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1.1 A personal note 

“There are these moments in life that change the way you look at the world. About one decade 

ago I had such a moment when I was hiking along a beach in the heart of Corcovado national 

park in Costa Rica. This peninsula is renowned for being among the places on earth with the 

highest biodiversity and I found myself happy to work there as a volunteer. I have always 

been intrigued by nature - as a kid you could often find me sitting on my knees observing 

pond life - yet the natural beauty I encountered during that walk was purely amazing. But 

what struck me most was witnessing the piles of human waste that had been washed up on 

the shore, especially since I was in the absolute middle of no-where (the nearest town was 50 

km away, and it took me a 2 hour 4WD ride through the jungle, 30 minutes by boat and a 3 

hour hike to get where I was). Shampoo bottles, lighters, flip-flops and drinking bottles were 

everywhere, and some of them I found deep inside the rainforest. It was then when I fully 

realised that humans are dominating this planet, affecting even the most remote places.” 

  

1.2 The main challenge of our time 

If humanity continues to use more of the natural systems than what these systems can provide 

for, resulting changes in our physical environment will remain to pose large risks on many 

societies (Meadows et al., 1972; Rockström et al., 2009). For example, by extracting 

fossilized carbon from the earth’s crust at a rate much higher than the rate at which the 

biosphere can sequestrate carbon, we allow the atmospheric CO2 concentration to rise and 

the global climate to change (Schneider, 1989). Already we are subjected to increasing 

temperatures and more frequent extreme weather events (Blunden and Arndt, 2016; IPCC, 

2013; Van den Hurk et al., 2014). Indeed, it has recently been postulated that climate change 

related droughts were a major impetus for the civil war in Syria which is currently lacerating 

the Middle East (Kelley et al., 2015). Ultimately, the rise of CO2 in the atmosphere may lead 

to so called Large-Scale Discontinuities, such as substantial reduction of the North Atlantic 

Meridional Overturning Circulation or the complete deglaciation of the Greenland and West 

Antarctic ice sheets, which are conceivably the biggest cause for climate concern (Lenton et 

al., 2008; Smith et al., 2009). Other planetary boundaries that we probably have exceeded 

already include the loss of biodiversity and disruption of the Nitrogen and Phosphorus cycles 

(Rockström et al., 2009; Steffen et al., 2015). More than forty years ago it was predicted that 

growth of the human ecological footprint was unlikely to be stopped until after the sustainable 

limits had been exceeded due to delays in global decision making (Meadows et al., 1972; 

Randers, 2012). Indeed, only recently world leaders have started to recognize lowering the 

human ecological footprint as being one of the most critical challenges of our time. For 

example, in December 2015 - the warmest year ever recorded - 195 countries adopted a new 

climate agreement (the ‘Paris Agreement’), committing themselves to stop global warming 

below 2 ⁰C (UNFCCC, 2015). Moreover, the leader of the Catholic Church, Pope Francis, 

presented an encyclical completely devoted to ecology and environmentalism, which he - for 

the first time in history - addressed to every person on the planet, followers and non-followers 
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alike (Pope Francis, 2015). How societies can and should reform to circumvent the 

detrimental consequences of anthropogenically induced global environmental change is still 

largely an open question however (Hatfield-Dodds et al., 2015).   

 

1.3 Responsibilities of environmental research 

Global sustainability problems are sometimes referred to as ‘messy’ or ‘wicked’ because they 

are multidimensional, value-laden and originate in complex adaptive systems with numerous 

interactions and interdependencies at different scales (Verweij et al., 2006). In fact, they 

cannot be seen as single problems as they result from a combination of multiple interacting 

problems (Meadows et al., 1972). Because science is all about making the world more 

intelligible, there is an apparent role for scientists in supporting human societies to resolve 

these complex issues. However, the traditional way of knowledge production, which is 

curiosity driven, taking place within academic institutions and societies, and structured by 

scientific disciplines, appears to be insufficient, as sustainability problems typically fail to 

respond to non-integrative monodisciplinary approaches (Jones et al., 2010). In fact, what is 

called for is a post-modern science that is able to support decision makers in times when 

interests are conflicting, uncertainty is high and decisions are urgent (Funtowicz and Ravetz, 

1993; Hessels and van Lente, 2008). In democracies, decision makers typically respond to 

constituencies which push their short-term profit interests, thereby imposing a great 

responsibility on scientists to elucidate and represent the long term interests (Safina, 1999). 

Indeed, we see that the science system is changing, whereby knowledge is increasingly being 

produced in the context of its application and by pan-disciplinary research teams (Hessels 

and van Lente, 2008). Along this path we see that science is becoming more predictive. 

Enabling decision makers and ecosystem managers to foresee the consequences, costs and 

benefits of future policies and management actions is probably decisive in designing 

successful routes towards sustainability. The most common way of predicting is by projecting 

our current understanding into the future using mechanistic models (Pace, 2001). 

 

1.4 Models for understanding and prediction 

In daily life humans are constantly turning experiences into judgements, assumptions and 

guesses in order to respond swiftly to novel circumstances, and generally these 

generalizations tend to be accurate (Gigerenzer and Brighton, 2009). In science, experience-

based generalizations are referred to as ‘hypotheses’, and in the pursuit of truth we aim to 

falsify such generalizations by means of carefully designed experiments. Yet, certain issues 

are so complex that we cannot grasp them by performing (thought) experiments only, for 

example when we want to understand or predict the dynamics of complex dynamic 

ecosystems that are perturbed by human actions. In those cases mechanistic modelling may 

provide a solution, helping to gain experience with complex or counterintuitive phenomena, 

and turning experiences into predictions of future conditions. Models provide a logical 

structure that enables synthesizing various types of knowledge and data into an integrated 
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view of the system it portrays. By manipulating the model we can identify the most important 

processes and components, and learn about the relationships between processes and model 

outputs (Carpenter, 2003). This is particularly useful when we have some understanding of 

the structure and dynamics of a system but only little data. Yet, when there is empirical data 

to confront the model with, we may be able to confirm that the essential mechanisms needed 

to reproduce observed system dynamics are indeed accounted for. If that is the case and there 

is enough confidence, we may continue with making quantitative predictions about how a 

system reacts when it is perturbed under given scenarios.  

 

1.5 Shallow lakes 

Small and shallow lakes are the most abundant of the ~117 million lakes in the world >0.2 

ha (Verpoorter et al., 2014), and provide crucial ecosystem services for human wellbeing 

(Millennium Ecosystem Assessment, 2005). For example, lakes typically have a source 

function, e.g. of food products, a sink function, e.g. of waste water, and a storage function, 

e.g. of surplus water when connected rivers are about to burst their banks. Due to the high 

surface-to-volume ratio, shallow lakes have a relatively high turnover of nutrients and matter, 

as the water column is easily mixed and light is able to penetrate through the majority of its 

volume. As a result small and shallow lakes are relatively important components of global 

carbon and nutrient cycles; the greenhouse gasses sequestrated and emitted by lakes make a 

significant contribution to the total budgets (Bastviken et al., 2011; Raymond et al., 2013). 

Other reasons why these lakes are important for society is that they provide a critical habitat 

for all kinds of biota, and have important aesthetic, cultural and recreational values 

(Millennium Ecosystem Assessment, 2005). From a scientific point of view, lakes are 

particularly interesting because they have relatively well-defined boundaries, making them 

fairly simple, isolated and stable study objects, wherefore they are sometimes referred to as 

‘microcosms’ (Forbes, 1887; Fussmann, 2008). Hence, some of the most basic concepts in 

ecology, such as food web dynamics and ecosystem ecology, were first described by 

limnologists (Forbes, 1887; Lindeman, 1942). Somewhat paradoxically, lakes are also 

renowned for the interactions across their boundaries, as they have been put forward as 

sentinels of changes in terrestrial and atmospheric processes in their catchment (Rinke et al., 

2013; Schindler, 2009; Williamson et al., 2008). Because lakes are depressions in the 

landscape they accumulate runoff via drainage ditches, canals and rivers and thereby 

integrate the effects of human developments in their catchment. Moreover, because of the 

fast turnover of energy and matter, the changes imposed on the system become rapidly visible 

at the level of the whole ecosystem (Adrian et al., 2009).  

 

1.6 The main stressors on lakes 

Freshwater ecosystems are among the most impacted systems on the planet (Janse et al., 

2015; WWF, 2014). An important reason is that on average the human population density 

near freshwater ecosystems is relatively high; human settlements have emerged near lakes to 
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exploit their ecosystem services since the onset of human development (de Sherbinin et al., 

2007). A second important reason is that, as described above, lakes integrate the effects of 

anthropogenic changes in their surrounding environment (Williamson et al., 2008). At the 

global scale increasing nutrient availability is one of the most dominant stress factors to lakes 

(Hasler, 1947; Smith, 2003), causing widespread eutrophication and resulting in a ‘green 

soup’ of toxic cyanobacteria and anoxic conditions (Correll, 1998; Gulati and Van Donk, 

2002). The main sources of nutrients are sewer systems and agricultural runoff. Other 

harmful substances entering lakes via runoff include micro-plastics (Quik et al., 2015), 

pharmaceuticals (Van Donk et al., 2015), pesticides, herbicides and other chemicals (e.g. Van 

Wijngaarden et al., 2005). Another major force acting on lakes is anthropogenic climate 

change, including global warming and the increase of extreme weather conditions (Mooij et 

al., 2005). Hence, higher temperatures boost cyanobacterial growth (Paerl and Huisman, 

2008), and especially lakes in arid regions suffer from low water levels and high salinity 

(Jeppesen et al., 2015; Rodríguez Díaz et al., 2007). Some lakes have already dried up 

completely (Jeppesen et al., 2009). An indirect effect of global warming is increasing input 

of organic carbon from wetlands and terrestrial systems, which reduces water transparency 

and subsidizes the aquatic food web (Lischke et al., 2014). A different source of stress comes 

from modifications of the food web, particularly by overexploitation. Removal of top-

predators such as pike and zander can have a strong cascading effect on lower trophic levels 

of the food web (Carpenter et al., 1985; Estes et al., 2011). Also the introduction or invasion 

of non-native species can have significant impact on lake functioning. Typical examples of 

exotic species include Dreissena mussels, whose presence can have a large effect on 

transparency (Holland et al., 1995), and the red swamp crayfish, which can greatly frustrate 

the establishment of aquatic plant communities (Van der Wal et al., 2013). Besides inducing 

the above mentioned changes in external forcings and the food web, humans tend to alter the 

physical characteristics of lakes: surrounding marsh areas are converted into agricultural 

land, natural banks are turned into steep concrete banks and the water table is regulated by 

dams and wires for e.g. water storage or flood control (Kong et al., 2016; Sollie et al., 2008). 

These modifications may corrode the resilience of the system to withstand and recover from 

stress (Janse et al., 2008). 

  

1.7 Lake response to stress 

There are several ways in which lakes can respond to increasing anthropogenic pressure (Fig. 

1). Lakes may, for example, respond gradual or even linear to changing environmental 

conditions (Fig. 1a). Such a response implicates that the system has no capacity to absorb 

stress, but has the advantage of providing a clear signal of change, which can be easily 

measured by water quality managers. Lakes may also respond non-linearly to changing 

conditions (Fig. 1b), or even show abrupt transitions, in which case stress does not seem to 

have much impact until a large change becomes apparent (Fig. 1c). This latter response 

indicates that the lake has a certain potential to withstand changes in external conditions, 

which creates possibilities for economic exploitation of the source or sink functions of lakes. 
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At the same time however, this resilience obscures the underlying environmental change, and 

without obvious warnings ecosystem managers might not anticipate an imminent regime 

shift. Such a shift will be particularly problematic when it is ‘catastrophic’, which means that 

when the lake is pushed over a threshold, positive feedbacks cause a self-propagating shift to 

an alternative regime (Fig. 1d). This alternative regime has its own resilience, which makes 

that a reduction of stress does not automatically lead to recovery - a phenomenon known as 

hysteresis. This implicates that for intermediate stress levels the system can linger in two 

contrasting states, whereby the prevailing state depends on the foregoing conditions (Fig. 

1d). Clearly, the presence of alternative stable states and hysteresis agitates ecosystem 

management, although generic statistical early warning signals for catastrophic regime shifts 

are being developed (Dakos et al., 2015). In the most severe case, the shift to the alternative 

state is irreversible, e.g. when certain key species become (locally) extinct (Fig. 1e).  

 

 
Figure 1 Possible responses of lakes to changing environmental conditions: (a) linear, (b) nonlinear, 

(c) threshold-like, (d) threshold-like with hysteresis, (e) threshold-like with irreversible change (solid 

lines, stable; dashed lines, regime shift). 

 

1.8 Positive feedbacks in Shallow Lakes 

Shallow lakes have provided some of the clearest examples of alternative stable states in 

nature (Scheffer et al., 2001). From the 1950’s onwards, numerous shallow lakes in temperate 

zone have switched from a clear water state with submerged plants into a turbid state 

dominated by phytoplankton and cyanobacteria following excessive pollution by nutrients 
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(Gulati and Van Donk, 2002; Scheffer et al., 1993). Even though tremendous management 

effort has been devoted to lake restoration ever since, mainly through the reduction of 

external nutrient inputs, many lake ecosystems appear to linger in the turbid water state and 

show only moderate signs of recovery (Hanson et al., 2016). The basic ingredient for a 

catastrophic regime shift are positive feedbacks (Fig. 2), and the most prominent feedbacks 

in shallow lakes involve the interaction between submerged vegetation and turbidity 

(Scheffer, 1990). Aquatic plants are capable of enhancing their own growing conditions 

through a positive feedback with water clarity (Scheffer, 1989; Van Donk and Van de Bund, 

2002). For example, aquatic plants are able to suppress phytoplankton growth by being strong 

competitors for nutrients and via the excretion of allelopathic substances (Mulderij et al., 

2005; Sondergaard and Moss, 1998). Moreover, they provide habitat for zooplankton which 

graze on phytoplankton (Scheffer, 1999). As a result, the aquatic plants prevent 

phytoplankton from blocking the sunlight, which is particularly important during the start of 

the growing season when aquatic plants germinate and need the light to reach the sediment. 

Water transparency is even further increased by the capacity of aquatic plants to reduce the 

resuspension of solids, e.g. by reducing flow velocities (Madsen et al., 2001), and to stabilize 

the sediment with their roots (Horppila and Nurminen, 2003). A second positive feedback 

loop involves the abundance of fish. Piscivorous fish which need clear water conditions for 

hunting, such as pike, also have a positive impact on water clarity by imposing top-down 

control on benthivorous and zooplanktivorous fish species which promote turbid conditions 

(Scheffer, 2004). Benthivorous fish, such as bream and carp, cause resuspension of sediments 

as they forage (Breukelaar et al., 1994), while zooplanktivorous fish release the 

phytoplankton from the grazing pressure of zooplankton (Scheffer, 2004). These feedbacks 

enable the system to resist changes in external environmental conditions, i.e. they underlie 

the emergence of alternative stable states (Scheffer, 1989). For example, during 

eutrophication, increasing inputs of external nutrients will initially not lead to major changes 

in the state of the lake. Although the abundance of aquatic plants will increase, the 

transparency of the water remains high. When the input of nutrients continues to increase, 

however, the clear water state is becoming saturated, and when the critical nutrient loading 

is exceeded, the aquatic plants lose their primacy. At that point, the exact same positive 

feedback loops that first kept the system in its clear state start to operate in the exact opposite 

direction, thereby propelling the lake to the contrasting phytoplankton dominated state. These 

feedbacks now give rise to the resilience of the turbid state, making moderate nutrient 

reductions ineffective. Having an estimate of the critical nutrient loading is of great 

importance to lake ecosystem managers as comparison with the actual nutrient loading 

provides crucial insight in which restoration measures are effective, and which ones are not 

(Jaarsma et al., 2008).  
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Figure 2 The strength of positive feedbacks and the emergence of alternative stable states and hysteresis 

in lakes (figure adapted from Scheffer 2009). 

 

1.9 Complex problems require complex models 

The foundation of our understanding of alternative stable states in ecosystems has been laid 

by so called minimal dynamical models consisting of only a few equations. These models 

show that a few positive feedback loops in lakes are sufficient to cause the catastrophic 

behaviour that has been observed in the field (Scheffer, 1990, 1989; Scheffer et al., 1993). In 

fact, it is largely attributable to these minimal dynamical models - as they are fully tractable 

and easy to communicate - that alternative stable states theory has become an integral part of 

water quality management in the Netherlands (Jaarsma et al., 2008). Despite their elegance 

however, the direct application of minimal dynamical models in water quality management 

can be tricky, because these models are by definition highly abstract representations of reality 

and are not intended to produce quantitative estimates that can be tested against field data. 

Alternatively, water quality managers may apply more complex or integrated ecosystem 

models which provide more explicit representations of our current quantitative understanding 

of the causes and consequences in lake ecosystems. Such models allow for integrating various 

different sources of data, and for analysing the relative importance of different processes. 

Subsequently this information is turned into quantitative projections and can be used for 

scenario analysis (Evans, 2012). However, because comprehensive models are hard to 

develop, maintain and communicate, there are only a few models readily available to 

scientists and lake ecosystem managers (Janssen et al., 2015). An example of an integrated 

ecosystem model for shallow lakes in the temperate regions is PCLake, which aims to 

integrate the main processes both in terms of biotic and abiotic variables. 
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1.10 The integrated ecosystem model PCLake 

PCLake is basically a set of coupled ordinary differential and auxiliary equations describing 

the most important biotic and abiotic components of non-stratifying shallow lakes (Janse, 

1997). The biota in PCLake are modelled on the basis of functional groups (Fig. 3). The 

primary producers are represented by three groups of phytoplankton (‘diatoms’, ‘green algae’ 

and ‘cyanobacteria’) and submerged plants. The remaining food web consists of zooplankton, 

zoobenthos, planktivorous fish, benthivorous fish and piscivorous fish. The abiotic 

components in the pelagic and in the sediment are detritus, inorganic material, dissolved 

phosphorus, ammonium and nitrate. All organic components are modelled in terms of dry-

weight (DW), nitrogen (N) and phosphorus (P). An important result of this explicit 

stoichiometry is that the nutrient-to-dry-weight ratios of the organic components are variable. 

Other ecological key concepts covered by the model are: closed nutrient cycles, seasonal 

succession, food-web dynamics, trophic cascade and benthic-pelagic coupling. The main 

inputs to the model are: physical dimensions (depth and fetch), water inflow and outflow, 

nutrient loading, temperature, irradiance, initial values of the biota (composition of the food 

web), sediment characteristics and loading history. Optionally a marsh module can be 

attached to the model. A complete description of the model is presented by Janse (2005). 

PCLake shows great resemblance with PCDitch, its sister model for drainage ditches and 

linear water bodies (Van Liere et al., 2006). The main difference is that PCDitch focusses on 

the competition between different groups of plant species, while PCLake focusses on the 

trophic interactions in the food web (Janse, 1998).  

 

Figure 3 Schematic representation of PCLake with the most important biotic and abiotic components. 

Arrows depict mass fluxes, dotted arrows depict ‘empirical’ relations. 



17 
 

 

1.11 A small history of PCLake and its salient features 

PCLake has originally been developed to describe the nutrient cycles of Lake Loosdrecht in 

the Netherlands as part of the WQL project (Water Quality research Loosdrecht Lakes; Janse 

and Aldenberg, 1990; Janse et al., 1992). The WQL project was basically a comprehensive 

system analysis aimed at understanding the mechanisms of the eutrophication process, and 

evaluating the effect of recovery measures (Fig. 4). Back then, the project was unique because 

of its size, duration and integrated nature: it included monitoring of a large set of physical, 

chemical and biological variables, both in situ and by remote sensing, lab experiments and 

ecosystem modelling (Van Liere et al., 1992). The project ran from 1979 to 1990 and resulted 

in the publication of more than 130 scientific papers (Van Liere, 1992). Although >100 

aquatic ecosystem models have been in existence in since the WQL project, many of these 

models are seldom if ever used or cited in the peer-reviewed literature (Trolle et al., 2012). 

However, PCLake has stood the test of time as a quarter century after its first introduction it 

is still actively used in water quality management and is even one of the most cited lake 

ecosystem model in the literature (Trolle et al., 2012). This raises the question which features 

of the model underlie its success. The first success factor is arguably that the model is a direct 

product of a fully-fledged system analysis. As such, water quality managers can easily use 

the model as a quantitative framework for setting up their own system analysis, as many 

relevant components and processes are provided for. PCLake has been used to analyse the 

dynamics of several lakes in the Netherlands, including the Reewijk Lakes (Janse et al., 

1993), Lake Zwemlust (Janse et al., 1998) and the Loenderveense Plassen (Witteveen+Bos, 

2010). Also lakes outside the Netherlands have been analysed, including Lake Engelsholm 

(Trolle et al., 2014) and Lake Arreskov (Nielsen et al., 2014) in Denmark and lake Chao in 

China (Kong et al., 2016). A second important reason is that the model shows alternative 

stable states as an emergent property. PCLake is one of the few tools available for water 

quality managers that can be used to estimate the critical nutrient loadings of a shallow lake. 

This capability also makes the model popular among scientists; it is quite unique that a 

complex model with a fair amount of realism can be linked so easily to important theoretical 

concepts such as stability, resilience and alternative stable states. As such, researchers use 

the model as a virtual playground to study how specific processes, feedbacks or ecological 

concepts relate to the occurrence of alternative equilibria. The use of PCLake for this purpose 

was greatly enhanced by a multi-lake calibration exercise using data from more than 40 lakes 

with the aim of obtaining a best overall fit (Aldenberg et al., 1995; Janse et al., 2010). The 

result is that PCLake by default describes an ‘average’ shallow lake, making the model 

suitable for generalized studies on temperate shallow lakes. For example, Janse et al. (2008) 

used the model to study how general lake features, such as depth, fetch and sediment type 

determine the resilience of shallow lakes. Likewise, PCLake has been used to evaluate the 

importance of rising temperatures (Mooij et al., 2009, 2007) littoral–pelagic coupling (Sollie 

et al., 2008), allochthones carbon (Lischke et al., 2014), tube-dwelling invertebrates (Holker 

et al. 2015) and herbivory by birds (Van Altena et al., 2016). Summarizing, it may be 
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concluded that PCLake embodies the right order of complexity: simple enough to maintain a 

connection with ecological theory and sufficiently complex to link up with the daily practice 

of ecosystem managers. This is in line with Constanza and (Sklar 1985) and Fulton (2001) 

who analysed numerous models in a wide range of fields and concluded that models of 

intermediate complexity score highest on their metric for ‘effectiveness’ (Hannah et al., 

2010).  

 
 

 
Figure 4 Drawings of the most important biotic and abiotic components in Lake Loosdrecht, focussing 

on estimates of the phosphorus contents and the phosphorus flows between components. These 

drawings were made during the WQL project and formed the basis of the PCLake model. The upper 

drawing is produced by Lowie van Liere, Jan Janse and Eddy Lammens on March 27, 1991. The lower 

graph is presented in Van Liere and Janse (1992). 
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1.12 The Water Framework Directive and the need for systems analyses  

The Water Framework Directive (WFD, European Union 2000) is European legislation 

which commits all water managers in the EU to achieve a good ecological status in fresh 

waters, with the next audit in 2021 and the final audit in 2027. By emphasizing the ecological 

state rather than chemical parameters or external forcings, the WFD aims for re-establishment 

and sustainable use of ecosystem services, including the purifying capacity of ecosystems 

and the provision of habitat for biodiversity (Gaalen et al., 2015). The WFD requires member 

nations to monitor the current state of their water bodies, set restoration targets and 

implement measures to meet these targets. These targets and proposed measures are reported 

in river-basin management plans, which have a term of 6 years. The first management cycle 

has just ended (2009-2016) and revealed that water quality managers face serious challenges. 

In the Netherlands, for example, only 3 percent of the regional water bodies is currently in a 

good ecological state (Gaalen et al., 2015). Many water bodies remain highly productive due 

to persisting high nutrient loading, making them linger in a turbid phytoplankton dominated 

state or enter a monocultural and densely vegetated state (Lamers et al., 2012; Smolders et 

al., 2006). A recent ex-ante evaluation of the second cycle of river-basin management plans 

carried out by the Netherlands Environmental Assessment Agency (PBL) indicated that the 

proposed measures are not sufficient for reaching the ecological targets (Gaalen et al., 2015). 

Consequently, there is currently a major impetus for water quality managers to take additional 

restoration measures and to re-evaluate their targets. Managers are increasingly aware that 

every system is unique (n=1) and that successful implementation of the WFD calls for a 

tailored integrated assessment and modelling approach (Rekolainen et al., 2003). As such, 

water quality managers have a need for quantitative tools which enable them to (1) diagnose 

why the ecological status of a given system is not sufficient, (2) identify controlling variables, 

(3) formulate effective and cost-efficient management measures and (4) predict the effect of 

(combined) measures on the ecological state (Van Geest et al., 2009). The aquatic ecological 

scientific community has been, and remains challenged by the need to put this approach into 

practice (Basset, 2010). 

 

1.13 The assignment 

The ecosystem model PCLake has the potential to become the backbone of the many 

integrated systems analyses that are called for by the WFD. Unfortunately, relatively few 

water quality managers are familiar with the model, and the ones that do use the model 

increasingly have questions about the scope of the model and its limitations. It is also 

worrying that the development of the model seems to have stalled as there have been no 

major developments in the last couple of years. Taken together, this made the Dutch 

Foundation for Applied Water Research (STOWA) decide to initiate and fund a research 

project with the overall aim of increasing the usefulness and the validity of PCLake, and to 

increase the confidence in the model among water quality managers. This project became a 
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collaboration between the Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 

University & Research centre (WUR), the Netherlands Environmental Assessment Agency 

(PBL) and Witteveen+Bos, a private engineering company. The core of the research project 

consisted of a large number of case studies on Dutch lakes and two parallel running PhD-

studies: one focussing on PCDitch (Van Gerven, 2016), and one focussing on PCLake (this 

thesis). Four objectives were identified as important pillars of the overarching project: 

 To make the models more accessible; 

 To make improvements to the models; 

 To increase our understanding of the models as well as the ecosystems they portray; 

 To explore new applications in lake ecosystem management. 

 

1.14 Thesis outline 

In chapter 2, I present the Database Approach To Modelling (DATM), which we developed 

to make models more accessible. The idea of DATM is that mathematical equations are 

stored in a database, independently of programming language and software specific 

formulations. The advantage here is that the database provides structure and overview, which 

facilitates understanding of the mathematical formulations, also by non-modellers. To run 

the model in a given framework the information in the database is automatically translated, 

augmented and compiled into a working model version. Thereby the model becomes 

available in many different software frameworks, and it becomes easy to switch between 

frameworks to exploit their joint set of tools and analysis. To exemplify the approach we use 

the simple Lotka-Volterra predator-prey equations and to demonstrate its usefulness we apply 

DATM to the complex PCLake model. 

  

In chapter 3, I discuss the consequences of calibration for improvement of complex 

ecosystem models. Ecosystem models aiming to describe higher level variables such as water 

transparency are by definition crude simplifications of reality. Consequently, calibration at 

an aggregated level is often performed to align the individual components in such way that 

the model as a whole adequately describes the dynamics at the ecosystem level. As such, any 

missing dynamics can still be covered by the model, albeit indirectly. An important 

consequence is that once calibration has been performed, any model ‘improvement’ in the 

form of adding new components can bring the model ‘out of balance’ as it may lead to double 

counting with the implicit components. This same notion has consequences for sharing and 

reusing model components within the community of ecosystem modellers. We exemplify this 

line of reasoning by expanding PCLake with filter-feeding zoobenthos, which are always 

present in the lakes modelled by PCLake, but were until yet not explicitly covered by the 

model. 

  

In chapter 4, I scrutinize the relation between complex ecosystem models and empirical food 

web models. Both modelling paradigms are used by scientists to improve our understanding 

of how stability is conferred to complex ecosystems although it is largely unclear how 
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insights from these different fields can be aligned. We treat PCLake as a virtual reality from 

which we can sample ‘empirical’ information to parameterize a food web model which can 

be analysed for its stability. This allows us to study food web stability along the 

eutrophication gradient, knowing that PCLake will show a regime shift when a critical 

nutrient loading is reached. This strategy allows us to bring together the important theoretical 

frameworks of food web theory and alternative stable states theory and test them against each 

other. As such, we aim to increase our understanding of the biological mechanisms 

underlying the deterioration of food web stability in shallow lakes. 

  

In chapter 5, I continue to analyse the extent to which models of a different form can describe 

the same natural phenomenon, and hence, how these models can be used for a better 

understanding of such natural phenomenon. We zoom in on the influence of the self-

limitation and functional response terms rather than on the number of equations. Using 

classical extensions of the famous Lotka-Volterra equations we analyse the consequence of 

changing a system with a sophisticated functional response term (e.g. Holling type II or III) 

into a system with a simpler functional response term while maintaining equilibrium densities 

and material fluxes. We are interested in the extent to which stability properties of a complex 

system can be reflected by a simpler system. These insights may help resolve the question 

under which conditions empirical data can be linked to mathematical models to estimate the 

stability properties of real ecosystems. 

 

In chapter 6, I present a new application of PCLake. Whereas PCLake is usually applied in 

the context of ecosystem restoration of turbid phytoplankton dominated lakes, we explore 

here how the model can be used once the clear water state has returned and an aquatic plant 

community has re-established. Dense stands of aquatic plants can be noxious and easily cause 

nuisance, and hence the removal of plants is an emerging management issue. Yet, because 

water plants are so crucial for stabilizing the clear water state, the removal of plant biomass 

can potentially instigate a critical transition back to the turbid water state. There is only 

limited empirical and theoretical understanding of how harvesting of submerged plants 

affects ecosystem functioning. Using PCLake, we evaluate the impact of harvesting for 

different nutrient loadings, and analyse the importance of mowing intensity and timing. 

  

It is safe to say that to grasp the complexity of nature, and predict its response to 

environmental change, scientists need to conduct interdisciplinary studies and integrate 

different approaches. However, in search for understanding, scientific research often zooms 

in on a certain problem to expose more detail instead of integrating and synthesizing 

knowledge to show how higher level features arise. In the studies presented in this thesis I 

deliberately aimed at taking an integrative approach to gain insight in the functioning of 

complex ecosystems by connecting theories, models, modelling frameworks, methods and 

even experts from different fields. In chapter 7, I reflect on the added value of the integrated 
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nature of the different studies presented in this thesis, and end with a personal note on 

integrative research.  

 

As stated before, the studies presented in this thesis were part of a larger research project 

with the overall aim of increasing the usefulness and the validity of PCLake and its twin 

model PCDitch, and to enhance the confidence in the models among water quality managers. 

In chapter 8, we present a synopsis of the overarching collaborative research project on 

PCLake and PCDitch by describing the setup and the most important achievements of the 

project and discussing some remaining challenges and future directions. 
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Abstract  

Simulation modelling in ecology is a field that is becoming increasingly compartmentalized: 

while models based on differential equations can all be formulated in the universal language 

of mathematics, they are integrated and analyzed through a variety of frameworks, each with 

different user-interfaces, integration-options, spatial settings and components. These 

frameworks have produced myriads of models that are incompatible, not because of the 

fundamental ecological processes they describe, but because of framework-induced 

differences in the code. This has led to a dilemma: while the existing diversity of models and 

model-analyses is undoubtedly much needed, it can seldom be effectively used because of 

the time and energy involved in learning and mastering more than a single framework. In this 

way, many models have become locked into their frameworks, and scientific expertise has 

narrowed down to the scale of the framework.  

Here we propose a Database Approach To Modelling (DATM) to create unity in 

dynamical ecosystem modelling with differential equations. In this approach the storage of 

ecological knowledge to be incorporated in the model is independent of the language and 

platform in which the model will be run. To create an instance of the model in a certain 

platform, the information in the database is translated and augmented with the language and 

platform specifics. This process is automated so that a new instance can be created each time 

the database is updated. We describe the approach using the simple Lotka-Volterra model 

and exemplify it with the complex ecosystem model for shallow lakes PCLake (and sister 

model PCDitch) which we automatically implement in the frameworks OSIRIS, GRIND for 

MATLAB, ACSL, R, DUFLOW and DELWAQ. A clear advantage of working in a database 

is the overview it provides. This facilitates the customization of the model code and the 

comparison of multiple versions. The most remarkable spin-off of the DATM approach is in 

the benefits that emerge from the interactive use of multiple frameworks in a single study, 

and even within a single analysis, facilitating the path to ecosystem-based approaches to 

modelling. The simplicity of the approach only adds to its elegance. 
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Introduction 

Since the onset of ecological simulation modelling based on differential equations - in the 

sixties and seventies of the last century - attempts have been made to bring conceptual unity 

through the development of modelling frameworks. In the field of aquatic ecology, such 

frameworks include the widely used DELWAQ – a library of water quality and ecology 

models developed by Delft Hydraulics (Delft Hydraulics, 1995; Deltares, 2013), as well as 

the Computational Aquatic Ecosystem Dynamics Model (CAEDYM) – a library of 

ecological process sub-models (Hipsey et al., 2007), AQUASIM (Reichert, 1994), the Dutch 

Waterboards’ DUFLOW framework (Spaans et al., 1989) and the recently developed FABM 

– Framework for Aquatic Biogeochemical Models (http://fabm.sourceforge.net). Each of 

these frameworks is internally consistent, intuitive and well suited to answer the ecological 

questions it was designed for (Clemmens et al., 1993; Gal et al., 2004), and all are based on 

the same basic mathematical principles underlying the differential equations. Nonetheless, 

because these frameworks were developed independently, they all have their own sets of 

implementation requirements, language and coding specifications, spatial configuration 

options as well as boundary conditions and forcing function specifications, etc. A user must 

therefore invest a considerable amount of effort to master any given framework, which in 

turn reduces the number of frameworks that any single user can master. The choice of 

framework to be used for any given project is thus primarily based on its availability, owned 

licenses, user experience and developer familiarity. This in turn leads to models being locked 

into their given frameworks, a narrowing-down of scientific expertise to the framework-scale 

and to the proverbial ‘re-invention of the wheel’ – i.e., the inefficient redevelopment of 

existing tools for each framework, rather than a more productive cross-pollination of 

approaches to analyze models across frameworks, institutions, disciplines and scientists 

(Leavesley et al., 2002; Mooij et al., 2010; Trolle et al., 2012). We are confronted with the 

paradoxical situation that, while there is unity within each framework, there is no unity at the 

level of the ecological models. 

Here we propose a method to bring unity at the level of the ecological module, with 

the idea that many of the existing frameworks will continue to coexist, and that, taken 

together, they provide the user with a wide and rich array of tools for model analysis. We 

coin this method a ‘Database Approach To Modelling’ (DATM). We developed this 

approach for the ecosystem model for shallow lakes PCLake, and its twin model for linear 

waters PCDitch. However, our approach is in no way limited to these models. In fact, it 

applies to all models based on differential equations and probably even beyond. We here 

show how one can automatically link these models to a wide variety of frameworks, including 

OSIRIS (Mooij and Boersma, 1996), GRIND for MATLAB (available on http://www.sparcs-

center.org/grind.html), ACSL (Mitchell and Gauthier, 1976), R (R Development Core Team, 

2008), DUFLOW (Spaans et al., 1989) and DELWAQ (Deltares, 2013). Note that the latter 

two frameworks are spatially explicit and therefore are formulated in terms of partial 

differential equations (PDE’s), whereas implementations of an ecological model (e.g. 

PCLake) in the general purpose frameworks are a set of ordinary differential equations 
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(ODE’s). We will show that with DATM we can overcome this difference, and translate a 

single code either in a set of ODE’s in a general purpose framework or as the ecological 

component of a set of PDE’s in these spatially explicit frameworks. In the latter case, these 

ecological components are then merged by the frameworks with the advective and diffusive 

transport of matter to get the full PDE. Please note that in its current form, DATM does not 

provide the spatial configuration of the model, this has still to be entered at the level of the 

framework. 

To explain the principles of DATM, we use as an example the classical Lotka-

Volterra equations. These equations represent the earliest use of coupled differential 

equations in ecology (Lotka, 1920; Volterra, 1931, 1926). With this example, we show how 

knowledge of quite a few framework-specific details is necessary to implement even this 

simplest of models in some of the most widely used mathematical frameworks. From 

experience, we have learned how implementing more complex models in more specific 

frameworks takes a considerable effort, which is why we propose to automate this process: 

an essential component of DATM is the set of translators developed to automatically convert 

the database definitions of a given model into a working implementation in a specific 

framework. Conceptually, we argue that the overview and insight that arises when the model 

definition is stored in the database, conveniently displayed in tables and accessed through 

queries, facilitates model development and understanding.  

 

Methods 

DATM is based on the notion that ecological models are essentially rooted in mathematics. 

Here, we focus on models based on the mathematical concept of coupled differential 

equations. The dynamic systems represented by these equations have a universal 

mathematical notation. As an example, the Lotka-Volterra predator-prey equations can be 

read and understood by all in the following form: 

 

dV/dt = r V – a V P eq. 1a 

dP/dt = a e V P – d P eq. 1b 

 

with state variables V for prey and P for predator; parameters r for autonomous growth rate 

of the prey; a the attack rate of the predator on the prey, e the conversion efficiency of the 

predator and d the autonomous death rate of the predator. This system is in this form fully 

defined and ready for simulation for a given set of parameters r, a, e and d and initial 

conditions Vt=0 and Pt=0. Our central point is that this mathematical notation for complex 

simulation models is sufficient to achieve unity and transparency in ecological modelling. 

As shown in the above example, the set of coupled equations 1a and 1b must be 

augmented with information on the interpretation of the various identifiers that are used in 

the model. As a minimum description, the identifiers must belong to a certain class (e.g. state 

variable, parameter); represent a specific component of the system (e.g. prey, predator); have 

units (e.g. biomass, number of individuals), and (initial) values. In scientific papers that 
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document smaller models, such as the Lotka-Volterra model, this information is often 

organized in tables, with either a shared table for all identifiers or separate tables per class of 

identifiers. Given the number of identifiers in the more complex water quality models, we 

choose to work with separate tables for each class of identifiers. For the Lotka-Volterra model 

such tables could look like (note the ‘s’ prefix to identifiers of state variables): 

 

Table 1: state variables 

Identifier description dimension initial value 

sV prey density biomass V (some number) 

sP predator density biomass P (some number) 

 

for the states, 

 

Table 2: parameters 

identifier description dimension value 

r prey growth rate time-1 (some number) 

a predator attack rate time-1 ∙ biomass P-1 (some number) 

e predator efficiency biomass P ∙ biomass V-1 (some number) 

d predator death rate time-1 (some number) 

 

for the parameters, and 

 

Table 3: derivatives 

identifier description dimension equation 

dV prey derivative biomass V ∙ time-1 dV = r∙sV – a∙sV∙sP 

dP predator derivative biomass P ∙ time-1        dP = a∙e∙sV∙sP – d∙sP 

 

for the derivatives. Extra columns with additional information, such as the references for the 

parameter values, can be added, of course, until all relevant information is stored in the tables. 

We thus reach a full documentation of the model in a set of linked tables; i.e., in a database.  

