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Abstract

The objective of this thesis is to explore the potential of combining Game Theory (GT)
models with Operations Research (OR) modelling. This includes development of algorithms
to solve these complex OR models for different empirical situations. The challenge is to get
GT“at work”by applying such models and techniques to practical cases. Four different cases
with a challenge on the development of algorithms are studied.
A first case illustrates a multiple coalition formation game in which membership rules and
different transfer schemes are described. Given the GT model and the OR model, the goal
is to develop methods for checking stability of coalition structures. A new mathemati-
cal programming formulation, crucial for the development of the algorithms, is elaborated.
Available data is used to determine which stable coalitions appear and which procedures
(transfer schemes) can be used to make coalitions stable. Also the influence of membership
rules (whether actors are free to become a member) is investigated. Main conclusion is that
transfer schemes are useful to be implemented to obtain stable coalitions. Moreover, different
membership rules, e.g. veto or majority voting of current members, generate different results
with and without transfer schemes.
A second case studies a model of coalition formation in politics with n parties trying to form
a government. Given the number of parties n and policy dimension m (number of items),
computational algorithms are developed to compute all possible majority coalitions and pref-
erences of parties over those coalitions. Application to Dutch data and theoretical examples
leads to testing of hypotheses with surprising results with respect to coalition formation such
as: being a first mover is not necessarily advantageous, being less flexible is not necessarily
advantageous, forming a minimal winning coalition is not necessarily advantageous.
A third case describes a two-stage location-quantity game where n > 2 firms are competing
on m > 2 markets. The space where the firms can locate are nodes on a network. Analytical
solutions for the supplying decisions and properties for determining the number of suppliers
to each market are derived. In finding the equilibria, a complete enumeration algorithm and
a local search algorithm are used. Two cases are elaborated to illustrate the procedures and
the analytical results.
The last case deals with a competitive facility location problem in which the concept of
Stackelberg leader-follower problem is applied. The follower problem and leader problem are
global optimisation problems. Branch-and-Bound (B&B) algorithms that guarantee to find
the optimum of both problems are designed.
Key words: Game theory, operations research, optimisation methods, algorithms.





Preface

By doing a PhD abroad, one is confronted with the culture etiquettes. As Spaniard, I tried
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lunch-break and keep working until 6, 7 or 8 p.m., we have central heating and we have the
beautiful letter “ñ”, without “her” what would happen with “mañana”. . . ? We do not make
appointments with friends, we just simply call and meet later the same day or “mañana”, we
do not have so many rules leading to “if-then”behaviour, we do not have a birthday calendar
in the toilet, we just remember or forget the birthdays, but it is well accepted by friends.
Yes, we are very good with jokes but we do not always speak so loud . . . only when we are
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two years of this adventure. You taught me lot of things during the meetings. For both,
thanks for all the thinking on what is this thesis about, what are the research questions and
for all the input on my“researcher” education. Eligius, thank you for your patient, guidance,
thanks for all the thinkings, ideas, support, encouragement, jokes, we spent many many
hours discussing the research. If I have to evaluate you as a supervisor, for me you are the
best. I will be back to you later, as family.

I would like now to thank to the whole team of Operationele Research en Logistiek: Frits,
thanks for asking now and then how I am doing; Theo, now Real Madrid is doing better
with the Dutch players ehh; Joke and Karin, the girls, it was always funny to have some girls
gossiping; Niels, we know how to respect and share the bad and good PhD mood, I hope
you will have a successful career; the newcomer Jelena or Enna, she introduced a nice drink
tradition on Fridays. And finally Ria, you were always so positive, kind, and a smile in the
morning, thank you, I know that the bottles of wine were not the reason :-)

And during the last years I would also like to thank the team of Toegepaste Infor-



matekunde: Kees, Rob, Gert Jan, Ayalew, Dik, Mark, Yuan, Sebastiaan, Gerard, Jan, Kees,
Sjoukje, Huub, Maarten and again . . . Ria. I also want to express my gratitude to Paul van
Beek for his helpful comments and interest in my research.

People from the Leeuwenborch: Ekko was responsible to bring me here to Wageningen.
Then I met the whole STACO team. Thanks to all of you, you were always very supportive
and new ideas were on the table at all of the meetings. Thanks to Juan Carlos, the Mexican
part of the team. Thanks to Rob, Hans-Peter and Michael, clever and wise people.

I would like to express my gratitude to Agnieszka and Annelies, I really enjoyed to work
together with you, it was a pleasure. I wish you all the best in your new positions. And
many thanks for introducing me to Ad. I want to express my gratitude to José Fernández
and Blas Pelegŕın; research via e-mail is difficult but not impossible. Thanks for all the
input-output of our common research.

Thanks are also extended to colleagues from the Social Sciences Department: to Amber
and Janneke, I have always enjoyed a lot our coffee breaks outside; to Lan Ge, for sharing
pre-conference nervios and post-talk fun, and for the years in here; to Morteza, my squash
partner the first years. I would like to thank all people from Environmental Economics and
Natural Resources Group and the Mansholt team. I should also mention the secretaries of
the Leeuwenborch.

Specific gratitude goes to De Bongerd. I have all of the members in my heart. Thanks
a lot for helping me to get rid of the stress or whatever I had in my head: Rob (2 Rob“os”),
Henry, René, Wendy, John . . . but special words go to Ellen and Ingi. Ellen, thanks for
all the very nice moments/talks doing step, indoor biking or whatever out of sports. Sorry
for missing a lot during my last PhD year . . . Ingi, thanks for being the one to start an
ongelofelijk-party-team with Ellen, you and me, thanks for the laughs together, the chats,
the kinderen, the gezellige momentjes and thanks for being always there and for your support,
enthusiasm and ideas about all the weird things I was doing. I must say thank to you for
you being as you are. To both and all the team of the Bonderd, thanks for making many of
my stuff easier.

I must also say thanks to Joanna. Last years were very gezellig, I had a lot of fun and
I would never forget your 2006 birthday party. I would like to express my gratitude to the
Rural corner of the Leeuwenborch. Jan Douwe, siempre has conseguido sacarme una sonrisa,
gracias (todav́ıa me debes una cerveza). Special thanks goes to Kei and Gustavo for sharing
PhD up and downs, gracias por todo vuestro apoyo. A big word of thanks goes to Petra. I
had a great time with you talking in Spanutch (siempre curiosa sobre el significado/ráız de
muchas palabras), biking and discussing life issues. Ans and Cees, many thanks for taking
care of the PhD team. I will never forget you and your gezellig parties. Ans, thanks giving
us advice on the layout of our books. I would like to thank all the good friends I have met
during my years in Wageningen, specially to Adolf, Olga, Toni, Marga, (Francesca)2, Axel,
Andre, Ada y la última en llegar, Noa “Ribera del Duero”. I also wish to thank to Nelly for
keeping my neck connecting my head and back.

I would like to thank Costanza, when she was living in Wageningen everything was
different. I am glad that we met and we had/have many talks and discussions about life,
thanks for sharing that with me. “Jenny” Co, “Il Sasha più adattato, zio felice, tranne nella
pioggia. Un grande bacio e noi manchiamo a voi” :-O . Lola, Paul and Joek (het hondje),
what can I say . . . I do not have enough pages to say how important you are in my life,
not only in Wageningen. Thanks for all your support and for the many many many good
moments we have had. Thanks for sharing your friendship, for cheering me up when I needed.
It maybe helped the jamón and chorizo for Paultje :-). Out of jokes, I love you and you will
be always on my heart and my life. Special thanks goes to Lola. I had great time with you,
thank you for your humor, your encourage, for sharing the good and the bad on our PhD
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Yolanda, Almu y Sara, Mercedes y Elenita, Esperanza y Lina. Thank you for all the support
and emails. Os quiero much́ısimo, gracias por todo vuestro apoyo, por mantenerme al d́ıa
de vuestras cositas. Un besazo enorme.

Gracias Eligius. I do not know how to express all my gratitude to you; thank you for
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CHAPTER 1

General Introduction

1.1 Introduction

“The work of managers, of scientists, of engineers, of lawyers – the work that steers the

course of society and its economic and governmental organizations – is largely work

of making decisions and solving problems. It is work of choosing issues that require

attention, setting goals, finding or designing suitable courses of action, and evaluating

and choosing among alternative actions. The first three of these activities – fixing

agendas, setting goals, and designing actions – are usually called problem solving;

the last, evaluating and choosing, is usually called decision making. Nothing is more

important for the well-being of society than that this work be performed effectively,

that we address successfully the many problems requiring attention at the national level

(the budget and trade deficits, AIDS, national security, the mitigation of earthquake

damage), at the level of business organizations (product improvement, efficiency of

production, choice of investments), and at the level of our individual lives (choosing a

career or a school, buying a house).”

(Simon et al. (1986), p.19 )

Decision making is present in daily life. Governments, organizations, workers are confronted
everyday with different decision problems and with the need to address and resolve these
problems. The moment we wake up everyday we start making decisions and try to do
things the best way or as good as possible given the decision making situation. Often one
tries to maximise a kind of utility in order to reach an objective. Some decisions can be
made automatically, that is, the decision maker has been confronted with a similar problem
many times and has learned to arrive at a solution using a predefined algorithm (solution
method). These are called programmed decisions. Other decisions can be characterised as
non-programmed and less structured, also called unstructured decisions. That means that
the decision maker has to cope with unusual and less structured situations in which decisions
are made based on information or intuition. Decision making takes place when a need for
a decision is recognized. Based on it a problem is delineated and solution alternatives are
generated. The alternatives are evaluated based on the objective to generate a ranking on
preference order of alternatives. Based on the evaluation and identification of expected risks,
consequences and values of each alternative, one can select the best-favourable alternative
related to the objective of the decision maker.

Keen and Scott-Morton (1978) identified five different approaches of decision making:
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• A Rational way of decision making, in which the manager is completely informed,
knows all the alternatives and can make an optimal choice (’objective rational-
ity’);

• A satisfycing way of decision making, in which a decision alternative is sought
that satisfies all participants (’bounded rationality’);

• A organisational procedures way of decision making, which sees decisions as the
output of standard operating procedures invoked by organisational subunits;

• A political way of decision making, in which a decision is seen as a result of
negotiations between actors; power and influence determine the outcome of any
given decision;

• A individual differences way of decision making, which presupposes a very im-
portant role for the character of the individual, and in which personality and
style are of great importance.

In van der Vorst (2000) the satisfycing approach is emphasised as the most relevant:

“The rational way of decision making could be used for the reordering of standard

products; and the political way of decision making could be used when selecting another

supplier. But in general, a mix of the mentioned approaches is applied when making

a decision (Benders et al. (1983)). According to Simon (1976) ’most human decision

making, whether individual or organisational, is concerned with the discovery and

selection of satisfactory alternatives; only in exceptional cases is it concerned with the

discovery and selection of optimal alternatives’. Because of this bounded rationality

the choice in most decision making situations is for satisfycing decisions.”

(van der Vorst (2000), p.58)

In many decision situations the decision problem can be decomposed into components that
are to be dealt with in parallel and/or subsequently. In other words, decision makers face the
decision problem in a simultaneous or in a step-by-step way. Decision situations may also
involve more than one decision maker, which leads to a competing or cooperating situation.
For example, when a supermarket has to decide about where to locate and other competing
supermarkets already exist or plan to locate at the same area. Or if a political party does not
have a majority in the government, negotiations with other parties can take place in order to
form a majority government. Decisions have in common that all are made in order to solve
problems. Unfortunately, not all problems are easily solved without modelling approaches
and the development of associated solvers (computational algorithms).

We focus on decision making problems following the rational way of decision. Within
the context of decision making processes, it is well accepted (Simon (1976), Keen and Scott-
Morton (1978) and van der Vorst (2000)) to use Model Based Decision Support Systems
(MBDSS) with associated solvers for models incorporated. These models are then meant
to help to generate decision alternatives and/or to evaluate consequences of decision alter-
natives. In this thesis we focus on a special class of optimisation models and algorithms
(solvers) that can play an important role in such MBDSS. Models are made to represent
the decision situation under study. Solvers are developed that allow the modeller to obtain
efficiently and effectively optimal solutions for models developed. These “optimal” solutions
can be of great value in practical decision situations. In the remainder of this thesis, we use
the term “optimal” in the sense just described.

We hypothesise that Game Theory may have modelling merits to contribute to decision
making situations where decision makers have competing or cooperating objectives, under
the assumption that the decision makers are rational and they act in their best own interest.
Game Theory is a key element for studying decision making problems involving two or more
decision makers. It provides concepts and applies mathematical models for selecting an opti-
mal strategy considering the strategy of the others. In daily life, one can observe cooperation
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in the form of club membership, alliances between companies and countries (sky alliance,
NATO, EU) on all levels. Part of the cooperation incentives is economic; the signatories of
a coalition consider membership a win-win situation over non membership. Such incentives
drive horizontal and vertical cooperation in supply chains and club formation between organ-
isations and countries. One can also observe competitive situations, for example when two
or more chains are trying to get more market share from a common area and they compete
on prices. Competition not only takes place in business, also games like tennis or chess are
competitive.

Many real world decision problems need more elaboration than just optimizing only one
variable (e.g. time) or only one decision maker objective. Not only the number of decision
makers plays a role, many problems involve decisions at many levels, over several periods or
on a planning horizon. The objective is to guarantee to have an optimum. One could try
to handle it with a hierarchical approach, solving each subproblem at each level, in some
cases, using the information obtained from the decisions made in earlier subproblems. When
more than one decision maker is involved, Game Theory gives us modelling techniques to
do so. Game theory models are often applied to situations with few or symmetric multiple
decision makers, which limits its modelling power. It is well accepted in literature that it
is impossible to completely represent the real world in models. The real world and decision
situations are too complex. Therefore, we aim at Game Theory models that are able to
better represent or are able to represent more important features of an types of relationships
of the real world. So we are trying to minimise the gap between our modelling requirements
and models actually built. In addition, we aim to develop solvers for these enhanced Game
Theory models.

Results and models in Game Theory can be found in literature. These results are often
due to basic models with two actors leading to analytical solutions or alternatively to more
actors that are all assumed to be the same; symmetric players. In this thesis we extend these
models by studying cooperative or competitive decision situations in the observable world:
building new models in Game Theory and reformulating into Operations Research models
to study cases with more than two heterogeneous actors. In this case, one has to apply
and develop new Operations Research techniques, that is, modelling optimisation problems
and developing algorithms to solve them. Therefore, in order to compute the solutions it is
required first to build new or to use existing Game Theory models for multi-actor coopera-
tion; second to develop and reformulate these models using Operations Research techniques;
and third to develop new algorithms for solving the models using sets of equalities, linear
optimisation, nonlinear optimisation, combinatorial optimisation, etc. If we look at relevant
literature and especially also at case descriptions in different areas such as environmental
decisions, supply chain management decisions and political games, we find decision support
requirements and decision situations that may benefit from a modelling approach using Game
Theory models because of their modelling capabilities (e.g. to represent competing decision
makers). As a consequence, it is of scientific and practical importance to research the value
of Game Theory models and associated solvers.

The objective of this thesis is to explore the potential of combining Game Theory mod-
els with mathematical modelling and solve these complex Operations Research models by
developing algorithms in different empirical situations. The idea is to contribute filling the
gap between theory and practice developing Operations Research models and algorithms for
Game Theory models describing Decision Making problems. The challenge is to get Game
Theory “at work” by applying such models and techniques to practical cases. This provides
insight into which concepts of Game Theory are practically applicable for which type of
cases, and on the other hand, get insight in the use of mathematical programming models
and algorithms to reach the target.
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We first give a small overview on relevant Game Theory (GT) concepts and models in
Section 1.2 and Operations Research (OR) techniques in Section 1.3. Section 1.4 specifies
the objective of this thesis and the research questions. Section 1.5 elaborates the objective of
the study and how the questions are investigated together with a brief outline of the thesis.

1.2 Game Theory Introduction
In von Neumann and Morgenstern (1944) a clear introduction to what constitutes a game is
given:

“First, one must distinguish between the abstract concept of a game, and the individual
plays of that game. The game is simply the totality of the rules which describe it. Every
particular instance at which the game is played – in a particular way – from beginning
to end, is a play.

Second, the corresponding distinction should be made for the moves, which are the
component elements of the game. A move is the occasion of a choice between various
alternatives, to be made either by one of the players, or by some device subject to
chance, under conditions precisely prescribed by the rules of the game. The move is
nothing but this abstract ’occasion’, with the attendant details of description, – i.e. a
component of the game. The specific alternative chosen in a concrete instance – i.e. in
a concrete play – is the choice. Thus the moves are related to the choices in the same
way as the game is to the play. The game consists of a sequence of moves, and the play
of a sequence of choices.

Finally, the rules of the game should not be confused with the strategies of the players.

Exact definitions will be given consequently, but the distinction which we stress must

be clear from the start. Each player selects his strategy – i.e. the general principles

governing his choices – freely. While any particular strategy may be good or bad –

provided that these concepts can be interpreted in an exact sense (...) – it is within the

player’s discretion to use or to reject it. The rules of the game, however, are absolute

commands. If they are ever infringed, then the whole transaction by definition ceases

to be the game described by those rules. In many cases it is even physically impossible

to violate them.”

(von Neumann and Morgenstern (1944), p. 49)

In this section, GT is briefly introduced and related to the focus of this thesis. For a more
profound elaboration, interested readers are referred to other more specific texts on GT such
as Myerson (1991) or Shubik (1984). GT Models are games, which are basically defined
by: number of players, set of available strategies, outcomes and payoffs associated with the
outcomes. GT concepts define the characteristics of the games. GT concepts give the details
of the elements of the game (e.g. player, strategy, utility), details about the information
available to the players (e.g. complete, perfect), or how players choose their strategies (e.g.
simultaneous) and other characteristics of the game like communication rules. Next, these
and some others GT concepts are introduced.

A game can be defined as a mathematical representation of a conflict situation. The
outcome depends on mutual interaction between two or more rational individuals, called
players. A player can be defined as a decision maker in a decision problem: a person, a
group, an animal, or whatever entity. Depending on the number of players, games can be
classified as a two-person game, three-person game, and in general a N-person game, N > 2.

Games have rules specifying the actions the player can take, the information the player
has available and the consequences of the decisions. Consequences usually are not only for
the player itself but also for the other players, which leads to a cooperative or to a competitive
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situation. For example, in a tennis game, the objective is not only to hit the ball back to the
other player but to hit it back in a way the other player cannot return it, which also depends
on where the opponent is placed. A game must also include payoffs or utilities (profits of the
players), i.e., the reward one gets. Set of alternatives is used to describe the different actions
or strategies among which a given player can choose on the feasible space of the game, as
quoted from von Neumann and Morgenstern (1944), a move is the occasion of a choice, the
specific alternative chosen is the choice. A strategy defines a set of moves (choices) a player
will follow in a game. The strategy set is the set of strategies all players have chosen.

There is a distinction between games with complete and games with incomplete informa-
tion depending on the information the players have about the parameters of the game. In
games with complete information, players have full information about the strategies and util-
ity functions of the other players. In incomplete information games, players may or may not
know some information (strategies, payoffs or preferences) about the other players. Games
can also be divided into games with perfect and imperfect information depending on the
information the players have about the past behaviour. In games with perfect information,
players have full information about the actions that have already taken place.

According to how players choose their strategies, there is a distinction between simultaneous-
move games and sequential-move games. In simultaneous games, players choose their strate-
gies simultaneously, in ignorance of the strategies of the others. Players must predict what
the opponents will do. A game can also be defined as a simultaneous game when decisions
are not taken at the same moment but moves are in ignorance of what the rest of players
are doing. In sequential games, players make decisions in sequential order.

Based on the gains or losses by the players, there are zero-sum games and non-zero sum
games. The most common situation is to apply these games for two players. Zero-sum games
are conflict/competitive situations; the gain of a player (set of players) is the loss of the other
player (set of players), i.e. the total benefits for the players, for every combination of the
available strategies, sum to zero. In non-zero sum games, aggregate payoffs are different
from zero. Furthermore, non-zero sum games are not strictly competitive games.

Depending on the communication rules, distinction is made between non-cooperative and
cooperative games. In non-cooperative games, players are unable to make enforceable agree-
ments outside of those specified by the game. Any cooperation must be self-enforcing. In
cooperative games, players can make enforceable agreements and form clubs before choosing
their actions. Competition is between clubs and not between individuals.

Another distinction is between symmetric games or asymmetric games. In a symmetric
game, independently of the player who is playing a particular strategy, a player earns the
same payoff when she chooses the same strategy/action against her competitors. Otherwise,
a game is called asymmetric. In games, players can be homogeneous or heterogeneous. The
outcomes for heterogeneous players are not the same if they play the same strategy.

According to the rules of coalition negotiation, two different games can be outlined de-
pending on whether or not the players are allowed to make utility side payments as an
incentive for the members. If side-payments are allowed, a game is called Transferable Util-
ity Game, otherwise it is called Non-Transferable Utility Game.

Another concept is that of externalities, positive or negative. A game with externali-
ties occurs when a decision made by a player causes an effect in terms of benefits (positive
externalities) or costs (negative externalities) to third parties (other players). Examples
are pollution (negative externalities) or public goods (positive externalities). Positive ex-
ternalities are related to the free-rider problem. A free-rider gets the benefits from positive
externalities but does not contribute to its costs.

In this thesis we use two main solution concepts in GT. One is the Nash equilibrium.
Nash (1951) introduced the concept in which no player can be better off by following another
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strategy while the others remain unchanged. A Nash equilibrium is a set of strategies for
the players such that no player has an incentive to unilaterally deviate from her strategy. At
equilibrium, each player is using the strategy that is the best reply to the strategies chosen
by the other players.

Definition 1. Nash Equilibrium: A Nash equilibrium is a profile of strategy choices such

that every strategy of the players is a best reply to the strategies chosen by the other players.

In a Nash equilibrium, no player has any incentive to deviate unilaterally from it.

The definition of Nash equilibrium using the concept of best responses is as follows:

Definition 2. The strategy profile (s∗1, . . . , s
∗
i , . . . , s∗n) ∈ S is a Nash equilibrium if for each

i ∈ N :

s∗i ∈ arg max
si∈Si

(πi(s
∗
1, . . . , si, . . . , s

∗
n))

where Si denotes the set of all possible strategies for player i and πi the utility function.

We also consider the classical concept of stability of coalitions introduced for cartel coali-
tion formation (one coalition) by d’Aspremont et al. (1983), which is in fact close to the
Nash equilibrium concept. A coalition is stable if, on the one hand, for a member of the
coalition there is no incentive to free-ride (internal stability) and on the other hand, for a
non-member there is no incentive to take part of the coalition (external stability).

Two GT models are relevant in this study. The first is due to the French economist
Augustin Cournot, the Cournot competition model (Cournot (1838)). It originally describes
a competitive model between firms producing a homogeneous product. Firms compete si-
multaneously on quantities, choosing how much to deliver to markets. The objective of each
firm is to maximise profit. The game belongs to the class of imperfect information. The
second relevant model was proposed by the German economist Heinrich Freiherr von Stack-
elberg, the Stackelberg competition model (Stackelberg (1934)). It models behaviour of two
competing players called the leader-follower. The leader player moves first and chooses a
strategy, then the follower moves sequentially, knowing the decisions taken by the leader.
This game belongs to the class of perfect information games.

In this thesis, we use most of the concepts outlined above in four different cases. In two
of the cases, more than one decision needs to be made, that is, decisions are made in a so-
called two-level decision game. At each stage or level of decision, all the players make their
decisions simultaneously. In these cases, we use the GT concept subgame perfect equilibrium,
which means that at every stage/step a Nash equilibrium is computed.

In Section 1.5.1, an outline of the relevant concepts we use through this thesis is given.

1.3 Operations Research
Most of the decisions that we make in daily life have a goal: optimising a set of variables,
where variables mean characteristics defining a problem. Operations Research has been
defined in many books and articles. In Hillier and Lieberman (1986) a complete description
of what OR is given.
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“Operations Research is concerned with optimal decision making in, and modelling of,
deterministic and probabilistic systems that originate from real life. These applications,
which occur in government, business, engineering, economics, and the natural and
social sciences, are largely characterized by the need to allocate limited resources. In
these situations, considerable insight can be obtained from scientific analysis such as
that provided by operations research. The contribution from the operations research
approach stems primarily from:

1. Structuring the real life situation into a mathematical model, abstracting the es-
sential elements so that a solution relevant to the decision maker’s objectives can be
sought. This involves looking at the problem in the context of the entire system.
2. Exploring the structure of such solutions and developing systematic procedures for
obtaining them.
3. Developing a solution, including the mathematical theory, if necessary, that yields an
optimal value of the system measure of desirability (or possibly comparing alternative
courses of action by evaluating their measure).”

(Hillier and Lieberman (1986), p. 6)

Thus, first step in modelling using OR is the formulation of the objective and specification of
the decision variables of the problem. Based on the objective and decision variables identified,
a model can be constructed as a mathematical representation of the problem. Conditions on
the decision variables, like relationships between variables and bounds, define what it is called
constraints of the problem. Constraints are defined by using mathematical equations and/or
inequalities. All the points satisfying the constraints define what it is called the feasible area.
The objective function is defined from the objective of the problem. The idea is to optimise
the objective function, maximising or minimising, subject to the constraints (if they exist).
The objective function together with the constraints define the mathematical programming
model, also known as optimisation problem. The next step is to solve the model finding an
optimal solution. A solution for the optimisation problem satisfies the constraints (so-called
a feasible solution) and gives a numerical value to each of the decision variables. An optimal
solution is feasible and represents the most desirable value for the objective of the problem.
It can happen that a problem has no optimal solution, only one or an infinite number. Most
of the cases, in order to solve an optimisation problem an algorithm is required. OR models
(or optimisation models) and optimisation algorithms are described next.

1.3.1 Operations Research Models

In the process of decision making situations, mathematical techniques can be used. As
introduced before, decision variables may be restricted by conditions like bounds or relations
with other variables, this is called a constrained optimisation problem. When there are no
constraints the problem is called unconstrained optimisation problem. Thus, a first basic way
on modelling a decision problem is considering the restrictions on the decision variables. For
example, in the tennis game the feasible area where one is allowed to play has limits.

When a problem has been defined as constrained or unconstrained, more characteristics
can be used in modelling it. The decision variables of the problem may be continuous or
discrete. In a linear programming problem (LP), the objective and the constraints are linear
functions and the decision variables are continuous. When at least one of the constraints or
the objective function are non-linear, the problem is called a nonlinear optimisation problem
(NLP). Within nonlinear optimisation problems, one can distinguish between smooth (when
derivatives exists for all the functions in the model) and non-smooth (not all the functions
have derivatives defined at all the points). More distinctions are: unconstrained NLP opti-
misation, a NLP problem without constraints; quadratic programming in which the objective
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function have quadratic terms and the constraints are linear equalities and inequalities; con-
vex programming, where the objective function is convex and constraints form a convex set;
separable programming implies that the objective and the constraints are separable functions
(a function where each term involves just a single variable, so that the function is separable
into a sum of functions of individual variables. (Hillier and Lieberman (1986)); non-convex
programming refers to nonlinear programming problems not satisfying the assumptions of
convex programming; or fractional programming dealing with the optimisation of an ob-
jective function having the form of a fraction (or ratio). In general, several local minima
(maxima if it is a maximisation problem) may exist. Global Optimisation aims at finding a
solution which is guaranteed to be the global optimum within a predefined accuracy.

If decisions are hierarchically structured, the problem can be modelled by multi-level
optimisation programming, which are hierarchical optimisation problems. If the number of
levels is two, the problem is called a Bilevel optimisation problem. In bilevel optimisation
problems, the mathematical programming problem contains an optimisation problem in the
constraints. Bilevel optimisation problems are close to the Stackelberg problem from Game
Theory (Colson et al. (2005)).

Now consider that the decision variables are discrete, that is, variables are restricted to
values specified by a discrete set. If all the variables are required to take integer values,
then the problem is modelled by Integer Programming (IP). If in addition the objective and
constraints are linear the problem belongs to the class of Integer Linear Programming (ILP)
problems. When the problem has integer variables and continuous variables, the problem
is called a Mixed Integer Optimization Problem (MIP). A problem involving combinatorial
choices is called a Combinatorial Optimisation Problem.

Linear or non-linear, continuous or discrete, decision making problems may also involve
a time horizon space. When decisions need to be made over several periods, the problem is
modelled by a multi-period problem. Otherwise, the problem is called a static programming
problem. In Section 1.5.1 an outline of OR models relevant for the research in this thesis is
given.

1.3.2 Operations Research Algorithms

An algorithm is a step-by-step procedure for solving a problem. It is usual that an algorithm
repeats several steps over and over again until the desired result is obtained. In that sense,
algorithms are iterative processes. Consider a group of friends. A member knows a gossip
but she wants to keep it as exactly as possible, not running and inflating from mouth to
mouth. Algorithm 1.1 shows a possible algorithm to solve the problem.

Algorithm 1.1 : Gossiping1
Funct Gossiping1(set of friends,gossip)

1. List := set of friends
2. while List is not empty
3. x := Take a friend from List
4. Tell the gossip
5. Get the promise to not say anything
6. Delete x from List
7. OUTPUT: Desired objective
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When writing algorithms, two questions arise: do the procedures reach the desired solution
and at what computational cost? As defined in Hendrix (2007), efficiency is the effort the
algorithm needs to be successful. Several efficiency indicators appear in literature. Usual
indicators are the number of function evaluations and memory requirements necessary to
reach the optimum. Another question is related to effectiveness: does the algorithm find
what we want? Algorithm 1.1 is effective (assuming that they will keep the promise) but is
it efficient? Algorithm 1.2 shows another possibility for solving the problem.

Algorithm 1.2 : Gossiping2
Funct Gossiping2(set of friends,gossip)

1. Make an appointment with the set of friends
2. Tell the gossip
3. Get the promise to not say anything
4. List := set of friends - set of friends showed up
5. while List is not empty
6. x := Take a friend from List
7. Tell the gossip
8. Get the promise to not say anything
9. Delete x from List

10. OUTPUT: Desired objective

It can be seen that Algorithm 1.2 is not only effective but it is more efficient than
Algorithm 1.1. In general, algorithms have an initialization step setting up the parameters
to start iterations, iterative step performing the operations, and optimality test or stopping
rule checking if the current solution is the optimal. Now the focus will be on algorithms
solving the OR models outlined in Section 1.3.1.

The simplex algorithm (Dantzig (1963)) became a popular method for solving LP prob-
lems. There are variants of the simplex algorithms like the upper bound technique, the dual
simplex method or parametric programming. Karmarkar (1984) introduced an interior point
method for solving LPs. This algorithm is a polynomial time algorithm which is superior (in
theory) to exponential time algorithms, like the simplex method.

Dynamic Programming is a tool that allows solving problems by using recursive calls to
subproblems with the same structure and smaller size. Dynamic Programming models can
be formulated when decisions have to be made in a sequence and are interrelated. Each stage
influences the decision at the next stage. A recursive relation exists identifying the optimal
solution of stage n given the optimal solution for stage (n+1). Thus, the solution procedure
consists of solving first the last stage and then recursively going backwards.

Combinatorial Optimisation Problems, Integer Programming (IP) and Integer Linear
Programming (ILP) problems are not easy to solve. In many cases there exists an expo-
nential explosion on the size of the problem increasing the computational difficulty. Dealing
with these problems by enumeration can be computationally very expensive depending on
the number of variables and structure of the problem. A possible algorithm for solving ILP
problems uses LP methods by doing what is called LP-relaxation. However, this method
does not always find the optimal solution (Schrijver (1998)). New algorithms are necessary.
An often used technique for solving ILP problems is the Branch-and-Bound method. In
contrast with a total enumeration method, the Branch-and-Bound approach uses a partial
enumeration. Branch-and-Bound is also used to solve most of the Combinatorial Optimisa-
tion problems. An alternative to Branch-and-Bound methods are the Cutting Plane methods
(Gomory (1958)). There also exists many heuristic algorithms for solving combinatorial op-



10 Game Theory at Work

timisation problems where solutions may be not optimal but satisfactory.

In contrast with LP problems, for NLP Problems no single based-algorithm exists that
will solve the problem. Sometimes one can derive explicit solutions based on analysis of first
order optimality conditions. Traditionally this is called analytically solving. Algorithms have
been developed to solve individual problems like the ones described in the former section.
For these models, many different Search Algorithms have been developed during the last
decades, procedures like Golden Section search, Penalty Approach, Steepest Ascent (descent
if minimising) or Global Optimisation Methods. Branch-and-Bound methods are also used
to solve GO models. For solving convex nonlinear models, available methods are for example,
interior point methods or ellipsoid methods. One of the procedures applied in this thesis is
based on Sequential Quadratic Programming (SQP) (Boggs and Tolle (1996)).

Multilevel programming optimisation problems can be solved by LP, ILP, Combinatorial,
Dynamic or NLP techniques depending on the characteristics of the model. In Section 1.5.1,
the methods used in this thesis are outlined.

1.4 Research Objective and Questions
GT not only gives analytical results (theorems) but can also be applied to numerical cases
to derive tendencies for multi-actor cooperation in different circumstances. The challenge
in this thesis is to build GT models based on GT concepts to describe economic incentives
for multi-actor heterogeneous situations. First of all, one has to translate GT models into
Mathematical Programming models. After that, for solving these models, algorithms have
to be developed using OR techniques. Therefore, the focus of the study is on supporting
the process of building models to represent decision situations and developing techniques to
solve these models. Summarising and being more explicit, Figure 1.1 shows the conceptual
model of the thesis research.

Information from the decision problem is used to select which GT concepts are necessary
and applicable. From the GT concepts and the decision problem, one can build a GT model.
Based on the GT model and from the objective(s) defined within the decision problem, a
mathematical programming model (optimisation model) is formalised. One should try to
code the problem in an appropriate way. With the mathematical definition of the model,
algorithms are developed and used to interact with the decision problem. Interaction of
algorithms and problem definition is made by testing and validating results according to the
objectives. The challenge is to build GT and OR models and the development of algorithms
for solving decision situations with multiple, heterogeneous and asymmetric actors.

With this conceptual model, the research objective is specified: to develop or con-
tribute to the development of usable GT models and OR methods to solve them in practical
situations. In other words, assess the capability of GT to describe economic incentives for
complex decision problems involving multiple actors. In order to do this, there is a need to
develop optimisation models and algorithms to implement analytical concepts and models
from Cooperative/Non-Cooperative Game Theory and Competitive models such that they
are applicable to numerical cases in economic literature.

With respect to the scientific relevance, it is necessary to distinguish between its method-
ological and theoretical gains. First of all, as explained above, the thesis aims to develop a
set of methodological tools which allows us to do numerical analyses. Moreover, the thesis
aims to construct a conceptual model that combines GT, OR and Social Sciences. This is
of interest for all scientists involved in the field of research and, of course, specifically those
involved in the study of GT models and OR techniques. The research aims to provide a
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Figure 1.1. Conceptual Model of Thesis Research.

useful contribution to at least the following areas of related concern:

• Building optimisation (OR) models based on GT concepts/models

• Developing OR techniques as tools to solve optimisation (OR) models based on GT
concepts/models with multiple heterogeneous actors

• Cases of cooperation and competition are used to show the applicability of the GT
models and the OR techniques

We hypothesise that GT concepts and models might provide us with a valuable contribu-
tion for supporting decision makers provided that we can make OR models and algorithms
to solve these models. We can translate these aims and hypothesis in the following research
questions:

1. How do we formulate GT models for decision making situations with multiple hetero-
geneous actors using GT concepts? How can we contribute to that modelling?

2. If we have GT based models: What appropriate coding can be used to translate a
specific GT model into a mathematical programming optimisation problem such that
it can be solved?

3. Which solution methods can be developed to solve these models?

4. How do the outcomes aid to analyse the decision makers problem? or What is the
contribution of the new outcomes to the decision makers problem?

The following describes how we deal with these questions.
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1.5 Research Approach and Outline of the Thesis
Governments (countries), Companies, Markets (oligopoly, duopoly, bilateral monopoly, and
so on) lend themselves to game-theoretic analyses because the fate of each participant de-
pends on the actions taken by the other participant or participants. Methods are developed
to deal with finite strategy approaches (enumeration) and continuous decision problems based
on GT concepts.

1.5.1 Research Design: Selection of Cases
The conceptual model explained above connects GT concepts and models with OR models
and algorithms. In illustrating the conceptual model, we use case study research. We are
interested in cases covering some or all of the following characteristics:

1. Empirical studies involving cooperation and/or competition between the different play-
ers (actors)

2. Empirical studies in which more than two players are heterogeneous and asymmetric

3. Transferable Utility games and/or Non-Transferable Utility games

4. Multi-level decision problems. That is, best solutions are found by making several
decisions at different stages, optimizing each of the sub-problems

5. Games with externalities (positive or negative), free-rider problems

6. Considering the possibility of different rules of coalition formation

7. Using concepts as Nash equilibria and stability analysis of coalitions

8. Different procedures on coalition formation

The starting points for each of the cases are from sources based on literature review.
To illustrate cooperative/non-cooperative GT concepts/models we looked for models with a
challenge on algorithmic development. In particular, for Chapter 2, we take the model from
Eyckmans and Finus (2003a) where multiple coalition formation is considered. In the paper
of Eyckmans and Finus (2003a), a case with six players was studied by doing calculation more
or less by hand. However, larger games require to develop algorithms to solve it. In Chapter
3, we use the model from de Ridder and Rusinowska (2005) to apply two different procedures
of coalition formation and to test several hypotheses. The model is multidimensional and
with more than two heterogeneous players resulting into a computational challenge when
using real data. One can illustrate the model in few dimensions and few players as was done
in de Ridder and Rusinowska (2005). In order to apply the model to real data, it is necessary
to develop OR methods.

To illustrate competition models, we looked for cases involving competition on location
and competition on location and quantity (see e.g. Drezner and Hamacher (2004) and Nickel
and Puerto (2005) for an overview on location theory). Chapter 4 is based on the model of
Sarkar et al. (1997), a competitive game based on location-quantity decisions. They consider
symmetric and fixed-entry at the markets, that is, all the firms (players) will enter the market.
When considering asymmetric players and free-entry at the markets, algorithms for getting
equilibria at quantities and locations are needed. Finally, Chapter 5 is based on the work of
Drezner and Drezner (1998) with a follower and leader competing on facility location. The
problem is a global optimisation problem and it has been solved for the follower problem in
literature. However, as far as we know, the leader-follower problem has not been addressed
with global optimisation methods giving a guarantee on finding the global optimum for the
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leader. In summary, the objective is to contribute to these models extending the research
either on the GT models and reformulation to OR models or the OR methods.

Solution methods are developed in order to find the most favourable solution to the
objective defined by the players. OR involves the construction of mathematical models.
Models are a collection of mathematical relationships representing aspects of the situation
under study. We use concepts from GT to build models of the decision situation and apply
techniques of OR to generate algorithms to obtain the optimal solution(s). Figure 1.2 rep-
resents how the conceptual model is combined with the case studies applied in this thesis.

Figure 1.2. Conceptual model and case studies

From the conceptual model of the thesis research in Figure 1.1 and the characteristics of the
research showed on Figure 1.2, an overview of the applied cases is shown in Tables 1.1, 1.2
and 1.3.

1.5.2 Outline of the Thesis

Chapter 2 describes and studies a multiple coalition formation game. Particular attention
is paid to the analysis of the stability of coalitions under different membership rules. The
idea is to analyse stability of multiple agreements based on the classical stability concept
developed for cartel stability (see d’Aspremont et al. (1983)). Cartel stability restricts coali-
tion formation to only one agreement. When multiple coalition formation is considered, the
stability concept is more complex: for a signatory there should be no incentives to leave its
coalition to join another one. Consequences of membership rules are modelled and studied.

