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0 PREFACE

The exercises in this book should be regarded as an addition to the lecture
notes on Hydrology. They constitute an important learning tool when
preparing for the exam of course K150-001 or -002: Introduction to

Hydrology.

The purpose of this collection is to give the student an opportunity to
test his knowledge, as well as his ability to solve problems. Many
questions are therefore provided with a complete solution. However they

should not be consulted before trying a solution yourself.

I thank mr. B. Nijssen for his careful preparation of this text. If
nonetheless any questions remain we hope they will be brought to our

attention.

Wageningen, April 1990 R.W.R. Koopmans
In this new edition we have added a number of questions, while at the same
time removing others which are no longer thought to be relevant as
preparatory material for the exam.

Moreover at the end of each chapter you find a number of (Dutch) exam
problems for which only the answers have been given.

Wageningen, December 1992 R.W.R. Koopmans
The symbols in this text have been brought in conformity with the new
(1995) edition of the Dutch lecture notes.

Again some (Dutch) exam problems have been added.

Wageningen, February 1995 R.W.R. Koopmans
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1 INTRODUCTION

Exercise 1.1

A polder (2000 ha) receives seepage flow (groundwater) from the
surroundings at a net annual rate of 220 mm.

The average precipitation is 790 mm per year. Water is removed from the.
polder through a pumping station at an annual rate of 10 million m3.

a. Compute the average evaporation in mm per year.

Exercise 1.2

Compute the average rainfall on earth, on the land surface and the on
oceans, using the data given in figure 1.2-1 of the (Dutch) lecture notes
and assuming that 70% of the surface of the earth is covered by oceans and
seas.

Hint: consider the earth to be a sphere with a radius of 6400 km.

T51-W-98Y/1
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Answer to exercise l.l

The annual evaporation follows directly from the waterbalance:
Precipitation + Seepageflow (in) = Discharge pump + Evaporation
We assume that the change in storage equals zero, when using average yearly

values:

6
0.790 + 0.220 = 1010 , ¢
2.107

E=1,010 - 0.5 =0.510 m (= 510 mm)

Answer to exercise 1.2

The total rainfall amounts to (107 + 398) 10'? m’/year.
The surface of the earth is: 4 n (64 10°)2 « 514.7 10'2 m2,
Average yearly rainfall = 981 mm.

On the landsurface: 107/(0.3 - 514.7) = 693 mm.

In the oceans: 398/(0.7 - 514.7) ~ 1105 mm.

TS51-W-98Y/1
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Examenvraagstukken bij hoofdstuk 1
1.1 (december 1991)

In een gebied met een warm, droog klimaat ligt een groot meer, waarin een

rivier (afkomstig uit een natter gebied) uitmondt. Het meer heeft geen
afvoer en de rivier voert jaarlijks gemiddeld 4.10'° m® water aan. Men wil
400 km bovenstrooms van het meer uit deze rivier één miljoen hectare
bevloeien. Bij deze bevloeiing wordt per jaar 1000 mm water per ha gebruikt
(voornamelijk voor verdamping van de gewassen). In het droge klimaat waar
zich het meer bevindt valt per jaar slechts 200 mm neerslag. De open water

verdamping E, kan men stellen op 1800 mm per jaar.

a.Bereken het huidige gemiddelde oppervlak van het meer in kmZ.

b.Idem na voltooiing van de bevloeiingswerken.

c.Wat zal er gebeuren met het meerpeil na aanvang van de bevloeiing?

Komt het meer geheel droog te staan?

d.Idem als het meer een diepe bak is met een constante oppervlakte bij
ieder peil (gelijk aan uw antwoord van vraag a.) en 30 m diep?

Komt het meer geheel droog te staan? Zo ja, na hoeveel jaar?
1.2 (augustus 1994)

Over de wereld-waterbalans worden de volgende gegevens verstrekt (in

afgeronde getallen):

oppervlakte neerslag
in 10% km? in 10° km? per jaar
aarde 510 505
zeeén 375 : 398
humide streken (land opp.) 90 79
aride streken (land opp.) 45 28

waterdamptransport in 10% km® per jaar:
van zee naar land 46
van land naar zee 10

a. Bereken, in eenheden van 10° km’ per jaar, de gemiddelde verdamping van:

TS1-W-98Y/1
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- de aarde als geheel

- de zeeén

- de humide streken (met afvoer)

- de aride streken (zonder afvoer)

b. Reken deze gegevens om tot mm waterschijf, gerekend over de betreffende
oppervlakte. Geef aan of de getallen betrekking hebben op E,, Eyy Of Eyy.

c. De zeedn bevatten 1400 10!'® kg water. Bereken de gemiddelde verblijftijd

van een waterdeeltje in zee (in jaren).

TS1-W-98Y/1
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Examenvraagstukken bij hoofdstuk 2
2.1 (augustus 1992)
Geef een definitie van de volgende begrippen:

a. stroomgebied

b. afvoerverlooplijn

98y/1
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3 PRECIPITATION
Exercise 3.1

The department of Water Resources studies rainfall-runoff relationships and
the waterbalance in a small catchment area (The Hupselse Beek catchment),
which is situated in the Achterhoek, an area in the east of The
Netherlands. In this and several other exercises data from this catchment

are used. In the first exercise areal rainfall will be calculated.

To determine the average precipitation of an area the Thiessen polygons
will be constructed for 7 stations (see figure 3.1.1). First the method for

constructing the polygons will be explained.