To create an instance of the model for a certain framework, the information in the 

database is translated and augmented to meet the specification of running it in the chosen 

framework. For instance, the following code would provide a running version of the above 

model in MATLAB (Fig. 1): 
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Box 1: Implementation of the Lotka-Volterra equations in MATLAB 

 

function LotkaVolterra_ode45 

 

% set initial values 

sV_0 = 10; 

sP_0 = 10; 

 

% integrate the model 

options = odeset('RelTol', 0.0001, 'NonNegative', [1 2]); 

[t, x] = ode45(@LotkaVolterra, [0 20], [sV_0 sP_0], options); 

 

% show the results 

plot(t, x); 

legend('sV', 'sP'); 

 

**************** 

 

% define the model 

function dx = LotkaVolterra(t, x) 

 

% set parameters 

r = 1; 

a = 0.05; 

e = 0.4; 

d = 0.5; 

 

% copy x to states 

sV = x(1); 

sP = x(2); 

 

% calculate derivatives 

dV = r * sV - a * sV * sP; 

dP = a * e * sV * sP - d * sP; 

 

% copy derivatives to x 

dx(1, 1) = dV; 

dx(2, 1) = dP; 

 

To run it in Mathematica, one would need a script like this: 

Box 2: Implementation of the Lotka-Volterra equations in Mathematica 

 

(* define the model *) 

ode = { 

  sV'[t] == r sV[t] - a sV[t] sP[t], 

  sP'[t] == a e sV[t] sP[t] - d sP[t] 

}; 

 

(* set parameters *) 

par = {r -> 1, a -> 0.05, e -> 0.4, d -> 0.5}; 
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(* set initial values *) 

ic = {sV[0] == 10, sP[0] == 10}; 

 

(* set run time *) 

t0 = 0; t1 = 20; 

 

(* integrate the model *) 

eqns = ode~Join~ic; 

sol = NDSolve[eqns /. par, {sV[t], sP[t]}, {t, t0, t1}]; 

 

(* show the results *) 

Plot[{sV[t], sP[t]} /. sol, {t, t0, t1}] 

 

While for R, one would need a script like this: 

Box 3: Implementation of the Lotka-Volterra equations in R 

 

# define the model 

LotkaVolterra <- function(times, states, parameters){ 

  with(as.list(c(states,parameters)), { 

    dV <- r * sV - a * sV * sP 

    dP <- a * e * sV * sP - d * sP 

    list(c(dV, dP)) 

  } 

)} 

 

# set parameters 

parameters <- c(r = 1, a = 0.05, e = 0.4, d = 0.5) 

 

# set initial values 

states <- c(sV = 10, sP = 10) 

 

# set run time 

times <- seq(from = 0, to = 20) 

 

# integrate the model 

library("deSolve") 

results <- ode(states, times, LotkaVolterra, parameters, method="ode45") 

 

# show the results 

plot(results) 
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Note that each of these implementations needs information that controls the simulation such 

as the integration method and time step (t-int) and the time interval over with the model is 

run (t-end). This essential information is specified in an additional table in the database: 

 

Table 4: information controlling the simulation 

model integration method t-int t-end 

LotkaVolterra ode45 0.1 20 

 

Additionally, tables can be included that hold input time series data for forcing functions, or 

data for calibration or validation. Simultaneously with the translation of the model code, the 

data are translated to the format set by the different frameworks. 

 
Figure 1 Typical model output for the Lotka-Volterra example presented in Boxes 1-3. The solid line 

shows the dynamics of prey density V, the dashed line the dynamics of predator density P. 

 

To apply the approach, we implemented the Tables 1-4 in a Microsoft Excel Workbook as 

Worksheets (see Appendix A). We would like to stress that any program that can hold tables 

could be used. We chose Excel because it is widely available, and most people are familiar 

with it. Microsoft Access is an alternative that might provide a more rigid control of the 

database, but fewer people have experience with it. A freeware alternative would be 

LibreOffice, which also has the advantage of being easily portable to Mac, Linux and 

Windows.  
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Using Excel Macros and Visual Basic for Applications (VBA), we wrote translators 

that turn the information provided in Tables 1-4 into the working scripts provided in Boxes 

1-3 (the code of the translators can be found in Appendix B and the code they produce in 

Appendices C1-3). Again, these translators can be written in any language that easily handles 

tables, records, and text strings such as R, Python or PERL. We chose VBA because it is 

embedded in Excel. The validity of these translators can be checked by comparing the results 

of benchmark runs against each other. These not only show the (dis)similarity in model 

outcomes, but also give an indication of the performance of the model under study in each 

framework. Thereafter, the model can be analyzed with the tools provided by each framework 

(e.g. the “paranal” function for sensitivity analysis in GRIND for MATLAB). DATM 

therefore provides easy access to existing tools of analysis in various frameworks, without 

providing these tools itself. 

We have applied the methodology described above to implement the ecosystem 

models for shallow lakes PCLake (Janse et al., 2010, 2008) and for shallow linear waters 

PCDitch (Janse and Van Puijenbroek, 1998; Van Liere et al., 2006) in the frameworks 

OSIRIS, ACSL, GRIND for MATLAB, R, DUFLOW and DELWAQ. PCLake and PCDitch 

are integrated ecological models to study the main nutrient and food web dynamics of shallow 

lakes and ditches in response to eutrophication and associated restoration measures (See 

Mooij et al., 2010 for a comparison with other water quality models). Both models are 

frequently used in both water quality management and for scientific investigations. For 

brevity, we will only refer to PCLake in the results, since its implementation is technically 

equivalent to that of PCDitch. 

 

Results 

PCLake is about two orders of magnitude more complex than the Lotka-Volterra model. It 

has 104 state variables and approximately 400 parameters. Instead of calculating the right 

hand sides of the differential equations directly, it uses near 1500 intermediate variables to 

calculate components that are used in the 104 differential equations. PCLake also includes a 

set of equations that are calculated before running the simulation to make sure that the initial 

values of the states obey certain basic biological rules (e.g. stoichiometric constraints) when 

initial values are provided only for dry-weight values but not for N and P. These equations 

also set the initial composition of the sediment. The PCLake database therefore consists of 

five instead of four tables: 1) Simulation information, 2) States, 3) Parameters, 4) Initial 

equations, 5) Dynamic equations (calculation of auxiliaries and derivatives). The last table 

could have been split into two tables but with experience we find that we get a better model-

overview when auxiliaries and the derivatives are in a single table. We refer to Appendix D 

for the definition of each table of the PCLake implementation in DATM and for a comparison 

with the Lotka-Volterra example. 

Tables 1-4 show the minimal record structure for each table in the Lotka-Volterra 

example. For PCLake in DATM, we added a column to each table to number the identifiers, 

and a column to provide additional information per identifier. The table approach also allows 
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one to enter multiple input vectors for initial values of states and of parameters. By adding 

variables to the simulation table that specify which input vector is used in a given simulation, 

one can compare model runs for various initial values and/or parameter sets. This approach 

can be extended to the column in which the model equations are specified. Different columns 

then characterize multiple versions of the model in a single table. The version of the equations 

to be used can then be specified in the simulation table. This allows for a straightforward 

comparison of runs for different model equations and even for different model structures 

where, for example, certain state variables and associated fluxes are added or switched off. 

DATM thus facilitates sensitivity analyses on both parameters and model structure.  

The Lotka-Volterra example only contains the addition (+), multiplication (*) and 

equality (=) mathematical operators, but more complex models can include power (e.g. ^), 

relational operators (e.g. >) and logical operators (e.g. AND), as well as conditional 

statements (e.g. IF-THEN-ELSE). Operators and statements have distinct implementations 

in the dominant multi-purpose computer languages such as C++ and FORTRAN. The 

difference is usually in the syntax (e.g. ‘&&’ in C++ is ‘.and.’ in FORTRAN), though 

sometimes operators do not have their equivalent in all languages (e.g. the power-operator is 

missing in C++). Furthermore, some frameworks have their own computer languages, such 

as DUFLOW, where modules are written in the language DUPROL. Table 5 contains a 

complete list of translations used in PCLake and PCDitch. 

All operators except ‘=’, ‘+’ and ‘*’ and all standard mathematical functions are 

given a unique text-based identifier in the database. These unique identifiers of operators and 

functions are then translated into an automated search-and-replace operation. For this reason, 

a correct translation into any specific language can only be guaranteed if operators cannot be 

confused with parts of names of other identifiers. In the same way, the names of identifiers, 

state variables, parameters or intermediate variables must be completely unique, i.e. they 

should not be contained in the name of any other identifier. Each identifier in the database is 

therefore preceded and followed by a unique symbol. We propose to use the underscore, since 

it has no specific meaning in mathematics and enhances the readability of the equations. 
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Table 5: translations of conditional statements, logical operators and mathematical functions 

from the database to each of the six modelling platforms. 

 FRAMEWORK 

Language 

OSIRIS 

C++ 

GRIND 

MATLAB 

ACSL 

ACSL 

R 

R 

DUFLOW 

DUPROL 

DELWAQ 

FORTRAN 

_IF_ (blank) if IF if if if 

_THEN_ ? (cr) THEN (cr) { 

(cr) 

{ 

(cr)  

then 

(cr) 

_ELSEIF_ : (cr) 

elseif 

(cr) ELSEIF (cr) 

 } else if 

(cr) 

 } else if  

(cr) 

else if 

(cr) 

_ELSE_ : (cr) 

else 

(cr) 

(cr) ELSE 

(cr) 

(cr) 

} else { 

(cr) 

 (cr) 

} else { 

(cr) 

(cr) 

else 

(cr) 

_ENDIF_ (blank) (cr) 

end 

(cr) ENDIF (cr) 

} 

(cr) 

} 

endif 

_EQ_ == == .EQ. == == == 

_NE_ != ~= .NE. != != /= 

_GE_ >= >= .GE. >= >=  >= 

_LT_ < < .LT. < <  < 

_GT_ > > .GT. > >  > 

_LE_ <= <= .LE. <= <=  <= 

_TRUE_ 1 true .TRUE. 1 1 1 

_FALSE_ 0 false .FALSE. 0 0 0 

_AND_ && && .AND. && && .and. 

_OR_ || || .OR. || || .or. 

_FLOOR_ floor floor INT floor int floor 

_COS_ cos cos COS cos cos cos 

_SIN_ sin sin SIN sin sin sin 

_TAN_ tan tan TAN tan tan tan 

_ACOS_ acos acos ACOS acos acos acos 

_ASIN_ asin asin ASIN asin asin asin 

_ATAN_ atan atan ATAN atan atan atan 

_EXP_ Exp exp EXP exp exp exp 

_MIN_ Min min MIN min min min 

_MAX_ max max MAX max max max 

_LN_ log ln LOG log ln log 

_POW_ pow (blank) (blank) (blank) (blank) (blank) 

_^_ , ^ ** ^ ^ ** 

(blank)=no entry, (cr)=new line 
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The database format prescribes that all the right hand terms for a given identifier are given 

on a single line; we therefore used the following style: 

left hand term = _IF_ condition 1 _THEN_ right hand term 1 _ELSEIF_ condition 2 _THEN_ 

right hand term 2 _ELSE_ right hand term 3 _ENDIF_ 

For C-based languages, this can be easily translated into a conditional expression using the 

ternary operator “? :”: 

left hand term = condition 1 ? right hand term 1 : condition 2 ? right hand term 2 : right hand 

term 3 

or translated into the more traditional “IF-THEN-ELSE” construct: 

 IF condition 1 THEN 

  left hand term = right hand term 1 

 ELSE 

  IF condition 2 THEN 

   left hand term = right hand term 2 

  ELSE 

   left hand term = right hand term 3 

  ENDIF 

 ENDIF 

 

and variations thereof. 

Another small obstacle towards generality is the absence of a power operator in C-based 

languages. Power functions such ab are entered in the database with a combination of both 

styles:   

_POW_ (a _^_ b) 

which can easily be translated into in C++: 

pow(a, b) 

or in FORTRAN: 

(a ** b) 

(note the essential parenthesis). 

 

As demonstrated in the implementations of the Lotka-Volterra model in MATLAB, R and 

Mathematica, the model code is preceded and followed by certain statements that bridge the 

code defining the model sensu stricto and the framework. What information should be 

provided – or omitted – depends on the specific framework; some frameworks make use of 

a graphical user interface that is difficult to circumvent (e.g. DUFLOW). The spatial 

capabilities of DELWAQ and DUFLOW prescribe that the corresponding simple single cell 

modules for hydrology and transport available in PCLake should be excluded during 

translation, as these processes are taken care of by these frameworks. Note that the integration 

between the ODE process formulations provided by DATM and the PDE process 

formulations of the framework is taken care of by the framework. To enable integration with 

an existing water quality model, process modules formulated as ODE’s can be stored in a 
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repository in both DUFLOW and DELWAQ. The DATM translator simply adds another 

model to these repositories. For spatially-explicit frameworks that lack such build-in facilities 

for the incorporation of water quality models formulated as ODE’s, a more customized 

integration is necessary, given that any framework should have some formal entry point for 

these equations. As of yet, however, we do not have experience with such frameworks. Some 

details about the richer structure of the implementation of PCLake (and PCDitch) in the 

different frameworks can be found in Appendix E. 

After solving the inevitable errors that are reported by the compiler or interpreter, it 

is essential to check that the newly translated code functions correctly. An effective first step 

is to calculate the value of each identifier (all parameters, initial states, intermediate variables 

and derivatives) at t = 0 and compare these values with a control set. This dump output at t=0 

is also very useful in studying the main and side effects of changes to the code and is therefore 

a standard asset of the approach that we advocate. 

Secondly, benchmark simulations of varying complexity reveal the proper 

functioning of conditional statements and forcing functions. This is clearly shown as we 

overlay time plots from two different frameworks (Fig. 2a, b). Of course, small differences 

remain because of machine rounding of errors and small differences arising from numerical 

integration. However, these differences are several orders of magnitude smaller than the 

ecological range of each state and therefore not visible when we plot the outcome of all 

frameworks for a given state against each other over this full range (Fig. 3). Such benchmark 

runs also demonstrate the runtime performance, which can be an important criterion for the 

choice of a framework. Obviously, one is limited in such runs to a model setup that can be 

handled by all the frameworks that participate in the test.  

One should take into consideration that most platforms support different routines 

for numerical integration that do not need to be the same and thus influence both the accuracy 

of the model output and the runtime performance. Moreover, the difference between 

compiled languages (e.g. C++, FORTRAN) and scripting languages (e.g. R, MATLAB) can 

be misleading. While scripting languages generally have the advantage of supporting more 

compact code, powerful libraries, shorter interactive development cycle and interactive 

graphics and statistics, compiled languages are usually much faster and, in some sense, offer 

more freedom. For complex models a hybrid implementation is a sensible option, thereby 

making use of the advantages of both concepts. For example, for the current implementation 

of PCLake in the R environment, the model equations are not actually translated into R, 

instead they are solved in C++ (cf. Soetaert et al., 2010). To do so, R compiles the in C++ 

coded model equations into a .DLL and invokes this .DLL to numerically integrate the model. 

Note that while both the OSIRIS and the R implementation use C++ code, this is not exactly 

the same code because each framework has its own exact specification of the function call to 

the C++ routine with the ecological process formulations of PCLake. So, while the DATM 

translators for OSIRIS and R have much in common, there are subtle differences to meet the 

exact requirements of each framework. 
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Figure 2 PCLake benchmark simulation output for chlorophyll-a produced by two different 

frameworks (OSIRIS and GRIND for MATLAB resp.), for a ‘simple’ 1-year simulation (a) and a 

‘complex’ multi-year simulation (b) whereby the system is exposed to time series of meteorological 

forcing, hydrological forcing and transport of matter (e.g. nutrient loading). Also the difference between 

the simulations is plotted, showing that the output series of the two frameworks are almost identical.  

 

 

 

 
 

Figure 3 Illustrative example showing the successful translation of PCLake to different frameworks, 

whereby the output of the R application is compared with the output of OSIRIS ACSL, DUFLOW, 

DELWAQ and GRIND for MATLAB respectively, with chlorophyll-a and soluble reactive phosphorus 

in the pelagic as the dependent variable. Please note that both axis are normalized by dividing each 

value by the maximum value. 
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Discussion 

The DATM approach we here present allows ecology to take precedence over informatics. 

We achieve this by formulating the model in the fundamental and universal language of 

mathematics, and by systematically complementing this mathematical notation with the 

necessary metadata. The translators create a seamless bridge between the mathematical 

formulation of the model in the database and the framework-specific implementations. 

Experience gained during years of development of PCLake was the main driver 

behind the development of DATM. PCLake was initially developed in the ACSL framework 

(Mitchell and Gauthier, 1976), which served as an excellent platform for model development, 

but where license costs limited the distribution of the model. As this distribution-bottleneck 

hindered wider use of the model, version 4.08 of PCLake was translated to DUFLOW, a 

framework that also allows spatial configurations of the model (Jeuken et al., 1999). To 

further respond to user needs, this version was then translated into DELWAQ and OSIRIS 

(Mooij et al., 2010). Each translation involved first distinguishing model- from framework-

code, and then translating the framework code. Although these translations were semi-

automated, each translation represented a big time investment, in which only a few scientists, 

undaunted by the complexity of the model and specifics of the different frameworks, could 

effectively carry out the translations and verifications. These efforts monopolized energy 

away from further model application, analysis and development. The universal mathematical 

notation we here advocate greatly simplifies the translation process, and makes it much more 

dynamic and robust at the same time. This allows for direct translation of a new model version 

in the framework of choice, thereby greatly facilitating the process of model development. 

Typically, the time needed to develop and test a new translator varies between a few hours 

for a simple model like the Lotka-Volterra equations to a week for a complex model like 

PCLake for any given framework. 

The erstwhile barriers to framework-switching have led to each framework 

developing more complex modules to accommodate the growing scope of simulation models. 

These developments not only make the underlying ecological processes and assumptions 

more difficult to access, but also require the user to select more options and provide more 

detail. These developments can in turn reduce the in-depth understanding of the model. 

Paradoxically, this form of model-framework co-evolution leads to a necessary simplification 

of a model to make it graspable and useful for ecological theory (Scheffer and Beets, 1994; 

Van Nes and Scheffer, 2005a), whereas the purpose of adding complexity to the framework 

ought to be to uncover more complex processes in models.  

The diversity of analysis tools available across frameworks can greatly enhance our 

scientific understanding of any given ecological model. In that sense, the database is used to 

specify where to go, while the different translators and associated frameworks represent ways 

to get there. One could take route-planning software as a metaphor: the user gives a final 

destination whereupon the route-planner proposes alternative routes depending on the type 

of transport one prefers (i.e. bus, train, car, walking, airplane etc.). To explore the ecological 

code in detail one should go ‘by foot’ (e.g. using GRIND for MATLAB), while for fast 
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simulation runs an ‘airplane’ would be more convenient (e.g. OSIRIS). Before entering the 

territory of spatial complexity of the system with frameworks like DUFLOW and DELWAQ, 

it might be useful to perform an in-depth analysis of the ecological part of the model in a 0D 

context. Here, we can exploit the potential of DATM to translate a single code to either a set 

of ODE’s for a general purpose framework of the required ecological component or the 

PDE’s of a spatially explicit water quality modelling framework. To study the asymptotic 

behaviour of PCLake, translators for bifurcation programs such as MatCont (Dhooge et al., 

2003) and AUTO (Doedel et al., 2007) are planned. For the most optimal use of the 

capabilities offered by the different frameworks, however, proper frameworks-specific user 

knowledge will always be a prerequisite. For the more simple analysis that are provided by 

most frameworks, however, DATM allows one to stick to the framework one is familiar with 

and is not forced to learn a new framework. 

Experience teaches that DATM also facilitates model simplification by making use 

of the very existence of a database: providing a clear overview of all model equations and 

the possibility to label them (e.g. code for spatial dimensioning, hydrology, integration, or 

user-interface). By means of queries, groups of model equations can easily be identified, 

grouped and then switched off or simplified. Because columns can be easily duplicated, one 

can specify multiple versions of the model concurrently in a single table, and then specify 

which version of the equations is used in a specific simulation. For example, one can easily 

compare how different types of functional response functions affect model outcome. By 

"experiments in model structure", DATM is a relatively straightforward tool for assessing 

model structural uncertainty in addition to input and parameter uncertainty, which is seldom 

examined (Mooij et al., 2010). DATM thus also potentially allows for model structure 

optimization, whereby different model structures can be rapidly assessed as part of an 

optimization process and the most optimal structure is selected (Recknagel et al., 2008). 

Completing the columns with the necessary meta-information has the additional advantage 

of contributing to ‘good modelling practice’ by improving communication among those 

working with the model (Scholten et al., 2007).  

There is increased need for community-based approaches to ecosystem modelling, 

in order to bring together the knowledge and expertise of ecologists across fields and 

methodological approaches (Mooij et al., 2010, Trolle et al., 2012). The DATM approach we 

present here is ideal for building community based approaches: indeed, using a common 

language (mathematics) and grammar (DATM + translation platform) makes the cross-

pollination of ideas and expertise between frameworks, institutes, disciplines and approaches 

both easier and more attractive. This is not restricted to the field of aquatic ecosystem 

modelling, as other scientific disciplines can also benefit from a standardized and easily 

understandable formulation of processes and equations (Jeltsch et al., 2013), allowing one to 

explore more complex questions in a multidisciplinary setting, and enhancing the interaction 

with environmental management (Scholten et al., 2007). Additionally, the structure provided 

allows for easy reuse of pieces of code and processes, thereby preventing ‘reinventions of the 

wheel’ (Mooij et al., 2010). To further promote model development, we strongly encourage 
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DATM initiatives to be released under the GNU General Public License 

(http://www.gnu.org/licenses/gpl-3.0.txt), or the GNU Lesser General Public License 

(http://www.gnu.org/licenses/lgpl-3.0.txt) so that open sharing of common versions of 

models is guaranteed. 

Emphasis on the model rather than on the framework has an added educational 

value: teachers can focus on the ecological principles of interest and students can rely on their 

existing mathematical knowledge to access these principles instead of being first subjected 

to an often superficial crash-course in a framework’s implementation specifics. Our approach 

thus also makes the model more directly manipulatable by students, irrespective of their 

framework experiences, and ensures their understanding of model dynamics is based on the 

ecological model, rather than confounded by framework options. In fact, the Lotka-Volterra 

DATM example that we presented here and provide as a digital appendix can be of direct use 

in an educational context. 

It is necessary to store the equations in the correct order in the database. With this 

we mean that each variable must be assigned a value before it is used in the assignment of 

another variable (in other words, it must first be used as a left hand term before it is used as 

a right hand term). Some frameworks such as GRIND for MATLAB and ASCL do this 

sorting automatically, but others do not have this facility. To stay compliant with the latter 

frameworks, the statements should be ordered already in the database. Fortunately, most 

compilers or interpreters do provide the user with warning messages accompanied by helpful 

information when the sequence is violated. Yet, one of the disadvantages of code generators 

(and other top-level structures which hide implementation details) is that they can make 

debugging difficult. This is remedied by an iterative procedure, where the user edits and tests 

the generated code temporarily and then goes back to the table, which gives just another 

argument for readable code and proper indentation.  

We do not claim that our approach is unique in all respects. For instance, both the 

ECOBAS (http://www.ecobas.org/ecobas/index.html) and SED-ML (http://sed-ml.org/) 

initiative aim at creating unity in dynamical modelling. ECOBAS provides an overview of 

ecological models with their metadata and references to the models themselves. SED-ML 

provides a unifying language for the implementation of dynamical models. DATM balances 

between those approaches by providing the actual models, but with a focus on the 

mathematics of the model instead of the informatics. The idea to implement the complete 

model in a database resembles the design concept of the modelling framework SMART 

(Kramer and Scholten, 2001). The current version of SMART, however, does not allow 

translating and exporting models to other frameworks, whereas this is a key-feature of 

DATM. Automated code translators are already in use at the level of individual frameworks 

(e.g. SMILE, Muetzelfeldt and Massheder, 2003), although mostly for simpler models. 

Moreover, there are important advances in establishing a community-based framework for 

aquatic ecosystem models aiming at unity at the framework level, i.e. the Framework for 

Aquatic Biogeochemical Models (FABM) (Trolle et al., 2012). A number of the advantages 

mentioned here are also covered by FABM, such as easy inclusion of new variables and 

http://www.ecobas.org/ecobas/index.html
http://sed-ml.org/
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equations, and automatically incorporating different physical assumptions in 0D-3D. DATM 

complements such efforts - i.e., DATM may also translate models into the FABM framework 

- thereby providing unique abilities to address some of the challenges and opportunities that 

remain in the field of aquatic ecosystem modelling (Mooij et al., 2010). 

At the onset of this project, our humble aim was to maintain long-term availability 

and use of PCLake and PCDitch. Happily, this work produced a remarkable and unexpected 

spin-off: with DATM we have acquired the ability to interactively use multiple frameworks 

in a single study and even within a single analysis. This dynamic shift in framework use, and 

more importantly in ecological simulation model analyses, will likely represent a cornerstone 

in the further development of ecological modelling. As illustrated with the Lotka-Volterra 

model and the use of Excel and VBA, the ingredients need not be exotic for the pudding to 

be tasty. 
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Abstract  

Ecosystem models aiming to describe higher level variables such as total phosphorus and 

water transparency will always remain a crude simplification of reality regardless of the detail 

that is included. This weak link between model and reality implies that it will be impossible 

to accurately parameterize each of the model components on basis of empirical data. A 

calibration at an aggregated level will allow to get the individual components of the model 

aligned such that the model as a whole is adequately describing the dynamics of the lake at 

the ecosystem level. As such, any dynamics observed in the field which is not explicitly part 

of the model may still leave an impact on the model during calibration by modifying the 

functionality of the components that are included. This occurs if the included parameter or 

component is in fact a lumped parameter combining several processes. These missing 

dynamics are then thus still covered by the model, albeit indirectly. An important 

consequence is that once calibration has been performed, any model ‘improvement’ in the 

form of adding more components explicitly may bring the model ‘out of balance’ as it may 

lead to double counting with the implicit components. Without recalibration such an intended 

improvement would be an impairment instead. We exemplify this line of reasoning with the 

integrated ecosystem model PCLake, which we expanded with a filter feeding benthos group. 

These species are always present in the ecosystems PCLake simulates, but were until yet not 

dealt with explicitly in the model itself but implicitly included in the lumped parameters 

describing grazing on phytoplankton. 
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Introduction 

Dynamical models have long been recognized as useful tools for ecosystem managers to 

elucidate ecosystem complexity and perform simulation experiments to predict the effects of 

measures (e.g. Evans 2012). By definition, all ecological models are drastic simplifications 

of reality, and designing a model that is both realistic and useful is a challenging task. There 

is no general agreement among ecologists about what an ecosystem model should look like, 

as modellers have to find a balance between the aim of the study, the available knowledge, 

the available data, the theory on which the model is based on and their personal preferences 

(Janssen et al., 2015; Mooij et al., 2010). As a result, many different coexisting modelling 

paradigms have developed (for examples see Otto and Day 2007). These paradigms range 

from strategic mini-models based on a few differential equations (e.g. Scheffer et al. 2001) 

to elaborate systems of differential equations describing the main functional groups and 

abiotic components of an ecosystem (e.g. Janse et al. 2008; Janse et al. 2010). Another 

important distinction is between unstructured models where biota are described in a single 

quantity, often carbon, and structured models that take for each component the age or stage 

structure (e.g. matrix population models, Caswell 2001), size structure (e.g. physiologically 

structured population models, Roos and Persson 2001), nutrient storage (e.g. Droop 1974), 

energy storage (e.g. dynamic energy budgets, Nisbet et al. 2000), stoichiometry (e.g. Sterner 

and Elser 2002) or trait distributions (e.g. Litchman and Klausmeier 2008) into account. 

While models that focus on a single structural aspect can be developed as extensions of 

unstructured models using matrix and partial differential notations, models that look at more 

than one structural aspect are better implemented as agent-based models (DeAngelis and 

Mooij, 2005). Out of this wealth of approaches, we discriminate two different philosophies 

on how models are rooted in reality. One focuses primarily on individual characteristics and 

works toward the ecosystem level, while the other focusses on the ecosystem level and works 

down to individual characteristics. 

 The individual-based philosophy embraces a reductionist view that the behaviour of 

an ecological system can be understood as the sum of its constituent parts, that is, from rules 

governing the behaviour of elements at lower hierarchical levels (Anderson, 2005). The point 

of departure is that if all essential elements are identified, analysed and properly described as 

mathematical equations with values based on ‘first principles’, the correct dynamics at the 

higher level will emerge naturally once the elements are assembled (Grimm and Berger, 

2016). Or as sometimes stated by proponents of this view: “The rest is bookkeeping”. Hence, 

during model development there is much emphasis on structural realism and getting the 

components right. Parameters values are estimated by fitting equations to data from the field, 

from experimental data, or derived from the literature. Many commonly used process-based 

ecosystem models, such as the lake models DYRESM-CAEDYM (Hipsey et al., 2007) and 

SALMO-OO (Recknagel et al., 2008), have a flexible structure, and come with a process-

library from which an instance of the model can be assembled. Note that these lake models 

have a strong physical and chemical focus and hence are largely based on fundamental laws 

of these respective fields - the first principles - so that process rates can be determined 
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empirically with great precision. However, especially for the ecological components it is 

difficult to obtain proper values for all parameters, in which case parameters of lower level 

functions may be calibrated so that higher level outputs better match field observations. 

According to the individual-based philosophy, calibration should be kept to a minimum, as 

information about the individual characteristics may get lost or distorted during the 

calibration process and problems with model structure may be masked (e.g. Anderson 2005; 

Mitra et al. 2007; Anderson and Mitra 2010). To safeguard tractability and reduce 

propagation error, several modelling approaches, such as physiologically structured 

population models (PSPMs) and dynamic energy budget (DEB) models, focus on certain 

parts of the ecosystem, instead of providing a full representation of all relevant features 

(Nisbet et al., 2000; Roos and Persson, 2001). This allows them to being so closely linked to 

fundamental physiological principles that they do not need to be calibrated. While being 

hailed for their contribution to scientific understanding, an apparent downside is that these 

models generally do not address higher level variables such as water transparency, 

chlorophyll-a or total ecosystem productivity, while predictions for exactly these variables 

are of crucial importance to ecosystem managers. 

 Alternatively, we identify a more pragmatic view which is focussed on the 

ecosystem level, i.e. the higher level variables. Also here the wish exists to include the 

essential processes and causalities, but in this view it is acknowledged more explicitly that 

the apparent complexity of nature makes a one-to-one relation between model and reality 

practically impossible, particularly for aggregated variables. Moreover, it is acknowledged 

that model development is path-dependent, as choices made in one step constrain the choices 

that are available in the subsequent steps of development (Grimm and Berger, 2015). From 

this perspective, there is no a priori reason to assume that the assembly of individual 

characteristics will automatically result in a proper description of the higher level dynamics. 

However, premised on the need of ecosystem managers to have operational models that 

describe exactly these higher level dynamics, a solution is found in model calibration at the 

ecosystem level (Janssen and Heuberger, 1995; Rastetter et al., 1992). The information 

present in field observations and the uncertainty in the a priori parameter distributions are 

used to align the individual components in such a way that the model as a whole does an 

adequate job describing and predicting the dynamics at the ecosystem level. Hence, the idea 

is that the a posteriori parameter values contain not only information on what is empirically 

known about a given model component, but also how this component should behave in 

concert with the other model components so as to produce the correct higher level output. 

The premise of non-uniqueness of parameter values is also reflected in the Bayesian view on 

modelling, which assumes a natural variability of parameters and makes use of this to 

estimate the uncertainty in model output. In Bayesian parameter estimation, a posteriori 

parameter ranges are based on a priori parameter ranges (from previous knowledge) and 

weighted by the degree of concordance of model outputs with observations (e.g. Reckhow 

and Chapra 1983; Hilborn and Mangel 1997; Reichert and Omlin 1997; Omlin and Reichert 

1999). The distinction between a priori and a posteriori parameter values acknowledges that 
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the meaning of a parameter also depends on the model context, e.g. because parameters can 

be different in different environments, or because a parameter is in fact a ‘lumped’ parameter 

combining different processes. One could state provocatively that during calibration “one 

makes the components slightly wrong to make the whole right”. Calibrated ecosystem models 

have been criticized for being ‘overparameterized’ (Brun et al., 2001), suffering from ‘non-

uniqueness’ (Reichert and Omlin, 1997) and for having ‘dysfunctional components’ 

(Anderson and Mitra, 2010). At the same time these calibrated ecosystem models often have 

great value in an applied management context (e.g. Janse, 2005). Once there is confidence 

that the model is capable of describing the right dynamics at the ecosystem level, experiments 

such as robustness analysis can be used to understand how the individual components act 

together and explain the dynamics (Grimm and Berger, 2015). This approach is thus exactly 

opposite to the more individual-based bottom-up approach as described above.  

 While we see the tension between those two modelling philosophies as a healthy 

stimulus for the development of the field of predictive ecology, we also observe that it leads 

to insidious misunderstanding, particularly since ecological models are increasingly being 

shared, reused, coupled to other models and developed by grass-root initiatives (Robson, 

2014; Trolle et al., 2012). Nowadays it can easily occur that a modeller adhering to the first 

philosophy adopts an existing model that has been developed following the second 

philosophy. This entails the risk of the modeller trying to improve the original model by 

introducing missing functionalities without properly acknowledging the far-reaching 

consequences of a previous calibration, assuming that the validity of the model can be 

enhanced directly. A second risk emerges when the model is blindly coupled to other models, 

or when the model is disassembled into separate modules to be included in process-libraries 

and used in other models (e.g. Hu et al. 2016). In a recent study Beecham et al. (2016) coupled 

an established food web model (Ecopath), which is originally based on assumptions of mass 

balances in equilibrium, to a spatial and temporal explicit ocean model (GOTM-ERSEM). 

The authors concluded that before the coupled model was able to produce useful outputs 

some fundamental changes had to be made to the ecological formulations. We here thus stress 

that risk of misinterpretation, when the integrity of a calibrated model and the coherence of 

its components are not properly acknowledged. Although this all may sound trivial for some, 

we wonder whether all modellers who start working with an existing model take the time to 

examine the caveats for its operation, or to acquaint themselves with the original philosophy 

underlying its development. A fortiori, the review of Arhonditis and Brett (2004) revealed 

that even basic guidelines for ‘good modelling practice’, including performing a decent 

sensitivity and uncertainty analysis, are not followed in many modelling studies.  

 The aim of this paper is to exemplify what happens when a new individual level 

component is added to an established ecosystem model. We focus on a specific model for 

shallow lakes named PCLake (Janse et al., 2010, 2008). This model was developed to 

evaluate the impact of eutrophication on water transparency and chlorophyll-a concentration 

under various management scenarios and calibrated against a dataset of 43 lakes. In a recent 

multi-model ensemble study using an independent dataset, PCLake came out as the best 
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model out of a set of three tested aquatic ecosystem models (Trolle et al., 2014). The apparent 

success of the model has attracted many new users, and since its development in the early 

eighties of the past century, the model has been applied in a much wider context than the 

eutrophication studies for which the model was originally developed and calibrated. These 

applications include studies on climate change (Mooij et al., 2007; Nielsen et al., 2014), the 

impact of marsh zones (Sollie et al. 2008), water level fluctuations (Kong et al., 2016) and 

the impact of allochthonous carbon inputs to lakes (Lischke et al., 2014). Moreover, the 

model was used in studies that zoom in on a specific component of or process in the 

ecosystem, such the effect of herbivory (Van Altena et al., 2016). When confronted with the 

model, experts in each of these fields of research rightfully question the way specific 

components or processes are implemented in the model. For instance the outcomes of the 

model for climate change studies will critically dependent on the way temperature 

dependencies of various biological processes are implemented in the model (Mooij et al., 

2009). These dependencies might have received less attention during the original model 

development because they played a smaller role in eutrophication studies. Moreover, these 

experts note omissions in the model components, in particular within their particular field of 

interest. This often results in a request to change or expand the model so that it more rightfully 

captures our contemporary view on the structure and functioning of aquatic ecosystems. 

 A good example is the request to explicitly include filter-feeding tube dwelling 

zoobenthos (chironomids) in the model as part of a larger study on the importance of these 

organisms for the functioning of aquatic ecosystems (Hölker et al., 2015). Chironomids are 

not explicitly modelled in the standard version of PClake as not much information about this 

species group was available during its initial development. When entered in the model as a 

new group, comparison of the ‘improved’ model with output of the original model shows that 

chironomids have a huge impact on ecosystem functioning. From a mechanistic point of view 

this is logical: if one adds a turbo (the additional filtering capacity of chironomids) to a diesel 

engine, its power (its capacity to keep the water transparent) will increase considerably. 

However, for a calibrated ecosystem model, there is an important caveat in the reasoning 

here. Although their importance was not understood at that time, it is safe to assume that 

chironomids were commonly present in the lakes that have been used for calibration of 

PCLake. We postulate that during calibration the impact of chironomids was entered in the 

components which were present in the original model, for instance in zooplankton 

functionalities. In other words, after calibration the zooplankton grazing rate became a 

‘lumped parameter’ that also implicitly included the filtering capacity of chironomids (and 

hence the earlier statement that during calibration components are distorted to make the 

whole right). This means that before the higher level outputs of PCLake are improved by 

introducing chironomids, we first need to nullify the implicit modelling of chironomids by 

the zooplankton module during a re-calibration of the model. This notion strongly opposes 

the individual-based view on ecological modelling that assumes that components can be left 

unchanged in future model versions, or even ported to other models, once they are properly 

established. 
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 To exemplify the above reasoning, we redo the calibration procedure for PCLake 

without and with chironomids and show how the zooplankton grazing rate in PCLake should 

be changed in response to the inclusion of chironomids in the model as presented by Holker 

et al., (2015). Moreover, we check whether calibrating only the zooplankton grazing rate is 

sufficient to make the addition of chironomids to the model an improvement to the overall fit 

of the model. 

 

Methods 

 

Model description 

PCLake is essentially a large set of coupled ordinary differential equations describing both 

the water column and the sediment top-layer (10 cm) of a temperate shallow lake, including 

the most important biotic and abiotic components (Fig. 1). The primary producers are 

represented by submerged macrophytes and three species of phytoplankton. The food web is 

completed by zooplankton, detritivorous macrozoobenthos, zooplanktivorous fish, 

benthivorous fish and piscivorous fish. Abiotic components include detritus, inorganic 

material, dissolved phosphorus, ammonium and nitrate. All organic groups are modelled as 

dry-weight, nitrogen and phosphorus. Besides 60 differential equations, the model consists 

of >1000 auxiliary equations, of which quite a few are used to compile additional output, 

such as ‘Secchi depth’ and ‘chlorophyll-a’. Furthermore, the model comprises >300 

parameters, which can be classified into input factors, process parameters, physical constants 

and conversion factors. The most important inputs to the model are fetch, water inflow, 

nitrogen and phosphorus loading and the sediment characteristics including the loading 

history. Optionally, a wetland module can be included, consisting of 42 state variables and 

an additional 35 parameters. A full description of PCLake is presented in Janse (2005). 
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Figure 1 A graphical overview of the model structure of PCLake (modified after Janse 1997). Boxes 

depict (lumped) state variables and the arrows depict interactions. Chironomids are not included in the 

default version of the model. For a full description of PCLake see Janse (2005). 

 

Development and calibration of PCLake 

PCLake is originally the product of large multidisciplinary research program on the 

eutrophication and restoration of the Loosdrecht Lakes in the Netherlands (Janse and 

Aldenberg, 1990; Janse et al., 1992). This WQL project ran from 1979 to 1990 and resulted 

in the publication of more than 130 scientific papers (Van Liere, 1992). It was unique in terms 

of its size, duration and integrated nature: it included lab experiments, monitoring of physical, 

chemical and biological variables and processes, both in situ and by remote sensing, and 

ecosystem modelling (Van Liere et al., 1992). The model predicted correctly that the 

proposed reduction of the external nutrient loading would not prevent phytoplankton blooms 

from occurring, and pointed to some likely mechanisms underlying this failure (Van Liere 

and Janse, 1992). Rising interest in the occurrence of alternative equilibria in shallow lakes 

triggered an extension of the model with macrophytes and predatory fish to cover both the 

current turbid state and the desired vegetated clear water state. Indeed, PCLake proved to be 

able to predict critical regime shifts between a clear and turbid state in response to changing 

nutrient loading (Janse, 1997). The scope of PCLake was extended to an analysis of the 

critical nutrient loading and the factors influencing a regime shift. In this context, simulations 

were performed on the effects of biomanipulation (Janse and van Liere, 1995) and the 

influence of marsh zones (Janse et al., 2001). To make the model fit for this purpose, a multi-

lake calibration exercise was carried out following the Bayesian approach of parameter 



49 
 

estimation and uncertainty analysis (Janse et al., 2010). The aim was to obtain a best overall 

fit for the whole set of lakes, rather than achieving an optimal fit for one specific lake at the 

expense of others, making the model suitable for generalized studies on temperate shallow 

lakes (Janse 2005).  