Chapter 3 focuses on a model described in de Ridder and Rusinowska (2005) of multidi-
mensional coalition formation in politics. In the model, a government consists of a majority
coalition and a policy supported by this coalition. There are n parties trying to form a gov-
ernment. A formed government has a policy agreement represented in a m-multidimensional
Euclidean policy space R

m. The complexity increases with the number of parties n and
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Table 1.1. GT concepts used in this thesis

Chapter 2 Chapter 3 Chapter 4 Chapter 5
Complete information X X X X
Incomplete information
Perfect information X X
Imperfect information X X
Simultaneous moves X X X
Sequential moves X X
Zero sum X
Non-zero sum X X X
Cooperative X X
Non-cooperative X X X X
Asymmetric players X X X X
Symmetric players
Heterogeneous players X X X X
Homogeneous players
Transferable Utility X
Non-transferable Utility X X X
Externalities X
Non externalities X X X
Two-level decision making X X
Stackelberg X
Cournot X

Table 1.2. OR models used in this thesis

Chapter 2 Chapter 3 Chapter 4 Chapter 5
Unconstrained
Constrained X X X X
Continuous X X X X
Discrete X X X
NLP X X X X
Combinatorial Optimisation X X
Static X X X X
Dynamic
Convex Optimization X X X
GO X
Bilevel X

Table 1.3. OR algorithms used in this thesis

Chapter 2 Chapter 3 Chapter 4 Chapter 5
Enumeration Algorithms X X
Branch-and-Bound X
Analytical Solutions X X
Penalty approach X
NLP via SQP∗ X
∗ In Case 2 we use an external nonlinear optimisation algorithm using a Sequential Quadratic Pro-
gramming (SQP) method.

the dimension of the policy spaces m. Given the number of parties n and policy dimen-
sion m, computational methods are necessary to compute all possible winning coalitions and
preferences of parties over those (if many) coalitions. Furthermore, two ways of forming a
government are considered: step-by-step and simultaneously.
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Chapter 4 describes a competitive quantity-location “a la Cournot” two-level game be-
tween n > 2 heterogeneous firms and m > 2 markets. It extends the studies in Sarkar et al.
(1997) and Rhim et al. (2003). The location space is a network, where the nodes are con-
sidered as possible locations for the firms. The number of firms entering the markets is not
known in advance (as in Rhim et al. (2003)). A difference with Rhim et al. (2003) is that
we consider asymmetric costs (firm-specific). Another difference is the procedure on how to
find the equilibrium of the game. We consider not only the possibility the supplier to leave
a market but also the possibility to move its facility to another location. Doing so, a firm
has to re-think the quantity decision on how much to supply to which markets.

Chapter 5 describes a location decision of a new facility for two competing chains following
the Stackelberg concept. It is a planar facility location problem where attractiveness to
consumers depends on their distance to the location of the facility. The demand quantities
are assumed to be known and fixed. There are two competitors (chains). First, the leader
makes a decision on where to locate its facility in the plane. Second, the follower makes a
decision with full knowledge of the decision of the leader. The objective of the leader is to
maximize its market share after the entrance of the follower. The follower problem has been
studied under deterministic consumer behaviour in Drezner (1994), Plastria (1997), using
attraction functions of gravity type, and in Plastria and Carrizosa (2004) using different
kinds of attraction functions.

Finally in Chapter 6, focus is on what the cases teach us with respect to the questions
of applicability of methods; which methods can be applied in which situation. Results
are reported between the existing theory and application of such a theory by developing
OR methods and GT models to implement. The chapter includes answers to the research
questions, discussions about the research, its limitations and further research.





CHAPTER 2

On the Computation of Stability in
Multiple Coalition Formation

Games

Chapter based on article: Sáiz, M.E., Hendrix, E.M.T. and Olieman, N. (2006), On the computa-

tion of stability in multiple coalition formation games, Computational Economics, 28 (3), 251-275.

Abstract

In non-cooperative models of coalition formation, players have to decide whether or not to
participate in a coalition (alliance). Game theoretic analyses of the formation of alliances
in games with externalities, stress the difficulties in designing self-enforcing treaties because
of free-riding. The presence of a strong free-rider incentive prevents most alliances of be-
ing stable and/or effective. This paper focuses on computing stability in a game on multiple
coalition formation with membership rules and different transfer schemes. A new mathemat-
ical programming notation for game theory concepts is outlined. To compute stability, the
new notation is used for implementation into computer coding. Implementation and com-
putation aspects are discussed. Numerical illustration of the algorithm shows that stability
varies with the applied membership rules and transfer schemes. An application of coalition
formation to International Environmental Agreements (IEAs) is provided.
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2.1 Introduction

In daily life we observe cooperation in the form of club membership, alliances between
companies and countries (sky alliance, NATO, EU) on all levels. Part of the incentives is
economic; the signatories of the coalition consider membership a win-win situation over non
membership. Recently in game theory the incentives for alliance or coalition formation is
studied by modelling interaction of possible counterparts by coalition formation games (see
e.g. Morasch (2000), Thoron (2000)). The research in this paper was inspired by negotiations
at international level to cope with environmental problems, such as climate change.

Environmental problems have been the focus of negotiations at international level in
the last decades. Using financial means to abate greenhouse gas emissions domestically
by individual countries is inefficient from a cost perspective; some countries can abate more
cheaply than others. This gives an economic drive to cooperate in the reduction of greenhouse
gas emissions. The cooperation of countries and regions, such as observed in the Kyoto
protocol, is based on many political aspects. Concepts from economy and game theory
provide means for analysing whether economic incentives exist to form coalitions. The size
of the coalition formed affects the size of the benefits that result from cooperation. The larger
the number of participating countries the larger the benefits. Furthermore, countries outside
of the agreement are going to benefit and it gives for some countries an strong incentive to
free riding (externalities for nonmembers).

We analyse stability of multiple agreements based on the classical stability concept de-
veloped for cartel stability (see d’Aspremont et al. (1983)): A coalition is stable if, on the
one hand, for a signatory there is no incentive to free-ride (internal stability) and on the
other hand, for a non-signatory there is no incentive to take part in the coalition (external
stability). Internal-External stability restricts coalition formation to only one agreement,
i.e., countries have only one option to join a coalition. When multiple coalition formation
is considered, the stability concept is more complex: for a signatory there should be no
incentives to leave its coalition to join another one. Other features of coalition formation
games are the membership rules. A difference between the rules of coalition formation lies in
what can happen to the membership of a coalition once it has been formed: Can an existing
coalition break apart, admit new members, or merge with other coalitions? (Topic is studied
in Yi and Shin (1995)).

If countries are free to decide not only whether or not to be part of a coalition but also
which coalition to join, there is generally more than one coalition at the equilibrium. This
result is found in literature on coalition formation of economic coalitions, such as Ray and
Vohra (1997) and (1999), Bloch (1995) and (1996), Yi and Shin (1995) and Yi (1997). These
studies describe formation of multiple coalitions under different notions of stability and rules.
Ray and Vohra (1997) and (1999) assume the “equilibrium binding agreement” rule which
means that coalitions are allowed to break up into smaller sub-coalitions only. Bloch (1995)
and (1996) consider an infinite horizon game and a coalition is formed only if all prospective
members agree to form the coalition (coalition unanimity). Yi and Shin (1995) consider the
“open membership” rule in which non signatories can join an existing coalition even without
the consensus of the existing members. Yi (1997) examines endogenous coalition formation
among symmetric players and analyses the stability of the grand coalition under different
membership rules (open membership, coalition unanimity, equilibrium binding agreements).
As a result, different rules of coalition formation lead to different predictions about stable
coalition structures (Carraro and Marchiori (2003)). In our study, three different membership
rules are used: open membership, exclusive membership with majority vote and exclusive
membership with unanimity vote.

Finally, to enlarge the size of coalitions it is natural to propose economic transfers to
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compensate those countries that may lose by signing the environmental agreement. Trans-
fers can be paid from the gains of enlarging the coalition. Eyckmans and Finus (2003b)
and (2003a) assume only transfers within coalitions where the surplus of a coalition from
cooperation is allocated according to a proportional sharing rule applying to a numerical
case with 6 regions. Botteon and Carraro (1997) analyse a cartel game (only one possible
coalition) with 5 asymmetric world regions. In their study, payoffs, incentives to free-ride and
incentives to broaden a stable coalition are computed for two different burden-sharing rules
based on the Nash bargaining concept and the Shapley value concept. They use transfers
for non-members to broaden a coalition. Transfers are only applied to “pre-transfers” stable
coalitions. Bosello et al. (2003) and (2001) compare four burden-sharing criteria, the one
implicit in the Kyoto protocol and three additional ones in a model with the world divided
into 6 regions (203 coalition structures). This study shows that transfers can help broadening
a given internally stable coalition.

The current paper describes the above developments and facilitates studying multiple
coalition formation among players in a game. Particular attention is paid to the analysis
of the stability of coalitions under different membership rules. The case of Eyckmans and
Finus (2003a), is used for validation purposes to check the final implementation. Results of
applying the suggested approach to the data described in Finus et al. (2005), gave new insight
into economic incentives for coalition formation with respect to CO2 emission reduction that
are reported in Finus et al. (2004b). Our main contribution is the description of an algorithm
to perform stability analysis of coalition structures in a multiple coalition formation game
with different transfer schemes. An illustration of the algorithm is shown for a model with
12 players (more than four million of coalition structures). Furthermore, we do not only
apply transfers to “pre-transfers” stable or internally stable coalition structures like Bosello
et al. (2003) and (2001) do. The possibility to stabilize a coalition structure is studied.

This paper is organized as follows: in Section 2.2 a description of the definitions of
stability in an open and exclusive membership game is given. In Section 2.3, a translation into
mathematical programming notation of the concepts is elaborated. Moreover, the concept of
neighbourhood is introduced for this formulation. In Section 2.4, the implementation used
to compute stable coalitions in the game is discussed. In Section 2.5, results on stability
analysis for a case with 12 players is shown. Conclusions can be found in Section 2.6.

2.2 Game Theoretic Background: Definitions and Concepts
Coalition games are part of Cooperative Game Theory where two or more players can coop-
erate to reach their goals. A coalition structure is a partition of the set of players N . Basic
assumptions in situations where coalition games are applied are: the existence of binding
agreements and the possibility of transferable payments between players. In this paper we
focus on coalition formation in a two-level game. At the first level, players make a decision
about cooperation with other players and form one or more coalitions; at the second level, a
non-cooperative game is played given the coalition structure formed at the first level.

2.2.1 Definitions and Concepts

Let N = {1, . . . , n} be the set of players in the coalition game. Within coalition games one
can distinguish between Single Coalition Games (Cartel Games), in which only one coalition
can emerge, and Multiple Coalition Games, in which more than one coalition can be formed.
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The Cartel Game (see e.g. Yi (1997)) assumes the existence of at most one coalition.
Members of the coalition are called signatories and all other players non participating are
called singletons or non-signatories. On the first level of this game, two membership strategies
are available:

• strategy σj = 0: means player j is a non-signatory,

• strategy σj = 1: means player j is a signatory

In the Multiple Coalition Game, players decide on the first level one of the following
strategies: to be member of a non-trivial coalition, (signatories); or can form a singleton
coalition (non-signatories). Several coalitions may exist and players can choose which coali-
tion to join. The Multiple Coalition Game has a larger membership strategy set than the
Cartel Game.

We introduce formally the concept of a coalition structure c = {κ1, . . . , κi, . . . , κm} as
a collection of coalitions κi of one or more players, with m the total number of coalitions in
coalition structure c. In other words, a coalition structure c = {κ1, . . . , κm} is a partition of
the set of players, N , where a particular coalition is denoted by κi, i ∈ {1, . . . , m}, κi∩κj = ∅
for all i �= j, ∪κi = N .

A coalition with only one player j, |κj | = 1, is called a singleton and the coalition
where all players participate, κ1 = N , is called the Grand Coalition. The two level game
is defined as follows:

• Player j ∈ N decides in which coalition κi to participate (i ∈ {1, . . . , m})
• At the second level, the coalitions are considered as a set of players who decide on their

common strategy, such that the aggregate payoff (from now on called net benefit) of
a coalition is maximized.

The input for level 2 is defined by coalition structure c = {κ1, . . . , κm}. The net benefit
functions of level 2 for each coalition κi in the coalition structure c are defined by

NBc
i (q) =

∑

j∈κi

ϕj(q)

where ϕj(q) is the individual payoff for player j for strategy vector1 q. The Nash equilibrium
profile strategy at the second level, q∗(c) depending on structure c, leads to an output of level
2 being a net benefit vector that can be translated into values of the payoffs of the individual
players j ∈ N possibly after applying transfers between the members of a coalition. When
leaving out transfers, the payoff vector only depends on the output c of level 1 in the following
way:

Π(c) = vector of payoff values following (2.1a)

from level 2 under coalition structure c

1Some general remarks about syntax conventions in this paper: An underscore under a variable
depicts a vector, such as x. The ith element of the vector x is denoted as xi.



On the Computation of Stability in Multiple Coalition Formation Games 21

Πj(c) = ϕj(q
∗(c)) payoff of player j (2.1b)

based on optimal strategy vector q∗(c)

In the case of transfers, the individual payoff Πj players receive is defined by a transfer
scheme:

Πj(c) = ϕj(q
∗(c)) + ξj ,

∑

j∈κ

ξj = 0 ∀κ ∈ c (2.2)

where ξj > 0 means to receive a transfer and ξj < 0 means to pay a transfer. In the cases
illustrated in Section 2.5, several alternative transfers schemes are used to establish values
of Πj(c).

If the optimal strategy in the second stage is determined by a coalition structure c, then
the entire coalition formation game reduces to one single stage.

2.2.2 Stability Concepts
In a single coalition game (Cartel Game), a distinction can be made between internally
and externally stable (see Ray and Vohra (1997) and (1999), Finus et al. (2006) and (2005),
Olieman and Hendrix (2005)). Internally stable means that there is no player in the coalition
with the incentive to leave and become a singleton. Externally stable means, that there is
no singleton player with the incentive to enter the coalition. In the Multiple Coalition Game
we have more than one coalition and we have to be more careful defining stability.

We use the concept of Inter-Coalition stability (see Carraro (1999)). This concept means
for a structure c∗ that there is no player belonging to a coalition κk ∈ c∗ which would be
better off by leaving the coalition to join another non-singleton coalition κt ∈ c∗, t �= k.

Definition 3. Stability in a Multiple Coalition Game:

• Internal Stability: no cooperating player j ∈ κk would be better off by leaving coali-

tion κk ∈ c∗ to form a singleton κm+1;

• External Stability: no singleton player j would be better off by joining any coalition

κt ∈ c∗;

• Inter-coalition Stability: no player belonging to κk ∈ c∗, |κk| > 1, would be better

off by leaving κk to join another coalition κt ∈ c∗.

A coalition is called stable if it is as well internally stable, externally stable as inter-
coalitionally stable. Note the following:

• A coalition structure without singletons is externally stable.

• In the definition of external stability we include the possibility that a singleton can join
another singleton, that is, coalition κt ∈ c∗ in the definition above can be a coalition
with only one player.
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• In the definition of inter-coalition stability we assume that coalition κk ∈ c∗ has more
than one player, that is, it is not a singleton.

In order to check stable coalition structures, we use stability concepts that capture the
notion of open and exclusive membership (majority and unanimity voting):

Open Membership Game

The term Open Membership is used to indicate that for the current members of coalition κt,
any other player is allowed to enter it.

Exclusive Membership Game

The exclusive membership in the single coalition game (Cartel Game) implies there is an
additional condition to external stability: a non-coalition player is only allowed to join the
existing coalition if the payoff for the existing coalition members will not decrease. In that
case the members of the coalition will decide that the new member is allowed to join the
coalition. If not, they will exclude the new member from the coalition.

Specifically one can consider two types of voting rules:

1. Majority Voting : if a player has an incentive to join coalition κt we have to check if the
current members are better or worse off. If more than 50% are in favor of accession,
then the candidate is accepted and the original coalition structure is not stable. We
assume that if 1 is in favor and 1 against then accession is not accepted. The concept
does not change when the 50% rule is changed to any other rule such as 66% or 75%.

2. Unanimity Voting : only if all coalition members are in favor of accession, then the
candidate is allowed to enter. That is, if there is one player against (veto), then
accession is denied.

The introduced concepts are elaborated further in the following section such that it is
possible to compute whether coalition structures are stable for heterogeneous cases.

2.3 Mathematical Programming Notation and Stability Check
Implementation requires exact representation of concepts into computer coding. First the
coding of the coalition structures is described. Then the idea of neighbourhoods is introduced
to represent in an exact way the alternatives that players have on the first level. This is
followed by a description of the stability checks.

2.3.1 Mathematical Programming Representation of Coalition Structures
For representing a coalition structure we now introduce the so-called“Eyckmans notation”
(see Eyckmans and Finus (2003a)). The coalition structure in this notation is expressed as
a string or vector of numbers (c) indicating the number of the coalition to which a player
belongs. A “1” indicates that a player is part of coalition “1”; a “2” indicates that a player is
part of coalition “2”; and so on until the maximum number of possible coalitions “m = n”.
For example for six players:
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c = [1, 2, 2, 3, 4, 2] ⇒ c = {{1}, {2, 3, 6}, {4}, {5}} with

|κ1| = 1, κ1 = {1},
|κ2| = 3, κ2 = {2, 3, 6}
|κ3| = 1, κ3 = {4}
|κ4| = 1, κ4 = {5}

That is: player j = 1 (called “1”) is a singleton, κ1 and |κ1| = 1, players j = 2, 3, 6
form a coalition called “2”, κ2 and |κ2| = 3, and players j = 4 and j = 5, called “3” and “4”
respectively, κ3, κ4; |κ3| = 1, |κ4| = 1, are singletons. In this notation, the same coalition
can be represented by:

c = [2, 1, 1, 3, 4, 1]

However, it is convenient if a coalition vector is represented uniquely. The idea is to
translate alternative representations by re-assigning values to the elements of c in in-
creasing order. The Grand Coalition, cGC = {κ1}, |κ1| = n, in vector notation is rep-
resented by cGC = [1, 1, . . . , 1] and the coalition structure with only singleton members,
cS = {κ1, κ2, . . . , κn}, |κj | = 1, for all j, in set notation, is given by cS = [1, 2, . . . , n] in
vector notation.

The total number L of all possible coalition structures is not known analytically, but can
be derived numerically. A unique index function that maps c into {1, . . . , l, . . . , L} to num-
ber the coalition structures is not straightforward either. However, the generated coalition
structures in the (ordered) string notation defines an ordered list of numbers consisting of n
digits. This gives the possibility to find a particular structure from the list by bisection in
(at most) 2 log L + 1 steps. The number of multiple coalition structures derived numerically
is2:

n : 6 7 8 9 10 12

L : 203 877 4140 21147 115975 4213597

One can determine all optimal payoff values Πj(cl) following (2.1) for all possible coalition
structures cl, l = 1, . . . , L. As a result, we obtain a large L×n payoff matrix Π of optimal
payoff values for every individual player j when coalition structure l applies. The matrix can
be used to study decisions on level 1.

2.3.2 Neighbourhood of Coalition Structures

Because of the different alternatives a player has in the multiple coalition game, we introduce
some new concepts that are useful in the study of stability of coalition structures. In the
Cartel Game (single coalition game) a player j has only one alternative action, either leave
or stay in the coalition. Let ml be the number of coalitions in coalition structure cl. In the
multiple coalition game, inside a coalition structure cl = {κ1, . . . , κml}, each player j usually
has more than one alternative:

2These numbers of partitions of a set of n elements are called Bell numbers Bn (Berge (1968)):
B0 = B1 = 1, Bn+1 =

∑n
k=0 Ck

nBk
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Case of a non-singleton coalition: Let player j be a member of a non-singleton coalition
κi, i ∈ {1, . . . , ml} in the coalition structure cl. Player j has two possible alternatives
to staying in the coalition κi: one alternative is to leave coalition κi to become a
singleton forming a new coalition, κml+1, |κml+1| = 1; the other alternative is to leave
coalition κi to join another coalition κt, t ∈ {1, . . . , ml}\{i}.

Case of a singleton coalition: Now, suppose j forms a singleton coalition by itself κi,
|κi| = 1. Player j has “only” one alternative: to join another coalition κt, t ∈
{1, . . . , ml}\{i}.

The number of possible alternatives depends on the number of coalitions in the coalition
structure. If there is more than one coalition κt, t ∈ {1, . . . , ml} in the coalition structure cl,
then a player can join any other coalition except its current coalition, i.e. ml − 1 coalitions
and ml possibilities if it is a singleton.

Given a coalition structure cl, players can decide (strategy, level 1) on leaving a coalition
and entering another. Here the stability definitions of the following section play a role. It is
important to note that the deviation strategy of one player, while the others do not change
their strategy, leads to a so-called neighbour coalition structure.

For the check of stability we need all the neighbours of cl. The exact number of neighbours
is not easy to identify in the multiple coalition game, in contrast to the cartel formation
game. Let cl be a coalition structure, k(j) be the number of the coalition which j belongs
to and let κk(j) be that coalition. The neighbour coalition structures are represented by

c
neig(j,t)
l , j ∈ N , t ∈ νlj , with νlj the possible deviation index set of player j in structure cl

defined as follows:

• If coalition κk(j) is formed by a singleton player j, |κk(j)| = 1, then the neighbours
generated by player j are defined by the possible alternatives in the strategy set:

νlj = {1, 2, . . . , ml}\{k(j)} and |νlj | = ml − 1 (2.3a)

• If j is non-singleton, |κk(j)| > 1, the possible alternatives in the strategy set are given
by:

νlj = {1, 2, . . . , ml + 1}\{k(j)} and |νlj | = ml (2.3b)

as j can also choose to proceed alone.
Note that each neighbour of the Grand Coalition corresponds to a Cartel Coalition

Structure: a coalition formed by n−1 players and only one non-signatory player, a singleton.

Example 1. Let cl = [1, 1, 2, 2, 3, 4, 3, 3, 2, 1, 1, 2] be a coalition structure in string notation.
For non-singleton player 1 the possible deviation index set is:

k(1) = 1, νl1 = {2, 3, 4, 5}
and corresponding neighbour coalition structures are:

cneig(1,2) = [2, 1, 2, 2, 3, 4, 3, 3, 2, 1, 1, 2] = [1, 2, 1, 1, 3, 4, 3, 3, 1, 2, 2, 1]

cneig(1,3) = [3, 1, 2, 2, 3, 4, 3, 3, 2, 1, 1, 2] = [1, 2, 3, 3, 1, 4, 1, 1, 3, 2, 2, 3]

cneig(1,4) = [4, 1, 2, 2, 3, 4, 3, 3, 2, 1, 1, 2] = [1, 2, 3, 3, 4, 1, 4, 4, 3, 2, 2, 3]

cneig(1,5) = [5, 1, 2, 2, 3, 4, 3, 3, 2, 1, 1, 2] =
↑

[1, 2, 3, 3, 4, 5, 4, 4, 3, 2, 2, 3]

which after
translating
becomes
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For singleton player 6 the possible deviation index set is:

k(6) = 4, νl6 = {1, 2, 3}

and corresponding neighbour coalition structures are:

cneig(6,1) = [1, 1, 2, 2, 3, 1, 3, 3, 2, 1, 1, 2]

cneig(6,2) = [1, 1, 2, 2, 3, 2, 3, 3, 2, 1, 1, 2]

cneig(6,3) = [1, 1, 2, 2, 3, 3, 3, 3, 2, 1, 1, 2]

which do not require translation.

The neighbourhood of a coalition structure is defined by all the alternatives of all
players. Due to overlap of (translated) neighbours, we only have an upper bound of the total
number of neighbours of cl; it is not bigger than

∑
j |νlj |

In the following section, we leave out the sub-index l and we only write c to denote a
coalition structure, m for the total number of coalitions in c and νj for the deviation index
set of a player j.

2.3.3 Mathematical Programming Notation for Stability Checks
Let us first summarise the notation introduced so far:

• N = {1, . . . , n}: set of players;

• c = {κ1, . . . , κm}: coalition structure in set notation; c = [κ1, . . . , κm] in vector
(string) notation;

• m: number of coalitions in coalition structure c.

• κi: coalition inside coalition structure c with one or more members, i ∈ {1, . . . , m},
m ≤ n;

• k(j): current coalition number of player j;

• κk(j): coalition inside coalition structure c to which player j belongs;

• νj : set of alternative strategies of player j in coalition structure c;

Example 2. Consider coalition:

c∗ = [1, 1, 1
↑

player 3

, 1, 2, 3, 2, 4, 1, 2, 3, 5]

A player, for instance player three, has six possible strategies and deviation set: ν3 =
{2, 3, 4, 5, 6} . The first possible strategy is to stay in its current coalition 1; the strate-
gies two to five are to leave the current coalition and join coalition number i, i ∈ {2, 3, 4, 5}
which is a subset of ν3; the last possible strategy, number six, is to leave the current coali-
tion and form a coalition number 6 to become a singleton; depending on what is the most
favourable option. In the situation that none of the 12 players in c∗ has the incentive to
change the current situation, the coalition structure is defined stable.
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This implies the following criterion for determining the stability of a coalition: Stability
Criterion: if the payoff for each player in the current situation is higher than the payoff in
all of the neighbour alternatives, then coalition structure c∗ is stable.

Example 3. The stability criterion and the deviation index set ν3, imply the coalition struc-
ture, with respect to player 3,

c∗ = [1, 1, 1, 2, 3, 2, 4, 1, 2, 3, 5]

has to be compared with

• cneig(3,2) = [1, 1,2, 2, 3, 2, 4, 1, 2, 3, 5] player 3 enters coalition 2

• cneig(3,3) = [1, 1,3, 2, 3, 2, 4, 1, 2, 3, 5] player 3 enters coalition 3

• cneig(3,4) = [1, 1,4, 2, 3, 2, 4, 1, 2, 3, 5] player 3 enters coalition 4

• cneig(3,5) = [1, 1,5, 2, 3, 2, 4, 1, 2, 3, 5] player 3 enters coalition 5(=m)

• cneig(3,6) = [1, 1,6, 2, 3, 2, 4, 1, 2, 3, 5] player 3 forms coalition 6(=m+1)

The following can happen:

• If option cneig(3,t) does not result into a higher payoff for player 3, then player 3 will
not enter coalition t, for all t ∈ v3,

There is no incentive to change anything as far as player 3 is concerned. The same applies
to other players, where the player has possibly a different number of alternatives. If for each
other player deviation will not result in a higher payoff, then it will not leave the coalition.
Therefore: if in all of these cases the alternatives of the player does not give an expected
improvement, no action will be taken and thus coalition structure c∗ is stable.

Open Membership Stability:

In this section the Mathematical Programming Notation for checking stability of c∗ =
{κ1, . . . , κm} is described. Let t ∈ νj be an index indicating the possible coalitions that
j can join and cneig(j,t), the possible neighbour coalition structure arising from coalition
structure c∗ as a result of player j changing its status and forming coalition t (singleton) or
joining another coalition t.

Consider player j changing its strategy from k(j) to t ∈ νj . This results into neighbour
coalition structure:

1. If j is a singleton

cneig(j,t) = {κ1, κ2, . . . , κt ∪ {j}, . . . , κm−1}
2. If j is a non-singleton

• either join other coalition κt

cneig(j,t) = {κ1, κ2, . . . , κt ∪ {j}, . . . , κk(j)\{j}, . . . , κm}
• or form a singleton κm+1

cneig(j,t) = {κ1, κ2, . . . , κt, . . . , κk(j)\{j}, . . . , κm+1}

with
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κm+1 = {j}
Coalition structure c∗ is defined:

internally stable in the open membership game if:

Πj(c
∗) ≥ Πj(c

neig(j,m+1))

for all j ∈ N with |κk(j)| > 1

(2.4)

externally stable in the open membership game if:

Πj(c
∗) ≥ Πj(c

neig(j,t))

for t ∈ νj and j ∈ N with |κk(j)| = 1
(2.5)

inter-coalitionally stable in the open membership game if:

Πj(c
∗) ≥ Πj(c

neig(j,t))

for j ∈ N with |κk(j)| > 1,
t ∈ νj\{m + 1} with |κt| ≥ 1

(2.6)

Exclusive Membership Stability:

In the multiple coalition game this rule depends on testing either external stability or inter-
coalition stability. Consider player j wants to change its strategy from k(j) to t ∈ νj

• Internal Stability : in the exclusive membership game is still defined by equation (2.4).

• External Stability : Player j forms a singleton coalition by itself |κk(j)| = 1. If there
is any member p in κt (unanimity) such that its payoff decreases, then player j is not
allowed to join coalition κt.

• Inter-coalition Stability : Player j is a member of a non-trivial coalition, |κk(j)| > 1. If
there is any member p in κt (unanimity) such that its payoff decreases, then player j
is not allowed to join coalition κt.

The concept of majority voting in mathematical programming notation, requires introduction
of a new binary variable yes/no symbol, δp, that tells us whether the current player in a
neighbour coalition structure is against or in favour of another player entering:

For p ∈ κt :

{
δp = 1 , if Πp(c

∗) > Πp(c
neig(j,t)) (against)

δp = 0 otherwise.
(2.7)

and the majority is against when:

∑
p∈κt

δp ≥ |κt|/2

Table 2.1 defines more specifically the external and inter-coalitional stability of a coalition
Structure c∗ in the exclusive membership game.
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Table 2.1. External and Inter-coalition stability definition

External Stability Inter-coalition stability

if for all j with |κk(j)| = 1, t ∈ νj if for all j with |κk(j)| > 1, t ∈ νj

No voting rule

Πj(c∗) ≥ Πj(cneig(j,t)) Πj(c∗) ≥ Πj(cneig(j,t))
Majority if for all j with |κk(j)| = 1, t ∈ νj if for all j with |κk(j)| > 1, t ∈ νj

Voting Πj(c∗) < Πj(cneig(j,t)) Πj(c∗) < Πj(cneig(j,t))

Rule and
∑

p∈κt
δp ≥ |κt|/2 and

∑
p∈κt

δp ≥ |κt|/2

Unanimity if for all j with |κk(j)| = 1, t ∈ νj if for all j with |κk(j)| > 1, t ∈ νj

Voting Πj(c∗) < Πj(cneig(j,t)) Πj(c∗) < Πj(cneig(j,t))

Rule and ∃p ∈ κt such that δp = 1 and ∃p ∈ κt such that δp = 1

The challenge is now to create a procedure to find for the first level game, where coalition
formation takes place, stable coalition structures. Consequently, on the second strategy
decisions level, for each structure the equilibrium of that level has to be determined. Such a
procedure is outlined in the next section.

2.4 Description of the Algorithm
The mathematical programming formulation has been used to implement an algorithm for
computing stability in a multiple coalition game. The larger the number of players is, the
larger the number of coalition structures we must consider. As a consequence, the bigger the
matrix with all necessary data to test stable coalition structures will be. For each coalition
structure we determine:

• integer index for coalition structure.

• coalition structure in vector notation.

• payoff vector for each player in each coalition structure.

• three indicators 0-1 for internal, inter-coalition and external stability of the coalition
structure (0 = non-stable; 1 = stable).

The algorithm consists of four steps. Steps 1 and 3 of the algorithm are case specific, the
first step is the input data and the third step depends on the strategy at the second level of
the game. To illustrate the algorithm, a two-level CO2 emission game (as introduced in Finus
et al. (2006)) is used. The players are world regions each with a particular benefit and cost
structure on the abatement of CO2 emissions. On the first level they decide simultaneously
on their membership in a coalition; on the second level coalitions choose their abatement
strategies. This choice depends on the coalition structure appearing on the first level.

The formulation starts by representing the abatement levels by a vector q. Let N be the
set of regions and j ∈ N represent the region index. Let qj be the individual abatement
of region j, Bj(·) the benefit function from global abatement,

∑n
j=1 qj , and ACj(·) the

abatement costs function from individual abatement qj . The abatement decision on the
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second level is based on the following payoff function:

ϕj(q) = Bj(

n∑

j=1

qj) − ACj(qj) (2.8)

The complete algorithm consists of the following:

STEP 1 Settings: Region specific parameter values, used in calculation of the payoffs.
Such parameters concern data about benefits, costs, abatement, payoff, emissions and
concentration. We refer to Section 2.5.1 where values of this parameters are introduced.

STEP 2 Generate: In this step we generate all possible coalition structures in vector
notation and save in matrix structure. To sort the structures, the string code is used
as an integer index.

STEP 3 Abatement : calculate the optimal payoff for all possible coalition structures. The
strategies are continuous decisions, q, on abatement, reduction of emissions from a
maximum level emax

j , 0 ≤ qj ≤ emax
j . The payoff for an individual region j in a

coalition structure c is given by eq. (2.8), ϕj(q) = Bj(
∑n

r=1 qr)−ACj(qj). Regions in
a coalition decide on abatement to maximise

NBi(q) =
∑

j∈κi

ϕj(q) =
∑

j∈κi

[
Bj(

n∑

r=1

qr) − ACj(qj)

]
(2.9)

The payoff ϕj of region j and thus the aggregate net benefit NBc
i of coalition i in

coalition structure c, not only depends on its own strategy but also on those in other
world regions. The game may now be seen as a positive externality game: payoff in
region j increases with abatement in region p. Regions belonging to the same coalition
maximize the aggregate net benefit of their coalition.

max
qj

j∈κi

NBi(q), i = 1, . . . , m (2.10)

The optimum is found by solving the set of equalities determined by the first order
conditions:

∂NBi(q)

∂qj
= 0 j ∈ κi , i = 1, . . . m

if the optimum is interior with respect to 0 ≤ qj ≤ emax
j .

The equilibrium abatement strategy vector q∗ for coalition structure c is derived as a
Nash equilibrium between coalitions. The outcome of this step consists of a payoff ma-
trix Π which contains all individual payoffs Πj(cl) for all possible coalition structures,
cl:

Π =

⎡

⎢⎢⎣

Π1

Π2

. . .
ΠL

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

Π1(c1) . . . Πj(c1) . . . Πn(c1)
Π1(c2) . . . Πj(c2) . . . Πn(c2)
. . .
Π1(cL) . . . Πj(cL) . . . Πn(cL)

⎤

⎥⎥⎦ (2.11)

STEP 4 Stability : main procedure. Now we proceed to look for those coalitions which
are stable, that is, internally, inter-coalitionally and externally stable. The notation
introduced in the last sections helps us in the implementation of this procedure. The
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algorithm checks stability as follows: for each structure cl and for each region j look to
neighbourhood, c

neig(j,t)
l , t ∈ νlj , and compare Πj(cl) with Πj(c

neig(j,t)
l ) for all t ∈ νlj .

2.5 Illustration of the Algorithm
Eyckmans and Finus (2003a) elaborate a case in a CO2 emission game with multiple coali-
tions for 6 regions. This results in 203 possible coalition structures. For validation purposes
of our algorithm the matrix with all possible payoffs (step 3, 2.11) has been used as input
for checking stability in step 4. Cases applied are with and without transfers. Only in the
exclusive membership game stable coalitions appear. With our implementation the number
of stable, internally, inter-coalitionally and externally stable coalition structures are exactly
the same as in their study either in the open, exclusive majority or exclusive unanimity.

A 12 region case based on data from a cartel game is shown in Olieman and Hendrix
(2005). In this game a number of 4 thousand coalitions has been checked. This case is
extended here to allow multiple coalition formation. This requires the determination of
more than 4 million coalition structures. The source of the data can be found in Finus et al.
(2005) and Dellink et al. (2003). They set up an empirical model, the so-called STAbility of
COalition model, STACO. For emissions in 2010 they choose the value of the DICE model
(see Nordhaus (1994)), which amounts to 11.96 gigatons CO2. In Sáiz et al. (2004) the
data of that study are used to derive results for a 6, 8 and 10 region case. The regions
distinguished in these studies are: USA (USA), Japan (JPN), European Union (EEC), other
OECD countries (OOE), Eastern European countries (EET), former Soviet Union (FSU),
energy exporting countries (EEX), China (CHN), India (IND), dynamic Asian economies
(DAE), Brazil (BRA) and “rest of the world” (ROW) (see Finus et al. (2006) and (2005)).
The algorithm checks the existence of stable coalition structures in cases without transfers
and with four different transfer schemes.

2.5.1 Parameters of the Payoff Function
With respect to the parameter values of the payoff function, the analysis of Finus et al. (2005)
is used. It starts in 2010 and covers a time period of 100 years in order to capture the long-
run effects of the global warming problem. Benefits are expressed in the form of discounted
reduced damages due to accumulated abatement over the entire period, q =

∑2110
t=2011 qt.

They come to B(q) = 37.40q where allocation of global benefits from reduced environmental
damages to the various world regions is based on the assumption:

Bj(q) = sjB(q) (2.12)

where sj is the share of region j.

For the Abatement Cost Function, they assume an annual abatement cost function of the
shape:

ACjt(qjt) =
1

3
αj(qjt)

3 +
1

2
βj(qjt)

2

where simply qjt is taken as qj/100 assuming stationary strategies (qj,2011 = . . . = qj,2110). In
the model, abatement means emission reduction with respect to (business-as-usual-scenario)-
emissions. A total initial emission of 11.96 gigatons is allocated to the 12 regions. The total
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abatement cost for region j is the discounted sum over t = 2011, . . . , 2110 leading to

ACj(qj) = 43.1ACjt(qjt) (2.13)

Table 2.2. Parameters of STACO model for eqs. ACj and Bj
a

Regions Emissions Share of global Abatement cost Abatement cost
in 2010 benefits parameter parameter

j Ej,2010 (Gigatons) sj αj βj

1 USA 2.416 0.2263 0.0005 0.00398
2 JPN 0.557 0.1725 0.0155 0.18160
3 EEC 1.399 0.236 0.0024 0.01503
4 OOE 0.621 0.0345 0.0083 0
5 EET 0.519 0.013 0.0079 0.00486
6 FSU 1.003 0.0675 0.0023 0.00042
7 EEX 1.219 0.030 0.0032 0.03029
8 CHN 2.356 0.062 0.00007 0.00239
9 IND 0.639 0.050 0.0015 0.00787
10 DAE 0.405 0.0249 0.0047 0.03774
11 BRA 0.128 0.0153 0.5612 0.84974
12 ROW 0.698 0.068 0.0021 0.00805
WORLD

∑
=11.96

∑
sj=1

a Eqs 2.12, 2.13

Table 2.2 shows parameter values about:

• Share of total of Emissions in 2010 in Gigatons, Ej,2010

• Share of Global Benefits, sj . The sum is equal to 1.

• Abatement cost parameter αj

• Abatement cost parameter βj

that are used in the 12 region case.

2.5.2 STACO Analysis without Transfer Schemes
The payoff for the regions is defined as in eq. (2.1), Πj(c) = ϕj(q

∗(c)). This payoff is
used to compute the matrix (2.11). A Fortran implementation of the algorithm generates
the 4.213.597 possible coalition structures and performs the stability checks as outlined on
Section 2.3.3. Table 2.3 depicts the number of stable structures classified towards the different
definitions of stability. Only in the exclusive membership game where members can apply a
veto for other regions not to enter, stable structures appear.

The stable coalition structures and their corresponding monetary values are listed in
Table 2.43 and are interpreted further in Finus et al. (2004b). The results on payoff, called
net benefit here, can be used to analyse the economic incentive for coalitions to appear. One
can observe for example that the gains from cooperation are large comparing the “grand
coalition” with the “all singletons” coalition. However, neither the “old” and “new” Kyoto
coalition structures are stable. The “largest” coalition structure in the multiple coalition
game can achieve less in terms of Net Benefit and in terms of Global Emission Reduction
than the “old” and “new” Kyoto coalition structure. USA and Japan are not members of any

3Coalition structures in tables are in a short notation, i.e, with only the regions in a coalition.
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Table 2.3. Number of stable coalition structures based on stability definitions. STACO
Model without transfers

OM a EM-MV b EM-UV c

Stable 0 0 8
Internally Stable 98 98 98
Intercoalitionally Stable 7 1,834,950 3,922,082
Externally Stable 988,476 1,619,763 2,681,807
a Open Membership Game
b Exclusive Membership Game, Majority Voting Rule
c Exclusive Membership Game, Unanimity Voting Rule

stable coalition and for Brazil the incentive to cooperate is bigger. In reality there may be
many other reasons for coalitions to be formed. The model only predicts economic viable
possibilities for coalition formation.

