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Biological nitrogen fixation  

Nitrogen (N) is the seventh most abundant element on earth, and in living cells it is required in 

large amounts as it is a component of proteins, nucleic acids and other cellular constituents. 

About 80% of the earth atmosphere is made up of di-molecular nitrogen (N2) gas (Lum and 

Hirsch, 2002). However, N2 gas cannot be used by most organisms, including plants (Vance, 

2001). Plants can only utilize reduced forms of nitrogen like ammonium (NH4
+) and nitrate 

(NO3
-) (Hirel et al., 2007). They acquire these forms of fixed nitrogen for example by; 1) 

application of chemical fertilizer, 2) the release of these compounds during decomposition of 

organic matter, 3) atmospheric nitrogen that is converted into ammonia and nitrate by lightning 

and entering soil by rainfall and/or 4) biological nitrogen fixation. 

Biological nitrogen fixation can be conducted by a limited number of prokaryotes. Some of these 

bacteria can conduct nitrogen fixation in a free-living state, whereas others can do so only in 

association with plants. As biological nitrogen fixation is an energy demanding biochemical 

reaction, highest efficiencies of nitrogen fixation are obtained when the bacteria can retrieve 

carbon from a host plant. In return, the microbe can deliver ammonia, providing a selective 

advantage to the plant under nitrogen limiting conditions. Ultimately, such interactions can 

evolve in a stable symbiosis, giving profit to both partners. Among the best studied nitrogen-

fixing symbiosis is the interaction between legumes and rhizobia.

Symbiotic nitrogen-fixing rhizobia represent 15 genera; 13 within the -proteobacteria (among 

which Rhizobium, Sinorhizobium, Mesorhizobium and Bradyrhizobium are most prominent) and 

2 genera within -proteobacteria (Burkholderia and Cupriavidus, respectively). All these 

bacteria combine two genetic traits; namely a set of nitrogen fixation (nif) genes that encode the 

nitrogenase enzyme complex, and a set of nodulation (nod) genes that allow them to synthesize 

lipo-chitooligosaccharide (LCO) molecules (also known as Nod factors). These LCOs are in 

structure very similar to LCOs that are produced by Arbuscular Mycorrhizal (AM) fungi of the 

order Glomerales (Gough and Cullimore, 2011). Secreted LCOs can act as signaling molecules 

to establish infection of plant roots. AM fungi are obligate biotrophs that need to form feeding 

structures –known as arbuscules - in root cortical cells. In these cells, the fungus supplies 

minerals, especially phosphates, to the plant to retrieves carbohydrates. The AM fungus-plant 

symbiosis is widespread. It is estimated that more than 80% of today’s plant species can establish 

an AM symbiosis (Parniske, 2008). Detection of AM fungi in fossilized plant records indicates 
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that the association with AM fungi evolved more than 400 million years ago, and possibly was 

important for the evolution of land plants in mid-Paleozoic era (Read et al., 2000). By contrast,

the N2-fixing rhizobium symbiosis in legumes is much younger, presumably originating 60 

million years ago (Sprent, 2008). Production of LCOs by symbiotic rhizobia suggests that these 

can activate the LCO signaling pathway of many plant species. However, N2-fixing rhizobium 

symbiosis evolved only in two lineages; the legume family (Fabaceae) and the genus Parasponia

in the Cannabis family (Cannabaceae).

Rhizobia require specialized organs –known as nodules- to commit nitrogen fixation. Nodules 

are generally formed on the root of the plant. Legume nodules are highly differentiated organs 

that consist of a large central zone surrounded with several vascular bundles to facilitate 

transport of nutrients. The central zone of the nodule is surrounded by a layer of suberized cells 

that form an oxygen barrier (Nap and Bisseling, 1990). Cells of the central zone can contain 

hundreds of rhizobia that are differentiated in nitrogen fixing organelle-like structures. These 

structures are named symbiosomes and produce ammonia (Roth and Stacey, 1989). Legumes 

evolved several mechanisms to further optimize the symbiotic interaction, some of which are 

lineage specific. For example, many legumes evolved a mechanism to select specific rhizobial 

species or even strains (Martínez-Romero, 2009). Additional mechanisms control nodule number 

or terminate the symbiosis when sufficient exogenous nitrates can be retrieved from soil, or 

when rhizobia remain in default (Streeter and Wong, 1988). In contrast to legumes, Parasponia

root nodules are less sophisticated. Parasponia nodules have a single –central- vascular bundle 

and bacteria remain in thread-like structures, known as fixation threads (Behm et al., 2014).

Additionally, Parasponia is highly promiscuous for rhizobium, and even makes nodules with 

strains that default in nitrogen fixation (Op den Camp et al., 2012).

LCO signaling pathway

By exploiting Lotus japonicus (Lotus) and Medicago truncatula (Medicago) as research models, 

insight has been obtained in the genetic networks underlying the formation of root nodules.

Especially, the LCO induced genetic network controlling nodule formation and bacterial

invasion has been uncovered (Geurts et al., 2005; Geurts et al., 2016). Rhizobium LCOs have a 

basic structure consisting of a backbone of three to five N-acetyl-glucosamine residues that are

acylated at the non-reducing amino group with a fatty acid of 16–20 C-atoms in length (C16 to 
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C20). Additional substitutions to the backbone and/or unsaturated bounds in the acyl chain can 

be present and play a role in the host specificity of the symbiosis (D’Haeze and Holsters, 2002).

In legumes, rhizobium LCOs are recognized by a heterodimeric complex of two types of LysM 

(Lysin motif) receptor kinases (LysM-RLK), which activate a signaling pathway that results in 

activation of a transcriptional network (Broghammer et al., 2012). These receptors are named 

LjNFR1 and LjNFR5 in Lotus and MtLYK3 and MtNFP in Medicago. LysM domains are 

predicted to be sites of interaction with N-acetyl-glucosamines-containing compounds (Steen et 

al., 2005). In case of LjNFR1/MtLYK3 and LjNFR5/MtNFP it is found that these receptors bind 

LCOs. LjNFR1 and LjNFR5 receptor proteins directly bind to the LCOs with high affinity 

(Broghammer et al., 2012). All LysM-RLKs contain three diverged LysM domains. In Medicago

two main LysM-RLK classes are recognized, named LysM-I (containing LYK genes, including 

MtLYK3) and LysM-II (containing LYR genes as well as MtNFP). Genes of both classes are 

distinct in their intron/exon organization, and whether a canonical kinase domain is present. LYK

genes contain 10 to 12 exons, and encode proteins with functional kinase domains. In contrast, 

LYR genes are generally single exon genes, and contain a kinase domain that lacks an activation 

loop. Such kinases are considered to be inactive. LYR proteins therefore most probably will 

function in a heterodimeric complex. Studies with of LjNFR1/LjNFR5 and MtLYK3/MtNFP 

indicated that such complexes are indeed formed, which suggests that LCO signaling is 

committed by such heterodimeric complex (Madsen et al., 2003; Madsen et al., 2011; Arrighi et 

al., 2006; Pietraszewska-Bogiel et al., 2013) Besides MtLYK3 and MtNFP, the LysM-RLK 

MtLYR3 of Medicago has been identified as a high affinity LCO binding protein (Malkov et al.,

2016). This suggests that possibly different type of receptor complexes can be formed to fine 

tune symbiotic LCO signaling.  

Besides LjNFR1/MtLYK3 and LjNFR5/MtNFP, a series of other genes have been identified to be 

essential for LCO signaling including: LjSYMRK/MtDMI2, LjCASTOR, LjPOLLUX/MtDMI1,

LjNUP133, LjNUP85, LjNENA, CCaMK and the transcriptional regulators LjCYCLOP/MtIPD3, 

NIN, MtERN, NSP1 and NSP2. Knockout mutations in any of these genes led to major defects in, 

or even complete loss of, nodule initiation (Kistner et al., 2005; Oldroyd et al., 2009; Parniske, 

2008).

LjSYMRK/MtDMI2 encodes a trans-membrane receptor-like kinase protein with three Leucine-

rich repeat (LRR) domains in the predicted extracellular region. It is located in the plasma 
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membrane and studies in Lotus show that it interacts with LjNFR1 and LjNFR5 (Chen et al.,

2012). Mutation in the LjSYMRK/MtDMI2 gene abolishes rhizobium LCO signaling. Activation 

of the LCO receptors in conjunction with LjSYMRK/MtDMI2 induces intracellular signaling, 

which is associated with oscillations of the calcium concentration in the perinuclear region. For 

this a perinuclear cation channel (LjCASTOR and LjPOLLUX/MtDMI1) and 3 components of the 

nuclear pore including; Lotus NUCLEOPORIN 85 (LjNUP85), LjNUP133 and LjNENA are 

essential (Groth et al., 2010; Saito et al., 2007; Kanamori et al., 2006). The LCO induced 

calcium oscillation signal is –most probably- decoded by a nuclear localized calcium and 

calmodulin dependent kinase CCaMK (also named MtDMI3 in Medicago). Activation of 

CCaMK triggers a transcriptional network, starting with the interacting protein 

LjCYCLOPS/MtIPD3, yet the only known target of CCaMK. By phosphorylation, LjCYCLOPS 

is released from the complex with CCaMK, and become an active transcription factor. 

LjCYCLOPS binds to the promoter of the ERN1 and NIN gene and activates its transcription in a 

phosphorylation-dependent manner (Singh et al., 2014; Kistner and Parniske, 2002). Mutations 

in these genes interfere with LCO signaling, resulting in a nodulation phenotype. Interestingly, 

all genes from LjSYMRK/MtDMI2 down to the activation of LjCYCLOPS/MtIPD3 are also 

important for AM-symbiosis.

NIN (NODULE INCEPTION) is a nodulation-specific gene that encodes a transcription factor 

and acts downstream of the LCO signaling pathway. Nodule organogenesis and infection are 

fully blocked in nin knockout mutants (Marsh et al., 2007; Schauser et al., 1999). Downstream 

targets of NIN include genes encoding subunits of the Nuclear Factor Y (NF-Y) CCAAT-box-

binding heterotrimeric transcription factor complex. The NF-Y complex consists of the three 

distinct proteins called NF-YA, NF-YB and NF-YC, all encoded by a small gene family (Kahle

et al., 2005). In legumes several members of these proteins have been found to commit a 

function in rhizobium symbiosis. In Lotus, LjNF-YA1 and LjNF-YB1 are transcriptional targets 

of LjNIN and promoting cortical cell divisions (Soyano et al., 2013). Knock down studies of 

MtNF-YA1 in Medicago revealed that a symbiotic NF-Y transcription complex commits 

functions that are essential in nodule development. MtNF-YA1 RNAi nodules vary in size, but 

are always smaller than wild type nodules. Small MtNF-YA1 knock down nodules lack a 

meristem, instead contain only fully infected cells (Xiao et al., 2014). This suggests that MtNF-

YA1 is required for formation and maintenance of the nodule meristem in Medicago.
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ERN belongs to the APETELLA2 / Ethylene Response Factor (AP2/ERF) family of transcription 

factors. MtERN1 Studies in Medicago showed that MtERN1 in conjunction with two GRAS-

Type transcriptional regulators, MtNSP1(Nodulation Signaling Pathway1) and MtNSP2, is

required for rhizobium LCO induced expression of the early nodulin gene, MtENOD11, in the 

root epidermis (Cerri et al., 2012). Knockout mutations in MtNSP1 or MtNSP2 are unable in 

functional LCO signaling, whereas this is not the case for Mtern1 knockout plants. A knockout

mutation in MtERN1 hampers nodulation, but mutant plants show early symbiotic responses 

including rhizobial infection. This suggest the existence of overlapping expression patterns with 

different gene namely MtERN2, a close homolog of MtERN1. Genetic analysis on these genes 

indicate that MtERN1Mt/ERN2 coordinately induce rhizobial infection and nodule organogenesis 

(Cerri et al., 2016).

MtNSP1 has been shown to bind to the promoter of MtENOD11, which requires MtNSP2 

(Hirsch et al., 2009). Yeast-two hybrid studies as well as split YFP studies indicate that MtNSP1 

and MtNSP2 function in homo- and heteromeric complexes (Heckmann et al., 2006). It is also 

reported that MtNSP1 is involve in arbuscular mycorrhizal symbiosis, though not absolutely 

essential (Delaux et al., 2013). Furthermore, a recent study showed that nsp2 mutants in 

Medicago do not respond to Myc- LCOs and are colonized less than wild-type plants by the AM 

fungus Rhizophagus irregularis (Maillet et al., 2011). In addition, MtNSP1 and MtNSP2 also 

have been shown to be involved in strigolactone biosynthesis. In this study a Mtnsp1Mtnsp2 

double mutant showed reduced colonization by AM fungi, which probably is caused by reduced 

strigolactone secretion, a compound that triggers branching of fungal hyphae (Liu et al., 2011).

The rhizobium and AM fungal symbiosis share signaling and cellular processes

Genetic studies in Pea and later, in Medicago and Lotus have revealed that a major part of the 

rhizobium LCO signaling pathway is shared with the signaling pathway that is activated by AM 

fungi Therefore, this genetic signaling network is named the common symbiosis signaling 

pathway, or symbiotic toolkit (Parniske, 2008). Components of the common signaling pathway 

are SYMRK (Endre et al., 2002; Stracke et al., 2002), Castor and Pollux (Ané et al., 2004; 

Imaizumi-Anraku et al., 2005) CCaMK (Lévy et al., 2004; Mitra et al., 2004; Tirichine et al.,

2006) and Cyclops (Messinese et al., 2007; Chen et al., 2008; Yano et al., 2008), NSP1 (Takeda

et al., 2013) and NSP2 (Maillet et al., 2011). Mutations in these genes affect both endosymbiotic 
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interactions. In legumes, no LCO receptors have been found to commit a function in rhizobium 

as well as endomycorrhizal symbiosis. However, like rhizobia, AM fungi produce LCOs. These 

are named Myc factors and are structurally similar to Nod factors (Gough and Cullimore, 2011).

This suggests that the receptors for Myc factors will be similar to those for Nod factors. 

Parasponia plants are the only non-legumes that can also establish a nodule symbiosis with 

rhizobium. Knock down of the Parasponia LCO receptor gene, PaNFP, results in a block of 

intracellular infection nodules (den Camp et al., 2011). Knock down of this receptor also blocks 

arbuscule formation by AM-fungi, whereas the roots are still intercellularly colonized (den Camp

et al., 2011). Parasponia has only a single NFP (LysM-type like) gene, whereas in legumes this 

gene experienced a duplication event. As will be described in more detail below, the Parasponia-

rhizobium symbiosis evolved relatively recent in comparison to the legume-rhizobium 

symbiosis. Therefore, it seems probable that in Parasponia, the PaNFP LCO receptor didn’t 

neofunctionalized to function exclusively in rhizobium symbiosis, but this receptor still has its 

ancestral function, which is perception of Myc factors. Such role of NFP-like genes in 

mycorrhizal symbiosis is supported by studies in tomato on SlLYK10. SlLYK10 is the ortholog of 

PaNFP. In tomato, absence of mycorrhization was observed in knock down mutants of SlLYK10

(Buendia et al., 2015). This suggests that a controlling arbuscule formation in AM symbiosis is 

the ancestral function of PaNFP/SlLYK10 genes.

Activation of the common symbiosis signaling pathway –either by rhizobium or AM-fungi-

induces cellular processes that lead to intracellular accommodation of the microbe. In both 

symbioses this involves the formation of a host membrane structure by which the microbe is 

guiding into the cells (Gutjahr and Parniske, 2013; Ivanov et al., 2012). Anytime the microbe 

remains bound by plant derived membrane structures; symbiosomes or arbuscules (Limpens et 

al., 2009), These symbiotic membrane compartments facilitate nutrient exchange between both 

partners (Geurts and Vleeshouwers, 2012). Studies in Medicago have revealed that specific

vesicle-SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptor) 

belonging to the VAMP72 (vesicle-associated membrane protein) family are involved in 

symbiosome as well as arbuscule formation. VAMP72 proteins are active in exocytotic pathways 

and mark secretory vesicles that accumulated in the cellular entry point of the microbe (Ivanov et 

al., 2012). This shows that despite of morphological differences, rhizobium and mycorrhizal 
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fungi trigger similar cellular responses. So, in addition to the LCO signaling pathway, also the 

pathway controlling symbiosome formation has been co-opted from the AM fungal symbiosis. 

Root nodule symbiosis is not limited to nitrogen fixing rhizobia. Also some gram positive 

filamentous Frankia bacteria can establish a nodular nitrogen fixing symbiosis on a selective 

group of ~220 plant species. These so-called actinorhizal plants belong to eight families of the 

Fabid clade, suggesting multiple evolutionary origins of this symbiosis (Diédhiou et al., 2014;

Doyle, 2011). Although it remains unclear whether Frankia species produce LCOs or use an 

alternative signal to communicate with their host plants, reverse genetic studies indicated that –at 

least part of- the common symbiosis signaling pathway is used to establish the Frankia-

actinorhizal plant symbiosis. Studies in the actinorhizal plants Casuarina glauca and Datisca 

glomerata revealed the symbiotic functioning of CgSYMRK/DgSYMRK, CgCCaMK and CgNIN.

(Gherbi et al., 2008; Markmann et al., 2008; Clavijo et al., 2015).  Furthermore, Frankia induced 

signaling triggers a Ca2+ oscillation response in C. glauca and Alnus glutinosa (Granqvist et al.,

2015; Chabaud et al., 2016). These findings strongly suggest that evolution of a nitrogen-fixing 

endosymbiosis with either rhizobium or Frankia was guided by genetic constraints.

Assuming that AM fungi infect their various hosts by a conserved mechanism, it implies that the 

genes encoding components for LCO signaling as well as the symbiosis related exocytosis 

pathway will be widespread in the plant kingdom. This is well supported by the genome 

sequence analysis of several plant species. Species that are able to establish an AM symbiosis 

harbor putative orthologues of the symbiosis genes identified in legumes, whereas often these 

genes are absent in AM non-hosts (Delaux et al., 2014; Bravo et al., 2016). For example in

Arabidopsis, which is non-host for AM fungi, most genes of the common signaling pathway as 

well as MtNFP/LjNFR5 have been lost. This further supports the idea that genetic constraints 

determined the evolution of the rhizobium endosymbiosis. However it arise the question why not 

more plant species have gained the rhizobium symbiosis trait? Taken into account the recent 

research on Parasponia, comparative studies of Parasponia and legumes as well as Parasponia

and its non-nodulating sister species Trema can answer this question, and may pave the way for 

future transfer of rhizobium symbiosis to the other non-legume plants. 

Effect of fixed nitrogen sources on legume root nodule formation

Legumes only form root nodules under nitrogen limiting condition, whereas the addition of
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excessive amounts of combined nitrogen suppress nodulation (Barbulova et al., 2007). Also,

nitrogen fixation can cease in existing nodules by addition of an exogenous fixed nitrogen

source. Legumes control the total number of nodules formed, because the maintenance of 

nitrogen fixing rhizobia is energy demanding (Reid et al., 2011; Schnabel et al., 2011).

Competence of leguminous plants to form nodules is determined by physiological conditions.

The mechanisms by which fixed nitrogen suppress the different steps of root nodule formation is

only partially understood (Barbulova et al., 2007).

The best studied mechanism to control nodule numbers is autoregulation of nodulation (AON). 

AON is a negative feedback regulation by which the number of nodules and the nodulation zone 

are tightly restricted. Mutants in AON have lost the ability to control nodule number and 

therefore form numerous nodules (so-called super- or hypernodulators). AON mutants have been 

studied in several legumes like Pea, Soybean, but also the model legumes Medicago and Lotus.

This has resulted in the identification of a CLAVATA1-like LRR receptor kinase (LRR-RLK) 

named HYPERNODULATION ABERRANT ROOT FORMATION1 (LjHAR1) in Lotus

(Kawaguchi et al., 2002), NODULE AUTOREGULATION RECEPTOR KINASE (GmNARK) in 

Soybean (Olsson et al., 1989) and SUPER NUMERIC NODULES (MtSUNN) in Medicago (Elise

et al., 2005). LjHAR1, GmNARK and MtSUNN are most probable orthologous genes that upon 

mutation results in a supernodulating phenotype. Ljhar1, Gmnark and Mtsunn knockout mutants

also have lost the ability to suppress nodulation in presence of exogenous fixed nitrogen

(Barbulova et al., 2007; Carroll et al., 1985; Magori et al., 2009). Grafting experiments showed 

that LjHAR1, GmNARK and MtSUNN are only essential in the shoot and are key factors in

systemic root-to-shoot-to-root negative feedback regulation of nodulation. The encoded LRR-

RLK recognizes CLV3/embryo-surrounding region (CLE) peptides (Hirakawa et al., 2008).

CLEs are a group of small (12–13 amino acids) secreted peptides that are derived from the C-

terminal region of pre-proteins. 39 LjCLE genes have been identified in the Lotus genome, three 

of them, LjCLE-RS1, LjCLE-RS2 and LjCLE3, are significantly up-regulated in Lotus nodulated

roots. Transcription of LjCLE-RS1 and LjCLE-RS2 is responsive to exogenous nitrate and

rhizobial inoculation (Okamoto et al., 2009). When LjCLE-RS1 or LjCLE-RS2 is ectopically 

expressed in roots of the Ljhar1 mutant using an Agrobacterium rhizogenes-mediated 

transformation system, both transformed and non-transformed roots show a super-nodulation

phenotype. This indicates that these two genes have suppressive effect on nodulation in a 
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LjHAR1 dependent manner (Okamoto and Kawaguchi, 2015). LjCLE-RS2 was found to be

strongly up-regulated in response to nitrate. Therefore it is hypothesized that LjCLE-RS2

translocates from root-to-shoot and directly binds to the LjHAR1 receptor (Okamoto et al.,

2013). Based on these findings, a model for the long-distance nitrate inhibition of nodulation has 

been proposed in Lotus. In this model, the LjCLE-RS2/LjHAR1 long-distance signaling system 

is shared between nitrate inhibition and AON (Okamoto and Kawaguchi, 2015).

A different study in Medicago, found that MtCLE peptides control nodulation not only

systematically, but also locally (Mortier et al., 2010).  In this study, 25 MtCLE genes in the 

Medicago genome have been identified. Two genes, MtCLE12 and MtCLE13, negatively

regulate nodulation. MtCLE12 and MtCLE13 have a high degree of similarity with LjCLE-RS1 

and LjCLE- RS2 (Mortier et al., 2010). Similarity in sequence and expression profiles suggests

that MtCLE13 and LjCLE-RS1/LjCLE-RS2 might exert a comparable function, respectively. 

Studies in Soybean on GmNARK revealed similar results as described for Lotus and Medicago.

Gmnark knockout mutants are affected in both AON and nitrate regulation of nodulation

suggesting this gene is a common component of both regulatory mechanisms(Reid et al., 2011).

Candidate CLE peptides in Soybean that commit symbiotic functions are GmRIC1, GmRIC2, 

and GmNIC1. Among these, GmNIC1 is strongly induced by nitrate and possessed the conserved

proline residues close to the C-termini, the part similar as found in MtCLE13 and LjCLE-RS1/2

(Okamoto et al., 2009).

CLE-CLAVATA-type LRR-RLK signaling does not function exclusively in symbiosis, but act

as signaling module in plant organ development (Okamoto et al., 2009). This holds also for

genes that control root nodule formation. For example, an increased number of emerged lateral 

roots was reported in the Lotus Ljhar1 mutant under both symbiotic and non-symbiotic 

conditions (Wopereis et al., 2000). The compact root architecture 2 (Mtcra2) is another 

Medicago mutant which is affected in a CLAVATA1-like Leucine-Rich Repeat Receptor-Like 

Kinase (LRR-RLK). Mtcra2 mutant plants form an increased number of lateral roots with a

reduced number of symbiotic nitrogen-fixing nodules (Huault et al., 2014). These finding reveal 

the related function of the CLE-CLAVATA1 type signaling modules in lateral root development

and autoregulation mechanism. 
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The role of plant hormones in legume root nodule formation

Rhizobium root nodule formation is causally linked with formation of a local maximum of

indoleacetic acid (IAA), the natural auxin in plants (Mathesius et al., 1998; Pacios-Bras et al.,

2003; Huo et al., 2006; van Noorden et al., 2007; Takanashi et al., 2011; Imanishi et al., 2014;

Chiu et al., 2005; Perrine-Walker et al., 2010; Suzaki et al., 2012). Based on auxin responsive

reporter constructs as well as quantification studies, it is known that IAA is not uniformly

distributed in the plant root. The highest concentrations are found in the plant cells undergoing 

cell divisions –e.g. the root apical meristem and lateral root primordia, whereas also in the

elongation zone relative high amounts of auxin are detected (Pacios-Bras et al., 2003; Larkin et

al., 1996; Deinum et al., 2012). Auxin is accumulating at the sites of nodule development, which

implies that LCO signaling interferes with auxin homeostasis in the plant root. The mechanism

by which such local auxin maximum is formed remains unknown; however it is unlikely that 

LCOs trigger such response cell autonomously. This because LCOs are extremely immobile and

stick within walls of epidermal cells, whereas in most legumes the auxin maximum is formed in

cortical and pericycle cell layers (Deinum et al., 2012; Marhavý et al., 2013). This suggests that

upon perception of LCOs a secondary signal will released from the epidermis that triggers an

auxin maximum in lower layers. Quantitative modelling suggests that an auxin maximum can be 

formed by local inhibition of auxin efflux transport; e.g. by interfering with the functioning the 

PIN auxin efflux carrier proteins (Deinum et al., 2012). Several compounds are known that have

such function; including the plant hormones cytokinin and strigolactones as well as flavonoids.   