This Bayesian exercise was based on 43 lakes for which both input factors and 

observations were known. Each lake was defined as a certain combination of input factors, 

including depth, fetch, marsh area, water inflow, infiltration or seepage, sediment 

characteristics, external nutrient loading, inflow concentrations of inorganic suspended 

matter and the intensity of fishery. Furthermore, for each lake there was a set of data available 

that could be compared with the main output variables of the model, that is, higher level 

variables that typically have the attention of ecosystem managers. These were chlorophyll-a, 

transparency (Secchi depth), vegetation coverage and the concentrations of N and P in the 

water column. Simulations with PClake were carried out for these lakes for a grid-based 

sample of 7 varying parameters that were both uncertain and most sensitive according to the 

previously performed sensitivity analysis, while 4 other parameters were coupled to these 

parameters with a proportional relationship. The maximum filtering rate of zooplankton 

(referred to as cFiltMaxZoo in PCLake) was one of the selected parameters (see for more 

details Janse et al. 2010). To keep computational time reasonable, no other parameters were 

varied and each of the 7 parameters could take 3 different values from an a priori uncertainty 

distribution, resulting in 2187 unique combinations and hence 94041 different simulations. 

The fit of each run was assessed by comparison of the model output with the observations. 

The residuals were based on the natural logarithms of the measured and simulated values 

after adding a ‘minimum significant difference’ (ε). The residuals were squared to obtain the 

fit function Phii,j for every parameter combination i and every dependent variable j. 

 

Phii,j = [LOG(yj, meas + εj) - LOG(yj, sim + εj)]2  

 

This implies that each variable is given a comparable weight as the large differences in ranges 

(e.g. chlorophyll-a in mg m-3, P-total in mg P l-1, vegetation coverage in %) are corrected for. 

The value of Phii,j is 0 when the fit of a variable is perfect and when the fit worsens the value 

of Phii,j increases. The Phi’s for all variables and lakes were combined (summed over 

variables and averaged over lakes) to give each parameter combination a measure of the 

‘overall’ fit for all the available data (Phitotal). The best run, that is, the parameter combination 

which produced the lowest Phitotal, was selected, and the corresponding parameter values used 

as a default set to describe an ‘average’ shallow lake in the temperate zone. The total set of 

runs with their ‘weights’ was used to estimate the uncertainty range around the optimal. A 

full description of the sensitivity analysis, calibration and uncertainty analysis of PCLake is 

presented by Janse et al. (2010). 
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Description of the Chironomid module 

In the original PCLake model filter-feeding benthic invertebrates such as chironomids are 

not included as a functional group. A recent study by Holker et al., (2015) reviewed much of 

the existing evidence available on the functional role of chironomids in the aquatic 

environment. Although many details are still unknown, the authors come to the conclusion 

that chironomids are important ecosystem engineers that alter multiple ecosystem functions, 

and acknowledge that limnologists have long overlooked their importance. To emphasize 

their message, the authors extended the PCLake model with a chironomid module. The aim 

of this model exercise was not to provide a precise description of chironomid dynamics, nor 

was it the explicit aim to improve the validity of the model. Rather the exercise was meant 

as a preliminary attempt to estimate the importance of chironomids at the ecosystem level. 

Hence, the module was not calibrated and validated with field data. The growth equations 

were broadly adapted from the existing zooplankton and zoobenthos modules in PCLake. 

The chironomids filter-feed on phytoplankton and detritus in the pelagic and are assumed to 

have a higher nutrient to biomass ratio compared to their food, striving to maintain an 

‘optimal’ nutrient to biomass ratio by assimilating nutrients with a greater efficiency than 

carbon. The nutrient assimilation efficiencies are made dependent on the (variable) nutrient 

to dry weight ratios of the food. Also they are able to increase their respiration when the P or 

N content become too low (extra utilization of carbohydrates), and lower their phosphorus 

excretion (as P is retained in the body). Their egested matter (detritus and nutrients) is 

assumed to be retained in the sediment layer, while the excreted nutrients return to the water 

column. Chironomids are preyed upon by benthivorous fish, with increased resuspension as 

a result. A more detailed description of the chironomid module and a list of parameter values 

can be found in Holker et al., (2015). 

 

The optimal filtering rate of zooplankton with and without Chironomids 

In this study we analysed the relationship between the filter-feeding capacity of zooplankton 

and the fit of PCLake to five ecosystem-level variables of 43 lakes, and inspected how this 

relationship is influenced by the presence of chironomids in the model. To do so, we re-

established the methods described by Janse et al. (2010) to calculate the overall model fit 

Phitotal. Subsequently, we determined the relation between the value of the maximum filtering 

rate of zooplankton (cFiltMaxZoo) and Phitotal, with and without the inclusion of the 

chironomid module as presented by Holker et al., (2015). We varied the cFiltMaxZoo from 

1.5 to 6 in steps of 0.5 (l mg-1 d-1) while keeping all other parameters at their default value, 

and for each value of cFiltMaxZoo we calculated the Phitotal. 
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Software 

We reprogrammed the calibration procedure in the free software environment ‘R’ (R Core 

Team, 2015). To run PCLake in R, we used the Database Approach to Modelling (DATM; 

Mooij et al., 2014) to generate a C++ version of the model from the database wherein the 

most up-to-date model equations of PCLake are stored. In R we compiled the C++ code into 

a .DLL using the GNU C++ compiler in R-tools. This .DLL is then invoked by R for 

numerical integration, for which we used the deSolve package (Soetaert et al., 2010). Several 

different integration routines were applied to minimize runtime. First the fastest routine was 

tried (VODE) and the output checked for failures, e.g. when a run is aborted or produces 

empty output. If failures occurred the program automatically switched to a more robust, but 

slower integration routine, in the order of DASPK, Euler 0.003 (day) and Euler 0.002 (day). 

To enhance the runtime even further we divided the simulation runs over four processor 

cores, and invoked four additional cores using multithreading.  

 

Results 

Analysis of the relation between cFiltMaxZoo and the Phitotal for the default version of 

PCLake, that is, the version without chironomids, reveals that the best fit for all 43 lakes is 

achieved when cFiltMaxZoo has a value of 3.5 l mg-1 day-1 (Fig. 2). For a higher or a lower 

value of cFiltMaxZoo the overall model fit deteriorates. Repeating this analysis after the 

introduction of the chironomid group shows that shape of the relationship between 

cFiltMaxZoo and Phitotol is qualitatively quite comparable with that of the original model 

without chironomids, but that there are two important quantitative differences (Fig. 2). The 

first is the location of the optimum value of cFiltMaxZoo which is lowered by ~25% to a 

value of ~2.6 l mg-1 day-1. This confirms our expectation that when the chironomids are 

explicitly modelled, the filtering capacity of zooplankton has to be reduced quite drastically 

for the model to achieve the new optimum fit. The second is that Phitotal is increased, which 

indicates that the structural improvement of the model by introduction of a functional group 

that is present in the ecosystem deteriorates the model performance, and that lowering the 

cFiltMaxZoo is not sufficient to completely compensate for this. 
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Figure 2 The overall fit (Phitotal) for the 43 Lake dataset is plotted for different values of the maximum 

filtering rate of the zooplankton (cFiltMaxZoo) for the default PCLake version (blue bullets) and the 

extended model where a chironomid group is added (orange diamonds). This figure shows two 

important phenomena: (i) inclusion of the chironomid group lowers the optimum filtering rate of 

zooplankton and (ii) slightly worsens the overall model fit, as the average Phitotal increases when 

chironomids are included. 

 

Discussion 

Our results indicate that adding a missing component to a model that has been calibrated 

previously with the intention of improving the model’s predictive capability, will in fact not 

automatically lead to improvement, and can effectively lead to a loss of predictive power. 

Instead, first the existing components that have been influenced by a previous calibration 

should be improved by means of a new calibration before increased predictive power can be 

achieved. The same holds when an existing but dysfunctional component is replaced by a 

more realistic component (Anderson and Mitra, 2010). While this main conclusion of our 

study may sound trivial to those having experience with calibrated ecosystem models, we 

believe that it is important to make this message explicit for those who are less familiar with 

these types of models. While the activity of developing and changing dynamical models used 

to be restricted to a small group of experts that oversaw every aspect of the modelling process, 

we are now moving to a situation where the modelling community is rapidly expanding and 

diversifying, while at the same time models are increasingly reused and shared (Trolle et al., 

2012). Hence, it is not obvious anymore that this new community of modellers comprehends 

the limitations of the model they work with (Robson, 2014). 
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 This notion also has implications for the coupling of ecological (sub)models to more 

physically oriented models. Premised on the need for a multidisciplinary and integrated 

approach to solve complex environmental problems, there is a rising interest in coupling 

models from different disciplines. This practice is facilitated by recent technological 

developments such as the Framework for Aquatic Biogeochemical Modelling (FABM; 

Bruggeman and Bolding, 2014), the Modular System for Shelves and Coasts (MOSSCO; 

Nasermoaddeli et al., 2014), the Database Approach to Modelling (DATM; Mooij et al. 2014) 

and Couplerlib (Beecham et al., 2016). This movement seems to have its roots in the earth-

system sciences, which has a longer and successful tradition with coupling different models. 

It is important to note that the models used in earth sciences (e.g. climate, hydrological and 

soil-erosion models) are almost exclusively physically or chemically oriented, which means 

that modellers are ‘blessed’ with a rich array of first principles to build their models on. 

Consequently, researchers in these fields are likely to adhere a reductionistic philosophy, 

comparable with the individual-based philosophy in ecological modelling referred to in the 

introduction. The confusion arises when the biology kicks in, which is arguably more of a 

‘grey’ science (Smart, 1963), and the different philosophies may get mixed-up. For example, 

PCLake has recently been re-programmed into a modular structure to establish a coupling 

with the FABM framework, to facilitate a dynamic link with complex hydrodynamic models 

(Hu et al., 2016). As a result, with one push of a button, the zooplankton module of PCLake 

can now be exported and incorporated into other integrated models. Our calibration analysis 

presented here shows the effect of model calibration on the properties of zooplankton in the 

model, and highlights the need to take the history of this module into account before it is 

reused. Technological developments like the ones mentioned above are almost exclusively 

documented in the literature as success stories, whereby often much emphasis is put on the 

technological hurdles that have been taken, while relatively little attention is devoted to the 

ecological limitations and caveats. As such, the impression may arise that henceforward it is 

possible to compose new models forthwith, and that these are instantaneously suitable for 

tackling complex environmental issues. We here warn for the potential risks associated with 

unscrupulous swapping of submodules (Flynn, 2005). 

 The most straightforward way for modellers to circumvent the above mentioned 

problems is to acquaint themselves with the philosophy that is underlying a model, and to 

stick to that philosophy. For the individual-based philosophy, the way forward seems clear 

yet infinite: continue to improve model components until, one day, accurate predictions at 

the ecosystems level may be reached (Purves et al 2013). For the ecosystem-oriented 

approach, the way forward is not less troublesome as practicing the initial philosophy implies 

that the whole model has to be calibrated each time its structure is updated with a new 

functionality. While both these paths may seem as hard as the works of Hercules, 

distinguishing these different philosophies is probably better than mixing them in a hybrid 

strategy. 

 It is important to realize, however, that the above reasoning primarily applies to 

situations where the specific aim is to make quantitative predictions at the ecosystem level 
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that closely match the dynamics observed in the field. Many models are primarily used for 

exploratory purposes, and in those cases qualitative or relative results will be sufficient to 

improve our understanding of ecosystem components. In fact, many of the individual-based 

modelling approaches are not developed to predict higher level outputs, but to explain certain 

ecological phenomena from first principles. The study of Holker et al., (2015) provides a 

clear example of an ecosystem-oriented model that is not used for accurate prediction of 

ecosystem level dynamics, but merely for identifying poorly understood yet crucial 

processes. Importantly, in such case calibration is not necessary per se as long as the results 

are interpreted as a sensitivity rather than a scenario analysis. A more comprehensive analysis 

of the impact of chironomids at the ecosystem level could have been to first calibrate the 

whole model including the chironomids, and thereafter erase the chironomid group again 

from the new model. In that way the erstwhile implicit modelling of chironomids by the 

zooplankton module is first nullified during the calibration, after which the removal of 

chironomids will give a more nuanced picture of how much impact this species had on 

ecosystem functioning. 

 The prospect of performing rigorous calibration every time the structure of the 

model is changed will definitely cause for reluctance among modellers. Indeed, we observed 

that no major changes to the structure of PCLake have been made since its previous 

calibration documented in Janse et al., (2010). At the same time we acknowledge that many 

of the erstwhile technological and practical barriers to calibration have disappeared, or are 

disappearing rapidly. For example, the computational power of modern day computers makes 

that runtime performance is becoming less of an issue, while the advent of the free ‘R’ 

programming environment enables every modeller to use established automated calibration 

routines. Initiatives like DATM, which allows for easy switching between different software 

environments, further stimulate the use of the advanced calibration routines by providing 

easy access to the different options that are available among the different software 

environments (Van Gerven et al., 2015a). Finally, we see that more data are becoming 

available at a fast rate, thanks to data sharing initiatives like the Global Biodiversity 

Information Facility (GBIF; Faith et al., 2013), and legislation, such as the Water Framework 

Directive (European Union, 2000), forcing ecosystem managers to monitor and report 

ecological variables. 

 At the same time it is important to note that calibration is not a holy grail, and it 

should be exercised with care. A study of Mitra et al., (2007) provides a noteworthy example 

of a model that is able to reproduce ecosystem level dynamics in a satisfying way, yet merely 

because one flaw in the model is compensated by another flaw. In the short term the model 

is therefore able to perform well, even though the erroneous allocation of energy in the food 

web happening in the background can potentially lead to serious mistakes in the long run. 

This brings us to the question how much we may distort individual components in order to 

make the whole model right. As models are ought to be explicit representations of our 

understanding of the system, we at least should stay within certain bounds of the a priori 

uncertainty distribution for each parameter as advocated by the Bayesian approach (Janse et 
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al., 2010). Moreover, while the behaviour of each submodel may not be as good as it could 

be, it is arguably important that they should be in agreement with the gross characteristics of 

the particular component. (Flynn, 2005). To check this, several methods have been developed 

to scrutinize the behaviour of submodels and to analyse how they act in concert (Grimm and 

Berger, 2015; Van Nes and Scheffer, 2005a). Such analyses should become integral parts of 

‘good modelling practice’ of ecosystem models. Furthermore, commonly used ecosystem 

models like PCLake should be accompanied with a tailored calibration protocol, 

safeguarding the model from becoming dysfunctional during further development and 

facilitating continued model improvement. 

 While we here explicitly discriminate between the behaviour of model components 

and the behaviour of the model as a whole (e.g. measured in chlorophyll-a or transparency), 

we have to acknowledge that there is still a level that is even higher, that is, the threshold 

levels of various environmental forcings. One of the attractive aspects of PCLake for 

scientists and water quality managers alike is that it shows a nonlinear response to changing 

nutrient inputs and hysteresis, implicating that the model shows alternative stable states. 

Knowing at which level of environmental forcing an ecosystem will shift from one stable 

state to a contrasting stable state is crucial for ecosystem managers, as the effectiveness of 

many management strategies will depend on the state of the system relative to this tipping 

point, i.e. how resilient the system is to change. This non-linear behaviour of PCLake is an 

emergent property of the model, and because empirical observations of regime shifts are 

scarce (and unknown for most of the 43 lakes used to calibrate PCLake), we cannot calibrate 

a model directly on the location of the tipping points along an axis of environmental forcing 

(e.g. nutrient loading). Nevertheless, the emergence of the alternative stable states is 

influenced by the results of the calibration exercise as it is currently performed, albeit 

indirectly. We assume that the model can reasonably predict the tipping points if it can 

reasonably reproduce high-level variables in a variety of lakes from both clear and turbid 

states. As a result, improving the model with e.g. chironomids will influence the exact 

position where a regime shift occurs, even if the model is properly recalibrated to ecosystem-

level parameters.  

The question thus arises how we need to deal during model improvement with 

emergent features we cannot calibrate. The answer will depend on how PCLake is used. If 

PCLake is used to predict the critical nutrient loading of a specific lake ecosystem, the 

procedure does not differ from a regular scenario study and good modelling practice 

(Scholten et al., 2007). First the improved model has to be parameterized for the system under 

study in order to reproduce the observed behaviour.  Subsequently the process of validation 

is key, using an independent dataset. Preferably this is a dataset which includes a regime 

shift, although we already acknowledged that in most cases this will not be the case. When 

validation indicates that the model is sufficiently capable of reproducing the observed 

dynamics at the ecosystem level, the user may have gained enough confidence in that the 

model indeed comprises the right processes and feedbacks to predict the critical nutrient 

loading during scenario analysis, while acknowledging that the prediction will always have 
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a fair amount of uncertainty. For the other main purpose of PCLake, whereby PCLake is used 

as a virtual reality to scientifically study how regime shifts come about, the focus is generally 

on qualitative and relative impacts. Hence, the exact quantitative prediction of the location 

of a regime shift does not really matter that much, and a re-calibrated model will be equally 

useful for this purpose.  

 We conclude that although the potential of models in science and for management 

is enormous, and that complex ecological models take a central position in contemporary 

science, the weak link between models and ecosystems makes successful development of 

ecosystem models a delicate affair. The only way forward for the field of ecological 

modelling is to become even more community-based and open-source (Rose, 2012). In this 

new setting a wider pool of experts is better able to scrutinize model structure and application, 

discuss limitations and appropriate use, and educate and support newcomers (Robson, 2014; 

Trolle et al., 2012). Yet, to make this a successful enterprise we have to acknowledge that 

different philosophies are underlying ecological models, and that these philosophies are 

neither right nor wrong, but have profound implications for ecological modelling.  
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Abstract 

A principal aim of ecologists is to identify critical levels of environmental change beyond 

which ecosystems undergo radical shifts in their functioning. Both food-web theory and 

alternative stable states theory provide fundamental clues to mechanisms conferring stability 

to natural systems. Yet, it is unclear how the concept of food-web stability is associated with 

the resilience of ecosystems susceptible to regime change. Here we use a novel combination 

of food web and ecosystem modelling to show that impending catastrophic shifts in shallow 

lakes are preceded by a destabilizing reorganization of interaction strengths in the aquatic 

food web. Analysis of the intricate web of trophic interactions reveals that only few key 

interactions, involving zooplankton, diatoms and detritus, dictate the deterioration of food-

web stability. Our study exposes a tight link between food-web dynamics and the dynamics 

of the whole ecosystem, implying that trophic organization may serve as an empirical 

indicator of ecosystem resilience.  
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Introduction 

Current manifestations of anthropogenic stresses on ecosystems have intensified the need to 

understand and predict the resilience and stability of ecological systems (Crutzen, 2002; 

Rockström et al., 2009; Vitousek et al., 1997). Resilience and stability are topics that have 

inspired ecologists since the onset of the discipline (Elton, 1924; MacArthur, 1955), and 

different theories and conceptual frameworks have developed around these topics, including 

alternative stable states theory and food-web theory.  

Alternative stable states theory explains large scale catastrophic shifts in ecosystems 

- i.e. the ultimate loss of resilience - from positive feedbacks and non-linear interactions 

among biotic and abiotic key components of the system in relation to external forcings (May, 

1977; Scheffer et al., 2001, 1993). Catastrophic shifts are observed in various ecosystems 

including peatlands, rangelands, reef systems and shallow lakes, and generally occur 

unexpectedly (Scheffer et al., 2009). Recent research has identified generic empirical 

indicators of resilience that might allow to anticipate critical transitions (Scheffer et al., 

2009).  

Food-web theory elucidates which stabilizing mechanisms underlie the complex 

networks of trophic interactions that are found in nature, looking at the richness, patterning 

and strength of interactions among species (de Ruiter et al., 1995; May, 1972; McCann et al., 

1998; Neutel et al., 2007; Rooney et al., 2006). As food webs reflect the flows of energy 

through a system, their features - including stabilizing properties - are important to ecosystem 

functions such as carbon and nutrient cycling (Berlow et al., 2004; de Vries et al., 2013). 

Food webs provide an explicit link between community structure and the maintenance of 

ecosystem processes.  

Although the conceptual frameworks of food webs and alternative stable states are 

highly influential in modern ecology, they developed independently and catastrophic regime 

shifts in ecosystems have seldom been explicitly linked to stability properties of complex 

trophic networks (Ings et al., 2008). Here we test whether indices for stability as defined by 

food-web theory can disclose an impending catastrophic shift in ecosystem state. On one 

hand, we hypothesize that food-web stability and ecosystem stability are inherently linked, 

considering the key role of food webs in governing the flows of energy through the 

ecosystem. On the other hand, we ask whether descriptions of food webs contain sufficient 

information on self-enhancing feedbacks to expose the non-linear behavior of the ecosystem 

in response to external forcing.  

As a model system we use temperate shallow lakes, for which abrupt changes 

between a submerged macrophyte-dominated state and a phytoplankton-dominated state are 

empirically well documented (Blindow et al., 1993; Ibelings et al., 2007). In this context 

shallow lakes are particularly intriguing because many of the feedback loops that keep the 

system in each stable state involve the abiotic environment and are therefore not considered 

in a food-web approach to the system (Scheffer et al., 1993).  

We use a full scale and well tested dynamic ecosystem model of non-stratifying 

shallow lakes to simulate a catastrophic regime shift in ecosystem state. The model was 
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originally developed to describe the main nutrient fluxes in Lake Loosdrecht in the 

Netherlands (Janse et al., 1992; Van Liere and Janse, 1992), and has since been calibrated 

with data from more than 40 temperate lakes to obtain a best overall fit, making it suitable 

for more generalized studies on temperate shallow lakes (Janse et al., 2010). The model has 

been successful in describing regime shifts in many case studies (Van Gerven et al., 2015a).  

We run the model for a range of nutrient loadings from oligotrophic to hypertrophic 

conditions and vice versa, to simulate the typical loading history of many shallow lakes in 

the temperate zone in the second half of the twentieth century (Gulati and Van Donk, 2002). 

For each loading level, we run the model until the seasonally forced equilibrium is reached, 

and obtain the average chlorophyll-a concentration to characterize the state of the lake 

ecosystem; chlorophyll-a is one of the most common proxies for water quality used by 

ecosystem managers. Also, we collect food-web data from the ecosystem model to construct 

material flux descriptions of the aquatic food web at each loading level (Fig. 1) (de Ruiter et 

al., 1993; Moore and de Ruiter, 2012).  

From these food-web properties, we estimate the per capita interaction strengths 

between the trophic groups, using established methods typically used by food-web ecologists 

to describe empirical food webs (de Ruiter et al., 1995; Neutel et al., 2007), based on the 

principles of May (May, 1972) and Lotka-Volterra type equations (de Ruiter et al., 1995; 

Moore and de Ruiter, 2012). Interaction strengths represent the size of the effects of species 

on each other’s dynamics near equilibrium and define the elements of the (Jacobian) 

community matrix representation of the food web (May, 1972). Food-web stability is 

assessed using the diagonal strength metric (s)(Neutel et al., 2002; Van Altena et al., 2014), 

being the minimum degree of relative intraspecific interaction needed for matrix stability. 

Thus, for each level of nutrient loading, we obtain a parameterized (Jacobian) community 

matrix description of the food web embedded in the ecosystem, and evaluate its stability. 

The results of this combined modelling approach show that imminent shifts in 

ecosystem state during eutrophication and re-oligotrophication are preceded by a 

destabilizing reorganization of the trophic web. This suggests that trophic organization can 

serve as an empirical indicator of ecosystem resilience. We show that only few key trophic 

interactions dictate the decrease of food-web stability, particularly among lower trophic level 

groups, and emphasize the role of destabilizing trophic cascades. Hence, by using a food-

web approach to ecosystem stability we refine our mechanistic understanding of the 

biological processes underlying sudden shifts in ecosystem state. 
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Figure 1 Schematic representation of the aquatic food web and the feeding relations. The food web 

comprises a pelagic and benthic food chain linked by a shared predator. Data (square brackets) used to 

calculate feeding rates (parentheses) are given in the sequence biomass (g m-2), specific death rate   

(year-1), assimilation efficiency and production efficiency. Feeding rates (g m-2 year-1) are given near 

their respective arrows. Settling, resuspension and reproduction fluxes and flows to the detritus pools 

are not represented here but were included in the analyses. The data belong to a clear-water state 

receiving 2.6 mg P m-2 d-1. 

 

Results 

Ecosystem response to nutrient loading.  

The bifurcation analysis of the full-scale shallow lake ecosystem model showed the 

occurrence of alternative stable states between a phosphorus (P) loading of 1.3 and 3.7 mg P 

m-2 day-1 (Fig. 2a). During eutrophication (Fig. 2a, blue line), the macrophyte-dominated 

clear-water state marked by a low level of chlorophyll-a disintegrates abruptly when the 

critical phosphorus loading is reached, shifting the system to a phytoplankton-dominated 

state with high levels of chlorophyll-a. During re-oligotrophication (Fig. 2a, red line) the 

system lingers in the turbid state until the phosphorus loading is much reduced and the reverse 

shift back to the clear-water state occurs. The delayed response of chlorophyll-a to changes 

in nutrient loading - i.e. hysteresis - is consistent with many field observations which provide 

strong empirical evidence for the existence of alternative stable states( Scheffer and 

Carpenter 2003; Ibelings et al. 2007). An important observation here is that in the clear-water 

state the average chlorophyll-a level hardly responds to eutrophication (Fig. 2a), and thus 

gives no indication for the loss of resilience of the system.  
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Food-web response to nutrient loading.  

We followed the interaction strengths in the trophic web and evaluated food-web stability 

along the eutrophication axis using diagonal strength as an indicator (see methods). We found 

that with increasing lake productivity (Fig. 2b, blue line), destabilizing changes in the food 

web occurred: decreasing food-web stability forebodes the catastrophic shift. This result is 

not trivial because the ecosystem model and the food-web model differ distinctly in structure 

and shape of the interactions. At the critical nutrient loading, the food web underwent a 

drastic reorganization to a phytoplankton-dominated configuration, coinciding with a sudden 

increase of stability (decrease in diagonal strength, from blue to red line in Fig. 2b). 

Intriguingly, we found that during re-oligotrophication (Fig. 2b, red line) which is needed for 

ecosystem recovery, a similar decrease in food-web stability was visible, again followed by 

a sudden re-establishment of stability once the critical nutrient loading for ecosystem 

recovery was reached. Thus, depending on the trophic organization of the food web, 

enrichment and impoverishment can both be destabilizing, even though the topology of the 

web is the same. From an alternative stable states point of view, this can be explained as 

clear- and turbid-water states each having a basin of attraction that deteriorates towards a 

tipping point. Hence, we find food-web stability to be associated with the resilience of the 

attracting equilibrium.    

 

Identifying stabilizing and destabilizing interactions.  

Food-web stability is an aggregated measure with a multitude of underlying processes. We 

here present an innovative approach to decipher which interactions are primary responsible 

for the eroding stability during eutrophication and re-oligotrophication. At a given level of 

nutrient loading, the stability metric s follows directly from the interaction terms in the 

(Jacobian) community matrix. By varying the strength of each element in the matrix, we 

calculated the relative sensitivity of s to changes in each specific trophic interaction: 

ji

s

,


, 

where αi,j is the interaction effect of species j on species i. As such, we reveal the intrinsic 

dynamics of the food web, i.e. how stability is constrained by the architecture of the food 

web. Besides the sensitivity, the effect of αi,j on s depends on the actual change of αi,j in 

response to nutrient loading L: 
dL

d ji ,
. Note that changes in interaction strength along the 

nutrient loading axis may be imposed by forces in the ecosystem that are not explicitly 

considered in the food-web model, such as oxygen dynamics and stoichiometry. Taken 

together, the following formula can be used to disentangle which and how changing 

interactions contribute to the weakening of stability (Supplementary Fig. 1): 

 





n

i

n

j ji

ji s

dL

d

dL

ds

,

,




     (1) 

We found that both during eutrophication (Fig. 3a) and re-oligotrophication (Fig. 3b) several 

interactions in the lake food web increased or decreased in strength in response to changing 
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nutrient loading. The majority of these interactions involved zooplankton, benthic and 

pelagic phytoplankton species or detritus. Most interactions however were unaffected by 

changing nutrient loading. When we analysed the sensitivity of food-web stability to changes 

in specific interaction strengths, we found that food-web stability is sensitive to only a select 

number of interactions, and that there is just a partial overlap with the interactions that 

actually changed along the loading axes (Fig. 3c, d). As a result, the observed changes in 

food-web stability during eutrophication and re-oligotrophication can be attributed to only a 

handful of interactions, involving detritus, diatoms and zooplankton (Fig. 3e, f). These are 

interactions of which the strengths change along the eutrophication axis and to which food-

web stability is sensitive. Most destabilizing were the interaction effects between 

zooplankton and detritus, the effect of pelagic diatoms on detritus, and the effect of pelagic 

diatoms on themselves relating to sedimentation (Fig. 3, Supplementary Fig. 2).  

 

 

 

 
 

Figure 2 Ecosystem and food-web response to nutrient loading. (a) The equilibrium concentration 

(yearly average) chlorophyll-a in the water column, as proxy for the ecosystem state, for two initial 

states: a clear- (blue upward triangles) and a turbid-water state (red downward triangles). (b) Food-web 

stability, represented by the intraspecific interaction needed for matrix stability (s) for food webs in a 

clear- (blue diamonds) and a turbid-water state (red squares). Stability decreases with increasing s. 
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Figure 3 Graphical summarization of the changing trophic interactions and their impact on food-web 

stability. The left panels show which interaction terms are impacted by changing nutrient loading. Cell 

colour indicates whether interaction strength increases (blue), decreases (yellow) or does not change 

(white) during eutrophication (a) and re-oligotrophication (b). Colour intensity depicts the relative 

magnitude of change. Arrows indicate whether the change is notably progressive (upward) or 

descending (downward) towards the regime shift. The middle panels (c,d) show the sensitivity of food-

web stability to changes in interaction strengths. An increase of interaction strength can have a positive 

effect (blue cells), negative effect (yellow cells) or no effect (white cells) on stability (and hence an 

inverse effect on s). The intensity of the colour indicates the relative magnitude of the effect. The right 

panels show the contribution of each interaction term to the impact of eutrophication (e) and re-

oligotrophication (f) on food-web stability, which is the product of the foregoing. Colours indicate 

whether interactions have a positive (blue), negative (yellow) or no effect (white) on stability (and 

inversely on s). 
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We supported these results by calculating the loop weights of all the “trophic 

interaction loops” in the trophic web along the nutrient loading axis (see methods) (Neutel et 

al., 2002). We found that, under all conditions, the loop with the highest weight, which is 

considered the Achilles heel of a trophic network (Neutel et al., 2007), was the omnivorous 

loop that linked the same three groups: detritus, diatoms and zooplankton (Fig. 4). The 

maximum loop weight increased towards both regime shifts, from either direction of nutrient 

loading, and was strongly correlated to the amount of intraspecific interaction needed for 

matrix stability (Neutel et al., 2002) (Fig. 5).  

 

We analyzed the biomass densities and feeding rates underlying the interactions in 

the trophic interaction loop that has the maximum weight to disentangle what caused the 

increase of the loop weight (Fig. 4, Table 1). We observed that, during eutrophication, the 

feeding rates increased relatively more than the biomass densities. As interaction strengths 

depend largely on the ratio of feeding rate to population densities (see Methods), this pattern 

led to an increase in interactions strengths, and hence, in a higher loop weight. Particularly 

the increase of the interaction effect of detritus on zooplankton, which is the weakest 

interaction in the loop, contributed to the enhancement of the loop weight (Table 1). The 

regime shift to the turbid cyanobacteria dominated state resulted in an unfavourable climate 

for zooplankton as their biomass was reduced. The conditions for zooplankton improved 

however during re-oligotrophication as we observed increasing feeding rates towards the 

regime shift. The biomass densities of the trophic groups were only moderately affected by 

the reduction of nutrient loading, wherefore the interaction strengths increased along this 

axis. This time the increase in loop weight was dictated by the effect of zooplankton on 

diatoms, as the feeding on diatoms increased more than the feeding on detritus (Table 1).      
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Table 1 | Building blocks of the heaviest loop at different nutrient loadings.  

 

 Loading 

(mg P m-2 day-1) 

 

Eutrophication  Re-oligotrophication 

Property 

0.5 3.5  4.8 1.3 

    

Loop weight (yr-1) 17.25 25.90 
 

18.46 23.62 

Biomass (g m-2)   
 

  

    Zooplankton, d 0.94 1.61 
 

1.18 1.11 

    Diatoms (pelagic), f 1.41 1.87 
 

3.43 3.53 

    Detritus (pelagic), l 6.44 10.89 
 

11.15 9.84 

Feeding rate (g m-2 yr-1)   
 

  

   𝐹𝑓,𝑑  58.97 128.62 
 

122.26 157.40 

   𝐹𝑙,𝑑  89.89 249.35 
 

132.31 146.41 

   𝐹𝑡𝑜𝑡𝑎𝑙  148.89 386.85 
 

321.11 344.91 

Interaction strengths (yr-1)   
 

  

   𝛼𝑓,𝑑  -62.60 -79.68 
 

-103.77 -142.40 

   𝛼𝑙,𝑓  30.87 48.33 
 

26.81 32.68 

   𝛼𝑑,𝑙  2.66 4.36 
 

2.26 2.83 

The loop weight is calculated from the interaction strengths: w = |αf,d  
. αl,f  

. αd,l|
1/3.  

Besides rates of the feeding of zooplankton on diatoms and detritus, the total feeding rate of zooplankton is 

presented, also comprising the feeding on green algae and cyanobacteria. 
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Figure 4 Loop with the heaviest loop weight. The omnivorous three link loop with zooplankton (d), 

pelagic diatoms (f), and pelagic detritus (l) is the heaviest loop in the trophic network. Black arrows 

indicate the direction of the interaction effect (α). Red arrows indicate the feeding fluxes (F). The top-

down effect of zooplankton on diatoms is a negative effect directly resulting from consumption. The 

effect of diatoms on detritus results from natural mortality of diatoms, and the unassimilated part of 

diatom consumption by zooplankton. The bottom-up effect of detritus on zooplankton is a positive 

predation effect. 

 

 

 
 

Figure 5 Stability versus maximum loop weight. The maximum loop weight (per year (yr-1)) shows a 

positive relationship with intraspecific interaction needed for matrix stability (s) during (a) 

eutrophication and (b) re-oligotrophication. Food-web stability decreases with increasing s. 
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Discussion 

Our results show that a decrease in ecosystem stability coincides with a decrease of food-

web stability, which supports the prevailing view in food-web ecology that non-random 

patterns of strong and weak trophic interactions confer stability to the ecosystem level 

(O’Gorman and Emmerson, 2009). 

From an alternative stable state perspective it may seem surprising that food-web 

metrics can reveal the impending shift without explicitly including the feedbacks through the 

abiotic environment that are thought to be crucial for regime shifts in lakes, such as shading, 

provision of refugia and retention of P in the sediment6. We resolve this by realizing that the 

observed webs at each level of nutrient loading are shaped by forces that are not part of the 

food-web model per se, implicitly carried over to the food-web model during sampling of the 

food-web data. Using expression 1, we made a clear distinction between the intrinsic 

dynamical properties of the food web (

ji

s

,


) and the changes in interaction strengths driven 

by the changing nutrient loading to the ecosystem (
dL

d ji , ). 

Equivalently interesting is that the weakening of stability is exposed without 

explicitly taking non-linear interaction terms into account, as relatively simple Lotka-

Volterra dynamics underlie the computation of food-web stability. The use of linear 

interaction terms in food-web models greatly eases the estimation of interaction strengths 

from empirical data(Moore and de Ruiter, 2012; Wootton and Emmerson, 2005), but has 

implications for the stability properties of dynamical systems (Holling, 1973), potentially 

hampering a one-to-one mathematical transfer of stability properties from the ecosystem to 

the food-web model. Nonetheless, Lotka-Volterra dynamics have been used in numerous 

studies to describe empirical food webs and disclose stabilizing patterns of strong and weak 

links (de Ruiter et al., 1995; Emmerson and Raffaelli, 2004; Neutel et al., 2007), and there is 

mounting experimental evidence that the exposed patterns indeed confer stability to the level 

of communities (O’Gorman and Emmerson, 2009) and ecosystem processes (Rip et al., 

2010). It appears that the importance of the patterning of strong and weak trophic links in 

ecosystems overshadows that of the exact shape of the functional response used to describe 

the interactions.  

Our analyses reveal that only few trophic interactions dictate the deterioration of 

food-web stability, particularly among zooplankton, diatoms and detritus. This is in line with 

empirical studies on interaction strengths suggesting that most interactions have only a 

negligible impact on community dynamics(de Ruiter et al., 1995), and is consistent with 

alternative stable states theory that regime shifts in ecosystems can be explained from only 

few key components in relation to external forcing (Scheffer et al., 2001). The interplay 

between zooplankton and phytoplankton has often been claimed to be pivotal in controlling 

aquatic ecosystem dynamics and causing alternative stable states (Scheffer, 2004).  
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Zooming in on the interactions that correlated most with stability exposed a destabilizing 

trophic cascade during eutrophication and re-oligotrophication. In the clear-water state, the 

ratio of feeding rate to predator biomass increased with productivity through a classic trophic 

cascade (Carpenter and Kitchell, 1996; Oksanen et al., 1981), which resulted in a 

destabilizing increase of interaction strengths, and hence, a negative productivity-stability 

relationship. Somewhat paradoxically, another destabilizing trophic cascade occurred during 

re-oligotrophication, even though the overall productivity was decreasing. A shift in 

phytoplankton dominance enhanced the trophic transfer efficiency, resulting in an increase 

in destabilizing interaction strengths. This pattern of shifting dominance during re-

oligotrophication, to the detriment of cyanobacteria and the benefit of more edible diatoms 

and green algae, is consistent with field observations (Jeppesen et al., 2005).  

Our finding that most interactions have only a negligible impact on community 

dynamics does not imply that species are redundant, as extreme changes in interaction 

strength - e.g. due to species extinctions - can have strong non-linear effects on community 

stability. A next step will be to investigate the synergetic effects of food-web manipulations 

and environmental stress, as it is unquestionable that species extinctions and invasions can 

have far reaching consequences for ecosystem functioning, of which the introduction of the 

Nile perch to the world's second largest freshwater system Lake Victoria gives one of the 

most striking examples (Downing et al., 2012).  

