

DNA repair mechanisms detect DNA damage and execute DNA repair. Insufficient 

DNA repair capacity (and hence accumulation of DNA damage) results in genomic 

instability, cellular senescence, and loss of various stem-cell compartments [52].  

In many cell types, epigenetic regulation has been found to play a pivotal role in aging 

[53]. Epigenetic modifications include DNA methylation and histone modifications [54]. 

Significant variation was found in the extent of aging between co-housed animals [55], 
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implying epigenetic differences. The epigenetic profiles of monozygotic twins were the 

same as infants but differed in later life [56], indicating that epigenetic alterations are 

induced by environmental factors. The variation in human immunity is indeed largely 

driven by non-heritable factors [57]. 

In summary, nuclear DNA damage is described to be a master regulator of all hall-

marks of aging [58]. 

 

Accelerated aging mouse model: Ercc1
-/Δ7

 mice 

DNA repair deficiency results in accelerated aging [59]. Accelerated aging animal 

models have been developed to mimic human progeroid syndromes like Cockayne 

syndrome (CS), trichothiodystrophy (TTD), and XpF-Ercc1 (XFE) progeroid syndrome 

[58]. The Ercc1
-/Δ7

 mouse model has been described to ‘develop the widest spectrum 

of bona fide aging-associated phenotypes and pathology that is commonly observed 

in elderly humans’ [58]. ERCC1 is a central protein in DNA repair. Significantly ham-

pered DNA repair capacity in Ercc1-deficient mice (Ercc1
-/-

), therefore, renders them 

sensitive to agents inducing DNA damage [60], including dietary components. By in-

troducing the Δ7 allele, lacking the code for the final 7 amino acids of the Ercc1 pro-

tein, DNA repair capacity is partly retained, resulting in a median lifespan of 20 weeks 

in Ercc1
-/Δ7

 mice compared with 3-4 weeks in Ercc1
-/-

 mice [61, 62].  

 

The aging immune system 

The immune system is divided into an innate and an adaptive compartment. Cellular 

components of both compartments are derived from HSC (Figure 1). The innate part 

of the immune system originates predominantly from the common myeloid progenitors 

(CMP), which develop into granulocytes, monocytes, and macrophages. The adaptive 

part originates from the common lymphoid progenitors (CLP), which give rise to T and 

B cells. CLP, however, also give rise to innate lymphoid cells (ILC), which do no ex-

press rearranged antigen receptors like T and B cells do [45, 63].  

 

HSC 

HSC numbers in BM increase with age, both in humans and mice [64]. Functional def-

icits, however, accumulate in aged HSC [65]. HSC from old animals downregulate the 

expression of genes that control immune cell development, compared with HSC from 

young animals. This causes an increasing loss of control on the immune cell devel-

opment in aging [65-67]. The function of aged HSC is further in demise by p53-

mediated proliferative arrest [45]. Aged HSC do not efficiently generate lymphoid cells, 
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whereas the generation of myeloid cells is increased (‘myeloid bias’) [55, 66, 68]. 

Thus, HSC acquire intrinsic defects and changes with aging [64].  

Humoral factors 

With aging, serum levels of both pro-inflammatory mediators (IL-1β, IL-6, TNF, prosta-

glandin E2) and anti-inflammatory mediators (CRP, IL-1RA, sTNFR) increase [64, 69, 

70]. These factors reflect the low-grade inflammation in aging, also called ‘inflammag-

ing’ [71], and are strong predictors for mortality risk [72]. The simultaneous increase in 

pro- and anti-inflammatory mediators reflect the deregulation of the immune system 

with aging. 

Figure 1. Schematic overview of the hematopoiesis in the bone marrow. In grey non-committed pre-
cursor cells. In yellow/orange all lymphoid-committed precursors and differentiated cells. In red the erythroid 
lineage, in green and purple the myelomonocytic precursors and myeloid cells. B = B cell; Baso = basophil 
precursor; CLP = common lymphoid progenitor; CMP = common myeloid progenitor; Eo = eosinophil; Ery = 
erythrocyte; Ery blast = erythroblast; GMP = granulocyte-macrophage progenitor; HSC = hematopoietic 
stem cell; ILC = innate lymphoid cell; MC = mast cell; MEP = megakaryocyte-erythroid progenitor; MPP = 
multipotent progenitor; Neutro = neutrophil; NK = natural killer cell; pDC = plasmacytoid dendritic cell; Pre-B 
= pre-B cell; Pro-B = pro-B cell; Pro-T = pro-T cell; T = T cell.  

Granulocytes 

Granulocytes comprise neutrophils, eosinophils and basophils, and are derived from 

GMP. Neutrophil numbers progressively increase with age [73]. Increased numbers of 
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neutrophils are associated with poorer survival in elderly [74]. The age-related impair-

ment of chemotaxis, signaling pathways, phagocytosis, and ROS production by neu-

trophils causes a reduced ability to eliminate pathogens and inhibits the interaction 

with the adaptive immune system [63, 75-77]. Also, the function of eosinophils in el-

derly seems to be reduced, as IL-5 stimulation of eosinophils derived from elderly re-

sulted in a significantly decreased degranulation [78]. Basophils have been implicated 

to be antigen-presenting cells (APC), and are discussed in more detail in chapter 2. In 

response to anti-IgE, histamine release increased, while in response to f-met peptide 

a decline in histamine release was observed [79]. 

Monocytes and macrophages 

Monocyte subsets change considerably with age. The subpopulation of classical 

CD14
hi
CD16

-
 monocytes, in young individuals representing >95% of total monocytes,

decreases to <80%, while the non-classical CD16
+
 subsets increase [80-82]. This shift

reflects the change also observed in inflammatory conditions. During aging, mono-

cytes and macrophages acquire several defects in phagocytosis and cytokine produc-

tion [81, 83-88]. The influence of aging on macrophage phenotype and function is dis-

cussed in detail in chapter 4. 

Lymphocytes 

Lymphocytes belong to both the innate and the adaptive system. Examples of ILC are 

natural killer (NK) cells, lymphoid tissue inducer (LTi) cells, and ILC1, ILC2, and ILC3 

[89]. CD4
+
 T helper (Th) cells, CD8

+
 cytotoxic T cells (CTL), and CD19

+
 B cells belong

to the adaptive system. B and T cells are capable to develop long-lasting memory.  

With aging, the loss of hematopoietic tissue in the BM is associated with a decline in B 

cell lymphopoiesis [49, 55, 90, 91]. Several studies show a significant decrease in 

percentages and numbers of CD19
+
 B cells in blood with age [73, 91-93]. In addition,

the accumulation of long-lived B cells in aging inhibits the B cell production [90]. As a 

consequence, the ratio of naïve/memory B cells is reduced [94].  

In addition to the decreased generation of B cells, functional defects are present in 

these cells. In general, humoral immune responses are impaired in elderly, possibly by 

a severely reduced B cell receptor repertoire [95-97]. A decrease in total antibody pro-

duction, but an increase in auto-antibody production is observed in elderly [97, 98]. 

Many changes in aging B cells might be related to a decline in the function of or coop-

eration with CD4
+
 T helper cells [99, 100]. Other changes, like a decreased ‘capping’

activity due to an anomalous cholesterol/phospholipid ratio in the cell membrane, 

seem to be intrinsic to B cells [12]. 

Recently, a new subset of IL-10-producing CD1d
hi
CD5

+
 regulatory B cells (Breg) in

mice was discovered [101]. Effector B cells activate and maintain effector CD4
+
 T
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cells, presenting antigen to and co-stimulating T cells. Breg reciprocally promote de-

velopment of FoxP3
+
 regulatory T cells (Treg) and exert similar immune-suppressing

activities [101, 102]. The first indication of a change in these cell types during aging 

was shown by Twohig et al (2009). They reported an increased percentage of Breg in 

mice and suggested that the expansion suppresses the increasing numbers of autore-

active B cells. The increased percentages of Breg, together with the decrease in func-

tion of dendritic cells (DC), may cause a decline in effector CD4
+
 T cell function [103].

An important macroscopic alteration in the immune system is the atrophy of the thy-

mus (thymic involution), which probably already begins in early childhood [104, 105]. 

Hence, the production of new T cells declines with age [106], resulting in reduction of 

naïve T cell repertoire and accumulation of memory T cells [107-109]. Young adults 

that were thymectomized within 2 weeks after birth, showed a premature immune ag-

ing of the immune system, marked by the reduced number of T cells, accumulation of 

oligoclonal memory T cells, and a pro-inflammatory status [106]. Thus, the thymic in-

volution is not only an anatomical-histological alteration, but also has a profound effect 

on the efficacy and function of peripheral T cells. 

T cell responses in elderly are decreased, which may be related to both cell-intrinsic 

and cell-extrinsic factors, e.g. diminished capacity of DC [110]. Signal transduction in 

human T cells from elderly was reduced by a defect in tyrosine phosphorylation of 

CD3 (TCR), CD4, CD8 or IL-2R [111] and by an altered cell membrane fluidity [13].  

A significant increase in CD4
+
 T helper (Th) cells and a decrease of CD8

+
 cytotoxic T

cells (CTL) was found in aged individuals [108, 109]. Phenotypic changes in T cells 

occur with age, e.g. downregulation of costimulatory molecules [112], upregulation of 

co-inhibitory molecules (KLRG1, CD152/CTLA4) [42], and a decreased expression of 

alpha-4 (α4) integrin (CD49d), which is important in peri- and extra-vascular lympho-

cyte trafficking [108]. It is postulated that infection with the CMV virus causes accumu-

lation of CMV-specific terminally differentiated CD8
+
 and CD4

+
 T-cells due to repeated

reactivation and thereby inducing acceleration of immune senescence. The CTL rep-

ertoire thus becomes increasingly skewed towards previously encountered antigens 

such as cytomegalovirus (CMV), limiting the ability to respond to newly encountered 

viruses [113-115]. Persistent viral infections, e.g. by CMV or HIV, have a profound 

effect on the distribution of naïve T cells and memory T cells [76, 106, 116-118].  

The Th cell population can be divided into several classes: Tbet
+
 Th1, GATA3

+
 Th2,

RORγt
+
 Th17 cells, and FoxP3

+
 Tregs [119]. Treg regulate the immune response by

secreting IL-10 and expressing CD152 (CTLA-4) [120]. Elderly individuals (>65 years) 

have an increased proportion of peripheral Treg, but the lack of CD127 (IL7Rα) ex-

pression on Treg results in a loss-of-function [121]. The number of central Treg (gen-

erated in the thymus) is decreased, because of thymic involution [122].  
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The aging gut 

The gut is the largest immune organ and contains about 10
13

-10
14

 bacteria [123, 124].

Commensal gut microbiota improve epithelial barrier function, inhibit pathogenic bac-

teria and modulate the immune system [125] and thus contribute to immune homeo-

stasis in the gut [126]. Gut-associated lymphoid tissues (GALT) are organized follicles 

or patches with immune cells, which include isolated lymphoid follicles and Peyer’s 

patches (PP) [127].  

With age, the number of PP regresses. Intestinal B and T cells seem to be relatively 

unaffected with age [128]. Intestinal secretory IgA (sIgA) levels in mice are not affect-

ed during aging, but the basal production of IL-2 and cytokines that are associated 

with IgA switching (IL-5 and TGF-β) is reduced in the PP. At the same time, IL-4 pro-

duction is increased in mesenteric lymph nodes (MLN) [129]. The quality of sIgA in 

elderly is probably diminished, as it is observed that species diversity of protective an-

aerobes in the gut diminishes [130, 131]. In addition, age-related differences in gut 

microbiota composition are found [132, 133]. Higher drug intake, including broad-

spectrum antibiotics by elderly, has a negative effect on the composition of intestinal 

microbiota [133]. Biagi et al. (2010) reported that gut microbiota composition differs 

significantly between centenarians and elderly people (60-80 years old). Specific 

changes in the relative proportion of Firmicutes subgroups were observed. Further-

more, the gut microbiota of centenarians were enriched in Proteobacteria, so-called 

pathobionts that are considered to be minor and opportunistic components of the gut 

inducing pathology under certain circumstances. A rearrangement in the composition 

of butyrate-producing bacteria in centenarians was found [107] and a reduced colonic 

short chain fatty acid (SCFA) production was associated with a lower fiber intake and 

antibiotic treatment [133]. Butyrate is an SCFA, which represents a major energy 

source for enterocytes, is involved  epigenetic regulation, and has been implicated in 

the protection against inflammatory bowel diseases [107, 132, 134].  

A crucial component of the intestinal barrier is secreted mucus consisting of heavily 

glycosylated proteins that form a firmly adherent layer on top of the colonic epithelium 

[135]. Absence of mucus, such as in Muc2
-/-

 mice, leads to spontaneous development

of colitis [136]. Mucus serves as a feeding source for certain types of gut microbiota, 

and thus regulates the gut microbiota composition and immunity [137, 138].  

Interventions to prevent or revert aging-related effects on immunity 

Pharmacological 

Transplantation of aged mouse thymus into young mice rejuvenates the thymus [139]. 

Factors like thymic stromal lymphopoietin (TSLP), keratinocyte growth factor (KGF), 

GH, insulin-like growth factor-1 (IGF-1), acylated ghrelin and IL-7 may play a role in 
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the thymic (and BM) rejuvenation [121, 140, 141]. Elderly males undergoing sex ster-

oid ablation for prostate tumor treatment showed increased circulating naïve T cell 

numbers [142], suggesting the involvement of sex hormones in T cell differentiation. 

Inhibition of age-related decline in T cell development and function has been achieved 

by manipulating IL-7, KGF, or growth hormone concentrations in preclinical and clini-

cal trials [49]. B-cell depletion in mice reactivated B lymphopoiesis and rejuvenated 

the B lineage. The reconstituted B-cell compartment in old mice also partly restored 

the capacity to mount an antibody response to a new antigenic challenge [90, 143]. 

Rheumatoid arthritis and lymphoma patients treated with rituximab (anti-CD20 anti-

body depleting B cells) show similar improvements [143]. 

Diet and lifestyle 

Supplementation with retinoic acid, the active metabolite of vitamin A, was found to 

stimulate neutrophil adhesion and migration function in aged individuals [144]. Daily 

multivitamin intake or higher intakes of vitamin C and E decreased telomere shorten-

ing [145]. Lack of minerals like selenium and zinc also contribute to the immunodefi-

ciency of elderly. Supplementation of zinc reconstituted the production of IFN-γ, and 

stimulates the production and activity of NK cells and neutrophils [146-148].  

Consumption of resveratrol (3,5,4’-trihydroxystilbene, a polyphenol from red grapes) is 

associated with increased lifespan in many species, inducing the activity of silent mat-

ing type information regulation 2 homologue (Sirtuin) proteins. Sirtuins are able to 

deacetylate histones, are involved in epigenetic regulation, and are upregulated after 

dietary restriction (DR) [149-152]. A mouse study showed that addition of resveratrol 

to a high-caloric diet improved health and survival, nearly completely reversing the 

negative effect of the high-caloric diet [151]. Other plant polyphenols stimulate Sirtuins 

as well, like butein, piceatannol and quercetin [150].  

Furthermore, it was found in a mouse model that thymic involution was inhibited by 

long-term DR [153]. A 20-year longitudinal study on the effect of DR in rhesus ma-

caques showed a general beneficial effect with regard to aging, i.e. improved survival 

and a reduced risk to die from age-related diseases [154]. T cell distribution and func-

tion in aged DR-primates showed more similarity to young animals than aged animals 

[155]. Other studies, however, highlighted an increased mortality after influenza infec-

tion, impaired NK cell function, and decreased IgA in the guts of aged DR-mice [156-

158]. In addition to DR, regular and moderate physical activity may be beneficial to 

delay age-related effects, as primary antibody responses were increased [76, 159]. 
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Probiotics 

Probiotics are defined by the World Health Organization (WHO) and Food and Agricul-

tural Organization (FAO) as “live microorganisms which when administered in ade-

quate amounts confer a health benefit on the host” [160]. Probiotics are used to im-

prove conditions in gastrointestinal inflammatory diseases [161]. Probiotics compete 

with other bacteria, including pathogenic species, prime the immune system, influence 

barrier aspects, and produce short-chain fatty acids (SCFA; Figure 2). Microbe-

associated molecular patterns (MAMP) that bind to pattern recognition receptors 

(PRR) on host immune cells lead to cytokine production by immune cells and matura-

tion or suppression of immune cells [162-164]. Because the aging process is also 

marked by inflammatory conditions, probiotics might be beneficial to restore the im-

mune balance in aged individuals.  

Figure 2. Mechanisms of action by which probiotics modulate microbiota composition and host 
functions. Probiotic strains can 1) produce antimicrobial compounds; 2) prime the immune system, and 
induce e.g. regulatory T cells and IgA production; 3) increase mucus production; 4) increase the barrier 
function by e.g. increasing tight junctions; 5) lower the pH in the gut lumen; 6) decrease bacterial adherence 
and translocation; 7) compete with pathogens; and 8) produce short-chain fatty acids (SCFA), which provide 
energy to epithelial cells. 

Long-term supplementation with a Bifidobacterium animalis strain in middle-aged mice 

extended lifespan, accompanied by reduced tumor and ulcer incidence [165]. Combin-

ing this Bifidobacterium strain with arginine supplementation resulted in attenuated 

TNF and MIP-2 concentrations in the colon [166]. A Lactobacillus fermentum strain 

reversed the decline in neutrophil phagocytosis and function in aged mice [167]. Ad-

ministration of Lactobacillus pentosus inhibited NF-κB signaling in aged rats via dimin-

ished LPS production by gut microbiota [168]. 

A probiotic mixture (IRT5) attenuated age-related increase of IL-1β and TNF in the 

colon of rats [169]. Some probiotic strains showed modulatory effects on the gut mi-

crobiota composition of elderly subjects [170, 171], whereas supplementation of 

Bifidobacterium lactis enhanced phagocytic activity of monocytes and granulocytes in 

elderly [172].  
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Thus, probiotic treatment of elderly people may result in the preservation or restoration 

of a healthy gut microbiota composition and enhancement of immune function.  

 

Dietary tryptophan restriction 

Other selected dietary components that influence health- and lifespan are amino ac-

ids, such as methionine [173] and tryptophan [174]. Restriction of tryptophan in the 

diet resulted in an extension of lifespan and a delay in aging in rodents [174-176]. 

Tryptophan is an essential amino acid. If the body is in nitrogen balance (i.e. not in 

growth), most tryptophan is metabolized into ATP, while less than 1% is used for pro-

tein synthesis [177]. A small proportion of dietary tryptophan is metabolized by gut 

microbiota [177]. In fact, tryptophan is crucial to maintain microbial diversity [178, 179]. 

DC are able to absorb tryptophan to induce tolerance via inhibition of effector T cells 

and induction of Treg [180]. Tryptophan breakdown is increased with age [181] and in 

several autoimmune and neurodegenerative diseases [182, 183]. Decreased serum 

levels of tryptophan and increased serum levels of kynurenine have been observed in 

elderly people and were associated with elevated IL-6 levels [184].  

 

Aim of the thesis 

This work was embedded in a larger theme focused on gastrointestinal health, funded 

by Top Institute of Food and Nutrition (TIFN), and part of project GH002, entitled 

“Food-induced modulation of the intestinal immune barrier”. This theme aimed on de-

veloping methods for assessing and understanding the interactions between diets, 

microbiota, and maintaining homeostasis in the intestinal immune barrier. The project 

identified the primary sites where the immune system samples immune-active compo-

nents from the lumen of the gut [185]. In addition, the mechanism by which probiotics 

modulate the intestinal barrier and immunity was studied [186].  

The work presented in this thesis aims to identify major age-related changes in mye-

loid immune cells (basophils and macrophages) and lymphoid immune cells (B and T 

cells) and to find dietary interventions to revert or prevent age-related effects. Chapter 

1 introduces the societal relevance of aging research, and summarizes current 

knowledge about the aging immune system and potential interventions to delay the 

aging process. In chapter 2, we review current knowledge on basophils as antigen 

presenting cells. We propose that basophils may act as accessory cells, and hypothe-

size that basophils can instruct DC. We present evidence for interaction between DC 

and basophils in vitro. Finally, we highlight as an outstanding question: what is the 

effect of age on basophils? In chapter 3, we therefore set out to study the effect of 

age on basophils. In addition, we transferred microbiota derived from mice with differ-

ent ages to germfree mice to assess its effects on basophil phenotype and function. 
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Moreover, basophil maturation cultures, as a proxy for basophil precursors, were op-

timized permitting the assessment of production of relevant cytokines like IL-4. A de-

tailed overview of the available knowledge on aging macrophages, and their putative 

contribution to inflammaging, is discussed in relation to autophagy, metabolism, epi-

genetics, and potential (dietary) interventions in chapter 4. Because many potential 

probiotic strains are available, we set out to investigate the interaction between a 

number of bacterial strains and immune cells in vitro in chapter 5. By measuring the 

cytokine production and surface markers, we assessed how bacterial strains interact 

with young and aged splenocytes and bone marrow-derived macrophages. Based on 

IL-10/TNF ratios, we selected three putative probiotic strains to be tested in vivo for 

delaying age-related effects. Chapter 6 describes the effects of the application of the 

three selected bacterial strains on the immune system and the gut of accelerated ag-

ing Ercc1
-/Δ7

 mice. We found marked differences between the effects that the three

selected bacterial strains had in the aged immune system and gut.  

Dietary tryptophan restriction is known to extend lifespan in rodents, but it is unknown 

what mechanisms underlie life extension. We therefore investigated the effect of die-

tary tryptophan restriction on immunity and microbiota of wild-type and Ercc1
-/Δ7

 mice

in chapter 7. We report that dietary tryptophan restriction mostly affected B cells, in 

comparison to T cells and myeloid cells. Dietary tryptophan restriction also affected 

microbiota composition. Because it is known that the microbiota composition changes 

with age, we studied the role of microbiota on the aging gut and immune system in 

chapter 8. Gut microbiota from young or aged mice were transferred to germfree re-

cipient mice. Our gene expression, microbiota composition, and immune cell data con-

firmed that microbiota drive part of the aging phenotype. In chapter 9, we evaluate the 

outcomes of these studies with respect to recent scientific findings in aging research, 

and discuss the implications of our research for the rational design of intervention 

strategies and propose future research opportunities. 
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ABSTRACT 

Basophils account for only 0.1-1% of all peripheral blood leukocytes. They were con-

sidered to be a redundant cell type for a long time. However, several findings show a 

non-redundant role for basophils in Th2 immune responses in helminth infections, al-

lergy and autoimmunity. Both IgE-dependent and IgE-independent pathways have 

been described to contribute to basophil activation. In addition, several recent studies 

reported that basophils can function as antigen presenting cells and are important in 

initiation of Th2 immune responses. However, there are also conflicting studies that do 

not corroborate the importance of basophils in Th2 immune responses. This chapter 

discusses the role of basophils in Th2 immune responses in view of these recent find-

ings. Furthermore, we present evidence for a role for basophils in dendritic cell matu-

ration and function, by co-culturing purified bone marrow-derived basophils and bone 

marrow-derived dendritic cells. 
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INTRODUCTION 

Basophilic granulocytes have been discovered over a century ago [187], but it took 

more than 9 decades to demonstrate their direct involvement in allergy [188]. Granu-

locytes are divided in three subsets: basophilic granulocytes, eosinophilic granulo-

cytes and neutrophilic granulocytes. Basophilic granulocytes circulate in the peripheral 

blood and account for approximately 0.1-1% of blood leukocytes. They measure 7-10 

µm in diameter, have a segmented nucleus and contain metachromatic granules. Ba-

sophils share some features with mast cells, and have often been considered as mi-

nor, and possibly redundant, relatives of mast cells or as blood-circulating precursors 

of tissue-resident mast cells [189]. Even though basophils differ from mast cells in 

several aspects (see Table 1), they are more conveniently isolated (from the blood) 

than mast cells (from the tissues), and are often used as a surrogate for mast cells 

[190]. An important immunological role of basophils emerged when IgE-dependent 

interleukin (IL)-4 and IL-13 secretion by these cells was discovered (Figure 1) [191-

194]. More recently, several studies in mouse models were published that indicate that 

basophils may act as antigen-presenting cells (APCs). In addition, basophils were 

shown to be involved in inducing and perpetuating Th2 responses. This chapter dis-

cusses these recently discovered functions of basophils and adds data on the interac-

tion between basophils and dendritic cells (DC).  

 
Figure 1. Classical view of basophil in allergy. IgE crosslinking on the basophil by allergens leads to: 
secretion of IL-4 and IL-13 that enhance the Th2 immune response which is involved in allergy (A); and 
degranulation and mediator release resulting in immediate hypersensitivity (B). 
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Basophil progenitors and differentiation 

Human basophils and mast cells arise from CD34+ granulocyte-monocyte progenitors 

(GMPs) in the bone marrow (BM). Differentiation and survival of human basophils is 

mainly dependent on IL-3, IL-5 and granulocyte-macrophage colony stimulating factor 

(GM-CSF), with IL-3 being 10-50-fold more potent than the other two factors [195, 

196]. IL-3 also induces ST2 (IL-33Rα) expression on basophils, leading to enhanced 

IL-33 responsiveness [197]. The important role of IL-3 is illustrated by the fact that dif-

ferentiation of human basophils from human cord blood precursors occurs in 3 weeks 

in the presence of recombinant IL-3 in vitro [198]. Recently, enhanced differentiation, 

survival and/or activation of basophils has been found under the influence of IL-33 

[197] and leptin [199].  

Thymic stromal lymphopoietin (TSLP), produced by epithelial cells, stromal cells and 

mast cells, promotes the expansion of basophils in mice [200-206]. TSLP promotes 

mouse basophil hematopoiesis and activation independently of IL-3. TSLP-induced 

basophils are smaller in size than IL-3-stimulated basophils and express higher levels 

of IL-33R. A role for TSLP in maturation of human basophils has not been shown to 

date. However, the majority of basophils from healthy human donors express TSLPR. 

Also, IL-33R levels are significantly higher in human basophils obtained from inflam-

matory sites, suggesting that TSLP also induces basophil hematopoiesis and activa-

tion in allergic humans [200].  

 

Table 1. Major features of human mast cells and basophils 

 Basophils Mast cells 

Origin GMP GMP 
Site of  
maturation 

Bone marrow Tissue 

Lifespan Days to weeks Weeks to months 
Primary  
location 

Intravascular (<1% of WBC) Tissue 

Nucleus Segmented Ovoid 
Lipid mediators LTC4, LTD4, LTE4, PAF LTB4, LTC4, LTD4, LTE4, PAF, PGD2 
Granule contents Histamine, chondroitin sulphate,  

protease, Charcot Leyden Crystals,  
MBP 

Histamine, heparin and/or chondroitin  
sulphate, protease (trypsin), tryptase 

Differentiation  
and chemotactic  
factors 

IL-3,5, GM-CSF, CCL2,5,7,8,11,13 
CCL24,26, leptin, Flt3-L, TSLP 

IL-3,6,4,9,33, GM-CSF, NGF, SCF,  
TSLP, CCL2,5,7,8,11,13,24,26 

Secreted cytokines  
and other growth factors 

IL-3,4,5,6,8,9,13,25, APRIL, BAFF, 
RA, TNF, VEGF-A/B, CCL2,3 

IL-3,5,6,8,9,13, TGF-β, TNF, TSLP, 
CCL1,2,3,4,5,8,17,22 

Phenotypical markers FcεRI
+
, CD14

-
, CD117

+/-
, CD123

hi
,  

CD203c
+
 

FcεRI
+
, CD14

-
, CD117

+
, CD203c

+/-
  

APRIL = a proliferation-inducing ligand; BAFF = B cell activating factor belonging to the TNF family; CCL = 
CC chemokine ligand; Flt3L = Flt3 ligand; GM-CSF = granulocyte-macrophage colony stimulating factor; 
GMP = granulocyte-monocyte progenitors; LTB4 = leukotriene B4; MBP = major basic protein; NGF = nerve 
growth factor; PAF = platelet-activating factor; PGD2 = prostaglandin D2; SCF = stem cell factor; TGF = 
transforming growth factor; TNF = tumour necrosis factor; RA = retinoic acid; TSLP = thymic stromal lym-
phopoietin; VEGF = vaso-endothelial growth factor; WBC = white blood cells 
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Production and storage of mediators by basophils 

Basophils produce and store histamine. Upon degranulation, histamine causes symp-

toms such as flushing, headache and tachycardia, and is involved in the immediate 

allergic response as well as in anaphylaxis [207]. Basophils express histamine recep-

tors and transporters. Intracellular histamine negatively controls its own synthesis and 

cytokine synthesis via the organic cation transporter 3 [208]. Besides histamine, sev-

eral other lipid and protein mediators are stored and secreted by basophils, such as 

platelet-activating factor (PAF), which is much more potent on a molar basis than his-

tamine [209] and leukotriene C4 (see Table 1).  

Degranulation of basophils typically occurs upon IgE crosslinking after exposure to 

allergens. However, basophils can also be induced to degranulate by the complement 

factors 3a (C3a) and C5a, bacterial peptide fMLP, IgD and cytokines [210-212]. IL-33 

alone or in combination with IL-3 enhances IgE-induced histamine release and LTC4 

production, but does not induce degranulation or lipid mediator formation by itself 

[197]. The release of the preformed mediators causes the symptoms of immediate 

hypersensitivity [213].  

 

Production of cytokines 

Besides the release of preformed mediators, basophils can also produce several cyto-

kines (Figure 2). They can rapidly produce and secrete IL-4 and IL-13 upon stimula-

tion. This production is faster than normally expected for de novo protein synthesis 

and can be explained by the constitutive presence of low levels of IL-4 and IL-13 tran-

scripts [214, 215]. In addition, human basophils have been found to store CC chemo-

kine ligand (CCL) 2 [216]. 

IL-33 synergizes strongly with IL-3 to increase IL-4 production by basophils. IL-33 be-

longs to the IL-1 family, is mainly expressed by fibroblasts, epithelial cells and endo-

thelial cells and plays a key role in Th2 responses [217, 218]. Combined with IgE 

cross-linking, IL-33 also enhances histamine and IL-13 release. IL-33 also promotes 

mast cell- and basophil-driven inflammation and anaphylaxis, due to its ability to acti-

vate IgE-dependent and -independent effector responses [219, 220]. IL-33 induces IL-

9 production in human basophils, which is even more increased by simultaneous 

stimulation with IL-3 [221]. Several additional cytokines are produced by human baso-

phils (see Table 1).  

Mouse basophils not only respond to TSLP as described above, but can also produce 

TSLP [222]. However, it is not clear yet whether human basophils can also produce 

TSLP. Both mouse and human basophils produce IL-25 (or IL17-E), which has an im-

portant role in the regulation of Th2 memory cells [223]. Together with TSLP and IL-

33, IL-25 can condition dendritic cells to induce a unique type of inflammatory Th2 
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cells, which produce not only IL-4, IL-5 and IL-13, but also TNF-α instead of IL-10 

[204, 224, 225]. This suggests a role for basophils in chronic allergic diseases as IL-25 

and IL-25R are associated with these diseases [226].  

In response to IL-3, human basophils produce retinoic acid (RA), which enhances dif-

ferentiation of Th2 and Treg cells, and inhibits Th17 cell differentiation [227-229]. Hu-

man basophils produce IL-3 upon FcεRI crosslinking, which acts in an autocrine fash-

ion [198]. IL-3 induced production of amphiregulin, which is a strong Th2 stimulus and 

member of the epidermal growth factor family, has also been found in human baso-

phils [230, 231]. Through FcεRI crosslinking, human basophils also produce vaso-

endothelial growth factors A and B (VEGF-A and B) which are also involved in tissue 

remodeling [232]. These findings along with the notion that basophils produce IL-9 

[221] suggest a role for basophils in tissue remodeling seen in chronic allergic inflam-

mation [230, 231].  

 
Figure 2. Activation pathways of basophils. Basophils can be activated by cytokines, allergens and IgE 
crosslinking. Activation via one of these pathways leads to specific cytokine and chemokine responses. 
Cytokine responses to allergens or IgE crosslinking can be enhanced by IL-33. Basophils also respond to 
complement factors C3a and C5a, bacterial peptide fMLP and IgD crosslinking. Furthermore, basophils can 
be recruited to the lymph nodes by CCL7 and IL-3. GM-CSF = granulocyte-macrophage colony stimulating 
factor; LN = lymph node; RA = retinoic acid; TSLP = thymic stromal lymphopoietin; VEGF = vaso-
endothelial growth factor. 
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Activation of basophils may also play a role in compromising epithelial barrier function 

via the production of IL-4 and IL-13. An in vitro study in Calu-3 lung epithelial cells 

showed a disrupting effect of IL-4 and IL-13 on the epithelial barrier function and 

wound healing. IL-4 and IL-13 seem thus to be involved in the exacerbation seen in 

severe asthma patients [233].  

 

Presence of basophils at inflamed tissue sites 

Basophil infiltrates have been observed in several human allergic diseases, such as 

atopic dermatitis, allergic asthma and allergic rhinitis [234]. Originally, the involvement 

of basophils was suggested by the presence of specific mediator profiles in the late 

allergic responses following allergen provocation [235]. Later, specific antibodies con-

firmed the presence of basophils in inflamed tissue [236]. Both presence of the baso-

phils and their state of activation indicate a role of basophils in allergic inflammation, 

although this has not yet been formally proven. Basophils enter tissue sites within 

several hours after exposure to allergens [237]. However, it is conceivable that by the 

time basophils enter these tissues the allergens may have been cleared already. This 

evidently leads to the question as to what else, other than allergen-mediated stimula-

tion, can drive basophil activation following extravasation into tissue sites affected by 

allergic inflammation. Recently, it has been demonstrated that mouse basophils can 

be activated by IL-18 and IL-33 to release large amounts of cytokines such as IL-4, IL-

6, IL-9, IL-13, CCL2, CCL3, CCL4, CCL5 and GM-CSF, but not IL-17, IL-5 and inter-

feron-γ (IFN-γ) [237-239].  

 

Functional role of basophils in responses to parasites and in autoimmunity 

Basophils have for long been recognized as players in Th2 immunity [188]. In addition 

to a role in allergy as described above, Th2 responses are important in protective im-

munity against parasitic infections. Basophils are involved in immunity against para-

sites such as the intestinal helminths Trichuris muris [201], Necator americanus [236] 

and Nippostrongylus brasiliensis [215, 240, 241], Schistosoma mansoni eggs [201], 

and ticks [190]. Basophils also protect against the microbes Moraxella catarrhalis and 

Haemophilus influenzae by the production of antimicrobial factors via crosslinking of 

membrane-bound IgD molecules. In addition, IgD crosslinking by bacterial antigen 

results in support of class switching in B cells from IgM to IgG and IgA by basophil-

derived B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) 

[242]. Mouse basophils are also involved in supporting plasma cell survival [243], but 

these findings need to be confirmed in humans. 

Besides these crucial roles in Th2 responses in allergy and parasitic infections, baso-

phils are involved in autoimmunity. Autoimmunity is commonly described as a Th1, 
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Th17 and/or Treg cell-mediated response, but several autoimmune diseases are also 

caused by a predominant Th2 immune response. Basophils have been found to be 

involved in autoimmune diseases such as autoimmune urticaria [244] and bullous 

pemphigoid [234], and their IgD-mediated activation could imply involvement in other 

autoinflammatory diseases [244]. Basophils may also be involved in rheumatoid arthri-

tis, although their role is probably redundant [245].  

In systemic lupus erythematosus (SLE) Th1, Th2, Th17 and Treg cell subsets have all 

been described to be involved. Multiple organs seem to be affected by SLE. Kidney 

damage (lupus nephritis) by deposition of immune complexes formed by IgG, IgM, IgA 

or IgE may lead to renal failure and death [246]. Rivera and colleagues [247] used a 

Lyn
-/-

 mouse model for lupus nephritis and showed that basophils play a crucial role in 

the support of autoreactive plasma cells and the secretion of autoantibodies, and the 

survival and differentiation of B cells, possibly via membrane-bound BAFF and IL-6 

secretion. The observation of membrane-bound BAFF expression in mice is similar to 

what was found in human basophils, in which membrane-bound BAFF is expressed 

after IgD-crosslinking [242, 246, 247]. Furthermore, Lyn-/- basophils express more 

CD62L (L-selectin, important in recruitment to secondary lymphoid tissue), which is 

dependent on the presence of IL-4 and IgE. In basophils from SLE patients, the acti-

vation markers CD62L, CD203c and HLA-DR are upregulated [247]. Basophils are 

also detected in lymph nodes and spleens of patients, in contrast to control subjects 

without SLE. Thus, basophils may be held responsible for the production of autoanti-

bodies in SLE and the perpetuation of the pre-existing loss of B cell tolerance [247]. 

 

Do basophils induce Th2 type responses? 

An increasing number of papers has been published that address the role of basophils 

in inducing Th2 type responses. At least two major pathways have been identified by 

which basophils are activated to produce the Th2 signature cytokine IL-4. The IgE-

dependent pathway involves the binding of allergen-IgE complexes to FcεRI, implicat-

ing a pre-existing immune response against the antigen, resulting in the formation of 

allergen-specific IgE antibodies. This raises the question which cells are involved in 

inducing this primary IL-4-dependent Th2 response. 

Another pathway for basophilic IL-4 production is induced by the presence of cyto-

kines such as IL-3, IL-33, or, in mice, IL-18 [248]. As discussed above IL-33 has a 

pronounced agonistic action with IL-3 on basophils to increase IL-4 and IL-13 release. 

Interestingly, IL-33 is produced, as an innate immune response, by epithelial cells up-

on stimulation with allergens or parasitic infection [217, 249], and is thought to be re-

leased when epithelial cells are lysed [218]. This may suggest that basophils are trig-
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gered to produce IL-4 and IL-13 in response to tissue damage, thus initiating Th2 re-

sponses in the absence of preformed IgE. 

Pathogen associated molecular patterns such as proteases [248], peptidoglycan and 

other Toll-like receptor (TLR) ligands, but not the bacterial peptide N-formyl-

methionine-leucine-phenylalanine (fMLP) or C5a [198] can also enhance the produc-

tion of Th2 cytokines by basophils. Upon stimulation with Der p1, a house dust mite 

(HDM) protease, or N. americanus, human basophils produce high levels of IL-4, IL-5 

and IL-13 in an IgE-independent fashion [250]. These IgE-independent activation 

pathways may point to an important role for basophils in providing the initial IL-4 and 

IL-13 needed to prime Th2 cells in response to tissue damage or infection.  

However, this suggests that basophils should also be able to act as APCs. Profes-

sional APCs are very efficient in taking up, processing and presenting antigens to na-

ïve T cells. They provide peptides via MHC molecules, they costimulate by molecules 

such as CD80 and CD86, and produce cytokines [251].  

Studies in mouse models have resulted in insight in the antigen presenting processes 

of basophils. Mouse basophils were reported to present antigens to CD4
+
 T cells, and 

to express relevant costimulatory molecules, despite having a very low MHC-class II 

expression compared to DC and B cells [57]. Several studies in mouse models have 

even shown that basophils rather than DC are the critical APCs or at least critical pro-

viders of IL-4 for the local induction of allergen-specific Th2 type responses [201, 252, 

253]. Other studies have added large doubts to these findings [254, 255]. 

One of the first studies that reported the necessity of basophils in inducing Th2 type 

responses in vivo was a study by Sokol et al (2008). The authors depleted over 90% 

of the basophils, but no skin or intraperitoneal mast cells by administration of the 

MAR-1 antibody against FcεRIα. They observed after papain immunization that mouse 

basophils are necessary to induce TSLP-dependent Th2 skewing in the lymph nodes 

[222]. Furthermore, they showed that basophils produce IL-4, IL-13, TSLP and CCL1 

in response to papain stimulation [222]. In a follow-up study, the same group demon-

strated that mouse basophils cause Th2 cell differentiation in an MHC-II-dependent 

and IL-4-dependent manner, both in in vitro and in in vivo experiments [252]. 

Further, Perrigoue et al (2009) showed that when MHC-II expression is restricted to 

CD11c
+
 cells and no MHC-II is present on amongst others basophils, an improper Th2 

response against T. muris is induced. In IL-4-eGFP (4get) mice, IL-4-producing baso-

phils have been found to respond to T. muris infection, expressing MHC-II at an inter-

mediate level [201]. Basophils can also promote the proliferation and production of IL-

4 by CD4
+
 T cells in vitro, which is MHC-II-dependent [201]. In another study by Yo-

shimoto et al (2009) basophils were the only APCs that are able to induce Th2 cells. 

Contrasting with other APCs, basophils pulsed with 2,4-dinitrophenyl (DNP)-

conjugated ovalbumin (OVA) in the presence of DNP-specific IgE antibodies have a 
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greater capacity to induce the proliferation of OVA-specific T cells. This can be ex-

plained by FcεRI expression on basophils which mediates the effective uptake of al-

lergen-IgE complexes leading to more efficient antigen presentation [253].  