The plant hormone cytokinin is implicated in the regulation of many physiological processes

during plant development, growth, and adaptation to environmental conditions (Martín et al.,

2000; Mok and Mok, 2001). Active cytokinins accumulate upon LCO signaling (van Zeijl et al.,

2015; Frugier et al., 2008; Gonzalez-Rizzo et al., 2006; Lohar et al., 2006; Tirichine et al.,

2007). It has been reported that a gain-of-function mutation in the cytokinin receptor LjLHK1 of 

Lotus and MtCRE1 of Medicago triggers spontaneous root nodule organogenesis (Tirichine et

al., 2007; Ovchinnikova et al., 2011). This indicates that perception of the phytohormone

cytokinin is a key element in nodule formation in legumes, which is underlined with experiments

in which application of exogenous cytokinin induces formation of nodule primordia (Heckmann

et al., 2011; Cooper and Long, 1994). In the opposite manner, reduced cytokinin accumulation 

and/or perception blocks nodulation (Murray et al., 2007; Gonzalez-Rizzo et al., 2006). This 
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demonstrates unequivocally that cytokinin signaling is necessary and sufficient to induce cortical

cell divisions and nodule organogenesis.

Besides cytokinins, also the biosynthetic pathways of strigolactones and flavonoids are activated

upon LCO signaling. Both are known to have the capacity to interfere with PIN functioning.

However, knockout mutants in strigolactone biosynthesis genes have only a weak symbiotic

phenotype, suggesting that strigolactone functioning is less essential for root nodule formation

Interestingly, it was found that exogenous application of flavonoids can complement the

knockout phenotype of Mtcre1. This suggests that flavonoid act downstream of or in parallel of 

cytokinins (Ng et al., 2015).

Besides hormones with a positive effect on root nodule formation, several hormones have been

implicated to have a negative effect on LCO signaling and root nodule formation. For example, 

abscisic acid and jasmonic acid are known to interfere with LCO induced calcium spiking (Ding

et al., 2008; Sun et al., 2006). Also the gaseous plant hormone ethylene is known to have a

negative effect on this physiological response, although it is not fully blocking it. Ethylene 

affects the maintenance of the response, as well as it changes the threshold concentration of LCO

required for the induction of calcium spiking (Oldroyd et al., 2001). Further, ethylene acts as 

inhibitor of nodule formation and bacterial infection. The application of ethylene, or ethylene-

releasing compounds, inhibits nodule organogenesis in numerous species including Phaseolus

vulgaris (Grobbelaar et al., 1971), Pea (Drennan and Norton, 1972) Trifolium repens (Goodlass

and Smith, 1979) Melilotus alba (Lee and LaRue, 1992) Medicago and Lotus (Penmetsa and

Cook, 1997; Nukui et al., 2000).

Like cytokinin. Several lines of evidence indicate that ethylene signaling is an integral part in

root nodule formation. For example, local biosynthesis of ethylene opposite phloem poles is

thought to provide positional information by locally inhibiting root cortical cell divisions 

(Heidstra et al., 1997). Also there might be a low threshold of ethylene required for proper 

infection by rhizobium bacteria (Ferguson and Mathesius, 2003; Oldroyd et al., 2001). The 

negative ethylene effect on nodule number could be accounted for invoking a specific ethylene 

regulation of infection thread growth (Oldroyd et al., 2001). The role of ethylene in regulation of 

rhizobial symbiosis is supported with the identification of ethylene signaling mutant ein2 in 

Lotus and Medicago (Miyata et al., 2013; Chan et al., 2013; Penmetsa and Cook, 1997). For

example, the Medicago Mtein2/sickle knockout mutant makes the plant insensitive to ethylene
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(Penmetsa and Cook, 1997), which dramatically effects nodule formation. In small root zones 

numerous nodules are formed that have lost spatial positioning in respect the stele of the root. 

Detailed analysis of the Mtein2/sickle mutant indicated that the read out of rhizobium LCO

signaling is stronger. For example, root hair deformation in response to LCOs revealed a stronger

response in Mtein2/sickle compared to the wild-type plants (Oldroyd et al., 2001). Ethylene also 

has an effect on calcium spiking that may regulate the specificity of downstream responses. This

effect could be either on the initiation of calcium spiking directly or that ethylene has the

capacity to modulate the frequency of calcium spikes (Oldroyd et al., 2001). This shows that

ethylene acts upstream or at the point of calcium spiking in the LCO signal transduction 

pathway, suggesting that it can modulate both the degree and the nature of LCO pathway

activation. Furthermore, the LCO concentration threshold that is required to activate calcium 

spiking is defined by the ethylene status (Oldroyd et al., 2001). It is also known that ethylene

signaling regulate auxin transport at certain stages of nodule development. Ethylene partially 

modulate auxin transporter through PIN gene expression, ultimately an increase in auxin

transport results in higher nodule numbers (Prayitno et al., 2006).

Whereas much is known about the molecular dialog of the legume-rhizobium mutualism, it has 

not been possible so far to answer the question why the rhizobium symbiosis trait is restricted to

two lineages; legumes and Parasponia. Genomics studies showed that for most –if not all-

symbiosis genes close homologs are present in all plant species that are able to establish an 

endomycorrhizal symbiosis (Parniske, 2008). To get insight in the evolutionary trajectory of the

rhizobium symbiosis trait comparative systems are essential. A comparison of legumes to

Parasponia for example may provide insights to what extend genetic constraints have guided 

evolution of rhizobium N2-fixing root nodules. Studies in this direction revealed that Parasponia

nodulates with rhizobium strains that also can form root nodules with legumes (Op den Camp et

al., 2012). Like with (most) legumes, the Parasponia-rhizobium symbiosis is driven by LCO

signaling (Marvel et al., 1987). Also one LysM-type LCO receptor has been identified, PaNFP,

which showed to be orthologous to MtNFP/LjNFR5 of Medicago (den Camp et al., 2011).

Furthermore, it was found that an autoactive allele of CCaMK can trigger formation of root 

nodule-like structures in absence of rhizobium or LCOs (den Camp et al., 2011). Taken together 

these data suggest that at least in part, both symbioses make use of identical signaling queues.

In addition to a Legume-Parasponia comparison to identify genetic constraints, a comparison of
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symbiotic plants with non-symbiotic plants may uncover novel insights. For such comparison the

plant species that differ in phenotype should be closely related. Furthermore, it is important that 

the non-nodulating plant species used in such comparison, does not represent a recent loss of the

rhizobium symbiosis, but rather never gained it. In the legume family several non-nodulating

plant lineages occur, but it remains elusive whether these represent a loss of nodulation or never 

gained it (Doyle, 2011). In legumes a non-nodulating plant species are represented by Cercideae,

which form the most basal lineage in this family (Lavin et al., 2005). This lineage diverged about 

59 million years ago from the legume crown node, which represents all nodulating legumes. In 

contrast, the Parasponia lineage is considered to be much younger than the legume crown node 

(Behm et al., 2014). Therefore, Parasponia, and its non-nodulating sister species of the genus

Trema, may represent the best known comparative system of a nodulating and non-nondulating

plant species.

Parasponia-rhizobium symbiosis

The genus Parasponia belongs to the Cannabaceae (Doyle, 1998). Cannabaceae (order Rosales)

and Fabaceae (order Fabales) are only remotely related (figure 1), with a last common ancestor 

about 100 million years ago (Wang et al., 2009). Therefore it is most probable that both lineages

gained the rhizobium-nodule symbiosis independently. 
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Figure 1. Phylogenetic representation of evolutionary distance between Parasponia and legumes. F: Frankia, R:

Rhizobia.

Parasponia root nodules have a more basal appearance when compared to legume nodules.

Parasponia nodules have a central vascular bundle with infected cells in the peripheral zone 

(Cao et al., 2012) and a meristem at the tip. Cells proximal of this meristem are being invaded by

rhizobia upon formation of infection threads. In contrast to most legume nodules the bacteria are 

not released into the cell as symbiosomes, but remain within thread-like structures. These, so-

called fixation threads, differ from the penetrating infection threads in such a way that they have 

a cell wall that is significantly reduced in thickness. Also, fixation threads are somewhat wider 

than infection threads, allowing formation of double phyla of nitrogen-fixing bacteria. In

contrast, in most legume nodules infection threads release rhizobia from the tip of the thread into 

the cytoplasm. At this point the host cell encloses the newly-released bacteria within a cell 

membrane, so that it is not actually in contact with the plant cytoplasm. These bacteria then

differentiate into their symbiotic N2-fixing organelle-like structures, and effectively become

dependent on the host plant.

The structure of fixation threads somewhat resembles the structure of arbuscules formed by AM
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fungi in the root cortical cells of their host plant. Overlap in both structures is support with the 

finding that PaNFP controls formation of both (den Camp et al., 2011). Fixation threads are not 

unique to Parasponia. Several basal legumes host their symbiotic microbe in a similar way. For 

example, Andira as well as some Chamaecrista species form also fixation threads (also named 

persistent infection threads) (Faria et al., 1987; Naisbitt et al., 1992). Andira and Chamaecrista

do not represent closely related legume lineages, but diverged ~58 million years ago. Fixation

thread containing nodules harbor significantly less bacteria per cell when compared to nodules 

with symbiosomes (Behm et al., 2014). Additionally, symbiosomes are deprived from cell wall

material and have an enlarged surface of surrounding membrane when compared to fixation 

thread, which may be an advantage in nutrient exchange between both partners. Taken together it

seems most probable that fixation threads resemble a more ancestral stage of intracellular 

rhizobium infection (de Faria et al., 1986; Naisbitt et al., 1992).

The Parasponia-rhizobium symbiosis is more basal when compared to the legume-rhizobium

symbiosis. Not only the nodules are more basal in structure when compared to legumes, also the

nitrogen fixating capacity is lower than in legumes by a 0.5 - 1.0 order of magnitude (Vessey et 

al., 2004). The primitive nature of Parasponia root nodules is further underlined by the mode of 

rhizobium infection of the root. Infection of Parasponia by rhizobia occur by intercellular

penetration of the root; a mechanism known as crack entry. Such mode of infection is less-

sophisticated than root hair based intracellular infection as found in most legume species.

Coinciding with crack entry is partner promiscuity in Parasponia, which allows nodulation by

many rhizobial species, irrespective of their nitrogen fixation capacities (Op den Camp et al.,

2012).

Taken together, I argue that due to its young age and independent evolution, Parasponia

provides a simple system to identify the genetic basis underlying rhizobium symbiosis evolution.

Thereby the main question of my research is how this mutualistic interaction evolved in 

Parasponia, and which constraints have guided this evolutionary trajectory?

Forward evolution in Trema

Parasponia represents 5 tropical tree species that can be found on volcanic regions in the Malay 

archipelago. These species are phenotypically very similar to non-nodulating Trema species, 

which occasionally leads to incorrect species determination (Akkermans et al., 1978). Although 
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Parasponia and Trema can be distinguished by some phenotypic features like their imbricate 

perianth lobes of the male flowers and by their intrapetiolar (Trinick, 1973). Recent phylogenetic

studies using chloroplast genes such as rbcL, and trnL or the internal transcribed spacer region of 

18S–26S nuclear ribosomal DNA as markers, indicated that the  Parasponia lineages is nested in 

the Trema genus (Yang et al., 2013). This suggests that Parasponia evolved only relatively 

recent, including its symbiotic capacities, from an ancestral Trema species. Such hypothesis is

supported by the more restricted distribution of Parasponia when compared to Trema. The genus 

Trema includes 15 species that can be found in Asia, Australia, Africa and the Americas. Ever

since the discovery of Parasponia (in 1973) as the first, and till now only, non-legume that 

independently evolved the nitrogen-fixing nodule symbiosis with rhizobium, it intrigued the 

scientific community. Comparing Parasponia not only to legumes, but also to Trema can help to

characterize the genetics of the nitrogen fixing rhizobium root nodule trait. 

Scope and outline of the thesis

The overall aim of this research was to identify the evolutionary trajectory by which Parasponia

became able to establish the rhizobium nodule symbiosis. To investigate the nodulation process

as a specific difference between Parasponia and Trema, a collection of techniques was needed, 

including plant transformation protocols. In chapter 2, I described a rapid Agrobacterium

rhizogenes-mediated transformation method to generate composite plants carrying transgenic

root for Parasponia andersonii and Trema tomentosa. This ‘transient’ transformation system

allowed functional testing of transgenes. Unfortunately, this transient method was not very 

efficient for Trema sp., which forced me to develop a novel protocol for stable –A. tumefaciens-

mediated transformation of T. tomentosa (chapter 3). By this protocol, T. tomentosa plants

carrying DR5::GUS were generated within a period of 6 months. Subsequently, the transgenic

T0 lines were vegetatively propagated to study the DR5::GUS expression. 

In chapter 4, 5 and 6 I studied the biology of the Parasponia-rhizobium symbiosis. Along the 

idea that Parasponia-rhizobium symbiosis evolved recently, I questioned whether Parasponia

has gained mechanisms to control the interaction with its symbiotic partner. In this context I

tested whether Parasponia can control root nodule formation in presence of an exogenous fixed 

nitrogen source (chapter 4). Considering that Parasponia is a tree with higher nitrate demand, I

questioned which exogenous nitrate concentration will affect the nitrogen fixing symbiosis in
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Parasponia?  To do so, I examined the effect of a range of nitrate treatments on the rhizobium 

induced symbiotic responses in Parasponia. This revealed that nodule primordium formation and 

intracellular infection have different sensitivities to nitrates. Formation of nodules was optimal at 

10 mM nitrate, whereas progression of intracellular infection was impaired at 20 mM nitrate. 

Specifically, the switch from infection to fixation thread formation was affected by exogenous 

nitrate. In line with this finding I argued that this effect of exogenous nitrate in the rhizobium 

symbiosis, is a novel invention in Parasponia.

Next I investigated whether the GRAS-type transcription factors NSP1 and NSP2 (Chapter 5)

and ethylene signaling (Chapter 6), like in legumes, are co-opted by Parasponia to control root 

nodule formation. To do so, Parasponia orthologous genes to Medicago NSP1, NSP2 and EIN2 

have been cloned and studied by RNAi using A. rhizogenes mediated transformation. This

revealed that all these genes commit a symbiotic role, supporting the hypothesis that genetic

constrains have guided evolution of rhizobium symbiosis in legumes and Parasponia.

In Chapter 7 (General discussion) I place these findings in a broader context.
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Abstract

Parasponia trees are the only non-legume species that form nitrogen-fixing root nodules with

rhizobium. Based on its taxonomic position in relation to legumes (Fabaceae), it is most likely that

both lineages have gained this symbiotic capacity independently. Therefore, Parasponia forms a 

bridging species to understand the evolutionary constraints underlying this symbiosis. However, 

absence of key technologies to genetically modified Parasponia seriously impeded studies on 

these species. We employed Agrobacterium rhizogenes to create composite Parasponia 

andersonii plants that harbor transgenic roots. Here, we provide an optimized protocol to infect

P. andersonii as well as its non- symbiotic sister species Trema tomentosa with A. rhizogenes.

We show that the transformation efficiency is temperature dependent. Whereas the optimal 

growth temperature for both species is 28°C, the transformation is most efficient when co-

cultivation with A. rhizogenes occurs at 21°C. By using of this optimized protocol up to 80% 

transformation efficiency can be obtained. These robust transformation platforms will provide a 

strong tool to unravel the Parasponia–rhizobium symbiosis.

Keywords: Parasponia, Trema, Agrobacterium transformation, Symbiosis, Transgenic 

root, Composite plant.
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Introduction

Legumes (Fabaceae) are known for their protein-richness and many legume crops are 

cultivated to provide a protein source for humans. Legume crops have been used in ancient 

agriculture; e.g. in Neolithic China soybean was grown next to millet (Lee et al., 2007; Guo et 

al., 2010). Legumes can accumulate such high protein content in leaves and seeds due to a 

unique endosymbiosis with soil born nitrogen-fixing rhizobium bacteria. This symbiosis 

results in formation of novel root organs, the so- called root nodules. In nodules, rhizobium is 

hosted intracellularly and produces ammonia from atmospheric N2. This is the most important 

biological process by which fixed nitrogen is produced in agriculture (Dawson and Hilton, 

2011). The very high efficiency of N2-fixation in legume nodules makes it an already long 

lasting goal for researchers to transfer this symbiotic capacity to important non-legume crops 

like rice and wheat (Burrill and Hansen, 1917; Beatty and Good, 2011).

Outside the Fabaceae, there is only a single plant genus, Parasponia, which can establish a 

similar symbiosis with rhizobium. Parasponia belongs to the Celtidaceae (order Rosales) 

(Yesson et al., 2004), but molecular phylogenetic studies combine this (sub) family with 

Cannabaceae and Urticaceae, resulting in a new (super) family of Cannabaceae (Sytsma et 

al., 2002; II, 2003). Parasponia and Fabaceae are only remotely related and had a last 

common ancestor 100 million years ago (Wang et al., 2009). This suggests that both lineages 

evolved rhizobium symbiosis independently. Such independent evolutionary events provide a 

unique tool to unravel the molecular evolutionary mechanisms underlying the rise of 

endosymbiosis with rhizobium. Furthermore, studies on Parasponia can teach us how to 

transfer this important agricultural trait to non- legume crops. However, absence of key 

technologies to genetically modify Parasponia plants seriously has impeded studies in such 

directions.

In the Parasponia genus only 5 species are recognized, all of which are tropical trees with their 

native distribution in the Malay Archipelago, including Indonesia, Malaysia and Papua New 

Guinea (Trinick, 1973; Akkermans et al., 1978; Becking, 1992). Upon initial discovery it was 

misclassified and named Trema due to strong phenotypic resemblance to these species, which 
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are unable to engage a rhizobium symbiosis (Trinick, 1973). The close relation of Trema and 

Parasponia genera is supported by molecular phylogenetic studies using the chloroplast genes 

rbcL, and trnL or the internal transcribed spacer (ITS) region of 18S– 26S nuclear ribosomal 

DNA as markers (Sytsma et al., 2002; Yesson et al., 2004). In these studies insufficient 

resolution is obtained to discriminate Parasponia as a monophyletic group from non-symbiotic 

Trema species. As Parasponia is the only non-legume species able to establish a symbiosis 

with rhizobium, it suggests that it has gained this capacity relatively recent, most likely just 

after the split from Trema.

The relative young age of the Parasponia-rhizobium symbiosis is further supported by the 

rather primitive nature of the root nodules. Parasponia nodules have the appearance of 

modified lateral roots with a central vascular bundle and infected cells in the peripheral zone 

(Trinick, 1979). Furthermore, the infection process is also rather primitive. Rhizobium enters 

the Parasponia root intercellularly by crack entry and only when bacteria reach a nodule 

primordium, intracellular  infection occurs (Becking, 1992). Once inside a cell, the infection 

thread will branch and the newly formed threads have a very thin cell wall. These so-called 

fixation threads are filled with rhizobia that can fix nitrogen (Trinick, 1979) (Fig. 1c). Fixation 

threads resemble the endomembrane compartments containing highly branched hyphae formed 

by arbuscular mycorrhiza (AM) fungi, called arbuscules. Both structures form a continuum with 

the plasma membrane. Recent studies in P. andersonii revealed that both, AM arbuscules and 

rhizobium fixation threads, require the LysM-type receptor kinase PaNFP that in legumes is 

known to function as receptor for rhizobium secreted lipochitooligosaccharides, named Nod 

factors (den Camp et al., 2011). In legumes this receptor is not essential for mycorrhization, 

possibly due to subneofunctionalization after a gene duplication event (Young et al., 2011).

These data are well in line with the idea that the Parasponia- rhizobium symbiosis is relatively 

young, and it clearly illustrates that Parasponia has the potential to provide insight in the core 

mechanisms controlling symbiosis (Streng et al., 2011).

Genetic studies revealed that the evolutionary constraints underlying a rhizobium nodule 

symbiosis are largely based on the signaling machinery essential for mycorrhization. As the 

vast majority of plants can establish the endosymbiosis with endomycorrhizal fungi, it 

suggests that the genetic machinery to establish a rhizobium nodule symbiosis is in principle 

widespread in the plant kingdom. This, combined with the ability to transfer lateral roots into a 
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rhizobium hosting organ raises the intriguing question why most plants have not yet evolved a 

rhizobium nodule symbiosis. As Parasponia could provide the answer a Chinese-Dutch 

consortium has started the sequencing of the P. andersonii genome. However, to fully exploit 

this sequence information it will be essential to have an efficient transformation procedure 

available.

Fig. 1 Parasponia root nodules. a Nodules on P. andersonii roots induced by Sinorhizobium sp. NGR234. Bar 1

mm. b Structure of a P. andersonii nodule with central vascular bundle (V) and peripheral lobes with rhizobium 

infected cells (R).  Bar 1 mm. c Confocal microscope image of an infected P. andersonii nodule cell filled with 

fixation threads. Rhizobia inside these fixation threads express the fluorescent marker gene GFP. Cells are counter-

stained with FM-64. Bar 1mm.

Genetic transformation mediated by A. tumefaciens or A. rhizogenes has been developed for 

many plant species. In legumes especially co-transformation with A. rhizogenes has been used. 

In this system the root inducing locus (rol) genes of A. rhizogenes are transferred to the host 

and induce the formation of so-called hairy roots, even though the phenotypic appearance of 

these roots are often indistinguishable from untransformed roots (White et al., 1985). The gene 

of interest can be co-transferred with the rol genes. A. rhizogenes mediated transformation leads 

to composite plants with a non-transgenic shoot carrying several transgenic roots that are the 

result of independent transformation events. For a number of legume species this method has 

been optimized, which resulted in rapid and effective protocols to generate composite plants 

(Boisson-Dernier et al., 2001; Limpens et al., 2004; Colpaert et al., 2008; Estrada-Navarrete et 

al., 2006). Since a composite plant may contain co-transformed as well as non-co-transformed 

roots, generally a fluorescent protein (e.g.  DsRed or GFP) is used as non-destructive selectable 
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marker. Taken together, these protocols provide a solid platform for studies on legume root 

biology and root-microbe interactions, such as rhizobium and endomycorrhizal symbioses. 

Here, we aim to establish a similar platform for P. andersonii and its non-nodulation sister 

species Trema tomentosa.

Results and discussion

Agrobacterium rhizogenes-mediated root transformation of Parasponia andersonii is 

temperature dependent

Parasponia andersonii is a tropical woody plant, and the optimal temperature for growth of 

seedlings or micro-propagated shoots is 28°C (Davey et al., 1993; Webster et al., 1995). Shoot 

cuttings can be efficiently rooted at this temperature. Therefore we tested whether A. 

rhizogenes would induce the formation of transgenic roots at 28°C. For this experiment we 

used micropropagated plantlets that had already formed roots and the A. rhizogenes strain 

MSU440 that harbored a control binary vector containing DsRed1 as selectable marker. 

Plantlets were infected with A. rhizogenes after removing the root system and were inoculated 

at the wound surfaces. Plantlets and A. rhizogenes were co-cultivated for 5 days on EKM 

medium and subsequently transferred to emergence medium that is rich in nutrients and 

contains cefotaxime to kill A. rhizogenes. These plants formed about 3 new roots within a 3 

week time period. However, the number of transgenic roots expressing DsRed1 was very low. 

We analyzed 222 plants and only 8 contained one or more transgenic roots based on red 

fluorescence (Fig. 2a, b; Table 1). As the transformation efficiency (% of composite plants with 

a transgenic root) was only 3.6 %, this method was not really suitable for research and we 

aimed to optimize it.