The construction of so called Thiessen polygons is based on the assumption
that the observations made at one particular point can be attributed to all
points that are closer to the considered point of measurement (PM) than to
any other PM where similar observations are or have been made simultaneous-
ly. Therefore we make use of the property that the perpendicular bisector
(PB) of two points L and R is the locus of all points located at equal
distance to both points. Hence all points left of the PB are closer to L
and all points right of the PB are closer to R (see fig- ure 3.1.2.a). For
three points we can divide the area in three parts (see figure 3.1.2.b and
3.1.2.c). Note that the PB’'s of three points always intersect in one point.
In the case of more PM’'s we can construct an irregular network of so-called
polygons delimiting the areas attributed to each PM.

(Note: Start with the polygon of one PM and proceed from there).
Now to determine the average precipitation of an area the measurements of
each station are attributed a ’'weight’. This wéight or weighing factor is

the ratio of the area of the polygon attributed to the PM under considera-

tion and the total area:

W o A (3.3.1)

T51-W-98y/3
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with:
W; = weight of station i
A; = area assigned to station i

ZA = total area.

PB

L\\\;x\\\ ! R L7777 B _—i_’ LN/ "?' 7R

3.1.2.a 31.2b 312.¢

Figure 3.1.2 Construction of a Thiessen network.

For an area delimited by straight lines we can determine the surface area
by calculation (divide each area into rectangles, triangles and/or trape-
zoids for which the surface area is easy to calculate) or by counting unit

squares.

a. - Construct the Thiessen network for the rectangular area given in
figure 3.1.1, using all stations.
- Determine the surface areas and calculate the weight assigﬁed to
each rain gauge.
- Determine the average (weighted) precipitation of the first decade

of every month for the area, using the data in table 3.1.1.

In the 1960’'s hydrologic research was done in the Leerinkbeek area, to
estimate the water deficit of agricultural crops. The Hupselse Beek is part
of the Leerinkbeek catchment.

For an irregular area like the Leerinkbeek catchment (see figure 3.1.1) the
surface area assigned to each PM can be determined:

- by counting unit squares (rather tedious for small squares);

T51-W-98y/3
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- by cutting out and weighing each part and their total (good quality
paper, accurate balance, very easy and accurate but very destructive to
your map);

- with the aid of a planimetric insﬁrumenc (experience needed);

- with the aid of a computer and digitizing equipment (easy and accurate
when one has the equipment);

- by the application of Simpson’s rule (simple and accurate if wused

right).

Table 3.1.1 Precipitation in mm during the first decade of every month in
1982 for some stations in the Achterhoek.

month J F M A M J J A S (o] N D
station

Assink 41.6 6.5 47.6 13.8 36.1 10.8 5.7 8.9 3.3 | 21.3 5.2 32.7
666 33.1 5.6 32.8 10.7 32.6 1.1 6.6 7.0 9.4 22.7 5.7 24.0
669 31.1 7.1 37.1 16.4 39.9 5.0 34.3 17 .4 12.7 | 28.3 5.8 28.6
674 36.2 5.5 32.0 11.3 37.6 5.7 5.8 8.3 4.5 | 23.4 5.2 25.0
683 -] 35.1 5.5 32.7 13.2 33.2 | 36.2 4.5 22.5 5.1 | 28.4 5.4 30.3
684 36.0 5.5 29.6 10.4 31.6 7.4 6.2 10.6 7.5 | 24.5 5.4 29.1
685 35.1 6.9 34.9 12.7 32.7 4.5 11.2 16.3 6.2 | 24.5 6.7 30.6

(666 = Winterswijk, 669 = Borculo, 674 = Rekken, 683 = Lichtenvoorde, 684 = Lievelde, 685 = Corle)

(Note: The decades are defined as follows:
- first decade: day 1 to 10 of every month
- second decade: day 11 to 20 of every month
- third decade: remaining days of every month

Ly
\//

Y ///
\ / pockets &Lg/
Lg
313 a. Uneven number of lines ; even number 313b. Avoid pockets

of strips

Figure 3.1.3 Simpson’s rule.

T51-W-98y/3
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Simpson’s rulé can be used to determine the surface area of irregular
surfaces. The total area is divided by an uneven number of evenly spaced,
parallel 1lines into an even number of parallel strips (see figure
3.1.3.a). The first and last line must touch or coincide with opposite
boundaries of the area ﬁnder consideration. Choose the direction and number
of lines in such a way that the development of ’‘pockets’ is avoided (see
figure 3.1.3.b). Now the area (A) in units squared can be calculated

according to:

A= % h (4, +40,+20,+40,+20,+ .... + 20, ,+40,,+0,,,.) (3.1.2)

with:
2n+l = number of lines

h = distance between lines

£m length of line m (first and last are often zero)
n =1, 2, 3,

b. Using Simpson’s rule and the data from table 3.1.1 calculate the average
(weighted) precipitation of the first decade of every month for the
catchment of the Leerinkbeek.

c. Plot the results of exercise b and the amounts of precipitation for the
other decades as given in table 3.1.2 in a graph depicting rainfall per

decade for the Leerinkbeek catchment during 1982.

Table 3.1.2 Precipitation in mm per decade in the Leerinkbeek catchment

in 1982.

month dec. P (mm) | month dec. P (mm) | month dec. | P
(mm)
January | 2 0.1 May 2 6.2 September | 2 2.2
3 28.8 3 9.1 3 20.0
Februay | 2 5.2 June 2 31.7 October 2 33.1
3 1.5 3 41.9 3 14.8
March 2 25.4 July 2 2.7 November 2 49.6
3 1.6 3 1.1 3 22.7
April 2 7.8 August | 2 34.0 December 2 41.5
3 5.1 3 14.7 3 10.8

Another way to determine the average areal rainfall is by means of

isohyets, lines of equal rainfall. The lines are obtained by (linear)

T51-W-98y/3



3-6

interpolation between different precipitation stations. At present there
are computer programs available that do the job. Next the areas between two
isohyets are determined and so the average rainfall on a surface can be

calculated, again by using weights for the areas between the different

isohyets.

d. Name two important disadvantages of the use of isohyets to determine the
average precipitation in an area.

e. Not all Thiessen networks are as easy to draw as the one given in this
example. As an additional exercise draw the Thiessen network for the
stations given in figure 3.1.4.