These studies clearly indicate that basophils play an important role in the induction of 

Th2 responses in mice. Others, however, could not reproduce these results and have 

found no measurable effects of basophils in mice infected with active S. mansoni or 

eggs after depletion of basophils by MAR-1 antibody to FcεRIα [256]. Instead, 70-80% 

CD11c
+
 DC depletion in the same system as used by Sokol et al (2008) disrupted Th2 

induction. This implies in contrast to the data obtained by Sokol et al (2008) that a key 

role for basophils in induction of the Th2 response induced by schistosome eggs may 

be unlikely [256].  

Apart from an inducing role of basophils for Th2 responses, another model can be 

proposed in which DC are key APCs, but basophils provide the IL-4 and IL-13 to in-

duce a Th2 response. HDM inhalation results in recruitment of inflammatory DC, ba-

sophils and eosinophils in a TLR-4 dependent pathway. Depletion of basophils in this 

model only partially reduces Th2 responses, but depletion of eosinophils has no effect 

on Th2 responses. Therefore, a model has been proposed whereby DC initiate and 

basophils amplify Th2 immunity to HDM allergen [254].  

A study by Tang et al (2010) suggests that both DC and basophils are needed to gen-

erate a Th2 response. Mouse basophils immunized with endogenous or exogenous 

OVA plus papain are not sufficient to effectively stimulate proliferation of CD4
+
 T cells. 

Depletion of mouse basophils by injection of MAR-1 antibody does have no effect on T 

cell proliferation, but reduces the IL-4 production by CD4
+
 T cells. Furthermore, DC 

have been shown to have an essential role in the uptake and presentation of papain 

and OVA. However, DC alone are unable to produce sufficient amounts (if any) of IL-4 

to induce IL-4 production in Th2 cells. Basophils alone are also unable to induce IL-4 

production in Th2 cells. The combination of DC and basophils are required to induce a 

considerable number of IL-4
+
 Th2 cells. In summary, this study suggests the need of 

DC to induce CD4
+
 T cell proliferation, whereas basophils are mandatory as an ac-

cessory cell in providing IL-4 in response to papain. It has also been found that reac-

tive oxygen species (ROS) signaling is crucial to trigger TLR4 and the subsequent 

production of TSLP by epithelial cells, to suppress Th1 cytokine production in DC and 

to induce DC-derived CCL7 production that recruits basophils via CCR3 to the lymph 

node [257]. However, in the studies mentioned using MAR-1 antibodies to deplete ba-

sophils, also a subset of inflammatory FcεRI
+
 DC is depleted. It is therefore not certain 

whether the observed impairment of Th2 induction is due to basophil or DC depletion 

[254]. 

Ohnmacht et al (2010) used transgenic Mcpt8Cre mice, which constitutively have only 

10% or less basophils compared to normal mice, but have normal mast cell numbers. 
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They concluded that basophils are not required in primary Th2 immunity against N. 

brasiliensis, OVA-alum and papain, and do not prime Th2 cells under these condi-

tions. DC appear to be the key cells to induce T cell proliferation and differentiation 

upon papain challenge [258]. Min and colleagues [259] showed an additional effect of 

IL-3 on mouse basophils. IL-3 is required for transient recruitment of basophils to the 

lymph nodes after 3 to 4 days during infection with N. brasiliensis. Absence of IL-3 

does, however, not affect the IL-4 production by CD4
+
 T cells and the Th2 immune 

response. They concluded therefore that basophils may be dispensable for the initia-

tion of Th2 responses in N. brasiliensis infection [259]. Basophils are also found to be 

the major source of IL-4 during primary infection with N. brasiliensis, whereas IL-4 

producing Th2 cells are the major source of IL-4 during secondary infection [240]. In 

addition, basophil migration was found to be important in mounting the Th2 response 

in the primary but not in the secondary infection. However, basophil-derived IL-4 is not 

required to support Th2 differentiation in primary nor secondary infection [240]. 

By imaging the interactions between basophils and CD4
+
 T cells, Sullivan et al (2011) 

showed that mouse basophils interact only briefly with CD4
+
 T cells in the lymph 

nodes after immunization with S. mansoni eggs or papain plus OVA, but they interact 

significantly longer with CD4
+
 cells in the lung after infection with N. brasiliensis with or 

without OVA [260]. Notably, however, different immunization conditions were applied, 

which might have also have influenced the results.  

Despite of the large number of research efforts, the precise mechanism by which ba-

sophils contribute to Th2 responses against pathogens and allergens is not entirely 

clear yet. It might be concluded that they only have an accessory role in which they 

provide IL-4 and IL-13 and act synergistically with DC. Alternatively, others clearly 

show that in some models basophils are the main APCs and provide IL-4 and TSLP 

as well (Figure 3). The nature of the antigen and the site where the antigen is encoun-

tered may play a crucial role in determining whether basophils are the key APC in in-

ducing and maintaining Th2 responses, or merely are an accessory cell.  

 

Discrepancies between human and mouse basophils 

As many studies have been performed on mouse and human basophilic surface 

markers and functions, several phenotypical as well as functional differences have 

been observed. Mouse basophils can be characterized by the expression of CD11b, 

CD49b, CD200R3, FcεRI, Thy1.2 and 2B4, and the absence of CD3, CD117, CD11c, 

B220, Gr1 and NK1.1 [261]. Human basophils can be characterized by the expression  
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Figure 3. Integration of current knowledge on basophils. When antigen enters the body, it passes the 
epithelial barrier, causing tissue damage in several cases. Epithelial cells may be triggered to produce cyto-
kines that prime basophils and DC. As a result, basophils rapidly produce IL-4, which primes naïve T helper 
cells to differentiate into Th2 cells. Also, IL-4 combined with TSLP activates DC to prime naïve T helper cells 
to differentiate into Th2 cells. Th2 cells are responsible for protective immunity against helminths and aller-
gic inflammation. DC are known to interact with T helper cells to present antigen and to provide costimula-
tion. In some mouse models, basophils do the same job. The question marks at antigen presentation by 
basophils in this figure underline the need for data on antigen presentation by human basophils. DC = den-
dritic cell; GM-CSF = granulocyte-macrophage stimulating factor; TSLP = thymic stromal lymphopoietin. 

 

of CD49b, CD123
hi
 (IL-3R), CD192 (CCR2), CD193 (CCR3), CD203c and FcεRI, and 

the absence of CD3, CD11c and CD14 (see Table 1). They also express several 

TLRs, such as TLR2 and TLR4 [198, 262]. Furthermore, they bear receptor-bound IgD 

on their membrane [242]. 

Mouse basophils induce anaphylaxis by the release of PAF via stimulation of FcγRII-III 

by IgG-antigen immune complexes [209]. Human basophils do express FcγRII (CD32) 

[263] and FcγRIIIB (CD16b) [264], but seem to lack FcγR-mediated activation due to 

the presence of FcγRIIB and the coupled immunoreceptor tyrosine-based inhibition 

motif (ITIM). In addition, FcγRIIB signaling in mouse basophils seems to differ from 

human basophils [265]. Furthermore, in contrast to rodents, the existence of an FcγR-
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mediated anaphylaxis in man remains controversial [266]. Therefore, it is doubtful 

whether human basophils are involved in FcγR-mediated anaphylaxis as observed in 

mice [237], although severity of human anaphylaxis is directly correlated with serum 

PAF levels and inversely correlated with serum PAF acetylhydrolase activity [267]. 

However, the contribution of PAF production by human mast cells, monocytes and 

macrophages is unknown. This could mean that an IgG-mediated anaphylactic path-

way may exist in humans or that IgG contributes to anaphylaxis severity, but it is un-

clear whether human basophils or mast cells are involved in such reactions. Additional 

studies are needed to elucidate this question.  

Another important difference between human and mouse basophils is the lack of pro-

tease-activated receptor (PAR) expression by human basophils. This could mean that 

the activation observed in mouse basophils by HDM [250] or papain extracts [252] is 

not comparable to the human situation. Additionally, IL-18 fails to activate human ba-

sophils, in contrast to mouse basophils [197]. In addition, human basophils are mostly 

derived from blood, whereas mouse basophils are mostly derived from bone marrow 

or spleen. All these differences show that caution should be applied in translating 

mouse research on basophils to the human situation. Some functions of basophils 

such as the antigen presenting function and TSLP production need to be confirmed in 

humans. 

As discussed above, considerable functional differences have been observed between 

human and mouse basophils, which underlines the need of confirmation of data ob-

tained from mouse studies in man. The role of human basophils in antigen presenta-

tion is not clear yet. There seems to be evidence that human basophils may differ from 

mouse basophils as they do not act as APCs. Using fluorescently labeled Bet v 1, 

Kitzmüller et al (2012) showed that human basophils efficiently bind the major birch 

pollen allergen Bet v 1 through IgE-antigen complexes, but do not internalize Bet v 1 

and only marginally upregulate HLA-DR, and fail to induce proliferation and cytokine 

production in Bet v 1-specific T cells [268]. Additionally, Niederberger and colleagues 

[269] found that basophils of allergic patients are not capable to induce T cell prolifera-

tion in secondary responses to Bet v 1. Various allergen-loaded APCs (DC, mono-

cytes and macrophages), depleted of basophils, do induce T cell proliferation. Moreo-

ver, adding basophils to these APCs does not have any effect on T cell proliferation in 

allergic immune response [269]. MHC-II expression was observed in part of human 

basophils [270]. Research by Voskamp et al (2013) showed that the MHC-II
+
 basophil 

population could be expanded in vitro by cytokines, but that this population lacked 

functional antigen presentation to T cells [271]. 
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Interaction between basophils and DC 

To determine whether basophils interact with DC, we performed cultures in which mu-

rine CD11c
-
CD117

-
FcεRIα

+
 BM-derived basophils (BMB) and BM-derived DC (BMDC) 

were co-cultured overnight in the presence of several stimuli (including two bacterial 

strains, L. plantarum WCFS1 and L. casei BL23). Activation markers on both cell 

types were evaluated, comparing cultures with either of the cell types to co-cultures 

containing both cell types. To get insight in cytokine production, cytokine levels in su-

pernatant were measured.  

Basophils enhance DC maturation in response to bacterial strains, but not in response 

to LPS+IL-18+IL-33 (Figure 4). LPS was used as a positive control for DC, whereas 

IL-18+IL-33 was used as a positive control for basophils (though these cytokines acti-

vate DC as well; data not shown) as described above. The frequencies of both imma-

ture CD11c
+
MHC-II

lo
CD86

lo
 DC (iDC) and CD11c

+
MHC-II

hi
CD86

hi
 mature DC (mDC) 

are significantly increased by adding basophils to DC cultures (Figure 4).  

We then investigated the surface marker expression by DC in the presence or ab-

sence of basophils. While the presence of basophils increased the expression of 

CD11b and CD62L upon bacterial stimulation, it decreased CD86 expression by iDC 

(Figure 5). A similar effect on CD62L expression by mDC was observed. MHC-II ex-

pression by iDC were not significantly altered, whereas mDC (irrespective of the mode 

of stimulation) upregulated MHC-II expression when co-cultured with basophils 

(p<0.01). CD86 expression by mDC was enhanced upon bacterial stimulation in the 

presence of basophils, as was CD62L expression. CD11b expression increased upon 

all tested stimuli (p<0.05 by one-way ANOVA).  

These data show that basophils mediate DC maturation and activation, in particular 

upon bacterial stimulations. 

 
Figure 4. Basophils enhance DC maturation upon bacterial stimulation. Maturation stages of BMDC in 
BMDC culture and BMB-BMDC co-culture, divided in immature DC (iDC) and mature DC (mDC). - = medi-
um control; + = LPS+IL-18+IL-33; LP = L. plantarum WCFS1; LC = L. casei BL23. Bars represent average 
values and SEM of 4-5 replicates; significant differences are indicated by asterisks. *=p<0.05; ***=p<0.001. 
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Next, we investigated whether DC influence basophil activation. We therefore com-

pared surface marker expression of basophils, cultured alone or with DC. MHC-II and 

CD86 expression by basophils are very low compared to DC, and did not respond to 

the stimuli we applied (Figure 6). However, when co-cultured with DC, basophils 

down-regulated MHC-II and CD86. In addition, stimulation with bacteria or LPS+IL-

18+IL-33 further decreased expression of these markers. FcεRIα expression was re-

duced by the combination of co-culturing with DC and stimulation. CD11b and CD62L 

showed differing results per stimulus, pointing at differential activity of bacteria and 

LPS+IL-18+IL-33 stimulation on basophils. 

These findings show that DC can instruct basophils to down-regulate activation mark-

ers. It might corroborate the proposed redundancy of basophils in antigen presenta-

tion, i.e. when the professional APC is present, basophils decrease expression of an-

tigen-presentation and co-stimulatory molecules. 

 
Figure 6. Surface marker expression by basophils show DC-mediated down-regulation. Median fluo-
rescence intensity (MFI) of FcεRIα, CD11b, CD62L, MHC-II, and CD86 on BMB in BMB culture and BMB-
BMDC co-culture, as determined by flow cytometry. - = medium control; + = LPS+IL-18+IL-33. Bars repre-
sent average values and SEM of 4-5 replicates; significant differences are indicated by asterisks. *=p<0.05; 
***=p<0.001. 

 

We then determined cytokine release by basophils and DC. Comparing basophils with 

DC cultured alone, it is clear that DC were much more potent in producing IL-6 and 
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TNF (Figure 7). Upon LPS+IL-18+IL-33 stimulation, the presence of basophils re-

duced IL-6 and TNF production, whereas the presence of basophils enhanced IL-6 

and TNF production upon bacterial stimulation. IL-2, IL-4, IL-10, IL-17A and IFN-γ lev-

els were detected in very low or non-detectable levels (data not shown). 

These data show that IL-6 and TNF release by DC is modulated by the presence or 

absence of basophils. 

The low expression of CD62L, CD86 and MHC-II by basophils was in line with previ-

ous findings [272]. Very low levels of IL-4 were detected in basophil cultures, without 

visible effects of stimuli or presence of DC (data not shown). The IL-4 release ob-

served in our cultures was much lower than reported previously [272]. An explanation 

for these findings could be the shorter duration of the stimulation, and the low number 

of plated cells.  

 
Figure 7. Basophils alter cytokine production by DC, and vice versa. Cytokine production in superna-
tant of BMB culture, BMDC culture and BMB-BMDC co-culture, as determined by CBA. - = medium control; 
+ = LPS+IL-18+IL-33. Bars represent average values and SEM of 4-5 replicates; significant differences are 
indicated by asterisks. ***=p<0.001.  

 

The exact mechanisms by which basophils and DC interact with each other need to be 

elucidated. Cytokine-mediated interaction could play a role. Basophils are capable of 

producing GM-CSF, which is a growth factor for DC [273]. IL-4, in combination with 

GM-CSF, has also been implicated in DC maturation [274]. Additional candidates in 

DC maturation could be IL-25 [275-277] and TSLP [278]. On the other hand, DC-

derived cytokines may instruct basophils to down-regulate MHC-II and CD86. To ex-

clude direct cell-cell interactions, basophil-derived supernatants could be added to DC 

(and vice versa), after which the response of either basophils or DC can be assessed. 

It is noteworthy that the effect of basophils on DC maturation and activation is de-

pendent on the applied stimulus. It argues for the existence of more than one pathway 

by which interaction between basophils and DC occur, i.e. by different cytokines or 

cell-cell contact. 
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Collectively, our data provide the first evidence that basophils can change DC pheno-

type, corroborating the depicted interaction between basophils and DC as shown in 

Figure 3. Conversely, basophils are also modulated by DC. 

 

CONCLUSIONS 

An early Th2 skewing function and a potential role in antigen presentation by baso-

phils was discovered recently. Some basophil functions were found to be non-

redundant, unique and not shared with mast cells or other immune cells. The findings 

discussed in this manuscript indicate that basophils modulate the immune system by 

cytokine (e.g. IL-4 and IL-13) production and are players in Th2 immunity in allergies 

and against parasitic infections. Mouse basophils can act as APCs, but their role as 

APC is possibly redundant. Several findings corroborate that mouse basophils act as 

accessory cell to support DC in mounting a Th2 immune response, in which DC act as 

critical APCs and basophils provide IL-4 (Figure 3). However, most of the data pre-

sented so far is generated in mouse models. The first attempts to confirm whether 

human basophils exert the described basophil functions in mice, indicate a functional 

difference between mouse and human basophils. Future studies should focus on ex-

trapolating important findings on mouse basophils in human basophils to make it pos-

sible to draw firm conclusions. In addition, the interaction of primary basophils with 

epithelium, DC and CD4
+
 T cells is incompletely understood. Moreover, a knowledge 

gap exists with regard to aging basophils, and this needs to be addressed in the near 

future (see Outstanding questions below). This chapter also includes experimental 

data on the interaction between basophils and DC, providing the first evidence that 

basophils might instruct DC maturation and cytokine release. These studies may yield 

novel therapeutic targets to improve conditions for patients suffering from allergic and 

autoimmune diseases in which basophils play a major role.  

 

 

 

 

 

 

 

 

 

  

Outstanding questions 

- Does aging affect the induction and perpetuation of Th2 responses? 

- What is the effect of aging on basophil phenotype? 

- Are potential APC capabilities of basophils altered with age? 

- Does the accessory role of basophils alter in aging? 
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SUPPLEMENTAL INFORMATION 

Mice  

8-12 weeks old C57Bl/6J mice were kept at specified pathogen free conditions in the 

Wageningen University experimental animal facility. All experimental protocols have 

been approved by the Wageningen University committee of animal experiments. Mice 

were sacrificed by cervical dislocation, after which BM was harvested. BM single cell 

suspensions were obtained by flushing femurs, tibias and ileac bones. Cell were fro-

zen at -80°C in 90% fetal calf serum (FCS) and 10% DMSO for later use. 

 

Bacterial cultures 

Lactobacillus plantarum WCFS1 and Lactobacillus casei BL23 were grown in MRS 

(Merck) medium until stationary phase was reached. Viability and cfu’s were checked 

by microscopy and by measuring optical density (OD600).  

 

Generation and purification of BMB 

BMB culture protocol was adapted from Yoshimoto et al [272]. BMB were generated 

by thawing BM and cultured for 11-14 days in RPMI-1640 medium containing 2 mM L-

glutamin, 10% FCS, 1 mM penicillin/streptomycin (Sigma), 1 mM sodium pyruvate, 50 

μM β-mercaptoethanol, 0.2% Normocin (Invivogen) and 2 ng/mL IL-3 (Sigma). After 

11-14 days, more than 50% of cells were differentiated into basophils, whereas about 

10% of the cells were differentiated into dendritic cells (BMDC) or mast cells 

(BMMCs). At day 11-14, cells were treated with anti-CD16/32 (2.4G2, BD Bioscienc-

es), followed by incubation with CD11c-biotin (HL3, BD Biosciences) and CD117-

biotin (2B8, BD Biosciences). After washing, cells were stained with streptavidin-DM 

particles (BD Biosciences) and streptavidin-APC (Ebioscience). CD11c
-
CD117

-
 cells 

were separated using the IMagnet (BD Biosciences) and subsequently incubated with 

FcεRIα-biotin (MAR-1, Ebioscience). Cells were washed and stained with streptavidin-

DM particles and streptavidin-PE (Ebioscience). Dead cell exclusion was done by 7-

AAD staining. Live CD11c
-
CD117

-
FcεRIα

+
 cells (BMB) were obtained with a purity of 

at least 95% (Figure S1).  

 

Generation of BMDC and BMB-BMDC co-cultures 

BMDC were generated from BM by culturing cells for 7 days in RPMI-1640 medium, 

25 mM HEPES, 10% FCS, 1 mM penicillin/streptomycin, 50 μM β-mercaptoethanol 

and 20 ng/mL rGM-CSF (BioLegend). Purified BMB and BMDC were co-cultured 

overnight (1:1 ratio) at 10
5
 cells/mL, in the presence of 20 ng/mL LPS (E. coli 055:B5, 

Sigma) + 100 ng/mL rIL-18 (MBL) + 200 ng/mL rIL-33 (PeproTech) or one of the bac-

terial strains L. plantarum WCFS1 or L. casei BL23 (1 cfu per BMB/BMDC).  

  

 

  2 



Chapter 2 

40 
 

Flow cytometry procedures 

Flow cytometry was performed according to standard procedures. Cells were incubat-

ed with CD117-PerCP-Cy5.5 (2B8, BD Biosciences), MHC-II-FITC (M5/114.152, Ebi-

oscience), CD11b-BV421 (M1/70, BD Biosciences), CD11c-PE-Cy7 (N418, Ebiosci-

ence), CD86-APC (GL1, Ebioscience), CD62L-APC-Cy7 (MEL-14, BD Biosciences). 

Dead cells were excluded using 7-AAD (BD Biosciences). Refer to Figure S2 for flow 

cytometric analysis of co-cultures. IL-2, IL-4, IL-6, IFN-γ, TNF, IL-17A and IL-10 secre-

tion were measured in supernatant using the Cytometric Bead Array (CBA) Mouse 

Th1/Th2/Th17 Cytokine kit (BD Biosciences), according to the manufacturer’s proto-

col. All data were acquired with a FACS CantoII (BD Biosciences) and analyzed with 

FlowJo vX.0.7 (Treestar) software or FCAP Array v3.0 software (SoftFlow). 

Figure S1. Identification of BMB, BMMC and BMDC in IL-3-driven cultures, and effect of purification. 

Representative image of BMB culture after 14 days (A). CD11c-CD117- cells after negative selection by 

IMagnet (B). FcεRIα positive selection of basophils results in more than 95% purity (C). 

 
Figure S2. Flow cytometric analysis of BMB and BMDC co-cultures. BMB and BMDC are distinguisha-
ble by FcεRIα and CD11c (A). Different maturation stages can be identified in CD11c

+
 BMDC (B). iDC = 

immature DC; mDC = mature DC. 

Statistical analysis 

One-way or two-way ANOVA and subsequent Bonferroni post-tests were performed 

for differences in culture conditions, using GraphPad Prism v5.03 (San Diego, USA). 

P-values<0.05 were considered statistically significant. Significant differences are indi-

cated by asterisks: *=p<0.05; **=p<0.01; ***=p<0.001. 
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ABSTRACT 

Basophils are important in Th2-mediated inflammation, which declines with age. Influ-

ence of age on basophils is poorly understood. Therefore, we studied basophil fre-

quencies and phenotype in 4-5-month-old and 19-20-month-old mice.  

With aging, basophils became more abundant in spleen. Aged basophils tended to 

express less CD200R3 and more CD123, and these changes were comparable and 

consistent in basophils from bone marrow (BM) and spleen. To investigate the role of 

microbiota, we transferred microbiota from young and old mice to germfree recipients. 

No differences between young and aged microbiota were observed on BM basophils. 

A tendency to lower CD11b expression was observed on splenic basophils after trans-

ferring microbiota of aged mice (compared with microbiota of young mice), with no 

effect on FcεRIα, CD200R3, CD123, TSLPR, and IL-33R expression.  

To assess the changes in precursors of basophils with age, we used IL-3-driven BM-

derived basophil cultures. Purified FcεRIα
+
CD11c

-
CD117

-
 basophils from aged mice 

expressed lower levels of CD11b upon several stimuli (CD200R3, IL-18+IL-33, TSLP, 

IgE), whereas proliferation was increased compared with basophils from young mice.  

Higher frequencies of IL-4
+
 basophils were generated from basophil precursors of 

aged mice (versus young mice). This seemed to be influenced by gut microbiota, as 

similar differences were observed in basophils derived from germfree recipients of old 

microbiota.  

Collectively, these results indicate an important role for age determining basophil fre-

quencies and phenotype. Furthermore, this study shows that microbiota of aged mice 

affect precursors of basophils, as compared with microbiota of young mice. 
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INTRODUCTION 

The gut contains about 10
13

-10
14

 bacteria [123, 124]. These commensal gut microbio-

ta modulate the immune system [125] and contribute to immune homeostasis in the 

mucosal immune system [126]. Gut microbiota play an important modulatory role be-

yond mucosal immunity, for instance by changing the stem cell niche in the bone mar-

row (BM) [279]. Furthermore, absence of microbe-derived peptidoglycan in the circula-

tion impairs the killing by BM neutrophils of Salmonella pneumoniae and Staphylococ-

cus aureus [280]. In addition, in the absence of microbiota, CD123 (IL-3Rα) expres-

sion on basophil precursors was upregulated, thereby enhancing their responsiveness 

to IL-3 [281]. 

During aging the immune system develops several defects and undergoes various 

changes in differentiation, distribution, and activation [49]. Anti-parasitic immune re-

sponses in aged mice are impaired [282], which may indicate age-related changes in 

basophil function [283]. With aging, gut microbiota composition changes [107]. Baso-

phil hematopoiesis and function are regulated by gut microbiota. Absence of gut mi-

crobiota lead to increased basophil frequencies and enhanced Th2 immune responses 

[281]. Histamine release and sensitivity of basophils from elderly were reported to be 

increased upon anti-IgE stimulation [79], but in a different study, no age-related differ-

ence was found in histamine release of human blood basophils upon anti-IgE or anti-

IgG4 stimulation [284]. Basophil counts were not associated with frailty or mortality in 

elderly women [285, 286]. Basophil frequencies and absolute numbers decreased in 

blood from healthy elderly volunteers and patients suffering from Alzheimer’s disease 

[287, 288]. It is, however, largely unknown what effect age has on basophil differentia-

tion and function.  

Basophils are granulocytes which are involved in mounting and perpetuating Th2-

mediated responses [289]. Basophils are an important source of IL-4 and IL-13, which 

direct the immune response towards Th2 type responses [290]. After IgD crosslinking, 

basophils produced IL-1, IL-4 and B cell activating factor (BAFF), supporting B cell 

functions [242]. Basophils are the major source of IL-4 after Streptococcus pneumoni-

ae infection, contributing to humoral memory immune responses [291]. In addition, the 

basophil is crucial in the pathophysiology of systemic lupus erythematosus [247], and 

its counts are a marker for disease activity [292]. Thus, basophils are crucial in Th2 

responses. 

Basophil differentiation and functions are dependent on IL-3 or TSLP [293]. Basophils 

can be activated in an IgE-dependent and IgE-independent manner. Regarding IgE-

dependent activation, FcεRIα crosslinking by complexes of IgE and antigen activates 

basophils, resulting in IL-4 and IL-13 production [213]. Basophils express IL-18R and 

IL-33R (ST2), and upon stimulation with IL-18 and IL-33, basophils produce IL-4, IL-6, 

IL-13, GM-CSF, and several chemokines [272]. This effect is further enhanced in the 
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presence of IL-3 [253]. CD200R3-mediated activation of basophils leads to IL-4 pro-

duction in vitro, and to anaphylaxis in vivo [294]. 

Here we studied changes in frequency and phenotype of basophils in BM and spleen, 

and changes in differentiation from precursors of basophils during aging by comparing 

4-month-old and 18-month-old mice. To study the influence of the aging microbiota on 

basophil function we studied basophil frequency and phenotype, and differentiation 

from precursors of basophils from young germfree recipients of microbiota of 4-month-

old and 18-month-old mice.  

 

MATERIALS AND METHODS 

Mice 

Young and old wild-type C57Bl/6 mice were purchased from Harlan (Horst, The Neth-

erlands). Germfree C57Bl/6 mice were generated at the Central Animal Laboratory of 

the Radboud University Medical Center (Nijmegen, The Netherlands). Mice were kept 

in individually ventilated cages or sterile incubators, and were specific pathogen free 

(SPF). All mice had free access to feed (ssniff, rat/mouse maintenance V153X R/M-H) 

and water. The experiments were approved by the Animal Ethical Committee of Uni-

versity Medical Center of Groningen. All groups consisted of n=10 mice, unless other-

wise mentioned. 

 

Microbiota transfers  

Feces from 4-month-old and 18-month-old female mice were freshly collected. Part of 

the feces was stored for microbial analysis, the remaining part was mixed with PBS. 

Three-month-old germfree mice were administered 200 µL of 100 mg/mL fecal solu-

tion by intragastric gavage (20 mg/mouse). These mice were then housed in IVC for 

another month. 

 

Organ collection and cell suspensions  

At 4-5 months or 19-20 months of age, mice were anesthetized with isoflurane, bled, 

and sacrificed by cervical dislocation. Serum was collected by spinning the clotted 

blood, and was stored at -80˚C until further analysis. Mice were inspected for visible 

tumors, which lead to the exclusion of one aged mice. Femurs and spleen of each 

mouse were isolated. Single-cell suspensions of BM were obtained by flushing the 

femurs, whereas the spleen was cut in pieces. Cells were then passed through a cell 

strainer. Part of the BM cells were frozen for later use in vitro.  
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Flow cytometry  

Flow cytometry was performed using standard procedures. After staining for surface 

markers, cells were incubated with live/dead Efluor506 or Efluor520 stain (Ebiosci-

ence). Cells were then fixed using the FoxP3/Transcription Factor Staining Buffer kit 

(Ebioscience), with the exception of the Golgi-Stop-treated cells. They were processed 

using the Intracellular Fixation and Permeabilization kit (Ebioscience) to preserve in-

tracellular cytokines. Used antibodies are listed in Table 1. Flow cytometric measure-

ments were acquired by a FACSCanto II flow cytometry (BD Biosciences, Erembode-

gem, Belgium). FlowJo software vX.07 (Tree Star, San Carlos, USA) was used for 

data analysis. 

 

Table 1. Used antibodies for flow cytometry and purification. 

Target Format Clone Company 

CD3e FITC 145-2C11 BD 
CD4 FITC H129.19 BD 
CD8a FITC 53-6.7 BD 
CD11b BV421/FITC M1/70 BD 
CD11c Biotin/FITC HL3 BD 
CD16/32 FITC/Purified 2.4G2 BD 
CD19 FITC 1D3 Ebioscience 
CD45R/B220 FITC RA3-6B2 BD 
CD62L APC-Cy7 MEL-14 BD 
CD117 Biotin 

BV421 
BV510 

2B8 
2B8 
ACK2 

BD 
BioLegend 
BioLegend 

CD123 Biotin 
PE 

5B11 
5B11 

BD 
Ebioscience 

CD200R3 APC Ba13 BioLegend 
FcεRIα Biotin/PE-Cy7 MAR-1 Ebioscience 
IL-4 APC 11B11 Ebioscience 
IL-13 PE-Cy7 eBio13A Ebioscience 
IL-33R/ST2 PerCP-Efluor710 RMST2-2 Ebioscience 
Ki-67 FITC SolA15 Ebioscience 
Ly6C+Ly6G FITC RB6-8C5 BD 
NK1.1 FITC PK136 Ebioscience 
TER-119 FITC TER-119 BD 
TSLPR PE  R&D 
Streptavidin APC-Efluor780  Ebioscience 

 

Basophil generation and stimulation in vitro  

BM cells were thawed, checked for viability by trypan blue, and counted. BM cells 

were cultures, using an optimized method that was adapted from a previously pub-

lished protocol [272]. About 3.3x10
5
 viable BM cells per mL culture medium were plat-

ed in 6-wells plates. Culture medium consisted of RPMI-1640 medium (Gibco, Breda, 

The Netherlands), 10% fetal calf serum (Gibco), 100 µg/mL Normocin (Invivogen, San 

Diego, USA), 2 ng/mL rmIL-3 (Sanquin, Amsterdam, The Netherlands), and 50 µM β-

mercaptoethanol (Sigma-Aldrich, Zwijndrecht, The Netherlands). Cells were cultured 

for 10 days. Every 3-4 days, non-adherent cells were collected, counted, and re-

plated. About 10
5
 cells were used for flow cytometry to measure proliferation and dif-
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ferentiation in the cultures (see Table 1 for antibodies). Expansion of each culture was 

calculated by dividing the cell count by the input. After 10 days, cells were incubated 

with purified anti-CD16/32 and subsequently with biotinylated CD11c and CD117 (all 

BD Biosciences, San Jose, USA). Cells were then incubated with streptavidin-coated 

IMag beads (BD) and processed with the IMagnet (BD). The negative fraction was 

incubated with biotinylated FcεRIα and subsequently with streptavidin-coated IMag 

beads and processed with the IMagnet. The positive fraction (containing CD11c
-

CD117
-
FcεRIα

+
 cells) were defined as BM-derived basophils (BMB), and purity typical-

ly exceeded 95% (average >96%). Pure BMB were resuspended to 5x10
5
/mL and 

stimulated for 15 hours with culture medium (including IL-3) alone, 1 µg/mL rmTSLP 

(Ebioscience, San Diego, USA), 5 µg/mL CD200R3 (BioLegend, San Diego, USA), 10 

µg/mL IgE (Abcam, Cambridge, USA) or a combination of 50 ng/mL rmIL-18 (MBL 

International, Watertown, USA) and 100 ng/mL rmIL-33 (Sanquin). For intracellular 

cytokine staining, cells were stimulated for 11 hours, and Golgi-Stop (BD) was added 

for an additional 4 hours.  

 

Statistical analysis 

All statistical analyses were performed in Prism 5.0 (GraphPad Software, San Diego, 

USA). For comparing two experimental conditions, unpaired Student’s T tests were 

applied (with Welch’s correction if unequal variances were observed). Mann-Whitney 

T test was applied if no normal distribution was found with D’Agostino & Pearson om-

nibus normality test. Median fluorescence intensities were tested by paired Student’s 

T tests or Wilcoxon signed rank test (in absence of normal distribution), because all 

experimental groups were equally distributed at any day for acquisition. Linear regres-

sion analysis was performed to correlate IgE serum levels and basophil numbers. If 

testing the effect of two variables and their interaction (e.g. culture time and age), two-

way ANOVA (TWA) was applied, with Bonferroni post hoc tests. Values of p<0.05 

were considered to be statistically significant, and values between p>0.05 and p<0.10 

were considered to be a trend. Significant differences are indicated by asterisks: 

*=p<0.05; **=p<0.01; ***=p<0.001. 

 

RESULTS 

Basophils become more abundant in the spleen during aging and display a 

changed phenotype 

To identify the effect of age on basophil frequencies and phenotype, we analyzed fre-

quencies of Lin
-
CD117

-
FcεRIα

+
CD200R3

+
 basophils in mouse BM (Figure 1A) and 

spleen (Figure 1D). By comparing young and old mice, we found that the frequencies 

of basophils in the BM were similar (Figure 1C), but were increased in the spleen of  
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aged mice (p<0.05; Figure 1F). The phenotype of basophils changed in both BM and 

spleen. CD200R3 expression consistently tended to decrease on basophils in the BM 

(p<0.08; Figure 1B, 1C) and in the spleen of aged mice (p<0.06; Figure 1E, 1F), but 

CD123 expression consistently tended to be increased in aged basophils in the BM 

(p<0.08) and spleen (p<0.10). No age-related changes in FcεRIα, TSLPR, CD11b, 

and IL-33R (Figure 1B, 1E) were observed.  

 

No difference in basophil frequencies and phenotype after microbiota transfer 

of young and aged mice 

Next, we questioned whether the differences with aging are caused by gut microbiota. 

To this end, microbiota obtained from fecal samples of 4-month-old mice or 18-month-

old mice were transferred to 3-month-old germfree mice. In these young germfree 

mice, we found at 4 weeks after microbiota transfer no significant effects on frequency 

nor on phenotype of basophils (Figure 2). Both BM and spleen had similar basophil 

frequencies in the young or old microbiota recipients (Figure 2A, 2B). In addition, no 

difference in FcεRIα, TSLPR, CD200R3, IL-33R, and CD123 was observed between 

young and aged recipient-mice. The only difference we observed was in splenic baso-

phils that tended to express less CD11b (p<0.06; Figure 2B) in recipients of 18-month-

old microbiota.  

Figure 2. Effect of microbiota transfer of young and old mice to germfree mice on basophil frequen-
cies and phenotype in the bone marrow and the spleen. A) Quantification of mean frequencies of BM 
basophils or median fluorescence intensity (MFI) on BM basophils of FcεRIα, CD200R3, IL-33R, and 
TSLPR. B) Quantification of mean frequencies of spleen basophils or MFI on spleen basophils of FcεRIα, 
CD200R3, TSLPR, IL-33R, and CD11b. Data represent n=9-10 mice per group. BM = bone marrow; O = 
microbiota derived from old mouse; Y = microbiota derived from young mouse. 

 

Function of basophils is impaired in old mice in a microbiota-dependent fashion 

Although frequency and the majority of the phenotypical markers were not influenced 

by the age of the microbiota, we wished to exclude that other differential functional 

parameters of the basophils were still intact. To this end we isolated and differentiated 

basophils in vitro and the subsequently tested the functional response of purified ba-

sophils on several stimuli.  
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Table 2. Average input, output, yield, and purity of basophils from IL-3 BMB cultures. 

Group Input BM cells x10
6
 Output cultured cells x10

6
 Yield pure basophils x10

6
 Purity % 

Young 5.6 (0.4) 11.6 (1.9) 4.5 (1.1) 97 (1) 
Old 6.0 (0.0) 11.6 (1.1) 3.2 (1.3) 97 (1) 
+Y 6.0 (0.0) 13.7 (1.6) 3.7 (1.2) 97 (1) 
+O 5.6 (0.4) 11.0 (0.7) 3.4 (1.0) 95 (2) 

Data represent 5 cultures per group (with each culture derived from a different mouse). Standard error of 
the mean between brackets. O = microbiota derived from old mouse; Y = microbiota derived from young 
mouse. 

 

Differentiation adequacy into FcεRIα
+
CD117

-
 basophils (and CD200R3

+
 basophils) or 

FcεRIα
+
CD117

+
 mast cells was determined by flow cytometry after 4, 7, and 10 days 

of culture (Figure 3A). No differences in expansion of the whole culture, or differentia-

tion were observed among the experimental groups (Table 2; Figure 3B). About 98% 

of basophils were CD200R3
+
 after 10 days of culture (data not shown). 

After 10 days of culturing BM cells with IL-3, we isolated the basophils (Figure 4A). 

Purified basophils (BMB) were overnight cultured under five different conditions: me-

dium, IL-18+IL-33, TSLP, IgE, or CD200R3. These conditions mimic different routes of 

activation of basophils [289]. The five different conditions resulted in distinct basophil 

phenotypes. IL-18+IL-33 and CD200R3 was most potent in the induction of IL-4 and 

IL-13 by the basophils (Figure 4B). For Ki-67, IL-4, and IL-13, but not CD11b expres-

sion, we observed a stimulus-dependent effect (Figure 4C).  

CD11b expression was decreased in BMB derived from 4-month-old mice compared 

with those from 18-month-old mice (p<0.001). This was not microbiota-dependent, 

because CD11b was not altered in BMB derived from germfree recipients of old mi-

crobiota compared with recipients of young microbiota (Figure 4C). We originally 

planned to use Ki-67 as a measure of proliferation [295], but this was not applicable as 

most BMB were Ki-67
+
 (Figure 4B). We therefore focused on a distinct cell population 

with high expression of Ki-67 (Ki-67
++

) as measure for proliferative activity. With aging, 

the frequency of Ki-67
++

 BMB consistently increased under all tested conditions 

(p<0.001; Figure 4C). The frequency of IL-4
+
 cells increased in old BMB (p<0.05). This 

seemed to be influenced by microbiota, because similar differences were observed in 

BMB from recipients of old microbiota (p<0.01; Figure 4C). The IL-13
+
 frequency did 

not change with age, but did increase upon transfer of old versus young microbiota 

(p<0.01; Figure 4C). We compared the five culture conditions in aging, and after trans-

fer of microbiota, but found the most pronounced effects in cultures stimulated with 

CD200R3, IL-18+IL-33, and TSLP. 
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Figure 3. Effect of age and age-related microbiota on IL-3 BM cultures. A) Representative gating of IL-
3-driven BM culture, in which all live cells were gated for CD117 and FcεRIα. Basophils were defined as 
FcεRIα

+
CD117

-
 and mast cells as FcεRIα

+
CD117

+
. Data represent n=4 cultures per group for day 4 and n=5 

cultures per group for day 7 and 10 (with each culture derived from a different mouse). O = microbiota de-
rived from old mouse; Y = microbiota derived from young mouse.  

 

DISCUSSION 

In this study, we found that basophil frequencies and phenotype in the spleen change 

in mice during aging. Less effects were found in the BM. This however should not be 

interpreted as a suggestion that no aging effects in the BM exist, as significant effects 

of age were found on differentiation of basophils from precursors in the BM. Partly 

these effects were caused by the aging microbiota, as age-dependent changes in dif-

ferentiation of basophil precursors was also observed in young germfree recipients of 

microbiota of 18-month-old mice.  

Our report confirms age-related effects on basophils, showing for the first time that 

basophil phenotype changes. Intriguingly, CD123 expression by basophils from old 

mice consistently tended to increase. CD123 is crucial for IL-3 signaling and basophil 

hematopoiesis [293], and might explain the increased frequency of spleen basophils. 

