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Introduction

All through most of human history we have predominantly felt at war with microorganisms.
Small pox, measles, bubonic plague, lepra, cholera, typhoid are just a few important
examples of viral and bacterial agents that have been mostly eliminated in the Western
world, while modern day infectious diseases include malaria (protozoan) and HIV/AIDS
(viral), and worldwide tuberculosis (bacterial) still causes nearly 2 million deaths every
year. The field of microbiology developed in response to the need to conquer these
pathogens and eradicate infectious diseases from society, which led to important
discoveries such as Louis Pasteur’s “germ theory of disease”. But a new understanding is
emerging in which the metaphor for war and quote from Paul Verhoeven’s Starship
troopers “the only good bug is a dead bug” is no longer appropriate, as this approach
ignores the community context of infectious disease. Instead, we now view the host and its
microbial community as a mutualistic co-evolved system. In fact, microorganisms are
everywhere and the vast majority of those that we come into contact with are not infectious,
but rather harmless or even beneficial. For instance, microorganisms help the host with
digestion by degrading non-digestible plant polysaccharides, which are converted into Short
Chain Fatty Acids (SCFA) that provide energy for our metabolism. More importantly, the
SCFA butyrate is the main source of energy for the intestinal epithelium in mammals'.

However, the idea that there actually might be beneficial bacteria is already over a century
old. At the beginning of the 20" century, immunologist Ilya Ilyich Metchnikoff in his
essays, The Nature of Man: Studies in Optimistic Philosophy (1903) and The Prolongation
of Life: Optimistic Studies (1907) theorized that colonic microbial inhabitants released
toxins that were dispersed throughout the host, and phagocytes destroyed those toxins.
However, this process also caused collateral damage to the host, and therefore the
replacement of our native colonic inhabitants with host-friendly bacteria found in yoghurt,
might promote health and longevity, so that senility could be delayed and society governed
by the wise elderly, rather than the childish and silly young. His theory flourished for a
time, then drifted to the fringes of medical practice.

However, the concept of host-friendly bacteria was revived in the mid-1990s as a concept
worthy of mainstream medical attention. With it also came the first wave of molecular
techniques that mainly made use of the 16S ribosomal RNA (rRNA) gene, such as random
cloning and sequencing, Temperature/Denaturing Gradient Gel Electrophoresis, (TGGE,
DGGE), quantative PCR (qPCR) of 16S rRNA genes, as well as Fluorescent In Situ
Hybridization (FISH) coupled to flow cytometry or microscopy for quantification, to
bypass the need for culturing the actual microbes. Before that, the identification of
individual members and characterization of microbial ecosystems mostly depended on the
ability to culture those bacteria. The first cultured representative from the human
gastrointestinal (GI) tract was Escherichia coli, isolated by Theodor Escherich in 1885,
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naming it Bacterium coli commune. Application of the molecular tools mentioned above
revealed that the largest fraction of micro-organisms from the GI ecosystem is still
uncultured”.

Due to the relatively young age of the research field and the concomitant exponential
increase in throughput and cost effectiveness of the analytical approaches to study the GI
microbes at various levels (DNA,RNA, proteins and metabolites), combined with increased
computational power, our understanding of this highly complex ecosystem is expanding at
a very high rate. Nevertheless, as a result of this higher cost-effectiveness and interest in the
research field, the generation of compositional data is currently also shifting to non-
specialist labs. Therefore, there is quite some confusion regarding the terminology used to
describe the micro-organisms in the Gl-tract. This thesis will use the terminology proposed
by Marchesi et al. for this specific ecosystem®, but their definitions in fact apply to all
defined environments. The microbes in our Gl-tract are collectively called the microbiota
(“small life”), although generally only the bacterial fraction is considered. The metagenome
describes the combined genetic content of the microbiota (yet the term metagenomics is
often incorrectly applied to methodologies only utilizing the 16S rRNA gene) and
microbiome refers to all the biotic factors (in the case of the human GI tract this includes
bacteria, archeaea, eukarya and viruses), their genomic content and abiotic factors as well.
Actually, the term applies to all life forms in a habitat, but it is often used to describe the
bacterial metagenomic fraction only. Finally, the incorrect term microflora, which has a
longstanding history in medical and scientific literature, is confusing and outdated, as it
refers to either ‘microscopic plant life” or ‘all plant life in a microhabitat’. Although, due to
its familiarity for the general public it serves some educational purpose, medical
professionals and scientists should refrain from using the term and use microbiota or
microbiome instead, depending on what they want to describe. As this thesis focuses in the
bacterial fraction of the human GI microbiome, all the aforementioned terms will apply
only to the bacterial portion.

Tools of the trade

Because we still cannot culture the vast majority of the bacteria in this ecosystem we must
assess the composition, function, activity and output of the system through indirect means
by studying bacterial DNA (metagenomics), RNA (metatranscriptomics), proteins
(metaproteomics) and metabolites. Within the DNA based methods we can distinguish
between methods that asses the whole genomic content or through PCR amplification of
specific genes, such as the 16S rRNA gene. All technologies have their respective
advantages and disadvantages associated with information obtained versus costs and
accuracy, phylogenetic depth and analytical complexity, yet they are complementary (Table
1). Depending on the research questions asked, a combination of technologies can be
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employed to gain maximum insight into who is doing what, with whom and at what
moment.

Table 1. The information output of tools to study the composition, function and activity of the microbiota at the level of DNA,
RNA and metabolites.

Who is there,
what can they =~ Who is there and who is doing what?

What are the

do? enproducts?

16S rRNA Meta

Metagenomics Metaproteomics . . Metabolomics
gene transcriptomics
What Amplicons DNA Proteins RNA Metabolites
Cost/sample € EEE EEEE €€€ €€
Complexity Medium High High High High
Taxonomic . . . .
resolution High Very high Medium High Low
Activity . . .
- - M H High
(precision) edium igh 6
Remarks Bias Relatively low Peptide spectrum RNA isolation No taxonomic
associated depth of analysis matching is challenging information
with primers complex

The human GI microbiome in numbers

If we applied the popular and actually quite appropriate term ‘super-organism’ to the
combination of the host and its microbiome, we could underscore the importance of the
microbial fraction of this ecosystem with sheer numbers. The ratio of human cells to
microbial cells is now estimated to be between 1/1 to 1/3 depending on the number of red
blood cells (~10"-10")’, however, regarding non-redundant genes this ratio is closer to
1/100 in favour of the microbes. Several gut microbial gene catalogues have been published
since 2010, which saw the number of genes expanding from 3.3 million® to 7.4 million” and
9.8 million in 2014%, which is a vast genetic functional reservoir, compared to our ~20.000
genes. The number of bacterial strains in an individual is now estimated to be 195 + 48,
representing 101 + 27 species’.

The formation of a gut microbiome

Recently, culture based and culture independent studies have questioned the idea that the
uterus is sterile, and it has been suggested that bacteria are present in the placenta'”,
amniotic fluid'', meconium'? and umbilical cord blood"®. However, these studies generally
lacked true biological and technical controls. Biological controls should in these cases
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probably include maternal blood, as both vaginal and C-section delivery are usually
associated with mild levels of bacteraemia'®. Technical controls, especially for samples
with low microbial biomass have been shown to be often dominated by bacterial DNA
contamination of commercial reagents, dust, and other sources'>'7. Therefore, further
studies are necessary to unequivocally confirm the existence of a viable intra-uterine
microbiome and whether this might affect the development of the newborn'®. It is generally
accepted that the first major exposure to microbes is during the birthing process and is
highly dependent of mode of delivery. The first inoculation during natural childbirth clearly
resembles the maternal vaginal microbiota, with input from the other parts of the urogenital
tract and likely the fecal microbiota as well. In contrast, infants delivered through a
Caesarean section (C-section) are colonized with common skin and environmental
microbes'® (Figure 1). Although the difference in microbiota composition between children
born vaginally or by C-section seems to gradually decrease, C-section delivery has been
associated with delayed colonization of certain taxa'’. Furthermore, C-section delivery has
been associated with several diseases in epidemiological research®, although the causality
of these relations remains to be demonstrated. The initial inoculum initiates a succession of
events leading to the development of a child’s own microbiome. In this dynamic process
the microbial abundance increases from zero at birth to over six orders of magnitude within
the first few weeks of life, with large fluctuations in the microorganisms present and their
relative abundance. Diversity generally increases, aerobes are succeeded by facultative and
then strict anaerobes and, roughly up until the introduction of the first solid foods, a well
constrained range of stereotypical bacteria emerge in the faeces (Figure 1). Random
Forests-derived sparse models generated from different datasets from infants/children from
very distinct cultural background and geographical locations including Malawi’" *,
Bangladesh® and the USA*, and whose changes in relative abundance over time defined a
program of normal maturation of the microbiota from healthy individuals across
biologically related and unrelated individuals, revealed 25 age-discriminatory bacterial
groups, that could be used to determine the maturity of the microbiota. Comparison of
these models from the different cohorts revealed some overlap in species,
especially related to Bifidobacterium and Faecalibacterium. Furthermore, application
of the models across datasets showed that the USA model performed consistently
well across the three populations (Spearman’s correlation coefficients of 0.73 and
0.78 in the non-Western datasets), whereas the application of the other models to the
other datasets showed high concordance between the non-Western datasets, but not with
the USA cohort. This could imply that a large portion of the taxa from the Western
cohort was found in the non-Western cohorts, but not vice versa, pointing at a higher
phylogenetic diversity in the non-Western cohorts, but overall similar temporal dynamics.

Exclusive breast-feeding generally selects for genera specialized in the utilization of
complex human milk oligosaccharides, such as Bifidobacterium® and to a lesser extent
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Bacteroides as they can compete for the same ecological niche’® (Figure 1). During the first
months the composition of the microbiota is highly dynamic within individuals and
different between individuals and characterised by large abrupt community shifts with
interludes of relative stability of varying lengths of time*’*’. Sometimes these shifts occur
together with life events that likely instigate considerable environmental pressure, such as
antibiotics use, fever and formula feeding”. Palmer and co-workers even observed
synchronized transitions in the one pair of dizygotic twins that this study contained,
compared to the unrelated individuals, which suggests that shared exposures and/or
genetics play an important role during this phase™.

Abrupt shifts in composition reflect changes in filtering by the host, such as gut mucosal
IgA responses”* and possibly opportunistic invasions by better-adapted species®’. Finally,
an infant’s unique developmental path through this early unstable phase may have longer-
term health implications'®. The introduction of solid foods and weaning are generally
associated with the onset of a transition towards an adult-like GI microbiome until
the microbiota largely stabilizes in membership after approximately three years of life
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Figure 1. Factors shaping the neonatal microbiome'®.

At the same time, the GI microbiota triggers the development and maturation of the
newborn’s immune system. Although there is still a great deal of research needed to
understand precisely what happens in this developmental process, it appears the maturing
immune system relies on the presence of microbial communities, and especially the
presence of these early microbes, to distinguish “self” from “non-self”. The significance of
bacteria in these early stages of life can be indirectly inferred from germ free animals, that
express dramatic alterations in practically every phenotype that has been studied, including
the immune system, brain development, metabolism, and the function of the heart, lungs,
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and lymph nodes®. It seems that the early colonizers play a large role in shaping our
immune system and might even have been drivers for the development of adaptive
immunity. Typically, evolutionary pressures that shape immune strategies are often viewed
from a host defence perspective. However, it has been proposed that the invention of
adaptive immunity could well have been driven as a means to promote, rather than limit,
microbial colonization. In this view, organisms that could harness the more flexible
metabolic capabilities of a permanent and diverse GI microbiota would have been given a
considerable advantage, while mitigating the resultant risk of infections®.

Eventually the complete GI tract is colonized in cell densities that increase from <10*/g in
the stomach to 10'"'/g of feces in the colon. Most likely influenced by strong
environmental selection (e.g. pH, diet, gut transit time), composition, diversity and function

seem to be compartment specific**(Figure 2). In this thesis the fecal microbiota was used
as a proxy for the colonic microbiota.
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Figure 2. Schematic representation of the microbial density and diversity along the human GI tract.

Inter-individual variability

At the higher taxonomic ranks, membership of the human GI microbiota is quite similar
and mainly consists of species from the phyla Firmicutes, Bacteroidetes, Actinobacteria,
Verrucomicrobia and Proteobacteria. At the species and strain level, however, each
individual seems to be host to a unique and almost personal microbiota. The previous
section has highlighted the processes that could possibly give rise to such variation. This
section will focus on the role of another variable in this complex multifactorial process of
shaping the intra-individual variation of the microbiota: namely the host itself.

Currently, based on well powered studies, combined with relatively deep interrogation of
the fecal microbiota, there is no consensus with regards to the heritability of the microbiota
or components thereof. Heritability studies rely on twins to reveal the relative importance
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of environmental and genetic influences on individuals. In human studies of heritability
these are often apportioned into factors from "shared environment" and "non-shared
environment" based on the premise that persons brought up in the same household share an
environment that is more or less similar compared to persons who were not. The classical
twin design compares the similarity of monozygotic (identical) and dizygotic (fraternal)
twins. If identical twins are considerably more similar than fraternal twins, this implicates
that host genotype plays an important role in these traits. By comparing several hundreds of
families of twins, researchers can then understand more about the roles of genetic effects,
shared environment, and unique environment in shaping the gut microbiome.

Several studies have reported that the microbiota of monozygotic twin pairs is no more
similar in terms of their gut bacterial community structure than are similarly aged dizygotic
co-twins at several age ranges from very different cultural backgrounds and geography.
These studies included individuals from the Amazonas of Venezuela, rural Malawi,
Bangladesh and the US metropolitan areas with Hispanic, non-Hispanic and African
American twins, living together as well as apart, throughout the United States. Studies
covered the complete spectrum of developmental progression of the microbiota. The early
years: 1-12 months®, 0-24 months**,0-36 months*' and the transition into adulthood:
teenaged twins® and finally adults®. Most likely, differences in social structures may
influence the extent of vertical transmission of the microbiota and the flow of microbes and
microbial genes among members of a household. Differences in cultural traditions also
affect food, exposure to pets and livestock, and many other factors that could influence how
and from where a member of the gut microbiome is acquired. These studies revealed that
the fecal microbiota of mothers were no more similar to their children than were those of
the biological fathers, and that genetically unrelated but co-habiting mothers and fathers
were significantly more similar to one another microbially than were members of different
families. Remarkably the overall patterns of the effects of kinship on microbial community
structure were found to be similar between individuals from very distinct geographical and
cultural areas, suggesting the underlying mechanisms for the degree of similarity among
members of a family are relatively universal. These findings emphasize the significance of
a history of numerous common environmental exposures and that we acquire microbes
from competing sources other than, or in addition to, our family members, which might
indicate strong selection for an individualized microbiota that is largely influenced by
personal exposure history.

Nevertheless, a study with 416 twin pairs from the UK reported a heritable component of
the microbiota, by showing that membership (i.e. MZ twins had more taxa in common) but
not the overall structure showed significant differences between MZ and DZ twins®’. They
also showed that only some components of the microbiota were heritable. For instance from
the three most abundant bacterial families Ruminococcaceae, Lachnospiraceaec and
Bacteroidaceae, only the latter didn’t show a difference in abundance between MZ and DZ
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twin-pairs. Although this seems to point to the influence of genetics, this conclusion
depends on the validity of the "equal environments assumption” (EEA) as an underlying
premise, and which assumes that identical and fraternal twin pairs experience equivalent
trait-relevant environmental exposures, especially early in life. However, lately this
assumption has been shown to be flawed, and hence its use does not provide any valid
indication of genomic effects®® *’.

Nonetheless, several genes have been associated with differences in microbiota
composition in smaller case-control studies. These include, for example, the FUT2 gene
that codes for the fucosyltransferase 2 enzyme, which is responsible for the synthesis of the
H antigen in body fluids and on the intestinal mucosa. The H antigen is an oligosaccharide
moiety that acts as both an attachment site and carbon source for intestinal bacteria®.
Another gene, Nod2, is involved in GI homeostasis, and has been shown to impact
microbiota composition in rodents*'. Interestingly, certain polymorphisms of both of these
genes have been implicated in the etiology of IBD and an increased risk for other
pathologies,” while all aforementioned twin studies consisted of healthy individuals. This
could point to a stronger host-genotype effect on the microbiota in certain GI disorders.

Intra individual variability

Although short term intra-individual changes are less pronounced than inter-individual
changes®® *7 *2, describing the adult state as ‘stable’ may not suffice when stability is
defined as the permanent coexistence of locally occurring species, because even the
composition of the adult gut microbiota appears to change slightly over time, with more
taxa shared between shorter sampling intervals relative to long intervals. It seems that the
environmental factors that affect the composition mainly exert their effect at the abundance
of taxa, but less to their presence.” ** *. These minor fluctuations in community
composition in the absence of large disturbances indicate that long-term stability of human
gut microbiota communities is not maintained by inertia, but rather by the action of
(unknown) restoring forces within a dynamic system*".

Nonetheless, although compositionally the microbiota is very diverse among individuals
and can change considerably with respect to relative abundance of its members within one
individual in time®, the corresponding functional profile, based on the collective gene
content is quite conserved at the level of COG (Clusters of Orthologous Groups)
categories, which is a reflection of the commonly observed high functional
redundancy among different bacteria in various habitats, with regards to core
functions related to DNA replication and repair®®. More peripheral functions, such
as SCFA production, are also very well conserved*®. Likely, the human colonic
environment  invokes similar  functionality and functions in  individuals.
Furthermore, studies have shown that as the number of species per functional
group increased, replicate communities were more consistent in biomass and
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density measures and compensation by one species for loss or decline in another preserves
long-term average ecosystem performance while variability in performance is reduced.
Therefore, functional redundancy and diversity promote the long-term probability of
persistence, and enhances resilience to pulse perturbations ensuring the continuity of
functions that are important to the host*.

In summary, microbiome assembly in newly created habitats such a sterile newborns likely
involves a gradual shift from conditions under the strong influence of stochastic and
historical factors such as birth mode, medical interventions, and illness, towards conditions
increasingly influenced by environmental selection, with weaning as a strong catalyst and
with development towards an adult-like composition continuing into childhood. Based
on recent, well powered studies the normal/healthy microbiota seems to be dominantly
shaped by a history of numerous common environmental exposures from competing
sources other than, or in addition to, our family and a much smaller influence of host
genotype under normal healthy circumstances. However, in specific cases such as
polymorphisms of important mediators of GI immune functioning such as FUT2 and
NOD?2, which have been associated to an increased risk of distinct GI pathologies such as
IBD, the contribution of genetic components might potentially be much higher.

The microbiota and human health

In the last decade the microbiota has been linked to our health. More specifically, dysbiosis,
which refers to perturbations of the ‘normal’ ‘stable’ microbiota, has been associated with
the development and progression of a plethora of syndromes and physiological aberrations
such as, obesity and its associated metabolic disorders (OAMD)*” *, autoimmune diseases
such as rheumatoid arthritis®, type 1 diabetes™ and celiac disease’!, the more obvious
functional GI disorders such as IBS* and IBD*" %, as well as more unlikely conditions
such as autism* and Parkinson’s disease™.

The reasons for such associations are not yet clear and may reflect either causal or
secondary processes due to the impact of microbial composition and/or function and the
contributions of environment and host genetics. In most cases evidence is based on
associations, animal studies (mainly rodents) and in vitro data, but cause consequence data
for humans is quite scarce.

Model systems

There are mainly two different types of model systems to gain more mechanistic insight on
many aspects of the microbiota. First, in vitro systems that mimic the conditions of the
human GI tract, such as SHIME and TIM-2, have mainly been used to study the effect of
dietary and pharmaceutical components on the composition and metabolic output of the
microbiota, with regards to genotoxicity, SCFA and other microbial metabolites that might
interact with the host. Human in vivo studies are often restricted to faecal samples, which
do not provide information on dynamic microbial processes at the site of fermentation in

16
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the gut. The main advantages of these model systems are that they allow dynamic sampling
over time in different consecutive regions of the human colon, and therefore provide
insights in different steps of the fermentation process. Each potentially important parameter
can be adjusted and there are no ethical constraints for using in vitro models, implying that
pathogens and toxic compounds can be used without the need for ethical approval. In vitro
approaches thus offer the possibility of deeper mechanistic studies and the development of
hypotheses that need to be tested in human clinical trials. In turn, these in vitro culture
systems provide an oversimplification of the in vivo situation as only the caecum and
proximal colon exhibit characteristics of a continuous culture. They also lack important
feedback mechanisms by the host, such as the release of antimicrobial compounds and
direct interactions with the immune system®® *’. These characteristics might be important if
a certain composition might be considered dysbiotic only if certain phenotypical host
features are expressed. For instance production of toxic metabolites of an IBD patient’s
microbiota was shown to be higher than that of a healthy individual®®. However, the
physiological conditions for healthy individuals were also used for IBD patients. It is likely
that differences may exist between healthy individuals and IBD patients with respect to pH,
redox potential, gut transit and dietary habits and thus the substrates that make it to the
colon. Therefore, in vitro model systems provide unprecedented mechanistic depth to
determine how certain substrates are broken down, by which organism(s) and in which
metabolites they might end up. However, in deciphering the role of the microbiota in a host
they might paint a picture that is too one-dimensional.

Besides in vitro fermentation models, in vivo animal models, and especially rodent models
have been increasingly used in biomedical research. Mice have become the model of choice
for most research on the microbiome, because of their low maintenance cost (as compared
with other mammalian experimental models), high reproductive rates and short life cycle.
However, to interpret and translate the knowledge gained from these studies we need to
appreciate and factor in the differences in behaviour and physiology of the GI tract and
natural composition of the microbiota between humans and rodents. Overall, the
mammalian digestive tract is strongly conserved, thus given their shared omnivorous
nature, humans and mice share strong similarities. However, there are some differences in
that humans have evolved towards a smaller cecum (with no clear function) and colon and a
relatively longer small intestine as compared to rodents. In mice fermentation of
indigestible food components is compartmentalized in the cecum while in humans this
takes place in the colon™. Cells that are essential to intestinal integrity and host-microbiota
equilibrium, such as goblet and Paneth cells, are conserved between the two species,
although there are differences in distribution®. Regarding the composition of the
microbiota there is no consensus. Generally it is thought to be relatively similar at higher
taxonomic ranks; although it has been shown through the analysis of 16S rRNA sequences
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as well as meta-transcriptomes that membership is significantly different at higher

. 1,62
resolution®" ¢,

The main advantages of murine models are that they allow extreme interventions and
targeting of specific gene/pathways through knock-out models to study the causal role of
gut microbiota in health and disease. This combined with the homogenous genetic
background of laboratory mice that is achieved through inbreeding and control over sources
of variation such as diets and housing conditions limit unwanted influences of noise from
the surrounding environment to the gut microbiota and therefore, generate a cleaner system
which increases the signal to noise ratio regarding gut-bacteria—host interactions and
improve reproducibility of experiments®.

Humanized gnotobiotic mice, which result from the inoculation of a human gut microbiota
sample in germ-free mice are considered to be the gold standard for confirming associations
and trying to prove causality in gut microbiota research® ** . Globally, they retain a
human composition (100% of phyla, 11/12 classes and ~ 88% of genus-level taxa), except
for the absence of many low-abundance taxa, which might still be relevant®. Use of all of
these mouse models has brought more insights into the mechanisms and the role of the
microbiota in pathologies, such as growth impairment from malnourishment™, obesity**
and IBD®. Nevertheless, it has been shown that they might not fully recapitulate the
mechanisms of the human-host-gut-microbiota interaction®. It should be highlighted
specifically for humanized mice that, although the microbiota reflects the composition of
the donors reasonably well, this does not necessarily reflect the real host-microbe
relationship observed in humans because the gut microbiota is transplanted into a host with
which it has not co-evolved®” *".

The advantages of mouse models are also their pitfalls when we want to translate results to
human research. All the potential drivers that shape the variability of a ‘normal healthy’
microbiota in humans®, are absent. Biologically there might be considerable advantage in
having this diversity in the population, and therefore their microbiota might not reflect the
‘real-life’ microbiota. All these parameters that help create this relatively strong and clean
signal (extreme interventions coupled with low microbial and genetic variability) can pose
problems when translating obtained results to humans where the biological signal to noise
ratio is likely to be much lower due to more subtle interventions and the dampening effect
of homogeneous responses®”. This said, they are one of very few methods to assess
causality in microbiota research, and thus further development and improvement of this
approach is essential. For instance the use of wild mice with more heterogeneous genetics
and microbiota composition might be needed when we want to translate and confirm the
causal relations established in such mouse models.
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The microbiota and disease; functional gastrointestinal disorders as a paradigm

In contrast to in vitro and in vivo model-based studies as described above, studies
with human volunteers have largely provided associations. This paragraph is not
meant to be exhaustive, and most human pathologies associated with the
microbiome have been reviewed in depth elsewhere”. This paragraph will use
functional disorders of the GI tract (FGIDs) as a paradigm for a majority of human
health-microbiota interactions, as they represent the largest and closest host-microbe
interface and arguably the most direct effects of any miscommunication would be
observed here.

FGIDs typically display a complex multi factorial aetiology and/or are biologically
heterogeneous™™ ', There are several general lines of evidence that suggest a direct
involvement of the intestinal microbiota in the pathogenesis of certain FGIDs:
gastrointestinal infections and systemic antibiotic use are strong risk factors for their
development and in some cases abnormal concentrations of fermentation end products such
as SCFAs have been found’”. In the case of IBS, innate and adaptive immunity involved in
sampling and recognition of the microbiota, such as the expression of toll like receptors in
the mucosa, antibodies to bacterial flagellin and production of human B-defensin-2 have
been shown to be different in IBS compared to controls®®. Differences in the fecal and
colonic microbiota have been identified between healthy controls and IBS subjects and
among IBS subjects as well. Furthermore, several microbial signatures have been
associated with certain demographic or etiological features of IBS. However, a fecal or
mucosal microbial signal diagnostic of IBS or of an IBS subtype or subpopulation has yet
to be validated.

These inconsistencies may relate to several factors, including methodological
differences, such as variations in protocols for sample preparation and analytical
approaches, outliers due to small sample sizes and biological differences such as the
intrinsic microbiota variability between subjects, the functional redundancy of the
microbiota, differences in subject selection, definition of study populations and overlap
between the various FGIDs as well as variance in diet, therapy or other environmental
exposures which are known to influence the microbiota.

It also needs to be recognized that many studies describe comparisons between
different groups of subjects on the basis of a single fecal sample per subject,
although the composition of the adult gut composition changes slightly over time,
with sometimes considerable changes in the abundance of taxa within one individual.
Therefore, such a snapshot of the microbiota in underpowered studies might be very
sensitive to outliers and as a result, such comparative analyses cannot differentiate

between cause, consequence, or coincidence”.

All these factors may, in part, explain why there has been no consensus regarding the
association of most FGIDs with a specific microbe or groups of microbes>. Therefore, it
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is evident that well powered longitudinal studies involving repeated sampling of
the microbiota as well as clinically relevant host characteristics will be crucial
during intervention to differentiate cause from consequence or coincidence.

Human interference; antibiotics and resilience

Now that we are beginning to appreciate the microbiome and its intricate relationship with
ourselves, concern is growing about things we are doing that may disturb this system.
Antibiotic use is just one example of common (medical) practice that may be altering the
human microbiome by reducing, removing, or changing fundamental elements. As
mentioned in the beginning of this introduction, infectious diseases have been the leading
causes of human morbidity and mortality for most of human existence, and antimicrobials
are therefore arguably one of the most successful forms of chemotherapy in the history of
medicine. Contrary to common believe, research has revealed the exposure to antibiotics is
not confined to the modern antibiotics era, as traces of tetracycline, for example, have been
found in human skeletal remains from 35-550 CE’* ™. However, since penicillin in the
1940s, antibiotics have been in broad use for treating infectious diseases in humans as well
as at subtherapeutic levels to stimulate meat production in livestock®. However, now that it
is clear that we are host to many more microbes with mutualistic rather than parasitic
interactions, we have come to realise that besides the targeted organisms there is huge
collateral damage with regards to our microbiome. This has been shown for a wide range of
sampling strategies, treatment durations, analytical approaches and antibiotics® 7"
Depending on the antibiotics treatment, the composition as well as the metabolic output of
the gut microbiota is altered compared to the routine temporal variability of community
composition and function, and most taxa begin to return to prior levels within several
weeks. However, various taxa recover to different extents, while some do not recover at all
over the duration of the study® 7> . Besides the acute effects, the (past) use of antibiotics,
especially in the early developmental phase of the microbiota, has been shown to have
lasting consequences regarding composition and metabolism®' and has been associated with
health complications**. However, this is still controversial due to two large confounders in
most but not all studies. 1. Reverse causation; where symptoms have caused prescription of
antibiotics and 2. Confounding by indication; where (respiratory tract) infections leading to
antibiotic use may be the underlying cause triggering symptom development™.

Probably the highest risk associated with antibiotics use is the selection and stimulation of
antibiotic resistance and the augmentation of antibiotics resistance genes in the surviving
gut microbiota®. These mobilized resistance genes are a reservoir for drug resistance in
potential pathogens, and antimicrobial resistance is currently one of the most important
global public health threats that we face®™’.
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Overall, research suggests that generally the human gut microbiota of healthy adults, but
not that of very young children and infants, is largely, but not entirely, resilient to short
courses of antibiotic therapy. However, there are instances where the microbiota is pushed
from its relatively stable state and moves into an unfavourable position through repeated
use of antibiotics. The direct effect of a disrupted microbiota is most clearly illustrated in
the setting of Clostridium difficile infection.

Microbiota manipulation; the malleable microbiome

Although it has been exceedingly difficult to produce cause consequence data in humans, a
causal relationship between host health and the GI microbiome has been most clearly
demonstrated using a radical gut microbiota modulation procedure, which replaces the
complete microbiome from a patient with the microbiome from a healthy donor, called a
fecal microbiome transplant (FMT). This causality is particularly strong for a very well-
defined form of dysbiosis: longstanding recurrent C. difficile infections. This can serve as a
model for dysbiosis due to its mechanistic simplicity. Here a single opportunistic
pathogenic organism (which is a relatively normal member of the human microbiome)
proliferates after the microbiota has been extensively disrupted by (repeated) antibiotics
use. It then overgrows the microbiota, produces toxins and causes colitis and diarrhoea in
patients, which can even lead to death. FMT has been shown to outperform conventional
antibiotic treatment, and extremely high success rates of 90% are routinely reported™.
These high success rates have seen FMTs used in other clinical settings as well, such as
Ulcerative Colitis® and improvement of insulin sensitivity”.

Although the microbiota after transplantation resembles the composition of the donor it
usually does not end up to be a replica of the donor®® *°. Intriguingly, the plasticity of the
microbiota (the completely different composition of another individual) seems at odds with
the fact that the microbiota is highly individual and relatively resilient with regards to its
membership, and certain taxa which are thought to be with us over several decades, maybe
even coming from the initial birth inoculation’. This observation leads to the question what
actually constitutes a normal healthy microbiome and whether there is such a thing. And
more fundamentally, how important is the interaction with the host in health as well as
disease? This will aid in the definition and understanding of dysbiosis and provide a better
understanding of the therapeutic options at our disposal to exploit this flexibility for
restoration and modulation of the existing microbiota.

The healthy microbiome

The last few paragraphs have provided an overview of the current state of the art regarding
the factors that shape the microbiome, including the fact that the link with many diseases is
often based on correlations and case control studies comparing a certain phenotype with
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healthy individuals (usually individuals that do not exhibit symptoms from the patient
group). However, due to the very high inter-individual variation in the human microbiome
it has been challenging to define the normal healthy microbiome. Also, the relatively vague
definition of health as ‘a state of complete physical, mental and social well-being and not
merely the absence of disease or infirmity’ from the WHO (a definition which has not been
amended since 1948) does not help.

Large scale initiatives like the Human Microbiome Project and European Metagenomics of
the Human Intestinal Tract (MetaHIT) have generated enormous amounts of sequencing
data to expand our knowledge on the structure and function of the normal microbiome® °'.
However, due the high dimensionality of the data (high inter-individual variability), studies
of this type typically require large sample sets for hypothesis testing. Therefore, approaches
have been explored that could reduce the dimensionality of this data and simplify it. One
such approach is to search for structural patterns, i.e. community compositions that are
more prevalent than others, due to certain ecosystem ‘rules’. The first effort at community-
wide stratification, based on metagenomic data from 39 faecal samples, suggested that the
human GI microbiome could be categorized into three types, designated ‘enterotypes’,
which seemed to be independent of phenotypical, genetical or life style characteristics such
as age, BMI, health status, gender of demography. These community structures were
enriched in either Bacteroides, Prevotella or, in a less pronounced cluster, defined by
enrichment of Ruminococcus”. However, a later study utilizing the same procedure on
metagenomic data from an order of magnitude more individuals (396) failed to clearly
discriminate distinct microbiota types’. Now it seems the leading hypothesis is that the
distribution of the microbiota among individuals resembles more of a gradient with more
contrasting abundances of Prevotella and Bacteroides. Another study observed community
wide structural patterns in HITChip phylogenetic microarray-derived compositional data of
more than 1000 individuals. Lahti and co-workers identified five bacterial groups that
displayed robust independent bi-modal abundance distributions, meaning that these taxa
were present at either low or high abundance with an unstable intermediate abundance state
between the two contrasting states. This instability determined through cross-sectional data
was confirmed in a subset of subjects from whom longitudinal data was available. The
identified bimodal bacterial groups were Dialister spp., relatives of Bacteroides fragilis,
Prevotella melaninogenica and Prevotella oralis (combined as one group) and two groups
of Uncultured Clostridiales; UCI and UCII. The abundance state of these groups seemed
independent of (short-term) dietary interventions and associated with host characteristics
such as BMI and age. For instance UCII showed a very clear shifting state probability from
high to low with increasing age.” Interestingly, Prevotella, the most distinct bimodal
group, especially regarding the relatively high occurrence of the high abundance stable state
was also observed to be a driver of the contrasting states in the 396 metagenomes” . The
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authors proposed that these ‘bacterial dipswitches’ could be targeted in the future for
therapeutic approaches”.

Another avenue that has been explored to simplify this system and to define a normal
healthy microbiome is to determine a stable core or possibly a minimal microbiome and
answer the question whether a set of key species could perform all the necessary functions
of a healthy normal microbiome. Although this question has been extensively studied, there
is still no consensus on a phylogenetic (microbiota) core. This is partly due
to inconsistencies between the definition of such a core (such as cut-offs for
minimum abundance and prevalence of a given phylotype to be considered a
member of the core), the phylogenetic resolution at which the core is defined and
variations in study populations with regards to variables that are known to influence
the microbiota composition, such as age, health status, diet and demography3® °1. %
%5 Besides a biological foundation, some of the aforementioned inconsistencies could
be appointed to the myriad of technologies that are in use or have been used to
study this core and their individual strength and weaknesses, such as the maximum
achievable phylogenetic resolution, differences in confidence at low abundance
thresholds, the use of different reference databases and the coverage and resolution
of different primer pairs®> % . However, as mentioned in previous paragraphs,
there is a large functional overlap between bacteria, which is not surprising
since the common household genes involved in for instance DNA replication and
repair are present in all living organisms, and therefore a metagenomic core,
instead of a phylogenetic core might be more informative from a biological

Prospectus

Instead of trying to summarise all the associations and the concomitant bacterial changes,
the preceding paragraphs mainly served to provide a biological context and framework for
the interpretation of the work described in this thesis.

Human diseases are often multifactorial stochastic processes under the influence of
genetics, ‘life style’ (diet, sports, stress), and environmental factors. In parallel, the adult
human GI microbiota is highly complex, very individual, relatively stable with regards to
its members (some members more stable than others), yet with large temporal fluctuations
in abundance but also relatively resilient against gross perturbations. The genetic variation
of the host and high inter-individuality of its microbiota might be biological advantages;
however it complicates the life of microbiome researchers. This diversity, in combination
with microbe-microbe as well as host-microbe interactions that can largely vary under
different circumstances (different disease states), paints a very complex picture.

We know through FMTs that although the microbiome is relatively resilient, it is also
changeable. Nevertheless, we do not yet know what a normal healthy composition entails
and whether this is universal, i.e. whether the same composition/function is good for

N
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everyone. By understanding the factors that shape our microbiome under ‘normal’
conditions and give rise to the observed variation within and between individuals we can
study the major factors that shape the microbiome under specific conditions such as certain
pathological phenotypes and infer their relative importance under these conditions and
develop more focused methodologies to manipulate it under these specific conditions
towards a state that is healthy for that specific individual.



Thesis outline

Thesis outline

Recent evidence indicates that the GI microbiota and its products may contribute to the
development of obesity and related diseases, and differences in GI tract microbial ecology
between individuals might be an important factor in this complex aetiology. This thesis
aims to provide and apply tools to investigate the potential of the gut microbiota as a
potential biomarker or therapeutic target and generate leads for mechanisms through which
the microbiota mediates these effects.

Chapter 1 serves as reference point regarding our understanding of the structure and
function of the normal human GI microbiome and aims to place the observations from the
following chapters, namely the deviance of individual taxa or patterns (dysbiosis) from the
‘normal’ state, into an ecological context. This can be investigated using a diverse set of
complementary so called —omics technologies such as 16S rRNA gene-targeted
composition profiling, meta-bolomics, -genomics, -transcriptomics and -proteomics.
Chapter 2 describes the different molecular approaches and their contributions to our
understanding of the role of the GI microbiota in host energy homeostasis.
Correspondingly, it highlights their respective strengths, but also tries to create awareness
for their specific limitations. Besides the need for intelligent applications of complementary
methodologies to answer specific questions regarding the gut microbiome, human gut
microbiota research has been hampered by the large heterogeneity in, genotype, lifestyle,
diet and the complex aetiology of e.g. OAMD. Therefore, current research should focus on
more homogenous subpopulations, through the use of both anthropometric (weight, total
body fat) as well as biochemical variables (insulin resistance, hyperlipidaemia) to define
better defined categories with less confounding. In Chapter 3 we mined the faecal
microbiota from 295 children aged 6-7 years from a cross-sectional cohort, for associations
with weight related anthropometric outcomes (age- and sex- standardized weight and BMI
z-scores, overweight defined as BMI>85th percentile). Because of the large amount of
available phenotypic data we could extensively control for known confounders such as
birth weight, gender and gestational age. Chapter 4 investigated the effects of gut
microbiota manipulation by antibiotics (7d administration of amoxicillin, vancomycin or a
placebo) on clinical parameters associated with OAMD, such as tissue-specific insulin
sensitivity, energy metabolism, gut permeability and inflammation, in a well phenotyped
and relatively homogenous subpopulation of 57 obese yet, pre-diabetic men. Next, in
chapter 5 we studied the microbiota of two independent cohorts with comparable strict
recruitment strategies (overweight and obese pre-diabetic male subjects), from the Dutch
regions of Maastricht (south-east) and Amsterdam (north-west). We searched for
associations with biochemical markers for tissue specific insulin sensitivity and weight
related anthropometric outcomes. This study is unique as no human data are available that
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investigates whether tissue specific insulin sensitivity, as measured by the golden standard
hyperinsulinemic-euglycemic clamp technique, is related to a specific microbial pattern.

The next part of this thesis focuses more on technological aspects associated with
sequencing of 16S rRNA gene amplicons, the development of a bioinformatics pipeline
for this type of data in chapter 6 and the application to biological data in chapter
7. Although massive high-throughput sequencing of short, hypervariable segments of the
16S ribosomal RNA (rRNA) gene has transformed the methodological landscape
describing microbial diversity within and across complex biomes, several studies have
shown that methodology rather than the biological variation is responsible for
observed sample composition and distribution, compromising true meta-analyses in
this research field. Currently, there is a lack of consensus regarding key features of the
healthy microbiome, such as richness, diversity and composition, while the link with
specific human pathologies often reveals study specific sets of biomarker organisms.
Large scale meta-analyses would aid in addressing whether the basis for these differences
is biological, technical or maybe a combination of both. To facilitate such meta-
analyses of microbiota studies chapter 6 describes the development of NG-Tax, a
pipeline for 16S rRNA gene amplicon sequence analysis and its validation with
synthetic communities. In addition, we provide recommendations on an optimal
setup and identify critical points in the analysis and interpretation of this kind of
complex and very noisy data. Chapter 7 shows an ecosystem approach to assess the
temporal dynamics (composition, activity, metabolic output) and reproducibility of all
these variables in the TIM2, a dynamic in vitro model of the colon, fed with three
different diets: the normal diet and a version of which either the protein or carbohydrate
fraction was diluted. We applied the recommendations from chapter 6 to describe the
temporal dynamics of microbiota composition and determined the global metabolic
function of the microbial communities through metabolomics and meta-
transcriptomics. Finally, chapter 8 summarizes the research described in this thesis and
provides a discussion on its contribution to the current state of knowledge. In addition, it
provides a perspective on future research to elucidate the role of the microbiota in
OAMD and other human pathologies as well.
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Abstract

After birth, our gastrointestinal (GI) tract is colonized by a highly complex assemblage of
microbes, collectively termed the GI microbiota, which develops intimate interactions with
our body. Recent evidence indicates that the GI microbiota and its products may contribute
to the development of obesity and related diseases. This, coupled with the current
worldwide epidemic of obesity, has moved microbiome research into the spotlight of
attention. Although the main cause of obesity and its associated metabolic complications is
excess caloric intake compared with expenditure, differences in GI tract microbial ecology
between individuals might be an important biomarker, mediator or new therapeutic target.
This can be investigated using a diverse set of complementary so called —omics
technologies such as 16S ribosomal RNA (rRNA) gene-targeted composition profiling,
meta-bonomics, -genomics, -transcriptomics and -proteomics. This review aims to describe
the different molecular approaches and their contributions to our understanding of the role
of the GI microbiota in host energy homeostasis. Correspondingly, we highlight their
respective strengths, but also try to create awareness for their specific limitations. However,
currently it is still unclear which bacterial groups play a role in the development of obesity,
in humans. This might partly be explained by the heterogeneity in, genotype, lifestyle, diet
and the complex etiology of Obesity and its Associated Metabolic Disorders (OAMD).
Nevertheless, recent research on this matter has shown a conceptual shift by focusing on
more homogenous subpopulations, through the use of both anthropometric (weight, total
body fat) as well as biochemical variables (insulin resistance, hyperlipidaemia) to define
categories. Combined with technological advances in the reviewed the molecular
techniques, recent data suggests that an OAMD associated microbiota can be characterized
by a potential pro-inflammatory composition, with less potential for the production of
SCFAs and butyrate in particular.
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Introduction

The human gastrointestinal (GI) tract contains several compartments with distinct anatomy
and function, and is of utmost importance in supplying the body with energy and essential
nutrients by converting and absorbing food components. In total, over 1000 microbial
species, which collectively harbour more than 3.3 million unique genes’, have been shown
to colonize the human GI tract’”’, and are collectively termed the GI microbiome. Recently
each individual has been estimated to contain between 101 + 27° and >160 of such 2
species’. This vast microbial gene reservoir, which is approximately two orders of
magnitude larger than our own, complements human physiology with a range of essential
functions, such as biosynthesis of vitamins and breakdown of complex carbohydrates”™ *.
Conversely, an aberrant microbiome has been linked to gastrointestinal disorders>.