(Note: Remember that the PB’'s of three points always intersect in one

point).

Figure 3.1.4 Rainstations.

T51-W-98y/3
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Exercise 3.2

In this exercise extreme k-day precipitation amounts will be wused to
calculate return periods and to draw rainfall duration curves. First read

the following pages about the use of Gumbel extremal probability paper.

Probability paper is a valuable and simple tool in testing whether

observations are in accordance with theory and for the interpretation of

results. In case of extremes (either maxima or minima) Gumbel extremal

probability paper is used.

To explain and/or forecast extremes that may be expected to occur within a

certain time and area, the following, essential conditions have to be met:

- that we deal with statistical variables;

- that the initial distribution and its parameters from which the extremes
have been drawn, remain constant from one sample to the next;

- that the observed extremes are extremes of samples of independent data.

In addition each sample, from which the extreme value is taken, needs to be

sufficiently large. For a more or less reliable forecast the number of sam-

Ples (and therefore extremes) should be at least in the order of 10 to 20.

On Gumbel paper the observed extreme variable x is plotted along a linear

scale on one axis (usually the vertical one or ordinate), while on the

other axis (usually the horizontal one or abscissa) three scales are

marked:

- a linear scale for the reduced variable y, where:
y = a(x,-u) (3.2.1)

with:
Yy = reduced variable
X; = observed extreme

the standard deviation of the Gumbel distribution

a

u the modus of the Gumbel distribution.

- a non-linear scale, the cumulative frequency scale, which marks the
theoretical probability P, of the value x not exceeding a certain limit

Xk. According to Gumbel’s theory, extreme values obey the following

T51-W-98y/3
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distribution:

P,(x 2 x,) = exp(-exp(-y)) (3.2.2)

with:
P, = probability of the value x not to exceed xg
Xy, = extreme value
X = variable

y = reduced variable.

Plotting x, against -1ln(-1n(P,)) results in a straight line (because

-In(-1In(P,)) =y = a(xg-u)).

- a non-linear scale (on the upper side of the paper), marked T, the

return period. It is linked to the cumulative frequency scale by:

= = = 3.2.3
T= 555 ( )

with:
T = return period
P, = probability that x = x,
Q, = probability that x > x

The procedure for using the Gumbel extremal probability paper will now be

explained.
Procedure for Gumbel extremal probability paper

a. The observed extremes are arranged in increasing order for maxima and in
decreasing order for minima.

b. Calculate the n fractions m/(n+l) where m = 1, 2, 3,
the number of observed extremes.
Choose and mark an appropriate (linear) scale for x on the ordinate.

Plot m/(n+l) on the cumulative frequency scale against the corresponding

extreme X;.

T51-W-98y/3
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c. If the plotted data do not show a tendency to lie on a straight line
further steps are useless. In this case the data are not extremes, the
samples are too small or are not drawn from the same population, the
extremes do not obey the laws underlying this theory, etc..

d. As a first attempt a straight line can be drawn through the plotted
points.

e. The regression line through the plotted points can also be calculated.

- calculate the sum of the extremes X,

- calculate the square of the sum of the extremes (Ex,)32
- calculate the squares of the extremes x;2, x,2,..., X,2
- calculate the sum of squares Z(xy,)?2

- calculate the mean of the extremes £x,/n = X

- calculate the variance s,2 = (2(x,)2 - (2x;)?/n)/n

- calculate the standard deviation s, = /(s?)

(Computation of the standard deviation can be carried out on most
pocket calculators)

- take y, from table 3.2.1 and o, from table 3.2.2 (n is the number
of extremes); y, 1is the average of the reduced variable y and o, is
the standard deviation of the reduced variable y

- calculate the parameter l1/a = s,/o,

- calculate the parameter u = X - y,/a (for maxima)

u=Xx+y,/a (for minima)
- now the regression line is given by:
X = u + y/a (for maxima)
X =u - y/a (for minima)

- For y = 0.0, x is equal to u. The position y = 0.0 is called the
mode of the distribution and can be plotted. After choosing a second
point on the (calculated) regression line (i.e. y = 3.0) the
corresponding x may be calculated and plotted. Next the regression
line may be drawn through these two points.

f. To find the expected extreme value x with a return period T, start at T
on the scale along the top of the paper. Go down in a straight line
until you cross the regression line. The corresponding x can then be

found on the vertical scale.

T51-W-98y/3
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Note: For y (reduced variable) > 4.0 Gumbel paper does not differ
appreciably from logarithmic paper. The distance between 0.99 and
0.999 is the same as between 0.999 and 0.9999. Thus the paper may be
extended by taking the piece between T = 100 and T = 1000 from a
second piece of paper and paste it onto the other piece in such a
way that T,= 100 coincides with T, = 1000. After correcting the y, P,
and T scales the assembled paper is extended to P, = 0.9999 and T =
10000.

The above theory will be applied to daily rainfall records obtained with a
precipitation gauge at the Assink Meteo Station. It has been assumed that
the month of March is the critical month with regard to rainfall excess
interfering with agricultural activities in the Leerinkbeek area (see
exercise 3.1). However in general there are no serious drainage problems
during the growing season, because the Leerinkbeek area consists mainly of
well drained sandy soils.