Boisson-Dernier et al. (2001) had previously shown that a mild temperature during co-

cultivation is beneficial for A. rhizogenes-mediated transformation of M. truncatula. Therefore, 

we tested whether a lower co-cultivation temperature could improve the efficiency of A. 

rhizogenes mediated transformation of P. andersonii. Again, we used micropropagated 

plantlets that had already formed roots.
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Fig.2 Micropropagated Parasponia andersonii and Trema tomentosa plantlets with transgenic roots. a, b P. 

andersonii plantlet carrying a transgenic root, which can be distinguished based on DsRED1 expression  causing  

red  fluorescence  (b).  c,  d  P. andersonii plantlet carrying a transgenic root that is nodulated with Sinorhizobium 

NGR234. Transgenic root nodules can distinguished based on red fluorescence (d). e Rooted T. tomentosa plantlet.
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P.andersonii was co-cultivated with A. rhizogenes at 21°C on EKM medium. Five days after 

inoculation plants were transferred to emergence medium (including cefotaxime) and placed 

back at 28 °C, which is the optimal temperature for growth of P. andersonii. Three weeks after 

transfer, the transformation efficiency of micropropagated plantlets was 70.3 % (Table 1). 

Based on these findings we conclude that co-cultivation at lower temperature significantly 

increases the transformation efficiency of P. andersonii.

Next, we tested whether prolonged growth at 21°C can further improve the transformation 

efficiency. To do so, we performed two types of experiments. After co-cultivation at 21 °C for 5 

days, plants were transferred to emergence medium and kept for 1 or 3 additional weeks at 21

°C. Both growth conditions improved transformation, resulting in almost 100 % efficiency (Fig. 

2; Table 1). So, extending the period that plants are grown at 21°C is the key to further increase 

the transformation efficiency. However, transgenic roots grew very slow at 21 °C and large calli 

developed at the base on the root system when grown at this temperature for 3 weeks. 

Therefore, we conclude that the best way to obtain proper transgenic roots in an efficient 

manner is by co-cultivation at 21 °C for 5 days and an additional week at 21 °C when grown on 

cefotaxime containing nutrient rich emergence medium, prior transfer to 28°C. These 

transgenic roots could also be nodulated when grown on plates by Sinorhizobium sp. NGR234 

(Fig. 2c, d).

Transformation of unrooted Parasponia andersonii shoots

In the above described method we used rooted plantlets as source for transformation. These 

plantlets were obtained upon in vitro micropropagation as described by Davey et al. (1993)

with a few modifications. As P. andersonii is a tree, we decided to use woody plant medium 

(WPM, (Lloyd, 1980) instead of MS medium. Generated shoots were subsequently rooted on 

auxin containing rooting medium; a procedure that takes 2 weeks. We raised the question 

whether unrooted shoots could be used directly for A. rhizogenes -mediated root 

transformation. This would be attractive as shoots can be obtained in high numbers with low 

labour input. The initial protocol for rooted plantlets (5 days at 21°C, 3 weeks at 28°C) 

resulted in a transformation efficiency of 61.3 % (Table 1). Either method of prolonged 

growth at 21°C resulted in a higher transformation efficiency of 85 % (Table 1). Taken 



Chapter 2

36

together, we conclude that also unrooted shoots can be used to generate composite plants 

carrying transgenic roots with efficiency comparable to rooted plantlets. By doing so, the time 

period of experimentation is shortened by about 2 weeks.

Micropropagation and root transformation of Trema tomentosa

To enable comparative studies with Parasponia we aimed to develop a similar root 

transformation system for the closely related non-nodulating sister species, namely T. 

tomentosa. We set up an in vitro micropropagation system similar as used for P. andersonii.

The in vitro micropropagation method as applied for P. andersonii could be adopted with 

marginal changes for T. tomentosa (see ‘‘Materials and methods’’). We used the optimized 

protocol for A. rhizogenes-mediated transformation of P. andersonii and used either rooted or 

unrooted T. tomentosa shoots as starting material. The efficiency of rooted T.tomentosa 

plantlets was 61.5 % (Fig. 2e; Table 1). But when unrooted shoots are used an efficiency of 

only 37.1 % was obtained (Table 1). Most of untransformed shoots had big calli at the wound 

site of A. rhizogenes infection. This may decrease the transformation efficiency. Still the 

majority of the rooted plantlets could be transformed and therefore we concluded that rooted 

plantlets are a better starting material for A. rhizogenes-mediated transformation of T. 

tomentosa.

Conclusion

We developed a relatively fast and highly efficient method for A. rhizogenes-mediated roots 

transformation for Parasponia and Trema species. We show that in case of P. andersonii and T.  

tomentosa transformation with A. rhizogenes MSU440 at 21°C is most efficient despite the fact 

that the optimal growth temperature of these tropical species is 28°C. This is in line with

previous A. rhizogenes- based root transformation studies on M. truncatula and supports the 

conclusion that Agrobacterium mediated DNA transfer is temperature dependent (Dillen et al.,

1997; Kondo et al., 2000; Boisson-Dernier et al., 2001; Salas et al., 2001). The efficient 

transformation protocols will be an important tool for functional analysis of Parasponia and

Trema genes by reverse genetics. This technology will facilitate the use of the Parasponia

genome sequence that will become available in the near future and so it will be instrumental 

in unraveling the evolutionary mechanism by which Parasponia obtained the ability to 



Temperature dependency of Agrobacterium rhizogenes–mediated root 

transformation

37

establish a N2 fixing symbiosis with Rhizobium.

Materials and methods

In vitro micro-propagation of P. andersonii and T. Tomentosa

Parasponia andersonii and Trema tomentosa axillary buds were surface sterilized in 4 % 

hypochlorite (commercial bleach) for 7 min and subsequently washed 6 times by autoclaved 

water. Sterilized P. andersonii axillary buds were placed on propagation medium in Ø 10 cm 

round petri dishes (pH 5.8, 20 g/L sucrose, 2.4 g/L McCown Woody Plant Medium (WPM) 

including vitamins (Duchefa Biochemie, Haarlem, The Netherlands; WPM) (Lloyd, 1980) 1.0

mg/L 6-Benzylaminopurine, 0.1 mg/ L Indole-3-butyric acid, 0.8 % Daichin agar (Brunschwig 

Chemie, Amstedam, The Netherlands)). Sterile T. tomentosa axillary buds were placed on 

propagation medium with half the hormonal concentrations (pH 5.8, 20 g/L sucrose, 2.4 g/L 

WPM, 0.5 mg/L   6-Benzylaminopurine, 0.05 mg/L Indole-3-butyric acid, 0.8 % Daichin agar). 

Both were kept in an Elbanton growth cabinet at 28°C with a 16/8 h day/night regime. Within 4 

weeks shoots emerged from the axillary buds calli. Shoots of 1.0 cm in length were cut and 

transferred to rooting medium (pH5.8, 20 g/L sucrose, 2.4 g/L WPM, 1.0 mg/L indole-3-butyric 

acid, 0.1 mg/L 1-naphthaleneacetic  acid)  in  round  Ø10 cm petri dished in-between two half-

round Ø 8.5 cm filter  papers (Machery-Nagel,  Du¨ren,  Germany). These plates were covered 

by aluminum foil (darkness induced roots) and kept in the same growth cabinet at 28°C for 2 

weeks. Rooted shoots were kept on hormone free medium (pH 5.8, 20 g/L sucrose, 2.4 g/L 

WPM, and 0.8 % Daichin agar).

Bacterial strains

Agrobacterium rhizogenes strain MSU440 carrying the empty binary vector pRed Root that 

contains DsRed1 as selectable marker was used for the transformations (Lim- pens et al. 

2004). The binary vector is available upon request from our laboratory.

Agrobacterium rhizogenes-mediated transformation micropropagated P. andersonii or T.

tomentosa shoots (over 1.0 cm in length) or rooted plants were used for A rhizogenes 
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transformation. Roots or the basipetal tip of a shoot stem were removed from the 

plantlets/shoots with a razor blade and plants were subsequently placed on top of a Ø 8.5 cm 

half-round filter (Machery-Nagel, Du¨ren, Germany) on EKM medium Ø10 cm petri dishes 

(pH 6.6, 0.25 g/L MgSO4.7H2O, 0.12 g/L KH2PO4, 0.36 g/L K2HPO4, 0.25 g/L  

CaSO4.2H2O,  0.10 g/L  Na2SO4,  0.03 g/L   NH4NO3, 0.005 g/L Fe-citrate, 1.0 mg/L 

MnSO4, 0.25 mg/L ZnSO4.7H2O, 0.25 mg/L CuSO4.5H2O, 0.25 mg/L  H3BO3, 0.005 mg/L 

Na2MoO4.2H2O, 0.8 % Daichin agar (Bruns- chwig Chemie, Amstedam, The Netherlands)). 

Plate grown A. rhizogenes strain MSU440 carrying pRedRoot was applied on the wounded 

surface. The most basipetal shoot portion was carefully punctured 2–3 times with a sterile 

needle (0.45 micron) that was first dipped in A. rhizogenes. Plates with plantlets were placed 

vertically in the growth cabinet. First, the wounded shoots were co-cultivated with A.

rhizogenes on EKM (in Elbanton growth cabinet at either 21 or 28°C with 16/8 h light/dark 

cycle), and subsequently transferred to cefotaxime (300 mg/ml) containing nutrient rich 

emergence medium (EM) (3 mM MES pH 5.8 containing 2.5 g/L KNO3, 0.4 g/L 

MgSO4·7H2O, 0.3 g/L NH4H2PO4,  0.2 g/L  CaCl2·2H2O,  10 mg/L MnSO4·4H2O, 5 mg/L 

H3BO3, 1 mg/L ZnSO4·7H2O, 1 mg/L KI, 0.2 mg/L CuSO4·5H2O, 0.1 mg/L 

NaMoO4·2H2O, 0.1 mg/L CoCl2·6H2O,  15 mg/L  FeSO4·7H2O,  20 mg/L Na2EDTA, 100 

mg/L myoinositol, 5 mg/L nicotinic acid, 10 mg/L pyridoxine HCl, 10 mg/L thiamine HCl, 2 

mg/L glycine,  10 g/L sucrose, 0.9 % Daichin agar containing 300 mg/ml Cefotaxime Sodium 

(Duchefa Biochemie, Haarlem, The Netherlands)) (Elbanton growth cabinet at either 21 or 28

°C with 16/8 h light/dark cycle). On EM medium shoots were kept in-between two half-round 

filter papers; mind especially that both filters are in contact with the wounded surface. Petri 

dishes were closed with parafilm, but a small opening was left to enable aeration.

Detection of transgenic roots

Transgenic roots were selected based on red fluorescence, using a Leica MZIII fluorescence 

stereomicroscope (filter settings; excitation 565/30 and emission 620/60). The number of 

transformed roots was determined based on DsRed1 fluorescence.

Nodulation of P. andersonii composite plants

Parasponia andersonii plantlets with transformed roots were transferred to EKM supplemented 
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with 2 lM Aminoethoxyvinylglycine (AVG) in 120×9×120 cm square petri dishes of which the 

lower half was streaked with plate grown Sinorhizobium sp. NGR234. Plates were kept 

vertically in an Elbanton growth cabinet at 28°C with 16/8 h light/dark cycle. Nodules appeared 

within 4–6 weeks.
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Abstract

Tropical tree species of Trema genus are the closest relatives of Parasponia tree plants; the only 

known non-legume lineage of plant species that are capable of establishing a nitrogen fixing 

nodule symbiosis with rhizobium. To identify genetic elements that underlie the rhizobium 

symbiosis, comparative studies of Parasponia sp. and Trema sp. are markedly informative. 

Generally, Agrobacterium rhizogenes-mediated root transformation is used to conduct reverse 

genetic experiments in a root symbiosis context. However, such transient methods are prone for 

variation, as every transgenic root is the result of a de novo transformation event.  Here, we 

present a protocol for Agrobacterium tumefaciens-mediated stable transformation of Trema 

tomentosa. To do so, we used a binary vector containing the auxin responsive reporter 

DR5::GUS and two selectable marker genes; NPTII encoding kanamycin resistance and the red 

fluorescent protein encoding gene DsRED1. By using culture conditions optimized for A. 

tumefaciens co-cultivation, callus formation and regeneration of plantlets, a transformation 

efficiency of 15% was obtained. In vitro propagated T0 plants display a DR5::GUS expression in 

leaves that is identical to observed in primary T0 plantlets. Taken together, the presented 

transformation method for T. tomentosa is efficient, and results in transgenic plantlets within a 

timeframe of only 6 months.

Keywords: Trema tomentosa, Co-cultivation, Agrobacterium tumefaciens, DR5::GUS.  
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Introduction

Nitrogen fixing rhizobium symbiosis is a well-known character of leguminous plants (Fabaceae). 

Beside legume plants, a comparable symbiosis also occurs on five tropical tree species of the 

Parasponia genus (Cannabaceae). In both legumes as well as Parasponia spp., the interaction 

with rhizobium results in formation of novel root organs; so-called root nodules. Rhizobium is 

hosted in the nodules cells, where rhizobium bacteria can find the proper conditions to convert 

atmospheric nitrogen (N2) into ammonia (NH4
+). The produced ammonia can be utilized by the 

plant. Parasponia genus and Fabaceae family had a last common ancestor that lived about 100 

million years ago (Wang et al., 2009), which makes it most probable that both lineages evolved 

rhizobium symbiosis independently. Several lines of evidence indicate that genetic constraints 

have guided evolution of symbiosis in both lineages. Root nodule formation in legumes and 

Parasponia sp. can occur with the same rhizobium bacteria, requires very similar bacterial lipo-

chitooligosaccharide (LCO) signal molecules, and is controlled by a conserved symbiotic 

signaling network (den Camp et al., 2011). Therefore, the Parasponia research model –alongside 

with legume model plants like Lotus japonicus and Medicago truncatula- provides a novel tool 

to obtain insights in the genetics underlying the nitrogen fixing endosymbiosis with rhizobium.

Parasponia is highly promiscuous as it will allow most LCO-secreting rhizobia to enter its roots 

by a mechanism known as crack entry (Op den Camp et al., 2012) These rhizobium bacteria 

remain in the apoplast, and only will infect intracellularly when reaching nodule cells. Once 

inside a cell, the bacteria remain within infection thread-like structures known as fixation 

threads. Interestingly, it was noted that Parasponia nodules are less effective in nitrogen fixation 

when compared to nodules of legumes formed by the same bacteria (Behm et al., 2014). This 

may be explained by the limited colonization efficiency of infection threads, when compared to 

most legume nodules that host rhizobia as organelle-like structures (known as symbiosomes). 

Rhizobia in fixation threads may also have less efficient exchange of nutrients when compared to 

legume symbiosomes. Further, Parasponia nodules contain only a single –centrally positioned-

vascular bundle, whereas legume nodules have several peripheral vascular bundles, which may 

limit its transport capacity. Taken-together, it suggests that Parasponia root nodules are more 

primitive when compared to nodules formed on legume plants (Behm et al., 2014).
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Rhizobium LCOs are perceived by specific LysM-type receptor kinases. Studies in legumes and 

Parasponia indicated that –at least for one receptor- the same gene has been cooped to commit 

such symbiotic function (den Camp et al., 2011)These receptors activate a highly conserved 

symbiotic signaling network that stretches from an additional LRR-type receptor down to 

transcriptional regulators. This symbiotic signaling pathway is highly conserved, and present in 

most plant species as it is essential also for endomyocrrhizal symbiosis (Roberts et al., 2013).

The importance of this symbiotic signaling network for root nodule formation is underlined by 

ectopic expression studies and the use of dominant alleles that trigger spontaneous root nodule 

formation in legumes and Parasponia (den Camp et al., 2011). However, it remains elusive 

whether adaptations have occurred in any of symbiotic genes that is essential for the nodulation 

trait in legumes and/or Parasponia.

Despite of extensive research especially in model legumes, the essential genetic adaptations that 

allow plants to form nitrogen fixing root nodules have not yet been characterized. It may be 

because of the exclusive focus on symbiotic plants (e.g. legumes or Parapsonia) to dissect the 

genetics underlying rhizobium symbiosis. Rarely comparative studies with close relatives that 

are unable to form nitrogen fixing root nodules are committed.

We advocate the adaptation of Trema tomentosa as comparative plant system for Parasponia.

Parasponia and Trema are closely related sister genera and recent molecular phylogenetic 

studies even suggest that the Parasponia-Trema lineage is paraphyletic (Akkermans et al., 1978; 

Yang et al., 2013). This suggests that Parasponia –including its symbiotic trait- is relatively 

young and evolved from an ancestral Trema sp. In contrast to Parasponia that is native to 

volcanic regions in the Malay Archipelago, Trema sp. are pantropical. In total 15 Trema species 

are recognized, however the taxonomy of this genus has only partially been resolved. We 

selected T. tomentosa, a species native to northern Australia, as workable model. T. tomentosa

trees flower within 6-9 months under greenhouse conditions and can be propagated vegetatively 

in vitro. Additionally, it was shown that T. tomentosa harbouring transgenic roots can be 

obtained using Agrobacterium rhizogenes-mediated transformation (Cao et al., 2012). By using 

this method to introduce the Cameleon calcium sensor, we could confirm that T. tomentosa

doesn’t show symbiotic responses in form of regular Ca2+ oscillation upon application of 

rhizobium LCOs, whereas this response is triggered in Parasponia (Granqvist et al., 2015).
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Although commonly used in legume and Parasponia research, A. rhizogenes mediated root 

transformation has several disadvantages. First, the generated roots represent primary 

transformed tissue that cannot be characterized in terms of position and number of T-DNAs 

integrated. Such roots therefore may vary in expression level of the transgene. By default, 

compound plants carrying transgenic roots can only be used transiently, in other words, 

experiments have to be conducted with roots of independent transformation events. An 

additional flaw of A. rhizogenes is the transfer of the root inducing locus (rol) genes. These 

genes are essential to trigger root formation in the plant, but they interfer with the plant root’s 

hormone balance. As a result, A. rhizogenes transformed roots may differ in phenotype, and 

therefore such roots are not suitable for studying plant hormones. In the case of Parasponia and 

Trema we showed that transformation with A. rhizogenes had also technical difficulties for 

transformation efficiencies (Cao et al., 2012) and overgrowth of tissue by this pathogenic 

bacterium. This let us to decide to investigate whether Parasponia and/or Trema can be 

transformed with A. tumefaciens to generate stable transgenic lines. 

Here we present a protocol for A. tumefaciens mediated transformation of T. tomentosa. By using 

a binary vector containing the auxin responsive reporter DR5::GUS and two selectable markers; 

NPTII encoding kanamycin resistance and the RED FLUORSCENT PROTEIN encoding gene 

DsRED. We demonstrate that transgenic T. tomentosa plantlets could be generated within 6 

month. These plantlets can be vegetatively propagated without losing transgene expression.

Results

Agrobacterium tumefaciens mediated transformation of Trema tomentosa 

For T. tomentosa an in vitro propagation protocol has been established (Cao et al., 2012). In this 

protocol shoot axillary buds are used as starting material. We tested whether we can use this 

material as starting material for A. tumefaciens mediated transformation. To do so, we made use 

of the A. tumefaciens strain AGL1 harbouring the binary plasmid, pT14DR5. This plasmid 

contains the auxin responsive synthetic promoter DR5 driving GUS. Additionally, it contains 

three selectable markers; namely NPTII that convers resistance to kanamycin, DsREDI driven by 

the constitutive AtUBQ10 promoter of Arabidopsis thaliana and spectinomycin adenyltransferase 

gene (AADA) for bacteria selection in the backbone (Figure 1).
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Axillary buds were either sliced in segments or used as a whole. All explants were immersed in 

an A. tumefaciens culture (O.D.600=0.6) for 30 min and placed on WPM culture medium 

supplemented with 1 ml acetosyringone (20 μg/ml) and incubated in the dark for 3 days at 21 ºC

for co-cultivation. Next, explants were transferred to regeneration medium containing cefotaxime 

(300 mg/litr) and kanamycin (50mg/1lite) and transferred to 28ºC and a 16/8 h day/night regime.

To determine which auxin/cytokinin dose is most effective for inducing regeneration we tested 3 

different combinations of 6-benzyladenine (BAP) and indole-3-butyric acid (IBA) (table 1). All 

three hormone combinations induced callus formation within four weeks after transfer. In all 

cases, white callus initially developed at the cutting sides of the explants (Figure 2a). However, 

some calli in both samples (split and whole meristems) turned brownish and obtained a more 

thick appearance and became overgrown with Agrobacterium (Figure 2b, c). Segmented apical 

buds showed more efficient callus formation when compared to whole buds (table 1). Also the 

calli formed on whole buds all turned brown within 4 weeks. These calli stopped growing and 

could not be investigated further.
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Figure 1. Map of vector pT14DR5 -glucuronidase (GUS) reporter construct and three 

selectable markers; DsRED and neomycin phosphotransferase II gene (NPTII) for plant selection in between Left 

and Right T-DNA borders and spectinomycin adenyltransferase gene (AADA) for bacteria selection in the 

backbone.

Using segmented axillary buds as explants callus formation was observed on all three media, 

with comparable efficiencies (Table 1). However, on medium with 1.0 mg/l BAP and 0.1 mg/l 

IBA (M2) most calli maintained a greenish appearance (Figure 2d). We checked whether green 

calli were transgenic by monitoring red fluorescence. We noted that only on M3 medium (0.5 
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mg/l BAP, 0.05 mg/l IBA) DsRED expressing calli were found (5 out of 15) (Figure 2e and 

Table 2).  

Figure 2. Callus induction from apical meristem culture of Trema tomentosa. a) Callus initiation from apical 

meristems cultured on WPM medium along with different combination of BAP and IBA b) Thick-brown tissues 

outgrowth from explants. c) Infected explants before developing callus. d) Green callus emerged after 4 weeks. e) 

Red florescent transgenic callus.

Table1. Effect of various media on callus induction from apical meristems derived from explants of Trema. 

tomentosa. Numbers indicate the total number.
Source of the callus

Medium
Spilt apical meristem                        Full apical meristem

callus BC GC TC callus BC GC TC

M1 20 15 5 0 5 5 0 0

M2 40 15 25 0 15 15 0 0

M3 30 15 15 3 0 0 0 0

Subculture media: M1: WPM2.5 mg/l BAP+0.25 mg/l IBA; M2: WPM+1.0 mg/l BAP+0.1mg/l IBA; M3: 

WPM+0.5 mg/l BAP+0.05mg/l IBA. BC: Brown Callus, GC: Green Callus, TC: Transgenic Callus.

Green calli (transgenic (M3 medium) and non-transgenic (M1 & M2 media)) were split  in 4-5

pieces and divided over the same three hormone combinations as used for callus formation (M1, 

M2 & M3). Highest shoot regeneration efficiency occurred on M3 medium. On this medium 6 

transgenic shoots were derived, originating from 5 primary calli (Figure 3c, Table 2). Also calli 

cultured on M2 medium formed shoots, although at lower efficiency, whereas on M1 medium no 

shoots could be regenerated (Figure 3, Table 2). All shoots emerged from calli cultured on M3 

medium were confirmed to be transgenic based on DsRED1 mediated red fluorescence (Figure 
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4a, b). These shoots were isolated and transferred to rooting medium to induce root formation as 

described with Cao et al (Figure 4c) (Cao et al., 2012). All roots were checked for red 

fluorescence. Four transgenic plants that originated from four different calli were transferred to 

the greenhouse.

Figure 3. Shoot regeneration from callus in different shoot induction media. a) No shoot regenerate in M1 medium. 

b) M2 developed two shoots from two calli (in two different plates). c) Five calli on M3 medium form shoots (in 

three independent plates). The arrows indicate the shoots regenerated from callus.

Table 2. Effect of various media on Shoot and root regeneration from callus in Trema tomentosa.
Medium Number of the callus with  shoot Number of the shoots number of rooted shoot 

M1 0 0 0

M2 2/30 2 2

M3 5/15 6 4
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Figure 4. Trema tomentosa shoot and root regeneration from calli that originate from shoot apical meristem. a) 

Shoot regeneration from apical meristems cultured on WPM+ BAP and IBA for 8 weeks.  b) Transgenic shoots can 

be distinguished based on DsRED1 expression causing red fluorescence. c) Root formation of shoot, after 6 weeks 

cultivation. d) Red florescence in transgenic roots. 