Table 2.4. Stable Coalition Structures STACO Model, case without transfers
b Annual

Coalition Structure a Net Emission
OM1 EM-MV2 EM-UV3 Benefit Reduction

grand coalition n n n 6,031 21.4
old Kyoto coalition: {USA,JPN,EEC,OOE,EET,FSU} n n n 3,140 8.9
new Kyoto coalition : {JPN,EEC,OOE,EET,FSU} n n n 2,692 6.9
{OOE,IND,BRA},{FSU,ROW},{EEX,CHN} n n y 2,452 5.8
{FSU,BRA,ROW},{OOE,IND},{EEX,CHN} n n y 2,451 5.8
{OOE,IND,BRA},{FSU,ROW},{CHN,DAE} n n y 2,415 5.7
{FSU,BRA,ROW},{OOE,IND},{CHN,DAE} n n y 2,414 5.7
{OOE,IND,BRA},{FSU,ROW},{EEX,DAE} n n y 2,263 5.4
{FSU,BRA,ROW},{OOE,IND},{EEX,DAE} n n y 2,262 5.4
{FSU,BRA,ROW},{OOE,DAE}{EEX,IND} n n y 2,261 5.4
{FSU,BRA,ROW},{OOE,EEX},{IND,DAE} n n y 2,255 5.3
all singletons n n n 1,960 4.6
1 Open Membership Game

2 Exclusive Membership Game, Majority Voting Rule

3 Exclusive Membership Game, Unanimity Voting Rule

a Net Benefit expressed in billion US dollar over 100 years

b Global Emission Reduction expressed in percentage from emissions as listed in Table 2.2 over 100 years

y = stable, n = not stable

2.5.3 STACO Analysis applying Transfer Schemes

The payoff function in case of transfers for a region j has already been introduced in Section
2.2.1, eq. (2.2). Transfers, ξj , are only paid between coalition members and

∑
j∈κk(j)

ξj = 0.

Let cS be the singleton coalition structure, cS = [1, 2, . . . , 12] in vector notation or cS =
{κ1, κ2, . . . , κ12} in set notation and c a coalition structure. Transfers for a region j in
coalition κk(j) in coalition structure c are assumed to be of the following form:

ξj = ϕj(q
∗(cS)) − ϕj(q

∗(c)) + λj

∑

p∈κk(j)

[
ϕp(q∗(c)) − ϕp(q

∗(cS))
]

(2.14)
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where 0 ≤ λj ≤ 1,
∑

j∈κk(j)
λj = 1 are weights in the following sense: to each region a

portion of the gain from cooperation is given. The gains from cooperation are measured
as the difference between the Net Benefit in the coalition κk(j) in coalition structure c and
the Net Benefit of coalition κk(j) in the all singletons coalition structure, cS . The larger
this weight, the higher the share is which a coalition member receives from the gains from
cooperation. Using Π̂j(c) for the payoff with transfers and Πj(c) for the payoff without
translates (2.14) into

Π̂j(c) = Πj(c
S) + λj(c)

∑

p∈κk(j)

[
Πp(c) − Πp(c

S)
]

(2.15)

Table 2.5. Weights of four transfers schemes λj(c
GC) a

Regions Equal Sharing Population Gross Domestic Ability to Pay
Products

1
|κi|

POPj∑
p∈κk(j)

POPp

GDPj∑
p∈κk(j)

GDPp

[GDPj/POPj]
−1

∑
p∈κk(j)

[GDPp/POPp]−1

(1) (2) (3) (4)
USA 8.3 4.8 27.0 0.5
JPN 8.3 1.9 17.0 0.3
EEC 8.3 5.8 29.2 0.6
OOE 8.3 2.2 5.8 1.1
EET 8.3 1.9 1.2 4.4
FSU 8.3 4.5 1.5 8.2
EEX 8.3 24.9 5.0 14.8
CHN 8.3 20.9 3.1 18.5
IND 8.3 17.8 1.4 37.0
DAE 8.3 3.2 3.0 3.2
BRA 8.3 3.0 2.4 3.6
ROW 8.3 9.1 3.4 7.8
Total 100 100 100 100
a All figures are expressed as a percentage and rounded to the first digit. Base data for computations

are taken from Altamirano-Cabrera and Finus (2006).

Table 2.5 summarise the weights for the grand coalition, cGC = [1, 1, . . . , 1], cGC = {κ1},
for the four different transfer schemes we consider. For any other coalition cl , weights λj(c)
are given by λj(c) = λj(c

GC)/
∑

t∈κk(j)
λj(c

GC).

We only briefly comment on the four rules and refer the reader for a more comprehensive
motivation to Finus et al. (2004b). “Equal Sharing” implies that each participant receives
the same weight. Given the fact that regions are very heterogeneous in many respects,
it is of course debatable whether equal sharing really implies equal and “fair” treatment.
The transfer scheme “Population” acknowledges that all people should benefit equally from
cooperation: “one man one vote”. Evidently, energy exporting countries (EEX), China
(CHN) and India (IND) receive high shares since many people live in these regions. The
transfer scheme “Gross Domestic Product” belongs to the so-called sovereignty rules because
they more or less preserve the current status of wealth. (GDP=The monetary value of all the
goods and services produced by an economy over a specified period. This is an indicator of
the economic health of a country). Hence, USA, Japan (JPN) and the European Union (EU)
receive high shares. “Ability to Pay”allocates the gains from cooperation inversely to welfare
(measured as GDP) per capita. Hence, this rule may be seen as a vehicle of development aid
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through environmental policy. Again, those regions that receive high shares are also those
that are the beneficiaries under the transfer scheme “Population”.

Table 2.6 depicts the number of stable structures classified towards the different defini-
tions of stability. With transfer schemes stable coalition structures appear when an exclusive
membership game is applied with either a majority voting rule or unanimity voting rule.

Table 2.6. Number of stable coalition structures based on stability rules. STACO Model
with transfers
Transfer Scheme Stability OM a EM-MV b EM-UV c

Stable 0 7 7
Internally Stable 902 902 902

Gross Domestic Product Inter-coalitionally Stable 11 83,993 84,044
Externally Stable 920,685 1,539,538 1,540,709

Stable 0 1 1
Internally Stable 240 240 240

Per Capita Inter-coalitionally Stable 7 52,434 52,472
Externally Stable 878,795 2,032,892 2,033,430

Stable 0 0 0
Internally Stable 227 227 227

Equal Sharing Inter-coalitionally Stable 4 43,716 43,716
Externally Stable 868,952 1,927,135 1,927,139

Stable 0 0 0
Internally Stable 96 96 96

Ability to Pay Inter-coalitionally Stable 6 35,613 35,638
Externally Stable 872,778 2,318,912 2,319,735

a Open Membership Game

b Exclusive Membership Game, Majority Voting Rule

c Exclusive Membership Game, Unanimity Voting Rule

Running the algorithms for different transfer schemes implies generating the correspond-
ing Π̂ matrices (as in 2.11). Table 2.6 summarises the results of the STACO model with
the transfer schemes used. Table 2.7 shows the stable coalition structures. Stable coalition
structures are “better” in the sense of net benefit and global emission reduction. Moreover,
transfer schemes make possible coalitions structures stable with coalition members as USA
and Japan which were not coalition members in the no transfer case. It also appears that
the transfer scheme “Gross Domestic Product” is more profitable than the others. More
economic interpretation can be found in Finus et al. (2004b).

Results show that transfer schemes are useful to be implemented. Computation with
membership rules generate different results with and without transfer schemes. In the cases
without transfers, the algorithm only found stability when an exclusive membership game
with unanimity voting rule is applied. This result is different when transfers are applied;
either majority and unanimity voting are sufficient to stabilise coalition structures. With
respect to the number of stable coalition structures, there are some transfer schemes which do
not generate stable coalition structures. Transfer schemes are anyway interesting in terms of
net benefit and global emission reduction. Furthermore, some of the regions considered that
are “not interested” in cooperation without transfer schemes, became interested in forming
a coalition when transfers appear.

2.5.4 Implementation Aspects
All results are obtained using a simple processor Pentium IV. The implementation procedures
are written in Matlab. The main program, run.m, calls sequentially the other subprograms,
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Table 2.7. Stable Coalition Structures STACO Model, case with transfers
b Annual

Coalition Structure a Net Emission
OM1 EM-MV2 EM-UV3 Benefit Reduction

grand coalition n n n 6,031 21.4
old Kyoto coalition: {USA,JPN,EEC,OOE,EET,FSU} n n n 3,140 8.9
new Kyoto coalition: {JPN,EEC,OOE,EET,FSU} n n n 2,692 6.9

Gross Domestic Product
{USA,DAE,BRA},{JPN,EET},{EEC,CHN},{OOE,EEX} n y y 3,278 8.1
{USA,CHN},{JPN,EET},{EEC,DAE},{OOE,EEX} n y y 3,249 8.0
{USA,DAE},{JPN,EET},{EEC,CHN},{OOE,EEX} n y y 3,249 8.0
{USA,OOE,EEX},{EEC,DAE,BRA},{JPN,EET},{CHN,ROW} n y y 2,992 7.3
{USA,DAE,BRA},{EEC,OOE,EEX},{JPN,EET},{CHN,ROW} n y y 2,980 7.2
{USA,OOE,EEX},{EEC,DAE},{JPN,EET},{CHN,ROW} n y y 2,973 7.2
{USA,DAE},{JPN,EET},{EEC,OOE},{CHN,ROW} n y y 2,951 7.2

Per Capita
{USA,EEC},{OOE,FSU},{EET,ROW},{CHN,IND} n y y 2,795 6.9

Equal Sharing
There are no coalition structures stable

Ability to Pay
There are no coalition structures stable

all singletons - - - 1,960 4.6
1 Open Membership Game

2 Exclusive Membership Game, Majority Voting Rule

3 Exclusive Membership Game, Unanimity Voting Rule

a Net Benefit expressed in billion US dollar over 100 years

b Global Emission Reduction expressed in percentage from emissions as listed in Table 2.2 over 100 years

y = stable, n = not stable

representing each one part of the algorithm. The subprograms are:

• step 1 of the algorithm: settings

• step 2 of the algorithm: generate

• step 3 of the algorithm: abatement

• step 4 of the algorithm: stability

The original Matlab code was translated to Fortran code with the aim to speed-up calculation
and improve memory use. The total CPU times obtained with the Fortran code are displayed
in Table 2.8. The table shows the development of the total number of coalition structures
and the time to process them when the number of regions increases from 6 to 12.

Table 2.8. CPU Times of data processing with increasing size of the case
Cases StaCo Model a 6 regions 8 regions 10 regions 12 regions

Total Number of
Coalition Structures 203 4.140 115.975 4.213.597

CPU Times Per Case (Seconds)
OM 1 0,001 0,453 27,594 1.894,641

MV 2a 0,016 0,500 29,312 1.987,078
EM 2

UV 2b 0,016 0,484 28,516 1.953,750
a (Finus et al. 2005)
1 Open Membership 2 Exclusive Membership
2a EM Majority Voting 2b EM Unanimity Voting
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2.6 Conclusions
The concept of the multiple coalition game as outlined in among others Carraro (1999),
Eyckmans and Finus (2003a), Ray and Vohra (1997) and (1999), has been reformulated in a
mathematical programming language. The new vector notation and neighbourhood notation
allows implementation in an algorithmic context.

We showed that the implementation provides the feasibility to study a multiple coalition
game with 12 asymmetric regions. We compute more than 4 million coalition structures and
compared the data handling for stability purposes within 1.950 seconds (approx. 1/2 hour).
To validate the algorithm, the case of Eyckmans and Finus (2003a) has been implemented
and the algorithm generates the same result as found in their study with 6 regions.

The research in this paper shows that the mathematical re-definition of existing concepts
and efficient Fortran coding, generates relevant results for a relative large case. To our
knowledge, empirical results for comparable cases were not reported before in the theory of
coalition formation.

Finally, based on earlier studies and results applying the STACO model (Altamirano-
Cabrera and Finus (2006), Finus et al. (2005), Olieman and Hendrix (2005)), this paper
shows in a numerical study that the number of stable coalition structures in a multiple
coalition game is bigger than in a cartel game and preferable if we are measuring in terms
of either Net Benefit or Global Emission Reduction.
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Abstract

Negotiations to form a coalition in politics appear in any parliamentary democracy. Many
studies on literature deal with coalition formation games. Starting point of this paper is
based on a model on political coalition formation. In this model, two different procedures
of coalition formation between political parties are considered. In the first approach, a step-
by-step procedure is used and new members are added one-by-one. In the second approach,
a simultaneous procedure is applied in which members in a coalition decide and negotiate
simultaneously. Furthermore, when the players are political parties, many different decision
variables play a role in the game. A government is defined as consisting of a majority
coalition and a policy supported by this coalition. Because of the different party positions
on different topics, a multidimensional decision space is considered in which each party has an
ideal position and the coalition policy is formed. When considering multidimensional space
and a large number of parties, computational methods become an important tool to find
which stable government(s) is(are) in equilibrium. We analyse and develop computational
algorithms for both procedures. Different cases in political games are used to illustrate the
methods and data is used to test hypotheses on coalition formation.
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3.1 Introduction
The topic of coalition formation is widely studied in literature. This paper focuses on a model
described in de Ridder and Rusinowska (2005) of multidimensional coalition formation in
politics. In the model, a government consists of a majority coalition and a policy supported
by this coalition. There are n parties trying to form a government. A formed government
has a policy agreement represented in a m-multidimensional Euclidean policy space R

m. The
complexity increases with the number of parties n and the dimension of the policy spaces m.
Given the number of parties n and policy dimension m, computational methods are necessary
to compute all possible winning coalitions and preferences of parties over those (if many)
coalitions. Furthermore, two ways of forming a government are considered: step-by-step and
simultaneously. Each procedure requires a specific algorithm.

In de Ridder et al. (2007) the model is used to show that procedure plays an important
role in reaching a coalition agreement and that political parties do not necessarily benefit
from being a first-mover. Moreover, that study shows that a decrease in a party’s flexibility
can be beneficial in coalition negotiations. Hypotheses on power sharing tactics are also
investigated. In the current paper, we develop methods to study the two dynamical aspects
of coalition formation (procedure and policy flexibility) and report on the findings for testing
hypotheses by analysing the formal model and deducing implications from this model based
on real-life data. The computational aspects of both the model and the empirical test are
discussed.

In Section 3.1.1, the model is embedded in literature on application of Game Theory in
political coalition formation. In Section 3.1.2, theoretical backgrounds about the multidi-
mensional spatial coalition formation model are outlined. In Section 3.1.3, the procedures
to form a coalition and complexity of both are introduced. In Section 3.2, the algorithms
for two different procedures of coalition formation are described. In Section 3.3, hypotheses
are formulated and checked based on Dutch political data. Finally, conclusions are drawn in
Section 3.4.

3.1.1 Game Theory in Political Coalition Formation
In multi-party democracies, political parties have to form coalitions to achieve majority
governments. As a part of coalition negotiations, coalition members bargain and agree
on a package of policy agreements, the coalition agreement (see Timmermans (2003) for an
extensive discussion on coalition agreements). In 63% of the coalition formations in Western-
Europe studied by Müller and Strøm (2003), such coalition agreements were reached (in
e.g. Austria, Ireland, Belgium, and The Netherlands). In order to reach such a coalition
agreement, parties in the coalition will have to make compromises as each party has its own
ideal policy. Only by adjusting their policy positions, parties can reach the compromise
needed for the coalition agreement.

An important subject is the procedure used to reach a coalition. Roughly speaking, two
different ways of coalition formation can be discerned: a step-by-step or hierarchical proce-
dure versus a simultaneous or non-hierarchical procedure (Laver and Schofield (1990)). The
step-by-step approach sees coalition formation as a process in which the group incrementally
forms: new members are added gradually. An alternative approach is to negotiate imme-
diately with all the members of the coalition, as in a simultaneous procedure. In spite of
these two different procedures which are recognized in the literature and which both occur
in real life coalition formation, little attention has been paid to the consequences of these
procedures for the result of coalition formation. Some earlier theoretical results show that
procedure plays an important role in coalition formation and that, except for some special
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situation, different procedures lead to different results (de Ridder and Rusinowska (2005)).
The special conditions require that the ideal positions of the players are really close, which is
unrealistic in a political setting. The model introduced in de Ridder and Rusinowska (2005)
is positioned among spatial coalition models (based on Downs (1957), see e.g. Grofman
(1982); Laver and Shepsle (1996)) and has been applied to alliance formation between firms.

The field of research of formal coalition models is large and extensive, see, amongst
others, Axelrod (1970), Vries (1999), Martin and Stevenson (2001), Grofman (1982), Laver
and Shepsle (1996), van Deemen (1989), von Neumann and Morgenstern (1944), and Warwick
(1998). So far, most of those studies have focused on why coalition form and, based on that,
which parties will cooperate. Arguments for coalition formation were found in power, policy,
or institutional arguments. However, the strategy and process of coalition formation have
been ignored in the literature (Laver and Schofield (1990): how will coalitions be formed,
and, what is the best strategy for a party during the process of coalition formation? Also,
from a more formal theoretical point of view, several authors have pointed at this lack of
dynamics in the models (Arnold and Schwalbe (2002); Tohmé and Sandholm (1999); van
Deemen (1997)). It seems unnatural to analyse coalition formation with a static approach,
since coalition formation is clearly dynamic in nature: for example, parties need a few weeks,
sometimes months, to reach a coalition agreement, different procedures are used to form a
coalition, and parties move their positions to be able to compromise. The suggestion that
process plays a role in coalition formation - and should thus be included as an explanatory
variable - is strengthened by earlier research (Austen-Smith and Banks (1988); Baron (1993);
Bloch (1996); Brams et al. (2005); de Ridder and Rusinowska (2005)). This earlier research
has not evolved towards a coherent and empirically verified stream of research, and, moreover,
the role of procedure has been ignored.

3.1.2 The Model

We deal with the following model of spatial coalition formation, considered in de Ridder and
Rusinowska (2005). There are n players, here political parties, which try to form a majority
coalition S and to decide about a policy of the coalition xS hereafter called the coalition
position. This coalition position is the formal representation of the policy agreement of a
coalition. Party i ∈ N , where N denotes the set of all parties, has a weight wi > 0, which is
based on the number of seats in parliament party i possesses.

Each party i may choose a policy position xi from an m-multidimensional Euclidean
policy space R

m, m ≥ 1. A distance between two positions xi = (xi1, ..., xim) and xj =
(xj1, ..., xjm) is given by

d(xi, xj) =

√√√√
m∑

k=1

(xik − xjk)2. (3.1)

Parties have a certain amount of flexibility on the policy positions, i.e., they have their
preferences defined in R

m. Each player i ∈ N is assumed to have an ideal position x∗
i ∈ R

m,
which is the most preferred position of party i, and a maneuvering space, an equivalent of
the policy horizon by Warwick (2000), which consists of all positions acceptable to party i.
The model assumes the maneuvering space to be a ball in R

m. Mi denotes the maneuvering
space of party i with middle point x∗

i and radius ri, i.e.,

Mi = {y ∈ R
m | d(x∗

i , y) ≤ ri}. (3.2)
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The maneuvering space of a party is then the set of policy positions with distances from the
ideal position of the party not greater than the radius. Of course, some positions are more
preferred to a party than others. Preferences of a party on positions are expressed by the
following rule: the closer a position is to the ideal position of a party, the more preferred
this position is to the party.

Given coalition S ⊆ N and the ideal positions x∗
i for i ∈ S, all parties of the potential

coalition S have to agree on a coalition position for S. We consider two alternative procedures
for forming a coalition and choosing a coalition position for that coalition. Although the
procedures differ from each other, there are two common assumptions for these procedures.
First of all, it is assumed that no party will agree on a position which does not belong
to its maneuvering space as these positions are unacceptable for a party. In other words,
the necessary condition for a coalition S to be formed is a non-empty intersection of the
maneuvering spaces of all members of S (we call this a feasible coalition), i.e.,

⋂

i∈S

Mi �= ∅,

and of course, the position xS of the formed coalition S must belong to this intersection as
there has to be commonality in positions, i.e.,

xS ∈
⋂

i∈S

Mi.

A similar assumption is adopted in the policy-horizon model: ’With horizons, there are
definite limits to the willingness of parties to compromise on policy in order to participate
in government; beyond those limits, parties would prefer to remain in opposition’ (Warwick,
2000, 39).

An illustration of the model in a three-party, two dimensional example is given in Figure
3.1. Based on the preferences rule, the valuation (loss) of a party i when a winning coalition
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Figure 3.1. Illustration of the model.
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S is formed, denoted by ΠS
i , is defined as follows:

ΠS
i (xS) = d(x∗

i , xS) (3.3)

In Section 3.1.3, both procedures are outlined.

3.1.3 Coalition Formation Process
Now, our approach takes a different course from the one adopted by Warwick. To find a
solution to the basic coalition formation model, we consider and compare two procedures:
a step-by-step procedure and a simultaneous procedure. These two procedures coincide
with the distinction in political science literature between hierarchical and non-hierarchical
coalition formation (Laver and Schofield (1990)). So far, spatial coalition theories have most
often neglected the different procedure of forming a coalition (as in Grofman (1982) who
studies one procedure, but see Brams et al. (2005), and Bloch (1996) who do consider the
consequences of different procedures). In de Ridder and Rusinowska (2005), it has formally
been proven that it matters which procedure is adopted, and also that there is no procedure
which is always better.

The first kind of procedure, the hierarchical view, sees ‘ ... coalition building as a process
in which actors with similar policy preferences first get together in some sort of provisional
alliance and, only after this has been done ..., do they cast around for other coalition partners,
adding these until the formation criterion is satisfied’ (Laver and Schofield (1990), p. 140).
The proto-coalition model of Grofman (1982) is such a hierarchical model. In the model we
present here, the step-by-step procedure is a hierarchical procedure. Although it is difficult
to look behind the often closed doors of coalition negotiations, e.g. Ireland, Belgium, and
Denmark have known instances of this step-by-step approach (Müller and Strøm (2003)).

In the step-by-step procedure, the first step is that two parties (e.g. party 1 and 2)
negotiate. These two will reach an agreement if their maneuvering spaces overlap and hence
a first coalition position x{1,2} is agreed on. This coalition position is determined by choosing
a position in the intersection of their maneuvering spaces and taking the weights of the players
into account. That is, a big party can pull the coalition position more towards its ideal. To
be more precise, when determining x{1,2}, first, parties 1 and 2 each choose a position (called
the negotiation position) in the intersection of the maneuvering spaces such that the distance
of that position to the ideal point of the party is minimal. These negotiation positions are
denoted with x̃1 and x̃2. The coalition position x{1,2} is the gravity center (a weighted
average) of the negotiation positions.

Now, a third party (3) joins the negotiations. Players 1 and 2 operate as proto-coalition
{1,2}, and an agreement with 3 is only reached if the maneuvering spaces of 1, 2, and 3
overlap. If so, coalition {1, 2, 3} with position x{{1,2},3} is formed, which is the gravity
center of the negotiation positions of the proto-coalition {1, 2} and party 3. This process
continues with adding new parties until a majority coalition S with position xS has been
reached, where S denotes an order, a set of parties, that indicates the sequence that leads to
coalition S. In de Ridder and Rusinowska (2005), it has been proven that this step-by-step
procedure leads to a unique and Pareto efficient solution. Hence, one coalition position is
reached such that there is no other position in the intersection of the maneuvering spaces
that is more preferred by all members of the coalition. An illustration of the step-by-step
procedure of forming a three-party coalition is given in Figure 3.2.

Second, we also find a non-hierarchial approach which considers coalition formation as
a one-step procedure. Laver and Shepsle (1996) generalize political coalition formation as
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Figure 3.2. The step-by-step procedure.

a process in which one party proposes a particular cabinet, which can be vetoed by all its
members. In such a case, there are no proto-coalitions which form intermediate steps before
a definitive coalition is reached. Non-hierarchical coalition formation is a process in which
all the parties of a coalition sit round the table to negotiate simultaneously. In the overview
of coalition formation in Western-Europe, Müller and Strøm (2003) report many instances
of such a way of bargaining.

In our model, the simultaneous procedure looks as follows. If parties 1, 2, and 3 form
coalition {1, 2, 3}, their coalition position is x{1,2,3}. A coalition forms if maneuvering spaces
of all three parties overlap. The coalition position will be in the intersection of their three
maneuvering spaces and will depend on the weights of the players. The position x{1,2,3}
is the gravity center of the negotiation positions of all parties in question. More general,
the simultaneous procedure of forming a majority coalition S results in a position xS of the
coalition. Again, it has also been proven that this procedure leads to a unique and Pareto
optimal solution (de Ridder and Rusinowska (2005)). An illustration of the simultaneous
procedure of forming a three-party coalition is given in Figure 3.3.

Beware that although both the step-by-step procedure and the simultaneous procedure
can study a coalition with for instance parties 1, 2, and 3, their respective outcomes are
usually different 1. According to the step-by-step procedure, coalition {1, 2, 3} can form in
three different ways: first a bilateral agreement with two parties and then the third party
1, 2 or 3 respectively joins. The simultaneous procedure predicts just one way of forming
the coalition: all negotiate together. Hence, in spite of a cooperation between the same
three parties, four different paths to form a coalition and four different coalition positions
are discerned: x{{1,2},3}, x{{1,3},2}, x{{2,3},1}, and x{1,2,3}.

Calculations have shown that the number of different paths and coalition positions can
increase dramatically. In a coalition game with ten parties, 210−11 = 1013 different 10-party
coalitions are possible. However, when taking different procedures into account, 4932045
different step-by-step coalitions can be discerned plus 1013 simultaneously formed coalitions.

1When the ideal positions of two parties starting the coalition formation process belong to the
intersection of the maneuvering spaces of the three parties, the step-by-step procedure with the given
parties’ order of forming a coalition, and the simultaneous procedure lead to the same position for
the coalition.
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Figure 3.3. The simultaneous procedure.

In sum, if ten parties play a coalition game, there are 4933058 different ways of forming a
coalition. Figure 3.4 shows the different paths and coalitions to analyse in a case with only
3 parties.

Figure 3.4. Number of paths and coalitions.

In this way there are n!
2

possible paths each represented by a permutation of n parties.

The number of different paths of forming a coalition S is |S|!
2

. The number L of coalitions
in a step-by-step procedure can be calculated:

L = C2
n + C2

n ∗ (n − 2) + . . . + C2
n ∗ (n − 2) ∗ . . . ∗ (n − (n − 2)) ∗ (n − (n − 1))

=
n!

2
×

n∑

k=2

1

(n − k)!
(3.4)
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Compared to the step-by-step procedure, the simultaneous procedure has only one path
to be followed. It models the situation where |S| parties are sitting together to come to an
agreement. Besides the grand coalition, there are many possible partial-coalitions. The more
parties, the more possible coalitions can be formed. The number K of possible coalitions is
given by:

K = C2
n + C3

n + . . . + Cn
n =

n∑

k=2

Ck
n = 2n − (n + 1) (3.5)

Table 3.1 shows how complexity increases with the number of players (parties) in both
procedures.

Table 3.1. Number of coalitions following different procedures.

step-by-step simultaneous
Number of parties Possible paths Number of Coalitions Number of Coalitions

2 1 1 1
3 3 6 4
4 12 30 11
5 60 160 26
6 360 975 57
7 2520 6846 120
8 20160 54796 247
9 181440 493200 502
10 1814400 4932045 1013

Disregarding some special conditions, the two procedures usually lead to different po-
sitions for the coalition and consequently different appreciations by the coalition members.
Given the distance between the ideal position of a party and the coalition position, parties
will have a preference ranking over the different positions of the coalitions, over the different
coalitions, and hence over the procedures to reach them. The closer a coalition agreement is
to the ideal position of a party, the more this party will prefer this coalition agreement. In
this way, we show that parties should not only form preferences over coalitions, but should
also take the procedure into consideration. In conclusion, the procedure of coalition forma-
tion should be a strategic resource in coalition formation and should play a role in coalition
negotiations similar to the composition of the coalition.

3.2 Algorithms for the Different Procedures

The coalition compromise differs for each different path in the step-by-step procedure. Ac-
cording to the all-coalition-path configuration, one can calculate the agreement points of
all coalitions and corresponding valuations by following the procedure described in the next
section. An index l is used to distinguish coalition. A coalition S in a step-by-step formation
is an ordered subset of N . A coalition S in a simultaneous formation is a subset of N . Table
3.2 summarises the notation used.
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Table 3.2. Notation.

N Set of parties
i, j Index of parties
L Total number of coalitions
l coalition index
x∗

i Ideal position for party i
Sl A coalition, |Sl| ≥ 2, Sl ⊆ N
xS

i Negotiation position of party i when coalition S is formed
xS Compromise coalition position of S

x
S∪{i}
S Negotiation position of a coalition S when party i joins

3.2.1 Forming a Coalition Step-by-Step
Consider two parties, i and j, forming a coalition S = {i, j}. By proposition 3.1 in de Ridder
and Rusinowska (2005), the negotiation positions for the two parties are calculated as follows.
The negotiation position for party i is: if rj < d(xi, xj),

xS
i = x∗

j + rj × x∗
i − x∗

j

d(x∗
i , x∗

j )
(3.6)

otherwise,
xS

i = x∗
i (3.7)

where the negotiation position of j is given by switching i and j in (3.6) and (3.7). Once the
parties have defined their negotiation positions, the compromise position is calculated by

xS =
wi × xS

i + wj × xS
j

wi + wj
(3.8)

Let S be a coalition with p members, p ≥ 1. The compromise position of the coalition is
xS. If party i joins the coalition, both, the coalition S and the party i have to choose new
negotiation positions: X

S∪{i}
S and x

S∪{i}
i respectively. Next step is to agree on a compromise

coalition position XS∪{i}. To choose the new negotiation positions, the problem to solve is:

x
S∪{i}
i = arg min

z∈⋂j∈S∪{i} Mj

d(x∗
i , z) (3.9)

x
S∪{i}
S = arg min

z∈⋂j∈S∪{i} Mj

d(XS , z) (3.10)

The compromise position for the new coalition S ∪ {i} is calculated as follows:

xS∪{i} =
wi × x

S∪{i}
i + X

S∪{i}
S ×∑j∈S wj∑

j∈S wj + wi
(3.11)

Based on the model by de Ridder and Rusinowska (2005) we introduce a procedure
to determine the compromise (agreement) points and valuations of all coalitions at each
possible path. In this procedure, (see Algorithm 3.1) first the negotiation positions and
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Algorithm 3.1 Step-by-Step algorithm.
Funct Step-by-Step(Ideal positions of parties, X; Radius for each party, R; weights, voting power, W ;
quota q; number of parties, n and dimension, m)

1. l := 0
2. L := n!/2 ∗∑n

k=2 1/(n − k)! � number of possible coalitions
3. for each two-party coalition � Compute new positions and negotiation points for all the possible

two-party coalitions
4. if Mi ∩ Mj �= ∅
5. l := l + 1
6. Sl := {i, j}
7. NSl := N\Sl

8. [x
{i,j}
i , x

{i,j}
j ] := Neg-Pos2(x∗

i , x∗
j )

9. XG
l =

wi×x
{i,j}
i +wj×x

{i,j}
j

wi+wj

10. if
∑

i∈Sl
wi > q

11. for i ∈ Sl

12. Πli = d(x∗
i , XG

l )
13. for k = 1 to L − n
14. while j ∈ NSk AND

⋂
i∈Sl

Mi ∩ Mj �= ∅
15. l := l + 1
16. Sl := Sk ∪ {j}
17. NSl := NSk\{j}
18. [x

Sl
j , XG

k ] := Negotiation(x∗
j , XG

k )

19. XG
l =

wj×x
Sl
j +

∑
i∈Sk

wi×XG
k∑

i∈Sl
wi

20. if
∑

i∈Sl
wi > q

21. for i ∈ Sl

22. Πli = d(x∗
i , XG

l )
23. OUTPUT: {Coalitions, compromise positions and valuations of winning coalitions}

compromise points for all the possible two-party coalitions are computed. Procedure 3.2 is
used to compute the negotiation positions. For each two-party coalition S, the procedure
builds up the coalition adding one-by-one new members. If the maneuvering spaces of the
new member i and the members of S overlap, the negotiation positions (for the new member
and the coalition) are computed (Procedure 3.3). If the new coalition S ∪ {i} is a winning
coalition, then valuations for each member are calculated. For the computation of (3.9)
and (3.10), Procedure 3.3 uses an external non-linear programming algorithm, fmincon.
Additionally, a penalty approach is used to check whether or not an intersection (feasible
area) exists between the maneuvering spaces of the negotiating parties. Given potential
coalition S, we minimise over x the penalty function

F (x) = max
j∈S

(d(x∗
i , x) − ri) (3.12)

If the result is negative the intersection is nonempty.

3.2.2 Forming a Coalition Simultaneously

Let S ⊆ N be a coalition and Mi(xi, ri) for i ∈ S be maneuvering spaces in R
m such that

∩i∈SMi �= ∅.
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Algorithm 3.2 Computes negotiation positions for parties and coalition position.
Funct Neg-Pos2(Ideal positions for each of the two parties: x∗

i , x∗
j )

1. New position for party i
2. if rj < d(xi, xj)

3. x
{i,j}
i = x∗

j + rj × x∗
i −x∗

j

d(x∗
i ,x∗

j )

4. else

5. x
{i,j}
i = x∗

i
6. New position for party j
7. if ri < d(xi, xj)

8. x
{i,j}
j = x∗

i + ri × x∗
j−x∗

i

d(x∗
i ,x∗

j )
else

9. x
{i,j}
j = x∗

j

10. OUTPUT: {New positions for the parties and coalition position: x
{i,j}
i , x

{i,j}
j }

Algorithm 3.3 Computes new negotiation positions for coalition and new member
(party).
Funct Negotiation(Ideal position for the new member i, x∗

i , of the new coalition S ∪ {i} and com-
promise position of coalition S, XS)

1. objfun=objective function; objcon=objective constraints;x0=starting point
2. if Mi ∩

⋂
j∈S Mj �= ∅

3. x
S∪{i}
i = Fmincon(objfun, objcon, x0, x∗

i )

4. X
S∪{i}
S = Fmincon(objfun, objcon, x0, XS)

5. OUTPUT: {New negotiation positions for party i and coalition S}

1. Each party i ∈ S chooses the negotiation position xS
i :

xS
i = arg min

z∈⋂j∈S Mj

d(x∗
i , z) (3.13)

2. Coalition position xS is chosen as gravity center of positions xS
i with weights wi:

xS =

∑
j∈S wjx

S
j∑

j∈S wj
(3.14)

Algorithm 3.4 is the main procedure when coalitions are formed simultaneously. It com-
putes the winning coalitions, its coalition positions and valuation-preferences for the parties.
First, it generates all possible coalitions based on 0 − 1 notation: 0 means the party is not
a member; 1 means the party is a member of the coalition. If the coalition is winning and
the maneuvering spaces of the members overlap, the algorithm calls a second procedure (Al-
gorithm 3.5) to compute the negotiation positions of the members. Algorithm 3.5 uses an
external non-linear programming algorithm to calculate the positions. Back in the main al-
gorithm, the coalition position and valuations are computed in order to generate a preference
order.
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Algorithm 3.4 Simultaneous algorithm.
Funct Simult(Ideal positions of parties, x∗; Radius for each party, r; weights, voting power, w; quota
q; number of parties, n and dimension, m)

1. number of possible coalitions: L := 2n − (n + 1)
2. for k = 1 to L � Compute new positions and negotiation points for all the feasible coalitions
3. Generate coalition Sk

4. if
∑

i∈Sk
wk > q and

⋂
i∈Sk

Mi �= ∅
5. for i ∈ Sk

6. x
Sk
i := Neg-Sim(x∗)

7. XG
k =

∑
i∈Sk

wi×x
Sk
i∑

i∈Sk
wi

8. Πki = d(x∗
i , XG

k )
9. OUTPUT: {Coalitions, new party and negotiation positions for the simultaneous procedure}

Algorithm 3.5 Procedure to compute new negotiation positions for members in
coalition S.
Funct Neg-Sim(Ideal position for the party i, x∗

i )

1. objfun=objective function; objcon=objective constraints;x0=starting point
2. xS

i = Fmincon(objfun, objcon, x0)
3. OUTPUT: {New negotiation positions for party i}

3.2.3 Numerical Illustration

We provide an example here to illustrate how the algorithms and model work. This example
uses the Dutch election result of 2003 (Klingemann et al. (2006)). As input for the model,
we need ideal policy positions of Dutch parties, and a weight and a radius for each political
party. The ideal policy positions are derived from a data set with policy positions of Dutch
political parties on 56 dimensions from 1998 and 2003 (Klingemann et al. (2006)). Because
the model is working with spherical maneuvering spaces based on distance calculations, the
data is all scaled between 0 and 10. The weight of the parties is determined by the amount
of seats each party had in parliament (total of 150 seats). The radii that model the flexibility
of the parties is relatively arbitrary for illustrative purposes and leave a degree of freedom
for our analysis. In reality, each party has its own radius which is dependent on the specific
situation and which might be subject to change. In this case we have used similar radii for
all parties. The names of the parties are the following:

CDA - Christian Democrats (Christen Democratisch Appel)
CU - Christian Union (Christen Unie)
D66 - Democrats 66 (Democraten ’66)
GRL - Green Left (Groen Links)
LPF - List Pim Fortuyn (Lijst Pim Fortuyn)
PvdA - Labor Party (Partij van de Arbeid)
SP - Socialist Party (Socialistische Partij)
VVD - People’s Party for Freedom and Democracy

(Volkspartij voor Vrijheid en Democratie)

Note that the SGP (Political Reformed Party) is not included in this table, as it was
not included in the dataset from Klingemann et al. (2006) (in Klingemann et al. (2006),
Appendix IV, is explained that the election program for the collection of data was missing).

As output of the model, we only consider coalition positions of majority coalitions of
parties that have an overlap of their maneuvering spaces given their ideal policy positions,
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Table 3.3. Data for 2003.

Parties
CDA CU D66 GRL LPF PvdA SP VVD

Radius 30 30 30 30 30 30 30 30
Weight 44 3 6 8 8 42 9 28

i.e. of feasible winning coalitions. As said earlier, the biggest party gets the initiative for
coalition formation in The Netherlands. In 2003, this was the CDA. The majority coalitions
with overlapping maneuvering spaces containing CDA are included in Table 3.4. For each
coalition reached with a certain procedure, the distance between the coalition position and
the ideal position of the party are calculated. The {PvdA, CDA} coalition leads to the same
coalition position with both procedures as no third party joins here. However, for a coalition
between CDA, PvdA, and LPF (e.g. {{CDA, PvdA}, LPF} and {CDA, PvdA, LPF})
procedure plays a role as different procedures lead to different distances. More generally,
we see in all the calculations done for this paper that procedure really makes a difference:
different procedures lead to different results.

Table 3.4. Distances from ideal points for 2003 example.

Step-by-Step Procedure
Coalition Seats Distance

CU D66 GRL PvdA SP VVD LPF CDA
{CDA, PvdA} 86 - - - 20.52 - - - 20.07
{{CDA, PvdA}, SP} 95 - - - 24.92 29.39 - - 26.92
{{CDA,PvdA},LPF} 94 - - - 25.45 - - 29.24 23.69
{{CDA, SP}, P vdA} 95 - - - 26.04 29.42 - - 25.97
{{CDA,LPF},PvdA} 94 - - - 25.38 - - 29.15 23.86

Simultaneous Procedure
CU D66 GRL PvdA SP VVD LPF CDA

{CDA, PvdA} 86 - - - 20.52 - - - 20.07
{CDA, PvdA, SP} 95 - - - 26.01 29.00 - - 26.47
{CDA,PvdA,LPF} 94 - - - 25.31 - - 28.62 24.59

Based on these distances, the preferences of the players can be calculated. The closer the
coalition position to the ideal position of a party, the more the party will prefer this coalition
and the procedure. Table 3.5 reports this. As an example, CDA’s most favorite option is to
cooperate with PvdA. If CDA would cooperate with PvdA and SP, then the best procedure
for CDA would be to negotiate first with SP alone. The step-by-step procedure with SP
joining as last is CDA’s least preferred procedure for this coalition. Note that we do not
consider preferences of the parties not participating in the coalition.