The microbial ecosystem of the GI tract is very complex because it consists of a wide
variety of different species that interact with each other and with the host, and many of the
community members cannot be easily grown as pure cultures in a laboratory setting.
Nevertheless, the introduction of a broad range of molecular tools over the past two decades
has provided unprecedented opportunities to bypass the culturing requirements and study
functionality, activity and composition (dynamics) directly.

Application of molecular approaches has revealed that, although the contribution of
microbial groups appears to fluctuate in time* , the (fecal) microbiome is highly individual
and much more stable in adults'” and the elderly'®" than in children. Furthermore, the
microbial composition is GI tract location specific’* and it seems that host demography
(geographic location, diet and genetic background) has a major impact on composition®
"2 In addition, it was recently shown that the faecal microbiota of individuals can be
largely grouped into three distinct clusters mostly driven by species composition, termed
enterotypes’”. Although the nature of enterotypes (static or continuous), and the number of
enterotypes is highly debated, the fact that, despite individual-specific variation, individuals
can be classified based on their GI tract microbiota composition is a conceptual
breakthrough as this could be important for making associations between microbiota and
health aspects. Nevertheless, at least in a western population, the overall functional
properties are relatively well conserved, as based on large scale metagenome sequencing,
indicating a common structural core™ °'. Moreover, recent findings suggest that the GI
microbiome also plays a role in energy homeostasis of the host* ®* 1% 1% This coupled
with the current worldwide epidemic of obesity, has moved microbiome research into the
spotlight of attention. Although the main cause of obesity and its associated metabolic
complications is excess caloric intake compared with expenditure, differences in GI
microbial ecology between humans might be an important, mediator, new therapeutic
target, or biomarker to predict metabolic dysfunction/obesity in later life.
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This subject has been approached using different so called —omics technologies such as 16S
ribosomal RNA (rRNA) gene-targeted composition profiling, as well as metagenomics,
metatranscriptomics, metaproteomics and metabolomics, to identify the composition of the
microbiota and its overall genetic (i.e. functional) potential and activity, respectively. This
review aims to describe these different approaches and what they have contributed to our
understanding of the role of the GI microbiome in host energy homeostasis, focusing on
Obesity and its Associated Metabolic Disorders (OAMD). Correspondingly, we highlight
the strengths of the different approaches, but also try to create awareness for their specific
limitations. This serves to illustrate that each method merely discloses a small piece of the
microbial puzzle and that their isolated application might paint an incomplete picture. Only
truly integrated approaches that combine multiple ‘omics’ approaches will permit moving

from a ‘parts list’ to a deeper understanding of the functioning of this fascinating and

4, 1 1
relevant ecosystem®" > 1%,

List of abbreviations
B:F ratio: Bacteroidetes to Firmicutes ratio

BMI: Body Mass Index

SCFA: Short Chain Fatty Acids

COG: Clusters of Orthologous Groups

FISH: Fluorescent In Situ Hybridization

GI: gastro-intestinal

HITChip: Human Intestinal Tract Chip

HGC: High Gene Count

KEGG: Kyoto Encyclopedia of Genes and Genomes
LGC: Low Gene Count

NGS: Next Generation Sequencing

OAMD: Obesity and its Associated Metabolic Disorders
OTU: Operational Taxonomic Unit

PTS: phosphotransferase system

rRNA: ribosomal RNA

T2D: Type-2-Diabetes



Molecular ecological tools to decipher the role of our microbial mass in obesity

Identifying the players

It is generally recognized that a major part of GI tract community will remain undetected
using classical cultivation approaches. To circumvent this apparent culture bias, the
majority of studies employ culture-independent approaches, in which the small subunit or
16S rRNA and its encoding gene are used as a phylogenetic marker to identify, classify and
quantify microorganisms that are present.

DNA isolation

DNA isolation is an integral step in all culture independent, phylogenetic and metagenomic
approaches to characterize the highly diverse GI microbiome. Previous studies have shown
that differences in cell wall structures cause microbial cell lysis to be more or less
107. 198 " Which can distort the apparent representation of the composition of
107199~ Currently, mechanical cell disruption by repeated bead

efficient
microbial communities
beating (RBB) is strongly advised for all applications with the exception of metagenome
clone library construction, as RBB has been shown to produce the highest bacterial
diversity and a significantly improved DNA extraction of Archaea from defined pure and
mixed cultures, as well as faecal samples'®'"’. The standardization of DNA extraction
should be a step towards the comparability and reliable meta-analysis of the results
obtained in different laboratories.

Culture independent community profiling

A variety of useful features render the 16S rRNA gene an ideal target to retrieve both
taxonomic and phylogenetic information. Due to its conserved function it is present in all
prokaryotes and therefore its sequence has remained relatively conserved throughout
evolution. It contains slow-, as well as fast-evolving regions and includes approximately
1500 bp, which is sufficient for comparative sequence analysis. Another major advantage
of the 16S rRNA gene, as opposed to other potential markers, is the availability of large
databases such as Greengenes''" ''?, SILVA'" and the Ribosomal Database Project'',
linking 1.400.000 full length sequences to taxonomies. Nonetheless, unambiguous species
level resolution using the 16S rRNA gene might be unattainable, due to its conserved nature

and difficulties associated with an accurate prokaryotic species definition'' >,

The Beginnings

Most culture-independent techniques that have been used for the analysis of the GI
microbiome over the past two decades have thus been based on analysis of the 16S rRNA
gene and can be roughly divided into two groups. Whole community surveys, that examine
the overall diversity in a sample and methods that target a few specific microbial groups.
The latter group consists of quantitative (or real-time) PCR (qPCR) and Fluorescent In Situ
Hybridization (FISH) coupled to flow cytometry or microscopy for quantification. These
technologies are fast, quantitative and with appropriate primer or probe design, highly
selective. However, any method that relies on specific oligonucleotide probes is inherently
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limited by the fact that without a 16S rRNA gene based survey of the overall diversity
within a sample; the specificity of the selected probes will be uncertain''®. Furthermore, the
GI microbiome is a very complex ecosystem and perturbations are likely to result in,
sometimes subtle, whole community changes, rather than alterations in the abundance of
the pre-selected groups. This might lead to incorrect conclusions on the effect of an
intervention, because either 1) the targeted groups are not affected, which does not mean
nothing is happing, or 2) they are affected, but the results lack a proper community context.

In the past tools such as Denaturing or Temperature Gradient Gel Electrophoreses (DGGE,
TGGE), have been employed to produce a “fingerprint” of microbial communities based on
16S rRNA gene diversity. By comparing such fingerprints, Zoetendal et al. revealed a
remarkable temporal stability and host specificity of the GI microbiome'®. These methods
are based on electrophoretic separation of 16S rRNA gene amplicons on a gel containing a
chemical denaturant or temperature gradient, and generate characteristic banding
pat‘cerns120

relatively fast. However, they also suffer from a number of limitations, such as 1. they lack

. Application of these fingerprinting techniques is cheap and can be performed

resolution for a complex community such as the GI microbiome, 2. Quantification is based
on band intensity, and 3. Phylogenetic identification is only possible after excising bands
for sequencing or matching migration patterns with those of clone libraries. In turn, Sanger
sequencing of 16S rRNA clone libraries has expanded our understanding of the microbial
composition of our GI tract. Improving mainly on identification potential, it showed that
two microbial phyla, the Firmicutes and the Bacteroidetes, are mostly represented in clone
libraries representing our GI microbiome'?'. Although, the analysis of complete 16S rRNA
gene sequences has advantages for applications such as classification'” or defining novel
taxa'> the cost per sequence is high and consequently it provides an incomplete view of the
microbial composition, revealing only the most abundant taxa, and furthermore generally
does not allow analyzing multiple samples at appropriate spatio-temporal resolution.
Hence, fingerprinting methods such as DGGE, and Sanger sequencing of clone libraries,
are complementary methods. Fingerprinting provides a much clearer picture of the overall
diversity and its dynamics in time and space, whereas cloning and sequencing enables
identification of specific targets.

Nevertheless, these tools have now largely been replaced by phylogenetic microarrays and
Next Generation Sequencing (NGS) of amplicons. These can interrogate community
structures at much higher resolution by revealing taxa that are less abundant at much
reduced cost, providing the necessary means to compare the microbial composition in a
large number of samples simultaneously, and thus allowing to discern spatio-temporal
patterns of microbial community dynamics.
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A new century — High-throughput high-content molecular tools

Next generation sequencing approaches

Next generation sequencing technologies, and in the beginning especially pyrosequencing
(as implemented in the Roche 454 Genome Sequencer GS, FLX and FLX Titanium), have
revolutionized 16S rRNA based community profiling of the GI microbiome.
Pyrosequencing generates much more reads at much lower cost per nucleotide, albeit
initially of much shorter length compared to traditional Sanger sequencing. Nevertheless in
5 years the read length increased from <250 bases using the GS platform, to >500 bases
with the Titanium chemistry. Moreover, the advent of barcode identification tags'>* enabled
researchers to analyze hundreds of samples in multiplex at higher depth and lower cost,
compared to Sanger sequencing’® ' '*°. Recent advances in read length for Illumina’s
sequencing by synthesis platforms (Genome Analyzer IIx, Hiseq2000 and Miseq) offered
another sharp decrease in sequencing cost, by generating 10-1000 fold more reads at a
fraction of the cost per megabase, compared to pyrosequencing'*’. Nonetheless the read
length was back to that of the starting days of pyrosequencing at 2x75 - 2x150 nt and most
recently 2x250 - 2x300 nt for MiSeq, and novel strategies had to be developed to cope with
the decreased taxonomic resolution and increased computational demands'?”'*°. This has
led to sequencing of samples at an unprecedented depth of millions of reads per sample'**.
However the true strength might lie in the opportunity to examine thousands of samples
simultaneously at sufficient depth, as was demonstrated by Caporaso et al. who analyzed
almost 2000 samples to show the variability of the human microbiome over time in two
subjects™. Similarly, Yatsunenko et al. studied the fecal microbial communities of more
than 500 Malawians, Amerindians and US children and adults, at an average depth of >106
reads per sample to reveal profound differences in bacterial assemblages between US
residents and those in the other two countries at different ages™.

So, how does it work?

Getting the most taxonomic information from next generation amplicon sequencing
requires careful selection of sequencing technology, 16S rRNA gene region and
corresponding primers, in order to obtain the most useful data, as sequencing platforms not
only differ in read length output, but also error rates, error profiles and technical restrictions
such as maximum amplicon size'?. Illumina-based approaches provide the option of
sequencing amplicons in both directions. This allows for different strategies; the reads can
be made to overlap or the researcher is left with a gap in the middle of the amplicon. When
using non overlapping reads, the 3> and 5’ reads can be analyzed separately'*, or joined
prior to Operational Taxonomic Units (OTU) clustering and aligned to a trimmed reference
database, which improves the phylogenetic resolution by doubling read length'*’. Likewise,
if the selected 16S rRNA window is small enough for the reads to overlap, a consensus
sequence for the overlapping region can be established, effectively increasing the overall

%)
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. . . . . 131. 132
quality score and taxonomic classification confidence of the resulting constructs'" '*2,

After amplification and sequencing, the data can be analyzed using a number of established
pipelines, such as QIIME'* or MOTHUR". The reads are de-multiplexed and quality
filtered, since both sequencing and PCR errors have been shown to lead to overestimation
of diversity within samples (alpha diversity)'*>"'**. The reads are then clustered de novo into
groups of similar sequences, called OTUs, which are often regarded as a synthetic proxy for
microbial species as they are typically clustered at 97% sequence similarity (This threshold
was chosen because isolates with an overall genome relatedness of >70% based on genome
DNA-DNA hybridization was consistent with recognized phenotype-based species
classifications at the time'*). Lastly taxonomies can be inferred by associating OTU’s to
reference sequences in 16S rRNA databases using different approaches''*''*
recently, Sun et al. benchmarked several currently used OTU clustering and taxonomy
assignment algorithms and found that existing methods can yield vastly different results,

. However,

marking that the shortcomings of many existing methods have not yet been fully
recognized'*’. Alternative to de novo OTU clustering, for very large datasets, such as those
produced by the Illumina sequencing platforms, a reference database pre-clustered at 97%
can be used as seeding database for OTU clustering. This approach has the advantage of
acting as an additional quality filter because denoising algorithms for Illumina data are still
unavailable, given that non-aligning sequences are discarded®, and enables studies that
target a different variable region to be compared when they are aligned to the same
database™. It should be kept in mind, however, that different regions are usually amplified
utilizing other primers that can introduce their own distinctive biases. Moreover, pre-
clustered seed databases need to contain a good representation of the community of interest,
as new species discovery is not possible.

The currently available high resolution, high throughput molecular profiling technologies,
sacrifice phylogenetic resolution for a better overall picture, compared to traditional Sanger
sequencing of clone libraries. They can only utilize a smaller fragment of the 16S rRNA
gene, which potentially reduces the amount of phylogenetic information that can be
recovered. Moreover, the different hypervariable regions differ in their taxonomic
resolution, and therefore, the target needs to be carefully chosen to account for the extent of
phylogenetic information that can be generated by the fragment. One way to analyse the
taxonomic usefulness of different hypervariable regions is to compare the taxonomic
assignments of a short region to that of the full sequence'?> ! 142 143 . 144 145 "ppjq
information and the distinctive structure of the 16S rRNA gene with its hypervariable
regions and alternate conserved sequence domains, has allowed researchers to design broad
spectrum PCR primers targeting specific regions. Nevertheless, in silico generated primer
pairs still need careful experimental validation, as unanticipated biases in the PCR reaction
can create deviant profiles'>’. Currently, there is a large choice of PCR primers targeting the
16S rRNA gene, and primers should be carefully selected based on 1. The compatibility of
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the resulting fragment length with the sequencing platform, 2. The degree of specificity for
amplifying microbial sequences compared to host sequences, 3. The taxonomic coverage
desired and 4. The complexity or diversity, of the community of interest. For example, the
popular primer pair 27F-338R, which is specific for bacteria (as opposed to eukaryotes and
Archaea) was shown to poorly amplify the 16S rRNA gene of members of the genus
Bifidobacterium, which is a very important member of the human GI tract microbiome'*.
Likewise, due to primer bias, the presence of the phylum Verrucomicrobia was thought to
be minimal in soil samples, but was found to be present at relative abundances as high as

20%'"7.

Overall, the human GI microbiome has been interrogated, targeting several hypervariable
regions of the 16S rRNA gene cither separately or in tandem (Table 1) and, mainly driven
by continuing technological improvements in both sequencing technology and
bioinformatics, new primers are being designed'*®. Although several studies comparing the
classification suitability of several regions have concluded that different regions produce
different representations of the community, it remains unclear if one region is
fundamentally superior’” "> ' " even though the application of V6-V9 is generally
cautioned against'* °'. Hence there seems to be no consensus on what seems to be the
“best” region, and the use of multiple regions may, collectively, give the most complete

. . . 150
description of a community ™.

Because of the differences in applied sequencing technology and, more importantly,
variation in methods used for DNA isolation and choice of targeted variable regions and
primers, true meta-analysis has proven virtually impossible, and researchers need to be
careful, when interpreting and comparing results obtained by targeting different variable
regions using different sequencing technologies.

Validation

An important distinction between whole genome sequencing, which has driven the
development of many sequencing methods, and microbiome profiling by 16S rRNA gene
sequencing is that in whole genome sequencing, the error rates are less important as each
region of the genome is sequenced many times. By contrast, in 16S rRNA gene amplicon
sequencing, each fragment may be sequenced only once. Thus, the effect of raw sequencing
error rates on the observed microbial diversity is potentially great, as every erroneous read
could be portrayed as arriving from a novel organism'*®. This effect is now typically
evaluated on the basis of a synthetic, or ‘mock’, community that is created by pooling
genomic DNA or cloned 16S rRNA gene fragments of multiple isolates'*® '°" 52, Ideally,
near-full-length 16S rRNA gene sequences are available at reference quality for the
organisms in the mock community; this allows a description of the effect of raw sequencing
error rates on the number of operational taxonomic units (OTUs) and a calculation of the

actual error rates and error types'”. In addition to the assessment of errors, the mock

%)
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community can be utilized in 16S rRNA window selection, to determine which variable
regions most accurately describes its composition'>’. Most recently, a method was
developed, termed Low Error Amplicon Sequencing (LEA-Seq) that provides multiple
coverage also for single amplicon sequencing. By combining initial linear PCR to generate
individually barcoded amplicons with subsequent exponential PCR an approximately 20-
fold coverage of all amplicons was reached, allowing the generation of robust consensus
sequences’. By sequencing mock communities, LEA-Seq was tested against other existing
16S rRNA gene sequencing methods. Relative to the existing standard approaches, LEA-
Seq produced amplicon sequences with higher precision at lower abundance thresholds (a
cut-off for how many times a read has to be present as percentage of the whole dataset to be
considered valid). At a threshold of > 0.01% of the reads, LEA-Seq enabled a precision
([precision = (true positives)/ (true positives + false positives)], with a true positive being
defined as being 100% identical across 100% of the length of the 16S rRNA gene sequence
of the reference genome) of 0.83 and 0.63 for the V4 and V1-V2 region, respectively,
compared to 0.08 and 0.09 for Illumina Miseq and 454 pyrosequencing for the same region.
This enabled the authors to determine the stability of the human GI microbiome of 37
healthy individuals with higher confidence and higher depth than previously possible with
sequencing.

Table 1. Combinations of sequencing technologies and 16S rRNA gene based variable regions, targeted for human GIT microbiota

profiling. This table is not meant to be exhaustive, but serves to illustrate the variety of methods and regions used for GI
microbiota profiling, based on sequencing of 16S rRNA amplicons.

Technology
Region Sanger sequencing Pyrosequencing Sequencing by synthesis
ABI 3730 454 GS FLX 454 GS FLX [lumina [llumina
V2 36
V3 77
V4 102, 154, 155 102 s 354
V6 36,77, 154, 155
V1-V2 91, 156 1274y
V2-V3 12Ty
V3-V4 12Ty
V4-V5 12Ty
V5-V6 12Ty
V6-V7 12Ty
V7-V8 1274y
V8-V9 12Ty
V1-V3 149-151, 157
V3-V5 91, 150, 151
V6-V9 i
full length 36, 77, 104, 121, 151

*101nt **150nt #paired end
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Phylogenetic Microarrays

Another class of tools that allow for high resolution interrogation of the GI microbiome are
phylogenetic microarrays, such as the High Taxonomic level Fingerprint of the human
intestinal Microbiota Array (HTF-Microbi.Array)'”®, Human Intestinal Tract Chip
(HITChip)", PhyloChip'® and Microbiota Array'®'. They are basically glass surfaces,
each the size of a microscope slide, that are spotted with thousands of covalently linked
DNA probes, complementary to 16S rRNA gene sequences, that can be hybridised with
DNA or RNA. For example, the (HITChip), a 16S rRNA gene tiling array developed at the
Laboratory of Microbiology at Wageningen University, consists of 3,600 18-30nt
oligonucleotide probes that overlap in sets of three, targeting the V1 and V6 region from
1,033 phylotypes selected from more than 16,000 16S rRNA gene sequences identified in
the human GI tract using 98% sequence similarity as threshold for phylotype definition'*’.
These microarrays are hybridized with fragmented full length 16S rRNA, in vitro
transcribed from PCR amplicons. Using the HITChip for comparing phylogenetic profiles
of fecal microbiomes from five young and five elderly adults collected at three time points,
Rajili¢-Stojanovi¢ and colleagues confirmed previous findings that the adult fecal
microbiome is highly individual-specific and relatively stable over time'”. More recently,
the HITChip was used to profile the GI microbiome a range of different populations of
healthy subjects and of patients suffering specific intestinal or more systemic diseases,
including a group of patients with recurrent C. difficile infections who had received an
duodenal infusion of healthy donor feces as an alternative to antibiotic treatment, and
showed a significantly higher resolution of C. difficile-associated diarrhea compared to the
antibiotic treatment group®. After donor-feces infusion, patients displayed an increased
fecal bacterial diversity, similar to that in healthy donors, with an increase in members of
the Bacteroidetes phylum, Clostridium clusters IV and XIVa and a decrease in
Proteobacteria.

The main advantages of phylogenetic microarrays as compared with other methodologies
include (1) ability to profile one sample at a time, which is useful in clinical studies and as a
diagnostic tool; (2) the quantitative nature of the acquired data allowing direct comparison
of relative abundance levels of each OTU between samples with very high reproducibility;
(3) short processing and data acquisition times. However, HITChip analysis comes at
higher or comparable costs compared with next generation sequencing, depending on the
sequencing platform utilized and the resolution required, which is estimated to be the
equivalent of 200.000 250nt FLX pyrosequencing reads per sample (Figure 1)'*°. The
HITChip has been benchmarked to pyrosequencing and showed high concordance for fecal
samples, whereas small intestinal samples showed lower agreement'*> '*°. This brings us to
the main limitation of microarrays; their inability to reveal novel species in any sample,
because the arrays can only detect those sequences for which they contain probes, although
there are probes with higher level specificity, which enable the detection of OTUs that were
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not targeted initially in the design. In addition, the design, use, and analysis of microarrays
is technically demanding and requires extensive testing, validation, and optimization'®,
although it should be noted that this is essentially the same for NGS approaches. In turn,
this extensive validation and high sample compatibility has allowed for a meta-analysis of
1000 phylogenetic microarray datasets'® and a follow up study including >3000 samples is

currently underway.

16S rRNA gene amplicon based approaches

Next Generation sequencing Microarrays
*  Flexible target selection *  Fixed target (HITCHip: V1-V6;
¢ Read N determines depth minimal redundancy)
* Read length & target selection *  Ultra deep* and quantitative
determines resolution *  Very high reproducibility
e Capture new & known phylotypes *  Ability to profile one sample at a time
«  Evolution of sequencing m +  Allows for meta-analysis
. r0’s
technologies -
*  Every change in analysis requires e Captures only known & related
careful validation phylotypes
*  Unfeasible meta-analysis (due to e Comprehensive design and validation
flexibility of target, sequencing requirements
platform and pipeline - selection)

* 2x 100.000 GS FLX reads'”

Figure. 1. Comparison of two 16S rRNA gene amplicon based approaches: microarrays and next- generation sequencing.

GI microbial composition and obesity

While initial germ free mice studies that suggested a role for the GI microbiome in host
energy metabolism were performed from a host perspective'”, a phylum level
compositional shift was associated with the microbiome of obese animals®. This increase
in the relative abundance of Firmicutes and a proportional decrease in the Bacteroidetes
was confirmed in a human dietary intervention study, that showed that weight loss of obese
individuals (BMI>30) was accompanied by an increase in the relative abundance of
Bacteroidetes'*. Further research, involving genetically obese conventional and humanized
gnotobiotic mice and a diet-induced obesity following a “typical” western style diet high in
fat and sugar, corroborated the earlier findings regarding a decrease in relative abundance
of members of the Bacteroidetes phylum in the GI tract of obese animals. Moreover, GI
microbial transplants from obese to germ free animals led to additional weight gain
compared to mice that had received at “lean” microbiome, despite similar food intake. This
fuelled the hypothesis that the obese microbiome possesses an increased capacity for
energy harvest through a higher production of SCFAs, which in combination with their
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signalling capacity to the host, can contribute to the development of an obese phenotype*®
' This body of work demonstrated the potential relationship between GI microbiome
(composition) and host energy harvest and fat storage.

Diet induced obesity in mice

Although the hallmark studies of the Gordon lab demonstrated an association between
obesity and GI tract microbiome composition, Hildebrandt ef al. reported a high fat diet to
cause large alterations in GI microbial composition independent of obesity, which included
the concomitant decrease in Bacteroidetes and increase of Firmicutes but also
Proteobacteria'®. This study used RELMB_knockout mice, which remain comparatively
lean when fed a high fat diet, compared to wild type mice. This was observed both for the
obese and lean genotypes (i.c., in the presence and absence of genes associated to obesity),
indicating that mainly the high-fat diet itself, and not the obese state, accounted for the
observed changes in the gut microbiome. Even more striking are the observations by de Wit
et al., who employed a phylogenetic microarray and reported a similarly high Firmicutes to
Bacteroidetes ratio in the distal intestine of mice fed a high fat diet, but only in animals that
consumed a diet high in saturated fat, as opposed to mono- or polyunsaturated fat. The
primary trigger for these observed compositional differences was likely an overflow of
dietary fat to distal parts of the intestine'®®. Another study confirmed the link between high
fat feeding, rather than genetically induced obesity, and this “obesity associated” microbial
composition in the murine GI tract. Additionally, changes in the proportions of the major
phyla were unrelated to markers of energy harvest (fecal acetate and energy content).
Furthermore, these markers changed over time, which led the authors to conclude that, due
to the possibility of microbial adaptation to diet, time should be an important consideration
in future studies'®’. This also highlights a major shortcoming of the transplantation studies
that showed increased weight gain and fat mass in mice that received an obesity associated
microbiome, as these interventions only lasted for 2 weeks®. Nevertheless, the possibility
that changes in GI microbiome composition, primarily induced by diet, can subsequently
contribute to development and/or progression of metabolic disorders cannot be excluded.
Also, recent evidence has come to light that both diet composition and host adiposity
impact microbiome composition, possibly through leptin (a satiety hormone, associated
with loss of body fat) mediated with regulation of mucus production and/or inflammatory
processes that alter the gut habitat'®.

Microbiome composition and obesity and its associated metabolic disorders, in humans

In contrast to rodent models, human studies employing different methodologies (FISH,
gPCR and sequencing) have largely shown conflicting results. The obesity-associated
decrease in the ratio of Bacteroidetes to Firmicutes (B:F) proposed by Ley et al. has been
extensively reviewed elsewhere'', and it is still controversial as it has been both
confirmed®® '™ ' and refuted '"*'"?. Schwiertz ef al. even reported the opposite trend, i.c.
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an obesity-associated increase in the B:F ratio'”’. More recently, two studies employing

NGS of faecal samples from hundreds of individuals also did not find a significant
correlation between BMI and B:F ratio’” '. Interestingly, Verdam et al. reported a
negative correlation between BMI and B:F ratio, using the HITChip, but they found that
this was particularly characteristic for severely obese individuals with a BMI > 35'™,
Alongside obvious differences in utilized technologies, this inconsistency may partly be
explained by the heterogeneity among human subjects, with respect to their genotype and
lifestyle as well as the specificity of an individual’s microbiome. Furthermore, the
microbiome is exposed to fundamentally different ‘environmental” factors in both an obese
and lean state that go beyond BMI alone, such as the substantial impact of the diet'®*'”* and
host hormonal factors. Moreover, the etiology of obesity and its metabolic complications,
including hyperlipidemia, hypertension, low grade inflammation, glucose intolerance and
diabetes reflect the complex interactions of these multiple genetic, behavioural, and
environmental factors'”’. Lastly, the accuracy of BMI as an indicator for obesity is actually
quite limited'”® and 25% of obese people are in fact regarded as metabolically “healthy”,

i.e. they have normal lipid and glucose metabolism'”’.

Linking GI tract composition directly and exclusively to obesity in humans appears to be
challenging due to a variety of confounding factors that exist within the heterogeneous
human population. This has led to a conceptual shift from treating obesity as a single
phenotype, to the correlation of microbial signatures to distinct or multiple features
associated with the (development of) metabolic syndrome. Furet ef al. employed qPCR to
study the microbiome of morbidly obese individuals who had undergone gastric bypass
surgery, compared to lean controls. They reported the Bacteroides/Prevotella group to be
associated with obesity, but this correlation was highly dependent on caloric intake'”®.
Zhang et al. studied the effects of the same surgical procedure using a sequencing approach
and reported a significant decrease of Firmicutes and proportional increase of Gamma-
Proteobacteria in the post-gastric-bypass individuals that may reflect the combined impact
of the gut alteration caused by the surgical procedure and the consequent changes in food
ingestion and digestion'’". Duncan et al. showed a diet dependent decrease of a group of
bifidobacteria and butyrate producing Firmicutes in obese individuals on a low
carbohydrate weight loss diet'”’. Moreover, Jumpertz et al. investigated the role of the
microbiome as a regulator of nutrient absorption in humans. They tested how GI bacterial
community structure is affected by altering the nutrient load in lean and obese individuals
and whether their microbiome composition was correlated with the efficiency of dietary
energy harvest'”’. They found that the alteration of the nutrient load induced rapid changes
in GI microbiome composition, but more interestingly, they could not detect differences in
bacterial abundance between the lean and obese groups at baseline, which could be because
stool samples were collected after subjects had been on a weight maintaining diet. Their
results on relative over- or underfeeding were also consistent with the association of a
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calorically more-dense, high-fat/high-sugar diet with an increase in the relative abundance
of Firmicutes and a decrease in Bacteroidetes. They attributed the relative changes in the
proportional representation of the major phyla to a higher caloric load; however, they could
not determine whether it was due to the increased total fat in the diet. Taken together, these
observations suggest that diet plays an important role in modulating the GI microbiome and
indicate that dietary variations must be taken into account in human studies'” '**.

Munukka et al. compared the microbiome of overweight women with and without
metabolic disorders using FISH and found members of the Eubacterium/Clostridium
coccoides group to be proportionally higher in the group with metabolic disorders but not in
the non-metabolic disorder and normal weight group'®'. Furthermore, Larsen et al. reported
that the B:F ratio was positively correlated with plasma glucose concentration, yet not with
BMI'®. The role of GI microbial composition and diabetes type 2 has been reviewed by
Greiner and co-authors'®. Until recently no causal relationship had been established
between host glucose homeostasis and GI microbial composition, yet Vrieze et al.
transplanted the faecal microbiome from lean donors to individuals with metabolic
syndrome and increased their insulin sensitivity significantly”. The faecal microbiome of
obese subjects was characterized by lower microbial diversity, higher amounts of
Bacteroidetes, and decreased amounts of Clostridium cluster XIVa as compared with lean
healthy subjects. Allogenic transplant (from two different individuals) showed an increase
in microbial diversity, as well as an increase in faecal butyrate concentrations and the
relative abundance of bacteria related to the butyrate producing Roseburia intestinalis.

Heterogeneity in human populations

Recently, researchers have also attempted to reduce the potentially confounding influences
of human heterogeneity, by studying twins*® '** %5 which have a more similar microbiome
composition than unrelated subjects'®®, or by selecting subjects belonging to a culturally
and genetically homogenous population”’. In an attempt to exclude the influence of
genotypic differences, Tims et al. compared twins discordant for BMI using the
HITChip'*". They reported a positive correlation of the higher BMI twins with the relative
abundance of relatives of Eubacterium ventriosum and Roseburia intestinalis and an
inverse correlation with relatives of Oscillospira guillermondii. When co-occurrence
networks were built, the former two appeared in a network of butyrate producers and the
latter in a network of primary fiber degraders, implicating a role for increased energy
extraction through SCFA production. However, the potential impact of the diet on these
findings was not determined (for instance a higher plant polysaccharide consumption in the
lower BMI groups, being the basis for a higher abundance of primary fiber degraders).'®.
Zupancic et al. used a sequencing approach to study subjects that belong to the old order
Amish sect, which exhibits great uniformity of socioeconomic status and lifestyle and less
genetic heterogeneity compared with the general population. Whereas no correlation was
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observed of obesity and metabolic syndrome traits with B:F ratio, network analysis
revealed 22 bacterial species and 4 OTUs that were significantly correlated with BMI and
several features of the metabolic syndrome. In line with the observations by'** the relative
abundance of Oscillospira guillermondii was inversely correlated with metabolic syndrome
traits. It also played role as a central node in one of the identified microbial networks.
While the majority of correlations were observed between single metabolic traits and taxa,
Lachnobacterium bovis and Anaerotruncus colihominis were inversely correlated with both
high BMI and elevated serum triglycerides. Both species are known to produce short chain
fatty acids as end-products of metabolism'®’, even though it should be noted that this is the
case for many bacteria that are known to inhabit the human GI tract.

Together, these studies show that currently it is still unclear which bacterial groups play a
role in the development of obesity in humans, which might partly be explained by the
heterogeneity in genotype, lifestyle, diet and the complex etiology of obesity and associated
metabolic disorders. Several studies have revealed the diet to be a major factor influencing
GI microbial composition, with nutrient load and dietary fat being strong contributors
towards an increase in Firmicutes and proportional decrease in Bacteroidetes. Furthermore
this decreased B:F ratio seems to be observed particularly for severely overweight
individuals. Nevertheless, bacteria thought to be involved in SCFA, and mainly butyrate,
production keep emerging differential in most correlative studies.

The subject of a gut microbial composition signature associated with obesity remains
controversial, not only because of a number of confounding factors, but also due to the
observation that it is still unclear how variation in the composition of species in the
microbiome affects the metabolic activity of the community and consequently the host, as
we are still hindered by our limited ability to infer organismal function from 16S rRNA
gene sequences. Nonetheless, recently a computational approach to predict the functional
composition of a metagenome using marker gene data and a database of reference genomes
has been developed. PICRUSt (phylogenetic investigation of communities by
reconstruction of unobserved states) uses an ancestral-state reconstruction algorithm to
predict which gene families are present and then combines gene families to estimate the
composite metagenome'®’. It has been validated by recapturing key findings from the
Human Microbiome Project’ by accurately predicting the abundance of gene families, by
using 16S rRNA gene information. Their results demonstrate that phylogeny and function
are sufficiently linked that this 'predictive metagenomic' approach could provide useful
insights in the absence of comprehensive metagenome sequencing. So, 16S rRNA based
approaches are especially useful for describing the microbial diversity in the human GI tract
to find the potential links between microbes and a certain human health status, and recently
also for inferring a synthetic metagenome. But to comprehensively determine its metabolic
output and thus the potential impact on host metabolism requires the help of molecular
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tools that reveal the function of the GI microbiome, including metagenomics and other
functional omics tools, which will be discussed below.

Defining the genetic potential of the community: metagenomics

Metagenomics is defined as the study of collective genomes from an ecosystem that can be
used to study the phylogenetic, physiological and functional properties of microbial
communities'®®. Initial studies involved the generation of large-insert clone-libraries that
can be used for sequencing of clones of interest as well as function-driven analysis'®*.
Sequence-driven analyses are basically performed to obtain a snapshot of the genetic
diversity of an ecosystem, while function-driven analyses are done to screen the library for
novel enzymes, such as carbohydrate active enzymes, which are of particular interest in GI
tract research since SCFA production through carbohydrate fermentation is a well know
way of the microbiome to supply the host with additional calories'.

demonstrated that random shotgun sequencing of a small insert plasmid library prepared

Tyson et al.

from environmental DNA can be used to reconstruct a simple microbial community,
providing a model for the analysis of other communities that are more complex'®’. Using
this approach Gill ef al. started to define the gene content and encoded functional attributes
of the fecal microbiome of two healthy human adults'®'. A year later, Kurokawa et al.
published a comparative metagenomics study that involved 13 fecal samples from adults
and unweaned infants'**. This led to the realization that in fact humans can be viewed as a
super-organism whose own metabolism is complemented by microbial attributes. Shotgun
sequencing from metagenomic clone libraries has been largely replaced by cheaper, high-
throughput shotgun sequencing on next generation technology machines, generally
producing short reads. This strategy was employed by Qin et al., who in 2010 mapped the
human gastrointestinal metagenome, establishing a human gut microbial gene catalogue
that contained 3.3 million non-redundant genes and defined and described the minimal gut
metagenome (genes involved in the homeostasis of the whole ecosystem, encoded across
many species) and the minimal gut bacterial genome (the functions necessary for a
bacterium to thrive in a gut context)’. At a sequencing depth of on average 4.5 Gb per
sample, they found that almost 40% of the genes from each individual are shared with at
least half of the individuals of the cohort, which comprised of 124 European subjects. The
size of this core exceeded by several-fold that of the core metagenome reported
previously™. However, using NGS to increase the amount of data to billions of bases per
sample still shows limitations in generating high-quality de novo assemblies, as Qin et al.
only managed to assemble 42.7% of the short reads into 6.58 million contigs of >500bp.
The challenge and usefulness of metagenomic assembly is unlikely to be solely addressed
by increasing the depth of coverage, and improvements will depend on both the nature and
the quality of the sequence data used as input, as well as the quantity and quality of
sequenced reference genomes. At the time Qin et al. were only able to align 48.8% of the
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reads to 194 publically available human gut bacterial genomes. However, this number is
increasing rapidly with a reported 178 sequenced genomes in 2010' to 800 in 2012°",
which should allow for a more comprehensive view of gut microbial community functional
capacity.

Metagenomics and obesity and its associated metabolic disorders

Turnbaugh ef al. combined 16S rRNA based profiling and a metagenomics approach on a
small subset of samples, to study the human microbiome in twins concordant for leanness
or obesity. Despite discovering a very high level of functional similarity, (pairwise
comparisons of metabolic profiles revealed an average R” value of 0.97), they identified
non-core associated functions that were enriched or depleted in the microbiome of obese
subjects®®. Furthermore, taxonomic classification of metagenome reads confirmed the
observed 16S rRNA gene-based compositional differences with respect to lower relative
abundance of Bacteroidetes and higher relative abundance of Firmicutes and Actinobacteria
in obese subjects. For example, the obese human gut microbiome was enriched for genes
encoding phosphotransferase systems (PTS) involved in microbial processing of
carbohydrates, pointing again in the direction of increased energy harvest.

Shotgun sequencing of community DNA may capture functional differences in metabolic
potential, yet comparative metagenomic analysis of the human microbiome has revealed
high functional uniformity across samples®® °' and only identified a small set of microbial
genes or pathways that appear to be associated with host obesity*® '%. However, Greenblum
et al. employed a metagenomic systems biology approach, generating community level
metabolic networks from the fecal microbiome of 124 unrelated individuals and 6
monozygotic twin pairs'**. By placing variations in gene abundance in the context of these
networks, they showed that genes associated with an obese phenotype tended to be located
on the outside edge of these metabolic networks suggesting that they encode metabolic
steps that are relatively remote from the core of the network. The most remote enzymes
represent either the microbiome’s first metabolic steps (i.e. its substrate is not produced by
any another enzyme in the microbiome) or the last (i.e. enzymes that produce metabolites
that are not utilized by any other enzyme in the microbiome). These enzymes are most
likely to use or produce metabolites that characterize the gut environment, representing an
interface between host and microbe metabolism. Among the differentially identified genes
were again those encoding PTSs, but also genes involved in xenobiotic metabolism (choline
and p-cresol) and the production of N,. The authors further demonstrated that obese
microbiomes are less modular (a specific network-level feature) than those of healthy
adults, typically seen as an adaptation to low-diversity environments (i.e. an environment
with lower microbial diversity as reported by’®. Such a systems biology approach gives the
opportunity to study higher order modes of deviation from a normal microbiome. Qin et al.
performed a standard (meta) genome-wide association study, which usually is applied to the
genome of the host. However, they applied it to our “other” genome in the GI tract, based
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on deep shotgun sequencing of the gut microbial DNA from 345 Chinese individuals and
identified and validated approximately 50 highly relevant type-2-diabetes-associated (T2D)
markers. Although T2D was a significant factor for explaining the variation in the
examined gut microbial samples, again, only a small fraction (3.8%) of the gut microbial
genes (at the relative abundance level) were associated with T2D in an individual. In
general T2D-enriched functional markers were typically involved in the Kyoto
Encyclopedia of Genes and Genomes (KEGQG) categories of membrane transport. At the
module or pathway level, the gut microbiota of T2D patients showed enrichment of
functions related to membrane transport of sugars, xenobiotics degradation and metabolism,
and functions relating to gut oxidative stress responses, which are consistent with the
findings by'™". In contrast, genes associated with butyrate biosynthesis were decreased in
relative abundance, which indicates a decline in butyrate-producing bacteria'®. These data
raises the possibility that there is a ‘functional dysbiosis’, rather than there being a specific
microbial species that has a direct association with T2D pathophysiology.