Aged basophils showed a tendency to lower expression of CD200R3, which inhibits 

FcεRIα-mediated activation of basophils [296]. CD200R3 also activates basophils to 
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Figure 4. Effect of age and age-related microbiota on pure bone marrow-derived basophils. A) Rep-
resentative example of purified BMB, defined as FcεRIα+CD11c-CD117-. B) Flow cytometric analysis of 
intracellular Ki-67, IL-4, and IL-13 staining of CD200R3-stimulated BMB. For Ki-67, a representative exam-
ple of a young (blue) and an old mouse (red) is given. C) Effect of stimulation with different stimuli on ex-
pression of (extracellular) CD11b and (intracellular) Ki-67, IL-4, and IL-13. *=p<0.05; **=p<0.01. Asterisks 
above bars indicate outcome of Bonferroni post hoc tests. The outcome of TWA is indicated below the leg-
end. Data represent 5 cultures per group (with each culture derived from a different mouse). BMB = bone 
marrow-derived basophils; O = microbiota derived from old mouse; TWA = two-way ANOVA; Y = microbiota 
derived from young mouse.  
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produce IL-4 and to degranulate [294]. Lower CD200R3 expression by basophils from 

aged mice (versus basophils from young mice) might indicate that aged basophils are 

less readily activated [294]. Together, these age-related changes might indicate an 

increased sensitivity to IL-3, and at the same time an altered threshold for activation. 

Thus, we were able to show differences in BM and spleen basophils with age.  

To gain insight into the effect of aging on the precursors of basophils, we used IL-3-

dependent BM cultures as a proxy (Figure 3). First, we improved the method to gen-

erate basophils by at least 70-fold compared with a recent, detailed protocol [272]. 

Yoshimoto et al (2012) reported using femurs and tibias of ten 9- to 12-month-old 

Balb/c male mice. A conservative estimation of the starting number of BM cells in their 

cultures is 4x10
8
, which resulted in 20-40x10

6
 cultured cells (culture efficiency ≤10%). 

After purification, 1-4x10
6
 basophils were collected (purification efficiency ≤10%). Un-

der the best conditions, the mentioned protocol ends with a 1% yield. In our hands, the 

culture efficiency of the improved BMB generation protocol was higher than previously 

reported, with each 10
6
 BM cells generating on average 2x10

6
 cultured cells. Taking 

into account the withdrawal of cells for direct assessment three times during the cul-

ture, our culture efficiency was a bit higher than 200%. Our purification method, which 

includes dendritic cell removal, resulted in a higher numbers of pure basophils: we 

isolated on average 6.9x10
6
 pure basophils per 20x10

6
 cultured cells (35% purification 

efficiency). Regardless different origins of BM (Table 2), our protocol ends with an av-

erage yield of 70%. The vast difference between the yields are most likely explained 

by the cell density at the start of the culture. Other differences that might cause im-

proved yield are mouse strain, fresh versus frozen BM, and the purification method. 

Thus, using our robust method, we were able to assess basophil function by using a 

few million BM cells as input. It is important to underline the importance of excluding 

the adherent cells during the culture and the targeted depletion of CD11c
+
 dendritic 

cells during the isolation of BMB. This enables to specifically look at BMB responses, 

without bystander effects of stromal cells or dendritic cells. 

We identified additional differences between young and aged basophil precursors by 

using purified BMB from IL-3-dependent cultures (Figure 4). CD11b expression was 

decreased, whereas IL-4
+
 (but not IL-13

+
) frequencies were increased in BMB from 

aged mice. IL-4
+
 basophil frequencies were particularly increased after CD200R3 

stimulation, in line with previous studies [294]. BMB derived from germfree recipients 

receiving microbiota of aged mice (versus microbiota of young mice) also showed in-

creased IL-4
+
 basophil frequencies. Thus, we found that microbiota from aged mice 

influence basophil precursors.  

The functional implications of these findings remain to be elucidated. It is conceivable 

that basophils may differ in their functional response in vivo, because Hill et al (2012) 

showed that antibiotics under steady state conditions in vivo did not alter basophil fre-
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quencies in lymph nodes. Basophil frequencies, however, were increased after papain 

treatment in antibiotic-treated mice (compared with control mice) [281]. Allergic chal-

lenges or helminth infections in young versus aged mice would give insight in the func-

tional consequences in vivo of the observed changes between young and aged baso-

phils, and after microbiota transfers of young and aged mice. 

In conclusion, our study shows age and microbiota-related changes in basophil fre-

quencies, phenotype, differentiation, and function. Further functional in vivo studies 

are warranted to investigate the consequences of our findings for Th2-mediated im-

mune responses. 
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1. Introduction  

Aging is a complex process with impact on essentially all organs. Many diseases, in-

cluding cancer, diabetes and vascular diseases, have a strong association with age, 

and insight into normal and abnormal aging may therefore contribute significantly to 

insights into disease pathogenesis. Essential characteristics of aging at the cellular 

level have been identified and summarized in a landmark review [297]. These features 

include genomic instability, epigenetic changes, telomere shortening, increased pro-

tein unfolding, mitochondrial dysfunction and dysregulated nutrient sensing. Important-

ly, the ability to activate cellular repair processes, such as the unfolded protein re-

sponse (UPR) and autophagy decline with age [297, 298]. Cellular dysfunction, death 

and senescence caused by these phenomena are plausible drivers of pro-

inflammatory cytokine production, leading to a systemic condition of chronic low-grade 

inflammation, also known as 'inflammaging' with increased levels of pro-inflammatory 

cytokines IL-1, IL-6, IL-8, TNF and C-reactive protein [299]. The main cellular sources 

of these mediators are not known. 

Macrophages are critical regulators of processes aimed at maintaining homeostasis, 

and prominently contribute to inflammatory and immune responses [300], but also 

help maintaining metabolic stability [301]. These cells are extremely versatile to re-

spond to environmental triggers and adapt their phenotype and function accordingly. 

Different stages of activation of macrophages have been identified, and so-called 

classically activated, or M1-polarized macrophages, and alternatively activated M2-

macrophages represent the ends of a full spectrum [302]. In general, M1 macrophag-

es are catabolic, pro-inflammatory cells involved in anti-microbial host defense, while 

M2 macrophages are considered to be anabolic cells counteracting inflammation and 

stimulating tissue repair. This concept, however, is not written in stone, since also M2-

polarized macrophages may produce significant amounts of pro-inflammatory cyto-

kines such as TNF, IL-1 and IL-6 upon appropriate stimulation [303] or experimental 

manipulation [304]. 

Different polarization states of macrophages are reflected in and regulated by the 

macrophages' metabolism [305]. Typically, M1-polarized macrophages supply their 

energy need from aerobic glycolysis, while M2 macrophages have higher levels of 

mitochondrial respiration, serving oxidative phosphorylation. Functional polarization 

and cellular metabolism appear to be closely intertwined as exemplified by the finding 

that ablating the glycolysis rate-determining enzyme PDK1 impairs inflammatory mac-

rophage activation while enhancing M2 polarization [306].  

In this review we aim to integrate current knowledge on inflammatory aspects of mac-

rophage activation related to the aging process (Figure 1). Since macrophages are 

major cytokine producers and important regulators of inflammation, we approach the 
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question to what extent aging-related changes in macrophages contribute to the sys-

temic condition of inflammaging. We elaborate on how changes in autophagy, cellular 

metabolism, and epigenetics may contribute to or even underlie inflammaging. Insight 

into this matter may reveal targets for therapeutic intervention and provide directions 

for future research. 

 

 
Figure 1. Aging affects autophagy, cell metabolism, and macrophage polarization. In this review we 
integrate current insights into changes in the cellular processes upon aging, and ask how aging macro-
phages contribute to the low-grade systemic inflammation known as inflammaging. 

 

2. Phenotypic and functional changes in aging macrophages 

Table 1 summarizes data on age-related changes in human and mouse macrophages, 

and it is evident that major differences are found depending on the tissue of origin. 

Although this may seem surprising, this observation is in line with recent notions that 

the local micro-environment plays a principal role in shaping the macrophage epige-

netic landscape and gene expression [307, 308]. Of note, most reported age-related 

alterations in macrophage functions are based on ex vivo measurements, which re-

flect the cells' functional capacities upon challenge rather than their steady state in 

vivo activity. 

Despite differences between distinct populations, some general messages about age-

related changes in macrophage phenotype and function may be derived. Macrophage 

numbers remain stable in skin, spleen, and white adipose tissue (e.g. [309]), or in-

crease in muscle and brain (e.g. [310]). Their phagocytic capacity is unchanged or 

decreases with aging, which depends on the phagocytosed substances, and on the 

cells' origin: peritoneal macrophages show an age-related decline in phagocytosis, but 

this trait is unaltered in macrophages derived in vitro from bone marrow precursors 

(BMDM) [311, 312]. Likewise, aged splenic macrophages produce less inflammatory 

mediators upon stimulation compared to young macrophages, but aged and young 

BMDM respond similarly [313]. These results support the view that the aged microen-
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vironment has a major impact on macrophage functions. However, BMDM from young 

and aged mice are not fully comparable in all aspects. Fei et al recently found aged 

BMDM to show a significantly blunted metabolic switch towards glycolysis and de-

layed increase in arginine metabolism upon LPS stimulation [314], indicative of im-

printed changes in BM precursors, which remain demonstrable upon extensive in vitro 

expansion. 

In general, TLR-signaling becomes less efficient with aging, although reports on age-

dependent alterations in TLR expression of macrophages are not uniform (e.g. [315-

317]). Decreased TLR signaling relates to a generally reduced ability of aged macro-

phages to kill micro-organisms, in conjunction with a reduced capacity to produce re-

active oxygen and nitrogen species [313, 318]. In line with this, stimulated production 

of pro-inflammatory cytokines IL-1β, IL-6, IL-12, TNF is found to be decreased in most 

studies (e.g. [319-321]), although increased production of these mediators is also re-

ported (e.g. [322, 323]). Remarkably, production of IL-10 is enhanced with aging upon 

stimulation of splenic macrophages and BMDM (e.g. [321, 324]. Also production of 

prostaglandin (PG)E2 is generally increased in aged macrophages [325].  

In sum, macrophage functions are dysregulated in aging. The causes underlying this 

can be divided into extrinsic factors altering the cells' environment, like changes in 

stromal functions, and intrinsic factors imprinted during life in mature cells and bone 

marrow precursors [326]. Intrinsic age-related changes are triggered by increased 

damage at protein, lipid and nucleic acid level, leading to senescence and organelle 

dysfunction [298]. We will further focus on intrinsic factors that change with age and 

impact significantly on normal macrophage function. Endoplasmic reticulum stress and 

autophagy (see Box 1) are such age-affected key processes in macrophage function. 

3. Endoplasmic reticulum stress, autophagy and inflammation 

Circumstances that cause overload of the endoplasmic reticulum (ER-) capacity, in-

cluding nutrient excess, incite ER-stress and the ensuing unfolded protein response 

(UPR). This response is aimed at reducing this condition by diminishing protein trans-

lation, improving proper folding of newly produced proteins by increasing levels of 

chaperone proteins, and stimulating breakdown of misfolded proteins in cytosolic pro-

teasomes (Box 1). Aging is associated with reduced expression of several UPR com-

ponents [15]. Together with increased oxidative stress caused by mitochondrial dys-

function, this leads to increased levels of unfolded protein, thus fueling maintenance of 

ER-stress and consequent hampering of cellular functions.  

A putative means to deal with ER-stress is to stimulate autophagy of dysfunctional 

cellular components, including misfolded proteins [327]. In general, autophagy is used 

to recycle cell material, and is also turned on during starvation to yield nutrients such 
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as amino acids, fatty acids and carbohydrates [328]. However, cellular autophagy ca-

pabilities also decrease with advanced age [329].  

Related to macrophages, a remarkable functional interaction exists between ER-

stress and macrophage polarization as ER-stress is required to generate an M2 phe-

notype, and suppression of ER stress causes a shift from M2 to an M1 phenotype [9]. 

Experimental knockdown of autophagy component Atg5 can induce M2 macrophages 

to produce a high levels of pro-inflammatory cytokines [304]. Moreover, several stud-

ies have shown that reduced autophagy potential, a general characteristic of aging, is 

related to increased production of pro-inflammatory cytokines, in particular IL-1 and IL-

6 [330-333]. LPS stimulation of macrophages enhances autophagy accompanied with 

inhibition of SIRT1 and AMPK, and induction of HIF-1α [334]. The latter conditions 

also activate NF-kB, thus enhancing the pro-inflammatory LPS signaling cascade. 

Moreover, LPS also induces ER stress in macrophages, leading to cytokine produc-

tion via XBP1 [1]. Not only LPS stimulates autophagy, but also inflammatory cytokines 

like CCL2 and IL-6 [335]. Interestingly, these cytokines in turn stimulate M2-like polari-

zation of macrophages [336, 337]. Together, these findings relate ER-stress and re-

duced autophagy to pro-inflammatory cytokine production, but in an M2- rather than 

classic M1-related macrophage activation profile. 

The lysosomal membrane protein LAMP2a plays a role in chaperone-mediated au-

tophagy [298], and transgenic mice with an extra copy of LAMP2a do not experience 

aging-associated reduction in autophagy activity [297]. Notably, LAMP2 was initially 

identified as the characteristic macrophage marker Mac-3 [338], likely due to the 

abundant presence of this protein in the lysosome-rich macrophages. It is therefore 

tempting to speculate that macrophages might be less sensitive to decline in autopha-

gy potential with aging compared to other cells, but this remains to be determined. 

Taken together, it can be envisaged that, also at the macrophage level, the increased 

ER-stress and putatively reduced autophagy potential with aging contributes to en-

hanced production of pro-inflammatory cytokines, and thus to systemic inflammaging. 

This might, however, be associated with an M2- rather than an M1- skewed profile.  
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BOX 1 | Concepts of ER stress and the unfolded protein response in aging 

The endoplasmic reticulum (ER) contributes to the formation of autophagosomes 

and is important in the proper folding of secreted proteins. A high demand for syn-

thesis of secretory proteins is a source of stress for the ER. ER stress induces the 

unfolded protein response (UPR) by activating inositol-requiring protein 1α 

(IRE1α), protein kinase RNA-like ER kinase (PERK), and activating transcription 

factor 6 (ATF6). To restore equilibrium in the ER, information about the folding sta-

tus of the ER is transduced by these three stress sensors to the cytosol and nucle-

us. Chronic ER stress leads to apoptosis of damaged cells [1]. 

Of note, the UPR is involved in many processes, such as glucose and lipid me-

tabolism, cell differentiation, and inflammation [2]. X box-binding protein 1 (XBP1), 

downstream of IRE1α, inhibits the transcription factor forkhead box O1 (FOXO1), 

which is crucial in glucose homeostasis [3]. The UPR activates macroautophagy 

[6]. mTORC1 selectively suppresses IRE1α activation [7]. TLR2 and TLR4 ago-

nists trigger XBP1 mRNA splicing in macrophages to enhance IL-6 production [8]. 

Elevated ER stress drives M2 macrophage polarization in a c-Jun N-terminal ki-

nase (JNK)-dependent manner [9], and it contributes to inflammation of adipose 

tissue in aging [10]. Adipose tissue macrophages showed increased ER stress, 

accompanied with increased TNF production [10]. With aging, many components 

of the UPR show reduced expression and activity [15]. ER stress is implicated in 

metabolic and age-related diseases, such as diabetes, atherosclerosis, Alz-

heimer’s, and Parkinson’s disease [15, 16]. 

Taken together, ER stress and the UPR play a role in glucose metabolism, au-

tophagy, and macrophage polarization, and are altered with aging. 
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4. Deregulated nutrient sensing and mitochondrial dysfunction in macrophage-

mediated inflammaging 

Secretion of pro-inflammatory cytokines has been typically associated with M1 activa-

tion of macrophages, although also M2-polarized cells may produce these mediators, 

as argued above. Recent findings show that macrophage energy metabolism and in-

flammatory function are tightly linked [305, 339-341]. M1 activation enhances glycoly-

sis and thereby fuels the macrophages with fast energy and biosynthetic precursors 

for the rapid killing of microbes. Simultaneously, glycolysis drives inflammatory re-

sponses in macrophages [342-344]. Conversely, M2-polarized cells primarily utilize 

mitochondrial oxidative phosphorylation (oxphos) as ATP source, and oxidative mito-

chondrial metabolism attenuates macrophage-mediated inflammation [306, 345, 346].  

Interestingly, distinct hallmarks of aging, including decreased autophagy, deregulated 

nutrient sensing and mitochondrial dysfunction can increase glycolysis and suppress 

oxphos, thus favoring inflammatory (M1-like) activation and blunting anti-inflammatory 

M2 activities. In accordance, M2 macrophage numbers decrease with aging in white 

adipose tissue, while M1 and inflammatory macrophages remain stable or tend to in-

crease [309]. The ‘insulin and insulin-like growth factor-1 (IGF-1) signaling’ (IIS) is the 

central pathway in nutrient signaling, and its activity declines with aging[297]. Para-

doxically, further decrease of function of IIS or downstream regulators, such as AKT 

and mTOR, extends longevity. In macrophages, constitutively reduced ISS activity 

could dampen age-associated inflammatory cues since myeloid cell-specific insu-

lin/IGF-1 receptor deficiency dampens skin inflammation and obesity-induced inflam-

mation [347, 348]. This, however, may be only part of the operating mechanisms. The 

FOXO transcription factor family is another downstream target of the IIS pathway, and 

is inhibited by it [297]. FOXO activity is known to extend lifespan in worms and flies. 

While the role of FOXO in mammalian aging remains elusive, it is tempting to specu-

late that it facilitates inflammation in aging macrophages since FOXO1 promotes 

TLR4 signaling and IL- [349, 350]. Simultaneously, FOXO1 stimulates a 

pro-inflammatory M2 profile as well as IL-10 expression [351, 352]. Together, these 

studies suggest that FOXO1 promotes an inflammatory profile as well as IL-10 pro-

duction in aging macrophages as a consequence of the release of FOXO inhibition 

with decreasing IIS signaling.  
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Mitochondrial dysfunction also likely promotes macrophage inflammatory activation. 

Several molecules (including AMPK, SIRT1 and PGC-1) with anti-aging properties 

promote mitochondrial function and at the same time potentiate the M2 phenotype 

[353-355]. AMPK activates sirtuins SIRT1 and -3, and vice versa. Subsequently, 

NAD
+
-dependent SIRT1 deacetylates and inactivates NF-B p65, thus blocking NF-

B-mediated inflammation [356]. In addition, SIRT1 activates PGC-1 and thereby 

promotes a switch from glycolysis to mitochondrial fatty acid oxidation that supports 

M2 polarization and blunts M1 activation [357]. In agreement, the M2-polarizing cyto-

kine IL-4 promotes PGC-1 function, resulting in mitochondrial biogenesis, fatty acid 

oxidation and oxphos [346]. Interestingly, aging is associated with decreased SIRT1 

transcriptional activity [358], lower nuclear NAD
+
 levels and accumulation of HIF-1 

under normoxic conditions, leading to a pseudo-hypoxic state with accompanying de-

cline in mitochondrial function [359]. HIF-1 activation, as occurs in hypoxia, provides 

a strong pro-inflammatory stimulus for macrophages [360], thus contributing to a puta-

tive mechanistic link between elevated macrophage inflammatory status and mito-

chondrial dysfunction in aging. 

Nevertheless, despite significant recent progress in the immunometabolism field, the 

molecular mechanisms by which metabolic changes affect macrophage function re-

main largely unexplored. Since various intermediates of energy metabolism affect his-

tone-modifying enzymes, epigenetic mechanisms likely translate altered energy me-

tabolism into macrophage phenotype. Interestingly, an enhanced response of mono-

cytes to repeated exposure to Candida-derived -glucan – termed 'trained innate im-

munity' – was found to be associated with the induction of enhanced aerobic glycolysis 

governed by a specific epigenetic repertoire [361, 362]. 

5. Epigenetic regulation of macrophage activation 

Epigenetic processes, such as DNA methylation and histone methylation and acetyla-

tion, modify chromatin structure and thus play major roles in the regulation of macro-

phage inflammatory gene expression. During differentiation of macrophages a unique 

enhancer landscape is shaped that determines cell identity and collaborates with gene 

promoters [363]. Upon macrophage activation, signal-dependent transcription factors, 

such as NF-B, STATs, IRFs, LXR and PPARγ, supplement generic and lineage-

determining transcription factors like PU.1 to mediate an inflammatory stimulus-

specific transcriptional response [364].  

Specific chromatin-modifying enzymes have been associated with macrophage activa-

tion and polarization, and inflammation can be modulated by targeting these [365]. 

The histone demethylase Jmjd3 is highly induced by bacterial products and inflamma-

tory cytokines, and erases the repressive trimethylation mark of H3K27, thus control-

ling cell differentiation and inflammatory response [366, 367]. In accordance, a selec-
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tive H3K27 demethylase inhibitor decreases macrophage LPS-induced inflammatory 

responses [368]. Interestingly, also IL-4 stimulates Jmjd3 expression in macrophages 

[369], and Jmjd3 appears to be essential for normal BMDM development and subse-

quent M2 polarization by regulating Irf4 trimethylation, while being dispensable for M1 

polarization [370]. M2 marker genes are thus epigenetically regulated by reciprocal 

changes in repressive H3K27 trimethylation and activating H3K4 methylation [369]. As 

another example, macrophage-specific deletion of the histone deacetylase HDAC3 

leads to an M2-like phenotype [371], which is associated with improved lipid handling 

and increased plaque stability in an atherosclerosis model [372].  

Besides histone modification, the DNA methylation status is key in regulating DNA 

accessibility as DNA hypomethylation confers accessibility to transcription factors 

[373]. The DNA CpG methylation status is more stable than the histone marks but also 

regulated dynamically [374]. Aging is characterized by general DNA hypomethylation, 

although site-specific hypermethylation occurs as well [375]. The DNA methylation 

epigenome can be interpreted as a tissue-specific measure of aging, and the rate of 

changes found in an individual’s methylome is directly linked to alterations in transcrip-

tional responses and may thereby influence age-related diseases [376, 377]. Altera-

tions in epigenetic status with advancing age are directly connected to processes of 

cellular energy metabolism, which also change [378].  

Interestingly, metabolites of common catabolic pathways supply several of the neces-

sary co-factors that are used by epigenetic enzymes. For example, acetyl-CoA is a co-

factor for histone acetyltransferases, and nuclear levels of acetyl-CoA alter the acety-

lation state of histones and thus provide a mechanism of epigenetic regulation [379]. 

Conversely, SIRT1 and other HDACs contribute to epigenetic regulation by deacety-

lating histones [358, 365]. Additional intracellular metabolites, like S-

adenosylmethionine (SAM), α-ketoglutarate or NAD, influence the activity of histone- 

and DNA-modifying enzymes and thereby potentially affect the regulation of epigenet-

ic patterns in inflammatory cells [380].  

Pathogenic triggers but also physiological and lifestyle factors can modulate epigenet-

ic processes, thereby influencing cellular functionality. Intake of folate or ethanol, for 

instance, differentially influences the bioavailability of S-adenosylmethionine (SAM), a 

methyl donor used by histone- and DNA-methyltransferases [381]. Furthermore, car-

bohydrates and organo-sulphur compounds from garlic and other vegetables can 

stimulate butyrate generation, which acts as a general HDAC inhibitor and reduces 

production of pro-inflammatory cytokines [382]. Sirtuins, which can also deacetylate 

histones but are not inhibited by butyrate [383], are activated by polyphenols in red 

wine. Their activity is highly regulated by cellular NAD+/NADH levels reflecting dietary 

calorie levels. Interestingly, omega-3-fatty acids suppress NF-B responses in macro-

phages by influencing activating histone methyl marks [384], which might underlie the 
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observed SIRT1 activation [385]. Taken together, environmental and metabolic influ-

ences provide triggers that affect epigenetic patterns and thereby change cellular in-

flammatory phenotype and function upon aging. 

6. Targets to modulate inflammaging 

The mechanisms outlined above provide multiple access points to reduce inflammag-

ing in general, and the contribution of macrophages particular (summarized in Figure 

3). Dietary restriction (DR; also called calorie or caloric restriction) is well known for its 

life-extending effects, which are mediated by suppressing the mTOR- and IIS path-

ways, and enhancing autophagy [297]. DR diminishes age-dependent increase of IL-6 

and TNF serum levels [386]. At high levels of DR (60% reduction of normal food in-

take), however, macrophages showed dysregulated inflammatory responses [387]. A 

lower level of DR (40%) led to better survival of mice after abdominal polymicrobial 

sepsis or endotoxemia, associated with reduced IL-6 production and WAT macro-

phage numbers [388]. In addition, DR might affect macrophage migration [389]. It also 

increases adiponectin secretion, which reduces TNF expression by macrophages and 

directs polarization towards M2 [389, 390]. These findings indicate that DR prevents 

inflammaging, also at the level of macrophages. They also underline the need for 

studies addressing the questions how long and at which level DR might extend life, 

and at the same time properly maintain macrophage function. 

DR mimetics, reaching similar effects as DR without restricting energy intake, have 

been extensively studied. Rapamycin, which acts via mTOR, induces autophagy [391]. 

However, a recent study in macaques showed that rapamycin did not enhance au-

tophagic killing of M. tuberculosis [392]. Metformin (used as treatment in type 2 diabe-

tes, and extending mouse life span), phenformin, or berberine activate AMPK [353]. 

Resveratrol is a polyphenolic compound, that mimics DR in some ways. It also acti-

vates AMPK and SIRT1 (in turn activating PGC-1a) [297, 393], and it blocks LPS-

mediated inhibition of SIRT1 and activation of HIF-1 [334]. Not surprisingly, resvera-

trol reduces the M1/M2 ratio in WAT after chronic intermittent hypoxia [394].  

Restriction of essential amino acids like methionine or tryptophan might be another 

way to improve macrophage function. Methionine and tryptophan restriction are both 

implicated in extending lifespan in mammals [389, 395]. The tryptophan-degrading 

enzyme IDO expression is induced by IFN-, but its expression may drive M2 polariza-

tion [396]. TNF, in turn, reduces IDO expression [397]. Methionine restriction seems to 

decrease macrophage migration and infiltration [389]. Together, the effects of amino 

acid restriction on macrophage function appear to be complex and warrant further 

studies. 

M2 macrophages produce polyamines like putrescine and spermidine, which are 

needed for IL-4-induced expression of several M2 markers [398]. Additionally, they 
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inhibit the expression of pro-inflammatory factors in M1 macrophages. Interestingly, a 

probiotic strain that increases polyamine concentrations increases longevity in mice, 

possibly by suppression of inflammaging [165]. Along the same line, a polyamine-rich 

diet was shown to inhibit age-associated pathologies [399]. Based on these findings, it 

would be worthwhile to study whether a polyamine-rich diet in humans would extend 

longevity by inhibiting macrophage-mediated inflammaging. 

Several other treatments have been explored, and are worthwhile to study in more 

detail. These include exercising, which reduces inflammaging [400], potentially by re-

directing macrophage polarization into M2 direction [401]. Also exercise-mimetics like 

the AMPK-stimulators 5-aminoimidazole-4-carboxamide riboside (AICAR) and met-

formin deserve further attention [402, 403]. Counter-intuitively, these agents do not 

support, and may even inhibit M2 polarization of macrophages [404, 405].  

 
Figure 3. Putative targets in aging macrophages to modulate inflammaging. 

7. Concluding remarks 

In this review, we have aimed to address whether aging-related changes in macro-

phages may contribute significantly to the systemic condition of inflammaging. As ma-

jor initiators, effectors and regulators of inflammatory responses, macrophages are 

potentially central players in this process. Taking together the aging-related changes 

in macrophages discussed above, and in view of the purpose of this review, two gen-

eral questions come to mind: (1) Are macrophages in aging individuals the main 

sources of inflammatory cytokines? (2) Which functional changes in macrophages 

contribute to inflammaging? 

The first question is most difficult to answer, as the cellular sources of increased in-

flammatory cytokines are essentially not known. The vast majority of studies on aging-

related phenomena reviewed here have been performed on macrophages isolated 
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from their tissue environment, and especially inflammatory features have been inves-

tigated mostly after in vitro stimulation of the cells. This approach addresses the in-

flammatory potential of the cells rather than their activity in vivo. Macrophages are ma-

jor, but not exclusive producers of inflammatory cytokines. Secretion of inflammatory 

cytokines is a general phenomenon of senescent cells, called the senescence-

associated secretory phenotype, and the presence of such cells increases with aging 

[406]. 

A decrease in gut barrier function with aging has been proposed as a major cause of 

increasing levels of TLR ligands in circulation [407]. Irrespective of changes at the cel-

lular level in macrophages, this might already provide a major stimulating source for 

cytokine production by these cells and other responders. In addition, decreasing vas-

cular function with age gives rise to increased tissue hypoxia Zhang, 2011 #176}, 

which is known as strong activator of macrophages [360]. This is mediated via HIF-1 

stabilization, simulating NF-kB activation. Macrophage activation by this means, how-

ever, is not easily interpreted in terms of classic M1 vs. alternative M2 polarization 

[360]. This stresses the notion that describing macrophage polarization in a dichoto-

mous manner is an oversimplification, as has been confirmed by molecular profiling of 

macrophages activated with a wide variety of stimuli [408]. Moreover, we would advo-

cate to separate the concepts of macrophage polarization - indicating a direction of the 

functional and phenotypic response to an external stimulus - and actual activation of 

the cells, which indicates the magnitude of the cellular response beyond its steady 

state activity. 

Which functional changes in macrophages contribute to inflammaging? Macrophages 

do not escape general cellular alterations that come with aging, especially since most 

of the tissue-resident cells are long-lived. Thus, decreased autophagy, mitochondrial 

function, increased ER-stress, oxygen radical levels, etc. all trigger cellular responses 

in tissue macrophages that may be considered pro-inflammatory. In the sections 

above, the impact of these changes on the macrophages' activity have been outlined 

in detail. A specific functional change worthwhile elaborating here is the generally de-

creased phagocytic activity of aged macrophages. Since macrophages play an im-

portant role in clearance of senescent cells [409], accumulation of the latter during 

aging may be related to diminished macrophage function. Intriguingly, experimental 

removal of p16-expressing senescent cells by induction of apoptosis has been shown 

recently to extend the lifespan of mice [410]. It might be argued that removal of apop-

totic cells is a macrophage function as well that is affected upon aging, but detailed 

analysis of the mechanisms by which macrophages in situ recognize and deal with 

senescent vs. apoptotic cells would be worthwhile investigating in the context of aging. 

And in general, the relative paucity of data related to in situ analysis of macrophage 

function during aging calls for increased efforts in this direction. 
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Table 1. Age-dependent* alterations in human and mouse macrophages. 

Species Tissue Mφ # 
1,2

 Phenotype
2
 Functions

2
 Ref. 

Human MDM  ↓ TLR3 ↑ WNV-induced TLR3, IL-6, TNF [411] 

    ↓ S. pneumoniae-induced IL-6, TNF,  

P-AKT/AKT1, killing 

[320] 

    ↑ M. tuberculosis-induced IL-6 [322] 

 Muscle ↑  ↓ Exercise-induced IL-1β and IL-1RA [412] 

 Skin =  ↓ DTH-induced TNF [319] 

Mouse BMDM  ↓ RXRα ↓ Phagocytosis of myelin fragments [311] 

    = Phagocytosis of particles [312] 

    ↑ sCD178-induced VEGF, ↑ LPS-induced  

IL-10 

[413] 

    ↑ LPS-induced CCL2, ↑ probiotic-induced  

IL-10 

↓ LPS+IFN-γ-induced IL-6 

[321] 

    ↓ LPS-induced glycolytic shift, -arginine me-
tabolism 

[314] 

   ↑ FIZZ1  [313] 

 Brain    ↓ Phagocytosis of myelin fragments [311] 

  ↑
3
   [414] 

    ↑ (LPS-induced) TNF, IL-1β, IL-6, TGF-β1
4
 [415] 

   ↑ MHC-II ↑ LPS-induced TLR2, IDO, IL-1β, IL-10 [323] 

    ↓ LPS-induced IL-4Rα and M2-related genes 
(Arg, Ym1) 

[416] 

    ↓ CX3CR1, LPS-induced CX3CR1 [417] 

 Eye   ↑ LI-induced IL-10  

↓ LI-induced CD178, IL-12p40, TNF 

[418] 

 Lung   ↑ LPS±IFN-γ-induced IL-1, IL-12, TNF, NO [419] 

  = ↑ TLR2 = M. tuberculosis-induced cytokine response [420] 

   ↑ TLR2 ↑ S. pneumoniae-induced P-ERK 

↓ S. pneumoniae-induced NF-κB, (P-)p38-
MAPK, IL-6, TNF 

[316] 

    ↑ M. tuberculosis-induced uptake, intracellu-
lar growth  

↓ IFN-γ-responsiveness after M. tuberculosis 
infection 

[421] 

   ↑ CD11c, MR, 
MHC-II 

↓ S. pneumoniae-induced TRAF6 ubiquitina-
tion 

[422] 

  ↑ ↑ A20 ↓ CYLD ↑ LPS-induced P-p38 [423] 

 Peritoneum =  ↓ Phagocytosis of secondary necrotic neu-
trophils 

[424] 

    ↓ Phagocytosis of myelin fragments [311] 

    ↑ (LPS-induced) PGE2 [425] 

    ↑ LPS+IFN-γ-induced IL-12 

↓ LPS±IFN-γ-induced TNF, NO; HSV1 intrin-
sic resistance 

[419] 

   ↓ STAT1α ↓ IFN-γ-induced (P-)STAT1α [426] 

    ↑ TLR4-induced and IL-1β-induced PGE2 [325] 

    ↓ Phagocytosis of particles [312] 

  ↑ ↓ TLR2 = Phagocytosis of C. albicans and C. albi-
cans-induced IL-10 

↓ C. albicans-induced IL-1β, IL-6, TNF, MIP-
2 

[427] 



Metabolic and epigenetic alterations in aging macrophages: a recipe for inflammaging? 

71 
 

 TG-PEC ↑ = TLR5 ↓ TLR4 ↓ Phagocytosis of S. typhimurium and IL-1β, 
IL-6, TNF 

[428] 

   ↑ C5aR, 
TREM-1 

↓ TLR2, TLR5
5
 

↑ P. gingivalis-induced TLR2 = Phagocytosis 
of P. gingivalis 

↓ P. gingivalis-induced TLR5 and IL-6 

[429] 

 Skin   ↑ CCL2 ↓ Phagocytosis, MIP1α, MIP-1β, 
MIP-2, eotaxin 

[430] 

 Spleen   ↑ LPS+IFN-γ-induced IL-12, TNF, NO [419] 

   ↓ TLR4, CD86 ↑ LPS-induced IL-10 

↓ LPS-induced IL-1β, IL-6, IL-12p40
6
, TNF, 

TLR4, CD86 

[431] 

  = ↓ Arg1 ↓ LPS- or IFN-γ+TNF-induced iNOS, IL-6, IL-
1β, TNF 

↓ IL-4-induced Arg1, FIZZ1, Ym1 

[313] 

   ↑ (P-)p38 
MAPK 

↓ (P-)ERK1/2 

↑ LPS-induced IL-10 

↓ LPS-induced IL-1β, IL-6, IL-12p40
6
 

[324] 

   = TLR2, TLR4 

 

↑ LPS-induced IL-10 

↓ LPS-/zymosan-induced IL-6, TNF, LPS-
induced (P-)p38 MAPK 

[315, 432] 

   ↑ PI3K ↑ TLR2-ligand-induced IL-10, PI3K, p-AKT, 
GSK3 

↓ TLR2-ligand- or HKSP-induced IL-6, 
IL12p40, TNF 

[432] 

 Adipose 
tissue 

=  ↑ (LPS-induced) IL-6, TNF [433] 

  = 

 

 ↑ IL-6, MCP-1, TNF, CCR2/5
4
, CXCR3/5

4
  

↓ CCR7
4
, CX3CR1

4
 

[309] 

*Young (human: ~30-year-old; mouse: ≤6-month-old) versus old (human: ≥65-year-old; mouse: ≥18-month-
old). 

1
Absolute counts. 

2
Increase or decrease as compared with young subjects. 

3
Counts in corpus callosum 

and cerebellum increased, non-significant increase in hippocampus, and no change in cortex. 
4
RNA levels, 

no protein levels measured. 
5
Decreased on RNA, but not protein level. 

6
Personal communication. 

7
Trend, 

supported by other data. 
8
Three cytoskeleton components: actin, myosin, vimentin. 

Abbreviations: Arg = arginase; BM = bone marrow; BMDM = bone marrow-derived macrophages; CYLD = 
Cylindromatosis deubiquitinase; FIZZ = found in inflammatory zone; GSK = glycogen synthase kinase; 
HKSP = heat-killed S. pneumoniae; HO = heme oxygenase; HSV = herpes simplex virus; LI = laser injury; 
MCP-1 = monocyte chemotactic protein 1 (CCL2); MDM = monocyte-derived macrophages; MR = mannose 
receptor; P- = phosphorylated; PI3K = phosphatidyl inosital 3-kinase; PGE2 = prostaglandin E2; TG-PEC = 
thioglycollate-elicited peritoneal exudate cells; TLR = toll-like receptor; TNF = tumor necrosis factor; TomL = 
tomato lectin; TREM = triggering receptor expressed on myeloid cells; VEGF = vaso-endothelial growth 
factor; WAT = white adipose tissue; WNV = West Nile virus. 
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ABSTRACT 

Probiotics influence the immune system, both at the local and systemic level. Recent 

findings suggest the relation between microbiota and the immune system alters with 

age. Our objective was to address direct effects of six bacterial strains on immune 

cells from young and aged mice: Lactobacillus plantarum WCFS1, Lactobacillus casei 

BL23, Lactococcus lactis MG1363, Bifidobacterium breve ATCC15700, Bifidobacte-

rium infantis ATCC15697, and Akkermansia muciniphila ATCC BAA-835. We used 

splenocytes and naïve or IFN-γ-stimulated bone marrow-derived macrophages 

(BMDM) as responder populations. All tested bacterial strains induced phenotypic and 

cytokine responses in splenocytes and BMDM. Based on magnitude of the cellular 

inflammatory response and cytokine profiles, two subgroups of bacteria were identi-

fied, i.e. L. plantarum and L. casei versus B. breve, B. infantis, and A. muciniphila. The 

latter group of bacteria induced high levels of cytokines produced under inflammatory 

conditions, including TNF, IL-6 and IL-10. Responses to L. lactis showed features of 

both subgroups. In addition, we compared responses by splenocytes and BMDM de-

rived from young mice to those of aged mice, and found that splenocytes and BMDM 

derived from aged mice had an increased IL-10 production and dysregulated IL-6 and 

TNF production compared to young immune cells. Overall, our study shows differential 

inflammatory responses to distinct bacterial strains, and profound age-dependent ef-

fects. These findings, moreover, support the view that immune environment important-

ly influences bacterial immune effects. 
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INTRODUCTION 

The human digestive tract is colonized by about 10
14

 commensal bacteria [123, 434]. 

Commensals digest fibers, inhibit pathogen growth, and modulate immunity [125]. 

These commensals thus contribute to immune homeostasis in the gut but also for in-

stance in the bone marrow (BM) [126]. Live microorganisms that are present in foods 

and dietary supplements and that confer health benefits to the host are defined as 

probiotics [435]. Probiotics affect the course of gastrointestinal inflammatory diseases 

like inflammatory bowel disease (IBD) in a strain-dependent manner [161]. Inflamma-

tory conditions also characterize the aging process. The complex process of aging is 

accompanied, on the one hand, by decreased immune competence, and, on the other 

hand, by low-grade inflammation [11, 436]. Bacterial supplementations, therefore, 

might be beneficial to restore immune balance in aged individuals. Indeed, beneficial 

effects for health in elderly subjects were shown to be induced by several Lactobacil-

lus and Bifidobacterium strains [132, 133, 170, 171]. In addition, long-term supplemen-

tation with B. animalis subsp. lactis LKM512 extended lifespan and improved quality of 

life in mice [165]. 

Bacterial supplementations can increase intestinal epithelial barrier function and com-

pete with colonization of pathogens [125]. One of the mechanisms underlying the 

crosstalk between bacteria and the host, is the presence of microbe-associated mo-

lecular patterns (MAMP) in bacteria. MAMP bind to pattern recognition receptors 

(PRR) present on host cells, among which mononuclear phagocytes, comprising mac-

rophages and dendritic cells (DC), are prime responders. The activation of PRR re-

sults in cell maturation, cytokine secretion and upregulation of costimulatory mole-

cules. By presenting antigens and secreting cytokines, macrophages and DC activate 

or suppress other immune cells and induce e.g. regulatory T cells in order to maintain 

gut homeostasis [162-164]. Macrophages and DC are able to sample the gut lumen 

directly, in response to luminal bacteria [437-439] and thus are thought to be important 

regulators of gut immunity. 