In reality, the coalition that formed was {CDA, VVD, D66}. Although it is not the aim
of this paper to predict which coalitions have occurred, we can explain why this coalition did
not appear in the results. According to the model and, in particular, the adopted input, this
coalition would not be viable. That means that the adopted radii did not lead to an overlap
of the parties’ maneuvering spaces; the {CDA, VVD, D66} coalition is less acceptable than
the coalitions that appear in the table.
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Table 3.5. Preference order for 2003.

Step-by-Step Procedure
Coalition Seats Preference order

CU D66 GRL PvdA SP VVD LPF CDA
{CDA, PvdA} 86 - - - 1 - - - 1
{{CDA, PvdA}, SP} 95 - - - 2 2 - - 7
{{CDA, PvdA}, LPF} 94 - - - 5 - - 3 2
{{CDA, SP}, P vdA} 95 - - - 7 3 - - 5
{{CDA, LPF}, P vdA} 94 - - - 4 - - 2 3

Simultaneous Procedure
CU D66 GRL PvdA SP VVD LPF CDA

{CDA, PvdA} 86 - - - 1 - - - 1
{CDA, PvdA, SP} 95 - - - 6 1 - - 6
{CDA, PvdA, LPF} 94 - - - 3 - - 1 4

3.3 Hypothesis Testing
The described model and introduced computational method was used in de Ridder et al.
(2007) to do an extensive study to test hypotheses derived from intuition with the aid of
Dutch data. The rest of this paper reports on the findings. First we formulate the hypotheses
and the Dutch situation as a platform of analysis. After that we point wise discuss the results
that can be found in de Ridder et al. (2007).

3.3.1 Procedure: Hypothesis on First Mover
Empirical observations of how coalitions form show that procedures are in some countries
standard and formalized in laws (e.g. Belgium, Finland, Luxembourg, and The Netherlands,
Müller and Strøm (2003)). That diminishes the opportunity for parties to use procedure as a
strategic means during the coalition process. An important observation is that many multi-
party democracies have the (unwritten) law that the party that came out of the elections
as the largest gets the initiative (from a head of state) for forming a coalition. Examples
of countries in which this (more or less frequently) happens are The Netherlands, Sweden,
Finland, Austria, Belgium, and Luxembourg (Müller and Strøm (2003)). The idea behind
this is that these initiative taking parties are supposed to lead the negotiations and to
have an advantage in the bargaining situation. The earlier a party is involved in coalition
negotiations, the more this party is able to pull the negotiations towards its own ideas. In
this way, this party can determine and influence the negotiations more and can get advantage
out of it. This brings us to the first hypothesis: Being a first-mover in coalition negotiations
is advantageous.

3.3.2 Flexibility Hypothesis
The second innovation of our model, is the flexibility during negotiations we attribute parties
via maneuvering spaces. In the literature of coalition formation models, it has most often
been assumed that political parties have a fixed position in policy space (Grofman (1982);
Vries (1999)). However, more scholars begin to acknowledge the importance of studying the
dynamics of party competition (Laver (2005); Timmermans (2003), van der Brug (1999)):
‘...positions are not frozen or fixed; parties move in the policy space in different directions
over time’ (Timmermans (2003), p. 9). Here, we concentrate on dynamics of policy positions
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not with vote maximizing as goal (as e.g. Budge (1994); Enelow and Hinich (1984); Laver
(2005)), but dynamics due to coalition formation.

The idea is that in order to form a coalition, political parties will move their policy
position, but only to a certain limit (Warwick (2000)) as formalized by the maneuvering
space. Coalition formation implies making a coalition agreement: a compromise between
the members of a coalition on the ideological course of the coalition, consisting of a position
for the coalition. As a consequence, parties participating in a coalition need to adjust their
position in order to reach such an agreement (also see Martin and Vanberg (2004)). It is not
likely that parties will cooperate with a party which has opposing policy ideals. We therefore
assume parties will only be willing to compromise if they can stay within their maneuvering
space of acceptable positions.

The question now rises what is mostly in a party’s interest: a big or small maneuvering
space? When forming a two-party coalition, the answer is straightforward: being less flexible
is never disadvantageous. If a coalition consists of only two parties, the more flexible party of
the two will be forced to move its position more than the other. One can speak of a zero-sum
situation: what one wins, is lost by the other.

Nonetheless, when forming a k-party coalition, for k ≥ 3, the answer is less easy. In-
tuitively, one would consider that staying closer to a party’s ideal position is also better in
multi-party coalitions. Hence, a decrease in flexibility would always be in a party’s advan-
tage. However, this is less easy to analyse due to the amount of players involved. Therefore,
we use the data and theoretical results to study whether the following (second) hypothesis
holds: Being less flexible in coalition negotiations is more advantageous.

3.3.3 Sharing Power: Hypothesis on Minimal Winning

As a final point, we study the role of sharing power. Coalition formation has long been
considered as a combination of achieving power, and simultaneously sharing this power with
coalition partners. Coalition formation is therefore a delicate balance between on the one
hand getting this power by compromising into the coalition, and on the other hand, forming a
coalition which gives a party relatively the best power. In this tradition, the minimal winning
(von Neumann and Morgenstern (1944)) and minimum size theory (Riker (1962)) have been
formulated. Minimal winning coalitions are coalitions that contain enough members to be
winning, but are not oversized. Minimal winning coalitions cannot miss any member without
becoming losing. Minimum size coalitions contain enough weight to be winning, but not more
than that.

In line with this, one could reason that oversized coalitions imply sharing power with more
partners and hence compromising with more partners than necessary. The chance is bigger
that a coalition position will be reached which is farther from a party’s ideal position. Less
members in a coalition make it easier to reach an agreement which is closer to a party’s ideal
point. Hence hypothesis 3a: Being in a smaller (winning) coalition is more advantageous
than being in an oversized coalition.

In a similar way, we can argue that forming a coalition with a stronger partner is not
advantageous, since the stronger party may ‘pull’ the position of a formed coalition more
towards it’s own ideal position. Hence we propose hypothesis 3b: Increase of a party’s weight
is disadvantageous for its coalition partners.
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3.3.4 Dutch Situation and Data
In The Netherlands, coalition governments are the standard, considering that the Dutch
multi-party democracy only has had coalition governments since 1945 (Müller and Strøm
(2003)). Also, The Netherlands has a tradition of majority coalitions. Furthermore, two of
the issues we highlight - procedures and flexibility - are important. Concerning procedures,
the process of coalition formation is by far the longest in Western Europe with an average
of 70.6 days. This could denote an important role for procedures. The first mover issue is
relevant as it is characteristic for the Dutch coalition practice that the biggest party gets the
initiative to form a coalition. Concerning flexibility, coalition agreements play an important
role in coalition negotiations: each cabinet agrees on such a document as the course of action
during their period of government. Data however show different ideal policy positions of
Dutch parties (e.g. Vries (1999); van der Brug (1999)) which implies compromises and hence
flexibility of parties. As explained in Section 3.2, the radii that model the flexibility of the
parties is relatively arbitrary for illustrative purposes and leave a degree of freedom for our
analysis. Due to the lack of empirical data on this aspect, we have taken two different ways
to determine the radius: a radius similar for each party and a radius different for each party,
randomly generated. In the case (as in the case of Section 3.2) in which we have used similar
radii for all parties, the radii have been determined by optimizing the case such that enough,
but not too many, instances were found which could help us investigate the hypotheses.

To run the model with real-life multidimensional data, one needs computational algo-
rithms. We have performed calculations with the model using data from Dutch politics, and,
moreover, we present some theoretical results. Both the empirical and theoretical calcula-
tions provide some counter-intuitive situations which show that certain expectations do not
always hold. Also, we illustrate that certain traditions in real-life coalition formation are not
necessarily advantageous.

During the paper, we study which strategic moves are advantageous for a potential
coalition member. Advantageous is defined in terms of preference of a party over a coalition
and the path to reach this coalition. This is measured by taking the distance from the ideal
position of the party to the position of the coalition compromise. The closer the coalition
position, the better. The policy-distance effect on government composition, meaning that
the incentive of a party to join a parliamentary coalition government decreases with the
distance between the policy position and the position of the government, was elaborated and
tested in particular by Warwick (1998).

3.3.5 Results on Procedure
Two different procedures of coalition formation, leading to different coalition positions, are
under study. The research question is whether being a first-mover is always advantageous
for a party in coalition negotiations, as in real-life the biggest party, after elections, is most
often rewarded with the initiative for coalition negotiations.

In the 2003 case presented in Section 3.2, we indeed saw that for the LPF being the first
mover was advantageous. When comparing the LPF’s preference on the two step-by-step
procedures it is involved in, it prefers {{CDA, LPF}, PvdA} over {{CDA, PvdA}, LPF}.
So, it prefers being a first mover over being a late mover. A small counter example can be
found due to the PvdA that in the same coalition prefers to step in later. The data of 1998
and Table 3.6 show a stronger counter example, as can be observed from Table 3.7.

In the 1998 case, PvdA was the biggest party and had to take the initiative in coalition
negotiations. For the three party coalition {PvdA, SP, CDA}, two step-by-step and one
simultaneous procedures were considered as PvdA always had to be a first mover. In the two
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Table 3.6. Weights and radius 45 for 1998 data

Parties
GRL SP PvdA D66 VVD CDA

Radius 45 45 45 45 45 45
Seats 11 5 45 14 38 29

Table 3.7. Preference order for 1998 data

Step-by-Step Procedure

Coalition Seats Preference order
GRL SP PvdA D66 VVD CDA

{{PvdA, SP}, CDA} 79 - 8 3 - - 2
{{PvdA, D66}, CDA} 88 - - 5 7 - 4
{{PvdA, CDA}, SP} 79 - 4 1 - - 7
{{PvdA, CDA}, D66} 88 - - 2 4 - 8
{{{PvdA, SP}, D66}, CDA} 93 - 5 10 9 - 6
{{{PvdA, SP}, CDA}, D66} 93 - 1 7 8 - 9
{{{PvdA, D66}, SP}, CDA} 93 - 9 11 5 - 6
{{{PvdA, D66}, CDA}, SP} 93 - 7 8 1 - 10
{{{PvdA, CDA}, SP}, D66} 93 - 2 6 8 - 9
{{{PvdA, CDA}, D66}, SP} 93 - 7 5 2 - 10

Simultaneous Procedure

GRL SP PvdA D66 VVD CDA
{PvdA, SP, CDA} 79 - 3 4 - - 1
{PvdA, CDA, D66} 88 - - 9 3 - 3
{PvdA, D66, SP, CDA} 93 - 6 12 6 - 5

step-by-step procedures, CDA would be better off being a late instead of a first mover. Let

i denote the preference relation of party i. For this coalition, the preference order of CDA
is as follows: {PvdA, SP, CDA} 
CDA {{PvdA, SP}, CDA} 
CDA {{ PvdA, CDA}, SP}.
This also holds for SP, which in case of step-by-step formation rather joins as last member
in the negotiations.

We can therefore conclude that hypothesis 1 does not hold:

Result 1: Being a first mover is not always advantageous.

3.3.6 Results on Flexibility
As a second major point, focus is on policy flexibility of parties. One of the central assump-
tions of the model is that parties have maneuvering spaces which reflect their flexibility to
deviate from their ideal positions. No party will accept a coalition position which lies out-
side its maneuvering space. This assumption is similar to the one made in a policy-horizon
model by Warwick (2000), (2005a), (2005b)). We study the hypothesis Being less flexible in
coalition negotiations is more advantageous.

A search in the data did not provide a counter example to this hypothesis. It was
found that a decrease in a party’s flexibility always seems to be in the party’s advantage.
In other words, the intuition which was provided earlier holds. As seen more easy in two-
party coalitions, less flexibility always leads to a more advantageous coalition agreement for
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a party. Although we did not find a counter-example in the Dutch data, we did come up
with a one-dimensional theoretical example which shows that being less flexible can be a
disadvantage.

Example 1. We consider a three-party example, in which parties 1 and 2 have the same
weight, while the weight of party 3 is twice as big as the weight of party 1 and 2, i.e.

N = {1, 2, 3}, w1 = w2, w3 = 2w2

The situation is illustrated in Figure 3.5. Since this is a one-dimensional example, the ideal
positions x∗

1, x∗
2 and x∗

3 are points (denoted in Figure 3.5 by squares) on a line, while the
maneuvering spaces M1, M2 and M3 are intervals (denoted in Figure 3.5 by two-headed
arrows). We have

x∗
1 = 0, x∗

2 = 4, x∗
3 = −2

All parties are assumed to be equally flexible and their radii are equal to

r1 = r2 = r3 = 6

Hence, the maneuvering spaces are

M1 = [−6, 6], M2 = [−2, 10], M3 = [−8, 4]

and their intersections (also two-headed arrows)

M1 ∩ M3 = [−6, 4], M1 ∩ M2 = [−2, 6]

M2 ∩ M3 = M1 ∩ M2 ∩ M3 = [−2, 4] �= ∅.
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Figure 3.5. Counter-example “being less flexible can be a disadvantage”. Ideal points
(squares) and maneuvering spaces (two-headed arrows)

Since M1 ∩ M2 ∩ M3 �= ∅, the necessary condition for coalition {1, 2, 3} to be formed is
satisfied. Let us consider the step-by-step procedure of forming coalition {1, 2, 3}, in which
first parties 1 and 2 form a coalition {1, 2}, and then party 3 joins. The steps of the procedure

are explained in Section 3.2. The negotiation positions x
{1,2}
1 and x

{1,2}
2 of parties 1 and 2 are

equal to their ideal positions, because the ideal points lie in the intersection of the maneuvering
spaces, i.e.

x
{1,2}
1 = 0 = x∗

1, x
{1,2}
2 = 4 = x∗

2

Since the weights of parties 1 and 2 are the same and the coalition position is the gravity
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center of the negotiation positions, we get

x{1,2} = 2 ∈ M3

Next, party 3 joins proto-coalition {1, 2}. Because x∗
3 and x{1,2} lie in the intersection of the

maneuvering spaces, the negotiation positions of party 3 and proto-coalition {1, 2} are equal
to x∗

3 = −2 and x{1,2} = 2, respectively. Since the weight of party 3 is equal to the weight of
{1, 2}, we get

x{{1,2},3} = 0 = x∗
1

Hence, the step-by-step procedure of forming {{1, 2}, 3}, in which first parties 1 and 2 form
a coalition, and then party 3 joins, leads to the coalition position x{{1,2},3} which is the best
possible position for party 1.

Next, let us assume that party 1 becomes less flexible, that is, its new radius decreases to
r′1 = 3. All remaining components of the example are unchanged. Then,

M ′
1 = [−3, 3], M ′

1 ∩ M2 = M ′
1 ∩ M2 ∩ M3 = [−2, 3]

We consider the same step-by-step procedure of forming {1, 2, 3} with the new radius r′1 = 3.

The new negotiation position y
{1,2}
1 of party 1 is the same as before (equals x

{1,2}
1 ), since its

ideal point lies in the intersection of the maneuvering spaces. However, the new negotiation
position y

{1,2}
2 of party 2 is different, i.e.

y
{1,2}
1 = x∗

1 = 0, y
{1,2}
2 = 3.

The new position y{1,2}, as the gravity center of y
{1,2}
1 and y

{1,2}
2 with equal weights w1 = w2,

is now

y{1,2} =
3

2
∈ M3

The new coalition position y{{1,2},3}, as the gravity center of the negotiation positions y{1,2}
and x∗

3 = −2, with equal weights for {1, 2} and party 3, is now

y{{1,2},3} = −1

4

Hence, the step-by-step procedure of forming {{1, 2}, 3}, in which first parties 1 and 2 form
a coalition, and then party 3 joins, results now in the coalition position y{{1,2},3} which is
worse for party 1 than the coalition position x{{1,2},3}, for the case where party 1 is more
flexible, i.e.

x{{1,2},3} 
1 y{{1,2},3}

This means that becoming less flexible made party 1 worse off.

To conclude, although the data have shown that less flexibility always seems to be advan-
tageous to a party, a theoretical counter example has illustrated how a decrease in flexibility
can be a disadvantage for a party. Hence:

Result 2: When forming a k-party coalition, for k ≥ 3, being less flexible is usually advan-
tageous, but can theoretically be a disadvantage.

3.3.7 Results on Sharing Power
Additionally, we study a minor point: the role of sharing power. The question here is whether
striving for a coalition in which a party gets the best relative power position is always ad-
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vantageous. Earlier empirical results confirm the role of power-sharing motives of parties
(Martin and Stevenson (2001)), but do not show that oversized can be an advantage for
coalition members (cf. Volden and Carrubba (2004) who explain when oversized coalitions
occur). Sub-issues here are the minimal winning argument (von Neumann and Morgenstern
(1944)) and the influence of weight. The minimal winning argument states that only coali-
tions will form that have enough members to be winning, but not more than that. But is
a minimal winning coalition necessarily advantageous for a party? Or, more general, is a
smaller coalition necessarily more advantageous than an oversized coalition?

We have found many counter-examples in Dutch data which show that the hypothesis
does not always hold. We consider Dutch data after the 1998 elections (see Table 3.6). Here,
we change the radii for the parties and let the radius be different for different parties. We get
an instance as shown in Table 3.8. Table 3.9 shows the preference order for this case. Note
that under the step by step as well as simultaneous procedure, PvdA finds the non-minimal
winning coalition formed by PvdA, VVD and D66 more attractive than the minimal winning
coalition {PvdA, VVD}.

Table 3.8. Weights and different radii for 1998

Parties
GRL SP PvdA D66 VVD CDA

Radius 45 55 25 65 85 45
Seats 11 5 45 14 38 29

Concluding, we get the following result.

Result 3a: Forming a minimal winning coalition is not always advantageous.

Table 3.9. Preference order with different radii for 1998

Step-by-Step Procedure
Coalition Seats Preference order

GRL SP PvdA D66 VVD CDA
{PvdA, V V D} 83 - - 3 - 1 -
{{PvdA, SP}, V V D} 88 - 4 12 - 5 -
{{PvdA, D66}, V V D} 97 - 10 1 11 6 -
{{PvdA, V V D}, SP} 88 - 8 7 - 4 -
{{PvdA, V V D}, D66} 97 - 11 2 10 2 -
{{{PvdA, SP},D66}, V V D} 102 - 1 8 1 12 -
{{{PvdA, SP}, V V D}, D66} 102 - 2 11 2 10 -
{{{PvdA, D66}, SP}, V V D} 102 - 6 5 5 12 -
{{{PvdA, D66}, V V D}, SP} 102 - 9 4 7 11 -
{{{PvdA, V V D}, SP},D66} 102 - 5 7 4 9 -
{{{PvdA, V V D}, D66}, SP} 102 - 9 6 6 7 -

Simultaneous Procedure
GRL SP PvdA D66 VVD CDA

{PvdA, V V D} 83 - - 3 - 1 -
{PvdA, SP, V V D} 88 - 7 10 - 3 -
{PvdA, D66, V V D} 97 - 11 2 8 2 -
{PvdA, SP, D66, V V D} 102 - 3 9 3 8 -

Concerning weight, we like to consider the consequence the weight of a party (number of
seats in parliament) has for its coalitional partners. The last research question is then: Does
an increase of a party’s weight imply a disadvantage for its coalition partners?
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In a similar way, we can argue that forming a coalition with a stronger partner is not
advantageous, since the stronger party may ‘pull’ the position of a formed coalition more
towards it’s own ideal position. Hence we propose hypothesis 3b: Increase of a party’s weight
is disadvantageous for its coalition partners.

One can show that forming a two-party coalition with a stronger party is never advanta-
geous to the coalition partner. The intuition is that in such a ‘zero-sum’ situation, the larger
party will always be able to pull the coalition position to its own position, further away from
its partner. Nevertheless, it does not necessarily hold when forming a larger coalition. We
can illustrate this with the following theoretical example.

Example 2. We consider the same situation as in Example 1 with party 1 being less flexible,
i.e.,

N = {1, 2, 3}, x∗
1 = 0, x∗

2 = 4, x∗
3 = −2

r′1 = 3, r2 = r3 = 6, w1 = w2, w3 = 2w2

M ′
1 = [−3, 3], M2 = [−2, 10], M3 = [−8, 4]

M ′
1 ∩ M2 = M ′

1 ∩ M2 ∩ M3 = [−2, 3]

As calculated in Example 1, the coalition position y{{1,2},3} results from the step-by-step
procedure of forming {{1, 2}, 3}, in which first parties 1 and 2 form a coalition, and then
party 3 joins, is equal to y{{1,2},3} = − 1

4
. Next, let us assume that the weight of party 1

increases: it is twice as big as the weight of party 2 and the same as the weight of party 3,
i.e.,

w′
1 = 2w2 = w3

The remaining components of the model remain unchanged. We consider the same step-
by-step procedure of forming {{1, 2}, 3}. The new negotiation positions z

{1,2}
1 , z

{1,2}
2 , and

coalition positions z{1,2}, z{{1,2},3} are now the following:

z
{1,2}
1 = x∗

1 = 0, z
{1,2}
2 = 3, z{1,2} = 1 ∈ M3

z{{1,2},3} = −1

5

Comparing the distance between coalition position y{{1,2},3} and the ideal point x∗
2 of party 2

and the distance between the new coalition position z{{1,2},3} and x∗
2, one can conclude that

z{{1,2},3} 
2 y{{1,2},3}

It means that an increase of the weight of party 1 makes party 2 better off.

This gives the following result.

Result 3b: When forming a k-party coalition, for k ≥ 3, an increase of a party’s weight
may be an advantage for its coalition partner.

In order to show a pure effect of an increase of a party’s weight in Example 2, some-
what artificially we have increased the weight of party 1, keeping all remaining elements
unchanged. This is of course not what happens in a parliament, since elections (usually)
preceding coalition formation fix the weights of the parties. However, it can be used by
parties defining a coalition formation strategy before elections. For example, in its campaign
a party may be less negative with respect to another party whose bigger size might be ben-
eficial. Nevertheless, although we believe that this result is mainly of a theoretical nature,
we have also constructed an instance using the data. Consider the case of Table 3.8 that
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presents the 1998 data with varying flexibility for the parties taking the real number of seats.
The distance of the ideal of D66 to the compromise of coalition {{{PvdA, SP}, D66}, V V D}
is 52.25. Let us now hypothetically assume that SP increases its weight by 30, while the
other parties keep their original weights. Now the distance of the ideal of D66 to the coali-
tion position becomes 51.53. This means its position improves due to an increase of another
party.

3.4 Conclusions

In spite of the many unwritten laws and traditions during coalition formation in countries as
Italy, Luxembourg, The Netherlands, Belgium, and Ireland, political parties should be aware
of the important role of the process of coalition formation. In this paper, we have shown how
several aspects of this coalition process play an important role for the result of the coalition
negotiations. We use a formal model of coalition formation which considers political parties
as players with ideal policy positions and maneuvering spaces denoting their flexibility to
deviate from their ideal points. The output of the model is a set of feasible coalitions, which
have a majority and whose members’ maneuvering spaces overlap. The model describes
which coalition position will be reached by the members given the procedure adopted. The
complexity of the model increases with the number of players (parties) and policy dimension.

To generate coalitions from political data, algorithms have been presented. We have
introduced computational algorithms for the different procedures. The algorithms compute
all winning coalitions and preferences of parties over those coalitions. Furthermore, the
algorithms are used to test different hypotheses.

The analysis in de Ridder et al. (2007) focused on three aspects of coalition formation and
formulated hypotheses: procedure, flexibility, and power sharing. The following questions
which political parties may (and should) take into account when forming a coalition were
under study: Does procedure of coalition negotiations matter? Is it more advantageous to
be a first-mover in the coalition process? Is it better to be more or less flexible in coalition
formation? Should we invite more parties to join to a (minimal) winning coalition or is it
better to stay with the existing one(s)? Is it better to form a coalition with a stronger party
or rather with a smaller one? Applying the algorithms to Dutch data and using theoretical
results, we have arrived at several (counter-)examples. These counter-examples have shown
the importance of the process and give important implications for political parties involved
in coalition formation. Also, these results have implications for future coalition research.

From the output of the applied methods the following can be observed. First, procedure
matters. When forming a coalition, political parties should be aware of the important role
procedure plays in determining the result of the coalition. The calculations have shown that
procedure partly determines which coalition point is agreed on. However, earlier research has
analyzed that there is not one procedure which is always best (de Ridder and Rusinowska
(2005)).

Related to procedure, being a first mover is not necessarily advantageous. This result
is also surprising in the sense that in many countries (e.g. The Netherlands, Belgium,
Luxembourg, and Austria) the tradition is that the largest party can start the negotiations
and determines who will negotiate first. Being involved early in the process is considered
an advantage. However, from the model it appeared that this is not always the case. The
rationale here is that, by studying coalition compromises the other coalition partners will
reach without a party (assuming complete information), this party can estimate whether this
compromise is close to its ideal position. If it is, it may pay to join later. If the compromise
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is not close, it may be better for the party to join earlier in the process.
With respect to flexibility, being less flexible is not necessarily advantageous. In the

data, we have found that being less flexible results in a (pre-)coalition compromise which is
closer to a party’s position. So, being less flexible pays off. Nevertheless, we have presented
a theoretical three-party counter-example in which being less flexible is a disadvantage. In
this example, the first mover’s ideal position was somewhere between the ideal position of
the remaining two parties. Although being less flexible gave a better pre-coalition outcome,
the final coalition position was worse for the party than the coalition position with the party
being more flexible.

Related to power sharing theories (as minimal winning theory), computations show that
forming a minimal winning coalition is not necessarily advantageous. Moreover, forming a
coalition with a stronger party is not necessarily disadvantageous. So, it might pay off to
share power with more and stronger parties than predicted by power sharing theory. To
explain this counter-intuitive finding, for the minimal winning case it holds that new parties
may determine a final coalition outcome closer to a party’s ideal position, although this
depends on the ideal positions of the new parties. For the stronger partner case, a stronger
party joining usually moves the pre-coalition compromise further from a party’s own ideal
position. However, a strong party may determine a final coalition position which is closer to
a party’s position. In that case, a strong partner may be beneficial to cooperate with.

Game theoretic models like the coalition formation model allows analysis only for few
player situations. The developed computational methods allow empirical testing of hypothe-
ses using huge data sets with many players. We have provided theoretical examples and
empirical cases which confirm the thesis that the coalition process matters. We aim to
reach the agenda of coalition research with this message. Due to the focus on making and
illustrating this message, we have neglected other aspects of the research. We suggest for
future research to investigate how to empirically determine a party’s flexibility, development
of more dynamic coalition models, and empirical analyses of more countries.
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Abstract

A two stage model is described where firms take decisions on where to locate their facility and
on how much to supply to which market. In such models in literature, typically the market
price reacts linearly on supply. Often two competing suppliers are assumed or several that
are homogeneous, i.e. their cost structure is assumed to be identical. The focus of this
paper is on developing methods to compute equilibria of the model where more than two
suppliers are competing that each have their own cost structure, i.e. they are heterogeneous.
Analytical results are presented with respect to optimality conditions for the Nash equilibria
in the two stages. Based on these analytical results, an enumeration algorithm and a local
search algorithm are developed to find equilibria. Numerical cases are used to illustrate the
results and the viability of the algorithms. The methods find an improvement of a result
reported in literature.
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4.1 Introduction

Many studies in literature describe a so-called non-cooperative game where competing firms
decide on production locations and supply quantities to markets. To make a game theoretic
analysis tractable, often a limited number of suppliers are considered, or alternatively homo-
geneous firms and markets are assumed. We focus on situations where companies can be as
well similar as not similar. In supply chains, farm cooperatives, etc., many decisions appear
in which preferences cannot be assumed to be homogeneous. Also symmetric behaviour,
finite strategy set or a two or few actors setting are strong assumptions in literature. De-
cisions are influenced by differences on prices or cost (“player” depending) between actors
and between the location of the facilities. Our focus is on constructing solution methods
for games in which players are: asymmetric, heterogeneous and facing multiple decisions in
several stages.

Different competitive location models are available in the literature, see for instance
the survey papers Eiselt and Laporte (1996), Eiselt et al. (1993), Plastria (2001) and the
references therein. They vary in the ingredients which form the model. For instance, the
location space may be the plane, a network or a discrete set.

In Cournot (1838) the idea of a Cournot oligopoly equilibrium was introduced, where
two firms compete on the same market. Due to price reaction of the market on the total
quantity offered, a price equilibrium appears. Hotelling (1929), added the idea of having a
freedom in choice of location, where the possible location area is a simple line in between
the markets. A generally applicable concept is that of a Nash equilibrium, Nash (1951),
which is defined by the situation where none of the firms (players) is better off by changing
its current (equilibrium) strategy. Because choice of location is usually prior to decision on
quantities, in the model under consideration, this concept is applied to a supply chain study
where two nested levels of decisions are at stake: that of supply quantity and location choice.
The corresponding solution concept adopted is that of a subgame perfect Nash equilibrium,
(Selten (1975)).

The basis of the model has been introduced by Bulow et al. (1985) who consider a game
with 2 markets and 2 firms. Later, Farrell and Shapiro (1990) studied a game on quantity
decisions with one market and n firms where decisions are simultaneous and products are
homogeneous. Labbé and Hakimi (1991) consider a two-stage location-quantity simultaneous
game with m markets and 2 firms with linear demand. Sarkar et al. (1997) extend these
results considering a 2-stage static and simultaneous game with m markets and n firms in
a network. They only consider a case with a fixed number of firms entering in the market,
i.e., the quantities offered by each firm in all markets are strictly positive. Rhim et al.
(2003) extend the work in Sarkar et al. (1997) by considering free entry (simultaneous and
sequential) with symmetric cost (site specific) and capacity limitations. Their setting is a 3-
stage game with m markets and n firms with production capacity and quantity decisions, and
final stage is the location choice in a network. Recently, Dorta-González et al. (2004) apply
the Stackelberg equilibrium in a two-stage non-cooperative Cournot game with location and
quantity choice with n markets located at the vertices of a network and r firms. They use
the Nash equilibrium concept in the location stage. In all of these studies, cases applied are
small, most are symmetric, and no computational experience is reported.

This paper extends the studies in Sarkar et al. (1997) and Rhim et al. (2003). A two-
stage location-quantity game with m markets and n firms is described. The location space
is a network, where the nodes are considered as possible locations for the firms. Free entry is
possible as in Rhim et al. (2003), i.e., the number of firms entering the markets is not known
in advance, but in our case costs are asymmetric (firm-specific). We provide conditions for
the supplying decisions (second-stage of the game). Moreover, as firms will be affected by
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the timing and level of entry on the market, properties on how to determine the size of the
market are derived. Another difference with the study of Rhim et al. (2003) is the procedure
on how to find the equilibrium of the game. We consider not only the possibility of leaving
a market but also the possibility of that the supplier moves its facility to another location.
Doing so, a firm has to re-think the quantity decision on how much to supply to which
markets. By applying the method in the cases of Sarkar et al. (1997), a mistake is found in
the outcome given in their study. Their reported possible equilibrium appears to be wrong as
is shown in Section 4.4. Moreover, a sequential analysis is followed in this paper. It appears
that starting with the cheapest firm, one can successively arrive at the size of each of the
markets. When market sizes are determined, the optimum quantities each supplier delivers
to each markets they enter can be computed.

In Section 4.2, a model is outlined consisting of a non-cooperative game where quantity
decisions and location decisions take place. Furthermore, theoretical results concerning the
optimum decisions in these models are derived. In Section 4.3, methods for computing the
Nash equilibria on quantity-location decisions and for computing the size of a market are
described. A complete enumeration algorithm and a local search procedure are outlined.
Numerical illustrations of model and methods can be found in Section 4.4. Finally, Section
4.5 discusses the conclusions.

4.2 Location-Quantity Game: Problem Formulation
The model describes a two-stage non-cooperative game. In the first stage of the game, firms
take a simultaneous decision about where to locate a supplying facility in a network, i.e.,
each firm chooses a location-strategy without knowledge of the strategy chosen by the other
firms. In the second stage of the game, firms decide about the quantity to be produced at
these facilities and how much to supply to each market.

The model on quantity decisions and location choice is described by the following no-
tation. Firms are denoted by an index i ∈ N = {1, . . . , n} and markets are denoted by an
index h ∈ M = {1, . . . , m} each demanding a quantity of a good, depending on its price. In
game theory, usually a linear price reaction model is assumed. We will follow this tradition.
The demand is fulfilled by the supply of a quantity Qih from the facility of firm i to market
h. The location xi of the facility of firm i determines its marginal production cost ci(xi).
The regional dispersion effect comes in when every market appears to be situated at one
location and, an important assumption, each supply firm can open a facility at only one of
the locations. The relations are formalised as follows.

Let G = (V, E) be an undirected graph with V and E as its sets of nodes and edges
respectively, |V | = m. Given two nodes vi, vj ∈ V , d(vi, vj) is the length of a shortest (with
respect to the sum of edge lengths) path on G connecting vi and vj . There are m markets
located each at one node on the network ; there are n firms that open a facility each at
one node with n ≤ m. Let xi ∈ V = {v1, . . . , vm} be the location decision by firm i on
the network. The cost of establishing a facility by firm i at xi is w(xi) ≥ 0. The quantity
decision matrix Q for all firms and all markets is given by:

Q =

⎛

⎜⎜⎜⎜⎝

Q11 . . . Q1h . . . Q1m

. . . . . . . . . . . .
Qi1 . . . Qih . . . Qim

. . . . . . . . . . . .
Qn1 . . . Qnh . . . Qnm

⎞

⎟⎟⎟⎟⎠
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where the sum of a row indicates the quantity supply by firm i over all markets h ∈
{1, . . . , m}, si =

∑m
h=1 Qih and the sum of a column indicates the quantity supplied by

all firms i ∈ {1, . . . , n} to market h, qh =
∑n

i=1 Qih. The price ph(qh) at market h is
assumed to depend on the quantity according to the relation:

ph(qh) = max{0, αh − βhqh}, qh ≥ 0 (4.1)

with price parameters αh ≥ 0, βh > 0. Notice that αh is the price when quantity offered is
zero, and βh is the price reaction parameter of the inverse demand function. The price at
market h depends on the quantity decision of all firms that supply to market h.

The n firms interact over two stages. In the first stage, firms simultaneously choose the
locations of their facilities, xi, i = 1, . . . , n, vector X = (x1, . . . , xn) gives the location of the
firms. In the second stage, depending on the location decisions xi, firms choose quantities
Qih to be supplied to markets, which results in the quantity decision matrix Q. The profit
firm i wants to maximise is denoted by πi(xi, Q). A strategy for firm i at market h, [xi, Qih],
comprises a choice of xi for stage 1 and a choice of Qih for stage 2; a strategy [xi, Qi·], for
all markets, where Qi· denotes the row vector (Qi1, . . . , Qim).

The game is solved backwards. First the second stage is solved. Firm i chooses optimally
the vector of quantities Qi· = (Qi1, . . . , Qim), based on what the others deliver and depending
on the chosen location xi:

Q∗
i· = arg max

Qi·
πi(xi, Q

∗(X)) (4.2)

The game can be considered a one stage problem when matrix Q∗ is defined for each location
vector X. Now firm i chooses a location strategy x∗

i such that:

x∗
i = arg max

xi

πi(xi, Q
∗(X))

The unit transportation cost between the location xi of the facility of firm i and location vh

of market h, is represented by tih = T (d(xi, vh)), where T is concave and increasing in the
distance1. The total cost of the location and supply decision of firm i is given by:

TCi(xi, Qi·) =
m∑

h=1

tihQih + ci(xi)si + w(xi)

=
m∑

h=1

tihQih + ci(xi)
m∑

h=1

Qih + w(xi)

=
m∑

h=1

(tih + ci(xi))Qih + w(xi)

For the convenience of notation we represent the total unit cost of firm i at market h by

TCuih = tih + ci(xi).

1This assumption also appears on the studies of Lederer and Thisse (1990), Labbé and Hakimi
(1991), Sarkar et al. (1997) among others
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Profit is denoted by πi and defined as:

πi(xi, Q) =
m∑

h=1

ph(qh)Qih − TCi(xi, Qi·) (4.3)

Price at market h is given by equation (4.1). Firms determine quantities for the markets to
maximize profit. Substituting the price relation of the markets into (4.3) gives

πi(xi, Q) =
m∑

h=1

max

[
αh − βh

n∑

j=1

Qjh, 0

]
Qih − TCi(xi, Qi·) (4.4)

Table 4.1 summarises the notation used.

Table 4.1. Notation

N, M Set of firms and markets, respectively
xi Location of firm i
vh Location of market h
Qih Quantity supply by firm i at market h
Qi· = (Qi1, . . . , Qim) Quantity decision vector for firm i
si =

∑
h∈M Qih Total quantity supplied by firm i

qh =
∑

i∈N Qih Total quantity supply at market h
αh, βh Price parameters
ph(qh) = max{0, αh − βhqh}, qh ≥ 0 Price at market h
tih = T (d(xi, vh)) Unit transportation cost
w(xi) Cost of establishing a centre at xi

ci(xi) Marginal production cost
TCuih = tih + ci(xi) Total unit cost
TCi(xi, Qi·) Total cost of location and supply
πi(xi, Q) Profit for firm i depending on location and quantities

In Section 4.2.1, properties are given of the equilibrium prices and quantities depending
on the location decision of the firms. Section 4.2.2 describes the criterion for selecting optimal
location decisions, X∗, based on the optimal quantity decisions, Q∗(X).

4.2.1 Quantity Decision

The Nash equilibrium is the solution concept used in the quantity-stage of the game. From
(4.2), the Nash elements of the Q matrix can be determined by an iterative process. Nash
equilibrium quantities shipped by firm i to market h follow from the first order condition
optimising (4.4) over Qih:

Q∗
ih = max

{
0,

αh − βh

∑n
j=1,j �=i Q∗

jh − tih − ci(xi)

2βh

}
(4.5)

This means that the equilibrium quantity Q∗
ih can be either 0 or positive. In the remaining

we will study for which firms the quantity Q∗
ih is positive and derive the exact quantity.

First, we distinguish for each market h between two groups: Ah with firms delivering to h,
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Q∗
ih > 0; and Ah = N\Ah with firms not delivering to h, Q∗

ih = 0.

{
Q∗

ih > 0 for i ∈ Ah

Q∗
ih = 0 for i ∈ Ah

Proposition 1 provides the equilibrium quantity for each firm i ∈ Ah.

Proposition 1. Let Ah be the set of firms which supply market h, |Ah| = kh. The positive

equilibrium quantities are given by

Q∗
ih =

αh − kh(ci(xi) + tih) +
∑

j∈Ah\{i}(cj(xj) + tj)

(kh + 1)βh
(4.6)

with Q∗
ih > 0 ∀i ∈ Ah. Q∗

ih depends on production and transportation cost of the active

suppliers.

Proof. From equation (4.5) follows for i ∈ Ah

Q∗
ih =

αh − tih − ci(xi)

2βh
− 1

2

∑

j∈Ah\{i}
Q∗

jh (4.7)

Let aih = (αh − tih − ci(xi)) / (2βh), then (4.7) can be written as

Q∗
ih = aih − 1

2

∑

j∈Ah\{i}
Q∗

jh

In vector notation

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q∗
1h

. . .

Q∗
ih

. . .

Q∗
khh

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1h

. . .

aih

. . .

akhh

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− 1

2

[
1kh

1
′
kh

− I
]

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q∗
1h

. . .