In table 3.2.3 the daily rainfall records of March 1973 through 1987 are

given.

a. Determine the maximum daily rainfall to be expected with a return period
of respectively 2, 5, 10 and 50 years. To do this plot the extremes on
Gumbel paper, calculate and draw the regression line "and read the
expected maximum 1l-day rainfall with a return period of T years from the
figure.

b. Do the same for the expected maximum 2-day rainfall.

c. Suppose that the expected maximum k-day rainfall has been calculated in
the same way for k = 3, 4, 5, 7 and 10, with the results as in
table 3.2.4.

T51-W-98y/3
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Table 3.2.1 Expected mean y, as function of the number of extremes n.

n 0 1 2 3 4 5 6 7 8 9
10 .4952 .4996 .5053 .5070 .5100 .5128 .5157 .5181 .5202 .5220
20 .5236 .5252 .5268 .5283 .5296 .5309 .5320 .5332 .5343 .5353
30 .5362 .5371 .5380 .5388 .5396 .5402 .5410 .5418 L5424 .5430
40 .5436 L5442 .5448 .5453 .5458 .5463 .5468 .5473 .5477 .5481
50 .5485 .5489 .5493 .5497 .5501 .5504 .5508 .5511 .5515 .5518
60 .5521 .5524 .5527 .5530 .5533 .5535 .5538 .5540 .5543 .5545
70 .5548 .5550 .5552 .5555 .5557 .5559 .5561 .5563 .5565 .5567
80 .5569 .5570 .5572 .5574 .5576 .5578 .5580 .5581 .5583 .5585
90 .5586 .5587 .5589 .5591 .5592 .5593 .5595 .5596 .5598 .5599

100 .5600

150 .5646 300 .5699 750 .5738

200 .5672 400 .5714 1000 L5745

250 .5688 500 .5724

Table 3.2.2 Expected standard deviation o, as function of the number of
extremes n.

n 0 1 2 3 4 5 6 7 8 9
10 0.9496 0.9676 0,9833 0.9971 1.0095 1.0206 1.0316 1.0411 1.0493 1.0565
20 1.0628 1.0696 1.0754 1.0811 1.0864 1.0915 1.0916 1.1004 1.1047 1.1089
30 1.1124 1.1159 1.1193 1.1226 | 1.1255 1.1285 1.1313 1.1339 1.1363 1.1388
40 1.1413 1.1436 1.1458 1.1480 1.1499 1.1519 1.1538 1.1557 1.1574 1.1590
50 1.1607 1.1623 1.1638 1.1658 1.1667 1.1681 1.1696 1.1708 1.1721 1.1734
60 1.1747 1.1759 1.1770 1.1782 1.1793 1.1803 1.1814 1.1824 1.1834 1.1844
70 1.1854 1.1863 1.1873 1.1881 1.1890 1.1898 1.1906 1.1915 1.1923 1.1930
80 1.1938 1.1945 1.1953 1.1959 1.1967 1.1973 1.1980 1.1987 1.1994 1.2001
90 1.2007 1.2013 1.2020 1.2026 1.2032 1.2038 1.2044 1.2049 1.2055 1.2060
100 1.2065

150 1.2253 300 1.2479 750 1.2651

200 1.2360 400 1.2545 1000 1.2685

250 1.2429 500 1.2588

T51-W-98y/3
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Table 3.2.3 Daily precipitation (mm day™) in March for a rain gauge at
the Assink Meteo Station (1974-1987).