Our results indicate that food-web stability can be used as an empirical indicator of 

ecosystem resilience. The established food-web methods we used can be turned into a tool 

for managers to evaluate food-web stability on a yearly basis. Food-web stability as an early 

warning signal is of a fundamental different nature than the conventionally used critical 

slowing down or flickering (Scheffer et al., 2009). Instead, the method is more akin to an 

alternative generalized modelling approach recently proposed (Lade and Gross, 2012), which 

has the potential advantage of being less dependent on high resolution time series (Dakos et 

al., 2015). Many of the limitations that have been identified for conventional early warning 

signals also apply to food-web stability (Dakos et al., 2015). For example, food-web stability 

gives no information about the distance to a regime shift, and needs a baseline to be 

meaningful. To overcome such limitations it has been suggested that the combined use of 

several independent indicators is needed to confidently disclose an impending regime shift 

(S Kéfi et al., 2012). Food-web stability can be a valuable addition to the current set of 

indicators in this respect. We anticipate that paleolimnological reconstructions of food webs 

(Rawcliffe et al., 2010), and microcosm experiments with multiple nutrient treatments (Hulot 

et al., 2000), are needed to uncover the true potential and practical limitations of this early 

warning signal, such as sensitivity to false alarms (Dakos et al., 2015).  

By showing that food-web stability signals critical transitions in a shallow lake 

ecosystem we reconcile the conceptual frameworks of food webs and alternative stable states. 

The food-web stability approach laid out here opens up ways to obtain a better mechanistic 

understanding of the biological processes underlying sudden shifts in ecosystem state, 
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bringing us closer to providing a sound mechanistic basis for predicting ecosystem dynamics 

in a changing world (Purves et al., 2013). 

 

Methods 

 

Ecosystem modelling.  

We used a well-established integrated dynamical model for shallow lakes - PCLake - to 

simulate a critical transition of a shallow non-stratifying lake (Janse et al., 2010). The model 

embraces several key ecological concepts including closed cycles of nutrients and matter, 

benthic-pelagic coupling, stoichiometry, food-web dynamics and trophic cascade. The 

aquatic food web is modelled on the basis of functional groups and comprises four trophic 

layers. The pelagic and benthic food chains are coupled via a shared predator, reproduction 

of fish and the settling and resuspension of detritus and phytoplankton.  

The model has been calibrated against data of >40 lakes resulting in lake 

characteristics resembling an ‘average’ shallow lake in the temperate zone (Janse et al., 

2010). We used default parameter settings, describing a lake with a mean depth of 2 m, a 

fetch of 1000 m, a water inflow of 20 mm d−1, a lightly clayish soil, and no wetland zone, 

and initial values for two contrasting ecosystem states (clear vs. turbid) (Janse et al., 2010).  

We ran the model for various phosphorus (P) loadings in the range of 0.1 to 5 mg P 

m-2 day-1 in steps of 0.18, starting with either an initially clear- or an initially turbid-water 

state. The nitrogen loading was consistently kept 10 times the P loading to maintain 

phosphorus limitation. For each loading the model was run for 20 years to reach seasonally 

forced equilibrium conditions. Output data of the final year was used to characterize the state 

of the ecosystem and to compile material flow descriptions of the food web using established 

food-web methods (see below). A more detailed description of the ecosystem model, and the 

bifurcation analysis with nutrient loading, can be found in (Janse et al., 2010) and references 

therein.  

 

Material flow descriptions.  

For each nutrient loading level, we constructed material flow descriptions of the 

corresponding food web, following a typical food-web approach as presented by (de Ruiter 

et al., 1993; Moore and de Ruiter, 2012). We calculated feeding rates, flows to the detritus 

pools and reproduction rates from yearly average biomass densities, death rates, prey 

preferences and energy conversion efficiencies, which we extracted from the ecosystem 

model. Assuming steady state and the conservation of matter, the production of each 

population must balance the rate of loss through natural mortality and predation:  𝐹𝑗 =
𝑑𝑗𝐵𝑗+𝑀𝑗

𝑎𝑗𝑝𝑗
, where Fj is the feeding rate (g m-2 year-1) of species j, dj is the specific death rate 

(year-1), Bj is the average population density (g m-2), Mj is the mortality by predation (g m-2 

year-1), aj is the assimilation efficiency and pj is the production efficiency (both 

dimensionless). For the juvenile (zooplanktivorous) fish and adult (benthivorous) fish, the 

reproduction fluxes were added to the numerator. When a predator feeds on several trophic 
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groups, the prey preferences were included to calculate the feeding rate of predator j on prey 

species i: 𝐹𝑖𝑗 =
𝑤𝑖𝑗𝐵𝑗

∑ 𝑤𝑘𝑗𝐵𝑘
𝑛
𝑘=1

𝐹𝑗, where wij refers to the preference of predator j for prey i, and n 

is the number of prey types. The fluxes arising from natural mortality go to the detritus pools, 

just as the unassimilated fraction of the feeding rate (1-aj)·Fij, representing the biomass that 

is not actually consumed or is egested. Calculations started at the top of the food chain, as 

the top predator does not experience predation. The values of the parameters are listed in 

Supplementary Table 1. The parameters are assumed constant for all nutrient loadings. The 

settling and re-suspension rates of detritus and phytoplankton (g m-2 year-1) were directly 

extracted from the ecosystem model. Macrophytes are not consumed directly but as detritus 

and are therefore only considered as input for the detritus pools. 

 

Food-web dynamics  

We developed a Lotka-Volterra type food-web model that included the same trophic groups 

as the full ecosystem model, in the form 𝑋𝑖
̇ =  𝑋𝑖[𝑏𝑖 + ∑ 𝑐𝑖,𝑗𝑋𝑗

𝑛
𝑗=1 ] and extensions thereof, 

where Xi and Xj represent the population sizes of group i and j, bi is specific rate of increase 

or decrease of group i, and cij is the coefficient of interaction between group i and group j. 

Interaction strengths can be defined as the partial derivatives of Lotka-Volterra type growth 

equations in equilibrium and give the elements of the (Jacobian) community matrix 

representation of our model (May, 1972). The interaction effect of predator j on prey i can be 

expressed as 𝛼𝑖𝑗 = (
𝜕

𝑑𝑋𝑖
𝑑𝑡

𝜕𝑋𝑗
)

∗

=
−𝑐𝑖,𝑗𝑋𝑖

∗𝑋𝑗
∗

𝑋𝑗
∗  (a detailed description of all the equations can be 

found in Supplementary Note 1).  

 

The values of the partial derivatives can be directly derived from the material flow 

descriptions of the food web, using the criterion developed by May10,(de Ruiter et al., 1995). 

Here the assumption is that the average annual feeding rate Fi,j (g m-2 year-1) can be expressed 

as -ci,jXi
*Xj

* i.e. the death rate of group i due to predation by group j in equilibrium11. Thus, 

the strength of this interaction can be derived by dividing the feeding rate by the annual 

average population density of the predator 𝛼𝑖𝑗 = −
𝐹𝑖,𝑗

𝐵𝑗
. The opposite (positive) effect of the 

prey on the predator, as well as the interaction terms resulting from the detrital fluxes, 

reproduction fluxes and settling and resuspension fluxes, were determined in a similar way 

(Moore and de Ruiter, 2012) (see Supplementary Note 1).  

We calculated interaction strengths and constructed (Jacobian) community matrices from the 

material flow descriptions of the food webs at each loading level for each initial state. A 

randomization procedure confirmed that the imposed patterns of interaction strengths were 

non-random, and thus crucial to the stability of the food web (Supplementary Fig. 3)(de 

Ruiter et al., 1995; Neutel et al., 2002). 
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Calculation of stability.  

For the consumers and the phytoplankton groups in the food web, we assume that, for 

equilibrium conditions, the death rate di (year-1) can be split in density-independent death, 

and density-dependent death: di = (1-s)di + sdi, where s represents the fraction of the death 

rate di caused by density-dependent mortality (year-1). When taking the partial derivatives of 

the differential equations to determine the (Jacobian) community matrix, this s will occur on 

the diagonal of the matrix, representing intraspecific interaction strengths αii = -s·di. We 

followed Neutel et al. (Neutel et al., 2007, 2002) and measured stability as the minimum 

degree of relative intraspecific interaction needed for matrix stability (all eigenvalues having 

negative real parts), assuming the same value for s for all trophic groups. Food webs that 

need less intraspecific interference (a smaller value for s) are more stable. There is a close 

relation between s and the dominant eigenvalue of a matrix without added intraspecific 

interference (Supplementary Fig. 4). The use of s however has the advantage of providing a 

biological interpretation of stability (Neutel et al., 2007).  

 

Calculation of the maximum loop weight.  

The weight of a trophic feedback loop - a closed chain of trophic links - is defined as the 

geometric mean of the absolute values of the interaction strengths that compose the loop 

(Neutel et al., 2007, 2002): 𝑤(𝑘) = |𝛼𝑖1𝑖2
𝛼𝑖2𝑖3

⋯ 𝛼𝑖𝑘𝑖1
|
1/𝑘

, where k is the number of species 

in the loop. The maximum loop weight gives an approximation of the level of intraspecific 

interference needed for matrix stability (Neutel et al., 2002).  
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Supplementary material 

 

Figure S1 Proof of concept of expression 1. We show the comparison of the change in matrix stability per unit 

nutrient loading (
𝑑𝑆

𝑑𝐿
) with the sum of the multiplications of the changes in strength and the sensitivities of all 

individual interactions in the matrix (∑ ∑
𝑑𝛼𝑖,𝑗

𝑑𝐿

𝑛
𝑗

𝑛
𝑖

𝜕𝑠

𝜕𝛼𝑖,𝑗
). We plotted the relation for each step along the loading axis 

from clear to turbid (turquoise upward triangles), and from turbid to clear conditions (dark green downward 

triangles).  
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Figure S2 Elucidating which interactions contribute to the decrease of food web stability.  The response of 

food web stability to nutrient loading depends both on how the strengths of trophic interactions change in response 

to nutrient loading: 
𝑑𝛼𝑖,𝑗

𝑑𝐿
, and the extent to which the stability of the food web is sensitive to those changes: 

(
𝜕𝑠

𝜕𝛼𝑖,𝑗
). Plotting the relative changes of the interaction strengths per unit change of loading L during eutrophication 

(a) and re-oligotrophication (b) reveals that several of the 55 interactions in the food web increase or decrease in 

strength towards the tipping point. A positive change indicates that the strength of the interaction increases and a 

negative change indicates that the strength of the interaction is decreasing. Plotting the relative sensitivity of the 

diagonal strength s to changes in the interaction strengths during eutrophication (c) and re-oligotrophication (d) 

reveals that the stability is only sensitive to a select number of interactions, and that the sensitivity is not dependent 

on the location along the loading axis. The product of the change in strength of each interaction with the sensitivity 

of s to that interaction strength gives the relative contribution of each interaction to changes in s, during 

eutrophication (e) and re-oligotrophication (f). Only changes in a handful of stabilizing and destabilizing interactions 

contribute to changes in stability - mainly involving detritus, diatoms and zooplankton. Only relevant interactions 

are presented in the legend. Phytoplankton species and detritus may appear both in the pelagic and in the sediment 

layer: they are abbreviated and indicated with ‘W’ if they are in the pelagic, or ‘S’ if they are found in or on the 

sediment. 

 

 

Figure S3 Percentage of randomized matrices less stable than original (Jacobian) community matrix 

representation of the aquatic food web.  We randomized the matrices of four lakes differing in their initial 

conditions or nutrient loading 500 times and compared the stability of the randomized matrices with the stability of 

the original matrices. Randomization was performed by randomly exchanging pairs of interaction strengths but 

keeping the pairs as such intact, preserving both the sign structure of the matrix and the overall strength of the trophic 

interactions relative to the strength of intragroup interference: the randomized matrices have thus a similar structure 

but lost the pattern that resulted from the ecosystem model.  
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Figure S4 Relation between the maximum eigenvalue and the relative intraspecific competition needed for 

matrix stability. The relation between the maximum eigenvalue λd and the relative intraspecific competition s is 

plotted for each step along the loading axis from (a) clear to turbid, and (b) from turbid to clear conditions. Unlike 

the maximum eigenvalue, the level of intraspecific interaction strength s has a biological interpretation as it translates 

to a loss rate of organisms at steady state relative to the total loss that the system can provide for. 

 

 

Table S1: Overview of the parameters and output of the ecosystem model PCLake used to estimate material fluxes 

and interaction strengths in the food web. 

 

Class Trophic group Unit Value Source 

Biomass Piscivorous fish g m-2 Variable PCLake simulation – yearly average 

Biomass Zoopl. fish (juvenile) g m-2 Variable PCLake simulation – yearly average 

Biomass Benth. fish (adult) g m-2 Variable PCLake simulation – yearly average 

Biomass Zooplankton g m-2 Variable PCLake simulation – yearly average 

Biomass Benthos g m-2 Variable PCLake simulation – yearly average 

Biomass Pelagic Diatoms g m-2 Variable PCLake simulation – yearly average 

Biomass Pelagic Green algae g m-2 Variable PCLake simulation – yearly average 

Biomass Pelagic Cyanobacteria g m-2 Variable PCLake simulation – yearly average 

Biomass Pelagic Detritus g m-2 Variable PCLake simulation – yearly average 

Biomass Benthic Diatoms g m-2 Variable PCLake simulation – yearly average 

Biomass Benthic Green algae g m-2 Variable PCLake simulation – yearly average 

Biomass Benthic Cyanobacteria g m-2 Variable PCLake simulation – yearly average 

Biomass Benthic Detritus g m-2 Variable PCLake simulation – yearly average 

Settling flux Pelagic Diatoms g m-2 yr-1 Variable PCLake simulation – year summation 

Settling flux Pelagic Green algae g m-2 yr-1 Variable PCLake simulation – year summation 

Settling flux Pelagic Cyanobacteria g m-2 yr-1 Variable PCLake simulation – year summation 

Settling flux Pelagic Detritus g m-2 yr-1 Variable PCLake simulation – year summation 

Resuspension flux Benthic Diatoms g m-2 yr-1 Variable PCLake simulation – year summation 

(Continued) 
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Table S1 (Continued) 

 

Resuspension flux Benthic Green algae g m-2 yr-1 Variable PCLake simulation – year summation 

Resuspension flux Benthic Cyanobacteria g m-2 yr-1 Variable PCLake simulation – year summation 

Resuspension flux Benthic Detritus g m-2 yr-1 Variable PCLake simulation – year summation 

Assimilation eff. Piscivorous fish - 0.40 Janse (2005) 

Assimilation eff. Zoopl. fish (juvenile) - 0.40 Janse (2005) 

Assimilation eff. Benth. fish (adult) - 0.40 Janse (2005) 

Assimilation eff. Zooplankton - 0.35 Janse (2005) 

Assimilation eff. Benthos - 0.30 Janse (2005) 

Production eff. Piscivorous fish - 0.17 PCLake simulation – overall average 

Production eff. Zoopl. fish (juvenile) - 0.59 PCLake simulation – overall average 

Production eff. Benth. fish (adult) - 0.68 PCLake simulation – overall average 

Production eff. Zooplankton - 0.54 PCLake simulation – overall average 

Production eff. Benthos - 0.88 PCLake simulation – overall average 

Death rate Piscivorous fish yr-1 0.22 PCLake simulation – overall average 

Death rate Zoopl. fish (juvenile) yr-1 4.03 PCLake simulation – overall average 

Death rate Benth. fish (adult) yr-1 1.53 PCLake simulation – overall average 

Death rate Zooplankton yr-1 27.3 PCLake simulation – overall average 

Death rate Benthos yr-1 3.48 PCLake simulation – overall average 

Death rate Pelagic Diatoms yr-1 3.66 PCLake simulation – overall average 

Death rate Pelagic Green algae yr-1 3.66 PCLake simulation – overall average 

Death rate Pelagic Cyanobacteria yr-1 3.66 PCLake simulation – overall average 

Death rate Benthic Diatoms yr-1 18.3 PCLake simulation – overall average 

Death rate Benthic Green algae yr-1 18.3 PCLake simulation – overall average 

Death rate Benthic Cyanobacteria yr-1 73.2 PCLake simulation – overall average 

Prey preference Zoopl. -> Diatoms - 0.75 Janse (2005) 

Prey preference Zoopl. -> Green Algae - 0.75 Janse (2005) 

Prey preference Zoopl. -> Cyanobacteria - 0.125 Janse (2005) 

Prey preference Zoopl. -> Detritus - 0.25 Janse (2005) 

Frac. C fixed in 

bones 

All fish groups - 0.35 Janse (2005) 

Reproduction frac. Benth. fish (adult) - 0.026 PCLake simulation – overall average 

Ageing fraction Zoopl. fish (juvenile) - 0.27 PCLake simulation – overall average 
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Supplementary Note 1: Differential equations, partial derivatives, and interaction 

strengths  

 

Consumers 

The food web includes five groups of consumers: zoobenthos, zooplankton, piscivorous fish, 

juvenile benthivorous fish, and adult zooplanktivorous fish. We assume for all consumers 

that a fraction s of their death rate  𝑑𝑖  is caused by density-dependent factors. The equations 

of zoobenthos, zooplankton, and piscivorous fish are given first, followed by the equations 

for juvenile benthivorous fish and adult zooplanktivorous fish, which need extra terms for 

the reproductive fluxes between these two groups. 

 

Zoobenthos, zooplankton, and piscivorous fish 

The differential equation of consumer group i is given by: 

𝑑𝑋𝑖

𝑑𝑡
= −(1 − 𝑠)𝑑𝑖𝑋𝑖 −

𝑠𝑑𝑖

𝑋𝑖
∗ 𝑋𝑖

2 − 𝑐𝑖,𝑘𝑋𝑖𝑋𝑘 + ∑ 𝑎𝑖𝑝𝑖𝑐𝑗,𝑖𝑋𝑗𝑋𝑖

𝑗

, (S1) 

where Xi is the biomass of consumer group i, s is the fraction of death rate di caused by 

density-dependent mortality (i.e. our stability metric), ci,k is the consumption coefficient of 

species Xi  being eaten by predator Xk, ai is the assimilation efficiency, pi is the production 

efficiency, and Xj is the biomass of prey j. If group i represents the top predator piscivorous 

fish, then there is no predation term −𝑐𝑖,𝑘𝑋𝑖𝑋𝑘. 

To determine the Jacobian community matrix, the partial derivative of group i to any other 

group j is required, evaluated in equilibrium: 𝛼𝑖,𝑗 = (
𝜕

𝑑𝑋𝑖
𝑑𝑡

𝜕𝑋𝑗
)

∗

, where the star denotes 

equilibium. Taking the partial derivative to predator k gives 

𝛼𝑖,𝑘 = −𝑐𝑖,𝑘𝑋𝑖
∗ = −

𝐹𝑖,𝑘

𝑋𝑘
∗ , (S2) 

where Fi,k is the feeding rate of group k on group i, given by 𝐹𝑖,𝑘 = 𝑐𝑖,𝑘𝑋𝑖
∗𝑋𝑘

∗. The partial 

derivative to prey j is given by 

𝛼𝑖,𝑗 = 𝑎𝑖𝑝𝑖𝑋𝑖
∗ =

𝑎𝑖𝑝𝑖𝐹𝑖,𝑗

𝑋𝑗
∗ . (S3) 

Finally, the partial derivative of consumer i to itself is given by 

𝛼𝑖,𝑖 = −𝑠𝑑𝑖 . (S4) 

 

Juvenile (benthivorous) fish and adult (zooplanktivorous) fish 

The differential equations for juvenile and adult fish are the same as for the above consumers, 

but include extra terms for the ‘exchange’ between juvenile and adult fish. 

Additional assumptions are: 
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 Adult fish lose biomass due to reproduction. This loss in adult fish biomass is added 

to juvenile fish biomass. The flux from adults to juveniles is independent of juvenile 

biomass.  

 Juvenile fish lose biomass due to juveniles becoming adults. This loss in juvenile 

biomass is added to adult fish biomass. The flux from juveniles to adults is 

independent of adult biomass. 

 Adult fish do not eat juveniles. 

 

The differential equation of juvenile fish is given by 

𝑑𝑋𝐽𝐹

𝑑𝑡
= −𝑔𝐽𝐹𝑋𝐽𝐹 + ℎ𝐴𝐹𝑋𝐴𝐹 − (1 − 𝑠)𝑑𝐽𝐹𝑋𝐽𝐹 −

𝑠𝑑𝐽𝐹

𝑋𝐽𝐹
∗ 𝑋𝐽𝐹

2 − 𝑐𝐽𝐹,𝑘𝑋𝐽𝐹𝑋𝑘

+ 𝑎𝐽𝐹𝑝𝐽𝐹𝑐𝑗,𝐽𝐹𝑋𝑗𝑋𝐽𝐹 , 

(S5) 

where XJF is the biomass of juvenile fish, gJF is the growth rate of juvenile fish biomass 

turning into adult fish biomass XAF, hAF is the adult fish biomass loss rate due to reproduction 

of adults, Xk is the biomass of predator k, and Xj is the biomass of prey j. 

Taking the partial derivative to adult fish gives 

𝛼𝐽𝐹,𝐴𝐹 = ℎ𝐴𝐹 . (S6) 

The partial derivative to predator k is given by 

𝛼𝐽𝐹,𝑘 = −𝑐𝐽𝐹,𝑘𝑋𝐽𝐹
∗ = −

𝐹𝐽𝐹,𝑘

𝑋𝑘
∗ . (S7) 

The partial derivative to prey j is given by 

𝛼𝐽𝐹,𝑗 = 𝑎𝐽𝐹𝑝𝐽𝐹𝑐𝑗,𝐽𝐹𝑋𝐽𝐹
∗ =

𝑎𝐽𝐹𝑝𝐽𝐹𝐹𝑗,𝐽𝐹

𝑋𝑗
∗ . (S8) 

Finally, the partial derivative of juvenile fish to itself is given by: 

𝛼𝐽𝐹,𝐽𝐹 = −
ℎ𝐴𝐹𝑋𝐴𝐹

∗

𝑋𝐽𝐹
∗ − 𝑠𝑑𝐽𝐹𝑋𝐽𝐹

∗ . (S9) 

The differential equation of adult fish is given by 

𝑑𝑋𝐴𝐹

𝑑𝑡
= 𝑔𝐽𝐹𝑋𝐽𝐹 − ℎ𝐴𝐹𝑋𝐴𝐹 − (1 − 𝑠)𝑑𝐴𝐹𝑋𝐴𝐹 −

𝑠𝑑𝐴𝐹

𝑋𝐴𝐹
∗ 𝑋𝐴𝐹

2 − 𝑐𝐴𝐹,𝑘𝑋𝐴𝐹𝑋𝑘

+ 𝑎𝐴𝐹𝑝𝐴𝐹𝑐𝑗,𝐴𝐹𝑋𝑗𝑋𝐴𝐹 . 

(S10) 

Taking the partial derivative to juvenile fish gives 

𝛼𝐴𝐹,𝐽𝐹 = 𝑔𝐽𝐹 . (S11) 

The partial derivative to predator k is given by 

𝛼𝐴𝐹,𝑘 = −𝑐𝐴𝐹,𝑘𝑋𝐴𝐹
∗ = −

𝐹𝐴𝐹,𝑘

𝑋𝑘
∗ . (S12) 

The partial derivative to prey j is given by 
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𝛼𝐴𝐹,𝑗 = 𝑎𝐴𝐹𝑝𝐴𝐹𝑐𝑗,𝐴𝐹𝑋𝐴𝐹
∗ =

𝑎𝐴𝐹𝑝𝐴𝐹𝐹𝑗,𝐴𝐹

𝑋𝑗
∗ . (S13) 

Finally, the partial derivative of adult fish to itself is given by: 

𝛼𝐴𝐹,𝐴𝐹 = −
𝑔𝐽𝐹𝑋𝐽𝐹

∗

𝑋𝐴𝐹
∗ − 𝑠𝑑𝐴𝐹𝑋𝐴𝐹

∗ . (S14) 

 

Phytoplankton 

The food web includes three types of phytoplankton: cyanobacteria, diatoms, and green 

algae. These three groups are present in both the water (pelagic) and the sediment (benthic) 

compartment. For each phytoplankton group, biomass exchange takes place between the 

water and sediment compartment via settling and re-suspension. 

 

For phytoplankton, we assume that: 

 Death rate of phytoplankton in both water and sediment can be split in density 

dependent and density independent mortality. 

 The suspension and re-suspension fluxes are independent of each other, i.e. the 

settling flux is independent of benthic phytoplankton biomass, and the re-suspension 

flux is independent of pelagic phytoplankton biomass. 

 Phytoplankton in the sediment do not reproduce (no growth rate r). 

 

The differential equation of phytoplankton in the water compartment for group i (iW) is given 

by: 

𝑑𝑋𝑖𝑊

𝑑𝑡
= −𝑛𝑖𝑊𝑋𝑖𝑊 + 𝑚𝑖𝑆𝑋𝑖𝑆 + 𝑟𝑖𝑊𝑋𝑖𝑊 − (1 − 𝑠)𝑑𝑖𝑊𝑋𝑖𝑊 −

𝑠𝑑𝑖𝑊

𝑋𝑖𝑊
∗ 𝑋𝑖𝑊

2

− 𝑐𝑖𝑊,𝑘𝑋𝑖𝑊𝑋𝑘, 

(S15) 

where XiW is the biomass of water phytoplankton group iW, niW is the sedimentation rate of 

water phytoplankton to sediment phytoplankton, miS is the re-suspension rate of sediment 

phytoplankton to water phytoplankton, XiS is the biomass of sediment phytoplankton group i 

(iS),  and riW is the growth rate. 

If group j is sediment phytoplankton (iS), this gives 

𝛼𝑖𝑊,𝑖𝑆 = 𝑚𝑖𝑆. (S16) 

If group j is a predator k of group iW, this gives 

𝛼𝑖𝑊,𝑘 = −𝑐𝑖𝑊,𝑘𝑋𝑘
∗ = −

𝐹𝑖𝑊,𝑘

𝑋𝑖𝑊
∗ . (S17) 

Finally, the partial derivative of water phytoplankton to itself is given by 

𝛼𝑖𝑊,𝑖𝑊 = −
𝑚𝑖𝑆

𝑋𝑖𝑊
∗ 𝑋𝑖𝑆

∗ − 𝑠𝑑𝑖𝑊 . (S18) 
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The differential equation of phytoplankton in the sediment compartment for group i (iS) is 

given by: 

𝑑𝑋𝑖𝑆

𝑑𝑡
= 𝑛𝑖𝑊𝑋𝑖𝑊 − 𝑚𝑖𝑆𝑋𝑖𝑆 − (1 − 𝑠)𝑑𝑖𝑆𝑋𝑖𝑆 −

𝑠𝑑𝑖𝑆

𝑋𝑖𝑆
∗ 𝑋𝑖𝑆

2 − 𝑐𝑖𝑆,𝑘𝑋𝑖𝑆𝑋𝑘, (S19) 

where XiS is the biomass of sediment phytoplankton group iS, and Xk is the biomass of 

predator k. 

Taking the partial derivative to water phytoplankton group iW gives 

𝛼𝑖𝑆,𝑖𝑊 = 𝑛𝑖𝑊 . (S20) 

The partial derivative to predator k is given by 

𝛼𝑖𝑆,𝑘 = −𝑐𝑖𝑆,𝑘𝑋𝑘
∗ = −

𝐹𝑖𝑆,𝑘

𝑋𝑖𝑆
∗ . (S21) 

Finally, the partial derivative of sediment phytoplankton to itself is given by 

𝛼𝑖𝑆,𝑖𝑆 = −
𝑛𝑖𝑊

𝑋𝑖𝑆
∗ 𝑋𝑖𝑊

∗ − 𝑠𝑑𝑖𝑆 . (S22) 

 

Detritus 

The food web includes two groups of detritus: one in the water compartment and one in the 

sediment compartment. These groups are linked via suspension and re-suspension flows 

between the detritus pools.  Assumptions for detritus are: 

 Detritus receives allochthonous input (optional) (cf. Moore and de Ruiter 2012). 

 All biomass lost through mortality in phytoplankton and consumers, both through 

density-independent and density-dependent causes, is assumed to enter the detritus 

pools. Depending on whether the species lives in water or sediment, dead material 

goes to water detritus or sediment detritus, respectively. A fraction of the fish bones 

is removed from the system. 

 The suspension and re-suspension fluxes are independent of each other, i.e. the 

suspension flux is independent of detritus biomass in the sediment, and the re-

suspension flux is independent of detritus biomass in the water. 

 

The differential equation of water detritus is given by 

𝑑𝑋𝐷𝑊

𝑑𝑡
= 𝑅𝐷𝑊 − 𝑛𝐷𝑊𝑋𝐷𝑊 + 𝑚𝐷𝑆𝑋𝐷𝑆 + ∑ ∑(1 − 𝑎𝑗)𝑐𝑖,𝑗𝑋𝑖𝑋𝑗

𝑗𝑖

+ ∑(1 − 𝑠)𝑑𝑖𝑋𝑖

𝑖

+ ∑
𝑠𝑑𝑖

𝑋𝑖
∗ 𝑋𝑖

2

𝑖

− ∑ 𝑐𝐷𝑊,𝑗𝑋𝐷𝑊𝑋𝑗

𝑗

, 

(S23) 

where XDW is the biomass of water detritus, RDW is allochthonous input, nDW is the 

sedimentation rate of water detritus to sediment detritus, mDS is the re-suspension rate of 

sediment detritus to water detritus, and XDS is the biomass of sediment detritus. 

Taking the partial derivative to sediment detritus, this gives 
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𝛼𝐷𝑊,𝐷𝑆 = 𝑚𝐷𝑆. (S24) 

The partial derivative to any phytoplankton or consumer group j gives 

𝛼𝐷𝑊,𝑗 = ∑(1 − 𝑎𝑗)𝑐𝑖,𝑗𝑋𝑖
∗

𝑖

+ (1 − 𝑎𝑘)𝑐𝑗,𝑘𝑋𝑘
∗ + (1 + 𝑠)𝑑𝑗 − 𝑐𝐷𝑊,𝑗𝑋𝐷𝑊

∗ = 

= ∑
(1 − 𝑎𝑗)𝐹𝑖,𝑗

𝑋𝑗
∗

𝑖

+
(1 − 𝑎𝑘)𝐹𝑗,𝑘

𝑋𝑗
∗ + (1 + 𝑠)𝑑𝑗 −

𝐹𝐷𝑊,𝑗

𝑋𝑗
∗ , 

(S25) 

where Xi is prey biomass eaten by j (this term is absent if group j is phytoplankton), and Xk 

is predator biomass consuming j (this term is absent if group j is the top predator). If group j 

does not consume water detritus, then the last term of 𝛼𝐷𝑊,𝑗 is absent. 

Finally, the partial derivative of water detritus to itself is given by 

𝛼𝐷𝑊,𝐷𝑊 = −𝑛𝐷𝑊 − ∑ 𝑎𝑗𝑐𝐷𝑊,𝑗𝑋𝑗
∗

𝑗

= −𝑛𝐷𝑊 − ∑
𝑎𝑗𝐹𝐷𝑊,𝑗

𝑋𝐷𝑊
∗

𝑗

. (S26) 

The equations for sediment detritus are very similar to equations (S23)-(S26) for water 

detritus: 

𝑑𝑋𝐷𝑆

𝑑𝑡
= 𝑅𝐷𝑆 + 𝑛𝐷𝑊𝑋𝐷𝑊 − 𝑚𝐷𝑆𝑋𝐷𝑆 + ∑ ∑(1 − 𝑎𝑗)𝑐𝑖,𝑗𝑋𝑖𝑋𝑗

𝑗𝑖

+ ∑(1 − 𝑠)𝑑𝑖𝑋𝑖

𝑖

+   ∑
𝑠𝑑𝑖

𝑋𝑖
∗ 𝑋𝑖

2

𝑖

− ∑ 𝑐𝐷𝑆,𝑗𝑋𝐷𝑆𝑋𝑗

𝑗

, 

(S27) 

 

𝛼𝐷𝑆,𝐷𝑊 = 𝑛𝐷𝑊, (S28) 

 

𝛼𝐷𝑆,𝑗 = ∑
(1 − 𝑎𝑗)𝐹𝑖,𝑗

𝑋𝑗
∗

𝑖

+
(1 − 𝑎𝑘)𝐹𝑗,𝑘

𝑋𝑗
∗ + (1 + 𝑠)𝑑𝑗 −

𝐹𝐷𝑆,𝑗

𝑋𝑗
∗ , (S29) 

 

𝛼𝐷𝑆,𝐷𝑆 = −𝑚𝐷𝑆 − ∑
𝑎𝑗𝐹𝐷𝑆,𝑗

𝑋𝐷𝑆
∗𝑗 . 

𝛼𝐷𝑆,𝐷𝑆 = −𝑚𝐷𝑆 − ∑
𝑎𝑗𝐹𝐷𝑆,𝑗

𝑋𝐷𝑆
∗

𝑗

. 
(S30) 
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Abstract 

The ecosystems of the world are experiencing unprecedented levels of environmental change. 

Consequently, there is increasing societal demand for mathematical models that help to 

understand and predict imminent regime changes in ecosystem state. Such models may be 

parameterized with empirical information such as biomass densities and feeding rates of 

species. Interestingly, models of different form can be developed to describe the same 

empirical information. In this study, we are interested in the extent to which the stability 

properties of a more complex model system along a gradient of environmental stress can be 

reflected by a simpler model system that is built upon the same biomass densities and energy 

fluxes. Specifically, we use classical minimal dynamical models to analyze the consequence 

of changing a system with non-proportional interaction terms into a system with simpler 

linear interaction terms, while maintaining the equilibrium densities. The insights obtained 

here may help resolve the question under which conditions empirical data can be linked to 

mathematical models to estimate the stability properties of real ecosystems. 
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Introduction 

The current period in geological time can be characterized by the large influence that humans 

have on the natural world, for which it is coined the Anthropocene (cf. Crutzen, 2002). All 

over the earth ecosystems are experiencing stress due to e.g. land conversion, climate change, 

overexploitation and pollution (Millenium Ecosystem Assessment, 2005). Consequently, 

ecosystems change both in structure and function, and hence so do the services they deliver 

to human societies (Rockström et al., 2009). Changes in ecosystem state are particularly 

troublesome when they are abrupt and nonlinear (Scheffer et al., 2001). A fundamental 

question from society to ecologists is whether dynamic models can be developed that 

describe and help predict the resilience and stability of natural ecosystems under 

anthropogenic stress (Clark et al., 2001; Evans, 2012). 

The modelling of species interactions often forms the first step in analyzing more 

complex behaviour of ecosystems. As such, the seminal work by Alfred Lotka (1920) and 

Vito Volterra (1926), who independently of each other discovered the cycles that arise in a 

set of coupled differential equations representing consumers and resources, forms the 

foundation for innumerable ecological models that have been developed since. The Lotka-

Volterra (LV) model is one of the earliest models in mathematical ecology, and represents 

the simplest model of predator-prey interactions. It is based on linear per capita growth rates, 

interaction rates and mortality rates. Taking the LV equations as a starting point, we distinct 

three dominant modelling approaches (or schools) that have developed to study ecosystem 

stability but differ noticeably from each other.  

The first approach we highlight is the thorough analysis of small sets of differential 

equations, which are referred to as ‘simple’ or ‘minimal’ models. This strategy is built upon 

the observation that the addition of ‘simple’ ingredients to LV equations, such as non-

proportional interaction terms, can have large and surprising effects on model outcome 

(Wangersky 1978; Fig. 1, top right). One of the most famous examples comes from 

Rosenzweig and MacArthur (1963), who replaced the linear interaction term of the original 

LV model with a Holling type 2 functional response, and included logistic growth in the 

dynamics of the resource. Their observation that increasing resource density tends to 

destabilize the system led to the formulation of the ‘paradox of enrichment’ (Rosenzweig, 

1971). Minimal dynamical models are typically used to show the workings of certain 

mechanistic principles in a pure and controlled way (Scheffer and Beets, 1994). A particular 

merit is that they allow for studying bifurcations that reveal qualitative changes in the long-

term dynamics of the model along a gradient of environmental change (e.g. productivity in 

the Rosenzweig-MacArthur example). As such, minimal dynamical models help to unveil 

which ingredients are minimally required to evoke phenomena that are qualitatively similar 

to phenomena observed in real life (Scheffer, 2004), thereby providing an essential 

theoretical foundation for studying ecosystem stability in nature. A downside is that they are 

not intended to give quantitative descriptions of the system under study. The included 

mechanisms are typically represented at a very abstract level and the connection with the 

empirical world is generally rather loose. The usefulness of this type of models for making 



86 
 

detailed predictions of the stability of real world ecosystems is therefore criticized (Evans et 

al., 2013). 

A second type of modelling we distinguish is the linking of multiple Lotka-Volterra 

type equations to form a web of interacting species (Fig. 1, bottom left). Hence, the important 

theoretical results on stability that were obtained by entering non-linear terms did not make 

the Lotka-Volterra equations with linear terms obsolete. Rooted in the work of Gardner and 

Ashby (1970) and May (1972), general n-species Lotka-Volterra (GLV) systems with linear 

functional response interaction terms continue to play an important role in food web ecology. 

These seminal studies laid down a theoretical framework suggesting that more ‘complex’ 

systems, in terms of the number of species and the frequency of interactions, tend to be less 

stable. This challenged the dominant idea that complexity ‘begets’ stability (sensu 

MacArthur 1955), and has set the agenda for a long lasting and ongoing debate about the 

relationship between complexity and stability (McCann, 2000). Conforming to May (1972; 

1973), numerous studies used the Jacobian matrix approach to identify which non-random 

food web structures are the building blocks of (locally) stable food webs (Moore and de 

Ruiter, 2012). The Jacobian matrix is calculated in equilibrium, after which the stability of 

those equilibria can be determined. Importantly, GLV type equations allow for local stability 

analysis of empirical food webs, as they can be parameterized fairly easily with readily 

available empirical information as long as equilibrium conditions are assumed (de Ruiter et 

al., 1995, 1993). Analyses of empirical food web models have yielded important insights in 

which stabilizing structures are prevalent in nature and hence should be maintained 

(Emmerson and Yearsley, 2004; Neutel et al., 2002). Yet, a consequence of merely focussing 

on trophic interactions is that non-trophic interactions are mostly ignored and that physical 

and environmental processes are usually not explicitly modelled as part of the system 

(Berlow et al., 2004; Sonia Kéfi et al., 2012). This, in combination with the focus on local 

stability, makes that empirical food web models are seldom analysed in the context of 

changing environmental conditions, and are difficult to apply by ecosystem managers. 

A third dominant modelling strategy is that of complex simulation models, which 

include both of the aforementioned extensions and are thus complex in terms of the number 

of interactions and the nature of these interactions (Fig. 1, bottom right). Besides being used 

to describe the long-term, asymptotic behaviour of a dynamical system, complex ecosystem 

models are often applied to describe relative short-term transient dynamics. Unlike the 

empirical food web models, complex ecosystem models do not map all trophic interactions 

present in the ecosystem. Instead, they typically focus on capturing only those components, 

whether biotic or abiotic, which are considered key for successfully describing higher level 

variables of the ecosystem. Nonetheless, these models usually do allow for, or even require 

integrating large amounts of empirical information, including high frequency time series of 

external forcings. Together these characteristics make that complex simulation models can 

have a multitude of functions in both science and ecosystem management (e.g. Janssen et al. 

2015; Weijerman et al. 2015). For example, scenario analysis allows ecosystem managers to 

evaluate the stability of a specific ecosystem along a gradient of environmental stress. A 
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typical example is given by the ecosystem model PCLake, which consists of more than 60 

differential equations and more than 300 parameters (Janse et al. 2010). PCLake is frequently 

applied by water quality managers to identify the ‘critical’ nutrient loading of a shallow lake 

ecosystem and to evaluate the effectiveness of potential management measures (Janse, 1997). 

The critical nutrient loading is the nutrient loading that triggers a regime shift from a clear 

state to a turbid phytoplankton dominated state, or vice versa (Scheffer, 1990). An evident 

downside of the complexity of these comprehensive models is that it goes at the costs of 

mathematical tractability, and hence, scientific understanding (Scheffer and Beets, 1994). It 

is oftentimes difficult to interpret the output of complex simulation models and to grasp the 

causality in the underlying processes, making it difficult to link up with theoretical ecology. 