The direct effects of probiotics on innate immunity in aging have not been studied. Our 

objective, therefore, was to address direct effects of different bacterial strains on im-

mune cells derived from young and aged mice. We used splenocytes as a complex 

mix of immune cells (as a ‘PBMC’ collection) and macrophages as a versatile re-

sponder. To test the influence of exposure of the cells to immune stimuli, we included 

naïve (M0) and IFN-γ-stimulated (M-IFN) macrophages [440], generated from young 

and aged mice. Aged splenocytes and macrophages were included to gain insight in 

cell-intrinsic properties that alter in aging, affecting responses to bacterial supplemen-

tation. 

We selected six bacterial strains, five of which have shown probiotic activity. Lactoba-

cillus plantarum WCFS1 is a single colony isolate of strain NCIMB8826, isolated from 
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human saliva [441]. Proteins derived from Lactobacillus casei BL23 have been identi-

fied to be responsible for its beneficial health effects [442, 443]. Lactococcus lactis 

MG1363 is originating from cheese starter derivatives and is studied extensively for its 

use as prototype for bioactive molecule delivery in the gut [444, 445]. Bifidobacterium 

breve ATCC15700 is not widely studied. Other B. breve subspecies, however, induce 

anti-inflammatory responses after allergic sensitization [446]. Bifidobacterium infantis 

ATCC15697 increases epithelial barrier function in the gut, and attenuates induced 

colitis in mice [447]. Presence of Akkermansia muciniphila has been inversely corre-

lated to acute appendicitis [448]. This bacterium is known as an intestinal mucus de-

grader and it is abundant in the human digestive tract [449, 450]. The important in vivo 

findings are summarized per strain in Table 1. 

In this study, we addressed the effect of immune environment and age on the in vitro 

response by splenocytes and macrophages to bacterial supplementations. 

 

Table 1. Properties of tested bacterial strains.  

Species Strain Origin In vivo activities Ref. 

Lactobacillus  
plantarum  

WCFS1 
DSMZ20174 
ATCC BAA-793 
 

Human 
pharynx 

Anti-allergic (Betv1) 
Pro-allergic (peanut) 
Increased # splenic Tregs 
Reduced HFD-induced pathology 
Trend to protection in TNBS colitis 

[451-458] 
 

     
Lactobacillus  
casei

T
 

BL23 
plasmid-cured 
ATCC393 

Dairy 
products 

Protective in TNBS colitis [443, 444] 

     
Lactococcus  
lactis 

MG1363 Dairy 
products 

Not reported [444, 459, 
460] 

     
Bifidobacterium  
breve

T
 

ATCC15700 
DSM20213 

Infant 
intestine 

No protection against P. aeruginosa 
1
 

[461] 

     
Bifidobacterium  
infantis

T
 

ATCC15697 
DSM20088 

Infant 
intestine 

2 
 

   
 

 
Akkermansia  
muciniphila

T
 

ATCC BAA-835 Adult 
intestine 

Protection against obesity and T2D 
Increased # goblet cells and  
VAT Tregs 

[452, 462-
464] 

 T
A type strain defines a species and is representative of that species. Literature findings referring to the 

same species but with other strain numbers is indicated with a number: 
1 

anti-allergic [446]; 
2 

protection 
against Rotavirus and protection against DSS colitis [465, 466]. DSS = dextran sulfate sodium; GF = germ-
free; HFD = high fat diet; T2D = type 2 diabetes; TNBS = 2,4,6-trinitrobenze sulfonic acid; Treg = regulatory 
T helper cell; VAT = visceral adipose tissue. 

  



Effect of age on interaction between immune cells and bacterial strains in vitro 

77 
 

MATERIALS AND METHODS 

Bacterial cultures 

L. plantarum, L. casei, L. lactis, B. breve, B. infantis and A. muciniphila were grown 

until stationary phase was reached. L. lactis was grown on M17 medium (Merck, 

Darmstadt, Germany), A. muciniphila was grown on mucin-based medium [467], 

whereas the other four strains were grown on MRS medium (Merck). B. breve, B. in-

fantis, and A. muciniphila were cultured under strictly anaerobic conditions. Viability 

and colony forming units (CFU) were checked by plating and measuring the OD600. 

The bacterial batches were freshly cultured for each individual experiment.  

 

Mice 

Male 7-week-old C57Bl/6J mice were purchased from Harlan (The Netherlands). Male 

18-month-old C57Bl/6J mice were purchased from Janvier (France) and housed for 7 

months at the animal facility of Wageningen University. All animals were specific path-

ogen free, and had free access to water and feed. Mice were fed D12450B diet (Re-

search Diet Services, Wijk bij Duurstede, The Netherlands). All experiments were per-

formed with approval of the animal care and use committee of Wageningen University. 

Young mice were sacrificed between 8-12 weeks of age and aged mice at 25 months 

of age. 

 

Spleen cultures 

Mice were sacrificed by anesthesia with isoflurane. Spleen single cells suspensions 

were obtained by disrupting the organs and passing cells through a cell strainer. Lysis 

of erythrocytes was performed using RBC lysis buffer (eBioscience, San Diego, CA, 

USA). About 10
6
 fresh total spleen cells were cultured in 48-wells plates and stimulat-

ed with 200 ng/mL LPS (E. coli 055:B5, Sigma-Aldrich, Zwijndrecht, The Netherlands) 

+ 50 ng/mL recombinant mouse IFN-γ (BioLegend, San Diego, CA, USA) or 0.1, 1 or 

10 CFU of viable bacterial strain cultures per splenocyte in RPMI 1640 medium (Gib-

co, Breda, The Netherlands) supplemented with 10% FCS (Gibco), 100 U/mL penicil-

lin-streptomycin (Gibco), and 50 µM β-mercaptoethanol (Sigma-Aldrich). IFN-γ was 

included to mimic an immune-activated state and to enhance the response by e.g. 

macrophages and T cells present in the culture. Supernatants were harvested after 

24-hour stimulation and stored maximally one month at -20°C for cytokine analysis. 
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Macrophage cultures 

Femora were flushed to obtain BM cells, which were passed through a cell strainer. 

Half a million BM cells were cultured in 24-well plates in the presence of 10% Ladmac-

conditioned medium [468] and 10 ng/mL recombinant mouse M-CSF (CSF-1, eBiosci-

ence) to generate bone marrow-derived macrophages (BMDM, hereafter called M0 

macrophages). After 6 days, BMDM were stimulated overnight with 200 ng/mL LPS as 

a positive control or with viable bacterial strains (1 CFU per 1 BMDM). To generate 

BMDM-IFN (hereafter called M-IFN macrophages), 50 ng/mL IFN-γ was added to the 

standard culture medium along with overnight (18-hour) stimulation. Cells were har-

vested for flow cytometry and supernatants were stored frozen for later cytokine anal-

ysis. 

 

Flow cytometry 

Flow cytometry was performed using standard procedures. Macrophages were 

stained with monoclonal antibodies for MHC-II-FITC (M5/114.152, eBioscience), 

F4/80-PerCP-Cy5.5 (BM8, eBioscience), CD11c-PE-Cy7 (N418, eBioscience), CD86-

APC (GL1, eBioscience), CD11b-APC-Cy7 (M1/70, BD Biosciences, Erembodegem, 

Belgium), and CD54-PB (ICAM-1; YN1/1.7.4, BioLegend). Fluorescent signals were 

acquired using a BD FACSCanto II (BD Biosciences). Data were analyzed with Flow-

Jo vX.07 (Tree Star) software.  

 

Cytokine measurements 

IL-12p70, TNF, IFN-γ, CCL2/MCP-1, IL-10, and IL-6 concentrations in the superna-

tants of splenocyte and BMDM cultures were determined using the Cytometric Bead 

Array (CBA) Mouse Inflammation Kit (BD Biosciences), according to the manufactur-

er’s instructions.  

 

Statistical analysis 

Data are expressed as average ± SEM, unless otherwise stated. One-way ANOVA 

and subsequent Bonferroni post hoc tests were performed to test differences between 

bacterial strains. GraphPad Prism version 5.0.3 (San Diego, CA, USA) was used to 

perform statistical tests. Significant differences were indicated by asterisks: *=p<0.05; 

**=p<0.01; ***=p<0.001. 
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RESULTS 

Dose-response relation for bacterial stimulation on splenocytes 

To determine the dose-response effects of bacterial strains on the immune cells stud-

ied, we used cultures of splenocytes, and after 24-hour stimulation measured produc-

tion of cytokines produced under inflammatory conditions. Splenocytes were incubat-

ed with three concentrations of bacteria (ratio bacteria:splenocytes of 1:10, 1:1, 10:1). 

A positive dose-response relation was observed for all bacterial strains (Figure 1). 

Both Bifidobacterium strains and A. muciniphila induced the highest levels of IL-10 (to 

200 pg/mL), TNF (to 1000 pg/mL), IL-6 (to 100 pg/mL), as well as CCL2/MCP-1 (to 

100 pg/mL). After applying the highest dose of some of the bacterial strains, or after 

applying positive control LPS+IFN-γ, only low levels of IL-12p70 were detected. These 

low levels of IL-12p70 were expected, as IFN-γ is necessary to induce IL-12p70 (in-

stead of IL-12p40) production [469, 470]. 

We calculated the IL-10/TNF ratio for each bacterial dose as a measure of anti- and 

pro-inflammatory cytokine balance (Figure 1). The Bifidobacterium strains and A. mu-

ciniphila showed an increasing IL-10/TNF ratio with increasing dose, implicating that 

higher doses of those strains preferentially stimulated IL-10 production rather than 

TNF production. Both Lactobacillus strains and L. lactis, in contrast, showed a de-

creasing IL-10/TNF ratio with increasing bacterial dose. 

These data indicate that two distinct subgroups of bacterial strains are identified, inde-

pendent of the applied dose: Lactobacillus strains and L. lactis, inducing lower levels 

of inflammatory cytokines than the Bifidobacterium strains and A. muciniphila. These 

different profiles are also reflected in decreasing and increasing IL-10/TNF ratios, with 

increasing bacterial dose. 

 

Differential phenotypic response by macrophages on different bacterial strains 

Next we studied the effects of the distinct types of bacterial strains on naïve (M0) and 

IFN-γ-stimulated (M-IFN) BMDM in order to determine whether the immune environ-

ment of the macrophages is of influence on the responsiveness. As sentinel cells, 

macrophages are known to be fast and potent in their responses (as confirmed in our 

experiments). To detect differences between bacterial strains at the most sensitive 

level, we incubated the macrophages overnight with 1 CFU per macrophage, and as-

sessed phenotypic changes by flow cytometry. Mature macrophages were defined as 

F4/80
+
CD11b

+
 (Figure 2A). These were gated for further analysis. Bacterial stimula-

tion and IFN-γ stimulation did not affect CD11b expression of macrophages from 

young mice, allowing appropriate gating after all stimulations (Supplementary 
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Figure 1). M0 macrophages responded phenotypically upon incubation with LPS or 

bacteria by increasing CD54 expression, and frequently up-regulating F4/80. In inci-

dental cases MHC class II or CD86 expression was found to be increased in M0 mac-

rophages (Figure 2B). Most marked changes were observed with A. muciniphila 

(CD54, CD86, and F4/80), L. lactis (CD54 and MHC-II; Figure 2B) and both Bifidobac-

terium strains (CD54 and F4/80). L. plantarum induced higher expression of only 

CD54, as compared with the control. L. casei stimulation caused no phenotypic 

changes in M0 macrophages. Priming of macrophages with IFN-γ caused a prominent 

increase in CD54, CD86, and MHC-II expression (Figure 2C). In general, simultane-

ous stimulation with bacteria and IFN-γ did not further change surface marker expres-

sion on M-IFN of CD11b, CD54, F4/80, and MHC-II (Figure 2C). One-way ANOVA for 

analysis of variance revealed differences in CD86 expression, comparing all condi-

tions (p=0.002). A trend for increasing CD86 expression was observed for all bacterial 

stimulations except L. casei.  

Together, these data demonstrate that M0 macrophages respond phenotypically to 

bacterial stimulation. IFN-γ stimulation exerts a prominent effect on macrophage phe-

notype, which is hardly influenced by simultaneous bacterial stimulation. Furthermore, 

a clear qualitative difference between bacterial strains is observed, with L. casei being 

the only bacterial strain not changing macrophage phenotype at all. Finally, based on 

changes in F4/80 expression induced in M0 macrophages, the same two subgroups of 

bacteria (L. plantarum, L. casei, and L. lactis versus B. breve, B. infantis, and A. mu-

ciniphila) were observed as identified before. 

 

Bacterial exposure differentially stimulates macrophage cytokine secretion 

Upon activation, macrophages are capable of producing high amounts of cytokines. 

Therefore, we studied cytokine secretion by differentially stimulated macrophages. IL-

10 secretion was only detectable when M0 macrophages were stimulated with LPS, 

the bifidobacteria or A. muciniphila (Figure 3). This secretion profile was similar in M-

IFN macrophages with IL-12p70 instead of IL-10 secretion. The highest IL-10 produc-

tion in M0 was observed upon stimulation with A. muciniphila. TNF and IL-6 produc-

tion was observed in both M0 and M-IFN macrophages, in particular after incubation 

with the bifidobacteria and A. muciniphila. CCL2/MCP-1 production was increased 

upon B. infantis and A. muciniphila incubation, in M0 macrophages as well as in M-

IFN macrophages. The IL-10/TNF ratio of M0 macrophages revealed that A. mucini-

phila mostly increased IL-10 production (compared to TNF production; Figure 4). Next 

to the IL-10/TNF ratio, we calculated a production index, by normalizing IL-10+TNF 

production upon bacterial stimulation against IL-10+TNF production upon LPS stimu-

lation. The production index indicates a clear difference in induction of IL-10 and TNF 

production between the tested lactobacilli and Lactococcus on one side, and the 
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bifidobacteria and Akkermansia on the other side. Application of IL-10/TNF ratio for M-

IFN is impossible, because IFN-γ priming blocks IL-10 secretion nearly completely in 

most conditions. 

These data show differential effects of bacterial strains on cytokine production by mac-

rophages. As in splenocyte cytokine production and macrophage phenotype, a divi-

sion between the Lactobacillus strains and Lactococcus on one hand, and the 

Bifidobacterium strains and Akkermansia on the other hand is indicated by the greater 

capacity of the latter to induce inflammatory cytokines, in particular TNF and IL-6.  

 

Age-dependent shift in cytokine production by splenocytes 

To investigate whether the response to bacterial strains does change during aging, we 

isolated spleens from aged (25-months-old) mice, and compared the reactivity of 

splenocytes to that of young (8-12-weeks-old) mice. Splenocytes were incubated with 

bacteria in a 1:1 ratio. Aged splenocytes produced markedly higher levels of IL-10, as 

compared with young splenocytes, upon stimulation with virtually any of the bacterial 

strains (Figure 5, Table S1). Upon LPS+ IFN-γ stimulation, used as positive control for 

inflammatory cytokine induction, production of TNF, IL-6, IL-12p70, and CCL2/MCP-1 

was lower in aged splenocytes compared with young splenocytes. This down-

modulation was not generally observed upon stimulation with bacteria. In particular, 

TNF production was enhanced in aged splenocytes in response to bacteria (Table 

S1). The response to L. lactis, the Bifidobacterium strains and A. muciniphila slightly 

changed with age. B. breve-stimulated splenocytes from aged mice in particular did 

not show changes in cytokine responses compared to young splenocytes; only 

CCL2/MCP-1 production was decreased. The IL-10/TNF ratio was greater in aged 

splenocytes than in young splenocytes for most of the conditions, except for L. casei 

(Figure 5). L. casei showed an increased cytokine induction in aged splenocytes, as 

compared with young splenocytes. The levels induced by L. casei, however, did not 

reach those induced by the Bifidobacterium strains or Akkermansia (Table S1). 

These data show an age-dependent shift of cytokine responses towards IL-10. The 

increase is stronger when comparing IL-10 to TNF, IL-6, and CCL2/MCP-1 production. 

It also indicates that certain bacterial strains exert a different effect on aged immune 

cells than on young immune cells. Particularly, L. casei showed increased induction of 

responses in aged splenocytes, while it was non-responsive in young immune cells. 
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Figure 4. IL-10/TNF ratio and cytokine production index of young M0 macrophages stimulated with 
different bacterial strains. The production index indicates normalized IL-10 + normalized TNF levels, di-
vided by 2. Normalization was performed against LPS (resulting in a value of 1 for LPS). + = LPS; bacterial 
strain coding is as indicated in Figure 1. Error bars represent 95% confidence intervals. 

 

 
Figure 5. Aging affects cytokine responses of splenocytes, in particular by increasing IL-10 levels. 
Cytokine levels measured in cultures of aged splenocytes stimulated with different bacterial strains are ex-
pressed as a ratio to cytokine levels from similarly stimulated young splenocytes. – = medium control; + = 
LPS+IFN-γ; bacterial strain coding is as indicated in Figure 1. Data represent the means of six independent 
experiments. Error bars represent 95% confidence intervals. 

 

Aging affects macrophage phenotype and cytokine responses to bacteria 

Next, we compared the effects of bacterial strains on macrophages from aged mice to 

those of young in surface marker expression and cytokine production. Due to altered 

signal acquisition in flow cytometry (caused by technical maintenance in between ex-

periments), we were unable to compare values directly side-by-side, but approached 

this by normalizing MFI values for each surface marker against the stable surface 

marker CD11b. F4/80 and MHC-II were upregulated with age under all conditions 

(Figure 6). The division between the Lactobacillus strains and L. lactis stimulation on 

the one hand, and the Bifidobacterium strains and A. muciniphila stimulation on the 

other hand, was also observed in various aspects in aged macrophage phenotypic 
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changes. Compared to unstimulated control, stimulation with L. lactis, both Bifidobac-

terium strains, or A. muciniphila resulted in a relatively lower increase of F4/80 ex-

pression in aged M0 macrophages than in young M0 macrophages, and a lower in-

crease of MHC-II, CD54, and CD86 expression in aged M-IFN macrophages than in 

young M-IFN macrophages (Figure 6). In contrast, stimulation with either of the Lacto-

bacillus strains resulted in a relatively higher increase of F4/80 expression in aged M0 

macrophages than in young M0 macrophages. 

Changes for different stimuli were also observed in cytokine profiles when macro-

phages from young and aged mice were compared. IL-10 secretion by M0 macro-

phages increased with age in response to most bacterial stimulations (Figure 7, Table 

S2). In response to LPS, however, IL-10, TNF, and IL-6 levels were lower in aged 

BMDM, whereas CCL2/MCP-1 levels were higher, as compared with young BMDM. 

Relative production of TNF was reduced in aged M0 macrophages upon exposure to 

the Bifidobacterium strains and A. muciniphila incubation, but not in L. plantarum and 

L. casei-stimulated M0 macrophages (Figure 7). L. lactis-induced cytokine responses 

by aged macrophages were without exception down or similar compared to young 

macrophages. Similarly, IL-6 production was reduced with aging in M0 and M-IFN 

macrophages upon some stimulations (except for L. casei-stimulated macrophages 

and L. plantarum-stimulated M-IFN macrophages; Figure 7). It is noteworthy that L. 

casei induced an increased cytokine response in macrophages derived from old mice 

compared to those from young mice. However, in absolute values, the differences are 

rather small (Table S2, S3).  

In general, the differential effects of the previously identified subgroups of bacteria are 

also evident in macrophages from aged mice in the relative increase (Lactobacillus 

strains) or decrease (Bifidobacterium strains and Akkermansia) of surface markers 

and cytokines. However, the difference between the various bacterial strains observed 

in young cultures (Figure 1-4), is less pronounced in aged cultures (Table S2, S3).  

These data indicate that aging impacts the response of splenocytes and macrophages 

to bacteria. 
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DISCUSSION 

In this study, we used splenocyte and BM-derived macrophage cultures to investigate 

the effect of immune environment and age on immune activation induced by bacteria 

potentially used as food supplement. Differential reactivity to two groups of bacterial 

strains was consistently observed in splenocyte and macrophage cultures, i.e. the 

Lactobacillus plantarum WCFS1 and Lactobacillus casei BL23 strains and Lactococ-

cus lactis MG1363 inducing rather moderate responses compared to the positive con-

trol (LPS±IFN-γ), the Bifidobacterium breve ATCC15700 and Bifidobacterium infantis 

ATCC15697 strains, and Akkermansia muciniphila ATCC BAA-835. Aging alters the 

inflammatory response of immune cells to bacteria. The IL-10 secretion, in particular, 

by aged splenocytes was greater than the IL-10 secretion by young splenocytes. The 

same trend for greater IL-10 production was observed in BMDM, in particular when 

comparing IL-10 production to IL-6 and TNF production.  

In probiotic research PBMCs and dendritic cells are commonly used to select immune-

active bacterial strains [444, 471, 472]. These studies did not take into account differ-

ent immune environment and age of responder cells. The rationale in the current study 

was to compare the responsiveness of M0 and M-IFN, i.e. different immune environ-

ments. M0 macrophages, i.e. naïve or M-CSF-primed macrophages reacted differently 

to the same bacterial strains as M-IFN macrophages. Our data therefore suggest to 

focus not only on one type of immune environment but on different types of mononu-

clear phagocytic cells to gain insight into the immune-potentiating effects of bacterial 

strains.  

Many previous studies testing direct bacteria-immune interactions in vitro made use of 

human PBMC in which IL-10/IL-12 ratios were taken as a measure for pro- or anti-

inflammatory capacity [457, 472]. In the current study, we used splenocytes as a 

PBMC collection. We could not apply IL-10/IL-12 ratios as IL-12p70 is produced in 

very low amounts in mice, and only induced in the presence of IFN-γ plus a simulta-

neous stimulation such as LPS. We considered measuring IL-12p40 values instead, 

but deemed such results difficult to interpret in inflammatory terms, since p40 subunits 

may occur either as single chains, as heterodimers with p35, p19 or other partners 

with pro- or unknown inflammatory activity, or even as inhibitory p80 dimers [473, 

474]. Therefore, we applied IL-10/TNF ratios. From a previous study, it is clear that 

TNF and IL-12p70 production by human monocyte-derived DC is closely correlated 

[471], and also in our study we have an indication for such a correlation (Figure 3).  

Despite the conceptual differences, comparing responses by freshly isolated spleen 

cells with those by BMDM, the results obtained in these culture systems generally 

were in close agreement. The bacterial strains that induced the greatest responses 

upon direct contact, responded similarly in splenocyte and in macrophage cultures. 

However, calculated per cell, splenocyte cultures produced much less cytokines than 
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macrophage cultures. Therefore, higher doses might be needed to measure certain 

cytokines in splenocyte supernatants. Most cytokine levels were below or around de-

tection limits when using the lowest dose of certain bacterial strains, but most of the 

cytokines could be detected when using a higher dose. This dose-response relation is 

important when applying bacteria in vivo. A limitation of this study is that we only de-

termined the response of macrophages to a single bacterial dose, and thus could not 

establish whether the two groups of bacteria showed a similar decreasing and increas-

ing IL-10/TNF ratio, respectively, upon stimulation with increasing bacterial doses. 

However, it is evident that BMDM are more potent in their response to bacteria com-

pared to splenocytes. Therefore, the optimal dose for stimulating splenocyte cultures 

is probably much higher than for macrophages. In addition, measuring multiple time 

points after addition of bacterial stimulations would have given insight in the kinetics of 

the observed immune responses. 

Based on macrophage phenotype, and splenocyte and macrophage cytokine re-

sponses, we identified two subgroups of bacteria (L. plantarum WCFS1 and L. casei 

BL23 versus B. breve ATCC15700, B. infantis ATCC15697 and A. muciniphila ATCC 

BAA-835). It is remarkable, that A. muciniphila, as the only tested gram-negative spe-

cies, induces similar responses as the Bifidobacterium strains. Furthermore, the first 

group represents facultative anaerobic bacteria, whereas the second group includes 

strictly anaerobic bacteria. L. lactis MG1363 resides mostly in the first group, but 

sometimes induced different responses, depending on the culture system we used. It 

is the only included strain which is generally recognized as safe for human consump-

tion, but non-probiotic [459]. We demonstrate that this strain is inducing a weak in-

flammatory response, which could support its widely studied function in bioactive mol-

ecule delivery in the gut [445]. With regard to the differences between bacterial 

strains, the choice for standardizing the doses based on CFU might have influenced 

the response triggered by the different strains. For instance, the biomass per CFU will 

most likely differ between bacterial strains, which might have had an impact on the 

triggered response. 

IL-10/IL-12 or IL-10/TNF ratios can be valuable to assess pro- or anti-inflammatory 

capacities of bacterial strains in order to predict in vivo responses [444]. They are, 

however, inappropriate when applying to e.g. aging individuals, considering the fact 

that Toll-like receptor (TLR)-mediated responses are affected by aging [475]. We also 

observed that the IL-10/TNF ratio in response to bacterial stimulations changes with 

age, which is probably mediated by age-acquired TLR signaling defects [476, 477] 

and dysregulated expression of the negative feedback regulator of TLR signaling miR-

146a [478]. Besides, responsiveness to LPS is reduced, supporting the evidence for 

TLR4-signalling defects in aged immune cells [479]. In general, IL-10 production was 

markedly increased in splenocytes and macrophages. This was reported by several 



Effect of age on interaction between immune cells and bacterial strains in vitro 

91 
 

previous studies [475, 476]. Further research is necessary to investigate the underly-

ing mechanisms. On the bacterial side, mutants could play an important role by eluci-

dating the role of surface molecules or secreted factors (e.g. short-chain fatty acids) 

by bacteria [480]. On the host side, IL-10 blocking or IL-12p70 supplementation might 

be interesting treatments to restore the response to bacterial supplementation in aged 

cells. A technical note of caution related to the interpretation of age-related differences 

is that the supplier of aged mice was different from the supplier of young mice, which 

most likely resulted in a difference in the microbiota composition. The microbiota com-

position has a crucial role in priming several immune cell types [126]. The fact that the 

obtained cells from young and aged mice could have been differently primed in vivo, 

might have influenced the outcome of this study. 

Aging effects found in splenocytes (isolated as primary cells from aged mice) are simi-

lar to those observed in BM-derived macrophages. The latter are derived from aged 

BM precursor cells, which have undergone multiple cell cycles in vitro, up to 8-9, be-

fore being exposed to bacteria. The finding that similar age-related changes have 

been retained in these cells compared to freshly isolated splenocytes implies that dif-

ferences, probably due to epigenetic changes during aging [481-483], are preserved 

during in vitro multiplication and differentiation of the cells. In accordance, it has been 

reported that hematopoietic stem cells are epigenetically dysregulated with age [65, 

484]. Another study, using a spermatogonial stem cell culture of over two years, 

demonstrated a remarkable imprinting potential and a resilience to epigenetic modifi-

cations in vitro [485]. 

Taking the differential effects of age on the immune response into account, it can be 

envisaged that probiotics that are beneficial in children, might have no favorable effect 

in elderly, and vice versa. For example, the reported beneficial effect of probiotic 

cheese containing L. rhamnosus HN001 and L. acidophilus NCFM in elderly [170], 

should be tested in children and adults to confirm its positive effect in different age 

classes. Acknowledging the generic adverse effects of age on functions of all body 

cells, including immune cells, we expect different effects of probiotics in children, 

adults, and elderly. A side-by-side study with children, adults, and elderly would thus 

provide insight into the in vivo interaction between probiotics and host, and the effect 

of age on this interaction. 

In conclusion, we observed that the response of splenocytes and macrophages on 

stimulation with different bacterial strains is altered with aging. It underlines the cau-

tion which is needed when translating findings in young immune cells or individuals to 

aged cells or elderly individuals.  
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Figure S1. CD11b expression unaltered after stimulation of M0 and M-IFN macrophages derived from 
young mice with bacterial strains stimulated with different bacterial strains. CD11b expression is 
indicated as median fluorescence intensity (MFI). – = medium control; + = LPS; bacterial strain coding is as 
indicated in Figure 1. Data represent the mean + S.E.M. determined in three independent experiments. 
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ABSTRACT 

Although it is clear that probiotics improve intestinal barrier function, little is known 

about the effects of probiotics on the aging intestine. We investigated effects of 10-wk 

bacterial supplementation of Lactobacillus plantarum WCFS1, Lactobacillus casei 

BL23, or Bifidobacterium breve DSM20213 on gut barrier and immunity in 16-week-old 

accelerated aging Ercc1
-/Δ7

 mice, which have a median lifespan of ~20wk, and their 

wild-type littermates.  

The colonic barrier in Ercc1
-/Δ7

 mice was characterized by a thin (<10µm) mucus layer. 

L. plantarum prevented this decline in mucus integrity in Ercc1
-/Δ7

 mice, whereas B. 

breve exacerbated it. Bacterial supplementations affected the expression of immune-

related genes, including Toll-like receptor 4. Regulatory T cell frequencies were in-

creased in the mesenteric lymph nodes of L. plantarum- and L. casei-treated  

Ercc1
-/Δ7

 mice. L. plantarum- and L. casei-treated Ercc1
-/Δ7

 mice showed increased 

specific antibody production in a T cell-dependent immune response in vivo. By con-

trast, the effects of bacterial supplementation on wild-type control mice were negligi-

ble.  

Thus, supplementation with L. plantarum – but not with L. casei and B. breve – pre-

vented the decline in the mucus barrier in Ercc1
-/Δ7

 mice. Our data indicate that age is 

an important factor influencing beneficial or detrimental effects of candidate probiotics. 

These findings also highlight the need for caution in translating beneficial effects of 

probiotics observed in young animals or humans to the elderly.  
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INTRODUCTION 

Aging is accompanied by multiple age-related diseases [17], posing a major burden to 

public health care [14]. With age, a decline in the regenerative potential of tissues due 

to stem cell exhaustion occurs [11]. Turnover in epithelial cells is rapid, and mounting 

evidence indicates that intestinal stem cells are compromised with aging [486]. For 

example, a crucial component of the intestinal barrier is mucus secreted by goblet 

cells [135]. The Muc2 glycoprotein regulates immunity by inducing tolerogenic signals 

in mucosal dendritic cells [138] and is important in host-microbe interactions [487]. 

Thus, changes in mucus quantity and integrity influence immunity [137, 138].  

Aging is accompanied by the development of a low-grade inflammation (‘inflammag-

ing’), which is characterized by elevated IL-6 and TNF serum levels in elderly [71]. 

Involution of the thymus and the bone marrow (BM) leads to decreased T and B cell 

production [55, 488]. In contrast, the production of myeloid cells is enhanced with ag-

ing, characterized by a progressive increase of neutrophil frequencies in the circula-

tion [73]. 

Probiotics are defined as live bacteria that confer health benefits to the host, for ex-

ample by competing with pathogens, enhancing intestinal barrier function, and regulat-

ing immunity [163, 164]. They might therefore prevent some of the undesired age-

related intestinal barrier and immune effects. Probiotic supplementation of elderly sub-

jects led to changes in fecal microbiota composition [489-491], and affected the distri-

bution and function of NK cells, macrophages, granulocytes, and T cells in the circula-

tion [492, 493]. Supplementation of aged mice with Lactobacillus paracasei resulted in 

increased IgG2a serum titers after antigenic challenge [494]. Middle-aged mice that 

were supplemented with Bifidobacterium animalis showed decreased colon permeabil-

ity, extended lifespan, and improved quality of life [165]. Besides these studies, little is 

known about how exposure to probiotics impacts on the aging intestinal barrier and 

immune system. Moreover, it is unknown whether the beneficial effects of probiotics 

are age-dependent. 

In this report, we have used an accelerated aging mouse model to evaluate the effects 

of candidate probiotics in aging. Based on a variety of histological, functional, metabo-

lomic, and proteomic data, it has been concluded that Ercc1
-/Δ7

 mice resemble normal 

murine aging [495]. Recently, we have shown that the immune system of Ercc1
-/Δ7

 

mice resembles the immune system of aged WT mice. For instance, we showed a 

similar decrease in B cell precursors and naïve T cells, and a similar increase in 

memory T cells and regulatory T cells [496]. The ERCC1 protein is involved in multiple 

DNA repair pathways. Ercc1
-/Δ7

 mice (median lifespan ~20 weeks) are deficient for 

fully functional ERCC1 protein. The expression of ERCC1-XPF (excision repair cross-

complementation group 1-xeroderma pigmentosum group F) DNA repair endonucle-

ase is reduced to ~5% compared with Ercc1
+/+

 mice. Moreover, the residual ERCC1-
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XPF protein present is expressed from a truncated allele, and lacks the last 7 amino 

acids. A reduction of ERCC1 protein activity leads to increased accumulation of DNA 

damage, and hence results in an accelerated aging phenotype [60, 62].  

The aim of this study was to investigate the potential of supplementation with candi-

date probiotic strains to ameliorate the effects of aging on the intestinal barrier and the 

immune system. Previously, probiotic activity was documented for Lactobacillus 

plantarum WCFS1 [453, 456, 457], Lactobacillus casei BL23 [442, 444], and relatives 

of Bifidobacterium breve DSM20213 [446]. We selected these strains on the basis of 

induced IL-10/TNF ratios in young and aged immune cells in vitro [497]. The three 

strains can be classified as potential pro-inflammatory (L. plantarum), regulatory (L. 

casei), or anti-inflammatory (B. breve), based on low, intermediate, or high IL-10/TNF 

ratios, respectively.  

For this study, we supplemented 6-week-old Ercc1
+/+

 mice and Ercc1
-/Δ7

 mice with L. 

plantarum, L. casei, or B. breve for 10 weeks. Mucus barrier, microbiota composition, 

and gene regulation in the colon were analyzed, as well as the distribution of immune 

cells in various mucosal and peripheral lymphoid organs. We determined immune 

competence by antigenic challenge.  

 

MATERIALS AND METHODS 

Mice 

The generation and characterization of Ercc1
+/∆7

 and Ercc1
-/+

 mice has been previous-

ly described [60]. Ercc1
-/∆7

 mice were obtained by crossing Ercc1
+/∆7

 with Ercc1
-/+

 mice 

of pure C57Bl6/J and FVB backgrounds to yield Ercc1
-/∆7

 with an F1 C57Bl6J/FVB 

hybrid background. Genotyping was performed as described previously [498]. Wild-

type littermates (C57Bl/6xFVB F1) were used as controls. Four-month-old and 18-

month-old C57Bl6/J mice were purchased from Harlan (Horst, The Netherlands; only 

used in Figure 1). 

Animals were housed in individual ventilated cages under SPF conditions. Experi-

ments were performed in accordance with the Principles of Laboratory Animal Care 

and with Dutch legislation. This study was carried out in accordance with the recom-

mendations of the Dutch Ethical Committee of Wageningen that approved the work. 

Blood was taken from mice being sacrificed, and serum was frozen in -80°C for later 

use. After mice (n=4-6) were sacrificed, feces from colon was collected and snap-

frozen. Distal ileum and proximal colon sections were isolated and fixed in Carnoy or 

snap-frozen in liquid nitrogen. Bone marrow, thymus, spleen, mesenteric lymph 

nodes, and Peyer’s patches were isolated. 
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Bacterial cultures and supplementation 

Lactobacillus plantarum WCFS1, Lactobacillus casei BL23, and Bifidobacterium breve 

DSM20213 were grown on MRS medium (Merck, Darmstadt, Germany) until station-

ary phase, frozen in glycerol, and stored in -80°C until use. Upon use, bacteria were 

thawed and 10x diluted in NaHCO3/PBS buffer. Around 2 * 10
8
 CFU in 200 µL were 

administered to mice by gavage, three times per week. Treatment of mice started at 6 

weeks of age until one day before sacrifice at 16 weeks or until death. 

 

Histology and fluorescence in situ hybridization (FISH) 

Carnoy-fixed proximal colon sections were embedded in paraffin. Paraffin sections (5 

µm) were attached to poly-L-lysine-coated glass slides (Thermo Scientific, Germany). 

After overnight incubation at 37˚C, slides were de-waxed and rehydrated. Sections 

were stained with hematoxylin and eosin (H&E) and PAS/Alcian blue. Mucus layer 

thickness was measured using ImageJ software (NIH, Maryland, USA), as previously 

published [499]. For detection of bacteria, tissue sections were used for FISH, as pre-

viously published [137]. 

 

MIT-Chips/16S Sequencing  

Microbiota composition in colonic content was analyzed by Mouse Intestinal Tract 

Chip (MITChip), as described previously [500]. The data were normalized and ana-

lyzed using a set of R-based scripts in combination with a custom-designed relational 

database, which operates under the MySQL database management system. For the 

microbial profiling, the Robust Probabilistic Averaging signal intensities of 2667 specif-

ic probes for the 94 genus-level bacterial groups detected on the MITChip were used 

[501]. Diversity calculations were performed using a microbiome R-script package 

(https://github.com/microbiome). Multivariate statistics, redundancy analysis, and prin-

cipal response curves were performed in Canoco 5.0 and visualized in triplots or a 

principal response curves plot [502]. 

 

RNA isolation and transcriptome analysis 

Total RNA was isolated from proximal colon (n=3-6 per group) using the RNeasy kit 

(Qiagen) with a DNase digestion step according to the manufacturer’s protocol. Tran-

scriptome analysis on individual samples was performed as previously described 

[137].  
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General flow cytometry procedures  

Single-cell suspensions of bone marrow (BM) were obtained by crushing femurs, tibi-

as, iliac crests, and sternum with mortar and pestle. BM cells were then filtered on a 

40 µm cell strainer. A proportion of the BM cells was frozen for later use in in vitro cul-

tures. Spleen, mesenteric lymph nodes (MLN), Peyer’s patch (PP), thymus and peri-

toneal cavity single-cell suspensions were obtained by gently pushing cells through a 

40 µm cell strainer with a syringe. All cells were stained for extracellular markers and 

dead cells were identified with fixable live/dead stain (Ebioscience, San Diego, CA, 

USA), after which intracellular staining was enabled by fixing and permeabilizing cells 

with Fix/Perm buffer (Ebioscience) according to manufacturer’s instructions. Antibod-

ies used for flow cytometric measurements are listed in Supplementary Table 1. All 

flow cytometric measurements were performed on a Canto II flow cytometer (BD Bio-

sciences, Erembodegem, Belgium). FlowJo vX.07 software (Tree Star) was used for 

data analysis. Gating of all presented immune cell populations was based on single 

live cells. 

 

Spleen cell cultures 

Splenic cells were cultured at 10
6
 cells/mL for four days in the absence or presence of 

5 µg/mL concanavalin A (ConA). Proliferation was measured by Ki-67 (Ebioscience). 

Supernatants were stored at -20°C. After thawing, levels of IL-2, IL-4, IL-6, IL-10, IL-

17A, IFN-γ, and TNF were measured with the Cytometric Bead Array Th1/Th2/Th17 

Kit (BD Biosciences), according to manufacturer’s instructions. Samples were ac-

quired on a Canto II flow cytometer. Data were analyzed using FCAP Array version 

3.0 (BD Biosciences) software. 

 

Antibody titers in serum 

Levels of IgM, IgG1, IgG2a, IgG2b, IgG3, IgE, and IgA were analyzed in serum using 

ProcartaPlex Mouse Antibody Isotyping Panel kit on the Luminex platform (Affymetrix, 

Santa Clara, CA, USA) according to the manufacturer’s instructions. Data were ac-

quired on a BioPlex 200 (Bio-Rad, Hercules, CA, USA) and analyzed with BioPlex 

software (version 5.0, Bio-Rad). 

 

In vivo immunization and antibody detection  

Primary and secondary T-cell dependent (TD) immune responses against TNP-KLH 

were measured 7 days after primary i.p. immunization and 7 days after i.p. booster 

immunization. The primary immunization was performed at 8 weeks of age (TNP-KLH 

in alum), booster doses were injected at 12 weeks of age (TNP-KLH in PBS). Total 

and TNP-specific Ig subclasses were determined by sandwich ELISA as previously 

described [503]. 
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Statistical analysis 

Values are expressed as mean + SEM. Normal distribution of the data was confirmed 

using the Kolmogorov-Smirnov test. Statistical comparisons were performed using the 

two-sided Student’s t test. Where non-Gaussian distribution was demonstrated, we 

applied the nonparametric Mann–Whitney U test. Where no equal variances were ob-

served, we applied the two-sided Student’s t test with Welch’s correction. Statistical 

comparisons for lifespan data were performed using the log-rank (Mantel-Cox) test. 

Statistical comparisons for serum immunoglobulins were performed using two-way 

ANOVA, with subsequent Bonferroni posttests. Values of p<0.05 were considered to 

be statistically significant. Values between p>0.05 and p<0.10 were considered as a 

trend. 