year/day| 1973 | 1974 |1975 | 1976 1977 1978 | 1979 | 1980 | 1981 | 1982|1983 | 1984 | 1985|1986 | 1987
1 0.3 0.0 0.0 4.4) 0.0 0.0 0.8 0.0 5.4 2| 0.9 0.0 0.2 0.0 2.0
2 3.2 1.3 0.0 0.0] 0.0 0.5 2.6 0.0 0.6 3] 0.2 | 4.2 | 3.0 0.0 17.7
3 1.0 3.5 2.7 0.0] 2.1 3.2 2.5 0.0 2.7| 6.4} 0.0 J10.2 | 0.0 0.0} 23.0
4 4.1 0.0 0.0 0.0] 1.8 1.2 5.2 0.0 1.4|13.2] 0.0| 0.0} 0.5] 0.0 0.0
5 0.0 0.0 1.0 0.0] 0.9 0.0 4.1 3.0 0.0| 4.8 0.0} 0.0} 2.7] 5.8 0.0
6 0.3 5.2 3.0 0.0} 0.0 0.5 0.0 0.2 0.0] 0.4} 0.0 0.0 | 0.0} 5.3 0.0
7 8.7 0.0 1.9 0.0] 0.0 0.0 0.0 8.7 0.5] 0.0] 0.2 | 0.0 6.2| 0.2 0.0
8 1.4 0.0 |11.6 0.0] 0.7 0.0 4.2 0.4 3.4 0.0} 0.0] 0.0 0.0} 0.0 0.0
9 0.2 0.0 0.0 0.3] 0.0 5.8 0.0 0.0 7.1} 0.0} 0.0} 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.4] 0.0 0.0 |11.8 0.0 20.6 | 0.0] 0.0 0.5 0.0] 0.5 0.0
11 0.0 0.0 1.2 0.0 0.0 0.0 3.2 2.4 11.1]15.2|] 0.0 | 3.1 | 2.1} 0.0 0.0
12 0.1 0.1 0.0 0.0] 3.0 0.0 5.0 0.0 22.5] 1.6] 0.0 0.0 0.0 0.0 0.0
13 0.0 1.2 0.5 1.1] 0.0 9.6 0.0 |12.2 4.6]| 6.8 0.0 0.0 0.0 0.0 0.0
14 0.0 0.0 0.0 0.0] 0.6 2.4 0.0 3.2 5.4 1.1} 0.0 0.0 1.41 0.0 0.0
15 0.0 0.3 2.4 0.0/ 8.8 1.8 7.6 0.0 7.0 0.0 4.8} 0.0 3.2 0.0 0.0
16 0.0 8.7 3.9 0.2| 0.4 J11.5 |10.4 0.0 1.7 | 4.2] 0.0 0.0 3.0| 0.0 3.6
17 0.3 1.4 1.0 0.0 4.4 2.6 2.2 0.0 5.6 2.5 0.1 | 0.0 0.0] 0.0 3.8
18 0.7 3.1 0.4 1.1] o.0 0 0.2 0.0 0.0 0.5] 3.4 0.0 0.0] 0.1 17.8
19 0.3 4.3 0.2 0.1 0.4 2.9 3.2 0.0 0.2| 1.1} 5.8 | 0.0 0.0} 0.0 2.2
20 0.0 0.0 1.2 0.0 0.5 j11.2 0.0 0.0 0.0] 0.5] 1.4 0.0 0.0 0.0 0.0
21 0.0 6.5 3.3 0.0] 0.0 2.9 0.0 0.0 0.0| 0.0] 6.0 | 0.0 3.8] 3.2 6.3
22 0.0 0.1 0.0 0.0] 2.2 5.0 1.0 0.0 0.0 0.0] 6.6 | 0.0 0.0 0.0 3.2
23 0.0 0.0 0.0 0.0} 0.0 3.3 5.9 3.9 0.8 0.0] 5.6 0.0 | 0.3} 7.5 1.5
24 0.0 0.0 0.0 0.0}y 0.0 6.7 0.0 0.0 6.3] 0.0]19.3 | 0.0 0.0] 5.4 8.8
25 0.0 0.0 4.6 3.5 0.0 0.3 0.3 0.0 6.2 0.0} 0.3 1.8 0.7]12.0 2.0
26 1.0 0.0 2.9 7.3] 0.0 j11.4 2.7 0.2 16.1| 0.0} 9.8} 0.3 4.8] 0.9 3.6
27 7.7 0.0 2.9 6.9] 1.1 1.6 1.0 1.0 1.4 0.0} 3.3 5.0 |11.4] 4.8 0.0
28 0.0 0.0 0.0 0.7}12.4 2.8 3.6 2.0 0.0} 0.0 3.3 8.1 0.4]18.2 1.5
29 0.0 0.0 |22.5 0.0] 0.6 0.7 1.5 |10.0 0.0} 0.0] 4.3 | 2.8 |11.1| 4.2 3.3
30 0.0 0.5 1.4 1.1 0 1.0 1.3 7.6 0.0 1.8] 4.4 0.4 4.0 4.5 0.8
31 0.8 0.0 0.0 0.0} 0.0 j10.2 0.5 0.0 0.0| 0.0 6.8} 3.1 8.3| 4.4 0.0
Total 30.1 |36.2 |68.6 |27.1]39.9 |99.1 |80.8 |54.8 |130.6 |70.6|87.6 |39.5 |67.1]77.0 |101.1
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Table 3.2.4  Expected k-day rainfall (in mm) in March with a return period
of T years for the Assink Meteo Station.
length of period return period
k (in days) T (in years)
2 5 10 50

3 22.5 35.1 43.4 61.6

4 25.6 39.6 48.8 69.1

5 28.3 43.4 53.4 75.4

7 33.6 51.4 63.1 88.9

10 38.5 60.2 74.6 106.2

Now draw the rainfall duration curves for a return period of 2, 5, 10
and 50 years.

d. Assuming an available storage of respectively 15, 25 and 35 mm, make a
first approximation of the required discharge capacity if flooding is

allowed with a return period of 10 years.

Exercise 3.3

The extremely high discharge of the river Rhine of 16.500 m3s™! has a return

Vperiod T = 1250 years. We assume that this estimate is correct.

a. What is the probability that this discharge will occur in the year 2000?

b. What is the probability that this discharge will not occur in the year
2000?

c. What is the probability that this discharge will occur within a 50 year
period?

d. What is the probability that this discharge will not occur within a 50
year period?

e. What is the length of the period in which this discharge will occur with
a probability of 0.5?
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Ansver to exercise 3.1
a. When the Thiessen polygons have been constructed in the right way the
resulting network looks as depicted in figure 3.1.5.

The surface areas and the weights are given in table 3.1.3.

Table 3.1.3 Areas and weights for the different stationms.

station nr area (km2) weight
Assink 72.9 0.16
Winterswijk 666 56.8 0.13
Borculo 669 120.5 0.27
Rekken 674 50.5 0.11
Lichtenvoorde 683 85.0 0.19
Lievelde 684 53.2 0.12
Corle 685 14.2 0.03
total 453.1 1.01

The average decade sums are given in table 3.1.4. They are calculated

according to:

P=Y (W P)

with:
P = total precipitation [mm]
W; = weight of station i [-]

P; = precipitation recorded at station i [mm]

Table 3.1.4 Precipitation in mm per decade for the total area in 1982.

month dec. P month dec. P month dec | P
(mm) (mm) (mm)
January 1 35.1 May 1 35.7 September | 1 7.6
2 0.0 2 6.9 2 0.6
3 27.9 3 10.2 3 15.5
February | 1 6.1 June 1 11.6 October 1 25.4
2 5.4 2 33.7 2 33.4
3 0.5 3 37.0 3 14.7
March 1 35.9 July 1 13.4 November 1 5.5
' 2 31.0 2 3.0 2 47.5
3 1.6 3 0.9 3 22.7
April 1 13.3 August | 1 13.8 December 1 28.7
2 6.1 2 30.6 2 40.6
3 4.5 3 20.5 3 10.3
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N

b. The Leerinkbeek catchment is covered by the polygons of three stations,
namely by 669 (Borculo), Assink and 684 (Lievelde). To determine the
surface areas assigned to each station with Simpson’s rule the‘areas are
divided as shown in figure 3.1.6. In this case it proved advantageous to
select three sections with different widths for the application of
Simpson’s rule. The resulting surface areas and weights are given in

table 3.1.5. The average decade sums are given in table 3.1.6.
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Figure 3.1.6 Appplication of Simpson’s rule to the area of the Leerink
beek catchment.