Recently Le Chatelier et al. sequenced the metagenomes of 292 Danish individuals and
reported a bimodal distribution of bacterial genes in the obese individuals'*®. The low and
high gene count groups (LGC, HGC) contained on average 380.000 and 640.000 genes,
respectively, in line with lower or higher microbial richness as measured by HITChip
analysis. Based on reference genome mapping of the metagenome reads, at the phylum
level, LGC individuals were characterized by a higher relative abundance of Proteobacteria
and Bacteroidetes, whereas the fecal microbiome of HGC individuals was enriched with
Verrucomicrobia, Actinobacteria and Euryarchaeota. At the species level, HGC individuals
showed higher prevalence of presumed anti-inflammatory species, such as
Faecalibacterium prausnitzii, whereas LGC subjects had higher relative abundance of
potentially pro-inflammatory Bacteroides and Ruminococcus gnavus. Nevertheless the vast
majority (90%) of the 120,723 genes that were significantly differing in relative abundance
between the LGC and HGC gene individuals could not be assigned to a known bacterial
genome and these genes were clustered into species like groups using a gene abundance-
based approach. The taxonomy based conclusions were in concordance with the function
analysis. LGC individuals had a higher abundance of peroxidase, catalase and TCA
modules, suggesting increased capacity to handle exposure to oxygen/oxidative stress and
they showed a reduced hydrogen and methane production potential, combined with
increased hydrogen sulfide formation potential. In contrast, HGC individuals were
characterized by a potentially increased production of organic acids—including lactate,
propionate and butyrate—combined with a higher hydrogen production potential. Overall,
this suggests that LGC individuals harbor an inflammation-associated microbiome. The
authors tested significance of correlations of HGC and LGC individuals with several
obesity associated anthropometric and biochemical variables, such as, BMI, weight, whole
body fat, insulin resistance, hyperinsulinaemia, hyperlipidaemia, decreased HDL-

45

p



Chapter 2

cholesterol and markers of low grade inflammation and interestingly, all but weight and
BMI were significantly correlated with gene count. Additionally, when they compared
metagenomes between lean (BMI<25) and obese (BMI>30) only ~16.000 significantly
different genes were found, indicating that the GI tract of obese and lean individuals differs
less than that of the LGC and HGC individuals'”®. This again indicates that BMI is
probably not an appropriate indicator for obesity. An accompanying paper demonstrated the
same bi-modal gene richness distribution within a group of 11 overweight and 38 obese
individuals that underwent a diet-induced weight-loss and weight-stabilization
intervention'”’. Gene richness increased significantly in the LGC individuals and even
remained higher than at baseline after the weight stabilization phase. This increase in gene
richness was associated with an improvement of the metabolic status. Interestingly,
increased consumption of fruit and vegetables and the decreased consumption of fishery
products were associated with high bacterial richness at baseline and, although gene
richness was not fully restored after the short-term intervention, these findings support the
concept of the reported link between long term dietary habits and the structure of the gut
microbiome'* '®. Tt also suggests that a permanent change of the microbiome may be
achieved by appropriate diet. Under the assumption that LGC individuals are less
healthy'®, this implies that the dietary changes might improve markers for obesity related
metabolic disorders, either, through improvement of host parameters such as weight and
whole body fat, modulation of the microbiome, or quite plausible, a combination of both.
Nevertheless, microbial richness might have predictive value in the efficacy of dietary
treatments.

Ferrer et al. reported concordance with some features outlined in the preceding paragraphs,
when groups are stratified by BMI, such as a high functional similarity of the obese and
lean microbiome in two subjects'”® and a skewed B:F ratio. However, they also performed a
simultaneous metaproteomics analysis, which provided evidence that the actual functional
contribution of members of the Bacteroidetes and Firmicutes phyla was similar in both the
“lean” and “obese” subject. This suggests that only taxonomic profiling and metagenomics
might lead to an incomplete picture, because presence does not equal activity. So, although
the ‘functional dysbiosis’ hypothesis by Qin et al and the LGC and HGC groups reported
by Le Chatelier et al. (which was supported by both composition and metagenomics data)
are showing that we are unravelling the dynamics and mechanisms underlying the role of
the microbiome in obesity and its related metabolic complications, the observations by
Ferrer et al. highlight the importance of a multiple perspectives approach through
integration of compositional, metagenomic, but also functional analyses to identify the
actual players. These functional tools will be addressed in the following chapter.
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Community activity: what are they doing and who’s doing what?

As metagenomics can be considered as cataloguing genes, other meta-omics approaches,
such as metatranscriptomics and metaproteomics which, respectively, use RNA and
proteins as targets, are better suited to gain insight into the activity and functionality of the
microbes in an ecosystem.

Metatranscriptomics

Environmental metatranscriptomics retrieves environmental mRNAs from a microbial
ecosystem to assess which genes are expressed in that community at a given point in space
and time. In addition, phylogenetic profiling of the mRNA-derived sequences may reveal
the actual mechanisms by which individual members impact on the intestinal ecosystem'®’.
The diversity of the microbiome has been the subject of many metagenomic studies but
only a few have focused on the in situ activity of the microbiome in the human intestine.
Initially, whole genome cDNA microarrays were used to study the activity of specific
species in different GI ecosystems. For example Mahowald ef al. performed whole-genome
transcriptional analysis of colonic RNA from a simplified microbiome model in germ free
mice, consisting of two species from the Firmicutes (Eubacterium rectale) and
Bacteroidetes (Bacteroides thetaiotaomicon)™. They found that B. thetaiotaomicron
adapted to the presence of E. rectale by up-regulating expression of a variety of
polysaccharide utilization loci encoding numerous glycoside hydrolases, and by signalling
to the host to produce mucosal glycans that B. thetaiotaomicon, but not E. rectale, can
access. In turn, E. rectale was shown to adapt to B. thetaiotaomicron by decreasing
production of its own glycan-degrading enzymes, increasing expression of selected amino
acid and sugar transporters and facilitating glycolysis by reducing levels of NADH, partly
via generation of butyrate from acetate, which in turn is used by the gut epithelium. This
experiments elegantly illustrated niche specialization and functional redundancy of

different members of the GI tract microbiome.

In another study, a comparative metatranscriptome profiling study of the fecal microbiome
using the fingerprinting method: complementary DNA amplified fragment length
polymorphism (cDNA-AFLP) revealed highly divergent expression profiles between two
healthy subjects with considerable fluctuations in time. Genes encoding proteins involved
in carbohydrate metabolism were being dominantly expressed®”'. Recently, the fecal
metatranscriptome of monozygotic twin pairs was analyzed by next generation sequencing
of RNA (RNA-seq) and metagenomics, revealing a higher relative expression, compared to
the metagenomics data, of genes from KEGG pathways involved in carbohydrate
metabolism, and vitamin metabolism/biosynthesis. Taxonomic mapping at genus level also
revealed a two to three-fold higher relative expression, by members of the genera
Parabacteroides, Bacteroides, Alistipes, Blautia, Methanobrevibacter and Coprococcus
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and a lower relative expression of Bifidobacterium (10-fold), Eubacterium (nine-fold),
Collinsella and Dorea (five-fold)'®.

Although metatranscriptome analysis is a powerful tool to determine gene expression,
studies are faced with technical challenges, including the low recovery rates of high quality
mRNA from environmental samples, the need for quenching procedures due to the short
half-life times of microbial mRNA, and separation of mRNA from other RNA species''”
2 Nonetheless, the advent of RNA sequencing by ultrahigh throughput NGS technologies
has mitigated some of the technical issues by the sheer number of reads generated.
Unfortunately, mRNA transcripts are far less stable than the actual produced proteins, and
hence they do not necessarily represent their microbial function. Nonetheless, instantaneous
inventories of mRNA pools are highly informative about ongoing ecologically relevant
processes and fluctuations. However, only replicated, manipulative experiments will fully
leverage the value of metatranscriptomes. That is, to reveal the microbes that perceive a

specific environmental change and the metabolic pathways they invoke to respond to it*.

Such studies in humans would be faced with several challenges such as impracticalities
associated with temporal and/or spatial sampling or instantaneous quenching of freshly
voided fecal samples. The use of effluent from ileostomists (subjects without a colon),
greatly reduces the aforementioned problems and has been employed by Leimena ef al. to
validate an RNA-seq metatranscriptome analysis pipeline’”* and Zoetendal et al. to deduce
an ecological model of the microbiome composition and function in the small intestine by
combining several complementary culture independent approaches. They identified
functions, such as PTSs, that are overrepresented in the small intestine, compared to fecal
metagenomes. Moreover, an RNA-seq based metatranscriptome analysis supported high
level in-situ expression of genes encoding PTSs and carbohydrate active enzymes. Overall,
these findings suggest that rapid uptake and fermentation of available carbohydrates
contributes to maintaining the microbiome in the human small intestine.

Another highly suitable platform for replicate gastrointestinal metatranscriptome analysis
include dynamic computer controlled models that mimic the human GI tract, as they are
highly stable, lack host feedback loops that could interfere with replicates, facilitate
accessibility and temporal and spatial sampling®®, which might be crucial as mRNA levels
are naturally fluctuating.

Although no studies have been performed targeting the metatranscriptome of lean and
obese individuals, the high level expression of PTS-encoding genes in the small intestine,
an environment where simple sugar uptake is paramount, the enrichment of the same genes
in metagenomic datasets from the GI tract of obese individuals and/or type 2 diabetes
patients'”* ' might indicate a higher quantity of polysaccharides reaching the large
intestine of obese patients through the diet. Nevertheless, validating this through an mRNA
bases functional analysis would undoubtedly be challenging as fecal metatranscriptomics
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are still faced with a host of technical challenges. However, technologies to study the fecal
metaproteome are maturing as outlined in the following chapter, and could provide a useful
alternative to know what the microbes are doing.

Metaproteomics

Metaproteomics is defined as the large-scale characterization of the entire protein
complement of an environment, at a given point in time*”, and it holds several benefits
over metatranscriptomic approaches. Proteins are the actual catalysts of biochemical
reactions and, as the half-life a typical bacterial protein is about two orders of magnitude
longer than that of mRNA, most proteins persist in a bacterial cell long after mRNAs that
encoded them have been degraded. Therefore mRNA transcripts do not necessarily
represent the microbial function which is ultimately mediated by proteins®”. Hence,
proteome-based analyses can be expected to eventually provide a better and more accurate
view of the functionality of the intestinal microbiome, especially when fecal samples are

used as proxy to describe microbiota activity.

Initial metaproteomics analysis of fecal samples employed two-dimensional gel
electrophoresis to highlight the temporal development of gut microbial proteins during the
first days of infant life’”. However, current standard non-gel-based metaproteomics
experiments typically comprise of four basic steps: (1) sample preparation including protein
extraction, purification, and concentration; (2) protein denaturation and reduction; (3)
protein (or peptide) separation, enzymatic digestion, and mass spectrometry (MS) analysis;
and (4) protein identification based on the obtained MS and/or liquid chromatography—
MS/MS data®®’. Common high-throughput spectral interpretation algorithms use peptide
spectrum matching to link the raw data obtained from a mass spectrometer to large listings
of peptides that are possibly represented in the data. The generation of theoretical spectra
from peptides present in the database and matching them with the obtained data forms the
basis of these algorithms®”. In order to properly identify the spectra, one needs to know
very accurately which peptides one can expect. However, the complex gut microbial
proteome is far from defined. One method to overcome this problem is to exploit the
current developments in metagenomics. Verberkmoes et al. performed the first large-scale
investigation of the human microbial metaproteome using this approach, revealing highly
abundant proteins inOvolved in translation and carbohydrate and energy metabolism>”.
Another interesting observation was a clear discrepancy in the distribution of clusters of
orthologous groups (COG) categories between the metaproteome and the metagenome,
emphasizing the advantages of using a metaproteomic, over a metagenomic approach,
although it has to be noted that the metagenome and metaproteome were from different
individuals®”. Although metaproteomics still suffers from the limited coverage of the
present databases and a potentially high false discovery rate, the catalogue of genes from
intestinal origin is rapidly increasing, and recently an iterative workflow based on a
synthetic metaproteome was developed. It improved the number of identified peptides by

49



Chapter 2

two fold, at a false discovery rate of only 1%'°. This highly dynamic workflow allows
capitalizing on the developing metagenomic databases and was used to study the
composition and temporal stability of the intestinal metaproteome from 3 individuals,
revealing a stable common functional core that is mainly involved in carbohydrate transport

and degradation®"!

The identified metaproteome can also be used to link phylogeny to function in situ, by
focusing on the proteome of phylogenetically deeply rooted microbial taxa, as these stand
out in the blast analyses. An example are Akkermansia muciniphila-like bacteria which are
the only known intestinal representative of the deeply rooted Verrucomicrobia and capable
of using mucin as carbon and nitrogen source’'>. An analysis of proteins assigned to A.
muciniphila from the metaproteome of a single subject revealed a specific COG distribution
of the peptides. Apart from the obvious housekeeping functions, the largest COG groups
included proteins predicted to be involved in carbohydrate transport and metabolism as well
as amino acid transport and metabolism. As these proteins include various mucinases, it
testifies for predicted activity and function of A. muciniphila-like bacteria in the intestinal
tract.

Ferrer et al. reported the first and so far only comparative metagenomic and metaproteomic
investigation of GI tract microbial communities in fecal samples taken from an obese and
lean adolescent'®. The “lean” and “obese” metagenomes were assigned to COG protein
families and KEGG pathways, yet neither profile exhibited prominent overall differences.
They analyzed the metaproteome and, although the identified proteins only captured a small
portion of the predicted coding capacity of the intestinal microbiome, the majority of the
spectra could be assigned to a taxonomic annotation at phylum level, based on highly
similar homologues, allowing them to evaluate the differences between the contributions of
particular groups of organisms and identify metabolically active members. This led to some
remarkable observations. For example, proteins from the ‘lean’ sample were mainly
assigned to Bacteroidetes (81%), whereas this phylum represented only about 20% (based
on 16S rRNA genes) of the total community, followed by proteins assigned to Firmicutes
(12%) and, to a minor extent, Actinobacteria and Proteobacteria (approximately 3% in
total). In contrast, in the ‘obese’ sample the major taxon accounting for observed proteins
was the Firmicutes phylum (56%) in agreement with its dominance in the total bacteria
(94% 16S rRNA gene). In turn, the Bacteroidetes accounted for only 3.2% of the total
community, yet their contribution to the total protein pool was 42% in the obese subject.
Based on this data, the authors suggested that minor bacterial taxa may play a significant
active role in overall GI metabolism in ‘lean’ and ‘obese’ individuals, with Bacteroidetes
members possibly playing a major active role in both ‘lean’ (rRNA gene/protein abundance
ratio of 1:4) and ‘obese’ (rRNA gene/protein abundance ratio of 1:13) GI tracts'®.
Conversely, this high Bacteroidetes activity was not confirmed by Kolmeder et al. who
reported that the majority of assigned proteins (60%) belonged to the phylum Firmicutes,
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which had an average abundance of 86% as based on 16S rRNA gene targeted microarray
analysis. In contrast, the high proportion (33%) of peptides from Actinobacteria differed
from the phylogenetic analysis (only 2%)*'". The relative share of Bacteroidetes was lower
in the peptide (6%) than in 16S rRNA data (11%). About 0.2% of the peptides with at least
a phylum assignment could be attributed to the Proteobacteria, which was approximately
10-fold lower than their abundance (2%). So, although the compositional data was obtained
using very different approaches, (clone libraries and a phylogenetic microarray
respectively), using different protein extraction protocols (which could offer potential
explanations for the major differences found between both studies) and employing only a
very small number of samples, these studies provide functional evidence that variable
combinations of species, with a relatively stable community gene repertoire, could
presumptively fulfil overlapping and/or complementary functional roles required by the
host. In this scenario minor bacterial taxa can still be significantly active contributors.

Metaproteomics compared to other functional genomics approaches such as
metatranscriptomics has the advantage that actual and stable gene products can be studied.
Although metaproteomic approaches in the human gastrointestinal microbiome field are
faced with several challenges and therefore, are still in a pioneering phase, they promise to
be increasingly comprehensive because of the exponential progress in the generation of
relevant genomic and metagenomic datasets joined with recent advances in the analysis
protocol®'". This has been recently reviewed by Kolmeder et al.?".

Conclusions and future prospects

Currently it is still unclear which bacterial groups play a role in the development of obesity,
in humans. This might partly be explained by the heterogeneity in, genotype, lifestyle, diet
and the complex etiology of Obesity and its Associated Metabolic Disorders (OAMD).
Also, the use of different target-groups/organisms between qPCR and FISH based studies in
the past, might have blurred the subject somewhat. Moreover, several studies have revealed
the diet to be a major factor influencing GI microbial composition, which has been shown
to skew the composition towards a hypothesized obesogenic microbiome (high Firmicutes,
low Bacteroidetes), independent of obesity mainly in mice'®"", but also humans'”. A
recent study in rats actually implies bile acids, the secretion of which is enhanced to
facilitate lipid digestion, as a factor that modulates the GI microbial composition towards
the above-mentioned proposed obesogenic microbiome'. Although the debate on a
correlation between the B:F ratio and BMI is still ongoing, it has been suggested that this
correlation is particularly observed in severely obese individuals (BMI>35'"*) as are the
overweight subjects in the initial publication, by Ley ef al. that proposed this phylum-wide
shift, and whose subjects exhibited BMIs between 30 and 43'*.
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Nevertheless, recent research on this matter has shown a conceptual shift, from stratifying
lean and obese subjects based on BMI, which is actually a very poor marker for OAMD'"®
77 to selecting categories based on both anthropometric (BMI, weight, total body fat) and
biochemical variables (insulin resistance, hyperinsulinaemia, hyperlipidaemia, decreased
HDL-cholesterol and markers of low grade inflammation). The results have been promising
and an OAMD associated microbiome now seems to be characterized by a lower microbial
diversity’® *> '™ or gene/species richness'** '* "7 (the latter being confirmed by both
metagenomics and phylogenetic microarray analysis) and an increased abundance of
potential pro-inflammatory species, such as members of the Proteobacteria phylum and the
genus Bacteroides’ '™ '°. Overall, whereas comparative metagenomic analysis of OAMD
and healthy individuals has revealed high functional uniformity between the two groups’®
106, 194-196 " the OAMD associated microbiome has been shown to be enriched for genes

194, 1 L]
’ 95, xenobiotics
195,

encoding proteins involved in membrane transport of sugars’®
degradation and metabolism'** ', and functions related to gut oxidative stress responses
"% and in contrast, decreased butyrate biosynthesis'”’. In turn, a potentially increased
production of organic acids, including lactate, propionate and butyrate, was shown for the
High Gene Count group (associated with a healthy phenotype), proposed by Le Chatelier et

196
al.”™.

Now that correlative studies of the GI tract microbiome with OAMD are focusing on more
homogenous subpopulations, and technological advances have allowed for very deep
interrogation of the GI tract microbiome, with many more subjects than previously
possible, a more consistent picture seems to emerge. All in all, the results from 16S rRNA
gene targeted compositional analyses, metagenome-based profiling through reference
genome mapping and function analysis of metagenomic data, suggest that an OAMD
associated microbiome can be characterized by a potential pro-inflammatory composition,
with less potential for the production of SCFAs and butyrate in particular. Although this
link between SCFA producing species has been proposed in many compositional studies,
coupling 16S rRNA based data to actual microbial function is difficult due to the functional
overlap in metabolism between different groups of microorganisms. Together with the fact
that a very large fraction of the reads in metagenomic datasets are still unassignable to a
known genome, the issue of actual biomarker organisms is bound to remain controversial.
So, for a more thorough understanding of the potential impact of these unknown species on
host metabolism, databases with a better coverage are needed, which is currently being
facilitated by the completion of ongoing reference genome sequencing projects for GI-
associated bacterial species.

Although the aforementioned features of an OAMD associated microbiome illustrate the
potential of a consensus on this paradigm, they remain correlative and not causative. This is
highlighted by observations from the scarce functional analyses that investigated the actual
metabolically active members of the fecal microbiome. These demonstrate that minor
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bacterial taxa can still be significantly active contributors and vice versa, creating
awareness that compositional profiling and metagenomics studies might not provide the full
picture and even though it remains outside the scope of this review, metabolomics
comprises another complementary tool that could be used to validate metabolic pathway-
based predictions’® ' 2! 2% 216 Therefore, to gain more insight in the dynamics and
mechanisms underlying the role of the microbiome in the maintenance or development of
OAMD and to study causation as well as correlation, several factors are of paramount
importance: 1) a multi-perspectives approach that targets both composition and function to
reveal the actual active players, and 2) well defined human cohorts, followed
longitudinally, to reduce or control for the impact of the various confounding factors that
have been shown to affect GI microbial composition, such as diet.
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Abstract

Objective: To examine the association between intestinal microbiota composition and body
weight in children at school age.

Methods: Within the KOALA Birth Cohort Study faecal samples were collected, and
height and weight were measured at age 6-7 years. Faecal microbiota composition of 295
children was determined using the Human Intestinal Tract Chip. Elastic net was used to
select genus-like bacterial groups (amongst a total of 130) related to anthropometric
outcomes (age- and sex- standardized weight and BMI z-scores, overweight defined as
BMI>85th percentile). Multiple linear and logistic regression were used to associate
selected bacterial groups with anthropometric outcomes while adjusting for confounders.

Results: Prevotella melaninogenica et rel., Prevotella oralis et rel., Dialister and
uncultured Clostridiales II (UCII) accounted for 26.1% of the variation in microbiota
composition. The following bacterial groups were inversely associated with anthropometric
outcomes: Akkermansia (p=0.030 for BMI; p=0.009 for weight); Sutterella wadsworthia et
rel. (p=0.008 for BMI; p=0.038 for overweight); Bryantella formatexigens et rel. (p=0.050
for weight; p=0.027 for overweight), and Burkholderia (p=0.017 for weight). Streptococcus
bovis et rel. was positively associated with overweight (p=0.013). Among bimodal bacterial
groups, high abundance of UCII was inversely associated with all three outcomes (adjp -
0.22; 95%CI -0.42 to -0.02 for BMI and weight; adjOR 0.28; 95%CI 0.10 to 0.79 for
overweight). High abundances of Prevotella melanogenica et rel. and Prevotella oralis et
rel. were inversely associated with overweight (adjOR 0.21; 95%CI 0.07 to 0.68, and
adjOR 0.20; 95%CI 0.06 to 0.64, respectively). Microbial diversity and richness, and
Bacteroidetes:Firmicutes ratio were not significantly associated with any of the outcomes.

Conclusions: In the largest population-based study on childhood gut microbiota and body
weight so far, we found both new and previously identified bacterial groups to be either
positively or negatively associated with overweight. Further research should elucidate their
role in energy metabolism.
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Abbreviations
HITChip Human Intestinal Tract Chip

BLAST Basic Local Alignment Search Tool
BMI Body Mass Index

CI Confidence Interval

SD Standard deviation

qPCR quantitative Polymerase Chain Reaction
OR Odds ratio

AdjB Adjusted regression coefficient
Introduction

The worldwide prevalence of childhood overweight has been growing at an alarming rate
during the past decades. Overweight children are highly prone to become overweight adults
and are at high risk of developing comorbidities such as cardiovascular diseases, type 2
diabetes, stroke, metabolic syndrome, several types of cancer, and osteoarthritis*'’. As such,
the prevention and treatment of childhood overweight remains an important public health
goal.

While excessive energy intake and insufficient physical activity are the main drivers of
childhood overweight and obesity, recent research has suggested that other factors such as
the gut microbiota may also be involved. The gut microbiota is highly diverse in
composition and plays an important role in human physiology, metabolism, nutrition and
immune function” '*'. Evidence from human and animal studies suggests that the gut
microbiota may contribute to the development of overweight via mechanisms involving

218 and the activation of innate

increased energy harvest,* regulation of host metabolism,
immunity®'” *°. In humans, obesity has been associated with a reduced Bacteroidetes to
Firmicutes (B:F) ratio in some studies,’® '™ '"* 2! whereas others reported the opposite'”"
22223 or no association at all'™® ' #*2%° Agsociations between specific bacteria (e.g.
Bacteroides  fragilis,”*’  Bifidobacterium spp, Staphylococcus —spp,”™
muciniphila®® and Faecalibacterium prausnitzii)>" or Archaea (e.g. Methanobrevibacter

smithii)”" and obesity in humans have also been reported, although the identified microbial

Akkermansia

groups vary greatly between studies. Furthermore, a lower gut microbial species and gene
richness and diversity in overweight as compared to normal weight subjects has been
shown in several but not all studies®® '* 1622,

These inconsistent findings might be attributable to the use of miscellaneous methods to
assess the gut microbiota, often enumerating specific taxa rather than using broad 16S
rRNA gene surveys or metagenomics. Moreover, studies vary greatly in the populations
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considered, their designs, and the degree of control for potential confounding factors such
as lifestyle and diet. In human observational studies, carefully controlled data analysis is
essential?. Perturbations in microbial diversity and community structure in adults with
overweight and obesity may be partly due to long-term dietary habits or physiological
changes in these subjects'”®. As such, exploring the association between the gut microbiota
and variation in BMI and weight in early life, prior to or close to the onset of overweight,
might provide additional insights. We therefore aimed to investigate the relation between
gut microbiota composition and body weight in a group of 295 well-characterized school-
aged children.

Material and methods

Subjects and study design

The current study is conducted within the context of the KOALA Birth Cohort Study in the
Netherlands. The design of the KOALA study has been described in detail elsewhere™’.
Briefly, a total of 2834 pregnant women were recruited, at 34 weeks of gestation, from
October 2000 until December 2002. Healthy pregnant women with a conventional lifestyle
(N=2343) were recruited from an on-going cohort study on the aetiology of pregnancy-
related pelvic girdle pain in the Netherlands™*. To enhance the contrast in lifestyle
characteristics, an additional 491 pregnant women with alternative lifestyles with regards to
dietary habits (organic food choice), child rearing practices, vaccination schemes and/or use
of antibiotics, were recruited through organic food shops, anthroposophist doctors and

. . . . . 2
midwives, Steiner schools and dedicated magazines™>.

A subgroup of 1,204 parents was asked for consent for a home visit for anthropometric
measurements and to collect a single faecal sample from the child at the age of 6-7 years.
This subgroup comprised of participants who had home visits for blood collection from the
mother during pregnancy and/or the child at age 2 years, and who were still active
participants (Supplementary Figure 1). Faecal samples were obtained for n=669 children.
Exclusion criteria for the current study were: prematurity (infants born before 37 weeks of
gestation), twins, abnormalities linked to growth (such as Down’s syndrome, Turner
syndrome, Fallot’s tetralogy, multiple disabilities, and cystic fibrosis), faccal samples with
transport times exceeding 3 days, or lack of data on dietary intake. A total of 295 children
were finally included in the present study; all being Caucasians. Written informed consent
was given by all parents, and the study was approved by the Medical Ethics Committee of
Maastricht University and the National Ethical Committee for Medical Research.
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Data collection and outcome measures

Faecal collection

Faecal samples of the children were collected by the parents at home upon receipt of a
faeces tube with a spoon attached to the lid (Sarstedt, Niirmbrecht, Germany) together with
instructions for collection. A faecal sample was collected and sent to the laboratory by mail.
After arrival, samples were 10-fold diluted in peptone/water (Oxoid CM0009) containing
20% (vol/vol) glycerol (Merck, Darmstadt, Germany), and stored at -80°C until further
analysis.

Faecal DNA isolation and microbiota profiling

DNA isolation from faecal samples has been described in detail elsewhere'”. Briefly, DNA
was isolated using a combination of Repeated-Bead-Beating (RBB) and column
purification. DNA concentration and purity were assessed with a Nanodrop 1000

spectrophotometer (Thermo Fisher Scientific, Wilmington, USA). DNA was then stored at
-20°C pending microbial analysis, which was performed using a previously described and
benchmarked'*> '* #** custom made, phylogenetic microarray, the Human Intestinal Tract

Chip (HITChip)'”’. After DNA extraction, the full-length 16S rRNA gene was amplified,
followed by in vitro transcription and labelling of the resultant RNA with Cy3 and Cy5

before hybridization to the array'”. Each sample was hybridized at least twice to ensure
reproducibility, and raw signal intensities were normalised as previously described”. For
the data analysis, hybridization signals were summarized to 130 genus-like phylogenetic
groups (>90% 16S rRNA gene sequence similarity) referred to as species and relatives (‘et
rel.’)'*. The log10-transformed signals were used as a proxy for bacterial abundance. B:F
ratio was calculated by dividing total hybridisation signal intensities for Bacteroidetes by
Firmicutes. Diversity of the microbiota was quantified using Shannon’s diversity index
based on non-logarithmic oligo-level signals as implemented by the R package

vegan™®. Probes were counted in each sample to measure richness, by using an 80%
quantile threshold for detection.

Anthropometric outcomes

Height and weight were measured during home visits by trained research assistants at the age
of 6-7 years, with the children wearing only their underwear. Height (in millimetres) was
measured using a portable stadiometer (Leicester height measure) and weight (in grams
rounded off to 100 g) using a digital scale (HE-5, CAS Corp., East Rutherford, NJ, USA).
BMI was calculated as weight divided by height squared. The BMI, weight and height
measurements were then converted into age- and gender-specific z-scores using the children
from the Dutch National Growth Study as the reference population™’. BMI z-scores were used
both as continuous and dichotomous outcomes: without overweight vs. with overweight

(BMI z-score >1.04, corresponding to the 85" percentile)™**.
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Potential confounders

At 14 and 34 weeks of gestation, pregnant women received questionnaires regarding,
amongst others, family size, pre-pregnancy height and weight, and weight gain during
pregnancy. Two weeks after childbirth, data was collected from obstetric reports, and
questionnaires were completed by the mothers to obtain information on gestational age,
birth weight and gender of the child. Food frequency questionnaires (FFQs) were filled out
by the parents to report the dietary habits of their children at the age of 5.0+0.6 years
(meantstandard deviation (SD)). Included confounders are listed in Supplementary Table
1.

Statistical analysis

Characteristics of the study population are presented as mean+=SD for continuous variables,
and proportions for categorical variables. The microbiota profile, summarized into 130
genus-like phylogenetic groups was obtained for the 295 subjects. Using the statistical
software package Canoco 5% redundancy analysis (RDA), a multivariate canonical
ordination analysis method, was performed to determine how much variation in species
composition was explained by the anthropometric outcomes and potential confounders.

Selection of potentially relevant bacterial groups

In order to prevent issues with multi-collinearity and multiple testing when performing
regression analyses with large numbers of determinants, we first selected genus-like bacterial
levels potentially associated with childhood (over)weight using the elastic net regularization
proposed by Zou & Hastie®*’. Elastic net is a method that utilises the ridge (a=0) and lasso
(a=1) penalties to perform both shrinkage and automatic variable selection simultaneously.
It also addresses the problem of multi-collinearity by encouraging a grouping effect, where
strong correlated genus-like bacterial levels are kept in the model. The data was divided at
random into two parts: a training set with 197 observations, and a test set with 98
observations (Figure 1). Model fitting and tuning parameters (A, and s) selection was done on
the training set by performing a 10-fold cross-validation. The first tuning parameter (1) plays
a role in variable selection, whereas the second (s) captures correlated predictors at the same
time. The chosen grid values were: (0, 0.01, 0.1, 1, 10, and 100) for A, and (0 to 1 dividing
on a scale of 0.1) for s as previously suggested®*’. The most parsimonious model was
obtained using the combination of the two tuning parameters corresponding to the smallest
mean-squared prediction error based on the cross-validations performed on the training set.
Validation of the model performance was then performed by comparing the computed
prediction mean squared error (for continuous outcomes) on both the training and test set. In
the case of the binary outcome (overweight (yes/no)) validation of the performance of model
prediction was done using area under the curve.

In addition, we a priori planned to examine the association between bacterial groups that
exhibited a strong bimodal abundance distribution (calculated using potential analysis®*'
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with the early warnings R package®*®) and anthropometric outcomes. These bimodal
bacterial groups were previously described Lahti et al. as potential tipping elements in the
ecosystem,” and might serve as indicators of the community state and its link with
(over)weight. We selected bacterial groups that showed consistent evidence for
multimodality with bootstrap support >68%.

Regression analysis

First we performed unadjusted regression models (further referred to as Model 1) to analyse
the association of each individual selected genus-like bacterial group (as identified by
elastic net), bimodal bacterial groups (tipping elements), microbial richness and diversity,
and B:F ratio, with the outcomes (linear regression for BMI and weight z-scores, logistic
regression for overweight yes/no).

Second, we performed the same analyses while adjusting for potential confounders
considered a priori (Model 2). We investigated whether the association between the
intestinal microbiota composition and outcomes differed between the two different
recruitment channels (alternative and conventional) by including a recruitment group-
exposure interaction term in the models. This interaction was significant only for B:F ratio
with regards to BMI and weight z-scores (data not shown).

Finally, we performed multiple regression models including all selected bacterial groups,
the bimodal bacterial groups, and Archaea (M. smithii (yes/no) and M. stadtmanae (yes/no))
while adjusting for the potential confounders (Model 3). Archaea were added because in
our previous study,”' the presence of Archaea, specifically Methanobrevibacter smithii,
was associated with childhood weight development.

Maternal weight gain during pregnancy was the only confounding variable with >5%
missing values. Multiple imputations were done for this variable to assess whether results
obtained from the imputed data deviated from the non-imputed. This was done using the
Markov chain Monte Carlo (MCMC) method for multiple imputations. Results obtained
from combined imputed datasets (n=10) were comparable with those of the original non-
imputed data, hence final analyses were done without imputation. Analyses were performed
in R V.3.1.3 using the following packages: elastic net (for continuous outcomes) and
glmnet (for binary outcomes), and SAS version 9.3 (SAS Institute, Cary NC). Significance
level was set at <0.05.
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HITChip dataset
N=2935subects with N=130 genus-like bacterial

Training Dataset Testing dataset
N=197 n=98

Elastic net with 10-fold Cross Validation

Selection of genus-like bacterial -
levels associagled with Weight or .| Validate model performance
Height or BMI z-scores, and/or 2| with testing dataset
Overweight at home visit
A
A4 h
Associated with BMI z-score Associated with Weight z-score at Associated with Overweight
at home visit (n=5) home visit (n=19) (ves/no) at home visit (n=9)
Akkermansia Akkermansia Aeromonas
Bacteroides fragilis et rel Bifidobacterinm Akkermansia
Butvrivibrio crossotus el rel Bacteroides vulgatus et rel Bacteroides fragilis et rel
Clostridivm cellulosi et rel Bacteroides intestinalis ¢t rel Brvantella formatexigens et rel
Sutterella wadsworthia et rel Bacteroides fragilis et rel Lactobacillus gasseri et rel
Brvantella formatexigens et rel Lactobacillus plantarum et rel
Burkholderia Streptococeus bovis el rel
Catenibacterium mitsuokai et rel Sutterella wadsworthia et rel
Clostridium leptum et rel uncultured Clostridiales 11"
Dialister”
Eubacterinm hallii et rel
Eubacterium rectale et rel
Eubacterinm ventriosum et rel

Prevotella melaninogenica et rel”
Parabacteroides distasonis et rel
Ruminococeus callidus et rel
Strepiococcus bovis et rel
Sutterella wadsworthia et rel

uncultured Clostridiales 1

Model 1(Unadjusted): respective autcome ~ either onlv: individual bacterial group; bimodal group; vichness; diversitv; B:F ratio
Model 2 (Adjusted): respective outcome = either individual bacterial group; bimodal group; richness; diversity; B:FF ratio + potential confounder
Model 3 (adjusted): respective ontcome = all selected bacterial groups from the same outcome +  -Confounders

-Bimexdal groups (tipping elenents)

-presence of Archaca (ves'na)

Figure 1: Schematic overview of the bacterial groups that were selected by elastic net for subsequent regression analysis.

*Genus-like bacterial groups identified as having a bimodal abundance distribution were analysed as dichotomous
variables in the linear and logistic regression models
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Results

General characteristics of the total KOALA population and of the current study population
are presented in Table 1. A total of 295 subjects (148 (50.2%) boys and 147 (49.8%) girls)
with a mean age of 7.4 years (SD 0.8) were eligible for the present study (Supplementary
Figure 1). There were 27 (9.8%) overweight children.

The gut microbiota of the children was dominated by Prevotella melaninogenica et rel.,
Bacteroides vulgatus et rel., Ruminococcus obeum et rel., Faecalibacterium prausnitzii et
rel., and Bifidobacterium (Figure 2). RDA was performed to explore what percentage of
variability of gut microbiota composition was explained by the anthropometric measures.
The percentage of variability explained by each anthropometric measure under
consideration was very low: 0.5% (p=0.15), 0.6% (p=0.06), and 0.5% (p=0.09) by BMI z-
scores, weight z-scores, and overweight, respectively (data not shown). We observed strong
or moderate bootstrap support for a bimodal distribution in the abundance of Prevotella
melaninogenica et rel., Prevotella oralis et rel., Dialister, and uncultured Clostridiales 11
(UCID), but not for Bacteriodes fragilis et rel., and uncultured Clostridiales 1 (UCI). A
distribution plot for each of the bacterial groups exhibiting bimodality (classified as low or
high) and their cut-off or tipping points are illustrated in Supplementary Figure 3. The
cumulative abundance of the four bimodal groups accounted for 26.1% of the variation,
with largest variation explained by Dialister, Prevotella oralis et rel. and melaninogenica et
rel., and their co-correlating groups (Figure 3).

Prevotella melaninogenica et rel. —| )ﬂ:’—(
Bacteroides vulgatus etrel. — )—D:I—HICIDOO o
Ruminococcus obeum etrel.  — >—[D—um o o
Faecalibacterium prausnitzii et rel. — )—Dj—e!m
Bifidobacterium — H] ——om
Coprococcus eutactus et rel.  —| »—[D—mm
Oscillospira guillermondii et rel. - H] —apomoo
Clostridium cellulosi et rel. —| }{D—(I-»m o

Prevotella oralis etrel. - [_}—
Subdoligranulum variable at rel.  — rﬂ]—m
Allistipes et rel. —| H[[Hman
Sporobacter termitidis et rel. Hl]—m
Dorea formicigenerans etrel. | Hjoo

Ruminococcus bromii et rel.
Anaerostipes caccae et rel.
Clostridium symbiosum et rel.
Clostridium orbiscindens et rel.
Butyrivibrio crossotus et rel.
Outgrouping clostridium cluster XIVa
Clostridium leptum et rel.

Clostridium sphenoides et rel.

Clostridium difficile et rel.

Figure 2: Boxplots representing the relative abundance of the 21 most abundant taxa (mean relative abundance >1%).
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2.0

Dialister
4

. | Uncultured Selenomonadaceae L4

Prevotella melaninogenica et rel.
Prevotella oralis et rel.

RDA 2 (4.6%)

Prevotella ruminicola et rel.

b
N

15 RDA 1 (20.0%) 15 -15 RDA 1 (20.0%) 15

Figure 3. Abundance of bimodal taxa shape overall composition. RDA visualising microbiota composition of all faccal samples
(n=295) coloured by high (black dots) and low (grey dots) abundance of Dialister (left panel), and Prevotella melaninogenica
(right panel). Overweight individuals are represented as squares. The direction of the arrows depicts the abundance of the bimodal
bacterial groups as well as their co-correlating groups. Length of the arrows is a measure of fit for the species.

Considering the bimodal bacterial groups, a high abundance of UCII was inversely
associated with BMI- and weight z-score, (adjp -0.22; 95%CI -0.42 to -0.02 for both; Table
2) and overweight (adjOR 0.28; 95%CI 0.10 to 0.79; Table 3) in the adjusted analysis.
Higher abundances of Prevotella melanoginica et rel. (adjOR 0.21; 95%CI 0.07 to 0.68)
and Prevotella oralis et rel. (adjOR 0.20; 95%CI 0.06 to 0.64) were inversely associated
with overweight (Table 3). Regarding microbial richness, diversity, and B:F ratio, we only
found a borderline significant inverse association between microbial diversity and
overweight in the unadjusted linear regression model. Overall, microbial richness and
diversity and B:F ratio appeared not be associated with anthropometric outcomes in the
childhood population studied.

We subsequently examined whether specific bacterial groups were associated with the
anthropometric outcomes under study. Elastic net was applied to the 130 genus-like
bacterial groups for each outcome measure separately. A total of 5, 19, and 9 weight-
associated bacterial groups were identified as main effects with regards to BMI z-scores,
weight z-scores, and overweight, respectively (Figure 1). The elastic net coefficient paths
for these bacterial groups with respect to each outcome are presented in Supplementary
Figures 2a-c. The selected bacterial groups were included as continuous variables in the
regression models, except for Prevotella melanogenica et rel. and Dialister spp. (weight z-
scores), and UCII (overweight) as they were already identified as having a bimodal
abundance distribution and as such were analysed as dichotomous variables.

After adjusting for confounders (Table 2, Model 2), BMI z-score was inversely associated
with Akkermansia (p=0.030), and Sutterella wadsworthia et rel (p=0.008). Similar results
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were obtained from Model 3, which included all five pre-selected genus-like bacterial
groups, other microbial groups (Archaea, bimodal bacterial groups), and confounders
(Supplementary Table 2). Weight z-scores were inversely associated with Akkermansia
(p=0.009), Burkholderia (p=0.017), and Bryantella formatexigens et rel. (borderline
significant; p=0.050) after adjusting for confounders (Table 2, Model 2). In the model with
all 19 pre-selected bacteria adjusted for confounders plus other microbial groups
(supplementary Table 2, Model 3); only Akkermansia, and Bryantella formatexigens
remained inversely associated with weight z-scores. With regards to overweight, Sutterella
wadsworthia et rel. (p=0.038), and Bryantella formatexigens et rel. (p=0.027), were
inversely associated with overweight in the adjusted analyses. In contrast, Streptococcus
bovis et rel. (p=0.013) was positively associated with overweight. In the model with all nine
pre-selected bacteria, other microbial groups, and confounders (Supplementary Table 2,
Model 3), only Akkermansia remained significantly inversely associated with overweight.
Overall, Akkermansia, Sutterella wadsworthia et rel., and Bryantella formatexigens et rel.
were consistently associated with the three anthropometric outcomes, even after adjusting
for the presence of other gut microbial groups and confounders.
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Table 1. General characteristics of the KOALA Birth Cohort and the study population

KOALA Birth Cohort Study Study Population

Age at home visit (years) - 74+0.8
Anthropometric data measured at home visit
Overweight: n (%)

yes - 27(9.8)
no - 268 (90.2)
BMI z-scores - -0.16 £ 0.89
Weight z-scores - -0.20 +0.96
Time of last antibiotic course prior to home visit: n (%)
No antibiotic use in the previous year - 248 (85.2)
Greater than 4 weeks ago - 36 (12.4)
Less than 4 weeks ago - 7(2.4)
Age at faecal sample collection (years) - 7.3+0.8
Child’s total physical activity (hrs/week) - 9.4+45
Recruitment group
Conventional 2343 (82.7) 218 (73.9)
Alternative 491 (11.3) 77 (26.1)
Maternal educational level (n, %)d
Low 289 (10.7) 21(7.2)
Middle 1060 (39.4) 113 (38.8)
High 1341 (49.9) 157 (54.0)
Maternal pre-pregnancy weight (Kg) 67.7+13.1 683+11.5
Maternal weight gain in pregnancy (Kg) 143 +5.1 145+48
Place and mode of delivery: n (%)°
Vaginal delivery at home 1187 (44.8) 143 (49.0)
Vaginal delivery in the hospital 1149 (43.4) 120 (41.1)
Caesarean section in the hospital 311 (11.8) 29(9.9)
Maternal smoking in late pregnancy: n (%)
Yes 200 (7.1) 12 (4.1)
No 2634 (92.9) 283(95.9)
Total Household size 43+0.8 43+0.8
Gestational age 39.8+5.0 39.8+3.7
Birth weight (g) 3503 +512 3605 + 466
Breastfeeding duration (months) 47+3.0 6.0+4.4
Gender: n (%)
Male 1451 (51.2) 148 (50.2)
Female 1376 (48.6) 147 (49.8)
Child’s dietary intake
Total energy intake (KJ) 6173 £ 1285 6180 £ 1217
% energy intake from fats 29.6 +4.2 29.7+4.2
% energy intake from carbohydrates 55.8+5.0 55.7+£4.8
Total fibre intake (g) 153+4.0 15.6 £3.9

*PTotal may not sum up to 2834 and 295 respectively due to missings.