Q∗
ih

. . .

Q∗
khh

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Q∗
h

= ah − 1

2

[
1kh

1
′
kh

− I
]
Q∗

h

where 1kh
is the all ones vector and I is the kh × kh unit matrix. By linear algebra,

IQ∗
h

= ah − 1

2

(
1kh

1kh

′ − I
)

Q∗
h
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ah =
1

2

[
1kh

1
′
kh

+ I
]
Q∗

h

then, Q∗
h

can be written as

Q∗
h

= B−1ah (4.8)

where B is the kh × kh matrix

B =
1

2

[
1kh

1
′
kh

+ I
]

having the following form,

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 1/2 . . . 1/2

. . . . . . . . . . . . . . .

. . . . . . . . . 1/2 . . .

1/2 . . . 1 . . . 1/2

. . . 1/2 . . . . . . . . .

. . . . . . . . . . . . . . .

1/2 . . . 1/2 . . . 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The inverse matrix can be derived to be,

B−1 = 2

(
I − 1

kh + 1
1kh

1
′
kh

)

B−1 = 2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

kh/kh + 1 . . . −1/kh + 1 . . . −1/kh + 1

. . . . . . . . . . . . . . .

. . . . . . . . . −1/kh + 1 . . .

−1/kh + 1 . . . kh/kh + 1 . . . −1/kh + 1

. . . −1/kh + 1 . . . . . . . . .

. . . . . . . . . . . . . . .

−1/kh + 1 . . . −1/kh + 1 . . . kh/kh + 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The equivalence of equations (4.5) and (4.6) for each market h now follows from (4.8):

Q∗
h

= B−1ah = 2

[
I − 1

kh + 1
1kh

1
′
kh

]
ah =

= 2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

kh/kh + 1 . . . −1/kh + 1 . . . −1/kh + 1

. . . . . . . . . . . . . . .

. . . . . . . . . −1/kh + 1 . . .

−1/kh + 1 . . . kh/kh + 1 . . . −1/kh + 1

. . . −1/kh + 1 . . . . . . . . .

. . . . . . . . . . . . . . .

−1/kh + 1 . . . −1/kh + 1 . . . kh/kh + 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1h

. . .

aih

. . .

akhh

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and for each firm i we obtain:

Q∗
ih =

2kh

kh + 1
aih − 2

kh + 1

∑

j∈Ah\{i}
ajh

=
2kh

kh + 1

αh − tih − ci(xi)

2βh
− 2

kh + 1

∑

j∈Ah\{i}

αh − (tjh + cj(xj))

2βh

=
2khαh − 2kh(tih + ci(xi))

2(kh + 1)βh
− (kh − 1)αh

(kh + 1)βh
+

∑

j∈Ah\{i}

tjh + cj(xj)

(kh + 1)βh

=
αh − kh(tih + ci(xi)) +

∑
j∈Ah\{i}(tjh + cj(xj))

(kh + 1)βh

which corresponds to equation (4.6).

Consequently, the total quantity supplied to market h is:

q∗h =
∑

j∈Ah

Q∗
jh =

1

(kh + 1)βh

⎛

⎝khαh −
∑

j∈Ah

(cj(xj) + tjh)

⎞

⎠ (4.9)

which means that higher average marginal cost and transportation costs decrease the total
quantity supplied. The optimal price at each market can now be derived by substituting
(4.9) into (4.1):

p∗
h =

1

kh + 1

⎛

⎝αh +
∑

j∈Ah

(cj(xj) + tjh)

⎞

⎠ (4.10)

Optimal prices at each market proportionally rise with average marginal cost and transporta-
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tion cost over the firms supplying the market. Higher costs leads to a higher equilibrium
price and lower costs leads to higher quantity supplied.

In order to have any delivery at market h in (4.9) a necessary condition is that ∃j ∈ N
such that TCujh < αh. From Proposition 1 also follows the result for the symmetric case.

Theorem 1. Let unitary costs be symmetric (the same) for all the suppliers at market h.

If unitary costs are lower than αh, all the suppliers will enter the market.

Proof. Let the n firms entering the market have the same cost, TCu1h = TCu2h = . . . =

TCunh = Cuh and Cuh < αh, the optimal quantity and price can be derived from equation

(4.6) and (4.10),

Q∗
ih =

αh − nTCuih +
∑n

j=1,j �=i TCujh

(n + 1)βh
=

αh − Cuh

(n + 1)βh
> 0

and

p∗
h = αh − βhqh = αh − βhn

αh − Cuh

(n + 1)βh
=

αh + nCuh

n + 1

Corollary 2. Let unitary costs be symmetric (the same) for all the suppliers at market h.

If unitary costs are higher than αh, no suppliers will enter the market.

From Proposition 1 can also be derived when a firm would be interested to enter market
h, given that a set of firms Ah is already delivering.

Proposition 2. Let Ah be a set of firms supplying market h. A firm i is interested in

supplying market h if TCuih < p∗
h.

Proof. Follows from the partial derivative of πi with respect to Q∗
ih for Q∗

ih = 0.

Proposition 3. In the optimum Q∗, ∀i ∈ Ah, TCuih < p∗
h.

Proof. From equation (4.10) the equilibrium price is

p∗
h =

1

kh + 1

⎛

⎝αh +
∑

j∈Ah

(cj(xj) + tjh)

⎞

⎠ =
1

kh + 1

⎛

⎝αh +
∑

j∈Ah

TCujh

⎞

⎠
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From equation (4.6) equilibrium quantities are given by

Q∗
ih =

αh − kh(ci(xi) + tih) +
∑

j∈Ah\{i}(cj(xj) + tj)

(kh + 1)βh

=
αh − khTCuih +

∑
j∈Ah\{i} TCujh + TCuih − TCuih

(kh + 1)βh

=
αh − (kh + 1)TCuih +

∑
j∈Ah\{i} TCujh + TCuih

(kh + 1)βh

=
αh − (kh + 1)TCuih +

∑
j∈Ah

TCujh

(kh + 1)βh

=
αh +

∑
j∈Ah

TCujh

(kh + 1)βh
− (kh + 1)TCuih

(kh + 1)βh

=
p∗

h

βh
− TCuih

βh
=

p∗
h − TCuih

βh

From equation (4.6), at equilibrium Q∗
ih > 0 ∀i ∈ Ah, (p∗

h − TCuih) /βh > 0 such that

p∗
h > TCuih.

Consequently, for i ∈ Ah

ci(xi) + tih <
1

|Ah| + 1

⎛

⎝αh +
∑

j∈Ah

[cj(xj) + tjh]

⎞

⎠

For all j /∈ Ah, Q∗
jh = 0 and

cj(xj) + tjh ≥ 1

|Ah| + 1

⎛

⎝αh +
∑

i∈Ah

[ci(xi) + tih]

⎞

⎠

Proposition 4. The relation between the firm with the highest total unit costs in the active

set, i ∈ Ah, with any firm j ∈ Ah which is not entering the market is

TCuih <
αh +

∑
r∈Ah

TCurh

|Ah| + 1
≤ TCujh

Proof. The first inequality follows from TCuih < ph and is satisfied by any firm in the active

set Ah. The last inequality is satisfied by any firm j ∈ Ah following from TCujh ≥ ph.

Proposition 4 shows that

max
i∈Ah

TCuih < ph ≤ min
j∈Ah

TCujh

This is used in the algorithms in Section 4.3 to determine the number of active firms |Ah|.
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Firms are ordered on the basis of total unit costs, such that TCu(1)h ≤ TCu(2)h ≤ . . . ≤
TCu(n)h. The rule that is used is the following

1. Initialise p = α, |A| = 0.

2. while TCu(k) < p, (k) enters the market and the price is updated.

More details of the algorithms are given in Section 4.3.

Let Mi be the set of markets in which firm i is active, Mi = {h ∈ M |i ∈ Ah}. The total
quantity supplied by each firm is

si =
∑

h∈Mi

Q∗
ih =

∑

h∈Mi

αh − kh(ci(xi) + tih) +
∑

j∈Ah\{i}(cj(xj) + tjh)

(kh + 1)βh

Total cost for each firm is

TCi =
∑

h∈Mi

(ci(xi) + tih)
αh +

∑
j∈Ah\{i}(cj(xj) + tjh) − kh(ci(xi) + tih)

(kh + 1)βh
+ w(xi)

Using (4.6) and (4.9), the final payoff for each firm given location vector X is:

πi(X) =
∑

h∈Mi

(p∗
h − (ci(xi) + tih)Q∗

ih − w(xi)

=
∑

h∈Mi

[
αh +

∑
j∈Ah

(cj(xj) + tjh) − (kh + 1)(ci(xi) + tih)
]2

(kh + 1)2βh
− w(xi)

=
∑

h∈Mi

[
αh +

∑
j∈Ah\{i}(cj(xj) + tjh) − n(ci(xi) + tih)

]2

(kh + 1)2βh
− w(xi)

=
∑

h∈Mi

βh(Q∗
ih)2 − w(xi)

Concluding, the optimum Q∗
ih, q∗h and p∗

h in equation (4.6), (4.9) and (4.10), respectively, is
a Nash Equilibrium for the competitive second stage of the game given location vector X.

4.2.2 Location Decision

Given the optima of the second stage, focus is on the first stage of the game. Considering the
equilibrium supply quantity choice in the second stage, Q∗(X), each firm i maximizes the
profit function πi by selecting a location on the network. Firms locate at one of the nodes of
the network. We assume that several firms can be located at the same site. At equilibrium,
no other location decision is better off for each firm.

The strategy X∗ = (x∗
1, . . . , x

∗
n) is a Nash Equilibrium if for each firm i, x∗

i is the best
response to the strategies specified by the n − 1 other firms:

πi(x
∗
i , Q

∗(X∗)) ≥ πi(xi, Q
∗(X̂)) with X̂ = (x∗

1, . . . , xi, . . . , x
∗
n) ∀ xi
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for every feasible strategy xi. That is, x∗
i solves

max
xi

πi(xi, Q
∗(X̂))

The method and algorithms used to select optimal locations and quantities for the firms are
described in Section 4.3.

4.3 Methods for Computing Nash Quantities and Nash Locations
The results of Section 4.2 can be used to find equilibria of the two level game. A procedure
is described that solves the quantity game given a location configuration. This procedure
can be used in algorithms to find equilibria for the location decision. The idea is to do a
global search to find all Nash equilibria.

Global search methods include complete (enumerative) search strategies and stochastic
search algorithms (e.g., pure random search and multistart, see Hendrix (2007)).

First, we describe an algorithm that systematically enumerates all location possibilities,
for which equilibrium quantities are computed. After that, it tries to detect which location
vectors correspond to a Nash equilibrium by checking whether it is better for a firm to
relocate its facility. Notice that all mn location configurations are generated. This is called
a full enumeration.

Second, a multistart algorithm based on an application of Teitz and Bart location-
allocation heuristic is described (see Teitz and Bart (1968))2. Efficiency and effectiveness
are discussed in comparison to the complete enumeration algorithm.

Algorithm 4.1 Algorithm for searching Nash equilibria.
Funct MAIN(Number of firms n; number of markets m; parameters α and β ; distance matrix
d(vi, vj); marginal costs ci(xi), opening costs w(xi))

1. all possible locations: L← mn

2. Generate location matrix with rows Xl iteratively
3. for each location l
4. Q∗

l := Quantity(Xl)
5. Π∗

l := Profit(Xl, Q
∗
l )

6. E∗ := Equilibria(Π∗)
7. OUTPUT: {Nash equilibria of the non-cooperative game}

The enumeration algorithm is sketched in“Algorithm for searching equilibria”(Algorithm
4.1) which calls iteratively to a subroutine called Quantity. This procedure computes the
Nash equilibrium quantities for each location vector based on the size of the market and
equilibrium price (line 4 in Algorithm 4.1). Once the optimal quantities have been deter-
mined, the subroutine called Profit computes the profit for the firms at all the possible
location vectors based on Nash quantities (line 5). The output is the profit (payoff) ma-
trix Π. Finally, a subroutine determining the Nash equilibria on location decisions, called
Equilibria (line 6), is described.

Procedure Quantity for computing Nash equilibrium on Quantities
Procedure Quantity is called by Algorithm 4.1 for each of the possible location vectors for

2We thank an anonymous referee for inviting us to consider this algorithm
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the suppliers. Every time the procedure is called, total unit costs are computed for each
firm at each market and ordered, TCu(1)h, . . . , TCu(n)h (Sort in line 3). Results derived in
Section 4.2.1 are applied to compute optimal quantities. The computation generates these
by the following two procedures:

Algorithm 4.2 Quantity(X) : Procedure to compute Nash equilibrium quantities,
Q∗.
Funct Quantity(location vector X and global variables)

1. for h ∈M
2. TCu·h := t·h + c(X) � Total unit cost
3. STCu·h := Sort(TCu·h) � Order the firms on total unit costs
4. [kh, ph] := SizeMarket(STCu·h, αh, kh, ph, Ah)
5. Q∗

·h := OptQ(STCu·h, ph, αh, βh, kh, Ah)
6. OUTPUT: {Nash equilibrium Quantity decisions: Q∗}

1. Procedure SizeMarket (Algorithm 4.3): this procedure determines the size of the
active set Ah (Proposition 4) and the equilibrium price p∗

h;

2. Procedure OptQ (Algorithm 4.4): this procedure computes optimal quantities for firms
entering the market h. From equation (4.6) (Proposition 1) and depending on the
asymmetry of the firms, the method finds the optimal quantities for the active firms.

Algorithm 4.3 SizeMarket(TC, α, k, p, A): Procedure to determine the size k of
market h and equilibrium price p.
Funct SizeMarket(Total unitary costs TC, α)

1. p := α � Initial price at the market
2. k := 0 � Initial size of the market
3. while k ≤ n and TCk+1 < p
4. k := k + 1

5. p :=
α+

∑k
j=1 TCj

(k+1)

6. OUTPUT: {Size and price of market h: k, p; and active set, A}

Algorithm 4.4 OptQ(TC, p, α, β, k, A): Procedure to compute the optimal quantities
for firms at market h.
Funct OptQ(Total unitary costs TC,price at market, p, parameters α, β and size of the market, k,
active set, A)

1. if k == 0
2. Q := 0 ∀i
3. else
4. for i ∈ A

5. Qi :=
α−(k+1)TCi+

∑k
j=1 TCj

(k+1)β

6. for i ∈ A = N\A
7. Qi := 0
8. OUTPUT: {Optimal quantities: Q∗}

Algorithm Location Stage
In the location-stage, the problem is to maximize profit by selecting a node where to locate
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the facility in the network. Given n supplier firms and m markets, the feasible set X has
L = mn elements. A Nash equilibrium can be identified for the first stage game by testing
each element of X in the following way. Consider location vector Xl = (xl1, . . . , xli, . . . , xln).
Note that it is possible that xli = xlj for i �= j ∈ N . For each firm, one should test whether
firm i located at xli is better off leaving its current location choosing another, xki ∈ V with
k �= l and k ≤ L. For this, one should check the profit of the firm at another location
configuration which is in the so-called neighbourhood of Xl. The concept of neighbourhood
in this context has been introduced in Sáiz et al. (2006). This step generates a set of
possible configurations where only firm i has a different location with respect to Xl (step 4
in Algorithm 4.5). The firm knows that its decision could generate changes in the quantity
choice by the other supplier firms. If none of the other locations is profitable for firm i, this
firm is so-called “at equilibrium” with respect to its current location decision, xli. As values
of n and m are given in the input of the algorithm, the set of feasible locations is finite and
the search process stops with an optimum, equilibrium, if it exists.

If firm i finds a location xki ∈ V, xki �= xli, in which it is better off than at xli, then
location vector Xl = (xl1, . . . , xli, . . . , xln) is not at equilibrium. Firm i will prefer to move
and to locate its facility at xki. The procedure follows with another possible vector location
with all the possible deviations, i.e. from its neighbourhood. If no firm j improves by moving
to another site from xlj (∀j ∈ N), then Xl is at equilibrium. The procedure proceeds checking
all possible location vectors one by one whether or not it is a Nash equilibrium. In this way,
all Nash equilibria (if many) are found by the complete enumeration algorithm.

Algorithm 4.5 Equilibria(Π) : Procedure to compute all the equilibria in the game.

Funct Equilibria(Profit Matrix, Π(1 . . . L, 1 . . . n), for all location configurations in X(1 . . . L, 1 . . . n)
and all firms)

1. for each location configuration l
2. whether location vector Xl is at equilibrium: Eq := TRUE
3. while i ≤ n and Eq is TRUE
4. ε := set of neighbour configurations w.r.t. Xl for firm i
5. s := 1
6. while s <= m− 1 and Eq is TRUE
7. alt := ε(s) alt is an alternative location
8. a := index for neighbour configuration, a ∈ {1, . . . , L}
9. if Π(l, i) ≥ Π(a, i)

10. s := s + 1;
11. else
12. Eq := FALSE;
13. OUTPUT: {Set of Equilibria}

Algorithm Multistart

The basic idea of the multistart methods is to do a local search procedure given a random
starting point. Algorithm 4.6 is based on Teitz and Bart location-allocation heuristic in
Teitz and Bart (1968). A random location vector is generated and it is used as the input
in the local search of Algorithm 4.7. Algorithm 4.7 starts with the randomly generated lo-
cation and “walks” to an equilibrium if it exists. The idea of the local search algorithm is
as follows. From the original random location, the algorithm selects from its neighbourhood
the most motivated firm to move, that is, the algorithm compares for all firms the payoff
at the original location with the payoff at the neighbour. Notice that each firm has m − 1
alternatives, such that each location vector has n × (m − 1) neighbours. The algorithm



Methods for Computing Nash Equilibria of a Location-Quantity Game 75

Algorithm 4.6 MultiStart(max, maxiter) : Multistart computing equilibria.
Funct MultiStart(max, maxiter, maximum number of random configurations to generate and max-
imum number of iterations in the Local Search procedure (in case of no equilibrium))

1. for numiter = 1 to max
2. Generate random location vector configuration Xr

3. X∗ := LocalSearch(Xr , maxiter)
4. OUTPUT: {Set of Equilibria}

moves to that location vector from its neighbourhood, where one of the firms has the biggest
gain. It proceeds from the “original” location vector until an equilibrium is found. At each
iteration (location vector) quantities and payoffs have to be computed, which means that
the number of (quantity) functions evaluations is n × (m − 1). In contrast with the com-
plete enumeration algorithm, it is not known whether or not all equilibria (if many) are found.

Algorithm 4.7 LocalSearch(Xr, maxiter) : Local Search to compute equilibria in
the game given a starting location vector Xr.
Funct LocalSearch(Location vector Xr)

1. iter := 0
2. while not Eq AND iter ≤ maxiter
3. iter := iter + 1
4. Q∗(Xr) := Quantity(Xr) � Compute Q∗ for Xr

5. Πbest := Profit(Xr , Q∗(Xr)) � Compute Π∗ for Xr

6. for i = 1 to n
7. for j = 1 to m− 1
8. Xa := neighbour w.r.t alternative j for firm i;
9. Compute Q∗ for neighbour

10. Q∗(Xa) := Quantity(Xa)
11. Compute Π∗ for neighbour
12. Πa := Profit(Xa, Q∗(Xa))
13. Pmj := [Πa(i) −Πbest]
14. IMPi := maxj{Pmj}
15. gain := maxi{IMPi}
16. if gain < 0
17. Equilibrium found. Exit.
18. else
19. Xr := neighbour location vector Xa corresponding to gain
20. OUTPUT: {Equilibrium}

Effectiveness and Efficiency
Two questions: do the procedures reach the Nash equilibria and at what computational cost?
As defined in Hendrix (2007), efficiency is the effort the algorithm needs to be successful.
Several efficiency indicators appear in literature. Usual indicators are the number of function
evaluations necessary to reach the optimum and memory requirements. Effectiveness: does
the algorithm find what we want? Two targets can be distinguished in this paper:

• To discover all Nash equilibria

• To detect at least one (or a number k) of equilibria

The enumeration aims at finding all equilibria. A local search aims at finding one equilibrium
given a starting point. The enumeration algorithm generates L = mn location vectors for
which the quantity (and profit) are evaluated and stored. The number of comparisons within
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the Π matrix has an upper bound of L × n × (m − 1). The multistart also attempts to find
all equilibria. The number of equilibria that are generated (possibly many times) is max, a
parameter set by the user, and coincides with the number of local searches. The number of
iterations for each local search has to be measured empirically. At each iteration n× (m−1)
evaluations are performed of the quantity routine.

In Section 4.4, we will measure for some illustrative examples which equilibria are found
against what computational costs.

4.4 Numerical Illustration
Two cases are elaborated to illustrate the procedures and the analytical results. The first
case is taken from in Sarkar et al. (1997) with n = 3 firms and m = 6 markets. A mistake in
the output in Sarkar et al. (1997) is found when the algorithms outlined in the last section
are applied. In their study an extra location vector is obtained as equilibrium. In Section
4.4.1 we show why this location vector can not be an equilibrium. The second numerical
example consists of 4 different cases. It is used to show the viability of the algorithm when
bigger and more sophisticated cases are applied. This is illustrated in Section 4.4.2.

4.4.1 Network with 6 Markets and 3 Firms
The location decisions are represented by the node of the market in which firms are located
(for example, (1, 2, 1) means firms one and three are located at the same node of market 1 and
firm two at market 2, see Figure 4.1). Market locations are denoted by vh, h = {1, . . . , 6}.

Figure 4.1. Network for Example 1.

In this example, T (d(xi, vh)) = d(xi, vh) for all xi, vh ∈ V . At each of the vertices
h, marginal cost are ci(xi) = 10 and βh = 1. Sarkar et al. (1997) describe four different
configurations for parameter α = (α1, . . . , α6). The algorithms described in Section 4.3 are
coded in Fortran and applied to each of the cases.

At equilibrium, for each configuration α a location vector and all its permutations are
Nash equilibria, because all ci have the same value. Table 4.2 shows the location vectors at
equilibrium for each configuration of α and Table 4.3 shows the number of entrants at each
of the markets (size of the markets) and the corresponding payoffs.

Only in the case of the last α-configuration there is no firm supplying market number 6.
In all other cases, all firms supply all markets. This shows that Sarkar et al. (1997) choose
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Table 4.2. Location equilibria for example 1.

Configuration α Corresponding Nash location X∗
(50, 50, 400, 400, 50, 250) (3, 4, 6),(3, 6, 4),(4, 3, 6),(4, 6, 3),(6, 3, 4),(6, 4, 3)
(50, 50, 500, 500, 40, 50) (3, 3, 4),(3, 4, 3),(4, 3, 3)
(50, 500, 50, 50, 500, 50) (6, 6, 6)
(1000, 1000, 1000, 1000, 1000, 0) (6, 6, 6)

Table 4.3. Size of markets and profits of firms for the equilibria.

Configuration Location equilibria No. of entrants |Ah| Profit
α x∗

l v1 v2 v3 v4 v5 v6 f1 f2 f3

1 (3, 4, 6) 3 3 3 3 3 3 22392 22392 22388
2 (3, 3, 4) 3 3 3 3 3 3 29895 29895 29901
3 (6, 6, 6) 3 3 3 3 3 3 29733 29733 29733
4 (6, 6, 6) 3 3 3 3 3 0 303200 303200 303200

relatively easy configurations; they did not have to determine the number of active firms.
For the first α-configuration and all the equilibria, the maximum total unit costs for a firm
is maxi∈N TCuih = maxi∈N [ci(xi) + tih] = 20 (ci(xi) = 10 ∀i ∈ N , maxi∈N tih = 10) and
minh∈M [(αh +

∑
i∈N TCuih)/(n + 1)] = 22.5, then from Proposition 4 all firms will supply

all markets:

max
h∈M

max
i∈N

TCuih = 20 < 22.5 = min
h∈M

αh +
∑

i∈N TCuih

n + 1

The same applies for the second and third α-configurations,

max
h∈M

max
i∈N

TCuih = 20 < 23.75 = min
h∈M

αh +
∑

i∈N TCuih

n + 1

max
h∈M

max
i∈N

TCuih = 15 < 20 = min
h∈M

αh +
∑

i∈N TCuih

n + 1

For the last α-configuration and markets 1 to 5,

max
h∈M

max
i∈N

TCuih = 15 < 261.25 = min
h∈{1...,5}

αh +
∑

i∈N TCuih

n + 1

In case of market 6, no firm will supply since from Proposition 2, firm i (∀i) is not
interested in supplying market 6 since TCui6 = 10 ∀i, and the initial price at market 6 is
p6 = α6 = 0, such that TCui6 > p6.

For the second α-configuration, Sarkar et al. (1997) describe an additional stable location
for the firms, namely (3, 4, 4) and its corresponding permutations. Our algorithm does not
find that location vector as equilibrium. This can be seen as follows. Consider the profits
for the firms locating at (3, 4, 4):

Firm 1 �−→ 29926
Firm 2 �−→ 29880
Firm 3 �−→ 29880

A firm is in Nash equilibrium if it does not have an incentive to move to another location.
Consider firm 2 and suppose the others do not change location. Five possible strategies
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should be evaluated to determine a possible improvement of the profit. Evaluation of π2 for
x2 ∈ {v1, . . . , v6} results in Table 4.4.

Table 4.4. Firm 2 profits for each location while firm 1 and 3 are fixed.

Equilibrium in Sarkar et al. (1997) Alternatives for firm 2
Location (3, 4, 4) (3, 1, 4) (3, 2, 4) (3, 3, 4) (3, 5, 4) (3, 6, 4)
Profit firm 2 29880 27585 28251 29895 28214 29368

One can observe that firm 2 is better off changing strategy by moving to market 3. This
means that (3, 4, 4) is not an equilibrium as wrongly concluded in Sarkar et al. (1997).

A check was made running the local search algorithm with this “wrong” equilibria as
starting point. After two iterations equilibrium location vector (3, 3, 4) was reached. Two
iterations lead to 2 × n × (m − 1) = 36 (quantity) function evaluations.

The complete enumeration calls the quantity routine 63 = 216 times and stores all payoffs
in a matrix of 216 × 3. Furthermore, many comparisons are made in the global do − loop.

The multistart algorithm has been run for 60 random generated starting location config-
urations for the cases. Depending of the starting location, the algorithm “walks” to one of
the equilibria in table 4.2. Table 4.5 shows average, standard deviation and the best number
of iterations of the local search procedure for the different α values. The last column of
table 4.5 shows the average and standard deviation for the number of (quantity) function
evaluations.

Table 4.5. Multistart algorithm. Number of iterations and function evaluations for the
different α-configurations (Cases from Sarkar et al. (1997))

Configuration α Avg (SD) Best Nr of iterations Function evaluations Avg (SD)
(50, 50, 400, 400, 50, 250) 3.83(1.10) 1 57.50(16.47)
(50, 50, 500, 500, 40, 50) 3.45(0.74) 2 51.75(11.10)
(50, 500, 50, 50, 500, 50) 3.63(0.58) 2 54.50(8.65)
(1000, 1000, 1000, 1000, 1000, 0) 3.47(0.67) 1 52.00(10.05)

The number of function evaluations depends on the number of neighbours. For each
neighbour a function evaluation is computed. Notice that different location configurations
lead to the same neighbour. For example, location configurations (2, 6, 4) and (1, 5, 4) have
as a neighbour (1, 6, 4) for firm 1 and 2 respectively, which means that if these vectors
are starting location configurations, the (quantity) function evaluation for (1, 6, 4) is called
double. This means that the same location vector is repeatedly evaluated several times. In
theory, one does not know whether all equilibria have been detected. For this example, the
algorithm did find all of them. Table 4.6 shows the number of times each equilibrium is
found for the different α-configurations. The unique equilibrium (6, 6, 6) for the last two
α-configurations was found at each of the 60 repetitions.

4.4.2 Network with 15 Markets and 5 Firms

For the illustration of the viability of the algorithms, data are generated for 15 markets and
four cases have been studied with 5, 4, 3 and 2 firms, respectively. Figure 4.2 shows the
network and table 4.7 shows the location points of the markets.
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Table 4.6. Multistart algorithm. Times equilibria are found for the different
α-configurations (Cases from Sarkar et al. (1997))

Equilibria and number of times is found
α = (50, 50, 400, 400, 50, 250) (3, 4, 6) (3, 6, 4) (4, 3, 6) (4, 6, 3) (6, 3, 4) (6, 4, 3)
Nr. of repetitions 8 10 3 10 13 16
α = (50, 50, 500, 500, 40, 50) (3, 3, 4) (3, 4, 3) (4, 3, 3)
Nr. of repetitions 21 18 21
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Figure 4.2. Network for Example 2.

Table 4.7. Location of 15 markets randomly generated.
v1 v2 v3 v4 v5 v6 v7 v8(

4.1537
4.1195

) (
3.0500
7.4457

) (
8.7437
2.6795

) (
0.1501
4.3992

) (
7.6795
9.3338

) (
9.7084
6.8333

) (
9.9008
2.1256

) (
7.8886
8.3924

)

v9 v10 v11 v12 v13 v14 v15(
4.3866
6.2878

) (
4.9831
1.3377

) (
2.1396
2.0713

) (
6.4349
6.0720

) (
3.2004
6.2989

) (
9.6010
3.7048

) (
7.2663
5.7515

)

The input parameters α, β, w at each market are given in Table 4.8. Table 4.17 (Appendix
A) shows the distance matrix d(vi, vj)). Marginal costs, ci(vj), are detailed in Table 4.18
(Appendix A).

Table 4.8. Parameters α, β, w.

Values for each of the markets
Parameter v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

α 976 615 804 743 946 881 728 509 911 722 808 896 961 869 588
β 3 5 5 3 5 1 2 5 1 1 2 1 4 2 1
w 145 216 252 206 228 142 176 257 236 192 214 259 111 221 110

When the case with 5 firms is considered, the enumeration algorithm found one equilib-
rium in location: (1, 10, 9, 10, 2). Table 4.9 shows the total unit costs when firms are located
at equilibrium, table 4.10 shows the Nash quantity matrix, table 4.11 shows the number of
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entrants at each market and table 4.12 the corresponding payoffs for the firms. The enu-
meration requires the quantity evaluation for L = 155 = 759375 possible location vectors.

Table 4.9. Total Unit Costs for the firms at each market (TCUih). Case 15 markets, 5
firms - Nash location (1, 10, 9, 10, 2).

Markets
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

x∗
1 113 116.5 117.8 117.0 119.3 119.2 119.1 118.7 115.2 115.9 115.9 116.01 115.4 118.5 116.5

x∗
2 237.9 241.4 239 240.7 243.4 242.3 240 242.6 240 235 237.9 240 240.3 240.2 240

x∗
3 309.2 308.8 312.7 311.6 311.5 312.4 313.9 311.1 307 312 311.8 309.06 308.2 312.8 309.9

x∗
4 257.9 261.4 259 260.7 263.4 262.3 260 262.6 260 255 257.9 260 260.3 260.2 260

x∗
5 113.5 110 117.4 114.2 115 116.7 118.7 114.9 111.8 116.4 115.5 113.7 111.2 117.5 114.5

Table 4.10. Quantity Matrix - Supply from each firm to each market. Case 15 markets, 5
firms - Nash location (1, 10, 9, 10, 2).

Markets
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

f1 73.9 30.5 37.9 59.4 42.8 203.1 87.0 25.5 209.0 173.0 95.6 206.4 54.3 100.6 147.3
f2 32.3 5.5 13.7 18.1 17.9 80.0 26.6 0.7 84.2 53.9 34.6 82.5 23.1 39.8 23.8
f3 8.5 0 0 0 4.3 9.9 0 0 17.2 0 0 13.4 6.1 3.4 0
f4 25.6 1.5 9.7 11.5 13.9 60.0 16.6 0 64.2 33.9 25.6 62.5 18.1 29.8 3.8
f5 73.7 31.8 38.0 60.3 43.6 205.6 87.2 26.3 212.4 172.5 95.8 208.8 55.4 101.1 149.3

Table 4.11. Number of entrants for each market. Case 15 markets, 5 firms - Nash
location (1, 10, 9, 10, 2).

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

5 4 4 4 5 5 4 3 5 4 4 5 5 5 4

Table 4.12. Profit for each firm. Case 15 markets, 5 firms - Nash location (1, 10, 9, 10, 2).

f1 f2 f3 f4 f5

295653.69 39470.23 818.54 21239.80 301487.76

Following Proposition 4, markets v1, v5, v6, v9, v12, v13 and v14 satisfy

max
i∈N

TCuih <
αh +

∑
i∈N TCuih

n + 1
(h = 1, 3, 5, 6, 9, 12, 13, 14)

For markets v2, v3, v4, v7, v10, v11 and v15:

max
i∈N

TCuih <
αh +

∑
i∈N TCuih − max(TCuih)

n
(h = 2, 3, 4, 7, 10, 11, 15)

And for market v8:

max
i∈N

TCuih <
αh +

∑
i∈N TCuih − Max1 − Max2

n − 1
(h = 8)
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where Max1 and Max2 are given by

Max1 = max
i∈N

(TCuih)

Max2 = max
i∈N\{Max1}

(TCuih)

Tables 4.13 and 4.14 show the equilibrium in location, number of entrants and profit for cases
with 4, 3 and 2 firms. Finally, table 4.15 shows the computational CPU times for the four
cases and the increase in complexity when the number of firms goes from 2 to 5. Algorithms
have been implemented in Fortran and run on a core-duo Pentium IV processor.

Table 4.13. Equilibrium location and profit for each firm. Case 15 markets and 4,3,2
(respectively) supplier firms.

Supplier firms Equilibrium Profit
f1 f2 f4 f5 1 3 7 8 311846.92 319044.00 12580.02 45953.31

f1 f2 f4 4 14 9 379668.31 362520.90 30005.05
f3 f5 8 4 663895.26 62272.21

Table 4.14. Number of entrants at each market. Case 15 markets and 4,3,2 (respectively)
supplier firms.

Case v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

4 suppliers 4 3 4 4 4 4 4 3 4 4 4 4 4 4 3
3 suppliers 3 3 3 3 3 3 3 2 3 3 3 3 3 3 2
2 suppliers 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2

Table 4.15. Complexity. CPU times in seconds.

Number of markets Number of firms Cases evaluated CPU Time
15 5 759375 58.10938
15 4 50625 2.703125
15 3 3375 0.1718750
15 2 225 1.5625000E-02

The local search algorithm has been run with 60 random generated starting locations
for the cases with 15 markets and 5, 4, 3 and 2 supplier firms. The unique equilibrium at
all cases is found by the local search algorithm. Table 4.16 shows the average and standard
deviation of the number of iterations and function evaluations.

Table 4.16. Multi-start algorithm. Number of iterations and function evaluations. Cases
with 15 markets and 5,4,3,2 (respectively) supplier firms.)

Nr. of firms Avg (SD) Best Nr of iterations Nr of function evaluations. Avg (SD)
5 {f1, f2, f3, f4, f5} 5.67(0.57) 4 396.67(39.74)
4 {f1, f2, f4, f5} 4.75(0.50) 3 266.00(28.23)
3 {f1, f2, f4} 3.80(0.40) 3 159.60(16.80)
2 {f3, f5} 2.87(0.34) 2 80.27(9.52)

The number of iterations increases with the number of firms considered.
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4.5 Conclusions
A competitive location and quantity“a la Cournot” game has been described in this paper to
study the oligopolistic competition between n > 2 heterogeneous firms. Firms have to decide
where to locate a facility and then decide on how much to supply to all or some of m > 2
spatially separated markets from these facilities. The following results were derived with
respect to the optimal supply decisions where we are dealing with possibly heterogeneous
firms:

• A necessary condition to have any delivery to a market

• Analytic expression of the equilibrium quantities of the firms that supply to a market

• Necessary condition for a firm to supply to a market

• Based on the former, a new procedure has been developed to identify those firms that
are supplying to a market, the active set, which determines the size of the market

Based on these results algorithms are designed to find Nash equilibria of the game. The
results and algorithms are illustrated numerically. By using the algorithms as a systematic
computation instrument to cases reported in literature, a mistake was detected in Sarkar
et al. (1997). In that paper a solution is given that appears not to be an equilibrium of the
model. Furthermore, tests on larger generated instances show the viability of the approach.
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Appendix A: Input Data for Example Two
Distance matrix d(vi, vj) and marginal costs ci(vj) are given in Table 4.17 and Table 4.18,
respectively.

Table 4.17. Distance Matrix. Case 15 markets, 5 firms.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

v1 0
v2 3.50 0
v3 4.81 7.43 0
v4 4.01 4.21 8.76 0
v5 6.29 5.00 6.74 9.01 0
v6 6.18 6.69 4.26 9.86 3.22 0
v7 6.08 8.67 1.28 10.01 7.54 4.71 0
v8 5.68 4.93 5.78 8.71 0.96 2.40 6.58 0
v9 2.18 1.77 5.66 4.64 4.49 5.35 6.91 4.09 0
v10 2.90 6.41 3.99 5.72 8.44 7.25 4.98 7.63 4.99 0
v11 2.87 5.45 6.63 3.06 9.13 8.94 7.76 8.54 4.78 2.94 0
v12 3.00 3.65 4.10 6.50 3.49 3.36 5.25 2.74 2.06 4.95 5.87 0
v13 2.38 1.16 6.62 3.59 5.41 6.53 7.89 5.13 1.19 5.27 4.36 3.24 0
v14 5.46 7.54 1.34 9.48 5.95 3.13 1.61 4.99 5.82 5.19 7.64 3.95 6.91 0
v15 3.51 4.54 3.41 7.24 3.61 2.67 4.48 2.71 2.93 4.97 6.31 0.89 4.10 3.10 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Table 4.18. Marginal Production Costs for each firm (depending on location) ci(vj). Case
15 markets, 5 firms.

Possible locations for firms
v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

f1 113 772 501 939 519 477 862 573 282 705 855 117 713 441 849
f2 553 739 486 374 270 274 714 372 488 235 728 440 874 869 634
f3 547 910 840 681 836 694 408 361 307 581 755 378 855 611 433
f4 733 592 500 725 659 816 462 570 693 255 982 344 327 889 764
f5 223 110 905 279 369 695 356 522 158 990 625 481 564 400 490
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Abstract
Modelling the location decision of two competing firms that intend to build a new facility
in a planar market can be done by a Huff-like Stackelberg location problem. In a Huff-like
model, the market share captured by a firm is given by a gravity model determined by
distance calculations to facilities. In a Stackelberg model, the leader is the firm that locates
first and takes into account the actions of the competing chain (follower) locating a new
facility after the leader. The follower problem is known to be a hard global optimisation
problem. The leader problem is even harder, since the leader has to decide on location given
the optimal action of the follower. So far, in literature only heuristic approaches have been
tested to solve the leader problem.

Our research question is to solve the leader problem rigorously in the sense of having
a guarantee on the reached accuracy. To answer this question, we develop a Branch-and-
Bound approach. Essentially, the bounding is based on the zero sum concept: what is gain
for one chain is loss for the other. We also discuss several ways of creating bounds for the
underlying (follower) sub-problems, and show their performance for numerical cases.
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5.1 Introduction

Many factors must be taken into account when locating a new facility which provides goods
or a service to the customers of a given area. One of the most important points is the
existence of competitors in the market providing the same goods or service. When no other
competitor exists, the facility to be located will have the monopoly of the market in that
area. However, if in the area there already exist other facilities offering the same goods, then
the new facility will have to compete for the market.

Many competitive location models are available in the literature, see for instance the
survey papers (Eiselt and Laporte 1996, Eiselt et al. 1993, Plastria 2001) and the references
therein. They vary in the ingredients which form the model. For instance, the location space
may be the plane, a network or a discrete set. We may want to locate just one or more
than one new facility. The competition may be static, which means that the competitors are
already in the market and the owner of the new facility knows their characteristics, or with
foresight, in which the competitors are not in the market yet but they will be soon after the
new facility enters. In this case it is necessary to make decisions with foresight about this
competition, leading to a Stackelberg-type model (competition model in which a leader firm
moves first and then the follower firm moves sequentially). Demand is usually supposed to
be concentrated in a discrete set of points, called demand points.