Table 3.1.5 Areas and weights for the three stations covering the
Leerinkbeek catchment.

station nr. area (km?2) weight
Assink 33.0 0.63
Borculo 669 19.1 -1 0.36
Lievelde "~ | 684 0.6 0.01
total 52.7 1.00

Table 3.1.6 Precipitation in mm per decade in the Leerinkbeek catchment
in 1982 (first decade of every month).

month dec. P month dec. P month dec | P
(mm) (mm) . (mm)
January 1 37.7 May 1 37.4 September | 1 6.8
February | 1 6.7 June 1 8.7 October 1 23.9
March 1 43.6 July 1 16.1 November 1 5.4
April 1 14.7 August | 1 12.0 December 1 31.2
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c. See figure 3.1.7.

601
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123123
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decade and month

Figure 3.1.7 Precipitation in mm per decade in the Leerinkbeek catchment
(1982).

d. Two important disadvantages of the use of isohyets are:
- the way the lines are drawn depends on the interpreter; this makes
© it more difficult to compare the results; this does not apply when
using a computer program. However be careful to choose the
appropriate program.
- the isohyets have to be drawn again for every new period; this also
means that the weights have to be determined again and this is

tedious and time-consuming.

e. The network will look as depicted in figure 3.1.8. In every node exact-

ly three lines intersect.
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Figure 3.1.8 Constructed Thiessen network.

Answer to exercise 3.2

To plot the data on Gumbel paper, determine the maximum 1l-day and 2-day
values for each month and rearrange them in ascending order. To find the
2-day precipitation for each month first add the precipitation of evefy
two consecutive days in a month. Next number the maxima, assigning 1 to
the lowest and 15 (there are 15 years) to the highest maximum. These

maximum values can be plotted against y = i/(n+l), in which i is the

number assigned to an observation and n is the number of observations.

This results in table 3.2.5 and the dots in figure 3.2.1.
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Table 3.2.5 Maximum 1- and 2-day precipitations in March (1973-1987)
for the Assink Meteo Station.

number 1 2 3 4 5 6 7 _ 8
y=i/(n+l) | 1/16 2/16 3/16 4/16 5/16 6/16 7/16 8/16
1-day 7.3 8.7 8.7 10.2 11.4 11.5 11.8 12.2
2-day 10.1 10.1 13.5 14.1 14.2 14.4 16.2 17.6
number 9 10 11 12 13 14 15

y=i/(n+1) | 9/16 10/16 | 11/16 | 12/16 13/16 14/16 15/16

1-day 12.4 15.2 18.2 19.3 22.5 22.5 23.0

2-day 18.0 19.6 23.0 23.9 2419 33.6 40.7

To find the best fitting curve through these points the regression line
is calculated. As a check on your calculations some intermediate results

and the final results are given in tabel 3.2.6.

Table 3.2.6 Intermediate and final results when calculating the
regression lines for the expected maxium 1- and 2-day

precipitation.

1-day 2-day 1-day 2-day
X, 214.9 293.9 ¥n -0.5128 0.5128
(Zx,) 2 46182 86377 o, 1.0206 1.0206
TXy? 3489 6780 1/a 5.1 8.1
X 14.33 19.59 u 11.7 15.4
Sg2 27.35 68.11 line x=11.7 x=15.4
s 5.23 8.25 .1y | +8.1y

Now the regression lineX'=-% y+u can be drawn in figure 3.2.1. The

expected maximum l-day precipitation with a certain return priod T can
be read from the figure in the following way. Start at the return period
T on the scale along the top of the paper. Go down in a straight line
until the regression line for k = 1 (maximum l-day precipitation) is
reached. Read the corresponding x-value on the vertical axis. (The
x-value can also be calculated using the equation for the regression
line). For T = 2, 5, 10 and 50 years, the results can beA found in
table 3.2.7.
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Table 3.2.7 Expected maximum 1- and 2-day precipitation in March with
return period T for the Assink Meteo Station. :

2 5 10 50
1-day 13.6 19.4 23.2 | 31.7
2-day 18.4 27.5 33.6 47.0
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Figure 3.2.2 Rainfall duration curves for the Assink Meteo Station.
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c. The rainfall duration curves are obtained by plotting the results of
table 3.2.4 (page 3-13) and table 3.2.7 in one figure. Here the pre-
cipitation should be on the vertical axis and the number of days on the
horizontal axis. The result is given in figure 3.2.2.d.
To estimate the design discharge capacity with a return period of 10
years the following procedure can be followed. Plot the available
storage on the precipitation axis of figure 3.2.2. Draw the tangent
from this point to the rainfall duration curve for T=10. The slope of
this line is a first estimate for the required discharge capacity in

mm day’!.

So the required discharge capacity with an available storage of:
15 mm is (40-15.0)/2.7 = 9.3 mm day’!
25 mm is (50-25.0)/4.2 = 6.0 mm day’!
35 mm is (50-35.0)/3.7 = 4.1 mm day’!