“Values are mean (standard deviation), unless indicated otherwise.

Low: primary school, preparatory vocational or lower general secondary school, Middle: vocational,
higher general secondary and pre-university, High: higher vocational or academic.
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Chapter 3

Discussion

Within a population of 295 school-aged children participating in the KOALA-study, we
examined the association between microbiota composition and overweight. So far, this is
the largest population-based study on childhood gut microbiota in relation to body weight.
Moreover, the extensive data on lifestyle and diet allowed us to carefully control for
potential confounding factors. The anthropometric outcomes and potential confounders
explained very little variation in the overall microbiota composition; however, the
abundances of several specific bacterial groups were consistently linked to BMI-, weight z-
scores, and overweight.

The gut microbiota of 6-7 year-old children is less well studied than that of adults, and it is
still being debated whether the composition has reached a relatively stable, adult-like state
soon after weaning® or continues developing into teen years’*. An in-depth comparison
with adults is beyond the scope of this paper, however, it is noteworthy that we observed
several bimodal distributed bacterial groups as well as their co-correlating species that were
previously reported to be present in healthy adults,” including UCII, Prevotella spp. (P.
oralis et rel. and P. melaninogenica et rel.) co-correlating with P. ruminicola et rel., and
Dialister with uncultured Selenomodaceae. Lack of support for bimodality of UCI in our
study is also in concordance with Lahti er al,”® who showed previously that UCI exhibits
very clear shifting state probabilities associated with ageing, where the high abundant state
was only observed above 40 years of age. Since the bootstrap support of bimodality for
Bacteroides fragilis was only moderate in the study of Lahti et al., this bimodality might
have been missed in our study due to the smaller sample size, age, health status, or other
biological factors.

The abundance of the four bimodal groups explained 26.1% of the variation in species
composition, compared to <1% for each of the anthropometric outcomes. Therefore, we
cannot confirm the often large-scale community shifts previously reported mainly from
rodent studies*® '**. In this group of healthy children within a relatively normal weight
range, weight and associated parameters therefore did not seem to be major drivers of
overall microbial composition or vice versa. This is in line with observations from Hollister
et al., who also found that BMI failed to account for a significant proportion of the
variation in gut microbial composition and function of American children at age 7-12
years’”. The B:F ratio was not associated with weight-related outcomes in the present
study. Although previous studies have reported a lower B:F ratio in individuals with
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overweight or obesity as compared to normal weight individuals others
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A healthy gut microbial ecosystem is generally thought to be characterised by high
microbial richness and diversity, presumed to indicate a more stable and resilient state of
this ecosystem®®. A lower richness/diversity of the gut bacterial communities has been
reported in subjects with obesity, and overweight compared to normal weight individuals'’*
196247 'We also observed a tendency towards a lower gut microbial diversity in overweight
compared to normal weight children. However, this association disappeared upon adjusting
for confounders. This implies that differences in microbial diversity between obese and lean
subjects, as observed in previous studies not comprehensively controlling for confounders
may be overestimated. Altogether, our results confirm that the B:F ratio and diversity
appear not to be a general feature distinguishing the normal and overweight human gut
microbiota across populations®’.

Although we did not find a significant association with the overall microbial community
composition, we did observe associations between the anthropometric outcomes and the
contrasting alternative stable states of specific bacterial groups that could potentially act as
tipping elements of the whole gut microbial ecosystem. We could confirm the observation
by Lahti et al. (2014) that UCII was inversely associated with BMI. We found an inverse
association with BMI- and weight z-scores, and with overweight. Likewise, higher
abundances of P. oralis et rel. and P. melaninogenica et rel., were inversely associated
overweight even after adjusting for other microbial groups that were also associated with
overweight, but not with the other outcomes. In addition, using the elastic net statistical
method of variable selection,”® we identified several bacterial groups, of which
Akkermansia, Bryantella formatexigens et rel. and Sutterella wadsworthia et rel. were
consistently associated with all three anthropometric outcomes. The inverse association
between Akkermansia abundance and body weight is consistent with previous studies both

. . 169, 229, 248, 249
in mice and humans ™ = =%

. Although the precise mechanism through which
Akkermansia influences host metabolism has not yet been fully elucidated, studies in mice
have demonstrated that it is involved in the reduction of metabolic endotoxemia, which is
characteristic of obesity and associated metabolic disorders, through the restoration of gut
barrier function®. Bryantella formatexigens et rel. has been shown to ferment glucose to
acetate in the presence of high formate concentrations® and the production of acetate can
result in appetite suppression,”' suggesting a mechanism by which these bacteria might be
linked to lower weight. Sutterella wadsworthia et rel. has been suggested to a play a role in
autism spectrum disorder in children,™” but its role in overweight development has not
been reported before.

The strengths of this study compared to previous cross-sectional studies on the gut
microbiota and childhood overweight are; its large sample size in combination with a broad
and high resolution interrogation of the whole gut microbial community, and extensive
adjustment for important confounding variables (especially diet and physical activity). This
allowed us to select bacterial groups (out of a total of 130) that were associated with
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weight-related outcomes, without an a priori constraint on the target species. In addition,
our study is one of the first to examine the association between microbiota composition and
body weight in a population of mostly lean, healthy children. Previous studies focused on
extreme categories of lean and obese individuals. As a consequence, differences in
microbiota composition might be less prominent in our study as compared to these previous
studies, but it provides insight in the role of the gut microbiota in the normal developing
child.

A limitation of the present study was the transport time for faecal samples, which ranged
from less than 1 to 3 days at ambient to room temperature. This might have affected the
measurable diversity and structure of the bacterial communities. However, several previous
studies have shown that the microbial diversity and composition of faecal samples is much
more affected by inter-individual differences and biases in molecular techniques rather than
differences in short-term storage conditions, including storage for up to 2 weeks at room
temperature®” ***. Furthermore, we could only assess the associations of the bacterial
groups with weight outcomes at one time point, and as a result causality could not be
established. However, only a few longitudinal studies have been published so far in this
field**” *°. Hence, large longitudinal cohort studies that characterise the gut microbiota at
multiple time points and collect detailed data on important confounding variables (e.g.
mode of delivery, diet, and physical activity) are needed to obtain an in-depth knowledge of
the relation between gut microbiota dynamics and childhood weight development. The
ongoing follow-up of the children in our study facilitates a future longitudinal investigation
of our findings taking into account these important confounding factors.

In conclusion, weight-related outcomes failed to explain much of the observed variation in
gut microbiota composition in our cohort of healthy children, suggesting that at least in this
group of individuals, weight-related parameters (BMI and weight z-scores, and overweight)
are not major drivers of microbial composition in the gut. Nonetheless, several specific
bacterial taxa appeared to be consistently associated with weight-related outcomes. These
include several bacteria that have previously been linked to weight-related outcomes
(Akkermansia, UCII), as well as species that have not previously been linked to
(over)weight such as Sutterella wadsworthia et rel. and Bryantella formatexigens et rel. In
this regard, more detailed information on their functional role in energy metabolism will
help to establish their importance for weight development. Our results provide new avenues
with regards to bacteria in the gut of humans in relation to the increasing trend of
overweight worldwide.
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Supplemental material

Supplementary Table 1. List of potential confounding variables

Potential confounders

Variable description/label®

Recruitment group

Maternal educational level

Maternal pre-pregnancy weight
Weight gained during pregnancy
Maternal smoking status

Place and mode of delivery

Gestational age
Gender

Birth weight
Household size
Duration of breastfeeding
Child’s dietary intake
Total energy intake (KJ)
% energy intake from fats
% energy intake from carbohydrates
Time of last antibiotic course prior to home visit

Physical activity
Age at faecal sample collection (years)

Categorical
. 0 - alternative
. 1 - conventional
Categorical
. 0 - lower education
° 1 - vocational education
e 2 - higher general secondary/pre-university
. 3 - higher vocational/academic education
Continuous 3
Continuous
Categorical
. 0 -no
o 1- yes
Categorical
e 0 -vaginal delivery at home
. 1 - vaginal delivery in hospital
. 2 - caesarean section in hospital
Continuous
Categorical
. 0 - male
. 1- female
Continuous
Continuous
Continuous

Continuous

Continuous

Continuous

Categorical
e 0 -no antibiotic use in the previous year
. 1- greater than 4 weeks ago
. 2 - less than 4 weeks ago

Continuous

Continuous

*All zero values were treated as reference category for each categorical variable.
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Study Base

A 4

Prospective study on Pregnancy-
related Pelvic girdle pain (PPGP)
N=7020

\ 4

N=2343

Conventional lifestyle Cohort

N=491

Alternative Lifestyle Cohort 3

A 4

KOALA Birth Cohort Study
N=2834

v

Parents approached for
child’s faecal sample
n=1204

|
v

Cohort with faecal samples at
6-7years
n=669

Exclusion criteria for
analysis

- Parents did not provide
faecal samples n=535

Study population
N=295

Exclusion criteria for
analysis n= 374

- Lack of DNA

- Transport time >3days

- Lack of FFQ

- Lack of BMI after faecal
sampling

Supplementary Figure 1. Flow chart illustrating how the present study population of 295 children was obtained from the initial
KOALA cohort of 2834 healthy pregnant women.
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|

Supplementary Figure 2. Coefficient paths for the elastic net regression models applied to the gut microbiota data. (a) Elastic net
regression estimates for BMI z-scores with the optimal lambda value (A=0.1) as obtained from ten-fold cross-validation parameters
and s=0.1 on the horizontal axis. Selected bacterial groups with non-zero coefficients are the lines that fall below the cut-off value
s=0.1 (n=5); (b) elastic net regression coefficients for weight z-scores with tuning parameters (A=0.01 and s=0.2) and non-zero
bacterial group coefficients below s=0.2 (n=19); (¢) elastic net regression coefficients for overweight with tuning parameters
(2=0.01 and s=0.1) with non-zero coefficients below s=0.1 (n=9).
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Supplementary Figure 3. Logarithmic abundance distributions of the four bacterial groups that exhibited a bimodal abundance
across the gut microbiota of 295 children. High and low abundance states are separated by a dashed red line. Proportion of children
with high levels of bimodal bacterial groups; 47.1%, 47.8%, 44.1% and 57.3% for Prevotella melanogenica et rel., Prevotella
oralis et rel., Dialister and UCII respectively. UC II refers to the Uncultured Clostridiales II.
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Effects of gut microbiota manipulation by antibiotics on
host metabolism in obese humans: a randomized

double-blind placebo-controlled trial
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Abstract

The gut microbiota has been implicated in obesity and cardiometabolic diseases, although
evidence in humans is scarce. We investigated how gut microbiota manipulation by
antibiotics (7-day administration of amoxicillin, vancomycin or placebo) affects host
metabolism in 57 obese, prediabetic men. Vancomycin, but not amoxicillin, decreased
bacterial diversity and reduced Firmicutes involved in short-chain fatty acid and bile acid
metabolism, concomitant with altered plasma and/or fecal metabolite concentrations.
Adipose tissue gene expression of oxidative pathways was upregulated by antibiotics,
whereas immune-related pathways were downregulated by vancomycin. Antibiotics did not
affect tissue-specific insulin sensitivity, energy/substrate metabolism, postprandial
hormones and metabolites, systemic inflammation, gut permeability and adipocyte size.
Importantly, energy harvest, adipocyte size and whole-body insulin sensitivity were not
altered at 8-weeks follow-up, despite a still considerably altered microbial composition,
indicating that interference with adult microbiota by 7-days antibiotic treatment has no
clinically relevant impact on metabolic health in obese humans.
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Introduction

Accumulating evidence indicates that the composition of the gut microbiota plays a
prominent role in body weight regulation and the development of type 2 diabetes
mellitus> **7. The gut microbiota regulates energy extraction from otherwise indigestible
carbohydrates, determines the integrity of the intestinal epithelial layer, and influences the
production and absorption of multiple signaling molecules involved in host metabolism.
Several studies have demonstrated that germ-free mice are protected from diet-induced
obesity, low-grade inflammation and glucose intolerance as compared to conventionally
raised animals®™ '®*. Furthermore, it has been shown that transferring microbiota via fecal
transplantation evoked alterations in body weight and insulin sensitivity in both rodents'®
and humans®® **? Taken together, these data indicate that modulation of the gut microbiota

may provide a promising avenue to target obesity-related metabolic disorders®®.

The gut microbiota composition can be modulated by, amongst others, prebiotics,
probiotics and antibiotics’’, thereby altering the presence and expression of microbial genes
and derived metabolites such as bile acids (BA) and short-chain fatty acids (SCFA)**" >,
Particularly, the use of antibiotics has been associated with increased metabolic
impairments, mainly when exposure occurs in early life** ***. Of note, these findings are
primarily based on animal studies, in which the animals have mostly been exposed to a
combination of antibiotics for periods varying from two to twenty weeks>"” 2% It has
recently been shown that antibiotics may improve peripheral insulin sensitivity in a small
number of obese subjects®’. Nevertheless, the effects observed in the latter study were
relatively minor and, importantly, the study was not placebo-controlled. Thus, well-
controlled, large human studies examining the effects and underlying mechanisms of
microbiota modulation on host metabolism are currently lacking.

Here, we report on a randomized, double-blind, placebo-controlled trial that was designed
to investigate the effects of broad and narrow-spectrum antibiotic treatment for seven days
on gut microbiota composition, tissue-specific insulin sensitivity, energy expenditure,
substrate oxidation, fecal and plasma BA and SCFA concentrations, gut permeability,
abdominal subcutaneous adipocyte size and systemic low-grade inflammation in obese men
with impaired glucose homeostasis. Moreover, eight weeks after cessation of antibiotic
treatment, we again determined microbiota composition, whole-body insulin sensitivity
(HOMA-IR), fecal energy harvest and adipocyte size.
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Methods

Study participants

57 low active (<3 h organized sports activities per week), weight-stable (<2 kg body weight
change 3 months prior to inclusion) overweight/obese (BMI 25-35 kg/m?), Caucasian men,
between 35 and 70 years with impaired glucose metabolism (either fasting glucose >6.1
mmol/l, and/or 2h glucose between 7.8-11 mmol/l) and HOMA-IR>2.2 were included in
this study (ClinicalTrials.gov, NCT(02241421). Subjects were recruited via advertisements in
local newspapers, and were all living in the area around Maastricht, The Netherlands. All
subjects gave written informed consent for participation in this study, which was reviewed
and approved by the local Medical Ethical Committee of Maastricht University Medical
Center+. All procedures were according to the declaration of Helsinki (revised version,
October 2008). Exclusion criteria were: the use of antibiotics for a period of three months
before entering the study, known allergic reactions to any type of antibiotics, hearing
disorders, cancer, liver malfunction, major illnesses with a life expectancy of less than five
years and pulmonary, hepatic, cardiovascular, kidney, and gastrointestinal disease. Subjects
did not use B-blockers, lipid and glucose lowering-drugs, anti-oxidants or chronic
corticosteroids.

Study design & randomization

This randomized, placebo-controlled, double-blind study had a three-armed parallel design.
Participants were randomized to oral intake of amoxicillin (broad-spectrum antibiotic),
vancomycin (directed against Gram-positive bacteria) or placebo
(microcrystalline cellulose) for seven consecutive days (1500 mg/d). Antibiotics and
placebo were equally capsulated to blind the content to subjects and
investigators (BasicPharma, The Netherlands). The allocation sequence was
established by  computer-generated randomization (https://nl.tenalea.net). Block-
randomization with stratification for BMI, age and 2h-glucose values was used to increase
the homogeneity of the treatment arms (block size, n=6). After completion of the
study, returned capsules were counted to assess compliance. Participants were asked to
maintain their habitual physical activity pattern and dietary habits (monitored by 3-day
food diaries) throughout the study. The evening before an investigation day, a low fiber,
low fat meal was consumed. Before and after intervention, study measurements were
conducted following a 10-h overnight fast. To ensure complete systemic and
gastrointestinal clearance of antibiotics, a 2-day wash-out period was taken into account
before post-treatment measurements. Participants returned for a follow-up visit eight weeks
after treatment cessation.
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Hyperinsulinemic-euglycemic clamp

A two-step hyperinsulinemic—euglycemic clamp combined with a [6,6-"H,]-glucose tracer
(Cambridge Isotope Laboratories, Andover, MA, USA) was performed to measure Rd,
EGP** and the insulin-mediated suppression of FFA*’**”'. Blood samples were taken from
a superficial dorsal hand vein, which was arterialized by using a hot-box (~50 °C). After a
bolus-injection (2.4 mg/kg), tracer-infusion was started at 0.04 mg/kg/min, which was
continued throughout the measurement. After 2 h, low-dose insulin was infused at 10
mU/m*/min for 2 h*”, followed by high-dose insulin at 40 mU/m*/min for 2 h*”. By
variable co-infusion of a 17.5%-glucose solution, enriched by 1.1% tracer, plasma glucose
concentrations were maintained at 5.0 mmol/l. For calculation of steady-state-kinetics,
additional blood samples were taken in the last 30 min of each step (0, 10 and 40
mU/m*/min insulin).

Postprandial test

Blood was sampled from a superficial dorsal hand vein, which was arterialized by placing
the hand into a hot-box (~50 °C). Blood samples were taken during the fasting state (t-30, t-
15, t0 min) and postprandial (t=30, 60, 90, 120, 180 and 240 min) after ingestion of the test
meal. The liquid test meal, that was consumed within 5 min, provided 2.6 MJ (61 E% fat,
33 E% carbohydrate, 6 E% protein), which was consumed within 5 min at t=0>"*,

Indirect calorimetry

For indirect calorimetry during fasting (30 min) and the 4-h postprandial state, the open-
circuit ventilated hood system was used (Omnical, Maastricht University, Maastricht,
Netherlands)*”. Calculations of energy expenditure and substrate oxidation were performed
according to the formulas of Weir’”® and Frayn®”’. Nitrogen excretion was based on the

assumption that protein oxidation represents ~15% of total energy expenditure®’.

Gut Permeability test

After baseline urine collection, subjects drank a 150 ml multisaccharide test mix [1 g
sucrose (Van Gilse, Dinteloord, the Netherlands), 1 g lactulose (Centrafarm, Etten-Leur, the
Netherlands), 1 g sucralose (Brenntag, Sittard, the Netherlands), 1 g erythritol (Danisco

279 .
. Urine was

Sweeteners, Copenhagen, Denmark), 0.5 g of I-rhamnose (Danisco)]
collected for determination of the urinary sucrose concentration in the 0-120 min urine
collection, representing gastro-duodenal permeability, whereas in this collection small
intestinal permeability is represented by the lactulose/thamnose ratio. Proximal colon
permeability is represented by the suclarose/erythritol ratio of the 120-300 min urine

collection.

Biochemical analyses for plasma variables

Blood was collected into pre-chilled tubes, centrifuged at 1000g, and plasma was snap-
frozen and stored at -80°C until analyses. Isotopic enrichment of plasma glucose was
determined by electron ionization gas chromatography—mass spectrometry and expressed as
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tracer-to-tracee ratio for steady-state calculations of Rd and EGP*®. Plasma glucose,
lactate, FFA and glycerol were determined with the Cobas Fara auto-analyzer (Roche,
Switzerland). Plasma insulin was measured with a double antibody radioimmunoassay
(Millipore, MA, USA). Plasma leptin concentrations were analyzed using commercially
available radioimmunoassay kits (Human Leptin RIA, Millipore Corporation, Billerica,
MA, USA). Plasma ANGPTL4 concentrations were measured by ELISA as described”’.
Plasma concentrations of IL-6, IL-8 and TNF-a were determined using a multiplex
enzyme-linked immuno-sorbent assay (Human Prolnflammatory II 4-Plex Ultra-Sensitive
Kit, Meso Scale Diagnositics, Rockville, MD, USA). Isocratic ion-exchange HPLC (Model
PU-1980 pump, Jasco Easton, MD) with mass spectrometry (Model LTQ XL, Thermo
Fisher Scientific, Waltham, MA) was used to determine sugar concentrations in plasma and
urine for gastrointestinal permeability assessment’””. LPS-binding protein was measured
using non-commercial ELISA as described before®'. Plasma concentrations of GLP-1 were

.. . . 282
measured by radioimmunoassays as previously described

. Plasma BA profile was
measured using liquid chromatography tandem mass spectrometry (LC-MS/MS)¥. The
total amount of primary (cholic acid and chenodeoxycholic acid and their taurine and
glycine conjugated forms) and secondary BA (deoxycholic acid, lithocholic acid and their
conjugated forms) was calculated as the sum of the individually quantified BA. Plasma
SCFA were determined by LC-MS/MS as reported before. The detection limits for

acetate, propionate and butyrate were 0.1, 0.05 and 0.05 umol/L, respectively.

Laboratory analysis of adipose tissue

Abdominal subcutaneous AT biopsies were taken under local anesthesia under fasted
conditions. One portion was embedded in paraffin. Sections were cut for staining, digital
imaging and computerized morphometric measurement of individual adipocytes®™*. One
portion (~500 mg) was snapfrozen in liquid nitrogen, from which RNA was extracted
(Trizol chloroform extraction, Invitrogen, Cergy Pontoise, France) and used for microarray
analysis. 100 ng total RNA was labeled by Whole-Transcript Sense Target Assay and
hybridized to human whole-genome Affymetrix Gene 1.1 ST arrays, targeting 19793
unique genes (Affymetrix, Santa Clara, CA, USA). Quality control and data analysis
pipeline have been described in detail previously”®. Individual genes on the array were
defined as changed when comparison of the normalized signal intensities showed a
FDRq<0.05 in a two-tailed paired t-test with Bayesan correction (Limma)®*. Further
functional data analysis was performed on the filtered data set with Gene Set Enrichment
Analysis (GSEA, http://www.broad.mit.edu/gsea). Gene sets were selected based upon
FDRq <0.2. Array data have been submitted to the Gene Expression Omnibus: number
GSE76003.

Laboratory analysis of feces
Feces was collected at home for two consecutive days at baseline, seven days and eight
weeks after intervention using the BMP commode specimen collection system, and divided
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over sterile tubes at home. Subjects were provided with a box of dry ice to freeze their stool
samples immediately after defecation at approximately -80°C and for transport to the
university. Total fecal amount was weighed, and 24-h fecal samples were used to determine
energy content using adiabatic bomb calorimetry (CBB 330, standard benzoic acid 6320
cal/g, BCS-CRMno90N). 24-h fecal BA composition was determined by using gas
chromatography (GC) as described before’”. Fecal SCFA were measured by gas
chromatography-mass spectrometry (GC-MS, Medical laboratory ‘Dr. Stein & Colleague’

Germany), according to the method described before™’.

For microbiota profiling, DNA was isolated from 24-h fecal samples as described before™
and subsequently used for phylogenetic profiling using the HITchip phylogenetic
microarray'”. Standardized quality control was maintained through our library of a
duplicated set of 3,631 probes targeting the 16S rRNA gene sequences of over 1,000
intestinal bacterial phylotypes. A more detailed description of microbiota profiling
procedures can be found in the Supplemental Experimental Procedures.

Statistics

The calculated sample size (n=19 per treatment arm) was based on a 20% physiologically
relevant change of insulin sensitivity (oo = 0.05, B = 0.8). All data were evaluated for
normality. Univariate analysis (ANOVA) was applied to compare group characteristics at
baseline. Differences between treatments were analyzed using repeated-measures ANOVA
with time and treatment as factors. ANCOVA analysis of the delta (post-pre value) was
used for parameters when significantly different at baseline, taking the baseline value into
account as covariate. The postprandial response (energy expenditure, substrate oxidation
and GLP-1) is given as incremental area under the curve (IAUC/min), which was calculated
by the trapezoid method. For HITchip analysis, logl0-transformed signals were used as a
proxy for bacterial logarithmic abundance. To determine which bacterial groups were
significantly different in relative abundance before and after treatment within each group, a
paired Wilcoxon test was used. Between-treatment group effects were assessed with linear
mixed models using the Ime4 package ***. Benjamini—Hochberg correction was applied for
multiple testing. We used Random Forests, a supervised machine-learning technique, and
the pre and post treatment classes to confirm these results®®’. To determine whether
individuals could be grouped into classes of specific metabolic responses to the
interventions, we used the lemm R package® to perform Latent Class Analysis. Diversity
of the microbiota was quantified based on non-logarithmized HITchip oligo-level signals
by inverse Simpson’s index using the Vegan package®'. ANOVA with Tukey’s Honest
Significant post hoc analysis was applied to compare diversity between and within groups.
Data are expressed as means + standard error of the mean (SEM), with a two-sided
significance level of P<0.05. Statistical analysis was performed using SPSS 20.0 for
Macintosh and R 3.03.



Chapter 4

Results and Discussion

Subject characteristics

To study the role of the gut microbiota, we randomized 57 overweight and obese 35-70
year old Caucasian men to oral administration of the broad-spectrum antibiotic amoxicillin
(AMOX), narrow-spectrum antibiotic vancomycin (VANCO, directed against Gram-
positive bacteria), or placebo (PLA) for seven days. No significant differences in baseline
characteristics were present between groups (Table 1). All subjects had impaired fasting
glucose levels (plasma glucose>5.6 mmol/l) and/or impaired glucose tolerance (2h plasma
glucose during a 75g oral glucose tolerance test 7.8-11.1 mmol/l), and were insulin resistant
(homeostasis model assessment for insulin resistance; HOMA-IR>2.2). One subject
randomized to the AMOX intervention was considered a dropout due to use of other
antibiotics during the study period. No serious adverse events and only a few cases of mild
gastrointestinal discomfort were reported. There were no differences in daily energy and
macronutrient intake, as monitored by a three-day food diary, between and within groups
before and after intervention. Furthermore, body weight remained unchanged for all
treatment groups throughout the study period and at follow-up (data not shown).

Table 2.1. Baseline characteristics of the study population

Variable PLA (n=19) AMOX (n=18) VANCO (n=19)
Age (years) 60.9+1.7 55.7+1.5 60.6+1.5
Body weight (kg) 96.7+2.3 96.3+2.5 97.6+1.9
Body mass index (kg/m?) 31.0+0.5 31.1+0.8 31.5+0.6
Waist/Hip ratio 1.04+0.01 1.04+0.01 1.07+0.01
Waist circumference (cm) 98.0+8.1 101.1+6.4 106.7+6.3
Fasting glucose (mM) 6.0+0.1 6.1+0.1 6.1+0.1
2h OGTT glucose (mmol/l) 7.7£0.4 7.0£0.5 7.240.4
Fasting insulin (mU/1) 15.7+1.5 17.9 £1.6 16.8+1.1
HOMA-IR 42404 4.9+0.5 4.6+0.3
HbA . (%) 5.5+0.1 5.6+0.1 5.6+0.1

Plus-minus values are meanstSEM. HOMA-IR denotes homeostasis model assessment of insulin resistance,

HbA . glycated haemoglobin

Efficacy of microbiota manipulation by antibiotic treatment

The fecal microbiota composition was determined by analyzing 16S ribosomal RNA
(rRNA) gene amplicons, using the Human Intestinal Tract Chip Microarray (HITChip)'>,
which showed that seven-day VANCO markedly decreased microbial diversity (P<0.001),
whereas this was not affected by AMOX (P=0.42) as compared to PLA (Figure 2.1).

VANCO decreased the relative abundance of mainly Gram-positive bacteria of the
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Firmicutes phylum. Among the most strongly affected groups were genus-like groups that
contain known butyrate-producing species from Clostridium clusters IV and XIVa, such as
Coprococcus eutactus, Faecalibacterium prausnitzii and Anaerostipes caccae, as well as
species involved in BA dehydroxylation such as Clostridium leptum. Conversely, Gram-
negative Proteobacteria, members of Clostridium cluster IX and VANCO-resistant Gram-
positive bacilli such as Lactobacillus plantarum and Enterococcus, showed increased
relative abundance after VANCO treatment (Figure 2.1 and Table S2.1), which is in line
with previous studies®” **. This pattern was confirmed with a supervised machine-learning
technique (Random Forests analysis, Table S2). Importantly, microbiota composition was
still affected eight weeks after cessation of VANCO treatment. Microbial diversity was still
lower (q=0.053), and overall similarity and composition were deviant from baseline (pre-
treatment) as compared to PLA. Although the bacterial groups that increased in abundance
due to VANCO treatment had in general returned to baseline levels, several members of
Clostridium clusters IV and XIVa were still decreased as compared to PLA. Furthermore,
observed dynamics with respect to gut microbiota composition and diversity were
individual-specific (Figure S2.1). In contrast, AMOX treatment did not affect microbiota
composition after seven days treatment or at eight weeks follow-up compared to PLA,
which is in accordance with a previous study in obese humans™.
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Figure 2.1. The effect of vancomycin and amoxicillin treatment on microbiota composition. Heatmap of bacterial groups (at
genus and order like level with Gram staining between brackets) whose relative abundance was significantly different (q<0.05)
post-treatment within the VANCO group. Color value shows logl0 fold changes compared to baseline. Genus like groups

containing known butyrate producing and BA dehydroxylating species are depicted in green and red, respectively. *Groups that
exhibited a significant difference between VANCO and PLA treatments.
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Antibiotic treatment does not affect tissue-specific insulin sensitivity

The primary outcome of this study was peripheral insulin sensitivity (insulin-stimulated
glucose rate of disappearance, Rd), as determined by a two-step hyperinsulinemic-
euglycemic clamp with [6,6—2H2]—glucose tracer infusion. Antibiotic treatment did not
significantly alter Rd as compared to PLA (Figure 2.2). Additionally, no effects were found
on hepatic and adipose tissue (AT) insulin sensitivity, as determined by the insulin-
mediated suppression of endogenous glucose production (EGP) and plasma free fatty acid
(FFA) concentrations, respectively. In accordance, antibiotic treatment did neither alter
whole-body insulin sensitivity (HOMA-IR) immediately after cessation of treatment, nor at
eight weeks follow-up (Figure S2). Our data are in contrast with several previous studies in
rodents, which indicated that antibiotic treatment may improve glucose homeostasis and

metabolic impairments®®2%® 2% Nevertheless, a more recent study showed that
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VANCO-treated mice had little weight change and no improvement in glycemic control**.

Consistent with the present data, a four-day treatment with a broad-spectrum antibiotic
cocktail did not affect postprandial glucose metabolism in lean healthy men®’.
Furthermore, it has recently been shown in a limited number of obese subjects with the
metabolic syndrome that VANCO slightly but significantly reduced peripheral insulin
sensitivity, despite comparable changes in microbial composition and BA metabolism as
found in the present study®’. Although the data of the latter study seems at odds with the
present findings, it is important to emphasize that in the study by Vrieze and colleagues™
the modest (~4%) VANCO-induced decrease in peripheral insulin sensitivity was based on
a within-group comparison (post-treatment versus pre-treatment), since a placebo group
was not included in the study design. Additionally, in the present study, follow-up
measurements that were performed eight weeks after treatment cessation also did not show
an effect on whole-body insulin sensitivity, despite a still considerably altered microbial
composition as compared to pre-treatment as well as placebo.

Antibiotic treatment does not affect energy and substrate metabolism

To examine the effect of gut microbiota modulation on postprandial metabolite
concentrations, energy expenditure and substrate oxidation, we performed a high-fat mixed-
meal test (2.6MJ [61E% fat, 33E% carbohydrates, 6E% protein]). We determined
arterialized plasma metabolite concentrations and measured energy expenditure and
substrate oxidation by whole-body indirect calorimetry. Neither VANCO nor AMOX
significantly affected basal and postprandial plasma glucose, insulin, FFA, triacylglycerol
(TAG) and lactate concentrations (Table 2.2 and Figure S2.3). Also, no significant effects
on basal and postprandial energy expenditure, carbohydrate and fat oxidation were found
(Figure 2.3). After adjustment for fecal weight, intestinal energy harvest, which is reflected
by daily fecal energy content, was neither changed immediately after treatment cessation,
nor after eight weeks follow-up (Figure 2.3). Although previous studies in rodents have
shown a prominent role of the gut microbiota in energy harvest and body weight* *"°,
findings suggest that antibiotics do not alter energy harvest in humans. Of note, in rodent
studies, animals were exposed to antibiotics in their drinking water for two up to twenty
weeks?!? 205268 293295 - Gimilarly, more prolonged treatment (four to six weeks) with a
higher dosage or a combination of different antibiotics increased body weight in
endocarditis patients”™® **°. These studies may indicate that a long-term dysbalance in

our

microbiota composition has more pronounced effects as compared to short-term
manipulation. However, it is hard to differentiate between the role of the gut microbiota and
systemic effects of antibiotics in the latter studies. Noteworthy, we have applied a two-day
wash-out period before post-treatment measurements were performed to exclude that
effects may be mediated via direct systemic effects of antibiotics. Additionally, VANCO

does not pass the gastrointestinal barrier and, therefore, does not reach the circulation®®.
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Figure 2.2. The effect of 7 days placebo, amoxicillin and vancomycin on hepatic, adipose tissue and peripheral insulin
sensitivity. Bars represent means + SEM (n=56). Tissue specific insulin sensitivity did not change by short-term antibiotics. (A)
EGP: liver endogenous glucose production at baseline (B) steady state insulin-mediated EGP suppression (%) upon 10 mU/m2/min
insulin infusion (C) steady state 10 mU/m2/min insulin-mediated suppression (%) of circulating free fatty acids (FFA) as measure
for adipose tissue insulin sensitivity. (D) 40 mU/m2/min insulin stimulated (oxidative) glucose disposal (Rd).

Antibiotic treatment does not alter gut permeability and systemic inflammatory
markers

We investigated the effect of seven days of AMOX and VANCO treatment on gut
permeability and the related translocation of bacterial lipopolysaccharide (LPS) from the
intestinal lumen into the circulation. The pronounced VANCO-induced microbial
alterations were not accompanied by changes in small intestine and proximal colon
permeability (Figure S2.4), as assessed by a multi-saccharide test’”’. This is in accordance
with unchanged LPS-binding protein (LBP) concentrations after VANCO and AMOX
treatment as compared to PLA (Table 2.2). LPS, which is released by Gram-negative
bacteria, may trigger the immune system by increasing inflammatory cytokine production
in AT and is frequently used as an indicator of metabolic endotoxemia®®. Therefore, we
have additionally determined plasma interleukin (IL)-6, IL-8 and tumor necrosis factor
(TNF)-a concentrations. In line with unchanged LBP concentrations, neither of these
inflammatory factors was affected by seven-day VANCO or AMOX as compared to PLA.
This was observed despite a substantial increase in relative abundance of potentially pro-
inflammatory Gram-negative Proteobacteria.
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Figure 2.3. The effect of 7 days placebo, amoxicillin and vancomycin on energy expenditure, substrate metabolism
and fecal energy excretion. Data are given as means = SEM. Indirect calorimetry was performed during fasting conditions
and for 4 hours after intake of a liquid high fat mixed meal (HFMM) in a subgroup of n=37. Mean O2-consumption and CO2-
production over 20 minutes were used for calculations. (A-D) Fasting respiratory quotient (RQ), energy expenditure (EE),
carbohydrate oxidation and fat oxidation did not differ after intervention (timextreat P value >0.05). Incremental AUC’s after
ingestion of HFMM were also not affected by AMOX or VANCO. (E) Fecal Energy excretion (kcal/day) did not significantly
change after VANCO or AMOX compared to PLA (n=56).

Vancomycin inhibits bile acid conversion and short-chain fatty acid production

SCFA, notably butyrate, can be produced by several groups within the Firmicutes phylum

(mainly Clostridium clusters XIVa and IV including Coprococcus eutactus and F.

prausnitzii), some of which are also involved in BA dehydroxylation®®" **'. Indeed,
we found a decreased relative abundance of these groups after VANCO, which
was accompanied by a marked reduction in plasma (P=0.005) and fecal
(P=0.001) concentrations of secondary BA as compared to PLA (Figure 2.4). This was
accompanied by an increase of fecal primary BA (P=0.013). In addition, fecal SCFA
concentrations (acetate (P=0.001), butyrate (P<0.001), caproate (P<0.001) and valerate
(P=0.009) were significantly decreased following VANCO, whilst in plasma only

butyrate tended to decrease after VANCO (P=0.078) but not following AMOX
treatment (Figure 2.5). Although BA and SCFA may control incretin release’®” *** and
affect energy metabolism in rodents®”, no effects on postprandial energy and substrate
metabolism, and fasting and postprandial glucagon-like peptide 1 (GLP-1)
concentrations were found in the present study (Table 2.2).
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Table 2.2. Effect of 7 days placebo, amoxicillin and vancomycin on metabolic,

inflammatory, and hormonal parameters

Variable PLA (N=14) AMOX (N=12) VANCO (N=12) P value®

Fasting plasma metabolite and ANGPTL4 concentrations

Glucose (mM) Pre 6.31£1.12 6.48+0.25 6.25+0.19 0.177°
Post 6.29+0.14 6.39+0.20 5.99+0.13

TAG (mM) Pre 1.40+0.17 1.08+0.15 1.03+0.09 0.511
Post 1.47+0.21 1.04+0.15 1.06+0.10

FFA (uM) Pre 699+34 683+48 679+38. 0.423°
Post 661+34 579458 626454

Lactate (mM) Pre 0.80+0.07 0.93+0.04 0.88+0.11 0.238
Post 0.91+0.11 0.90+0.05 0.79+0.06

ANGPTL4 (ng/ml)  Pre 5.1+0.7 4.3+0.5 4.9+0.5 0.137
Post 5.5+0.7 3.8+0.5 4.3+0.3

Postprandial (0-4h) plasma metabolite concentrations

Glucose (IAUC/min) ~ Pre 0.60+0.10 0.50+0.12 0.41+0.19 0.633
Post 0.54+0.13 0.55+0.10 0.45+0.09

TAG (iAUC/min) Pre 0.84+0.07 0.83+£0.10 0.75+0.10 0.945°
Post 0.92+0.07 0.94+0.01 0.81+0.07

FFA Pre -364+27 -341436 -339+31 0.547°
Post -332+28 -245+37 -300+40

Lactate Pre 0.65+0.05 0.45+0.07 0.40+0.08 0.154°

(iAUC/i ) Post  0.50+0.05 0.410.06 0.410.06

Fasting plasma hormone concentrations

GLP-1 (pmol/l) Pre 8.7+0.7 8.5+0.7 9.7+1.1 0.670
Post 9.3%1.1 8.7+0.8 10.2+1.2

Insulin (mU/1) Pre 11.5+1.3 12.6+1.3 14.3+1.8 0.504
Post 12.7£1.6 13.4£1.8 13.9£1.5

Leptin (ng/ml) Pre 11.4£1.6 10.1£2.1 9.7+0.8 0.106"
Post 12.9+2.3 10.0£1.8 8.8+0.8

Postprandial (0-4h) plasma hormone concentrations

GLP-1 (iAUC/min) ~ Pre 5.0£0.7 4.3+0.7 3.40.6 0.451
Post 4.5+0.8 4.3+0.8 4.3+0.9

Insulin Pre 21.142.1 20.0+3.0 25.0+4.5 0.294

(IAUC/1 ) Post  23.1+3.3 21.7+3.0 22.543.0

Fasting inflammatory marker concentrations

LBP (pg/ml) Pre 19.6+1.8 17.5€1.8 25.7+4.3 0.456
Post 18.4+3.3 20.4+2.9 23.6+3.6

IL-6 (pg/ml) Pre 0.8+0.1 0.8+0.1 1.0+0.1 0.775
Post 1.0+0.1 0.8+0.1 1.1£0.1

IL-8 (pg/ml) Pre 6.2+0.5 4.3+0.4° 5.2+0.4 0.444
Post 5.94£0.5 4.8+0.4 5.9+£0.4

TNF-a (pg/ml) Pre 2.6+0.1 2.3+0.1¢ 2.7+0.1 0.424
Post 2.7£0.1 2.5+0.1 2.840.1

Data are mean + SEM. For determination of plasma hormones and metabolites, only a subgroup of n=38 was analyzed. There were
no significant differences between the groups after intervention (Post) compared to baseline (Pre). Triacylglycerol (TAG), free
fatty acids (FFA), glucagon-like peptide (GLP), angiopoietin-like 4 (ANGPTL4), lipopolysaccharide-binding protein (LBP),
interleukin (IL), tumor necrosis factor (TNF). * P value represents the overall intervention effect between groups assessed by
repeated measures ANOVA (timextreat P value) or ANCOVA when baseline concentrations were different between groups. ” time
effect (P<0.05). ®baseline group difference (P<0.05)
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Antibiotic treatment alters adipose tissue gene expression but not adipocyte
morphology.

To determine the effect of an altered gut microbiota composition on AT, we collected
abdominal subcutancous AT biopsies to examine adipocyte size and gene expression
profiles using Affymetrix microarray transcriptomic analysis. Antibiotic treatment had no
significant effect on abdominal subcutaneous adipocyte size and the proportion of
small and large adipocytes, neither directly after treatment cessation nor at eight weeks
follow-up (Figure S2.5). Remarkably, when comparing the gene expression data with
the Kyoto Encyclopedia of Genes and Genomes (KEGG), we found that VANCO and,
to a lesser extent, AMOX increased AT expression of genes involved in pathways
related to peroxisome-proliferator activated receptor (PPAR)-signaling and of genes
encoding proteins involved in the mitochondrial Krebs cycle, fatty acid degradation
and other components of the oxidative machinery, suggestive of increased oxidative
metabolism in AT (Figure S2.6). In addition, VANCO decreased the expression of
histone clustering genes. Although we found no differences in adipocyte morphology
and circulating FFA, TAG, leptin and angiopoietin-like 4 (ANGPTL4) concentrations
(Table 2.2), these alterations in the AT transcriptome may translate into changes in AT
function over longer periods of time.