The auxin reporter DR5 is active in meristematic tissue of T. tomentosa

To check for transgene expression in the four selected transgenic plants we conducted a GUS 

assay on lateral roots and young leaves. In two out of four plants pattern of blue staining could 

be observed, with strong signal in the root apical meristem and at the rim of a developing leaf 

(Figure 5). These M0 plants were maintained in the greenhouse for seed production. DR5::GUS 

expression was investigated in more detail in transgenic M1 seedlings (Figure 6). Whole mount 

staining of 30 day old seedlings revealed a strong GUS signal in leaf vasculature, leaf rim, shoot 

apical meristem, and developing lateral roots (Figure 6). These sites, coincide with tissues known 

to accumulate high concentrations of auxin (Mattsson et al., 2003; Kerk et al., 2000).
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Figure 5. Bright field microscopy of the synthetic auxin-responsive reporter (DR5-GUS) expression in the root (a) 

and leaf (b, c) of transgenic Trema tomentosa resulting in extensive blue staining.

Figure 6. Bright field microscopy of the synthetic auxin-responsive reporter (DR5-GUS) expression in Trema 

tomentosa seedling (a-c) and apical meristem (d).

Auxin accumulates in Trema during lateral root development

For several plant species it is reported that lateral root initiation correlates with auxin 

accumulation (Casimiro et al., 2001). Since lateral root primordia generally occur in a regular 

pattern we made use of this phenomenon and examined auxin response during lateral root 

formation in T. tomentosa using a DR5::GUS line. First auxin was increased in inner cortical

cells and in the underlying pericycle cell layer, even before the observation of cell divisions
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(Figure 7a). After induction of pericycle divisions the blue staining increased in these cells

(Figure 7b), which will give rise to the lateral root primordium formation (Figure 7c-e).

Interestingly, the DR5 signal in the associated cortex cell layers remained and extended to the

epidermis (Figure 7e), even though none of these cells divided during lateral root development.

Figure7. Distribution of auxin during Trema tomentosa lateral root primordia development through spatial pattern 

of DR5::GUS expression during lateral root primordium initiation. (a) The DR5 activity gradient with the maximum 

at the primordium tip (inner cortical cell) is gradually established. (b) Cell division in pricycle and auxin 

accumulates in dividing cells (c-e) Auxin maximum in lateral root tip along with cell division. DR5 signals are 

visible in cortical and epidermal cell (d). Scale bars are: 25 μm.
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Discussion 

Here we present an efficient and relatively fast method to obtain stably transformed plant lines of 

T. tomentosa. By using lateral leaf buds as starting material and an optimized single medium for 

callus and shoot formation, transgenic plants can be obtained within 6 months. As T. tomentosa

can be propagated vegetatively in vitro, T0 plants can be effectively cloned and used for 

experimentation. Trema sp. is the closest relative of Parasponia and is unable to form rhizobium 

nitrogen fixing root nodules. Therefore the presented transformation protocol of T. tomentosa

will be a new and effective tool in comparative studies to underpin the genetics of the rhizobium 

symbiosis.

T. tomentosa is a tropical tree species that grows best at temperatures of > 28°C. However, in 

previous study we showed that T-DNA transfer of A. rhizogenes to T. tomentosa is most efficient 

at 21ºC (Cao et al., 2012). In line with that we conducted co-cultivation at 21°C for 4 days, a

temperature suboptimal for T. tomentosa growth. By doing so, transformation efficiencies up to 

15% were achieved, which is sufficiently efficient to conduct experiments at larger scale.

Stable transformation offers four essential advantages over A. rhizogenes mediated root 

transformation. (I.) Transgenic lines can propagated, whereas this is not possible for compound 

plants carrying transgenic roots. In case of tree species however, generative propagation may be 

time consuming, or even impossible. However, in case of T. tomentosa this is not a problem, as 

this species flowers within 6 months and is self-compatible. Additionally, T0 plants can be 

vegetatively propagated. This further reduces the timespan between initial generation of 

transgenic plantlets and actual characterization of the transgenic line and subsequent 

phenotyping. (II.) An additional advantage of A. tumefaciens over A. rhizogenes is the absence of 

the transfer of the bacterial rol genes. This will allow conducting more reliably physiological

studies. (III.) Also, stably transformed lines are suited for studies on shoot-root communication, 

which are impossible with chimeric compound plants that consist of a non-transgenic shoot 

carrying transgenic roots. In context of the rhizobium-symbiosis this is relevant as several studies 

indicated that shoot derived factors control root nodule formation (Mortier et al., 2010; Soyano

et al., 2014). (IV.) A last advantage of stable transformation over A. rhizogenes is the possibility 

of re-transformation of an already transgenic line. In such case a different selection marker has to 

be used.
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We introduced the auxin responsive reporter construct DR5::GUS into T. tomentosa. Using this 

reporter we detected transgene expression in meristematic regions in young developing leaves of 

primary transformed T0 plants. As the expression of the reporter is not affected upon vegetative 

propagation, it suggests that this in vitro propagation protocol is a fast way of propagating 

transgenic plants.

Root nodule organogenesis is associated with formation of a local auxin maximum in the plant 

root. By studying lateral root formation we showed that DR5::GUS can be used as auxin reporter 

also in T. tomentosa. Sectioning of young lateral root primordia revealed that DR5 activity is 

found not only in dividing pericycle cells that give birth to the primordium, but also in associated 

cortical cells that do not undergo cell divisions. This DR5 activity can be found even in the 

epidermal cells when the lateral roots start to emerge. This pattern is consistent with patterns 

reported in other species (Benková et al., 2003). In line with this, a T. tomentosa DR5::GUS line 

can be used as a tool to study Rhizobium LCO signaling in non-symbiotic species. 

In conclusion, the presented protocol for T. tomentosa stable transformation can be an effective 

replacement of the transient A. rhizogenes transformation protocol. Stably transformed lines will 

be an essential tool to forward engineer rhizobium symbiosis.

Materials and methods

Construction of DR5 GUS fusion construct

pENTR™/D-TOPO Cloning Kits (Invitrogen) and Gateway technology (Invitrogen) were used 

to generate the entry clone and genetic promoter-GUS construct (Karimi et al., 2002)

of DR5::GUS construct, respectively. First, 14 synthetic DR5 DNA fragment repeats (Ulmasov

et al., 1997) were inserted in the entry clone. Then, the entry vector was recombined into 

Gateway-compatible binary vector pKGW-RR, that contains GUS reporter and 

AtUBQ10::DsRED1 as a selection marker (Limpens et al., 2004), by using Gateway LR Clonase 

II enzyme mix (Invitrogen). Final construct was named pT14DR5.

Plant transformation

Apical meristems of Trema tomentosa plants were collected from the trees growing in the 

greenhouse and explants were divided in two groups. In one set apical meristems cut from the 
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middle (parallel to growth axis) and the other, full meristems were used for stable transformation. 

Before cutting, all meristems surface sterilized in 4% hypochlorite (commercial bleach) for 10 

min and subsequently washed 6 times with sterile MQ water. Agrobacterium tumefaciens strain

AGL1 carrying the DR5 GUS fusion constructs was used for transformations. 

A. tumefaciens AGL1 cultures harbouring construct pT14DR5 were grown overnight at 28°C on 

agar-solidified LB medium. The next day, A. tumefaciens was scraped from plate and 

resuspended in infiltration medium (McCown Woody Plant Medium (WPM) (Lloyd and 

McCown, 1980); Duchefa Biochemie, Haarlem, The Netherlands), 2.5 mg/L 6-

benzylaminopurine (BAP), 0.25 mg/L indole-3-butyric acid (IBA), 20 mg/L acetosyringone, 

0.02% silvet L-77 (v/v)) at OD600 = 0.6. Sterilized T. tomentosa axillary buds were immersed in 

this medium for 30 minutes. Thereafter, they were transferred to co-cultivation medium (WPM, 

2.5 mg/L 6-benzylaminopurine (BAP), 0.25 mg/L indole-3-butyric acid (IBA), 20 mg/L 

acetosyringone, 0.8% Daichin agar (Duchefa Biochemie, Haarlem, The Netherlands) in Ø 10 cm 

round petri dishes. Plates were incubated in darkness at 28°C for three days. After three days, 

explants were transferred to selective media containing cefotaxime (300mg/L) and kanamycin 

(50mg/L). Explants were cultured on three different selective media to determine optimal 

hormone concentrations for tissue regeneration. Composition of these three media is listed 

below. Explants were incubated at 28°C under a 16/8 hour light/dark regime until regeneration 

was observed.

Hormonal treatments

Three different hormone combinations were performed to check the efficiency of callus, shoot 

and root regeneration.  

M1: WPM + (2.5 mg/l) BAP + (0.25 mg/l) IBA

M2: WPM + (1.0 mg/l) BAP + (0.1mg/l) IBA

M3: WPM + (0.5 mg/l) BAP + (0.05mg/l) IBA

Regeneration of the plants

All emerged callus from explants transferred to the new fresh regeneration medium and kept at 

28ºC. Within 8 weeks shoots emerged from the axillaries buds callus. Shoots of >1.0 cm in 

length were cut and transferred to rooting medium (20 g/L sucrose, 2.4 g/L WPM, pH: 5.8) in 
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round Ø10 cm Petri dish. These plates were covered by aluminium foil (darkness induced roots) 

and kept in the same growth cabinet at 28°C for four weeks. Rooted shoots were kept on 

hormone free medium (pH 5.8, 20 g/L sucrose, 2.4 g/L WPM, 0.8% Daichin agar) for three 

weeks before transferring to the pots in greenhouse. 

Microscopy and Histology analysis

Transgenic roots and shoots were selected based on red fluorescence, using Leica MZIII 

fluorescence stereomicroscope (filter settings; excitation 565/30 and emission 620/60). The 

number of transformed roots was determined based on DsRed1 fluorescence.

For GUS activity, fresh lateral roots, young leaves and seedlings generated from the F1 seeds of 

Trema tomentosa plants were collected from greenhouse. All materials were immersed in GUS 

staining solution including 25 mM sodium phosphate buffer (pH 7.0), 2 mM 5-bromo-4-choro-3-

indolylb- D-glucuronide cyclohexylamine salt (X-gluc), 0.5 mM ferricyanide, 0.5 mM 

ferrocyanide and 10 mM EDTA, vacuumed for 30 minutes and then incubated at 37 ºC for 

overnight. For bleaching the tissues, the GUS staining solution was rinsed with 20, 50 and 70% 

ethanol respectively for 10 minutes. Stained tissue was checked with Leica MZIII fluorescence 

stereomicroscope for GUS expression. Fixation of material including roots and apical meristems 

was performed for 24 h at 4 ºC in 5% glutaraldehyde (v/v) and 3% sucrose (w/v) dissolved in 

phosphate buffer (pH 7.0). Subsequently an ethanol dehydration series was carried out. 

Root Microsectioning

Transgenic roots were fixed in phosphate buffer solution (PBS) with 0.25% glutaraldehyde 

included. Vacuum was applied for 1-2 h until tissues sat on the bottom. The tissues were 

incubated at 4°C for overnight. After two times washing with PBS, dehydration steps were 

performed with 10%, 30%, 50%, 70%, 90% and 100% ETOH respectively for 10 min at room 

temperature for each step. Plastic infiltration was done in four steps, which included solution A 

(100ml Technovit7100, 1pack HrdnerI, 2.5ml PEG400):100% ETOH in 1:3, 1:1, 3:1 ratio 

respectively for 30-60 min in room temperature and finally treated with 100% solution A for 

overnight at 4°C. All materials were transferred into cupules and nodules located in the middle. 

Solution A was removed and polymerization solution (15ml Solution A, 1ml Hardener II) was 

added immediately. To remove air from the samples, cupules were covered with parafilm and 
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left for overnight at room temperature. After polymerization, holders were put on the blocks and 

holding solution (technovit3040: 2part powder, 1 part liquid) was added from the hole located in 

the centre of holder and kept for 15 min at room temperature. Finally sectioning of root segments 

were performed using a microtome machine and the samples were analysed by microscopy 

(Leica) after staining with toluidine blue (0.5%) buffer and washing with tap water for 5 minutes.
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Abstract

Parasponia trees are the only non-legume plant species that can form nitrogen fixing nodules 

with rhizobium bacteria. In legumes, rhizobium-induced nodule formation is tightly controlled 

and inhibited by exogenous fixed nitrogen. Species in the Parasponia lineage gained the 

rhizobium symbiosis trait more recent when compared to legumes. We questioned whether 

similar to legumes also Parasponia acquired mechanisms to control its symbiotic interaction in 

presence of exogenous fixed nitrogen. To get insight in the mechanism controlling nitrogen 

fixing symbiosis in presence of exogenous nitrogen, we studied nodule formation and 

intracellular rhizobium infection in Parasponia andersonii supplied with doses of KNO3 ranging 

from 0.2 to 50 mM. We found that nodule primordium formation and intracellular infection have 

different sensitivities to nitrates. P. andersonii formed nodules at all tested nitrate concentrations, 

whereas progression of intracellular infection was impaired at 20 mM. Specifically, the switch 

from infection to fixation threads was affected, a process known to be controlled by the LysM-

type receptor PaNFP. However, using PaNFP knockdown mutants and LCO responsive Ca2+

oscillation experiments indicate that exogenous nitrate doesn’t affect LCO signaling. We 

conclude that P. andersonii employs a novel mechanism to control intracellular rhizobium 

colonization in presence of exogenous nitrates.
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Introduction

Fixed nitrogen is an essential nutrient for plant growth, but in most ecosystems its availability is 

limited. Some plants species -like most legumes (Fabaceae) and species of the genus 

Parasponia- have overcome this problem by establishing a root nodule symbiosis with a diverse 

range of nitrogen fixing soil bacteria that are collectively known as rhizobia (Willems, 2006).

Parasponia species and legumes obtained their symbiotic traits by convergent evolution at 

different moments in time. The nitrogen-fixing symbiosis trait in legumes is estimated to be ~60 

million years old (Lavin et al., 2005; Sprent, 2008; Doyle, 2011). In case of Parasponia the 

evolutionary origin of the nitrogen-fixing rhizobium symbiosis is not dated, however, two lines

of evidence strongly suggests that the symbiosis trait in this lineage is relatively young when 

compared to legumes. First, the Parasponia genus is nested within -and only recently diverged 

from- the genus Trema (Yang et al., 2013; Werner et al., 2014). Second, the Parasponia-

rhizobium symbiosis is far less sophisticated when compared to the legume-rhizobium symbiosis 

(Behm et al., 2014). In case of legumes the relative long period of evolution has shaped the 

symbiosis trait in such a way that it has become highly efficient and robust. Legumes have 

gained mechanisms that link the N-status of the plant to its susceptibility for rhizobium. For 

example, in most legume species nodule formation is inhibited by moderate concentrations of 

exogenous fixed-nitrogen sources (Streeter, 1988). Such mechanism enables legume plants to 

exploit exogenous nitrogen sources, rather than to maintain an energetically costly symbiotic 

relation with rhizobium. As the Parasponia-rhizobium symbiosis evolved more recent and 

independent from legumes, we questioned to what extend similar mechanisms do occur in these 

species.

The negative effects of soil nitrates on symbiotic nitrogen fixation in legumes are known for a 

long time (Streeter, 1988). In model legumes Lotus japonicus and Medicago truncatula root 

nodule formation is fully inhibited by 5-10 mM exogenous fixed nitrogen (Sagan et al., 1995; 

Barbulova et al., 2007). Effects of exogenous nitrates can be categorized in three types of 

responses that differ in sensitivity; (i) reduced infection rates, (ii) decreased nitrogen fixation 

rates and (iii) decreased nodule mass or even total absence of nodules. Of these, infection seems 

to be least sensitive to exogenous nitrates (Streeter, 1988).
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In legumes, bacterial infection and nodule primordium formation are tightly controlled by 

rhizobium induced lipo-chitoolichosaccharide (LCO) signaling. These rhizobial signals are 

perceived by a specific heterodimeric complex of two types of LysM domain containing receptor 

kinases, named LjNFR1/MtLYK3 and LjNFR5/MtNFP in L. japonicus and M. truncatula

(Broghammer et al., 2012; Moling et al., 2014). These receptors subsequently trigger a plethora 

of symbiotic responses, ranging from nuclear Ca2+ oscillation, symbiotic gene expression, 

changes in the cytokinin and auxin homeostasis, root hair growth responses, and nodule 

primordium formation (Oldroyd, 2013; Miri et al., 2016). Studies in different legume species 

showed that read-out of LCO signaling at least in part is affected by exogenous fixed nitrogen. 

For example, in Vicia sativa it was shown that LCO induced root hair growth responses are 

affected (Heidstra et al., 1994), whereas studies in M. truncatula and L. japonicus revealed a 

strong inhibition of NIN expression; a key regulatory gene of bacterial infection and root nodule 

formation (Schauser et al., 1999; Barbulova et al., 2007; Marsh et al., 2007).

In Parasponia species rhizobium bacteria enter the roots via crack entry. First upon reaching the 

dividing cells that form the nodule primordium, intracellular infection is achieved (Lancelle and 

Torrey, 1984). These infection threads have a similar appearance as in legumes. However, in 

contrast to most legumes the bacteria are not released as symbiosomes in the cytoplasm, but 

remain bound in so-called fixation threads. Fixation threads distinct from infection threads by 

relatively thin cell walls and more loosely packed bacteria (Price et al., 1984). Similar to 

legumes, P.andersonii nodule primordium formation is triggered upon perception of rhizobium 

LCOs (Marvel et al., 1987; Op den Camp et al., 2011). The putative ortholog of LjNFR5/MtNFP 

in P.andersonii –PaNFP- was found to fulfil a symbiotic function. Knockdown of PaNFP by 

RNAi resulted in reduced nodulation efficiency, whereas the few nodules formed on PaNFP

RNAi roots are defective in fixation thread formation (Op den Camp et al., 2011). Taken 

together, the symbiotic functioning of LjNFR5/MtNFP orthologous genes in legumes as well in 

P.andersonii suggests that genetic constraints have guided evolution of rhizobium symbiosis in 

both lineages (Streng et al., 2011; Geurts et al., 2012).

It remains elusive whether P.andersonii gained additional mechanisms similar to control the 

interaction with rhizobium. Putting forward the relative short period of time in evolution when 

compared to legumes, we questioned to what extend P.andersonii gained a mechanism to control 

its symbiotic nitrogen fixing partner in presence of exogenous nitrates. By studying root nodule 
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formation at different doses of exogenous nitrate we found that P. andersonii employs a novel 

mechanism to control the living space of its endosymbiotic microbe by inhibiting formation of 

fixation threads.

Results

Dose-response relationship of P. andersonii nodulation efficiency and exogenous nitrate

In legumes, exogenous fixed-nitrogen acts on nodule initiation, infection and nitrogen fixation 

activity and the severity of the inhibition varies among species (Harper and Gibson, 1984; 

Streeter, 1988; Carroll and Mathews, 1990). To determine whether nodulation of Parasponia 

also is inhibited by nitrate, P. andersonii plantlets inoculated with Bradyrhizobium elkanii

WUR3 were grown at 5 different KNO3 concentrations (0.2, 1, 5, 10 and 20 mM). Plants were 

harvested at 8 weeks post inoculation. Highest shoot mass was obtained when the plant medium 

was supplemented with 20 mM KNO3, whereas root biomass was highest when plants were 

grown at KNO3 concentrations of 10 mM (Fig. 1A,B). This suggests that P. andersonii plants 

reduce their investment in root biomass at KNO3 concentrations above 10 mM. Next, we 

determined the nodulation efficiencies of P. andersonii plants grown at the different doses of 

KNO3. This showed that up to 10 mM nitrate, a positive effect on nodulation can be observed. 

Plants supplemented with this concentration had a 5 fold higher number of nodules when 

compared to plants that were grown with 0.2 mM KNO3. At higher nitrate concentrations (20 

mM KNO3) nodulation efficiencies markedly drop (~90%) (Fig. 1C). However, at this 

concentration still up to 20 nodules per plant were formed, a nodulation efficiency comparable to 

plants grown on a hundred lower concentration (0.2 mM).
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Figure 1. Effects of exogenous nitrate on Parasponia andersonii plants inoculated with Bradyrhizobium elkanii

WUR3 and grown on different concentrations of KNO3. (A) Plant phenotypes, and (B) shoot (white bar) and root 

(black bar) fresh weights 8 weeks post inoculation. (C) Average number of nodules per plant. (n=10, 8 weeks post 

inoculation).

To determine whether nodulation can be fully inhibited at higher concentrations of exogenously 

nitrate, we grew P. andersonii plants with 30 and 50 mM exogenous KNO3. In such high doses 

of nitrate plant fresh weights marginally increased (Fig. S1B). Interestingly, the P. andersonii

grown at 30 or 50 mM KNO3 still formed a few root nodules, although less when compared to 

plants grown at lower nitrate concentrations (Fig. S1A). Taken together, it shows that P. 

andersonii plants can control root nodule initiation in response to high exogenous nitrate. 

However, P. andersonii is unable to fully block this developmental process that is triggered in 

response to rhizobia, even not if nitrogen seems no longer growth limiting factor.

Nitrate interferes with fixation thread formation

We noted that the nodule fresh weight negatively correlated with the exogenous nitrate 

concentration supplied to the plants (Fig. 2A). Therefore, we examined the effect of nitrate on 
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the nitrogen fixation capacity of nodules by measuring nitrogenase activity. This showed that 

nitrogenase activity decreased in a nitrate concentration-dependent manner. Nitrogenase 

activities decreased by 5 and 23-fold, respectively, in nodules isolated from plants supplied with 

10 and 20 mM exogenous KNO3
-
, when compared to nodules of plants grown at 0.2 mM KNO3

-

(Fig. 2B). These results indicate that although P. andersonii is capable to form nodules in 

presence of a high concentration of exogenous nitrate, these nodules have lower nitrogen fixation 

efficiency.

Figure 2. (A) Fresh weight of individual Parasponia andersonii nodules and (B) nitrogenase activity measured by 

acetylene reduction rates of nodules grown at different KNO3 concentrations and inoculated with Bradyrhizobium 

elkanii WUR3.  (n=10 plants / treatment).

We examined the nodule cyto-architecture to determine whether exogenous nitrate affects nodule 

development. Nodules grown on 0.2 mM and 20 mM were sectioned and studied by light and 
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transmission electron microscopy (TEM) (Fig. 3 and Fig. 4). The general anatomy of the nodules 

formed was similar irrespective of the exogenous nitrate concentration. As P.andersonii nodules 

have an apical meristem a gradient of developmental stages of infected cells could be distinguish 

along the longitudinal axis. Inward nodule cortical cells that surrounded the vascular bundle were 

infected, whereas outward nodule cortical cells remained uninfected (Fig. 3A). Cells directly 

adjacent to the meristem contained newly infected cells with infection threads (Fig. 3B). Using 

TEM it was noted that intracellular infection started from an apoplastic micro-colony that formed 

a cell wall bound infection thread (Fig. 4A). Such infection threads contained a single file of 

bacteria. Further penetration of these infection threads into the host cells coincided with 

fragmentation of the main vacuole (Fig. 4B). Infection threads eventually changed shape and 

became wider, now harbouring 2-3 files of bacteria (Fig. 4B, C). TEM studies revealed that at 

this stage the infection structures were largely deprived of a cell wall matrix; a hallmark for 

fixation threads (Compare Fig. 4A,B and Fig.4C) (Price et al., 1984). This change in infection 

morphology reflects the switch to the symbiotic stage. 

Nodules formed in presence of 20 mM exogenous nitrate showed dramatic difference in 

infection (Compare Fig. 3A and 3D). Initial infection of nodule cortical cells was similar to 

nodules grown at 0.2 mM KNO3. However, further development of intracellular infection threads 

towards fixation threads was seriously hampered (Fig. 3D-F, Fig 4D). Infected cells of nodules 

grown at 20 mM KNO3 contained only infection threads, which remained relatively short and 

bounded in a dense cell wall (Fig. 3F, Fig 4E). Central vacuoles in these cells do not undergo 

fragmentation and remained intact (Fig. 4E). 
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Figure 3. Sections of Parasponia andersonii nodules infected with Bradyrhizobium elkanii WUR3 and grown at 0.2 

(A-C) or 20 mM (D-F) KNO3. (A) Longitudinal section of a nodule formed at 0.2 mM KNO3 with a central vascular 

bundle (VB). (B) Apical region of the nodule containing recently infected cells with infection threads and young 

infected cells (YIC). (C) Infected cells filled with fixation threads and mature infected cells (MIC). (D) Longitudinal 

section of a nodule formed at 20 mM KNO3. (E) Apical region of the nodule containing recently infected cells with 

infection threads. (F) Cells in the central zone of the nodule containing only infection threads (It), but no fixation 

threads. Bars: A, D: 75 μm, B, C: 12, 5μm, E: 25μm F: 10μm. 
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Figure 4. Transmission electron microscopy images of infected cells of Parasponia andersonii nodules infected 

with Bradyrhizobium elkanii WUR3 and grown at 0.2 (A-C) or 20 mM (D, E) KNO3. (A) Infection thread with one 

file of rhizobia entering to the cell from the bacterial colony situated in apoplast. Note presence of cell wall of 

infection thread (arrow). (B) Cell containing infection threads with one file of bacteria, and fixation threads 

containing two files of bacteria. Note the vacuole fragmentation in cell. (C) Thin cell wall of fixation threads 

(marked by arrow). (D, E) The structure of nodules treated with 20 mM nitrate. (D) Infection threads entering a 

young nodule cell containing only small vacuoles. (E) Mature infected cell with developed vacuole containing only 

an infection thread. Col: bacteria colony in apoplast. It: infection thread, Ft: fixation thread, V: vacuole, N: nucleus.