 

RESULTS 

The mucus layer in the colon declines with age 

To assess the mucus barrier in normal and accelerated aging, we compared the prox-

imal colon of 4-month-old (young) with 18-month-old (aged) WT mice, and of 6-week-

old (young) with 16-week-old (aged) Ercc1
-/Δ7

 mice. We observed that in aged WT and 

Ercc1
-/Δ7

 mice, a thinner mucus layer was present, compared with young WT and 

Ercc1
-/Δ7

 mice (Figure 1A). With ImageJ, we measured the thickness of the mucus 

layer. In young WT and Ercc1
-/Δ7

 mice, a mucus layer of around 20 µm was present, 

whereas in normal and accelerated aged mice, a significantly thinner mucus layer of 

less than 10 µm was observed (p<0.001; Figure 1B).  

 

Bacterial supplementations do not change the mucus layer in colon of young 

Ercc1
+/+

 mice 

To determine the effects of the three selected bacterial strains in the young intestine, 

we analyzed proximal colon tissues of 10-wk treated Ercc1
+/+

 mice. No change in tis-

sue integrity (H&E) or mucus layer (PAS/Alcian Blue) was observed in the colon after 

supplementation with bacterial strains (Figure 1C). 

 

Age-related decline in the mucus barrier is prevented by supplementation of 

Ercc1
-/Δ7

 mice with L. plantarum  

Because the mucus layer declines with age, we questioned whether bacterial supple-

mentation of Ercc1
-/Δ7

 mice prevents the decline in mucus barrier. Colon tissue of 10-

wk treated Ercc1
-/Δ7

 mice was checked for tissue integrity and mucus layer. In contrast 

to our findings in Ercc1
+/+

 mice, bacterial supplementation had significant effects on 

tissue integrity and the mucus layer. In Ercc1
-/Δ7

 mice supplemented with L. plantarum, 

the colon showed a thicker mucus layer than in their controls (Figure 1D). On the con-
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trary, Ercc1
-/Δ7

 mice supplemented with L. casei or B. breve showed loss of tissue in-

tegrity, and in the case of B. breve supplementation also a deteriorated mucus layer. 

L. plantarum supplementation prevented age-related decline in the mucus layer com-

pared with controls (p<0.001; Figure 1E), with a mucus thickness comparable to 

young Ercc1
+/+

 mice. No difference in mucus thickness was observed after supple-

mentation with L. casei. A significant loss in mucus thickness, however, was observed 

after supplementation with B. breve (p<0.001). Treatment with L. plantarum, in con-

trast to L. casei and B. breve, resulted in improved spatial compartmentalization of 

bacteria in the colon of Ercc1
-/Δ7

 mice (Figure 1F). 

Collectively, these data show that L. plantarum supplementation improves the mucus 

layer in the aged (but not young) colon. In addition, supplementation with L. casei or 

B. breve exacerbates the age-related decline of mucus barrier in the colon. 

 

Bacterial supplementation associated with minor alterations in colonic microbi-

ota composition 

As we introduced bacteria by bacterial supplementations into the intestinal microbial 

community, we investigate whether changes in the microbiota composition were un-

derlying the observed changes in the mucus barrier of Ercc1
-/Δ7

 mice. Microbiota com-

position was determined by performing 16S rRNA gene microbiota profiles of feces. 

The bacterial supplementations did not significantly alter microbial diversity nor rich-

ness (data not shown).  

Redundancy analysis (RDA) showed that 10.1% of the total variability of the gut mi-

crobiota can be related to the bacterial supplementations (Figure 2). No statistical sig-

nificance was established. The first ordination axis explained 4.9% of the variability 

and separated Ercc1
-/Δ7

 mice supplemented with either of the three bacterial strains 

from the control Ercc1
-/Δ7

 mice. The second ordination axis explained 3.6% of the vari-

ability but did not result in a separation between groups. The third ordination axis ex-

plained an additional 1.6% of the variability (data not shown).  

To assess whether significant changes in the microbial genus-like bacterial groups 

existed after different bacterial supplementations, we performed the Wilcoxon test. 

Subdoligranulum was higher in mice supplemented with L. casei (p<0.05), whereas it 
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Figure 2. The effect of bacterial supplementations on colonic microbiota composition in Ercc1

-/Δ7
 

mice. Redundancy analysis of the microbial composition after bacterial supplementations, on genus-like 
level of the MITChip analysis. Mice belonging to control-, LP-, LC-, and BB-treated groups are indicated by 
white squares, yellow diamonds, green circles, and blue rectangles, respectively. First and second ordina-
tion axes are plotted, showing 4.9% and 3.6% of the variability in the dataset, respectively. No significant 
changes were observed. LP = L. plantarum WCFS1; LC = L. casei BL23; BB = B. breve DSM20213. 

 

tended to be higher in mice supplemented with B. breve (p=0.05), as compared with 

control mice (Figure 3). Akkermansia muciniphila tended to be less present (p=0.06) in 

mice supplemented with L. plantarum compared with control mice. Eubacterium plexi-

caudatum and a close relative to Anaerostipes caccae tended to be higher (p=0.06) in 

Ercc1
-/Δ7

 mice supplemented with L. casei. 

These data suggest that colonic microbial differences between control-treated Ercc1
-

/Δ7
 mice and Ercc1

-/Δ7
 mice treated with bacterial supplementations do not explain ob-

served changes in colon. 
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Figure 3. Bacterial supplementation induced changes in bacterial taxa in the colon of Ercc1

-/Δ7
 mice. 

Wilcoxon tests comparing mice treated with bacterial strains with control group. Data represent n=4-6 mice 
per group. *=p<0.05. 

 

Distinct gene expression profiles in colon after each bacterial supplementation 

To understand the mechanisms by which bacterial supplementation changes the mu-

cus barrier, we performed transcriptome analysis on the proximal colon of Ercc1
-/Δ7

 

mice. Gene expression microarrays revealed relatively low numbers of regulated 

genes: 84 by L. plantarum, 238 by L. casei, and 384 by B. breve. Only a few genes 

were overlapping between two or three different bacterial supplementations, whereas 

most of the regulated genes were distinctly regulated by one of the treatments (Figure 

4).  

Several growth- and immune-related genes were differentially expressed after bacteri-

al supplementation. Apolipoprotein (APO) A-1, APOA-4, suppressor of cytokine signal-

ing (SOCS) 3, and Toll-like receptor (TLR) 4 were upregulated more than 1.2-fold after 

L. plantarum supplementation (data not shown). Several immunoglobulin variable 

genes and TLR13 were upregulated after administration of L. casei, whereas defensin 

40β was 1.3-fold downregulated. Defensin 24α, amphiregulin, and keratinocyte growth 

factor 7 (FGF7) were upregulated more than 1.4-fold after administration of B. breve, 

while TLR6, TLR7, and CCL3 (MIP-1α) were more than 1.2-fold downregulated (data 

not shown). 
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Figure 4. Venn diagrams of differentially regulated 
genes in colon of Ercc1

-/Δ7
 mice after bacterial 

supplementations. Total number of genes altered in 
the proximal colon of Ercc1

-/Δ7
 mice treated with L. 

plantarum WCFS1 (LP), L. casei BL23 (LC), or B. 
breve DSM20213 (BB) compared with control-treated 
Ercc1

-/Δ7
 mice. Venn diagram of the total number of 

genes up-regulated and down-regulated in the proxi-
mal colon of Ercc1

-/Δ7
 mice treated with LP, BB, or LC 

(p<0.05 and >1.2-fold difference). 

 

Bacterial supplementation alters growth- and immune-related pathways in colon 

We applied a gene set enrichment analysis (GSEA)[504] to gain insight into the regu-

lated pathways by bacterial supplementations. GSEA revealed that L. plantarum and 

L. casei supplementation enhanced several processes involved in growth and cell cy-

cle, and immunity (Supplementary Table 2), whereas B. breve supplementation inhib-

ited several processes in immunity (Supplementary Table 3). Of note, supplementa-

tion with L. casei and B. breve enhanced the processes involved in the unfolded pro-

tein response (UPR). Moreover, L. plantarum enhanced DNA repair pathways. 

Upstream regulators that can explain the observed changes in gene expression were 

identified using Ingenuity Upstream Regulator Analysis. Upstream regulators predicted 

to be activated or inhibited upon bacterial supplementation are listed in Table 1. Sev-

eral growth factors were activated after L. plantarum supplementation: leptin, epider-

mal growth factor (EGF), platelet-derived growth factor (PDGF) BB, early growth re-

sponse protein (EGR) 1, and insulin-like growth factor (IGF) 1. Resistin-like β (RTNLB) 

was activated in colon of mice supplemented with L. casei, whereas GATA3 was in-

hibited. B. breve supplementation inhibited fibroblast growth factor (FGF) 2. Inflamma-

tory cytokines (IFN-γ, IL-1β, IL-4, TNF) and CD40L (CD154) were activated in colon of 

mice supplemented with L. plantarum, compared with colon of mice supplemented 

with control. In contrast, IFN-γ, IgG, GATA2, and ITK were inhibited in colon of mice 

supplemented with B. breve, EGF, insulin, and platelet-derived growth factor (PDGF) 

BB were activated by both L. plantarum and B. breve supplementation.  
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Table 1. Activation z-scores of upstream regulators in proximal colon of Ercc1
-/Δ7

 mice after bacterial 
supplementations L. plantarum WCFS1 (LP), L. casei BL23 (LC), or B. breve DSM20213 (BB) as de-
termined by Ingenuity. Upstream regulators involved in immunity are highlighted in blue; upstream regula-
tors involved in growth and cell cycle are highlighted in orange. Cut-off values for activation z-score ≥ 1.5 or 
≤ -1.5 combined with p<0.05. Activated in blue, inhibited in red. 

Upstream Regulator LP LC BB 

Leptin 2.41 
  EGF 2.36 
 

3.36 

IL4 2.18 
  IFN-γ 2.00 
 

-1.35 

PDGF BB 2.00 
 

1.15 

P38 MAPK 1.97 
  CD40L 1.96 
  palmitic acid 1.96 
  EGR1 1.95 
  IGF1 1.82 
  IL1β 1.77 
  ethanol 1.76 
  CREB1 1.55 
  CREBBP 1.54 
  TNF 1.53 
  KLF4 

 
2.04 

 Resistin-like β 

 
2.00 

 PML 
 

-1.73 
 miR-4800-5p 

 
-1.98 

 GATA3 
 

-1.98 
 MTOR 

 
-2.00 

 miR-4455 
 

-2.22 
 ADCYAP1 

  
2.60 

EDN1 
  

2.17 

WNT3A 
  

2.16 

VIP 
  

1.95 

FGF2 
  

1.74 

GLI1 
  

1.63 

miR-6967-5p 
  

-1.58 

Klra7 (includes others) 
  

-1.87 

IgG 
  

-1.89 

EZH2 
  

-1.96 

GATA2 
  

-2.00 

ANXA7 
  

-2.00 

miR-4707-5p 
  

-2.16 

ITK 
  

-2.19 

miR-4459 
  

-2.63 
 
ADCYAP = adenylate cyclase activating polypeptide; ANX = annexin; CREB(BP) = cAMP-responsive ele-
ment (binding protein); EDN = endothelin; EGF = epidermal growth factor; EGR = early growth response 
protein; EHZ = enhancer of zeste homolog; FGF = fibroblast growth factor; GLI = glioma-associated onco-
gene family zinc finger; IFN = interferon; IGF = insulin-like growth factor; ITK = IL-2-inducible T cell kinase; 
KLF = kruppel-like factor; Klra = killer cell lectin-like receptor, subfamily A; LEP = leptin; MTOR = mechanis-
tic target of rapamycin; PDGF = platelet-derived growth factor; PML = promyelocytic leukemia protein; 
RETNLB = resistin-like β; TNF = tumor necrosis factor; VIP = vasoactive intestinal peptide; WNT = wing-
less-type MMTV integration site family. 
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These data indicate that the immune system in the colon is regulated by bacterial 

supplementations. 

 

L. plantarum and L. casei supplementation induce regulatory T cells in MLN 

Based on the regulation of immune genes by bacterial supplementations, we tested 

whether the distribution of immune cells was altered in mucosal immune organs of 

Ercc1
-/Δ7

 mice.  

First, we evaluated changes in distribution of immune cells in Peyer’s patches (PP) 

and mesenteric lymph nodes (MLN). B cell frequencies were reduced in PP and MLN 

(p<0.05) after L. casei supplementation in Ercc1
-/Δ7

 mice (Figure 5A). In contrast, fre-

quencies of T cells were increased in PP (p<0.01) and MLN (p<0.05; Figure 5B). The 

frequencies of regulatory T (Treg) cells in MLN were increased after L. plantarum and 

L. casei supplementation (p<0.05; Figure 5C, 5D). No changes in distribution of B and 

T cells was observed upon bacterial supplementation in Ercc1
+/+

 mice, except for a 

tendency to decreased Treg cells after L. casei supplementation (p=0.09; Supplemen-

tary Figure 1). 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Distribution of B cells 
and T cells in Peyer’s patches 
(PP) and mesenteric lymph 
nodes (MLN) upon bacterial 
supplementation in Ercc1

-/Δ7
 

mice. A/B) Mean frequencies of 
B and T cells in PP and MLN 
were determined by flow cytome-
try. B cells were defined as 
CD19

+
, T cells were defined as 

CD3
+
. C) Flow cytometric analy-

sis of CD3
+
CD4

+
CD8

-
 regulatory 

T (Treg) cells in MLN. D) Mean 
frequencies of Treg cells in MLN. 
Data represent the mean + 
S.E.M. from 4-6 animals per 
group. LP = L. plantarum 
WCFS1; LC = L. casei BL23; BB 
= B. breve DSM20213. *=p<0.05; 
**=p<0.01. 
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L. casei raises systemic inflammatory markers 

Next, we assessed distribution of immune cells in the spleen. First, we noted that the 

relative spleen weight increased after L. casei supplementation in Ercc1
-/Δ7

 mice (Sup-

plementary Figure 2A). Splenic B cell frequencies tended to be decreased after L. ca-

sei supplementation (p=0.06; Figure 6A), but no changes in T cell frequencies were 

observed (Figure 6B). Treg cell frequencies in the spleen were increased after L. casei 

supplementation in Ercc1
-/Δ7

 mice (p<0.05; Figure 6C). 

 
Figure 6. L. casei supplementation of Ercc1

-/Δ7
 mice raised inflammatory markers in spleen. A/B) 

Mean frequencies of B and T cells in spleen were determined by flow cytometry. B cells were defined as 
CD19

+
, T cells were defined as CD3

+
. C) Mean frequencies of Treg cells in spleen. D) Flow cytometric anal-

ysis of splenic monocytes. CD11b
+
Ly6G

-
CD68

+
 cells were divided in Ly6C

hi
, Ly6C

int
, and Ly6C

lo
 monocytes. 

E-G) Mean frequencies of Ly6C
hi
 monocytes, neutrophils, and CD3

+
CD4

+
CD8

-
Rorγt

+
 Th17 cells were de-

termined by flow cytometry. H) Mean concentration of IL-17A production by splenocytes stimulated with 
ConA for four days, as determined by Cytometric Bead Array. I) Mean proliferating T cells (Ki-67

+
) in sple-

nocyte culture stimulated with ConA for four days, as determined by flow cytometry. Data represent the 
mean + S.E.M. from 4-6 animals per group. *=p<0.05; **=p<0.01. LP = L. plantarum WCFS1; LC = L. casei 
BL23; BB = B. breve DSM20213. 

 

Increased frequencies of CD11b
+
Ly6G

-
CD68

+
Ly6C

hi
 monocytes (p<0.01; Figure 6D, 

6E) and a tendency to increased frequencies of CD11b
+
CD68

int
Ly6C

int
Ly6G

+
 neutro-

phils were observed after L. casei supplementation (p=0.07; Figure 6F). In addition, 
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CD3
+
CD4

+
RORγt

+
 Th17 cells (Supplementary Figure 2B) were increased after L. ca-

sei supplementation (p<0.05; Figure 6G). A four-day culture of splenocytes stimulated 

with concanavalin A (ConA), showed increased IL-17A production (p<0.01; Figure 6H) 

and decreased T cell proliferation in splenocytes derived from L. casei-treated mice 

(p<0.01; Figure 6I). None of these changes were observed in Ercc1
+/+

 mice treated 

with bacterial supplementations (Supplementary Figure 3). 

 

Immune cell development affected after Lactobacillus supplementation  

We subsequently investigated the development of B cells and myeloid cells in bone 

marrow (BM) and of T cells in thymus of Ercc1
-/Δ7

 mice, as the observed changes in 

cell distribution in PP, MLN, and spleen might be explained by an altered migration or 

production. In the BM, we observed significantly higher Lin
-
CD117

hi
CD11c

-
CD135

-

CD16/32
+
 granulocyte-monocyte precursor (GMP), CD11b

+
Ly6G

+
 neutrophil, and 

Ly6C
hi
CD31

-
 monocyte frequencies after L. casei supplementation (Figure 7A-7C). 

Frequencies of total CD19
+
CD45R

+
 B-lineage cells were decreased after L. plantarum 

(p<0.05) and L. casei supplementation (p<0.001), but not after B. breve supplementa-

tion (Figure 7D).  

 
Figure 7. L. casei or L. plantarum supplementation altered myeloid and lymphoid development in 
bone marrow and thymus of Ercc1

-/Δ7
 mice. A-D) Mean frequencies in bone marrow (BM) were deter-

mined by flow cytometry. Granulocyte-monocyte precursors (GMP) were defined as Lin
-
CD117

hi
CD11c

-

CD135
-
CD16/32

+
, neutrophils as CD11b

+
Ly6G

+
, monocytes as Ly6C

hi
CD31

-
, and B-lineage cells as 

CD19
+
CD45R

+
. E-H) Mean absolute numbers were determined by cell counts and flow cytometry. Double 

negative (DN) cells were defined as CD3
-
CD4

-
CD8

-
, double positive (DP) cells as CD3

-
CD4

+
CD8

+
, CD4

+
 

single positive (SP) as CD3
+
CD4

+
CD8

-
, and CD8

+
 SP as CD3

+
CD4

-
CD8

+
. Data represent the mean + 

S.E.M. from 4-6 animals per group. *=p<0.05; **=p<0.01 ***=p<0.001. LP = L. plantarum WCFS1; LC = L. 
casei BL23; BB = B. breve DSM20213. 

 

L. casei supplementation significantly reduced cIgM
+
CD2

+
 small resting pre-B 

sIgκ/λ
+
cIgM

+
IgD

lo
 immature, and sIgκ/λ

+
cIgM

+
IgD

hi
 recirculating mature B cells, but did 

not significantly reduce cIgM
-
CD2

-
 pro-B and cIgM

+
CD2

-
 large cycling pre-B cells 

(Supplementary Figure 4). In thymus, only L. casei supplementation caused changes 



Supplementation with L. plantarum WCFS1 prevents decline of mucus barrier in colon of Ercc1
-/Δ7

 mice 

113 
 

in cell distribution, with significantly reduced CD3
-
CD4

+
CD8

+
 double positive (DP) cell 

numbers (Figure 7E-7H).  

No significant changes in GMP, monocytes, neutrophils, and thymocytes were noted 

in Ercc1
+/+

 mice after bacterial supplementations (Supplementary Figure 5). A signifi-

cant decrease in B-lineage cells was also observed in Ercc1
+/+

 mice supplemented 

with L. casei (Supplementary Figure 5D), which predominantly was explained by a 

decrease in small resting pre-B cells (p<0.05; Supplementary Figure 5E). A tendency 

to decreased small resting pre-B cells was also observed in Ercc1
+/+

 mice supple-

mented with L. plantarum (p=0.08).  

 

L. casei supplementation increases IgG serum titers  

Because L. casei supplementation lead to decreased B cell levels in several immune 

organs of Ercc1
-/Δ7

 mice, we tested whether serum antibody titers in Ercc1
-/Δ7

 mice 

were altered. IgG1 and IgG2b (but not IgG2a, IgG3, IgE, and IgA) titers were signifi-

cantly increased after L. casei supplementation (Figure 8). L. plantarum and B. breve 

supplementation did not significantly change titers of any Ig subclass.  

 
Figure 8. L. casei supplementation increased IgG1 and IgG2b titers in Ercc1

-/Δ7
 mice. Mean titers of 

IgG1, IgG2a, IgG2b, IgG3, IgE, and IgA in serum, as determined by Luminex. Data represent the mean + 
S.E.M. from 3-6 animals per group. **=p<0.01 ***=p<0.001. LP = L. plantarum WCFS1; LC = L. casei BL23; 
BB = B. breve DSM20213. 
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Bacterial supplementations do not alter lifespan of Ercc1
-/Δ7

 mice 

The accelerated aging of Ercc1
-/Δ7

 mice enables to expedite assessment of potential 

life-extending properties of the bacterial strains. No significant change in lifespan was 

observed after treating Ercc1
-/Δ7

 mice lifelong with L. plantarum or L. casei (Supple-

mentary Figure 6).  

 

Immune competence improved by L. casei and L. plantarum supplementation  

To test whether changes in immune cell distribution also impact immune competence, 

we analyzed the immune response of Ercc1
-/Δ7

 mice to TNP-KLH. Specific anti-TNP-

KLH titers of the three tested isotype classes (IgM, IgG1, IgG2a) after primary and 

booster immunization were consistently higher after L. plantarum and L. casei sup-

plementation (Figure 9). In particular, IgG1 titers after booster immunization increased 

in both L. plantarum- and L. casei-supplemented mice compared with control-treated 

mice (p<0.001).  

 
Figure 9. Supplementation of L. plantarum and L. casei increased specific anti-TNP-KLH antibody 
responses of Ercc1

-/Δ7
 mice. Mean TNP-specific IgM, IgG1, and IgG2a concentrations in serum were de-

termined by ELISA, 7 days after primary immunization (prime, age 9 weeks), or 7 days after booster immun-
ization (boost, age 13 weeks). Data represent the mean + S.E.M. of 6-12 animals per group. ***=p<0.001. 
LP = L. plantarum WCFS1; LC = L. casei BL23. 
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DISCUSSION 

The effects of bacterial supplementations on the intestinal barrier and cellular parame-

ters of immunity were studied in fast aging Ercc1
-/Δ7

 mice. We observed that the mu-

cus layer in the colon declines with age and that bacterial supplementation may pre-

vent or exacerbate the age-related decline in the mucus layer, dependent on the spe-

cific bacterial strain. Additionally, we demonstrated a marked difference in the re-

sponse to bacterial supplementations between Ercc1
-/Δ7

 mice and WT mice. Finally,

supplementation with L. casei BL23 profoundly changed the distribution of immune 

cells and supplementation with L. plantarum WCFS1 or L. casei BL23 improved im-

mune competence in Ercc1
-/Δ7

 mice.

Recently, we showed the age-related decline in mucus barrier of C57Bl/6 mice as well 

(Sovran et al, unpublished data). Importantly, we report that the mucus barrier de-

clines with age, in aged C57Bl/6 and Ercc1
-/Δ7

 mice (Figure 1). This finding adds an-

other age-related phenotype to the wide spectrum of age-related phenotypes ob-

served in Ercc1
-/Δ7

 mice [58]. Moreover, we report that the age-related decline in mu-

cus barrier can be modulated by bacterial supplementation. L. plantarum prevented 

the decline in mucus barrier. L. plantarum is able to bind to mucus with a mannose-

specific adhesin, which is described as a potential probiotic feature [505]. In total, L. 

plantarum harbors four mucus-binding proteins [506]. Based on the improved spatial 

compartmentalization of bacteria after L. plantarum supplementation, we postulate 

that L. plantarum adheres to the mucus. In addition, we found that L. plantarum sup-

plementation tended to decrease the abundance of Akkermansia muciniphila (Figure 

3), which is known as a mucus degrader [467]. Thus, it would be conceivable that mu-

cus degradation is decreased after L. plantarum supplementation. In contrast, B. 

breve is known as a mucus degrader [507], and could therefore be directly responsible 

for the decrease in mucus thickness in the colon of B. breve-treated mice. Interesting-

ly, several pathways involved in protein folding and the UPR were upregulated after L. 

casei and B. breve supplementation (Supplementary Table 2). A high demand for syn-

thesis of secretory proteins (like mucins) induces endoplasmatic reticulum (ER) stress, 

which in turn induces the UPR [508]. The close proximity of bacteria to the epithelium 

in L. casei- and B. breve-treated mice might induce a high demand for mucin produc-

tion and secretion, leading to induction of ER stress and UPR. There is indeed evi-

dence that defects in MUC2 mucin and a subsequent defective mucus layer lead to 

ER stress and UPR [509]. 

Microbiota profiling showed that only few microbial species are slightly altered by bac-

terial supplementation (Figure 2, 3). Therefore, most of the observed effects in the 

mucus barrier and immune system may be directly linked to the supplementation of 

each of the bacterial strains.  
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We found that the different bacterial strains elicited characteristically different re-

sponses in gene regulation in the colon (Figure 4). L. plantarum is known for its mod-

erately pro-inflammatory profile, and relatively high IL-10 induction, when tested in 

human PBMC cultures [457, 472]. In line with these studies, several upstream regula-

tors predicted to be activated after L. plantarum supplementation included the inflam-

matory cytokines IFN-γ, IL-1β, IL-4, and TNF. The association between increased ac-

tivation of inflammatory cytokines and the improved integrity of the colon after L. 

plantarum supplementation raises the possibility that it might be beneficial to locally 

increase inflammatory cytokine levels. This suggestion is corroborated by the absence 

of activation of these inflammatory cytokines after L. casei or B. breve supplementa-

tion, which did not improve or exacerbate the age-related decline in mucus integrity. A 

'tonic' level of constitutive TLR activation by commensal bacteria was previously 

shown to be crucial in the recovery from DSS-induced epithelial damage due to the 

role of NF-κB in epithelial repair processes [510]. This notion that "physiological pro-

inflammatory signals" is required for intestinal homeostasis is also supported by stud-

ies using epithelium-specific iκB kinase-γ (or NEMO) ablation in mice. These mice de-

velop spontaneous colitis due to the failure of NF-κB to induce epithelial repair and 

steady-state production of innate effector mechanisms in the intestine [511]. TLR2 

signaling has been implicated in tight junction regulation in vivo and in vitro [163]. 

Thus is it possible that aged mice have sub-optimal level of TLR stimulation in the in-

testine to promote innate barrier defenses and that this is enhanced by L. plantarum, 

but not by L. casei and B. breve.  

Remarkably, none of the significantly regulated genes were directly linked to mucus 

production. However, while performing Upstream Regulator Analysis, growth factors 

like EGF, IGF1, and EGR1 were predicted to be activated after Lactobacillus planta-

rum supplementation. Together, these findings may indicate that mucus production by 

goblet cells is not directly enhanced, but is part of general epithelial integrity, support-

ed by a number of growth factors. 

Because many regulated genes involved immune-related genes, we additionally ana-

lyzed the makeup of the immune system after bacterial supplementation. Whereas 

supplementation with B. breve exacerbated the age-related decline in mucus barrier in 

colon, it did not cause any changes in mucosal or systemic immunity (Figure 5-8). Op-

positely, L. casei supplementation caused various signs of inflammation, such as 

Ly6C
hi
 monocyte and neutrophil influx and production in spleen and BM, respectively. 

These inflammatory signs were coincided with the general decrease in B cell frequen-

cies (also in the BM) and double-positive thymocytes. There is evidence that neutro-

phils in the BM are primed by microbial ligands [280]. The effects of microbiota-

derived signals on priming B and T cells in the BM have not been previously de-

scribed. Our study suggests an, up to now, unknown link between microbiota, intesti-
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nal barrier, and B and T cell precursors. Specific precursor stages (i.e. small resting 

pre-B cells) were significantly decreased after L. casei supplementation, and to a 

lesser extent after L. plantarum supplementation. In the case of L. plantarum supple-

mentation, we suggest that improved intestinal barrier function might alter circulating 

microbiota-derived products such as peptidoglycan (PGN) and lipopolysaccharide 

(LPS). For instance, hematopoietic stem cells are damaged after chronic exposure to 

LPS [512]. Interestingly, the decrease in small resting pre-B cells after L. casei sup-

plementation (and to lesser extent by L. plantarum) was the only finding that could be 

reproduced in WT mice supplemented with these bacterial strains (Supplementary 

Figure 4). This may indicate that the effect of L. casei and L. plantarum supplementa-

tion on B cell development is independent of age.  

A previous study showed lifespan extension after B. animalis supplementation [165]. 

Therefore, we performed a lifespan study for L. plantarum and L. casei, which indicat-

ed that neither of them is shortening or extending lifespan (Supplementary Figure 5).  

Surprisingly, anti-TNP-KLH IgG1 titers in serum increased not only after L. plantarum, 

but also after L. casei supplementation (Figure 9). This increase suggests that a de-

mise in B cell development and B cell distribution does not necessarily translate into 

impaired B cell function. Previously, it has been shown that antigen-specific antibody 

titers can be enhanced by probiotic supplementation in aged mice [494], but data on B 

cell development are lacking. 

The effects of the candidate probiotic strains were pronounced on the mucus barrier in 

the colon of Ercc1
-/Δ7

 mice compared with WT mice. It has been shown in previous 

studies that strains such as L. casei and B. breve have beneficial effects on immuno-

logical parameters and intestinal barrier function in young mice [442, 444, 446]. In our 

hands, L. casei and B. breve had no effect on mucus barrier or systemic immunity in 

young WT mice (except for the above-discussed finding on B cell development). A 

severe deteriorating effect, however, was observed on the mucus barrier or systemic 

immunity in Ercc1
-/Δ7

 mice. These findings highlight the need for caution in translating 

beneficial effects of probiotics observed in young animals or humans to the elderly. 

Our study has a number of limitations. We observed remarkable changes in the mu-

cus layer, but could not pinpoint a single gene that is directly linked to the mucus lay-

er. Furthermore, we did not include commercially available probiotic bacterial strains, 

such as Lactobacillus rhamnosus GG, or a non-probiotic bacterial strain. Neverthe-

less, our study reveals a previously unknown effect of age on the mucus barrier. We 

also show that it is possible to modulate this age-related decline in the mucus barrier 

by supplementation of bacterial strains, with coinciding effects on systemic immunity. 

More research is warranted to elucidate the interplay between bacteria, the aged gut 

epithelium, and the immune system. 
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Our data provide evidence that a comprehensive analysis of the intestinal barrier and 

immunity are needed in order to evaluate how bacterial supplementation contributes to 

the restoration of the age-related decline in intestinal barrier. A positive finding was 

that probiotic strains such as L. plantarum might contribute to maintenance of intesti-

nal integrity by preventing age-related deterioration of the colonic mucus layer. 
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SUPPLEMENTAL INFORMATION 

Supplementary Table 1. Used antibodies in flow cytometry. 

Target Format Clone Company 

CD2 PE RM2-5 BD 
CD3e APC-Efluor780 

FITC* 
PerCP-Cy5.5 

17A2 
145-2C11 
145-2C11 

Ebioscience 
BD 
BD 

CD4 APC-H7 
FITC 

GK1.5 
H129.19 

BD 
BD 

CD8a FITC 
PE 
V450 

53-6.7 
 

BD 

CD11b APC-Cy7 
PE-Cy7 

M1/70 BD 
Ebioscience 

CD11c PE-Cy7 N418 Ebioscience 
CD16/32 APC-Cy7 

Purified 
2.4G2 BD 

CD19 APC-Efluor780 
FITC* 
PerCP-Cy5.5 

1D3 Ebioscience 
 

CD25 APC 
PE-Cy7 

3C7 
PC61.5 

BD 
Ebioscience 

CD31 APC 390 Ebioscience 
CD45R/B220 BV421 

FITC* 
RA3-6B2 BD 

CD68 FITC FA-11 BioLegend 
CD117 BV421 2B8 BioLegend 
CD135 APC A2F10.1 BD 
FcεRIα FITC* MAR-1 Ebioscience 
FoxP3 PE FJK-16s Ebioscience 
IgD PE 

PerCP-Efluor710 
11.26.2ca 
11-26c 

BD 
Ebioscience 

Igκ FITC 187.1 BD 
Igλ FITC R26-46 BD 
IgM APC 

Efluor450 
II/41 Ebioscience 

Ki-67 PE-Cy7 SolA15 Ebioscience 
Ly6C AF488 

PerCP-Cy5.5 
ER-MP20 
HK1.4 

AbD Serotec 
Ebioscience 

Ly6G BV421 
PE 

1A8 BD 

Ly6C+Ly6G (GR-1) FITC* RB6-8C5 BD 
NK1.1 FITC* PK136 Ebioscience 
RORγt AF647 Q31-378 BD 
TER-119 FITC* TER-119 BD 

*Included in lineage cocktail for GMP staining. 
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Supplementary Table 2. Top-10 biological processes upregulated (as determined with GSEA) by 
bacterial supplementations in proximal colon of Ercc1

-/Δ7
 mice treated with L. plantarum WCFS1 

(LP), L. casei BL23 (LC), or B. breve DSM20213 (BB). Gene sets significantly regulated (p<0.05, 
FDR<0.2) by bacterial supplementations compared with control were determined by gene set enrichment 
analysis (GSEA). Gene sets involved in immunity are highlighted in orange. Gene sets involved in growth 
and cell cycle are highlighted in blue. 

Nr Pathway NES p-value FDR q-value 

1 LP Malaria (KEGG) 2.15 0.00 0.03 

2 LP Fanconi pathway (NCI) 2.06 0.00 0.05 

3 LP Glycogen metabolism (WIP) 2.05 0.00 0.04 

4 LP ATRBRCA pathway (BIOC) 1.97 0.00 0.08 

5 LP Type II Interferon signaling (WIP) 1.95 0.00 0.09 

6 LP VIP Pathway (BIOC) 1.94 0.00 0.08 

7 LP ARF6 trafficking pathway (NCI) 1.92 0.00 0.09 

8 LP Statin pathway (WIP) 1.91 0.00 0.09 

9 LP Fanconi anemia pathway (KEGG) 1.85 0.00 0.14 

10 LP IL8/CXCR1 pathway (NCI) 1.83 0.00 0.15 

     
1 LC Mitotic G1-G1 S Phases (REACT) 1.89 0.00 0.08 

2 LC Unfolded protein response (REACT) 1.90 0.00 0.10 

3 LC S Phase (REACT) 1.83 0.00 0.12 

4 LC DNA replication (KEGG) 1.91 0.00 0.12 

5 LC NOD-like receptor signaling pathway (KEGG) 1.80 0.00 0.13 

6 LC Cone pathway (NCI) 1.81 0.00 0.13 

7 LC DNA replication (WIP) 1.84 0.00 0.13 

8 LC Synthesis of DNA (REACT) 1.78 0.00 0.14 

9 LC Glycosphingolipid biosynthesis - lacto (KEGG) 1.73 0.01 0.14 

10 LC G1 S transition (REACT) 1.78 0.00 0.14 

1 BB Citrate (TCA) cycle (KEGG) 2.00 0.00 0.07 

2 BB 
Prefoldin mediated transfer of substrate to CCT TRIC 
(REACT) 1.88 0.00 0.10 

3 BB Glycolysis gluconeogenesis (KEGG) 1.89 0.00 0.11 

4 BB 
Pyruvate metabolism and citric acid (TCA) cycle (RE-
ACT) 1.92 0.00 0.11 

5 BB Protein folding (REACT) 1.75 0.00 0.12 

6 BB Fructose and mannose metabolism (KEGG) 1.82 0.00 0.12 

7 BB TCA cycle (WIP) 1.74 0.01 0.13 

8 BB Chaperone-mediated protein folding (REACT) 1.76 0.00 0.13 

9 BB Valine, leucine and isoleucine degradation (KEGG) 1.77 0.00 0.13 

10 BB Butanoate metabolism (KEGG) 1.72 0.01 0.14 
 
NES = normalized enrichment score. 
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Supplementary Table 3. Top-10 biological processes downregulated (as determined with GSEA) by 
bacterial supplementations in proximal colon of Ercc1

-/Δ7
 mice treated with L. plantarum WCFS1 

(LP), L. casei BL23 (LC), or B. breve DSM20213 (BB). Gene sets significantly regulated (p<0.05, 
FDR<0.2) by bacterial supplementations compared with control were determined by gene set enrichment 
analysis (GSEA). Gene sets involved in immunity are highlighted in orange. Gene sets involved in growth 
and cell cycle are highlighted in blue. 

Nr. Name Size ES NES p-value FDR q-value 

1 LP GPCRs (WIP) 163 -0.47 -2.12 0.00 0.00 

2 LP Odorant GPCRs (WIP) 216 -0.42 -1.92 0.00 0.04 

3 LP 
Olfactory signaling pathway (RE-
ACT) 44 -0.53 -1.89 0.00 0.04 

1 BB IL2 STAT5 pathway (NCI) 30 -0.58 -2.03 0.00 0.05 

2 BB 

Immunoregulatory interactions be-
tween lymphoid/non-lymphoid cells 
(REACT) 35 -0.53 -1.94 0.00 0.05 

3 BB Angiopoietin receptor pathway (NCI) 47 -0.50 -1.91 0.00 0.05 

4 BB 
Activation of the pre-replicative 
complex (REACT) 21 -0.61 -1.91 0.00 0.05 

5 BB BARD1 pathway (NCI) 27 -0.56 -1.89 0.00 0.05 

6 BB Type II Interferon signaling (WIP) 30 -0.56 -1.97 0.00 0.05 

7 BB 
GPVI-mediated activation cascade 
(REACT) 19 -0.62 -1.94 0.00 0.06 

8 BB 
Generation of second messenger 
molecules (REACT) 16 -0.64 -1.87 0.00 0.06 

9 BB IL4 2 pathway (NCI) 57 -0.48 -1.97 0.00 0.07 

10 BB IL6 7 pathway (NCI) 45 -0.47 -1.81 0.00 0.07 

NES = normalized enrichment score. 
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Supplementary Figure 1. Distribution of B cells and T cells in Peyer’s patches and mesenteric lymph 
nodes not changed upon bacterial supplementation in Ercc1

+/+
 mice. A/B) Mean frequencies were 

determined by flow cytometry. B cells were defined as CD19
+
, T cells were defined as CD3

+
. C) Mean fre-

quencies of CD3
+
CD4

+
CD8

-
FoxP3

+
 regulatory T (Treg) cells in MLN. Data represent the mean + S.E.M. 

from 4-6 animals per group. LP = L. plantarum WCFS1; LC = L. casei BL23; BB = B. breve DSM20213. 
 

 

 
Supplementary Figure 2. Increased relative spleen weight after L. casei supplementation of Ercc1

-/Δ7
 

mice. A) Spleen weights relative to body weight. Data represent mean spleen weights + S.E.M of 4-6 ani-
mals per group. B) Flow cytometric analysis of splenic Th17 cells. CD3

+
CD4

+
CD8

-
 cells were gated for 

RORγt and FSC (forward scatter). 
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Supplementary Figure 3. Bacterial supplementation of Ercc1
+/+

 mice did not change splenic parame-
ters. A) Mean frequencies of Treg cells in spleen. B-D) Mean frequencies of Ly6C

hi
 monocytes, neutrophils, 

and CD3
+
CD4

+
CD8

-
Rorγt

+
 Th17 cells were determined by flow cytometry. E) Mean concentration of IL-17A 

production by splenocytes stimulated with ConA for four days, as determined by Cytometric Bead Array. F) 
Mean proliferating T cells (Ki-67

+
) in splenocyte culture stimulated with ConA for four days, as determined 

by flow cytometry. Data represent the mean + S.E.M. from 4-6 animals per group. LP = L. plantarum 
WCFS1; LC = L. casei BL23; BB = B. breve DSM20213. 

Supplementary Figure 4. L. casei supplementation affected frequencies of subsets of B cell precur-
sors and (im)mature B cells in bone marrow (BM) of Ercc1

-/Δ7
 mice. Mean frequencies were determined 

by flow cytometry. B-lineage cells were defined as CD19
+
CD45R

+
. Mature and immature B cells were de-

fined as sIgκ/λ
+
, pro-pre-B cells as sIgκ/λ

-
. Small resting pre-B cells were defined by cIgM

+
CD2

+
, large cy-

cling pre-B cells by cIgM
+
CD2

-
, and pro-B cells by cIgM

-
CD2

-
. Data represent the mean + S.E.M. from 4-6 

animals per group. *=p<0.05; **=p<0.01. LP = L. plantarum WCFS1; LC = L. casei BL23; BB = B. breve 
DSM20213. 
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Supplementary Figure 5. L. casei supplementation altered B cell development in bone marrow of 
Ercc1

+/+
 mice. A-E) Mean frequencies in bone marrow (BM) were determined by flow cytometry. Granulo-

cyte-monocyte precursors (GMP) were defined as Lin
-
CD117

hi
CD11c

-
CD135

-
CD16/32

+
, neutrophils as 

CD11b
+
Ly6G

+
, monocytes as Ly6C

hi
CD31

-
, B-lineage cells as CD19

+
CD45R

+
, and small resting pre-B cells 

as sIgκ/λ
-
cIgM

+
CD2

+
. F) Mean absolute numbers were determined by cell counts and flow cytometry. Dou-

ble positive (DP) cells were defined as CD3
-
CD4

+
CD8

+
. Data represent the mean + S.E.M. from 4-6 animals 

per group. *=p<0.05. LP = L. plantarum WCFS1; LC = L. casei BL23; BB = B. breve DSM20213. 