Finally, VANCO decreased the expression of gene sets involved in apoptosis and nuclear
factor NFKB signaling as well as adaptive and innate immune responses, including genes
of major histocompatibility complex-I, T-cell, B-cell and Natural Killer cell signaling. In
contrast, genes related to lysosomal breakdown were upregulated as compared to PLA
(Table S2.3). Lower NFKB-dependent gene expression and diminished NK and CD8+ T
cell function in macrophages have been observed in germ-free and antibiotic-treated mice®*.
In the latter study, the effects were ascribed to a reduced activation of Farnesoid X
receptors by a reduction of unconjugated and secondary BA*', which seems in line with the
present findings. In addition, although the exact role of SCFA in the systemic and AT
immune cell responses is unknown, SCFA may be involved in the regulation of T-cells in
the gut and peripheral tissues via the G-protein coupled receptor 43°> **3%7_ Despite the
effects of antibiotic treatment on the KEGG-pathways described above, no significant
associations (FDR<0.25) were found between individual bacterial groups and AT gene
expression (data not shown).
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Figure 2.4. The effect of 7 days placebo, amoxicillin and vancomycin on bile acid concentrations in plasma and feces. Means
+ SEM. In a subgroup of n=37, (A) plasma postprandial primary BA did not change significantly, (B) VANCO increased fecal
primary BA, (C) decreased plasma secondary BA and (D) fecal secondary BA compared to PLA and AMOX. * timextreat P-value
<0.05 for VANCO vs. PLA.
Microbial groups are not associated with host metabolic parameters
Although overall host metabolism did not change significantly following antibiotic
treatment, we used univariate and multivariate statistics (redundancy analysis) to assess
possible associations between specific characteristics of gut microbial profiles and host
metabolic parameters. However, we did not find any significant and consistent associations
when we evaluated the abundance and dynamics of individual bacterial taxa, combinations
of taxa, the complete microbiota and bacterial diversity at baseline, as well as seven days
and eight weeks post-intervention.

Furthermore, we investigated whether we could identify and connect patterns of specific
metabolic and/or microbiological perturbations with the response to the intervention. First,
we evaluated the stratification of subjects based on the extent of the microbial shift in
diversity, as well as microbial composition. Secondly, based on the extent and direction of
the metabolic response to the intervention, we used univariate and cluster analysis to
discover microbial patterns. Lastly, we used latent class analysis®®, to define groups of
subjects with certain metabolic patterns before and after treatment. Neither of these
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analyses showed groups of individuals with specific associations of the microbiota with
host metabolic parameters (data not shown).
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Figure 2.5: The effect of 7 days placebo, amoxicillin and vancomycin on plasma and fecal short chain fatty acid
concentrations. Values are given as mean + SEM (n=56). No significant effect was found for (A) plasma acetate, (C) plasma
propionate, (D) fecal propionate, and a trend (#P=0.07) for (E) plasma butyrate. Fecal acetate and butyrate (B, F) decreased after
VANCO treatment but not after AMOX. * timextreat P-value <0.05 for VANCO vs. PLA and vs. AMOX.
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Perspectives

In the present study, we demonstrated that seven days VANCO treatment
markedly affected microbial diversity and composition, which was accompanied
by a reduced conversion of primary to secondary BA and a lower production
of SCFA in the gut. Importantly, these alterations did not translate into
significant effects on peripheral, hepatic and AT insulin sensitivity, energy and
substrate metabolism and systemic low-grade inflammation immediately after
treatment cessation. Moreover, no clinically relevant effects on energy harvest,
abdominal subcutaneous adipocyte size and whole-body insulin sensitivity
(HOMA-IR) were found at eight weeks follow-up. In contrast to VANCO, no effects of
AMOX treatment on gut microbial composition, metabolic and inflammatory parameters
were found. Taken together, the present study implies that interference with a resilient
adult microbiota by antibiotics has no clinically relevant short-term (seven days) and
long-term (eight weeks) effects on the metabolic parameters measured in this study. This
contradicts many previous rodent studies and again highlights that rodent data cannot
always be extrapolated to humans.

Noteworthy, several nuances have to be made with respect to the conclusions of the
present study. First, since we studied obese, insulin resistant men with impaired
glucose metabolism, we cannot exclude that microbiota manipulation by antibiotics may
have more pronounced effects in women or less metabolically compromised individuals.
Secondly, the duration of the intervention was relatively short, compared to rodent
studies. Furthermore, it has been demonstrated that the risk of developing type 2
diabetes was increased when subjects were exposed to >5 antibiotic treatments’”, and
that the number of prescriptions may accelerate the ageing-related decline of intestinal
integrity’'’. Of note, the participants that were included in the present study had received
on average 1.7 antibiotic treatments over the past 10 years, without any antibiotic use 3
months prior to the start of the study. As mentioned above, several studies have
indicated that a long-term or more frequent perturbation in microbiota composition
may have more pronounced effects on metabolic health than short-term manipulation.
For this reason, it is important to emphasize that the present study does not exclude an
important role for the gut microbiota manipulations in changes of host metabolism. This
should be further investigated in future prospective and long-term (dietary, prebiotic and/
or probiotic) intervention studies in humans.
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Figure S2.3. The effect of vancomycin, amoxicillin and placebo treatment for 7 days on plasma metabolite concentrations.
Data are mean + SEM (n=37). Fasting (t=0) and postprandial concentrations of (A) arterialized glucose, (B) lactate, (C) free
glycerol, (D) triacylglycerol (TAG) and (E) free fatty acid (FFA) concentrations were not affected by AMOX or VANCO as
assessed by repeated measures ANOVA.
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Figure S2.4. The effect of vancomycin, amoxicillin and placebo treatment for 7 days on gut permeability. Bars represent
means + SEM (n=56). To determine gut permability, urine was collected immediately before drinking a multisaccharide-mix (t0),
at t=120 and t=300 minutes. AMOX and VANCO did not affect (A) gastroduodenal permeability as expressed by the urinary
sucrose concentration at t=120 min, (B) small interstine permeability expressed by the lactulose/rhamnose ratio (urine collection 0-
120 min), (C) proximal colon permeability: suclarose/erythritol ratio (urine collection 120-300 min).
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Figure S2.5. Abdominal subcutaneous adipocyte morphology before and immediately after placebo, amoxicillin and
vancomycin treatment, as well as after 8 weeks follow-up. Representative sections of stained adipose tissue were used for
adipocyte size determination in a subgroup of subjects (n=18). AMOX and VANCO did not affect (A) mean adipocyte
diameter, (B) mean adipocyte surface area and (C) adipocyte size distribution.
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Figure S2.6. Heatmap of 7 days placebo, amoxicillin and v. ycin-induced effects on abdominal subcutaneous adipose

tissue gene expression. (A) Upregulated genes, (B) downregulated genes determined in adipose tissue biopsies (n=30). The
heatmap shows pathways related to metabolic function (Kyoto Encyclopedia of Genes and Genomes (KEGG) database) derived
from Gene Set Enrichment Analysis. Signal log-ratio’s (SLR) of genes in the heatmap represent genes that significantly
contribute to the described pathways (FDR g-value <0.2). Color in the heatmap reflects the SLR per subject and group, with
blue color being downregulated and red color being upregulated genes following treatment. (C) Schematic illustration of
pathways that are upregulated and downregulated after vancomycin treatment as compared to placebo.
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Table S2.1 (related to Figure 1). Significantly different microbial taxa after 7 days intervention with vancomycin and
placebo in feces using linear mixed models

) BH_ P value o log fold chgnge Iog ft_)ld change
adjusted within vancomycine within placebo
Coprococcus eutactus et rel. 1.46E-02 1.91E-03 1.62262964 -0.036098988
Ruminococcus bromii et rel. 4.57E-02 1.09E-02 152679587 -0.338380905
Faecalibacterium prausnitzii et rel. 1.52E-02 2.35E-03 1.4508797 0.075849958
Lactobacillus plantarum et rel. 6.98E-05 5.37E-07 .1.39338187 -0.026993041
Eubacterium hallii et rel. 2.96E-03 1.25E-04 1.33243286 -0.114103865
Ruminococcus obeum et rel. 1.20E-02 1.29E-03 1.25172537 -0.051553
Lachnospira pectinoschiza et rel. 1.07E-02 1.07E-03 1.19017372 -0.144882415
Clostridium cellulosi et rel. 9.21E-03 8.50E-04 1.14016546 -0.267960043
Clostridium nexile et rel. 1.51E-02 2.21E-03 1.103251 -0.158269081
Anaerostipes caccae et rel. 2.73E-02 4.83E-03 1.08875593 -0.225845465
Dorea formicigenerans et rel. 4.03E-02 9.31E-03 1.05973413 -0.123118158
Veillonella 9.45E-04 2.91E-05 -0.99977749 0.008042942
Clostridium sphenoides et rel. 1.44E-02 1.77E-03 0.91030989 -0.036075241
Serratia 3.30E-02 7.11E-03 -0.85859596 -0.132395735
Papillibacter cinnamivorans et rel. 3.21E-02 6.66E-03 0.82835965 -0.156871014
Klebisiella pneumoniae et rel. 1.92E-02 3.15E-03 -0.8215981 -0.144113787
Megasphaera elsdenii et rel. 7.84E-04 1.81E-05 -0.8001288 -0.016009582
Escherichia coli et rel. 6.70E-03 4.64E-04 -0.79077723 -0.086406762
Lachnobacillus bovis et rel. 3.21E-02 6.43E-03 0.78609501 -0.130157333
Enterobacter aerogenes et rel. 3.21E-02 6.48E-03 -0.76953625 -0.145197198
Anaerovorax odorimutans et rel. 1.47E-02 2.04E-03 0.66699492 -0.054689642
Sutterella wadsworthia et rel. 3.21E-02 6.35E-03 -0.54038979 -0.096457386
Granulicatella 2.96E-03 1.37E-04 -0.49661041 -0.135840177
Lactobacillus salivarius et rel. 4.99E-02 1.23E-02 -0.3206781 0.003000548
Collinsella 7.84E-04 1.72E-05 0.30211314 -0.045063251
Eubacterium cylindroides et rel. 3.56E-02 7.93E-03 -0.28758184 -0.020381399
Clostridium difficile et rel. 5.00E-03 3.07E-04 -0.26460033 -0.082852343
Bifidobacterium 1.27E-02 1.47E-03 0.18320543 -0.092371693
Eggerthella lenta et rel. 7.26E-03 6.14E-04 0.15800988 -0.079697689
AErococcus 1.92E-02 3.25E-03 -0.06422419 -0.034350517
Atopobium 3.79E-03 2.04E-04 0.02943863 0.005546336

This table shows bacteria taxa that were significantly different after placebo or vancomycin treatment using linear
mixed models in addition to between-group analysis as determined by paired Wilxocon test. BH-adjustment:
Benjamini—Hochberg corrected
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Table S2.2. The effect of 7 days vancomycin treatment confirmed by Random Forests analysis.

Bacteria MDA Bacteria MDA
Klebsiella pneumoniae et rel. 2,15E-02 Bacteroides stercoris et rel. 1,94E-03
Clostridium leptum et rel. 1,33E-02 Outgrouping Clostridium cluster XIVa 1,89E-03
Clostridium nexile et rel. 1,05E-02 Streptococcus mitis et rel. 1,68E-03
Lachnobacillus bovis et rel. 9,86E-03 Yersinia et rel. 1,62E-03
Megasphaera elsdenii et rel. 9,51E-03 Bryantella formatexigens et rel. 1,58E-03
Serratia 9,40E-03 Subdoligranulum variable at rel. 1,49E-03
Veillonella 9, 20E-03 Clostridium sphenoides et rel. 1,48E-03
Eubacterium hallii et rel. 8,77E-03 Papillibacter cinnamivorans et rel. 1,33E-03
Clostridium symbiosum et rel. 8,58E-03 Granulicatella 1,21E-03
Prevotella tannerae et rel. 8,40E-03 Streptococcus intermedius et rel. 1,15E-03
Uncultured Clostridiales 1 8,34E-03 Eubacterium biforme et rel. 1,13E-03
Lachnospira pectinoschiza et rel. 7,44E-03 Clostridium stercorarium et rel. 1,11E-03
Ruminococcus gnavus et rel. 7,22E-03 Coprococcus eutactus et rel. 8,78E-04
Ruminococcus lactaris et rel. 6,77E-03 Faecalibacterium prausnitzii et rel. 6,84E-04
Enterobacter aerogenes et rel. 5,39E-03 Eubacterium rectale et rel. 6,58E-04
Dorea formicigenerans et rel. 5,34E-03 Actinomycetaceae 6,53E-04
Uncultured Clostridiales 11 4,61E-03 Streptococcus bovis et rel. 6,21E-04
Sporobacter termitidis et rel. 4,45E-03 Coprobacillus catenaformis et rel. 6,10E-04
Lactobacillus plantarum et rel. 4,37E-03 Bacteroides splachnicus et rel. 5,73E-04
Bacteroides vulgatus et rel. 3,98E-03 Uncultured Mollicutes 5,58E-04
Eubacterium ventriosum et rel. 3,74E-03 Anaerofustis 5,53E-04
Bacteroides plebeius et rel. 3,64E-03 Eubacterium cylindroides et rel. 5,34E-04
Butyrivibrio crossotus et rel. 3,46E-03 Aneurinibacillus 5,03E-04
Anaerostipes caccae et rel. 3,41E-03 Bacteroides ovatus et rel. 4,95E-04
Anaerovorax odorimutans et rel. 3,08E-03 Methylobacterium 3,98E-04
Clostridium orbiscindens et rel. 3,02E-03 Eubacterium siraeum et rel. 3,58E-04
Escherichia coli et rel. 3,01E-03 Peptococcus niger et rel. 2,72E-04
Anaerotruncus colihominis et rel. 2,98E-03 Collinsella 2,48E-04
Clostridium cellulosi et rel. 2,87E-03 Prevotella melaninogenica et rel. 2,38E-04
Bacteroides uniformis et rel. 2,71E-03 Eggerthella lenta et rel. 2,37E-04
Ruminococcus obeum et rel. 2,68E-03 Catenibacterium mitsuokai et rel. 2,27E-04
Ruminococcus bromii et rel. 2,47E-03 Burkholderia 1,87E-04
Oscillospira guillermondii et rel. 2,40E-03 Vibrio 1,74E-04
Roseburia intestinalis et rel. 2,39E-03 Uncultured Chroococcales 1,38E-04
Bacteroides intestinalis et rel. 2,12E-03 Brachyspira 1,35E-04
Ruminococcus callidus et rel. 1,99E-03

This table shows the mean decrease accuracy of bacterial taxa that were also found to be altered after 7 days
vancomycin treatment as determined by paired Wilcoxon test. MDA (mean decrease accuracy) represents the
impact of bacterial taxa on the accuracy of the model.
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Table S2.3. Effects of vancomycin and amoxicillin vs. placebo on gene set enrichment of the adipose tissue

CLASS UPREGULATED GENE SETS VANCO-PLA AMOX-PLA
KEGG BRITE KEGG PATHWAYS NES FDR-q NES FDR-q
Energy OXIDATIVE.PHOSPHORYLATION 2.24*  0.000 1.75* 0.081
metabolism
Carbohydrate GLYCOLYSIS.GLUCONEOGENESIS 1.95*  0.006 1.81* 0.062
metabolism
GALACTOSE.METABOLISM 1.76*  0.023 2.02% 0.029
PYRUVATE.METABOLISM 1.99*  0.006 1.38 0.263
CITRATE.CYCLE.TCA.CYCLE. 1.83*  0.016 1.86* 0.049
PROPANOATE.METABOLISM 1.89*  0.010 1.39 0.258
STARCH.AND.SUCROSE.METABOLISM 1.51 0.113 1.74* 0.079
Lipid ARACHIDONIC.ACID.METABOLISM 0.97 0.719 1.74* 0.081
metabolism
FATTY.ACID.DEGRADATION 1.86* 0.014 1.14 0.522
ETHER.LIPID.METABOLISM 1.84*%  0.015 0.94 0.804
PPAR.SIGNALING.PATHWAY 1.89*  0.010 0.85 0.889
Amino acid LYSINE.DEGRADATION 1.87*  0.012 0.89 0.852
metabolism
CYSTEINE.AND.METHIONINE.METABOLISM 1.89*  0.010 1.76* 0.078
TYROSINE.METABOLISM 1.83*  0.016 1.72* 0.083
VALINE.LEUCINE.AND.ISOLEUCINE.DEGRADATI 1.79*  0.018 1.59 0.144
ON
GLYCINE.SERINE.AND.THREONINE.METABOLIS 1.73*  0.030 1.6 0.137
M
LYSOSOME 1.99*  0.006 2.22% 0.000
COMPLEMENT.AND.COAGULATION.CASCADES 2.21*  0.001 1.6 0.133
Digestive PROTEIN.DIGESTION.AND.ABSORPTION 2.01*  0.006 n.a. n.a.
system
MINERAL.ABSORPTION 1.86*  0.013 1.79* 0.068
Immune system INTESTINAL.IMMUNE.NETWORK.FOR.IGA.PROD n.a. n.a. 2% 0.027
UCTION
(MHC-IT) ANTIGEN.PROCESSING.AND.PRESENTATION n.a. n.a. 1.8* 0.059
Xenobiotics DRUG.METABOLISM.CYTOCHROME.P450 2.09*  0.003 1.61 0.131
metabolism
METABOLISM.OF.XENOBIOTICS.BY.CYTOCHRO 1.98*  0.006 1.42 0.237
ME.P450
DRUG.METABOLISM.OTHER.ENZYMES 1.07 0.621 1.68* 0.100
Cofactor and RETINOL.METABOLISM 1.99*  0.006 1.12 0.560
vitamin
Signaling ECM.RECEPTOR.INTERACTION 1.77*  0.021 0.82 0.920
molecules
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CLASS DOWNREGULATED GENE SETS VANCO-PLA AMOX-PLA
KEGG BRITE KEGG PATHWAYS NES FDR- | NES FDR-q
q
Immune system NATURAL.KILLER.CELLMEDIATED.CYTOTOXIC  -2.4* 0.001 -0.74  1.000
ITY
B.CELL.RECEPTOR.SIGNALING.PATHWAY -1.8% 0.026 -0.76  1.000
T.CELL.RECEPTOR.SIGNALING.PATHWAY -2.23* 0.002 -0.77  1.000
NOD.LIKE.RECEPTOR.SIGNALING.PATHWAY -2.24*  0.003 -1 0.831
HEMATOPOIETIC.CELL.LINEAGE -1.72*  0.039 n.a n.a
Immune diseases ALLOGRAFT.REJECTION -1.55* 0.078 n.a. n.a
(MHC-I) GRAFT.VERSUS.HOST.DISEASE -1.66*  0.053 n.a n.a
PRIMARY.IMMUNODEFICIENCY -2.08*  0.006 n.a n.a
INFLAMMATORY.BOWEL.DISEASE.IBD. -1.55%  0.079 n.a n.a
SYST.L.LERYTHEM. (GENES OF HISTONE -1.71*  0.040 -1.35  0.489
CLUSTER)
Substance ALCOHOLISM (GENES OF HISTONE CLUSTER) -1.85*  0.023 -1.88*  0.085
dependence
Replication and DNA.REPLICATION -1.57*  0.072 n.a, n.a
repair
Cell growth and APOPTOSIS -1.99*  0.010 n.a n.a
death
Signal NF.KAPPA.B.SIGNALING.PATHWAY -1.56*  0.076 n.a n.a
transduction
TNF.SIGNALING.PATHWAY -1.63*  0.061 n.a n.a

Gene set enrichment analysis found enriched pathways of the KEGG (Kyoto Encyclopedia of Genes and
Genomes) database. KEGG BRITE denotes clustering of KEGG-pathways in functional hierarchies, NES
normalized enrichment score, FDR-q false discovery rate adjusted p-value, not appliccable means no significant
upregulation, respectively downregulation after vancomycin or amoxicillin of the selected pathway. Data of n=10

per group was used for microarray analysis. * FDR-q<0.1, significant enrichment of the selected pathway.
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Abstract

Background: A growing body of evidence suggests that the human gut microbiota plays a
role in the development of obesity and related metabolic diseases. However, there is little
consensus between studies, which could be due to biological as well as technical variation.
In addition, no human data are available to investigate whether tissue-specific insulin
sensitivity is related to a specific microbial pattern. Aim: To examine the relation between
microbiota composition at the genus level, and tissue-specific insulin sensitivity in two
independent cohorts of overweight and obese pre-diabetic men. Methods: Fecal microbiota
composition was characterized using the HITChip, a 16S ribosomal RNA gene targeted
microarray. In all subjects, hepatic, peripheral and adipose tissue insulin sensitivity were
determined by a two-step hyperinsulinemic-euglycemic clamp with [6,6-H,]-glucose tracer
infusion. Random forest classification and linear and logistic regression analysis were used
to investigate the relation between bacterial abundance at the genus level, and tissue-
specific insulin sensitivity. Results: Despite the strongly subject-specific microbiota
composition, we found some associations of microbial groups with host parameters.
However, these associations were cohort-specific due to pronounced variation in microbiota
composition between cohorts, suggesting the existence of alternative states for dysbiosis in
metabolic syndrome patients. Remarkably, in neither of the cohorts there was any
relationship between microbial composition and tissue-specific insulin sensitivity.
Conclusion: Our findings do not predict a physiologically significant role of the gut
microbiota in host insulin sensitivity when the overweight and/or obese state has already
developed and argue that care should be taken when significant correlations from single
cohorts are extrapolated into generalized biological relevance.
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Introduction

There is increasing evidence to suggest that our gut microbiome is associated with the
development of obesity, insulin resistance and diabetes mellitus type 2 (T2DM). This
concept was first described in studies, in which germ-free mice showed less adiposity,
improved insulin sensitivity and glucose tolerance as compared to conventionalized mice'*
31 1 ater studies showed that the microbiota composition of lean, obese, diabetic vs.
healthy mice and humans differ*® > ' 3% Microbial analyses of large genome-wide
association studies showed that patients with T2DM are characterized by a decrease in the
abundance of universal butyrate-producers and an increase in various opportunistic
pathogens'®> 1> 3% Nevertheless, between studies there is an overall lack of consistency
regarding the identified microbial biomarkers and putative mechanisms underlying the
observations. Discrepancies between studies could be a result of the heterogeneity of
groups, genetic background, habitual lifestyle, diet and the methodology used by different

researchers™?

. Meta-analyses have shown that individuals could be classified based on their
microbiota as lean or obese with statistically significant accuracy within a study, consistent
with the observation that this phenotype can be experimentally transferred in mice by
microbiota transplantation®. However, microbial signatures were not consistent between
studies even when the data were analysed in the same way’. Furthermore, the comparison
of discriminant metagenomic markers for T2DM in European women’'* and Chinese
individuals'”® revealed cohort specific differences, and the authors concluded that
metagenomic predictive tools for T2DM should be specific for the age and geographical
location of the populations studied’'* . Correspondingly, another putative marker for obesity
based on the gut microbiome, the Bacteroidetes to Firmicutes ratio (B:F) proposed by Ley
et al®, remains controversial as it has been confirmed®, refuted'” and even
contradicted'”.

Nevertheless, transplantation of the microbiota in rodents and humans has provided
evidence for the causal role of the microbiota in adiposity and metabolic health. Fecal
transplantation from obese into germ-free mice significantly increased adiposity™ *'°, and
fecal transplantation from lean donors into metabolic syndrome patients altered the
recipients’ microbiota composition with a concomitant, minor improvement in peripheral
insulin sensitivity based on responders and non-responders’’. In contrast, we have recently
demonstrated that interference with adult microbiota by 7-day antibiotic treatment has no
clinically relevant impact on host metabolism in obese humans, despite deviant
microbiota®”. Importantly, the relationship between gut microbiota and tissue-specific
insulin action has never been established in obese humans. Here, we investigated the
relationship between the gut microbiota composition and adipose tissue, muscle and liver
insulin sensitivity by means of the gold-standard two-step hyperinsulinemic-euglycemic
clamp with [6,6-"H,]-glucose tracer infusion in two independent cohorts of men suffering
from metabolic syndrome.

D
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Methods

Study population

We investigated baseline microbiota composition in relation to tissue-specific insulin
sensitivity and other indicators of glucose metabolism in two independent cohorts of
overweight and obese (BMI 25-45 kg/m”) Caucasian men between 35-70 years old
(ClinicalTrials.gov NCT02241421 and Dutch Trial Register NTR2705). The cohort from
Maastricht (MAA) consisted of 56 subjects with impaired fasting glucose levels (glucose
concentration > 5.6 mmol/l) and/or impaired glucose tolerance (IGT, 2h plasma glucose
during a 75g oral glucose tolerance test 7.8-11.1 mmol/l. The cohort from Amsterdam
(AMS) consisted of 42 subjects diagnosed with the metabolic syndrome (according to the
NCEP criteria)’'®. Subjects were not allowed to have used antibiotics three months prior to
participation. All subjects gave written informed consent before participation after reading
the study protocol, which was reviewed and approved by the Local Medical Ethics
Committees. All procedures were performed according to the declaration of Helsinki
(revised version, 2008, Seoul, South Korea).

Study Design

Study measurements were conducted following a 10h overnight fast. The primary outcome
of this study was tissue-specific insulin sensitivity (insulin-mediated glucose disposal
(Rd)), hepatic insulin sensitivity (insulin-mediated suppression of endogenous glucose
production (% suppression EGP)), adipose tissue (AT) insulin sensitivity (insulin-mediated
suppression of plasma free fatty acids (% suppression FFA)) as determined by a two-step
hyperinsulinemic-euglycemic clamp with [6,6-’H,]-glucose infusion. To this end, one
cannula was inserted into the antecubital vein, whereas a second Teflon cannula was
inserted into a superficial dorsal hand vein for blood sampling, which was arterialized by
placing the hand into a hot-box, blowing warm air (~50 °C). In the Maastricht cohort, after
a bolus-injection of 2.4 mg kg™ was infused, continuous tracer-infusion was started at 0.04
mg kg min"' and continued throughout the measurement. After 2 h, low-dose insulin was
infused at 10 mU m™ min™' for 2 h*”, followed by high-dose insulin at 40 mU m™ min™" for
2 h. By variable co-infusion of a 17.5%-glucose solution, enriched by 1.1% [6,6-H,]-
glucose-tracer’”, plasma concentrations were maintained at 5.0 mmol/l. In the cohort in
Amsterdam, insulin was infused at 20 mU m™ min™ for 2 h, followed by 60 mU m™ min
for 2 h*"". For calculation of steady-state-kinetics, the last 30 minutes of each step (0, 10
and 40mU m™ min™' insulin) and the last 20 minutes of each step (0, 20 and 60 mU m™ min"
" insulin), respectively, were used for the two cohorts, during which additional blood
samples were taken.

In addition, we collected fasting plasma samples to determine insulin and glucose
concentrations for the calculation of the homeostasis model assessment for insulin
resistance (HOMA-IR, [(fasting insulin (uIU/ml) x fasting glucose (mmol/1))/22.5)] and B-
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cell function (HOMA-B%, [20 x (fasting insulin)/(fasting glucose — 3.5)].
Anthropometrical measurements were performed for the calculation of the body mass index
(BMI, [weight (kg)/height(m)*] and waist/hip ratio.

Biochemical analysis

Blood was collected into pre-chilled tubes, centrifuged at 1000g, and plasma was snap-
frozen and stored at -80°C until analyses. Isotopic enrichment of plasma glucose was
determined by electron ionization gas chromatography—mass spectrometry and expressed as
tracer-to-tracer ratio for steady-state calculations of rate of disappearance (Rd) and
endogenous glucose production (EGP). Plasma glucose and glycerol were determined with
the Cobas Fara auto-analyzer, Roche, Switzerland). Plasma insulin was measured with a
double antibody radioimunoassay (Millipore, MA, USA), and plasma FFA concentrations
were analyzed using standard enzymatic techniques automated on a Cobas Fara auto-
analyzer (Roche).

Fecal microbiota characterization

The fecal microbiota composition was determined by analyzing 16S rRNA gene amplicons
using the Human Intestinal Tract Chip Microarray (HITChip), a phylogenetic microarray
based on 16S rRNA gene sequences of over 1000 intestinal bacterial phylotypes®'®. DNA
was isolated from faeces using the repeated bead beating method as previously described,'”
and subsequently used for microbiota profiling. In short, 16S rRNA genes were amplified
by PCR, followed by in vitro transcription, Cy3/Cy5 labelling and fragmentation of RNA,
and hybridization. Duplicate hybridizations with a Pearson correlation >98% were
considered for further analysis, and microbiota profiles were generated by pre-processing of
probe-level measurements with min-max normalization and the frozen-RPA probe
summarization’”’ into three phylogenetic levels: order-like, genus-like (>90% sequence
similarity), and phylotype-like (>98% sequence similarity)’'®. In the present study the
analysis focused on the genus-level variation, referred to as species and relatives (‘et rel.”).
Logo-transformed signals were used as a proxy for bacterial abundance.

Statistical analysis

To determine the bacterial groups whose relative abundance significantly differed between
the two cohorts, a non-paired Wilcoxon test was used. We performed linear regression
models (unadjusted and adjusting for age) to determine the association of specific genus-
like bacterial groups with the variables under investigation in both cohorts separately. All
outcome variables were sorted into quartiles. The highest and lowest range were used for
logistic regression and Random Forest classification using the Random Forest and ROCR R
packages™” **’. For all analyses Benjamini—-Hochberg (BH) correction was applied for
multiple testing. All analyses were performed in R, v3.1.3**'. Principal component analysis
was performed in Canoco v5>*° with logl0 transformed signals summarized to genus like
groups.
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Results

Subject characteristics

The subjects’ characteristics, including insulin resistance measurements are shown in Table
1. Subjects in both the MAA and AMS cohorts were insulin resistant (HOMA-IR: 4.5+0.2
and 5.1+0.3 respectively, ns). MAA presented with higher fasting glucose concentrations
(6.1£0.01 vs. 5.8+0.09 mmol/l, p<0.05), whereas insulin concentrations were lower than in
the AMS cohort (16.8+0.8 vs. 20.0+1.2 mU/I, p<0.05). Homeostatic model assessment for
B-cell function (HOMA-B) was lower in MAA than in AMS (136.3+7.5 vs. 192.0+15.3
%, p=0.001).

Notably, clamp procedures were slightly different between centers (see Methods), and thus,
statistical analysis of potential differences in peripheral, hepatic and adipose tissue insulin
sensitivity values between cohorts was not possible.

Fecal microbiota composition

Remarkably, the average microbiota composition in both cohorts showed pronounced
differences (Figure 1). While Actinobacteria (Bifidobacterium and Propionibacterium)
were more abundant in the MAA cohort, mainly genus-like groups of Clostridium clusters
IV and XIVa were more abundant in the AMS cohort. More specifically, Sporobacter
termitidis et rel. (IV), Papillibacter cinnamivorans et rel. (1V), Subdoligranulum variable et
rel. (IV), Anaerotruncus colihominis et rel. (IV), Butyrivibrio crossotus et rel. (XIVa) and
Clostridium symbiosum et rel. (XIVa), of which the latter four are known to contain
butyrate-producing species (Figure 1). In addition to, Uncultered Clostriales 1 and I1.

PCA analysis of the microbiota composition demonstrated that the variation between
subjects from MAA (n=45) was higher than those from AMS (n=40) (Figure 2). Although
the majority of subjects from MAA overlapped in composition with those of AMS, it is
remarkable that approximately 1/3 of MAA showed a distinct composition from this group
along the first principal component. This explains the remarkable difference average
microbiota composition between the two cohorts. Moreover, it suggests that some
metabolic syndrome patients from MAA exhibit an alternative state of microbiota
composition compared to the overlapping AMS and MAA individuals.
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Table 1. Subjects’ characteristics

MAA (n=56) AMS (n=42)

Maastricht Amsterdam
Age 59.1£1.0 54.9+1.1
Weight (kg) 96.5+1.3 116.3£2.0
BMI (kg/m?) 31.2+0.4 34.84+0.5
Waist/hip ratio 0.95+0.01 1.05+0.01
Fasting insulin (mU/ml) 16.80+0.79 20.02+1.24
Fasting glucose (mmol/l) 6.06=0.07 5.76+0.09
HOMA-IR 4.5+0.2 5.1£0.3
HOMA-B% 136.3£7.5 192.0£15.3
HbAlc (%) 5.58+0.05 5.744+0.05
Fasting TAG 1.30+0.10 1.50+0.11
Rd (umol/kg/min)* 23.34 (10.7-51.4) 26.1 (10.1- 40.0)

Suppression EGP (%)*
Suppression FFA (%)*

44.1(17.4-79.1)
45.3(-6,1-84.1)

55.6 (30.8-85.0)
74.4(53.9-92.1)

HOMA-IR: homeostasis model assessment for insulin resistance, HOMA-B%: homeostasis model assessment for B-cell function,

HbA lc: glycated haemoglobin, TAG: triacylglycerol, Rd: rate of disappearance, EGP: endogenous glucose production by the liver,

FFA: free fatty acids. Data are expressed as mean = SEM. Clamp-results are expressed as mean (range). 5
*due to differences in clamp procedures (see Methods) between centers, no statistical comparison was made between cohorts.

Bifidobacterium - =S ———————— |
Sporobacter lermitidis et rel. -  IEEEE—————_
Propionibacierium - = ————
Clostridium stercorarium et rel. -
Unﬂuﬂ.llnsd Clostridiales Il <
ides vulgatus et rel. =
mvanablea! rel. 5 I L1 level
um nexile :|l ral. = [/—r"rr=—] iy i
mﬂm . 4 — inobacteri
il cinnamivorans et rel. < =] Baci
P!:qva el mmﬂg&e Igen: ' i
ntelia 5 . I ’
Anaerotruncus colihominis g rel. = _ Bacteroidetes
Lachnobacillus bovis et rel. - B -
Dorea formicigenarans at rel. = — .mm""" cluster |
Ui S AR Lok _— Clostridium cluster lll
Clostridium orbiscindens et rel. - I r
ium mitsuioka et rel. 4 —— Chsteliim SuserY
Alcaligenes faecalis et rel. - | Clostridium cluster 1X
s ""%:3%:2 Clostridium cluster XIll
Sutterella wadsworthia et rel. - I
Mitsuokella T\nmm:;;ﬁn'- E— Clostridium cluster XI\Va
eurini us =
Emcloslndh:m (sansu sn‘!e' nl) - = Clostridium cluster XV
robacter aerogenes L = _—
Yanthomonadaceae - — Clostridium cluster XV1
is = || Clostridium cluster XVil
Eubacterium siraeum et rel. < —
Eubactert Wimssellagre.-_ | | Fusobacteria
ul jum limosum et rel. =
leidia moouéi:é II;B 4 E Protecbacleria
us - P
Gaanohadgt- = Spirochaetes
usobacteria ;
Lactobacillus catenaformis et rel. = ] Uneultured Clostridiales.
Brachyspira - ||
Haemnph Inls - =
Eijbmnmm mndro-dna el na:. 4 | |
HHIGOD@W* t =| : :
=-0.25 0.00 0.50

. 0.25
Signal difference (Logy)

Figure 1. Enrichment of bacterial taxa in two separate cohorts of obese men. Genus like bacterial groups which showed
significantly different abundance (Logo signal intensity) between the two cohorts. The left side shows taxa enriched in AMS right
side taxa enriched in MAA. Colors indicate to which Phylum or Class these groups belong.
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Figure 2. Principle component analysis of the fecal microbiota composition of 85 overweight insulin resistant
overweight males from Maastricht (MAA) and Amsterdam (AMS). Individuals from AMS and a subset from MAA overlap
and a second group of individuals in MAA was observed as indicated by the light blue shadows. These also show associations
with the two metabolic parameters associated with microbiota composition in MAA through Random Forests analysis.
The direction of the species arrows depicts the abundance of microbial groups. Length of the arrows is a measure of fit.
The environmental variable arrows approximates the correlation between species and an environmental variable. The
further a sample falls in the direction indicated by the arrow, the higher the correlation. Samples near the coordinate origin (zero
point) suggest near zero correlation.

Correlations between microbiota composition and host metabolic
parameters

Tissue-specific insulin sensitivity

After correction for multiple testing, peripheral, hepatic and adipose tissue insulin
sensitivity (Rd, % suppression of EGP and % suppression of FFA respectively), did not
significantly correlate (q<0.25) with the abundance of bacterial groups at the genus like
level in either cohort. In addition, we determined non-linear multivariate relationships
between the microbiota composition and tissue-specific insulin sensitivity. To this end, we
ordered each dataset in quartiles of insulin sensitivity (Rd, %EGP and %FFA) and used
random forest classifiers to determine whether the bacterial composition was related to these
markers of tissue-specific insulin sensitivity, by using the highest and lowest quartiles as
classes. Both cohorts showed random classification for peripheral, liver and adipose tissue
insulin sensitivity, indicating no significant relationship between microbial profiles and
tissue-specific insulin sensitivity (data not shown).

Other measures of glucose homeostasis and insulin sensitivity

Except for the correlation of Peptococcus niger et rel. with HbAlc ( Spearman p= 0.57, p =
5.52E-05, g=0.06) in the MAA cohort, no significant correlation (q<0.25) was found
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between the abundance of specific microbial groups and HOMA-IR, HOMA-B%,
fasting glucose or insulin concentrations in either of the two cohorts (Figure
3). Correspondingly, we did not find a significant correlation (q<0.25) between
BMI, waist circumference and abundance of genus-level bacterial groups in this
study. Although almost none of the correlations were significant, it is worthy to note
that the pattern of correlation of specific taxa with host variables was distinctly
different in both cohorts (Figure 3).
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Figure 3. Correlation-heatmaps of host metabolic parameters and microbiota abundance. Heatmaps of Spearman
correlations of host metabolic parameters with individual genus like bacterial groups for AMS (A) and MAA (B). Blue show
negative correlations and red positive. Only the positive correlation of Peptococcus niger et rel. with HbAlc within the MAA (A)
cohort remained significant after correction for multiple testing. Only correlations with Spearman p>0.35 and p<0.25
(uncorrected) are shown.

Furthermore, we ordered each dataset in quartiles of fasting glucose and insulin, HOMA-IR
and HOMA-B% and used random forest classifiers to determine whether the bacterial
composition was related to these markers, by using the highest and lowest quartiles as
classes. Only MAA showed a moderate improvement over random classification for fasting
glucose concentrations and HbAlc (AUC=0.65) with taxa from Clostridium clusters IV
(Faecalibacterium prausnitzii et rel. and Butyrivibrio crossatus et rel.)) and XIVa
(Roseburia intestinalis, Clostridium nexile and Eubacterium rectale and related species)
and several Proteobacteria (Enterobacter aerogenes et rel. and Vibrio) as the most
important microbiota prediction features for classification of individuals with high or low
fasting glucose concentrations. For HbAlc similar bacterial orders were among the most
important taxa. However, different members of these higher phylogenetic groups were
identified, such as for Clostridium clusters IV (Oscillospira guillermondii et rel.,
Sporobacter termitidis et rel., Faecalibacterium prausnitzii et rel.) and IX (Peptococcus
niger et rel.) as well as Proteobacteria (Novosphingobium, Vibrio and Aeromonas).
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Figure 4. Top ten genus level groups with predictive power in classifying patients from MAA into the lowest and highest
quartile of HbAlc (A) and fasting glucose (B). The higher the group the more the prediction power will be reduced when the
specific group is removed from the Random Forests model. Taxa in red belong to the phylum Proteobacteria and green are butyrate

producing Firmicutes.

Discussion

The aim of this cross-sectional study was to determine the relation between microbiota
composition and tissue-specific insulin-sensitivity in two independent cohorts of obese
males with ranging levels of insulin resistance. To our knowledge, this is the first
observational study that takes into account hyperinsulinemic-euglycemic clamp-derived
data. In two independent cohorts of obese and overweight subjects, we assessed peripheral,
hepatic and adipose tissue insulin sensitivity using a two-step hyperinsulinemic-euglycemic
clamp in combination with a [6,6-’H,]-glucose tracer infusion. In neither cohort we found a
clear association between a specific fecal microbial pattern and adipose tissue, liver or
skeletal muscle insulin sensitivity, indicating that predicting the role of microbiota based on
baseline compositional data in host insulin sensitivity is challenging when the obese state
has already developed. In line with this, almost none of the correlations between surrogate
measures of insulin sensitivity and glycemic control and gut microbiota composition were
significant in either of the two cohorts. In MAA, we found a relationship between
Peptococcus niger et rel. with HbAlc (Spearman p=0.57, p = 5.52E-05, q=0.06). Because
of this single significant correlation, we analyzed the underlying correlation matrix to see
whether we could identify a similar pattern and observe conserved associations between
bacterial abundance and markers of tissue-specific insulin sensitivity (e.g. consistent
identical direction of a correlation between a group with a metabolic parameter in both
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cohorts), however, both cohorts showed highly divergent patterns (Figure 3). For instance
Eubacterium rectale et rel. -a well-known butyrate producer-, showed conflicting
correlations with fasting insulin and HOMA-IR in both cohorts, again highlighting the
challenges associated with baseline observations in a single cohort.

To gain more insight into these differing patterns we applied random forest classification of
quartiled host parameters. Random Forests is a supervised machine learning technique
which can utilize nonlinear relationships and complex dependencies between genus-like
groups to identify bacterial taxa that differentiate the faccal community composition of
individuals that are in the highest or lowest range of each host parameter, respectively. The
measure of the success of the method is its ability to classify samples correctly. Random
classification (always choosing 1 class would yield a classification error of 0.5, therefore,
the performance should be higher if the input values or predictors (relative abundance of
bacterial groups) assist in classification. Overall, in both cohorts the microbiota
composition at genus level showed performance that was close to random classification,
with differences in predictors as well as classification accuracy between these cohorts.
To this end, only MAA showed a moderate improvement over random classification for
individuals with the highest and lowest 25% of fasting glucose concentrations
(AUC=0.66) or HbAcl (AUC=0.65). Among the matching microbial features -
important for classification of both parameters- were different Proteobacteria such as
Vibrio (Figure 4). Other taxa that helped in the prediction of distinct fasting glucose
levels were Faecalibacterium prausnitzii, Roseburia intestinalis, Clostridium nexile and
Eubacterium rectale and related species. For HbAcl these taxa were Oscillospira
guillermondii, Sporobacter termitidis and Lactobacillus gasseri and related species.
The most important microbiological feature for the prediction of HbAcl in MAA was
the abundance of Pepfococcus niger et rel. whose association was also identified
using linear regression, underscoring the need for complementary analytical
approaches. Among the above-listed identified taxa were several that are known to
produce butyrate®.