Taken together, these data show that high fixed nitrogen does not prohibit nodule initiation and 

intracellular infection thread formation, but hampers formation of fixation threads. This block of 

intracellular infection coincides with occurrence of thick (and possibly rigid) infection thread cell 

walls, which may be the cause of infection suppression. This suggests that P.andersonii employs 

an active mechanism to control intracellular rhizobial colonization in case alternative sources of 

fixed nitrogen are available.
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Exogenous nitrate doesn’t interfere with LCO signaling in P. andersonii

In a previous study we showed that fixation thread formation in P. andersonii is controlled by 

the LysM-type receptor kinase PaNFP (Op den Camp et al., 2011). PaNFP is orthologous to the 

rhizobium LCO receptors LjNFR5/MtNFP in L. japonicus and M. truncatula. In M. truncatula it 

was shown by nodule specific knock down that MtNFP controls the switch from infection thread 

growth to bacterial release (Moling et al., 2014). As in legumes LCO signaling is sensitive to 

exogenous nitrate (Heidstra et al., 1994, 1997; Barbulova et al., 2007; Marsh et al., 2007), we 

tested whether this is the case for P.andersonii as well. To investigate this, two experiments were 

conducted. First it was determined whether LCO-induced Ca2+-oscillation response is affected by 

exogenous nitrate. To test this, P. andersonii plantlets carrying transgenic roots expressing the 

NupYC2.1 Ca2+ reporter were generated (Granqvist et al., 2015). Compound plantlets carrying 

transgenic roots were grown on EKM-medium complemented with either 0.2 mM or 20 mM 

KNO3. Subsequently, transgenic roots –selected based on green fluorescence- were treated with 

an LCO mixture of Sinorhizobium fredii NGR234 (~10-9 M). Ca2+-oscillation could be observed 

in about 50% of the tested epidermal cells, irrespective of the nitrate concentration in the growth 

medium (Fig. 5). Likewise, the spiking frequency and amplitude is undistinguishable between 

both nitrate regimes. This suggests that inhibitory effect of exogenous nitrate acts independent -

or downstream of- rhizobium LCO induced Ca2+ spiking.

Figure 5. Ca2+ oscillation in Parasponia andersonii root hairs grown in 0.2mM KNO3 (A) and 20mM KNO3. Roots 

transformed with NupYC2.1 and treated with an LCO mixture of Sinorhizobium fredii NGR234 (10-9 M).

In a second experiment we determined whether exogenous nitrate may interfere with PaNFP 

functioning. First we determined whether expression of PaNFP is affected by exogenous nitrate. 

qRT-PCR using RNA isolated from roots of the plants grown on 0.2 and 20 mM KNO3 showed 

that expression of PaNFP is not affected by exogenous nitrate (Fig. S2). Next it was determined 
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whether exogenous nitrate has an additive effect on the nodulation and infection phenotype of 

PaNFP knocked down roots. We have generated transgenic plants harbouring a PaNFP RNAi 

construct. Transgenic roots displayed a reduction of PaNFP mRNA of >80% (Fig. S3). 

Transgenic plants harbouring either PaNFP RNAi or an empty vector construct were grown on 

either 0.2 or 20 mM KNO3 for 2 weeks, and subsequently inoculated with Bradyrhizobium 

elkanii WUR3. PaNFP RNAi roots formed significantly less nodules when compared to the 

empty vector control, and these nodules remained relatively small. However, nodulation 

efficiency of PaNFP RNAi plants was independent of the nitrate regime (Fig. 6). 

Figure 6. Nodulation efficiency of PaNFP RNAi knocked down roots (white bars) and control roots (black bars) at 

0.2 or 20 mM KNO3 (eight weeks post inoculation, Bradyrhizobium elkanii WUR3).

To determine whether the infection phenotype of these PaNFP RNAi nodules is affected by the 

nitrate regime, the structure of the nodules was studied by light microscopy (Fig.7). This showed 

that some, but not all cells in transgenic nodules were infected, but infection threads remain short 

and infected cells contained large vacuoles (Fig. 7C, H). This phenotype was irrespective of the 

nitrate regime (Fig. 7C-E and F-H), indicating that PaNFP and exogenous nitrate do not display 



Exogenous nitrate inhibits switch from infection to fixation thread formation 

73

additive effects. Taken-together, these studies reveal that exogenous nitrate acts downstream or 

independent of PaNFP and LCO induced Ca2+-oscillation signaling.

Figure 7. Sections of PaNFP knockdown nodules grown at 0.2 mM KNO3 (C-E) or 20 mM KNO3 (F-H) compare 

with non-transgenic control plants grown in 0.2mM (A, B). Magnifications (D, E and G,H) show that in infected 

cells only infection threads are present, independent of the nitrate regime. Bars: A, C, F: 75μm, B, D, G: 25 μm, H:

μm 12.5, E: 10 μm.

Discussion 

In legumes, exogenous nitrate has severe effects on the rhizobium symbiosis; ranging from 

premature nodule senescence, inhibition of nodule growth, inhibition of formation of new nodule 

primordia, reduced bacterial infection and reduced expression of -at least some- LCO-responsive 

genes. The severity of these responses vary among legume species (Harper and Gibson, 1984),

suggesting that exogenous nitrate induced inhibition of nodulation. This represents an adaptation 

in the symbiotic trait which in part evolved independent from different legume lineages. Here we 

investigated the effect of exogenous nitrogen on the Parasponia-rhizobium symbiosis, which in 

evolutionary terms is relatively young. We showed that in presence of exogenous nitrate 

formation of fixation threads -the intracellular structure allowing exchange of nutrients- is most 

sensitive and inhibited at nitrate concentrations of ~20 mM. This suggests that Parasponia
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employs an active mechanism to control intracellular rhizobial colonization when alternative 

sources of fixed nitrogen are available.

In P.andersonii also the nodulation efficiency is affected by exogenous nitrate. Surprisingly, 

nodulation efficiency is highest at 10 mM KNO3, a concentration that in case of legumes 

generally is found to be inhibitory. At higher KNO3 concentrations the nodulation efficiency of

P.andersonii drops, but unlike many legumes nodulation is not inhibited completely, even in 

presence of 50 mM KNO3. Strikingly, the few nodules that are formed contain many infected 

cells, suggesting that infection thread formation is not affected by high concentrations of 

exogenous KNO3. Instead, the switch from infection threads with relative dense cell walls to 

fixation threads that are largely devoid from cell wall material is blocked. In nodules formed in 

presence of relative low exogenous nitrates, this developmental switch in intracellular infection 

structure occurs in the first 10-15 cell layers proximal to the nodule meristem. These cells 

enlarge in size when compared to uninfected cells. Formation of fixation threads coincides with 

fragmentation of the vacuole similar as seen in legumes (Gavrin et al., 2014). However, in 

presence of exogenous nitrate, the vacuoles remain large, infection threads stop growing and do 

not progress to form a fixation threads. Taken-together, this indicates that nitrate-grown P. 

andersonii plants block specifically the cellular process underlying formation of an interface 

with reduced cell wall, which allows better nutrient exchange between both partners.

Fixation thread formation in P. andersonii nodules is controlled by the putative LCO receptor 

PaNFP (Op den Camp et al., 2011). Most legumes do not form fixation threads, but rather 

release the rhizobia in a small membrane compartment, which are known as symbiosomes. These 

symbiosomes originate from cell wall free regions of infection threads. Studies in legumes 

revealed that several key genes in the rhizobium LCO signaling network are essential to commit 

this process. For example, in M. truncatula a reduced expression of the symbiotic receptors 

MtNFP, MtDMI2 as well as a knockout mutation in MtIPD3 results in absence of a cell wall free 

region in the infection threads and a block on symbiosome formation (Limpens et al., 2005; 

Horváth et al., 2011; Ovchinnikova et al., 2011; Moling et al., 2014). We tested the functional 

relation between PaNFP and exogenous nitrate in controlling fixation thread formation. Nodule 

infection phenotypes of PaNFP knockdown or wild type plants grown under high exogenous 

nitrate concentration are very comparable, suggesting that fixation thread formation is a strictly 

controlled in the rhizobium-Parasponia symbiosis. In legumes several studies have been 
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conducted to place the inhibitory effect of exogenous fixed-nitrogen in relation to rhizobium 

LCO signaling. The outcome of these studies varied depending on the species and which 

response was investigated. For example, in Vicia sativa it was shown that inhibition of LCO-

induced root hair growth responses has a 24-36 h lag phase post combined nitrogen application 

(20 mM) (Heidstra et al., 1994). Under such growth conditions, LCO-induced gene expression 

shows differential response to exogenous fixed nitrogen were some genes are still induced (e.g. 

VsLB1), whereas for others symbiotic expression ceased (VsENOD5 and VsENOD12) (Heidstra 

et al., 1997). Studies in L. japonicus revealed that inhibition of LCO-induced root hair growth 

responses is mainly triggered by ammonium, whereas nitrate interferes with symbiotic gene 

expression (e.g. LjNIN) (Barbulova et al., 2007). Similarly, repression of MtNIN in presence of 

nitrate was reported for M. truncatula (Marsh et al., 2007). We performed three types of 

experiments to elucidate the effect of exogenous nitrate on LCO signaling in P. andersonii; (I) 

LCO induced Ca2+ oscillation in root hairs, (II) PaNFP expression in roots and (III) additive 

effect on the PaNFP knock down phenotype. None of these experiments supported the idea that 

exogenous nitrate affects LCO signaling and/or PaNFP functioning.

Besides in P.andersonii root nodules, fixation threads form also in few legume species -e.g. 

Andira sp., Chamaecrista ensiformis and C. flexuosa- as well as in the nitrogen fixing symbiosis 

between filamentous actinobacteria of the genus Frankia and a small polyphyletic group of non-

legume plant species (known as Actinorhizal plants) (Faria et al., 1986; Naisbitt et al., 1992; 

Pawlowski and Demchenko, 2012). In case of Actinorhizal symbiosis the effect of exogenous 

fixed nitrogen has been studied. These showed that fixed nitrogen affects nodule formation, 

nodule biomass and N2-fixation, very similar as described for legumes (Huss-Danell, 1997). Also 

variation in sensitivity between different Actinorhizal species is observed. e.g. for Alnus 

glutinosa, Casuarina cunninghamiana and Myrica cerifera exogenous nitrate in concentration of 

1 mM is inhibitory, whereas for Elaeagnus angustifolia no inhibitory effect is reported for 

concentrations up to 3 mM nitrate (Kohls and Baker, 1989). As the actinorhizal symbiosis is 

considered to be tens of million years old and possibly evolved multiple times independently in 

different lineages (Doyle, 2011; Werner et al., 2014; Li et al., 2015), the observed variation may 

reflect lineage-specific adaptations. Alternatively, it has been shown that the difference in 

sensitivity to exogenous nitrate correlates with the employed infection strategy of the plant. 

Actinorhizal plants with root hair based infection are more sensitive to the inhibitory effects of 
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nitrate than plants infected by crack entry (Kohls and Baker, 1989). This hypothesis is in line by 

our findings that P.andersonii root nodule formation is highly tolerant to exogenous nitrates. 

The Parasponia-rhizobium symbiosis is considered to be relatively young when compared to 

legumes, and only evolved after emergence of the Paraspona lineage in the genus Trema (Yang 

et al., 2013; Werner et al., 2014; Behm et al., 2014). Such young symbiosis may lack 

sophisticated mechanisms to control its symbiotic partner, and/or may even employ a different 

strategy than known from legumes. Our finding that formation of fixation threads, and the 

nitrogen-fixing stage of intracellular rhizobium in the nodules, is most strictly controlled in 

presence of exogenous nitrate shows that P.andersonii employs a novel strategy to control its 

symbiotic partner. In this way the energy demanding process of biological nitrogen fixation is 

prohibited, rather than the less energetic process of nodule formation. This finding provides new 

insights in the evolutionary plasticity on the nitrogen fixing symbiosis trait.

Materials and methods

Plant material and growth conditions and transformation

P. andersonii accession WU1 was propagated in in vitro cell culture as described previously 

(Cao et al., 2012). Plantlets were transferred to the 14 cm round pots containing sterilized 

sand:granule mixture (v/v 1:1) supplemented with EKM medium with the required KNO3

concentration (Cao et al., 2012). Plants were inoculated with 10 ml Bradyrhizobium elkanii

al density of OD600: 0.15 (Op den Camp et al., 2012). Plants were grown 

under greenhouse conditions at 28°C, ~100% RH, 12/12 day/night regime and irrigated three 

times per week; once with nitrogen free EKM medium and two times with water. Non-inoculated 

plants were grown in the same condition as control. All plants were watered with EKM-medium 

minus N-source, whereas KNO3 was used only once at the start of the experiment. Plant were 

harvested 8 weeks post inoculation (n=10 / treatment).

Fresh weights were determined immediately after harvesting. Nodules from each plant were 

removed from the root, counted and weighed. Dry weights were measured after desiccation in an 

oven at 60ºC for 24h. 

Transgenic compound P. andersonnii plants carrying either a PaNFP RNAi construct (Op den 

Camp et al., 2011) or a cameleon NupYC2.1 construct (Granqvist et al., 2015) were generated 
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using Agrobacterium rhizogenes mediated transformation (Cao et al., 2012). Plants containing 

NupYC2.1 were kept in vitro. Calcium oscillation experiments were conducted as described by 

Granqvist et at 2015, PaNFP RNAi plants were grown in the sand:granule system as described 

above. Plants transformed with an empty vector considered as control and grown in the same 

condition with PaNFP RNAi knock down plants.

Nitrogenase activity

Nitrogenase activity was measured by using acetylene reduction assay (ARA) (Hardy et al.,

1973). Individual roots with attached nodules were placed in 35 ml bottle and sealed. 3.5ml 

volume of air was withdrawn with a syringe and replaced by 3.5 ml of acetylene. After 1h 

incubation in room temperature, 1ml of gas were taken from the bottle and injected into the gas 

chromatograph system. Ethylene production was determined by gas chromatograph (Chrompack 

Packard 438A equipped with Porapak N column  (110 cm x 1.6 mm ID ) using  a N2 as a carrier 

gas at a flow rate of 30 ml/min at 60 °C.

RNA extraction and Quantitative real-time polymerase chain reaction (qRT-PCR) 

Total RNA was isolated from P. andersonii roots and treated with DNAse I using Qiagen plant 

RNAeasy kit (Qiagen; according to the manufacture’s instruction). RNA concentration was 

quantified by NanoDrop spectrophotometer

using an i-script cDNA synthesis kit (Bio-Rad, Hercules, USA) as described in the 

manufacturer’s protocol. Quantitive PCR reaction was performed in triplicate using primers for 

PaNFP and PaACTIN1 as described previously (Op den Camp et al., 2011).

Nodule structure and ultrastructure

Nodules were embedded in Technovit 7100 according to the supplier’ protocols (Heraeus-

Kulzer, Wehrheim, Germany). Sections (4- RJ2035, Leica 

Microsystems), stained with toluidine blue (0.5%) and analysed by light microscopy (Leica 

AU5500B equipped with DFC425C Camera). 

For transmission electron microscopy nodule tissue was prepared as described before (Fedorova 

et al., 1999). Nodules were fixed in a 3% glutararaldehyde/4% paraformaldehyde mix, post-fixed 

by OsO4 and embedded in LR Whine resin. Sections of 60 nm were prepared using a Leica 
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Ultracut microtome. Nickel grids were counterstained and examined using a JEOL JEM 2100 

transmission electron microscope equipped with a Gatan US4000 4K×4K camera.
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Supplemental figures

Figure S1. Effects of 30 mM and 50 mM KNO3 on Parasponia andersonii inoculated with Bradyrhizobium elkanii 

WUR3 (eight weeks post inoculation). (A) Nodulation efficiency at different concentrations of exogenous nitrate. 

(B) Effect of exogenous nitrate on plant fresh weight (black bars: shoot fresh weight and white bars: root fresh 

weight) (n=10).
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Figure S2. Relative expression of PaNFP in roots of Parasponia andersonii grown on 0.2, 10 and 20 mM KNO3.

Figure S3. PaNFP expression level in non-transgenic roots (black bars) and PaNFP RNAi knockdown roots (white 

bars) grown at 0.2 mM KNO3.
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Symbiotic Functioning of the GRAS-TYPE Transcriptional 

Regulators NSP1 and NSP2 is Conserved in the Non-legume 

Parasponia andersonii
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Abstract

GRAS proteins are plant-specific transcriptional regulators that play critical and diverse roles in 

plant development and signaling. Two genes of this family namely, NODULATION SIGNALING

PATHWAY1 (NSP1) and NSP2, have been identified in legumes to function in symbioses with 

rhizobium and endomycorrhizal fungi. Knockout mutations in either gene in pea (Pisum 

staivum), Medicago truncatula and Lotus japonicus block rhizobium induced root nodule 

formation and bacterial infection. In contrast, the mycorrhizal phenotypes of legume nsp1 and 

nsp2 knockout mutants are relatively weak and only observed in quantitative assays. This 

suggests that in legumes NSP1 and NSP2 have been recruited to commit an essential function in 

rhizobium symbiosis, whereas their functioning in endomycorrhizal symbiosis is partially 

redundant. We investigated the symbiotic functions of NSP1 and NSP2 in Parasponia, the only 

known non-legume lineage that acquired the rhizobium symbiosis by convergent evolution. 

RNAi mediated knockdown levels of Parasponia andersonii PanNSP1 or PanNSP2 correlated 

with reduced rhizobium nodulation efficiencies, including plants that were deprived from any 

nodule-like structure. However, knockdown of PanNSP1 and PanNSP2 only partially affected 

root mycorrhization. Only plants with highest knockdown levels showed a decrease in arbuscule 

formation. This suggests that NSP1 and NSP2 also in P. andersonii root nodule formation 

commit an essential function, whereas their functioning in endomycorrhization is less critical. 

Taken-together, we conclude that symbiotic functioning of NSP1 and NSP2 is conserved in 

legumes and in the non-legume Parasponia.

Keywords: GRAS proteins, endomycorrhizal fungi, Parasponia andersonii, PanNSP1, 

PanNSP2.
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Introduction

Legume root nodules provide a niche to symbiotic rhizobium bacteria to convert atmospheric 

nitrogen into ammonia; a form that is accessible for plants. As this symbiosis is important in 

agriculture, it is intensively studied. Basic research provided insights in the underlying molecular 

mechanisms that drive the mutualistic relation between plant and microbe. Most prominently, it 

was found that signaling networks as well as cellular processes that are essential for root nodule 

formation, are co-opted from the much older -and more widespread- arbuscular mycorrhizal 

(AM) symbiosis (Parniske, 2008). Besides legumes, which form a large taxonomic family 

encompassing tens of thousands of species, a similar nitrogen fixing rhizobium root nodule 

symbiosis occurs also on five tropical tree species of the genus Parasponia (Cannabaceae)

(Behm et al., 2014). As the symbiosis trait in legumes and Parasponia evolved independently 

(Doyle, 2011), a comparative analysis may provide unique insights in the genetic constraints of 

this symbiosis.

Root nodule formation and rhizobium infection have been genetically investigated in the legume 

models Medicago truncatula and Lotus japonicus. This revealed that the rhizobium symbiosis 

has co-opted parts of the genetic network that plants used to establish an endomycorrhizal 

symbiosis. Genes that have a dual role in rhizobium and endomycorrhizal symbiosis encode a 

plasma-membrane localized LECTIN NUCLEOTIDE PHOSPHOHYDROLASE (LjLNP) 

(Roberts et al., 2013), a protein complex of the LRR-type receptor kinase LjSYMRK/MtDMI2, a 

key enzyme of the mevalonate biosynthetic pathway (3-Hydroxy-3-Methylglutaryl CoA 

Reductase 1; MtHMGR1), a DNA-binding  protein LjSIP1(Wang et al., 2013; Endre et al., 2002; 

Stracke et al., 2002; Sun et al., 2015), nuclear envelope localized cation channels LjCASTOR 

and LjPOLLUX/MtDMI1(Ané et al., 2004; Imaizumi-Anraku et al., 2005), a nuclear localized 

Calcium and Calmodulin-dependent protein kinase (CCaMK) (Ané et al., 2004) and the 

transcription factors LjCYCLOPS/MtIPD3, NSP1 and NSP2 (Yano et al., 2008; Maillet et al.,

2011; Horváth et al., 2011; Delaux et al., 2013). By studying the epistatic relationships among 

most of these genes a genetic network, stretching from the receptors down to the transcriptional 

regulators has been revealed (Geurts et al., 2016). As this network controls both rhizobium as 

well as endomycorrhizal symbiosis it is named the common symbiosis signaling network. 
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Interestingly, the strengths of the phenotypes of knockout mutants of the genes in this network 

differ between both symbioses. This is most prominent for the transcriptional regulators NSP1 

and NSP2. A knockout mutation in either gene in L. japonicus, M. truncatula or pea (Pisum 

sativum), blocks rhizobium infection and root nodule formation (Kaló et al., 2005; Smit et al.,

2005; Heckmann et al., 2011; Shtark et al., 2016). In contrast, endomycorrhization phenotypes 

of nsp1 and nsp2 mutants in any of these species are relatively weak. Reduced colonization 

efficiencies and arbuscule formation could only be detected by sensitive quantitative assays in 

which a reduced number of mycorrhizal spores was used as inoculum (Maillet et al., 2011; 

Lauressergues et al., 2012; Delaux et al., 2013; Takeda et al., 2013; Shtark et al., 2016). This let 

us to speculate that in legumes NSP1 and NSP2 are evolved to commit an essential function in 

rhizobium symbiosis, whereas their functioning in endomycorrhizal symbiosis is partially

redundant.

NSP1 and NSP2 belong to the plant specific class of GRAS transcriptional regulators. In plants 

GRAS proteins are highly conserved and can be divided into several clades, each with distinct 

conserved domains and functions (Tian et al., 2004; Lee et al., 2008; Engstrom, 2011; Liu and 

Widmer, 2014) . NSP1 and NSP2 belong to two different clades; namely SHORT ROOT (SHR) 

and HAIRY MERISTEM (HAM), respectively (Kaló et al., 2005; Smit et al., 2007). Generally, 

GRAS proteins commit roles in shoot and root development, Gibberellin (GA3) signaling,

phytochrome A signaling, abiotic stress response or symbioses. In latter case, besides NSP1 and 

NSP2, at least two additional symbiotic GRAS proteins have been identified that function in 

endomycorrhizal symbiosis in legumes; LjRAD1 and LjRAM1/MtRAM1(Gobbato, 2015; Zhang

et al., 2015). Furthermore, at least 6 GRAS proteins are transcriptionally induced in M. 

truncatula roots upon mycorrhization (Hogekamp et al., 2011). Several of these symbiotic 

GRAS proteins showed to form heteromeric protein complexes, allowing an additional level of 

regulation. For example, it was found that MtNSP2 interacts with MtRAM1 and MtNSP1 to 

regulate the expression of the glycerol-3-phosphate acyl transferase MtRAM2, a gene essential 

for arbuscule formation by endomycorrhizal fungi (Gobbato et al., 2012).

Studies in M. truncatula revealed that MtNSP1 and MtNSP2 control expression of several genes 

in a symbiotic context; including MtENOD11 and MtDWARF27 (MtD27) (Liu et al., 2011).

MtD27 encodes a plastid localized carotenoid isomerase, which functions in the strigolactone 

biosynthetic pathway. Strigolactone biosynthesis is under the control of nutrient sensing 
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mechanisms, especially phosphate deficiency stress (Yoneyama et al., 2012). Root-exuded 

strigolactones can activate AM-fungi, thereby promoting endomycorrization of the root 

(Akiyama et al., 2005; Besserer et al., 2006). As strigolactone biosynthesis in Medicago is –at 

least in part- controlled by transcriptional regulation of MtD27 in a MtNSP1 and MtNSP2-

dependent manner (Liu et al., 2011; van Zeijl et al., 2015), it may explain the reduction in root 

colonization by endomycorrhizal fungi in a Mtnsp1Mt/nsp2 knockout mutant. 