 

 
Supplementary Figure 6. Bacterial supplementations did not change lifespan of Ercc1

-/Δ7
 mice. Data 

represent 11-12 animals per group (with an additional 6 animals per group censored at 16 weeks). LP = L. 
plantarum WCFS1; LC = L. casei BL23. 
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ABSTRACT 

With aging, tryptophan metabolism is affected. Tryptophan plays a crucial role in in-

duction of immune tolerance and maintenance of gut microbiota. We therefore studied 

the effect of dietary tryptophan restriction in young wild-type (WT) mice (118-wk 

lifespan) and DNA repair deficient, premature aged (Ercc1
-/Δ7

) mice (20-wk lifespan). 

First, we found that the impact of aging on distribution of B and T cells in bone marrow 

(BM) and periphery in 16-week-old Ercc1
-/Δ7

 mice is comparable to that in 18-month-

old WT aging mice. Dietary tryptophan restriction caused an arrest of B cell develop-

ment in the BM, accompanied by diminished B cell frequencies in the periphery. In 

general, old Ercc1
-/Δ7

 mice showed similar responses to tryptophan restriction com-

pared with young WT mice, indicative of age-independent effects. Dietary tryptophan 

restriction increased microbial diversity and made the gut microbiota composition of 

old Ercc1
-/Δ7

 mice more similar to that of young WT mice. The decreased abundances 

of Alistipes and Akkermansia after dietary tryptophan restriction correlated significantly 

with decreased B cell precursor numbers. In conclusion, we report that dietary trypto-

phan restriction arrests B cell development and concomitantly changes gut microbiota 

composition. Our study suggests a beneficial interplay between dietary tryptophan, B 

cell development, and gut microbial composition on several aspects of age-induced 

changes. 
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INTRODUCTION 

With age, hematopoietic stem cells acquire defects [65, 67] and do not efficiently gen-

erate lymphoid cells, whereas relatively more myeloid cells are generated [55, 513]. 

Furthermore, thymus and bone marrow involute, and long-lived B cells accumulate 

with age, leading to decreased T and B cell production [55, 90, 488]. This immunologi-

cal decline coincides with gut microbiota composition changes, with e.g. an age-

related decline in Akkermansia abundance [107]. Immunosenescence induces low-

grade inflammation, also known as inflammaging [69-71].  

It is known that calorie restriction is associated with lifespan extension [514], but its 

effects on immunity are not subject of many studies. Tryptophan is involved in the in-

duction of immune tolerance [180] and its breakdown is gradually enhanced during 

aging [181]. It is also increased in several autoimmune and neurodegenerative dis-

eases [182, 183]. Tryptophan is therefore an important target ingredient to study the 

impact of nutrient restriction on immunosenescence. Tryptophan is mainly metabo-

lized by indoleamine 2,3-deoxygenase (IDO) leading to production of kynurenine, and 

is, in addition to being involved in immune tolerance, also essential for maintenance of 

microbiota diversity [178, 179]. Decreased serum levels of tryptophan and increased 

serum levels of kynurenine, suggestive of increased IDO activity, have been observed 

in elderly people and were associated with elevated inflammatory markers such as IL-

6 [184]. Dietary tryptophan restriction has been associated with delay of the aging 

process and longer lifespan in rats [174, 175] and mice [176], but it is unclear what the 

impact is on immunity and gut microbiota.  

The effects of aging can be accelerated by multiple factors [11]. Several mouse mod-

els exist that display features of accelerated aging and expedite research on dietary 

components for healthy aging. Based on a variety of histological, functional, metabo-

lomic, and proteomic data, it has been concluded that the accelerated aging Ercc1
-/Δ7

mouse model resembles multiple characteristics of normal murine aging [495]. The 

excision repair cross-complementation group 1 (ERCC1) protein is involved in at least 

three repair processes: transcription-coupled repair, global genome nucleotide exci-

sion repair and interstrand cross-link repair (and likely sub-pathways of double strand 

break repair) [515]. Ercc1
-/Δ7

 mice are deficient for fully functional ERCC1 protein. The

mice have a mutated allele, encoding a protein lacking the last 7 amino acids of the 

protein. Because of the lack of the last amino acids, the interaction between ERCC1 

and xeroderma pigmentosum group F (XPF) is less stable and the free proteins are 

therefore quicker degraded. As a consequence, the expression of ERCC1-XPF DNA 

repair endonuclease is reduced to about 5% compared with WT mice [495]. Less 

ERCC1 protein activity leads to increased accumulation of (primarily endogenous) 

DNA damage, and consequently enhanced mutation, cellular senescence, and cell 

death. This results in an accelerated aging phenotype with a lifespan of ~20 weeks 
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(compared with ~118 weeks in WT mice) [60, 62]. A recent review pointed out that 

Ercc1
-/Δ7

 mice have the broadest spectrum of age-related pathologies, and that they 

could be useful in the fast screening of interventions to reduce age-related pathology 

[58].  

The aim of this study was to investigate the effects of dietary tryptophan restriction on 

immunity and gut microbiota in WT mice and in Ercc1
-/Δ7

 mice as a model for aging. 

Before testing the effect of dietary tryptophan restriction, the cellular composition of 

the immune system of Ercc1
-/Δ7

 mice was evaluated and compared with the aging im-

mune system of WT mice. Because it is well known that aging causes a decline in B 

cell precursors in bone marrow [516] and T cell precursors in thymus [517, 518], and 

affects their subsequent distribution in the periphery [518, 519], we focused on these 

cell populations. We found that in particular B cells were affected by long-term trypto-

phan restriction, and that this effect might be linked with the abundance of specific gut 

microbes. 

 

MATERIALS AND METHODS 

Mice and genotyping  

Female C57Bl/6J mice (3-month-old or 17-month-old) were ordered from Harlan 

(Horst, NL). Ercc1
-/Δ7

 and Ercc1
+/+

 mice (C57Bl6/FVB F1 hybrid genetic background) 

were bred in the animal facility of the Erasmus University Medical Centre (Rotterdam, 

NL). The mice were housed in a specific pathogen-free environment in individually 

ventilated cages (IVC) in the animal facility of Wageningen University, or in the animal 

facility of the Erasmus University Medical Centre for the dietary tryptophan restriction 

experiment. Mice had ad libitum access to AIN93G diet (Research Diet Services, Wijk 

bij Duurstede, NL), unless otherwise stated. The generation and genotyping of Ercc1
-

/Δ7
 mice has been previously described [60, 62]. All mice were sacrificed at indicated 

time-points (6 wk, 16 wk, or 18 mo of age). Experiments were conducted with approval 

of the animal care and use committee of Wageningen University or Erasmus Universi-

ty Medical Centre. Two types of control mice have been used in this study, C57Bl/6J 

mice for the first part of the study, and a mixed genetic background (half C57Bl/6J) for 

the second part of the study. Given the overlap in genetic background, and for rea-

sons of clarity, both C57Bl6/J and Ercc1
+/+

 mice are presented as wild-type (WT). Typ-

ical unfavorable characteristics, like blindness in an FVB background or deafness in a 

C57BL6/J background, do not occur in this hybrid background. Mice with a mixed ge-

netic background (2 mo or 24 mo of age) were included to compare differences be-

tween genetic backgrounds. 
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Dietary tryptophan restriction 

Diet with 95% reduction in tryptophan (hereafter named Trp-restriction) was produced 

by Research Diet Services with the ingredients of the synthetic AIN93G diet as basis. 

The total amount of casein (protein source) was reduced from 200 g/kg diet to 10 g/kg 

diet. All individual amino acids, except tryptophan, were supplemented back to their 

original levels, taking into account the purity of each amino acid. Control animals re-

ceived food similarly reduced in casein but with addition of all amino acids, including 

tryptophan. Directly after weaning, at 4 wk of age, the animals were divided over the 

different groups and were given food with or without lower tryptophan levels. Since the 

mice on Trp-restriction ate approximately 10% less food compared with control ani-

mals, all control animals received 10% dietary restriction for the whole experimental 

period. 

Organ collection and flow cytometry 

Bone marrow (BM), spleen, mesenteric lymph nodes (MLN), Peyer’s patches (PP), 

and thymus were collected for flow cytometric purposes. PBS lavage of peritoneal 

cavity was performed to obtain peritoneal cells, which were filtered on a 40 µm cell 

strainer. Single-cell suspensions of bone marrow were obtained by crushing bones 

with mortar and pestle. Cells were then filtered on a 40 µm cell strainer. Spleen, MLN, 

PP, and thymus single cell suspensions were obtained by gently forcing cells with a 

syringe on a 40 µm cell strainer. Cells were counted using a Z1 Coulter Counter 

(Beckman Coulter, Fullerton, CA, USA). At least 0.5-2x10
6
 cells were stained with Aq-

ua live/dead Efluor506 (Ebioscience, San Diego, CA, USA) stain and for extracellular 

markers, after which intracellular staining was performed by fixing and permeabilizing 

cells with Fix/Perm buffer (Ebioscience) according to manufacturer’s instructions. 

Used antibodies are listed in Supplemental Table 1. Stained cells were analyzed on a 

FACSCanto II (BD Biosciences, Erembodegem, Belgium). FlowJo vX.07 software 

(Tree Star) was used for data analysis. Doublets were excluded using FSC-A and 

FSC-H parameters. 

16S Sequencing 

Feces were used for 16S rRNA gene analysis for microbiota profiling. DNA extraction 

was performed using a combination of the bead-beating-plus column method and the 

Maxwell 16 Tissue LEV Total RNA purification kit (Promega). Beating of the fecal pel-

lets took place as described before [520], but with STAR (Stool transport and recov-

ery) buffer (Roche). Two hundred and fifty µL supernatant after centrifugation was 

taken for the Maxwell 16 Tissue LEV Total RNA Purification Kit and the DNA was 

eluted in 50 µL DNAse-free water. Twenty nanogram of DNA was used for the amplifi-

cation of the 16S rRNA gene with primers 27F-DegS and 338R I + 338R II for 25 cy-
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cles as described before [521], only primers had a UniTag linkers attached; UniTag I 

(forward) and II (reverses) (I – GAGCCGTAGCCAGTCTGC; II - GCCGTGAC-

CGTGACATCG). The size of the PCR products (~375 bp) was confirmed by gel elec-

trophoresis using 5 μL of the amplification reaction mixture on a 1% (w/v) agarose gel 

containing 1x SYBR
®
 Safe (Invitrogen). Five µL of these PCR products were taken to 

add adaptors and an 8-nt sample-specific barcode in an additional 5 cycle PCR ampli-

fication. PCR products were purified with magnetic beads (MagBio) according to the 

HighPrep protocol of the manufacturer’s instructions and quantified using the Qubit 

(Life Technologies). Purified PCR products were mixed in approximately equimolar 

amounts and concentrated by magnetic beads as the purification before. Purified am-

plicon pools were 250 bp paired-end sequenced using Illumina Miseq (GATC-Biotech, 

Konstanz, Germany). 

The Illumina Miseq data analysis was carried out with a workflow employing the Quan-

titative Insights Into Microbial Ecology (QIIME) pipeline [522] and a set of in-house 

scripts as described before for Illumina Hiseq 16S rRNA gene sequences (Ramiro-

Garcia et al, manuscript in preparation). The set of in-house scripts processed the 

reads as follows: reads were filtered for not matching barcodes; otu picking and chi-

mera removal was done via matching the sequences to the Silva 111 database, with 

only one mismatch allowed, and a biom, and with clustalw a multiple alignment and 

phylogenetic tree file was generated. Further outputs were generated via QIIME, such 

as filtered reads per sample, PD whole tree diversity measurements and the level 1 to 

6 taxonomic distributions with relative abundances.  

 

Statistical analysis  

Values are expressed as mean ± SEM. Statistical comparisons were performed using 

the two-tailed Student’s t test. We applied the nonparametric Mann–Whitney U test, if 

no normal distribution was found using the Kolmogorov-Smirnov test. Where no equal 

variances were observed, we applied the two-tailed Student’s t test with Welch’s cor-

rection. Correlations were determined by Spearman’s rank correlation. GraphPad 

Prism version 5.0.3 (San Diego, CA, USA) was used to perform statistical tests. The 

microbial composition analysis was performed in Canoco 5.0, where variables were 

tested for their significance by the Monte Carlo permutation. Differences in microbial 

genera (L6) were compared using the Wilcoxon test. Values of p<0.05 were consid-

ered to be statistically significant. Significant differences are indicated by asterisks: *= 

p<0.05; **= p<0.01; ***= p<0.001. 
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RESULTS 

Ercc1
-/Δ7

 mice show an accelerated process of aging, due to deficiency in DNA repair

capacity [58]. We compared the aging process of Ercc1
-/Δ7

 mice (6 wk vs. 16 wk) with

WT controls (16 wk vs. 18 mo). Information on body weights, organ weights, and or-

gan counts are summarized in Supplemental Table 2. Except for a difference in splen-

ic monocyte numbers with age, no abnormalities were observed in erythroid or mye-

loid cells (Supplemental Figure 1D). 

B and T cell precursors decrease and memory T cells and Tregs increase with 

aging 

To determine the effects of age on B cells, we first studied the distribution of total B-

lineage cells (CD19
+
CD45R

+
) in BM by flow cytometry. The numbers of B-lineage cells

tended to decrease with age, but did not reach significance (Figure 1B). B cell precur-

sor frequencies and numbers were reduced, both in aged WT (p<0.05) and 16-week-

old Ercc1
-/Δ7

 mice (p<0.001; Figure 1A). Immature B cell frequencies were slightly in-

creased in aged WT mice (p<0.05; Figure 1A), but were unaltered in numbers (Figure 

1B). Mature B cell frequencies were significantly increased in the BM of aged Ercc1
-/Δ7

mice, but not in WT mice (Figure 1A). Mature B cell counts in WT were not increased 

with age, whereas they were increased in aged Ercc1
-/Δ7

 mice (p<0.05; Figure 1B). No

major effects were observed in periphery (spleen, MLN, PP), except for a significant 

age-dependent increase in B cell frequencies in MLN (Supplemental Figure 1D). To 

validate the effect of the difference in genetic background on B cell development be-

tween C57Bl/6 and C57Bl/6 x FVB F1 mice, we compared young and old F1 mice (2 

mo vs 24 mo), and identified similar changes in B cell development in the BM, with 

mainly a decrease in B cell precursors (p<0.05; Supplemental Figure 1C). In the 

spleen, no significant changes were observed in B cell numbers between old F1 mice 

versus young F1 mice (Supplemental Figure 1F).  

Next, we studied the effect of aging on T cell differentiation. Thymus weights de-

creased with age, accompanied with reduced cellularity in WT mice as well as in 

Ercc1
-/Δ7

 mice (p<0.01; Supplemental Table 2). Numbers of Lin
-
CD3

-
CD4

-
CD8

-
 triple-

negative (TN), Lin
-
CD3

-
CD8

+
CD69

-
 immature single positive (CD8 ISP), Lin

-

CD3
+
CD4

+
CD8

-
 single positive (CD4 SP), and Lin

-
CD3

+
CD4

-
CD8

+
 single positive

(CD8 SP) cells were (in most cases significantly) reduced in a similar magnitude in 

normal aged WT and in accelerated aged Ercc1
-/Δ7

 mice (Figure 1C).
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Figure 1. Aging reduces B and T cell precursors in WT and Ercc1

-/Δ7
 mice, and increases memory T 

cells and Treg cells. A) Flow cytometric analysis of B-lineage cells in BM. Live single CD19
+
 cells were 

gated for Igκ/λ and CD45R to distinguish Igκ/λ
-
CD45R

+
 B cell precursors from Igκ/λ

+
CD45R

+
 immature and 

Igκ/λ
+
CD45R

hi
 mature B cells. A representative example of each group is shown, with mean frequencies of 

gated populations within CD19
+
 BM cells ± SEM. B) Mean absolute numbers of total B-lineage cells, B cell 

precursors, immature, and mature B cells were determined by flow cytometry. BM counts based on two 
femurs, two tibias, two iliac crests, and the sternum. C) Mean counts of triple negative (TN, Lin

-
CD3

-
CD4

-

CD8
-
) cells, CD8 immature single positive (ISP, Lin

-
CD3

-
CD8

+
CD69

-
), double positive (DP, Lin

-
CD3

-

/lo
CD4

+
CD8

+
), CD4 SP (Lin

-
CD3

+
CD4

+
CD8

-
), and CD8 SP (Lin

-
CD3

+
CD4

-
CD8

+
) cells with aging. Lineage 

(Lin) cocktail consisted of CD11b, CD11c, CD19, CD45R, NK1.1, and TER-119. D) Mean counts of CD4
+
 T 

cells and CD8
+
 T cells, and mean frequencies of memory CD4

+
 T cells (CD44

hi
CD62L

-
), Treg (FoxP3

+
), and 

memory CD8
+
 T cells (CD44

hi
CD62L

-
) in spleen. Data represent n=6 mice, expressed as mean ± SEM. 

#=p<0.1; *=p<0.05; **=p<0.01; ***=p<0.001. 

 



Tryptophan restriction arrests B cell development and enhances microbial diversity in WT and Ercc1
-/Δ7

 mice 

135 

In spleen, neither CD4
+
 nor CD8

+ 
T cell numbers did change with age in Ercc1

-/Δ7
 mice

(Figure 1D). We found decreased frequencies of CD44
-/lo

CD62L
+
 naïve CD4

+
 (p<0.05;

data not shown) and increased frequencies of CD62L
-
CD44

hi
 memory CD4

+
 (p<0.01),

memory CD8
+
 T cells (p<0.05), and CD4

+
FoxP3

+
 regulatory T cells (Treg; p<0.01) in

spleens of aged WT and Ercc1
-/Δ7

 mice (Figure 1D). Naïve CD8
+
 T cell frequencies

decreased in aged WT mice only (p<0.001; data not shown).  

In MLN, we found decreased CD4
+
 T cell frequencies with aging (p<0.01). Alterations

in distribution within CD4
+
 T cells were similar as in spleen (Supplemental Figure 1E).

Frequencies of total CD8
+
 T cells decreased and frequencies of memory CD8

+
 T cells

increased in aged WT mice (p<0.001 and p<0.01, respectively), but not in Ercc1
-/Δ7

mice (Supplemental Figure 1E). 

Collectively, these data indicate that the impact of aging on B and T cell precursors in 

16-week-old Ercc1
-/Δ7

 mice is for its major part similar to that of WT aging mice. Fur-

thermore, alterations in distribution of T cells in periphery are to a large extent similarly 

present in WT and Ercc1
-/Δ7

 mice.

Dietary tryptophan restriction arrests B cell development in bone marrow and 

decreases B cell frequencies in spleen and MLN 

To assess the effect of dietary tryptophan restriction (Trp-restriction) on immune cell 

development and microbiota, we studied the effect of 12 weeks of Trp-restriction in 16-

week-old WT mice and Ercc1
-/Δ7

 mice.

First, we evaluated development of body and spleen weights, and cellularity of spleen, 

MLN, and BM (Table 1). Average body weight was reduced by up to 2-fold by Trp-

restriction (p<0.001). Spleen weight was also reduced by at least 2-fold (p<0.01). 

Moreover, relative spleen weight (corrected for body weight) was consistently, albeit 

not significantly, reduced in WT and Ercc1
-/Δ7

 mice. Cellularity of spleen was de-

creased by more than 60% in WT and Ercc1
-/Δ7 

mice (p<0.07), while cellularity of MLN

was reduced in Ercc1
-/Δ7

 mice only (p<0.05). Trp-restriction did not affect BM cellularity

in either WT or Ercc1
-/Δ7

 mice.

Next, we assessed development of B cells in the BM upon Trp-restriction. We ob-

served a reduction in frequencies of B-lineage cells within total BM cells (p<0.03; data 

not shown) and numbers of total B-lineage cells in Trp-restricted WT and Ercc1
-/Δ7

mice (p<0.09; Figure 2B). We found a near-complete absence of pro-B cells and pre-B 

cells in the BM of Trp-restricted WT and a complete absence of these cells in the BM 

of Trp-restricted Ercc1
-/Δ7

 mice (Figure 1A, B). Immature B cell numbers were de-

creased by more than 2-fold in WT and Ercc1
-/Δ7

 mice (p<0.1), whereas mature B cell

numbers were unchanged (Figure 2A, B).  

To evaluate the consequence of the arrest in B cell development by Trp-restriction, we 

investigated the distribution of B cells in spleen and MLN. Frequencies and absolute 
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numbers of B cells in the spleens of WT and Ercc1
-/Δ7

 mice were decreased upon Trp-

restriction (although this did not reach significance; Figure 2D). Follicular (FO) B cells 

were more affected than marginal zone (MZ) B cells (Figure 2C, 2D). In MLN, fre-

quencies of B cells were significantly decreased by Trp-restriction in WT and Ercc1
-/Δ7

 

mice (Figure 2E). 

Taken together, these data show that dietary tryptophan restriction arrests B cell de-

velopment in BM of 16-week-old WT and Ercc1
-/Δ7

 mice, and affects the ratio of MZ 

and FO B cells in the spleen. 

 

T cells and myeloid cells appear less affected by tryptophan restriction 

Trp-restriction decreased total T cell numbers in spleen of WT (p<0.05) and Ercc1
-/Δ7

 

mice (p=0.05; data not shown), with similar reduction in CD4
+
 T cell numbers (p<0.07) 

and CD8
+
 T cell numbers (p<0.05; Figure 3A). Reduction in T cell numbers was in line 

with the reduction in spleen cellularity. T cell frequencies, however, increased after 

Trp-restriction, albeit not significantly (data not shown). Hereby, we observed a rela-

tive increase in the frequencies of memory CD4
+
 T cells in WT and Ercc1

-/Δ7
 mice 

(p<0.09; Figure 3A), and to a lesser extent an increase of memory CD8+ T cells in WT 

mice only (p<0.08; Figure 3A). Splenic Treg frequencies were unchanged by Trp-

restriction (Figure 3A).  

In MLN of Trp-restricted WT mice, total CD4
+
 T cell frequencies (p<0.01) and CD8

+
 T 

cell frequencies (p<0.05) were increased after Trp-restriction (Figure 3B). In Trp-

restricted Ercc1
-/Δ7

 mice, the same changes were observed for CD4
+
 T cells (p<0.05) 

and CD8
+
 T cells (p<0.01). However, memory CD4

+
 and CD8

+
 T cells, and Tregs were 

significantly increased after Trp-restriction in WT mice only (Figure 3B).  

 

 
 
 
 
 
 
 
Figure 2 (next page). Dietary tryptophan restriction arrests B cell development in bone marrow (BM) 
in WT and Ercc1

-/Δ7
 mice, and diminishes B cell numbers in periphery. A) Flow cytometric analysis of B 

cells in BM. Live single CD19
+
 cells were gated for Igκ/λ and CD45R to distinguish Igκ/λ

-
CD45R

+
 B cell pre-

cursors from Igκ/λ
+
CD45R

+
 immature and Igκ/λ

+
CD45R

hi
 mature B cells (upper panels). Continued next 

page. B cell precursors were further distinguished by µ and CD2, to identify CD2
-
µ

 -
 pro-B cells, CD2

-
µ

+
 

large cycling pre-B cells, and CD2
+
µ

+
 small resting pre-B cells (lower panels). A representative example of 

each group is shown, with mean frequencies of indicated populations within total B-lineage cells ± SEM. B) 
Mean absolute numbers of B cells, pro-B, large cycling pre-B, small resting pre-B, immature, and mature B 
cells were determined by flow cytometry. C) Flow cytometric analysis of B cells in spleen. Live single CD19

+
 

cells were gated for CD21 and CD23 to distinguish CD21
+
CD23

-
 marginal zone (MZ) B cells from CD21

-

CD23
+
 follicular (FO) B cells and CD21

-
CD23

-
 B cells. Representative example of each group is shown, with 

mean frequencies of indicated populations within total splenic B cells ± SEM. D) Mean absolute numbers of 
splenic B cells, MZ B cells, and follicular B cells. E) Mean frequencies of CD19

+
 B cells in mesenteric lymph 

nodes (MLN). Data represent mean ± SEM of n=3-4 mice per group. #=p<0.1; *=p<0.05; **=p<0.01; 
***=p<0.001. TrpR = tryptophan restriction. BM counts based on two femurs. 
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Neutrophil numbers in BM were unchanged after Trp-restriction of WT and Ercc1
-/Δ7

mice, while monocyte numbers were significantly increased after Trp-restriction of WT 

mice only (p<0.05; Supplemental Figure 2). Splenic neutrophil and monocyte numbers 

decreased significantly after Trp-restriction (Supplemental Figure 2).  

These observations show that dietary tryptophan restriction affects T cells in the pe-

riphery, but to a lesser extent than observed for B cells, and mostly in line with the 

general decrease of spleen cellularity. In addition, myeloid cell development in BM 

was unaffected. 

Microbiota composition is enriched after tryptophan restriction 

Dietary tryptophan is an important substrate for microbiota metabolism [523]. To study 

the impact of dietary tryptophan restriction on microbiota composition, we analyzed 

fecal microbiota composition by 16S rRNA gene analysis. Between 2.9x10
4
 and

3.2x10
5
 reads were obtained per sample. Because a difference in reads may bias the

number of species (microbial diversity) found, we performed a rarefaction (Figure 4) to 

determine the number of reads that are needed to reliably calculate the microbial di-

versity (phylogenetic diversity; PD) [524]. Control (young) 16-week-old WT mice had 

significantly higher microbial diversity indexes than (aged) Ercc1
-/Δ7

 mice of the same

age (Figure 4). Moreover, Trp-restriction resulted in a higher diversity in both geno-

types, with Trp-restricted Ercc1
-/Δ7

 mice having similar diversity indexes as WT mice

on control diet (p<0.05; Figure 4). 

Figure 4. Tryptophan restriction increased microbial diversity in WT and Ercc1
-/Δ7

 mice. PD whole tree 
diversity indexes at 5000 sequences are used to calculate differences in diversity. Data represent the mean 
± SEM of n=4 mice per group. *=p<0.05; **=p<0.01. TrpR = tryptophan restriction. 
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To investigate the effect of the diet and the genotypes on the microbial profile, a multi-

variate analysis was carried out, as previously published [107]. The resulting ordina-

tion plots shows the redundancy analysis (RDA). The differences shown in the RDA 

are significant (p<0.05). On genus level (L6), the RDA indicated that both genotype 

and diet had a significant impact on the microbial composition (p<0.05). The RDA plot 

showed a distinct microbial profile for each of the experimental groups (Figure 5). A 

total of 34.9% of the total variation in the microbial dataset could be related to diet and 

genotype. Most of the variation is plotted on the first ordination axis (20.0%), and 

mainly separates on the genotype, whereas the second ordination axis mainly sepa-

rates on the diet (9.7%). The microbial composition of (aged) Ercc1
-/Δ7

 on Trp-

restriction closely resembled the microbial composition of (young) Trp-restricted WT 

mice, implying that Trp-restriction preserved microbial composition in the premature 

aging repair mutant.  

 
Figure 5. Tryptophan restriction changes microbial composition in the gut of WT and Ercc1

-/Δ7
 mice. 

Redundancy analysis on genus level (L6). Mice belonging to WT control, WT TrpR, Ercc1
-/Δ7

 control, and 
Ercc1

-/Δ7
 TrpR are indicated by gray diamonds, black diamonds, gray squares, and black squares, respec-

tively. Besides the abundance of microbial species, genotype, diet, and weight were included in the varia-
bles, and together they explain 34.9% of the variability in the dataset. First and second ordination axes are 
plotted, showing 20.0% and 9.7% of the variability in the dataset, respectively. The third ordination axis 
explains an additional 5.2% of the variability in the dataset (not shown). Both genotype and diet had a signif-
icant impact on the microbial composition (p<0.05). Each small symbol represents one animal. Larger trian-
gle symbols represent the two genotypes or two diets. TrpR = tryptophan restriction. 
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Decreased relative abundances of Parabacteroides, Lachnospiraceae, and Rumino-

coccaceae were found in control Ercc1
-/Δ7

 mice compared with control WT mice (Fig-

ure 6). Relative abundance of Lactobacillus was increased more than 6-fold, and rela-

tive abundance of Akkermansia was decreased more than 20-fold, albeit not signifi-

cantly. Tryptophan restriction of WT and Ercc1
-/Δ7

 mice resulted in significantly higher

abundances of the Bacteroidetes RC9 gut group and the order Clostridiales, and lower 

abundances of Alistipes in the top 15 abundant species as indicated in Figure 6. 

Figure 6. Tryptophan restriction leads to higher abundances of Bacteroidetes RC9 gut and Clostrid-
iales, and lower abundance of Alistipes. Relative abundance profile of the top 15 most abundant genus 
level groups, where ‘rest’ indicates all other groups, including the unclassified groups. *=p<0.05. Data rep-
resent the mean ± SEM of n=4 mice per group. TrpR = tryptophan restriction. 

Finally, we correlated the abundance of microbial species in all different mouse sam-

ples to the B cell precursor numbers (pro-B cells and pre-B cells together) to investi-

gate a putative association between microbiota composition and the main immune 

effect of Trp-restriction. We found that Alistipes and Akkermansia positively correlated 

with B cell precursor numbers (p<0.05; Figure 7), with no other microbial species cor-

relating with B cell precursor numbers. We also tested for correlation of pro-B or pre-B 

cells with specific microbiota. Akkermansia consistently correlated with pro-B cells 

(p<0.01; Figure 7), large cycling pre-B cells (p<0.05; data not shown), and small rest-

ing pre-B cells (p<0.05; data not shown), while Alistipes only significantly correlated 

with small resting pre-B cells (p<0.05; data not shown). 
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Thus, we found a profound impact of dietary tryptophan restriction on fecal microbial 

composition, and that Alistipes and Akkermansia abundances were positively correlat-

ed with B cell precursor numbers. 

 

 
Figure 7. Correlation between B cell precursor numbers and abundance of Alistipes and Akkerman-
sia. Spearman correlation between total B cell precursor numbers (pro-B cells plus pre-B cells) or pro-B cell 
numbers and abundance of Alistipes and Akkermansia. Each circle represents an animal (control and tryp-
tophan-restricted mice together used in correlation analysis). 

 

DISCUSSION 

Four key findings have been made in this study, namely (1) the prematurely aging 

Ercc1
-/Δ7

 mice largely resemble normal mice in age-related changes of the immune 

system; (2) dietary tryptophan restriction similarly arrests B cell development in bone 

marrow of 16-week-old WT and Ercc1
-/Δ7

 mice, and affects B cells much more than T 

cells or myeloid cells; (3) dietary tryptophan restriction increases gut microbial diversi-

ty in 16-week-old WT and Ercc1
-/Δ7

 mice; and (4) the abundance of Alistipes and Ak-

kermansia is positively correlated with the number of B cell precursors. 

In this study, we compared the aging process of normal aging WT mice (16-week-old 

vs. 18-month-old) with the accelerated aging process of Ercc1
-/Δ7

 mice (6-week-old vs. 

16-week-old). When determining cell frequencies (Figure 1, Supplemental Figure 1), 

most of the changes we observed for the aging process in WT mice were also ob-

served for the Ercc1
-/Δ7

 model, and were in line with previous findings. This should not 

be interpreted as a suggestion that the model completely resembles natural aging. 

The model is used for specific age-induced anomalies that are accelerated in Ercc1
-/Δ7

 

mice. These include a decrease in B cell precursors in BM [55], an increased memory 

formation [525], and an increased Treg formation [526]. We feel this model allows us 

to test interventions on these parameters such as food restriction experiments in an 

expedited way. Nevertheless, others have concluded that the aging process in other 

organs of Ercc1
-/Δ7

 mice resembles that of normal aging mice based on histological, 

proteomic, and metabolomic parameters [495].  

When comparing the decline in B cell development in 16-week-old Ercc1
-/Δ7

 mice (Fig-

ure 1) with the decline as observed in control-fed 16-week-old Ercc1
-/Δ7

 mice (Figure 

2), a difference in the magnitude of decline in B cell precursors was observed. Two 

major aspects, however, may explain the difference between the data as presented in 
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Figure 1 and Figure 2. First, control-fed mice (Figure 2) received 10% dietary re-

striction. Second, feed for control-fed mice (Figure 2) was produced in a way to re-

move tryptophan. Both aspects might have had an unknown influence on the B cell 

compartment in the BM, which prevent from a direct comparison. Nevertheless, the 

decline in B cell development as such (as a trend) is confirmed by the data as pre-

sented in both figures. 

The mechanisms by which dietary tryptophan restriction impacts on immunity and mi-

crobiota have not been studied so far. Surprisingly, tryptophan-restricted mice showed 

a profound decrease in body weight (Table 1). This decrease in body weight could not 

be accounted for food intake, which was similar to their controls. This finding indicates 

that dietary tryptophan restriction induces metabolic changes. There is a remarkable 

similarity between the effect of dietary tryptophan and methionine restriction on body 

weight. Dietary methionine restriction decreased body weights of mice by more than 

30%, and increased resistance of liver cells to oxidative stress [173, 527]. In addition, 

dietary methionine restriction decreased the generation of oxygen radicals from mito-

chondria, and subsequent damage to mitochondrial DNA and proteins [528]. Energy 

expenditure in methionine-restricted rats was 1.5-fold higher, which was linked to met-

abolic changes in brown and white adipose tissues [529]. Further research is warrant-

ed to understand how dietary tryptophan restriction causes such a marked weight 

loss. It would be of interest to investigate levels of cytokines and subsequent effects 

on immunity that might explain our data on development of B cells in the BM but not 

myeloid cells. Interestingly, adiponectin levels were increased after dietary methionine 

restriction [529]. Adiponectin is produced by adipocytes, which are also present in the 

BM. Adiponectin indirectly (via stromal cells) inhibits lymphopoiesis in early B cell pre-

cursors, but slightly enhances myelopoiesis in myeloid precursors [530]. Lowered adi-

ponectin levels in the BM could thus explain the arrest in B cell development but not 

myeloid cell development. 

Strikingly, we found a pronounced effect on B cells, which precursors were almost ab-

sent from the BM after dietary tryptophan restriction (Figure 2). It suggests that B cell 

development critically requires a lifelong need for tryptophan or its metabolites. The 

decline of the downstream tryptophan metabolite nicotinamide adenine dinucleotide 

(NAD)
+
 with aging [531] might explain the decrease in B cell precursors with aging that

was reported [55, 532] and we have described here. Interestingly, NAD
+
 is produced

by nicotinamide phosphoribosyltransferase (NAMPT) [533]. NAMPT also declines with 

aging [531], and it exerts anti-apoptotic functions [534]. NAMPT was initially identified 

as pre-B cell enhancing factor, because of its capacity to enhance pre-B cell colony 

forming [535]. A role for NAMPT in enhancing early B cell stages could explain our 

finding that B cell development is dependent on age and dietary tryptophan supplies.  
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We found that in spleen and MLN, B cell numbers and frequencies were more affected 

by Trp-restriction (Figure 2) than T cells (Figure 3) or myeloid cells (Supplemental Fig-

ure 2). These data demonstrate that B cells are particularly affected by Trp-restriction, 

in contrast to cells from erythroid and myeloid lineages.  

In the comparison of WT and Ercc1
-/Δ7

 mice, we observed that the Ercc1
-/Δ7

 genotype 

caused a decrease in microbial diversity (Figure 5), in line with the prediction that mi-

crobial diversity in aging humans decreases [132]. Dietary tryptophan restriction in-

creased microbial diversity and composition (Figure 5-7) and it might therefore prove 

to be a valuable nutritional intervention to improve age-related decline of gut microbial 

diversity. 

The abundance of two microbial species (Alistipes and Akkermansia) was positively 

correlated with the decline of B cell precursors (Figure 7). Low abundance of Akker-

mansia correlated with lower numbers of each of the different B cell precursor stages 

(pro-B, large cycling pre-B, and small resting pre-B). Akkermansia muciniphila is posi-

tively correlated with health status, as its numbers are lower in elderly compared with 

adults [536], and are lower in obese adults compared with healthy adults [462]. Abun-

dance of Alistipes is decreased in HIV-positive patients [537] and in patients suffering 

from inflammatory bowel disease [538], which is characterized by overexpression of 

IDO in the colon [539]. Importantly, Akkermansia and Alistipes are both known to har-

bor tryptophanase, which transforms tryptophan into indole [540, 541], indicating that 

these microbes might be dependent on a direct source of tryptophan. However, so far 

no evidence has been reported that abundances of Alistipes and Akkermansia are 

related to tryptophan metabolism, or whether these two species are extremely sensi-

tive to tryptophan restriction. Interestingly, Zelante et al found that trypto-

phan metabolites from microbiota engage with the aryl hydrocarbon receptor and bal-

ance mucosal reactivity via IL-22 [523], providing the first evidence that tryptophan 

metabolism by gut microbiota shapes immunity.  

Trp-restriction strongly altered the immune system of aged Ercc1
-/Δ7

 mice, indicating 

the high responsiveness of the model to dietary interventions. When comparing WT 

mice with Ercc1
-/Δ7

 mice, we found similar trends for the majority of the measured pa-

rameters, showing an age-independent effect of Trp-restriction. However, the effect of 

Trp-restriction results in a further increase of the effect as seen in aging of Ercc1
-/Δ7

 

mice in B cell precursors and microbiota composition. The combined effect of Trp-

restriction and aging is reflected by a more pronounced impact on B cell precursors 

(Figure 2) and microbiota composition (Figure 5). With aging, the loss of lymphoid tis-

sue in the BM leads to a decline in B cell lymphopoiesis in the BM [55, 90]. Recently, a 

progressive decline in blood B cells was observed in aging [73]. The ratio of na-

ïve/memory B cells is reduced with aging [94]. In addition to the decreased generation, 

functional defects are present in B cells of elderly. Humoral immune responses are 

http://www.sciencedirect.com/science/article/pii/S1074761313003312
http://www.sciencedirect.com/science/article/pii/S1074761313003312
http://www.sciencedirect.com/science/article/pii/S1074761313003312
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impaired in elderly [96], accompanied by a decrease in total antibody production, but 

an increase in auto-antibody production [97, 98]. A demise in B cell precursors after 

Trp-restriction could therefore imply an exacerbated functional impairment to mount a 

proper humoral immune response. An antigen-specific challenge, like TNP-KLH, could 

give insight in the ability to mount a humoral immune response. 

In conclusion, our results show that dietary tryptophan restriction is a powerful inter-

vention to shape immunity and gut microbiota, also in aging. Dietary tryptophan re-

striction arrests B cell development. Further studies are warranted to investigate the 

role of microbial or host tryptophan metabolism and the changing gut microbiota com-

position on the major effect of dietary tryptophan restriction on B cell development. In 

particular, more studies are needed to directly test if the microbiota instructs B cell 

development in the BM.  
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SUPPLEMENTAL INFORMATION 

Supplemental Table 1. Used antibodies for flow cytometric procedures.  

Target Format Clone Company 

CD2 PE RM2-5 BD 
CD3e APC-Efluor780 

APC-Cy7 
BV421 
FITC 
PerCP-Cy5.5 

17A2 
145-2C11 

Ebioscience 
BD 

CD4 APC-H7 
Biotin 
FITC 

GK1.5 
H129.19 

BD 
BD 

CD8a FITC 
PE 
PerCP-Cy5.5 
V450 

53-6.7 
 

BD 

CD11b APC-Cy7 
BV421 
FITC 
PE-Cy7 

M1/70 BD 
 
 
Ebioscience 

CD11c FITC 
PE-Cy7 

HL3 
N418 

BD 
Ebioscience 

CD16/32 Purified 2.4G2 BD 
CD19 APC-Cy7 

APC-Efluor780 
FITC 
PerCP-Cy5.5 

1D3 BD 
Ebioscience 
 

CD21/35 APC 7G6 BD 
CD23 PE-Cy7 B3B4 Ebioscience 
CD25 APC 

PE-Cy7 
3C7 
PC61.5 

BD 
Ebioscience 

CD31 APC 390 Ebioscience 
CD44 PE 

PE-Cy7 
IM7 BD 

CD45R 
(B220) 

BV421 
FITC 

RA3-6B2 BD 

CD62L APC MEL-14 BD 
CD68 FITC FA-11 BioLegend 
CD69 PE 

PE-Cy7 
H1.2F3 BD 

Ebioscience 
FoxP3 A488 

PE 
MF23 
FJK-16s 

BD 
Ebioscience 

IgD PE 
PE-Cy7 
PerCP-Efluor710 

11.26.2ca 
11-26c 

BD 
Ebioscience 

Igκ FITC 187.1 BD 
Igλ FITC R26-46 BD 
IgM APC 

APC-Efluor780 
Efluor450 

II/41 Ebioscience 

Ly6C A488 
PerCP-Cy5.5 

ER-MP20 
HK1.4 

AbD Serotec 
Ebioscience 

Ly6G APC-Cy7 
BV421 
PE 
PE-Cy7 

1A8 BD 

NK1.1 FITC PK136 Ebioscience 
TER-119 FITC TER-119 BD 
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Supplemental Table 2. Body weights, organ weights, and cellularity of various immune organs from 
young and aged WT and Ercc1

-/Δ7
 mice. 