The three modelling strategies presented here are not exhaustive, as there are various 

other approaches that, for example, do not use ordinary differential equations, such as agent-

based models and partial differential equation models (Janssen et al., 2015; Mooij et al., 

2010). Neither are they completely demarcated, as there are many forms of hybrid models 

presented in the literature, e.g. in the form of extended minimal dynamical models that 

represent simplified food webs (e.g. McCann et al. 1998; Rooney et al. 2006). Nevertheless, 

we acknowledge that in a broad sense these approaches embody three complementary 

paradigms that each have produced a wealth of knowledge about the stability of ecosystems. 

An inherent disadvantage of having co-existing paradigms, however, is that understanding 

how the insights produced by one paradigm fit in with the insights resulting from another 

paradigm can be troublesome (e.g. Thompson et al. 2012), even when both are fed with 

empirical information from one and the same ecosystem. For example, a fundamental yet 

largely unresolved question is how the local stability of an empirical food web, as determined 

by the Jacobian matrix approach, relates to resilience of ecosystems susceptible to regime 

change (Hannah et al., 2010). The few studies that have established series of empirical food 

web models along gradients of e.g. productivity (Neutel et al., 2007) and grazing (Andres et 

al., 2016) were not able to use their results to preview potential nonlinear ecosystem 

responses to environmental change. An apparent complicating factor is that food web 

stability is often analysed using models with linear interaction terms, while regime shifts are 

mostly studied with models that employ nonlinear interaction terms. 

Recently Kuiper et al. (2015) presented a new approach to bridge the gap between 

complex consumer-resource models with linear and with nonlinear interaction terms. While 

the historical trend has been to add complexity to consumer resource models, Kuiper et al. 

started at the complex side and worked from there towards simpler models. More exactly, 

the authors used the complex PCLake model as a virtual reality in which observations were 

made to parameterize a Lotka-Volterra ‘blueprint’ of the aquatic food web, which they could 

then analyze for its local stability. Hence, while both the ecosystem model and the food web 

model describe the same food web, the food web model is much simpler as it excludes all 

abiotic processes and uses linear interaction terms instead of more complex non-linear 

interaction terms. Subsequently, they used PCLake to simulate two catastrophic regime 

shifts: one from clear to turbid water during eutrophication and one from turbid to clear water 
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during re-oligotrophication. They found that the stability of the food web model decreased 

towards both regime shifts. This remarkable result raises the question how exactly stability 

properties of the ecosystem model are transferred to the food web model. In other words, for 

a system of consumer resource interactions in equilibrium, is it the exact shape of the 

interactions (e.g. type-1 vs. type-2 functional response), or is the patterning of interactions in 

the network (e.g. degree of omnivory, connectance etc.) that is decisive in determining the 

stability properties? Given the complexity of PCLake and the produced food web models it 

is difficult to answer these questions. 

In the present study, we address the question how stability properties are transferred 

when models with linear interaction terms are parameterized on basis of the output of 

consumer resource models with nonlinear interaction terms along an environmental gradient. 

Instead of using complex models, we will use three extensions of the Lotka-Volterra models 

that are classics in ecology, and of which the stability properties are mathematically fully 

understood. Specifically, we would like to know whether in such relatively small systems of 

consumer resource interactions the equilibrium solutions along an environmental gradient 

carry intrinsic information about the dynamical stability and upcoming regime shifts in the 

system. 
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Figure 1 Overview of two types of complexity in models of consumer resource interactions. 

Horizontally, a distinction is made between models with linear interaction terms and those with non-

linear interaction terms. Theoretical ecology focuses on the mathematical comparison between simple 

Lotka Volterra type of models (tLV or eLV) and their counterparts with nonlinear interaction terms 

(e.g. LVV, RM and RMS). Vertically, a distinction is made between models with typically two or three 

equations that can be thoroughly analyzed mathematically and more empirically oriented models that 

contain as many compartments as is deemed necessary to represent the natural system under study. The 

stability-diversity debate originates in a comparison between tLV with few interactions and tGLV or 

eGLV type of models consisting of a web of interactions. While the historical trend has been to add 

complexity to consumer resource models, we claim that there is much to win by starting at the complex 

side and work from there towards simpler models, to identify the least amount of information needed 

to disclose the stability properties of complex ecosystems.  

 

Methods 

 

The models 

In this study we focus on three key extensions of the classical Lotka-Volterra (LV) consumer-

resource model (Box 1a and 2a). The original LV model contains proportional growth and 

death rates of resource and consumer, respectively, and a proportional interaction term 

between consumer and resource. Please note that within the ecological setting of this paper 

we will refer to consumer-resource models with proportional growth, loss and interaction 
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terms as having ‘linear equations’, and refer to models that have non-proportional terms as 

‘non-linear’ equations (cf. Arditi and Michalski 1996). This usage of the term linear does not 

comply with the mathematical definition of what constitutes a linear and a nonlinear equation. 

According to this mathematical definition the classical Lotka-Volterra equations are 

nonlinear because the interaction term involves the multiplication of two states, irrespective 

whether this interaction is proportional to both states, or not. We parameterize all models for 

algae and zooplankton, and, therefore, identify the resource as A and the consumer as Z. 

The first logical extension of the original LV model we consider is the inclusion of 

negative density dependence in the resource so as to prevent unbounded growth in absence 

of the consumer. A classical formulation of negative density dependence is the logistic 

equation (Verhulst, 1845). Hence, we replace the linear growth term rA in the resource with 

a the non-linear logistic term rA(1-A/K), and refer to this extension as the Lotka-Volterra-

Verhulst (LVV) model (Box 3a). 

A second logical extension is the realization that consumers approach a maximum 

intake rate at high resource levels. This can for instance be achieved by replacing the linear 

interaction term of the Lotka Volterra model gZA with a non-linear Holling type 2 functional 

response gZA/(A+a) (Holling, 1959), which in turn is mathematically equal to Michaelis-

Menten kinetics (Michaelis and Menten, 1913). The combination of both extensions, logistic 

growth in the resource and a Holling type 2 functional response, results in the aforementioned 

Rosenzweig-MacArthur (RM) model (Rosenzweig and MacArthur, 1963) (Box 4a). 

A third straightforward extension stems from the realisation that above a given 

threshold density, the consumer itself might become an attractive resource for a top-

consumer. Such prey switchting responses in the top-consumer can be modelled with a 

sigmoid Holling type III functional response of the top-consumer, which is a specific case of 

a Hill function (Hill, 1910). A Rosenzweig MacArthur (RM) model with a Hill function in 

the loss term of the consumer was analysed by Scheffer et al. (2000). We will further refer to 

this model as the Rosenzweig-MacArthur-Scheffer (RMS) model. In the RMS model a 

nonlinear Holling type III loss term of the consumer FZ2/(Z2+z2) is added to the linear loss 

term of the LV model mZ. To fully comply with the formulation used by Scheffer et al. 

(2000) a constant influx of the resource is also added, thus mimicking chemostat dynamics 

(Box 5a). 

Each of these models is mathematically fully analyzed through bifurcation analysis 

for their stability properties and described in the theoretical ecological literature (e.g. 

Rosenzweig and MacArthur 1963; Scheffer et al. 2000). The stability properties range from 

neutrally stable (LV), always stable (LVV), for some parameter values stable, for others 

unstable (RM) and for some parameter values showing alternative stable states (RMS). 

 

The equilibria of the models along an environmental gradient 

For the LV model (Box 2a), the LVV model (Box 3a) and the RM model (Box 4a), but not 

for the RMS model (Box 5a), explicit expressions of the equilibria are available. The LVV, 

the RM and the RMS model contain the carrying capacity K of the resource and can therefore 
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be analyzed along an environmental gradient representing eutrophication. Please note, 

however, that K does not appear in the equilibrium expressions of the resource for the LVV 

and RM model. Numerical analysis shows that the equilibrium density of the resource is 

dependent on the carrying capacity for the RMS model. The RMS model is intended for 

analysis along another gradient, namely that of consumption of the consumer by a top-

consumer expressed in parameter F. For easy comparison with the RMS model as it is 

described in literature, we therefore choose to present the analysis for F in the main results, 

and present the analysis for K in the online supplementary material. 

 

The Jacobian elements of the original models 

Symbolic expressions for the elements of the Jacobian matrix J, that is, the matrix with the 

derivatives of the model equations for each of the state variables, can be found for each of 

the models, including the RMS model for which no expressions for the equilibria are 

available (Box 2a, 3a, 4a and 5a). Comparison of the expressions of the Jacobian matrix with 

the model equations show that some of these elements should always be zero. This holds for 

element J(1,1) of the LV model and element J(2, 2) of the LV, LVV and RM model. 

 

The linearization 

In the linearization, each of the nonlinear growth, interaction and loss terms in the LVV, RM, 

RMS models, is replaced by a single parameter. Because the original LV model is already 

linear, it is not affected by linearization (Box 2b). The resulting linearized models are 

identified with an apostrophe: LVV’ for the linearized Lotka-Volterra-Verhulst model (Box 

3b), RM’ for the linearized Rosenzweig-MacArthur model (Box 4b) and RMS’ for the 

linearized Rosenzweig-MacArthur-Scheffer model (Box 5b). To maintain a link with the 

original model, and to allow an analysis of the linearized models along the same 

environmental gradients against which the original models can be analyzed, we expressed 

the linear parameters r’, g’ and F’ in terms of the original parameters r, K, g, a, F and z, and 

the equilibrium densities A* and Z*. By doing so, we guarantee that the equilibrium densities 

of the original models LVV, RM and RMS are by definition equal to those for their linearized 

counterparts LVV’, RM’, and RMS’. 

 

The Jacobian of the linearized model 

After linearizing each model, we again derived the elements of the Jacobian matrix J’ (note 

the apostrophe). We first did this in terms of the new parameters r’, g’ and F’ and thereafter 

reformulated each element of that matrix in terms of the original parameters r, K, g, a, F and 

z. This allows for a one to one comparison of J and J’ (Box 2b, 3b, 4b and 5b). This 

comparison shows that J(1, 1) and J’(1, 1) are different for all three models (LVV, RM and 

RMS) while elements (J1, 2) and J’(1, 2) are equal for all models (LVV, RM and RMS). 

Element J(2, 1) and J’(2, 1) are equal for the LVV model but not for the RM and RMS model. 

Finally, element J(2, 2) and J’(2, 2) are equal for the LVV and the RM model but not for the 

RMS model. 
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Box 1a States and parameters of the original Lotka-Volterra (LV), Lotka-Volterra-Verhulst 

(LVV), Rosenzweig-MacArthur (RM) and Rosenzweig-MacArthur-Scheffer (RMS) models: 

 Description Unit 

A Resource Resource unit 

Z Consumer Consumer unit 

r Maximum growth rate resource Time-1 

K Carrying capacity resource Resource unit 

g Maximum intake rate consumer LV and LVV model: consumer unit-1·time-1;  

RM and RMS model: resource unit·consumer 

unit-1·time-1 

a Half saturation consumer on resource Resource unit 

l Resource loss rate Time-1 

e Consumer-resource conversion 

efficiency 

Consumer unit·resource unit-1 

 

F Maximum intake rate top-consumer Consumer unit·time-1 

z Half saturation rate top-consumer on 

consumer 

Consumer unit 

m Consumer loss rate Time-1 

 

Box 1b States and parameters of the linearized Lotka-Volterra (LV’), Lotka-Volterra-Verhulst 

(LVV’), Rosenzweig-MacArthur (RM’) and Rosenzweig-MacArthur-Scheffer (RMS’) models: 

 Description Unit 

A’ Resource Resource unit 

Z’ Consumer Consumer unit 

r’ Growth rate resource Time-1 

g’ Intake rate consumer Time-1 

F’ Intake rate top-consumer Time-1 
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Box 2a Differential equations, equilibria and elements of the Jacobian matrix J for the 

original Lotka-Volterra (LV) model 

𝑑𝐴

𝑑𝑡
= 𝑟𝐴 − 𝑔𝑍𝐴 − 𝑙𝐴 

𝑑𝑍

𝑑𝑡
= 𝑒𝑔𝑍𝐴 − 𝑚𝑍 

𝐴∗ =
𝑚

𝑒𝑔
 

𝑍∗ =
𝑟 − 𝑙

𝑔
 

𝐽1,1 = 𝑟 − 𝑔𝑍∗ − 𝑙 =
1

𝐴∗

𝑑𝐴∗

𝑑𝑡
= 0 

𝐽1,2 = −𝑔𝐴∗ = −𝑔
𝑚

𝑒𝑔
=

𝑚

𝑒
 

𝐽2,1 = 𝑒𝑔𝑍∗ = 𝑒𝑔
𝑟 − 𝑙

𝑔
= 𝑒(𝑟 − 𝑙) 

𝐽2,2 = 𝑒𝑔𝐴∗ − 𝑚 =
1

𝑍∗

𝑑𝑍∗

𝑑𝑡
= 0 

Box 2b Differential equations, parameters, equilibria and elements of the Jacobian matrix 

J’ for the linearized Lotka-Volterra (LV’) model 

𝑑𝐴′

𝑑𝑡
= 𝑟′𝐴′ − 𝑔′𝑍′𝐴′ − 𝑙𝐴′ 

𝑑𝑍′

𝑑𝑡
= 𝑒𝑔′𝑍′𝐴′ − 𝑚𝑍′ 

𝑟′ = 𝑟 

𝑔′ = 𝑔 

𝐴′∗ = 𝐴∗ 

𝑍′∗ = 𝑍∗ 

𝐽′1,1 = 𝑟′ − 𝑔′𝑍′∗ − 𝑙 = 𝑟 − 𝑔𝑍∗ − 𝑙 =
1

𝐴∗

𝑑𝐴∗

𝑑𝑡
= 0 = 𝐽1,1 

𝐽′1,2 = −𝑔′𝐴′∗ = −𝑔𝐴∗ = 𝐽1,2 

𝐽′2,1 = 𝑒𝑔′𝑍′∗ = 𝑒𝑔𝑍∗ = 𝐽2,1 

𝐽′2,2 = 𝑒𝑔′𝐴′∗ − 𝑚 = 𝑒𝑔𝐴∗ − 𝑚 =
1

𝑍∗

𝑑𝑍∗

𝑑𝑡
= 0 = 𝐽2,2 
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Box 3a Differential equations, equilibria and elements of the Jacobian matrix J for the 

original Lotka-Volterra-Verhulst (LVV) model: 

𝑑𝐴

𝑑𝑡
= 𝑟𝐴 (1 −

𝐴

𝐾
) − 𝑔𝑍𝐴 − 𝑙𝐴 

𝑑𝑍

𝑑𝑡
= 𝑒𝑔𝑍𝐴 − 𝑚𝑍 

𝐴∗ =
𝑚

𝑒𝑔
 

𝑍∗ =
𝑟 (1 −

𝐴∗

𝐾
) − 𝑙

𝑔
 

𝐽1,1 = 𝑟 (1 −
𝐴∗

𝐾
) − 𝑟

𝐴∗

𝐾
− 𝑔𝑍∗ − 𝑙 

𝐽1,2 = −𝑔𝐴∗ 

𝐽2,1 = 𝑒𝑔𝑍∗ 

𝐽2,2 = 𝑒𝑔𝐴∗ − 𝑚 =
1

𝑍∗

𝑑𝑍∗

𝑑𝑡
= 0 

Box 3b Differential equations, parameters, equilibria and elements of the Jacobian matrix 

J’ for the linearized Lotka-Volterra-Verhulst (LVV’) model: 

𝑑𝐴′

𝑑𝑡
= 𝑟′𝐴′ − 𝑔′𝑍′𝐴′ − 𝑙𝐴′ 

𝑑𝑍′

𝑑𝑡
= 𝑒𝑔′𝑍′𝐴′ − 𝑚𝑍′ 

𝑟′ = 𝑟 (1 −
𝐴∗

𝐾
) 

𝑔′ = 𝑔 

𝐴′∗ = 𝐴∗ 

𝑍′∗ = 𝑍∗ 

𝐽′1,1 = 𝑟′ − 𝑔′𝑍′∗ − 𝑙 = 𝑟 (1 −
𝐴∗

𝐾
) − 𝑔𝑍∗ − 𝑙 =

1

𝐴∗

𝑑𝐴∗

𝑑𝑡
= 0 = 𝐽1,1 +

𝑟𝐴∗

𝐾
 

𝐽′1,2 = −𝑔′𝐴′∗ = −𝑔𝐴∗ = 𝐽1,2 

𝐽′2,1 = 𝑒𝑔′𝑍′∗ = 𝑒𝑔𝑍∗ = 𝐽2,1 

𝐽′2,2 = 𝑒𝑔′𝐴′∗ − 𝑚 = 𝑒𝑔𝐴∗ − 𝑚 =
1

𝑍∗

𝑑𝑍∗

𝑑𝑡
= 0 = 𝐽2,2 
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Box 4a Differential equations, equilibria and elements of the Jacobian matrix J for the 

original Rosenzweig-MacArthur (RM) model: 

𝑑𝐴

𝑑𝑡
= 𝑟𝐴 (1 −

𝐴

𝐾
) − 𝑔𝑍

𝐴

𝐴 + 𝑎
− 𝑙𝐴 

𝑑𝑍

𝑑𝑡
= 𝑒𝑔𝑍

𝐴

𝐴 + 𝑎
− 𝑚𝑍 

𝐴∗ =
𝑎𝑚

𝑒𝑔 − 𝑚
                            𝑍∗ =

(𝑟 (1 −
𝐴∗

𝐾
) − 𝑙) (𝐴∗ + 𝑎)

𝑔
 

𝐽1,1 = 𝑟 (1 −
𝐴∗

𝐾
) − 𝑟

𝐴∗

𝐾
− 𝑔𝑍∗

𝑎

(𝐴∗ + 𝑎)2
− 𝑙 

𝐽1,2 = −𝑔 (
𝐴∗

𝐴∗ + 𝑎
) 

𝐽2,1 = 𝑒𝑔𝑍∗
𝑎

(𝐴∗ + 𝑎)2
 

𝐽2,2 = 𝑒𝑔
𝐴∗

𝐴∗ + 𝑎
− 𝑚 =

1

𝑍∗

𝑑𝑍∗

𝑑𝑡
= 0 

Box 4b Differential equations, parameters, equilibria and elements of the Jacobian matrix 

J’ for the linearized Rosenzweig-MacArthur (RM’) model: 

𝑑𝐴′

𝑑𝑡
= 𝑟′𝐴′ − 𝑔′𝑍′𝐴′ − 𝑙𝐴′ 

𝑑𝑍′

𝑑𝑡
= 𝑒𝑔′𝑍′𝐴′ − 𝑚𝑍′ 

𝑟′ = 𝑟 (1 −
𝐴∗

𝐾
)                        𝑔′ =

𝑔

(𝐴∗ + 𝑎)
 

𝐴′∗ = 𝐴∗                                   𝑍′∗ = 𝑍∗ 

𝐽′1,1 = 𝑟′ − 𝑔′𝑍′∗ − 𝑙 = 𝑟 (1 −
𝐴∗

𝐾
) − 𝑔

𝑍∗

(𝐴∗ + 𝑎)
− 𝑙 =

1

𝐴∗

𝑑𝐴∗

𝑑𝑡
= 0

= 𝐽1,1 + 𝑟
𝐴∗

𝐾
+ 𝑔𝑍∗

𝑎

(𝐴∗ + 𝑎)2
− 𝑔

𝑍∗

(𝐴∗ + 𝑎)
 

𝐽′1,2 = −𝑔′𝐴′∗ = −𝑔
𝐴∗

(𝐴∗ + 𝑎)
= 𝐽1,2 

𝐽′2,1 = 𝑒𝑔′𝑍′∗ = 𝑒𝑔
𝑍∗

(𝐴∗ + 𝑎)
= 𝐽2,1

𝐴∗ + 𝑎

𝑎
 

𝐽′2,2 = 𝑒𝑔′𝐴′∗ − 𝑚 = 𝑒𝑔
𝐴∗

(𝐴∗ + 𝑎)
− 𝑚 =

1

𝑍∗

𝑑𝑍∗

𝑑𝑡
= 0 = 𝐽2,2 
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Box 5a Differential equations, equilibria and elements of the Jacobian matrix J for the 

original Rosenzweig-MacArthur-Scheffer (RMS) model: 

𝑑𝐴

𝑑𝑡
= 𝑟𝐴 (1 −

𝐴

𝐾
) − 𝑔𝑍

𝐴

𝐴 + 𝑎
− 𝑙𝐴 + 𝑙𝐾 

𝑑𝑍

𝑑𝑡
= 𝑒𝑔𝑍

𝐴

𝐴 + 𝑎
− 𝑚𝑍 − 𝐹

𝑍2

𝑍2 + 𝑧2
 

𝑛𝑜 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝐴∗ 

𝑛𝑜 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑍∗ 

𝐽1,1 = 𝑟 (1 −
𝐴∗

𝐾
) − 𝑟

𝐴∗

𝐾
− 𝑔𝑍∗

𝑎

(𝐴 + 𝑎)2
− 𝑙 

𝐽1,2 = −𝑔 (
𝐴∗

𝐴∗ + 𝑎
) 

𝐽2,1 = 𝑒𝑔𝑍∗
𝑎

(𝐴∗ + 𝑎)2
 

𝐽2,2 = 𝑒𝑔
𝐴∗

𝐴∗ + 𝑎
− 𝑚 − 2𝐹𝑍∗

𝑧2

(𝑍∗2 + 𝑧2)2
 

Box 5b Differential equations, parameters, equilibria and elements of the Jacobian matrix 

J’ for the linearized Rosenzweig-MacArthur-Scheffer (RMS’) model: 

𝑑𝐴′

𝑑𝑡
= 𝑟′𝐴′ − 𝑔′𝑍′𝐴′ − 𝑙𝐴′ + 𝑙𝐾 

𝑑𝑍′

𝑑𝑡
= 𝑒𝑔′𝑍′𝐴′ − 𝑚𝑍′ − 𝐹′𝑍 

𝑟′ = 𝑟 (1 −
𝐴∗

𝐾
)                     𝑔′ =

𝑔

(𝐴∗ + 𝑎)
                    𝐹′ =

𝐹𝑍∗

(𝑍∗2 + 𝑧2)
 

𝐴′∗ = 𝐴∗                                   𝑍′∗ = 𝑍∗ 

𝐽′1,1 = 𝑟′ − 𝑔′𝑍′∗ − 𝑙 = 𝑟 (1 −
𝐴∗

𝐾
) − 𝑔

𝑍∗

(𝐴∗ + 𝑎)
− 𝑙 = 𝐽1,1 + 𝑟

𝐴∗

𝐾
+ 𝑔𝑍∗

𝑎

(𝐴∗ + 𝑎)2
− 𝑔

𝑍∗

(𝐴∗ + 𝑎)
 

𝐽′1,2 = −𝑔′𝐴′∗ = −𝑔
𝐴∗

(𝐴∗ + 𝑎)
= 𝐽1,2 

𝐽′2,1 = 𝑒𝑔′𝑍′∗ = 𝑒𝑔
𝑍∗

(𝐴∗ + 𝑎)
= 𝐽2,1

𝐴∗ + 𝑎

𝑎
 

𝐽′2,2 = 𝑒𝑔′𝐴′∗ − 𝑚 − 𝐹′ = 𝑒𝑔
𝐴∗

(𝐴∗ + 𝑎)
− 𝑚 −

𝐹𝑍∗

(𝑍∗2 + 𝑧2)
=

1

𝑍∗

𝑑𝑍∗

𝑑𝑡
= 0

= 𝐽2,2 + 2𝐹𝑍∗
𝑧2

(𝑍∗2 + 𝑧2)2
−

𝐹𝑍∗

(𝑍∗2 + 𝑧2)
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Analysis 

Due to the simplicity of the models used here we have symbolic analytical expressions for 

the elements of the Jacobian of both the non-linear and the linear version of the models. This 

allows us to study the impact of the linearization on stability in analytical terms. More 

specifically, we calculated equilibrium densities and material fluxes for each model along an 

environmental gradient: K for the LVV, RM models and F for the RMS model. We also 

analysed K for the RMS model but present the results as online supplementary material. We 

then used these values, as if they were observations taken from the virtual reality of the 

models with nonlinear terms and used them to parameterize the models with the linear terms 

along the same environmental gradient. Both the linear and the nonlinear versions thus 

describe the same biomass densities and material fluxes. We then analysed the stability 

properties of the non-linear and the linear models along the environmental gradients under 

study. To simplify comparison with the literature we used the same parameters values as 

were used by Scheffer et al. (2000). Their parameters were inspired by algae-zooplankton 

dynamics and are shown in the legends of the figures. 

 

Results 

 

Lotka-Volterra-Verhulst model 

The equilibrium density of the resource in the LVV model is not dependent on the carrying 

capacity because the loss rate of the consumers does not depend on K and therefore its R* 

(cf. Tilman 1982) is constant over the environmental gradient (Fig. 2a, line A*). Instead, the 

increasing productivity of the system ends up in increasing biomass of the consumer (Fig. 

2a, line Z*). The LVV model goes through a predator invasion threshold (or transcritical 

bifurcation) at K = 0.64 and is stable for higher carrying capacities, first as a sink and 

thereafter as a damped oscillation (Fig. 2b). The only parameter of the LVV model that is 

linearized is the resource growth rate r’ (Box 3b) and this parameter increases with increasing 

carrying capacity (not shown). The linearized version of the LVV model (denoted as LVV’) 

also shows a transcritical bifurcation at a corresponding value of K but thereafter shows the 

type of neutral stability that is typical for LV models with only linear terms (Fig. 2b). 

 

Rosenzweig-MacArthur model 

Also in the RM model, the equilibrium density of the resource is not dependent on the 

carrying capacity because the loss rate of the consumer does not depend on K and therefore 

their R* is constant over the environmental gradient (Fig. 2c, line A*). And again, the 

increasing productivity of the system ends up in increasing biomass of the consumer (Fig. 

2c, line Z*). The RM model goes through a transcritical bifurcation at K = 1.02, and shows 

a stable equilibrium thereafter, first as a sink and thereafter as a damped oscillation (Fig. 2d). 

At a value of K = 2.65 a supercritical hopf bifurcation occurs and the model shows stable 

limit cycles as its dynamic behavior at higher carrying capacities. This is the famous ‘paradox 

of enrichment’ that states that increasing the carrying capacity of the resource tends to 
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destabilize consumer-resource interactions. During linearization of the RM model, two 

parameters are linearized, namely the resource growth rate r’ and the interaction term g’ (Box 

4b). However, of this two, only the resource growth rate increases with increasing carrying 

capacity (not shown). The interaction term g’ stays constant because it contain as its only 

variable the resource concentration, which itself does not depend on the carrying capacity. 

The linearized version of the RM model (denoted at RM’) also shows a transcritical 

bifurcation at a corresponding value of K but thereafter shows the type of neutral stability 

that is typical for LV models with only linear terms (Fig. 2d). 

 

Rosenzweig-MacArthur-Scheffer model 

Finally in the RMS model, the equilibrium density of both the resource and the consumer is 

dependent on the consumption rate of the top-consumer F (Fig. 2e, line A*) or the carrying 

capacity K (Fig. S1a, line A*). The pattern that the increasing productivity of the system ends 

up only in increasing biomass of the consumer has been lost (Fig. S1a, line A*) and the 

models shows a more complex response of resource and consumer abundance to enrichment 

or top-consumer consumption rate. Namely, the RMS model shows alternative stable states 

with critical transitions at F = 0.2408 and F = 0.076 (Fig. 2f). In addition to these saddle node 

bifurcations, the system shows a supercritical hopf bifurcation at F = 0.2404. As a result, the 

system shows limit cycles with increasing amplitude at lower values of F. When the 

amplitude becomes large enough, the system will shift to the other state in a homoclinic 

bifurcation. For more details on this aspect of the model see Scheffer et al. (2000). 

In line with the LVV and RM model, the RMS model first goes through a 

transcritical bifurcation when increasing K (Fig S1a, K = 1.0), and shows a stable equilibrium 

thereafter. At a value of K = 3.39, however, a saddle-node bifurcation occurs and the 

equilibrium densities of resources and consumers suddenly switch to a different level, lower 

for the resource and higher for the zooplankton (Fig. S1a). At decreasing carrying capacity, 

this switch takes place at a lower value of K = 3.12 and hence the system shows hysteresis 

and alternative stable states also for K. In addition to these alternative stable states, the system 

shows a supercritical hopf bifurcation at K = 3.89 and the model shows stable limit cycles as 

its dynamic behaviour at higher carrying capacities (Fig. S1b). 

During linearization of the RMS model, three parameters are linearized, namely the 

resource growth rate r’, the interaction term g’ and the consumption rate by the top-consumer 

F’ (Box 5b). Each of these linearized parameters changes with increasing top-consumer 

consumption rate or carrying capacity. The linearized version of the RMS model (denoted at 

RMS’) shows damped oscillations for any value of top-consumer abundance (Fig 2f). 

Importantly, the linearized RMS’ model does not show alternative stable states. When 

increasing K, the model does show the transcritical bifurcation at the value of 1.0 but 

thereafter only shows damped oscillations for higher values of the carrying capacity (Fig. 

S1b). This different behaviour of the RMS’ model compared with the LVV’ and the RM’ 

model can be explained from the chemostat dynamics that were build in the resource equation 

of the RMS model. 



99 
 

 
Figure 2 Equilibrium density and the maximum real part of the eigenvalues (Re(𝜆)) of the original and 

the linearized (‘) Lotka-Volterra-Verhulst (a-b), Rosenzweig MacArthur (c-d) and the Rosenzweig-

MacArthur-Scheffer (e-f) models along an environmental gradient (bifurcation axis). Also the mode of 

behavior along the gradient is depicted. Parameters are r = 0.5, K = 10 (panels e and f only), g = 0.4, a 

= 0.6, l = 0.01, e = 0.6, m = 0.15 and z = 0.5. 

 

Discussion 

When models are constructed to mimic the dynamics of biological systems, critical choices 

have to be made about which processes to include and how these processes are formulated. 

With respect to these choices it is important to understand their consequences for detecting 

the stability of the natural systems in relation to ongoing global environmental change. Our 

main result is that changing nonlinear terms in simple models of consumer resource 

interactions into linear ones, while maintaining the equilibrium densities and consequently 

the flux of the mass, has a strong impact on the stability properties of the model system. 

Although transcritical bifurcations were maintained during the transfer, the hopf and saddle-

node bifurcations were lost. Especially the latter is important for ecosystem managers that 

wish to anticipate and prevent abrupt regime shifts.  

This result contradicts with the observations made by Kuiper et al. (2015) who used 

the complex ecosystem model PCLake as a virtual reality in which they sampled information 

to parameterize an ‘empirical’ food web model that contained linear interaction terms. They 

found that stability of the simpler ‘empirical’food web model decreased in the direction of 

where the full ecosystem model showed a critical transition. The complexity of PCLake 

makes a clear understanding of what exactly happens during the transfer of stability 

properties troublesome. This triggered us to perform the current study for minimal dynamical 
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models that have a much simpler network structure and of which the impact of the transfer 

on the Jacobian matrix can be studied analytically. 

We can only speculate on what causes the apparent contradiction between the results 

presented here and the study of Kuiper et al. (2015). So far, we focussed on what is lost 

during the transfer, namely the nonlinear terms. It appears that for a model like PCLake, 

which contains a more realistic food web description compared to the minimal dynamical 

models used in this study, the organization of biomass densities and mass fluxes contains 

enough information for the food web model to capture the stability pattern of the whole 

system. Hence, apparent patterns in the trophic organization, such as feedback loops, 

connectivity and the distribution of weak and strong links, change along the gradient, and are 

present in both the ecosystem model and the 'empirical' food web model. This is consistent 

with the dominant view among food web ecologists that stability is woven by non-random 

structures in complex webs (Moore et al., 1993; Polis, 1998). But by showing here that for 

simpler models the shape of the interaction used is decisive, the question arises how many 

realistic patterns should be there to ensure that the calculated stability measure is not an 

artifact of the shape of the interaction that is chosen, and which nonlinear interaction terms 

have to be included to capture the stability properties of the system. We see much potential 

in the continuation of the work of Neutel et al. (2007) and Andres et al. (2016) who 

established series of empirical food web models along an environmental gradient in real 

ecosystem. Such analyses could be repeated for ecosystems that are known to show abrupt 

regime shifts, like shallow lakes and peatland ecosystems (Moore and de Ruiter, 2012; 

Scheffer et al., 2001), for example by performing mesocosm experiments (Moss et al., 2004) 

or by making or paleoecological reconstructions of food webs (Rawcliffe et al., 2010). 

Alternatively, Hannah et al. (2010) call for a more comprehensive description of the structure 

of food webs in the designs of the next generation ecosystem models to address the insights 

on stability from food web theory. 

Yet it may be that food web theory just does not provide an ideal framework for 

studying ecosystems in the context of environmental change, as models of food webs are 

primarily developed to understand the internal structure as it is, rather than to predict how 

this structure is affected by external change. Hence, it may be more worthwhile to continue 

developing the conventional methods for predicting the nonlinear dynamic behavior of 

ecosystems, i.e. using large simulation models or statistical models that detect generic early 

warning indicators in time series (Boettiger et al., 2013; Evans et al., 2012). But what is it 

then that makes these tools suitable for prediction making?  

For complex ecosystem models the argument is that they are (i) process based and 

(ii) contain sufficient a-priori knowledge of the forms and time scales of interactions in the 

system to essentially predict the possibility of regime shifts. After parameterization with field 

data and a proper validation procedure the modeller may be able to make sensible predictions 

using scenario analysis (Robson, 2014). A typical example is given by the PCLake model, 

which is the product of a comprehensive multidisciplinary research project on the functioning 

of Lake Loosdrecht in the Netherlands (Van Liere et al., 1992). Later, the model was 
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calibrated with data from more than 40 temperate lakes to obtain a best overall fit (Janse et 

al., 2010). As a result, PCLake is able to predict regime shifts for a range of shallow lake 

systems, although fine-tuning may still be necessary (Van Gerven et al., 2015a).  

For the statistical early warning signals the clue is that they don't require any a-priori 

system knowledge at all, as the indicators for critical transitions, such as critical slowing 

down and flickering, are generic and hence can be detected for all dynamical systems given 

that sufficient data is available to distill the hidden patterns (Dakos et al., 2015).  

Unfortunately, both these methods are not a panacea for making accurate predictions 

in ecosystem management. Early warning indicators may produce false alarms (Boettiger and 

Hastings, 2012) and certain regime shifts may not be preceded by any warning sign (Hastings 

and Wysham, 2010). Complex models in turn are generally difficult to operate and validate 

(Scheffer and Beets, 1994), while their uncertainty is high and often ignored (Arhonditis and 

Brett, 2004; Beck, 1987). A strategy that has been proposed to overcome the weaknesses of 

a single modelling approach is to exploit the diversity of modelling approaches (sensu 

Janssen et al. 2015), e.g. by applying them side by side within one integrated environmental 

assessment (Logan, 1994; Weijerman et al., 2015).  

In nature we often see that the interfaces between biotopes, such as riparian zones 

and estuaries, are exciting places, as there is a lot of heterogeneity and diversity in these 

ecotones (e.g. Tockner and Stanford 2002). Inspired by this, we argue that there is much to 

win by scrutinizing the interface between different modelling paradigms, like we endeavor 

in the present study. Only then can we truly consolidate insights generated by different 

modelling paradigms and understand how empirical data can be linked to mathematics to 

predict the stability of real ecosystems.  
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Supplementary Information 

 

 

Figure S1 Equilibrium density (a) and the maximum real part of the eigenvalues (b) of the original 

and the linearized (‘) Rosenzweig-MacArthur-Scheffer (RMS) model along a gradient of increasing 

carrying capacity (K). Also the mode of behavior along the gradient is depicted. Parameters are r = 

0.5, g = 0.4, a = 0.6, l = 0.01, e = 0.6, m = 0.15, F = 0.05, and z = 0.5. 
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Abstract 

Submerged macrophytes play an important role in maintaining good water quality in shallow 

lakes. Yet extensive stands easily interfere with various services provided by these lakes, and 

harvesting is increasingly applied as a management measure. Because shallow lakes may 

possess alternative stable states over a wide range of environmental conditions, designing a 

successful mowing strategy is challenging, given the important role of submerged plants in 

stabilizing the clear water state. In this study, a detailed aquatic ecosystem model is used to 

explore the consequences of mowing, in terms of reducing nuisance and ecosystem stability, 

for a wide range of external nutrient loadings, mowing intensities and timings. Additionally, 

we use the model to estimate how much phosphorus is removed, and evaluate the long-term 

effect of harvesting. Our model indicates that mowing can temporarily reduce nuisance 

caused by submerged plants in the first weeks after cutting, particularly when external 

nutrient loading is fairly low. When the modelled lake is more eutrophic, the risk of 

instigating a regime shift increases. This risk can be tempered by mowing halfway the 

growing season when the resilience of the system is highest, as our model showed. Up to half 

of the phosphorus entering the system can potentially be removed along with the harvested 

biomass. As a result, prolonged mowing can prevent an oligo- to mesotrophic lake from 

becoming eutrophic to a certain extent, as our model shows that the critical nutrient loading 

where the lake shifts to the turbid state can be slightly increased.  
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Introduction 

Shallow lake ecosystems depend on the presence of submerged aquatic plants (macrophytes) 

for good water quality and high biodiversity (Carpenter and Lodge, 1986; Heimans and 

Thijsse, 1895; Jeppesen et al., 1998). There is a positive feedback between aquatic plants and 

water clarity, through which the plants enhance their own growing conditions (Scheffer, 

2004; Van Donk and Van de Bund, 2002). Such self-stabilizing mechanism causes a tendency 

of the system to resist changes in external environmental conditions, i.e. it promotes a clear 

water state within the context of alternative stable states in lakes (Scheffer, 2004).  

During the second half of the twentieth century, submerged macrophytes 

disappeared from many shallow lakes in temperate regions because of external nutrient 

loading from mainly anthropogenic sources (Gulati and Van Donk, 2002; Körner, 2002). 

Lakes switched from a clear-water state, dominated by macrophytes, to a turbid-water state 

with few plants, prone to harmful cyanobacterial blooms (Carpenter et al., 1999; Scheffer et 

al., 1993). For many years since, tremendous management effort has been devoted to the 

restoration of aquatic plant communities, mainly through the reduction of external nutrient 

loading, especially phosphorus (P) (Cullen and Forsberg, 1988; Hilt et al., 2006; Jeppesen et 

al., 2005). Although lakes in the turbid state may also be resilient to changes in external 

environmental conditions (Hosper, 1998), reduction of external nutrient loading is effective 

in the long run (Jeppesen et al., 2005), and many of the impacted lakes have recovered or are 

now recovering to a clear-water state with submerged macrophytes (Gulati and Van Donk, 

2002; Sondergaard and Moss, 1998).  

Almost inevitable, the return of aquatic plants is accompanied by nuisance caused 

by these plants (e.g. van Donk 1990). The nutrient availability in restored lakes is generally 

still rather high, which in combination with improved light conditions allows for rampant 

growth of rooted macrophytes (Lamers et al., 2012). These dense stands of aquatic plants 

cause nuisance to boaters, swimmers and anglers, and impact other functions and services 

such as the retention and discharge capacity of the lake (Anderson, 2003; Van Nes et al., 

1999). As a result, current management practices are more and more focusing on the 

reduction of aquatic plants, even though the re-establishment of an aquatic plant community 

is still considered a prerequisite for the long-term success of lake restoration measures (Van 

Nes et al., 2002). In many rapidly developing countries nuisance growth of aquatic plants is 

also readily apparent (Van Ginkel, 2011). There, the increased availability of nutrients 

stimulates plant growth in precedence of a regime shift to a phytoplankton dominated state – 

a part of eutrophication which also occurred in the temperate lakes before the submerged 

macrophytes disappeared en mass during the last century (Hasler, 1947).  