Studies in Parasponia have shown that evolution of rhizobium symbiosis is guided by genetic 

constraints (Geurts et al., 2016). Similar to legumes the Parasponia-rhizobium symbiosis is 

founded on perception of rhizobium secreted lipo-chitooligosaccharide (LCO) signal molecules 

(Marvel et al., 1987; den Camp et al., 2011). In both lineages these LCOs are perceived by 

orthologous LysM-type receptors that activate the common symbiosis signaling network (Streng

et al., 2011). In Parasponia as demonstrated by ectopic expression of an autoactive allele of 

CCaMK, which leads to formation of nodule-like structures in absence of rhizobium (Op den 

Camp et al., 2011).

We questioned whether NSP1 and NSP2 fulfil a symbiotic function in Parasponia. We identified 

single putative orthologs of NSP1 and NSP2 in the draft genome sequences of Parasponia 

andersonii and Trema ortientalis. By conducting RNAi in P. andersonii roots we demonstrate 

that PanNSP1 and PanNSP2 are essential for rhizobium root nodule formation. However, 

knockdown of P. andersonii PanNSP1 and PanNSP2 only partially affected mycorrhization. 

This suggests that NSP1 and NSP2 in P. andersonii root nodule formation commit an essential 

function, whereas their functioning in endomycorrhization is less critical. Taken together, we 

conclude that symbiotic functioning of NSP1 and NSP2 is conserved in legumes and the non-

legume Parasponia.

Results

Identification of Parasponia andersonii NSP1 and NSP2

The GRAS protein family is largely conserved in plants and represents 12 distinct clades named 

according to a representative protein of Arabidopsis thaliana (Arabidopsis) (Liu and Widmer, 

2014). NSP1 and NSP2 belong to two different clades; SHORT ROOT (SHR) and HAIRY 
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MERISTEM (HAM), respectively (Smit et al., 2005; Kaló et al., 2005; Engstrom, 2011). To 

identify the Parasponia NSP1 and NSP2 orthologous genes, the draft genome sequence 

assemblies of P. andersonii and T. orientalis were mined using the Arabidopsis members of both 

subclades as query. To create a robust phylogenetic structure similar searches were conducted in 

M. truncatula and Glycine max genome annotations Mt4.0v1 and Wm82.a2.v1.

The SHR clade contains 4 Arabidopsis genes. Besides AtSHR, these are AtBLS1 

(BRASSINOSTEROID, LIGHT AND SUGAR 1), At5G67411 and AtSCL29 (SCARECROW-LIKE 

29). The latter represents the putative ortholog of legume NSP1. Searching the P. andersonii and 

T. orientalis genome resulted in the identification of 5 orthologous genes, whereas for M. 

turncatula and G. max genes 5 and 12 genes could be identified, respectively. Phylogenetic 

analysis revealed 5 orthology groups (OGs) each containing at least one gene of P. andersonii, T. 

orientalis, G. max and M. truncatula. Arabidopsis genes only grouped in 3 OGs including 

AtSCL29, which represents the NSP1 OG. (Figure 1B). The putative NSP1 orthologs of P. 

andersonii and T. orientalis were named accordingly PanNSP1 and TorNSP1.

The HAM clade includes 5 Arabidopsis genes; AtHAM1 to AtHAM4 and AtSCL26, respectively. 

The latter represents the putative ortholog of legume NSP2 (Kaló et al., 2005). Blast searches in 

P. andersonii, T. orientalis, M. truncatula and G. max and subsequent phylogenetic 

reconstruction revealed 5 orthology groups, two of which were devoid of an Arabidopsis 

orthologous gene. MtNSP2 clustered with a single P. andersonii, T. orientalis and Arabidopsis 

gene, but with four G. max and an additional M. truncatula paralog. The phylogenetic structure 

of the NSP2 OG suggests that M. truncatula and G. max share the duplication event (Figure 1A).

The P. andersonii and T. orientalis genes were named accordingly PanNSP2 and TorNSP2.

Pairwise alignment of the PanNSP1 and PanNSP2 proteins to their orthologs in T. orientalis

showed that both gene orthologs are ~94% identical and shared a 65% (NSP1) and 59% (NSP2) 

identify with the M. truncatula proteins. Furthermore, the 5 conserved GRAS domains - leucine 

heptad repeat I (LHR-I), VHIID, LHR-II, PFYRE and SAW- were present in the Parasponia

proteins. Taken together, this suggests that PanNSP1 and PanNSP2 represent functional GRAS-

type transcriptional regulators.
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Parasponia NSP1 and NSP2 are essential for root nodulation 

First we determined whether PanNSP1 and PanNPS2 are expressed in roots of P. andersonii

grown under susceptible conditions for root nodulation (EKM medium supplemented with 0.2 

mM KNO3). RNA was isolated from young growing roots and subsequently used as template in 

a qRT-PCR experiment to determine relative expression of PanNSP1 and PanNPS2 genes. This 

revealed that both genes are expressed in the root at comparable levels.

Next, we investigated whether PanNSP1 and PanNSP2 are essential for root nodule formation. 

To do so, gene specific RNAi constructs were made in the binary vector pK7GWIGW2 (II)-RR

that includes a DsRED1 reporter as non-destructive selection marker. These PanNSP1 and 

PanNSP2 RNAi vectors were introduced in P. andersonii roots using Agrobacterium rhizogenes-

mediated transformation. Plants with transgenic roots were selected based on red fluorescence. 

Of these plants non-fluorescent (non-transgenic) roots were removed prior transfer to pots. For 

each construct at least 5 RNAi knockdown plants were selected as well as a similar number of 

control plants (transformed with an empty vector construct) and subsequently inoculated with 

Bradyrhizobium elkanii WUR3. Eight weeks post inoculation roots were harvested to determine 

the nodulation efficiency of transgenic (red fluorescent) roots. Roots of control plants -

transformed with empty vector- harbored ~15 nodules (in average). In contrast, nodule number 

on PanNSP1 and PanNSP2 knockdown roots varied, ranging between 0 and 15 nodules/plant 

(Figure 3A, B; Table 1)
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Figure2. PanNSP expression level in roots of mutants and control plants (harbouring empty vector) 8 weeks after 

inoculation with Bradyrhizobium elkanii (WUR3). (A) Level of transcription of PanNSP1 in Parasponia RNAi 

knocked down roots (black bars) versus control root (transformed with empty vector, white bars). (B) Quantification 

of PanNSP2 in Parasponia knocked down roots (black bars) versus control roots (transformed with empty vector, 

white bars). Quantifications were normalized using stable expressed reference gene PaACTIN. Bars represent SD of 

three technical repeats.

To determine whether the reduction in nodule numbers correlated with the knock down levels of 

PanNSP1 and PanNSP2 expression, RNA was isolated from individual roots and expression 

level of both genes was determined by qRT-PCR. Correlation was found between level of 

knockdown and nodulation efficiency (Figure 3A, B). These finding demonstrate that PanNSP1

and PanNSP2 are essential for root nodule formation in P. andersonii.
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Figure 3. Nodule number in PaNSP mutants. (A) Reduced nodule number in PanNSP1 RNAi knocked down 

mutants (black bars) compare with control plants (withe bars). (B) Reduced nodule number in PanNSP2 RNAi 

knocked down mutants (black bars) compared with control plants (withe bars). Nodules counted 8 weeks after 

inoculation with Bradyrhizobium elkanii (WUR3).

Partial knock down of PanNSP1 (e.g. plant 2 and 3) or PanNSP2 (e.g. plant 3, 5 and 6) does not 

lead to a complete block of nodulation. Previous studies in Lotus suggest that LjNSP1 and 

LjNSP2 may have a function also in maintenance of symbiotic rhizobium in the root nodule 

(Heckmann et al., 2006). To investigate whether PanNSP1 and/or PanNSP2 may have a similar 

function in P. andersonii we sectioned nodules formed on (partial) PanNSP1 or PanNSP2 knock 

down roots. In total we sectioned 5 PanNSP1 RNAi and 8 PanNSP2 RNAi nodules. All these 

nodules displayed a normal developmental phenotype, including intracellular infection (Figure 

4). This suggests that PanNSP1 and PanNSP2 are essential in symbiotic signaling, but if a 

signaling threshold is achieved, nodule formation proceeds normally.

Table 1. Rate of infected plants in the wild type and nsp1, nsp2 mutants.

B.elkanii R.irregularis

Number of 

inoculated 

plants

Number of 

nodulated 

plants

Ratio Number of 

inoculated 

plants

Number of 

mycorrhized 

plants

Ratio

Wild type 10 10 1.00 6 6 1.00

Transgenic Control 8 8 1.00 8 8 1.00

NSP1 15 7 0.46 10 10 1.00

NSP2 15 12 0.8 11 11 1.00
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Figure 4. Parasponia nodules 8 weeks after inoculation with Bradyrhizobium elkanii (WUR3). (A) 4μm thin resin 

embedded section of control nodule (transformed with empty vector). (B) Transgenic nodule selected based on red 

fluorescence due to DsRED1 expression. (C) Longitudinal section of nodule originated from PanNSP1 knocked 

down root. (D) Transgenic nodule selected based on red fluorescence due to DsRED1 expression. (E) Longitudinal 

section of nodule grown on PanNSP2 knocked down root. (F) Transgenic nodule selected based on red fluorescence 

due to DsRED1 expression.

Parasponia PanNSP1 and PanNSP2 are involved in endomycorrhization

In order to determine whether PanNSP1 and/or PanNSP2 are involved in establishment of AM 

symbiosis, P. andersonii plants with knockdown and control roots were generated and grown in 

pots containing sterilized sand-granule (1:1) mixture as substrate. Plants were watered 3 times a 

4) and twice with water. For 

each construct 15 RNAi knockdown plants were selected as well as a similar number of control 

plants (transformed with an empty vector construct) and subsequently inoculated with 

Rhizophagus irregularis. The percentage of root colonization was examined 4 weeks post 

inoculation. These studies revealed that PanNSP1 and PanNSP2 knockdown roots were all 

mycorrhized (Table 1). However, the fraction of PanNSP1 RNAi root segments that were 

mycorrhized was significantly lower when compared to empty vector control roots or PanNSP2
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RNAi roots (Figure 5A). Next, we determined the frequency of arbuscule formation in the 

infected root segments. This revealed that the number of arbuscules present in both -PanNSP1 

and PanNSP2- knockdown roots is significantly lower when compared to wild type control roots 

(Figure 5B). Taken together, these results indicate that both GRAS-type regulators are involved 

in -though not essential for- endomycorrhizal symbiosis.

Figure 5. Analysis of Parasponia roots inoculated with R. iregularis.four weeks after inoculation (A) Percentage of 

mycorrhized root fragments in PanNSP1 and PanNSP2 RNAi knocked down mutants compare with control plants 

(transformed with empty vector). (B) Reduced level of arbuscul formation in mycorrhized fragments of NSP1 and 

NSP2 RNAi knocked down mutants compare with control plants (transformed with empty vector).

Discussion

In several legumes, it has been identified that the GRAS-type transcriptional regulators NSP1

and NSP2 are essential for rhizobium root nodule formation (Kaló et al., 2005; Smit et al., 2005; 

Heckmann et al., 2006; Murakami et al., 2007). Both proteins  also play a promoting role in 

endomycorrhizal infection (Maillet et al., 2011; Delaux et al., 2013; Murakami et al., 2013). Our 

studies revealed a very similar role of NSP1 and NSP2 in the non-legume P. andersonii.

Complete knockdown of PanNSP1 or PanNSP2 expression blocks root nodule formation, 
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whereas mycorrhizal infection -although with a reduced efficiency- still occurs. As legumes and 

Parasponia gained the nodulation trait by convergent evolution, we conclude that recruitment of 

NSP1 and NSP2 in rhizobium root nodule formation is under tight evolutionary constraints.

We studied the phenotype on individual knockdown roots. In case of knockdown levels of >80% 

nodulation was almost completely inhibited. However, occasionally a single nodule was formed 

8 weeks post inoculation. Based on the cytoarchitecture of these PanNSP1 and PanNSP2 RNAi 

nodules, we argue that these nodules most likely are functional. This finding is in line with 

phenotypes of L. japonicus Ljnsp1 and Ljnsp2 knock out mutants, where also occasionally 

functional nodules were found (Heckmann et al., 2006; Murakami et al., 2007). Such leaky 

phenotype is generally explained by gene redundancy scenario. Alternatively, both NSP proteins 

do not represent a core element in the rhizobium LCO signaling pathway, but rather facilitate 

dymbiotic signaling. This latter hypothesis is supported by genetic dissection studies of the 

rhizobium LCO induced signaling pathway in L. japonicus, which suggest that LjNSP1/LjNSP2 

control several steps in the symbiosis signaling pathway. For example, LjNSP1 and LjNSP2 are 

required for rhizobium induced LjNIN expression (Smit et al., 2007) a gene encoding a 

transcription factor that is essential as well as sufficient for root nodule formation. However, 

LjNIN induced nodule formation requires LjNSP1 and LjNSP2, indicating that both GRAS 

proteins function upstream as well as downstream of LjNIN (Schauser et al., 1999; Marsh et al.,

2007; Soyano et al., 2013; Singh et al., 2014; Lin et al., 2014; Vernié et al., 2015). A facilitator 

function may explain such phenotype. A facilitator function of NSP1/NSP2 is also in line with 

the recent findings that both proteins control the carotenoid biosynthesis pathway (Liu et al.,

2011; van Zeijl et al., 2015). Therefore we hypothesize that NSP1 and NSP2 are essential to 

create a physiological condition that facilitates LCO induced signaling and subsequent root 

nodule formation.

The finding that NSP proteins play a more prominent role in rhizobium root nodule formation 

that in endomycorrhization in independent lineages raises questions concerning the evolutionary 

trajectory of these proteins. Phylogenetic studies revealed that symbiotic NSP1 and NSP2 genes 

in legumes and Parasponia did not experience lineage specific duplication events. Furthermore, 

trans-complementation studies of L. japonicus Ljnsp1 and Ljnsp2 mutants with putative 

orthologs of Nicotiana benthamiana and/or rice (Oryza sativum) revealed that both proteins are 
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functionally conserved in higher plants (Heckmann et al., 2006; Yokota et al., 2010). This leaves 

only two possible scenarios concerning the evolutionary trajectory of both genes; adaptations in 

cis regulatory elements, or alternatively no symbiosis specific adaptations. Transcription levels 

and regulation in response to rhizobium LCOs was found to be important to control nodulation 

efficiency (Murakami et al., 2013). Also it was noted that expression of OsNSP2 in rice is 

relatively low (Liu et al., 2011). However, since a direct comparison of functional promoters of 

NSP1 and/or NSP2 of nodulating and non-nodulating species has not been conducted, it remains 

elusive whether specific adaptations in cis regulatory elements of either of both genes were an 

essential step in evolution of root nodules.

The Parasponia lineage in the Cannabaceae family represents an independent event of evolution 

of nitrogen fixing symbiosis with rhizobium. When compared to legumes, the Parasponia-

rhizobium symbiosis is relatively young, and subsequently less advanced (Behm et al., 2014).

We used Parasponia to get insight in the evolutionary constraints in rhizobium root nodule 

formation and identified the GRAS proteins PanNSP1 and PanNSP2 as key proteins in this 

process. In a previous study we identified the LysM-type receptor PanNFP and PanCCaMK as 

being essential for root nodule formation in Parasponia (den Camp et al., 2011). Taken together, 

it suggests that evolution of rhizobium symbiosis is under severe genetic constraints. Such 

information is of considerable importance for any attempts to engineer a nitrogen fixing 

symbiosis on non-legume species other than Parasponia.

Materials and methods

In vitro Micro-propagation of Parasponia

Parasponia andersonii buds were surface sterilized in 4% hypochlorite (commercial bleach) for 

10 min and subsequently washed six times with sterile MQ water. Sterilized P. andersonii

axillary buds were placed into propagation medium (20 g/l sucrose, 2.4 g/L McCown Woody 

Plant Medium (WPM) including vitamins (Duchefa Biochemie, Haarlem, The Netherlands; 

WPM) (Lloyd and McCown, 1980), 1.0 mg/L 6-Benzylaminopurine, 0.1 mg/L Indole-3-butyric 

acid, 0.8% Daichin agar, pH 5.8,) in Ø 10 cm round petri dishes. Plates were kept in an Elbanton 

growth cabinet at 28°C with a 16/8 h day/night regime. After four weeks shoots emerged from 

the axillary bud calluses. Shoots of >1.0 cm in length were cut and transferred to rooting medium 
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(10 g/L sucrose, 2.4 g/L WPM + 1.0 mg/L indole-3-butyric acid, 0.1 mg/L 1-naphthaleneacetic 

acid, pH5.8,) in round Ø10 cm Petri dishes. These plates were covered by aluminum foil (for 

root induction) and were kept in the same growth cabinet at 28°C for two weeks. Rooted shoots 

were kept on hormone free medium (20 g/L sucrose, 2.4 g/L WPM, 0.8% Daichin agar, pH 5.8,) 

for three weeks before transferring to the pots in greenhouse.

Constructs

The PanNSP1 and PanNSP2 RNAi constructs were made by cloning of 308 and 393 bp in 

pENTR-D-topo vector (PanNSP1F: TAAGCGAGAACAACATT, PanNSP1R: 

TTACTGTCATACTTTCTC; PanNSP2F: TTAACTATTTTGTCTTTC, PanNSP2R: 

TTCCTTATCTCCCTGGACA). Sequence hairpin construct was made by recombination of the 

amplified regions into the binary vector pK7GWIWG2 (II)-RR containing DsRED1 as selectable 

marker. 

Rhizogenes Transformation 

Agrobacterium rhizogenes, strain MSU440, containing the appropriate binary plasmid (all 

containing DsRED1 as selectable marker) was applied on the cut site of shoots with ~1 cm 

length. Two more wounds were produced with a needle dipped in A. rhizogenes. Inoculated 

plants were placed in line at EKM medium plates and half covered with sterile filter paper. The 

plates were sealed and positioned vertically at 21°C (16/8 h light/darkness). After one week the 

shoots were transferred to emergence medium in Daichin agar (0.9% w/v, Duchefa) containing 

-) filter paper. Plants were grown for one 

week at 21°C, subsequently the filter paper was removed and the plates were placed vertically 

into a 28°C growth cabinet for 7-15 days. In this period new roots are formed that are co-

transformed with the T-DNA of the binary vector. Co-transformed roots were selected based on 

red fluorescence. Subsequently, plantlets with transgenic roots were transferred to bigger plates 

cont

and kept under the same growth conditions.

Nodulation assays
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Plants harbouring transgenic roots were inoculated with Bradyrhizobium elkanii WUR3 by 

dipping the roots in a bacterial solution with an optical density of OD600 = 0.15. Subsequently, 

plants were placed in 14cm round pots containing sterilized sand-granule (1:1 v/v) mixture. 

Plants were fertilized once per week with EKM medium containing 0.2mM potassium nitrate and 

two times with water. Nodules were scored 8 weeks post inoculation.

RNA Isolation and qRT-PCR

P. andersonii root RNA was isolated from root samples using CTAB extraction buffer (2% 

CTAB, 2.5% PVP-40, 2 M NaCl, 100 mM Tris- -

mercaptoethanol) followed by a phenol-chloroform-isoamyl alcohol (25:24:1, v/v/v) extraction 

on ice. Next the RNA was isopropanol precipitated at -20°C and washed with 70% ethanol. RNA 

was DNAseI treated and further purified on RNeasy Mini Spin columns (Qiagen). cDNA was 

synthesized from 1 -script cDNA synthesis kit (Bio-Rad, Hercules, USA) 

as described in the manufacturer protocol. Quantitative RT-PCR has been performed using 

SYBR green based detection (Bio-Rad, Hercules, USA). Experimental setup and execution have 

been conducted using a MyIQ optical cycler, according to protocol provided by the manufacturer 

(Biorad, Hercules, USA). Data analysis was performed using BioRad iQ5 software (BioRad). 

Baselines were set at 100 RFU to calculate Ct values. Relative expression of PanNSP1and 

PanNSP2 in control and RNAi knockdown roots was normalized using a P. andersonii actin 

gene PanACT1.

Primers used: 

PaACTIN-qF: CCTCATTGGAATGGAAGCAC,

PaACTIN-qR: TTCCAGGAAACATGGTGGAC

PanNSP1-qF: GTTCAAAGGCCGAGAGAGC

PanNSP1-qR: CTCGCACCACTTCTCTTTCC

PanNSP2-qF: CAAAGGTGGTGACAGTGGTG

PanNSP2-qR: GAACAGCGCCGAGTAGTAGTG

Endomycorrhization assay
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Transgenic P. andersonii plant roots were inoculated with chemical Glomus inocolum. The 

plants were watered three times a week, once with Hoagland’s solution (Hoagland medium 

according to (Ivanov et al 2012

) and twice with water. To characterize mycorrhyzation efficiencies, P. andersonii roots were 

collected, and checked at the fluorescent macroscope for transgenic roots. Transgenic roots were 

then submerged in 10% KOH and heated at 90°C for 20 min. After two times rinsing the roots 

with water they were heated at 90 °C for 4 min in Trypan blue staining solution (2% Trypan blue 

in Lactoglycerol) and subsequently transferred to 30% glycerol. Root fragments were mounted 

on slides for examination. Mycorrhizal infection was quantified according to Pearson et al 

method (Tisserant et al., 1993).

Nodule micro sectioning

Nodules were fixed in phosphate buffer solution (PBS) with 0.25% glutaraldehyde(Ivanov et al.,

2012) included. Vacuum was applied for 1-2 h until tissues sat on the bottom. The tissues were 

incubated at 4°C for overnight. After two times washing with PBS, dehydration steps were 

performed with 10%, 30%, 50%, 70%, 90% and 100% ETOH respectively for 10 min at room 

temperature for each step. Plastic infiltration was done in four steps, which included solution A 

(100ml Technovit7100, 1pack HrdnerI, 2.5ml PEG400):100% ETOH in 1:3, 1:1, 3:1 ratio 

respectively for 30-60 min in room temperature and finally treated with 100% solution A for 

overnight at 4°C. All materials were transferred into cupules and nodules located in the middle. 

Solution A was removed and polymerization solution (15 ml Solution A, 1 ml Hardener II) was 

added immediately. To remove air from the samples, cupules were covered with parafilm and 

left for overnight at room temperature. After polymerization, holders were put on the blocks and 

holding solution (technovit3040: 2 part powder, 1 part liquid) was added from the hole located in 

the centre of holder and kept for 15 min at room temperature. Finally sectioning of nodules was 

performed using a microtome machine and the samples were analysed by microscopy (Leica) 

after staining with toluidine blue (0.5%) buffer and washing with tap water for 5 minutes.
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Abstract

Legumes and Parasponia species engage in a mutualistic symbiosis with nitrogen fixing soil 

bacteria collectively referred to as rhizobia. The consequence of such engagement is the 

formation of nodules on the plant root system. Although the interaction is beneficial to the plant, 

the number of nodules is strictly regulated by different mechanisms. In legumes, one of the 

components which have been discovered to control nodule number is ethylene. It has been 

shown that inhibitors of ethylene biosynthesis or ethylene perception enhance rhizobium 

nodulation. Additionally, genetic studies in Medicago truncatula and Lotus japonicus revealed 

that interference in the ethylene signaling pathway can lead to an uncontrolled number of root 

nodules. It remains unclear however, whether similar ethylene inhibitory mechanisms are also 

functional in Parasponia. Here we showed the negative effect of ethylene on root nodulation of 

Parasponia andersonii. Ethylene insensitivity was induced through RNAi of PanEIN2, a key 

regulator of ethylene signaling pathway. The PanEIN2 gene expression was reduced up to 80% 

resulting in a 20-fold increase in nodule number compared to control plants, similar as reported 

for Lotus japonicus. In addition, a novel phenotype was observed, as nodules on PanEIN2 RNAi 

roots were defected in intracellular infection. Taken together these data support the hypothesis 

that similar to legumes, ethylene–mediated inhibition of root nodule formation evolved in 

Parasponia. The occurrence of different phenotypes in Parasponia and legumes nodules also 

suggests that in Parasponia, ethylene signaling plays a dual role in root nodule formation.

Keywords: Parasponia, Ethylene insensitivity, PanEIN2, intracellular infection.
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Introduction

The nitrogen fixing rhizobium symbiosis is a biotrophic interaction in which both partners 

benefit. The plant supplies the rhizobium bacteria with carbon enabling them to use this energy 

to fix atmospheric nitrogen into ammonia. This newly fixed ammonia can be exploited by the 

plant, providing it a selective advantage, especially under nitrogen limiting growth conditions. 