The patronising behaviour of the customers must also be taken into account, since the
market captured by the facilities depends on it. In some models customers select among the
facilities in a deterministic way, i.e, the full demand of the customer is served by the facility
to which he/she is attracted most. In other cases, the customer splits his/her demand among
more than one facility, leading to probabilistic patronising behaviour. On the other hand, it
is also necessary to specify what the attraction (or utility) function of a customer towards
a given facility is. Usually, the attraction function depends on the distance between the
customer and the facility, as well as on other characteristics of the facility which determine
its quality.

In this paper, we consider a planar facility location problem with foresight, having proba-
bilistic consumer behaviour, based on an attraction function depending on both the locations
and the qualities of the facilities to be located. The demand quantities are assumed to be
known and fixed. For the current study, also the quality values of the new facilities to be
located are assumed to be given. There are two competitors (chains). First, the leader makes
a decision on where to locate its facility in the plane (the location of the facility is considered
the variable of the problem). Second, the follower makes a decision with full knowledge of
the decision of the leader. The objective of the leader is to maximize its market share after
the entrance of the follower.

The follower problem has been studied under deterministic customer behaviour in (Drezner
1994) and (Plastria 1997), using attraction functions of gravity type, and in (Plastria and
Carrizosa 2004) using different kinds of attraction functions. For probabilistic customer be-
haviour, the problem has been studied in (Drezner and Drezner 1994), where the location
problem is solved for a wide range of quality values (see also (Drezner and Drezner 2004)).

However, due to its difficulty, the literature on the leader problem is rather scarce. To
our knowledge, the leader problem with deterministic behaviour on the plane has only been
addressed in (Drezner and Drezner 1982) and (Bhadury et al. 2003), and with probabilistic
behaviour only in (Drezner and Drezner 1998), where three heuristics are described for a
variant of the model considered in this paper. The question addressed in this paper is
whether the leader problem can be solved up to a guaranteed accuracy. We will show in the
current paper that one can make use of the zero-sum perspective to construct a Branch-and-
Bound method that achieves that aim.
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In Section 5.2, the notation is introduced and both the leader and the follower problem
are formulated. In Section 5.3 and 5.4, a detailed description of the Branch-and-Bound
algorithms to solve the follower and leader problem (respectively) is given. The algorithms
are illustrated by instances in Section 5.5 and the efficiency is investigated for different
parameter settings. Conclusions and future work are discussed in Section 5.6.

5.2 Description of the Problem

The following notation will be used throughout:

Indices
i index of demand points, i = 1, . . . , n
j index of existing facilities, j = 1, . . . , m (the first k of those m facilities,

0 ≤ k ≤ m, belong to the leader chain, and the rest to the follower)
l index for the new facilities, l = 1, 2

Variables

xl = (xl1, xl2) location of the leader (l = 1) and follower (l = 2)

Data
αl quality of the leader (l = 1) and follower (l = 2)
pi location of the i-th demand point
wi demand (or buying power) at pi

qj location of the j-th existing facility
dij distance between pi and qj

aj quality of facility j
g(·) a positive non-decreasing function
aj/g(dij) attraction that i feels for facility j
S location space where the leader and the follower will locate the new

facility

Miscellaneous
δil distance between pi and xl, l = 1, 2
αl/g(δil) attraction that i feels for new facility l
Ml(x1, x2) market capture by the leader (l = 1) and follower (l = 2)

The best location in attraction models is usually situated in the convex hull of the demand
points. In this paper we consider as the feasible location space S a rectangle enclosing that
convex hull. Notice that M1(x1, x2) + M2(x1, x2) =

∑n
i=1 wi. This ‘zero-sum’ character

of the model is essential in the method used to solve it. In the model, the market share
captured by the leader chain after the leader locates in x1 and the follower in x2 is

M1(x1, x2) =
n∑

i=1

ωi

α1

g(δi1)
+

k∑

j=1

aj

g(dij)

α1

g(δi1)
+

α2

g(δi2)
+

m∑

j=1

aj

g(dij)
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and the corresponding market share captured by the follower chain is

M2(x1, x2) =

n∑

i=1

ωi

α2

g(δi2)
+

m∑

j=k+1

aj

g(dij)

α1

g(δi1)
+

α2

g(δi2)
+

m∑

j=1

aj

g(dij)

(5.1)

Given x1, problem (FP (x1)) of the follower is the so-called (1|x1)-medianoid problem intro-
duced by (Hakimi 1983)

max
x2∈S

{G(x2) = M2(x1, x2)} (5.2)

Since M1(x1, x2) + M2(x1, x2) =
∑n

i=1 wi, (FP (x1)) in (5.2) is equivalent to

min
x2∈S

M1(x1, x2) (5.3)

Let x∗
2(x1) represent an optimal solution of (FP (x1)). Problem (LP ) for the leader is the

(1|1)-centroid problem (see (Hakimi 1983))

max
x1∈S

{F (x1) = M1(x1, x
∗
2(x1))} (5.4)

In (Drezner and Drezner 2004) and (Fernández et al. 2007), procedures are given to
maximize the market share captured by a given chain when the facility locations of the
competitors are fixed as in problem (FP (x1)). As studied by (Fernández et al. 2007), we are
dealing with a Global Optimization problem; see Figure 5.1, which shows the multimodal
behaviour of problem (FP (x1)).

Figure 5.1. Plot of the objective function of a follower problem.

In the solution procedure that we have designed to cope with the leader problem, we
are also interested in solving a similar problem to that of the follower, in which the leader
wants to locate a new facility at x1, given the location and the quality of all the facilities of
the competitor (the follower). In this case, the leader has to solve a medianoid problem in
which the roles of leader and follower are interchanged. We will call this problem a reverse
medianoid problem.

The leader problem (LP ) is much more difficult to solve than the follower problem. To
the extent of our knowledge, the leader problem with probabilistic behaviour on the plane
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has only been addressed in (Drezner and Drezner 1998), where heuristic procedures were
presented for a similar version of the problem considered here. Among others, they ap-
plied variants of multistart and grid search to generate solutions of the leader and follower
problems. In Section 5.3, a Branch-and-Bound algorithm for the medianoid (follower) and
reverse medianoid problems with four different ways of obtaining an upper bound are intro-
duced. In Section 5.4, a Branch-and-Bound algorithm for the (1|1)-centroid problem (leader)
is described.

5.3 A Branch-and-Bound Algorithm for the Medianoid (follower)
Problem

In the medianoid problem (FP (x1)), the follower wants to locate a new facility, knowing the
location and the quality of all the facilities of the competitor (the leader). Next we describe
the details of the algorithm for the follower problem. For the reverse medianoid problem of
the leader, the algorithm is similar.

The basic idea in B&B methods consists of a recursive decomposition of the original
problem into smaller disjoint subproblems until the solution is found. The method avoids
visiting those subproblems which are known not to contain a solution. B&B methods can be
characterized by four rules: Branching, Selection, Bounding, and Elimination (see (Ibaraki
1976, Mitten 1970)). For problems where the solution is determined with a desired accuracy,
a Termination rule has to be incorporated. The method works as follows. The initial set C1 =
S is subsequently partitioned in more and more refined subsets (branching) over which upper
and lower bounds of the objective function are determined (bounding). In a maximization
problem, subsets with upper bounds lower than the best lower bound are eliminated for
subsequent partitions (pruning), since these subsets cannot contain the maximum. At every
iteration, the B&B method has a list Λ of subsets Ck of C1. The method stops when the list
is empty. For every subset Ck in Λ, upper bounds zkU of the objective function on Ck are
determined. Moreover, a global lower bound zL is updated. Next, we give a more detailed
description of the steps of the algorithm.

5.3.1 The Algorithm

To take both the medianoid and the reverse medianoid problems into account, we will denote
by M the objective function of the problem at hand and by C its feasible set. The B&B
method is described in Algorithm 5.1. Its output is the best point found during the process
and its corresponding function value. The best point is guaranteed to differ less than εf

in function value from the optimal solution of the problem (by considering the difference
between lower and upper bounds).

5.3.2 Branching Rule

The branching rule applied uses rectangles and new rectangles are generated by bisecting
a subset C over its longest edge. Two variants are implemented. Either we start with the
initial rectangle S, or we start with an initial partition of it into rectangles such that none
of the demand points is interior with respect to a rectangle. As will be outlined, this may
improve the upper bounding applied, but on the other hand may generate more partition
sets than strictly necessary.
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Algorithm 5.1 : Branch-and-Bound algorithm for the (reverse) medianoid problem.
Funct B&B(M, x, C, εf )

1. Λ := ∅
2. C1 := C
3. Determine an upper bound z1U on C1

4. Compute y1:=midpoint(C1), BestPoint := y1

5. Determine lower bound: z1 := M(y1), zL := z1

6. Put C1 on list Λ, r := 1
7. while ( Λ �= ∅ )
8. Take a subset C (selection rule) from list Λ and bisect into Cr+1 and Cr+2

9. for t := r + 1 to r + 2
10. Determine upper bound ztU

11. if ztU > zL + εf

12. Compute yt:=midpoint(Ct) and zt := M(yt)
13. if zt > zL

14. zL := zt, BestPoint := yt and remove all Cr from Λ with zrU < zL

15. if ztU > zL + εf

16. save Ct in Λ
17. r := r + 2
18. endwhile
19. OUTPUT: {BestPoint, zL}

5.3.3 Selection Rule
The selection rule is important in the sense of efficiency measured by computational time
and memory requirements. Within selection rules, one can find: depth-first-search, breadth-
first-search and best-bound-search. In Section 5.5.1 the effect on efficiency of those rules is
measured.

5.3.4 Lower Bound
The classical lower bound is obtained as the best objective value at a finite set of feasible
solutions {x1

2, . . . , x
r
2}

zL = max{G(x1
2), . . . , G(xr

2)}.
A good initial lower bound can be obtained by applying the (local search) Weiszfeld-like
algorithm described in (Drezner and Drezner 1994) from 20 or 50 starting random points.
We simply use the best objective function value found at the evaluated points.

5.3.5 Upper Bounds for the Follower Problem (FP (x1))

The idea of the upper bound is to overestimate M2 over a rectangle C. The market share
captured by the follower (eq. 5.1) can be rewritten as

M2(x1, x2) =
n∑

i=1

ωi

1 +
1

α2

(
m∑

j=k+1

aj

g(dij)

)
g(δi2)

1 +
1

α2

(
α1

g(δi1)
+

m∑

j=1

aj

g(dij)

)
g(δi2)

. (5.5)

Introducing
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hi =
1

α2

m∑

j=k+1

aj

g(dij)

ki =
1

α2

(
α1

g(δi1)
+

m∑

j=1

aj

g(dij)

)

and defining

fi(g(δi2)) =
1 + hig(δi2)

1 + kig(δi2)
(5.6)

equation (5.5) becomes

M2(x1, x2) =
n∑

i=1

ωifi(g(δi2)).

An upper bound for M2 is

M2(x1, x2) =

n∑

i=1

ωiUBi(C)

where UBi(C) is an overestimation of fi(g(δi2)) over rectangle C. Notice that hi < ki

and fi is monotonously decreasing in g(δi2) with a limit of hi
ki

.

We now describe various possible variants of the upper bounding. We will also evaluate
numerically which bound is sharper than the others. The first upper bound is simply based
on underestimating distance. The second and third upper bounds exploit the D.C. structure
of the objective function. The fourth upper bound builds a convex overestimating function
based on the third one.

Upper Bound 1

A first upper bound for fi(g(δi2)) over a rectangle C is calculated in the following way.
For demand point pi, the distance to the follower x2 when x2 ∈ C is underestimated by
assuming that x2 delivers from the complete rectangle C. In this way the market share of
the demand point for the follower is overestimated. The demand points within rectangle C
have a distance Δi(C) = 0 from C. For demand points out of rectangle C, pi /∈ C, the
shortest distance Δi(C) of pi to the rectangle is calculated. An upper bound UB1

i (C) for
fi(g(δi2)) over rectangle C for demand point pi is given by

UB1
i (C) =

1 + hig(Δi(C))

1 + kig(Δi(C))
(5.7)

where Δi(C) is the distance from demand point pi to rectangle C, Δi(C) = minx∈C d(x, pi).
The distance Δi(C) can be determined as follows. Rectangle C is defined by two points:
lower-left point L = (L1, L2) and upper-right point U = (U1, U2). The shortest distance
from demand point pi to the rectangle C = [L, U ] can be computed by:
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Δi1 = max{L1 − pi1, pi1 − U1, 0}
Δi2 = max{L2 − pi2, pi2 − U2, 0} (5.8)

Δi =
√

Δ2
i1 + Δ2

i2

Summarising,

Δi(C) =

{
0 if pi ∈ C√

Δ2
i1 + Δ2

i2 if pi /∈ C
(5.9)

This distance calculation is easily extendible to higher dimensions. A similar description
is used in (Plastria 1992). Equation (5.9) underestimates the distance from demand point pi

to facilities in C. Since the new facility is only located at one point within the rectangle, we
obtain an overestimation (upper bound) of the market capture of the new facility (fi(g(δi2))
is decreasing in δi2).

Upper Bound 2

The second upper bound is more sophisticated and it is based on convexity of the functions fi

and g. From now on, we will use the convex function g(δi2) =
√

δ2
i2 + K2

i that was suggested
in (Drezner and Drezner 1997), where Ki is a constant representing demand agglomeration.
Equation (5.6) can be seen as a composition of functions fi and g. We will define an upper
bound by using D.C. decomposition. A d.c. decomposition of a function s defined on a
convex C ⊂ R

n can be expressed, for all x ∈ C, in the form

s(x) = s1(x) − s2(x)

where s1 and s2 are convex functions on C. The following lemma is adapted from Lemma
1 in (Tuy et al. 1995). Let f ′

+(x) be the right derivative of f(x), x ∈ R.

Lemma 3. Let g(δ(x)) be a convex function on a convex and compact subset C ⊂ R
2 such

that g(δ(x)) ≥ 0 for all x ∈ C. If f : R+ �→ R is a convex nonincreasing function such that

f ′
+(0) > −∞, then f(g(δ(x))) is a d.c. function in C and can be expressed as:

f(g(δ(x))) = b(x) − Rg(δ(x)) (5.10)

where b(x) = f(g(δ(x))) + Rg(δ(x)) is a convex function for each positive constant R

satisfying R ≥ |f ′
+(0)|.

By using Lemma 3 we can obtain a d.c. decomposition for each fi. In particular, if
g(δi2) =

√
δ2

i2 + K2
i , a d.c. decomposition for fi(g(δi2)) is defined by

fi(g(δi2)) = bi(x) − Rig(δi2) = bi(x) − Ri

√
δ2

i2 + K2
i (5.11)

where bi(x) = fi(g(δi2))+Ri

√
δ2

i2 + K2
i and Ri = ki−hi. Market capture for the follower

can be expressed by
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G(x) = M2(x1, x) =

n∑

i=1

ωifi(g(δi2)) =

n∑

i=1

ωi

[
bi(x) − Ri

√
δ2

i2 + K2
i

]

=

n∑

i=1

ωi

{
1 + hi

√
δ2

i2 + K2
i

1 + ki

√
δ2

i2 + K2
i

+ (ki − hi)
√

δ2
i2 + K2

i

}

−
n∑

i=1

ωi(ki − hi)
√

δ2
i2 + K2

i .

Let δ2
i (x) = (‖x − pi‖2)

2 be the squared Euclidean distance between x and demand point
pi and V (C) be the set of vertices v of rectangle C. An upper bound is defined as

UB = max
v∈V (C)

{
n∑

i=1

ωi

{
1 + hi

√
δ2

i (v) + K2
i

1 + ki

√
δ2

i (v) + K2
i

+ (ki − hi)
√

δ2
i (v) + K2

i

}}

−min
x∈C

{
n∑

i=1

ωi(ki − hi)
√

δ2
i2 + K2

i

}
(5.12)

UB is a valid upper bound of M2 over C. To facilitate computation, one can underesti-

mate minx∈C

{∑n
i=1 ωi(ki − hi)

√
δ2

i2 + K2
i

}
by
∑n

i=1 ωi(ki −hi)
√

Δ2
i (C) + K2

i . Then, UB2

is defined as

UB2(C) = max
v∈V (C)

{
n∑

i=1

ωi

{
1 + hi

√
δ2

i (v) + K2
i

1 + ki

√
δ2

i (v) + K2
i

+ (ki − hi)
√

δ2
i (v) + K2

i

}}

−
n∑

i=1

ωi(ki − hi)
√

Δ2
i (C) + K2

i (5.13)

Upper Bound 3

For the ease of notation, let zi(x) = g(δi2). In this way, G(x) = M2(x1, x) can be written as

G(x) = M2(x1, x) =

n∑

i=1

ωifi(zi(x)) =

n∑

i=1

ωi
1 + hizi(x)

1 + kizi(x)

Let x0 be the centre of rectangle C and z0
i = zi(x

0). According to Taylor’s theorem there
exist g(Δi) ≤ z̃i such that

G(x) = G(x0) +
n∑

i=1

ωi

[
hi − ki

(1 + kiz0
i )2

(zi(x) − z0
i ) +

ki(ki − hi)

(1 + kiz̃i)3
(zi(x) − z0

i )2
]

The first bounding operation is based on replacing z̃i by g(Δi),
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G(x) ≤ G(x0) +

n∑

i=1

ωi

[
hi − ki

(1 + kiz0
i )2

(zi(x) − z0
i ) +

ki(ki − hi)

(1 + kig(Δi))3
(zi(x) − z0

i )2
]

By introducing

ri = wi
ki − hi

(1 + kiz0
i )2

si = wi
ki(ki − hi)

(1 + kig(Δi))3

ti = ri + 2siz
0
i

and rearranging terms we obtain

G(x) ≤ G(x0) +

n∑

i=1

(riz
0
i + si(z

0
i )2) −

n∑

i=1

tizi(x) +

n∑

i=1

sizi(x)2 (5.14)

Although zi is convex, the function in the right part of (5.14) is not. However, it is
clearly a D.C. function. Let V (C) be the set of vertices v of rectangle C. Then, one can
overestimate (5.14) by taking

UB = Const1 − min
x∈C

n∑

i=1

tizi(x) + max
v∈V (C)

n∑

i=1

sizi(v)2

where Const1 = G(x0) +
∑n

i=1(riz
0
i + si(z

0
i )2). As with upper bound UB2, one can

underestimate minx∈C

∑n
i=1 tizi(x) by

∑n
i=1 tig(Δi(C)). Then, UB3 is defined as

UB3(C) = Const1 −
n∑

i=1

tig(Δi(C)) + max
v∈V (C)

n∑

i=1

sizi(v)2 (5.15)

Upper Bound 4

In this section, a convex overestimation ΓC(x) of G(x) over a rectangle C is derived starting
from (5.14). One can linearly overestimate the term −tizi(x) due to convexity of function
zi(x) as follows

zi(x) ≥ z0
i + ∇z0

i (x − x0)

Substitution gives

G(x) ≤ G(x0) +

n∑

i=1

(riz
0
i + si(z

0
i )2) −

n∑

i=1

tiz
0
i −

n∑

i=1

ti∇z0
i (x − x0) +

n∑

i=1

sizi(x)2

= G(x0) −
n∑

i=1

si(z
0
i )2 −

n∑

i=1

ti∇z0
i (x − x0) +

n∑

i=1

sizi(x)2 = ΓC(x)
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Function ΓC(x) is convex. An upper bound over rectangle C, UB4(C), can be expressed by

UB4(C) = Const2 + max
v∈V (C)

{
n∑

i=1

sizi(v)2 −
n∑

i=1

ti∇z0
i (v − x0)

}
(5.16)

where Const2 = G(x0) −∑n
i=1 si(z

0
i )2.

5.4 A Branch-and-Bound Algorithm for the Leader Problem
In this section, a new method based on Branch-and-Bound is formulated to generate a
solution of the (1|1)-centroid problem. The final outcome is guaranteed to differ less in
function value than a preset accuracy εl from the optimum solution. Next, we introduce the
algorithm and its ingredients.

5.4.1 The Algorithm
The branching and selection rules used were the same as in Algorithm 5.1. The output of
the B&B method (see Algorithm 5.2) is again the best point found during the process and
its corresponding function value, which differs less than εl from the optimum value of the
problem.

Algorithm 5.2 : Branch-and-Bound algorithm for Leader problem.
Funct B&BLeader(εl, εf )

1. Λ := ∅
2. C1 = S
3. Compute x1

1:=midpoint(C1), BestPoint := x1
1

4. Solve the problem for the follower: {x1
2, z} := B&B(M2, x1

1, C1, εf )

5. Determine an upper bound z1U
1 on C1 solving a reverse medianoid problem: {y, z1U

1 } :=
B&B(M1, x1

2, C1, εl)
6. Determine lower bound: z1 := F (x1

1) = M1(x1
1, x1

2), zL := z1

7. Put C1 on list Λ , r := 1
8. while ( Λ �= ∅ )
9. Take a subset C (selection rule) from list Λ and bisect into Cr+1 and Cr+2

10. for t := r + 1 to r + 2
11. Compute xt

1:=midpoint(Ct)
12. Solve the problem for the follower: {xt

2, z} := B&B(M2, xt
1, C1, εf )

13. Determine upper bound ztU
1 solving a reverse medianoid problem: {y, ztU

1 } :=
B&B(M1, xt

2, Ct, εl)
14. if ztU

1 > zL + εl

15. Determine zt := F (xt
1) = M1(xt

1, xt
2)

16. if zt > zL

17. zL := zt, BestPoint := xt
1, and remove all Cr from Λ with zrU

1 < zL

18. if ztU
1 > zL + εl

19. save Ct in Λ
20. r := r + 2
21. endwhile
22. OUTPUT: {BestPoint, zL}



96 Game Theory at Work

5.4.2 Lower Bound

The classical lower bound is obtained as the best objective value at a finite set of feasible
solutions {x1

1, . . . , x
r
1} for the leader problem,

zL = max{F (x1
1), . . . , F (xr

1)}

One can follow the objective function value F (xp
1) of the iterates, or alternatively define an

initial lower bound zL based on running another algorithm that generates a good approximate
solution.

5.4.3 Upper Bounds

Let C ⊆ R
2 denote a subset of the search region of (LP ), and assume that x2 is given.

An upper bound of F (x1) over C can be obtained by having the leader solve the reverse
medianoid problem.

Lemma 4. UB(C, x2) = maxx1∈C M1(x1, x2) is an upper bound of F (x1) over C.

Proof. According to (5.3), F (x1) = M1(x1, x
∗
2(x1)) ≤ M1(x1, x2) such that

max
x1∈C

F (x1) ≤ max
x1∈C

M1(x1, x2) = UB(C, x2).

Given a finite set {x1
2, . . . , x

r
2} of feasible solutions for the follower, then

min{UB(C, x1
2), . . . , UB(C, xr

2)}

is an upper bound of F (x1) over C.

For a specific rectangle C, the choice of x2 for the upper bound calculation is done as
follows. We take xC=midpont(C) as the midpoint of the rectangle. Now one solves (FP (xC))
obtaining x̂2. An upper bound is determined by solving the problem

ub1(C) = UB(C, x̂2) = max
x1∈C

{M1(x1, x̂2)} (5.17)

Another easy possibility is to set x2 equal to x1 (that is, to assume co-location). In that
way, one obtains the following upper bound.

Lemma 5. ub2(C) = UB(C, x1) = maxx1∈C M1(x1, x1) is an upper bound of F (x1) over C.

In the next two sections, we use numerical cases to illustrate the outcomes and efficiency
of the algorithm.
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5.5 Numerical Examples
The effectiveness and efficiency of the algorithms are investigated with the aid of numerical
cases. In a first case, we experiment with algorithm settings (variants of the algorithm)
and study the performance. In the following cases, the performance is studied with a good
algorithm setting. The effectiveness question concerns the algorithms and several ways of
upper bounding. Performance indicators of the efficiency are the number of iterations used
by the algorithms and the memory requirement. In general, Branch-and-Bound algorithms
deliver a guarantee of detecting the global optimum up to a pre-set accuracy, but the cost
of the memory requirement may be high if the dimension is going up or the accuracy is
increasing, see e.g. (Casado et al. 2007). In the first study, we will vary carefully the selection
rule and the accuracy and inspect values of the performance indicators and effectiveness of
the different bounds. Moreover, we evaluate a variant where an initial partition is generated
to improve bound number 4. The second case is an illustration from literature. In the
last case, we generate many instances at random where the size of the problem is varied to
validate the viability of the approach with increasing number of demand points and existing
facilities.

5.5.1 Case I, Varying Algorithm Setting
This case has been generated randomly with n = 10 demand points, m = 4 existing facilities
and a varying number k of those facilities belonging to the leader’s chain, k = 0, . . . , 4. The
generated demand points can be found in Appendix 5.6. The other parameters are chosen
as follows:

• buying power: wi = 100, i = 1, . . . , 10

• quality of existing facilities: aj = 5.5, j = 1, . . . , 4

• quality of new facilities: αl = 5, l = 1, 2

• g(dij) =
√

(qj1 − pi1)2 + (qj2 − pi2)2 + (10−5)2, i = 1, . . . , 10, j = 1, . . . , 4

• g(δil) =
√

(xl1 − pi1)2 + (xl2 − pi2)2 + (10−5)2, l = 1, 2

• accuracy for leader and follower: εl = εf = 10−2

The resulting optimal locations are shown in Table 5.1, which also gives the market cap-
ture of both chains, when the number k of existing facilities of the leader chain is increasing.
One can observe a characteristic of the model, where leader and follower tend to co-locate
when the number of existing facilities of the leader is low. In fact, the follower by locating at
the same position, mitigates the effect of the relatively newcomer in the market who is going
to compete for market capture. Notice also that when the leader is dominant in the market
(it owns k = 3 of the m = 4 existing facilities, or all of them, k = 4) then the leader suffers a
decrease in market share after the location of the two new facilities (see the negative values
in the last line of Table 5.1). This is because in those cases the follower increases its market
share more than the leader.

Figure 5.2 illustrates how the algorithm proceeds. It gives: location of the demand points
(squares); location of the existing facilities (triangle up, belongs to the follower, triangle
down, belongs to the leader); the optimum for the locations of leader (diamond) and the
follower (circle) and the final partition of the search space for the leader for the cases when
the number of existing facilities of the leader are k = 1 and k = 3. Each of the boxes has
been evaluated and it has been proven by bounding that the optimum location of the leader
cannot be there.
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Table 5.1. Optimal locations and market capture for different number of leader facilities,
k = 0, . . . , 4. Parameter z∗

l = market capture for the leader after locating facility, Mbl

before; locations and market captures are rounded to two decimals.

k = 0 k = 1 k = 2 k = 3 k = 4

Leader

(
2.44
3.97

) (
5.03
0.69

) (
5.33
4.34

) (
5.33
4.34

) (
5.03
0.69

)

Optimal Location

Follower

(
2.44
3.97

) (
5.03
0.69

) (
1.41
4.65

) (
1.75
3.79

) (
1.75
3.79

)

Market Leader 186.29 367.87 497.70 611.07 773.44
Capture Follower 813.71 632.13 502.30 388.93 226.56
z∗

l − Mbl

(gain or loss for the leader) 186.29 100.67 14.17 -72.46 -226.56
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Figure 5.2. Generated partition by the algorithm. Cases with k = 1 (left) and k = 3 (right)

Table 5.2. Efficiency base case algorithm. Iterations. Upper bound UB1 in Algorithm 5.1,
selection rule: breadth-first-search in both algorithms.

Medianoid problems
Leader problem Follower M. problems Reverse M. problems

k Max Avg Max Avg

0 1325 503 308.62 3645 215.48
1 1017 427 313.98 3107 248.09
2 1161 545 439.71 2709 166.13
3 209 501 447.42 2421 296.95
4 131 675 515.11 1009 190.15

In Tables 5.2 and 5.3 we focus on the efficiency of the algorithm and the different ways
of bounding. Table 5.2 concerns the base case, where only UB1 is used as upper bound
in Algorithm 1, and breadth-first-search is used as selection rule in both Algorithms 1 and
2. It shows the number of iterations for the leader problem and the maximum and average
number of iterations for Algorithm 5.1 when it is called at each iteration of Algorithm 5.2
to solve the corresponding (reverse) medianoid problems. First of all, one can observe from
the number of iterations, that it is relatively easier for the algorithm to detect what is the
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global optimum for the leader when it has already many existing facilities. The intuition
is as follows. When the leader is a newcomer, it has many options to gain market capture
by going close to existing facilities of the competitor; there are many local optima. The
result is that it is harder for the algorithm (requires more splitting) to verify that an already
found location is the best one. Typically, this is easier when the leader has already several
facilities. The global optimum is far more pronounced and defined by staying away from
its own facilities. Accordingly, the number of iterations required for solving the follower
medianoid problems increases with k.

In Table 5.3, we focus on the effectiveness of the upper bounds of Algorithm 5.1. At
each iteration, it computes the four upper bounds described in Section 5.3.5 and chooses
the minimum of the upper bounds. In all the cases, upper bounds UB1 and UB4 were
used. Upper bounds UB2 and UB3 which are based on the d.c. concept appeared not to be
efficient since they were never lower than UB1 or UB4. Observing the computations during
the process, we found that UB4 mainly improves the bounding of UB1 when the partition
sets get small. In this way, it contributes to speeding up the algorithm compared to only
using UB1. As in the previous table, the first two columns of Table 5.3 give the maximum and
average number of iterations for Algorithm 5.1 when it is called at each iteration of Algorithm
5.2 to solve the corresponding (reverse) medianoid problems . The next four columns show
the maximum and average number of iterations that the bounds UB1 and UB4 were the ones
giving the minimum upper bound when solving the medianoid problems, whereas the last
four columns give similar values when solving the reverse medianoid problems. Comparing
Tables 5.2 and 5.3 we can see that the use of the both bounds reduces the number of iterations
required for solving the corresponding (reverse) medianoid problems.

Table 5.3. Number of iterations and upper bounds used. Selection rule:
breadth-first-search in both algorithms.

Upper bounds used
Iterations Follower medianoid Reverse medianoid

Follower med. Reverse med. problems problems
problems problems UB1 UB4 UB1 UB4

k Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg

0 497 295.70 3645 218.32 479 278.62 49 17.08 3645 208.39 695 9.93
1 411 302.16 3107 241.31 392 280.92 40 21.24 3107 222.89 1471 18.42
2 527 414.59 2709 164.11 496 390.28 58 24.31 2709 160.59 241 3.52
3 467 410.79 2421 291.36 418 367.99 60 42.80 2398 275.37 328 15.99
4 571 471.90 1009 190.91 495 412.98 91 58.92 1009 184.93 172 5.98

In a next computational analysis we vary two rules of the algorithm. First of all, we
compare the efficiency of the selection rule changing from breadth-first-search to best-bound-
search, i.e., the rectangle with the lowest value of zL is selected to be split next in Step 8
of Algorithm 5.1 and Step 9 of Algorithm 5.2. Secondly, we evaluate the performance when
initially a partition is generated such that none of the demand points is interior as illustrated
in Figure 5.3. The idea is that the upper bounds UB4 get sharper.

Comparing Tables 5.2 and 5.4, one can observe that Algorithm 5.1 clearly improves over
the thousands of problems solved with the selection rule best-bound-search. Algorithm 5.2
for the leader problem does not always improve for this particular case. For the algorithm
variant where the best upper bound is used, comparison of Tables 5.3 and 5.5 confirms that
best-bound-search is better for Algorithm 5.1 than breadth-first-search.
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Figure 5.3. Initial partition generated for the follower medianoid.

Table 5.4. Efficiency changing to best bound selection. Iterations. Upper bound UB1 in
Algorithm 5.1, selection rule: best-bound-search in both algorithms

Medianoid problems
Leader problem Follower M. problems Reverse M. problems

k Max Avg Max Avg

0 689 613 184.25 2945 115.70
1 675 497 241.24 2893 71.21
2 1739 539 299.91 2519 58.59
3 463 401 362.57 8363 120.87
4 85 561 434.12 3871 140.64

Table 5.5. Efficiency, best upper bound used, selection rule: best-bound-search.

Upper bounds used
Iterations Follower medianoid Reverse medianoid

Follower med. Reverse med. problems problems
problems problems UB1 UB4 UB1 UB4

k Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg

No initial partition
0 589 184.13 2943 116.72 537 163.97 81 20.16 2943 105.41 234 11.31
1 479 209.67 2891 70.07 466 192.50 54 17.17 2891 64.05 80 6.02
2 389 249.43 2517 50.95 325 226.04 76 23.39 2517 49.36 106 1.59
3 277 236.35 8363 116.47 233 214.83 44 21.52 8363 112.45 221 4.02
4 471 282.69 3871 141.90 390 249.48 84 33.20 3871 138.23 29 3.67

With initial partition
0 495 308.14 2856 146.22 473 269.90 101 38.24 2856 134.96 233 11.26
1 517 356.47 2938 76.81 415 297.37 115 59.10 2938 70.88 80 5.93
2 707 492.82 2578 53.54 617 407.77 148 85.05 2578 51.94 77 1.60
3 525 443.36 8363 126.74 480 392.15 79 51.21 8363 123.50 221 3.24
4 647 455.16 3871 143.81 525 391.40 142 63.76 3871 137.94 30 5.87
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Comparing efficiency between generating an initial partition or not, Table 5.5 shows that
the case “No initial partition” is better for the medianoid problems. This effect is less for the
reverse medianoid problems, because for this problem Algorithm 5.1 is applied to smaller
rectangles.

We now focus on the memory requirement as performance indicator. As said, Branch-
and-Bound algorithms are usually hindered by huge search trees that need to be stored
in memory. This part of complexity usually increases rapidly with dimension and with
accuracy. Table 5.6 shows the memory requirements when the best of the four upper bounds
is used. Selection rule applied is best-bound-search for both algorithms and the accuracies
are εl = 0.01 and εf = 0.01. The second column shows the number of rectangles required
by Algorithm 5.2 as the maximum number stored during the iterations. In the columns 3
to 6 the maximum and average number (over the solved problems) are given of memory
requirement for the medianoid and reverse medianoid problems, respectively.

Table 5.6. Memory requirement. The best of upper bounds is used, selection rule:
best-bound-search and εl = 0.01 and εf = 0.01.

Leader Follower med. Reverse med.
problem problems problems

k No. Rec. Max Avg Max Avg

0 15 22 9.92 26 7.43
1 20 15 11.84 24 6.23
2 23 30 13.04 27 5.08
3 17 15 14.00 26 9.10
4 5 22 14.56 22 8.38

Table 5.7. Efficiency when accuracy is increasing. Case with k = 4. Selection rule:
best-bound-search. For the follower (Follower M.) and reverse medianoid (Reverse M.)
problems, numbers are on average.

Accuracy of the leader.
εl

0.01 0.001 0.0001

Accuracy of the medianoid and reverse medianoid problems.
εf

0.01 0.001 0.0001 0.001 0.0001 0.0001

Leader 85 95 95 143 151 219
Iterations Follower M. 282.69 314.6 416.54 305.10 397.19 386.20

Reverse M. 141.90 433.55 1186.64 296.20 784.34 549.65

Leader 5 6 6 8 9 9
Memory Req. Follower M. 14.56 15.54 18.6 15.36 18.38 18.26

Reverse M. 8.38 11.21 14.44 9.02 12.01 9.71

One can observe that the memory requirement of the Branch-and-Bound approach for
these continuous location problems is not dramatic for the used accuracy; there are never
more than 30 subsets in the storage tree. Is this still the case if we increase accuracy? Notice
that to have valid upper and lower bounds of the leader problem, the follower problem
(giving lower bounds) and reverse medianoid (giving upper bounds) should be solved with
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an accuracy that is at least as tight as that of the leader problem. We evaluate the number
of iterations as well as the memory requirement if the accuracy is tightened for the case
where the number of existing facilities is taken as k = 4. The results in Table 5.7 show that
the number of iterations of the algorithms increases less than linear with the used accuracy
in terms of 1/ε. The memory requirement hardly goes up, showing that the best bound
selection rule is efficient.

Given the evaluations of different variants of the algorithm on this case, in the next cases
we apply a best-bound selection rule, the best upper bound at each iteration and no initial
partitioning of the domain is generated.
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Figure 5.4. Generated partition by the algorithm. Case from Drezner and Drezner (1998):
k = 1 (left), k = 3 (right)

5.5.2 Case II From Literature
In the second case where n = 16 and m = 6, data have been taken from (Drezner and
Drezner 1998). In that paper, the existing facilities all belong to other chains different from
the leader or follower. Thus, to adjust the data to our model, we have assigned the first
k existing facilities to the leader and the rest to the follower. The data is different from
randomly generated examples, as many points are situated along co-ordinate lines as can be
observed from Figure 5.4. The exact location of demand points and other facilities can be
found in Appendix 5.6. Table 5.8 shows the results of the algorithm for k = 0, . . . , m. The
optimal locations and resulting market capture for both chains are given.

One can observe the co-location effect when the number of existing facilities of the leader
is low. Notice that this effect can also be observed when the leader is a newcomer with less
facilities than the follower. Co-location of the new facilities does not occur when the follower
is a newcomer, albeit co-location occurs with an existing facility of the competitor. Figure
5.4 gives an impression of the final partition generated by the Branch-and-Bound algorithm
for the leader (cases with k = 1 and k = 3), together with the locations of demand points,
existing facilities and new facilities.

Table 5.9 shows the number of iterations and the use of the 4 upper bounds. As in Case
I, only upper bounds UB1 and UB4 were used.

Finally, Table 5.10 shows the memory requirements for Case II. The second column shows
the maximum number of rectangles stored during the iterations by Algorithm 5.2. Columns
3 to 6 show the maximum and average number of rectangles stored for the follower medianoid
and reverse medianoid, respectively.



On a Branch-and-Bound Approach for a Huff-like Stackelberg Location Problem 103

Table 5.8. Optimal locations Case II, market capture and number of iterations for both
chains. Parameter z∗

l = market capture after locating facility, Mbl before; locations and
market captures are rounded to two decimals.

k = 0 k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Optimal Leader

(
1.99
1.99

) (
1.99
1.99

) (
1.99
1.99

) (
1.99
1.99

) (
2.00
2.00

) (
2.00
2.00

) (
2.00
2.00

)

location

Follower

(
1.99
1.99

) (
1.99
1.99

) (
1.99
1.99

) (
3.00
5.00

) (
3.00
5.00

) (
3.00
5.00

) (
3.00
4.99

)

Market Leader 203.36 368.82 455.09 661.24 872.68 1037.21 1087.25
Capture Follower 1143.14 977.68 891.41 685.26 473.82 309.29 259.25
z∗l −Mbl

(gain or loss) 203.36 157.31 129.67 48.31 -140.26 -234.34 -259.25

Table 5.9. Number of iterations when the best of the 4 upper bounds are considered.
Selection rule: best-bound-search in Algorithm 5.1 and Algorithm 5.2.

Upper bounds used
Iterations Follower medianoid Reverse medianoid

Follower med. Reverse med. problems problems
Iterations problems problems UB1 UB4 UB1 UB4

k Leader Max Avg Max Avg Max Avg Max Avg Max Avg Max Avg
0 1417 913 450.32 4633 165.23 839 413.93 119 36.39 4633 128.21 2107 37.02
1 1127 297 232.14 1517 54.40 288 222.85 25 9.29 1517 48.00 121 6.40
2 715 277 217.93 2001 82.97 269 209.05 19 8.88 2001 81.62 117 1.35
3 249 261 174.36 1513 118.04 243 160.58 20 13.78 1513 107.06 315 10.98
4 177 239 183.17 573 83.25 214 153.96 33 29.21 573 75.65 103 7.60
5 181 249 190.83 405 63.19 219 155.67 38 35.16 405 59.58 37 3.61
6 125 389 248.33 557 61.77 345 215.78 44 32.55 557 56.76 29 5.01

Table 5.10. Memory requirement Case II. Max number of stored rectangles.