This is in line with previous studies that showed an increased abundance of some universal
butyrate-producing bacteria and an increase in Lactobacillus and various opportunistic
pathogens, associated with T2DM in a cohort of European women'> *'* and Chinese
individuals'”. More importantly these authors also showed that the discriminant
metagenomic markers for T2D differed between the cohorts and concluded that,
metagenomic predictive tools for T2D should be specific for the age and
geographical location of the populations studied®'*. The obvious differences in
observations between the cohorts and the fact that the identified associations of fasting
glucose concentrations or HbAcl with specific gut microbiota members were only
observed in one of the two cohorts illustrate that findings may differ from one cohort to

another and confirm the observations by Karlsson and co-authors®'*.
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Remarkably, in both cohorts no relationship between microbial composition and tissue-
specific insulin sensitivity, as determined by state-of-the-art clamp techniques, was detected
although previous studies have indicated a differential microbial composition in T2DM or
impaired glucose tolerant subjects'™> 1% 314322,

On top of these observations, there were striking differences between the microbiota
compositions of both cohorts. Compared to AMS, the abundance of bifidobacteria was
higher MAA, which has been linked to a healthier phenotype, a reduction in inflammatory
markers and an improvement in glucose homeostasis and lipid metabolism™ ***. Another
difference between both cohorts was a lower abundance of specific taxa belonging to
Clostridium cluster XIVa in MAA, which included known butyrate producers
(e.g. Butyrivibrio crossotus and Clostridium symbiosum and related species)*®. Also, there
were several slight differences in metabolic profiles between both cohorts, with lower
TAG and glucose concentrations as well as a reduced HOMA-B% in MAA.
Although lower abundances of butyrate-producing bacteria have previously been
reported in T2DM subjects in various states of insulin resistance’, these
compositional and metabolic differences were not linked in a significant way.

The strikingly cohort-specific observations suggest that the relation between microbiota
composition and T2DM as well as other characteristics of the metabolic syndrome is very
dependent on the selected cohort of patients and their respective baseline microbiota
composition. Similar observation have been made by other researchers as well *'*. 1
addition, it could be that differences in microbiota composition are not associated with the
insulin resistance phenotype when the overweight and/or obese state of the patient is
already established, as is the case for our metabolic syndrome patients. In the latter case we
cannot exclude that the composition of the fecal microbiota may play a role in the
worsening of insulin sensitivity in an early stage in the development from a lean towards an
overweight/obese phenotype.

n

With regards to the difference in composition between the cohorts, the human microbiota is
highly individual, which we also clearly observed in our PCA plot (Figure 2). Although we
know its composition is impacted by numerous external as well as host-specific factors,
including diet, age, antibiotics use, BMI, gender, and genotype®', the interplay of variables
that give rise to the variation of the microbiota is not yet fully understood because of its
complexity and the influence of numerous stochastic variables, such as common exposures
over a timeframe of years’'. Nevertheless, the multitude of these variations and their
combinations may explain why individual-specific (dysbiotic) microbiota profiles are
continuously observed.

This individuality of the microbiota composition may also explain why fecal transplantation
from lean donors to recipients with the metabolic syndrome slightly improved peripheral
insulin sensitivity only in a subgroup of subjects (responders), whereas other individuals
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did not show any effect on these parameters upon the intervention®. It is evident that
further studies are required to investigate the relation between fecal microbiota composition
and insulin sensitivity in phenotypes varying in adiposity and insulin sensitivity. Such
studies should also address microbial function to reveal if a microbial- or host component,
or both can be found with predictive power.

Currently, we have no clear explanation of the remarkable difference between the two
cohorts with respect to microbiota composition as well as the associations between
microbial profiles and host metabolic parameters. Both cohorts included subjects with an
increased risk for type 2 diabetes mellitus and/or metabolic syndrome in geographically
closely located areas in the Netherlands (~150 km distance). It is striking that the general
microbiota compositional variation of MAA only partly overlapped with AMS and that a
subgroup-specific microbiota was only observed in MAA. We hypothesize that a subset of
the metabolic syndrome patients of this cohort exhibit an alternative state of microbiota
composition that is driven by a yet unknown force which is only present in this cohort.
Nevertheless, this study clearly demonstrates that cohort-specific microbiota differences
hamper finding a consensus biological interpretation between studies based on single
baseline cohort observations. This, combined with the complexity of individual disease
pathogenesis, as well as the individual-specific differences in microbiota composition, may
explain the inconsistency in observations between different studies concerning the
identification of signature microbes for obesity, as well as other disorders and diseases
including inflammatory bowel disease and irritable bowel syndrome®**~*’.

Conclusion

In the present study, tissue-specific insulin sensitivity, at the level of the adipose tissue,
liver and skeletal muscle did not correlate with the abundance of microbial genus-level
groups in two cohorts of obese, insulin resistant males at baseline. With respect to the
surrogate measures for insulin sensitivity and measures of glycemic control HBAlc and
fasting glucose, the microbiota composition showed predictive potential, but only in one of
the cohorts. The latter findings stress the importance of taking metabolic profiles,
environmental, genetic and microbial variables into account in future studies. Overall, our
data combining detailed information on microbial composition and the insulin sensitivity
phenotype in two cohorts indicated that predictions regarding the role for gut microbiota in
host tissue-specific insulin sensitivity after development of the obese, insulin resistant state
are difficult to extrapolate based on baseline microbiota composition alone.
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Abstract

Background:Massive high-throughput sequencing of short, hypervariable segments of the
16S ribosomal RNA (rRNA) gene has transformed the methodological landscape
describing microbial diversity within and across complex biomes. However, several studies
have shown that the methodology rather than the biological variation is responsible for the
observed sample composition and distribution. This compromises true meta-analyses,
although this fact is often disregarded. Results: To facilitate true meta-analysis of
microbiome studies, we developed NG-Tax, a pipeline for 16S rRNA gene amplicon
sequence analysis that was validated with different mock communities and benchmarked
against QIIME as the currently most frequently used pipeline. The microbial composition of
49 independently amplified mock samples was characterized by sequencing two variable
16S rRNA gene regions, V4 and V5-V6, in three separate sequencing runs on Illumina’s
HiSeq2000 platform. This allowed evaluating important factors of technical bias in
taxonomic classification: 1) run-to-run sequencing variation, 2) PCR—error, and 3) region/
primer specific amplification bias. Despite the short read length (~140 nt) and all technical
biases, the average specificity of the taxonomic assignment for the phylotypes included in
the mock communities was 96%. On average 99.94% and 92.02% of the reads could be
assigned to at least family or genus level, respectively, while assignment to ‘spurious
genera’ represented on average only 0.02% of the reads per sample. Analysis of a- and -
diversity confirmed conclusions guided by biology rather than the aforementioned
methodological aspects, which was not the case when samples were analysed using QIIME.
Conclusions: Different biological outcomes are commonly observed due to 16S rRNA
region-specific performance. NG-Tax demonstrated high robustness against choice of
region and other technical biases associated with 16S rRNA gene amplicon sequencing
studies, diminishing their impact and providing accurate qualitative and quantitative
representation of the true sample composition. This will improve comparability between
studies and facilitate efforts towards standardization.



NG-Tax, a highly accurate and validated pipeline for the analysis of 16S rRNA amplicons from complex biomes

Background

Recent advances in massive high-throughput, short-amplicon sequencing are
revolutionizing efforts to describe microbial diversity within and across complex biomes’".
Cultivation-independent whole metagenome sequencing has received increasing attention
in the functional characterization of individual communities. These efforts, however,
remain relatively expensive on a per sample basis, and the richer but much more
unstructured information content requires complex data modelling and analysis
procedures®. Therefore targeted surveys for specific taxonomic marker genes, such as the
16S ribosomal RNA (rRNA) gene’®® **°) remain essential in many microbial ecological
studies. These surveys rely on sequencing of short, PCR amplified, hypervariable
subregions rather than of the full-length gene, mostly for reasons of throughput, sequence
depth and cost-efficiency.

There have been great efforts to address the accuracy and reproducibility of findings from
16S rRNA gene amplicon sequencing studies through increased levels of standardization,
and software pipelines provide comprehensive protocols to analyze microbial ecology
datasets. However, these efforts have arguably enhanced replicability rather than
reproducibility, by providing widely adopted defaults™. To this end, Drummond®’'
suggested that exact replication of an experiment (i.e., replicability) is less informative
(although a necessary pre-requisite for any scientific endeavour) than the corroboration of
findings by reproduction in different independent setups (i.e., reproducibility)**?, because
biological findings that are robust to independent methodologies are arguably more
dependable than any single-track analysis®*’. This distinction is highly relevant for the field
of microbial ecology, where replicability is often confused with reproducibility, which is
apparent from many often non-interchangeable methodologies.

Accuracy can typically be evaluated by the addition of positive controls. Generally these
are synthetic or mock communities (MCs) consisting of phylotypes that, ideally, are
representative of the ecosystem of interest. MCs allow researchers to answer two essential
questions concerning accuracy. 1) Do I retrieve the number of species I put in, and if so are
they correctly assigned? 2) How well does the sequencing and data analysis procedure
reproduce species relative abundances?

Reproducibility can be evaluated by comparing separate sequencing runs and different
primer pairs that cover distinct 16S rRNA gene regions. Although replicability is often
achieved, accuracy has been shown to be challenging especially at higher taxonomic

. 128, 333
resolution such as at genus level ™.

Central to all 16S rRNA gene amplicon studies are Operational Taxonomic Units (OTUs).
These are often regarded as the synthetic proxy for microbial species and are typically
clustered at 97% sequence similarity. However, the prokaryotic species definition remains a
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hotly debated topic without any satisfying solution so far''® ' 3. Moreover, the 97%
sequence similarity threshold is based on the complete 16S rRNA gene (~1500 nt), and
although sequence variability is not evenly distributed it is routinely applied to short reads
of 100-500 nt. Different regions would therefore require their own species level cut-off.
This combination of an ambiguous prokaryotic species definition and its application to
short reads, is the foundation for many complications regarding ‘correct’ OTU clustering.
Hence there is little consensus on key experimental choices such as primers, targeted
variable regions and OTU picking/clustering algorithms. Each of these technical aspects
generate biases, and different methods produce clearly distinct results, leading to a situation
where results of current studies cannot be easily compared or extrapolated to other study
designs. Therefore there is a strong need for standardization.

Historically, 16S rRNA gene sequences generated in a project were initially clustered de
novo into OTUs at >97% sequence similarity using various clustering algorithms, mostly
because available 16S rRNA gene reference databases were thought to provide insufficient
coverage'™* %3 Although new clustering algorithms that reduce the influence of
clustering parameters, such as a hard cutoff for cluster similarity, have been specifically
developed for amplicons™’, cluster generation is context-dependent, i.e. different datasets
generate different clusters, and different algorithms may produce different end-results'****°.
Therefore, even though the same analysis framework is used, independent studies remain
incomparable at OTU level. Consequently, reference-based OTU clustering has received
increasing attention, due to the need for standardization, and because de-novo OTU
clustering for very large datasets, such as those generated by Hiseq and Miseq sequencers
has become computationally very intensive, unless greedy heuristics are employed which
suffer from the problems described above. With reference-based OTU clustering, sequences
are mapped to pre-clustered reference sets of curated 16S rRNA gene sequences, provided
by dedicated databases such as the Ribosomal Database Project (RDP), Greengenes and
SILVA''"#% 3% The consequence of this approach is that the ‘quality’ of the clustering of
the reference set propagates to reference-picked OTUs. Clustering has limited robustness'*"
330340 "and unbalances in databases due to over- or under-representation of certain species
as well as error hotspots that are not necessarily matched to the variable regions'®', can
potentially lead to a biased cluster formation, driven by non-biological factors. These
effects have been previously ignored or underestimated in reference OTU picking

protocols®.

Another essential experimental choice concerns the selection of targeted variable region,
because it should represent the sequence variability encountered with the full-length gene.
Despite several studies comparing the performance of diverse regions, sequence lengths,
sequencing platforms and taxon assignment methodologies, both within and across
122, 127, 193, 131, 341383 there still is no fully consensus of best choices for variable
** are setting some

laboratories
regions even if some initiatives like the Earth Microbiome Project
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standards. There are several factors that can lead to the commonly observed highly region-
specific behaviour across datasets: 1) PCR bias of varying degrees'?” °" 3%, 2) different
regions are associated with different error profiles and different rates of chimera
formation'>" **, and 3) the actual variation contained in the sequence is dissimilar (e.g.
some regions are not variable enough to differentiate between genera, while others are),

which in turn can affect clustering®.

Apart from the use of a diverse range of primers and OTU picking protocols that can cause
differences in results between studies and/or laboratories, sequencing error is a third
important factor that defines data quality. Massive high throughput, short read length
sequencing platforms have not been developed for amplicon sequencing but rather for
whole genome sequencing, where sequence errors in individual reads is less important.
However, in 16S rRNA gene amplicon sequencing every sequencing error could potentially
lead to the false discovery of a new biomarker. To avoid overestimation of microbial
diversity, stringent quality filtering is therefore considered essential’*’.

Methodology rather than biology has often been shown to be the largest driver of variation
in microbiome studies'>" '** 131 330 343, 3473% “and this aspect of amplicon sequencing is
increasingly addressed in literature. Nevertheless, a satisfactory solution has not been
found. To address the aforementioned challenges we have applied several recommendations
from literature to validate high throughput, high-resolution microbiota profiling, using
Illumina Hiseq2000 101nt paired end sequencing data as a test case. We implemented
redundancy by sequencing two tandem variable 16S rRNA gene regions in parallel (V4 and
V5-V6). To find optimal filtering settings and to empirically determine the noise floor,
multiple standardized mock communities specifically designed to tackle issues associated
with filtering parameter optimization were added to each sequencing run. To our
knowledge a similar setup with multiple MCs and different variable regions has not been
applied to datasets generated by the Illumina platform. This set-up has enabled us to
develop NG-Tax, a pipeline that accounts for error associated with a range of technical
aspects of 16S rRNA gene amplicon sequencing. NG-Tax will improve comparability by
removing technical bias and facilitate efforts towards standardization, by focusing on
reproducibility as well as accuracy. To assess the performance we benchmarked the results
obtained with NG-Tax with results obtained with QIIME*’, a common pipeline used for
the analysis of this type of data.
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Results and discussion

NG-Tax layout

NG-Tax consists of three core elements, namely barcode-primer filtering, OTU-picking and
taxonomic assignment (Figure 1). User examples and details of each step of the pipeline
can be found in the user manual in Dataset 1.

Barcode-Primer filtering
In a first step, paired end libraries are combined, and only read pairs with perfectly
matching primers and barcodes are retained. To this end, both primers are barcoded to
facilitate identification of chimeras produced during library generation after pooling of
individual PCR products.

OTU picking

For each sample an OTU table is created with the most abundant sequences, using a
minimum user defined relative abundance threshold. In this particular study we employed a
threshold of 0.1% minimum relative abundance. Lowering the threshold will lead to the
acceptance of low abundant OTUs, with an increased probability of these OTUs being
artifacts due to sequencing and PCR errors. Abundance thresholds are commonly used to
remove spurious OTUs generated by sequencing and PCR errors'*® **!, but previous studies
applied a fraction threshold defined by the complete dataset under study, thereby ignoring
sample size heterogeneity which may lead to under-representation of asymmetrically
distributed OTUs.

Commonly employed quality filtering parameters based on Phred score, such as minimum
average Phred score, maximum number of ambiguous positions, maximum bad run length,
trimming and minimum read length after quality trimming, are not utilized in NG-Tax
because quality scores from the Illumina base caller have been shown to be of limited use
for the identification of actual sequence errors for 16S rRNA gene amplicon studies™ **%.
Additionally, these quality scores only check for errors that occurred during sequencing,
but do not account for other sources of error, such as PCR amplification, whereas quality
filtering by abundance is sensitive to any source of error. Moreover, the application of
global parameters (e.g. average Phred score) ignores that error is sequence-specific, and
hence some sequences could be affected more than others. If a species specific amplicon is
more prone to PCR or sequencing errors, the relative abundance of that particular species
will be underestimated. To compensate for this potential bias, discarded reads are clustered
to the OTUs with one mismatch.

Finally, all OTUs are subjected to non-reference based chimera checking according to the
following principle: given three OTUs named A, B and C, C will be considered a chimera
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when the following conditions are satisfied: C and A 5’ reads are identical, C and B 3’
reads are identical and both OTUs, A and B, are at least twice as abundant as OTU C.

Taxonomic assignment

In the current version of NG-Tax, taxonomy is assigned to OTUs utilizing the usearch
algorithm®® and the Silva_111_SSU Ref database, containing 731,863 unique full length
16S rRNA gene sequences. To ensure maximum resolution and avoid the risk of errors due
to clustering-associated flaws (e.g. reference sequence error hotspots, overrepresentation of
certain species and lack of robustness in cluster formation by clustering algorithms), we use
the non-clustered database. To speed up the procedure by several orders of magnitude, 16S
rRNA gene sequences from the reference database are trimmed to contain only the region
amplified by the primers. For each OTU, a taxonomic assignment is retrieved at six
different identity thresholds levels (100%, 98%, 97%, 95%, 92% and 90%) and at two
taxonomic levels (genus and family). The final taxonomic label is determined by the
assignments that show concordance at the highest taxonomic resolution.

NG-Tax layout
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Figure 1. NG-Tax layout. Input files are depicted in blue, output files are depicted in green and clustering processes using usearch
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Validation

Datasets

Our main objective was to develop a pipeline that accurately reproduces the synthetic MCs
and also reduces the impact of experimental choices on the results. To achieve this goal,
four synthetic communities of varying complexity were created, consisting of 16S rRNA
gene amplicons of phylotypes (PTs) associated with the human Gl-tract (Table 1). This
specific setup limited the likelihood of overfitting to a particular OTU composition or
distribution and allowed us to assess (1) the quantification potential, (2) noise floor and (3)
the effect of richness and diversity on quality filtering parameters, thus ensuring a higher
fidelity with biological samples than by using a single MC. As a reference, to assess the
quality of the taxonomic classifications, full length sequences for all PTs were obtained
through Sanger sequencing. Expected MCs were created by trimming the full length
sequences to the sequenced region. MC1 and MC2 consisted of equimolar amounts of 17
and 55 PTs, respectively. MC3 contained 55 PTs in staggered concentrations typical for the
human GI-tract, and MC4 included 50 PTs with relative abundances ranging between 0.001
and 2.49%. To account for pipetting errors, each of the four MCs was produced in
triplicate. To design a pipeline that puts more focus on biology, these 12 MC templates
were used to sequence the MCs with different conditions that cover most of the technical
bias associated with 16S rRNA gene amplicon studies reported in literature. To this end, we
1) targeted either region V4 or region V5-V6, 2) used four PCR protocols differing in the
number of PCR cycles and reaction volumes 3) PCR products were analysed in three
different sequencing runs and in seven different libraries, and 4) two different library
preparation protocols (with and without an extra amplification of 10 cycles) were applied
(Table 2). In addition the sequencing depth ranged from 2363 to 335822 reads per sample.
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Figure 2. NG-Tax Assignment quality of the 55 MC phylotypes. Three taxonomic assignments are shown: RDP full length, NG-
Tax V5-V6 trimmed, and NG-Tax V4 trimmed. If NG-Tax assignments are in agreement with RDP full length assignment, that
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Table 1. Composition of the four MCs. Relative abundance and taxonomy of 55 reference sequences used in this study. The

taxonomic label was based on classification of the full length reference sequences according to the RDP classifier.

RDP Naive Bayesian rRNA Classifier Version 2.10, October 2014 MC MC MC MC
1 Bacte Actinobacteria Actinobacteria Actinomycetales Nocardiaceae Rhodococcus 1.82 1.1 0.001
2 Bacte Actinobacteria Actinobacteria Actinomycetales Micr Micrococcu: 1.82 1.1 0.01
3 Bacte Actinobacteria Actinobacteria ifidob iales ifidob iaceae Bifidobacterium 58 1.82 1.1 0.10
4 Bacte t ia Actinob ia Bifidob iale: Bifidob iaceae Bifi ium 1.82 1.1 2.49
5 Bacte Actinobacteria Actinobacteria ifidob iales ifidob iaceae Bifidobacterium 1.82 1.1
6 Bacte Actinobacteria Actinobacteria dot iales ifidob iaceae Bifidobacterium 1.82 1.1
7 Bacte t ia Actinob ia Bifidob ale: Bifidob iaccae Bifi ium 1.82 1.1
8 Bacte Actinobacteria Actinobacteria dot iales dot iaceae Bifidobacterium 1.82 1.1
9 Bacte t ia Actinob ia Bifidob ale: Bifidob iaceae Bifi ium 1.82 1.1
1 Bacte Actinobacteria Actinobacteria dot iales dot iaceae Bifidobacterium 1.82 1.1
1 Bacte Bacteroidetes Bacteroidia B dal B d Bacteroides 1.82 1.1 2.49
1 Bacte Bacteroidetes Bacteroidia B dal B d Bacteroides 1.82 1.1 2.49
1 Bacte Bacteroidetes Bacteroidia dal id Bacteroides 1.82 1.1 2.49
1 Bacte Bacteroidetes Bacteroidia B dal B d Bacteroides 1.82 1.1 2.49
1 Bacte Bacteroidetes Bacteroidia dal d Bacteroides 1.82 4.0 2.49
1 Bacte Bacteroidetes Bacteroidia B dal B id Bacteroides 5.8 1.82 1.1 2.49
1 Bacte Bacteroidetes Bacteroidia dal Porpt it Parab le 58 1.82 4.6 0.001
1 Bacte Bacteroidetes Bacteroidia dal Pr 11 Prevotella 5.8 1.82 1.1 0.10
1 Bacte Bacteroidetes Bacteroidia B idal Rikenell Alistipes 5.8 1.82 8.1 0.01
2 Bacte Firmicutes Bacilli Bacillales Bacillaceae 1 Bacillus 1.82 1.1 2.49
2 Bacte Firmicutes Bacilli Bacillales Bacillaceae 1 Bacillus 1.82 1.1 2.49
2 Bacte Firmicutes Bacilli Lactobacillales Carnobacteriaceae Granulicatella 1.82 1.1 2.49
2 Bacte Firmicutes Bacilli I bacillal Ei Enterococcu: 1.82 1.1 2.49
2 Bacte Firmicutes Bacilli I bacillal L bacill L b 1.82 1.1 2.49
2 Bacte Firmicutes Bacilli Lactobacillal Lactobacill Lactob: 1.82 1.1 2.49
2 Bacte Firmicutes Bacilli I bacillal L bacill L b 1.82 1.1 2.49
2 Bacte Firmicutes Bacilli Lactobacillal tr Lactococcus 1.82 1.1 2.49
2 Bacte Firmicutes Bacilli ! bacillal Str Streptococcus 58 1.82 1.1 2.49
2 Bacte Firmicutes Bacilli Lactobacillal tr Strep cus 1.82 1.1 2.49
3 Bacte Firmicutes Clostridia Clostridiales Clostridiaceae 1 Clostridium sensu stricto 5.8 1.82 1.1 2.49
3 Bacte Firmicutes Clostridia Clostridiales Lach iraceae A ipe 58 1.82 1.1 2.49
3 Bacte Firmicutes Clostridia Clostridiales Lachnospiraceae Blautia 58 1.82 58 0.001
3 Bacte Firmicutes Clostridia Clostridiales Lachnospiraceae Dorea 5.8 1.82 1.1 2.49
3 Bacte Firmicutes Clostridia Clostridiales Lachnospiraceae Lachnospiracea_incertae_s 58 1.82 1.1 2.49
3 Bacte Firmicutes Clostridia Clostridiales Lach iraceae L iracea_incertae_s 5.8 1.82 1.1 2.49
3 Bacte Firmicutes Clostridia Clostridiales Lach iraceae L iracea_incertae_s 1.82 1.1 249
3 Bacte Firmicutes Clostridia Clostridiales Lachnospiraceae Roseburia 58 1.82 8.7 0.01
3 Bacte Firmicutes Clostridia Clostridiales Lact iraceae Rumi) 2 1.82 1.1 2.49
3 Bacte Firmicutes Clostridia Clostridiales P Clostridium XI 5.8 1.82 1.1 2.49
4 Bacte Firmicutes Clostridia Clostridiales R Clostridium IV 1.82 1.1 2.49
4 Bacte Firmicutes Clostridia Clostridiales Fe ib, i 5.8 1.82 6.9 0.10
4 Bacte Firmicutes Negativicuts 1 al Veillonell Veill 1.82 1.1 2.49
4 Bacte Fusobacteria Fusobacteriia Fusot iale: Fusot iaceae Fu um 1.82 1.7 2.49
4 Bacte Lentisphaerae Lentisphaeria Victivallales Victivallaceae Victivallis 1.82 0.5 2.49
4 Bacte Proteot ia Gammapr E t iale: E t iaceae Citrobact 1.82 1.1 2.49
4 Bacte Proteobacteria Gammaproteot E t iale: E t iaceae Enterobacter 1.82 1.1 2.49
4 Bacte Pr t ia Gammapr E t iale: Ei t iaceae E b 1.82 1.1 2.49
4 Bacte Pr t ia Gammapr E t iale; Ei t iaceae E b 1.82 1.1 2.49
4 Bacte Proteobacteria Gammaproteot E t iale: E t iaceae Escherichia/Shigella 58 1.82 4.0 2.49
5 Bacte Proteot ia Gammapr E t iale: E t iaceae Klebsiella 1.82 1.1 2.49
5 Bacte Proteobacteria Gammaproteot E b iales E b iaceae Salmonella 1.82 1.1 2.49
5 Bacte Proteot ia Gammapr E t iale: E t iaceae Serratia 1.82 1.1 2.49
5 Bacte Proteobacteria Gammaproteot Pseud dal Pseud d Pseud. 1.82 1.1 2.49
5 Bacte Proteobacteria Gammaproteot Pseud dal Pseud d Pseud. 1.82 1.1 2.49
5 Bacte Verrucomicro Verrucomicrobiae Verrucomicrobia Verrucomicrobiacea Akkermansia 5.8 1.82 29 2.49




NG-Tax, a highly accurate and validated pipeline for the analysis of 16S rRNA amplicons from complex biomes

Table 2. The 49 sequenced MC samples.

Name MC Template Region Run Library Extra PCR PCR
1 Mc.1.1.101 1 1.1 V5-V6 1 1 Yes 25 3x40ul
2 Mc.1.2.101 1 1.2 V5-V6 1 1 Yes 25 3x40ul
3 Mc.1.3.101 1 1.3 V5-V6 1 1 Yes 25 3x40ul
4 Mc.2.1.101 2 2.1 V5-V6 1 1 Yes 25 3x40ul
5 Mc.2.2.101 2 2.2 V5-V6 1 1 Yes 25 3x40ul
6 Mc.2.3.101 2 2.3 V5-V6 1 1 Yes 25 3x40ul
7 Mc.3.1.101 3 3.1 V5-V6 1 1 Yes 25 3x40ul
8 Mc.3.2.101 3 3.2 V5-V6 1 1 Yes 25 3x40ul
9 Mc.3.3.101 3 3.3 V5-V6 1 1 Yes 25 3x40ul
10 Mc.4.1.101 4 4.1 V5-V6 1 1 Yes 25 3x40ul
11 Mc.4.2.101 4 4.2 V5-V6 1 1 Yes 25 3x40ul
12 Mc.4.3.101 4 4.3 V5-V6 1 1 Yes 25 3x40ul
13 Mc.1.1.102 1 1.1 V4 2 2 No 25 3x40ul
14 Mc.1.2.102 1 1.2 V4 2 2 No 25 3x40ul
15 Mc.1.3.102 1 1.3 V4 2 2 No 25 3x40ul
16 Mc.2.1.102 2 2.1 V4 2 2 No 25 3x40ul
17 Mc.2.2.102 2 2.2 V4 2 2 No 25 3x40ul
18 Mc.2.2.dup.102 2 2.2 V4 2 2 No 25 3x40ul
19 Mc.2.2.30.102 2 2.2 V4 2 2 No 30 3x40ul
20 Mc.2.2.35.102 2 2.2 V4 2 2 No 35 3x40ul
21 Mc.2.2.1x.102 2 2.2 V4 2 2 No 25 1x100
22 Mc.2.2.1x.102 2 2.2 V4 2 2 No 25 1x100
23 Mc.2.3.102 2 2.3 V4 2 2 No 25 3x40ul
24 Mc.3.1.102 3 3.1 V4 2 2 No 25 3x40ul
25 Mc.3.2.102 3 3.2 V4 2 2 No 25 3x40ul
26 Mc.3.3.102 3 3.3 V4 2 2 No 25 3x40ul
27 Mc.4.1.102 4 4.1 V4 2 2 No 25 3x40ul
28 Mc.4.2.102 4 4.2 V4 2 2 No 25 3x40ul
29 Mc.4.3.102 4 4.3 V4 2 2 No 25 3x40ul
30 Mc.2.1.103 2 2.1 V4 3 3 No 25 3x40ul
31 Mc.2.2.103 2 2.2 V4 3 3 No 25 3x40ul
32 Mc.4.1.103 4 4.1 V4 3 3 No 25 3x40ul
33 Mc.4.2.103 4 4.2 V4 3 3 No 25 3x40ul
34 Mc.2.1.104 2 2.1 V4 3 4 No 25 3x40ul
35 Mc.2.2.104 2 2.2 V4 3 4 No 25 3x40ul
36 Mc.4.1.104 4 4.1 V4 3 4 No 25 3x40ul
37 Mc.4.2.104 4 4.2 V4 3 4 No 25 3x40ul
38 Mc.2.1.105 2 2.1 V4 3 5 No 25 3x40ul
39 Mc.2.2.105 2 2.2 V4 3 5 No 25 3x40ul
40 Mc.4.1.105 4 4.1 V4 3 5 No 25 3x40ul
41 Mc.4.2.105 4 42 V4 3 5 No 25 3x40ul
42 Mc.2.1.106 2 2.1 V4 3 6 No 25 3x40ul
43 Mc.2.2.106 2 2.2 V4 3 6 No 25 3x40ul
44 Mc.4.1.106 4 4.1 V4 3 6 No 25 3x40ul
45 Mc.4.2.106 4 4.2 V4 3 6 No 25 3x40ul
46 Mc.2.1.107 2 2.1 V4 3 7 No 25 3x40ul
47 Mc.2.2.107 2 2.2 V4 3 7 No 25 3x40ul
48 Mc.4.1.107 4 4.1 V4 3 7 No 25 3x40ul
49 Mc.4.2.107 4 4.2 V4 3 7 No 25 3x40ul
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NG-Tacx classification of short reads versus full length classification

To evaluate the accuracy and reproducibility of taxonomic classification using a low
information content of ~140 nt compared to a maximal information content of ~1500 nt, we
compared the NG-Tax classification of all 55 reference sequences used in this study
trimmed to V4 and V5-V6, with a classification of the corresponding full length reference
sequences using the RDP classifier (RDPc)'**(Figure 2). At family level, all three
classifications (i.e. full length, V4 and V5-V6) were in complete concordance for all
phylotypes. Correspondingly, the consistency at genus level was very high. Only a few
phylotypes (nine and five for V4 and V5-V6 amplicons, respectively), that belong to poorly
classified families such as Peptostreptococcaceae, Ruminococceae and Enterobacteriaceae,
attained higher resolution using the full length sequences and RDPc. In turn, for
Pseudobutyrivibrio (PT35), a higher resolution was attained with short reads due to the
high specificity of the hypervariable regions, which can be overshadowed when using the
full length sequence. Lastly, only two (PT51, PT52, V4) and one (PTS1, V5-V6)
assignments at genus level (both members of the Enterobacteriaceae) were incongruent
between classification of the short and full length sequences. Overall, the V5-V6 amplicons
outperformed the V4 amplicons because this region allowed for differentiation between
members of the Enterobacteriaceae. The average taxonomic specificity (percentage of hits
with an identical taxonomic label) for all reference phylotypes was 96% for both regions
with an average of 1485 and 635 hits for regions V4 and V5-V6, respectively. The high
specificity and high number of hits at very high identity thresholds, combined with the fact
that the vast majority of V4 and V5-V6 based assignments matched, testifies for the
reliability and quality of the assignments.

Observed versus expected microbial profiles

To assess the ability to reproduce the expected composition of the MCs we benchmarked
NG-Tax with QIIME, a commonly employed 16S rRNA gene amplicon analysis pipeline.
The reproduction of MC compositional profiles generated by amplicon sequencing on
[llumina platforms commonly suffers from a high fraction of poorly classified and spurious
OTUs*”. Using QIIME, up to 20% of OTUs per sample could not be assigned beyond the
class level (Figure 3). In contrast, with NG-Tax we observed excellent reproduction of the
expected profiles (Figure 4). An average of 92.02% of the reads could be assigned to genus
level and 99.94% to at least family Ilevel. Spurious genera (Robinsoniella,
Subdoligranulum, Cupriavidus, Ralstonia, Kluyvera and Pantoea) represented on average
only 0.02% of the reads per sample compared to an average of 23% misclassified reads
using QIIME’.
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One template, PT17 (Parabacteroides), attracted so much sequencing error in the V4
region that it was rendered undetectable although it was amplified by the primers
(Supplementary Figure 1). Therefore, to test both pipelines without this sequencing
anomaly, it was removed from the analysis.

SEEREEERER
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Figure 3. Observed composition of all MCs compared with the expected ones (EXP) for both regions and each read separately
obtained with QIIME.
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Figure 4. Observed composition of all MCs compared with the expected ones (EXP) for both regions obtained with NG-tax.

Observed versus expected diversity

Richness and diversity measures are important for understanding community complexity
and dynamics. Among these measures, a-diversity is defined as the diversity within a
sample, which is often estimated based on the abundance distribution (evenness) and
number (richness) of species, whereas p-diversity is defined as the partitioning of diversity
among communities. The ability of researchers to quantify richness and diversity hinges on
an accurate assessment of the composition of these communities’”. For microbial
communities, this has been particularly challenging, as none of the existing molecular
microbial ecology methods normally capture more than a small proportion of the estimated
total richness in most microbial communities®*. For deep sequencing based approaches,
filtering strategies that remove low-abundance reads make it impossible to apply richness
estimation metrics such as the Chaol index and the ACE coverage estimator, because low-
abundance read counts are included in their calculations. Conversely, richness estimates
based on unfiltered datasets are unlikely to be accurate, if many of the reads actually
represent PCR and/or sequencing errors’. In contrast to purely OTU-based methods,
divergence-based methods account for the fact that not all species within a sample are
equally related to each other, considering two communities to be similar if they harbour the
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same phylogenetic lineages, even if the species representing those lineages in each of the
communities are different. Consequently, these methods are more powerful than purely
OTU-based methods, because similarity in 16S rRNA gene sequence often correlates with
phenotypic similarity in key features such as metabolic capabilities. An added benefit is
that small errors that are likely due to unfiltered sequencing errors, are punished less
severely because OTUs that are only a few nt distant from each other due to error are still
closely related using divergence based indices. Therefore, these indices probably provide a
better estimate of the true diversity for data generated by high throughput next generation
technology sequencers.

Because the focus of NG-Tax was to retain as much biological signal as possible while
minimizing the impact of any technical choice, divergence-based a-diversity (Phylogenetic
Diversity (PD)**®) and B-diversity (Unifrac’>’) metrics were used to visualize the diversity
within and between MCs (Figure 5). The results obtained with QIIME suffered from all of
the previously described technological artifacts. The MCs clustered by primer pair instead
of MC, and within each cluster the structure, i.e. the position of MCs relative to each other,
was different. More importantly, the true biological variation depicted by the expected
composition was reproduced by neither primer pair (Figure 5C). Based on these results not
only the Principle Coordinates Analysis (PCoA) based conclusions would have been
different for both primer pairs, but also the differences in taxonomic classification could
lead to significant changes in identified biomarkers, in line with what has previously been
observed by He and co-workers**>. Here we show that replicability within a variable region
was attained. The more important reproducibility, however, i.e. the corroboration of
findings by reproduction in different independent setups that use e.g. different primers, was
not. This is an important observation because biological findings should be insensitive to
independent methodologies™’. In line with the above, also the observed a-diversity (PD)
was found highly inflated and the biological order was not reproduced (Figure 5D). In
contrast, NG-Tax provided a clear separation of samples by MC type and their
representative expected samples regardless of variable region, PCR protocol, sequencing
run, library and sequencing depth. These results are remarkable, given the biases associated
with each of these categories and the difference in resolution between the two regions
(Figure 5A). Moreover, MC2, MC3 and MC4 were very similar, sharing the same genera
and largely the same phylotypes, only differing in relative distribution (Table 1).
Correspondingly, rarefaction curves for o-diversity (Figure 5B) showed excellent
reproduction of the true diversity. A perfect overlap cannot be achieved since the expected
MCs do not account for sequencing or PCR errors, and these factors cannot be completely
removed from real sequencing data.
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Figure 5. PCoA using Weighted Unifrac of all sequenced and expected MCs from NG-Tax (A) and QIIME (C), darker colored
triangles represent the expected composition while lighter colored circles represent sequenced samples. Rarefaction curves of PD
for all MCs and their expected counterparts from NG-Tax (B) and QIIME (C). These plots illustrate the excellent representation of
the true diversity by the sequenced data using NG-Tax.

Small distances to expected MCs show the accuracy of NG-Tax, reproducibility on the
other hand can be evaluated by the within MC distances and the dispersion of the between
MCs distances (Figure 6). Distances to the expected MCs, within MC distances and
dispersion of the between MCs distances were significantly lower (p<le-10) for NG-Tax
compared to QIIME. K-means cluster prediction using within groups sum of squares
predicted 2 clusters for QIIME (Supplementary Figure 2) and the correct 4 clusters for NG-

Tax (Supplementary figure 3).
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Figure 6. Pairwise Weighted UniFrac distances. Distances to the expected MCs, within MC distances and dispersion of the
between MCs distances were significantly lower (p<le-10) for NG-Tax compared to QIIME. NG-Tax results are depicted in blue
and QIIME in red.

Conclusions

An increasing number of studies have shown that the chosen methodology rather than the
natural variance is responsible for the greatest variance in microbiome studies'?” 4% 131 33
37349 Some authors raised their concern with comparing data generated using different
strategies®”, which basically suggests that true reproducibility (i.e. using different
approaches and drawing the same biological conclusions) cannot be attained. This is an
alarming observation since studies are often used to identity biomarker organisms,
associated with certain host phenotypes (often comparing a diseased state to a healthy
state), yet the use of different primers might show different biomarkers'>’ 2% 131, 340 342,345
So far, neither currently available pipelines nor taxonomic classifiers have been able to
efficiently reduce the noise in this type of data. Nevertheless, in properly de-noised
datasets, taxonomical profiles, richness and diversity should be close to the expected values
and the abundance of unassigned and poorly assigned reads should be low except when
dealing with largely unexplored environments that are not sufficiently covered yet by the
reference databases. At lower noise levels different variable regions should yield similar
conclusions with small variations due to region specific resolution, and minor changes in
the experiment should still deliver the same biological conclusions. Here we presented NG-
Tax, an improved pipeline for 16S rRNA gene amplicon sequencing data, which continues
to be a backbone in the analysis of microbial ecosystems. Several novel steps ensure much
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needed improved robustness against errors associated with technical aspects of these
studies, such as PCR protocols, choice of 16S rRNA gene variable region and variable rates
of sequencing error'?”***3*’_The commonly reported problems such as many un- or poorly
classified OTUs, inflated richness and diversity, taxonomic profiles that do not match the
expected ones, region dependent taxonomic classification and results being highly
dependent on minor changes in the experimental setup have been tackled with NG-Tax.
Despite the short read length (~140 nt) and all technical biases, the average taxonomic
assignment specificity for the phylotypes included in the MCs was 96%. In addition,
92.02% of the reads could be assigned to at genus level and 99.94% to at least family.
Spurious genera represented only 0.02% of the reads per sample. More importantly,
rarefaction curves and PCoA plots confirmed improved performance of NG-Tax with
respect to clustering based on biology rather than technical aspects, such as sequencing run,
library or choice of 16S rRNA gene region. Therefore NG-Tax represents a method for 16S
rRNA gene amplicon analysis with improved qualitative and quantitative representation of
the true sample composition. Additionally, the high robustness against technical bias
associated with 16S rRNA gene amplicon studies will improve comparability between
studies and facilitate efforts towards standardization.

Methods

Primers

Primer  pairs 515F (5’-GTGCCAGCMGCCGCGGTAA) - 806R  (5°-
GGACTACHVGGGTWTCTAAT) and BSF784F (5’-RGGATTAGATACCC) - 1064R
(5’-CGACRRCCATGCANCACCT) have been previously reported for amplification of the
V42 and V5- V6'? regions of the bacterial 16S rRNA gene, respectively. They were
selected based on 1) experimental validation, 2) taxonomic coverage of the relevant
ecosystem (Supplementary Figure 4) adherence to specific rules associated with the
sequencing platform, such as a maximum amplicon size of <500 nt. Unless noted otherwise
all primers were ordered at Biolegio (Nijmegen, Netherlands).

Barcoding strategy

At the time of sequencing Illumina’s Hiseq2000 allowed for multiplexing of up to
12 samples per lane using an index or barcode read provided by Illumina. To achieve
optimal sample throughput and phylogenetic depth, 70 primers containing a custom
designed 8nt barcode were developed to combine with the Illumina barcodes to
reach a maximum throughput of 12x70 samples per lane. Each set of 70 barcoded
samples are referred to as “library”. Low diversity samples, such as 16S rRNA gene
amplicons, can lead to problems with base calling due to overexposure of fluorescent
labels. Therefore, the set of 70 barcodes was specifically designed to possess an equal
base distribution over their complete
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length. Additionally, to avoid differential amplification, a two-base “linker” sequence that
is not complementary to any 16S rRNA sequence at the corresponding position, from a
database that contains 1132 phylotypes associated with the Human GI tract'>, was inserted
between the primer and barcode. The resulting set of 70 barcoded primers was checked for
avoidance of secondary structure formation within or between primers (i.e., primer-dimers)
or between barcodes and primers, using PrimerProspector'**.