A common response to excessive growth of submerged macrophytes is mechanical 

cutting and harvesting. Though cost- and labor-intensive, this option is generally preferred 

over biological control by e.g. grass carp or the use of herbicides (Hilt et al., 2006). However, 

when lakes have alternative stable states, defining a sustainable mowing regime is 

challenging, given the important role of macrophytes in stabilizing the clear water state. 

Theory predicts that when a critical, in practice unknown, amount of vegetation is removed, 
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positive feedbacks propel the system to the turbid state with phytoplankton dominance 

(Scheffer et al., 1993; Van Nes et al., 2002). When less vegetation is removed, on the other 

hand, the system may show a swift recovery back to the vegetated equilibrium state, undoing 

the impact of mowing. Van Nes et al. (2002) applied two dynamic aquatic plant models of 

different complexity to analyze the response of aquatic plant populations to harvesting and 

concluded that it may be almost impossible to maintain vegetation biomass at any desired 

intermediate level. Consequently, Van Nes et al. (1999, 2002) suggest it may be more fruitful 

to assign just a few key functions to entire lakes, than to pursue a compromise between 

conflicting destinations. In most cases however, lake managers do not have the luxury to 

divide functions over different lakes, also due to legal obligations, such as the Water 

Framework Directive (European Union, 2000).  

A potentially viable option is to aim for a temporal relief of nuisance following a 

discrete mowing event. When this period of relief coincides with the moment users are 

relying on the services provided by the lake, mowing can be convenient despite eventual 

recovery to the vegetated equilibrium state. Van Nes et al. (2002) did not consider the 

temporal aspects of mowing in their plant modelling study, as they assumed continuous 

cutting strategies for simplicity. Yet it remains a tall order for water quality managers to 

estimate the amount of plant volume that can be safely removed, and predict the period of 

relief of nuisance after mowing. The numerous field and laboratory studies that have 

investigated the response of macrophytes and phytoplankton to harvesting (e.g. Engel 1990; 

Nichols and Lathrop 1994; Barrat-Segretain and Amoros 1996; Morris et al. 2003; Bal et al. 

2006; Morris et al. 2006) did not bring general applicable insights as the results were 

ambiguous. Moreover, lake managers in NW Europe often lack experience as submerged 

macrophytes were missing for a long time, while formal decision support schemes are 

basically absent (Hilt et al., 2006). We argue that there is a need for an integrated analysis to 

obtain a better understanding of the general consequences of plant removal in relation to 

trophic state and ecosystem resilience. 

In this research we use a comprehensive dynamic ecosystem model - PCLake - to 

study the effect of mowing on shallow lake ecosystems with alternative stable states. This 

model describes the main nutrient and food web dynamics of a non-stratifying shallow lake 

in response to eutrophication and re-oligotrophication (Janse and van Liere, 1995; Janse, 

1997), including many feedback mechanisms and processes that have been associated with 

plants and alternative stable states in lakes. Firstly, we evaluate how the impact of mowing 

depends on the trophic status of the lake (i.e. external nutrient loading), mowing intensity 

and timing of mowing during the growing season. We express the effect of mowing both in 

terms of remaining plant cover, and in terms of days without nuisance caused either by 

macrophytes or cyanobacteria. This exercise also allows us to evaluate under which 

conditions mechanical cutting of macrophytes results in a critical regime shift to the 

alternative turbid state. Secondly, we use the model to obtain quantitative estimations of the 

amount of P that can be removed from the system via harvesting of macrophytes. Removal 

of P may help to remediate eutrophication effects in the lake, and potentially can be recovered 
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for sustainable reuse. Finally, we explore the long term impacts of mowing to analyze 

whether mowing is a measure that also can be applied to help prevent undesired 

eutrophication effects in shallow lakes. 

  

Methods 

 

Model description 

 

General features 

PCLake consists of a number of coupled ordinary differential equations and auxiliary 

equations which describe the most important biotic and abiotic components of both the water 

column and the sediment top-layer of a non-stratifying shallow lake (Janse 1997; see Online 

Resource 1 for a schematic overview of the model). By putting equal emphasis on the biotic 

and abiotic components, the model is unique in its kind (Janssen et al., 2015). All organic 

components are modelled in dry-weight (DW), nitrogen (N) and phosphorus (P). An 

important stoichiometric consequence is that the nutrient-to-dry-weight ratios of the organic 

components are variable. Other key ecological concepts covered by the model are: closed 

nutrient cycles, benthic-pelagic coupling, food-web dynamics and trophic cascade. PCLake 

has been calibrated with data from more than 40 temperate lakes to obtain a best overall fit, 

making the model suitable for more generalized studies on temperate shallow lakes (Janse et 

al., 2010).  

 

Alternative stable states 

The PCLake model shows a nonlinear response to changing nutrient loadings, similar to 

examples studied in the field (Janse, 1997). Lakes with a low external nutrient loading are in 

the clear-water macrophyte-dominated state with low chlorophyll-a concentrations. Lakes 

that receive a high external nutrient input reside in a turbid phytoplankton dominated state. 

In between, a fairly abrupt shift between the contrasting states takes place. The critical 

nutrient loading for a shift from a clear to a turbid state during eutrophication (CNLeu) is at 

a much higher value than the critical nutrient loading where the reverse switch takes place, 

back to clear conditions during re-oligotrophication (CNLoligo). Hence, at intermediate 

loading levels both the clear-water state and the turbid water state can exist as alternative 

stable states and the prevalent state depends on the foregoing conditions - a phenomenon 

known as hysteresis. Between the critical nutrient loading values, strong perturbations, such 

as discrete mowing events, may instigate a regime shift from one state to the other (Janse et 

al., 2008). Classical alternative stable states theory predicts that a lake is more vulnerable to 

disturbances closer to a tipping point, while the time it takes to recover from a perturbation 

increases (Van Nes and Scheffer, 2007).  
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Macrophytes 

The submerged macrophytes in PCLake represent Waterweeds in general (Elodea spp.). 

Waterweed species are non-native in NW Europe and they are often among the first 

macrophytes to return after restoration measures have been taken (Heimans and Thijsse, 

1895; Immers et al., 2015; Perrow et al., 1997; Pot and ter Heerdt, 2014). They are 

documented to cause nuisance by their mass development and are subject to mowing 

management (Hilt et al., 2006; Zehnsdorf et al., 2015). In PCLake, the growth of the 

submerged macrophytes (Fig. 1) is dependent on nutrient availability, temperature and under-

water light availability. Plants take up phosphate, ammonium, and nitrate from both water 

column and soil pore water to achieve optimal P:biomass and N:biomass ratios (c.f. Droop 

1974). Ammonium is preferred, but when the ammonium concentration is low, the plants 

switch to nitrate uptake. The available light for primary production forms a gradient with 

depth (Lambert–Beer’s law) and is controlled by the light intensity at the water surface, 

which is set by a seasonal sine curve (based on long-term averages for Dutch solar 

irradiance), and by the light attenuation by the plants themselves (self-shading), 

phytoplankton, detritus and inorganic matter in the water column as well as background 

extinction. It is assumed that the growing season starts when a critical spring water 

temperature (9°C) is reached. This happens in mid-April, given the long-term averaged 

seasonal water temperature in Dutch lakes. The growing season ends half September 

onwards, when part of the above-ground biomass is allocated to the below ground biomass, 

and the mortality of the plants is raised for two weeks such that 30% of the original biomass 

survives, i.e. the over-wintering parts. 

A mowing function is available in PCLake, which requires defining a date when the 

mowing event takes place, the duration of the mowing event and a mowing intensity (i.e. 

fraction of the biomass that is removed). The mowing intensity is independent of the duration 

of the mowing event: a natural logarithm is used to calculate the amount of biomass that is 

removed per day: h = -ln(1.0–f)/p*V, where h is the harvested biomass (g m-2 day-1), f is the 

intensity (-), p is the duration (days) and V is the total aquatic plant biomass in the lake (g m-

2). We applied a ‘clean’ mowing strategy throughout this study, whereby all biomass is 

removed from the lake. We did briefly consider potentially harmful side effects of mowing 

however, including enhanced resuspension and incomplete removal of plant material from 

the water column, but present these findings as an appendix as they did not affect the 

conclusions of our main analyses (see Online Resource 2). 
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Figure 1 Basic processes of the aquatic plants in PCLake. The modelled processes are nutrient uptake, 

production, respiration and nutrient excretion, mortality, grazing by birds and mowing. The nutrient 

processes are modelled both in phosphorus and nitrogen. Herbivory by birds was not considered in this 

study. The figure is adapted from Janse (2005). 

 

Implementation 

We used default parameter settings describing a lake that is representative for many shallow 

lakes in the temperate zone, with a mean depth of 2 m, a 1000 m fetch, a water inflow of 20 

mm d−1 (100 day residence time), a lightly clayish soil (30% dry matter, of which 10% 

organic matter, and 10% lutum), no infiltration or seepage and no surrounding wetland area 

(c.f. Janse et al. 2010). The N:P ratio of the external nutrient loading was set at 13, i.e. the 

estimated average N:P ratio for agricultural runoff in the Netherlands (Wolf et al., 2003). In 

this set-up, the calculated CNLeu and CNLoligo values are 1.6 and 0.9 mg P m-2 d-1 respectively. 

To run simulations we used a C++ compiled version of the PCLake model called from 

GRIND for MATLAB (Mooij et al., 2014). 

 

Model simulations 

 

Nutrient loading, mowing intensity and timing 

To study the impact of mowing on the lake we varied three parameters of the model: (1) 

external nutrient loading, (2) mowing intensity and (3) timing of the mowing. We first 

focused on the interplay between the first two. We simulated different combinations of 

external P loading, ranging from 0.7 to 1.7 in steps of 0.05 (mg m-2 d-1), and mowing intensity, 

ranging from 0 to 0.9 in steps of 0.1 (-). We did not consider P loadings above 1.7 mg m-2 d-

1 as the modelled lake then resides in the turbid water state without macrophytes. Each 

simulation was started from a clear water state and we ran the model for 20 years before 

starting the mowing procedure to ensure the lake to be in (seasonal) equilibrium. The 

initialization period was followed by three succeeding years where a mowing event took 

place. We considered three years to include the effect of mowing on the biomass in the next 

year (Kimbel and Carpenter, 1981). Each of the mowing years comprised one discrete 

mowing event, taking place on July 1st. This is in compliance with the guidelines provided 

by Rijkswaterstaat, responsible for the management of the main waterways and water 
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systems in the Netherlands, who discourage mowing during the avian breeding season 

(Rijkswaterstaat, 2012). The duration of the mowing event (p) was kept at the default value 

of 10 days in all of these and subsequent cases. Next, we repeated the foregoing simulations, 

but this time focusing on different combinations of mowing intensity and timing. Again the 

mowing intensity ranged from 0 to 0.9 in steps of 0.1, while the mowing dates ranged from 

June 1st to September 1st in steps of 7 days. We performed this analysis for three different 

nutrient loading settings (0.8, 1.1 and 1.4 g P m-2 d-1, respectively).  

To evaluate the effects of the mowing actions we analyzed the summer average 

(June 10th to September 15th) vegetation cover and total and cyanobacterial chlorophyll-a 

concentration in the final year of the simulations. In the model, the vegetation cover increases 

linearly with the dry weight (DW) of submerged plants until 200 g DW m-2 is reached and 

the cover is 100%. Also, we calculated the days with nuisance during the peak of the holiday 

season (beginning of July until the end of August) caused by either submerged water plants 

or cyanobacteria. We presumed that water plants cause nuisance when they cover more than 

40% of the area. For the cyanobacteria, we followed the Dutch cyanobacteria protocol and 

took 12,5 mg m-3 cyano-chlorophyll as a limit above which nuisance occurs (Nationaal Water 

Overleg, 2012). Short-time human exposure to concentrations higher than this value can 

cause skin rashes or gastrointestinal sickness, and this risk should be communicated to 

bathing guests.  

Additionally, we zoomed in on one intermediate nutrient loading (1.3 mg P m-2 d-1) 

and present the within-season dynamics of the vegetation cover and chlorophyll-a in response 

to several different mowing intensities, to also obtain a more detailed view on the dynamics 

of the lake.  

 

Nutrient removal by harvesting 

We kept track of the amount of P stored in aquatic plant biomass which was harvested from 

the system in the final (third) year of mowing, to evaluate the potential to impoverish the 

lake. The amount of P removed from the system via harvesting provides an indication of the 

P that can potentially be recovered for reuse. In addition, we calculated the relative removal 

of P, that is, the ratio of P in the harvested biomass to the total amount of P added to the 

system via external loading. The relative removal thus allows to assess the extent to which 

harvesting may contribute to the closing of the P cycle.  

 

Prolonged mowing and the resilience to nutrient loading 

We used PCLake to analyze whether harvesting of macrophytes has the potential to forestall 

eutrophication effects in the long run. More precisely, we analyzed how repeated annual 

harvesting changes the CNLeu of the lake, that is, the amount of external nutrient loading the 

lake can withstand without switching to a phytoplankton-dominated turbid state. Following 

Janse et al. (2008), we calculated CNLeu
 values for different combinations of mowing 

intensity and timing, for which we took the same ranges as presented in the foregoing 

analysis. For each combination the model was evaluated for P loading rates ranging from 0.1 
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to 4 mg P m-2 day-1 in steps of 0.1. Each simulation started with a clear and oligotrophic lake. 

The summer average Secchi depth (m) after 20 years was used to evaluate the state of the 

lake, to determine which P loading is the CNLeu. Previous analyses have shown that the ratio 

of Secchi depth to lake depth is a suitable response variable to determine the CNLeu (c.f. 

Witteveen+Bos 2010; Lischke et al. 2014): above a ratio of 0.5 the lake is defined as clear, 

while below this ratio the lake is defined as turbid. Mowing took place in each of the 20 years 

and comprised one discrete mowing event lasting the standard 10 days. 

 

Results 

 

Nutrient loading and mowing intensity 

The model shows that the summer average plant cover can be reduced by mowing (Fig. 2a). 

When external nutrient loading is low, plant cover shows an almost linear decrease with 

increasing mowing intensity. At high nutrient loadings however, mowing can trigger a regime 

shift to an alternative state with high phytoplankton concentrations (Fig. 2b). The mowing 

intensity that leads to a regime shift shows a nonlinear relationship with nutrient loading; the 

critical mowing intensity decreases sharply when the external loading approaches the critical 

nutrient loading (1.61 mg m-2 d-1). In the vicinity of the critical nutrient loading, a mowing 

intensity of >30% is sufficient to trigger a collapse.  

 

Figure 2 Combined effects of mowing intensity and nutrient loading on summer average plant coverage 

(a) and chlorophyll-a (b) in the final year of the simulations. Mowing starts on July 1st. 
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Zooming in on the seasonal dynamics clearly reveals the time window where plant cover is 

reduced due to mowing lasting for at least several weeks (Fig. 3a). It also shows that, apart 

from the average plant cover, the maximum plant cover reached during the growing season 

is also lowered with increasing mowing intensity. A detailed look reveals the importance of 

considering three succeeding years: the 90% mowing treatment triggers a regime shift, which 

only becomes apparent in the second and third year, when the plant community collapses and 

phytoplankton blooms start to occur (Fig. 3b).  

 
Figure 3 Effects of mowing on July 1st on summer average plant coverage (a) and chlorophyll-a (b) in 

three succeeding years for a lake receiving 1.3 mg P m-2 day-1.  

 

An important question is how the response of the ecosystem to mowing translates to nuisance 

experienced by lake users. Our approach illustrates that there is a sharp boundary between 

nuisance caused by macrophytes and nuisance caused by cyanobacteria when the nutrient 

loading is high (Fig. 4a-c). On the other hand, when the nutrient loading is fairly low (<1 mg 

m-2 day-1), mowing can create conditions where hardly any nuisance is experienced during 

the peak of the summer holiday season (Fig. 4c), given that a substantial fraction of the 

submerged macrophytes is removed (>50%).   
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Figure 4 Combined effects of mowing intensity and nutrient loading on days with nuisance caused by 

plants (a), cyanobacteria (b) or both plants and cyanobacteria (c) during July and August (peak of the 

holiday season in the temperate region) in the final year of the simulations. Mowing starts on July 1st.  

 

 

Timing of mowing 

The impact of harvesting varies during the growing season (Fig. 5), particularly when the 

external nutrient loading is high (Fig. 5a-b) and the lake is susceptible to a regime shift (Fig. 

2a-b). When the nutrient loading is high, the modelled lake is most vulnerable in late summer, 

when harvesting a fraction of 40% is sufficient to instigate a regime shift to the phytoplankton 

dominated state. To a somewhat lesser extent, also mowing in early summer eases a shift to 

the turbid state. The resilience of the modelled lake is highest during mid-summer, as up to 

80% of the vegetation can be removed, resulting in a halving of the summer average plant 

cover (Fig. 5a-b). The timing of mowing is not particularly important when the external 

nutrient loading is low (Fig. 5e,f). Large fractions of the plant biomass can be removed almost 

the entire growing season without risking a regime shift, allowing to reduce the summer 

average plant cover up to 40%. 
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Figure 5 Combined effects of mowing intensity and mowing date on summer average plant coverage 

and chlorophyll-a in the final year of the simulations, for three different nutrient loadings: 1.4, 1.1 and 

0.8 mg m-2 day-1, respectively. 

 

 

Nutrient removal by mowing 

The amount of P harvested from the lake during a mowing event increases with mowing 

intensity and nutrient loading, and is highest close to the point where mowing leads to a 

regime shift, reaching a maximum of almost 230 mg P m-2. The relative removal of P 

increases with mowing intensity and can be as high as 58%. However, the relative removal 
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decreases with increasing nutrient loading. The associated dry-weight of the harvested plant 

biomass is presented in Online Resource 3. 

 

 
Figure 6 The amount of P (mg m-2 year-1) extracted from the system via harvesting of plant biomass 

during the last year of mowing, for different combinations of external nutrient loading and mowing 

intensity. The orange color indicates the quantity. The relative removal, that is, the ratio of P in the 

harvested biomass to the total amount of P added to the system via external loading, is presented 

between squared brackets (%).  

 

 

Prolonged mowing and resilience 

Our model exercises show that in the long run repeated mowing is able to enhance the 

resilience of the clear water state to nutrient loading for a wide range of mowing intensities 

and mowing dates, as it leads to an increase (max. 7%) of the critical nutrient loading (CNLeu 

> 1.61 mg P m-2 d-1; Fig. 7). Mowing during July and August in combination with an 

intermediate mowing intensity is most beneficial for enhancing the CNLeu. Mowing in early-

summer or in late-summer can lead to a reduced resilience to nutrient loading (CNLeu < 1.61 

mg P m-2 d-1).  
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Figure 7 Effect of prolonged (long term) mowing on the CNLeu (mg P m-2 d-1), i.e. the amount of 

nutrient input the lake can withstand without shifting to the turbid water state, for different combinations 

of mowing intensity and timing (start of the mowing procedure). The colors indicate whether mowing 

leads to an increase (green) or decrease (red) of the critical nutrient loading (default 1.61 mg m-2          

day-1).  

 

Discussion 

 

Temporal relief of nuisance 

Our modelling study shows that mowing can result in a temporal reduction of plant cover for 

a range of nutrient loadings and mowing intensities. These reductions of plant cover can 

reduce nuisance for up to several weeks, especially when the mowing intensity is fairly high 

and the external nutrient loading is low or moderate. Our model thus indicates that mowing 

can facilitate multi-usage of shallow lake ecosystems. At lower intensities mowing also 

reduces the summer average plant cover, but this may be not sufficient to actually reduce 

nuisance as the remaining cover still exceeded the threshold level, which we fixed at 40%. 

Our model analyses indicate that it is difficult to design a convenient mowing strategy when 

the external nutrient loading is high; the attraction of the alternative equilibrium is so strong 

that a rather small reduction in plant volume may be sufficient to trigger a shift to 

phytoplankton dominance. Interestingly, our results elucidate that a reduction of external 

nutrient loading alone is not an effective measure to drive back nuisance caused by aquatic 

plants (Fig. 4), which emphasizes the need for mowing. Because the risk of inducing a regime 

shift by mowing increases with external nutrient loading, the successfulness of mowing to 

reduce macrophyte nuisance goes hand in hand with the reduction of external nutrient 

loading.  
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The importance of timing of mowing 

Our model analyses indicate that the highest reductions of plant biomass can be achieved by 

mowing in mid-summer, while mowing in late summer appears to be least recommendable. 

The latter is not just because the peak of the holiday season (and thus recreational usage) is 

in mid-summer, but also because the risk of inducing a regime shift increases when mowing 

is conducted later in the growing season. In our model, mowing late in the growing season 

provides the aquatic plants with little opportunity to regain biomass before the growing 

season ends. As a result, the macrophytes start the competition with phytoplankton in the 

following spring on their back foot, which eases a shift to phytoplankton dominance (Scheffer 

2004, P. 280). Mowing too early in the growing season also bears a certain risk of triggering 

a regime shift, as our study showed, particularly when the external nutrient loading is high. 

We hypothesize that this is because the inter-specific competition with phytoplankton in early 

June is still rather strong, and setting back the submerged macrophytes favors phytoplankton 

growth. At the peak of the growing season, on the other hand, the intra-specific competition 

among macrophytes becomes more controlling, and mowing reliefs this intraspecific 

competition. Hence, the net growth rate of the macrophytes directly after mowing relates 

positively to mowing intensity (e.g. Fig. 2: the net growth rate after 30% and 60% mowing 

is 0.017 and 0.022 day-1, respectively). This compensatory growth is not sufficient however 

to compensate for the entire loss of biomass, as plant cover does not recover to pre-harvesting 

levels (Fig. 2).  

The effect of timing on the impact of mowing may be different in field situations, 

particularly when the macrophyte community comprises growth forms that - unlike e.g. 

Elodea canadensis - produce overwintering organs (Scheffer 2004, p.279). Hence, in case of 

propagule forming macrophyte species such as several Potamogeton and Myriophyllum 

species, these propagules may have already been formed when harvesting takes place late in 

the growing season, wherefore the impact on the next growing season is much smaller. 

Harvesting earlier in the season would then be an effective way to reduce the potential for 

macrophyte plant growth in the succeeding year, as that would prevent the formation of 

propagules (Wade, 1990). Interestingly, a reduction of plant volume in the succeeding year 

is generally considered as a positive result of harvesting (e.g. (Dall’Armellina et al., 1996), 

while our modelling study hints that this strategy is not without risks when lakes have 

alternative stable states and the external nutrient loading is high.  

  

Restrictions to harvesting 

In our model study we harvested fractions of the macrophytes to levels that may be unfeasible 

in real field situations. For example, there are practical reasons which frustrate harvesting 

large quantities of aquatic plants, as it is a labor-intensive and expensive activity. A simple 

calculation learns that for our modelled (circular) lake with a diameter of 1000 m, when 

receiving 1.2 mg P m-2 day-1, a harvesting intensity of 80% implies removing more than 650 

tons of fresh biomass in just a short time span, assuming a fresh-weight:dry-weight ratio of 

10 (e.g. Boiché et al. 2011; Dorenbosch and Bakker 2011; Online Resource 3). Secondly, 
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local laws and regulations, such as the Dutch flora- and fauna law, may impose restrictions 

on harvesting intensity and timing. Plants provide habitat and food for many species and it 

has been reported that significant amounts of fish and macroinvertebrates are removed along 

with the plants during harvesting (Engel, 1990), which may include protected species. 

Furthermore, removing large quantities of plants may conflict with the protection of 

waterbirds that feed on the plants or the fauna living in macrophyte beds. A third reason is 

that in a field situation it will always be difficult to estimate the amount of aquatic plants that 

should be present to safeguard a clear water state, forcing lake managers to take a 

conservative approach when designing their plans. Hence, even though a submerged plant 

cover as low as 20% may coincide with good water quality (e.g. Portielje and Van der Molen 

1998; Yanran et al. 2012), Hilt et al. (2006) advise to take 50% vegetation cover as a rule of 

thumb, and suggest that remaining stands after harvesting should still cover 50% of the lake. 

Also the Dutch authorities advise to remove maximally 50% of the plant cover, and even 

suggests to mow only 10% in case of native plant species (Rijkswaterstaat, 2012).  

 

Spatial heterogeneity 

From our analyses it appears that harvesting 10% of the standing crop has only a marginal 

effect on reducing nuisance. This situation may change however when it is possible and 

desirable to spatially divide functions over the lake area. By harvesting in such a way that 

only certain patches are cleared, it may become possible to reduce nuisance locally e.g. in a 

zone designated for swimming or a channel for navigation. The model we used (PCLake) is 

not spatially explicit and is therefore no suited to evaluate the effect of a local disturbance by 

harvesting, as it is intended to provide a general indication of the harvesting pressure the lake 

can withstand. There is only little known about the effect of spatial heterogeneity on 

alternative stable states in shallow lakes. Theoretical studies suggest that the potential of local 

disturbances to instigate an ecosystem-wide regime shift increases with interconnectedness 

(dispersion) within the system (Van Nes and Scheffer, 2005b), and decreases with spatial 

heterogeneity (Van de Leemput et al., 2015). These studies thus suggest that alternative stable 

states are unlikely to persist side by side in lakes which are very homogenous. This means 

that local mowing becomes risky as over-harvesting has catastrophic consequences for the 

entire lake, albeit the regime shift may be gradual (Bel et al., 2012; Van de Leemput et al., 

2015). When lakes do exhibit spatial heterogeneity e.g. in terms of depth, fetch or sediment 

composition, the response to a local perturbation becomes much more difficult to predict 

(Van de Leemput et al., 2015), but this heterogeneity can potentially lead to coexistence of 

contrasting states. The latter would create opportunities for localized harvesting practices. A 

follow up step is to couple the ecological modules of PCLake to 2D-hydrodynamic models 

to analyze harvesting in a spatial hydrodynamic context. This development is still in its 

infancy however (e.g. Van Gerven et al., 2015a).  
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Collateral effects  

Generally, not all cut plant biomass is removed from the lake due to inefficiency of the 

harvesting equipment. The fragments that are not collected start to decompose in the water 

column, thereby releasing nutrients and contributing to the depletion of oxygen which in turn 

can stimulate internal nutrient loading from the sediment (Hilt et al., 2006). Additionally, 

cutting machinery may cause resuspension of sediments, which may reduce transparency and 

stimulate nutrient recycling. These side-effects of mowing are expected to be detrimental to 

ecosystem functioning (Rijkswaterstaat, 2012), but it is difficult to quantify their true 

importance in the field. For simplicity reasons, we did not consider the effect of collateral 

disturbance in our main analyses. Yet, we did briefly look into their relative importance 

(presented as Online Resource 2), which revealed that, for the modelled circumstances, the 

effect of collateral damage is marginal. This finding is in line with Carpenter and Gasith 

(1978) who reported short lived or insignificant effects on the littoral environment after 

clearing a 0.2 ha patch. Only when a regime shift has already been initiated, our model shows 

that the collateral effects of mowing stimulate the upheaval (Online Resource 2). A factor we 

did not consider in this study is that many nuisance species (including Elodea spp.) spread 

by vegetative fragmentation (Hilt et al., 2006). Mowing can stimulate dispersal of non-native 

nuisance species when fragments are produced that easily ride with the flow and settle at new 

places (Abernethy et al., 1996). Especially when surrounding lakes or waterways are still free 

of these exotics, the dispersal capacity of the plant should be taken into consideration.  

 

Nutrient removal and recovery 

Because there are nutrients stored in the plant tissue, the removal of submerged plants may 

help to remediate the detrimental effects of eutrophication, both in the lake where the plants 

are removed from, and in downstream aquatic ecosystems (Carpenter and Adams, 1977). Our 

modelling scenarios indicate that the highest amounts of P is extracted from the system when 

both the external P loading and the mowing intensity are high. The relative removal however, 

which tells more about the capacity to actually impoverish the system via harvesting, 

increases with decreasing nutrient loading, maximally reaching 58% in our analyses. The 

numbers we found are grossly in line with estimations in the literature. For a eutrophic lake 

with 30% plant cover, Carpenter and Adams (1977) estimated that a relative removal of 37% 

of the P loading could be established if all plants would be harvested. Conyers and Cooke 

(1983) reported that a relative removal of 44% could be reached in a mesotrophic lake with 

43% plant cover.  

Harvested plant tissue can potentially serve as a source of nutrients, instead of only 

being waste material. The use of aquatic plant biomass to fertilize agriculture fields is an old 

practice (Roger and Watanabe, 1984), which is still carried out in many parts of mainly the 

developing world. Recently harvesting aquatic plant biomass has been put forward as a way 

to close the P cycle (Quilliam et al., 2015). Although excessive growth of macrophytes 

indicates a local surplus of nutrients, P is a scarce element in many places, leading to 

phosphate starvation in crops, and global phosphate sources are declining rapidly (Childers 
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et al., 2011; Cordell et al., 2009). The recovery of valuable P thus has the potential to increase 

the viability of harvesting as a management measure, which is otherwise a costly procedure 

(Hilt et al., 2006). Currently there is no agreement on how to maximize P uptake and removal 

by macrophytes (Quilliam et al., 2015). Our model results suggest that it is beneficial for lake 

managers to reduce the external nutrient loading as much as possible, as that will reduce the 

possibility of harvesting triggering an unwanted regime shift to a state without macrophytes, 

and increase the relative removal of P.  

 

Prolonged harvesting  

Model analysis of the long-term effects of harvesting suggests that harvesting can potentially 

be used to prevent nutrient over-enrichment (Fig. 7). It is important to note however that in 

this analysis harvesting was executed every year, and that we started off with a clear and 

oligotrophic lake - in the domain where no alternative state is apparent. Because of the latter, 

almost all macrophytes can be removed at the start of the analysis without risking a shift to 

the alternative state, as there simply is none. In turn, the removal of macrophytes prevents 

the accumulation of nutrients in the system, postponing the formation of an alternative 

equilibrium. What this learns us is that the history of the lake is an important factor to 

consider. If nutrients have been able to accumulate in the lake prior to the mowing activities, 

as in our first analyses where we considered lakes in equilibrium, the resilience of the lake to 

perturbations may have already decreased and fairly small fractions of macrophyte removal 

may be enough to instigate a regime shift (see Online Resource 4 for an illustrative example). 

Based on our model analysis we thus argue that it is much harder to use macrophyte removal 

to impoverish a lake when it is already eutrophic, than to prevent a lake from becoming 

eutrophic by means of harvesting when it is still oligotrophic, even though the mowing 

intensities and external nutrient loading levels at the time of mowing may be exactly the 

same. As many vegetated lakes in NW Europe have only recently recovered from the turbid 

state, and their sediments are likely still saturated with nutrients, mowing plans should be 

designed with great care.  

 

Pros and cons of a model approach 

Our point of departure is that every water system is unique (n=1), but that there are general 

mechanisms that are key to the ecological functioning of every lake. PCLake has been 

developed to include to most important biotic and abiotic processes. Moreover, to strive for 

generality, the model has been calibrated with data from >40 lakes with the aim to get the 

best overall fit. Yet, not all processes that may be relevant in the field are included in the 

model however. For example, we considered only monocultures of Elodea spp. while other 

plant species may contribute differently to ecosystem functioning or respond differently to 

mowing (e.g. Van Zuidam and Peeters 2012). Therefore, lake managers should be 

precautious when extrapolating model results to their specific lake systems. For such purpose, 

a more tailored PCLake study is required, whereby the model is adapted, calibrated and 

validated for their specific lake (e.g. Witteveen+Bos 2010; Nielsen et al. 2014; Trolle et al. 



121 
 

2014). Rather, the aim of our modelling study is to gain general insight and generating 

hypotheses. PCLake provides a coherent framework to investigate the effect of mowing 

within an ecosystem context with alternative stable states, focusing on important aspects such 

as mowing intensity and external nutrient loading, while keeping other factors constant. The 

insights that are obtained in this way cannot easily be derived from any other type of study, 

and are a completion to insights obtained by complementary approaches (Scheffer 2004 p. 

313; Janssen et al. 2015).  

 

Conclusions 

Our integrated modelling study indicates that harvesting submerged macrophytes can be 

effective in temporarily reducing nuisance in lakes which are oligo- or mesotrophic, 

particularly when mowing is executed in mid-summer. Designing a successful mowing 

strategy becomes less feasible with increasing nutrient loading. Lakes that are more eutrophic 

are less resilient to perturbations, making relatively small reductions in plant cover sufficient 

to trigger an unwanted shift to the alternative phytoplankton dominated state. By extracting 

nutrients from the lake, negative effects of eutrophication may be partially remediated. Our 

modelling indicates that the largest amounts of P can be recovered close to the tipping point, 

although the highest removal of P relative to the input of P is realized when the P loading is 

low. Repeated mowing seems most useful when the lake is still oligotrophic, preventing it 

from becoming eutrophic, while it appears to be more difficult to use harvesting to 

impoverish a lake which is already eutrophic, as it is more sensitive to perturbations. These 

insights provide a basis of more tailored studies on the effects of harvesting in specific lakes 

systems. 
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Supplementary Information 

 

Online Resource 1 

Schematic representation of PCLake  

 

Figure S1 Schematic view of the structure of PCLake. Blocks denote the state variables of the model. 

Shaded blocks denote compartments modelled in dry weight, phosphorus and nitrogen (and silica in 

case of diatoms). Arrows denote mass fluxes. Respiration fluxes are not shown. Dotted arrows denote 

‘empirical’ relations. The biota in PCLake are modeled as functional groups. The submerged 

macrophytes are assumed to be homogeneously distributed over the complete water column and are 

rooted in the sediment. Other groups in the water column are phytoplankton (three groups: ‘diatoms’, 

‘green algae’ and ‘cyanobacteria’), zooplankton, planktivorous fish, benthivorous fish and piscivorous 

fish. The biotic groups in the upper layer of the sediment include the zoobenthos and the settled fractions 

of the three types of phytoplankton. The abiotic components in the water column and in the sediment 

are detritus, inorganic material, dissolved phosphorus, ammonium, and nitrate. A full description of the 

model is presented by Janse (2005). Figure modified after Janse (1997). 
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Online Resource 2 

The importance of collateral disturbance  

Although the aim of water managers is to remove cut biomass from the water, part of the 

plant material is often left in the water due to inefficiency of the cutting machinery. This plant 

material in the water leads to increased light attenuation and stimulates nutrient recycling, 

disfavoring the growth of the remaining submerged water plants. Another factor that is 

potentially detrimental to the remaining vegetation is temporarily enhanced resuspension 

caused by the mowing procedure. This can for example result from thrust engines on mowing 

boats that stir up the sediment, or because roots are pulled out from the sediment during the 

cutting.  

In the default version of PCLake only ‘clean’ mowing is considered, whereby all 

the mown biomass is removed from the system, without additional resuspension. Therefore, 

we modified the PCLake model equations in such a way that a defined fraction of the 

clippings remains in the system as detritus. We estimated the fraction to be 20%. Analogous 

to the detritus resulting from natural mortality, the largest share of this plant material (90%) 

sinks to the bottom to become part of the detritus pool in the sediment. Furthermore, we 

developed a function that causes the resuspension of the sediment to increase linearly with 

mowing intensity, maximally reaching an additional 5 g m-2 d-1 of resuspended material. The 

resuspension is only enhanced during the mowing period. We analyzed the effects of these 

collateral disturbances on the within-season dynamics of the vegetation cover and 

chlorophyll-a for two different mowing intensities (60 and 90% respectively), an 

intermediate nutrient loading (1.3 mg P m-2 d-1) and a single mowing date (July 1st). We 

compared the results with the default simulations without collateral disturbance caused by 

mowing.  

For the used parameter settings, this analysis reveal no clear sign of collateral 

damage (Fig. S2a-d). According to our model, enhanced resuspension and remaining of plant 

material in the water column has a negligible effect when 60% of the submerged plants is cut 

(Fig. S2a,b), and this is still the case for a mowing intensity of 80% (results not shown). Only 

when the mowing activity instigates a regime shift, which is the case for a mowing intensity 

of 90%, the modelled collateral disturbances speed up the regime shift (Fig. S2c,d). 

Particularly the enhanced resuspension propels the lake faster to the alternative state. A more 

elaborated (sensitivity) analysis is needed to elucidate the importance of collateral 

disturbance   
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Figure S2 Effects of collateral disturbance caused by the mowing procedure on July 1st the dynamics 

of plants and phytoplankton in three succeeding years for a lake receiving 1.3 mg P m-2 day-1, for 60 

percent mowing and 90 % mowing. D is default (black line), R is enhanced resuspension (red line), L 

is leaving 20 % of the mowed plant biomass in the water column (green line) and R+D is a combination 

of the latter two (blue line).   
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Online resource 3 

Harvested biomass (dry-weight) 

 

 
Figure S3 Amount of vegetation dry weight biomass that is harvested from the system (g m-2 year-1). 

The green color indicates the quantity.   
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Online Resource 4 

Long term vs. short term effects of mowing 

 
Figure S4 We modelled a lake receiving 1.2 mg P m-2 day-1 and applied a mowing intensity of 80%. 

The only difference between the two scenario’s is that in one scenario mowing starts right from the 

beginning, while in the other scenario mowing starts after twenty years. When mowing is applied 

directly from the start, the systems moves to an equilibrium situation in which large reductions in plant 

cover (80%) can be achieved (red striped line). When in the first twenty years no mowing is applied, 

the system goes to a different equilibrium: after twenty years, when mowing is applied for the first time, 

the same mowing intensity (80%) instigates a regime shift to the turbid state (blue line). Hence, in the 

first twenty years nutrients have been able to accumulate in the lake, which lowered the resilience of 

the lake to perturbations such as mowing.  
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Chapter 7 

 

 
General discussion 
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An integrative approach 

The concept of an ecosystem, as coined by Roy Clapham in 1930 (Willis, 1997), is such that 

one needs an explicit synthesis of biological and physical components of a natural system to 

understand its dynamics. This makes it obvious that in order to grasp the complexity of 

nature, and predict its response to human interactions, researchers need to conduct 

multidisciplinary studies and integrate different approaches. Indeed, there are notions that the 

scientific system is changing, whereby the old paradigm of knowledge production based on 

disciplinary science and driven by the autonomy of scientists and academic institutions is 

superseded, yet not replaced, by a method sometimes referred to as ‘mode 2’ knowledge 

production, which is “use-inspired” and takes place in a multidisciplinary setting, largely 

stimulated by national and international science policies (Hessels and van Lente, 2008; 

Nowotny et al., 2003; Potì and Reale, 2007). Multidisciplinary research is “hot” and referred 

to as a “buzzword” (Pain, 2003). At the same time it seems to be “everywhere and nowhere” 

(Schmidt, 2008), and when using citation patterns as an indicator for multidisciplinarity, only 

a modest increase over time is observed (Porter and Rafols, 2009). It appears difficult to 

determine when research is indeed multidisciplinary or integrative, and under which 

circumstances such an approach actually contributes to enhanced understanding (Jones et al., 

2010). Most research follows a reductionist framework, whereby the idea is that a complex 

systems can be explained in terms of the individual constituent parts and their interactions. 

Yet, in search for mechanistic explanations, scientific research often zooms in on a certain 

problem to expose more detail instead of integrating and synthesizing knowledge to show 

how higher level features arise. As such, reductionism tends to lead to increased 

specialization and an embranchment of knowledge, and leads to new technologies and 

methodologies for achieving tighter and tighter control of ever smaller processes (Schlundt, 

2011). The overspecialization of disciplines makes it difficult for any one scientist to pull 

together enough knowledge to actually expose how higher level feature arise from their parts, 

and it hampers the cross-fertilisation of ideas across disciplines (Anderson and Mitra, 2010; 

Burton, 1975; Graham and Dayton, 2002). Indeed, has been shown that monodisciplinary 

research collaborations are more rewarding for scientists than interdisciplinary collaborations 

(Van Rijnsoever and Hessels, 2011).  