Leader Follower M. Reverse M.
k Problem Max. Avg. Max. Avg.
0 22 29 18.32 27 9.80
1 24 12 11.15 26 6.11
2 16 11 10.92 28 6.18
3 10 12 11.16 28 7.15
4 10 12 11.77 17 6.58
5 10 12 12.00 21 6.14
6 10 15 12.73 22 6.45

5.5.3 Case III, Varying Problem Size
In this section, numerical results of the evaluation of the Algorithms 5.1 and 5.2 are discussed.
The wider question is whether the algorithms are able to solve larger problems in reasonable
time. To study the performance of the algorithms, we have generated different types of
problems, varying the number n of demand points, the number m of existing facilities and
the number k of facilities belonging to the leader chain. For every type of setting, ten
problems were randomly generated. The settings are defined by choosing:

• n = 20, 30, . . . , 110

• m = 5, 10, 15

• k = [m/2]
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For each n, m-combination parameter values of ten problems were uniformly chosen within
the following intervals:

• pi, qj ∈ ([0, 10], [0, 10]), i = 1, . . . , n, j = 1, . . . , m

• wi ∈ [1, 10], i = 1, . . . , n

• aj ∈ [0.5, 5], j = 1, . . . , m
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Figure 5.5. Average number of iterations and memory requirement (rectangles) over 10
random cases varying number of demand points n = 20, . . . , 110, existing facilities
m = 5, 10, 15 and k = m/2. Selection rule: best-bound-search and εl = εf = 0.01.

From Figure 5.5, one can observe that an increasing number of demand points does not
make the problem more complex in terms of the memory requirement for the Branch-and-
Bound. The leader problem neither needs more iterations. The follower problem however,
needs more iterations on average to reach the predefined accuracy. The experiment suggests
that no exponential effort is required to solve the problems with increasing number of demand
points. This confirms the viability of the approach.

5.6 Conclusions and Future Work
In this paper, we described a competitive Huff-like Stackelberg location model for market
share maximization. There are two competitors (chains); first the leader locates and then
the follower makes a decision with full knowledge of choices of the leader. We consider com-
petition with foresight and probabilistic behaviour. Attraction of a customer is depending
on the location and the quality of the facility. The location of the leader facility is the vari-
able of the problem. The problem is known to be a Global Optimization problem. In order
to solve it, we have constructed a Branch-and-Bound algorithm for the follower problem
and for the leader problem. The Branch-and-Bound algorithms guarantee a global optimum
within a given accuracy (gap between lower and upper bound). The introduced bound of
the leader problem is based on the zero sum concept where gain of one chain is loss for its
competitor. We have developed and compared four different upper bounds for the algorithm
of the (reverse) medianoid problem.

The algorithms were illustrated with several cases. In a first case, the algorithm settings
and performance were studied. The selection rule and accuracy were varied to study the
performance and effectiveness of the different bounds. A variant where an initial partition is
generated was also studied. In a second case taken from literature, good algorithm settings
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from the first case were used. In the last case, many instances were generated at random
where the size and the number of existing facilities is varied to validate the viability of the
approach.

Looking at effectiveness, one can observe the co-location behaviour of the optimum strat-
egy as one can expect. Also the difficulty on multimodal behaviour is reflected when measur-
ing the efficiency as the number of iterations to solve the problem up to desired accuracy ε.
Efficiency has been measured computationally. Comparing bounds and several variants with
respect to selection rule and generating an initial partition to improve bounds, we found the
following. More sophisticated bounds are not necessarily more effective than simple bounds
based on distance comparison over the complete run of the algorithm. One can best focus
on measuring the quality of the bound during the run and take the sharpest one. For the
selection rule, the focus on the best bound (most promising) selection of the next subset to
be split has the tendency to result in minimum effort on number of function evaluations.
However, one always has to keep in mind that a depth first search may lead to less memory
requirement of a Branch-and-Bound algorithm. Where memory requirement is usually a
problem for higher dimensions, it is not necessarily a focus point for the location problem in
two dimensional space.

Future research will include the quality of the leader and follower as variables of the
problem.
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Appendix A: Test Problems

Table 5.11. Locations and distances from demand points to facilities
Demand points 1 2 3 4 5 6 7 8 9 10

X axis 2,44 5,33 0,57 5,03 4,66 5,72 5,41 1,75 4,93 5,45
Facility Y axis 3,97 4,34 5,27 0,69 5,75 0,25 1,65 3,79 1,44 3,59

1 2 5 1,12 3,40 1,45 5,27 2,76 6,04 4,78 1,24 4,61 3,72
2 3 2 2,05 3,30 4,07 2,42 4,10 3,24 2,43 2,18 2,01 2,92
3 1 3 1,73 4,53 2,31 4,65 4,58 5,47 4,61 1,09 4,23 4,49
4 5 4 2,56 0,47 4,61 3,31 1,79 3,82 2,39 3,25 2,56 0,61

Appendix B: Input Data for Example from (Drezner and Drezner
(1998))

Table 5.12. Distances from demand points to facilities
Demand Points

Fac. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 1.82 0.36 1.06 4.81 2.48 0.85 2.82 4.85 5.32 7.22 5.94 3.09 1.53 4.02 4.44 3.40
2 1.03 2.66 2.42 2.66 2.94 1.75 1.03 3.14 2.73 4.68 3.50 0.51 1.50 1.50 1.86 2.58
3 1.00 2.86 2.41 2.28 2.72 1.90 0.63 2.72 2.61 4.67 3.22 0.45 1.84 1.26 1.84 3.00
4 2.81 4.80 3.98 0.28 3.56 3.81 1.81 1.22 1.81 3.98 1.44 1.97 3.88 1.13 1.97 4.72
5 3.64 5.59 4.92 1.12 4.61 4.61 2.69 2.06 1.12 3.04 0.50 2.50 4.50 1.50 1.80 4.92
6 4.90 6.58 6.31 3.20 6.36 5.71 4.18 4.18 1.36 0.92 2.11 3.50 5.24 2.77 2.11 4.80

Table 5.13. Location and buying power for demand points and location and attractiveness
for existing facilities

Facility points Demand points
Number q1 q2 aj Number p1 p2 wi.

1 2.7 6.8 7 1 3 5 163.8
2 3.9 4.5 3 2 3 7 28.8
3 3.6 4.2 7 3 2 6 39.0
4 3.2 2.2 10 4 3 2 77.4
5 4.0 1.5 7 5 1 5 42.0
6 6.1 1.2 3 6 3 6 107.0

7 3 4 64.5
8 2 2 250.6
9 5 2 101.4
10 7 1 57.6
11 4 1 132.0
12 4 4 77.6
13 4 6 29.6
14 4 3 67.5
15 5 3 50.7
16 6 6 57.0



CHAPTER 6

General Discussion and Conclusions

6.1 Introduction
This chapter evaluates and discusses the research done in this thesis. In Section 6.2 a brief
outline of the thesis is given. Section 6.3 presents the main conclusions by answering the
research questions outlined on Chapter 1. The discussion is presented in Section 6.4, where
contributions of this study, its limitations and suggestions for future research are discussed.

6.2 Brief Outline of the Research
The objective of this thesis was to develop or contribute to the development of usable GT
models and OR methods to solve them in practical situations. For different cases, GT models
were built from GT concepts and translated into mathematical programming models. The
research aimed to provide a useful contribution to:

• Building optimisation models from GT concepts/models

• Developing OR techniques as tools to solve optimisation models based on GT con-
cepts/models with multiple heterogeneous actors

• To apply the developed techniques on cases of cooperation and competition to show
the applicability of the GT concepts/models, OR models/techniques.

We hypothesised that GT concepts and models might provide us with a valuable contribution
for supporting decision makers provided that we can make OR models and algorithms to
solve these models. In order to achieve the objective, aims and hypothesis of this thesis four
research questions were addressed:

1. How do we formulate GT models for decision making situations with multiple hetero-
geneous actors using GT concepts? How can we contribute to that modelling?

2. If we have GT based models: What appropriate coding can be used to translate a
specific GT model into a mathematical programming optimisation problem such that
it can be solved?

3. Which solution methods can be developed to solve these models?

4. How do the outcomes aid to analyse the decision makers problem? or What is the
contribution of the new outcomes to the decision makers problem?
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In daily life, situations described by cooperative games can be observed in the form
of alliances between companies, coalition formation in the parliament or club membership,
among others. In this thesis we have studied two types of coalition formation. Chapter
2 describes and studies a multiple coalition formation game with membership rules and
different transfer schemes. Furthermore, externalities were also an ingredient of the game.
The chapter focuses on the computation of stability when the players are heterogeneous and
asymmetric. GT concepts were translated into a new mathematical programming notation
which allowed the implementation in an algorithmic context. Application of the method has
been done in a case on International Environmental Agreements. The second type of coalition
formation was studied in Chapter 3 which describes a cartel formation game, where only one
coalition can be formed. The model was introduced in de Ridder and Rusinowska (2005).
There are n parties trying to form a majority government and to agree on a policy agreement
represented in a m-multidimensional Euclidean policy space R

m. It was shown how the
complexity increases with the number of parties n and the dimension of the policy spaces m.
Computational methods were developed for two different procedures of coalition formation:
sequential and simultaneous. The methods compute all possible winning coalitions and
preferences of parties over those (if many) coalitions. The developed OR methods provided
the ability to study several hypotheses.

In daily life not only cooperation can be observed; competition takes place between
companies, in the parliament and between clubs. In this thesis we studied competition in
two chapters. Chapter 4 describes competition on quantity and location. The game describes
decision on two levels and the interaction between n > 2 heterogeneous firms. There are
m > 2 markets to be served. The game studied in Sarkar et al. (1997) and Rhim et al.
(2003) was extended by considering asymmetric costs (firm-specific). Another difference
with the study of Rhim et al. (2003) is the procedure on how to find the equilibrium of the
game. Algorithms were designed and illustrated numerically. Chapter 5 studies a Stackelberg
(leader-follower) competitive facility location situation. There are two competitors (chains).
First the leader makes a decision on where to locate its facility in the plane. Second, the
follower makes a decision with full knowledge of the decision of the leader. The objective
of the leader is to maximize its market share considering that the follower will react to her
decision. Thus, the leader must anticipate the decision of the follower. Table 6.1 shows an
overview of the cases applied.

6.3 Main Conclusions and Research Questions
In this section, the main conclusions are presented by answering the research questions
formulated in Section 6.2 (see also Chapter 1). How the cases contribute to insight in the
research questions is described.

Answer to the Research Question 1

• How do we formulate GT models for decision making situations with multiple hetero-
geneous actors using GT concepts? How can we contribute to that modelling?

It is interesting for science and, in particular for algorithm developers, to try to handle large
datasets and make GT more applied and bring it closer to applications. In Chapter 1, Section
1.5.1, the main characteristics of the cases were described. Within these characteristics,
ingredients for modelling decision making situations with multiple heterogeneous actors were
included. The contribution of this study on the modelling aspect is due to reformulating
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Table 6.1. Overview of the cases applied.

Conceptual
Model
Phases

Chapter 2 Chapter 3 Chapter 4 Chapter 5

GT Con-
cept

Nash, stability,
multiple coalition
formation, trans-
ferable utility

Single coalition
formation, prefer-
ence orders

Cournot, Nash,
competition

Stackelberg, com-
petition

GT Model Eyckmans and Fi-
nus (2003a), two-
level game

de Ridder and
Rusinowska
(2005), political
game

Sarkar et al.
(1997), location-
quantity, two-level
game

Drezner and
Drezner (1998),
competitive loca-
tion

OR Model Continuous opti-
misation at one
level, discrete lo-
cation

NLP with inequal-
ities

Generalised exist-
ing model, NLP

Global optimisa-
tion, continuous
location

Algorithm FOC quadratic
function, enu-
meration, coding
large matrices

Penalty approach,
iterative algo-
rithm, standard
NLP

Analysis, proper-
ties of continuous
equilibria, enu-
meration, local
search, multistart

Continuous opti-
misation, Branch-
and-Bound

models in order to be able to handle large datasets. In the following, the main contributions
of this study on the modelling are outlined.

In Chapter 2, we used a GT model for a multiple coalition formation game from Eyckmans
and Finus (2003a). Contribution in the modelling was done by introducing a large number
of heterogeneous players and modelling different side payments. The GT model is based on
the GT concepts of Nash equilibrium, stability and transferable utility.

In Chapter 3, a single coalition formation model from de Ridder and Rusinowska (2005)
was used. There are n players (political parties), which try to form a majority coalition and
to decide about a policy of the coalition. This coalition position is the formal representation
of the policy agreement of a coalition. Each player has a weight which is based on the number
of seats in parliament. The model implies two procedures on coalition formation: sequential
and simultaneous. Players are heterogeneous and asymmetric. For both procedures, all
winning coalitions and preference orders over these coalitions were generated.

In Chapter 4, a two-stage location-quantity game with m markets and n firms was
described. The location space is a network, where the nodes are considered as possible
locations for the firms. We extend the study of Sarkar et al. (1997) and Rhim et al. (2003).
Free entry is possible as in Rhim et al. (2003). Moreover, we allow asymmetric costs (firm-
specific). Another difference with the study of Rhim et al. (2003) is the procedure on how to
find the equilibrium of the game. We consider not only the possibility for a suplier to leave
a market, but also the possibility to move its facility to another location. Doing so, a firm
has to re-think the quantity decision on how much to supply to which markets.

In Chapter 5, the model is based on a Stackelberg zero-sum game, which models the
case discussed in Drezner and Drezner (1998) as a zero-sum leader-follower competitive
location problem. The problem considered is a planar facility location with foresight, having
probabilistic consumer behaviour, based on an attraction function depending on the locations
of the facilities to be located. We reformulated the model in an exact way.



110 Game Theory at Work

In summary, the different decision making problems studied were modelled with the aid
of the above mentioned GT concepts/models. Contribution was most significant in Chapter
2 and Chapter 4 adding additional characteristics to cases taken from literature. In general,
asymmetric, heterogeneous and multi-actor situations on the decision making problems are
the basis for all the cases applied.

Answer to the Research Question 2

• If we have GT based models: What appropriate coding can be used to translate a
specific GT model into a mathematical programming optimisation problem such that
it can be solved?

As explained above, we consider GT concepts/models as a challenge to be applied on large,
asymmetric, heterogeneous, multi-actor cases. In order to develop OR methods/algorithms
for solving decision making problems, one needs to translate the model formulation from GT
into mathematical programming optimisation models. Contribution on the reformulation of
GT models into OR models is described below.

In Chapter 2, concepts from GT related to the case were translated into a new mathe-
matical programming notation. This new mathematical programming notation was used for
developing a constrained, continuous (in abatement) NLP model. In modelling the equilib-
ria, stability of coalitions, a combinatorial optimisation is used. The research in Chapter 2
shows how by mathematically redefining concepts, computer coding has been facilitated that
made it possible to generate relevant results for huge cases. The resulting model was used
in further studies (Finus et al. (2006), Altamirano-Cabrera and Finus (2006), Finus et al.
(2005), Weikard et al. (2006) and Altamirano-Cabrera et al. (2005)).

In Chapter 3, a mathematical programming model from de Ridder and Rusinowska (2005)
was re-written and used for developing a continuous and constrained NLP model. The
model involves also a discrete space when considering the fixed number of possible coalitions.
The model considers both static and dynamic aspects with respect to the two different
procedures under consideration: simultaneous and dynamic processes of coalition formation.
The formulated model and coding made the application of the model possible using real and
multidimensional data.

In Chapter 4, a two-stage model on location and quantity decisions was described. Vari-
ants from the original model were introduced, and therefore an exact formulation was neces-
sary to introduce a constrained NLP model. The model is continuous on quantity decisions,
and discrete on location decisions. Conditions for the supplying decisions (second-stage of
the game) were provided. Moreover, as firms will be affected by the timing and level of entry
on the market, properties on how to determine the size of the market were derived.

In Chapter 5, a new mathematical programming re-formulation for a Stackelberg (leader-
follower) problem is derived. The leader-follower problem described belongs to a constrained,
global optimisation (GO) problem. The formulation using OR models designed the way on
how to solve the problem with global optimisation methods on two levels.

Answering this question, the “coding into mathematical programming notation”becomes
an important factor and results in a crucial contribution for the next steps of the conceptual
model outlined in Chapter 1 (see also Figure 6.1). It helped to get insight on how to solve
the decision problems faced in the different cases.

Answer to the Research Question 3

• Which solution methods can be developed to solve these models?
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A significant contribution of this thesis is due to the development of algorithms for solving de-
cision making problems modelled by GT concepts and reformulated as OR models. The first
two questions answered the modelling and reformulation of the models. The reformulation
step is crucial for the development of algorithms.

Chapter 2 shows that the implementation provides the feasibility to study a multiple
coalition game with a large number of asymmetric and heterogeneous players. Challenge
was the development of algorithms for getting stable coalition structures. The mathematical
programming coding described above was used to build an OR method for implementation
into computer coding. Analytical solutions were derived for optimal abatement levels for
each coalition structure. A complete enumeration algorithm was developed. The algorithm
was able to compute stable coalition structures in a multiple coalition game for a model
with 12 players (regions), leading to more than four million of coalition structures to be
checked for stability. Implementation and computational aspects were outlined and results
were shown.

In Chapter 3, two different procedures were developed. The first approach is a dynamic
procedure, a step-by-step process of coalition formation. The second approach is a static
procedure, a simultaneous process on negotiations. The challenge is to apply the methods
in multidimensional decision space, multi-actor cases. In doing so, algorithms became a
necessary tool in order to apply the model to cases with real data. Algorithms were developed
to generate all winning coalitions and preference orders. The algorithms used an external
procedure for the determination of the output based on sequential quadratic programming
(SQP) methods. Moreover, a penalty approach was used to determine whether or not feasible
negotiation spaces intersect between the negotiating parties (the players of the game).

In Chapter 4, based on the continuous model on quantity decisions, analytical results were
used to develop an algorithm to get the equilibrium on quantities. The model is discrete when
considering location decisions, two different methods were developed to find the equilibria
in locations: a complete enumeration algorithm and a local search procedure. The complete
enumeration algorithm aims to find all Nash equilibria of the game. In contrast to the
complete enumeration algorithm, for the local search algorithm it is not known whether or
not all equilibria (if many) are found. The results and algorithms were illustrated numerically.

The problem in Chapter 5, to our knowledge, was only addressed in Drezner and Drezner
(1998), where three heuristics are described for a variant of the model considered in this
chapter. The question was whether the leader problem can be solved up to a guaranteed
accuracy. The branch-and-bound algorithms guarantee a global optimum within a given
accuracy (gap between lower and upper bound). Thus, branch-and-bound algorithms for the
follower problem and for the leader problem were developed. Moreover, four different upper
bounds for the algorithm of the medianoid problem (follower) were developed and compared.

In answering this question, an important contribution was done with the help of the
coding step. Algorithms were developed for each of the problems covered in this research.
Algorithms were based on enumeration methods, iterative approaches, analytical solutions,
SQP methods, penalty approach and GO methods. From the cases applied, different chal-
lenges inspired the development of the algorithms: application to huge cases, asymmetry,
heterogeneity or global optimisation methods.

Answer to the Research Question 4

• How do the outcomes aid to analyse the decision makers problem? or What is the
contribution of the new outcomes to the decision makers problem?
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The research questions followed the conceptual model of the thesis. GT concepts/models
were reformulated into OR models to help in the development of OR algorithms. The last
research question is answered by looking at the output of the algorithms.

Numerical results from Chapter 2 showed that, in the environmental game applied, exclu-
sive membership with a unanimity voting rule leads to more stability than open membership.
By applying transfer schemes the number of stable coalition structures was bigger but not as
much as one could expect. Comparing with earlier studies and results applying the STACO
model (Finus et al. (2006), Altamirano-Cabrera and Finus (2006), Weikard et al. (2006) and
Altamirano-Cabrera et al. (2005), Finus et al. (2005), Olieman and Hendrix (2005)), Chapter
2 showed in a numerical study that the number of stable coalition structures in a multiple
coalition game is bigger than in a cartel game and preferable if we are measuring in terms
of either Net Benefit or Global Emission Reduction.

In Chapter 3, methods were developed to study two dynamical aspects of coalition for-
mation (procedure and policy flexibility) and to report on the findings for testing hypotheses
by analysing the formal model and deducing implications from this model based on real data.
The analysis in de Ridder et al. (2007) focused on three aspects of coalition formation and
formulated hypotheses: procedure, flexibility, and power sharing. By applying the developed
algorithms to Dutch data and theoretical examples, several questions/hypotheses were tested
and gave implications for political parties involved in coalition formation.

Algorithms developed in Chapter 4 were compared and both effectiveness and efficiency
were studied. We found analytically a necessary condition to have delivery to a market,
an analytic expression of the equilibrium quantities and necessary condition for the firms
that supply to a market. Furthermore, by using the algorithms as a systematic compu-
tation instrument to cases reported in literature, a mistake was detected in Sarkar et al.
(1997). In that paper a solution is given that appears not to be an equilibrium of the model.
Furthermore, tests on larger generated instances showed the viability of the approach.

In Chapter 5, GO techniques for solving the leader and the follower problem were il-
lustrated with several cases. In a first case, the algorithm performance and effectiveness
of the different bounds were studied by varying the selection rule and accuracy. A variant
where an initial partition is generated was also studied. A good algorithm setting from the
first case was used to get computational results. With the optimal settings, many instances
were generated at random where the size and the number of existing facilities is varied to
validate the viability of the approach. The difficulty on multimodal behaviour is reflected
when measuring the efficiency as the number of iterations to solve the problem up to desired
accuracy ε. Efficiency has been measured computationally.

In summary, the idea is that outcomes of the developed algorithms aim to help decision
makers and analysts to get insight into a decision situation: what are optimal or better
decisions. Two of the chapters contributed on aiding researches when real data are used
(Chapters 2 and 3). Chapters 4 and 5 were illustrated with randomly generated data. From
the outcomes and different approaches, different conclusions and discussions on the decision
problems can be made. Moreover, conclusions and discussions about the results help to get
more insight on further research and new questions.

6.4 Discussion of the Research

This section is organised as follows. Section 6.4.1 discusses the contribution of the study to
the existing literature. Section 6.4.2 indicates the limitations of the research.
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6.4.1 Contributions of this Study
The research done in this thesis studies cooperative and competitive games. This section
makes also a contribution to the answers on the research questions, where the main findings
of the study were outlined. The first two cases, Chapter 2 and Chapter 3, were based on
coalition formation. We will first discuss the contribution to coalition formation games and
the contribution made on OR techniques. To remind to the reader, Chapter 2 applies a game
on simultaneous multiple coalition formation, with heterogeneous and asymmetric players,
four different transfers schemes and externalities; Chapter 3 applies a game on cartel (single)
coalition formation, with heterogeneous and asymmetric players, multidimensional decision
space and two different procedures on forming a coalition (sequential and simultaneously).

In Chapter 2, a significant contribution has been made by representing a multiple coali-
tion formation game with a mathematical programming notation, which helped to introduce
the concept of neighbourhood of coalition structures in an exact way. This new mathemati-
cal notation was very useful for doing stability checks when heterogeneous, asymmetric and
more than 2 actors are interacting in a cooperative game in which more than one coalition
is allowed to form. For stability checks, an enumeration algorithm was developed to check
the equilibrium or all equilibria (if many) of the game based on analytical solutions for an
NLP problem on abatement. An application on an International Environmental Agreement
problem was studied. This application implies more than 4 million coalition structures to be
analysed. Validation of the techniques was made by applying a small case from literature.
The approach helped other researches in developing new ideas and publications within the
scientific-research world. An important and valuable contribution to the STACO project
was made. Many papers were developed using the coding and methods for getting economic
incentives on environmental issues (see Sáiz et al. (2006), Finus et al. (2006), Altamirano-
Cabrera and Finus (2006), Finus et al. (2005), Weikard et al. (2006) and Altamirano-Cabrera
et al. (2005)).

An extensive literature can be found on political coalition models. Most of the studies
focus on which parties will form a coalition. However, little research has been done on the
procedures to form a coalition (Laver and Schofield (1990): how will coalitions be formed,
and, what is the best strategy for a party during the process of coalition formation? In
Chapter 3, two different procedures were considered and methods for each procedure were
developed. The methods allow the applicability to real data on high dimensions with het-
erogeneous players. Real-data and theoretical cases were used not only to obtain winning
coalitions and preferences of parties over these coalitions and procedures, they also con-
tributed on testing hypotheses. From the hypotheses, we found: that being a first mover is
not always advantageous; when forming a k-party coalition, for k ≥ 3, being less flexible is
usually advantageous, but can theoretically be a disadvantage; forming a minimal winning
coalition is not always advantageous; and when forming a k-party coalition, for k ≥ 3, an
increase of a party’s weight may be an advantage for its coalition partner

Next we discuss the contribution done to competitive games and OR techniques. Compet-
itive games were studied on Chapter 4 and Chapter 5. Competitive location is an ingredient
for both chapters, in a discrete and continuous setting (respectively). In particular, quan-
tity competition “a la Cournot”, with asymmetric costs, n > 2 firms, m > 2 markets and
free-entry was applied in Chapter 4. In Chapter 5, a Stackelberg leader-follower game with
probabilistic behaviour of the customers was studied. We first dicuss Chapter 4 and then
Chapter 5.

Many studies can be found in literature describing a so-called location-quantity game.
Most of the studies assume symmetric behaviour or a finite strategy set or two or few players
or there is no free-entry, that is, all the firms will enter the market. In Chapter 4, a game from
literature was extended. Free-entry is possible and costs are asymmetric (firm-specific). Two
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different methods were developed: a complete enumeration method discovering all equilibria
on the game; and a local search method in which given a starting point, the algorithm walks
to one of the equilibria (if many). The first method guarantees that all equilibria are found.
With the second method it is not known whether or not all equilibria are found.

In Chapter 5, GO methods were developed to solve the leader and the follower problems.
The follower problem has been solved under deterministic and probabilistic behaviour in sev-
eral studies. To our knowledge, the leader problem has only been addressed in Drezner and
Drezner (1982) and Bhadury et al. (2003) (with deterministic behaviour), and in Drezner
and Drezner (1998) (with probabilistic behaviour), where three heuristics are described for
a variant of the model considered. In this chapter, by making use of the zero-sum perspec-
tive of the game, the Stackelberg leader-follower problem with probabilistic behaviour was
solved up to a guaranteed accuracy. Moreover, we found that more sophisticated bounds
are not necessarily more effective than simple bounds based on distance comparison over the
complete run of the algorithm. For the selection rule, the focus on the best bound (most
promising) selection of the next subset to be split has the tendency to result in minimum
effort on number of function evaluations. However, one always has to keep in mind that a
depth first search may lead to less memory requirement of a Branch-and-Bound algorithm.

In brief, the main contributions of this thesis can be summarised as follows. In this thesis
we have studied GT models and reformulated the models into OR optimisation problems.
The reformulation into OR optimisation problems was a worthwhile step for the development
of algorithms. For all the cases applied, algorithms were designed following the conceptual
model introduced in Chapter 1. For the easy of reading and presentation, we show again this
conceptual model in Figure 6.1. We coded the GT concepts and models into mathematical
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Figure 6.1. Conceptual Model of Thesis Research.

programming notation. This coding step makes the design of the methods for solving the
decision making problems easier. In addition, real data was used in two cases, which makes
the development of methods for solving the models more relevant (Chapters 2 and 3). Fur-
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thermore, in one case we extended the GT model incorporating new ingredients (Chapter
4). In another case, we have solved the model using GO techniques (Chapter 5).

6.4.2 Limitations of the Research and Suggestions for Further Research

In the scientific world, every study has its limitations and findings must be considered within
boundaries. However, looking at the optimistic part of limitations, boundaries are the next
step on research. Of course, this research also had limitations and boundaries. Main rec-
ommendation is that other cases could be studied in which other GT concepts, models, OR
models and OR algorithms are applied. This study should be seen as a first step in making
GT more applicable to larger, more complex decision problems. The cases applied have spe-
cific characteristics which guided us in the selection of specific GT models, OR models and
algorithms. First of all, Tables 1.1, 1.2 and 1.3 (Chapter 1) show the GT concepts/models
and OR models/algorithms illustrated in this thesis. These are the first boundaries of the
research. In the outline given, within decision making problems, less attention is given to
bounded rationality. Further research can be directed to consider bounded rationality in deci-
sion making problems. With respect to GT, we did not study incomplete information games.
Research on cases with large number of players on incomplete information games are of in-
terest. Further research could be done on the development of GT models, on the coding of
these GT models into OR models and on the development of new OR methods/algorithms.
It will contribute to further insight on GT concepts/models and OR models/techniques.
When considering the OR models and algorithms used in this research, the models and algo-
rithms developed in this study were based on the characteristic of the cases. Further research
includes the study of the performance of the developed algorithms in comparison to other
algorithms from OR. Next, limitations of the research are described by chapters.

In Chapter 2, further research could be done by studying a case in which multiple devia-
tion is considered. In this chapter, stability is checked when only one player can deviate from
her strategy. If we consider multiple deviation, more than one player can deviate from their
strategies. It will lead to more insights on GT as well as on OR formulation of models and
algorithms. Another limitation of the study is related to the algorithms. The development
of new algorithms for this specific case could improve the performance of the enumeration
method. If multiple deviation is considered, future research could study either to update the
algorithm developed or to develop new algorithms.

With respect to Chapter 3, one of the main limitations is the flexibility of the players
(parties). To remain, the flexibility of a party (player) was defined by the radii of the maneu-
vering space of the party, which consists of all acceptable positions. The maneuvering spaces
are defined as a m-multidimensional Euclidean policy space. The flexibility of the players
was selected for testing the formulated hypotheses. More research and theory development
could be done in order to derive a good setting for the flexibility of players in political games.
A further step in selecting the flexibility data for the parties would make the output more
realistic. It is also interesting for further research to study the application of existing or new
stability concepts of hedonic games.

Chapter 4 considers a game on location and quantity in a discrete location model. The
methods and cases consider the location on a node of a network. More research could be
done by considering that location is also possible at the edges. The question is if the multi-
actor heterogeneous, free-entry and simultaneous location-quantity game can be reformulated
and coded. Challenge is the development of new algorithms for the characteristics of the
game. Moreover, the enumeration algorithm guarantees to find all the equilibria of the game,
as in Chapter 1. Future research could also investigate the development of more efficient



116 Game Theory at Work

algorithms with the guarantee of finding all the equilibria.
In Chapter 5, the quality (or size) of the facilities were assumed to be input data for

the model. An interesting way of further research is the development of new GO methods
when considering the quality as another variable to be optimised. Within the settings of
the problem of this research, it has been proven that more sophisticated bounds are not
more efficient. The question is if this still holds when applying the algorithms with other
ways of branching. Another interesting way of looking at the problem is related to the
bounding. Further research could focus on the development of more efficient bounds. Within
Stackelberg (leader-follower) facility location games, another challenge for further research is
to investigate new GO methods when more than two chains are competing (leader-followers).
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Summary
Decision making is present in daily life. A decision making problem appears when there is a
need to take a decision. Most of the decisions have a goal; a set of variables, characteristics
defining a problem, that need to be optimised. A decision problem can be formulated and
modelled using Game Theory (GT) and Operations Research (OR) methods. Based on the
model, solution alternatives are generated and evaluated in order to obtain a preference order
of the alternatives based on the objective of the decision maker. Decision situations may also
involve multiple decision makers, leading to cooperative and/or competitive decision making
situations.

GT may have modelling merits to contribute to decision making situations where decision
makers have competing or cooperating objectives, under the assumption that the decision
makers are rational and they act in their best own interest. GT models are often applied
to situations with few or symmetric multiple decision makers, which limits its modelling
power. Results in existing literature are often attributable to basic models with only two
actors leading to analytical solutions or alternatively to more actors that are all assumed to
be the same; symmetric players. In this thesis we contribute to cooperative or competitive
decision situations by building new or existing GT models and by reformulating those into
OR models to study cases with more than two heterogeneous actors. To solve those decision
making problems, one has to apply and develop new OR techniques by developing models and
algorithms. Looking at relevant literature, decision situations like environmental decisions,
supply chains decisions and political games are of interest for research.

The research objective of this thesis is to develop or contribute to the development of
usable GT models and OR methods to solve decision making problems in practical situations.
We modelled those problems with new or existing GT models for multiple, asymmetric and
heterogeneous actors in cooperative/non-cooperative and competitive decision situations.
The GT models are reformulated using OR techniques and new OR algorithms are developed
for obtaining the optimal solutions for the models.

We hypothesised that GT concepts and models might provide us with a valuable contri-
bution for supporting decision makers provided that we can make OR models and algorithms
to solve these models. In order to achieve the objective of this thesis four research questions
are addressed:

1. How do we formulate GT models for decision making situations with multiple hetero-
geneous actors using GT concepts? How can we contribute to that modelling?

2. If we have GT based models: What appropriate coding can be used to translate a
specific GT model into a mathematical programming optimisation problem such that
it can be solved?

3. Which solution methods can be developed to solve these models?
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4. How do the outcomes aid to analyse the decision makers problem? or What is the
contribution of the new outcomes to the decision makers problem?

In answering the research questions, four different cases are used. In all the cases, new or
existing GT models are developed and reformulated into OR optimisation models and OR
algorithms for solving these models. The starting points for each of the cases are from sources
based on literature review. To illustrate cooperative/non-cooperative GT concepts/models
we looked for models with a challenge on algorithmic development. Two types of coalition
formation are considered: multiple coalition formation and single (cartel) coalition formation
(Chapter 2 and Chapter 3). To illustrate competition models, we looked for cases involving
competition on location and competition on location and quantity (Chapter 4 and Chapter
5). The objective is to contribute to these models extending the research either on the GT
models and reformulation to OR models or the OR methods.

Chapter 2 describes a multiple coalition formation game in which membership rules and
different transfer schemes are described. Open membership rule is used to indicate that
for the current members of a coalition, any other player is allowed to enter it. Exclusive
membership rule implies that a non-member is only allowed to join the existing coalition
if the payoff (outcome) for the existing coalition members will not decrease, only in that
case the members of the existing coalition will allow the new member to join them. If
not, they will exclude her. The study also considers two types of voting rules: Majority
Voting, where the majority of the members of the coalition have the decision on yes/no to
the new coalition potential partner and Unanimity Voting, when one coalition member can
disapprove when a new member wants to join. Moreover, four different transfer schemes
are used, namely: “Equal Sharing”, “Population”, “Gross Domestic Product” and “Ability to
Pay”. Given the GT model and the OR model, the goal is to develop methods for checking
stability of coalition structures. For the check of stability we need all the neighbours of each
coalition structure. Neighbours in a coalition structure for each player are determined by
the single deviation from players to other coalitions or players deviating and being alone,
that means becoming a singleton player. The exact number of neighbours is not easy to
identify. The larger the number of players is, the larger the number of coalition structures
and as a consequence, the bigger the matrix with all necessary data to test stable coalition
structures. A new mathematical programming formulation, crucial for the development of
the algorithms, is elaborated. Available data is used to determine which stable coalitions
appear and which procedures can be used to make coalitions stable. A case study on the
Kyoto negotiation process is applied to check the algorithms. Main conclusions are that
transfer schemes are useful to be implemented and computation with membership rules
generate different results with and without transfer schemes. In the cases without transfers,
the algorithm only found stability when an exclusive membership game with unanimity
voting rule is applied. This result is different when transfers are applied; either majority
and unanimity voting are sufficient to stabilise coalition structures. With respect to the
number of stable coalition structures, there are some transfer schemes which do not generate
stable coalition structures. Transfer schemes are anyway interesting in terms of net benefit
and global emission reduction. Furthermore, some of the regions considered that are “not
interested” in cooperation without transfer schemes, became interested in forming a coalition
when transfers appear. Furthermore, the resulting model was used in further studies (Finus
et al. (2006), Altamirano-Cabrera and Finus (2006), Finus et al. (2005), Weikard et al. (2006)
and Altamirano-Cabrera et al. (2005)).

Chapter 3 studies a model of multidimensional coalition formation in politics. There
are n parties trying to form a government. A formed government has a policy agreement
represented in a m-multidimensional Euclidean policy space R

m. The complexity increases
with the number of parties n and the dimension of the policy spaces m. Given the number
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of parties n and policy dimension m, computational methods are necessary to compute all
possible winning coalitions and preferences of parties over those coalitions. Furthermore, two
ways of forming a government are considered: step-by-step and simultaneously. Procedures
differ from each other, but they have in common that no party will agree on a position which
does not belong to its maneuvering space as these positions are unacceptable for a party.
In other words, the position of the formed coalition must belong to the intersection of the
maneuvering spaces of the potential coalition. Calculations show that the number of different
paths and coalition positions in the step-by-step procedure can increase dramatically. For
computing the output of the model, computational methods are necessary and algorithms for
the different procedures are introduced. The algorithms determine the compromise (coalition
position) points of all winning coalitions as well as preference order based on distances to
ideal points. The developed algorithms use an external procedure for the determination of the
output based on sequential quadratic programming (SQP) methods. Moreover, a penalty
approach is developed to determine whether or not feasible negotiation spaces intersect
between the negotiating parties (the players of the game). The analysis in de Ridder et al.
(2007) focused on three aspects of coalition formation and formulated hypotheses: procedure,
flexibility, and power sharing. By applying the developed algorithms to Dutch data and
theoretical examples, several hypotheses are tested and implications for political parties
involved in coalition formation are given.

Chapter 4 describes a competitive two-stage location-quantity game with m > 2 markets
and n > 2 firms. In the first stage of the game location decisions by firms are taken; in the
second stage, firms decide about quantities to supply at each of the markets. At each step,
decisions are simultaneous. The location space is discrete, in particular is a network where
the nodes are considered as the possible locations. Free entry is possible, the number of
firms entering the markets is not known in advance; and costs are asymmetric, firm-specific.
Analytical solutions for the supplying decisions and properties for determining the size of the
market are derived. The computation of the optimum quantities to supply (equilibrium) is
possible when market sizes are determined. In finding the equilibria on location, a complete
enumeration algorithm and a local search algorithm are used. The complete enumeration
algorithm guarantees that all the equilibria of the game are found. The local search algorithm
aims at finding one equilibrium given a starting point. Two cases are elaborated to illustrate
the procedures and the analytical results. The first case is taken from literature with n = 3
firms and m = 6 markets. The second numerical example consists of 4 different cases. It is
used to show the viability of the algorithms when bigger and more sophisticated cases are
applied. Furthermore, by using the algorithms as a systematic computation instrument to
cases reported in literature, a mistake is detected in Sarkar et al. (1997). In that paper a
solution is given that appears not to be an equilibrium of the model.

Chapter 5 deals with a competitive facility location problem in which the concept of
Stackelberg leader-follower problem is applied. There is a leader chain who wants to locate
a facility and a follower chain taking the location decision after the leader. The market
share captured by a firm is given by a gravity model determined by distance calculations to
facilities. The follower problem, is known to be a hard global optimisation problem. The
leader problem is even harder, since the leader has to decide on location given the optimal
action of the follower. So far, in literature only heuristic approaches have been tested to solve
the leader problem. Branch-and-Bound (B&B) algorithms for the leader and the follower
are designed. The B&B algorithm for the leader has to solve two follower problems: one for
solving (and anticipating) the optimal location of the follower (already a GO problem) and
the second one for obtaining an upper bound for her own B&B algorithm (GO problem). For
the B&B algorithm for the follower problem, four different upper bounds are derived. The
algorithm evaluates and chooses the best of the four upper bounds. The branching rule uses
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rectangles and new rectangles are generated by bisecting a rectangle over its longest edge.
Moreover, two variants are implemented and compared: starting with an initial rectangle
containing the feasible area, and starting with an initial partition into rectangles. It is
outlined that, although generating an initial partition improves the upper bounding applied,
it generates more partition sets than strictly necessary. Furthermore, two selection rules
are compared: breadth-first-search and best-bound-search. The effect on efficiency of those
rules is measured. The effectiveness and efficiency of the algorithms are investigated with
the aid of numerical cases. As main conclusion, it is found that more sophisticated bounds
are not necessarily more effective than simple bounds based on distance comparison over the
complete run of the algorithm. One can best focus on measuring the quality of the bound
during the run and take the sharpest one. For the selection rule, the focus on the best
bound (most promising) selection of the next subset to be split has the tendency to result
in minimum effort on number of function evaluations. As memory requirement is usually a
problem for higher dimensions, it is not necessarily a focus point for the location problem in
two dimensional space.