16-wk WT 18-mo WT 6-wk Ercc1
-/Δ7

 16-wk Ercc1
-/Δ7

 

Body weight (g) 22±0.91 30±1.0*** 14±0.40 16±0.50** 
Spleen weight (mg) 70±7.8 94±9.7

#
 46±2.4 45±1.9 

Relative spleen weight (%) 0.32±0.023 0.32±0.032 0.33±0.013 0.27±0.010** 
Thymus weight (mg) 73±18 49±9.0 62±1.1 28±2.8*** 
Relative thymus weight (%) 0.34±0.084 0.16±0.026 0.44±0.011 0.17±0.021*** 
BM count (x10

6
) 211±44 230±27 97±13 127±12 

Thymus count (x10
6
) 55±4.0 30±4.0** 59±4.8 35±2.0** 

Spleen count (x10
6
) 140±21 161±24 101±4.1 96±6.7 

MLN count (x10
6
) 16±3.1 61±20

#
 16±1.2 13±1.4 

PP count (x10
6
) 1.9±0.49 3.2±1.7 0.82±0.25 0.65±0.16 

PC count (x10
6
) 5.9±1.5 17±4.7

#
 1.9±0.31 2.7±0.09

#
 

Mean (relative) weights or cell counts (x10
6
 cells) ± SEM. BM count based on sternum, iliac crests, femurs 

plus tibias. BM = bone marrow; MLN = mesenteric lymph nodes; PP = Peyer’s patches; PC = peritoneal 
cavity. Data represent n=6 mice per group. 

#
=p<0.1; *=p<0.05; **=p<0.01; ***=p<0.001. 
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Supplemental Figure 1 (see legend next page). 
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Supplemental Figure 2. Effects of dietary tryptophan restriction on myeloid cell numbers in bone 
marrow (BM) and spleen. Mean numbers of CD11b

+
Ly6G

+
 neutrophils and Ly6C

hi
CD31

-/lo
 monocytes in 

BM, and CD11b
+
Ly6C

int
CD68

-/lo
 neutrophils and CD11b

+
CD68

+
 monocytes in spleen were determined by 

flow cytometry. #=p<0.1; *=p<0.05. Data represent the mean ± SEM of n=3-4 mice per group. TrpR = tryp-
tophan restriction. 

Supplemental Figure 1 (previous page). Myeloid cell and erythroblast frequencies in bone marrow 
(BM) and spleen, B cells in periphery, and T cells in mesenteric lymph nodes (MLN) change similar 
with aging in WT mice and Ercc1

-/Δ7
 mice. A) Flow cytometric analysis of BM composition by Ly6C and 

CD31. Lymphocytes are further gated for CD45R. In gray the isotype control, and in red CD45R staining. B) 
Combined flow cytometric analysis of B cells and Ly6C/CD31 in the BM. Ly6C-CD45R+ cells are further 
gated for Ly6C/CD31. C) Mean absolute numbers of total B-lineage cells, B cell precursors, immature, and 
mature B cells in 2-month-old or 24-month-old C57Bl/6J x FVB F1 mice were determined by flow cytometry. 
BM counts based on two femurs and two tibias. D) Mean numbers of Ly6C

+
CD31

+
 late myeloid blasts, 

CD11b
+
Ly6G

+
 neutrophils, Ly6C

hi
CD31

-/lo
 monocytes, Ly6C

-
CD31

-
 erythroblasts in BM, and 

CD11b
+
Ly6C

int
CD68

-/lo
 neutrophils and CD11b

+
CD68

+
 monocytes were determined by flow cytometry. E) 

Mean absolute numbers of splenic B cells, MZ B cells, and follicular B cells, and mean frequencies of CD19
+
 

B cells in MLN and PP. F) Mean absolute numbers of splenic B cells, MZ B cells, and follicular B cells in the 
spleen of 2-month-old or 24-month-old C57Bl/6J x FVB F1 mice. Spleen count is based on a part of the 
spleen (approximately 80-90%, based on spleen weights). G) Mean frequencies of CD4

+
 T cells and CD8

+
 T 

cells, and mean frequencies of memory CD4
+
 T cells (CD44

hi
CD62L

-
), Treg (FoxP3

+
), and memory CD8

+
 T 

cells (CD44
hi
CD62L

-
) in MLN. Data represent n=6 mice (WT and Ercc1

-/Δ7
), and n=3-4 mice (C57Bl6/J x 

FVB F1 mice), expressed as mean ± SEM. #=p<0.1; *=p<0.05; **=p<0.01; ***=p<0.001. WT = wild-type 
C57Bl6/J. 
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ABSTRACT 

Advanced age is associated with chronic low-grade inflammation, which is usually re-

ferred to as inflammaging. Elderly are also known to have an altered gut microbiota 

composition. However, whether inflammaging is a cause or consequence of an altered 

gut microbiota composition is not clear. Here we show for the first time by transferring 

aged microbiota to young germ-free mice that certain bacterial species within the aged 

microbiota promote inflammaging. This effect was associated with lower levels of Ak-

kermansia and higher levels of TM7 bacteria and Proteobacteria in the aged microbio-

ta after transfer. The aged microbiota promoted inflammation in the small intestine in 

the germ-free mice and enhanced leakage of inflammatory bacterial components into 

the circulation. As a consequence, the aged microbiota promoted increased T cell ac-

tivation in the systemic compartment. 
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INTRODUCTION 

The gut microbiota is a highly complex and diverse community of bacteria that closely 

interacts with the epithelium and underlying immune cells in the gut [542]. The bacte-

rial divisions that dominate the human gut microbiota are Firmicutes, Bacteroidetes, 

Actinobacteria, and Proteobacteria [543]. The dominance of these bacterial divisions 

is evolutionary conserved and has been confirmed in different mammalian species 

[544, 545]. In recent years it has become clear that the gut microbiota has a major 

impact on the immune system, metabolism, and even behavior of the host [546]. 

Moreover, an imbalance in gut microbiota composition (dysbiosis) has been associat-

ed with several immunological, metabolic, and mental disorders [547]. However, for 

the majority of these diseases it remains unclear whether dysbiosis is a cause or con-

sequence of the disease. 

In adults the gut microbial community remains relatively stable [548]. However, a 

number of studies have shown that gut microbiota composition is different in the elder-

ly. For example, it has been demonstrated that Firmicutes was dominant in the gut 

microbiota of young individuals, whereas Bacteroidetes was more prevalent in the gut 

microbiota in the elderly [549, 550]. Others found a decrease in anaerobes such as 

Bifidobacteria, but an increase in Enterobacteria, such as E. coli in the elderly [551, 

552]. In people above 100 years old an increase in pathobionts was observed [107]. 

Also bacteria with anti-inflammatory properties such as Faecalibacterium prauznitzii 

were decreased in older individuals [553].  

Concomitantly with microbiota changes, immunity becomes impaired in elderly [554]. 

Elderly are known to be more susceptible to infections and mount less effective im-

mune responses after vaccination. Moreover, homeostasis between pro-inflammatory 

and regulatory responses is lost, which results in a state of low-grade chronic systemic 

inflammation [554]. The age-related chronic inflammation, which is called inflammag-

ing, likely contributes to the pathology of several diseases typically associated with 

aging such as dementia, stroke, and cardiovascular diseases [555-557]. In addition, 

advanced age has been reported to increase intestinal permeability in rodents and 

non-human primates and may subsequently enhance translocation of luminal bacterial 

products and induce inflammation [558, 559]. 

Whether age-induced microbiota changes are associated with inflammaging is not 

entirely clear, but there are some indications that intestinal microbes are involved in 

this process [560]. To address the influence of the aged gut microbiota on the immune 

system, we transferred the gut microbiota from young or old conventional mice to 

germ-free mice. We demonstrate that the aged microbiota induced higher frequencies 

of several T helper cell subsets, in particular in the spleen. Moreover, expression of 

several inflammatory markers was elevated in the ileum after transferring microbiota of 

aged mice. Presumably translocation of bacterial components occurred, since the se-
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rum after transfer of aged microbiota contained higher levels of immunostimulatory 

bacterial components. Finally, gut microbiota composition analysis revealed differ-

ences in abundance of bacterial species such as Akkermansia, TM7, and Proteobac-

teria, which are potentially involved in the increased inflammatory potential of the mi-

crobiota of aged mice. 

 

MATERIALS AND METHODS 

Mice 

Young (7-10 weeks) or old (17 months) C57BL/6JRccHsd conventional female mice 

were purchased from a commercial supplier (Envigo, Horst, the Netherlands). Female 

germ-free mice of 12-14 weeks were obtained from a breeding colony at the animal 

facility of Radboud University Nijmegen Medical Centre (Nijmegen, the Netherlands). 

All animals were put on an autoclaved Rat/mouse maintenance V153X R/M-H diet 

(Ssniff, Soest, Germany) directly after weaning in the case of germ-free mice, or di-

rectly after arrival in the case of conventional mice. The mice were kept on this diet 

throughout the experiment. Conventional mice were housed in IVC cages and germ-

free mice were housed in germ-free isolators. All experiments were approved by the 

local ethical committee of the University of Groningen. 

  

Gut microbiota transfer 

After an acclimatization period of at least 4 weeks, feces were freshly collected from 

the conventional mice. Feces from the same group was pooled and mixed in PBS. 

Next, 200 μL of 100 mg/ml of this mixture was given by oral gavage to germ-free mice 

of 12-14 weeks old. After transfer, recipient mice were individually housed in IVC cag-

es for another 4 weeks. 

  

Organ and tissue collection 

Mice were sacrificed at the following ages: young conventional mice 16-19 weeks, old 

conventional mice 19-20 months, germ-free recipient mice 16-18 weeks, germ-free 

mice 13-15 weeks. Mice were anesthetized with isoflurane, bled, and sacrificed by 

cervical dislocation. Serum was collected and stored at -80˚C. Colon content and a 

piece of terminal ileum were snap frozen in liquid nitrogen and stored at -80˚C. In ad-

dition, spleen, Peyer’s patches (PPs), and mesenteric lymph nodes (MLNs) were col-

lected for FACS analysis.  
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Flow cytometry 

Single cell suspensions were obtained from spleen, PPs, and MLNs. Cells were 

stained with Fixable Viability Dye eFluor 506 (eBioscience, Vienna, Austria) for exclu-

sion of dead cells. A-specific binding to Fc receptors was blocked by incubating the 

cells with anti-CD16/32 (clone 93, BioLegend, Uithoorn, the Netherlands) for 15 min 

on ice. For extracellular staining, cells were incubated with the desired mixture of anti-

bodies for 30 min on ice. After washing, cells were fixed with FACS lysing solution (BD 

Biosciences, Breda, the Netherlands). For intracellular staining, fixed cells were per-

meabilized with PERM (eBioscience, Vienna, Austria) and subsequently stained with 

the desired antibodies for 30 min on ice. For identification of the different T helper cell 

subsets, cells were stained with antibodies against: CD3e (clone 17A2), CD4 (clone 

GK1.5), T-bet (clone 4B10), RORγt (clone B2D), Gata-3 (clone TWAJ), CD25 (clone 

PC61), and Foxp3 (clone FJK-16S). Appropriate isotype controls were used to deter-

mine specificity of the staining. Samples were acquired with the FACSVerse (BD Bio-

sciences, Breda) and analyzed with FlowJo software (FlowJo, LLC, Oregon, USA).  

 

Transcriptome Microarray 

A piece of terminal ileum from each mouse was snap frozen in liquid nitrogen and 

stored afterwards at -80 °C. From these samples RNA was isolated with the RNeasy 

kit (Qiagen, Valencia, CA, USA). Quantity of RNA was measured with the ND-1000 

(NanoDrop Technologies, Thermo Fisher Scientific, Breda, the Netherlands) and 

quality of RNA was assessed with the Bioanalyzer 2100 (Agilent, Santa Clara, CA, 

USA). Total RNA (100 ng) was labeled utilizing the GeneChip WT plus reagent kit 

(Affymetrix, Santa Clara, CA, USA). After labeling, samples were hybridized to Affy-

metrix GeneChip Mouse Gene 1.1 ST arrays. An Affymetrix GeneTitan Instrument 

was used for hybridization, washing, and scanning of the array plates. Bioconductor 

packages integrated in an online pipeline were used for quality control of the data 

[561, 562]. Probe sets were redefined using current genome information [563]. Probes 

were reorganized based on the Entrez Gene database (remapped CDF v19). Robust 

Multi-array Analysis preprocessing algorithm available in the Bioconductor library 

affyPLM [564] was used to obtain normalized expression estimates from the raw in-

tensity values.  

 

HEK293 TLR2/TLR4 assay 

Human Embryonic Kidney 293 cells stably transfected with mouse TLR2/CD14 or 

TLR4/MD-2/CD14 and the secreted embryonic alkaline phosphatase reporter (SEAP) 

coupled to the NF-kB/AP-1 promoter were purchased from Invivogen (San Diego, CA, 

USA). Every cell line was grown at 37°C, 5% CO2 in DMEM medium (Lonza B.V., Ba-

sel, Switzerland), supplemented with 4.5 g/l glucose, 10% heat-inactivated FBS, 2 mM 
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L-glutamine, 50 U/ml penicillin, 50 mg/ml streptomycin, and 100 mg/ml Normocin. Af-

ter 2 passages, the cells were cultured in the presence of HEK-Blue selection medium 

(Invivogen, San Diego, CA, USA) in order to maintain the transfected constructs. Cells 

were stimulated with 2.5% mouse serum for 20 hours at 37ºC, 5% CO2. Next, 20 µl 

medium from each well was aliquoted and mixed with 180 µl QUANTI-Blue reagent 

(Invivogen, San Diego, CA, USA). After incubation at 37ºC for 2 hours, OD at 650 nm 

was measured with a microplate absorbance spectrophotometer (Bio-Rad Laborato-

ries, Veenendaal, the Netherlands).  

 

Microbiota analysis 

Fresh feces samples obtained just after defecation were collected from all mice at dif-

ferent time points during the experiment. In addition, colonic content samples from 

these mice were collected at the end of the experiment. All samples were snap frozen 

in liquid nitrogen and stored at -80 °C. These samples were used for 16S rRNA gene 

analysis for microbiota profiling with barcoded amplicons from the V1-V2 region of 16S 

rRNA genes generated using a 2-step PCR strategy that reduces the impact of bar-

coded primers on the outcome of microbial profiling [565]. DNA extraction was per-

formed using a combination of the bead-beating-plus column method and the Maxwell 

16 Tissue LEV Total RNA purification kit (Promega, Leiden, The Netherlands). Beating 

of the fecal pellets took place as described before [520], but with STAR (Stool 

transport and recovery) buffer (Roche, Basel Switzerland). 250 µl supernatant after 

centrifugation was taken for the Maxwell 16 Tissue LEV Total RNA Purification Kit and 

the DNA was eluted in 50 µl DNAse free water. Twenty nanograms of DNA was used 

for the amplification of the 16S rRNA gene with primers 27F-DegS and 338R I + 338R 

II for 25 cycles as described before [521], only primers had a UniTag linkers attached; 

UniTag I (forward) and II (reverses) (I – GAGCCGTAGCCAGTCTGC; II - 

GCCGTGACCGTGACATCG). The first PCR was performed in a total volume of 50 µl 

containing 1× HF buffer (Finnzymes, Vantaa, Finland), 1 µl dNTP Mix (10 mM; 

Promega, Leiden, The Netherlands), 1 U of Phusion® Hot Start II High-Fidelity DNA 

polymerase (Finnzymes Vantaa, Finland), 500 nM of the 27F-DegS primer [521, 566] 

that was appended with Universal Tag (UniTag) 1 at the 5’ end, 500 nM of an equimo-

lar mix of two reverse primers, 338R I and II [566] based on three previously published 

probes EUB 338 I, II and III [521], that were 5’-extended with UniTag 2, and 0.2-0.4 

ng/µl of template DNA. The sequence of the UniTags were selected to have a GC 

content of ~66% and a minimal tendency to form secondary structures, including hair-

pin loops, heterodimers, and homodimers as assessed by the IDTDNA Oligoanalyzer 

3.1 (Integrated DNA Technologies). Moreover, sequences were selected that had no 

matches in 16S rRNA gene databases (based on results of the ‘TestProbe’ tool of-

fered by the SILVA rRNA database project [567] using the SSU r117 database), and 
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no prefect matches in genome databases with the Primer-BLAST tool 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). The size of the PCR products (~375 

bp) was confirmed by gel electrophoresis using 5 μL of the amplification reaction mix-

ture on a 1% (w/v) agarose gel containing 1× SYBR® Safe (Invitrogen, Thermo Fisher 

Scientific, Waltham, MA, USA). Five µL of these PCR products were taken to add 

adaptors and an 8-nt sample-specific barcode in an additional 5 cycle PCR amplifica-

tion. This second PCR was performed in a total volume of 100 µl containing 1× HF 

buffer, dNTP Mix 2 U of Phusion® Hot Start II High-Fidelity DNA polymerase, 500 nM 

of a forward and reverse primer equivalent to the Unitag1 and UniTag2 sequences, 

respectively, that were each appended with an 8 nt sample specific barcode at the 5’ 

end (G. Hermes and J. Ramiro-Garcia, et al In preparation). PCR products were puri-

fied with the magnetic beads (MagBio, London, UK) according to the HighPrepTM pro-

tocol of the manufactures instructions using 20 μL Nuclease Free Water (Promega 

Leiden, The Netherlands) and quantified using the Qubit (Life Technologies, Bleiswijk, 

The Netherlands). Purified PCR products were mixed in approximately equimolar 

amounts and concentrated by the magnetic beads as the purification before. Purified 

amplicon pools were 250 bp paired-end sequenced using Illumina Miseq (GATC-

Biotech, Konstanz, Germany). 

The Illumina Miseq data analysis was carried out with a workflow employing the Quan-

titative Insights Into Microbial Ecology (QIIME) pipeline [522] and a set of in-house 

scripts as described before for Illumina Hiseq 16S rRNA gene sequences (G. Hermes 

and J. Ramiro-Garcia, et al In preparation). The set of in-house scripts processed the 

reads as follows: reads were filtered for not matching barcodes; otu picking and chi-

mera removal was done via matching the sequences to the Silva 111 database, with 

only one mismatch allowed, and a biom and with clustalw a multiple alignment and 

phylogenetic tree file was generated. Further outputs were generated via Qiime, such 

as filtered reads per sample, PD whole tree diversity measurements and the level 1 to 

6 taxonomic distributions with relative abundances.  

Statistics 

Flow cytometry data and HEK293 TLR assay data are expressed as means, error 

bars represent standard error of the mean (SEM). To verify whether data were normal-

ly distributed the Kolmogorov-Smirnov test was performed. In cases where data were 

not normally distributed, data were log transformed before analysis. For comparing 2 

groups the unpaired two-tailed Student’s T test was used. For comparing more than 2 

groups with each other, one way ANOVA was performed followed by the Bonferroni 

test to compare specific groups. P-values below 0.05 were considered significant. All 

tests were performed with Graphpad software (Prism, La Jolla, CA, USA). 
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Differentially expressed probe sets were identified using linear models, applying mod-

erated T-statistics that implemented empirical Bayes regularization of SEs [568]. A 

Bayesian hierarchical model was used to define an intensity-based moderated T-

statistic, which takes into account the degree of independence of variances relative to 

the degree of identity and the relationship between variance and signal intensity [569]. 

Statistical tests for gut microbiota composition were performed using R and Calypso 

[570], where the count data were not normally distributed and variances between 

groups were not equal, the Mann-Whitney U test was used.  

 

RESULTS 

Microbiota of old mice enhances CD4
+
 T cell differentiation in the spleen 

In order to investigate how aging influences the interplay between the gut microbiota 

and the immune system of the host, we transferred gut microbiota from young (11-14 

weeks) or old (18 months) conventional mice to young germ-free mice (12-14 weeks). 

Four weeks later the mice were sacrificed and the frequency of the different CD4
+
 T 

helper (Th) subsets were identified in the Peyer’s patches (PP), mesenteric lymph 

nodes (MLN), and the spleen. Conventional mice, aged 11-14 weeks, or 18 months 

served as control. 

In conventional mice, a higher frequency of Th2 cells was found in the spleen of old 

mice compared to young mice (Figure 1A). This enhanced Th2 frequency could be 

induced by transfer of the old microbiota to young germ-free mice and was not ob-

served when young microbiota was transferred. Also the high Treg (Figure 1B) and 

Th1 (Figure 1C) numbers in spleens of old conventional mice could be induced by 

transfer of old microbiota. Germ-free mice, which received the old microbiota, had a 

higher frequency of splenic Tregs (Figure 1B) and Th1 cells (Figure 1C) than germ-

free mice which received the young microbiota. No differences were observed in Th17 

cells (data not shown). Furthermore, in the PPs and MLNs no differences were ob-

served in Th frequencies (data not shown), except for Th1 cells in PPs, which were 

significantly higher in germ-free mice after transfer of the old microbiota (Figure 1D) as 

compared to germ-free mice after transfer of microbiota of young mice. In conclusion, 

the old microbiota enhanced CD4
+
 T cell differentiation of several Th subsets, in par-

ticular in the systemic compartment. 
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Figure 1. Old microbiota induces higher frequencies of T helper subsets in the spleen. Spleen, MLN, 
and PP CD4

+
 T cell populations were analyzed with flow cytometry after isolation from young or old conven-

tional (conv) mice (n =10), germ-free (GF) recipient mice of young or old microbiota (n= 10), and GF control 
mice (n = 5). (A) Percentage of splenic CD4

+
 T cells expressing GATA-3 (Th2). (B) Percentage among total 

live cells of splenic CD4
+
 T cells expressing CD25 and Foxp3 (Treg). (C) Percentage among total live cells 

of splenic CD4
+
 T cells expressing T-bet (Th1). (D) Percentage among total live PP cells of CD4

+
 T cells 

expressing T-bet (Th1). All data are expressed as means. * indicates P<0.05, ** indicates P<0.01.  

Microbiota of old mice upregulates inflammation-associated immune pathways 

in the ileum 

To study the effect of the microbiota on the host in an unbiased manner we performed 

genome-wide gene expression analysis of the ileum with microarray. Genes that were 

significantly higher expressed in the ileum of old conventional mice compared to 

young conventional mice were analyzed with the STRING database [571]. We identi-

fied a large cluster of genes involved in the immune response that were upregulated in 

the ileum of old conventional mice (Figure 2A). The function of these genes included 

antigen processing and presentation, activation of the complement pathway, recogni-

tion of microbe-associated molecular patterns (MAMP), and migration of B cells. TNF-

α was in the center of this network, which might suggest that TNF-α plays an im-

portant role in these processes.  
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Also genes that were significantly higher expressed in germ-free mice that received 

the old microbiota compared to recipients of young microbiota were analyzed with the 

STRING database. Also here we identified a cluster of genes with TNF-α in the center 

of the network (Figure 2B). These results might suggest that TNF-α production is spe-

cifically enhanced by the old microbiota. 

 

Identification of immune pathways specifically affected by old and young mi-

crobiota 

Microarray data were further analyzed with Ingenuity Pathway Analysis (IPA), only 

focusing on genes that were significantly differentially expressed (p<0.05, fold change 

>1.2 or < -1.2) when comparing old versus young conventional mice, or germ-free re-

cipient mice that received young versus old microbiota. Interestingly, we observed 3 

canonical pathways that were significantly affected both in the conventional mice and 

in the germ-free recipient mice (Figure 3A). The canonical pathways ‘role of PRRs in 

recognition of bacteria and viruses’, ‘T helper cell differentiation’, and ‘B cell develop-

ment’ were upregulated in old conventional mice compared to young conventional 

mice and also in germ-free recipients of old microbiota compared to recipients of 

young microbiota. Therefore, these pathways might be in particular influenced by the 

microbiota during aging. 

Also predicted upstream regulators were identified with IPA. Upstream regulators are 

the upstream transcriptional regulators that potentially explain the observed gene ex-

pression differences in the dataset. The most significantly predicted upstream regula-

tor that could cause the gene expression profile in old conventional mice in compari-

son to young conventional mice was lipopolysaccharide (LPS; Figure 3B). Importantly, 

LPS from Salmonella enterica was among the most significantly predicted upstream 

regulators of old microbiota after transfer to germ-free mice (Figure 3B). Thus, LPS is 

a component of the old microbiota that is possibly involved in mediating its effects on 

the immune system of the host.  

To further identify the genes that were specifically influenced by the old microbiota, we 

compared the genes that were differentially expressed between young versus old 

conventional mice and germ-free recipients of young versus old microbiota (Figure 

3C). We identified 27 genes that were differentially expressed in both datasets. This is 

list of genes was further narrowed down to genes that were up or down-regulated in 

both datasets and are known to play a role in the immune response. As mentioned 

above, TNF-α was upregulated both in old conventional mice and in germ-free recipi-

ents of old microbiota. Also, TNFSF8, which is the ligand for CD30, was more highly 

expressed in these groups of mice. On the other hand, several genes encoding for the 
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lambda immunoglobulin light chain were more highly expressed both in young conven-

tional mice and in germ-free recipients of young microbiota. 

Figure 4. Transfer of old microbiota enhances inflammatory bacterial components in serum. Human 
Embryonic Kidney 293 cells transfected with mouse TLR2/CD14 (A) or mouse TLR4/MD-2/CD14 (B) were 
stimulated with 2.5% serum from young or old conventional (conv) mice (n =10), germ-free (GF) recipient 
mice of young or old microbiota (n= 10), and GF control mice (n = 5). Activation of these receptors was 
measured with a secreted embryonic alkaline phosphatase reporter (SEAP) coupled to the NF-kB/AP-1 
promoter. All data are expressed as means. ** indicates P<0.01. 

Increased leakage of bacterial components into systemic circulation after old 

microbiota transfer 

As LPS was a prominent predicted upstream regulator in the ileal IPA analysis, we 

investigated whether there were innate immune activating components in sera of ani-

mals receiving old microbiota. These components can possibly be transferred from the 

intestine by translocation of bacterial components due to a compromised intestinal 

barrier [572, 573]. To this end, we incubated the sera of these mice with HEK293 cells 

transfected with Toll-like receptor (TLR) 2 or TLR4. Activation of NF-κB was measured 

with a reporter gene. No differences were observed between old conventional mice 

and young conventional mice. However, the sera from germ-free mice, which had re-

ceived old microbiota showed significantly higher activation of TLR2 compared to sera 

from recipients of young microbiota (Figure 4A). A similar trend was observed for 

TLR4 activation, although this difference did not reach statistical significance (Figure 

4B). In summary, these data indicate that old microbiota transfer leads to increased 

translocation of inflammatory bacterial products into the circulation. 

Bacterial groups associated with increased inflammatory potential of old micro-

biota 

Next, we investigated how the gut microbiota composition changes over time in the 

recipient mice. To this end the composition of the gut microbiota of the different exper-
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imental groups was analyzed with 16S rDNA sequencing. From the germ-free recipi-

ent mice that received old or young microbiota, we analyzed feces 1 week after trans-

fer or 4 weeks after transfer (Figure 5). We were particularly interested to see whether 

the gut microbiota evolves into a community similar to the donor, or whether it adapts 

to its host. Redundancy analysis (RDA) at the genus level confirmed that gut microbio-

ta composition was different between old conventional mice and young conventional 

mice, since the samples separated into 2 distinct clusters (Figure 6A). The samples 

collected 1 week after transfer also separated into 2 different clusters, suggesting that 

the transfer of different gut microbiota communities also led to the establishment of 

different microbiota communities in the recipients. However, after 4 weeks gut micro-

biota composition in the recipient mice was most similar to the gut microbiota compo-

sition in young conventional mice. Moreover, at this time point the clusters of samples 

derived from the recipient mice were showing more overlap, which suggests gut mi-

crobiota composition of the 2 groups became more similar to each other compared to 

the first week time point. Together these results indicate that at 1 week the gut micro-

biota composition of the donor dictates the gut microbiota composition in the recipient, 

but at later time points the gut microbiota composition adapts to the host. 

To look more specifically at the bacterial groups that were responsible for the ob-

served differences in immune responses, we investigated which bacterial phyla had a 

significant difference in abundance (Figure 6B). Compared to young conventional 

mice, old conventional mice had higher abundance of Tenericutes, but lower abun-

dance of Verrucomicrobia. Akkermansia is the only genus known to belong to the Ver-

rucomicrobia phylum. Indeed we observed a similar difference in abundance for Ak-

kermansia (data not shown). In addition, age influenced the Firmicutes/Bacteroidetes 

ratio. Old conventional mice had more Bacteroidetes, but less Firmicutes compared to 

young conventional mice. Interestingly, 1 week after transfer of old microbiota, recipi-

ent-mice had significant less Verrucomicrobia than germ-free mice that received 

young microbiota (Figure 6B). There was also a difference in the Firmicu-

tes/Bacteroidetes ratio, but surprisingly recipients of old microbiota had significantly 

less Bacteroidetes and more Firmicutes compared to recipients of young microbiota. 

Four weeks after transfer the differences at 1 week were no longer present. However, 

at this time point recipients of old microbiota had a higher abundance of TM7 and Pro-

teobacteria (Figure 6B). The difference in Proteobacteria was likely due to a difference 

in abundance of Desulfovibrio, since this was the only Proteobacterium that was sig-

nificantly more abundant at the genus level after transfer of old microbiota. In sum-

mary, a number of bacterial groups were identified that were affected by age, which 

included Akkermansia, TM7, and Proteobacteria. These bacterial groups are possibly 

involved in the increased inflammatory potential of the old microbiota.  
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DISCUSSION 

Several studies have demonstrated that aging is associated with an altered gut micro-

biota composition, inflammaging, and increased gut permeability [560]. However, 

whether the aged microbiota is a cause or consequence of inflammaging is not known. 

To the best of our knowledge, we are the first to show that some characteristics of this 

typical immunosenescence can be induced by microbiota of aged mice after transfer 

into young germ-free mice. Microorganisms responsible for this effect were found to 

be Akkermansia, TM7 bacteria and Proteobacteria. Our results suggest that in the 

presence of aged microbiota, TLR2- and 4-stimulating components were found in the 

circulation of recipients of old microbiota. This leads to increased tissue inflammation, 

which eventually results in enhanced T cell differentiation systemically. Interestingly, 

dysbiosis and a comprised intestinal barrier is also observed in several other disorders 

such as IBD and metabolic syndrome [574, 575]. 

Certain bacterial species colonizing the gut have been shown to induce a specific 

subset of Th cell. For example, segmented filamentous bacterium was found to specif-

ically induce Th17 cells in the gut [576]. On the other hand, polysaccharide A (PSA) 

produced by the human symbiont Bacteroides fragilis was shown to promote expan-

sion of IL-10-producing Treg cells in a TLR2-dependent manner [577-579]. It has also 

been demonstrated that certain Clostridium species induce Treg cells in the colon [580, 

581]. In our study the aged microbiota did not promote differentiation of a specific Th 

cell subset. However, after transfer of aged microbiota to germ-free mice, we rather 

observed increased levels of several Th cell subsets. This effect was almost exclu-

sively observed in the spleen, but not in the PPs or MLNs. These results do not sug-

gest an association with any of the bacterial species mentioned above. An increased 

exposure of naïve T cells in the systemic compartment to bacterial compounds in 

general as a result of a reduced intestinal barrier seems a more likely explanation.  

The transfer of old microbiota into young germ-free mice induced differential regulation 

of pathways including T cell differentiation, B cell development, and recognition of mi-

crobes by pattern recognition receptors. A central regulatory cytokine was TNF-α, 

which was consistently upregulated by the old microbiota both in the conventional 

mice and germ-free recipient mice. TNF-α is well known for its role in the pro-

inflammatory response [582]. TNF-α also plays a central role in the pathogenesis of 

IBD and anti-TNF-α agents are used in the clinic to treat the disease [583]. TNF-α was 

also shown to increase intestinal epithelial permeability [584]. Young microbiota had a 

different effect and increased expression of lambda immunoglobulin light chain genes 

both in conventional and germ-free recipient mice. B cells express only one class of 

light chain, lambda (λ) or kappa (κ). It has been observed previously that the gut mi-

crobiota can influence the ratio of these two light chains. Microbial colonization of 

germ-free mice was shown to increase the ratio of Igλ
+
 to Igκ

+
 B cells in the lamina 
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propria [585]. Since increased Igλ usage by B cells is considered a marker for B cell 

receptor editing [586-588], these results might suggest that the young microbiota pro-

mote a more diverse B-cell repertoire. Another possibility is that the young microbiota 

contains more antigens that are recognized by B cell clones that express Igλ.  

The increased level of differentiated CD4
+
 T cells in the spleen, the elevated inflam-

mation in the ileum, and the prediction of LPS as an upstream regulator in the pres-

ence of aged microbiota led us to hypothesize that more bacterial components had 

translocated into the circulation in animals containing old microbiota. Indeed we ob-

served that serum of germ-free recipients of old microbiota had an increased ability to 

activate TLR2 and TLR4. Similar mechanisms seem to contribute to other disorders 

such as type 2 diabetes and metabolic syndrome. High fat diet was shown to alter gut 

microbiota composition, which increased the permeability of the small intestine [573]. 

The increased permeability allowed bacterial components to reach distal sites, which 

induced low-grade inflammation and subsequent insulin resistance [572]. Importantly, 

the mucin-degrading bacterium Akkermansia muciniphila was shown to reverse these 

metabolic disorders by strengthening the intestinal barrier [589]. In our study old con-

ventional mice had lower abundance of Akkermansia, which has also been reported 

previously both in humans and mice [590, 591]. Akkermansia was also less abundant 

after transfer of old microbiota to germ-free mice at early time points. Therefore, it is 

tempting to speculate that the absence of Akkermansia in recipients of old microbiota 

might be associated with translocation of inflammatory bacterial components into the 

circulation. 

As mentioned previously, certain members of the gut microbiota modulate the immune 

system [592]. However, components of the immune system such as IgA antibodies 

also shape gut microbiota composition [593-595]. Therefore, we investigated whether 

after transfer to germ-free mice the aged microbiota remained similar in composition to 

the donor or would quickly adapt to the young host. One week after transfer, the com-

position of old and young microbiota was clearly different, but after 4 weeks the differ-

ence was less pronounced, and both the microbiota from the old and young mice were 

more similar to the microbiota of the young mice. This suggests that the aged microbi-

ota had partially adapted to the young host. As described for aged humans [549, 550], 

old conventional mice had a lower Firmicutes/Bacteroidetes ratio. However, this trait 

was not transferable to germ-free mice. Four weeks after transfer germ-free recipients 

of old microbiota had more TM7 bacteria and Proteobacteria. The difference in Prote-

obacteria was at least partially due to a significant lower abundance of Desulfovibrio 

after transfer of old microbiota. Interestingly, Desulfovibrio and TM7 bacteria have re-

cently been associated with a compromised intestinal barrier due to an altered mucus 

structure that was more penetrable by bacteria leading to increased intestinal immune 

infiltration [596]. Further indications that TM7 phyla and Proteobacteria such as Desul-
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fovibrio can contribute to intestinal inflammation comes from observations that these 

bacteria are associated with the pathogenesis of IBD [597-599].  

Together our results suggest that aged microbiota contributes to the chronic low grade 

inflammatory state observed during aging. Therefore, strategies to modify gut microbi-

ota composition of the elderly with for example probiotics or prebiotics [600] might 

contribute to reduction of inflammation and thereby promote healthy aging.
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The immune system is dysregulated with aging. The aging immune system is predom-

inantly affected in two ways: 1) it becomes less capable to mount sufficient responses 

and to defend the body against pathogens, and 2) it becomes vulnerable for (au-

to)inflammatory conditions and inflammaging. These two aspects, which can be sum-

marized in the term ‘immunosenescence’, contribute to the increased prevalence of 

cancer and infectious diseases in elderly (>65-year-old) [12-14]. More than half of the 

elderly have multiple age-related diseases [49]. As a result, the quality of life of most 

elderly is reduced. Preventing or reverting age-related defects in the immune system 

is therefore crucial to promote healthy aging.  

Many detailed studies over the last decade, both in man and in mouse, have substan-

tially increased our knowledge on the aging immune system. Clearly, in all cell types 

of the immune systems effects of aging have been identified, as described in the in-

troduction of this thesis (Chapter 1). We explored the effects of aging on various com-

ponents of the immune system and the gut (Figure 1), in particular in relation to the 

concomitant changes in the microbiota composition that are characteristic for aging. 

Our main findings are that basophils interact with dendritic cells (DC; chapter 2), and 

that basophils change with age in frequency and phenotype (Chapter 3). In Chapter 4, 

we reviewed that macrophages show decreased Toll-like receptor (TLR) signaling and 

increased IL-10 and prostaglandin (PG)E-2 production. We report that the mucus layer 

in the gut declines with age, which is prevented by treatment with Lactobacillus planta-

rum WCFS1 (Chapter 6). In line with literature, we describe that B cell and T cell pre-

cursors decline with age, and that dietary tryptophan restriction arrests B cell devel-

opment (Chapter 7). Finally, we provide evidence that microbiota from aged mice in-

duce expression of TNF in the gut of young germfree mice, similar as in aging (Chap-

ter 8). 

 

The aging immune system 

We studied the effects of aging on several types of immune cells: basophils, DC, mac-

rophages, B cells, T cells, and innate lymphoid cells (ILC). 

 

Basophils: functional defects with aging? 

Basophils have been increasingly studied since four studies were published on their 

role in the initiation of Th2 immune responses [201, 222, 252, 253]. As discussed in 

chapter 2, these data were (in part) debated due to the simultaneous depletion of ba-

sophils and FcεRIα
+
 DC [254], and are thus far not reproduced in humans. In addition 

to reviewing current literature on basophils, we added preliminary data on the interac-

tion between basophils and DC in vitro. Basophils have the capacity in vitro to change 

the phenotype of and cytokine production by DC, and vice versa. Although we have 
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not investigated how basophils and DC interact with each other mechanistically, both 

cell-cell interactions and secretory mediators may play a role. We concluded that it is 

of interest to explore the effect of aging on basophils. 

 

 
Figure 1. Overview of main findings in this thesis. B = B-lineage cells; Baso = basophils; DC = dendritic 
cell; Mφ = macrophage; PG = prostaglandin; T = T-linage cells; TrpR = dietary tryptophan restriction. 

 

In chapter 3, we explored basophils in young and aged mice. We report that basophil 

frequencies increased in the spleens of aged mice, while no changes in basophil fre-

quency were found in the bone marrow (BM). In humans, basophils steadily decline in 

the blood with age [73]. There are, however, no data on basophils frequencies in ag-

ing human spleen or BM, or mouse blood, hampering the comparison between this 

human study and our data. Moreover, there are conflicting data whether Th2 respons-

es in general decline with age [601]. Busse et al (2007) studied ovalbumin (OVA)-

specific responses in the lungs of mice of different ages. They, however, mainly fo-

cused on eosinophils, and data on basophils are lacking [602]. Summarizing, we re-

port that basophils interact with DC, and that basophil frequencies and phenotype 

change with age. 
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Future directions: Whether our findings translate into a basophil-dependent defect in 

Th2 responses in vivo with aging remains to be elucidated. Allergic airway inflamma-

tion in young and aged mice could be compared to learn whether the age-related 

changes in basophils determine outcome of Th2-related inflammation in vivo.  

 

DC and aging 

DC are important immune cells in the connection between the innate and the adaptive 

immune responses. In elderly, the total numbers of DC seem to be unaffected [603, 

604]. We also have studied DC in aging mouse BM, spleen, and mesenteric lymph 

nodes (MLN), and after bacterial supplementations, but we have not found significant 

differences in distribution (data not shown). Several human studies, however, show a 

reduction in plasmacytoid DC (pDC) and no change in myeloid DC in peripheral blood 

[605-607]. A decrease in the number of Langerhans cells, and an altered morphology 

were observed in elderly [604]. In aged mice, an altered distribution of DC subsets 

was found as well [608].  

Phagocytosis, pinocytosis, migration and chemotaxis were impaired in DC from aged 

donors, leading to a decreased ability to present antigens [63, 110, 603, 609]. As a 

result, aged DC have a reduced ability to stimulate T cell responses, and are less able 

to control tumor growth [110, 609, 610]. Although a number of conflicting studies exist, 

the vast majority of studies point to a general decline in DC function with age [611]. 