 

These considerations stimulated me to take an integrative approach during my PhD project 

and to gain insight in the functioning of complex ecosystems by connecting theories, models, 

modelling frameworks, methods and experts from different disciplines and institutional 

backgrounds. Below, I reflect on what I consider the added value of this integrated approach 

for the different studies presented in this thesis. I structure the discussion using the same four 

themes along which this thesis was organized: accessibility, improvement, understanding and 

application. Each of the four paragraph ends with a single sentence summarising what I 

consider the essence of each section. 
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Accessibility 

In the conventional way of dynamical modelling, a model is developed and programmed in 

a certain modelling framework, thereby making use of framework-specific syntax, functions, 

libraries and user-interfaces (David et al., 2013). As a result of the dependency between 

model code and modelling framework, the model in its pure form, that is, a set of 

mathematical equations, is difficult to access and examine independently from the 

informatics (Lloyd et al., 2011). Particularly for complex models like PCLake, which consists 

of > 1500 of lines of code, such ‘framework invasiveness’ poses many drawbacks (Lloyd et 

al., 2011). The first is that new model users are more or less forced to work with the 

framework in which the model is programmed. This is inconvenient because it generally 

takes a considerable amount of time and energy to master a new modelling framework. 

Moreover, for many frameworks a license fee needs to be paid. These hurdles make that in 

practice many experienced modellers stick to the modelling framework to which they are 

already familiar. Also people who are new to the field will tend to choose the framework they 

have easiest access to, and for which they can get support from experienced users in their 

direct vicinity. This is a pity, because as a result researchers may not be using the model that 

is best suited for answering their ecological questions, as it is the framework that largely 

decides which model can be used (Argent, 2004). Moreover, researchers do not benefit from 

the large diversity of analyses and tools provided by the many modelling frameworks that 

are around, e.g. for sensitivity analysis, uncertainty analysis or calibration. Hence, framework 

invasiveness thereby easily leads to ‘reinvention of the wheel’ and ‘tunnel vision’ in aquatic 

ecosystem modelling (Mooij et al., 2010). Framework invasiveness also hampers the 

communication about the model in a multidisciplinary research team, particularly with non-

programmers such as empiricists, mathematicians and ecosystem managers. Moreover, it 

frustrates peer-reviewing of model code, whereas stringent criteria for transparency of the 

logic underlying the model are needed when models are used in the decision making process 

around delicate and urgent environmental problems such as eutrophication or climate change 

(Saltelli and Funtowicz, 2014).  
When I started working on this research project as a young scientist, I had only very 

limited modelling experience. Thus, one of my first actions was to look around and talk to 

colleagues to find out how I could best operate PCLake, and which modelling framework I 

should learn to master. However, I soon figured out that almost all my colleagues worked 

with different modelling frameworks and programming languages, which they mastered 

themselves during previous jobs. Moreover, I found out that PCLake was running in different 

frameworks: at various moments through time scientists had translated the original source 

code of PCLake to a new framework, partly by hand and partly automated, and every time 

this had been a labour intensive exercise. Somewhat problematically, this resulted in PCLake 

versions that differed slightly from each other, and developments made in one framework 

were not readily available in another framework. These were important motivations to 

develop the Database Approach to Modelling (DATM) (chapter 2).  
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The principal aim of DATM is to develop and establish dynamic links between 

models and model frameworks. DATM allows to embrace diversity without getting lost in 

technicalities. Interestingly, in my pursuit of integration, the existing link between the model 

and the framework in which it was developed and programmed first needed to be destroyed. 

Thereafter the pure model equations could be presented uncluttered in a database, from where 

an instance of the model for a certain framework can be created automatically. This method 

enables easy switching between frameworks, thereby allowing to make use of the different 

analysis methods and tools provided by each framework. But what is even more important 

here, is that DATM facilitates linking up and collaborating with expert-users of the different 

modelling frameworks. It is my experience that working with these experts using DATM can 

bring the analysis of a model to a higher level. Additionally, by providing overview, DATM 

facilitates collaborations between researchers with different backgrounds. For example, now 

that informatics do not obscure the matter anymore, empirical ecologists and mathematicians 

can more easily have in-depth discussions about the representation of specific ecological 

processes in a model. In fact, establishing multidisciplinary research teams is arguably even 

essential prerequisite for obtaining a true understanding of the functionality of complex 

models (e.g. chapter 3). It is important that during the development of a method such as 

DATM the capabilities of expert-users of different frameworks are used throughout the 

process, for example for the development and the testing of the translators. The involvement 

of a community of experts, which is expressed by having all their names on the paper 

(chapter 2), contributes to the acceptance of this approach in the scientific community.  

 

Summarizing statement: “Increased accessibility of ecosystem models greatly enhances the 

potential for collaboration and interdisciplinary research.” 

 

Model development 

Since the onset of the discipline almost half a century ago, the development of ecosystem 

models has been a bumpy ride (Logan, 1994). Taking off with optimism when computers 

became widely available to scientists around 1970 (Computer History Museum, 2016), funds 

became available through ‘big science’ projects such as the International Biological Program 

(1964-1974) (Coleman, 2010), and confidence in technology rose to new heights when the 

moon was conquered in July 1969 during the successful Apollo project (1961-1972) (NASA, 

2009), the resulting high expectations were not met in the years to come (Scheffer and Beets, 

1994). Apparently, the engineering paradigm that dominated early ecosystem models and the 

reality of nature did not fully match. As a result, attention moved away from compartment 

models that described an ecosystem as a connected set of fixed functional groups and 

resources. Interestingly, both models that took a closer look at nature (e.g. individual based 

models) and models that took a coarser look at nature (e.g. minimal dynamic models) gained 

interest and esteem simultaneously. Individual-based models (known as agent-based model 

in other scientific disciplines) acknowledge what we already know since Darwin, namely that 
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biological systems are shaped by adaptive individual organisms in their struggle for life 

(Darwin, 1859). These models therefore arguably are a more realistic representation of 

biological systems than compartment models of functional groups and ideally positions to 

merge ecological thinking with evolutionary thinking (DeAngelis and Mooij, 2005). But as 

a trade-off, the ecosystem perspective is lost in most currently existing individual-based 

models of aquatic ecosystems, with the Atlantis framework as a notable exception (Fulton et 

al., 2011). Minimal dynamical models, on the other hand, claim that the essential dynamics 

of the system can be captured in a few nonlinear differential equations. These models have 

had an important impact on contemporary ecological thinking as can for instance be deduced 

from the rate at which they are cited (e.g. Scheffer et al. (2001) with over 2400 citations 

according to Web-of-Science). But, as a trade-off, they are too coarse to be useful in 

quantitative scenario analysis for ecological management (see also chapter 5 for a discussion 

on different modelling approaches).  
When theoretical ecologists and ecological modellers argue among themselves how 

nature should be represented in models, it is not surprising that ecological models are often 

met with scepticism by empirical ecologists (pers. obs.). They rightfully observe that 

compartment models of ecological systems such as PCLake differ from their natural 

counterparts in many ways. Here I would like to zoom in on two important differences. The 

first major difference lies in the fact that ecosystem models reside in the virtual world as 

opposed to the real world of natural ecosystems. The other major difference lies in the above 

mentioned contradiction between the engineering paradigm that forms the basis of 

ecosystems models based on functional groups and the ‘organic paradigm’ that sees nature 

as a highly dynamic and variable conglomerate of an almost infinite number of interacting 

and reproducing adaptive individuals. These two major axis of difference are depicted in Fig. 

1 with PCLake in the lower left corner and real shallow lake ecosystems in the upper right 

corner. In Chapter 3, I worked on the calibration of PCLake with data collected in a set of 

shallow lakes, thereby crossing the diagonal of the figure back and forth. With the perspective 

of the empiricists in mind, I find it an intriguing question which of the two axes is hampering 

us most in the further development of realistic, insightful and applicable tools for ecosystem 

management.  
I note that with the ever increasing computational power (since Apollo 11 landed on 

the moon, computers have become 1,000,000 times more powerful and Moore’s law still 

holds after 40 years; Moore 1965) and ever increasing internet connectivity (in 1995 1% of 

humanity was connected, now almost 50%, and ‘the-internet-of-things’ is about to take off 

in the same way; http://www.internetlivestats.com/) the difference between reality and the 

virtual world is rapidly fading away with the movie Jurassic park (1993) as a monument 

along the way. So, while reality can fade out seamlessly into the virtual world (Fig. 1 towards 

the lower right corner), the opposite is also true. With modern standards of manufacturing, it 

would be completely conceivable to develop a physical machine that exactly mimics in the 

real world the dynamics and outcomes of a computer model such as PCLake (Fig.1 towards 

the upper left corner). I therefore conclude that while the old commonplace “PCLake, oh but 
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that is JUST a model” is still heard and factually true, the difference between reality and the 

virtual world is not the real hurdle obstructing further development of tools for ecosystem 

management. The real hurdle is in challenging empiricists, theoreticians and modellers alike 

how to combine a Darwinian view of life as an interactive network of adaptive organisms 

with the scale and complexity of whole ecosystems in one coherent and feasible scientific 

framework (Purves et al., 2013).   
The research presented in this thesis can contribute to the development of such more 

‘organic’ models of shallow lake ecosystems in several ways. In chapter 3, I show that 

ignoring the weak link between ‘engineered’ ecosystem models and real ‘organic’ 

ecosystems can easily lead to misconceptions during model calibration and development. The 

Database Approach to Modelling that is presented in chapter 2 is positioned as a way to port 

models from one modelling platform to another. But DATM might as well facilitate the 

transfer of model components developed in the engineering domain to models developed in 

the organic domain because it reveals the pure mathematical logic of model components. In 

chapters 4 and 5, I develop formal techniques to study the impact of model complexity. This 

is relevant here because the axis from ‘engineered’ to ‘organic’ models is also a complexity 

axis. Of course, these are just small steps towards more organic models of aquatic ecosystem 

models. Until these become fully fledged - if they ever will - we need to work the with 

engineered models of lake ecosystem models such as PCLake and PCDitch, in awareness of 

their limitations but also of their capability to develop water quality management strategies, 

as is done in chapter 6 and the numerous studies with PCLake and PCDitch that are 

mentioned throughout my thesis. 
 

Summarizing statement: “For future model development, it is essential that we not only 

integrate raw knowledge and technology, but also different modes of thinking.” 
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Figure 1 The figure shows four boxes representing (from lower left, clockwise): The PCLake Model, 

‘The PCLake Machine’, The Real Shallow Lake, ‘The Model of All Things for Shallow Lakes’. The 

upper two items represent things in the real world while the lower two items represent things in the 

virtual world. The left two boxes represent things from the world of engineering, the right two boxes 

from the natural world. The ‘PCLake Machine’ should be envisioned as an engineered apparatus, with 

reservoirs, sensors, pumps, membranes, etc., that performs exactly like PCLake. The ‘Model of All 

Things for Shallow Lakes’ should be envisioned as a computer model with the same complexity as real 

ecosystems (see the Madingly model for an attempt in this direction, Purves et al. 2013). When we 

apply The PCLake Model to The Real Shallow Lake, we move from lower left to upper right in the 

figure, while when we calibrated The PCLake Model on basis of data from The Real Shallow Lake we 

move from upper right to lower left. The figure is meant to show that along this diagonal, we cross two 

borders: the border that separates the real world from the virtual world and the border that separates the 

engineered domain from the organic domain. The message is that the main problem in applying PCLake 

is not in going from the virtual world to the real world and vice versa. The real hurdle is in combining 

a Darwinian view of life as an interactive network of adaptive organisms with the scale and complexity 

of whole ecosystems in one coherent and feasible scientific framework. The picture for the PCLake 

Machine (upper left) pops up as one of the hits when searching for “clear water machine” in Google 

(Jar filling machine n.d., n.d.). The photo representing the real ecosystem (upper right) was found when 

searched for “shallow lake” (Spracs Center n.d., n.d.). The image in the lower right corner is a 

combination of two images: the picture of the virtual lake was found using the query “lake computer 

game” (Alarra n.d., n.d.), and the drawing of the PC comes from Iconfinder (n.d.). The structure of 

PCLake (lower left) is modified after Janse (1997). 
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Understanding 

Successful science operates at the frontier that separates what is already known from what is 

not yet known. This notion is captured in the concept of the Medawar Zone (Medawar, 1967), 

which is the range of problems which are most likely to produce fruitful results (Fig. 2, left 

panel). Research on simpler problems (to the left of the Medawar Zone) will only produce 

trivial results while research on problems that are too ambitious (to the right of the Medawar 

Zone) are likely to fail. While this conceptual framework is well accepted, considerable 

disagreement can arise on where the Medawar Zone is located in a given field at a given 

moment of its scientific development. Here, I apply the concept of the Medawar zone to the 

topic of this thesis, namely the modelling of shallow lake ecosystems. As stated in the 

previous section, opinions differ among experts whether models of aquatic ecosystems 

should be casted as sets of connecting functional groups such as PCLake, as minimal 

dynamical models that focus on a few dominant nonlinearities in system dynamics or as 

elaborate models with many individual-based modules such as Atlantis (Fulton et al., 2011). 

Here I argue that these differences in opinion on where the Medawar zone is located stem 

from a difference in what defines the benefits that are plotted on the y-axis of figure 2. People 

with a theoretical inclination aiming for fundamental insight might see more value in simpler 

models (left hump in the middle panel of figure 2) compared with people who aim at 

applicability of the model results (right hump in the middle panel of figure 2). 

 
Figure 2 Three representations of the “Medawar zone” when applied to models. The left panel shows 

the standard representation of the Medawar zone (inspired on Loehle 1990) in which it is assumed that 

there is a single optimal complexity at which a model produces the most rewarding insights. As simpler 

and more complex models generally have different strengths and weaknesses and are complementary 

in the insight they produce, it might be fruitful to apply models of different complexity concurrently 

within a single study, thereby effectively creating two Medawar zones, each with own optimum (middle 

panel). Alternatively, by modifying a given model by slightly increasing or decreasing its complexity 

one can shift the Medawar zone along the x-axis in one coherent analysis (right panel), which has the 

advantage that one may be better able to scrutinize the costs and benefits of complexity (chapter 4 and 

chapter 5).     
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An apparent solution is the application of multiple models of different complexity 

concurrently within one single study. For example, Mooij et al. (2009) applied PCLake 

together with a minimal dynamical model of a shallow lake to study the consequences of 

climate change. However, it may still be difficult to grasp how exactly complementary 

insights obtained by the different models relate to each other (hence the local minimum in 

the middle panel of Fig. 2). One way of solving this is to start with a complex model and then 

make stepwise simplifications so that we start to gradually move along the x-axis of the 

Medawar plot in such way that it is possible to interpret the results from the different model 

versions in relation to each other (Fig. 2 right panel). This approach can even be used to 

explicitly link different theories that build on models of different complexity.  
In chapter 4, PCLake acts as the complex model. By simplifying PCLake, a 

generalized Lotka Volterra model with linear interaction terms was created. Fig. 3 shows 

how this enabled us to link theory on regime shifts with theory on food web dynamics. 

Research on regime shifts in aquatic ecosystems was initiated on basis of field observations 

and subsequent whole-lake experiments. Analysis of these observations and experiments 

resulted in theory on the mechanisms underlying regime shifts in lakes. Finally, this 

knowledge is formalized in the mathematical equations of models such as PCLake. A 

comparable chain of knowledge that starts with observations and results in theory and finds 

its documentation in mathematical models can be described for food web ecology. Both fields 

of research deal with the stability of ecological systems, but while studies on regime shifts 

take the abiotic environment and nonlinear interactions explicitly into account (Scheffer et 

al., 1993) and food web ecology mostly focusses on biotic components of the system and on 

linear interactions (Moore and de Ruiter, 2012). Because nonlinear interactions and the 

abiotic environment are considered to be crucial for regime shifts to occur according to 

prevailing theory, we were interested to see whether stability indices from food web models 

that ignore these phenomena still signal an upcoming regime shift. This was indeed the case, 

thereby increasing confidence in both approaches. Because of multiple steps involved in the 

transfer from PCLake to the generalized Lotka-Volterra models, one might question whether 

the way we linked both models mathematically automatically resulted in a transfer of the 

signal. If this were true, it would render our findings as being trivial. We therefore did a 

comparable analysis, but now for the most simple and well-known models of consumer 

resource theory (chapter 5). Using comparable methods, we could convincingly show for 

these simple consumer resource models that going from nonlinear to linear interaction terms 

greatly altered their stability properties. 
 

Summarizing statement: “Leaps forward in knowledge production can be achieved by 

scrutinizing the ‘ecotones’ of theoretical paradigms.” 
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Figure 3 Graphical representation of the approach underlying the study presented in chapter 4 of this 

thesis.  We start with the notion that each field of research, here regime shifts and food web ecology, 

are based on their own set of observations from the field and from experiments, have their own theories, 

and their own mathematical models. We link the fields by transferring information from the more 

complex model, in our case PCLake, developed in the context of regime shifts to the simpler model, in 

our case the generalized Lotka-Volterra equations of food web theory. Another way to look at this 

process is to see the complex model as a virtual reality that is used to develop and parameterize the 

simpler model.  

 

 

Application 

Shallow lakes provide a clear-cut example of an ecosystem for which management practices 

are strongly rooted in ecological theory, i.e. alternative stable states theory (Jaarsma et al., 

2008; Scheffer, 2004). Concepts such as positive feedback loops, trophic cascades and 

critical nutrient loading, form the conceptual basis of many management strategies. Minimal 

dynamical models in particular have had an important role in transferring theoretical insights 

into ecosystem management, as they are so simple to communicate (Jaarsma et al., 2008; 

Scheffer, 1990, 1989; Scheffer et al., 1993). Later, large bodies of empirical evidence have 

been accumulated to reveal how theoretical concepts work out in reality, for example on how 

biomanipulation by removing benthivorous fish can disrupt ruling positive feedback loops 

(Bernes et al., 2013). Somewhat problematically, however, most empirical evidence has been 

obtained from studies on turbid lakes, as most lakes in the temperate zone suffered from 

eutrophication, and because eutrophied lakes received more attention from water quality 

managers. Currently, however, a number of lakes have recovered to the desired clear water 

state, and new management issues emerge that are associated with these new conditions. It 

now turns out that alternative stable states theory has not been tailored yet to these new 

conditions, and hence cannot be readily applied to give structure to ecosystem management. 
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For example, nuisance growth of aquatic plants is an emerging management issue. Yet it is 

unclear how cutting these plants, which measure is increasingly applied by managers, 

intervenes with the positive and negative feedback loops that give shape to the alternative 

stable states in shallow lakes. Theory suggests that harvesting can both undermine and 

enhance the resilience of the clear water state, depending how it impacts the intraspecific 

competition among aquatic plants and the interspecific competition between aquatic plants 

and phytoplankton (Scheffer, 2004).  
In chapter 6, we elucidate the value of using complex ecosystem models such as 

PCLake to build an explicit link between ecosystem management and ecological theory. With 

a mixed team of modellers, empirical scientists and environmental consultants we used 

PCLake to explore the potential consequences of mowing for water quality. As a result, we 

could further refine alternative stable states theory, while simultaneously our results provided 

managers with practical insights in the interdependencies in the system, which they can take 

into account when designing mowing strategies. Hence, we conclude that complex ecosystem 

models can be used to reconcile theory and practice.  
In chapter 6 we made use of the default setup of PCLake, representing a hypothetical 

shallow lake in the temperate region, and performed equilibrium analyses to magnify the 

impact of mowing on the stability properties of the system. Yet the bridge between theory 

and practice is also existent when PCLake is used as a framework for systems analysis of a 

specific lake. A nice example is given by the study of Kong et al. (2016) where we used 

PCLake to study lake Chao in China. First the model was parameterized, calibrated and 

validated to reconstruct the history of the lake over the past 60 years. We then combined the 

model output with paleolimnological data to show exactly when in history regime shifts in 

lake Chao have taken place. Subsequently, we used simulations to elucidate the relative 

importance of nutrient loading and water table regulation for triggering the regime shifts, and 

disentangled their interactive effects. By running the model backwards, we  were able to 

verify that the regime shifts were indeed alternative stable states with the associated 

hysteresis.  

 

Summarizing statement: “Ecosystem models that are useful both to ecosystem management 

and the development of ecological theory are in a unique position to bridge the gap between 

those realms.”  

 

  



139 
 

Integrative science - a personal touch 

The integrative approach taken in this thesis goes along well with working with PCLake, 

which is a model wherein the most important processes in shallow lakes ecosystems are 

combined to describe higher level phenomena. Also it matched with the design of the 

overarching research project on PCLake and PCDitch, involving partners from different 

institutional backgrounds (chapter 8). But maybe just as important, or even more important, 

is that I discovered during the course of this project that the role of being an integrator fits 

my personality well.  

 

Much of today’s science draws on positivism. Assuming that science should be based on 

facts and should work towards general laws and principles, the system strives for objectivity 

and avoiding the semblance of subjectivity. As a consequence, the role of the researcher 

during the process of knowledge development is effaced as much as possible. This is 

problematic because “interdisciplinarity is first and foremost a state of mind requiring each 

person to have an attitude that combines humility with open mindedness and curiosity, a 

willingness to engage in dialogue and hence the capacity for assimilation and synthesis” 

(OECD 1972, p192). Hence, the role of individual researchers is decisive in determining the 

success of multidisciplinary research (Whitfield, 2008; Woolley et al., 2010). A different 

reason why researchers may not be flaunting with their role in pan-disciplinary science is 

because of the fierce competition for financial resources, in which a tendency to reward 

personal excellence discourages researchers to unveil their dependence on others. In fact, I 

postulate that many researchers have incentives to linger in the original ‘mode 1 knowledge 

production’ and strive for becoming independent polymaths. In my opinion, this is 

undesirable, not only because of the urgency of sustainability issues that require a 

multidisciplinary approach, but mostly because it is obvious that individual accomplishments 

are easily surpassed by the outcomes of a successful collaboration effort in terms of research 

output (Cheruvelil et al., 2014). Fortunately, there is increasing body of knowledge about 

designing productive research collaborations that maximize net benefits for both individuals 

and the team as a whole (Goring et al., 2014). One important finding is that diversity, in its 

broad sense, increases both the quality and the quantity of team output. Besides having 

specialists from different disciplines, there is an important role for a “broker” who facilitates 

communication and cross-fertilization (Cheruvelil et al., 2014).  
In many of the projects presented in this dissertation I took the position of the broker, 

closely working together with specialists, including programmers, mathematicians, empirical 

scientists, professional consultants and ecosystem managers. I experienced that these 

specialists also appreciated and even enjoyed collaboration. Brokers are generally good in 

pointing specialists to the broad relevance of their work, as specialists may find it hard to 

zoom out and take a holistic view. Likewise, a broker can help specialists to report their 

findings in such way that it will appeal to a broad audience. A different aspect of collaboration 

that was highly appreciated both by me and the people I teamed up with was the joy we had 

during the work, which brings me to the second precondition for successful teamwork. 
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Recent studies from MIT and Google on the ‘perfect’ team revealed that the most successful 

teams have high average social sensitivity (Duhigg, 2016; Woolley et al., 2010). When things 

get rough, and it always gets roughs when working on scientific innovation, one needs to 

know that there will be psychological safety and social support. Social sensitivity has also 

been referred to as “people skills” or social intelligence, and is the capacity to successfully 

navigate a full range of social interactions  (Albrecht K., 2006; Woolley et al., 2010). An 

important question is whether the skills needed to become a broker can be learned, or whether 

they are dependent on someone’s personality. Probably it will be both, as in my case my 

bachelor in “environmental sciences” provided an excellent foundation for this thesis 

(Bootsma et al., 2014). The social skills needed to operate in multidisciplinary research teams 

can also be enhanced by workshops and team outings (Cheruvelil et al., 2014). In fact, taking 

time for social coffee breaks can already form the basis for cross-pollination between 

scientists from different disciplines (Scheffer, 2014).  

 

Moore’s law indicates that technology is developing with an exponential pace (Moore, 1965). 

And although there is a risk that certain technologies will reinforce the existing pressures on 

our natural systems, it also sparks hope for technological and societal developments in the 

opposite direction, i.e. towards sustainable development. During a lecture in 2013, Dennis 

Meadows, author of the seminal ‘limits to growth’ report (Meadows et al., 1972), argued that 

it is too late to tame the great forces of global environmental change, but postulated that on 

a local scale societies will be able to mitigate and adapt to their consequences. (Scheffer et 

al., 2015) make a case for creating “safe operating spaces” on a local scale, via management 

actions aiming at disrupting synergies between different (local) stressors. I postulate here that 

if we can make such improvements on a local scale, we can also do it on a global scale, even 

if it can only be achieved by taking the sum of a myriad of local improvements. In this light 

there is much to expect from the multidisciplinary trends in higher education, as it implies 

that in the years to come numerous students will graduate that have learned to cooperate in 

multidisciplinary research teams, and can take the role of broker within such teams (Jacob, 

2015). A fortiori, many university courses have been completely designed based on the new 

paradigm of ‘Mode 2’ knowledge production (Nowotny et al., 2003), implying that university 

students are subjected to real world learning, carrying out multidisciplinary consultancy 

projects for a real-life client (Bootsma et al., 2014). Integrated models like PCLake can play 

an important role in this development. In recent years already many students have learned to 

operate PCLake in the context of systems analysis of real ecosystems. As a result, when these 

students leave university, they can immediately and effectively start working on solving the 

main sustainability challenges of our time, which is clearly a hopeful prospect. 
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Project set-up 

The studies presented in this thesis were part of a larger research project with the overall aim 

of increasing the usefulness and the validity of PCLake and its twin model PCDitch, and to 

increase the confidence in the models among water quality managers. This larger research 

project was a collaboration between the Netherlands Foundation for Applied Water Research 

(STOWA), the Netherlands Institute of Ecology (NIOO-KNAW), Wageningen University & 

Research centre (WUR), the Netherlands Environmental Assessment Agency (PBL) and 

Witteveen+Bos, a private engineering consultancy. The heart of the project consisted of two 

PhD studies - one on PCLake and one on PCDitch - and about 10 case studies on aquatic 

ecosystems in the Netherlands. The PhD-projects were complementary in the sense that they 

focussed on different aquatic ecosystems, and hence different models, but the concepts and 

tools were sufficiently similar for the researchers to build upon each other’s knowledge and 

progress. The project was joined by a third PhD-project, funded by the Netherlands 

Organization for Scientific Research (NWO), which focussed on the global application of 

PCLake with emphasis on China. The PhD studies were important for advancing the 

scientific development of the models and embedding the progress in the scientific literature. 

The goal of the case studies was to assess the usefulness of the models in ecosystem 

management when confronted with empirical data, as a framework for systems analysis, and 

as a tool for ex-ante evaluations of management measures. The case studies were co-financed 

by water boards and carried out in close collaboration with ecosystem managers. This setup 

allowed the project members to study the strengths and weaknesses of the models in real 

world applications and to experiment with new model developments, while the ecosystem 

managers benefited directly from the new insights in the functioning of their lakes and the 

effectiveness of their actions. Over the course of this four year project regular meetings with 

the project team were held to ensure cross-pollination between all parties involved. In 

addition, once a year there was a meeting with the sounding board of the project. This 

sounding board consisted of various stakeholders, including representatives from water 

boards and consultancy companies in the Netherlands. The first meeting was used to make 

an inventory of the experiences, questions and wishes of the stakeholders, which provided 

important input for both PhD-projects and the case-studies.  

 

Major results  

 

Case studies  
One of the major achievements of the research project is that, by the time it was finished, 

practically every water quality manager in the Netherlands has heard about PCLake and 

PCDitch one way or another. In fact, due to the case studies many water quality managers 

are now familiar with the models and recognize their importance. The case studies have 
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proved that the models can be applied successfully to various aquatic ecosystems to resolve 

a variety of management questions. The models have been used to diagnose the problems 

leading to poor water quality, identify key-processes controlling the systems dynamics, 

identify viable management options and for ex-ante evaluations of these options by predicting 

their (combined) effect on the ecological state. Exactly these sorts of insights are needed by 

water quality managers to design effective management strategies to meet the targets of the 

Water Framework Directive (European Union, 2000). Hence, several of the case studies have 

already led to changes in the field. For example, at Lake Kardingerplas near the city of 

Groningen managers have disconnected a helophyte filter as it turned out that during dry 

spells in the summer the filter became an important source of phosphorus leading to 

phytoplankton blooms. Moreover, the macrophyte mowing procedures were adjusted, and no 

cyanobacterial blooms occurred in the first years after the measures were taken. Thus, the 

case studies clearly showed that, by pointing to effective management measures, modelling 

studies can lead to more cost-efficient management and that the costs of a modelling study is 

easily recouped. These economic aspects are important as water management measures are 

generally very costly and paid for by tax money.  

 

Advancing ecological theory 
Several of the scientific studies that have been conceived with the models PCLake and 

PCDitch contributed to the development of ecological theory. Using these complex 

ecosystem models as a coherent test-environment, studies were performed to analyse how 

the emergence of alternative stable states in shallow lakes is controlled by e.g. the input of 

allochthonous organic matter (Lischke et al., 2014), filter-feeding zoobenthos (Hölker et al., 

2015), herbivory by birds (Van Altena et al., 2016), fluctuating water levels (Kong et al., 

2016) and the removal of submerged aquatic plants (chapter 6). Additionally, Janssen et al. 

(2014) used PCLake to study the possibility of having alternative stable states in large 

shallow lakes. Interestingly, PCLake and PCDitch turned out useful for the development of 

other major theoretical frameworks in ecology, including food web theory (chapter 4), 

consumer resource theory (chapter 5), resource competition theory (Van Gerven et al., 

2015b), ecological stoichiometry (Van Gerven et al., submitted), and spatial ecology (Van 

Gerven et al., 2016).  

 

Technological developments 
The development of a Database Approach To Modelling (DATM; chapter 2) has been a 

crucial step towards widespread application of PCLake and PCDitch in both scientific studies 

and ecosystem management. The practical application of DATM has been further shown by 

Van Gerven et al. (2015). In the extension of DATM, significant technological progress has 

been made regarding spatial explicit modelling with PCLake and PCDitch. As such, it is now 

possible to couple the models with the spatially explicit hydrodynamic models SOBEK 

(http://www.deltares.nl/en/software/sobek) and Delft3D (Deltares, 2014), enabling running 

simulations in 0D, 1D, 2D or 3D (Van Gerven et al., 2015a). Also, PCLake has been 
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incorporated in the Framework for Aquatic Biogeochemical Models (FABM; Hu et al. 2016), 

which facilitates the coupling with several hydrodynamic models covered by FABM, 

including the one-dimensional General Ocean Turbulence Model (GOTM, 

http://www.gotm.net) and the General Lake Model (GLM, Hipsey et al., 2013), as well as 

the three-dimensional General Estuary Transport Model (GETM, www.getm.eu). 

Importantly, these developments make it possible to study alternative stable states in both 

time and space. For example, Dutch polder systems generally include numerous ditches that 

are all hydrologically connected, yet to date it remains unclear how spatial heterogeneity 

impacts the occurrence of regime shifts in these systems (Van Gerven et al., 2016). 

 

The move towards community-based modelling 
An important result of the overarching research project is that both the case studies and the 

scientific collaborations have contributed to the establishment of a large and enthusiastic 

community of model users, developers and ‘ambassadors’. Moreover, the models have been 

embraced by the international Aquatic Ecosystem Modelling Network (AEMON, Janssen et 

al. 2015), which has expanded the PCLake-PCDitch community even further. Hence, we may 

conclude that PCLake and PCDitch are increasingly becoming community-based, and that 

development now predominantly occurs from bottom up by ad hoc ‘grassroots’ initiatives 

(Trolle et al., 2012). The broad community behind the models is arguably one of their major 

strengths, taking into consideration that many existing aquatic ecosystem models are seldom 

used or cited (Trolle et al., 2012). A large advantage of the active collaborations within the 

AEMON community is that PCLake and PCDitch can easily be applied in concert with 

similar type aquatic ecosystem models during multi-model ensemble studies, providing novel 

insight in the differences between models and in their uncertainty (Trolle et al., 2014).  

 

International and global applications 
In the wake of the PCLake-PCDitch research project, several case studies have been 

conducted outside of the Netherlands, including cases in Denmark (Nielsen et al., 2014; 

Trolle et al., 2014), China (Kong et al., 2016) and Greece (Mellios et al., 2015). Given that 

all countries in Europe have to comply with the Water Framework Directive, there is 

enormous potential for the application of PCLake and PCDitch, especially for countries in 

temperate areas. Interestingly, simulations with PCLake have also produced useful insights 

when the model was applied to lakes outside of the geographic range where the model was 

calibrated for (Janssen et al., 2014). After implementing some basic modifications, Fragoso 

et al. (2011) and Kong et al. 2(016) showed that PCLake could even adequately describe the 

dynamics of tropical lakes. Recently, a start has been made with coupling PCLake to the 

Integrated Model to Assess the Global Environment (IMAGE, Stehfest et al. 2014) of the 

Netherlands Environmental Assessment Agency (PBL), which is used for the global 

assessments of the Organisation for Economic Co-operation and Development (OECD), the 

Intergovernmental Panel on Climate Change (IPCC), the Intergovernmental Platform on 
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Biodiversity and Ecosystem Services (IPBES) and others. Hence, in due time PCLake can 

make an important contribution to the global assessments of the ecological state of the planet. 

 

Education 
The models are increasingly used in university courses and at polytechnical universities. 

During the course of the research project more than hundred Dutch students, attending the 

Wageningen University MSc course “Models for Ecological Systems” and the HZ University 

of Applied Sciences MSc course “Aquatic Ecotechnology”, gained experience with PCLake 

and PCDitch and learned about the importance of taking an integrated systems analysis 

approach in contemporary ecosystem management. Moreover, more than a dozen students at 

the MSc level gained in-depth experience with the model during internships and major 

research projects. For example, one student performed an ex-ante evaluation of the 

development of a large marsh area in Lake Marken in the Netherlands which is currently 

being constructed.  

 

Outreach 
Besides the peer-reviewed articles that have been published in scientific journals and 

numerous contributions to various workshops, meetings and conferences around the world, 

the models gained quite some publicity outside the scientific realm. Different media were 

used to establish communication with stakeholders and the general public, including a 

website (http://www.stowa.nl/projecten/pclake_en_pcditch), online newsletters, factsheets 

and articles in non-academic journals. Furthermore, publicity was greatly enhanced by a 

professionally produced introduction film, which was distributed via various channels of 

social media (https://www.youtube.com/watch?v=NY0DLSwsP4c). 

 

An example of the “golden triangle” 
An implicit yet important result of this research project is that it presents a success story of 

collaboration within what has been coined the “golden triangle”. It is generally assumed that 

tight university–industry– government relations are needed to stimulate innovation and 

economic growth of knowledge based societies (Etzkowitz and Leydesdorff, 2000). Inspired 

by notions such as the “golden triangle”, “Triple Helix” and “Mode 2 knowledge 

production”, research policies are increasingly promoting strategic collaborations among 

organisations of different institutional backgrounds (Hessels and van Lente, 2008; Potì and 

Reale, 2007). However, it is unclear how exactly such collaborations should be organized for 

synergy to emerge. In the PCLake-PCDitch research project the collaboration between 

research institutes, water boards and a private consultancy has shown to be a successful 

formula for the production of knowledge and for bringing about effective and efficient 

strategies for ecosystem restoration. An important aspect underlying the success of this 

project was that some apparent dependencies between the different actors were turned into 

positive feedbacks. Here we outline how we envision these feedbacks. Knowledge institutes 

have a positive effect on the consultancy companies, as these companies are allowed to 

http://www.stowa.nl/projecten/pclake_en_pcditch
https://www.youtube.com/watch?v=NY0DLSwsP4c
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exploit the tools that are developed and largely maintained by scientists. Even though PCLake 

and PCDitch are free for everyone to use under the LGPL licence 

(http://www.gnu.org/licenses/gpl-3.0.txt), the consultancy companies commercialize their 

expertise in applying the models and interpreting their results, which creates a lucrative 

business model. Yet, an apparent consequence is that these companies are dependent on 

scientists, for providing them with tools that are approved by the scientific community and 

for delivering state of the art knowledge on aquatic ecosystem functioning. To ensure that 

the effect of knowledge institutes on the consultancy companies remains positive, the 

consultancy companies provide scientists with valuable information on the performance of 

the models in different field situations, and on the usefulness of models for addressing 

management questions and supporting the decision making process. The companies can thus 

be seen as the eyes and ears of the scientists in the field. Also, they ensure that new scientific 

insights are quickly translated into efficient ecosystem management practices. For water 

quality managers this all implies that they don't have to become modelling experts 

themselves, but can hire a consultant from an engineering company, knowing that these 

companies have access to the latest scientific insights. Moreover, hiring a consultancy 

company for a competitive rate may be much cheaper than maintaining a sufficient level of 

knowledge and expertise at the water board. As a result, water quality managers can 

effectuate great savings in ecosystem management by making a relative small investment in 

a modelling study, as was shown by our case studies. Hence, the interactions between the 

consultancy companies and the ecosystem managers are thus generally positive. It is 

important to note that the market forces can be tamed by the dependency on the research 

institutions, as knowledge institutes can cease the transfer of knowledge and tools. This trump 

card allows scientists to secure important long term interests, such as enforcing all players to 

share knowledge and data, and securing that the models remain open source. An element in 

the whole process that is pivotal, however, is that some money has to flow from either the 

consultancy companies or the ecosystem managers to the research institutions to fund their 

science. We reckon that this is also the most vulnerable element. Fortunately, the research 

project presented here received financial support by the Netherlands Foundation for Applied 

Water Research (STOWA), which in turn is funded by all authorities concerned with water 

quality management in the Netherlands (mainly water boards). The primary aim of STOWA 

is to provide the water quality managers in the Netherlands with all the knowledge needed to 

perform their tasks, and STOWA has a long history in setting up collaborations between 

scientists and ecosystem managers.  

 

Remaining challenges 

Although major steps have been taken during the last couple of years, we acknowledge that 

a model is never perfect and its development never finished, and hence there are a number of 

new questions, opportunities and requests for improvements. We identified three categories 

of future model developments. 
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Changes to the model structure 
During scientific collaborations, student projects and interactions with water quality 

managers in recent years, several suggestions for changes in the model structure have been 

made, some of them aiming at improving existing modules and others aiming at expanding 

the functionality of the models to meet new needs. An example of changing an existing 

module came from a student project where the fish modules were scrutinized. It was 

concluded that the bioturbation by benthivorous fish in the turbid state is probably too weak 

in the current version of PCLake, while in the clear water state the rate of bioturbation is 

probably too strong. Examples of requests for new functional groups include Dreissena 

mussels, Azolla species, N-fixing cyanobacteria, Red Swamp crayfish, and periphyton. In 

addition, requests have been made to develop models for aquatic ecosystems other than 

shallow lakes and ditches, such as heavily modified waters in urban areas (‘PCCity’), streams 

and small river systems (‘PCRiver’), brackish lakes and estuaries (‘PCBrack’), and the 

coupling with chemical fate and toxicological fate models (‘PCToxic’). Provided that justice 

is done to the coherence of the models (see chapter 3), and that the added uncertainty is 

accounted for, there is a great potential for these model adjustments to become actual 

improvements. The re-establishment of the original calibration routine in the R modelling 

environment also enhances this potential (chapter 3), although many of the modelling 

frameworks that have become accessible via DATM will provide even fancier options for 

calibration (chapter 2). Finally, we reckon that for model improvement it is of great 

importance that datasets gathered under the WFD or in other platforms become readily 

available for scientists for calibration and validation of the models.  