By answering the research questions, the main conclusions of this study are outlined.
Within the research of this study, GT has been a useful tool for modelling decision mak-
ing situations when multiple, asymmetric and heterogeneous decision makers are involved.
Contribution to GT models is most significant in Chapter 2 and Chapter 4 by adding ad-
ditional characteristics to cases taken from literature. An important factor in this thesis is
what is called “coding into mathematical programming notation”; it has a relevant contri-
bution on the development of algorithms to solve the decision making problems. From the
cases studied, different challenges inspired the development of the algorithms: application
to huge cases, asymmetry, heterogeneity and multiple actors. Algorithms are developed for
each of the problems covered in this research; algorithms are based on enumeration methods,
iterative approaches, analytical solutions, SQP methods, penalty approach and GO methods.

In brief, the main contributions of this thesis can be summarised as follows. In this thesis
we have studied GT models and reformulated the models into OR optimisation problems.
The reformulation into OR optimisation problems is a worthwhile step for the development
of algorithms. Furthermore, in this research, both real-life data and randomly generated
data are used. For all the cases applied, algorithms are designed following the conceptual
model introduced in Chapter 1. The idea is that outcomes of the developed algorithms aim
to help decision makers and analysts to get insight into a decision situation. Two of the
cases contributed on aiding researches when real data are used (Chapters 2 and 3). Models
and methods in Chapters 4 and 5 are illustrated with randomly generated data.

This study should be seen as a first step in making GT more applicable to larger, more
complex decision problems. The cases applied have specific characteristics which guided us
in the selection of specific GT models, OR models and algorithms. Within decision making
problems, we have focused on rational behaviour of decision makers. Further research could
be done by considering bounded rationality in decision making problems. With respect
to GT, incomplete information games have not been studied. It is of interest to do more
research on cases with large number of players on incomplete information games and how
to contribute on the development of GT models, on the coding of these GT models into OR
models and on the development of new OR methods/algorithms. When considering the OR
models and algorithms, the models and algorithms developed in this study are focused on
the characteristic of the cases. Further research includes the study of the performance of
the developed algorithms in comparison to other algorithms from OR. In summary, there
exist new challenges on developing Operations Research models and algorithms to get Game
Theory at work.



Samenvatting
Het nemen van beslissingen is een dagelijkse bezigheid. Vaak is er sprake van een te op-
timaliseren doelstelling en diverse variabelen die het probleem karakteriseren. Een besliss-
ingsprobleem kan worden geformuleerd en gemodelleerd met behulp van speltheorie en Op-
erations Research methoden. Beslissingsalternatieven worden gegenereerd en geëvalueerd,
zodat een preferentievolgorde van de alternatieven ontstaat, gebaseerd op de doelstelling van
de besluitvormer. Beslissingsituaties kunnen ook meerdere beslissers bevatten die samen-
werking of competitie nastreven.

Speltheorie heeft de potentie om bij te dragen aan beslissingssituaties waarbij de be-
langhebbenden samenvallende of conflicterende doelstellingen hebben, zolang wordt aan-
genomen dat de besluitvormers rationeel handelen voor hun eigen bestwil. Gewoonlijk
wordt speltheorie toegepast om situaties te beschrijven met een beperkt aantal identieke
besluitvormers. Dit beperkt de kracht van de analyse. In de bestaande literatuur zien we
vaak basale modellen met slechts twee actoren, zodat analytische oplossingen kunnen worde
afgeleid. Als alternatief zien we situaties met meerder identieke actoren beschreven. Dit
proefschrift draagt bij aan de modellering van samenwerkende en conflicterende beslissingsi-
tuaties door het bouwen van bestaande of nieuwe speltheoretische modellen en door het
omzetten daarvan naar OR modellen om cases met meer dan twee heterogene actoren te
bestuderen. Om deze problemen op te lossen worden nieuwe OR technieken ontwikkeld
door het uitwerken van modellen en algoritmen. Gebaseerd op de literatuur, zijn besliss-
ingsituaties met milieubeslissingen, met betrekking to ”supply chainsën in politieke situaties
interessant.

De doelstelling van dit proefschrift is om bij te dragen aan de ontwikkeling van bruik-
bare speltheoretische modellen en OR methoden om praktische beslissingssituaties op te
lossen. Daartoe werden nieuwe en bestaande speltheoretische modellen ontwikkeld voor het
beschrijven van beslissingssituaties met asymmetrische, heterogene actoren die wel of niet
samenwerken en conflicterende doelstellingen hebben. De modellen zijn omgezet met behulp
van OR methoden en nieuwe algoritmen zijn ontwikkeld om optimale resultaten voor de
modellen af te leiden. De hypothese is dat speltheoretische concepten en modellen zouden
kunnen bijdragen aan het ondersteunen van besluitvormers indien we in staat zijn om OR
modellen en algoritmen te maken die bijdragen aan de oplossing ervan. Om de doelstelling
te bewerkstelligen worden vier onderzoeksvragen geformuleerd en uitgewerkt:

1. Hoe kunnen we speltheoretische modellen ontwikkelen voor beslissingsituaties met
meerdere heterogene actoren vanuit speltheoretische concepten? Hoe kunnen we bij-
dragen aan de modellering?

2. Als we eenmaal modellen hebben gebaseerd op speltheorie, welke codering kan worden
gebruikt om een speltheoretisch model om te zetten naar een wiskundig optimaliser-
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ingprobleem zodat het kan worden opgelost?

3. Welke technieken kunnen worden toegepast om dit soort problemen op te lossen?

4. Hoe dragen de uitkomsten bij aan het analyseren van het beslissingprobleem? Wat is
de bijdrage van de nieuwe uitkomsten aan het begrijpen van het beslissingprobleem?

Voor het beantwoorden van de onderzoeksvragen worden vier cases uitgewerkt. In elke
case wordt een nieuw of bestaand speltheoretisch model uitgewerkt en omgezet naar een
OR optimaliseringprobleem. Algoritmen worden ontwikkeld om het probleem op te lossen.
Elke case is gebaseerd op een literatuuronderzoek. Om coöperatieve versus non-coöperatieve
speltheorie te illustreren zochten we naar modellen met een uitdaging op algoritmisch gebied.
Twee typen coalitievorming zijn onderzocht: vorming van meervoudige coalities en vorming
van een enkelvoudige (kartel) coalitie (hoofdstukken 2 en 3). Voor de illustratie van com-
petitieve modellen richtte de aandacht zich op concurrentie tussen aanbieders op het gebied
van locatie en concurrentie met betrekking tot aangeboden hoeveelheid en locatie (hoofd-
stukken 4 en 5). De doelstelling is om bij te dragen aan het onderzoek door de ontwikkeling
van speltheoretische modellen, de vertaling richting OR modellen en het bijdragen aan de
oplossingmethode.

Hoofdstuk 2 beschrijft een spel van coalitievorming met verschillende lidmaatschapregels
en verschillende herverdelingregels. Een öpen lidmaatschap”betekent dat de huidige leden
het goed vinden dat een andere actor lid wordt. Een ëxclusief lidmaatschap”regel betekent
dat een aspirant lid alleen lid kan worden van de coalitie als het voordeel (baten) voor de
huidige leden er niet op achteruit gaat. Binnen dit kader bekijkt de studie twee stemproce-
dures: meerderheid stemming, waarbij de meerderheid van de huidige leden beslist om een
nieuw lid wel of niet toe te laten en unanimiteit, waarbij één lid voldoende is om lidmaatschap
van een aspirant lid te blokkeren door middel van een veto. Verder worden vier verschil-
lende schema’s gebruikt om de baten te (her)verdelen, namelijk: ”gelijk delen”. ”bevolking”,
”GDPën ”koopkracht”. Gegeven het speltheoretisch model en de vertaling daarvan naar
een OR probleem, is de uitdaging om methoden te ontwikkelen die de stabiliteit van een
coalitie testen. Voor deze test is het nodig om van een coalitiestructuur alle aanpalende of
buur-coalitiestructuren te kennen. Zo’n buur wordt bepaald doordat een van de spelers haar
strategie verandert; of een lid van een coalitie gaat naar een andere coalitie of gaat alleen
verder; of een speler die nog geen lid is wordt lid van een coalitie. Het precieze aantal buren
is niet eenvoudig te bepalen. Hoe meer spelers, hoe groter het aantal coalitiestructuren en
hoe groter de matrix die alle nodige informatie bevat om stabiliteit te testen. Een nieuwe
mathematisch besliskundige formulering is uitgewerkt voor het ontwikkelen van algoritmen.
Beschikbare gegevens zijn gebruikt om na te gaan welke coalitiestructuren stabiel zijn en
welke procedures de stabiliteit kunnen bevorderen. Een case over het Kyoto onderhandel-
ingproces is gebruikt om algoritmen te testen. Belangrijkste conclusies zijn dat het nuttig
kan zijn om herverdelingschema’s te implementeren en dat berekeningen met verschillende
lidmaatschapregels verschillende resultaten geven voor verschillende herverdelingschema’s.
In gevallen zonder herverdeling, vond het algoritme alleen stabiele coalities als een exclusief
lidmaatschapregel bestaat met veto stemming. Als herverdeling wordt gëıntroduceerd kun-
nen coalities ook stabiel worden bij meerderheid stemming. Als wordt gekeken naar het
aantal stabiele coalities kan worden opgemerkt dat er herverdelingschema’s zijn die geen
enkele stabiele coalitie geven. Herverdelingschema’s zijn altijd van belang als we kijken naar
de totale baten en globale emissiereductie. Bovendien blijken sommige regio’s die zonder
herverdeling niet gëınteresseerd zijn in samenwerking wel gëınteresseerd om tot een coali-
tie toe te treden wanneer er wel herverdelingschema’s bestaan. De ontwikkelde methodiek
is toegepast in verdere studies, zoals (Finus et al. (2006), Altamirano-Cabrera and Finus
(2006), Finus et al. (2005), Weikard et al. (2006) and Altamirano-Cabrera et al. (2005).
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Hoofdstuk 3 beschrijft een model over meerdimensionale coalitievorming in de politiek.
Er zijn n partijen die proberen te komen tot een coalitieregering. De gevormde regering
heeft een politieke agenda (overeenkomst) die gerepresenteerd wordt door een punt in een
m-meerdimensionale Euclidische politieke ruimte. De complexiteit van de analyse neemt toe
met het aantal partijen n en de dimensie m van de politieke ruimte. Rekenmethoden zijn
nodig om alle mogelijke meerderheidcoalities te bepalen en de preferenties van de partijen over
de coalities. Twee mogelijke procedures voor het vormen van een coalitie worden bestudeerd:
een stap-voor-stap procedure en een simultane procedure. Onafhankelijk van de procedure zal
een partij niet tot een overeenkomst komen als die niet ligt binnen haar spelingruimte. Met
andere woorden, een overeenkomst van een gevormde coalitie moet liggen in de doorsnede van
de spelingruimten van de partijen die behoren tot de coalitie. Berekeningen hebben laten zien
dat het aantal mogelijke paden om tot coalities te komen en de bijbehorende overeenkomsten
drastisch kan toenemen met het aantal partijen. Om de uitkomst van het model te bepalen
zijn rekenmethoden nodig; algoritmen voor de verschillende procedures zijn uitgewerkt. De
algoritmen bepalen de compromis overeenkomsten van alle meerderheidcoalities zowel als
de preferentie van de verschillende partijen gebaseerd op de afstand van de overeenkomst
tot hun ideale politieke agenda. De ontwikkelde algoritmen gebruiken een externe routine
gebaseerd op sequentiële kwadratische programmering (SQP). Verder is een boetefunctie
aanpak uitgewerkt om te bepalen of de onderhandelende partijen wel onderhandelingruimte
hebben bestaande uit de doorsnede van de spelingruimten. De analyse in de Ridder et al.
(2007) concentreert zich op drie aspecten t.a.v. coalitievorming en test daar hypothesen
over: de procedure, de flexibiliteit en het delen van macht. Door de ontwikkelde algoritmen
toe te passen op gegevens uit de Nederlandse politiek en op theoretische voorbeelden zijn de
hypothesen getest en consequenties voor partijen betrokken bij een onderhandeling worden
gegeven.

Hoofdstuk 4 beschrijft een competitief spel bestaande uit twee fasen besluitvorming: lo-
catie beslissing en hoeveelheid beslissing, waarin n>2 bedrijven concurreren op m>2 mark-
ten. In de eerste fase van het spel nemen de bedrijven een beslissing t.a.v vestiging op een
locatie. In de tweede fase besluiten ze de hoeveelheid die ze aanbieden op de markten. In
beide fasen worden de beslissingen simultaan genomen. De vestigingruimte is discreet, waar-
bij de potentiële locaties bestaan uit knopen in een netwerk. De bedrijven zijn vrij om een
markt te bevoorraden, zodat men niet van te voren weet hoeveel bedrijven een markt zullen
benaderen. De kosten zijn bedrijfafhankelijk, dus asymmetrisch. Voor het vinden van een
evenwicht t.a.v. de vestigingbeslissing zijn een aftelalgoritme en een lokale zoekprocedure
ontwikkeld. Het aftelalgoritme vindt alle mogelijke evenwichten. De lokale zoekprocedure
vindt een evenwicht vanuit een startconfiguratie. Twee cases zijn uitgewerkt om de proce-
dures en analytische resultaten te illustreren. De eerste case uit de literatuur beschrijft een
instantie met n = 3 bedrijven en m = 6 markten. Het tweede numerieke voorbeeld bevat
4 instanties met toenemende grootte. Het laat zien dat problemen van toenemende grootte
kunnen worden aangepakt met de ontwikkelde procedures. Gebruik van de algoritmen op
testcases uit de literatuur leidde tot de ontdekking van een fout in Sarkar et al. (1997). Een
gepresenteerde oplossing van een model in het artikel blijkt geen evenwicht te zijn.

Hoofdstuk 5 behandelt een competitief vestigingprobleem waarin het Stackelberg concept
van de leider-volger wordt toegepast. Een leider winkelketen vestigt eerst een filiaal en een
volgketen opent vervolgens een vestiging. Het marktaandeel dat een keten verovert wordt
beschreven door een zwaartepunt model gebaseerd op de afstanden tussen vestigingen en
klanten. Het is bekend uit de literatuur dat het vinden van de beste locatie voor de volgketen
een moeilijk globaal optimaliseringprobleem (GO) is. Het probleem van de leider is echter
nog moeilijker, daar die rekening moet houden met de optimale locatie van de volger. Voor
zover we weten werd het leiderprobleem in de literatuur alleen met heuristische methoden
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aangepakt. In dit proefschrift worden Branch-and-Bound (B&B) algoritmen voor het leider-
en volgprobleem ontworpen. Het algoritme voor de leider vereist in elke iteratie dat twee
volgproblemen worden opgelost: één voor het bepalen van de optimale locatie voor de volger
en één voor het bepalen van een bovengrens voor de leider, beide GO problemen. Voor
het B&B algoritme voor het volgprobleem zijn vier verschillende bovengrenzen (bounds)
ontworpen. Het algoritme berekent de waarden ervan in elke iteratie en gebruikt de strakste
grens. Het vertakken (branching) naar subproblemen werkt met rechthoeken die gesplitst
worden over de langste zijde. Twee strategieën zijn uitgeprobeerd. Eén waarbij de rechthoek
van het toegelaten gebied als startgebied wordt genomen en één waarbij deze rechthoek al
is gepartitioneerd naar sub-rechthoeken. De studie laat zien dat hoewel de initiële partitie
de waarden van de grenzen verbetert, het algoritme niet in efficiëntie wint, omdat teveel
sub-rechthoeken worden geprobeerd. Twee keuzeregels zijn vergeleken voor de keuze van de
rechthoek die wordt bekeken: zoeken in de breedte en prioriteit voor de beste grens. De
efficiëntie is gemeten voor beide regels. Effectiviteit en efficiency is nagegaan met behulp
van numerieke instanties. Een belangrijke conclusie is dat verfijnde grenzen niet noodzakelijk
betere resultaten geven dan een eenvoudige grens die gebaseerd is op het onderschatten van
afstand tussen klant en filiaal. Het beste is om de scherpste grens te nemen gedurende
het verloop van het algoritme. Voor de keuzeregel van de volgende rechthoek die wordt
gesplitst heeft focus op de beste grens de neiging om het minst aantal iteraties te vereisen.
Gewoonlijk is voor dit soort algoritmen het geheugenbeslag een probleem wanneer toegepast
in hogere dimensies. Voor het locatieprobleem is dit minder het geval omdat het zich in de
tweedimensionale ruimte afspeelt.

Voor de belangrijkste conclusies richten we ons op de onderzoeksvragen. De studie
laat zien dat speltheorie een handig hulpmiddel kan zijn voor het modelleren van besliss-
ingsituaties met meerdere asymmetrische en heterogene belanghebbenden. De bijdrage aan
speltheoretische modellen is belangrijk in hoofdstukken 2 en 4, waarbij nieuwe aspecten aan
bestaande modellen zijn toegevoegd. Een belangrijke factor in dit proefschrift is wat genoemd
wordt de ”codering van modellen in mathematische programmering taal̈ı.e. het vertalen naar
wiskundige optimaliseringproblemen. Dit is met name relevant voor het ontwikkelen van
algoritmen om beslissingproblemen op te lossen. De bestudeerde cases bevatten diverse in-
teressante aspecten voor de ontwikkeling van algoritmen: toepassing van grote instanties,
asymmetrie, heterogeniteit en meerdere actoren. Algoritmen zijn ontwikkeld voor elk prob-
leem dat in deze studie is aangepakt. De algoritmen zijn gebaseerd op volledige aftelling,
iteratieve methoden, analytische oplossingen, SQP methoden, boetefunctie aanpakken en
globale optimalisering.

De belangrijkste bijdragen van dit proefschrift kunnen als volgt worden samengevat.
In dit proefschrift zijn diverse speltheoretische modellen bestudeerd en vertaald naar OR
optimaliseringmodellen. Het herformuleren van modellen naar optimaliseringproblemen is
een nuttige stap voor het ontwikkelen van algoritmen. Gegevens in dit onderzoek komen uit
de praktijk of zijn random gegenereerd. Voor elke casus zijn algoritmen ontwikkeld volgens
het conceptuele model in hoofdstuk 1. Het doel van de uitkomsten van de algoritmen is
dat ze de besluitvormers helpen om inzicht te krijgen in een beslissingsituatie. Twee cases
hielpen onderzoekers voor het uitwerken van gegevens uit de praktijk (hoofdstukken 2 en
3). De modellen en methoden in hoofdstukken 4 en 5 worden met name gëıllustreerd door
random gegenereerde gegevens.

Deze studie kan gezien worden als een eerste stap om speltheorie toepasbaar te maken
voor grotere en complexere beslissingproblemen. De bestudeerde cases gaven aanleiding tot
selectie van specifieke speltheoretische modellen, OR modellen en algoritmen. Binnen de
theorie van de beslissingproblemen hebben we ons gericht op het rationeel handelen van
actoren. Verder onderzoek kan worden gedaan op het gebied van begrensde rationaliteit
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in beslissingsituaties. Met betrekking tot speltheorie zijn modellen met onvolledige infor-
matie niet bestudeerd. Het kan interessant zijn om onderzoek te doen naar gevallen met
een groot aantal spelers (actoren) die geen volledige informatie hebben en te bestuderen hoe
dit soort modellen gecodeerd kunnen worden in OR modellen die nieuwe typen OR algorit-
men/methoden vereisen. De modellen en methoden die ontwikkeld zijn in dit proefschrift
zijn toegespitst op de karakteristieken van de bestudeerde cases. Verder onderzoek bevat
de bestudering van de prestatie van de ontwikkelde algoritmen in vergelijking tot andere
algoritmen uit de OR. Samengevat bestaan er verdere uitdagingen in de ontwikkeling van
Operations Research modellen en methoden om speltheorie äan het werk”te krijgen.





Resumen
El proceso de la toma de decisiones (teoŕıa de la decisión) está presente en la vida diaria.
Inherente a la toma de decisiones es la necesidad de elegir entre diferentes alternativas. La
mayoŕıa de las decisiones tienen una meta u objetivo, y se toman en base a un conjunto de
variables que definen un problema y que necesitan ser optimizadas. Los problemas de toma
de decisiones pueden ser formulados y modelados usando la Teoŕıa de Juegos (TJ) y métodos
de Investigación Operativa (IO). En base al modelo, se generan soluciones alternativas que
son evaluadas para obtener un orden de preferencia dependiendo del objetivo del agente
responsable de tomar la decisión (agente o jugador más adelante). La toma de decisiones
puede involucrar a más de un agente, lo cuál genera problemas cooperativos y/o competitivos.

Por lo tanto, la TJ es una herramienta muy valiosa a la hora de modelar problemas de
decisiones en los cuales los objetivos de los jugadores son de tipo cooperativo o competitivo,
y donde los jugadores actúan de forma racional y en su propio interés. En ocasiones la TJ
es usada para modelar juegos en los que el número de jugadores es reducido o los juegos
son simétricos, lo que limita su potencial de modelado. En la literatura existente se pueden
encontrar resultados en modelos básicos con sólo 2 jugadores en los que se obtienen soluciones
anaĺıticas, y/o modelos con más jugadores asumiendo simetŕıa. Esta tesis contribuye a la
TJ mediante la construcción de nuevos modelos o el uso de los ya existentes con más de dos
jugadores heterogéneos y mediante la construcción o reformulación en modelos de IO. Para
obtener una solución a dichos modelos es necesaria la aplicación y el desarrollo de nuevas
técnicas de IO mediante la construcción de modelos y algoritmos. Con base a una revisión
de la literatura existente, se pueden encontrar diferentes e interesantes áreas de investigación
como: medio-ambiente, cadenas de suministro y juegos poĺıticos (formación de coaliciones,
gobiernos).

Por lo tanto, El objetivo de esta tesis es desarrollar o contribuir al desarrollo de modelos
de TJ y métodos de IO para resolver casos aplicados dentro de la teoŕıa de la decisión.
Por ello, se han modelado diferentes problemas con nuevos o existentes modelos de TJ con
múltiples jugadores, asimétricos y heterogéneos en juegos cooperativos/no-cooperativos y
competitivos. Por otro lado, se reformulan o traducen dichos modelos de TJ usando técnicas
de IO, y a su vez se desarrollan nuevos algoritmos de IO para poder obtener las soluciones
óptimas a los modelos.

Se parte de la hipótesis de que los conceptos y modelos de la TJ tienen un gran potencial
a la hora de contribuir a la teoŕıa de decisión una vez que es posible desarrollar modelos y
algoritmos de IO. Para alcanzar el objetivo de esta Tesis, se han planteado cuatro preguntas
de investigación:

1. Cómo se pueden formular modelos de TJ para problemas de toma de decisiones con
múltiples jugadores heterogéneos usando conceptos de TJ? Cómo se puede contribuir
a esos modelos?
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2. Si esos modelos de TJ están disponibles: Qué método de codificación se puede usar para
traducir/trasladar esos modelos de TJ a problemas de optimización de programación
matemática de manera que se pueda obtener una o varias soluciones?

3. Qué métodos de solución se pueden construir para solucionar esos problemas?

4. De qué manera las soluciones pueden ayudar al análisis de esos problemas? o Cómo
contribuyen las soluciones al análisis de los problemas de toma de decisiones?

Para responder a estas preguntas, se utilizan cuatro casos diferentes. En todos los ca-
sos, se han desarrollado nuevos o existentes modelos de TJ, dichos modelos son traduci-
dos/formulados en modelos de optimización de IO y se desarrollan nuevos algoritmos para
obtener las soluciones. El punto de arranque para cada uno de los casos está basado en
una revisión de la literatura existente. Los casos/caṕıtulos se han elegido para plantear
un reto al desarrollo de nuevos algoritmos en los que se usan conceptos/modelos de la TJ
cooperativa/no-cooperativa. Por una parte, se consideran dos casos diferentes de formación
de coaliciones: formación de coaliciones múltiple y simple (cartel) (Caṕıtulos 2 y 3, respec-
tivamente). Por otra parte, también se consideran dos modelos de localización competitiva
(Caṕıtulos 4 y 5), y uno de ellos además considera competición en cantidad a ofrecer al
mercado (Caṕıtulo 4). El objetivo es contribuir a esos modelos extendiendo la investigación
ya sea en los modelos de la TJ y traduciéndolos en modelos de IO o en los métodos de IO.

El caṕıtulo 2 describe un juego cooperativo “multi-actor” en el que se permite la co-
existencia de varias coaliciones y se describen diferentes reglas de admisión y transferencias
de utilidad. Se usa el término Open membership para indicar que los miembros de una
coalición permiten que cualquier otro jugador no miembro decida unirse a ella. El término
Exclusive membership implica que sólo se permite a un jugador que no es parte de la coalición
unirse a ella y sólo si la ganancia (beneficio) no disminuye para los actuales miembros de la
coalición. En este caṕıtulo también se consideran dos diferentes reglas de votación: Majority
voting rule (regla de votación por mayoŕıa), en cuyo caso es necesario el voto de la mayoŕıa
de los socios para tomar una decisión “si/no” a la entrada de un nuevo miembro; y Unanimity
voting rule (regla de votación por unanimidad) en la que un sólo socio de la coalición puede
vetar la entrada de un nuevo miembro. Además, se consideran cuatro esquemas diferentes de
transferencia de utilidad: “Equal Sharing”(“división equitativa”),“Population”(“Población”),
“Gross Domestic Product” (“Producto Interior Bruto”) y “Ability to Pay” (“Disposición a
Pagar”). Basado en el modelo de TJ e IO, el objetivo es desarrollar métodos para poder
obtener que estructuras de coalición son estables. Para poder comprobar si una estructura de
coalición es estable o no es necesario compararla con, lo que se denomina, sus “vecinos”. Los
“vecinos” de una estructura de coalición están representados por las posibles desviaciones de
la estructura de coalición por parte de cada uno de los jugadores a otras coaliciones. También
se considera como “vecino” el caso en el que el jugador decide ser independiente y formar
su propia coalición. Es decir, vecinos son aquellas estructuras de coalición definidas por las
posibilidades que tiene cada jugador de“mudarse”de coalición. El número exacto de“vecinos”
no es fácil de identificar. Cuanto mayor sea el número de jugadores, mayor es el número
de posibles estructuras de coalición y como consecuencia mayor es la matriz con todos los
datos necesarios para obtener y comprobar qué coaliciones son estables. Un paso importante
en este estudio fue el desarrollo de una nueva formulación del modelo de programación
matemática. Por otra parte, se usa la disponibilidad de datos numéricos para determinar que
coaliciones son estables y qué procedimientos pueden ser usados para estabilizar coaliciones.
Para comprobar el funcionamiento de los algoritmos desarrollados se usa como caso de estudio
el protocolo de Kyoto. Las principales conclusiones extráıdas de este trabajo son: que el uso
de esquemas de transferencia de utilidad tiene un gran potencial para estabilizar coaliciones;
que la aplicación de diferentes reglas de admisión genera diferentes resultados, se tengan en
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cuenta o no transferencias de utilidad. En los casos en los que no existen transferencias,
el algoritmo únicamente detecta estabilidad si el juego usa como reglas la “admisión con
excepciones” y la “votación por unanimidad”. Este resultado es diferente cuando se usan
transferencias de utilidad; en este caso, tanto la “votación por mayoŕıa” como la “votación
por unanimidad” son suficientes para encontrar coaliciones estables. Con respecto al número
de estructuras de coalición estables, existen algunos esquemas de transferencia de utilidad
que no estabilizan o generan coaliciones estables. En cualquier caso, se puede considerar que
la aplicación de esquemas de transferencia de utilidad son de gran utilidad si se considera el
resultado obtenido en términos de beneficio y reducción de emisiones. Además, se puede ver
como algunas de las “regiones” (jugadores) no interesados en cooperar cambian de opinión
en el momento que las transferencias forman parte del juego. El modelo desarrollado en este
estudio sirve como base para otros art́ıculos dentro del mismo proyecto (véase Finus et al.
(2006), Altamirano-Cabrera and Finus (2006), Finus et al. (2005), Weikard et al. (2006) and
Altamirano-Cabrera et al. (2005)).

En el caṕıtulo 3 se estudia un modelo de formación de coaliciones en poĺıtica. Se consi-
deran n partidos poĺıticos en la mesa de negociaciones para intentar formar gobierno. En el
momento que se forma un gobierno, se considera que se ha llegado a un acuerdo poĺıtico que
es representado en un espacio Eucĺıdeo m-multidimensional R

m. La complejidad es mayor
cuanto mayor es el número n de partidos poĺıticos y mayor es la dimensión m de los espacios
eucĺıdeos que contienen el área de negociación de cada partido. Dado el número de partidos
n y la dimensión poĺıtica m, se necesitan métodos computacionales para calcular todas las
posibles coaliciones ganadoras y preferencias de los partidos sobre esas coaliciones. Aparte
de eso, en el caṕıtulo se consideran dos formas posibles a la hora de negociar para formar
gobierno: “paso-a-paso” (secuencial) y “simultáneamente”. Estos dos procedimientos difieren
uno del otro pero tienen en común que ningún partido llegará a un acuerdo poĺıtico que no
pertenece a su área de negociación ya que dicho acuerdo es inaceptable para el partido. En
otras palabras, el acuerdo poĺıtico de un posible gobierno (posición en el espacio eucĺıdeo)
debe pertenecer a la intersección de las áreas de negociación de los partidos pertenecientes
a dicha coalición potencial. Los cálculos demuestran que en el procedimiento secuencial el
número de posibles rutas para alcanzar una coalición ganadora y por tanto, el número de
posibles gobiernos, puede incrementar de forma drástica. Para calcular la solución del modelo
son necesarios métodos computacionales y, por lo tanto, el desarrollo de nuevos algoritmos
para cada uno de los procedimientos. Los algoritmos determinan el compromiso (posición del
acuerdo poĺıtico) de todas las posibles coaliciones ganadoras y el orden de preferencia de los
partidos poĺıticos basado en las distancias del acuerdo alcanzado a las posiciones ideales de
los partidos. Los algoritmos elaborados usan un procedimiento externo para la determinación
de la solución basado en métodos de programación cuadrática secuencial (SQP). Además,
se desarrolla una técnica “penalti” para determinar si existe intersección entre los espacios
factibles de negociación (áreas de negociación) de los partidos que negocian para formar
un posible gobierno. El análisis realizado en de Ridder et al. (2007) está enfocado en tres
aspectos de formación de coaliciones y se formulan varias hipótesis: sobre procedimiento,
flexibilidad y poder. En este estudio, se comprueban las hipótesis mediante la aplicación de
los algoritmos introducidos a datos reales de partidos poĺıticos en Holanda, y mediante la
aplicación a ejemplos teóricos; además se extraen implicaciones para los partidos poĺıticos.

En el caṕıtulos 4 se describe un juego de dos etapas competitivo con m > 2 mercados
y n > 2 empresas. En la primera etapa del juego, las empresas toman decisiones sobre
localización; en la segunda etapa, las empresas deciden las cantidades a suministrar en cada
mercado. En cada etapa, las decisiones se toman simultáneamente. El espacio de localización
es discreto, en particular se trata de una red en la que se considera que los nodos de la red son
las posibles localizaciones de las empresas (siendo también la localización de los mercados).
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Se considera libertad de entrada, es decir, el número de empresas que entran al mercado no
es conocido de antemano; también se considera que los costes son asimétricos, espećıficos
para cada empresa. En este estudio se derivan soluciones anaĺıticas para las cantidades
a suministrar y propiedades para determinar el tamaño de los mercados. El cálculo de las
cantidades óptimas a suministrar (el equilibrio) es posible una vez que se determina el tamaño
del mercado (definido por el número de empresas que entran). Para encontrar el equilibrio en
localización, se desarrollan dos métodos diferentes: por un lado se desarrolla un algoritmo de
enumeración completa; y, por otro lado, un procedimiento de búsqueda local. El algoritmo de
enumeración completa asegura que se encuentran todos los posibles equilibrios del juego. El
procedimiento de búsqueda local se centra en encontrar un equilibrio dado un punto inicial.
Con el fin de comprobar como funcionan los algoritmos se han elaborado dos casos. El primer
caso se ha tomado de otro estudio preliminar en literatura con n = 3 empresas y m = 6
mercados. El segundo estudio numérico consiste de 4 casos diferentes. Este segundo estudio
es usado para mostrar la viabilidad de los algoritmos cuando se consideran más sofisticadas
aplicaciones. Además, mediante el uso de los algoritmos como instrumento computacional
sistemático a casos presentados en la literatura existente se detecta un error en Sarkar et al.
(1997). En este art́ıculo una de las soluciones dadas no es un equilibrio del modelo.

En el caṕıtulo 5 se describe un problema de localización competitiva en el que se utiliza
el concepto de Stackelberg, ĺıder-seguidor. En este modelo existe dos cadenas de suministro,
la del ĺıder, que desea abrir un nuevo centro y debe decidir sobre su localización, y la del
seguidor, que debe tomar su decisión después del ĺıder. La cuota de mercado captada por las
cadenas viene dada por un modelo gravitacional que depende de las distancias a los centros.
Es conocido que el problema del seguidor es un complicado problema de optimización global.
El problema del ĺıder es incluso más complicado ya que el ĺıder tiene que decidir dónde
localizar el nuevo centro anticipándose a la solución óptima que tomará el seguidor. Hasta el
momento, en la literatura existente únicamente se han desarrollado técnicas heuŕısticas para
solucionar el problema del ĺıder. En este caṕıtulo se desarrollan algoritmos de ramificación y
acotación (B&B). El algoritmo (B&B) para el ĺıder debe resolver dos problemas como el del
seguidor: el primero para calcular (y de esta manera anticiparse a) la localización óptima del
seguidor (problema de optimización global) y el segundo para obtener una cota superior para
el problema del ĺıder (otro problema de optimización global). Con respecto al algoritmo B&B
para el problema del seguidor se han derivado cuatro cotas superiores diferentes. El algoritmo
evalúa y elige la mejor de las cuatro cotas superiores. La regla de ramificación usa rectángulos
y se generan nuevos rectángulos dividiendo el rectángulo original mediante la bisección en el
eje de más anchura. Además, se han implementado y comparado dos variaciones: la primera
consiste en comenzar con un rectángulo inicial que contiene el área factible; la segunda
consiste en comenzar con una partición inicial en rectángulos. En el caṕıtulo se indica que
la idea de generar una partición inicial mejora la acotación, pero genera más particiones
que las estrictamente necesarias. Adicionalmente se han comparado dos tipos de criterios
de selección: seleccionar el último rectángulo generado, “depth first search”, y seleccionar el
rectángulo con la mejor cota, “best bound search”. A continuación, se mide la eficiencia de
ambos criterios. La efectividad y la eficiencia de los algoritmos son investigadas con la ayuda
de estudios computacionales. Como principal conclusión se ha comprobado que, teniendo
en cuenta la ejecución completa del algoritmo, cotas más sofisticadas no son necesariamente
más efectivas que cotas más simples basadas en distancias. Es mejor centrarse en medir la
calidad de la cota durante la ejecución del algoritmo y elegir la más ajustada. Con respecto
al criterio de selección, seleccionar como candidato a la división al rectángulo con la mejor
cota (el más prometedor, “best bound search”) tiende a resultar en un mı́nimo esfuerzo en el
número de evaluaciones de funciones. Sin embargo, la regla de selección “depth first search”
podŕıa suponer menos requisitos de memoria. Debido a que los requisitos de memoria suelen
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ser un problema en grandes dimensiones, no es necesariamente un punto importante para el
problema de localización en espacios de dos dimensiones.

Las principales conclusiones de este estudio se obtuvieron respondiendo a las cuestiones
de investigación. Dentro del ámbito de investigación de este estudio, los modelos de TJ
han sido herramientas valiosas para modelar problemas de toma de decisiones involucrando
múltiples jugadores, asimétricos y heterogéneos. La contribución dentro de los modelos de
TJ es más significativa en los caṕıtulo 2 y 4 puesto que añaden caracteŕısticas adicionales a
casos observados en la literatura existente. Un factor importante de este estudio es lo que se
ha llamado “la codificación en notación de programación matemática”; y que contribuye de
manera importante al desarrollo de algoritmos para generar soluciones en problemas de toma
de decisiones. Con respecto a los casos estudiados, diferentes retos inspiraron el desarrollo de
los algoritmos: aplicación a grandes casos, asimetŕıa, heterogeneidad y multiples jugadores.
Para cada uno de los problemas se introducen e implementan algoritmos; éstos están basados
en métodos de enumeración, métodos iterativos, soluciones anaĺıticas, métodos SQP, técnica
de funciones “penalti” y métodos de optimización global.

Brevemente, las principales contribuciones de este estudio se pueden resumir como sigue.
En esta Tesis se han estudiado modelos de TJ y reformulado dichos modelos en problemas
de optimización de IO. Este procedimiento de reformular problemas de TJ en problemas de
optimización de IO es un paso muy importante para el desarrollo de los algoritmos. Por
otra parte, en este estudio de investigación, se han usado tanto datos reales como datos
generados de forma aleatoria. En todos los casos aplicados, los algoritmos son diseñados
siguiendo el modelo conceptual introducido en el caṕıtulo 1. La idea es que los resultados
de los algoritmos implementados tienen como fin proporcionar elementos a los tomadores de
decisiones y analistas para comprender el problema de “la toma de decisión”. Mientras que
dos de los casos estudiados contribuyen a ese fin mediante el uso de datos reales (caṕıtulos 2
y 3), los modelos y métodos en los caṕıtulos 4 and 5 son ilustrados con datos generados de
manera aleatoria.

Este estudio debeŕıa ser visto como un primer paso para hacer que la TJ sea más aplicada
a problemas de teoŕıa de decisión de mayor dimensión, más complejos. Los casos aplicados
contienen caracteŕısticas espećıficas que sirven de gúıa para la selección de modelos espećıficos
de TJ, modelos de IO y algoritmos. Dentro de los problemas de toma de decisiones, el estudio
se ha centrado en el comportamiento racional del tomador de decisiones. Una posible ĺınea
futura de investigación consiste en considerar racionalidad acotada en los problemas de toma
de decisiones. Con respecto a la TJ, no se han estudiado juegos de información incompleta.
Seŕıa de interés enfocar la futura investigación en casos de juegos de información incompleta
con un gran número de jugadores y estudiar cómo contribuir tanto en el desarrollo de modelos
de TJ y en la codificación de estos modelos de TJ en modelos de IO, aśı como en el desarrollo
de nuevos métodos/algoritmos de IO. Con respecto a los modelos de IO y algoritmos, el
desarrollo de los modelos y los algoritmos en este estudio se ha basado en las caracteŕısticas
de los casos aplicados. Una futura investigación puede incluir el estudio del rendimiento de
los algoritmos desarrollados en comparación con otros algoritmos de IO. En resumen, todav́ıa
existen nuevos retos en la elaboración de modelos y algoritmos en Investigación Operativa
para poner la Teoŕıa de Juegos en práctica.
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Sáiz, M.E., Hendrix E.M.T. (2005), Computing Stability in Coalition Formation with Het-
erogeneous Players. First Spain Italy Netherlands Meeting on Game Theory (SING1). June
24-26, Maastricht (The Netherlands)
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Sáiz, M.E., Hendrix E.M.T. (2004), Facility-Pricing Location Game. Twenty-ninth Con-
ference on the Mathematics of Operations Research (LNMB). January 13-15, Lunteren (The
Netherlands)
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