These age-related changes may also provide an explanation for the disrupted interac-

tion of DC with B cells and a decreased priming of T cells in lymph nodes [63]. Com-

parable and consistent results on DC are hampered by the use of various protocols, 

which differ in source (blood, BM, cord blood) and culture conditions. In general, these 

data indicate that DC phenotype and functions are affected with aging. 

 

Macrophages and aging 

Macrophages are critical regulators of processes aimed at maintaining homeostasis, 

such as inflammatory and immune responses [612], and metabolism [613]. Chapter 4 

includes a summary of age-related alterations in macrophage numbers, phenotype, 

and functions, and concludes with potential (dietary) interventions to rejuvenate aged 

macrophages. In our studies, we included analyses of peritoneal macrophages 

(CD11b
hi
F4/80

hi
). Although we found no change in macrophage numbers or pheno-

type in the peritoneum of aged WT or Ercc1
-/Δ7

 mice, as compared with young WT or 

Ercc1
-/Δ7

 mice (data not shown), it is nevertheless conceivable that aging affects mac-

rophage function. Because macrophages are central in immunity, we review in chapter 

4 changes in polarization, epigenetic and metabolic processes, and autophagy in ag-

ing macrophages as potential driving factors for inflammaging. It is now accepted that 

inflammatory responses are tightly regulated and integrated by epigenetic processes, 
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which influence the transcription of genes by DNA methylation or histone-tail modifica-

tion. General DNA hypomethylation as well as consistent histone modifications are 

hallmarks of aging [614]. For example, SIRT1 (protein deacetylase) activity prevents 

cognitive decline and neurodegeneration in aging via histone modification [615]. Epi-

genetic processes are sensitive to nutritional components, such as omega-3 fatty ac-

ids [616] and microbe-derived butyrate [617]. Because the epigenetic landscape 

changes with age [618, 619], modifying the microbial composition (by tryptophan re-

striction or by supplementation of bacterial strains) might have consequences for the 

epigenetic landscape in aging individuals. Because the epigenetic landscape is sensi-

tive to environmental factors, its analysis should be included in future studies regard-

ing nutritional interventions. In sum, macrophage distribution, phenotype, and func-

tions change with age. Their prime role in inflammation makes these changes proba-

bly important in the inflammaging process. 

Lymphocytes and aging 

Primary lymphoid organs thymus and bone marrow involute with age [55, 488]. These 

and other age-related effects are more broadly discussed in chapter 1. In line with 

previous studies, we report that the precursors of B cells in the BM and precursors of 

T cells in the thymus decrease in numbers with age (chapter 7). We also found in-

creased memory T cell frequencies (at the expense of naïve T cells) and increased 

Treg frequencies, which is supported by previously reported findings [525, 526]. We 

also studied whether ILC2 were affected with age. When comparing the frequencies of 

Lin
-
GATA3

+
CD127

+
 ILC2 in spleens of 16-week-old Ercc1

+/+
 mice with 16-week-old

Ercc1
-/Δ7

 mice, we observed no significant change (0.06% vs. 0.08%; data not shown).

In summary, we confirmed that lymphocyte distribution changes with age. 

Future directions: Data on ILC need to be confirmed in comparing young and aged 

wild-type mice, and should take into account ILC1 and ILC3 subsets as well.  

Together, these data show that aging has profound impact on the immune system. An 

important question is how to prevent or maybe even revert these age-related changes. 

We have studied the role of probiotics, dietary tryptophan restriction, and microbial 

transfers (chapter 5/6, 7, and 8, respectively). In all these studies, microbiota play a 

significant role, either directly (as a bacterial strain or a complete microbiota) or indi-

rectly (via tryptophan restriction). 
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In vivo aging conditions challenge the suitability of in vitro cytokine ratios to 

predict efficacy of probiotics 

Selection of bacterial strains in vitro 

We used splenocytes and bone marrow-derived macrophages to evaluate probiotic 

properties of bacterial strains in vitro (chapter 5). We showed that splenocytes and 

macrophages of aged mice have an altered response to LPS and bacterial strains as 

compared with those of young mice. IL-10/IL-12 ratios have been widely used to as-

sess probiotic activity in vitro. As discussed in chapter 5, IL-10/TNF ratios were similar 

to IL-10/IL-12 ratios in a previous study. Based on differential IL-10/TNF production 

ratios of splenocytes in young mice, we applied three bacterial strains in vivo. Lacto-

bacillus plantarum WCFS1 was classified as pro-inflammatory (lowest IL-10/TNF), L. 

casei BL23 as regulatory (intermediate IL-10/TNF), and Bifidobacterium breve 

DSM20213 was classified as anti-inflammatory (highest IL-10/TNF).  

 

The predictive value of IL-10/TNF ratios in aging 

We found that the in vitro classification of L. plantarum, L. casei, and B. breve did not 

match with our findings on application in vivo to Ercc1
-/Δ7

 mice (chapter 6). In brief, we 

found that L. casei induced Tregs, but also raised several inflammatory markers. L. 

plantarum induced Tregs, without showing an increase in pro-inflammatory cells or 

cytokines. B. breve did not show anti- or pro-inflammatory activity, but induced dam-

age in the ileum (Van Beek et al, unpublished findings). These findings challenge the 

use of IL-10/IL-12 (or IL-10/TNF) ratios to screen for candidate probiotics with anti-

inflammatory capacities [472] in the aging host. It may even be argued that strains 

scoring high IL-10/IL-12 ratios – aimed to combat inflammaging – are not beneficial in 

the aging context, because IL-12 induction is impaired in aging while IL-10 production 

is generally elevated [475]. It has been reported that cytokine profiles of TLR-

stimulated whole-blood from elderly are altered compared with young adults, favoring 

IL-6, TNF, and IL-10 production, at the expense of e.g. IL-12, and IL-1β [475]. Ex-

trapolating these data to the colon, and combined with this study, it might mean that 

high IL-10 induction indeed is not beneficial in the aging intestine, but that IL-1β induc-

tion (as observed after L. plantarum supplementation) might be beneficial. 

 

Inclusion of age in the definition of probiotics 

In young wild-type (Ercc1
+/+

) mice, no major effects of supplementation with any of the 

three selected bacterial strains were found on intestinal barrier and immunity in Pey-

er’s patches (PP), MLN, or spleen (chapter 6). However, after supplementing acceler-

ated aging Ercc1
-/Δ7

 mice with L. plantarum, we found that this bacterial strain pre-

vented the age-related decline in mucus barrier. At the same time, its supplementation 
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upregulated IL-1β, IL-4, IFN-γ, and TNF in colonic tissue, and induced higher Treg 

frequencies in MLN. Supplementation with L. casei or B. breve in Ercc1
-/Δ7

 mice re-

sulted in raised inflammatory parameters in the spleen (a.o. neutrophils and Ly6C
hi

monocytes) or exacerbation of the age-related decline in the intestinal barrier, respec-

tively.  

The comparison of our findings in Ercc1
-/Δ7

 mice with those in Ercc1
+/+

 mice underlines

that it might be important to pay careful attention to the age of individuals that receive 

bacterial supplementation. The aged gut of Ercc1
-/Δ7

 mice responded in a different way

to candidate probiotic strains than the young gut of Ercc1
+/+

 mice. The aging condition

of the gut barrier and immune system reveals the beneficial effect of L. plantarum ver-

sus the detrimental effects of L. casei and B. breve, while these are not observed in 

young wild-type mice. To the best of our knowledge, we are the first to compare direct-

ly the effect of candidate probiotic strains in young and aged mice. Our findings might 

have significant implications for studies in humans. Probiotics have been tested in 

aged subjects, with many examples of beneficial strains (see chapter 1 and chapter 

7), but no direct comparison between young and aged individuals has been per-

formed. 

Probiotics are defined by the WHO/FAO as follows: “live microorganisms which when 

administered in adequate amounts confer a health benefit on the host” [160]. A recent 

review indicates 9 selection criteria for probiotics: 1) health benefit on the host; 2) via-

bility upon intake; 3) survival during passage; 4) adherence to the gut epithelium; 5) 

antagonism against pathogens; 6) stabilization of microbiota composition; 7) human 

origin; 8) stability to bile, acid, enzyme, oxygen; and 9) safety (includes being non-

pathogenic, non-toxic, non-allergic, non-mutagenic) [620]. The notion that the condi-

tion of the individual plays an important role is confirmed in a different setting. In a 

study with patients suffering from severe pancreatitis, enteral supplementation of the 

probiotic mixture Ecologic 641 (Bifidobacterium bifidum, Bifidobacterium infantis, Lac-

tobacillus acidophilus, Lactobacillus casei, L. salivarius, Lactococcus lactis) increased 

mortality risk [621]. The choice for Ecologic 641 was based on in vitro studies showing 

that it induced high levels of IL-10 and low levels of TNF, IL-2, and IL-6. In addition, 

the probiotic mixture showed strong antimicrobial properties [622, 623]. In the 

WHO/FAO definition, and in these 9 criteria, no criterion addresses the age or other 

immune parameters of the host. Our studies, both in vitro (chapter 5) and in vivo 

(chapter 6), show that caution is needed when translating effects by probiotics from 

young subjects to aged subjects. 

Future directions: Based on our study, we recommend that the definition of probiot-

ics should at least include age (and related health status) of the host. 
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Microbial colonization and gut immunity 

The role of microbiota in the mucosal immune system has been recognized for many 

decades. Microbial colonization stimulates activation and terminal differentiation of B 

cells in the gut [624], resulting in class switching in B cells with increased numbers of 

intestinal IgA plasma cells [625]. The mucosal antibody repertoire develops in re-

sponse to the intestinal microbiota [626]. In addition, microbial colonization is im-

portant for the induction of Tregs and for maintaining the balance between Th1, Th2, 

Th17 and Treg cells [577, 627, 628]. The development of the immune system in 

germfree mice, devoid of microbiota, can be stimulated by microbial components pre-

sent in the diet, such as LPS [629]. LPS has been shown to enhance directly the sup-

pressor function of Treg via TLR4 [630]. Thereby, LPS can act as a suppressor of T 

cell-dependent antibody responses [631]. In the absence of microbiota, there are 

smaller and fewer PP and isolated lymphoid follicles (ILF), a thinner lamina propria, 

and developmental defects in epithelial cells, T cells, and B cells [632].  

A recent study showed that elevated MCP-1/CCL2 serum levels in aging associated 

with the gut microbiome composition of mice [633], indicating the potential effect of 

microbiota on the aging immune system. In our studies, many examples of interaction 

between the immune system and microbiota were identified. Chapter 2 and 5 describe 

the in vitro interaction of bacterial strains with basophils and/or DC, and splenocytes or 

macrophages are described. In chapter 6, 7, and 8, we describe the in vivo effects of 

bacterial strains, microbial changes after dietary tryptophan restriction, and microbiota 

transfers, respectively. In chapter 8, we showed that microbiota from aged mice en-

hanced Th1 cells and Tregs in the spleen. This indicates that gut microbiota also in-

duce immune cell differentiation in non-mucosal immune organs. Although the non-

redundant role of microbiota in mucosal immunity has been firmly established, a link 

between gut microbiota and development of immune cells in the BM has only been 

discovered more recently. 

 

Gut-BM axis and diet: consequences for basophil and B cell development 

Neutrophil and basophil development in the BM are under control of microbiota 

A relation between gut microbiota and immune cell abundance, phenotype, and func-

tion has been established for hematopoietic stem cells (HSC), neutrophils, and baso-

phils. Repeated intraperitoneal exposure to LPS results in a myeloid bias of HSC and 

gain or loss of specific HSC populations [512]. Gut microbiota from mice fed high-fat 

diet (compared with mice fed normal diet) changed the stem cell niche in the BM, en-

hancing the myeloid cell development at the expense of lymphoid cell development 

[279]. Not only HSC are affected by gut microbiota, but also neutrophils and basophils. 

Intestinal translocation of peptidoglycan (PGN) from gut microbes primes neutrophils 
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in the BM in a NOD1-dependent way to kill Salmonella pneumoniae and Staphylococ-

cus aureus. Lower levels of PGN in serum correlated with hampered neutrophil func-

tion against these pathogens [280]. In the airways, Staphylococcus aureus coloniza-

tion resulted in altered polarization of macrophages and protection against influenza-

mediated inflammation through TLR2-dependent signaling [634]. Gut microbes caused 

downregulation of CD123 (IL-3Rα) expression on basophil precursors, thereby limiting 

their responsiveness to IL-3 [281].  

In chapter 3, we describe an optimized method to generate basophils from precursors 

in the BM in an IL-3-dependent culture, and to isolate these BM-derived basophils. We 

applied this culture method to assess the differentiation of basophil precursors and the 

function of basophils. We showed that with age the proportion of IL-4
+
 basophils in-

creases upon various stimuli. We found that microbiota of aged mice (versus microbio-

ta of young mice) also induced higher proportions of IL-4
+
 basophils after in vitro dif-

ferentiation of precursors. We thus confirmed that microbiota change basophil precur-

sors in the BM, leading to an increased proportion of basophils that produce IL-4 (Fig-

ure 2).  

Future directions: It remains to be elucidated what these findings mean in allergies 

or helminth infections, and how these findings translate to humans. In addition, it re-

mains to be determined what (other) molecular mechanisms are involved in the inter-

action between microbiota and stem cell niches in the BM. 

Does B cell development depend on gut microbiota? 

In contrast to above-mentioned evidence that microbiota-derived signals prime B and 

T cells in the gut, no such evidence has been described for their development in the 

BM or thymus. Our findings in chapter 6 that specific precursor stages (i.e. small rest-

ing pre-B cells) are significantly decreased after L. casei supplementation, and to a 

lesser extent after L. plantarum supplementation, suggest a role for microbial ligands 

in B cell development. In chapter 7, we showed a correlation between Akkermansia 

muciniphila abundance in the colon and numbers of three stages of B cell precursors 

in the BM. 

Some evidence that suggests a role of microbial ligands in B cell development has 

been previously reported. In vitro, B cell precursors mature in response to LPS or lipid 

A (TLR4 ligands). This maturation is inhibited by Pam3Cys (TLR2 ligand). In addition, 

lipid A and Pam3Cys impairs IL-7-dependent proliferation [635]. B cell precursors ex-

press TLR9, and are, even after IL-7 withdrawal, protected against apoptosis by TLR9 

ligand CpG [636]. In addition, CpG injection stimulates class switch recombination of B 

cell precursors in vivo [637]. LPS injection increases mature B cell frequencies at the 

expense of pre-B cells in vivo [638]. This finding is corroborated by similar findings 

upon LPS injection of TLR4-mutant mice, receiving B cell precursors from TLR4-intact  
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mice [639]. Together, these data suggest that B cell development in the BM is influ-

enced by (components of) gut microbiota. 

B cell development in germfree mice, and effect of microbiota introduction 

Germfree mice represent a valuable model for the study of the role of microbiota in 

immunity. To our best knowledge, no data are available on lymphopoiesis in the BM of 

germfree mice and germfree mice that receive microbiota. By analyzing the B-lineage 

in the BM, we found more evidence that microbiota control B cell development. In the 

absence of gut microbiota, B-lineage cells were more abundant in the BM (Figure 3A; 

Van Beek et al, unpublished findings). Introduction of microbiota in germfree mice re-

sulted in B-lineage cell frequencies as observed in conventional mice (Figure 3A). 

Cells in all stages of B cell development, except the pro-B cell stage, were significantly 

increased in the absence of microbiota, and all increases were reverted upon introduc-

tion of microbiota. Increased abundance of B-lineage cells occurred at the expense of 

CD11b
+
 myeloid cells and late myeloid blasts (Figure 3B). The finding that myelopoie-

sis is decreased in the absence of microbiota, is in line with a previous study [640]. 

This might be related to the finding that germfree mice have less adipose tissue than 

conventional mice, accompanied by lower adiponectin expression in ileum and liver 

[641], and lower serum levels of leptin [642]. Leptin enhances myeloid cell develop-

ment [643], but is not required in normal B cell development [644]. Adiponectin blocks 

B lymphopoiesis [530]. Interestingly, leptin and IL-1β are identified by in silico analysis 

as activated upstream regulators in L. plantarum-treated Ercc1
-/Δ7

 mice (chapter 6),

and we speculate that these factors might explain the slight decrease in BM B cells 

after L. plantarum supplementation. Taken together, germfree mice have decreased 

expression of factors that stimulate myelopoiesis (leptin [642]) or block lymphopoiesis 

(adiponectin [641]), resulting in increased B cell development at the expense of mye-

loid development (Figure 3). Interestingly, Khosravi et al (2014) demonstrated that 

microbiota are necessary for the defense against Listeria monocytogenes. It is unclear 

which microbe-associated molecular patterns (MAMP) instruct myelopoiesis, as the 

authors used heat-killed E. coli [640]. 

Future directions: To establish a causal relationship between factors like leptin and 

adiponectin, microbiota, and lymphopoiesis, more research is warranted. For instance, 

the effect of leptin or adiponectin injections on B cell development should be evaluated 

in germfree and conventional mice. Correlating the lymphopoiesis and microbiota 

composition in leptin or adiponectin knockout models could also give insight into the 

role of these factors in B cell development and microbiota composition. Moreover, 

analysis of B cell development should be performed after oral treatment of germfree 

mice with MAMP. 
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Thus, several pieces of indirect evidence and correlations with microbiota, whether 

specific (Akkermansia, chapter 7) or in general (Figure 3), strongly suggest that B cell 

development is under control of gut microbiota. Direct evidence for a causative role of 

microbiota in B cell development, however, is lacking.  

  
 Figure 3. Effects of absence and introduction of gut microbiota on B cell development and myeloid 
cell development. A) Mean frequencies of (stages of) B-lineage cells in the BM. B-lineage cells were de-
fined as CD19

+
CD45R

+
. B-lineage cells divided into sIgκ/λ

-
 B cell precursors (and subsequently into cIgM

-

CD2
-
 pro-B cells, cIgM

+
CD2

-
 large cycling pre-B cells, and cIgM

+
CD2

+
 small resting pre-B cells) and 

sIgκ/λ
+
cIgM

+
IgD

-
 immature and sIgκ/λ

+
cIgM

+
IgD

+
 mature B cells. B) Mean frequencies of CD11b

+
 myeloid 

cells and Ly6C
+
CD31

+
 late myeloid blasts in the BM. Data represent the mean + SEM of n=9-20 mice, ana-

lyzed with unpaired Student’s t tests, or Mann-Whitney tests if not passing D’Agostino & Pearson omnibus 
normality test. All mice were about 4-month-old. BM = bone marrow; CONV = conventional; GF = germfree; 
GF + microbiota = germfree mice inoculated with gut microbiota from CONV mice (analysis took place 4 
weeks after the inoculation). Van Beek et al, unpublished findings. 

 

The influence of aging on B cell development 

B cell development decreases with aging [92, 100], which is confirmed by our studies 

(chapter 7). The ability to respond to IL-7 is impaired in pro-B cells from aged mice 

[645]. With aging, stromal cells produce less IL-7 [646]. Stromal cells in the BM pro-

duce several other factors that enhance B cell development, including CXCL12, Flt3 

ligand (Flt3L), stem cell factor (SCF), and receptor activator of NF-κB ligand (RANKL) 

[647, 648].  

Adipocytes in the BM produce adiponectin, which blocks B cell development [530]. B 

cell development is inhibited by IL-1α, IL-1β, and another (yet unidentified) adipocyte-

derived mediator [649, 650]. Of note, hematopoietic tissue in the BM is increasingly 

replaced with adipose tissue with aging [62, 651], and adiponectin levels in serum are 

increased with aging [652]. IL-1β levels are also elevated in elderly [71, 653]. Com-

bined with intrinsic defects in B cell precursors, a decrease in IL-7 and an increase in 

inhibiting mediators with aging might explain the decreased B cell development in the 

BM (Figure 4). Importantly, we showed in chapter 8 that microbial ligands are more  
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abundant in the circulation after transferring aged microbiota to germfree mice (com-

pared with transferring young microbiota). This demonstrates that microbial ligands 

are present in the circulation, and can thus affect B cell development in the BM (Figure 

4). 

 

An essential role of tryptophan (metabolites) in B cell (but not myeloid) development 

Studies into the role of tryptophan in immunity have predominantly focused on the role 

of IDO-mediated scavenging of Trp by DC, induction of Tregs, and subsequent immu-

nosuppression [178]. In our study, however, we found that B cells are particularly tar-

geted by dietary tryptophan restriction (chapter 7). Strikingly, B cell development was 

arrested, whereas myeloid cell development in the BM was unaltered (both in cell 

numbers and proliferation). Although a general increase of memory T cells at the ex-

pense of naïve T cells was observed, T cell frequencies were increased in the periph-

ery. At the same time, all types of B cells were reduced in frequency, except marginal 

zone (MZ) B cells. These data show that dietary tryptophan restriction exerts a previ-

ously unknown effect on B cell development.  

Future directions: Further studies are warranted to investigate the role of pattern 

recognition receptors (PRR) on B cell precursors and dietary tryptophan restriction, as 

we report that abundance of Akkermansia muciniphila and Alistipes are correlated with 

B cell precursor numbers (chapter 7). This might be done by assessing the effect of 

dietary tryptophan restriction in mice that are deficient in MyD88, which is central in 

the signaling of many PRR [654]. To evaluate the role of (changing) microbiota com-

position, it would be worthwhile to apply dietary tryptophan restriction in germfree mice 

or antibiotic-treated mice, and compare the effect to tryptophan-restricted conventional 

mice. It is also possible that the decreased availability of aryl hydrocarbon receptor 

(AHR) ligands, like tryptophan metabolites, causes alterations in B cell development. 

Indeed, AHR signaling controls innate and adaptive immunity through regulation of 

tryptophan metabolism [655]. AHR
-/-

 mice had increased B cell precursor frequencies 

(compared with AHR
+/+

). Supplying AHR
+/+

 mice with dioxin (AHR ligand) decreased B 

cell precursors, but had no effect on B cell precursors in AHR
-/-

 mice [656], indicating 

that AHR and AHR ligands play a role in B cell development. The direct effect of tryp-

tophan depletion on B cell development might be assessed in e.g. IL-7-driven BM cul-

tures, with or without tryptophan depletion. To identify changes in aging, (accelerated) 

aged mice should be studied along the lines as described above. The first step to 

gather more direct evidence for a role of microbiota in B cell development could be to 

evaluate the effect of antibiotic treatments on B cell response and development – a 

similar approach as followed by Hill et al (2012) [281]. Then, comparing the B cell re-

sponse to pathogens in germfree and antibiotic-treated mice with conventional mice 

would provide direct evidence for involvement of microbial ligands in B cell develop-
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ment. Mechanistic studies should find out the role of PRR or other pathways involved 

in the role of microbial ligands in B cell development. These could include modified L. 

plantarum WCFS1 [186] or other modified bacterial strains. 

 

Similarity of tryptophan restriction and dietary restriction 

Tryptophan-restricted mice also showed a substantial decrease in body weight (chap-

ter 7), which is very similar to mice receiving dietary restriction (DR) [657]. DR is wide-

ly studied for its extension of lifespan and health span [658]. In addition, DR has been 

shown to modulate the aging immune system [659] and microbiota composition [660]. 

Therefore, we tested the effect of 30% dietary restriction (DR) on BM composition of 

Ercc1
-/Δ7

 mice (Figure 5A), and compared it with the effect of dietary tryptophan re-

striction (as described in chapter 7). When comparing the restriction diets, it is im-

portant to note that the mice receiving tryptophan restriction also received 10% DR (as 

well as their controls). The controls for the mice receiving 30% DR received 0% DR. 

Also, the age of the mice at the start of restriction was different, as well as the feed. 

These differences may have caused a decrease or increase in BM populations, as is 

observed for lymphocytes, early blasts, myelomonocytic blasts, and erythroblasts 

(Figure 5B).  

Lymphocytes in the BM (comprising mostly B cells) were decreased by about 50% by 

DR (p<0.05), as well as early blasts (comprising mostly hematopoietic progenitors; 

p<0.01; Figure 5B). These latter populations were (not significantly) decreased by 

tryptophan restriction. In contrast, erythroblasts were increased upon DR (p<0.05) and 

tended to increase upon tryptophan restriction (p<0.10). Myelomonocytic blasts were 

significantly increased upon both restrictions (p<0.05). No significant changes were 

observed in monocytes and granulocytes. We therefore conclude that DR particularly 

affects lymphopoiesis, in contrast to myelopoiesis. 

As indicated above, direct comparisons are hampered by differences between the 

tryptophan restriction experiment and the DR experiment. Nevertheless, taking into 

account all measured cell populations in the BM, it is remarkable that tryptophan re-

striction not only resembles weight loss in DR, but also resembles the major changes 

in BM composition. It is conceivable that the changes in B cell precursors as reported 

after dietary tryptophan restriction (chapter 7), are also occurring after DR. Indeed, 

two-week DR in young mice leads to an arrest in B cell development in the BM [661]. 

Additionally, based on the analysis of BM composition, it is likely that DR decreases 

the B cell precursor compartment in a similar fashion as tryptophan restriction.  

As discussed above, dietary tryptophan restriction impacts on the gut microbiota. 

Changes in microbiota composition are correlated with B cell precursors (chapter 7). 

Strikingly, microbiota composition also changed after DR (Figure 5C), in line with pre-

vious reports [660]. There may, therefore, be a correlation between microbial species 
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and specific stages in B cell development after DR (like after tryptophan restriction). 

Thus, tryptophan restriction resembles DR by weight loss, distribution of immune cells 

in the BM, and an altered gut microbial composition. 

Future directions: To enable a correlation between microbial species and B cell pre-

cursors after DR, simultaneous analysis of B cell precursors and microbiota composi-

tion should be performed in mice receiving DR. We have tested 95% tryptophan re-

striction. It would be interesting to find out whether a dose-response relation exists 

between dietary tryptophan restriction and e.g. B cell development. A study in young 

versus elderly people would give insight into applicability in humans. In fact, a short-

term dietary tryptophan restriction diet has been applied in humans before, resulting in 

enhanced prolactin response to intravenously injected tryptophan [662]. In addition, 

restriction of methionine has been shown to extend life span in rodents [173, 663, 

664]. Interestingly, methionine restriction induces autophagy, and abolishing autopha-

gy induction reverts lifespan extension in yeast [665]. Methionine restriction also pre-

vents oxidative stress [173, 527, 528] and many age-related metabolic effects [529, 

666, 667]. A combination of tryptophan/methionine restriction could therefore result in 

synergistic effects to extend life span. Also, it might be possible to apply less severe 

restriction of tryptophan and methionine, when combining these regimes. Yet, it has to 

be determined whether the immune system after tryptophan and/or methionine re-

striction is still capable of defending the body against pathogens. 

Figure 5 (next page). Bone marrow and microbiota composition of old Ercc1
-/Δ7

 mice after dietary 
restriction or dietary tryptophan restriction. A) Flow cytometric analysis of BM composition. Live single 
cells were gated for Ly6C and CD31 to distinguish six immune cell populations. B) Mean frequencies of 
lymphocytes, early blasts, late myeloid blasts, erythroblasts, granulocytes, and monocytes. C) Redundancy 
analysis of microbiota composition of DR in Ercc1

+/+
 and Ercc1

-/Δ7
 mice, determined with Mouse Intestinal 

Tract chips. Ercc1
+/+

 DR control mice, Ercc1
+/+

 DR mice, Ercc1
-/Δ7

 DR control mice, and Ercc1
-/Δ7

 DR mice 
are depicted as black circles, blue squares, green diamonds, and brown X, respectively. Besides the abun-
dance of microbial species, genotype, diet, and weight were included in the variables, and together they 
explain 42.0% of the data. The first and second ordination plots are shown on x- and y-axis respectively; the 
third ordination plot explaining 7.5% is not shown. Both genotype and diet had a significant impact on the 
microbial composition (p<0.05). DR was started at the age of 7-wk (10%), increasing to 30% after two 
weeks. DR control animals had free access to food. TrpR was started at the age of 4-wk (95%), combined 
with 10% DR. TrpR control animals received 10% DR. All animals were sacrificed at 16-wk age. Data repre-
sent n=4 Ercc1

-/Δ7
 mice and n=3 Ercc1

+/+
 mice, expressed as mean + SEM. *=p<0.05; **=p<0.01, as deter-

mined by Student’s unpaired t test. BM = bone marrow; DR = dietary restriction; TrpR = tryptophan re-
striction. Van Beek et al, unpublished findings. 
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Aging mouse model: expedite testing of nutritional interventions for the elderly 

In our studies to candidate probiotics and dietary tryptophan restriction, we have used 

the accelerated aging Ercc1
-/Δ7

 mouse model. Of the various accelerated aging mod-

els that exist, this model has been described to develop the broadest spectrum of age-

related phenotypes and pathologies (Table 1; [62, 495, 668]). Our data demonstrate 

that the age-related decline in the mucus barrier of normal aging mice is also present 

in Ercc1
-/Δ7

 mice (chapter 6). Moreover, we have found that in many aspects, the effect 

of accelerated aging on the distribution of immune cells in Ercc1
-/Δ7

 mice resembles 

that of normal aging mice (chapter 7). Thus, we provided evidence that Ercc1
-/Δ7

 mice 

manifest two additional aspects of genuine aging. 

 

Table 1. Aging phenomena in Ercc1
-/Δ7

 mice. 

Organ Symptoms Acceleration?
1
 

Bone Kyphosis/osteoporosis = 
Bone marrow ↓ B cell precursors 

Fatty infiltration 
= 
↑ 

Brain/CNS Vacuolization 
Atrophy/ataxia 

↓ 
↑ 

Gut Inflammatory pathways 
↓ Mucus layer 
↓ Compartmentalization bacteria – epithelium  

=* 
= 
= 

Heart Myocardial degeneration = 
Kidney Tubular degeneration 

Anisokaryosis 
= 
↑ 

Liver Anisokaryosis/lipofuscin 
Intranuclear inclusions 

= 
↑ 

MLN ↑ B cells = 
Muscles Sarcopenia = 
Peritoneal cavity ↑ Cell counts/B1 cells ↓* 
Skin Atrophy/hair graying ↓ 
Spleen ↓ Naïve/↑ memory T cells 

↑ Treg 
↓ NK cells 
Atrophy 

= 
= 
↑ 
↑ 

Testis Tubular degeneration ↑ 
Thymus Involution/T cell maturation = 
1
As compared with normal aging mice (on a biological age scale). *Van Beek et al, unpublished findings. ↓ 

less pronounced in Ercc1
-/Δ7

 mice than in normal aged mice; = comparable with normal aged mice; ↑ more 
pronounced than in normal aged mice. Based on findings by Dollé et al (2011), Gurkar and Niedernhofer 
(2015), and findings in this thesis. CNS = central nervous system; MLN = mesenteric lymph nodes. 

 

More importantly, we show that the Ercc1
-/Δ7

 model is useful in expedite testing of nu-

tritional interventions. We showed that bacterial supplementations and dietary trypto-

phan restriction changed the phenotype of the intestinal barrier and/or immune system 

in Ercc1
-/Δ7

 mice. Lifespan studies in Ercc1
-/Δ7

 mice enable to screen for life-extending 

dietary components or regimes in a relatively fast and sensitive manner. 

Future directions: In the context of microbial changes upon nutritional interventions, 

it would be interesting to evaluate these nutritional interventions in germfree Ercc1
-/Δ7

 

mice. It would be novel to breed germfree Ercc1
-/Δ7

 mice, and this would enable to 

gain insight into the effect of absence of gut microbiota in aging. Keeping germfree 
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mice for more than 18 months is time-consuming and expensive. Generating germfree 

Ercc1
-/Δ7

 mice would also give possibilities to transfer microbiota from young or old

mice to aged germfree Ercc1
-/Δ7

 mice in order to gain insight into the role that young

microbiota may play in the (accelerated) aging gut. Furthermore, mono-colonizing 

germfree mice with L. plantarum WCFS1 would give insight into the sole effect of this 

bacterial strain in the aging gut. The application of challenge protocols in aging and 

nutrition research is crucial. We described the use of a challenge with a model antigen 

(TNP-KLH, chapter 7) to assess antibody production in T cell-dependent B cell re-

sponses. Challenges in the gut, where food components enter the body, are of specif-

ic interest in nutritional interventions. We have performed a pilot study in which we 

infected 8-week-old Ercc1
-/Δ7

 mice (n=6) with Salmonella enteritidis (data not shown),

which in WT mice translocates to (a.o.) MLN, liver, and spleen [669]. After 4 days of 

infection, we found very low to undetectable counts of Salmonella in various organs 

(n=3), whereas one mouse had very high levels of Salmonella after 7 days of infection 

(2.3x10
3
-4.5x10

3
 CFU/mg MLN, liver, spleen, and ileum). Thus, further optimization of

such challenge protocols is required to be applicable in Ercc1
-/Δ7

 mice. It can then be

used to study whether e.g. L. plantarum WCFS1 confers a health benefit on Salmonel-

la-infected Ercc1
-/Δ7

 mice. Other examples of challenges that have direct relevance for

elderly are influenza and cytomegalovirus (CMV). 

Predictive, preventive and personalized nutrition to modulate a person’s health is a 

fruitful, but challenging topic for research [670]. Immunonutrition seems to be of par-

ticular interest for the aging immune system. As we showed that the aging condition of 

the intestinal barrier and immune system plays an important role in the effect of nutri-

tional intervention (chapter 6), this suggests that nutritional interventions cannot be 

safely applied to the whole population (young-aged, healthy-diseased) without thor-

ough testing for different age or health conditions.  

Concluding remarks 

The studies described in this thesis show the effect of aging on the mouse immune 

system and microbiota composition (Figure 1). Moreover, two interventions (probiotics, 

dietary tryptophan restriction) have been applied in mice and were shown to affect the 

aging immune system and microbiota (chapter 6 and 7). Also, a role for aged microbi-

ota on the immune system has been established by using germfree mice (chapter 8). 

Finally, these findings are integrated in this chapter, and put in perspective of further 

research. 

Further research in human subjects is needed to translate our findings regarding pro-

biotics. We suggest that only those bacterial strains that have shown beneficial effects 

in aged mice can be tested for in vivo application in elderly. Vice versa, it would be of 
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great interest to apply commercially available probiotics such as Lactobacillus casei 

strain Shirota (LcS), Lactobacillus rhamnosus Gorbach and Goldin (LGG), Lactobacil-

lus acidophilus NCFM, or Lactobacillus johnsonii La1 in the Ercc1
-/Δ7

 model. In addi-

tion, because life extension has been shown for supplementation with Bifidobacterium 

animalis LK512 [165], it would be interesting to test whether this bacterial strain ex-

tends the life of Ercc1
-/Δ7

 mice.

In further pursue of healthy aging, nutritional interventions play an important role. It is, 

however, important to gain insight into the mechanisms whereby nutritional interven-

tions modulate the intestinal barrier and the immune system to refine the search for 

appropriate nutritional interventions in the context of aging. The ultimate aim is to ex-

tend the health span of elderly by application of probiotics or other defined nutritional 

components, or by restriction of food components.  
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Summary 
The increased numbers of elderly people pose a major burden to public health care 

and society. DNA damage is considered to be the major origin of age-related changes 

in the body. With aging, the immune system becomes deregulated and is character-

ized by a low-grade inflammation (inflammaging). In this thesis, we investigate the ef-

fects of nutritional and microbial interventions on the aging immune system. 

In chapter 2, we elaborate on the role of basophils in the immune system, particularly 

in the initiation and perpetuation of allergic immune responses. We found that baso-

phils and dendritic cells interact in vitro, which reciprocally affects their surface mark-

ers and cytokine production. Thus, by modulating cytokine production and surface 

marker expression on dendritic cells, basophils may act as accessory cells in immune 

responses. Because little is known about the effects of aging on basophils, we investi-

gated in chapter 3 whether basophils are affected with aging. We found that frequen-

cies of basophils in the spleen of aging mice are increasing, while their phenotype in 

bone marrow and spleen changes. Moreover, to investigate the role of microbiota in 

the aging process, we studied the effects of microbiota transfer from young or aged 

mice into germfree mice. Aging, and microbiota from aged mice, in particular affect 

differentiation and function of basophil precursors. These findings warrant further stud-

ies on the role of basophils in T helper-2 immune responses with aging. 

The contribution of macrophages to inflammaging is described in chapter 4. Important 

aspects for macrophage polarization and function, like autophagy and cellular metabo-

lism, are discussed. Targeting of aged macrophages by (nutritional) interventions may 

open up new therapeutic opportunities for elderly.  

In chapter 5, we studied the in vitro interaction between bacterial supplementations 

and immune cells (whole spleen cells and macrophages). We noticed that aged im-

mune cells mount a different response to bacterial strains than young immune cells. 

Based on these outcomes, we selected three bacterial strains (Lactobacillus planta-

rum WCFS1, Lactobacillus casei BL23, Bifidobacterium breve DSM20213) for in vivo 

application in chapter 6. We used Ercc1
-/Δ7

 mice, which lack fully functional ERCC1

protein. As a consequence, DNA repair is compromised, which results in accelerated 

aging features in all organs, including the immune system. We supplemented Ercc1
-/Δ7

mice, as well as control Ercc1
+/+

 mice with the three selected bacterial strains. We ob-

served that L. plantarum prevented the age-related decline in mucus barrier function 

of Ercc1
-/Δ7

 mice, whereas B. breve exacerbated the age-related decline in mucus bar-

rier. L. casei supplementation elevated multiple systemic inflammatory markers in 

Ercc1
-/Δ7

 mice, including Ly6C
hi
 monocytes, neutrophils, and Th17 cells in spleen.

Strikingly, we found major changes in the mucus barrier and immune system after 

supplementation of Ercc1
-/Δ7

 mice with L. plantarum and L. casei, but not after sup-
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plementation of Ercc1
+/+

 mice. Therefore, we conclude that caution is needed in the 

selection of candidate probiotic strains for supplementation of aging individuals.  

In chapter 7, we took a different approach to modulate the aging immune system by 

applying dietary tryptophan restriction in Ercc1
+/+

 and Ercc1
-/Δ7

 mice. We observed that  

in both mouse models dietary tryptophan restriction modulated B cell development 

and microbiota composition. In particular, we found a near-complete absence of B cell 

precursors in the bone marrow after dietary tryptophan restriction. The decline in B cell 

precursors was correlated with decreased abundance of the Akkermansia and Alisti-

pes bacterial strains in the intestine. Thus, our results show that dietary tryptophan 

restriction is a powerful intervention to shape immunity and gut microbiota, also in ag-

ing. In chapter 8, we assessed the role of microbiota in the aging gut and immune 

system. Microbiota from young and aged mice were transferred to germfree mice. 

Aged microbiota induced higher T helper-1 cell and regulatory T cell frequencies in the 

spleen. In the ileum, the expression of inflammatory markers was increased after 

transferring aged microbiota, accompanied by differences in the abundance of micro-

bial species. We conclude that senescent microbiota contribute to the inflammaging 

observed in aging mice. 

In chapter 9, we discuss the findings presented in this thesis, concluding with direc-

tions for future research. In summary, our studies show that the aging gut and immune 

system of mice can be modulated by nutritional and/or microbial interventions. Inter-

estingly, our mouse models clearly provide evidence that age-related effects could be 

reverted or prevented by these interventions. Nevertheless, our studies at the same 

time show the need for translational research in order to apply the presented dietary 

and microbial interventions in elderly. 

 S 
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Seminar Institute of Food Research, Norwich, United Kingdom (O) 2015 

Coffee Break Science, Norwich, United Kingdom  (O) 2016 

Departmental presentation Immunology, Rotterdam (O)  2016 

*Poster presentations indicated with “P”, oral presentations with “O”, laptop

presentation with “L”. 
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Disciplinary and interdisciplinary courses (6 credits) 

12
th
 Fish Immunology Workshop, Wageningen 2011 

In vivo imaging: from molecule to organism, Rotterdam  2011 

Advanced course Immunology, Utrecht  2012 

BD course flow cytometry, Erembodegem, Belgium 2012 

TIFN IP workshop, Wageningen  2012 

Course Advanced visualization of omics data, Wageningen 2014 

Professional skills support courses (3 credits) 

PhD competence assessment, Wageningen 2011 

PhD career assessment, Wageningen  2015 

Techniques for writing and presenting scientific papers, Wageningen 2015 

PhD peer consultation, Wageningen 2015 

Research skills training (7 credits) 

External training period, Erasmus MC, Rotterdam 2012-2015 

External training period, UMCG, Groningen 2012-2013 

Course ‘blood collection via cheek puncture’, Erasmus MC, Rotterdam 2014 

External training period, Radboud UMC, Nijmegen 2015 

External training period, Institute of Food Research, Norwich, UK  2015 

Didactic skills training (26 credits) 

Immunomodulation by Food and Feed, practical  2011 

Cell Biology I, tutorship  2011 

Research Master Cluster, evaluation of proposal  2012-2014 

Development and Healthy Ageing, lecture and practical 2013-2014 

Supervision of 7 MSc students, 3 capita selecta  2013-2015 

Total study load: 83 ECTS 

 S 
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