 

Spatial modelling 
Although alternative stable states theory is highly influential in current water quality 

management, it remains largely unclear how regime shifts come about in real ecosystems. 

One likely reason for this knowledge gap is that the vast majority of studies on regime shifts, 

whether theoretical or empirical, have been performed on homogeneous and isolated systems 

(Van Gerven et al., 2016), while it is evident that many natural aquatic ecosystems are 

spatially heterogeneous and in close contact with each other (Soranno et al., 2010; Van 

Gerven et al., 2016). There is thus a large potential for spatial studies with PCLake and 

PCDitch to contribute to our ecological understanding of heterogeneous aquatic ecosystems, 

and to reconcile spatial ecology and alternative stable states theory (Van Gerven et al., 2016). 

However, despite that many technological hurdles have been taken to couple PCLake and 

PCDitch to spatially explicit hydrodynamic models and run simulations in 1D, 2D and 3D, 

some essential follow-up steps are still needed before the models are fully operational in a 

spatial context. For example, they need to undergo a process of thorough validation in space 

and time before they can be used for making reliable quantitative predictions in ecosystem 

management. Yet, such validation is generally troublesome due to a lack of datasets that 

cover both space and time. The fish species in PCLake pose extra difficulties as their 

behaviour in space is complex. Other modelling methods may be more suitable for such 
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cause, such as Individual Based Modelling (IBMs, DeAngelis and Mooij 2005). A 

combination of approaches may bring a solution. On the positive side, the unstoppable 

advance of drones, satellites and high frequency monitoring buoys provides a huge potential 

for more remote sensing and hence an increase in spatial data.   

 

Graphical user interface 
Thanks to DATM (chapter 2) it has become possible to run PCLake and PCDitch in various 

different modelling frameworks. Most of these modelling frameworks however use scripting 

for input/output handling and visualization, and hence require the model user to master some 

basic programming skills. Model developers and more advanced users favour that way of 

working as it gives them freedom to develop their own customized tools and analyses. Less 

advanced users, however, may be better off with a so called Graphical User Interfaces (GUIs) 

for input/output handling and visualisation as such devices would clearly simplify operating 

the model. Currently the easiest option to run PCLake and PCDitch is via Microsoft Excel 

and some pre-programmed VBA macros. With some basic guidance new users can run 

successful simulations after a few hours of practice. Yet, no official helpdesk is existing, and 

nor are there comprehensive manuals available. If a user runs into a persisting error, there is 

no other option than to contact more experienced users or to abandon the exercise. In fact, 

this has led to various failed attempts to successfully apply PCLake or PCDitch. Hence, there 

is an increasing call for more user-friendly modelling software, comprising a fool proof GUI, 

which gives access to only some basic model features. Although shielding large parts of the 

model code goes at the cost of functionality and insight, it can make it much easier to control 

the models and can prevent errors stemming from inexperience to occur. Such software 

development also paves the road for serious gaming. Gamification is a powerful way of 

informing stakeholders, students and civilians about aquatic ecology and the difficulty of 

managing ecosystems that provide many yet contrasting services. 

 

The way forward: oil that makes the wheels turn 

The potential for PCLake and PCDitch to make a difference in ecosystem management has 

never been this large. Yet, now that the PCLake-PCDitch project that is reported here has 

ended, the question emerges how the above-mentioned developments can be realised, new 

innovations can be sparked and the continuity of the models can be guaranteed. The models 

are open source under the LGPL license, and hence they are basically ‘owned’ by everyone. 

This has great advantages, as it allows the models to be widely employed both in science and 

in ecosystem management, but it also implicates that the responsibility for the models is 

diffuse. We can discriminate two major forces that currently bring about model 

developments: the market forces of supply and demand, and the power of the enthusiastic 

and dedicated “grassroots” community of ecosystem modellers. The first is boosted by the 

need of water quality managers to meet their WFD goals and primarily takes place in the 

context of “the golden triangle”. The latter is mainly driven by scientific curiosity and the 
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wish of scientists to develop useful knowledge and contribute to a better world. Undoubtedly 

these forces hold the potential to drive many essential model developments. We here 

postulate however that in order to optimally exploit the potential of the models, some 

coordination and bundling of efforts is essential. There is an apparent need for a ‘spider in 

the web’, broker, ‘greaser’, or ‘model coordinator’ who funnels the energy in the community 

and streamlines developments. Such a person can bring added value by facilitating the 

establishment of strategic partnerships within the community, and by guiding and aligning 

new development to prevent “re-inventions of the wheel” (Mooij et al., 2010). Until yet these 

type of activities were carried out by the members of the just finished research project on 

PCLake and PCDitch.  
For a full-time model coordinator, we identified the following tasks: 

 To be the main contact person for all stakeholders, including new users, and to maintain 

contact with other consortia and initiatives, whether or not relating directly to aquatic 

ecosystem modelling. 

 To set up a more formal community of practice, based on an online platform for sharing 

ideas and helping each other out. It is also important that workshops, user meetings and 

symposia are organized which will facilitate cross-pollination of ideas. PCLake and 

PCDitch can be seen as “freemium” software, as they are free to use, and some basic 

assistance is provided for via the community of practice. Yet, when more advanced help 

is needed payment is required. This can be done in kind, or via the commercial route of 

supply and demand by buying advice from an experienced user.  

 To keep track of the challenges, opportunities, needs and developments in water quality 

management and the field of aquatic ecosystem modelling, and identify funding 

opportunities, such as open calls for research proposals. Subsequently, the coordinator 

can search for shared interests among stakeholders, establish liaisons and initiate 

strategic partnerships. Also supply and demand can be identified and brought together 

to stimulate model development.  

 To align existing developments or even steer developments in a direction where they 

will be most effective. Moreover, it is important that during model development the 

coherence of the models remains intact, and as such, the coordinator should signal 

developments heading in the wrong way.  

 To ensure that new developments are disclosed and communicated, and hence become 

available for the whole community to be used. This includes development of the source 

code, input/output handling, documentation and training materials. The model 

coordinator should also secure that developments and insights remain freely accessible 

(open access, open source). 

To ensure that the relationship between government-industry-science remains balanced, it is 

important that a model coordinator stands above all stakeholders, which could be achieved 

by operating under the wing of a non-profit organisation such as the Netherlands Foundation 

for Applied Water Research (STOWA). The participating stakeholders together form a 

steering committee, so that their stakes are clearly known by the coordinator. We envision 
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that the most fruitful approach to funding a model coordinator is when all stakeholder commit 

themselves to pay an annual remittance. Given the major challenges associated with 

achieving the WFD objectives that lay ahead, we imagine that the highest impetus to realise 

this development comes from the water boards, the more because of the significant savings 

that can be achieved when a well-functioning model contributes to selecting the most 

efficient and cost-effective WFD measures.  
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Summary 

 
A principal aim of ecologists is to identify critical levels of environmental change beyond 

which ecosystems undergo radical shifts in their functioning. Dynamical ecosystem models 

are tools that can help ecologists to understand complex systems, and turn this understanding 

into predictions of how these systems respond to external changes. This thesis revolves 

around PCLake, an integrated ecosystem model of shallow lakes, which is used by both 

scientists and water quality managers to understand and predict abrupt regime shift in shallow 

lake ecosystems. Chapter 1 of this thesis presents a general introduction. First the urgency 

of global environmental change is stressed, along with the responsibility of science to support 

human societies resolving sustainability issues. Subsequently the argument is made that 

dynamical models are highly useful tools for obtaining a better understanding of complex 

systems and for turning this understanding into predictions. The introduction continues with 

a short review of the important features of shallow lake ecosystems, highlighting that they 

provide numerous important ecosystem services to human societies, but also showing that 

lakes are among the most impacted ecosystems on the planet. Thereafter, the most important 

stress factors to lakes are presented, along with different ways of how lakes may respond to 

stress. Then the shallow lake ecosystem model PCLake is introduced, which can be used to 

study and predict the response of lakes to stress. Also the European Water Framework 

Directive (WFD) is introduced, and it is argued that there is huge potential for PCLake to 

help ecosystem managers reach their WFD targets. Finally the overarching research project 

is introduced where this thesis is part of. The broad aim of the overall project was to increase 

the usefulness of PCLake, and its sister model PCDitch, in contemporary science and 

ecosystem management. The project involved a collaboration between the Netherlands 

Foundation for Applied Water Research (STOWA), the Netherlands Institute of Ecology 

(NIOO-KNAW), Wageningen University & Research centre (WUR), the Netherlands 

Environmental Assessment Agency (PBL) and Witteveen+Bos, a private engineering 

consultancy. The heart of the project consisted of two PhD studies, one on PCLake and one 

on PCDitch, and quite a few case studies on aquatic ecosystems in the Netherlands. Four 

objectives were identified as important pillars of the overarching project: (1) to make the 

models more accessible, (2) to make improvements to the models, (3) to increase our 

understanding of the models as well as the ecosystems they portray and (4) to explore new 

applications of the models in lake ecosystem management. The chapters of this thesis follow 

from these four pillars.   
In chapter 2, the Database Approach To Modelling (DATM) is introduced, which 

is invented to make dynamic models more accessible. The idea of DATM is that the 

mathematical equations of a model are stored in a database independently of program 

language and software specific information. From the database, the information can be 

automatically translated, augmented and compiled into working model code of various 

different modelling frameworks (software programs). This procedure allows for easy 



174 
 

switching between frameworks, which facilitates the collaboration between modellers. It also 

makes it possible to exploit the joint multitude of the tools and analysis provided by the 

different frameworks. An additional advantage is that working in a database provides 

structure and overview, which makes it easier for modellers and non-modellers to grasp the 

mathematical formulations. We describe the approach using the simple Lotka-Volterra 

predator prey model and exemplify it with the complex model PCLake. 
In chapter 3 we reflect on the weak link between ecosystem models and real 

ecosystems and discuss the consequences for calibration and improvement of PCLake. The 

apparent weak link between a model and reality implies that it will be merely impossible to 

accurately parameterize all individual model components on basis of empirical data. A 

solution is oftentimes found in model calibration at an aggregated level, whereby the 

components are aligned in such a way that together they do an adequate job in describing 

those ecosystem level variables that are relevant to ecosystem managers, such as total 

productivity and water transparency. By doing so, any missing dynamics may still be 

accounted for, albeit indirectly, by modifying the functionality of the components that are 

explicitly included. An important consequence is that once calibration has been performed, 

any model ‘improvement’ in the form of adding more components may bring the model ‘out 

of balance’ as it may lead to double counting with the implicit components. To exemplify 

this line of reasoning the PCLake model was expanded with a filter feeding zoobenthos 

group. These species are always present in the shallow lakes simulated by PCLake, but were 

until yet not dealt with explicitly in the model itself but implicitly included in the zooplankton 

grazing rate during previous calibration. To elucidate how the zooplankton grazing is 

changed by the explicit inclusion of filter feeding benthos, the original calibration routine 

was re-established using data from more than 40 lakes. Indeed, it turned out that, to maintain 

a good fit, the zooplankton grazing rate needs to be lowered. Nevertheless, the analysis 

showed that calibrating only the zooplankton grazing rate is not sufficient to make the 

addition of chironomids an improvement to the overall fit of the model. 
In chapter 4, the relation between complex ecosystem models and empirical food 

web models is scrutinized. Both modelling paradigms are highly influential in modern 

ecology as both food-web theory and alternative stable states theory help scientists 

understand how stability is conferred to complex ecosystems. Unfortunately, it is largely 

unclear how the concept of food-web stability is associated with the resilience of ecosystems 

susceptible to regime change, and hence how insights from these different fields can be 

aligned. In this study we treat PCLake as a virtual reality from which we can sample 

‘empirical’ information to parameterize a food web model, following traditional food web 

methods. Accordingly, the food web model can be analyzed for its stability using the Jacobian 

matrix approach. We repeated this exercise along the eutrophication gradient, knowing that 

PCLake will show a regime shift when a critical nutrient loading is reached. By doing so, we 

show that impending catastrophic shifts in shallow lakes are preceded by a destabilizing 

reorganization of interaction strengths in the aquatic food web, and obtain insight in the 

biological interactions underlying regime shifts in shallow lake.  
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The results of chapter 4 raise the question how exactly stability properties of the 

ecosystem model are transferred to the empirical food web model. In other words, for a 

system of consumer resource interactions in equilibrium, is it the exact shape of the functional 

response of the interactions (e.g. linear vs. nonlinear), or is the patterning of interaction 

strengths in the network (e.g. degree of omnivory, connectance etc.) that is decisive in 

determining the stability properties of the system? Given the complexity of PCLake and the 

produced food web models it is difficult to answer these questions. In chapter 5, the extent 

to which models of a different form can describe the same natural phenomenon is further 

addressed. We zoom in on the influence of the functional response terms rather than the 

number of equations. Using three classical extensions of the famous Lotka-Volterra 

equations we analyze the consequence of changing a system with a sophisticated functional 

response term (e.g. Holling type II or III) into a system with a simpler functional response 

term while maintaining equilibrium densities and material fluxes. We are interested in the 

extent to which stability properties of a complex system can be reflected by a simpler system. 

Our main result is that changing nonlinear terms in simple models of consumer resource 

interactions into linear ones, while maintaining the equilibrium densities and the transfer of 

mass, has a strong impact on the stability properties of the model system. Although 

transcritical bifurcations (species extinction/invasion thresholds) are maintained after 

changing the shape of the interaction terms, the so called hopf and saddle-node bifurcations 

were lost. Especially the latter is important for ecosystem managers that wish to anticipate 

and prevent abrupt regime shifts. These results give new insight into when empirical data can 

be linked to mathematical models to estimate the stability properties of real ecosystems. 
In chapter 6, a new application of PCLake is presented. Although PCLake is 

predominantly applied in the context of ecosystem restoration of turbid phytoplankton-

dominated lakes, this study focusses on the clear water state after the reestablishment of 

aquatic plant dominance. Dense stands of aquatic plants easily cause nuisance, and hence the 

removal of aquatic plants is an emerging management issue. Yet, because aquatic plants play 

an important role in stabilizing the clear water state, the removal of plant biomass can 

potentially trigger a critical transition back to the turbid water state. Currently there is only 

limited empirical and theoretical understanding of how harvesting of aquatic plants affects 

ecosystem functioning, which frustrates effective and efficient ecosystem management. With 

PCLake the impact of harvesting is evaluated, in terms of reducing nuisance and ecosystem 

stability, for a wide range of external nutrient loadings, mowing intensities and timings. 

Additionally, the model is used to estimate how much phosphorus is removed from the 

system during harvesting. The results show that mowing can temporarily reduce nuisance 

caused by aquatic plants in the first weeks after plant removal, particularly when external 

nutrient loading to the system is fairly low. When the external loading increases also the risk 

of triggering a regime shift increases. This risk can be reduced by mowing halfway the 

growing season when the resilience of the system appears to be the highest. The model shows 

that up to half of the phosphorus entering the system can potentially be removed along with 

the harvested aquatic plant biomass.  
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During the course of the studies presented in this thesis I deliberately established 

collaborations with experts from different disciplines (mathematicians, computer 

programmers, empiricists and ecosystem managers), allowing me to take an integrative 

approach, connecting theories, models, modelling frameworks, methods and even the 

different experts. In chapter 7, I reflect on what I consider the added value of this integrated 

approach for the different studies presented in this thesis. This general discussion is structured 

along the same four themes that gave structure to the thesis: accessibility, improvement, 

understanding and application. I stress for example that ecosystem models that are used both 

in ecosystem management and for the development of ecological theory are in a unique 

position to bridge the gap between those realms. Moreover, I argue that by scrutinizing the 

‘ecotones’ of different theoretical frameworks we can make important steps forward in our 

understanding of how nature may work and at what level of complexity we can model it best. 

Finally I discuss the human component in research teams, including my own role within the 

research collaborations I took part of.  
In chapter 8, a synopsis is presented of the overarching research project on PCLake 

and PCDitch. The many case studies that were carried out on shallow lakes in the Netherlands 

proved that PCLake and PCDitch can be used in ecosystem management to identify effective 

management measures, and hence they proved that modelling studies can contribute to more 

cost-efficient ecosystem management. The scientific studies contributed to the development 

of several important ecological theories, including food web theory, consumer resource 

theory, resource competition theory and, of course, alternative stable states theory. 

Furthermore, several important technological developments have been made. For example, 

it is now possible to connect PCLake and PCDitch to spatial explicit hydrodynamical models, 

and hence run PCLake and PCDitch in 0D, 1D, 2D and 3D. Finally, and most importantly, a 

large enthusiastic and dedicated community of programmers, ecologists, consultants and 

water quality managers has been established, ensuring that the models will now be applied 

on a large scale and will contribute to a better world. 
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Samenvatting 

 
Veel ecosystemen op onze aarde zijn aan verandering onderhevig onder invloed van 

menselijk handelen, waarbij de natuurwaarde meestal afneemt. Soms gaat dit geleidelijk, 

maar veranderingen kunnen ook abrupt en grootschalig zijn. Een belangrijke taak van 

ecologen is het begrijpen van deze grote abrupte verandering en het voorspellen bij welke 

milieudruk ze plaatsvinden. Dynamische modellen helpen onderzoekers daarbij. De essentie 

van een dynamisch model is dat ecologische processen in de natuur worden gevat in 

wiskundige formules. Door met de formules te gaan rekenen kan een onderzoeker het 

ecosysteem beter leren begrijpen, bijvoorbeeld door de samenhang van meerdere ecologische 

processen te ontrafelen. Maar belangrijker nog, het stelt de onderzoeker in staat wat-als 

vragen te stellen. Wat gebeurt er als de temperatuur met twee graden wordt verhoogd? De 

onderzoeker kan met een model voorspellen wat de toekomst ons gaat brengen. In dit 

proefschrift staat het waterkwaliteitsmodel PCLake centraal. Door grootschalige eutrofiering 

in de jaren zestig en zeventig van de vorige eeuw zijn veel meren in een groene soep 

verandert, met daarin blauwalgen die gevaarlijk kunnen zijn voor de gezondheid van mens 

en dier. PCLake is ontwikkeld om de eutrofiering en het ecologisch herstel van ondiepe 

meren beter te begrijpen en te voorspellen. Het model laat net als de werkelijkheid zien dat 

de overgang van helder naar troebel water onder invloed van meststoffen vaak abrupt 

verloopt. Ook laat het zien dat ecologisch herstel lastig is, en dat het kantelpunt waarbij het 

meer weer helder wordt bij een veel lagere meststoffenbelasting plaatsvind dan waarbij het 

systeem troebel werd. De wetenschappelijke theorie die dit verklaart is de theorie van de 

alternatieve stabiele toestanden, en als onderzoeksinstrument wordt PCLake gebruikt om 

deze theorie verder uit te bouwen. Maar ook voor waterkwaliteitsbeheerders is een 

modeltoepassing interessant. Volgens Europese wetgeving, de Kader Richtlijn Water 

(KRW), moet de ecologische kwaliteit van het oppervlaktewater in heel Europa uiterlijk in 

2027 weer zo goed als mogelijk zijn. Daarbij wordt het evalueren van doelen en maatregelen 

door beheerders in toenemende mate gedaan op basis van systeembegrip. PCLake is bij 

uitstek geschikt om beheerders te helpen systeembegrip te krijgen, en effectieve 

beheersmaatregelen te selecteren die nodig zijn om troebele meren weer helder te krijgen. 

Maar ondanks de grote potentie van PCLake in het beheer wordt het model nog maar beperkt 

ingezet. De Stichting Toegepast Onderzoek Waterbeheer (STOWA) heeft daarom een 

onderzoeksproject in het leven geroepen waar voorliggend proefschrift onderdeel van 

uitmaakt. Vier verschillende aspecten van het modelleren met PCLake staan centraal in dit 

onderzoek: het ontsluiten van het model, het verbeteren van het model, het uitbouwen van 

ecologische theorie, en het uitwerken van een nieuwe toepassing in het 

waterkwaliteitsbeheer. In hoofdstuk één van dit proefschrift geef ik een algemene 

introductie en introduceer ik deze vier pijlers.  

In hoofdstuk twee wordt een werkwijze gepresenteerd waarmee de 

toegankelijkheid van dynamische modellen zoals PCLake wordt vergroot. We hebben deze 
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werkwijze de ‘Database Approach to Modelling’ genoemd (DATM). Normaliter wordt de 

toegankelijkheid van een ingewikkeld computermodel zoals PCLake grotendeels bepaald 

door het simulatieplatform (software) waarin het model beschikbaar is. In pure vorm is 

PCLake weliswaar een coherente set van gekoppelde differentiaalvergelijkingen, in de 

praktijk zijn deze vergelijkingen ingebed in een computercode van honderden 

programmeerregels die ervoor zorgen dat de vergelijkingen kunnen worden opgelost en het 

model kan worden aangestuurd. Een gevolg hiervan is dat het voor eenieder moeilijk is om 

ecologie en informatica van elkaar te scheiden. Ook zorgt het ervoor dat iemand die het model 

wil gebruiken gedwongen wordt om te werken met het specifieke simulatieplatform 

waarvoor het model geprogrammeerd is. Iemand kan dus niet vrij kiezen voor het 

simulatieplatform dat het beste aansluit bij het doel van de modelleerexercitie, of het 

simulatieplatform waar hij of zij al ervaring mee heeft. Deze drempels hebben ons ertoe 

aangezet DATM te ontwikkelen. Het idee van DATM is dat de differentiaalvergelijkingen 

van een model in een database bewaard worden, los van enige programmeercode die software 

specifiek is. Om het model te draaien in een specifiek simulatieplatform worden de 

vergelijkingen via een automatische vertaler omgezet naar computercode die ingelezen kan 

worden door het betreffende platform. Met behulp van DATM is het nu mogelijk om PCLake 

te draaien in een groot aantal simulatieplatformen, inclusief ‘R’, MATLAB en SOBEK 

(laatstgenoemde wordt veel gebruikt in het waterkwaliteitsbeheer). DATM zorgt er dus voor 

dat iedereen gebruik kan maken van zijn favoriete simuleeromgeving en dat ecologen en 

wiskundigen de vergelijkingen kunnen inspecteren zonder te worden gehinderd door een 

voor hun onbekende programmeertaal.  

In hoofdstuk drie worden de gevolgen van kalibratie voor de doorontwikkeling en 

verbetering van complexe ecosysteemmodellen zoals PCLake beschouwd. Door de tijd heen 

is het lastig gebleken om nieuwe kennis toe te voegen aan PCLake en één van de 

achterliggende oorzaken is het feit dat het model in een eerder stadium is gekalibreerd. Een 

model is per definitie een versimpeling van de werkelijkheid; niet alle processen die in de 

natuur een rol spelen zijn in het model opgenomen. Daarnaast zijn de processen die wel in 

het model aanwezig zijn niet altijd met grote nauwkeurigheid beschreven, doordat de kennis 

die daarvoor nodig is ontbreekt. Om het hele model toch zo goed mogelijk overeen te laten 

komen met het ecosysteem zoals geobserveerd in het veld, kan men onzekere parameters 

gaan schatten aan hand van deze velddata door middel van kalibratie. Voor PCLake is 

velddata van 43 verschillende meren gebruikt om 7 onzekere parameters zo te schatten dat 

het model een relatief goed resultaat geeft bij elk van deze 43 meren. Het is echter belangrijk 

om te realiseren dat het mogelijk is dat een deel van de functionaliteit van de processen die 

wel in het veld maar niet in het model aanwezig zijn door middel van de kalibratieoefening 

toch wordt ondergebracht bij processen die wel expliciet in het model zijn opgenomen. Neem 

als voorbeeld muggenlarven in het sediment. Tot voorkort was daar maar weinig over 

bekend, maar het is nu duidelijk dat deze muggenlarven een aanzienlijke invloed hebben op 

de waterkwaliteit doordat ze het water filteren om aan voedsel te komen. Muggenlarven zitten 

niet in PCLake, maar watervlooien wel, en die filteren het water ook. Het kan goed zijn dat 
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tijdens het kalibratieproces de filtercapaciteit van de watervlooien iets te hoog werd afgesteld 

om het ontbreken van de muggenlarven te compenseren waardoor het model als geheel 

alsnog in staat is om de dynamiek van het ecosysteem in voldoende mate te voorspellen. Als 

nu in een later stadium alsnog muggenlarven worden toegevoegd aan het model, met de 

intentie om het model te verbeteren door een ontbrekende groep toe te voegen, zal er 

dubbeltelling ontstaan van de filtercapaciteit aanwezig in het systeem. Om het model te 

verbeteren moet dus wederom het hele model opnieuw gekalibreerd worden. Dit is belangrijk 

om te realiseren in een tijd waarin modelcode door een steeds bredere en diffusere 

modelleergemeenschap wordt gebruikt, doorontwikkeld en gekoppeld aan andere 

modelcode.  

In hoofdstuk vier gebruiken we PCLake voor de ontwikkeling van 

wetenschappelijke theorie. Al sinds de jaren negentig van de vorige eeuw speelt de theorie 

van alternatieve stabiele toestanden een belangrijke rol in het wetenschapsveld van de 

aquatische ecologie. In toenemende mate wordt deze theorie ook in andere disciplines 

toegepast om de stabiliteit van ecosystemen te onderzoeken. Stabiliteit verwijst hierbij naar 

de milieudruk die een ecosysteem aankan voordat er een kantelpunt wordt gepasseerd waarbij 

een abrupte verandering optreedt. Deze theorie richt zich vaak op specifieke niet-lineaire 

interactieprocessen die een positieve terugkoppeling veroorzaken; positieve terugkoppeling 

is het belangrijkste ingrediënt voor het ontstaan van kantelpunten. En veelal zijn niet-levende 

factoren van belang, zoals het doorzicht van het water en de aanwezigheid van schuilplaatsen 

voor prooidieren. Een ander belangrijk theoretisch raamwerk in de ecologie dat zich richt op 

de stabiliteit van ecosystemen is de theorie van voedselwebben. Deze theorie richt zich 

voornamelijk op het levende deel van een ecosysteem, waarbij het gaat om trofische 

interacties: ‘eten en gegeten worden’. Ecologen willen weten hoe het komt dat 

voedselwebben in de natuur vaak stabiel lijken te zijn, in de zin dat deze netwerken van 

organismen in staat blijken om een klap op te vangen zonder dat ze als een kaartenhuizen in 

elkaar zakken. Ze proberen te achterhalen welke patronen in het netwerk van interacties 

stabiliserend werken, waarbij er veel aandacht is voor de sterkte van de interacties tussen 

soorten. Ecologen maken daarbij vaak gebruik van wiskundige modellen die het niet-levende 

deel van de natuur buiten beschouwing laten en die uitgaan van proportionele (lineaire) 

functionele responsie interactietermen. Hoewel de theorie van voedselwebben en van 

alternatieve toestanden beide iets kunnen zeggen over stabiliteit in ecosystemen, is het nog 

grotendeels onduidelijk hoe ze zich ten opzichte van elkaar verhouden. In hoofdstuk vier 

brengen we daar verandering in. We gebruiken PCLake om een omslag van helder naar 

troebel te simuleren door de externe nutriëntenbelasting stapsgewijs te verhogen. Vervolgens 

monsteren we “empirische” data uit de virtuele werkelijkheid van PCLake en maken met 

behulp van die data voedselwebmodellen, zoals een voedselwebecoloog dat ook zou doen. 

Vervolgens kunnen we de stabiliteitseigenschappen van de voedselwebmodellen analyseren 

en naast de stabiliteitseigenschappen van het uitgebreidere PCLake model leggen. Wat blijkt 

is dat we de stabiliteit van de voedselwebmodellen afneemt in de richting van het kantelpunt. 

Er is dus een relatie, en dat is opmerkelijk omdat een heel aantal van de abiotische factoren, 
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die volgens de theorie van de alternatieve toestanden belangrijk zijn, niet expliciet zijn 

opgenomen in de voedselwebmodellen. Een belangrijke implicatie hiervan is dat de relatief 

eenvoudig te meten voedselwebstabiliteit kan dienen als waarschuwingssignaal. Ook 

betekent het dat er een heel pakket aan methodes en inzichten uit de voedselwebtheorie 

vrijkomt om kantelpunten verder te bestuderen.  

In hoofdstuk vijf duiken we nog verder in de theoretische ecologie en stellen we de 

vraag hoe realistisch een wiskundig model moet zijn om de stabiliteitseigenschappen van een 

echt ecosysteem te kunnen beschrijven. In deze studie focussen we op het belang van het 

gebruik van proportionele functionele responsie interactietermen tegenover niet-

proportionele termen. We gebruiken daarvoor zogenaamde minimodellen. Deze bestaan 

slechts uit twee differentiaalvergelijkingen en staan verder af van de realiteit dan 

uitgebreidere ecosysteemmodellen zoals PCLake. Daar staat tegenover deze minimodellen 

wel volledig wiskundig te doorgronden zijn. We gebruiken verschillende klassieke predator-

prooi modellen uit de literatuur, zoals het beroemde Rosenzweig-MacArthur model. Ieder 

model bevat niet-proportionele functionele respons termen. Voor elk model rekenen we de 

evenwichtswaarden uit langs een gradiënt van toenemende milieudruk. Vervolgens bekijken 

we wat er gebeurt als we de niet-proportionele interactietermen in deze modellen ombuigen 

tot proportionele interactietermen terwijl de evenwichtswaarden die de modellen beschrijven 

wel gelijk blijven. Voor zowel de originele als de versimpelde minimodellen berekenen we 

vervolgens de stabiliteitseigenschappen in het evenwichtspunt langs de hele gradiënt van 

toenemende milieudruk. Hoewel de originele en versimpelde minimodellen dus dezelfde 

evenwichtswaarden hebben, blijkt uit deze analyse dat de stabiliteitseigenschappen danig van 

elkaar verschillen. Dit resultaat is in tegenspraak met de resultaten uit het vorige hoofdstuk. 

Kennelijk is bij minimodellen de aard van de interactieterm (functionele respons) 

doorslaggevend, terwijl het er op lijkt dat in realistischere modelsystemen de organisatie van 

de interactietermen in een netwerk het belang van de specifieke vorm van de interactietermen 

overschrijdt. Deze inzichten helpen ons verder bij het correct voorspellen van naderende 

kantelpunten met behulp van wiskundige modellen. 

In hoofdstuk zes wordt een nieuwe toepassing van PCLake voor het 

waterkwaliteitsbeheer gepresenteerd. Omdat gedurende lange tijd het grootste deel van 

Nederlandse meren eutroof en troebel was, is PCLake dusver hoofdzakelijk gebruikt in de 

context van ecologisch herstel. Hoewel ecologisch herstel veelal een proces is van lange 

adem, zijn er steeds meer voorbeelden van meren waar het water weer helder is geworden. 

Echter, de combinatie van verbeterd doorzicht met een bodem die nog wel verzadigd is met 

meststoffen heeft vaak explosieve plantengroei tot gevolg. En hoewel in een plas vol 

woekerende waterplanten de kans op giftige blauwalgen minder aanwezig is, kunnen de 

waterplanten zelf ook voor veel overlast zorgen. Vooral recreanten zoals zwemmers, vissers 

en pleziervaarders ondervinden hinder van planten. Een logische oplossing wordt gevonden 

in het verwijderen van waterplanten met behulp van een maaiboot. Maar omdat waterplanten 

een belangrijke rol spelen bij het in stand houden van een heldere toestand, kan het hele 

systeem weer omslaan naar een troebele toestand als teveel waterplanten worden verwijderd. 
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Omdat de Nederlandse wateren zolang troebel zijn geweest is er nog weinig ervaring met het 

maaien en daarmee een gebrek aan kennis over de beste aanpak. In dit hoofdstuk hebben we 

PCLake ingezet om inzicht te krijgen in het effect van maaien op het ecologisch functioneren 

van een meer, waarbij we specifiek gekeken hebben naar de intensiteit en de timing van het 

maaien. 

PCLake is een voorbeeld van een geïntegreerd model, een instrument waarin 

wetenschappelijke kennis uit verschillende domeinen bijeen komt en dat gevoed kan worden 

met een groot aantal empirische datastromen. In hoofdstuk zeven bediscussieer ik het belang 

van een integratieve aanpak in de wetenschap, en in de milieuwetenschappen in het bijzonder. 

Ik bediscussieer vervolgens hoe ik zelf een integratieve benadering heb toegepast in mijn 

onderzoek en belicht een aantal resultaten die dankzij deze aanpak tot stand zijn gekomen. 

Verbinden is daarbij het kernthema. Een mooi voorbeeld is de DATM werkwijze, waarbij we 

de diversiteit aan verschillende simulatieplatformen hebben omarmd. Door snel te kunnen 

switchen tussen simulatieplatformen kunnen we gebruikmaken van de voordelen die de 

verschillende simulatieplatformen te bieden hebben, en kan eenvoudig worden 

samengewerkt met experts uit verschillende disciplines uit binnen- en buitenland. Door 

DATM is PCLake een echt gemeenschapsmodel geworden. 

Dit promotieonderzoek gericht op PCLake stond niet op zichzelf. Het was onderdeel 

van een breder onderzoeksprogramma waarvan ook PCDitch onderdeel was. PCDitch is het 

zustermodel van PCLake en modelleert de ecologie van lijnvormige wateren zoals sloten en 

kanalen. Een promotietraject gericht op PCDitch liep parallel aan het projectonderzoek dat 

in dit proefschrift gepresenteerd wordt. Ook onderdeel van het brede onderzoeksprogramma 

waren tiental casestudies waarbij de modellen getoetst werden in de praktijk. De casestudies 

werden aangedragen en co-gefinancierd door waterkwaliteitsbeheerders (vooral 

waterschappen) en werden uitgevoerd door het ingenieursbureau Witteveen+Bos. Zo 

ontstond een breed onderzoeksprogramma waarin samenwerking tussen wetenschap, 

waterschap en bedrijfsleven centraal stond. In hoofdstuk acht geef ik een overzicht van de 

opzet van het gehele onderzoeksprogramma en de belangrijkste resultaten die het 

onderzoeksprogramma heeft voortgebracht. Tevens identificeer ik een aantal stappen die nog 

gezet kunnen worden om PCLake en PCDitch nog waardevoller te laten worden voor het 

waterkwaliteitsbeheer. Immers, een model is nooit af. Er komt steeds meer kennis en vragen 

van waterschappers en beheerders veranderen continu – evenals de wereld om ons heen.  
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Dankwoord 

 
Voor aanvang van dit onderzoeksproject had ik maar weinig kaas gegeten van programmeren 

en modelleren, had ik geen affiniteit met wiskunde en beschikte ik slechts over basiskennis 

van de aquatische ecologie. Nu, bijna vijf jaar later, kan ik terugkijken op een succesvol 

onderzoeksproject, en presenteer ik met trots dit proefschrift. Een proefschrift vol wiskunde, 

computercode en aquatische ecologie. Zonder hulp van collega’s, familie en vrienden was 

me dat nooit gelukt, dat weet ik zeker. Sterker nog, bij de totstandkoming van dit proefschrift 

hebben zoveel mensen een rol gespeeld dat ik niet iedereen kan opnoemen, al ga ik toch een 

goede poging wagen.  

Uiteraard begin ik bij mijn promotor, die dag en nacht voor me klaar stond en mij 

altijd heeft gestimuleerd mijn eigen weg te vinden in de wetenschap. Wolf, we hebben een 

bijzondere band opgebouwd in de afgelopen jaren. Ik heb veel van je geleerd en ik ben trots 

dat jij aangeeft ook veel van mij te hebben geleerd. Samen konden we bergen verzetten en 

onze samenwerking zal ook nog wel even voortduren. De enorme gastvrijheid van jou en 

Georgette heeft een grote rol gespeeld. De vele bezoeken aan Texel en Santpoort heb ik 

enorm gewaardeerd. Een van onze belangrijkste wetenschappelijke inzichten ontstond om 

half 1 ‘s nachts naast een knetterend houtkacheltje met een koud biertje in de hand, nadat we 

net een psychedelische jaren 60 film hadden gekeken. Ook de samenwerking met copromotor 

Jan heeft een gouden randje. Jan, de combinatie van jouw persoonlijke betrokkenheid, 

nuchterheid en humor is onschatbaar. Ik heb enorme bewondering voor de toewijding 

waarmee jij de duurzaamheidsproblematiek te lijf gaat, en ik haal daar veel motivatie uit. En 

Jeroen, gedurende het hele project was jij een stabiele factor, en direct vanaf het begin heeft 

mij dat het vertrouwen gegeven dat het wel goed zou komen, waardoor ik meer risico heb 

durven te nemen. 

Zoals ik in mijn discussiehoofdstuk al beschrijf is teamwerk een van de grootste 

drijvende krachten geweest achter dit proefschrift. Luuk, ik denk dat wij het niet beter met 

elkaar hadden kunnen treffen. Jij, met jouw wiskundige inzichten en waanzinnige 

programmeerervaring, en ik, met mijn vertelkunsten en optimisme, vullen elkaar naadloos 

aan. Nog zo’n super samenwerking was er met Cassandra. We hebben heel wat gescholden 

op de wereld, maar aan het eind van de dag overheerste de humor altijd. En dank voor Het 

Artikel! Annette, wat fijn dat je me zoveel geholpen hebt met de wiskunde en het 

programmeren. Kong, it was a great pleasure to work with such a great scientist like you. En 

ook dank aan de andere wetenschappers met wie ik intensief heb samengewerkt: Bob Kooi, 

Peter de Ruiter, Liesbeth Bakker, Betty Lischke en Franz Hölker. Daarnaast heb ik veel 

waarde gehecht aan het samenwerken met de collega’s bij Witteveen+Bos, vooral Sebastiaan, 

Bob en Noemi. We hebben maar geluk met jullie gehad! En hier moet ik ook Bas enorm 

bedanken. Niet alleen vanwege de financiële steun, maar vooral ook voor het vertrouwen dat 

je altijd uitspreekt in de modellen en het project.  
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Het NIOO is een bijzondere plek om te werken, en vaak als ik ’s ochtends kwam 

aanfietsen en naar het gebouw keek stapte ik vervolgens met een trots gevoel naar binnen. 

Dat gevoel had zeker ook te maken met alle leuke mensen die er werken. Michiel, als ik het 

soms even zwaar had, maar ook als ik het prima naar m’n zin had, was jij altijd een 

lichtpuntje. Sven, fijn dat je er altijd bent om mee te sparren en te kletsen. Kim, especially 

during the final and hardest part of my PhD you were there to cheer me up and look after me, 

thanks a lot. Het Departement Aquatische Ecologie is een geweldige club mensen. Met alle 

collega promovendi heb ik mooie avonturen beleefd tijdens de vele congressen en cursussen, 

onder andere in Spanje en Turkije. Bart, Mandy, Ralf, Karen, Thijs, Laura, Wei en Libin, 

dank daarvoor. And especially Antonella and Peiyu, who always make me smile! Ik wil ook 

graag de postdocs, senior onderzoekers en de analisten bedanken. De AqE groepsuitjes waren 

onvergetelijk, en vooral Ellen wil ik daarvoor nadrukkelijk bedanken, en Nico, die altijd 

voluit gaat. Bij de vogeltjes, Peter, een van m’n grootste fans. Kamiel en Louis, voor de hulp 

bij het ijsvogelwand project. Lysanne, voor de goeie gesprekken over het redden van de 

wereld. Maaike, dank je wel, voor alle knuffels en bijzondere momenten die we de afgelopen 

vijf jaar samen hebben beleefd. And Lucia, for the much appreciated hugs, when we were 

both working late at the NIOO and struggling with writing papers. Ik heb veel energie 
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