The nitrogen fixing rhizobium symbiosis is a well-known character of many species of the 

Fabaceae (~18.000 species of which the vast majority can establish a nitrogen fixing rhizobium 

symbiosis), but also occurs in the Parasponia genus of the Cannabaceae. Most probable the 

symbiosis evolved in parallel in both lineages and emerged at different moments in time. Genetic 

studies in legumes revealed that bacterial induced symbiotic signaling triggered by secreted lipo-

chitooligosaccharide (LCOs) signals intertwine with the plant hormonal networks to establish a 

novel organ –the root nodule- to host the bacterial symbionts. Among others, ethylene is found to 

act as a negative regulator of root nodule formation. Here, we focused whether this character is 

constrained in Parasponia andersonii.

Although, the nitrogen fixing rhizobium symbiosis in legumes evolved about 60 million years 

ago, this symbiosis in Parasponia is considered to be significantly younger (Behm et al., 2014).

The genus Parasponia represents only 5 tropical tree species that are closely related to species of 

the genus Trema. The 5 Pasasponia species are exclusively found in the Malay Archipellago, 

were they grow on the nitrogen poor volcanic mountain sloops. Although the age of the

Parasponia genus could not be determined due to the lack of fossil data records, several lines of 

evidence suggest that it is much younger than the legume lineage. First, Parasponia is 

phenotypically and molecularly very similar to Trema, suggesting it has emerged from a basal 

Trema species. Second, its root nodules are more basal when compared to legume root nodules. 

Consequently, Parasponia-rhizobium symbiosis is less advanced and fix nitrogen less effective 

than in case of legumes (Op den Camp et al., 2012; Behm et al., 2014).

Comparative studies between legumes and Parasponia showed that genetic constraints at least in 

part have guided the evolution of the rhizobium symbiosis trait in both lineages. For example 

like legumes rhizobium, the LCO induced signaling network is essential also in case of 

Parasponia root nodule formation. However, since the rhizobium symbiosis in Parasponia is 

considered to be much younger that in legumes, it can be hypothesized that only networks have 
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been recruited that are essential for nodule formation, whereas genetic adaptations that further 

enhance the symbiotic engagement may not (yet) have occurred in Parasponia.

Rhizobium secreted LCOs are perceived by specific LysM-type receptor kinases (Untergasser et 

al., 2008). Upon perception, active cytokinins accumulate in the differentiation zone of the root 

prior first cell divisions that will give birth to a nodule primordium (van Zeijl et al., 2015). A 

nodule primordium is associated with formation of a local auxin maximum (Takanashi et al.,

2011; Imanishi et al., 2014). Formation of such maximum requires cytokinin signaling (Plet et 

al., 2011). Among other responses, the cytokinin induced signaling may interfere with auxin 

transport. Such local inhibition of auxin efflux may result in an formation of a local auxin 

maximum (Plet et al., 2011).

Abscisic acid, jasmonate and ethylene are negative regulators of rhizobium LCO signaling (Sun

et al., 2006; Ding et al., 2008). It has been revealed that ethylene is transiently induced by 

rhizobia during nodule initiation (Ligero et al., 1986; Caba et al., 1998) and negatively affects 

the process of nodule development. Ethylene also inhibits bacterial infection and determines the 

radial positioning of the nodule primoridum in legume roots (Prayitno et al., 2006; Penmetsa et 

al., 2003; Prayitno et al., 2006a). The inhibitory effect of ethylene on nodulation has been 

pharmacologically studied by exogenous application of ethylene (Goodlass and Smith, 1979; Lee 

and LaRue, 1992), or through application of the ethylene precursor 1-aminocyclopropane-1-

carboxylate (ACC), and/or ACC synthase inhibitor aminoethoxyvinylglycine (AVG) (Yu et al.,

1979). In legumes, application of ACC or AVG resulted in different effects on root nodule 

formation. Whereas ACC inhibits formation of this new organ, AVG results in increased 

nodulation efficiency in legumes (Lee and LaRue, 1992; Peters and Crist-Estes, 1989; Lohar et 

al., 2009; Gresshoff et al., 2009; Guinel and LaRue, 1992).

Besides pharmacological studies, also genetics revealed a regulatory role of ethylene signaling in 

nodule formation. Especially ETHYLENE INSENSITIVE 2 (EIN2) commits an important role 

in regulating nodule numbers. Studies in the non-legume Arabidopsis thaliana (Arabidopsis) 

revealed that EIN2 acts as a transcriptional modulator upon proteolytic activation. It interacts 

with specific transcription factors, thereby increasing their stability (Merchante et al., 2015).

Mutating the EIN2 orthologous gene in Medicago (named MtSKL) or knocking it down by RNA 

interference (RNAi) in Lotus japonicus results in an increase in number of root nodules (Miyata
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et al., 2013). Furthermore, in Medicago Mtein2/Mtskl knockout mutant roots display 

hypernodulating character in the root that are interspersed with zones that lack nodules.  

Here we investigated the role of EIN2 in Parasponia root nodule formation. We show that when 

the P. andersonii EIN2 (PanEIN2) gene is supressed, nodule formation is enhanced. In line with 

this we conclude that PanEIN2 has negative effect on nodule formation in P. andersonii. This 

suggests that the negative effect of ethylene signaling on root nodule formation is a generic 

function, rather than a genetic adaptation in the legume lineage.

Results

Increased nodulation efficiency in Parasponia upon interference with the ethylene pathway 

In legumes the inhibitory effect of ethylene on nodulation can be modulated by manipulating the 

ACC (1-aminocyclopropane-1-carboxylic acid) concentration. For example, applying exogenous 

ACC results in decreased nodulation efficiencies in Medicago, whereas the reverse effect is 

achieved by exogenous application of the ACC synthase inhibitor AVG 

(Aminoethoxyvinylglycine) (Penmetsa and Cook, 1997). To test whether this response also 

occurs in Parasponia, we grew Bradyrhizobium elkanii (strain WUR3) inoculated Parasponia

plantlets in vitro, and supplemented the medium either with 10 μm AVG or 50 μm ACC. This 

revealed that addition of AVG results in increased nodulation, whereas plants grown on ACC 

had reduced nodulation efficiency (Figure 1). These results indicated that nodule formation in 

Parasponia is also controlled, at least in part, by ethylene.

PanEIN2 is a negative regulator of rhizobium root nodule formation

Using BLAST tools we identified a Parasponia EIN2 homologous gene (PanEIN2) in the draft 

Parasponia genome sequence (data not shown). PanEIN2 consist of 7 exons and encodes a

protein of 1,294 amino acids. The N-terminal (450 amino acids) of PanEIN2 contains a NRAMP 

domain, including a hydrophobic core of 13 transmembrane domains, whereas the C-terminal 

region contains a CEND transcriptional activator domain and a putative nuclear localization 

signal (1,262-1,288 amino acids). Phylogenetic reconstruction using the EIN2 gene of Medicago,

Lotus, Soybean and Arabidopsis revealed that PanEIN2 represents a putative EIN2 orthologous 

gene (Figure 2). Analysing available RNAseq data sets for Parasponia revealed that PanEIN2 is 
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ubiquitously expressed in bellow and above grown tissues (Figure 3), which further supports that 

PanEIN2 represents a functional gene.

Figure 1. Effects of AVG and ACC on root nodulation of Pararasponia andersonii. Nodule numbers increased by 

adding AVG and reduced after applying ACC (a). Plants were inoculated with Bradyrhizobium elkanii (WUR3) and 

grown for 8 weeks at medium supplemented with 0.2 mM Potassium nitrate. Nodules grown on roots incubated with 

water as Control (b), 10 μm AVG (c) and 50 μm ACC (d). Boxes represent the nodules formed on the roots.
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Figure 2. Phylogeny analysis of PanEIN2. Phylogenetic tree showing the relation of PanEIN2 to EIN2 orthologous 

genes of Medicago, Lotus, soybean and Arabidopsis.
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Figure 3. Expression patterns of PanEIN2 in different tissues. Expression of PanEIN2 based on Parasponia

RNAseq expression atlas. PanEIN2 expression was detected in nodules, roots, female flowers, male flowers, stem 

and leaf tissues. Expression counted based on average of 3 biological replicates for nodule and root, and single 

library for flowers, stem and leaf.

To assess the effect of ethylene on nodulation we performed a RNAi PanEIN2 knockdown study 

using A. rhizogenes mediated root transformation of Parasponia transgenic roots which showed  

on average >50% reduction in PanEIN2 transcripts (Figure 4). To determine whether reduced 

expression of PanEIN2 affects nodulation efficiency, P. andersonii plantlets containing 

transgenic PanEIN2 RNAi roots were grown in vitro and inoculated with B. elkanii WUR3. 

Eight weeks post inoculation we observed a 20-fold increase in nodule number on PanEIN2

RNAi roots when compared to empty vector control roots (Figure 5a). This shows that the 

inhibitory role of ethylene signaling in root nodule formation is conserved in Parasponia and 

legumes.

PanEIN2 knocked down inhibits intracellular infection in Parasponia root nodules 

We noted that nodules formed on PanEIN2 RNAi roots are relatively small. Control plants 

(transformed with empty vector) harboured big and multi lobed nodules that were present on 

older parts of the root. In contrast, in the ethylene-insensitive transgenic PanEIN2 RNAi roots 

hundreds of small, white, single lobed nodules were distributed all over the root (Figure 6). 

Determining nodule fresh weights revealed that average of PanEIN2 RNAi nodules were only 
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~20% of the size of nodules in wild type plants (Figure 5b). Therefore, we planned to study 

ontology of PanEIN2 nodules. To do so, plastic imbedded nodules were sectioned and toluidine 

blue stained. Nodules formed in control plants were fully colonized, containing many cells 

harbouring fixation threads (Figure 7e-f). In contrast, nodules formed on PanEIN2 knocked 

down roots did not contain infected cells. Only intercellular infections were observed (Figure 7a-

d). This shows that a functional ethylene signaling pathway is essential for intracellular infection 

of Parasponia nodules. 

Figure 4. PanEIN2 expression in control (white bar) and PaEIN2 RNAi knockdown roots (black bars, individual 

EIN2 Knocked down plants). Shown are expression analysis of independently transformed roots containing 

PanEIN2 RNAi construct.
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Figure 5. Average number of nodules per transgenic root in control (white bar) and PanEIN2 knocked down (black 

bar) in Parasponia plants (a). Nodule fresh weight (white bar) and dry weight (black bar) in control (transformed 

with empty vector) and PanEIN2 knocked down plants (b).

Figure 6. Nodulation phenotype of the Parasponia andersonii PanEIN2 RNAi mutant (a) and Control (b) 

(transformed with empty vector). Nodules are monitored 8 weeks after inoculation with Bradyrhizobium elkanii 

(WUR3) and selected based on red florescence due to DsRED1 expression. 
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Figure 7. Nodulation and infection phenotype of the Parasponia anadersonii EIN2 mutants. Longitudinal section of 

control and EIN2 RNAi knock down in Parasponia plants. (a) Nodule formed on transgenic Parasponia PanEIN2

knocked down mutants (selected based on red florescence due to DsRED1 expression). Scale bar: 0.5 mm. (b) Cross 

section of nodule on mutant plants. Scale bar 75μm. (c) Longitudinal section of nodule on PanEIN2 knocked down 

plants. Scale bars 50 μm. (d) detail of panel c, only intercellular colonization occurred in PanEIN2 RNAi nodules 

(arrows) and no intracellular infection was observed .Scale bar: 25μm.  (e) Nodule formed on transgenic Parasponia 

transformed with empty vector (selected based on red florescence due to DsRED1 expression). Scale bar: 0.5 mm. 

(f) Cross section of nodule infected cells on control plants. Scale bars 50μm.

Discussion

In a diverse range of legume species it is reported that ethylene has a negative role in nodulation 

initiated by rhizobia (Oldroyd et al., 2001; Nukui et al., 2000; Goodlass and Smith, 1979; Lee 

and LaRue, 1992; Penmetsa and Cook, 1997). Here we provide evidence that ethylene has 

similar effect on Parasponia root nodule formation. Nodule number dramatically increased upon 

knockdown of the ethylene signaling gene PanEIN2. In addition, we found that PanEIN2 RNAi 

nodules are hampered in intracellular infection, a phenotype unknown in legumes. This indicates 

that in Parasponia ethylene signaling plays a dual role in root nodule formation.
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The gaseous hormone ethylene is synthesized via a methionine dependent pathway, in where 

methionine is enzymatically converted to ethylene in 3 subsequent steps in which methionine is 

converted in to ethylene with 1-aminocyclopropane-1- carboxylate (ACC) as intermediate. In 

this biosynthetic pathway production of ACC by ACC synthase is considered the rate limiting 

step. Application of the ACC synthase inhibitor (AVG) was resulted in an increase in the number 

of nodules in legumes, whereas the opposite effect was obtained upon application of exogenous 

ACC (Peters and Crist-Estes, 1989; Schmidt et al., 1999; Penmetsa and Cook, 1997; Nukui et 

al., 2000). In accordance, in current study similar results were obtained in Parasponia, which 

shows that ethylene acts as a generic inhibitor of rhizobium root nodule formation.

Although the response of legume species to ethylene can vary, exogenous ethylene generally 

affects the frequency of nodule primordia formation (Nukui et al., 2000). The underlying 

molecular mechanisms remain unknown. Studies in pea suggest that transcriptional regulation of 

the biosynthetic pathway may function as a regulatory mechanism. In situ hybridization studies 

indicated that ACC oxidase expression is spatially regulated, and in this way restricting the 

positioning of nodule primordia. Interfering with this spatial regulation –or alternatively the 

ethylene signaling pathway- affects not only number of root nodules, but also their positioning in 

respect to the xylem axis in legume root (Heidstra et al., 1997; Penmetsa and Cook, 1997). It 

remains to be studied whether a similar positioning also in Parasponia correlates with spatial 

regulation of ethylene biosynthesis.   

Studies in Medicago and Lotus revealed different phenotypes when mutating or knocking down 

EIN2 genes. In Medicago, zones of hyper-nodulating clusters are formed that are interspaced 

with non-nodulating root segments (Penmetsa and Cook, 1997). In contrast to Medicago that 

MtEIN2 is a single gene, two paralogous LjEIN2 genes have been identified in Lotus (Miyata et 

al., 2013). Knocking down both these genes resulted in significantly more nodules when 

compared to wild type roots, though hypernodulating root segments interspaced with non-

nodualting segments have not been reported (Miyata et al., 2013). Similarly, in Parasponia we 

did not observe such hypernodualting clusters. This indicates that the hypernodulating clusters

are a phenotype unique to Medicago. Alternatively, the studies in Lotus (Miyata et al., 2013) and

ours in Parasponia are based on RNAi, which may result in some functional EIN2 protein. This 

may explain the difference in nodulation phenotype with Medicago, which is an E.M.S. knock 

out mutant.
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Our results showed that in Parasponia PanEIN2 signaling is essential for intracellular infection 

of nodule cells. Such role for ethylene signaling has not been found in legumes, suggesting a 

novel function of this highly conserved pathway in Parasponia. However, it remains open 

whether Parasponia adapted its ethylene signaling cascade, or more specifically, the functioning 

of EIN2 to form nitrogen fixing root nodules. Studies in Arabidopsis have shown that the C-

terminal part of AtEIN2 can act as a transcriptional modulator, there by stabilizing transcription 

factors AtEIN3 and AtEIL1 (Tsuda and Somssich, 2015). Binding of ethylene to ER-localized 

ETR-type receptors modulates their phosphorylation activity, although precise regulation 

remains elusive (Merchante et al., 2013). Ethylene binding results in inactivation of the negative 

regulatory kinase CTR1, which is associated with the ETR–type receptors. Deactivation of CTR1 

triggers proteolytic cleavage of EIN2, allowing the C-terminal domain to commits its function. 

Identification of the interacting transcription factor complex in Parasponia (and/or legumes) 

may provide insight to what extend evolution of the ethylene-EIN2 signaling network is 

constraint in higher plants.

Materials and Methods

Construction of Parasponia EIN2RNAi vector

Degenerate primers were designed based on the sequences of AtEIN2 (Arabidopsis thaliana), 

PtEIN2 (Populus trichocarpa), VvEIN2 (Vitis vinifera), LjEIN2 (Lotus japonicas) and MtEIN2 

(Medicago truncatula) in order to amplify EIN2-like genes from P. andersonii: (forward 

(GATGGRGYTGATGAGGATCT) and reverse (CCCCTGGCTGGTTTDGMAGC)). 

Subsequent PCR on root cDNA of P. andersonii resulted in 226 bp amplicon. Partial sequence of 

Parasponia EIN2 gene was cloned into a pENTR-D-Topo plasmid (forward 

(CACCACAGTGTTTGTATCAGAG), reverse (TTTCCATGGCAGCTGAGAATATT)). 

Subsequent RNAi construct was made by recombination of the amplified region into the binary 

vector pK7GWIWG2 (II) driven by the CaMV35S promoter as described in Limpens et al. 

(2005) (Limpens et al., 2004). pK7GWIWG2(II) contains pAtUBQ10::DsRED1 of pRedRoot as 

selection marker (Limpens et al., 2004). 
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Plant transformation and nodulation assay

Agrobacterium rhizogenes-mediated hairy roots transformation was used to transform 

Parasponia andersonii as described in (Cao et al., 2012). Transgenic roots were selected based 

on DsRED1 expression. Transgenic roots were transferred to low nutrient EKM [pH 6.6; 100ml 

Macro elements 10X (g/liter): KH2PO4:1.2, K2HPO4:3.6, MgSO4.7H2PO4:2.5, Na2SO4:1.0; 1ml 

Micro elements (mg/100ml): MnSO4:100, ZnSO4.7H2O:25, CuSO4.5H2O: 25, H3BO3: 25; 1ml 

Fe-citrate (15mM); CaSO4.2H2O: 0.25; NH4NO3: 0.02] medium. Plant transformed with empty 

vector was investigated as control plants. After two weeks, PaEIN2 RNAi and empty vector 

control plants were transferred to the pots and inoculated with Bradyrhizobium elkanii WUR3 at 

y irrigating after planting in the root. The cultured plants 

were irrigated three times per week; once with EKM medium (supplemented with 0.2 mM 

potassium nitrate) and two times with water.  

Analysing of RNA seq data

Primary analysis was done based on 100 bp paired-end read sequencing of the Parasponia 

transcriptome. Reads were mapped with HiSat2 and mapped to the PanEIN2 gene model and 

counted. Finally raw reads were normalised with DeSeq2 which resulted in normalized counts.

Quantitative RT-PCR

RNA was isolated from snap-frozen roots samples using the plant RNA kit (E.Z.N.A, Omega 

Biotek, Norcross, USA) as described in the manufacturer protocol. cDNA was synthesized from 

-script cDNA synthesis kit (Bio-Rad, Hercules, USA) as described in the 

manufacturer protocol. Quantitative RT-PCR has been performed using SYBR green based 

detection (Eurogentec, Maastricht, the Netherlands). Experimental setup and execution have 

been conducted using a MyIQ optical cycler, according to protocol provided by manufacturer 

(Biorad, Hercules, USA). Data analysis was performed using BioRad iQ5 software (BioRad). 

Baselines were set at 100 RFU to calculate the Ctvalues, Ct values of 31 and higher were 

excluded from the analysis. 

Primers used:

PaACT-qF CCTCATTGGAATGGAAGCAC
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PaACT-qR TTCCAGGAAACATGGTGGAC
PaEIN2-qF ATGAATCGGCTAAGTCAAGT
PaEIN2-qR GGCTTTCCATAAGTGAGAGG

Microscopy analysis

Fixation of nodules was performed in 5% glutaraldehyde (v/v) and 3% sucrose (w/v) dissolved in 

phosphate buffer (pH7.0). Vacuum infiltration of this solution was applied for at least 1 hour. 

Subsequently an ethanol dehydration series was carried out. Plastic infiltration of samples was 

done in four steps, included solution A (100ml Technovit7100, 1pack HrdnerI, 2.5ml 

PEG400):100% ETOH in 1:3, 1:1, 3:1 ratio respectively for 30-60min in room temperature and 

finally treated with 100% solution A for overnight at the 4°C. All material was transferred into 

cupules and nodules located in the middle, solution A was removed and polymerization solution 

(15ml Solution A, 1ml Hardener II) was added immediately. To remove air from the samples, 

cupules were covered with parafilm and left for overnight at room temperature. After 

polymerization, holders were put on the blocks and holding solution (technovit3040: 2part 

powder, 1 part liquid) was added from the hole located in the centre of holder and kept for 15 

min at room temperature. 

Finally sectioning of nodules was performed using a microtome machine and the samples were 

analysed by microscopy (Leica) after staining with toluidine blue (0.5%) buffer and washing 

with tap water for 5 minutes.

Application of the ethylene biosynthesis activator and inhibitor and plant inoculation

ACC (A–3903; Sigma) and AVG (A–1284; Sigma) were dissolved in sterile distillated water and 

stored at 4°C. Chemicals were added to 50 mL autoclaved EKM medium in a final concentration 

of 50 and 10 μM respectively at 45 to 50°C, mixed, and then poured in petri dishes. 

Baradyrhizobium elkanii strain was grown by standard procedures for this genus in YMB 

medium (pH 6.8 (g/liter: Manitol: 10.0, K2HPO4: 0.5, MgSO4.7H2O: 0.2, NaCl: 0.1, Yeast 

Extract: 0.5, pH: 6.8) for three days at 28 °C with shaking at 250 rpm. The optical density of cell 

culture was determined with nanodrop and centrifuged in 4000 rpm for 10 minutes. The final 

pallet was dissolved in sterile water and adjusted at the final optical density of 0.15. Parasponia

roots were immerged in this solution for few three seconds and cultured in EKM medium for 8 

weeks at 28ºC.
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Parasponia-Trema a key system to transfer symbiosis to other non-legumes

Species of the Parasponia genus are the only known non-legumes capable to establish N2 fixing 

symbiosis with rhizobium bacteria. As Parasponia and legumes are only remotely related, with a 

last common ancestor ~100 million years ago, it seems most probable that both lineages have 

gained the symbiotic trait by independent evolutionary events. Although the Parasponia-

rhizobium symbiosis was discovered early twenty century (Bernard, 1916), it took till 1973 

before Parasponia plants were introduced in the lab for research (Trinick, 1973). The initial 

research in that time was to investigate whether rhizobium symbiosis is unique to Parasponia, or 

also occurs with some closely related sister species of the genus Trema. Also, the rhizobium-

symbiosis of Parasponia was compared with legumes to characterize the commonalties and 

differences. 

Parasponia and Trema species are fast growing trees that form pioneer vegetation in the tropics. 

Species of both genera are morphologically very similar, resulting in several incorrect 

identifications suggesting that the rhizobium root nodule symbiosis also occurs in Trema sp. 

(Trinick, 1973; Coventry et al., 1976; Trinick and Galbraith, 1976). In 1978, extensive 

examination in New Guinea and Java on Trema orientalis failed to find any nodules. Therefore 

rhizobium symbiotic relationship within the Cannabaceae (that time still part of the Ulmaceae) 

was restricted to Parasponia (Akkermans et al., 1978). This genus encompasses five species -P. 

andersonii, P. melastomatifolia, P. parviflora, P. rigida and P. rugosa- that show a restricted 

geographical distribution in the Malay Archipelago, where they can be found on slopes of 

volcanic mountains (Figure 1). In contrast, Trema sp. can be found pan-tropically. Compared to 

Parasponia, Trema sp. is broadly distributed, indicating that their ecological niche is less 

restricted.   



General Discussion

125

Figure1. Geographical distribution of Parasponia sp..

Recent molecular phylogenetic studies based on four chloroplast genes revealed that the 

Parasponia lineage is imbedded in the genus Trema (Yang et al., 2013). This further indicates 

that Parasponia and Trema are closely related. According to current taxonomic rules, 

Parasponia species may have been included in the genus Trema. Since rhizobium nitrogen fixing 

symbiosis is exclusively occurring on Parasponia sp., I argue that Parasponia –including it 

symbiotic trait- evolved relatively recent from an ancestral Trema species. As the legume-

rhizobium symbiosis is estimated to be ~60 million years old, I assume that this symbiosis with 

Parasponia is significantly younger.

Initial studies of field-collected nodules of 3 Parasponia species suggests that these plants are 

exclusively nodulated by Bradyrhizobium sp. (Trinick, 1980). However, experimental work in 

the laboratory revealed a much broader host range for P. andersonii indicating high promiscuity 

(Op den Camp et al., 2012). Cross-inoculation experiments of these strains with legumes reveal 

that Parasponia and legumes can form root nodules with the same rhizobial strains. This 

indicates that the underlying mechanisms of nodule formation, intracellular infection, nitrogen 

fixation and establishing a symbiotic interface to exchange nutrients are largely conserved. 