Answer to exercise 3.3

a. The probability that this discharge will occur within any given year
(and therefore also the year 2000) is 1/T = 1/1250.

b. The probability that this discharge will not occur within any given year
(and therefore also the year 2000) is 1-1/T = 1249/1250 = 0.9992.

c. The probability (U) that the discharge will occur within a 50 year

period is:
1
U=1-(1-=)°
( T)

with:
U = probability that a- certain value will be exceeded during a
certain period
T = mean return period of that value [time]

r = length of period [time]
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Here T = 1250 year and r = 50 year, so U = 0.0392. So the probability
that the discharge of the river Rhine will exceed 16500 m® s! within a
period of 50 years is 0.0392.

d. The probability that this discharge will not occur in a given 50 year
period is 1 - U =1 - 0.0392 = 0.9608.

e. This means that U = 0.5 and r is unknown. So the question boils down to
calculating r.
U=20.5=1- (1 - 1/1250)%, so (1 - 1/1250)* = 0.5 and r = log(0.5)/
log(1249/1250) = 866.1 year.
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Examenvraagstukken bij hoofdstuk 3
3.1 (december 1991)

In het stroomgebied van een rivier wordt de neerslag op een aantal punten
waargenomen.

a. Welke methoden kent u om de gemiddelde neerslaghoeveelheid (voor een
bepaalde periode) in het stroomgebied te berekenen?

b. Geef van elke methode (m.b.v. een eenvoudige vergelijking) aan hoe de
berekening verloopt (niet met een'getallen voorbeeld uitrekenen!).

c. Geef een korte opsomming van de voor- en nadelen van elke methode.
3.2 (juni 1992)

In de onderstaande figuur zijn op de locaties van de punten A t/m I
regenmeters geplaatst; de cijfers geven de neerslag (afgerond op hele mm's)
voor een bepaalde periode. De met een streepjeslijn aangegeven rechthoek is
een landbouwbedri jf.

a. Teken de polygonen van Thiessen (voor het landbouwbedrijf) in de figuur.
b. Bereken de gemiddelde neerslag voor het bedrijf met behulp van de

Thiesen methode (in mm, 1 cijfer achter de komma).
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Neerslagmetingen op locaties A t/m I.
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Examenvraagstukken bij hoofdstuk 4
4.1 (juli 1994)

Infiltratie door het bodemoppervlak kan worden beschreven met de volgende

vergelijking:

£=f,+ (£, - f) ekt

f is de infiltratie snelheid, f; en f_, respectievelijk voor t = 0 en t » o ,
Langs een beek in het oosten van Nederland ligt een leemgrond (tot 20.0 m uit
de beek aan beide zijden onder een helling van 4%) waarvoor geldt:

1  en k = 6.0 uur’.

fo = 32.0 mm uwur™, £, = 5.0 mm uur’
Tijdens een hevige regenbui worden de volgende regenhoeveelheden gemeten:

0 -15 min: 9.0 mm

15-30 min: 10.0 mm

30-45 min: 6.0 mm

45-60 min: 2.0 mm (totaal 27.0 mm in één uur)

a. Bereken f op t = 0, 15, 30, 45 en 60 min,

Maak een tekening waarin de regenbui en de infiltratie zijn uitgezet tegen de
tijd.(eenheden van de schalen duidelijk aangeven !)

b. Bereken de hoeveelheid water(m®) die per 100.0 m beek-lengte oppervlakkig

afstroomt van de hellingen ter weerszijden, als gevolg van deze regenbui.

98y/4






S5 EVAPORATION
Exercise 5.1

The mean annual precipitation-surplus of the Veluwe amounts to 365 mm. This
surplus is the difference between areally averaged precipitation and evapo-
transporation.

a. The evapotranspiration is determined by the evapotranspiration of
deciduous forest, heather, sand and pine forest. Arrange these types of
soil cover according to descending annual evapo(transpi)ration. Why in
this sequence.

b. The annual precipitation is 800 mm with an average chloride concentrati-
on of 6 mg 1'. The groundwater under the glacial ridges covered with
forest has an average chloride concentration of 24 mg 1!. Estimate the

evapotranspiration of these forests in mm per yeaf.
Exercise 5.2

From 1956 till 1 april 1987 the Royal Dutch Meteorological Institute (KNMI)
used the Penman formula to calculate the evaporation of an open water
surface (Eg). Modifications of the formula over time resulted in the use of
severalv(slightly different) versions of the Penman formula by different
people.

To end this confusion and for several other practical and theoretical
reasons the KNMI started using the empirical Makkink formula to calculate
the reference crop-evapotranspiration (E.). This formula has been used
since 1 April 1987 instead of the Penman formula.

The Makkink formula is given by:

AE, = 0.65 s—fy Kl (5.2-1)
with: v

A = heat of vaporization [J kg'!]

A = {2501 - 2,4(T - 273)} x 10°

T = temperature , K]

E

= reference crop-evapotranspiration [kg m2 s!]
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s = change of saturated vapour pressure with

temperature : [hPa K]
Y = psychrometer constant = 0.67 [hPa K]
K¢ = incoming short wave radiation at the earth surface [W m?]

An important advantage of the Makkink formula over the Penman formula is
that only the temperature and the incoming short wave radiation have to be
measured in order to calculate the reference crop-evapotranspiration (E,).
These two entities are measured regularly at a large number of meteorologi-
cal stations. To calculate E; according to the Penman formula it is
necessary to measure the number of hours of sunshine, the temperature, the

relative humidity of the air and the windspeed.

a. Calculate the reference crop-evapotranspiration for the first decade of
every month at the Assink Meteo Station (East-Gelderland), using
formula 5.2-1 and the table 5.5.2. The incoming short wave radiation at

the earth surface (R,) and the temperature (T) are given in table 5.5.1.