Mock communities

All MCs were mixed in triplicate to account for pipetting error. These MCs ranged from
17-55 species in both equimolar and staggered compositions. One MC contained members
at very low abundances of 0.1, 0.01 and 0.001% (Table 2). Amplicons were generated
either from cloned 16S rRNA gene amplicons, isolates available in the local culture
collection of the Laboratory of Microbiology, Wageningen University, or strains ordered
from DSMZ and cultured according to DSMZ recommendations, after which genomic
DNA was isolated using the Genejet genomic DNA isolation kit (Thermo fisher scientific
AG, Reinach, Zwitserland). A 16S rRNA gene specific PCR was performed using the
universal primers 27F (5’-GTTTGATCCTGGCTCAG) - 1492R (5°-
GGTTACCTTGTTACGACTT) to obtain full length amplicons of which size and
concentration were checked on a 1% agarose gel and which were column purified and
quantified with the Qubit 2.0 fluorometer, and dsDNA BR assay kit (Invitrogen, Eugene,
USA). Amplicons were mixed in the MCs to obtain the specified relative abundances. High
quality full length reference sequences of all MC members were obtained by Sanger
sequencing at GATC Biotech AG (Constance, Germany) with sequencing primers 27F -
1492R in order to confirm their identity. The MCs were diluted 10%-fold and subsequently
used as templates in PCRs for the generation of barcoded PCR products.

Barcoded PCR

Unless noted otherwise, each sample was amplified in triplicate using Phusion hot start 11
high fidelity polymerase (Thermo fisher scientific AG), checked for correct size and
concentration on a 1% agarose gel and subsequently combined and column-purified with
the High pure PCR cleanup micro kit (Roche diagnostics, Mannheim, Germany). Forty pl
PCR reactions contained 28.4 uL nucleotide free water (Promega, Madison, USA), 0.4 pL
of 2 U/ul polymerase, 8 uL of 5x HF buffer, 0.8 pl of 10 uM stock solutions of each of the
forward (515F) and reverse (806R) primers, 0.8 pL. 10mM dNTPs (Promega) and 0.8 pL
template DNA (10° x diluted 200 ng/ul stock). Reactions were held at 98 °C for 30 s and
amplification proceeding for 25 cycles at 98 °C for 10 s, 50 °C for 10 s, 72 °C for 10 s and
a final extension of 7 min at 72 °C. Purified amplicons were quantified using Qubit. For
primer pair BSF784F-1064R the thermal cycling conditions were identical to those detailed
above except that the annealing temperature was 42 °C. To quantify noise generated by the
PCR protocol, several reactions were performed with 30 or 35 cycles and 1x 100ul reaction
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instead of pooling 40ul in triplicate (Table 2). A composite sample for sequencing was
created by combining equimolar amounts of amplicons from the individual samples,
followed by gel purification and ethanol precipitation to remove any remaining
contaminants. The resulting libraries were sent to GATC Biotech AG for sequencing on an
[llumina Hiseq2000 instrument.

Sequence analysis with QIIME

We have used QIIME to benchmark NG-Tax. Illumina fastq files were de-multiplexed,
quality filtered and analyzed using QIIME (v. 1.9)*° with closed reference OTU picking,
using default settings and quality parameters as previously reported™. An additional
analysis using a 0.1% abundance threshold can be found in Dataset 1.

NG-tax pipeline and user manual
The NG-tax pipeline, user manual and files and code to reproduce the presented results,
are available for download at http://www.systemsbiology.nl/NG-Tax/.

Abbreviations

rRNA: ribosomal RNA; MC: Mock Community; OTU: Operational Taxonomic Unit; PT:
Phylotype; RDP: Ribosomal Database Project; RDPc: RDP classifier; PD: Phylogenetic
Diversity; PCoA: Principle Coordinates Analysis

Description of additional data files

Dataset 1. Raw data of NG-Tax pipeline for analysis of 16S rRNA amplicons from complex
biomes is available through the digital version of the manuscript at:
http://f1000research.com/articles/5-1791/v1#DS0
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Supplementary figure 1. A) Nucleotide distribution of PT17 (Parabacteroides) for each of the four primers. Positions under the
black segment are fixed and specific for PT17 preventing the inclusion of sequences belonging to a different PT. B) Percentage of
10 most abundant sequences for PT17 obtained with each of the primers.

PT17 (Parabacteroides) presented a sequencing anomaly in the reverse V4 region (primer
R806) (Supplementary figure 1 A). From positions 50 to 67 this region had higher error rate
than the other three regions. The noise generated from this anomaly masked the biological
signal rendering PT17 undetectable. In fact the most abundant sequence represented less
than 0.45% of the total reads, while for the other three regions the most abundant sequence
represented more than 80% (Supplementary figure 1B). We decided to remove the
sequences belonging to PT17 from V5-V6 samples to avoid region clustering due to the
presence of PT17. Our intention in this study was to test region performance under
conditions in which sequencing anomalies like the one showed in Supplementary figure 1
are not present.
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NG-Tax cluster prediction
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Abstract

The aim of this study was to characterize the dynamics of microbial community
composition and activity in an in vitro gut model (TIM-2) fed with either a normal diet,
or modified versions from which the carbohydrate (MPLC) or protein fraction was diluted
(LPMC) for 72h. We also assesed the robustness and reproducibility of the microbial
responses. The production of short chain fatty acids and branched chain fatty acids
reflected the quantity of carbohydrate and protein in the system. We monitored the
developing microbial communities through 16S ribosomal RNA gene sequencing of
two variable regions, and overall, each diet produced distinct microbial communities
and temporal patterns. The microbiota in reactors fed diets containing normal
carbohydrate levels were enriched in members of the genera Prevotella,
Subdoligranulum, Blautia and Bifidobacterium, all associated with carbohydrate
fermentation. In turn, the microbiota in the reactors fed the MPLC diet, containing ten-
fold less carbohydrates, was enriched in the genus Bacteroides, which is associated with
diets rich in protein and animal fat. These observations of distinct communities were
corroborated at a global functional level by analysis of the metatranscriptome.
The current setup will allow us to study the (trophic) interactions and task division
within a community and how they are impacted by diet-related factors under controlled
conditions. This may assist in defining causal links between specific microbial groups
and their activities and diet-derived parameters.
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Introduction

The human gut microbiota consists of a complex community with a higher genetic coding
capacity than the host’. This densely inhabited ecosystem performs different essential
functions for the host but has also been associated with a plethora of human pathologies.
Therefore, many studies have investigated the potential to modulate microbial composition
and metabolic activity with the aim of improving host health®®. In vivo and in vitro
models have served as valuable tools to investigate fermentation in the gastro-intestinal
tract and to explore the complexity of microbe-microbe interactions®® 7. In the
particular case of in vitro models, many setups have been developed in order to
study the impact of environmental variables. For instance, different applications have
been used to assess the bioavailability of environmental contaminants® *° % the
impact of fermentation of prebiotics™” *®, and mechanistic studies using stable
isotopes have been performed to identify microorganisms involved in the degradation
of specific dietary components®®" *?. In vitro gut fermentation models overcome many
limitations of in vivo studies, which include issues of costs, human volunteer
compliance, ethical approval, difficulties associated with sampling from different
regions in the gut, and their inability to determine effects based solely on microbiota
activity’® °’. However, different criteria need to be fulfilled by in vitro gut models
before they can be considered valid for monitoring the effects of specific
interventions/treatments on the microbiota. It is important to ensure repeatability,
robustness and reproducibility of the model, and they must be capable to maintain the
characteristic high diversity and functional complexity of the human gut

microbiota®®.

The aim of this study was to compositionally and functionally characterize the microbial
communities that develop in an in vitro model simulating the proximal colon: the
TIM-2 system’® when fed with different diets for 72h. These diets were the
standard simulated ileal efflux medium (SIEM)®, which simulates the average
protein and non-digestible carbohydrate (CHO) consumed in a normal Western
diet*®. Variations thereof were made by diluting the protein or CHO fraction. These
diets were termed Low Protein Moderate Carbohydrate (LPMC) and Moderate Protein
Low Carbohydrate (MPLC), respectively. Simultaneously, we evaluated the ability of
the TIM-2 system to reproduce the temporal response of the microbiota at the level
of composition by 16S ribosomal RNA (rRNA) gene amplicon sequencing, activity
(meta-transcriptomics) and overall metabolic response by quantifying the short
chain fatty acids (SCFA) acetate, propionate and butyrate, the branched chain
fatty acids (BCFA) iso-butyrate and iso-valerate, and ammonia. Some of these
metabolites, such as acetate, are intermediates in complex microbial foodwebs™.
Therefore, in the context of this chapter the term production will signify the net effect of
total microbial metabolism.
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Materials and methods
TIM-2 in vitro model operation

Inoculum

The inoculum used for the TIM-2 experiments consisted of an active, pooled fecal
microbiota prepared from seven healthy volunteers (male: n=3, female: n=4, average age=
42 + 13 y, BMI= 24 + 1.9 kg/m2). We have previously shown that pooling does not result
in an aberrant microbiota composition or activity’®®. Fecal samples were collected using a
container kit which was maintained under anoxic conditions by using anaerobic packs
(AnaeroGenTM, Oxoid, Cambridge, UK). Samples were homogenized in an anaerobic
cabinet (80% N2, 10% CO2, 10% H2) and used to inoculate a fed-batch fermentor
simulating the human ‘cecum’ conditions as described earlier’®. In short, 670ml food was
inoculated with 80g of pooled stools. The incubation was done at 37°C for 44h, and the
fermentor was constantly flushed with gaseous nitrogen in order to guarantee anaerobic
conditions. In addition, 1250ml of food was supplied in fed-batch mode during the
incubation time. The resulting slurry was aliquoted, snap-frozen in liquid nitrogen and
stored at -80°C before inoculation in TIM-2.

TIM-2 fermentation experiments

The study was performed in two different experimental weeks in which six units were run
in parallel each week. The distribution of the diets in each unit is shown in Table 1. The
TIM-2 system was flushed with N, at 37°C for 96h prior to introduction of the inoculum.
The pH was kept at or above 5.8 by automatic titration with NaOH (2M). A 30ml portion of
fecal homogenate was used to inoculate the separate units for each experiment. Each unit
was then filled to 120ml with 90ml of dialysate’®. Immediately after inoculation, the
microbiota was left to adapt to the new environment for 16h. During this period, the basal
medium preparation (SIEM) was gradually introduced into the system in a total volume of
40ml. After adaptation, the community was deprived from any medium for 2h (starvation)
in order to maximize the utilization of the tested diets by the microbiota®’. After this
starvation period, the test diets were added at t0 and at a rate of 2.5ml/h. A total of 180ml of
the different diets was administrated over the 72h of the test period.

Throughout the experiment, the luminal content was maintained at a level of approximately
120ml in each unit by a level sensor (liquiphant FTL20-0025, Endress+Hauser). In order to
remove fermentation products and water from the lumen, a dialysis system consisting of a
semi-permeable hollow membrane ran through the lumen®®®. For all experiments, the speed
of the dialysis was set at 1.5ml/min.

At t24 and t48, 25ml of lumen sample was removed from the system to mimic the transit of
material coming from the proximal and reaching the distal colon’®. Additionally, a sample

of the inoculum before adaptation was taken (t -16h).
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Luminal and dialysate sampling was performed at 0, 24, 48 and 72h. Samples were stored
at -80°C until analysis.

Fermentation media

During the 16h adaptation period, all TIM-2 units were fed with simulated ileal efflux
medium (SIEM) as described by earlier’®. After this adaptation period the units were fed
with the normal, MPLC and LPMC diets.

The normal (control) diet consisted of the normal preparation of SIEM, containing TBCO
(Tween 80, bacto-peptone, caseine and ox-bile) and the following carbohydrates: pectin,
xylan, arabinogalactan, amylopectin, and starch. The LPMC diet (10:1 CHO: protein)
consisted of SIEM that was modified by diluting the concentration of TBCO ten times
while retaining the proportions of the rest of the ingredients. For the MPLC diet (1:10
CHO: protein), the CHO fraction of the basal medium was diluted 10 times, while retaining
the proportions of the rest of the ingredients.

Microbiota profiling

DNA extraction

For the extraction of genomic DNA, 250 pl of luminal sample was mixed with 250 pl of
TE buffer (Tris—HCI pH 7.6, EDTA pH 8.0), 50 ul 10% (v/v) SDS (Ambion, Austin, TX,
USA) and 500 pl acid-phenol (Phenol:Water (3.75:1 v/v); pH = 4.45-5.68; Invitrogen,
Carlsbad, CA, USA). Samples were treated 3 times in a FastPrep (Precellys 24, Bertin
Technologies, USA) at speed 5.5 for 45s and later centrifuged at 13.400 g for 15 min at 4
°C. DNA was subsequently purified by extraction with a Maxwell MDx (Promega,
Madison, USA) following the “16 Tissue LEV Total RNA” protocol according to
manufacturer’s instruction.

Multiplex 16S rRNA gene amplicon sequencing

16S rRNA gene amplicon sequencing was performed as described previously’®. Shortly,
Primer  pairs  S5I15F  (5’-GTGCCAGCMGCCGCGGTAA) - 806R  (5°-
GGACTACHVGGGTWTCTAAT) and BSF784F (5’-RGGATTAGATACCC) - 1064R
(5’-CGACRRCCATGCANCACCT) were used to amplify the V4'** and V5- V6'*’ variable
regions of the bacterial 16S rRNA gene, respectively. A composite sample of all barcoded
PCR reactions was created for sequencing by combining equimolar amounts of amplicons
from the individual samples, followed by purification and concentration using magnetic
beads to remove any remaining contaminants. The resulting libraries were sent to GATC
Biotech AG (Konstanz, Germany) for sequencing on an [llumina Hiseq2000 instrument.

Microbiota composition profiling
Demultiplexing, OTU picking and taxonomic assignments using the Silva 111 _SSU Ref
database were done with NG-tax’® using default settings. Three datasets were created
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based on the V4, V5-V6 data and a combination of the two, by sequence prediction. In
short, both datasets generate different OTUs and therefore cannot be directly compared,
however, by predicting the missing regions (region V4 for V5-V6 and vice versa) based on
the most repeated sequence in the reference database we could combine the information of
the two datasets and improve robustness against amplification bias and primer coverage.
Statistical analysis and visualizations were done with QIIME v 1.9°*" and R version 3.1.3.
Statistical differences of the relative abundance of specific taxa between diets were
evaluated using a Kruskal Wallis test with false discovery rate correction (FDR). An

FDR<0.05 was considered significant.

Functional microbiota profiling: meta-transcriptome

RNA extraction and removal of rRNA

Total RNA was extracted from the luminal samples following a Macaloid-based RNA
isolation protocol’”’, which incorporated the use of a phase lock gel™ (GLP™) in order to
effectively isolate the nucleic acid-containing phase from the sample as previously
described®”'. The RNeasy mini kit (QIAGEN, CA, USA) was used for RNA purification
and included the use of an on-column DNAse I (Roche, Germany) treatment’  to remove
DNA from the samples. RNA quantity and quality were assessed using a NanoDrop
2000/2000C spectrophotometer (Thermo Scientific, USA), Experion RNA Stdsens analysis
kit (Biorad Laboratories Inc., USA) and plotting 23S/16S rRNA ratios (Experion™
Software V. 3.0, Bio-Rad, USA).

Extracted RNA was enriched for non-ribosomal RNA using the Ribo-Zero™ rRNA
removal kit (Epicentre, Madison, USA) according to the manufacturer's instructions. The
rRNA-depleted sample was purified by precipitation with ethanol as follows. The volume
of each RNA sample was adjusted to 180 pl using RNase-Free water and subsequently
mixed with 18 pl of 3M sodium acetate, 2 pl of glycogen (10 mg/ml) and 3 volumes of ice-
cold 100% ethanol. Tubes were stored overnight at -20 °C and were subsequently
centrifuged at >10.000 g at 4 °C for 30 min. The supernatant was carefully removed and the
pellet was washed twice with 600 pul ice-cold 70% ethanol. The pellet was allowed to air-
dry at room temperature for 5 min. Finally, the pellet was dissolved in 10 pl of RNase-Free
water. The quality of the treated RNA was assessed using a NanoDrop 2000/2000C
spectrophotometer (Thermo Scientific, USA) and Experion RNA Stdsens analysis kit
(Biorad Laboratories Inc., USA). The Ribo-Zero™ treated RNA was used for library
preparation using ScriptSeq™ (Epicentre, Madison, USA) according to the manufacturer's
instructions. For the purification steps we used the HighPrep PCR kit (MagBio Genomics,
Inc., US/Canada) according to the manufacturer's instructions. The samples were sent for
sequencing at GATC-Biotech (Konstanz, Germany).
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Metatranscriptome analysis

Despite the enrichment of mRNA, rRNA depletion is generally incomplete. Therefore,
remaining the rRNA sequences were removed with SortMeRNA*? as described
previously”™. Assembly of the unfiltered reads into contigs, prediction of ORFs (Open
Reading Frame) and annotation with KEGG functions was done with the pipeline described
by Davids ez al.®'. Differential expression analysis of KEGG functions was performed with
the R package edgeR’”.

Functional microbiota profiling: metabolites

SCFA (acetate, propionate and butyrate) and BCFA (iso-butyrate and iso-valerate) were
quantified as described previously’®. In brief, samples were centrifuged (~12.000 g, 5
min), and to the clear supernatant a mixture of formic acid (20%), methanol and 2-ethyl
butyric acid (internal standard, 2 mg/ml in methanol) was added. A 3 pl sample with a split
ratio of 75.0 was injected on a GC-column (ZB-5HT inferno, ID 0.52 mm, film thickness
0.10 um; Zebron; phenomenex, USA) in a Shimadzu GC-2014 gas chromatograph.
Ammonia was quantified by Bio-aNAlytiX (Mook, The Netherlands)’™.

Statistical analysis of metabolite data

The experiments were performed in series of four replicates per diet (Table 1). Results
are presented as mean + SD. Statistical analysis was performed using the SAS
statistical software package (SAS version 9: SAS Institute, Cary, NC). Proc Gplots were
used to test outcome variables for normality of distribution. The different
metabolites were log transformed and compared in a mixed model. No outliers were
detected. The ANOVA model considered diet and time (t0, t24, t48, t72) as fixed
factors. The factor replicate, which is the number of performed experiments, was
included in the model as a random factor. The Tukey-Kramer post hoc test was used to
correct for multiple comparisons. The concentration of all metabolites was artificially set to
zero at t0. Data were considered significant at p < 0.05.

145



Chapter 7

Table 1. Experimental setup

Diet Date Unit Run
Norm week 1 Ma 1
Norm week 1 Ma 1
LPMC week 1 Mb 1
LPMC week 1 Mb 1
MPLC week 1 Mc 1
MPLC week 1 Mc 1
Norm week 1 Oa 2
Norm week 1 Oa 2
LPMC week 1 Ob 2
LPMC week 1 Ob 2
MPLC week 1 Oc 2
MPLC week 1 Oc 2
Norm week 2 Ma 3
Norm week 2 Ma 3
LPMC week 2 Mb 3
LPMC week 2 Mb 3
MPLC week 2 Mc 3
MPLC week 2 Mc 3
Norm week 2 Aa 4
Norm week 2 Aa 4
LPMC week 2 Ac 4
LPMC week 2 Ac 4
MPLC week 2 Ad 4
MPLC week 2 Ad 4

Results
Microbiota profiling

The average number of reads per sample was 166311 + 131574. To ensure robust and
reproducible compositional data based on sequencing of 16S rRNA gene amplicons, we
amplified and sequenced two variable regions. To determine the resolution at which we
could discern biological differences, several samples were processed in duplicate (PCR and
sequencing). Furthermore, sequencing was performed in two independent runs. Weighted

- . 375
Unifrac distances

(WU, a measure of community similarity) between technical replicates
were significantly smaller than between samples assigned to different biologically relevant
categories (e.g. different diets, different time points during fermentor runs, etc.)

and between random samples (p<2.2e-16), indicating a small technical error (Figure 1).
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Community dynamics

After inoculation and during the stabilization phase, i.e. comparing samples taken at t-16h
and 10, the diversity (Faiths phylogenetic diversity’”) dropped significantly.
Consequently, the composition at t0 was characterized by high relative abundances of
mainly facultative anaerobes, such as Streptococcus, and Lactococcus (Figure 3), although
not representative of the colon, this is a normal observation when using this system with
this setup. Nevertheless, this drop in diversity and the resultant community was
reproducible as no significant difference in diversity and relative abundance at
genus level between units and replicates was found (FDR>0.05). Therefore, all
experiments started with similar initial communities, which were very different
from the rest of the communities at other time points during the intervention. The
largest shift in community composition occurred in the first 24h for all diets
(p<0.0001) and the smallest change was in the MPLC diet (p<0.0001). After t24 the
rate of change stays at the same level for the LPMC and normal diet, but for the
MPLC diet the change slowed down, with a smaller distance between t24-48 than
between t48-t72 (p<0.0001) (Figure 2A). This is corroborated by a trend in diversity,
which shows a similar pattern of increasing diversity throughout the experiment except for
the MPLC diet, which shows a slight drop, indicative that an equilibrium has been
reached (Figure 2B). After the addition of the different diets distinct communities
formed (Figure 2C). To this end, unweighted unifrac (UU) based Principle
Coordinate Analysis (PCoA) showed more pronounced separation of t0 samples from
those taken during the fermentation in the presence of the different diets than the
corresponding WU-PCoA, indicating that the developing communities were not only
distinct based on differential abundance of taxa, but also regarding their presence.
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Figure 2. Community dynamics. (A) Weighted unifrac distances between consecutive timepoints and (B) phylogenetic diversity
show a deceleration of community change for the MPLC diet but not for the normal and LPMC diet. (C) PCoA plots based on
unweighted and weighted unifrac distances show formation of distinct communities after addition of the diets.

Succession patterns

After an initial large compositional shift from the Bacilli dominated composition at t0, all
diets deviated towards a distinct composition (Figure 2C). The microbial communities
developing in the TIM-2 model in the presence of the MPLC diet were most distinct
regarding composition as well their temporal dynamics. Compared to the other diets,
MLPC-fed fermenters showed signs of increased stability after 48h based on diversity, WU
distances at consecutive time points and patterns of succession (Figures 2,3). Despite the
minor differences in composition between the TIM-2 units and in different replicate runs
(Figure 3), the diet effect was clearly visible (Figure 2C), and within diet WU distances
were significantly smaller than between diet distances (Figure 1; p<0.001). Furthermore,
the distances between experimental days and different runs were significantly smaller than
between random samples, indicating a robust system.
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Although all diets resulted in distinct communities (Figure 2C), some patterns of succession
were visible within all diets and units, except for one unit (Ob), which showed a slightly
deviant pattern compared to the other units with the same diet (Figure 3). Overall, members
of Clostridium, Enterococcus and Streptococcus decreased while Prevotella increased.

Along with Prevotella, also Subdoligranulum, Blautia and Bifidobacterium increased in
relative abundance in the normal and LPMC diets up to t48. However, at t48 differences
emerged between the normal and LPMC diets in the relative abundance of Dorea,
Ruminococcus and to a lesser degree Lachnospiraceae;g_ Incertae_Sedis, which increased
in the normal diet but not in the LPMC diet.

Microbial communities that developed in the presence of the MPLC diet showed a different
succession pattern compared to the other two diets. At t=24, relative abundance of
Prevotella, Bacteroides and Lachnospiraceae;g Incertae Sedis increased, while in
contrast, the taxa that increased in the other the diets with ample CHO (Subdoligranulum,
Blautia and Bifidobacterium) showed a slight decrease. At 48h Prevotella decreased in
relative abundance in the MPLC diet-fed units, while Bacteroides and
Lachnospiraceae;g  Incertae Sedis continued to increase in relative abundance.
Simultaneously, a member of the Lachnospiraceae family increased as well as Dorea and
Ruminococcus, resembling the pattern in the normal diet. At 72h only slight changes could
be observed in the composition, but the overall pattern remained similar to that of samples
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Figure 3. Succession patterns on each diet. Heatmap of genus level phylotypes whose relative abundance significantly
different between the diets (FDR<0.05, Kruskal wallis test). Labels on the x-axis show the diets in separate units. Colors depict
change in relative abundance compared to t0 of the same unit. Blue depicts a decrease, red an increase.
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Functional profiling: Metatranscriptome

Unsupervised clustering of KEGG functionality revealed similar functionality at t=0 and
clustering by diet at t=24. (Figure 4). At t=0 none out of the 114573 identified functions
were differentially expressed between the LPMC and the low CHO. After 24h the three
diets displayed different functionality, with the MPLC diet being the most deviant. At this
point 10040 (8.7%) functions were differentially expressed between the MPLC and LPMC
diets (data not shown).
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The luminal pH in the TIM-2 system was maintained at 5.8. Therefore, NaOH consumption
was used as a proxy of acid production in the lumen. The production of acid was
significantly higher on the LPMC diet (p < 0.01 at t72), and significant lower on the MPLC
diet (»p < 0.01 for t24, 48 and 72) compared to the normal diet ( Figure 5, Table S1). In
addition, both LPMC and MPLC diets were significantly different from each other (p <
0.01 from t24 to t72). There was no statistically significant difference in NaOH
consumed after the adaptation period between the three diets.
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Both alterations of the normal diet resulted in lower total cumulative SCFA production
(sum of acetate, propionate and n-butyrate) during the 72 h fermentation period (Table 2).
The MPLC diet showed this trend from t=24 onward, whereas the LPMC diet showed less
SCFA production after 24h. After 72h cumulative SCFA production was Normal > LPMC
> MPLC, which is a reflection of the total calories from CHO in the respective diets.

Table 2. Total SCFA production. Total average (+/- SD) amount of SCFA (sum of acetate, propionate and n-butyrate; mmol)

produced in the TIM-2 system during the 72h fermentation experiments with the three experimental diets. Values were artificially
set to zero at the start of feeding the different test diets (t0).

Diet Total SCFA (mmol)
t0 124 t48 t72
Norm 0 41.8+3.12 95.0+£2.10 | 150.4 +4.09
LPMC 0 38.3+4.88 723+837 [109.9+11.5
MPLC 0 229+2297 | 46.8+3447 [723+3.85"

Key: * p <0.01 specific time point is significantly different compared to the normal diet; T p < 0.01 specific time
point is significantly different compared to the LPMC diet.

Acetate, propionate and n-butyrate

A separate analysis of the production of acetate, propionate and n-butyrate revealed a
similar pattern as the total SCFA. Compared to the normal diet, the cumulative production
of each separate SCFA was significantly lower in the MPLC and LPMC diets at 72h, and at
almost all time points (except for n-butyrate at t=24), the production of all SCFA was
significantly lower in the MPLC diet. Between the two altered diets, only propionate
showed no difference in cumulative production (Figure 6).
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Figure 6. Kinetics of separate SCFA production. Average (+/- SD) kinetics of SCFA  production
(mmol) of (a) acetate, (b) propionate (c) and n-butyrate. Values were artificially set to zero at (t0). Key: * p < 0.01 specific
time point is significantly different compared to the normal diet; fp < 0.01 specific time point is significantly
different compared to the LPMC diet.
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BCFA and ammonia

After 72h the MPLC diet showed the highest production of ammonia, total BCFA and
both iso-butyrate and iso-valerate. In contrast the LPMC diet that contained ten
times less protein showed almost no production of these metabolites. After 72h
cumulative BCFA, ammonia and iso-butyrate and iso-valerate production was Normal
> LPMC > MPLC, which is a reflection of the total calories from protein in the
respective diets (Table 3, Figure 7,8).

Table 3. Total BCFA production. Average (+/- SD) total BCFA (sum of iso-butyrate and iso-valerate; mmol) produced in the
TIM-2 system during the 72h fermentation experiments with the three diets

Diet Total BCFA (mmol )

t0 24 48 t72
Norm 0 0.45+0.32 1.32+0.54 2.87+0.57
LPMC 0 0.00+0 0.02+0.02° 023+029"
MPLC 0 0.89 +0.33 2.66+029 533+036 '

Key: Values were artificially set to zero at the start (t0) *p < 0.01 specific time point is significantly different
compared to the normal diet; fp < 0.01 specific time point is significantly different compared to the

LPMC diet.

W
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Discussion

Multiple versions of in vitro gut models are currently available, all of them presenting
different levels of complexity in their design. Some in vitro models consist of a simple
batch culture, some others are sophisticated continuous multistage (semi) continuous
cultures®®" * 3 Both are characterized by the use of fecal microbiota as inoculum, and
their operation is strictly controlled. The more sophisticated models are mostly performed
at physiological temperature, pH, food intake and anaerobic conditions®® *””. Despite the
efforts in closely simulating the human gut, in vitro gut models cannot be considered as an
attempt to provide an exact replicate of the human intestine®®" **. The complexity of host
physiology is not fully reproduced in these models®®'. Rather, they are a potential tool to
gain mechanistic insight in the process of fermentation and trophic interactions that occur in
the human intestine. Therefore, efforts should be focused on their adequate conditioning in
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order to ensure their repeatability, robustness and reproducibility for experimental

studies®®.

The TNO dynamic in vitro model of the proximal colon (TIM-2) is one example of a
widely used model to study compositional and functional changes in the gut microbiota
caused by different fermentable substrates. The operational conditions in TIM-2 are
rigorously controlled and standardized. Furthermore, as described by Minekus et al.,*’®, the
model was validated comparing i) the composition, ii) the enzymatic activity and iii)
production and concentration of SCFA from the microbiota with data from sudden death
individuals. The system has been used for a wide range of analyses, including the study of

metabolism of phenolic compounds®”, the effect of prebiotics on the growth of bacteria®®*

3% and the use of different diets and intestinal microbiota®™" ***. We applied 16S rRNA gene
amplicon sequencing and RNA-seq to characterize the development of microbial
communities in TIM-2 fermenting a normal diet (SIEM) and two variations, including the
LPMC diet from which the protein fraction was diluted 1:10 and the MPLC diet from
which the CHO fraction was diluted 1:10, and studied the reproducibility and robustness of
the system with four replicates per diet.

Dietary impact on metabolite production

In this study, we observed that the ratio of the dietary components were important
determinants for the metabolic output and activity of the microbiota (Figure 5, 6 and 7).
The MPLC diet lead to an increased production of the toxic metabolites iso-valerate and
iso-butyrate, which are known to result from the bacterial fermentation of valine and
leucine®®. In contrast, the normal and LPMC diets yielded a higher production of health-
promoting SCFA. The total cumulative SCFA production did not completely reflect the
quantity of fermentable CHO in each of the diets. The MPLC diet yielded significantly
lower quantities of SCFA (except for propionate) than the other diets. Although the total
quantity of CHO was the same, the total yield of SCFA in the normal diet was significantly
higher than the LPMC diet (Table 1). This could indicate less efficient substrate utilization
due to the lower microbial diversity of the resultant communities (Figure 2B). However, the
diets were not isocaloric so this might also be a reflection of less total substrate in the
system. Nevertheless, we could corroborate the observation that moderate amounts of CHO
could counteract some of the adverse metabolic consequences of high protein low
carbohydrate diets®, as the production of BCFA remained significantly lower on the
normal diet compared to the MPLC diet, even after 72h. Nevertheless, it is possible that
carbohydrate fermentation was ongoing and therefore limited protein utilization as the gut
microbiota preferably ferments CHO but switches to protein fermentation in case of CHO

. 385,386
depletion™> .
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Impact of the adaptation period on microbial communities

The observed decrease in the diversity index found between the t-16 and tO samples,
indicates that the microbiota was affected during the adaptation period, which may be
have been caused by parameters such as anaerobiosis, pH, redox potential and substrate
limitation, which may limit the optimal propagation of the inoculum in an in vitro
system®™” ¥ This initial drop in microbial diversity and the subsequent recovery of the
community has  previously ~been observed®™. Nevertheless, despite the
compositional changes during the adaptation period, the composition of samples from all
12 experiments at t0 showed highly similar communities (Figure 2C), suggesting that the
composition of the community was similarly affected in all experiments during the
adaptation. The facultative anaerobes Streptococcus and Lactococcus were highly
abundant after the adaptation period at t0. This has been previously observed in TIM2

and is possibly due to oxygen entering the system during inoculation®*’.

Dietary impact on the development of microbial communities

The microbial composition associated with the MPLC diet was the most distinct mainly due
to the increased relative abundance of the genus Bacteroides and
Lachnospiraceae; Incertae Sedis after 48h and a lack of bifidobacteria during the
fermentation (Figure 3). At 24h Prevotella were highly abundant but at the later time
points it decreased in abundance concomitant with a simultaneous increase in relative
abundance of Bacteroides. In literature the abundance of these genera has been
associated with long term dietary habits. Prevotella has been associated with higher fibre
consumption and that of Bacteroides with a higher intake of protein and fat®! 3% probably
mediated through the effect of bile acids that exert a strong selective influence upon gut
microbial composition*'*. It should be noted that the normal diet contains just as much bile,
yet the genus Bacteroides is absent. However, Prevotella might have been highly abundant
due to the higher amount of CHO in this diet. It seems that the contrasting abundances of
Prevotella and Bacteroides, which are the most distinct drivers for two of the microbiota
types termed enterotypes’”, was replicated in this experiment and seem to be linked

therefore, presumably diets'*®.

The distinctive features of the LPMC diet compared to the MPLC diet were the lower
diversity (Figure 2B) and abundance of Dorea, Lachnospiraceae; Incertae Sedis and
Ruminococcus, which all appeared after 48h in the other diets (Figure 3). Ruminococcus
species as well as Roseburia are misclassified as Lachnospiraceae; [ncertae Sedis due to
ambiguity in their classification in 16S rRNA gene databases (results not shown, these were
members of the synthetic communities described in chapter 6). All the members of these
groups have been associated with the (primary) degradation of CHO?** **3% Tt is possible
that these taxa need either the protein, or the byproducts of protein synthesis to proliferate.
This could explain the higher amounts of SCFA in the normal diet, as these species also
produce SCFA. It is striking however, that these taxa do expand on a diet low in CHO and
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high in protein (MPLC) but not in a diet high in CHO that still contains some protein, albeit
10x less.

Microbial communities developing in the models fed with either of the two normal
carbohydrate diets shared the growth of several groups that have been associated with
carbohydrate metabolism in the human GI tract. Subdoligranulum has been reported to be
highly abundant in vegetarians®” and enriched in pigs on a low protein diet’”,
demonstrating their adaptation to a low protein environment. Both genera Blautia™’

Bifidobacterium® 7** have been associated with the fermentation of resistant starch, and

and

the latter have been shown to primarily consume the intermediates produced by
Ruminococcus related species during the primary degradation of starch’®*. Another striking
observation is the mutual exclusion of high abundances of Bifidobacterium and Prevotella
after 24h of fermentation in some of the replicates of the LPMC diet. This could indicate
that high abundances of Bifidobacterium take over the niche of Prevotella.

Most of the microbial development on the specific diets is in concordance with previous
research. However, the high phylogenetic diversity observed in the MPLC is in contrast
with the observation by Le Chatelier and colleagues who discerned a bimodal distribution
of high gene count (HGC) and low gene count (LGC) individuals within the general
population. The LGC group tended to be phylogenetically less diverse and dominated by
Bacteroides, and these individuals also consumed less fibre'”. Nevertheless, David et al.
found no impact on diversity of a high protein high fat, low carbohydrate diet™'. Although
it seems we start to elucidate the effect of diet on the abundance of bacterial groups, and
their impact on the production of beneficial as well as harmful metabolites, not all data is in
full concordance indicating more research is needed in order to elucidate the impact
different diets have on the microbiota and consequently gut health.

Dietary impact on microbial activity

Community composition based on 16S rRNA gene amplicons and microbial activity have
been shown to be discordant’”’. Therefore, we determined microbial activity trough RNA-
seq at t=0 and t=24 and compared it with community composition. We observed a
consistent robust and reproducible response in all diets (Figure 4). The fact that we did not
find any differentially expressed functions at t0 confirmed the observation that the changes
in microbiota after the adaptation period were similar and reproducible at the functional
level. The vast majority of the expressed genes are household genes that are continuously
expressed, thus revealing a high degree of similarity”™ . This was reflected by the fact that
only 8.7% of the 114573 identified functions was significantly under- or overexpressed
in the two altered diets (MPLC and LPMC). Unfortunately, 60% of all genes and all
differentially expressed functions lacked a KEGG annotation, which subsequently hamper a
detailed interpretation of the observations.
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Conclusion

The effects of different diets on microbiota composition and activity were repeatable,
robust and reproducible in the different replicates through all experimentation weeks. Our
findings not only showed the gut microbiota to be a highly metabolically adaptable
organ'8%-31 but also highlighted the potential of the TIM-2 system as a tool for investigating
the role of the microbiota on human health or disease through investigating reproducible
changes in community structure and activity. This allows us to study the (trophic)
interactions and task division within a community and how they are impacted by host- or
diet-related factors under controlled conditions. This may assist in defining causal links
between specific microbial groups and their activities, and host- or diet-derived parameters.

Supplemental material

Table S1. Fermentation metabolites produced during 72 h fermentation experiments. Key: * p < 0.01 specific time point is
significantly different compared to the normal diet; tp < 0.01 specific time point is significantly different compared to the LPMC
diet. The different diets correspond to: normal: 1:1 (control or basal SIEM medium); LPMC: 10:1 and HPLC 1:10
(CHO: protein) diets.

Diet mmol
t0 t24 t48 t72
Norm acetate 26.8+2.10 55.9+3.94 83.1+7.54
propionate 7.49 +3.39 20.5+6.16 34.7+7.51
n-butyrate 7.51+0.70 18.7+1.91 32.5+1.27
Total SCFA 41.8+3.12 95.0+2.10 150.4 £ 4.09
ammonia 12.6 £ 1.56 32.1+2.08 54.5+2.62

0.15+0.13 0.45+0.27 1.01£0.31
0.31+0.20 0.87+0.27 1.86+0.28

iso-butyrate
iso-valerate

Total BCFA 045+032  132+0.54  287+0.57
Alkali 13.88+1.91 363+485 539+7.13  69.4+7.86
LPMC acetate 272+489  47.6+7.71  70.4+854
propionate 373+£149  877+256°  13.7+3.59
n-butyrate 738+176  15.8+197  258+202°
Total SCFA 383+488  723+837 1099+11.5
ammonia 3.17+083" 548+138  8.12+1.95

0.00+0 0.00+0" 0.07 +0.14"
0.00+ 0 0.02+0.02" 0.16+0.17

iso-butyrate
iso-valerate

Total BCFA 0.00+0 0.02+0.02" 0.23+0.29
Alkali 13334238 39.1+354  602+4.66 84.0+6.76
MPLC acetate 124+1357T 247+1577 37.8+2477
propionate 6.24+1.08 13.4+2.52 20.7+3.12"
n-butyrate 424+0.76 850+1.82" 13.8+3.007"
Total SCFA 229+229" 468+3.44"T 723+385"
ammonia 19.9+2.74""  475+4.057 79.7+3.78°"

024+0.17 0.86+0.12"7 1.86+0.16""
iso-valerate 0.65+0.17"  1.80+0.18" 3.47+0.25"
Total BCFA 0.89+0.33" 266+0297 533+036"
Alkali 1428+1.80 16.1+240" 16.1+240" 16.1+2.40"

iso-butyrate
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Recent evidence indicates that the GI microbiota and its products may contribute to the
development of obesity and related diseases, and that differences in GI tract microbial
ecology between individuals might be an important factor in this complex etiology. This
thesis aims to provide and apply tools to investigate the potential of the gut microbiota as
a potential biomarker or therapeutic target and generate leads for mechanisms through
which the microbiota mediates these effects.

Chapter 2 provides an overview of the different molecular approaches that are available
to study the role of the microbiome in health and disease, highlights their respective
strengths and creates awareness for the specific limitations of these complementary omics
technologies such as 16S ribosomal RNA (rRNA) gene-targeted composition profiling,
metagenomics, metatranscriptomics and metaproteomics. Although their specific
application has contributed strongly to our understanding of the role of the GI microbiota
in human energy homeostasis, it is currently still unclear which bacterial groups play a
role in the development of obesity in humans, which might partly be explained by the
heterogeneity in genotype, lifestyle and diet and the complex etiology of Obesity and its
Associated Metabolic Disorders (OAMD). Nevertheless, recent research has shown a
conceptual shift by focusing on more homogenous subpopulations, by using
anthropometric (weight, total body fat) as well as biochemical variables (insulin
resistance, hyperlipidaecmia) for the stratification of subjects. Combined with
technological advances in the molecular techniques, recent data suggests that an OAMD
associated microbiota can be characterized by a potential pro-inflammatory composition
(consisting of Proteobacteria), with lower potential for the production of SCFAs and
butyrate in particular.

Chapter 3 describes the largest population-based study on childhood gut microbiota and
body weight so far, the KOALA Birth Cohort, profiling the microbiota of 295 fecal
samples from 6-7 year old children living in the south of the Netherlands. Using state of
the art statistical methodology both new and previously described bacterial groups were
identified to be either positively or negatively associated with weight related
anthropometric outcomes (age- and sex- standardized weight and BMI z-scores,
overweight defined as BMI > 85th percentile). This age range is often overlooked in such
type of studies. Therefore, we briefly investigated the structure of the microbiota with
regards to well validated ecosystem properties such as the existence of bacterial tipping
elements”. Although Lahti and co-workers investigated healthy adults we could confirm
the bimodal distribution pattern of several bacterial groups as well as their co-correlating
groups that were reported previously, including UCII, Prevotella spp. (P. oralis et rel. and
P. melaninogenica et rel.), co-correlating with P. ruminicola et rel., and Dialister with
uncultured Selenomodaceae. Lack of support for bimodality of UCI in our study is also in
concordance with Lahti et al., who showed that UCI exhibits very clear shifting state
probabilities associated with ageing, where the high abundance state was mainly observed
above 40 years of age. Since the bootstrap support of bimodality for Bacteroides fragilis
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was only moderate in the study of Lahti ez al, this group might have been missed in our
study due to the smaller sample size, age, health status, or other biological factors.