Therefore I hypothesize that genetic constraints have guided the evolution of the nitrogen fixing 

rhizobium symbiosis trait in both lineages. A comparison of Parasponia to legumes will provide 

insights in these constrains. Additionally, as the symbiosis of Parasponia is anticipated to be 
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much younger than the symbiosis in legumes, Parasponia-Trema can be used as a comparative 

system of highly similar plant species that differs in the nitrogen fixing symbiosis trait. 

Although the Paraponia and Trema genera only represent tropical trees, they set seeds within 6 

to 9 months after planting (Becking, 1992). Nevertheless, as experimental system for laboratory 

experiments, it is essential that in vitro propagation and transformation protocols are established.  

For Parasponia such methods have been established already in the 90 decade, and these 

protocols recently have been extended to Trema tomentosa (Davey et al., 1993; Cao et al., 2012).

Additionally, transformation protocols have been established for both species. Initially these 

protocols focussed on Agrobacterium rhizogenes-based root transformation. This method is 

commonly used in legumes, as it is relatively fast. Several studies indicated that A. rhizogenes-

mediated root transformation can be used on P. andersonnii and T. tomentosa as well (den Camp

et al., 2011; Cao et al., 2012; Granqvist et al., 2015) (Chapter 2, 4, 5 and 6 in this thesis). 

However, A. rhizogenes mediated transformation systems have several disadvantages; including 

phenotypic variation between individual roots and the presence of the bacterial rol genes that 

affect the plant hormone homeostasis. To overcome this problem Agrobacterium tumefaciens-

based stable transformation can be applied. I tested whether such method is applicable for T. 

tomenotsa, and found that generating stably transformed plants is relatively straightforward 

(Chapter 3). In combination with the in vitro propagation protocols, an unlimited number of 

clones can be generated from primary transformed plant lines. This reduces the importance of 

generative propagation, and will allow affective research on this tree species. To establish 

Parasponia-Trema as a comparative research system it will be essential to establish a similar 

effective transformation protocol for Parasponia.

Distinct effect of nitrate on Parasponia-rhizobium interaction

Nitrate retards the development of nodules on all legume species (Streeter and Wong, 1988; 

Barbulova et al., 2007; Sagan et al., 1995). Nitrate is also responsible for decreasing the level of 

nitrogen fixation in existing nodules (Carroll and Gresshoff, 1983; Fujikake et al., 2002). In our 

study on the effect of exogenous nitrate on root nodulation in Parasponia (Chapter 4) we 

initially addressed the question whether similar responses as reported for legumes can be also 

observed in Parasponia. We found that nodulation efficiencies of Parasponia are reduced in 

presence of exogenous nitrate, but even at a concentration of 50 mM KNO3 still a few nodules 
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were formed. Strikingly, such nodules formed in presence of high nitrate level (>10 mM KNO3)

are defected to fix nitrogen, due to impaired intracellular infection. Although these nitrate grown 

nodules all contained infected cells, the formation of fixation threads was hampered. Transition 

from infection thread to fixation thread formation is a developmental switch that controls the 

adaptation of host cells to accommodate rhizobia with whom it aims to exchange nutrients. 

Fixation threads form a major expansion inside the cell interior, which requires modulation of 

the plant vacuole. In Parasponia nodule cells that are infected with rhizobium the vacuoles 

shrink, get fragmented and even can disappear completely, similar as reported for legumes that 

host rhizobia as transient nitrogen-fixing organelle-like structures (Gavrin et al., 2014). Fixation 

threads are largely deprived from cell wall structure, allowing a better exchange of nutrients 

between both partners. Absence of this interface between plant and microbe defects the 

symbiosis, and may therefore be a very effective way to avoid exploitation by the biotrophic 

rhizobial microbes.

Why the mechanism of microbial control at the level of the formation of the symbiotic stage has 

not been found in legumes may have several reasons. First, this mechanism may be functional 

only in species that form fixation threads. This mode of infection is not exclusive for 

Parasponia, but also occur in Andira and some Chamaecrista species (de Faria et al., 1986; 

Naisbitt et al., 1992). However studies on the effect of exogenous nitrate have been limited to 

legume crops (Lupin, Chickpea, Soybean and Bean) and the models Medicago truncatula and 

Lotus japonicus. Therefore, extending these studies to more basal legumes will be relevant. 

Secondly, legumes may have evolved novel adaptations to control the rhizobium symbiosis, 

which are not present in Parasponia. For example, exogenous nitrate fully blocks formation of 

root nodules in the studied legumes (Barbulova et al., 2007; Carroll and Gresshoff, 1983), which 

makes an additional mechanism to control the microbial partner at a later stage superficial. In 

contrast to legumes, rhizobium LCO induced signaling is not blocked in Parasponia. Studies 

presented in this thesis show that LCOs trigger for example calcium oscillations in root 

epidermal cells of Parasponia roots grown in presence of exogenous nitrate. An activated LCO 

signaling machinery will ultimately lead to the onset of root nodule organogenesis.

The rhizobium symbiosis in legumes as well as Parasponia is founded on the much older 

arbuscular mycorrhzal symbiosis (Szczyglowski and Amyot, 2003). Genetic studies identified 

so-called common symbiosis signaling genes that are essential for rhizobium and arbuscular 
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mycorrhizal induced signaling (Parniske, 2008). In line with this, is the finding that rhizobium 

and mycorrhizal fungi produce structurally very similar LCO signaling molecules (Gough and 

Cullimore, 2011). In model legumes LysM-type receptor kinases have been identified that 

specially recognize rhizobium LCOs, whereas these receptors are not essential for mycorrhzae. 

This indicates that perception mechanisms of rhizobium and mycorrhizal signals have been

diverged in course of legume evolution. Since the Parasponia-rhizobium symbiosis is considered 

to be much younger, it can be anticipated that neofunctionalization of rhizobium specific features 

is less advanced when compared to legumes. This hypothesis is supported by the finding from a 

LysM-type receptor –PaNFP- that commits a dual function in rhizobium and endomycorrhizal 

symbiosis (den Camp et al., 2011).

Abuscular mycorrhization and nodulation are very different symbioses in the terms of host 

responses and microbe involvement (Kosuta et al., 2003). Above all, arbuscular mycorrhizal 

fungi do not trigger cell divisions in the root cortex. However, in both interactions intracellular 

hosting of the microsymbiont is key to establish a functional symbiosis (Oldroyd et al., 2009). In 

case of mycorrhizal fungi this leads to highly branched membrane compartments -known as 

arbuscules- in root cortical cells. These arbuscules facilitate nutrient exchange. The cellular 

machinery controlling intracellular hosting of arbuscular mycorrhizal fungi or rhizobium bacteria 

is very similar. For example, in both symbionts the same vascular and membrane target SNARE 

proteins are used (Limpens et al., 2009).

Arbuscular mycorrhizal symbiosis is established when the plant experience nutrient deficiencies, 

especially phosphates. Arbuscular mycorrhzal fungi also facilitate the uptake of exogenous 

nitrates and supply them to the plant host in return for carbohydrates. However, the underlying 

mechanisms that plants are used to manipulate this flux of nutrients remain largely unknown. 

Since the rhizobium nitrogen fixing root nodule symbiosis is founded on arbuscular mycorrhizal 

symbiosis, it is tempting to speculate that the mechanism employed by Parasponia to control 

rhizobium at presence of high exogenous nitrates is derived from arbuscular mycorrhiza. 

Shared features of the Parasponia and Legume rhizobium symbioses

To identify shared functional features between legumes and Parasponia in respect to rhizobium 

symbiosis, it was studied whether the transcriptional regulators NODULATION SIGNALING 

PATHWAY1 (NSP1) and NSP2 commit symbiotic functions in Parasponia. NSP1 and NSP2
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belong to the GRAS proteins; a conserved family of plant-specific transcriptional regulators that 

play diverse roles in root and shoot development. In the legumes Medicago and Lotus NSP1 and 

NSP2 are essential for rhizobium LCO signaling and nodule formation (Kaló et al., 2005; Hirsch

et al., 2009; Heckmann et al., 2006). Furthermore, knockout mutants of Medicago or Lotus nsp1

or nsp2 display mild mycorrhizal phenotypes in which the nsp1 and nsp2 mutants show reduced 

hyphal colonization (Takeda et al., 2013; Maillet et al., 2011). In addition it was found that both 

proteins are essential transcriptional regulators of DWARF27, a gene encoding a key enzyme in 

the strigolactone biosynthesis pathway (Liu et al., 2011). As strigolactones are not only exuded 

signals that are perceived by arbuscular mycorrhizal fungi, but also endogenous hormones, it 

may explain why NSP1 and NSP2 are conserved in higher plants, including Arabidopsis (Liu et 

al., 2011).

In my research I found that NSP1 and NSP2 are also essential for Parasponia root nodule 

formation, whereas the mycorrhizal infection is only slightly reduced. This phenotype is very 

similar as reported for Medicago, and underlines that recruitment of both proteins to commit 

synmbiotic functions are guided by genetic constraints. 

The molecular functioning of NSP1 and NSP2 in a symbiotic context remains unclear. Early 

studies suggested that both proteins are primary response factors that activate transcription upon 

LCO perception (Smit et al., 2005). This hypothesis was further supported by the identification 

of NSP1-NSP2 binding sites in the promoter of the MtENOD11 LCO responsive gene. However, 

other studies indicate that NSP1 and NSP2 are not essential components of the LCO signaling

pathway, but rather may function as facilitators (Limpens and Bisseling, 2014). Mutations in 

such facilitator proteins may affect the readout of the LCO signaling pathway in such a way that 

symbiotic responses that are associated with root nodule formation are ceased.

Ethylene-mediated negative control of Parasponia nodulation provides insights in genetic 

constraints underlying rhizobium symbiosis

In legumes an appropriate level of nitrogen fixing root nodules is beneficial to the host plant, but 

excessive nodulation diminishes plant growth. Therefore, to control the number of nodules and 

to maintain proper symbiotic balance, host plants have evolved mechanisms to regulate 

nodulation. This so-called autoregulation of nodulation (AON) functions in shoots and is based 
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on a root-to-shoot long-distance signaling (Nutman, 1952; Pierce and Bauer, 1983; van Brussel

et al., 2002). Genetic mutations in AON result in a markedly increased number of nodules.

In addition to the systemic AON mechanism, the gaseous phytohormone ethylene plays 

important roles in the negative regulation of nodulation. The role of ethylene in physiological 

processes throughout the life cycle of the plant has been intensively studied. Among other 

processes, ethylene regulates developmental processes like senescence and abscission, but also 

responses to biotic stresses that include pathogens and in case of legumes rhizobium.

The inhibitory effect of ethylene on nodulation has been studied pharmacologically as well as 

genetically. Among the strongest evidence that ethylene signaling affects root nodule formation 

has been obtained by studying the sickle mutant in Medicago trancatula (Medicago) (Penmetsa 

and Cook, 1997). SICKLE encodes the Medicago ortholog of EIN2 (ETHYLENE 

INSENSITIVE2) (Varma Penmetsa et al., 2008). The EIN2 gene was initially identified in A. 

thaliana and the encoded protein plays a central role in signal transmission leading to 

transcriptional responses (Jun et al., 2004; Alonso et al., 1999; Shibuya et al., 2004; Varma 

Penmetsa et al., 2008). EIN2 mutants have been generated in several other plant species, 

including Rice, Petunia, Lotus and Medicago (Jun et al., 2004; Shibuya et al., 2004; Varma 

Penmetsa et al., 2008). Detailed phenotypic analyses of Medicago sickle/ein2 mutants revealed 

that ethylene signaling negatively regulates rhizobium LCO-induced oscillations of the nuclear 

calcium concentration (also known as calcium spiking), LCO induced gene expression, the 

number of nodules formed, the positioning of nodule primordia in the root, and growth of 

infection threads (Oldroyd et al., 2001; Penmetsa and Cook, 1997; Heidstra et al., 1997). Similar 

studies, though less detailed, have been conducted in Lotus. In most plants EIN2 is a single gene 

that commits the central role in ethylene signaling. However, Lotus harbors 2 paralogous genes 

of EIN2; LjEIN2-1 and LjEIN2-2, of which the latter is the putative ortholog of MtSKL/MtEIN2.

Mutating LjEIN2-2 (also named ENIGMA) affects radial positioning of nodules, but did not 

result in a hypernodulating phenotype as has been reported for Medicago (Chan et al., 2013).

However, by using RNAi to knockdown both paralogous genes nodulation significantly 

increased (Miyata et al., 2013). This suggests that in Lotus EIN2 functioning in nodulation is sub 

functionalized over two gene paralogs.

Since the regulatory role of ethylene signaling on root nodulation seems to be conserved in 

legumes, we investigated the symbiotic role of EIN2 in Parasponia. Like most plant species, and 
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in contrast to Lotus, Parasponia contains only a single EIN2 gene. Knocking down of this gene 

by RNAi resulted in a 20-fold increase of nodules (Chapter 6). This underlines that the negative 

effect of ethylene on nodulation is not legume specific, but also is present in Parasonia.

The question remains whether the ethylene signaling pathway has been adapted in legumes and 

Parasponia, and if so, how such adaptations may look like. Till now, knowledge of the 

molecular functioning of the ethylene signaling pathway has been largely revealed based on 

studies in Arabidopsis. Ethylene is perceived by a family of ER-localized receptors, which are 

negative regulators of the signaling pathway (Chang et al., 1993; Hua et al., 1995; Hua and 

Meyerowitz, 1998; Hua et al., 1998; Sakai et al., 1998). Downstream of these receptors acts the 

CTR1 kinase that –again as a negative regulator- controls the functioning of EIN2. The 

membrane localized EIN2 protein is a central transducer of the ethylene signal (Kieber et al.,

1993; Alonso et al., 1999). If CTR1 is inactivated and cannot phosphorylate EIN2, this protein is 

proteolitically activated resulting in release of its C terminal part. The EIN2 C terminus is 

translocated to nucleus where it will activate a transcriptional network (Ju et al., 2012; Qiao et 

al., 2012; Wen et al., 2012). In the absence of ethylene, the active receptors recruit CTR1 to 

phosphorylate the C-terminal domain of EIN2 to repress the downstream ethylene response.

To commits its regulatory function in root nodule formation the ethylene pathway could have 

experience adaptations at several levels. However, only three evolutionary scenarios can explain 

the functioning of the ethylene signaling in nodulation. (I.) The ethylene signaling pathway has 

not been adapted in legumes and Parasponia, but its negative role on nodulation is a pleiotropic 

effect of its generic functioning in plant growth and development. To my opinion this is the most 

unlikely scenario, since slight modulation of the ethylene homeostasis already affects the 

nodulation efficiency of the plant. (II.) Alternatively, the ethylene signaling cascade has been 

recruited to control root nodule formation. In such scenario the recruitment occurred in parallel 

in the Parasponia and legume lineages and may reflect an adaption that evolved after initial birth 

of the symbiosis. Recruitment of ethylene as negative regulator for nodulation can be achieved 

by adaptation of the expression domain of ethylene biosynthesis genes. For example, in pea it 

has been shown that an ACC oxidase gene is expressed in cortical cells opposite phloem poles, 

which may be causal for the fact that nodules are generally formed opposite xyleme poles 

(Heidstra et al., 1997). To find support for the hypothesis that such spatial expression pattern is 

an evolutionary adaptation a comparative study on the expression profile of ethylene 
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biosynthesis and signaling genes in roots of legumes and non-legumes will be relevant. 

Additionally, reverse genetic studies in where expression domains are disturbed will be essential.  

(III.) A third evolutionary scenario is the adaptation of ethylene signaling pathway in such a way 

that it affects the readout of the LCO signaling pathway. The LCO signaling pathway is highly 

conserved in higher plant species as it is also essential for the more ancient and widespread 

mycorrhizal symbiosis. A central question that remains in rhizobium symbiosis research is which 

genetic changes have occurred so that upon the activation of this pathway cortical cell divisions 

are triggered. As ethylene has a negative effect on LCO signaling already at the level of calcium 

spiking (Oldroyd et al., 2001), it can be envisioned that adaptations in ethylene homeostasis are 

essential to allow a symbiotic readout of this pathway in such a way that root nodule formation is 

triggered. To test this hypothesis it will be essential to modulate the ethylene signaling pathway 

in a non-nodulating plant species and monitor the effect of this modulation on the LCO signaling

pathway.

Future Research

In this thesis I present transformation protocols for T. tomentosa, a close non-symbiotic relative 

of Parasponia species. Recent studies revealed that T. tomentosa does not display calcium 

oscillation in response to a complex mixture of LCO molecules extracted from the broad host 

range of strain Sinorhizobium fredii NGR234 (Granqvist et al., 2015). This strain can nodulate 

hundreds of legume species as well as Parasponia (den Camp et al., 2011; D’Haeze and 

Holsters, 2002; Pueppke and Broughton, 1999). In line with this S. fredii NGR234 LCOs trigger 

calcium spiking in Parasponia root hair cells (Granqvist et al., 2015). The absence of this early 

symbiotic response (calcium spiking can be detected 10 min post LCO application), makes T. 

tomentosa an excellent species in a comparative approach to Parasponia.

I have conducted first experiments aiming to test the third evolutionary scenario on ethylene 

signaling as described above. I conducted RNAi of T. tomentosa EIN2 using A. rhizogenes

transformation. Of the 20 compound plants that have been generated, two contained nodule-like 

structures on their roots, 8 weeks post inoculation (Figure 2). Sectioning of these nodule like 

structures indicate massive cell divisions in pericycle and inner cortical cells, which were 

deprived from rhizobium intracellular infection. Therefore it can’t be ruled out that these 
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structures were the result of growth deviations (e.g. derived from lateral root primordia). To rule 

this out the experiment should be reproduced, and additional symbiotic readouts should be 

monitored; e.g. symbiotic gene expression and/or calcium spiking. Also it is wise to generate 

stable lines to commit this research, rather than rely on A. rhizogenes transformation. A protocol 

for this has been presented in this thesis.

Figure 2. Nodule-like structure on Trema tomentosa TtoEIN2 RNAi knocked down roots. Transgenic roots are 

selected based on red florescence due to DsRED1 expression. (a-b) Nodule-like structure phenotype on roots. Scale 

bar: 0.5 mm.  (c) Cross section of nodule-like structures. Scale bar 75μm. (d) Detail of panel c. Scale bar 5μm. 

Roots monitored 8 weeks after inoculation with Bradyrhizobium elkanii (WUR3).
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SUMMARY

Bacteria of the genus Rhizobium play a very important role in agriculture by inducing nitrogen-

fixing nodules on the roots of legumes. Root nodule symbiosis enables nitrogen-fixing bacteria 

to convert atmospheric nitrogen into a form that is directly available for plant growth. This 

symbiosis can relieve the requirements for added nitrogenous fertilizer during the growth of 

leguminous crops. Establishment of the rhizobium–legume symbiosis depends on a molecular 

dialogue, in which rhizobial nodulation (Nod) factors act as symbiotic signals, playing a key role 

in the control of specificity of infection and nodule formation. Bacterial and legume genes 

involved in establishing and maintaining the symbiosis are studying over the decades. The 

expression of "nodulation" genes in the bacteria is activated by signals from plant roots and as a 

result the bacteria synthesise signals that induce a nodule meristem and enable the bacteria to 

enter and engage with the host plant.

Research on legume-rhizobium symbioses has emphasized fitness benefits to plants but in our 

research, we take a different vantage point, focusing on the Parasponia-rhizobium symbiosis. 

Parasponia is the only non-legume plant capable of establishing mutualistic relation with 

rhizobia. This study will provide background knowledge for use in applied objectives as well as 

yielding a wealth of fundamental knowledge with wide implications from rhizobium symbiosis 

evolution. Underpinning the work is a continuing investigation of the genes specifically induced 

during the symbiosis. The communications that occur between the plant and the rhizobia during 

nodule formation and maintenance constitutes a novel opportunity to study signal transduction in 

a plant system. 

This thesis describes my research on genetic constrains that determine rhizobium-root nodule 

formation. To identify these constraints we used Parasponi anadersnii as only non-legume 

capable to establish nitrogen fixing rhizobium symbiosis. Our main attempt in this thesis was to 

find the genetic constraints using Parasponia as a key and reconstruct an auto active symbiotic 

signaling cascade in the non- legume plants.

To facilitate the identification of symbiotic genes in Parasponia, first we developed methods to 

generate transgenic plants. In line with this, a simple and efficient hairy root transformation 

method was established in Chapter 2. We consider this is an improved protocol of 

Agrobacterium rhizogenes-mediated transformation. In about 1 months of in vitro culture, we 
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could recover a high number of transgenic Parasponia plants that were resulted from 

independent transformation. 

To determine the genetic elements that underlie the rhizobium symbiosis, we aimed to compare 

Parasponia with closest non nodulating specious, Trema tomentosa. To do so, we developed an 

efficient genetic transformation method for Trema mediated by Agrobacterium tumefaciens in 

Chapter 3. With this protocol we could able to produce stable transgenic line in 6 month. The 

entire procedure for generating transgenic plants achieved a transformation frequency of 15% 

which was sufficiently efficient to conduct experiments at larger scale.

Negative effect of nitrate on root nodulation of legumes has been commonly reported. When 

legume plants are supplied with nitrate, nodule formation, nodule development and N2 fixation 

activity all inhibited. With support of this finding in legumes, we implemented in a physiological 

study on symbiotic response of Parasponia to nitrate. This research opened a novel view on the 

Parasponia-rhizobium symbiosis by discovering a different mechanism that control root nodule 

formation in Parasponia in compare with legumes. In Chapter 4 we showed that, although 

legume root nodule formation is inhibited in moderate to high concentration of the nitrate, 

Parasponia forms nodule even in 50 mM nitrate availability. However intracellular infection is 

markedly reduced. This suggests that Parasponai-rhizbium symbiosis is not evolved to regulate 

the nodule number in presence of the nitrate. In fact the lack of making balance between the need 

to fixed nitrogen and energy cost to supply rhizobium requirements cause nodule formation in 

nitrate availability. These results indicate new evidence that Parasponia-rhizobium symbiosis 

evolved recently. 

According to the fact that Parasponia and legumes are remotely related, it was hypothesized 

that, Parasponia-rhizobium symbiosis evolved independently. Therefore we put forward our 

attempt to determine the genes required for nodule formation in Parasponia. by extending our 

research on symbiotic genes which are available in non nodulating plants with different function, 

namely NSP1 and NSP2. It is known for a decade that NSP1 and NSP2 genes are transcription 

factors essential for rhizobial nod factor induction in legumes. In Chapter 5 we described the 

role of NSP genes during nodulation and mycorrhization in Parasponia. Performing NSP1 and 

NSP2 RNAi knocked down Parasponia plants showed that these genes positively regulate Root 

Nodule (RN) and Amrbuscule Mycorrizal (AM) formation in Parasponia. Mutation in either 
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NSP1 or NSP2 markedly reduced nodule formation. It has been previously shown in legumes 

that NSP proteins have a function in the interaction of plants with AM symbiosis. In the same 

fashion, in our research knock down mutation in NSPs displayed reduced mycorrhizal 

colonization level. This shows that NSP1 and NSP2 are involved in both nodulation and 

mycorrhization. This result highlight the idea that RN and AM symbiosis are conserved in part of 

the pathway and probably bifurcates into two branches by NSP transcription factor allowing 

specific activation of nodulation or mycorrhization. 

Aiming to know the role of hormones in symbiotic behavior, we focused on ethylene as a 

negative regulator of nodule formation in legumes in Chapter 6. We found the negative effect of 

ethylene on root nodulation of Parasponia. For the first time we reported a hyper nodulation (20 

fold nodule number in compare with control plants) phenotype in Parasponia by performing 

knocked down mutant of EIN2 gene, a key regulator of ethylene signaling pathway. Further, in a 

focused approach we investigated the functional behaviour of EIN2 of Trema, a close relative of 

Parasponia that does not fix nitrogen. EIN2 knocked down mutant of Trema formed nodule like 

structures in the roots. This result indicated that at least part of the nodule formation capacity in 

Parasponia has been recruited by ethylene signaling pathway during evolution.

Finally, the results obtained in this study provide new insight into the fact that rhizobium 

symbiosis are under tight genetic constraints that guide endosymbiosis in remotely evolved host 

plants, legumes and Parasponia. Considering this finding along with comparison of Parasponia

with closest non nodulating sister species, Trema, will result in determination of genetic 

constraints which underlay rhizobium symbiosis. Finding these constraints will help to uncover 

the core elements and transfer this important trait to major important non legume plants.  

In Chapter 7 the main achievements of this study are discussed and directions for future 

experiments are highlighted. ………………………………………………………………………
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