Table 5.5.1 Incoming short wave radiation at the earth surface (K) and
the temperature (T) as measured at the Assink meteo station

in 1982.
month ] F M | A M ) ) A s o N D
decade 1 1 1 1 1 1 1 1 1 1 1 1
K¢ (Wm?) 31 51 77 | 139 | 158 | 259 | 216 | 167 150 | 74 37 23
T (°0) 0.7 37 |45 |88 |75 |200 |175 | 202 |159 |121 | 1001 |34

The reference crop-evapotranspiration is calculated for an optimally
growing grass surface (short) which transpires according to formula 5.1.

To calculate the evaporation of real crops, crop factors (f) are used.

Egrop = £ E, (5.2)
with:

Ecop = evapotranspiration of a real crop [kg m2 s1]

f = crop factor [-1]

E, = reference crop-evapotranspiration [kg m'2 s™ ]

b. Using the reference crop-evapotranspiration E, (see Answer 5.2.a) and
the crop factors in the Lecture notes, calculate the evapotranspiration
per decade and the total evapotranspiration per growing season (April-

Sept.) for grass and cereals.
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Table 5.5.2 Change of saturated vapour pressure as a function of tempera-
ture (mbar X! = hPa %k1).

T .0 .1 .2 .3 X .5 .6

=10 0.23 | 0.23 | 0.23 0.23 [0.21 |0.21
-9 0.24 | 0.24 |0.24 0.24 |0.24 | 0.24
-8 0.27 | 0.25 |0.25 0.25 | 0.25 | 0.25
=7 0.28 |1 0.28 | 0.28 0.27 |0.27 | O0.27
-6 0.29 | 0.29 |0.29 0.29 |0.29 | 0.29
=5 0.32 |0.32 |0.32 0.31 {0.31 |0.31
=4 0.35 | 0.35 |0.33 0.33 |0.33 |0.33
-3 0.36 | 0.36 | 0.36 0.36 |0.36 | 0.35
=2 0.39 | 0.39 |0.39 0.37 |0.37 |0.37
-1 0.41 | 0.41 | 0.41 0.40 | 0.40 | 0.40
-0 0.44 | 0.44 | 0.44 0.43 | 0.43 | 0.43
0 0.45 | 0.45 | 0.45 0.45 | 0.47 | 0.47
1 0.48 | 0.48 | 0.48 0.48 | 0.49 | 0.49
2 0.51 | 0.51 |0.51 0.52 | 0.52 | 0.52
3 0.53 | 0.55 | 0.55 0.55 | 0.56 | 0.56
4 0.57 | 0.57 | 0.57 0.59 | 0.59 | 0.59
5 0.60 | 0.61 | 0.61 0.61 |0.63 | 0.63
6
7
8
9

.
~
.
(o]
.
o

e e e o o o o e o o

e o o o e o o o

e o o o e o o o o
e o o o o o

0.64 | 0.65 | 0.65 0.67 | 0.67 | 0.67
0.69 | 0.69 |0.69 0.71 |0.71 | O0.72
0.73 | 0.73 | 0.75 0.75 | 0.76 | 0.76
0.77 | 0.79 |0.79 0.80 |0.80 | 0.80
10 0.83 | 0.83 |0.84 0.85 |0.85 | 0.85
11 0.88 | 0.88 | 0.88 0.89 |0.91 |0.91
12 0.92 | 0.93 | 0.93 0.95 | 0.95 | 0.96
13 0.97 |0.99 |0.99 1.00 |1.01 |1.01
14 1.0 |1.04 |1.05 |1.05 |1.05 |1.07 |1.07
15 1.09 |1.11 {1.11 |1.12 |1.12 |1.13 |1.13 .
16 1.16 |1.17 |1.17 |1.19 }|1.19 |1.20 |1.20 |1.21 |1.21
17 1.23 [ 1.24 |1.24 |1.25 |1.25 |1.27 |1.27 |1.28 |1.28
18 1.29 |1.31 |1.31 |1.32 |1.32 |1.33 |1.33 | .135 |1.36
19 1.37 11.39 |1.39 |1.40 |1.40 |1.41 |1.41 |1.43 |1.43
20 1.44 | 1.45 | 1.45 |1.47 | 1.47 |1.48 |1.49 | 1.49 |1.51
21 1.52 11.53 |1.55 |1.55 |1.56 |1.57 |1.57 |1.59 |1
22 1.61 [1.63 [1.63 |1.64 |1.65 |1.65 |1.67 |1.68 |1.
23 1.71 1.71 |1.72 |1.73 |1.73 |1.75 |1.76 |1.76 |1.77

1
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24 1.79 |1.80 {1.81 |1.81 |1.83 |[1.84 |1.84 |1.85
25 1.88 |11.89 [{1.89 |1.91 |1.92 |1.93 |1.95 |1.96
26 1.99 |1 2.00 |2.01 | 2.03 |2.04 |2.04 |2.05 |2.07 |2.08
217 2.09 |2.11 |2.12 |2.13 |2.13 |2.15 |2.16 |2.17 |2.17
28 2.20 | 2.21 |2.23 |2.24 | 2.25 |2.27 |2.28 |2.29 | 2.29
29 2.32 | 2.33 |2.35 |2.36 |2.37 |2.39 |2.39 |2.40 | 2.41
30 2.43 | 2.44 | 2.45 | 2.47 | 2.48 |2.49 | 2.51 | 2.52 | 2.53
31 2.56 | 2.57 |2.59 |2.60 |2.61 |2.63 |2.64 |2.65 |2.67
32 2.69 | 2.71 |2.72 |2.73 |2.75 |2<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>