Multivariate analysis revealed that weight-related outcomes failed to explain much of the
observed variation in GI microbiota composition in the KOALA cohort. The abundance of
the four bimodal groups explained 26.1% of the variation in species composition,
compared to <1% for each of the anthropometric outcomes. Therefore, we cannot confirm
the often large-scale community shifts previously reported to be associated with obesity
mainly in rodent studies® '®. These data suggests that in this group of healthy children
within a relatively normal weight range, weight and associated parameters were not major
drivers of overall microbial composition or vice versa. To reduce the dimensionality of the
dataset to bacterial groups associated with weight related parameters and to avoid issues
regarding correction for multiple testing we applied the Elastic net machine learning
algorithm. The selected genus-like groups, bimodal taxa (linear as well as the high and
low abundance states as a factor) and other features of the microbiota previously
associated with (over)weight, such as the Bacteroidetes to Firmicutes (B:F) ratio, and
richness and diversity’®, were used in multiple linear and logistic regression models with
adjustment for confounders to investigate their associations with weight related
anthropometric outcomes in this cohort. The abundance of several specific bacterial taxa,
including the dichotomous abundance state of the bimodally distributed UCII was
consistently associated with weight-related outcomes. These include several bacteria that
have previously been linked to weight-related outcomes (Akkermansia, UCIT)*, as well as
genus-like groups that have not previously been linked to (over)weight such as Sutterella
wadsworthia et rel. and Bryantella formatexigens et rel. In this regard, more detailed
information on their functional role in energy metabolism will help to establish their
importance for weight development. Our results provide new avenues with regards to
bacteria in the gut of humans in relation to the increasing trend of overweight worldwide.
The parameters previously selected based on their merits from literature, i.e. diversity,
richness and B:F ratio, were not significantly associated with any of the outcomes.

Chapter 4 investigated the effects of gut microbiota manipulation by antibiotics (7d
administration of amoxicillin, vancomycin or a placebo) on tissue-specific insulin
sensitivity, energy metabolism, gut permeability and inflammation in 57 obese, pre-
diabetic men. Amoxicillin did not significantly affect microbial diversity and composition,
whilst vancomycin decreased bacterial diversity and reduced Firmicutes. Among the most
strongly affected groups were genus-like groups that contain known butyrate-producing
species from Clostridium clusters IV and XIVa, such as Coprococcus eutactus,
Faecalibacterium prausnitzii and Anaerostipes caccae, as well groups involved in BA
dehydroxylation such as Clostridium leptum. These changes occurred concomitantly with
altered plasma and fecal concentrations of these metabolites. In adipose tissue, gene
expression of oxidative pathways was upregulated by antibiotics, whereas immune-related
pathways were downregulated by vancomycin. However, antibiotic treatment had no
significant effects on tissue-specific insulin sensitivity, energy/substrate metabolism,
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postprandial hormones and metabolites, systemic inflammation, gut permeability and
adipocyte size. Importantly, despite a still considerably altered microbial composition at
eight weeks follow-up, energy harvesting, adipocyte size and whole-body insulin
sensitivity (HOMA-IR) remained unaltered. Overall these data indicate that interference
with adult microbiota by antibiotic treatment for 7 days had no clinically relevant impact
on metabolic health in obese humans.

These data are in contrast with several previous studies in rodents that indicated that
antibiotic treatment may improve glucose homeostasis and metabolic impairments®®2%"
293-295. 400 Nevertheless, a more recent study showed that vancomycin-treated mice had
little weight change and no improvement in glycemic control*®, and consistent with the
presented data, a 4-day treatment with a broad-spectrum antibiotic cocktail did not affect
postprandial glucose metabolism in lean healthy men®”’. Furthermore, it has recently been
shown in a limited number of obese subjects with the metabolic syndrome that
vancomycin slightly but significantly reduced peripheral insulin sensitivity, despite
comparable changes in microbial composition and bile acid metabolism as observed in the
present study™. Although the data of the latter study seems at odds with the present
findings, it is important to emphasize that the study by Vrieze and colleagues® lacked a
placebo group and therefore the modest (~4%) vancomycin-induced decrease in
peripheral insulin sensitivity was based on a within group comparison (post-treatment
versus pre-treatment). Additionally, follow-up measurements that were performed eight
weeks after treatment cessation in the present study also did not show an effect on whole-
body insulin sensitivity, despite a still considerably altered microbial composition as
compared to pre-treatment as well as placebo. The present study, which was well-powered
and placebo-controlled, indicates that the previously reported vancomycin-induced effects
on peripheral insulin sensitivity are probably of minor physiological significance.

Chapter 5 examined the association of the microbiota and tissue specific insulin
sensitivity in two independent cohorts of overweight and obese pre-diabetic male subjects,
from the Dutch regions of Maastricht and Amsterdam. Although a growing body of
evidence suggests that human gut microbiota plays a role in the development of obesity
and related metabolic diseases, there is little consensus on biomarker organisms between
human studies, which could be due to biological as well as technical reasons or a
combination thereof'”” *'*. In addition, no human data are available that investigated
whether tissue specific insulin sensitivity, as measured by the golden standard
hyperinsulinemic-euglycemic clamp technique, is related to a specific microbial pattern.
In all subjects, hepatic, peripheral and adipose tissue insulin sensitivity were determined
by a two-step hyperinsulinemic-euglycemic clamp with [6,6-’H,]-glucose tracer infusion.
Remarkably, despite the fact that both cohorts were constructed on comparable
recruitment strategies, the average microbiota composition in both cohorts showed
pronounced differences.

This study, initially set up to merge two very well defined cohorts and to mine the data
for host-microbe associations, revealed important yet distinct observations, both related to
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the conclusions from chapters 2 to 4. Firstly, we found no consistent and significant
association between liver, adipose tissue or skeletal muscle insulin sensitivity and the
microbiota composition of insulin resistant, yet non diabetic, obese males in either of the
cohorts, except for a very strong Spearman correlation of 0.57 between Peptococcus niger
et rel. Nevertheless, Random Forests classifiers using microbiota composition as
predictors revealed taxa associated with fasting glucose concentrations and HbAcl but
only in one cohort. The top microbial features distinguishing classes were different
Proteobacteria and Faecalibacterium prausnitzii, Roseburia intestinalis, Clostridium
nexile and Eubacterium rectale and related species for fasting glucose levels. For HbAcl
these taxa were Oscillospira guillermondii, Sporobacter termitidis, Lactobacillus gasseri
and Peptococcus niger and related species. The striking cohort-specific observations
suggest that the relation between microbiota composition and T2DM as well as other
characteristics of the metabolic syndrome is very dependent on the selected cohort of
patients and their respective baseline microbiota composition. Similar observations have
been made by other researchers as well.

Nevertheless, it is possible that differences in microbiota composition are not associated
with the insulin resistance phenotype when the overweight and/or obese state of the
patient is already established, as is the case for our metabolic syndrome patients. In the
latter case we cannot exclude that the composition of the fecal microbiota may play a role
in the worsening of insulin sensitivity in an early stage in the development from a lean
towards an overweight/obese phenotype. Furthermore, the observation of a subgroup-
specific microbiota only observed in one of the cohorts might indicate an alternative state
of microbiota composition driven by yet unknown forces. Nevertheless, this study clearly
demonstrated that cohort-specific microbiota differences hamper finding a consensus
biological interpretation between cross-sectional studies. This, combined with the
complexity of individual disease pathogenesis, as well as the individual-specific
differences in microbiota composition, may explain the inconsistency in observations
between different studies concerning the identification of signature microbes for obesity,
inflammatory bowel disease, irritable bowel syndrome and other diseases *>~*.

Chapter 6 describes a bioinformatics pipeline for the data analysis of the currently most
widely used format to profile microbial ecosystems. Massive high-throughput sequencing
of short, hypervariable segments of the 16S ribosomal RNA (rRNA) gene has transformed
the methodological landscape describing microbial diversity within and across complex
biomes. However, several studies have shown that methodology rather than the biological
variation is responsible for observed sample composition and distribution®”. The impacts
of some of these technical aspects are so substantial that they compromise true meta-
analyses. Currently there is a lack of consensus regarding key features of the healthy
microbiome, such as richness, diversity and composition, while the link with specific
human pathologies often reveals study-specific sets biomarker organisms*’. Large meta-
analyses would aid in elucidating whether the basis for these differences is biological,
technical or maybe a combination of both. To facilitate these meta-analyses of microbiota

163



Chapter 8

studies we developed NG-Tax, a pipeline for 16S rRNA gene amplicon sequence analysis
that was validated with different mock communities. We used a setup that allowed for the
evaluation of important factors of technical bias in taxonomic classification: 1) run-to-run
sequencing variation, 2) PCR — error, and 3) region/primer specific amplification bias.
Despite the short read length (~140 nt) and all technical biases, the average specificity of
the taxonomic assignment for the phylotypes included in the mock communities was 96%.
On average 99.94% of the reads could be assigned to at least family level, while
assignment to ‘spurious genera’ represented on average only 0.02% of the reads per
sample. The analysis of a- and B-diversity confirmed conclusions guided by biology rather
than the several methodological aspects. In conclusion, NG-Tax demonstrated high
robustness against choice of region and other technical biases associated with 16S rRNA
gene amplicon sequencing studies, diminishing their impact and providing accurate
qualitative and quantitative representation of the true sample composition, which will
improve comparability between studies and facilitate efforts towards standardization.

Chapter 7 illustrates the application of the pipeline and recommendations from chapter 6
to biological samples with the aim to characterize dynamics of microbial community
composition and global activity in an in vitro gut model (TIM-2) fed either with a normal
diet, or modified versions from which the carbohydrate (MPLC) or protein fraction was
diluted (LPMC) for 72h. The production of short chain fatty acids and branched chain
fatty acids reflected the quantity of carbohydrate and protein in the system. The
developing communities were monitored through 16S ribosomal RNA gene sequencing of
two variable regions, and overall, each diet produced distinct microbial communities and
temporal patterns. The microbiota in reactors fed diets containing normal carbohydrate
levels were enriched in members of the genera Prevotella, Subdoligranulum, Blautia and
Bifidobacterium, all associated with carbohydrate fermentation. In turn, the microbiota in
the reactors fed the MPLC diet, containing ten-fold less carbohydrates, was enriched in
the genus Bacteroides, which is associated with diets rich in protein and animal fat. These
observations of distinct communities were corroborated at a global functional level by
analysis of the metatranscriptome. This setup allows researchers to study the (trophic)
interactions and task division within a community and how these are impacted by
diet-related factors under controlled conditions. This may assist in defining causal
links between specific diet-derived parameters, microbial groups and their activities.

Universality of human microbial dynamics

Chapters 2 t/m 6 largely explore the association between the microbiota and features of
metabolic syndrome. What stands out is the overall lack of consistency regarding the
identified microbial biomarkers and putative mechanisms underlying the observations
Furthermore, the antibiotics intervention described in chapter 4 represents an example of
the contrast between mouse studies and human interventions. Studies have indicated that
antibiotic treatment may improve glucose homeostasis and metabolic impairments in
rodents?*32¢7: 293295 400 whereas the study presented in chapter 4 indicates that
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interference with adult microbiota by antibiotic treatment for 7 days had no clinically
relevant impact on metabolic health in obese humans. This could be due to more extreme
interventions, as a result of less stringent ethics requirements and the low microbial and
genetic variability associated with rodent studies, which help to create a relatively strong
and clean biological signal. In humans however, this signal might be dampened by more
heterogeneous responses (chapter 1).

Contrasting observations between studies and subsequently the inability to identify a
consistent microbial group has not only been observed in metabolic syndrome, but also in
other comparative studies between healthy individuals and those suffering from disorders
such as IBS*”***'* In many cases this might be attributed to multiple biological factors,
such as differences in diet, age, BMI and gender between cohorts (chapter 2), as well as
methodological variation (primers, reference databases, analysis pipelines; chapter 6).
Walters and colleagues have shown that using the microbiota, individuals could be
classified as lean or obese with statistically significant accuracy within a study, consistent
with the ability to experimentally transfer this phenotype in mice by transfer of the
corresponding microbiota. However, microbial signatures were not consistent between
studies even when the data was analysed in the same way'**. Moreover, chapter 5
compared two very homogenous cohorts with regards to the (pathological) host
phenotype, again using the same methodological platform (DNA isolation, primers,
microarray and analysis pipeline) and still found very profound differences in the
composition of the microbiota, seemingly not related to the very well-defined and
distinctive phenotype (overweight, pre-diabetic males). As a result, discrepancies in
associations between these host characteristics and the microbiota were observed.
Although the differential microbial biomarkers of T2DM in different cohorts have been
identified previously’', those compared groups were arguably much more different;
Danish women in varying states of insulin resistance and Chinese individuals with
T2DM'"> *'* The groups in this thesis were far more similar (prediabetic Dutch males),
yet the observations are analogous.

In chapter 5 none of the previously mentioned variables known to influence the
microbiota, such as age, BMI, diet and gender, could explain the difference in
composition of the microbiota between the two cohorts. As outlined in chapter 1 the
interplay of variables that give rise to the variation of the microbiota is complex and is not
yet fully understood. The difference between the two cohorts suggests a latent or unknown
parameter, for instance lifestyle parameters linked to geographical location, driving the
composition and overpowering all measured variables, which failed to explain much of
the variation in microbiota composition. A similar observation was made in chapter 3,
where weight related parameters explained very little of the total variation, again
contrasting animal and some human studies* .

If we would compare the microbiota of both cohorts in chapter 5 independently with one
cohort of healthy individuals, the “dysbiotic” state would be different in both groups.
However, the question of what a normal healthy microbiota actually entails has not been
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answered satisfactory yet (chapter 1), and Walters and colleagues also showed that the
composition of the healthy control group can be different between studies*’. Therefore,
comparative analyses between different patients and healthy cohorts could lead to just as
many ‘dysbiotic’ states or sets of microbial biomarkers.

The previous paragraph invokes three important questions. 1. Does a “normal” healthy
microbiota exist, what is its composition and how large is the variation?, 2. Is the
composition truly linked to a given specific phenotype that is studied or some other
“hidden” variables associated with that cohort? Or alternatively, 3. Is the dysbiotic state
truly group-specific, or even individual-specific, and are we measuring these differences
based on a grouping because they live in geographical proximity?

To answer these questions, we need to know which factors actually shape our
microbiome, how does it develop (chapter 1) and what are the rules (if there are any) that
govern a normal functioning of this ecosystem. We know that the microbiota is highly
individual, and data suggest that it is relatively stable (except for variations in abundance)
in adults in the absence of gross perturbation. Nevertheless even the adult gut composition
appears to change slightly over time with regards to its members” ** **. These, routine,
mild fluctuations in community composition in the absence of gross disturbance indicate
that long-term stability of human gut microbial communities is not maintained by inertia,
but rather by the action of restoring forces within a dynamic system**. In other words, are
there any fundamental universal ecosystem ‘rules’ that drive it towards this equilibrium,
or is the microbiota of any individual an island with a unique ecosystem regarding the
interplay of the microbiota with itself as well as with the host? More concisely, are these
rules largely host-independent (that is, universal) or host-specific, or lies the truth in a
combination of both?

The methodological obstacles on which we elaborated in chapter 6 are commonly one of
the most significant drivers of variation in microbiome studies and might explain some
but not all the inconsistencies found in literature®®. If we disregard these and focus purely
on the underlying biological principles, there are three hypothetical fundamental cases
regarding the dynamics of the microbiota.

The microbiota has either: 1. individual dynamics, in which all the ecological parameters
are different in different subjects, 2. group dynamics, in which subjects can be classified
into groups based on certain host factors which share the same ecosystem properties, or 3.
universal dynamics, in which all individuals share the same set of ecological parameters*”’
(Figure 1). Addressing these alternative working hypotheses is vital for the
comprehension and interpretation of data presented in this thesis as well as literature in
general, but also for the development microbiome-based therapies. If the dynamics are
indeed universal, the interpersonal variability stems solely from the different assemblages
of colonizing species in different individuals. General interventions can be designed to
control the microbial state (in terms of species assemblage and abundance profile) of
different individuals. By contrast, if the dynamics are strongly host-specific, truly
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personalized interventions need to designed, which need to consider not only the unique
microbial state of an individual but also the unique dynamics of the underlying microbial
ecosystem.

One very important remark is that that host or group specific dynamics could extend to the
host-microbe interaction, thus every person reacts differently to certain bacteria as in vitro
studies have shown a remarkable donor effect in in vitro assays*. Chapter 1 describes
that the formation of the microbiota is highly individual and dependent on
many stochastic effects. Therefore, it is very likely that during these early life
exposures our immune system is trained with a unique set of bacteria. This could
raise major safety concerns in for instance FMTs because although the healthy
microbiota is stable in the donor’s gut, it may be shifted to an undesired state in the
recipient’s gut401
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Figure 1. Alternative scenarios of microbial dynamics across different healthy subjects*".

Recently Bashan and colleagues addressed this question of universality through an
indirect approach. Ideally, long and densely sampled time series from many individuals
with different traits and backgrounds should be studied. However, because such large
datasets are currently lacking, they measured two independent aspects of community
similarity, i.e. overlap and dissimilarity. Overlap compares species assemblies by
quantifying the proportion of shared species, whereas dissimilarity assesses the difference
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in abundance profiles of the shared species between individuals. Plotting overlap against
dissimilarity they could visualize whether communities that shared more species, showed
a higher compositional similarity”®'. If microbiota dynamics were to be truly
universal (host-independent), then having the same species present should lead to the
same relative proportion of those species, because they would dynamically influence
each other in the same way*”. The authors applied this approach to cross-sectional
data from two large-scale metagenomic studies and showed that gut and mouth
microbiomes  display  pronounced universal dynamics, whereas communities
associated with certain skin sites are probably shaped by differences in the
environment of the host. Nevertheless, this analysis was based on a number of
assumptions. First, that the microbiota is in a steady state and that having the same
steady state implies that the microbiota is governed by the same dynamics. Although it
seems that the microbiota is not in a steady state per se, but rather under the action of
restoring forces within a dynamic system, driving it towards an equilibrium*, one might
assume that with enough samples the relatively small intra-individual effects will be
cancelled out, therefore making this a reasonable assumption. An alternative
explanation for their observations regarding the universality of gut and mouth
microbiomes of healthy individuals, could be that some host (environmental) factors
not only select for the presence of certain microbes but also drive their relative
abundances by enforcing certain optimally adapted compositions. According to
this model, the microbiota may end up in similar steady states not because of their
intrinsic dynamics (as suggested for instance for the enterotypesgz), but because of
a strong environmental pressure that may shape gut microbial communities. As the
authors rule out obvious confounders such as long-term dietary pattern, BMI, age and
stool consistency, they do not account for all factors that may possibly influence the
gut microbiota, and hence cannot provide an entirely conclusive answer regarding the

universality of the gut’s microbial community dynamics*”.

Nevertheless, if these assumptions hold than the aforementioned observations point
to universal gut microbial dynamics in healthy individuals. Interestingly, the gut
microbiota of patients recurrently infected with the bacterial pathogen C. difficile did not
display the characteristics of universal dynamics, while they regained these
after faecal transplantation from healthy donors. The lack of universal dynamics in a
clearly dysbiotic state such as a C. difficile infection and the restoration of universal
dynamics after transplant might point to individual or group dynamics in
circumstances where the microbiota is disturbed. This seems to be in line with the
conclusions from chapter 2-5 that show very little overlap in identifying human
(over)weight related microbial biomarkers.

Non-universal dynamics in disease

Although some pathological conditions such as IBD have shown to be associated with a
consistent biological signal®’, there is a lack of a consensus panel of microbial biomarkers
for a range of other conditions, such as IBS™ and OAMD" (chapter 2) and it is tempting

168



General Discussion

to consider that indeed in certain diseased states the dynamics are not universal, but
individual or group specific at least in some cases. Nonetheless, if the rules for a healthy
microbiota are universal we need to define what is normal and healthy and try to
deliberately direct/manipulate the microbiota in a certain direction with interventions.
Although understanding the factors that lead to alterations in composition of the
microbiota in these conditions is still informative, currently it seems to be more beneficial
to understand what is normal in order to define deviations from that normal: namely
dysbiosis. Because it seems that at the moment our knowledge on the interplay and
relative importance of factors shaping the microbiota under different circumstances is
lacking. The two cohorts from Maastricht and Amsterdam described in chapter 5 are
surprisingly very different regarding gut microbiota composition despite the fact that the
subjects were recruited similarly. Currently, we do not know what the underlying
mechanisms are that cause this difference.

Group dynamics

If group dynamics exist within human subjects we need to identify the grouping
parameters, because now cohorts can be different regarding microbiota composition due
to unknown or ‘hidden’ host variables. Some of these variables might not even be
biological but caused by technological variation ***. True meta-analyses with the aid of
analysis pipelines that are robust against technological biases associated with microbiota
profiling using PCR amplification of the 16S rRNA gene (chapter 6), will aid in the
discrimination between biological and technical factors. Case control studies will depend
on universal healthy control groups, in case these exist, to determine the extent of
compositional and/or functional dysbiosis.

Individual dynamics; highly individual disease phenotypes

It has been proposed that the quote “Every unhappy family is unhappy in its own way”
from Tolstoy is a metaphor for the individual nature of human disease*™, suggesting that
complex human diseases are large collections of individually rare genetic conditions,
epistasis (interaction between genes) and penetrance (the proportion of people with a
particular genetic change who exhibit signs and symptoms of a genetic disorder). The
latter is probably the result of a combination of genetic, environmental, and lifestyle
factors, many of which are unknown. Combined with the inter-individuality of the
microbiome and the influence of genes whose mutations are known to be associated with
gastrointestinal pathologies as well as with differences in microbiota composition, such as
Nod2"', and FUT2", it is probably safe to assume that the search for common biological
signals is at least challenging if not impossible. In light of the multifactorial pathogenesis
of human disease the manifestation of individual dynamics of the microbiota seems
plausible and even highly likely.

Approaching health as a result of host-microbiome ecosystem services

At the global scale humans benefit from a variety of processes supplied by natural
ecosystems, such as provisioning services (food, water and raw materials), regulating
services which are benefits obtained from the regulation of ecosystem processes (carbon
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sequestration, climate regulation, waste decomposition and detoxification) as well as
supporting services that are necessary for the production of all other ecosystem services
(nutrient recycling, soil formation). Collectively, these benefits are known as ecosystem
services'”. There is growing evidence that human health is a collective property of the
human body and its associated microbiome, and thus could be considered a net effect of
ecosystem services’ .

Costello and colleagues envisaged a more holistic view on clinical medicine focused on
managing our microbiome (and ourselves) to preserve these ecosystem services. In
general, a theoretical ecology framework is applied for the optimal management of these
ecosystem services. 1. Identify the ecosystem services (ES) and their providers (ESPs,
ecosystem service providers) and characterize their functional roles. 2. Determine how
community context influences the function of these providers as well as the ecosystem as
a whole. 3. Assessment of key environmental factors influencing the provision of services.
4. Measure the spatial and temporal scales at which these providers and their functions
operate. If studies of the human microbiome were structured around these four priorities,
the development of an ecological approach to medicine could be accelerated’'.

The vast majority of research on the human GI microbiota is still focused on identifying
ESPs through associations. Nevertheless, in the last decade all four areas have seen
enormous progress, mainly through studies that applied a more ecosystems approach with
an intervention and the omics toolbox to answer specific questions regarding the
underlying mechanisms at the level of composition, activity and metabolic output of the
microbiota as well as the effects on the host. Table 1 shows a selection of these studies
and their contributions to the respective priorities. ES such as a role in host energy and
lipid metabolism*™ ' *°* and ESPs (biomarker organisms) have been identified, and
causality has been demonstrated in rodent studies for instance for Bifidobacterium®,
Akkermansia muciniphila® and Christensenella minuta®. Nonetheless, all these have
not been validated in humans yet. Area 2 and 3 (community context and key
environmental factors influencing ESPs and the provision of ecosystem services)
have mainly been studied using gene knockout mouse models and gnotobiotics®™ **.
Area 4 (the spatial and temporal scales at which ES and ESPs operate) has been studied
using interventions and measuring the subsequent metabolic output focused on
specific metabolites (such as SCFA or genotoxic compounds) and preferentially their
direct or long term effects on the host (chapter 4)**°. These types of studies, structured
around one or more of these four priorities, have deepened our understanding of the
microbiome.
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Challenges ahead

Although large improvements have been made and the steps for the management of
ecosystem services are relatively logical and straightforward, in practice some factors
specific for microbial ecosystems are currently hampering progress. These challenges should
be prioritized for the field to move forward.

Microbial function

In most forms of host pathology with which the microbiota has been implicated, the
concept of “dysbiosis” or ‘community as pathogen’ has been proposed. This is a clear
distinction between the more traditional medical concepts for infectious disease in which a
single virulent and/or dominant microbial species acts as the pathogenic factor. Human
intervention but also interactions between community members may underlie the critical
features associated with some of these pathologies*’. Understanding the function and
activity of these partners is critical for the identification of underlying mechanisms. This,
however, is still frustrated by the large fraction of uncultured organisms and many genes
that lack annotation.*’® This might equally apply to ESPs themselves, as due to the
potential of complex interactions between partners, even a cultured ESP might only
perform its specific function with the aid of an uncultured partner. Although there
are indirect means to assign functions to uncultured microbial entities by binning co-
abundant genes from metagenomic sequence data into metagenomic species (MGS)’,
many of these genes will still lack functional characterization, due to the absence of
known homologues in databases*'’. Functional metagenomics, i.e. screening of libraries
or direct cloning of sequences in heterologous expression hosts combined with various
functional screening assays, although laborious, might currently be the only solution.
However, the throughput of these assays will need to be increased to make this a
viable solution. Nevertheless, there is only so much we can learn from studying these
complex communities as a whole and there is a growing need to know more about
ESPs. Therefore, we also still need to culture isolates*''. These two approaches to
characterize function, individuals and whole community analysis, are complementary
and provide the basis for the generation of hypotheses and find answers regarding
human GI ecosystem services.
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Microbial composition

The currently most popular technique to profile microbiota composition is based on
amplification of the 16S rRNA gene. Although, this type of data is relatively simple, it
lacks resolution, which makes interpretation difficult. This is partly because phylogenetic
classification beyond genus level, based on the short read length of the current sequencers,
should be treated with great caution. The following serves to emphasize the potential
genetic variation that is still present at this phylogenetic level. For instance the gene
content of strains within a species can differ up to 30%"'> and the shared genome size of
the virulent E. coli OH157 and the intestinal isolate E. coli K12 was determined to
be only 857 Kb*'"®. Fascinatingly, this species even contains a strain that is in use as a

probiotic, E. coli strain Nissle 1917*',

Another complicating factor is the high functional redundancy in the GI microbiota. This
redundancy enhances resilience, thus ensuring the continuity of functions that are important
to the host*. However, this also means that different compositions are able to perform the
same essential functions, such as the production of butyrate®. Therefore, in case control
studies that only apply composition profiling, the actual functional output of a system
presumed to be in ‘dysbiosis’ might not be abnormal and vice versa; lack of significant
differences in abundance doesn’t necessarily indicate a healthy state. The latter was
accentuated in a study from O’Keefe and colleagues. After a dietary intervention
microbiota did not show large compositional differences yet the metabolic output changed
significantly, including the abundance of important bacterial metabolic risk factors for
colon cancer’”.

Future perspectives

From the last paragraphs it is clear that the ultimate way forward would be integrative
‘ecosystems biology' approaches like proposed by Zoetendal and colleagues® that combine
several complementary omics technologies, supplemented with physiological host data,
preferably sampled in (dense) time series, with proper biological controls, such as routine
temporal sampling at baseline to determine normal fluctuations and using crossover
designs. Another improvement over current studies would be power calculations based on

microbiome data instead of host variables*".

A common theme in this chapter and chapter 1, is the need for large densely sampled
temporal datasets of many individuals with diverse backgrounds and life styles from
various geographical locations, thus with different exposures and genotypes. These would
assist in the elucidation of fundamental mechanisms regarding (universal) ecosystem rules
in health as well as disease and the stability and resilience of the normal healthy
microbiome. It might also reveal clues about cause consequence and the temporal dynamics
of dysbiosis, i.e. whether this process is abrupt and comparable to a stability landscape
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where repeated perturbations knock a system from one state into another or whether
changes are gradual with a linear trend into dysbiosis. Different layers of data based on
DNA, RNA and proteins from the side of the microbiome will give clues whether dysbiosis
is merely functional, compositional or both. Simultaneous assessment of the mediators of
reciprocal host-microbe interaction (microbial metabolites and immunological parameters)
might identify causality; what changed first and who influenced whom at what point in
time.

Although only a few years ago it would have seemed impossible to generate and analyse
such datasets, they are now within our grasp as a result of the revolutionary advances in
genomics and associated technologies, computational biology as well as the reductions in
sequencing costs. Probably the main obstacle would the considerable burden this would
place on participants. However, just sequencing more is not the answer. This is true for
compositional profiling, but for functional analyses as well. Chapter 6 has shown the
relatively high noise levels associated with 16S rRNA gene amplicons sequencing.
Therefore, analysis pipelines must continually improve to deal with the new quantities and
types of data. Furthermore, only recently, common requirements of any scientific
endeavour, namely proper controls, are now commonly integrated to discern between
potential technological artifacts and biology. These controls include negative controls for
samples with low amounts of bacterial DNA'®, the inclusion of Mock Communities of
reasonable complexity (chapter 6), preferably related to the ecosystem of interest, and
other approaches such as spiking in 16S rRNA gene amplicons to more accurately
determine abundance’'®. Also current community analysis would greatly benefit from
cleaner reference databases. Furthermore, functional analyses based on the genome,
transcriptome and proteome of the microbiome would benefit from efforts to functionally
characterize the multitude of genes that remain without characterized homologues in the
databases.

Animals and especially gnotobiotic mice, are considered the ideal model system to generate
hypotheses and gain insight into putative mechanisms because they are physiologically
comparable to humans. Researchers can generate relatively clean biological signals and
very homogeneous responses due to fewer ethical constraints on the severity of the
intervention. Nonetheless, these results have been shown to be difficult to replicate in
humans. When the time is there to move beyond hypothesis and translate the results of
animal experiments to humans, studies need relatively harsh interventions (for instance
dietary, antibiotic or FMT) to induce a quantifiable change, because of the dampening
effect of differences in inter-individual responses due to the heterogeneity of human
populations regarding the composition of the microbiome, genotype, phenotype, life style
and the effect of other environmental variables which are known to influence the
microbiota. Therefore, human microbiome research requires intelligent approaches to
obtain a biologically relevant signal. Dietary interventions do not need (unethically)
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extreme amounts of macronutrients, but might be based on previous long term dietary
habits, such as a switch between a diet rich in fiber to a diet rich in fat and protein and vice
versa™”. Or alternatively, an intermediate step might be introduced between the current
mice studies and validation in human populations. For instance, if results can be replicated
in an experimental setup with less homogeneity regarding the aforementioned parameters,
such as wild mice, the next step could be validation in a human population.

Paradigm shift towards an ecological approach to human health

The study of the human microbiome is still in its infancy. Nevertheless, we have already
started to recognize the critical and integral role of the microbiome in our health and
wellbeing. This perspective, i.e. the ‘outside’ is aiding the ‘inside’, is relatively new and in
great contrast to the more traditional clinical view of the human body and microbes. This
body-as-battleground approach ignores the community context of infectious disease, and
does not take into account our increasing knowledge regarding the assembly of the human
microbiome. Given the ecological parallels between assembly of the human microbiome
and assembly of other ecological communities, Costello and colleagues suggested an
approach to human medicine that has more in common with park management, than it does
with battlefield strategy3!. Human intervention such as antibiotics use has shown deleterious
effects on the microbiome and human health, and at a global scale we have also recently
started to realize that human intervention has irrevocably changed and disrupted delicate
ecosystems. Therefore, we can draw parallels between the GI microbiome and various other
habitats, including plant and animal communities in highly disturbed environments
impacted by overfishing, (abrupt) climate change, habitat loss, ocean acidification,
pollution, and invasive species and learn from the approaches that have been successfully
applied to manage biodiversity in dysbiosis on a much grander scale. The effective
management of plant or animal communities requires a multifaceted approach of habitat
restoration, promotion of native species, and targeted removal of invaders. Currently, it is
increasingly recognized that the traditional ‘one-size-fits-all’ approach to medicine that is
based on broad population averages is often not effective due the heterogeneity in genotype
and phenotype of human populations and the fact that it is not fully understood how
people develop disease and respond to treatments. To this complex web of interactions
(epistasis and penetrance) we can add the microbiome, not only because of its intimate
relation with our health but also due to a direct effect on treatment efficacy trough
differential metabolization of medication®'”. Tailoring health care to diagnostic changes in
an individual’s microbiome and each person’s unique genetic makeup will move us closer
to more precise and predictable health care. Our growing understanding of the microbiome
and human genetics and how they drive health, disease and drug responses in each person
will enable doctors to provide better disease prevention and more effective treatments for
human diseases.
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Summary

After birth, our gastrointestinal (GI) tract is colonized by a highly complex assemblage of
microbes, collectively termed the GI microbiota, that develop intimate interactions with our
body. Recent evidence indicates that the GI microbiota and its products may contribute to
the development of obesity and related diseases. This, coupled with the current worldwide
epidemic of obesity, has moved microbiome research into the spotlight of attention.
Although the main cause of obesity and its associated metabolic complications is excess
caloric intake compared with expenditure, differences in GI tract microbial ecology
between individuals might be an important biomarker, mediator or even new therapeutic
target. Nevertheless, it is currently still unclear which bacterial groups play a role in the
development of the metabolic syndrome, in humans. This might partly be explained by: 1.
Biological factors such as the heterogeneity in genotype, lifestyle, diet; and the often
complex aetiology of human disease of which the metabolic syndrome is no exception. 2.
Technological factors, such as the use of miscellaneous incompatible methods to assess the
gut microbiota, often enumerating specific groups rather than using broad 16S rRNA
gene surveys or metagenomics. 3. Studies vary greatly in the populations considered,
their designs, and the degree of control for potential confounding factors such as lifestyle
and diet. Nevertheless, recent research on this matter has shown a conceptual shift by
focusing on more homogenous subpopulations, based on stricter control over variables
such age range or through the use of both anthropometric (weight, total body fat)
as well as biochemical variables (insulin resistance, hyperlipidaemia) to define groups.

Perturbations in microbial diversity and community structure in adults with overweight and
obesity may be partly due to long-term dietary habits or physiological changes in these
subjects. As such, exploring the association between the gut microbiota and variation in
BMI and weight in early life, prior to or close to the onset of overweight, might provide
additional insights into these processes. Therefore, we studied the fecal microbiota of 295
six-seven year old children from the KOALA Birth Cohort, living in the south of the
Netherlands. This age range is relatively uncharted microbiota territory. We found that its
composition seems to conform to tot same ecosystem rules as that of adults. The bimodal
distribution pattern of several bacterial groups as well as their co-correlating groups that
were reported previously, including Uncultured Clostridiales II, Prevotella spp. and
Dialister were confirmed. Furthermore, one of the previously described bimodal groups
(Uncultured Clostridiales I) was shown before to exhibit very clear shifting state
probabilities associated with ageing, where the high abundance state was mainly observed
above 40 years of age. This was corroborated as no support for bimodality of this group
was observed in the children included in the study described here. A large part of the
variation in microbiota composition was explained by the abundance of aforementioned
groups in contrast to the anthropometric outcomes, suggesting that in this group of healthy
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children within a relatively normal weight range, weight and associated parameters were
not major drivers of overall genus-level microbial composition or vice versa. Hereafter,
multiple linear and logistic regression models with rigorous adjustment for confounders
were applied to investigate individual microbiota features association with weight related
anthropometric outcomes. Previously reported parameters such as diversity, richness and
Bacteroidetes to Firmicutes ratio, were not significantly associated with any of the
outcomes. Nevertheless, the abundance of several specific bacterial taxa; Akkermansia,
Sutterella wadsworthia et rel. and Bryantella formatexigens et rel. and the dichotomous
abundance state of the bi-modally distributed UCII was consistently associated with
weight-related outcomes.

Other biochemical features of the metabolic syndrome have been associated with the gut
microbiome. Mainly rodent studies have indicated that antibiotic treatment may improve
glucose homeostasis and metabolic impairments. Therefore, the effects of gut microbiota
manipulation by antibiotics (7d administration of amoxicillin, vancomycin or a placebo) on
tissue-specific insulin sensitivity, energy metabolism, gut permeability and inflammation in
57 obese, pre-diabetic men from the same geographical region, were investigated.
Vancomycin decreased bacterial diversity and significantly reduced well known butyrate-
producing Firmicutes from Clostridium clusters IV and XIVa and bacterial groups involved
in bile acid metabolism. These changes occurred concomitantly with altered plasma and
fecal concentrations of these metabolites. In adipose tissue, gene expression of oxidative
pathways was upregulated by antibiotics, whereas immune-related pathways were
downregulated by vancomycin. However, antibiotic treatment had no significant effects on
tissue-specific insulin sensitivity, energy/substrate metabolism, postprandial hormones and
metabolites, systemic inflammation, gut permeability and adipocyte size. Importantly,
despite a still considerably altered microbial composition at eight weeks follow-up, energy
harvesting, adipocyte size and whole-body insulin sensitivity (HOMA-IR) remained
unaltered. Overall these data indicate that interference with adult microbiota by antibiotic
treatment for 7 days had no clinically relevant impact on metabolic health in obese humans.
These data are in contrast with several rodent studies as well as a human intervention. The
present study, which was well-powered and placebo-controlled, indicates that the
previously reported vancomycin-induced effects on human peripheral insulin sensitivity are
probably of minor physiological significance.

The aforementioned group that was relatively homogeneous with regards to phenotype was
combined with another cohort with similar phenotypical characteristics (obese, male and
pre-diabetic) from another region of the Netherlands, to investigate whether tissue specific
insulin sensitivity, as measured by the golden standard hyperinsulinemic-euglycemic clamp
technique, is related to a specific microbial pattern. Remarkably, despite the fact that both
cohorts were constructed based on comparable recruitment strategies, the average
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microbiota composition in both cohorts showed pronounced differences. Firstly, we found
no consistent and significant association between liver, adipose tissue or skeletal muscle
insulin sensitivity and the microbiota in both cohorts. Nevertheless, Random Forests
classifiers using microbiota composition as predictors revealed taxa associated with fasting
glucose concentrations and HbAcl but only in one cohort. The top microbial features
distinguishing classes were different Proteobacteria and groups involved in butyrogenesis,
such as Faecalibacterium prausnitzii, Roseburia intestinalis, and Eubacterium rectale and
related species, for fasting glucose levels. For HbAcl these taxa were Oscillospira
guillermondii, Sporobacter termitidis, Lactobacillus gasseri and Peptococcus niger and
related species. The striking cohort-specific observations suggest that the relation between
microbiota composition and type 2 diabetes mellitus as well as other characteristics of the
metabolic syndrome is very dependent on the selected cohort of patients and their
respective baseline microbiota composition. Similar observations have been made by other
researchers as well. It could be that differences in microbiota composition are not
associated with the insulin resistance phenotype when the overweight and/or obese state of
the patient is already established, as is the case for our metabolic syndrome patients. In the
latter case we cannot exclude that the composition of the fecal microbiota may play a role
in the worsening of insulin sensitivity in an early stage in the development from a lean
towards an overweight/obese phenotype. Furthermore, the observation of a subgroup-
specific microbiota only observed in one of the cohorts might indicate an alternative state
of microbiota composition driven by yet unknown forces. Nevertheless, this study clearly
demonstrated that cohort-specific microbiota differences hamper finding a consensus
biological interpretation between cross-sectional studies. This, combined with the
complexity of individual disease pathogenesis, as well as the individual-specific differences
in microbiota composition, may explain the inconsistency in observations between
different studies concerning the identification of signature microbes for obesity, irritable
bowel syndrome and other diseases.

Besides the biological drivers for cohort specific inconsistencies in identified microbial
biomarkers, there are also technological factors. Although high-throughput sequencing of
short, hypervariable segments of the 16S ribosomal RNA (rRNA) gene has transformed the
methodological landscape describing microbial diversity within and across complex
biomes, evidence is increasing that methodology rather than the biological variation is
responsible for observed sample composition and distribution. Large meta-analyses would
aid in elucidating whether the basis for these observed inconsistencies is biological,
technical or maybe a combination of both. To facilitate these meta-analyses of microbiota
studies we developed NG-Tax, a pipeline for 16S rRNA gene amplicon sequence analysis
that was validated with different Mock Communities (MC). NG-Tax demonstrated high
robustness against choice of region and other technical biases associated with 16S rRNA
gene amplicon sequencing studies. The analysis of o- and PB-diversity of these MC
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confirmed conclusions guided by biology rather than the methodological aspects. This
pipeline was applied to biological samples to monitor the developing communities an in
vitro gut model (TIM-2) fed either with a normal diet, or modified versions from which the
carbohydrate (MPLC) or protein fraction was diluted (LPMC) for 72h. In combination with
global metatranscriptomics and metabolomics this revealed that each diet produced distinct
microbial communities and temporal patterns and ratios of metabolites. The microbiota in
reactors fed diets containing normal carbohydrate levels were enriched in members of the
genera Prevotella, Subdoligranulum, Blautia and Bifidobacterium, all associated with
carbohydrate fermentation. In turn, the microbiota in the reactors fed the MPLC diet,
containing ten-fold less carbohydrates, was enriched in the genus Bacteroides, which is
associated with diets rich in protein and animal fat. This setup allows researchers to study
the (trophic) interactions and task division within a community and how they are impacted
by diet-related factors under controlled conditions, which may assist in defining causal
links between specific diet-derived parameters microbial groups and their activities.

In conclusion, currently it seems that GI microbiota based biomarkers associated with
metabolic impairments and anthropometric variables associated with the metabolic
syndrome are cohort specific or possibly individual, which could partly be due to the use of
incompatible analytical approaches. Nevertheless, there is growing evidence that human
health is a collective property of the human body and its associated microbiome and thus
requiring to study the interface of two very complex systems, i.e. on one side the
extraordinary coding capacity, high inter-individuality and complex dynamics of the
microbiome and on the other side the multifactorial individual nature of human disease. In
light of these observations the manifestation of individual dynamics of the microbiota with
the host when homeostasis is lost seems plausible and likely.
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